
Powered by

f14l
l~:

Microsoft" Programming Series

Inside

In-depth details

of the history,

architecture, and

ever-expanding

potential of this

remarkable

operating system

John Murray

~

Microsott'Press
~~- -

· INSIDE
MICROSOFT® .

WIND 0 ws®
CE

BY

JOHN MURRAY

Inside Microsoft Windows CE

Published by Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1998 by John Murray

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Murray, John, 1959-

Inside Microsoft Windows CE / John Murray.
p. cm.

Includes index.
ISBN 1-57231-854-6
1. Microsoft Windows (Computer file)

(Computers) I. Title.
QA76.76.063M8665 1998

2. Operating systems

005.4' 469--dc21

Printed and bound in the United States of America.

2 3 4 5 6 7 8 9 QMQM 3 2 1 0 9 8

98-28532
CIP

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For
further information about international editions, contact your local Microsoft Corpora
tion office or contact Microsoft Press International directly at fax (425) 936-7329. Visit our
Web site at mspress.microsoft.com.

Intel is a registered trademark of Intel Corporation. ActiveSync, BackOffice, Bob,
Direct3D, DirectDraw, DirectInput, DirectPlay, DirectShow, DirectSound, DirectX,
Expedia, Microsoft, Microsoft Press, MS, MSDN, MSN, NetMeeting, Outlook,
PowerPoint, Sidewalk, Visual Basic, Visual C++, Visual Studio, WebTV, Win32, Windows,
the Windows CE logo, and Windows NT are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/ or other countries. Star Trek and re
lated marks are trademarks of Paramount Pictures Corporation. Other product and com
pany names mentioned herein may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Victoria Thulman
Technical Editor: Jim Fuchs

--.--
For John 0 and the Lake Washington H.S. Class of '98 -----

CONTENTS

Contributors vi
Foreword ix
Preface xi
Acknowledgments xvii
Windows CE System Diagram xix

1 Setting the Stage 1
2 Overview of Windows CE 19
3 The Kernel 41
4 Data Storage 61
5 The GWE Subsystem 79
6 Porting to New Hardware 107
7 Communications 133
8 User Interface and Shell Services
9 Testing Your Embedded System

10 Development Tools 203

153
185

11 A Look at Some Windows CE Configurations
12 The Future of Windows CE 259

Index 279

229

CONTRIBUTORS

Roland Ayala

Keith Bentley
Anna Boyd
Roberto Cazzaro
Patrick Copeland
Thomas Fenwick

Frank Fite

Jason Fuller
Michael Ginsberg

Kimberly Gregory
Scott Horn
Greg Hullender
Edward Jung
David Kanz

Randy Kath
Tony Kitowicz
Harel Kodesh

Ted Kummert

Anthony Lapadula

development tools 217-24
Microsoft Windows-based terminals 235-37
GWE 86-96
testing strategies 187-88
developing international applications 174-81
testing .. 193-99
kernel code. .. 48-56
porting to new hardware 112-15
embedded market '" 28-30
future system software 260-61
porting to new hardware 110--12
Windows CE OS .. 30-34
GWE ~ 82-85
file system 72-73
internal heap .. 64--68
kernel code 56-60
registry .. 72
embedded customers 231-35
development tools 225-27
handwriting recognition 170-74
single programming model 272-77
networking 142-43
PC Card services 125-26
Plug and Play 127-28
development tools , 205-9
user interface design 157-60
information appliances 21-23
Windows CE in the home 266-67
embedded devices .. 28
Sega Dreamcast video game system 237-38
display drivers 128-30
GDI 96-106
printer drivers 131-32

Cathy Linn Handheld PC 253-56
Kenneth Macleod . development tools 209-11

vi

Steve Masters
Sharad Mathur

Jay McLain
Arul Menezes
Mark Miller
Bill Mitchell

Mike Montague
Larry Morris
Kieu Nguyen
CHad Odinak
Robert O'Hara
Jeff Parsons
Scott Shell
Martin Shetter

Brad Silverberg
Chris Stirrat
Keith Szot
Tandy Trower

Bryan Trussel
Patrick Volk
William Vong
Dave Wecker

Charles Wu
Sarah Zuberec

voice interfaces .. 167--69
database .. 69-72
GWE design 81-:-82
internal heap 64--68
tools for the componentized as 189-90
Windows CE as, componentization 34-39
Mobile Channels 149-51
shell development 181-82
communications .. 136-42
connecting to the desktop 143-44
embedded devices .. 26-28
mobile devices 24-26
kernel code 46-48
drivers, porting to new hardware 115-25
testing " 199-201
kernel code 44-45
Palm-size PC .. 250-53
installable file systems 7~77
shell components , 160--62
display drivers 128-30

-GDI ,............... 96-106
printer drivers 131-32
growing the Windows CE team 264-66
development tools 211-15
development tools 215-17
new information environments 267-72
user interface design 154-55
testing as configurations 190-93
AutoPC 239-46
user interface design .. 162-66
future device hardware 261--64
Palm·size PC .. 246-49
ActiveSync architecture 144-49
usability testing 155-57

vii

Foreword

Over the past 30 years, I've watched the computer business go from the
mainframe era to the minicomputer era to the personal computing era, and
now to the very personal computing era. I find it very gratifying to be part of
that transition.

When we started work on Microsoft Windows CE for embedded ap
plications, we decided to focus on 32-bit, virtual memory-capable micro
processors. We believed that Moore's Law would continue to function and
that this hardware platform would become economical as we popularized
Windows CE for the next generation of intelligent appliances.

Our goal was to bring the more sophisticated software environment of
today's personal computer into the embedded world. We didn't go back and
try to capture the style and capabilities of traditional real-time embedded
systems but instead focused on adding modularity and real-time features to
this new, componentized Microsoft Windows operating system.

Today we have microprocessors going into automobiles whose memory
capacity and performance are basically equivalent to what I designed into
supercomputers in 1982. The ability to apply this level of computing perfor
mance at very low cost to benefit people who want to live "the web lifestyle,"
as Bill Gates calls it, represents a radical step forward in the role that com
puting devices and software play in support of our daily lives.

One of the great things about Microsoft is that we have Bill Gates's
leadership. Our continuity of management enables us to invest and perse
vere in our development efforts over long periods of time. As computing has
evolved, this continuity has allowed us to begin introducing computers to
the devices that people find to be mission-critical for their daily lives, such
as televisions, telephones, radios, and cars, as well as other support systems,
such as home, building, and traffic automation.

We launched the PC Companion line with the Handheld PC; now we
are shipping the Palm-size PC, bringing the Auto PC on line, and collabo
rating with Sega to use Windows CE as part of the Dreamcast home video
game system. As part of the digital TV efforts, we are reconstructing the

ix

Inside Microsoft Windows CE

WebTV client as a form of digital television that runs on Windows CE, and
we are using Windows CE in the advanced digital set-top box that TCI will
deploy. To produce as many products as the Windows CE team has in a short
period of time is a real testimony to the individuals and to the team.

We hope that facilitating interconnection between these devices will be
a major benefit of Windows CEo Windows CE allows us to bridge traditional
personal computing and intelligent appliances, and its scalability allows us
to make these devices ubiquitous.

Connectivity will be the single biggest differentiator between the uni
verse of devices today and the universe of devices 10 years from now. It
will require a new communications infrastructure, including radio, wireline
co:rnmunications, satellites, and digital TV transmission mechanisms, as well
as new standards. To succeed, we in this industry have to operate at a mac
roscopic technical, economic, and political level because no one company
not even Microsoft-can effect all the changes by itself.

We see a lot of momentum behind the current Windows CE products,
but we also recognize the huge opportunity for the hundreds of thousands
of people who design specialty systems and who welcome the arrival of a
small but powerful networking-capable, Internet-aware operating system.
The creativity of this development community-the people who read this
book-will invent new ways to use this technology.

x

Craig Mundie,
Senior Vice President,
Consumer Platforms Division,
Microsoft Corporation

Preface

With Windows CE, Microsoft is extending its franchise to televisions, tele
phones, and other "intelligent" devices that can incorporate cheap, powerful,
32-bit microprocessors and communicate with one another. This book is a
survey of the Windows CE operating system-its architecture, some design
details, and ways to think about it-in the 'words of the Microsoft develop
ers who created it. If you are an embedded systems developer, Win32 pro
grammer, or entrepreneur, you will benefit from the instant expertise to be
gained from their tutorials.

I spent a year and a half with the Windows CE team, writing developer
documentation, sample code, and white papers, then took my video cam
era or tape recorder around and asked the developers to explain their pieces
of the system. Sometimes I said, "Imagine that you are explaining the archi
tecture to a new hire who will be taking over your code." I basically asked.
variations of three questions:

*' What is new or different about the Windows CE design compared
to other Microsoft Wirldows operating systems?

*' What parts of Windows CE can other developers replace, cus
tomize, or configure?

*' Where have developers been asking the most questions?

I then edited and arranged the interviews into a sequence that provides
a workable survey of the entire system. Everyone of the chapters can be
expanded into a complete book, but I wanted to produce a single book that
you could read on a cross-country plane flight. By the time you pick up your
luggage on the other coast, you will understand the Windows CE vision and
know where to find more detailed infmmation.

Many books in Microsoft Press's Inside series describe new program
ming interfaces, but Windows CE is based on the existing, well-known
Win32 programming interfaces, and dozens of excellent introductory books
and training programs are already available. (Even the new programming

xi

Inside Microsoft Windows CE

interfaces unique to Windows CE are already featured in The Windows CE
Programmer's Guide, which I helped write, and Doug Boling's forthcoming
book, Programming Microsoft Windows CE). Accordingly, code or pseudocode
appears here only for material that does not appear in the first edition of The
Windows CE Programmer's Guide. This book focuses on the vision andarchi
tecture of the system.

About the approach to this book: I like two kinds of computer books,
those that are concise and those that reveal the personalities of the devel
opers. Kernighan's and Ritchie's The CProgramming Language and Helen
Custer's Inside Windows NT fall into the first category, and Patrick
Naughton's appendix in The Java Handbook and the passages about the Mi
crosoft developer in Fred Moody's I Sing the Body Electronic fall into the sec
ond. With this book, I tried to achieve both concision and personality, and
employed oral history as the technique to get there. This book aims for a
balance between solid technical information and the developers' stories. The
title Inside Microsoft Windows CE suggests a blend of system architecture
details and a look at what it is like to be inside a development team work
ing on a new Microsoft as.

Overall, the book captures the developers' personalities with only a
slight additional cost: it could have been more terse, but preserving the con
text and integrity of each interview meant allowing some redundancy. On
the other hand, because I did eliminate almost all of the redundancy, I am
obliged to offer a few impressions from my 50 interviews and 18 months
behind the scenes with the Windows CE team:

• Nearly every interview started with a recap of overall product
goals before moving to the architecture of an individual area. The
same product vision was repeated, almost verbatim, in interview
after interview. Also, nearly every team member recited a gene
alogy of Microsoft product teams leading to the Windows CE
team (which usually included one of the predecessor teams,
WinPad or Pulsar). Many expressed a strong and deep sense of
loyalty, even to teams long since disbanded.

• People who are not inside Microsoft can't fully appreciate the
fierce rivalries and pitched battles that take place within the com
pany itself. I spoke with the survivors on both sides of three ma
jor design wars. These stories, told to me independently by many

xii

------- -

Preface

different people, shared underlying themes: the importance of
each individual contributor and the belief that each individual
should take risks and compete for his or her vision.

• At some point almost every developer, unprompted, tempered
a discussion of a successful design by mentioning trade-offs or
even initial failures or flaws in their work that had to be corrected.
This honesty and humility is a trait that I appreciate and often
find in engineers.

• While oral history can accurately portray team members' percep
tions, it can also provide conflicting and inaccurate accounts. I
contacted the Intel Corporation and the Microsoft Legal depart
ment to obtain official statements regarding the termination of the
WinPad project, but they were either unwilling or unable to pro
vide these details before .the book went to press. The material in
this book, therefore, cannot be viewed as a complete and objec
tive portrayal of the WinPad project. It must instead be inter
preted only as a subjective description that explains the team's
motivation to design Windows CEas a portable system.

The development team was articulate and engaging. I have tried to
preserve the "sleazy hacks," the "weird and complex beast," "the civil lib
ertarian palette model," the "rock, paper, scissors arrangement," "the uni
fied field theory people," "Roland's rule of thumb," "the beautiful scenario,"
"Yoo-hoo, HTML control,". and the many other vivid phrases that embody
the spirit of this important new operating system.

ABOUT THIS BOOK

Chapter 1, "Setting. the Stage," introduces the goals of the development team
by walking through a proposed mission statement: "Windows CE is.a new,
portable, real-time, modular operating system that features popular Mi
crosoft programming interfaces and that is supported by tools that enable
rapid development of embedded and dedicated systems." Chapter 1 also
helps explain the context in which team members worked by describing the
roles on a typical Microsoft development team.

Chapter 2, "Overview of WindowsCE," offers a longer high-level dis
cussion of the embedded markets and Microsoft's strategy with Windows
CEo Windows CE assumed its current formas a modular operating system,

xiii

Inside Microsoft Windows CE

suitable for a variety of different devices, with the 2.0 release. Each subse,.
quent release offers a set of tested configurations. This chapter explains the
componentization model and offers a block diagram of a system that in
cludes all of the available components. Subsequent chapters examine these
individual blocks in detail.

Chapter 3, "The Kernel," describes the innermost part of the operating
system. The kernel supports the standard Win32 process and thread model
and provides round-robin, priority-based thread scheduling. This chapter
also describes the virtual memory system and the use of protected server
libraries (PSLs) to enhance performance and minimize memory use. The
kernel is written to provide low latency times, thus making it appropriate
for use in real-time systems.

Chapter 4, "Data Storage," describes the three components of the ob
ject store: the file system or systems, the registry, and Windows CE property
databases. Many Windows CE devices do not offer a physical hard drive but
instead provide persistent storage in RAM built on top of an underlying
subsystem, called the internal heap. This chapter describes the heap in de
tail, including its built-in compression and its support for transactioning,
which ensures data integrity on low-power devices. It also describes how
embedded developers can add their own extensible file systems.

Chapter 5, "The GWE Subsystem," describes the graphics, window
manager, and event manager subsystem, subsets of the standard Windows
Kernel32, User32, and Gdi32 libraries. The chapter also describes the Win
dows message-based programming model from the point of view of the
Windows CE components that manage user applications. It shows how the
GWE design separates event management and graphics, allowing the small
est possible system size while still supporting Windows programs-even on
devices without display hardware.

Chapter 6, "Porting to New Hardware," dives down to the lowest lev
els of the system to explain the porting layer and the device driver models
that tie Windows CE to the device hardware. This chapter explains the OEM
Adaptation Layer and the native and stream interrupt device drivers. This
chapter also walks through the interrupt model, showing the interactions
between the kernel, the interrupt service routine (ISR), and the device
driver's interrUpt service thread (1ST).

xiv

Preface

Chapter 7, "Communications," describes the complete set of options
available to communicate with the desktop, the Internet, and other Windows
CE devices. Windows CE supports a wide variety of Win32 communica
tion APls that support modems, networking cards, and serial and infrared
communications. The block diagram shows the relationship between the com
munications protocols and the standard higher-level Win32 programming
interfaces supported by Windows CEo This chapter also describes the desk
top synchronization model, ActiveSync, and Mobile Channels, a high-level
scripting interface for the Palm-size PC that is built on top of the other com
munications interfaces. ,

Chapter 8, "User Interface and Shell Services," provides an overview
of the challenges in user interface design for new information appliances and
offers suggestions for designers working with smaller input and display
areas. Windows CE supports a variety of shell options, ranging from custom
minimum shells produced independently by embedded developers to shells
that are similar to the Microsoft Windows 98 look and feel. Some devices,
such as the Auto PC and Palm-size PC, support alternate forms of user in
put, such as voice input and handwriting input'.

Chapter 9, "Testing Your Embedded System," describes some of the
challenges facing developers building embedded systems and applications,
especially the new challenges that differ from those faced by developers of
the traditional PC platform. The Microsoft software engineers who managed
the Windows CE QA efforts provide suggestions on how to approach test~
ing, from specific practices and tools through management and communi
cations strategies. The device driver tests and test harness developed by the
QA team are provided to embedded developers in the Device Driver Test Kit
(DDTK).

Chapter 10, "Development Tools," describes the wide variety of devel
opment kits and tools offered for Windows CE and provides overviews of
the programming interfaces. The Windows CE development kits build on
standard Microsoft IDEs, such as Microsoft Visual C++, adding emulation and
remote debugging tailored for Wmdows CE deVices. The tools support Win32,
COM, ActiveX, MFC, ATL, Microsoft Visual Basic, and Microsoft Visual J ++
programming.

xv

Inside Microsoft Windows CE

Chapter 11, II A Look at Some Windows CE Configurations, II looks at
how Microsoft and other embedded customers are configuring Windows CE
for their markets. In addition to discussing Windows-based terminals, the
Sega Dreamcast home video game system, the Auto PC, the Palm-size PC,
and the Handheld PC, this chapter notes that embedded developers are
creating new devices and putting applications on existing platforms to cre
ate vertical or dedicated devices based on Windows CE.

Chapter 12,"The Future of Windows CE," taps the experience of some
of the Wind0ws CE group's senior managers (and other senior Microsoft
architects) to discuss future technology, future user interfaces, and future
devices based on Windows CE.

xvi

Acknowledgments

This book owes its existence to the current and past members of the Microsoft
Windows CE development team and to many others, both in and out of
Microsoft, who told me their stories through 1997 and 1998. Many thanks to
Anna Boyd, Anthony Lapadula, Arul Menezes, Bill Mitchell, Brad
Silverberg, Bryan Trussel, Byron Bishop, Carlos Alayo, Cathy Linn, Charles
Wu, Chris Stirrat, Dave Wecker, David Campbell, David Kanz, David
Tuniman, Edward Jung, Frank Fite, Gilad Odinak, Greg Hullender, Harel
Kodesh, Hon Keat Chan, James Stulz, Jason Fuller, Jay McLain, Jeff Parsons,
Joe Quagliani, Keith Bentley, Keith Szot, Kenneth Macleod, Kieti Nguyen,
Kimberly Gregory, Kirk Gremillion, Larry Morris, Mark Miller, Martin
Shetter, Mauricio Lomelin, Mike Ginsberg, Mike Montague, Mike Thomson,
Patrick Copeland, Patrick Halulpzok, Patrick Volk, Randy Kath, Raymond
Manning, Robert O'Hara, Roberto Cazzaro, Roland Ayala, Sarah Zuberec,
Scott Horn, Scott Shell, Sharad Mathur, Sridhar Mandyam, Steve Isaac, Steve
Masters, Tandy Trower, Ted Kummert, Thomas Fenwick, TJ Forman, Tony
Barbagallo, Tony Kitowicz, William Vong, and Yadhu Gopalan.

I apologize for'the heavy editing and the omission of some interviews
so that this version of the book could stay within its size constraints. The
complete interviews are a fascinating chronicle of a major software devel
opment project.

This book hit its deadlines thanks primarily to the great people in the
Microsoft Library and Word Processing Group. They are fun people who
are also incredibly fast and accurate-true professionals. Thanks, Peggy
and Denise.

I am also grateful for the help and support of many others, incluq.ing
Alicia Delserone, Ava Chen, Brad Joseph, Bruce Vanderpool, Callie Wilson,
Cheri Christensen, Dan Thompson, David Pellerin, Doug and Peggi Goodwin,
Guy Smith, Jason Black, Jill Stutzman, John Dohlen, Jon Christiansen, Laurell
Haapanen, Lisa Matheson, Mike Pope, Nuan Wen, Peter Davis, Randy
Ocheltree, Roberta Leibovitz, Shannon Rouse, Steve Kemper, Susan Klysa,
Teresa Atkinson, and Tom Marchioro. One other person stands out for his

xvii

Inside Microsoft Windows CE

many contributions to this book. In the ten years I've known him, Barry
Potter has constantly been asked to do the impossible and has always deliv
ered. His own writing has also received the ultimate compliment: two inter
view candidates who were asked to produce writing samples offered Barry's
work as their own.

Eric Stroo was a steady hand at the helm guiding this project through
two turbulent reorganizations--'One at Microsoft Press and one in the table
of contents. My new favorite editor, Victoria Thulman, and technical editor,
Jim Fuchs, deserve all credit for the readability of the final manuscript. Travis
Beaven and David Brunet converted my napkin sketches into professional
artwork and spent hours preparing the photographs when my raw indie
documentary footage proved to be just a tad below production standards.
Barbara Remmeletweaked the design so that it accommodated the unique
features of this book, and Paula Gorelick did a superb job flowing the text
into the design. Roger LeBlanc proofread and convinced me to go out and
conduct that one last interview.

Finally,all my love to Bim and my family (and many thanks to the
extended family: Sue, Shellie, Lena, Mark, Salazar, Rich, and PeterP) for
supporting this and many other projects over the years.

xviii

Redmond~ WA
July 4,1998

The Windows CE System Architecture

Windows CE-based applications

Hardware

The Windows CE system architecture provides the roadmap for this book. The discussion
of the system as a whole in Chapters 1 and 2 is followed by individual chapters on the
kernel (Chapter 3), the object store (Chapter 4), GWE (Chapter 5), the OAL and device
drivers (Chapter 6), communications (Chapter 7), user interface and shell services
(Chapter 8), and other programming interfaces and tools (Chapter 10). Three chapters
examine the system as a whole from different perspectives:· quality assurance (Chapter
9), specific product configurations (Chapter 11), and possible directions for future
development (Chapter 12).

xix

Inside Microsoft Windows CE

I f the Microsoft Windows CE development team committed its mission
statement to paper, it might read like this:

Windows CE is a new, portable, real-time, modular operating system
that features popular Microsoft programming interfaces and that is
supported by tools that enable rapid development of embedded and
dedicated systems.

Definitions of the italicized terms in the statement provide the structure for
this chapter, setting the stage for a detailed look at the system architecture
in later chapters. Throughput, the discussion notes those areas where embed
ded systems developers can extend or replace existing Windows CE code.

This book is aimed at three audiences-€mbedded systems developers,
Microsoft Windows developers, and vertical market entrepreneurs-€ach of
whom might be unfamiliar with the markets, interfaces, and development
practices of the others. For example, many embedded systems developers
might not be familiar with Microsoft Windows and the Microsoft Win32 API
set. Likewise, many Windows programmers, already writing Win32 applica
tions for the desktop PC, might not be familiar with the embedded systems
market. And vertical market entrepreneurs, who package dedicated appli
cations on existing Windows CE-based devices such as the Palm-size PC,
and who offer marketing, sales, service, and training for a particular indus
try, might not fully understand the development process and the range of
options available to them. This book establishes a common vocabulary for
all three audiences by examining the highlighted terms of the proposed
mission statement.

In the course of learning how Windows CE was developed and what
it offers, you'll meet many of the individuals responsible for the creation of
embedded systems and learn about their roles in the development process.
Accordingly, this chapter also briefly explains the roles played by individuals
on a typical software development team at Microsoft.

A BRAND NEW SYSTEM

The first italicized word in the Windows CE mission statement that intro
duced this chapter is new. Some people think Windows CE was ported from
Microsoft Windows 95 because the first product to use the Windows CE oper
ating system (OS) featured a graphical user interface similar to the interface

2

1 Setting the Stage

of Windows 95. But Windows CE is unique. It has its own code base, writ
ten from scratch and specifically designed for embedded devices.

Windows CE is the third new major 32-bit operating system to be re
leased by Microsoft this decade. But whereas Microsoft Windows 95 and
Microsoft Windows NT were high-profile projects involving huge teams of
people, Windows CE had the size and feel of a skunk-works project, with its
development team operating anonymously and out of sight in one of the
older buildings on the main Microsoft campus in Redmond, Washington.

Being a small team and keeping a low profile worked to the team's
advantage, allowing them to try several different designs before getting it
right. "We sometimes thought of ourselves as a covert group," said Cathy
Linn, the lead program manager for what would be the first Windows CE
device, Handheld PC 1.0. "We weren't on everybody's mind-the higher
ups' minds. We were an afterthought, in a sense, so we could try things
without having somebody watching over our shoulders all the time."

Initially, the as was to be used in two products: in the set-top boxes that
were part of the end-to-end interactive television system and in "Pulsar."
Pulsar was the internal code name for a small handheld personal digital
assistant (PDA) that was based on a new object-oriented operating system.
It relied on wireless communication networks to provide useful information
to consumers. But the needs of the interactive TV and Pulsar groups quickly
diverged.

Pulsar had tight memory constraints, but the lTV group began plan
ning for large amounts of memory to handle the set-top box's multimedia
features. And where lTV would ship a closed system sold as an end-to-end
service, Pulsar would ship an open development platform that needed to
attract independent software developers (ISVs). The as was in the middle,
and the two groups were pulling in different directions.

Tension grew within the Pulsar development team. The Pulsar team
felt that the object-based as team should be fixing bugs rather than re
searching isochronous data streams. They complained of being treated like
second-class citizens.

The Pulsar team also had doubts about using brand new program
ming interfaces. Mike Montague, development lead for networking software,
started pushing for the standard Win32 API set to attract programmers.

Knowing that the Pulsar team would face opposition from virtually all
Microsoft vice presidents, who were promoting the new object interfaces in
the new object-oriented as, Bill Mitchell held a secret offsite meeting on his

3

Inside Microsoft Windows CE

deck to start work on the Win32 approach. The team examined the entire
Win32 API set, defining the smallest possible subset of functions that would
support application developers. They first tried to port Windows NT and
hack it down to the selected API subset, but despite its early promise, the
Windows NT port was too big for the devices.

In the fall of 1994, the Pulsar team held one of its periodic review
meetings with Bill Gates, which was known as the "BillG review." Within
the same week or so, another team working on another handheld offering, the
"WinPad," also held its BillG review. WinPad was a handheld device and
office companion for business users. It was based on the 16-bit Microsoft
Windows 3.1 system, which was an operating system different from the one
used by Pulsar. Named Microsoft At Work and first launched in 1992, this
embedded OS was designed for office equipment such as copiers and fax
machines.

Neither of the reviews for Pulsar or WinPad went very well, recalled
Robert O'Hara, a WinPad development lead. "Basically BillG said, 'I've got
WinPad and Pulsar working on handheld computing, doing two completely
different things. Why are we doing this?' II Gates reorganized both WinPad
and Pulsar under Brad Silverberg.

"Booked at both of them," Silverberg recalled. "I had some fundamen
tal questions about the viability of their visions as well as their execution.
While there were some decent ideas, both were clearly destined for failure."
WinPad, Silverberg explained, was already a few years behind schedule.
Several original equipment manufacturer (OEM) partners had bailed out as
the projected retail price had soared from $500 to about $1200. The device
relied on an Intel microprocessor called Polar that did not appear to be com
petitive in the embedded market. At that time, Intel was having such enor
mous success with the Pentium that Silverberg suspected they" didn't really
have their hearts in it." Finally, he said, the At Work OS, based on the 16-bit
Windows 3.1, was already obsolete. It wasn't worth further investment.

Pulsar was just plain" goofy," Silverberg said. To him, the VI for the
device seemed like a computer-science term project with a "space-age cutesy"
design that reminded him of the children's cartoon The Jetsans. The team had
not done the hard-core business research he thought was needed: talking
with customers, studying the market to determine why products were
successful or unsuccessful, talking to potential OEM partners and under
standing their needs and, finally, demonstrating vision and leadership by
specifying the product design.

4

1 Setting the Stage

"So Harel [Kodesh] and I basically decided to just push the plunger and
blow up WinPad and Pulsar and then get serious about what we wanted to
do," Silverberg said.

From WinPad, they took the notion of the Windows companion device.
"As obvious as it seems today, it was a new idea then, and nobody else was
doing it," Silverberg recalled. The $500 price point was also critical, he ex
plained. Unit sales would drop for every dollar above that point and would
increase for every dollar below that point.

Selecting OEM partners was another critical decision. They sought
first-tier manufacturers who would commit exclusively to the Windows CE
device rather than divide their resources by "throwing three different hand
held designs against the wall to see which one would stick." Silverberg said
the new team also listened carefully to the OEM partners. For example, he
pointed out that Hewlett Packard persuaded Microsoft to include a key
board in the new companion devices.

The new device had the code name of Pegasus. Initially the group
planned to continue to use the object-oriented as, anointed by most of the
upper management at Microsoft as the OS of the future. But with deadlines
looming, the object-oriented as team was not responding quickly to the
team's requests for new design features and bug fixes. Another skunk-works
project was launched.

FrankFite's team, which had written the At Work as for WinPad, and
experienced Microsoft architect Thomas Fenwick started secretly writing a
brand new as from scratch.

"Thomas was getting very, very frustrated with the limitations and our
inability to converge on a real product," Silverberg said. "So he started to
write his own in the back room. It was one of these skunk-works projects that
had some political risks." Unlike the developers of the anointed as, the
Windows CE developers weren't Ph.D. researchers but incredibly talented
programmers. Mike Ginsberg and Thomas Fenwick, Silverberg added,
cranked out high quality code at a level he had rarely seen in his career.
"These guys instinctively made.the right design decisions-one after the
other after the other after the other-coded the design up really fast, and just
did it. They didn't have to argue about it for three weeks. At 11 o'clock in the
morning, you'd give them an idea and by 12:30, they'd say okay, Brad, come
on back, it's running. The progress that they were able to make created an in
credible amount of motivation and excitement and tremendous team spirit."

5

Inside Microsoft Windows CE

The most important goal was to reduce memory use, so the develop
ers studied the cost of interprocess calls (IPC). The group hid its efforts from
the lTV team until the new kernel was ready to compete in performance
tests. The kernel executable was named Nk.exe, with Nk standing for "new
kernel."

Battles over the Win32 API approach and the new kernel battered the
program managers. Bill Mitchell recalled the time when he finally revealed
the Win32 approach at the BillG review and disappeared quickly afterward
to avoid the wrath of one of the vice presidents. Mitchell thought that this time
he had gone too far, and that his Microsoft career was over. "That was the night
before the Microsoft Christmas party, and I remember hiding at the Christ
mas party because the vice president was across the room," Mitchell said.

The current Windows CE as is actually the team's third attempt to cre
ate a 32-bit as for embedded devices. The advanced object-based operating
system was not synergistic enough with the Win32 model, and the Windows
NT port proved to be too big. Their third approach preserved the Win32 API
using new, optimized code.

With the core as design and the OEMs in place and the first product's
clamshell and keyboard design in place, the team's efforts shifted to the user
interface. Tony Kitowicz was the shell lead. Over a weekend, Kitowicz wrote
a prototype UI that looked like the Windows 95 desktop. The prototype
was a catalyst, speeding acceptance of the new UI design throughout the
Handheld PC team.

The marketing team's research backed up the decision to make the
interface resemble Windows 95.

The team then focused its creative energy on getting the most from
the smaller display area and on adapting to the 1.0 product's limitations of
four color values: black, white, light gray, and dark gray. One of the inno
vations, dubbed the command bar, combined menus and the toolbar into a
single control.

After all the work involved in developing a brand new operating sys
tem, Tony Kitowicz considers it a compliment when users mistakenly think
it is a port of Windows 95. "When we shipped VI [version 1], a lot of people
thought we just used the Win95 s01,1rces, and we didn't," he said. "It was all

I

from scratch, brand new."

6-

1 Setting the Stage

PORTABLE, REAL-TIME

The Windows CE system software is written almost entirely in C and, as such,
is portable to many 32-bit microprocessors. Microsoft ports the processor
specific parts of the code and creates a complete set of system libraries for
each supported processor. The list of supported processors is updated fre
quently as new processors are added in response to customer requests.

At the time this book was written, the supported processors included the
following: ARM720T; DEC SAllOO; Hitachi SH-3 and SH-4; Intel i486, Intel
Pentium, and AMD Elan SC400 (x86 SX); Motorola MPC821; NEC VR410l,
VR4102, and VR4300 (MIPS); Philips PR31500 (MIPS); and Toshiba
TMPR3910U (MIPS). For the current list of supported processors, refer to the
Microsoft Windows CE web site at http://www.microsoft.com/windowsce.

OEMs using Windows CE on their own new platforms must implement
device drivers and a small layer offunctions known as the OEM Adaptation
Layer (OAL). These small layers effectively port the kernel to their specific
hardware. Many systems integrators already provide this OAL and driver
code or can arrange to develop it.

The OAL port includes mapping all the possible hardware interrupts
on the device (IRQ lines) to interrupt service routines (ISRs), which are pro
vided as part of the OAL. The interrupt-handling model is straightforward.
When the interrupt occurs, it is routed to the appropriate ISR. The ISR re
turns a value indicating an event to be set by the kernel. The kernel sets the
event so that the interrupt handler, which is the code in the interrupt service
thread (1ST) waiting for that event, can run.

The operating system is characterized as real-time because the delay
between the hardware interrupt and the start of the ISR and the delay be
tween the ISR and the start of the 1ST are all guaranteed to be bounded val
ues. The OEMs and system integrators providing the ISR and 1ST as part of
the port have complete control over the interrupt handling code and can
ensure that it will run within the required bounded times.

MODULAR

Windows CE was designed to be a modular operating system. The system
designer can select only the modules that are needed for a given platform,
minimizing memory use. For embedded systems in which the complete

7

Inside Microsoft Windows CE

operating system is in ROM, keeping the as as small as possible can help
to reduce the required memory size and manufacturing costs.

Although external support for a modular as was planned for the first
release, life at Microsoft means shipping products and establishing a pres
ence in the market, and features are often postponed until a subsequent
release to avoid jeopardizing ship dates. To ship the first Windows CE-based
product on time, certain features had to be dropped, and complete external
support for a modular as was one of them.

Although it provided no external support for" componentization"
(which is what the process of creating the modular as was called in-house),
the 1.0 code base established the infrastructure that would be needed in fu
ture releases.

As soon as H/PC 1.0 was out the door, the as group immediately started
to work on new as features to support the next set of products, such as the
Palm-size PC, the Auto PC, and several others (not yet announced at the time
this book went to print). The design of the modular as was driven by the
very real needs of these internal product teams.

According to Sharad Mathur, the as team development lead, the goal
was to create "one set of bits that we would call the shipping as." Embed
ded systems developers building an as from the common bits should not
have to absorb costs, in terms of memory and performance, that they would
not incur with a custom-built as.

The solution was to provide a complete set of system libraries and
tools that could be used to build the ROMabie executables. The finallibrar
ies that go in the executable are named modules. Some of the larger mod
ules are built from many smaller intermediate libraries, called components.
The process of creating an as starts with specifying its list of modules and
components.

Sharad Mathur developed the system generation (Sysgen) tool, which
preprocesses the system files before the user invokes the Make utility. The
Sysgen tool hides all of the complexity from developers. Developers need to
edit only one small file to select the modules and components for the system.

Microsoft began shipping to embedded systems designers the same
tools that were used in house. The first kits enabled the system to be built
from the command line by using the tool Build.exe, which was used inter
nally by the Windows NT development team and later offered in the Mi
crosoft Windows NT Device Driver Kit (DDK). Current development efforts

8

1 Setting the Stage

are focused on integrating the functionality of the OAK's command-line
based tools with the Microsoft Visual C++ environment and providing the
tools to a much broader community of users. This new easier-to-use toolkit
is called the Embedded Toolkit (ETK).

The initial hope that componentization would allow any combination
of modules and components became unworkable as the numbers of compo
nents-andthus their possible combinations-continued to grow.

Potentially, the number of systems to be tested was equal to the number
of platforms multiplied by the number of supported processors multiplied
by the number of possible combinations of the modules and components.
The Test team quickly pointed out that it would be unable to test every pos
sible combination, and the group decided to focus on the most likely con
figurations to be used by embedded developers.

The team specified five common module and component configura
tions in the 2.0 release and seven in the 2.10 release. Embedded developers
are not constrained from creating other systems, but Microsoft performs
complete system testing on only the specified configurations, recommend
ing that developers use these configurations or minor variations of them.

The library-based approach offered several unforeseen benefits, Mathur
explained. Embedded developers could completely replace some libraries
with their own. And neW operating system features could be offered as
modules and components, which gave developers the choice of adding them
or not adding them. Because developers did not have to absorb additional
features and their associated memory costs, the sizes of their systems did not
grow automatically.

OPERATING SYSTEM

An operating system performs two main functions, according to the classic
A.M. Lister text, Fundamentals of Operating Systems: it shares available physi
cal resources among multiple users or multiple processes, and it provides a
virtual machine that abstracts the hardware's capabilities. The as exposes
a common layer that offers access to memory, the file system, and other hard
ware resources so that application programs can .be written to manipulate
the virtual machine. The operating system thus serves as the application's
intermediary to the hardware.

9

Inside Microsoft Windows CE

Windows CE has minimal hardware constraints, requiring only that the
system use one of the supported 32-bit microprocessors and provide appro
priate amounts of RAM and ROM for the selected system configuration. The
amount ()f memory needed depends on the selected modules and compo
nents. A kernel-only 2.10 system requires about 300 KB, whereas a combi
nation of all current modules and components requires slightly over 2 MB.

Many operating systems use a model for sharing the computer's re
sources that is defined in terms of processes. A process is an instance of a
running applkation. Each process is divided into one or more threads of
execution. Each thread is assigned a priority, which determines when it
should be scheduled relative to other threads. This process/thread model is
exposed by the Win32 API and is supported by all 32-bit Windows operat
ing systems, including Windows CEo

WindowsCE supports a maximum of 32 simultaneous processes but
has no hard limit on the number of threads within those processes-the
t;,1umber of threads is subject to only the overall system resources of the de
vke. Windows CE schedules threads in a round-robin based on the thread
priority setting. Currently, eight discrete priorities exist. (Microsoft has an
nounced support for more levels in future releases.)

Windows CE also supports Win32 memory-mapped files, in which
multiple processes can share the same physkal memory. This memory shar
ing results in very fast data transfers between cooperating processes.

Like the other Win32 operating systems, Windows CE implements a
virtual memory system that provides a contiguous virtual address space of
2 GB, segmented sO that each process can access its own 32 MB of virtual
address space. The remaining memory is available for memory mapping.
Developers obtain memory using the standard Win32 heap functions or C
run-time library functions.

The demand paging system transfers applications into program memory
in RAM as needed. The system does not perform swapping operations in the
same manner as a desktop PC, where the state of a process is saved by writ
ing it to the hard disk, because most Windows CE devices do not have this
kind of baCking store. When additional physical pages are needed, the Win
dows CE OS discards code and read-only memory because these pages can
te reloaded from ROM as needed.

Windows CE systems place all persistent storage in system memory
rather than on a drive. The file system, registry, and a structured storage
system named the "Windows CE database" are built on a proprietary inter-

10

1 Setting the Stage

nal heap. The heap compresses all data and uses its own internal trans
actioning service to log all heap operations, ensuring data integrity in case
of faults and power failure. To access the file system(s) or the registry, de
velopers call the standard Win32 file system and registry API functions.
To access the Windows CE database, developers call a new Windows CE
specific APIset. Developers can add their own extensible file systems.

To handle interactive user input, Windows operating systems use a
message-passing paradigm in which a small data structure (the Windows
message) passes information between the system and the applications. Win
dows operating systems can associate threads with a message queue and
with a window. The window is present as a logical window, even in embed
ded systems that do not have a physical display. Componentizing this part
of the Windows CE code turned out to be one of the trickier parts of creat
ing a modular system, because the code had to allow some internal calls to
fail; recognize that the system did not require a window, and continue pro
cessing as if the call had succeeded.

Finally, the Windows CE operating system includes a number of fea
tures .that enable the as and applications to be localized, or modified, so that
the product is appropriate for users in different countries. Messages and
commands translated to other languages might employ different alphabets
and require different character sets and fonts. Like Windows NT, Windows
CE includes national language sitpport(NLS), which addresses character
order, sort order, date format, and currency format. Windows CE stores all
strings in Unicode.

PROGRAMMING INTERFACES

The Win32 API set includes some redundancy of functions in the sense that
multiple functions can accomplish the same goal. A small amount ofre
dundant operating system code does not usually concern developers of
desktop PC software, but small code size is crucial for embedded develop;.
ers.The first release of Wmdows CE offered a carefully selected subset of the
Win32 API$.

The goal of the design process that started on Bill Mitchell's deck was
to provide the most functionality with the least memory cost. Mike Ginsberg~
who worked on the kernel, recalled, "We started at zero and said, 'What do
we need' as opposed to 'What do we leave out.' " The first platform to use
the Windows CE as, the H/PC, would include versions of Microsoft Word,

11

Inside Microsoft Windows CE

Microsoft Excel, and Microsoft Internet Explorer. The set of API functions
that could support these three development teams, the developers thought,
would be enough for anybody.

When a developer asked for a Windows CE implementation of a par
ticular Win32 API function, she was often advised to use alternative calls or
sequences of API calls. Only when several developers requested an API
was the API added. "We just added things as people screamed for them,"
Ginsberg said.

After the second release of Windows CE offered tools for building a
modular OS, some of the constraints on developers could be relaxed slightly.
As mentioned earlier in the chapter, embedded systems developers could
select which libraries they wanted rather than simply accept the set chosen
for the H/PC. The number ofWin32 API functions available in Windows CE
increased from about 500 to about 1500.

The initial platforms based on Windows CE-the Handheld PC and
Palm-size PC-were intended to be mobile companion devices, so all com
munication services became very important. In addition to the API functions
that manage core operating system functionality, such as processes and
threads, memory, and persistent storage, many of the Win32 API sets imple
mented for Windows CE manage communications.

The key communication interface is Windows Sockets, or Winsock,
which uses TCP lIP to communicate over a serial connection, Ethernet, or
infrared port. Windows CE also supports several other communication-related
Win32 API sets: the Serial API, the Telephony API (TAPI), Remote Access
Services (RAS), the WinINet API, which provides FTP and HTTP services,
and the Windows networking API, which enumerates network resources
and manages connections.

In addition to Win32, Windows CE supports several popular Microsoft
programming interfaces: COM, ActiveX, MFC, and ATL.

Microsoft's Component Object Model, or COM, offers a standard for
creating robust components that can be reused and assembled into larger
systems. COM defines binary objects that can be queried at run time. Each
COM object exposes interfaces, or collections of logically related methods. The
base interface IUnknown allows COM objects to query a particular object
about its supported interfaces. The COM model is language-independent,
allowing components to be updated independently without requiring any
changes to its callers.

12

1 Setting the Stage

An ActiveX control is a specific type of COM object. It represents the
latest in a line of specifications for extensible controls, a line that started with
Visual Basic Extensions (VBX) and was followed by OLE controls (OCX). An
ActiveX control usually presents a user interface and exposes properties,
methods, and events. The control interacts with a control container, such as
VIsual Basic, through a specified set of COM interfaces. By exposing its prop
erties, methods, and events, the ActiveX control can be driven by scripts.

The Microsoft Foundation Classes (MFC) is a class library for devel
oping Windows applications in C++. It exposes much of the same function
ality as the Win32 API set but within a complete object-oriented application
framework. The Active Template Library (ATL) is a C++ template library
specially designed to create ActiveX controls and other COM components.
By using template classes, ATLproduces more efficient software than MFC,
which uses only inheritance.

In retrospect, the decision to support the existingWin32 programming
interface turned out to be critical to winning-"the platform game," as Mike
Montague called it, and contributed to the rapid adoption of the Windows
CE platform. With support for Win32 and COM, virtually any existing Win32
application can be ported to the WindowsCE devices. In addition, other
Microsoft programming interfaces can be quickly ported to Windows CEo As
an example, a Microsoft team in Australia recently announced the port of the
ActiveX Database Object (ADO) interface.

Microsoft has also announced that it will work on two other important
programming interfaces for future WindowsCE releases: Remote Procedure
Call (RPC) and COM+.

TOOLS

Microsoft's flagship development tools allow source code editing, compil
ing, linking, and debugging from within an integrated development envi
ronment (IDE) on the desktop PC. Microsoft offers development tools for
three languages: Microsoft Visual C++, Microsoft VIsual Basic, and Microsoft
Visual J++. For each IDE of these languages, the Windows CE team created
add-on products that feature emulation environments on the desktop PC,
the ability to download the program image, and the ability to debug the ap
plication remotely from the desktop PC while it is running on the connected
target device. For Visual C++, the products also offer cross~compilers for the
supported. microprocessors.

13

Inside Microsoft Windows CE

Microsoft has traditionally provided three distinct development kits
the software development kit (SDK), the device driver kit (DDK), and the
OEM adaptation kit (OAK)-for slightly different developer audiences. Each
kit contains libraries, header files, sample program source code, and docu
mentation. The SDK is produced for application developers who usually
write in high-level languages. The DDK is produced for independent hard
ware vendors (IHVs) who write in high-level languages and assembly lan
guages. The OAK is produced for OEMs who use both high-level and
assembly languages to write code that ports the operating system to specific
hardware.

These kits ship independently of any commercial tool products so that
tools vendors can provide the libraries/header files, documentation, and
samples within their software development environments.

As the product expanded to multiple platforms and as the component
ization tools became available, the Windows CE,tools group combined all
three kits into one single kit for the embedded development community: the
embedded toolkit, or ETK. Like the other development kits, the ETK is of
fered as a stand-alone kit to outside tools vendors. The tools team is currently
integrating the embedded toolkit into the Visual Studio development envi
ronment to create a new development product, the Windows CE Embedded
Toolkit for Visual C++.

RAPID DEVELOPMENT

During one of my first undergraduate courses, a top researcher in the com
puter science department visited. He spoke as one who was imparting se
cret wisdom. "Write this on your yogurt bowl and contemplate it," he said,
drawing on the whiteboard a series of rectangular boxes that appeared to be
floating, one above the other.

Each box, he explained, represented a model of reality, a distinct logi
cal layer independent of all the other models. In between the boxes, he
drew small, double-headed arrows that pointed to the boxes on either side
of them. These arrows represented the interfaces between the logical layers.
The arrows pointing off the top layer of boxes represented the human/ com
puter interface. The lowest level of boxes represented the smallest known
units of the physical universe: subatomic particles. Our domain as computer
scientists, he said, was everything in between.

14

1 Setting the Stage

In a layered system model, you need to focus on only the immediate
layer and its interfaces to adjacent layers. This allows a "divide and conquer"
strategy: you can break up a large problem and allocate your resources to
much smaller problems. The alternative to a layered system diagram is a
monolithic model, where the system (and the developer working on the
system) must understand everything about everything all at once, without
the advantage of being able to break larger problems into smaller ones. The
layered ~odel is more manageable.

Developers draw block diagrams, similar t() the one the researcher
drew, with various levels of detail, all the time. In a very simple diagram, the
bottom layer might be named "hardware," the center layer might be named
"operating system," and the top layer might be named "applications." You
can explode any block in the diagram s() that you can zoom in to viewan
other, more detailed block diagram. You can subdivide the hardware block
to identify different logical levels of hardware: semiconductors, integrated
circuits, microprocessors, circuit cards, and PCs.

By filling the system layer between the PC hardware layer and the
application software layer, the Windows platform has been very successful
at allowing innovation to continue independently in the adjacent layers.
"Windows. creates independence between the hardware changes and the
software changes," Bill Gates said, "so you have total choice on the hardware
side and total choice on the software side."

Harel Kodesh explained that the system layer filled by Wmdows CE is

critical to the development of the new class of devices known as "informa
tion appliances" because Windows CE allows greater adaptability. A few
years ago, he noted, our hardware tendered spreadsheets and documents,
but today most information is rendered through HTML, and tomorrow will
likely bring XML and other related standards. The system software is the
buffer between innovation on information and innovation on the appliances.
The system software allows users to adapt to changing data while preserv
ing their investment in hardware.

The benefits of layering extend to other embedded platforms as well.
Much of the past work involving embedded systems was related to the op
erating system. But by licenSing Windows CE, embedded developers can ac
quire a robust, real-time operating system and concentrate their efforts in
other areas. Many third parties offer assistance in porting Windows CE and
writing device drivers, making acquisition of the entire operating systems
layer possible with only a minimal commitment of internal software devel
oper resources.

15

Inside Microsoft Windows CE

The widespread availability of Win32 software, tools, development
experience, and training means that the entire embedded product develop
ment cycle can be reduced, compressing the amount of time between the
initial product conception and the moment the end-product arrives in your
customers' hands.

EMBEDDED AND DEDICATED SYSTEMS

An embedded system is usually a small computer system dedicated to a
particular task as part of a larger system. It is not meant to be a stand-alone,
general-purpose computer, and its functionality is related to other parts of
the system. Embedded systems are available in a broad array of forms, with
computing capacity ranging from4-bit microcontrollers to 64-bit micropro
cessors. Storage space is typically not on a fixed disk but in RAM, and the
system itself resides in nonvolatile ROM or flash memory. Embedded sys
tem software is not as accessible to the end user as desktop PC software and
is typically updated less frequently.

The architectural and physical characteristics of embedded systems (as
opposed to traditional general-purpose computers) often lead to the integra
tion of operating system and application functionality. The end user of an
embedded system might view the entire system through the interface of a
single dedicated application.

Windows CE is positioned for embedded systems that use supported
32~bit processors and that use half a megabyte or more of RAM and ROM.
Some of the first embedded markets to adopt Windows CE include the manu
facturing and retail sectors. In applications such as factory floor automation
subsystems, sensors transmit information from the factory floor back to the
human/machine interface. Using multimedia kiosks, customers can order
items using a Windows CE-driven system that communicates with a larger
back-end system.

In embedded systems, and with Windows CE, the line between appli
cations and the as is often blurred~ Some vendors package customized ap
plications on commercial Windows CE platforms, such as the H/PC, where
the end user is expected to interact exclusively with one application. Such
a system is sometimes called a vertical market system or a dedicated system.

Vendors can also choose to provide their own shells that use the pro
vided Windows CE shell services. A shell is the set of user-interface compo
nents and underlying support routines that translate user input into useful

16

1 Setting the Stage

operating system actions. For such systems, the latest version of the Win
dows CE Embedded Toolkit for Visual C++ includes instructions on how to
create a customized shell. The toolkit provides all the API support needed
to establish a particular application as the front end for a dedicated system.

DEVELOPMENT PROJECTS AT MICROSOFT

The frontier hypothesis of the American historian Frederick Jackson Turner
is a useful framework for considering a development project at Microsoft.
Turner suggested that the long history of available land influenced the
country's character and sense of identity, and his successors popularized
the notion of successive waves of settlement in the American West: the first
few early explorers were followed by outlaws and missionaries, entrepre
neurs, farmers, and merchants, who gradually and in stages built an eco
nomically diverse society.

Although many historians dismiss Turner today, there are parallels
between the waves of frontier settlers and the stages ofa software project.
The early explorers of a software project start with a blank map of the mar
ket, sketch in particular products and price points, and then map a proposed
product plan and schedule. After a proposal gets the go-aheadtthe team is
built up, starting with those firsHew pioneers and ultimately including a
wide assortment of disciplines.

The marketing team tracks the needs of the target audience as identi
fied in the business plan. Program managers serve as an interface between
the marketing team and the development team. Cathy Linn, lead program
manager for the H/PC 1.0 product, said, liThe marketing guys cannot talk
. to the development guys and have any sort of meaningful conversation. That
just doesn't work. So you have to be able to understand what marketing says
is needed, listen to what development says is possible, and come out with
something that works." The program managers write detailed specificatiori$
for the product that serve as a blueprint for the developers and testers.

Kimberly Gregory, lead program manager for the as, pointed out that
her team balances requirements against existing resources to create a product
specification and schedule. "We track the hell out of the project schedule,"
she said~ II As the product development cycle passes through the milestones
we've defined, we reassess how we're doing and make process improve
ments to do better next time." This last point, she emphasized, is one of the
key strengths of Microsoft. "You don't wind up with projects that miss their

17

Inside Microsoft Windows CE

deadlines by a year with no one able to figure out why. It doesn't mean we
make our schedules every time, but we are able to recognize quickly when
we're not going to make them and take appropriate measures."

As the project team grows, a separate Build team takes on the process
of creating the daily versions of the software that are submitted for testing.
The Test or QA team (which is composed of fully qualified software devel'
opers) creates suites of automated tests and plans manual tests to validate
the software. The Test team monitors the bug database, keeping detailed
metrics to determine when the software is fit to ship.

Usability testers design, conduct, and report the results of usability
tests. These tests examine how users react to early prototypes of the product,
especially the product's user interface. Cathy Linn recalled that the usabil
ity expert Sarah Zuberec encouraged the development team to attend the
tests. "I found the tests very painful to watch," Linn said. "You just want to
give them hints-'No! Just look there! Just push that button!' "

In the case of the H/PC project, the team also sought out expertise in
industrial design. Steve Isaac, the initial UI lead on Pulsar, recalled that the
idea of hiring an industrial designer was considered pretty radical at the time
for a software company, but it turned out to be very important. The indus
trial designer, Will Vong, created foam mock-ups that showed the form factor
of the devices and inspired the development team. Isaac explained, "Build
ing them so that they were cool-looking made all the difference. The engi
neers could really get excited about them." Kodesh always carried Vong's
foam models around with him, according to Isaac.

The User Assistance group, responsible for producing the online and
printed documentation, also acts as a general advocate for end users. Their
ultimate goal is to eliminate the need for documentation entirely by ensur
ing that the product interface is almost intuitive.

The interviews that follow in the remainder of this book include rep
resentatives from most of these disciplines. The interviews walk through
the system architecture, focusing on the functionality available to embed
ded developers and exploring the tradeoffs involved in configuring differ
ent systems.

Although I wish that I could have included everyone, only a few of the
people who played key roles in developing Windows CE and the Handheld
PC, Palm-size PC, and Auto PC services and applications are represented in
this book. The interviews that follow are predominantly from the develop
ers of the core as and from program managers in the other areas ..

18

· WindowsCE

Inside Microsoft Windows CE

T his chapter describes Microsoft's strategy in the embedded systems market,
the history of the Microsoft Windows-based embedded systems that preceded

Windows CE, and the key pieces of the Windows CE system architecture. It also dis
cusses the development tools that allow embedded systems engineers to build custom
configurations of Windows CE from the complete set of modules and components.

This chapter features several top managers in the Windows CE group. Harel
Kodesh is the general manager of Windows CE development. Bill Mitchell and Ted
Kummert are the directors for Windows CE-'based mobile products and multimedia
products, respectively. Frank Fite is the director of the Windows CE Product Unit
and Sharad Mathur is the development manager for the Windows CE Core as team.

Kodesh discusses a specific class of embedded devices-named information
appliances-which offer users the ability to render information. These devices are
generally not designed to be stand-alone computers but are meant as mobile cOm
panion devices that supplement the desktop and synchronize information with the
desktop Pc.

In addition to making the as available to embedded systems developers,
Microsoft is focusing on information appliances in selected markets. Bill Mitchell
explains that some devices are designed to be used where we spend most of our
time-at work, at home; and in our cars-whereas other mobile devices are designed
for all the places in between.

In this chapter, Frank Fite walks you through the system architecture. Sharad
Mathur describes how the system generation tools that create custom configura
tions of Windows CE were driven by Microsoft's own internal product development
teams. With these tools, embedded designers are able to build the smallest possible
systems that meet their requirements. And the approach also offered unexpected
benefits, he says, by allowing Microsoft-supplied, user-interface components and
other modules to be replaced with custom versions.

Microsoft is also working on several multimedia devices. Ted Kummert de
scribes Microsoft's interest in devices that connect to the hub of the home-the tele
vision set. Microsoft and Sony Corporation have announced plans to collaborate on
digital television (DTV) formats for production, transmission, and reception. Sony
will license Windows CE for devices that represent a convergence of the PC with
consumer audiovisual electronics. Tele-Communications Inc. (TCl) has also an
nounced that it will use Windows CE in a minimum of 5 million digital set-top
boxes. Kummert describes other potential devices and applications that can be based

. on an advanced multimedia configuration of Windows CEo

..
20

2 Overview of Windows CE

INFORMATION ApPLIANCES

Harel Kodesh

People ask, "Why does my consumer appliance need an operating system?"
when the appliance is something like a toaster or a microwave. The answer
is, it doesn't. A toaster doesn't need an operating system; it does only one
thing. Or a microwave oven, you can just hardwlre its functions. Toasters
have been making toast the same way for 100 years; microwave ovens cook
the same things the same way-that doesn't change.

But when you talk about information appliances, which is what we're
building, the type of information and the way you render that information
changes all the time. When you look at how information was rendered only
three years ago, you see spreadsheets and documents and rich text formats.
Now information is rendered through HTML. Tomorrow, information will
be rendered in a mutation of HTML and, when you look back,you'll think
that what we're doing today looks ancient.

So to build information appliances, we need to break this mold of a
rigid consumer appliance and have a chameleon appliance that adapts to
current information data types.

Harel Kodesh

The operating system for an information appliance
is the buffer between the rate of innovation on infonna
tion and the rate of innovation on the appliance-which
is not the same rate. Appliances change every five years,
whereas the information probably changes every six
months. The operating system allows us to add new func
tionality over time until a specific appliance is retired.

In 1990 or 1991, Bill [Gatesl, Nathan Myhrvold, and
others started thinking about intelligent devices that are not pes, and it be
came pretty obvious that in terms of technology, one size doesn't fit all. We
needed to cOver different levels of functionality and different levels of re
source economy-the processor, RAM, ROM-which are the resources that
go into the machine. '

We played with some strategies because Microsoft didn't really have
a whole lot of experience with killing the sacred cow, the x86-only strategy.
We tried an x86-only strategy in the past on WinPad, and that didn't go
very well. Telling OEMs that we can't offer other processors is like telling

21
DeYry '~stitute of TechnoJOll

Ubrary - hvjn~ .

Inside Microsoft Windows CE

them that we don't want to be in the embedded business. So we had to con
sciously decide to break away, and that put a mental, psychological, and
technical burden on us because nobody was going to help us. So for the last
few years, we've been developing everything from the applications to the
tools to the system.

There were a couple of approaches, and unfortunately, we had to try
all of them. We started with a pretty advanced object-based operating sys
tem, but when we started looking at what it took to build applications and
system components, we realized it was an uphill battle. Our approach was
not synergistic enough with the Win32 model, so we moved to Win32 and
started porting components from Win32. We ended up with probably 80 to
90 percent of Windows, but it was big and didn't give us the flexibility we
needed. Approach number three was to preserve the API model but not the
code. We're using that approach today.

CREATING WINDOWS CE: THREE BETS

In terms of development methodology, we made three bets. Betting does not
mean winning by sheer luck. It means making choices, sometimes without
all the information. Think about a road to completion that has many forks and
you have to decide which way to go. We made three bets, three key decisions.

First, we designed the system in such a way as to make it more compo
nentized than what was warranted by the Handheld PC (H/PC). Fairly early
in the process, we realized that the Handheld PC was going to be just the first
product we would develop. Now, you cannot jump from one appliance fo
another before you finish because you'll never finish.

So we started modularizing because we knew that the components
would have to be upgraded. Forexample, we knew that the graphical device
interface (GDI) would have to be optimized for the available technology.
Although at that time, in 1996, 2 bits per pixel was the most that you could
put in a $500 device, we knew that color and reflective screens would come
and that the module would have to be upgraded.

We created redundancy in the toolkit. In it, you have multiple modules
and more than one way to do whatever it is you want to do. Once you've
decided how you want to do it, you put one module in silicon. Although the
toolkit is large, the system itself is extremely small.

22

2 Overview of Windows CE

Second, we never, ever wanted to be in a position where we depended
on only one OEM for our technology, especially for new devices. So we de
cided to build a portable operating system, one that played the role of an
OEM. Not compromising on a processor was a conscious decision, though
while we were building the operating system we worked with the proces
sor manufacturers to get things we needed, like the translation look-aside
buffer (TLB) or memory management unit (MMU).

Third, we considered global truths about what a system needed to do,
really thought about the end-user scenarios, and translated those into archi
tecture. For instance, we said the operating system would run a limited num
ber of applications, so we could limit ourselves to 32 processes-yeah, it's
a limitation, and you know in the back of your mind that every limitation
hurts, but it's not really a big limitation. We couldn't find a credible scenario
that required more than 32 processes. And the truth is that because the oper
ating system is multithreaded, the developer can just use threads instead of
processes. There is no limit to the number of threads.

We agreed that the kernel can trash the application, but the application
can't trash the kernel. Because the kernel can trash the application, the op
erating system is not super-secure; but then again, we wrote the kernel, so
the burden was on us to make sure that it worked. Anyway, that decision
allowed us to relax some level of code redundancy.

We changed some of our assumptions after we started. We added more
file system support because we realized that this is one of the areas where
technology had an impact on the design. In 1995, Flash Cards were about all
that was available. Now there are disk drives in the PCMCIA slot, so you
need a complete FAT file system. For TV appliances, you need CDFS and
DVDFS.

We also had to be very compelling for embedded systems developers,
and we believed that tools got you the best of both worlds: the PC tools world,
which is rich in debuggers and source-code editors and compilers; and the
embedded-systems design world, which is rich with cross-debuggers, ICEs,
simulators, and design tools.

You can very easily write for our system; the market for our operating
system is fairly big. Somebody who writes for it doesn't have to worry about
Microsoft going under or abandoning Windows or its OS strategy.

23.

Inside Microsoft Windows CE

WORK, HOME, CAR-AND
EVERYTHING IN BETWEEN

Bill Mitchell

Where do you spend all of your time? You probably spend the majority of
it in one of three places-work, home, or car. And you go back and forth,
transitioning between these spaces with whatever you have on your body
and whatever you carry with you.

Mobile devices

Some Windows CE devices are designed for the places where people spend most of their
time, while other mobile Windows CE devices are designed for all the places in between.
These devices enable users to access their personal information wherever they are.

Microsoft has the "Work" area pretty well covered with Microsoft
Windows NT, Windows 95, Windows 98, and all of its desktop software. We
pushed into this "Home" area a little bit with PCs and the Microsoft Home
brand, but I think this market is really going to take off when we get Windows
CE into the home in the form of entettainment devices (basically anything
connected to your TV), because that's really the hub of the home. These en
tertainment devices would be WebTV and game players, and you'd have a
host of other opportunities that Ted Kummert can tell you about.

24

2 Overview of Windows CE

The "Car" environment ... think about it-you're trapped. I used to live
down in the Bay Area. Seven miles to get to my job took an hour either way,
and I just sat there. People read the paper, curled their hair, did all sorfs of
funny stuff.

Bill Mitchell

Think about what you could be doing during that
time. By using some technology enablers like voice rec
ognition and text-to-speech, you could receive your mail
in the car, send mail in the car, and get news and infor
mation that's a little bit better than what you get on the
radio, where the information is not very customized. If you
could get the information that you really cared about,
you would have a much better in-car experience.

When the AutoPC that runs Windows CE is a standard option in all
cars, and when entertainment devices like game players, TVs, and set-top
boxes that run Windows CE can run Microsoft software and communicate
with the AutoPC in your car and with your desktop PC at work, it's going
to be really cool. That represents a huge user base for Windows CE, creat
ing new opportunities for developers, more than we even have at work
right now.

Then think about the transition spaces. My group's charter is to pur
sue in-car opportunities and development of the devices that travel between
places-the smart organizers, pagers, and phones-what I've been calling
II digital personal effects." I hope we reach the point when we get computers
into a bunch of these personal devices, like your watches, you:r; eyeglasses,
your wallet, and everything that already has body share.

That was our vision when we first started the group. We were work
ing on organizers that you can carry with you, that you can put in your
pocket or in your briefcase.

I credit Harel [Kodesh] with having incredible business savvy. He Was
cutting business plans for a Pulsar group from about the day he arrived at
the company. Basically, Harel's goal was to build small personal appliances
on avery small as, an order of magnitude smaller than the desktop. He went
around to anyone who would listen, trying to get a hearing for his biz plan
on creating this .type of device. And that's how he and I hooked up initially.
When he got the mandate to do that, I was over here. I was about the third
guy in the group.

25

Inside Microsoft Windows CE

We were fortunate enough to be a small group, not really considered
strategic, and we escaped a lot of notice and attention. We were this tiny little
group hanging off the side, working on Pulsar, which was a PDA. PDAs
gradually drifted out of favor after the Newtonfailed. It was a rather spec
tacular flop, and everyone soured on it. And so we just kind of kept our
heads down and continued working.

We actually had a false start in taking Windows NT and trying to hack
it down. Initially we made huge amounts of progress, and it looked great,
but in the back of our minds, we knew the system had to be an order of
magnitude smaller. And that's when we decided to come up with a Win32
API subset that's complete enough for ISVs to write general purpose apps
based on a larger OS.

We had this great offsite meeting on the back of my deck one day, and
we pored through the entire Win32 API: "OK, let's lookat all the line
drawing primitives-is there any single call that we can boil everything
down to? Yeah, Polyline. We can make Polyline really fast and express every
thing else in terms of macros over Polyline, or just have ISVs rewrite their
code using Polyline."

I'm exaggerating somewhat, but that was the basic approach we took.
We started at zer-o and asked, "What API functions do we need?" as opposed
to "What API functions do we leave out?" If we felt that only one person
needed an API function, we tried to work around it by offering alternatives:
If you use these three API functions together, you can accomplish what you're
trying to do. If we felt that everyone was going to need that API function,
we put it in. We did that across the board and then spent the next half year
working toward that vision.

EMBEDDED SYSTEMS DEVICES

If you look at the whole expanding univer~e of devices, from white goods
such as washing machines and dryers to home alarm systems, VCRs, and
digital cameras, you notice that all of these devices are getting smarter. They
also have to do more-perform more processing, communicate with other
devices, and communicate with your Pc. A lot of manufacturers are com
ing to Microsoft looking for an embedded solution.

26

2 Overview of Windows CE

These OEMs come to us and say, "The lack of standard software and
third-party solutions is holding us back in this business. If we had Windows
CE, we could focus on only our applications. We wouldn't need our huge
software hordes working on the core OS; wecould just use your OS." Inde
pendently, a lot of OEMs have arrived at that conclusion.

Today only a relatively tiny slice of this huge embedded space uses
32-bit processors with general-purpose register sets, memory management,
and TLBs. Probably nine-tenths of the embedded space today is running 8-bit
and 16-bit custom microcontrollers and microprocessors. But this huge em
bedded space will start expanding into the realm of 32-bit, general-purpose
microprocessors. Pressure will come from the 32-bitRISC processors that
keep going down in price and going up in performance. And as devices get
smarter, they'll need more mips and high-horsepower, 32-bit microproces
sors and microcontrollers.

Our long-term goal has always been to develop a general-purpose OS
that could be used for all computing appliances. We never intended Hand
held PCs to be the final product in this group; we envisioned a range of many
other similar products. We identified the Palm-size PC and the Auto PC first,
and we take on other devices opportunistically.

These devices get complete Microsoft support just as PCs do. We run.
developers' conferences, and we rally ISV s behind the platform. We run tool
sets that are specific to those targets and that include emulators and special
purpose debuggers and sample code. We line up a large set of IHV s to pro
vide peripherals. And finally, we align big-name OEMs behind them. We get
all these guys lined up and producing the devices, and we come out and seed
the whole software industry for those devices. In the case of the Handheld
PC, for example, we kicked off the whole third-party shrinkwrap software
market. We developed the Entertainment Pack, and we evangelized and
helped Pocket Streets.

The Microsoft Windows CE Embedded Toolkit for Microsoft Visual
C++ includes a kernel debugger and additional tools that are particular to
embedded device development. You can get reference hardware to play
with, and if needed we'll set you up with a system integrator. You'll have
everything you need if you're building any of the millions of custom devices
out there-you've got a huge opportunity.

27

Inside Microsoft Windows CE

We think the whole growing 32-bit embedded space is peppered with
these kinds of opportunities. It's hard to predict which of these are going to
be the ones that tum hundreds of millions of dollars for the company. So
we're placing a lot of bets.

Ted Kummert

Windows CE will go in high-end multimedia entertainment consoles and in
television set-top boxes. I think that over the next few years you'll see more
connectivity into the set-top boxes and game consoles and less of a line di
viding those types of products. You'll see more connectivity with digital
cameras and other components in your home entertainment stack-for ex
ample, you might be able to hook up your set-top box to a DVD peripheral
and play DVD videos. We will also build the operating system technology
to allow set-top boxes to connect to different video sources, such as satellite
and cable. And Windows CE is entering arcades, offering a game console

design and run time for public implementations such as
arcade machines or multimedia kiosks.

There's the prospect of in-home networking, which
enables the appliances in your home to talk to one another
through RF technology, power line technology, or phone
line technology. So if you have an intelligent phone and

Ted Kummert a WebTV set-top box, they could share the same PIM
data-the same data associated with scheduling.

We're building the technology underlying all these products and mak
ing sure that we have the infrastructure supported in the operating system.

THE EMBEDDED SYSTEMS MARKET

Frank Fite

In early 1992, we started in eam~st on Microsoft At Work, a general-purpose
embedded operating system based on Win 3.1 for devices like fax machines,
copiers, phones, and WinPad. WinPad was a hand,held computer similar
to the H/PC but without a keyboard. It was a cross between a Palm-size PC
and the H/PC.

The first version shipped in some fax machines in Japan, and its spin
off products included the fax programs that are now in Windows 95 and
Wmdows NT. But we never really got anywhere in terms of the business side.

28

2 Overview of Windows CE

We never really got a good version of an embedded 386, and this may sound
like ancient history to a lot of people, but memory cost $20 a megabyte. We
never could put a device down in the right price range ..

ill the summer of '94, we were looking at a Win32-based system for
At Work 2.0. At the same time, Pulsar was working on a Win32 embedded
OS specially designed for a pager, like the Palm-size PC but smaller. And
at the end of '94, Brad Silverberg rectified the situation. He canceled the
MiCrosoft At Work program, canceled the Pulsar program, and put all these
people together to work on a new handheld device with an embedded
operating system.

Frank Fife

So from day one of my arrival at Microsoft, my goal
has always been to have a Windows-compatible embed
ded operating system. That's what I've been working on
for six years, and with Windows CE, we finally have one.
It took a while longer than I hoped, but one good thing
about Microsoft is that we keep plugging away.

Right now the embedded market (the non-PC mar
ket) is pretty fragmented. Literally hundreds of operat

ing systems are available. Most of that software is being developed internally
by companies whose core competency probably isn't ~oftware. WhafOEMs
need in the embedded marketplace is great development and debugging
tools and a pool of software developers available to write specific applica
tions for them.

We're going to provide a familiar underlying software platform, Win
dows CE, and deliver products that enable OEMs to use Windows CEo We're
also going to build a team of companies that will revolve around Windows
CEo We'll have semiconductor partners, and we'll have a set of partners
called system integrators. System integrators are the people who provide
reference platforms, do the device porting, write device drivers, and even
handle support and training in some cases. These are the people who make
the embedded market go. I hope to have thousands of OEMs building Win
dows CE devices over the next few years, providing business opportunities
for system integrator companies to step in and fill. And of course the tens
of thousands and someday hundreds of thousands of ISVs and IHVs, who
are a very important part of the larger Wmdows CEteam, will also participate.

29

Inside Microsoft Windows CE

What I have described sounds very fragmented, but it isn't. We actu
ally have a very scalable system. A number of key features are unified to
make Windows CE a single product:

., Windows CE has a unified SDK. Even though you might be building
for a thermostat or an Auto PC, you use the same software devel
opment kit-you simply change your targets. All that expertise
you developed with Microsoft Visual C++ for both Windows and
Windows CE applies across the board .

., Windows CE has a single development model. Regardless of the API,.
a process is still a process, a thread is still a thread. You don't
change the kernel in every system .

., Windows CE has common communications protocols. So any device
that communicates will have these built-in protocols, and they'll
be able to talk to each other.

The market for intelligent, networkable embedded devices will explode
in the next couple of years, due to Moore's Law, the Internet, and the suc
cess of the Pc. We've had inquiries about Windows CE in washing machines,
golf carts, slot machines, refrigerators, point-of-sale terminals, automobiles,
industrial controllers-you name it.

WINDOWS CE SYSTEM OVERVIEW

Windows CE is built on language-independent and Windows-compatible
APIs and programming models. That's obviously why Microsoft is in this
business-Windows CE is a small version of Windows, if you will. The big
difference between our product and Windows 95, Windows 98, and Win
dows NT is that Windows CE is componentized and ROMable. We have
built-in communications, meaning those components are available to talk to
PCs, the Internet, and other Windows CE devices. And we offer easy adap
tation to many kinds of devices.

Because the operating system is configurable, the only minimum hard
ware requirements are a processor, some memory, and a real-time clock. A
system with only those features isn't a very interesting one, but it could be
built and it could run Windows CEo

30

2 Overview of Windows CE

There's also no strict minimum on memory size. If you want to build
an industrial controller that has the kernel, some communications, and a
specialized app in it, you can probably create that device in half a megabyte
of ROM and run it in half ~ megabyte of RAM. That number moves up or
down, depending on what pieces are in the system.

I'm going to go on to talk about the Windows CE architecture and
features.

THE KERNEL

Windows CE is a multithreaded Win32 system, with the same process and
thread model as Windows NT and the same file formats as Windows NT. The
kernel supports multitasking; it has preemptive, priority-based scheduling.

We use virtual memory for protection and sharing even though we
don't have a backing store for most devices and we don'tswap. We have
demand paging, so if you want to run an application that's compressed on
a ROM we can load it into RAM a page at a time-only what we need to run.
We have shared memory and synchronization functions. Our ISR and thread
latencies are plenty low for use in most real-time systems. And Windows CE
is portable-almost all of the operating system is written in C and C++.

We execute in place in ROM; we can be paged into RAM. You can build
a device that loads the as off the network,or you can build a device that
loads the as off a disk, or you can build a device that puts the as wherever
you want it. It's all very flexible.

GWE

GWE stands for Graphics, Window Manager, Event Manager. It is the Win
dows CE implementation of the Windows GDI and User libraries. Our GDI
supports a variety of displays from none up to 32-bit color SVGA. We also
support bitmap printing so that a Windows CE device can generate a bitmap,
wrap it with PCL, and send it to a printer. Windows CE doesn't do the so
phisticated printing of Windows 95, Windows 98, and Windows NT, but it
does enable printing from the as. GWE also includes the event manager, so
this is where we support the standard Windows message-based program
ming model.

31

Inside Microsoft WindowsCE

FILESYS

We have file systems and a registry that uses the Win32 registry APIs. We
also have an extra component that Windows doesn't have, a simple built-in
property database, which is used for components such as address books in
the Handheld Pc.

We'll support multiple FAT volumes at the same time, so a Wmdows CE
device that has more than one slot will be supported. We support installable
CD-ROM file systems. You can support a disk drive in a Windows CE de
vice; we have those APIs also.

THE OEM ADAPTATION LAYER (OAL)

This is the layetth4:l·ftheOEM implements to port the Windows CE OS fo
. its device. We changed that name from Hardware Adaptation Layer (HAL)
to OALbecause Windows NT has a HAL and ours isn't the same.

The OAL is pretty easy to write. It includes small interrupt service
routines and small interfaces for the hardware-specific functionality, such as
the power management functions. We give you sample code for two differ
ent hardware platforms, the CE/PC and the reference development plat
form, and OEMs can adapt the code for use on their devices.

DEVICE DRIVERS

There are really two kinds of device drivers: built-in device drivers for the
hardware; and installable device drivers for cards that you plug in, such as
PCMCIA cards, mini cards, and Compact Flash;

COMMUNICATIONS STACKS AND COMMUNICATIONS APIs

The basic point of communication, of course, is to provide connectivity to
Windows systems, the Internet, and other Windows CE devices.

TCP lIP is our main protocol stack; it's everybody's main protocol stack
these days. We've improved our TCP lIP stack to take into account some of
the specific issues with wireless communication.

We have a lot of the higher level APIs: sockets, serial, telephony, and
WinINet, which provides HITP and FTP. (We provide the smallest subsets
of these APls necessary for the Windows CE environment.) We ~llow
installable telephony service providers so people can add more support.

32

2 Overview of Windows CE

We've added LAN support, so we have the NDIS driver, and we sup
port a redirector so that a Windows CE device can sit on a network and find
files and servers. We have our own remote access APIs that allow you to
write a program on the PC that accesses the Windows CE device. We have
both remote connectivity and remote networking. For corporate solutions,
having this functionality is very important. A lot of corporate customers
want to run apps that run on the server and talk to Windows CE devices, and
we have the APls available to do that. You can transfer files and synchronize
databases, and you can execute and launch applications-whatever you
want to do. We also have a dial':'up connection, which allows people to dial
in remotely. And our synchronization API is open, so people can plug in their
own synchronization.

OTHER PROGRAMMING INTERFACES

The Microsoft ActiveX support today is for in-process COM functionality,
and ActiveX will continually be enhanced. The goal is to enable Microsoft
Internet Explorer on multimedia devices to access web sites and display that
ActiveX content on the TV set. So you can bet that we're going to have a pretty
robust ActiveX implementation.

We support Microsoft Visual Basic; we enable the scripting of forms·
and ActiveX controls. We have a componentized Java VM, just as we have
a componentized operating system.

SHELLS AND INTERNET EXPLORER

Some people will have shells, some won't. A lot of vertical markets just want
apps with()ut an elaborate shell on their machines. We also have a minimum
shell component that offers all the API functionality so that OEMs can write
their own shells.

The H/PC shell, of course, matches the desktop look and feel.· Right
now we have a small version of Internet Explorer for Windows CE that's a
good fit for a device like the H/PC. But as time goes on, Windows CE devices
will be developed that let you spend hours and hoursbrowsing the web, and
we will have a larger, more capable Internet Explorer for those devices.

We know the market we're in. This market requires low memory usage,
and that's what we are going to do. We're trying our best to,keep our com
ponents small.

33

Inside Microsoft Windows CE

You know, the way our as is componentized, vendors can compete in
almost any area. You can replace our file systems with your own. You can
write your own telephony service providers, your own synchronization,
your own shell. We're enabling people to compete at a component level;
we're enabling tools vendors to compete with our tools. We want to create
a marketplace out there that's competitive even with things that we do.

Sharad Mathur

After we finished the Handheld PC, we shifted our focus back to the embed
ded market. Ted Kummert's group joined us and all these different product
lines-the version 2.0 Handheld PC, the Palm-size PC, and the Auto PC
grew up, and at that point the project became a huge challenge for us. Sud
denly we were in the position of having to support all of these different
timelines, schedules, and requirements. And there was this big thrust to ship
a general-purpose as to the embedded world. A couple of challenges came
out of these requirements.

Sharad Mathur

First, we tried to create an explicit as group that
had an independent identity. We treated each group with
in this as group in exactly the same way we would treat
external embedded customers. So as far as the OS group
was concerned, we had an as product, an as product
tree, and different groups of people working on all of it.
That structure enabled us to ship code as a general-pur
pose as. Some reorgs made this structure more obvious.

Second, we dealt with this big issue: how do we make the as work
for all these guys using the aS? We obviously didn't want to ship source
code and have them compile it. We all had a strong feeling that the as
shouldn't have to be recompiled. We wanted to have only one build-one
set of bits called the shipping OS-and all kinds of products built from that
one set of shipping bits.

We wanted an across-the-board solution. We wanted customers who
componentized the as to end up with exactly the same system they would
have had if someone had developed a custom as for them. We didn't want
them to pay extra overhead. We wanted to cut down the header files, cut
down the import libraries, cut down the executables, and make everything
consistent.

34

2 Overview of Windows CE

How COMPONENTIZATION WORKS

The natural design was to separate the compile and the link phases, so to
speak: to compile all capabilities and features into component libraries and
then allow a person to pick and choose component libraries to create the as.

Every component has a stub version. When you leave out a library, you
resolve references by linking to a stub version. So if one module has 10 com
ponent libraries, it also has stub libraries for all 10 different components.

We introduced the concept of a system generation (Sysgen) phase. You
take a built version of the as that has all libraries for all components, the
master header files, module definition files, and a configuration file that
defines the components you want. The Sysgen phase performs three tasks:

• It links together the appropriate parts of the as.
• It filters all the master header files to take out the parts of the

header files that aren't exposed by the components you selected.

• It filters the .DEF files so that you export only the functions you
want.

Sysgen
phase

During system generation, the selected module and component libraries are linked while
the header files and system-Junction export files are filtered to create custom versions for
that system.

When you define components, you add a filter tag for each component
in the master header file. These filter tags are in C++ comments so that they
don't actually affect the C++ compiler. If you introduce a component named.
window manager (WINMGR) in the graphics subsystem GWES, you use the
tag GWES_WINMGR. You can then tag different parts of the header file to
filter definitions depending on whether the window manager is present.

35

Inside Microsoft Windows CE

The filter tools support conditionals. You can have "and" and "or"
Boolean conditions so that you can say something like this: "If I have
GWES_ WINMGR or the base component GWES_ WMBASE, then include the
definition for a window; otherwise don't." Then the Sysgen tool is run and
everything that isn't meant to be exposed is removed.

The ;DEF files aren't as much of a nightmare as they might seem be
cause modules don't directly export functions to the outside world. All ex
posed functions are thunked through a common library, Coredll.dll. Only
one .DEF file, Coredll.def, controls everything exposed by the as, and it
has all the @CESYSGEN tags, just like the header files do. If you look at
Coredll.def, you'll see all the as APIs that can be exposed.

We ended up doing the entire procedure with makefiles, and while
implementing componentization I learned more about makefiles than I had
ever known before. When you look at this little Cesysgen makefile, you'll see
that it's a pretty weird and complex beast.

The link phase started off being very simple-you just linked together
the libraries you wanted. But there were stupid mechanical problems. If you
specified a bunch of libraries on the link line, the functions got resolved in
an undefined order. When someone used Create Window, the system was as
likely to use Create Window from the stub library as it was to use CreateWindow
from the actual window manager library.

Because links are not resolved ina defined sequence, the Sysgen phase must link system
libraries in two phases: first all selected modules and components, and then all stubs for
modules and components that were not selected.

36

(

2 Overview of Windows CE

And so to resolve this problem, we· developed a build process with
two phases:

1. You combine all the actual nonstub libraries into a single library.

2. To link your final module (.EXE or .DLL), you resolve that single
nons tub library with the stub library so that your module
resolves calls to any components that weren't included in the
configuration.

DEFINING WINDOWS CE COMPONENTS

Then we had to face the question, "What components do we create?" Our
first approach was to get the easiest 90 percent of the components-the parts
that aren't spaghetti-and build them as separate libraries. We took all the
logical units that already had interfaces and made them into separate com
ponents. GDI is its own component, and User has window manager, clip
board support, caret support, accelerators, and dialog manager. It was very
easy to make every individual control in the window manager (such as the
edit control and the button control) its own component. Each was a relatively
modular piece of code that we could build as a separate library.

But there were still a lot of dependencies. For example, you might want
communications and not the. window manager, but because the system used
PostMessage and PostMessage used something else, you'd end up requiring
the window manager.

During the first release, we were not actually able to create compo
nentized configurations. But the first release helped us get the infrastructure
in place so that we could componentize in 2.0;

One of the big problems with componentization is the difficulty with
testing. I can create 10 different components that can be present or not
present, but to QA the 210 different configurations and make sure that all
of them run is hard. So we had to scale back our concept to let OEMs
choose some OS components from this column and other as components
from that column.

37

Inside Microsoft Windows CE

Our next step was to go to the market and say, "Okay, what configu
rations do people want?" We came up with a minimum kernel, a kernel with
communication support for industrial controller applications, a minimum
GDI configuration that has a graphical display but no window manager, a
configuration with a window manager, and others. We continue to add con- .
figurations in each release.

Then we went back to User and recomponentized, working on the hard
10 percent to make these meaningful configurations work. We spent a lot of
time on that in the 2.0 release. We rewrote the communications stack so that
if you want to call a UI function such as MessageBox, the system first calls
LoadLibraryand then calls MessageBox if it exists. If MessageBox doesn't ex
ist, the system takes a default action and that allows us to use the commu
nications stack without requiring the desired UI in the system.

We separated the UI into its own components and tried to isolate depen
dencies across modules. Within modules, we reorganized the code. User

. went through quite a significant reorganization so that now we offer mes
saging without a window manager. After this reorganization, you still have
the concept of a window and of user input but no window manager infra
structure. As a result, you still get keyboard or touch panel input posted
through to your GetMessage loop.

Our internal product departments, who were driven by their product
requirements, also drove us toward these meaningful configurations. One
group, for example, wanted to have DirectX and a minimal subsystem of
User APIs but didn't want all of the CD! or all of the window manager.

We keep on finding new uses for componentization, but one of the other
big uses is as a methodology that allows people to replace behavior. Because
the OS gets linked in at Sysgen time, an OEM can have replacement compo
nents and thus change the way the nonclient area looks, change the way a
particular message box comes up, or change the way the out-of-memory
dialog looks. You can customize a lot by building your own versions of the
components and plugging them into the component list at link time. You
build your own library and just replace the existing one. .

Whenever we add new features, we add them as components, which
allows us to keep our minimal footprint down. If one product wants cascad
ing menus, we don't have to add 10 KB of code to everyone's menu control.
People can pick or choose whether they want the feature.

38

2 Overview of Windows CE

So what I just described comprises the four salient, high-level, impor-
tant benefits of componentization:

• Scalability

• Allowing the OEMs to make trade-offs

• Allowing the OEMs to replace code

• Minimizing overhead as we add new features

RESOURCES

Topic

OEM opportunities for partnering
with Microsoft

System integrator opportunities

Developing custom embedded
devices

Visual C++ programming

Visual Basic programming

Java programming

Resource

email: wceoem@microsoft.com

email: wcesi@microsoft.com

Microsoft Windows CE Embedded
Development Toolkit for Visual C++ 5.0

Microsoft Windows CE Toolkit for
Visual C++ 5.0

Microsoft Windows CE Toolkit for
Visual Basic

Microsoft Windows CE Toolkit for
Microsoft Visual J ++

39

· The· Kernel

Inside Microsoft Windows CE

T he kernel is the innermost core of the operating system, responsible for
scheduling and synchronizing threads, processing exceptions and interrupts,

loading applications, and managing virtual memory. The Microsoft Windows CE
kernel supports execution i'n place (XIP) from ROM or demand paging into pro
gram memory in RAM. As explained in Chapter 1, the kernel is sometimes referred
to as· Nk.exe, which is the name of the file that contains its code.

The kernel was designed to be portable so that Microsoft could quickly port
versions to different microprocessors. All of the supported microprocessors to date
are 32-bit, little endian, and support a translation look-aside buffer (TLB), which
is a fast cache that maps virtual addresses to physical addresses to improve memory
access performance.

Windows CE supports the Win32 process and thread model using a round
robin, priority-based scheduler. Currently, eight discrete priorities exist, and Mi
crosoft has announced support for more levels in future releases. Threads are defined
as being in one of several states: running, suspended, sleeping, blocked, or terminated.

Within the Windows CE kernel, each priority level has its own circular run
queue. The kernel's scheduler gives the CPU to the first thread in the highest
priority run queue, which in the simplest case runs until it yields. The kernel then
moves that thread to the end of the queue and gives the CPU to the next thread. (The
thread can also change priority or change from the running state to another state,
which removes it from the run queue.)

By default, the Windows CE scheduler operates on a 25-millisecond quantum.
Embedded developers can set this quantum to other values.

When multiple threads are allowed asynchronous access to the same resource,
the threads can interfere with one another and cause incorrect results. The classic
example involves two threads incrementing a value in memory.1fboth threads read
from memory before either writes, the final result is incorrectly incremented by only
one instead of two. To prevent errors, most operating systems provide ways for
threads to request exclusive use of a resource until an operation is complete. A sec
tion of code that requires such exclusive use is known as a critical section. The
threads use mutual exclusion to prevent one another from running while one is in
a critical section.

The Win32 API provides a variety of objects for managing synchronization
of threads. Windows CE supports wait functions that examine the state of critical
section objects, mutex (mutual exclusion) objects, and event objects. The mutex and

. event objects can be assigned names so that they can be accessed easily by threads
in different processes. Microsoft has announced that Windows CE will support
another kind of synchronization object, semaphores, in a future release.

42

3 The Kernel

Unlike other Microsoft Windows operating systems, Windows CE has thread
priorities that are fixed and do not change. Windows CE does not age priorities or
mask interrupts based on these priority levels .. Sometimes the kernel does temporarily
modify thread priorities when the use of a resource by a low-priority thread delays
the execution of a high-priority thread contending for the same resource. In this case,
Windows CE lets the low-priority thread inherit the more critical thread's priority
and run at the higher priority until the thread releases its use of the resource. This
scenario is known as priority inversion.

Most operating systems distinguish between user-mode and kernel-mode
processes. The mode indicates whether a process can access privileged microproces
sor instructions and internal kernel functions, and it provides protection byensur
ing that user-mode applications cannot corrupt the kernel.

In Microsoft Windows NT, device drivers are usually written as kernel-mode
processes and can make privileged system calls that are not available to user-mode
processes. In contrast, most of the device-driver work in Windows CE is performed
by user-mode processes that call the common Win32 API functions. Windows CE
uses a straightforward device-driver model in which one small part of the driver is
linked with the kernel and the rest is implemented as a user-mode process.

This chapter discusses the kernel exclusively. The parts of the device driver
that are linked with the kernel are examined in Chapter 6, "Porting to New Hard
ware." Because so many of the real-time features of the kernel are related to the
implementation of the device drivers, the real-time characteristics are also dis
cussed in Chapter 6.

The kernel design and development effort was a collaboration among many
individuals. Michael Ginsberg, Thomas Fenwick, Gilad Odinak, and Mike Montague
speak for all of the people whose brainstorming, experience, and hard work went into
the kernel architecture.

Michael Ginsberg and Thomas Fenwick wrote the kernel code. Michael Ginsberg
wrote the scheduler and, for Windows CE 2.0, modified the kernel to guarantee
bounded latency times, enabling Windows CE to be used in real-time systems. Mike
Montague was a development lead on Pulsar, a predecessor project to Windows CE,
and on the Microsoft Remote Procedure Call (RPC) run-time project. Gilad Odinak
worked on the original object-based OS for lTV and Pulsar, which used a similar
design for the virtual page tables.

One of the important kernel design issues was the cost of interprocess com
munication ([PC). RPC, which Mike Montague discusses in some detail, is an IPC
mechanism that Microsoft Windows NT uses internally for many of its services.
Using RPC, a client calls a server using a straightforward programming model as

43

Inside Microsoft Windows CE

if the client were calling a function provided in the server's library. With RPC,
however, the server functions cim reside not only in another process but also on
another computer. The RPC tools create an extra layer of functions, the RPC stubs,
whose role is to handle cross-process and network communication, copying all func
tion arguments and referenced data between the client and server.

Gilad Odinak

Harel Kodesh knew me from the OLE days and asked me to join his oper
ating system group for the new Pulsar product. Later there was a reorg, and
the new world order was that Harel's group would create the Pulsar device,
there would be an interactive TV group, and there would be a core technolo
gies group handling the operating system. Harel asked me to work for that
group. Shortly after that, yet another coup took place, and it was decided
that all this work would be managed by Microsoft Research. So basically the
Research group inherited me, and I was like a kind of a weirdo bird. They
didn't know exactly what to make of me.

When all the dust had settled (this was October of '93), it became clear
to me that no one was actually writing any code. So I decided to justgo ahead
and do the coding. In about two months, I had a core system that satisfied
the original requirements: an embedded system, PDA-like, portable, using
very little memory, consuming very little power, very object-oriented, and
using COM interfaces and classes.

Gilad Odinak

I asked one of the hardware program managers from
the Pulsar group to find a board for me, which I hacked
so that we could download the code. This board was de-
signed as an evaluation board for printers. It has a MIPS
R3000, no coprocessor, a unidirectional parallel port, a
few serial ports, a pretty slow speed, and proprietary
ROMs. Basically, I built a bidirectional parallel printer
port, and we changed the software in those EPROMS for

bidirectional downloading/uploading. And this is how the PeRP started.
Two things happened after that. Technically, the lTV project started

taking a very different route. There wasn't really an emphasis on being small.
You needed a lot of memory, so the size of the kernel made no difference.
Pulsar's goal was to be a platform. For a platform, you need documentation
for developers and APIs, and to create that from scratch is really a big task.

44

3 The Kernel

Developers wanted the APls to look like the Win32 APls and didn't really
care how they worked underneath. The lTV people wanted the inner work

. ings to be like Windows NT, and they really didn't care what the APls looked
like. [laughing] lTV and Pulsar weren't a good match anymore.

Then the Pulsar group and the WinPad group were reorg' ed under Brad
Silverberg. There was mistrust: "How are we going to depend on those ex
ternal groups in Research? Those people in Research don't know exactly
what they are doing," etc. So the Pulsar group went ahead and got them
selves their own operating system group, and in secrecy they wrote a new
kernel. For a while they did this camouflage work where they had two setups:
they would work with our kernel on one side and with this new kernel On
the other side and try to hide it from everybody.

It's interesting to know that their new OS group, to some extent, used
some of the same ideas.

We didn't use page tables at all. We used what we called a virtual TLB,
which was a cache of mappings between virtual and physical addresses for
all processes. Nkexe used a different structure but the same idea of using a
software handler but not page tables for the MIPS. When they had to port
their code back to the PC, they basically went through the same path. They
ended up reinventing the same strategy that we had~to not use page tables
on anx86 even though page tables are provided by the hardware.

The solution to the dilemma is to build page tables as needed and re
cycle them. So when you take your fault, you look in our virtual TLB (which
is all software based), figure out the mapping between the virtual addresses
and the physical addresses, create a page table with that entry, hook the page
table up, and take the fau.lt again. Now the x86 hardware performs the map
ping correctly.

You have a small, fixed pool of those pages~aYi 30 to 40 page~and
you don't let the number grow. Soon you use all of them. The next time you
need a page, you take one that has already been used, disconnect it from the
pointers that point to it, and use the page in another place. This approach
works because on the next TLB fault, the page table will not be there, the x86
will give you a real fault, and again you will recycle one of the other pages.

By throwing the page tables out, we saved on average about one-half
to one whole megabyte, which was a large portion, maybe 50 percent of the
memory.

45

Inside Microsoft Windows CE

Mike M.gntague

lwas hired on this cool project, Pulsar. I described Pulsar as every kid's
dream: little, you put it in your pocket, you played games on it. It did every
thing. It was like the Dick Tracy two-way wrist radio. I remember we were
looking at funky ideas for the VI, not in the traditional sense, but in the sense
of the whole user experience: voice input, voice output. We had a character
based user interface for a while. Did a bunch of prototypes of it and some
usability tests-we demo'ed it to Bill G. ,

Parallel with this, a research effort for an object
based kernel was going on, and basically we were forced
to use this object-based kernel. A bunch of us were from
the production side of Microsoft, and we wanted to start
cranking out products. Iremember one guy, Wes Cherry
great guy, great programmer. Man, he just wanted to start

Mike Montague cranking applications~ He was ready to go. Even before
the company had a system we could use, we started try

ing to build prototype software. And it was really hard because we didn't
have anything to start with.

The problem was, we felt dual pressures. We had the pressure of ship
ping the product-at Microsoft you, ship or die-and we had the pressure
of "Let's do something new./I And we couldn't add substantial value to the
Win32 APIs. The APIs aren't perfect, but we couldn't do ten times better, and
that's what we would have had to do. We were a new platform. It made
sense to leverage existing shiff, take an incremental approach.

I don't want to sound like I'm against innovation, but you have to be '
smart about it. Windows CE is an innovative platform, and if you look un
der the hood, you'll see a whole lot of innovative stuff. But if Windows CE
consumers have to learn a new API set, they're not going to pick it up. The
first consumers of the platform are programmers. We've got to get pro
grammers on board because that's how we get applications written. It's the
platform game.

It was somewhere in this time frame that I really started pushing
Win32: "We've got to do Win32./I I distinctly remember being the sole drum
mer beating the Win32 drum. But the response was that new is better, that
we would add val].1e by defining new APIs, by defining new network pro
tocols, by defining new user interfaces. They said to me, "We're the future.
We have to be different./I Being different in and of itself adds no value.

46

3 The Kernel

And it was this incredible struggle to get Research to deliver reliable
drops and give us the schedule to be a real product team, because they tried
to combine doing research with doing a production kernel, and the objectives
conflicted. We had different sets of goals. It was really unfortunate because
some really nice guys and some really smart guys were on that team. We
struggled and struggled and got to the point where we had a little Windows
based system going. We were just beginning to be able to write Win32 apps.

Then Harel told me that Thomas Fenwick was coming on board. Tho
mas and my older brother, Jim, had worked together for six years, so I knew
·of Thomas, knew what he was capable of doing. Thomas had some amaz
ing ideas for how to write a kernel.

I'd spent four years working on RPC, which is all about going process
to process, so I had spent a lot of time thinking about RPC as a platform. I
liked the RPC style of programming. It made writing servers really easy: you
could just write the API on the server side as if the client had called the API
directly. It helped the development team in terms of time to market. Less
code written means fewer bugs. That style of programming was nice.

Client Server

In the RPC programming model, computer-generated subroutines known as RPC stubs
transfer function parameters and return values between processes. The data transfer is
known as marshalling.

And I'd spent a lot of time thinking about where the costs are in RPC:
the total amount of time it takes to make a procedure call, from the time you
make the call, through the stubs, all the way until the call hits on the other
side. We were tackling some interesting challenges in RPC, like trying to
make stab interpreters to get the stub sizes down. I spent time profiling the

47

Inside Microsoft Windows CE

code. I distinctly remember doing exact instruction counts of the cost of
making a remote procedure call, and I'd seen that stubs are expensive. Gen
erating efficient RPC stub code isn't easy. It usually makes for big code. You
know, copying data is expensive. If you're not sharing address spaces, you
have to allocate memory, and that's expensive. In thinking through the cost
of RPCs, we decided that we wanted to drive the cost down as low as possible.

Thomas had some ideas about mapping address spaces together-the
idea of just taking the thread, keeping the same stack, and bringing the thread
into the other address space so that you could make procedure calls directly
with basically no stub at all. The cost was driven way down in terms of tak
ing the thread into the server process, in terms of memory mapping so that
you minimize copying arguments. You just had to twiddle a few things on
the stack, and for most cases that sufficed. By using the same stack in the
server address space, you avoided having to copy arguments.

If you look at APIs, my guess is, about half the arguments are scalars
and about half are pointers. You need to map only the pointers. By mapping
only the pointer into the appropriate address space, you don't have to copy
any memory. You can map the pointers directly on the stack. A very quick
operation. It's simple. It's straightforward.

So the object-based kernel was running behind schedule and, in a great
Microsoft tradition, two guys-Thomas Fenwick and Michael Ginsberg
went off and wrote their own kernel that was tailored to the needs of the
small devices we were trying to build. Basically, they had a couple of months
to come up with the proof of concept. We'd been struggling with the other
kernel for at least a year before that, but those two guys produced the equiva
lent kernel in two months. It was up and running in such a way that the
Win32 stuff could be ported over, and right off the bat the thing was three
times as fast. That said a lot for the elegance of the design. So it was really a
slick little kernel. I mean, some very clever ideas went on there. It all just
came together, and we were back on schedule.

Thomas Fenwick

These were the design goals for the kernel:

• Keep it small, in terms of both ROM usage and RAM usage. We
knew the kernel would be running on devices with limited stor
age capabilities.

48

3 The Kernel

• Use a standard API rather than create a new API. We kicked
around thoughts of creating a new one, but the problems were
tools and development and trying to evangelize a brand new API
into the world.

• Leverage existing tools. So, for example, we used the exact same PE
[executable and library file] format as Windows NT.

• Run XIP right from the ROM, which none of the other Microsoft sys
tems could do.

• Make it portable. We knew from the beginning that we would have
to run on at least two different processor families because the first

two OEMs were using very different processors: SHx and MIPS.

• Enable protection. A bug in an app should not crash the system.

• Keep the Windows NT client/server model and standalone subsystems
independent of the kernel.

Thomas Fenwick

We also had several non-goals for the system that

affected our design. We were concerned about protection
but not about security. We weren't trying to design an
airtight system like Windows NT, a system that no appli
cation can damage maliciously. On a time-sharing com

puter, which has multiple users on the same computer,
a hostile user can do damage to other users. But we knew
that our target market was a single-use device owned by

a single person. A single device is not open to the same kind of hostile envi
ronment. A vendor who downloads a hostile application in an H/PC may
damage the data in the H/PC, but that vendor isn't going to get veiy far.

We never viewed Windows CE as a big operating system. We knew we

weren't building a replacement for the desktop operating system. So we made
very specific compromises, targeting smaller devices with less memory.

PROTECTION

I wanted to keep the Windows NT model, where we had the window man

agement system, the graphics system, and file systems written as standalone
subsystems, independent of the kernel. And they actually are. Our file sys

tem runs as a user-mode process. Our window manager runs as a user
mode process. We load device drivers as user-mode processes, running

49

Inside Microsoft Windows CE

nonprivileged. That way a bug inside the window manager, for example,
may crash the window manager and do damage to it, but the crash is iso
lated. And, if nothing else, when you're debugging the system you have a
much better idea of where to look.

That same model allows us to keep a device driver in a separate pro
cess from the file system. A buggy device driver might end up crashing that
driver and you'll have to reboot, but it's very unlikely the device driver will
damage the object store. That's something we were concerned about, be
cause the device driver is not on disk anymore. It's just part of RAM in the
system, so if somebody goes scribbling all over it, it's gone.

MINIMIZING ROM USAGE WITH PSLs
We wanted to cut down the resources required in terms of processor horse
power and memory usage but still retain the client/server model.

The traditional client/ server model normally has two threads. The
client thread issues an API call to the server, then blocks. The server thread
wakes up and .r:uns, finishes, then wakes up the client thread while the server
thread goes back to sleep. Each thread has its own stack and more storage in
the kernel to track its state. And we're talking about virtual memory stacks,
which are page-granular, so even if the server needs only 50 bytes of stack
to process the API call, it uses the whole page. The pages are either 1 KB or
4 KB, depending on the processor, which means we need a minimum of 1 KB
to 4 KB of RAM per thread.

Most operating systems also maintain two stacks per thread: a user
mode stack and a kernel-mode stack. And so with that model and a standard
client/ serVer arrangement, you actually need four stacks to process anAPI.
We couldn't afford the memory to do that.

So what we do is borrow the thread. We borrow the client thread, pull it
out of the client process, put it in the server process, and run it in the server
until it finishes.

We designed a scheme that we called PSLs-protected server libraries
that behave as a kind of a hybrid between a DLL and a standalone process.
PSLs are allowed to register what I call an /I API set" with the kernel, which
is a fixed set of entry points into that server. We register function signatures
that tell the kernel the size of the arguments and whether they are pointers.

A client process makes a call to the PSL and ends up trapping in the
kernel. Thekernel cracks the address apart and decides which API in which

50

3 The Kernel

server is being called. With that information, the kernel is able to adjust the
argument list accordingly.

The kernel massages the state of the client thread a little bit and fixes
up the argument list directly on the stack as it needs to. It maintains a linked
list off the thread structure that records the return address and a few other
things about the state of the thread at the time the call is made. The kernel
then changes the return address to an address that will fault into the ker
nel so that the kernel can undo this process. So, when the API call to the
server returns, it traps in the kernel again, the kernel pulls the first block off
the linked list, restores the client thread state as it was before the call, and
returns to the real return address.

We kept the basic client/ server model, but the price of the interprocess
call dropped enormously.

VIRTUAL MEMORY: THE SLOT MODEL

Very early on, we decided to limit the amount of virtual memory available
with each process to 32 MB. This seemed to be enough, given that we were
targeting smaller devices with 4 MB of ROM and 4 MB of RAM. Eight times
the physical storage complement seemed to be a reasonable limit.

We took the lower 2 GB of the address space and sliced it up into 32-
MB slots, reserving one slot for each process. Each of those slots is broken up
into 512 64-KB blocks. The 64-KB blocks are broken up into pages that are
either 1 KB or 4 KB, depending on the system.

The slot o virtual address space is special because it's always the cur
rently running process. So the 32-MB slice of virtual memory for the running
process is in two places: in its slot among the 32 available slots and in slot 0
for the active process.

The kernel, which is in slot 1, assigns the 10}'Vest available numbered
slot to each new process. GWE (Graphics, Window Manager, Event Man
ager) is usually in slot 2. Filesys is usually in slot 3. So, if you've got the Shell
in slot 4 and the Shell is running, the Shell's memory and data are in slot 4
and in slot o.

The Shell calls a routine in GWE and passes a pointer that points to
data in slot 0 because the Shell is the active process. The kernel will map the
pOinter up to slot 4 and then call GWE. Now slot 0 isn't the Shell anymore,
it's GWE. GWE runs, completes, returns, and the pointers are swapped back.
That's the reason the virtual memory structure is set up the way it is-it's
simply a pointer swap for me.

51

Inside Microsoft Windows CE

32 slots and 32 32
the active

slot

4 (Shell) 4 (Shell)

3 3

2 32 MB per slot 2

1 1

Slot 0 Slot 0

When the Shell calls eWE, the kernel modifies pointers on the stack to slot 0 to point into
t~e Shell's slot (slot 4) and then makes eWE the active process in slot O. Because theker
nel manipulates the pointers, no data copies are required.

So when you make a P5L call, I walk across the argument list looking
for arguments that are pointers, Any argument that is a pointer to an address
in the first 32 MB gets moved up to the slot where the process actually lives.
And then when you transition to leave the process, you can follow those
pointers correctly because they're all pointing to addresses that don'tchange.

The end effect is that the kernel doesn't have to copy any data. If you
call GWE to do something with a buffer, and GWE has to call the file system
to fill that buffer, no data gets copied. The buffer is passed directly into the
file system, and the file system fills it. You come back out and your data is
sitting there.

HANDLE LOCKS AND ACCESS KEyS

I limited the number of processes to 32, primarily because 32 is the number
of bits in a word. The virtual memory system and the handle management
logic in the kernel use 32-bit bitmasks as access keys. Every 64-KB block has
a lock on it, a bitmask that indicates who is allowed to access it. Every handle
also has a similar lock. Every thread has a key that is a 32-bit bitmask. The
simple test is a lOgical AND operation onthe key and the lock. If you get a
non-zero value, access is allowed.

As your thread hops from process to process making PSL calls, the keys
on .that thread gain access. Initially, your thread, just running by itself, has
access to your process's address space and nothing else. After you call into
GWE, that thread can now see all of GWE and all of the original process. If

52

3 The Kernel

from within GWE that thread makes a file system call, the thread goes into
the file system and picks up access to the file system. At that point, that
thread can actually see all of the file system, all of GWE, and all of the cli
ent process.

Resource
locks

When the Shell calls
GWE,theGWE
access key adds
permission to access
Shell resources.

The PSL can update memory in the calling process. An access key indicates memory slots
that the process is permitted to access. The access mechanism is implemented by using 1
bit for each of the 32 slots.

The system records the key before you go into each call. As the thread
returns from calls, it loses permissions. The system restores the previous key
as it comes out of each call.

An interesting side effect is that the kernel itself runs with that model.
When you make certain calls in the kernel, the system just takes the thread
into the kernel and allows it to be privileged for a short period of time while
it's there. When you're in kernel mode, accesses to virtual memory are still
limited by the same access key mechanism. So although the kernel can use
back-door methods to get to physical addresses, it can't actually use a vir
tual address that the thread it's running with isn't supposed to access. !fyou
called the kernel and told it to write to a buffer in another process, the ker
nel routine would fault. It doesn't have permission.

53

Inside Microsoft Windows CE

The kernel knows where the access keys are stored. It can edit a key if it
wants to do that, but normally it doesn't. In a few special cases, we edit the
key because we know we're about to go look at every process in the system,
but those are special threads that live in the kernel and do housekeeping
tasks.

The 32-MB size typically isn't a problem except in cases where we want
to do mapped files on a CD-ROM. We actually have an escape hatch that al
lows us to have mapped files in a separate area. You can have over a gigabyte
of mapped file data for the whole system.

PERFORMANCE GAINS USING THE PSL DESIGN

Our kernel enables critical sections to be very efficient.As you enter your
PSL, which is your process, your critical sections are in your address space
now, so they're a lot more efficient than named mutexes. If there's no con
tention, we don't have to enter the kernel.

A named mutex is nice and gets shared across a whole bunch of pro
cesses that don't know about one another, but you have to trap in the ker
nel. Because the mutex structure is contained entirely in the kernel so that
multiple processes can share mutexes, taking ownership of and releasing a
mutex requires two round-trips through the PSL dispatch in the kernel.

Critical sections are implemented using a user-space structure in which
the take and release can be done without any kernel calls as long as there
is no contention. So to implement a block of code that manipulates some
shared data, a PSL uses an internal critical section. In such a case, one round
trip through the PSL dispatch in the kernel is needed to invoke an API in the
PSL and, perhaps, no additional kernel calls would be needed if nothing was
contending for the PSL's internal critical section. In the case of a more com
plex API involving multiple critical sections, you could end up saving quite
a few kernel calls.

INTERRUPT HANDLING

We use a traditional micro kernel model. It has very lightweight interrupt
service routines that are responsible for doing extreme time-critical process
ing-dismissing the interrupt and scheduling a thread. One of the other
systems we looked at had specialized APIs for interrupt threads and was

54

3 The Kernel

hard to use. We were trying to avoid creating new object types different from
Win32. We really wanted to build the system as Win32.

So the only real APIs I added to the system allowed the device driver
to associate an event handle with an interrupt ID. When a driver wants to
wait on its interrupt event, all it uses is WaitForSingleObject or WaitFor
MultipleObjects. These interrupts are all Win32 events. And if the event object
is a kernel event, there's nothing special about the event.

STRUCTURED EXCEPTION HANDLING

The structured exception handling we use is pretty straightforward and very
similar to Windows NT-we pretty much lifted it right out of the source base
for Windows NT. The big modification was dealing with PSLs to allow the
exception handling unwinders to unwind across process boundaries and
undo all the appropriate things with access keys and slot o.

I also provided an escape hatch. Any server that's registered as a PSL
can also register an exception handler for itself. The purpose is to prevent a
client process from calling the server, causing a fault, and leaving without
that server having any knowledge of the fault, which leaves its critical sec
tions dangling. So we let the server have a last shot at the fault before we go
away. Typically, the server catches the fault at that point, cleans up its own
state, and treats the fault asa failure return for the API call.

PORTABILITY

The bulk of the work in making the kernel portable was just writing it in C.
There are only about three or four routines in which the assembly codeactu
ally calls into the kernel: the PSL dispatch, the interface into the scheduler to
get the next thread to run, and the exception processing. As it turns out, m.ost
of the exception processing, although machine-specific, is still written in C.

So, when we port the kernel to a new CPU, we write the outer layer
that wraps around and calls those three or four connection points. And we
write all the hardware-specific code: how to service interrupts, how to save
a thread's state (a thread's context), how to reload the thread, and how
to handle the virtual memory code (how the memory management unit
works).

55

Inside Microsoft Windows CE

From a virtual memory standpoint, the kernel uses nearly the same
virtual memory structure across all CPUs we run on today. The kernel is
designed as if it has a software-controlled TLB. Part of the reason for this
is that the first two processors had the software-controlled TLB in the hard
ware. Typically, if a processor has real hardware page tables, you can simu
late those page tables with a software TLB. We have a portability layer that
adjusts all of the software TLB code into machine-specific stuff.

Michael and I sat down at the beginning and figured out the pieces we
needed and divvied them up. I handled the virtual memory system and all
the 5EH (structured exception handling) stuff. And I also wrote all the as
sembly language bits. Michael did, the loader and the scheduler.

Basically, in almost a month or less, we had a base OS with threads and
processes and virtual memory, and it was running well enough to port a
version of the graphics subsystem .

. Michael Ginsberg

The scheduler is the guts that makes all the threads run. The basic premise
was to do a very easy scheduler. We didn't want to have complex code be
cause we had to get the code written very quickly. We also didn't wantto
have researchy code. We wanted code that we knew would do its job.

So we decided on a priority-based, round-robin scheduler with eight
priorities. We use round-robin scheduling on each priority. The OEM can set
the time slice-the default is 25 milliseconds. And we have unlimited num
bers of threads per process and a fixed maximum of 32 processes at any point
in time.

Michael Ginsberg

It's convenient to have the 32-process limit because
a DWORD is 32 bits and you can represent each process
by a bit in a DWORD. Comparing two DWORDs is very
fast, whereas comparing multiple DWORDs is a little
more complicated.

We schedule based on threads, not on processes. So
if you have 10 threads in a single process and one thread.
in another, each thread gets one-eleventh of the time slice.

They won't be weighted by process; they're weighted by thread.
Basically, the process and thread model are the same as Windows NT's,

except we don't have priority classes like Windows NT, we just have priori
ties. But again, you can create up to 32 processes and as many threads as you

56

3 The Kernel

want in a process. People have come at us with the one-thread-per-process,
monolithic Win 3.1-type mentality. They tend to think they need lots of pro
cesses, when in reality more threads are actually more convenient because
they can use shared variables. They don't have to send messages back and
forth forever. They can just collect data in structures and do things intelli
gently that way. Pretty much everyone who has said they need more pro
cesses has been convinced to use more threads.

The scheduler handles priority inversion. If a thread blocks, waiting for
another thread with lower priority, we bump that thread's priority and then
keep going to see if any other threads are influenced .. (Because, of course,
influencing one priority may influence someone else's priority, and so on.)
Any thread that is already running stays running; any thread that is already
blocked stays blocked. Your thread just gets a higher or lower priority. And
of course, when your thread finishes and releases an object, if it was inverted
because of that object, its priority has to be lowered. A similar scenario occurs
when your thread's priority is lowered. Your thread's priority is lowered,
and the system checks to see what else gets lowered accordingly.

TH starts, ~ T H continues
requests . to completion .
resource. , , , , ,

NORMAL
,

TLlocks
------~--"-~

TL runs as T L is boosted
resource until it frees scheduled

the resource

Time

When a higher priority thread needs a resource locked by a lower priority thread, Win
dows CE temporarily boosts the lower thread's priority until it completes and releases the
resource. This process is called priority inversion.

In version 1.0, we had basic scheduling primitives: critical sections and
events. We now allow you to block on processes and threads, and we allow
named objects such as named mutexes and named events. And we allow
WaitForSingleObject or WaitForMultipleObjects.

57

Inside Microsoft Windows CE

The queues got more complicated when we added WaitForMultiple
Objects. Because a thread used to be in exactly one queue, the queues were
very simple linked lists. Now a thread can be on multiple queues, so you
have to have a two-dimensional link. Or each thread can put itself on mul
tiple queues, and each queue can link to multiple threads.

We also allow blocking on interrupts. Our interrupt model is such that
an ISR can return to the kernel a request to wake up a particular event. And
so a thread blocks an event and the interrupt signals the event. That's why
a thread says wake me when an interrupt goes off-the thread waits on an event.

In version 1.0, there were places in the kernel where an interrupt
couldn't come in, and there were places in the kernel where you couldn't
preempt. If either of those is unbounded, you have the potential for un
bounded latencies.

IIi. version 2.0, we made all the places we tum interrupts off very
short-of fixed size, constant, without any loops-and we made all the non
preemptible parts of the kernel bounded pieces. We used to loop and tum
off preemption until an operation completed. We now tum off preemption,
do a bit of work, tum on preemption, and try again. The code is slightly less
efficient; but now the nonpreemptive periods are bounded.

Windows CE guarantees upper bounds on the latency between an interrupt and the start
of its associated real-time priority thread. This guaranteed performance makes the as
sUitablefor some real-time applications.

58

3 The Kernel

So the interrupt comes in, and you might have to wait until one of those
little nonpreemptible parts finishes before waking up a thread, but it will fin
ish in a bounded amount of time. And that's where we get our real-time be
havior. We guarantee that ISRs will run within a fixed time of the interrupt
and that interrupt threads will run within a fixed time of the ISR returning.

THE LOADER

One of our goals was to keep tools changes to a minimum in the early days
because we were a shoestring project back then. We didn't want to have to
go to the compiler group and say, "Start from scratch; make us a compiler."
The loader's goal was to load the same file format as Windows NT, so we
didn't have to change the linker. The loader was pretty much a workhorse.
It was basically like this: "Here's the spec; go code it up."

The interesting part, of course, was the multiple address space slices
for DLLs.

We reserve space for DLLs in the same place in every slot in virtual
memory. The first time the DLL is loaded, the loader allocates the memory
for the read-only pages and actually pages them in as needed. If another
process loads the same DLL, we map the read-only data-the code-so that
the slots of both processes point to the same physical page. You want to have
only one ,copy of the code, so both of the copies are really pointing to the
same physical page. If the DLL has any variables, the loader makes a copy
of them in a new physical page.

slot 2

slot 1

Virtual memory PhYSical memory

DLL code always appears in the same place in the slot, and the DLL always looks for its
instance data in the slot for the active process, slot O.

59

Inside Microsoft Windows CE

Then we fix up the DLL code so that it is always pointing to slot 0 for
any variables. In that way, the DLL always points to the data for the cur
rent active process. As you switch processes, slot 0 always tracks the current
process. The code always knows to look in slot 0 to find the variables. That's
whywe have the 0 slot.

Basically, the code is shared and the data is instanced. Other than that,
the loader is incredibly straightforward. It is basically coded to the Win32
executable file format spec.

RESOURCES

Topic

Current list of all microprocessor
families supported by the kernel

Win32 process and thread model,
and thread synchronization

Windows NT internals and RPC

Viewing virtual memory

Resource

www.microsoft·comlwindowsce

Advanced Windows, Third Edition, by Jeffrey
Richter (Microsoft Press, 1997)

Inside Microsoft Windows NT, Second
Edition, by David A. Solomon (Microsoft
Press, 1998)

"Windows CE Process Viewer" tool docu
mentation, in the Microsoft Windows CE
Toolkit for Visual C++ 5.0

60

~ Data Storage

Inside Microsoft Windows CE

T he generic term "object store" refers to the three types of persistent storage
supported by Windows CE: file systems, the registry, and property databases;

Standard Win32 API functions provide access to the files and the registry, while
new Windows CE-specific API functions provide access to the property databases.
Embedded systems developers building custom configurations of Windows CE can
add the object store to their systems by selecting the components that go into the
Filesys module.

Because many embedded devices do not include a hard drive, the object store
is built on an internal heap that resides in RAM, ROM, or both. The internal heap
provides a transaction model that uses logging to ensure the integrity of the object
store data.

For file systems, Windows CE supports its own proprietary file system, which
is built on the internal heap, and installable file systems that can be mounted on PC
Cards, such as Flash RAM. Future platforms will add support for CD-ROM and
DVD drives and for ATA hard disks.

A proprietary design was chosen for the file system to minimize overhead and
to squeeze the most use out of the available storage memory. Embedded developers
can configure the Filesys module so that the proprietary file system supports either
RAM, ROM, or both.

To simplify the process of developing new file systems, Windows CE 2.1 0 offers
the File System Driver (FSD) Manager. Microsoft also provides an implementation
of one important installable file system: the FAT file system. In keeping with the
modular design of Windows CE, two FAT file system components are provided:
the base file system module and the UI module. Embedded developers can replace
the UI element with their own versions, or, when building systems without a dis
play, can use a stub in place of the UI element.

Unlike the PC model, the file system does not use drive letters such as "M:"
to indicate different logical or physical storage devices. Local drives instead use a
string to identify the drive, such as "Storage Card", and network drives exclusively
use the universal naming convention (UNC). The UNC is a string that indicates
the computer name and shared directory followed by the relative path to the filename,
such as "\ \Johnmur\Public\Object Store Description".

The registry was designed to replace the clutter of proliferating application
initialization (.IN!) files. Historically, each Microsoft Windows--based application
provided its own .INI file of configuration information, which the application's setup
program was free to put anywhere on the computer. The PC user's hard drive over
time became littered with configuration files in a variety of formats. To prevent that

62

4 Data Storage

situation, the registry provided a hierarchy of registry keys and values to hold the
system configuration data. The Win32 API includes functions to manage these
registry entries.

Windows CE itself makes extensive use of the registry to expose configurable
system settings. When embedded systems developers have im option to replace be
havior or specify configuration parameters, they can use a specific registry entry to
provide that custom configuration information.

The Windows CE property databases store application-specific data. For ex
ample, a sales contact application can store name, address, phone, and relevant sales
information; a scheduling application can store appointments. Windows CE prop
erty databases can either be built on top of the internal heap or can be placed on
mounted volumes.

The property stored in the database is loosely based on the definition used in
the Microsoft Messaging API (MAPI): a property consists of a unique identifier,
the property type, and the data item of that type. Related properties are organized
into groups called records; the database consists of a set of these records.

The Windows CE property database is not to be confused with a relational
database. Windows CE features a high-level interface to standard Microsoft rela
tional databases-the Active Data Objects (ADO) interface offers C++ and Microsoft
Visual Basic developers access to Microsoft SQL Server and Microsoft Access rela
tional databases on the desktop. However, this is a completely different· technology
than the property database in the object store. The property database is simply a
small,fast; and efficient structured storage. Windows CE version 2.10 requires only
4 bytes of overhead for each property and only 20 bytes of overhead for each record.

Application developers access the property records using a seek function that
reads records in one of four user-defined sort orders. The object store maintains the
sort sequence based on the value of the specified property.

The object store resides in "storage memory," which the system differentiates
from "program memory." Windows CE gives embedded systems developers the
ability to modify the relative sizes of these two areas of memory. The maximum size
for the object store overall is 16 MB.

Sharad Mathur and Michael Ginsberg worked together to design the Windows
CE internal heap. During the interview in which they discussed its .design, they
frequently finished each other's sentences. Ginsberg implemented the heap and later
wrote the heap-based registry, while Mathur wrote the database. Jeff Parsons wrote
the FSD Manager library that provides support services to developers installing new
file systems.

•
63

Inside Microsoft Windows CE

DESIGN GOALS FOR THE INTERNAL HEAP

Michael Ginsberg and Sharad Mathur

Our biggest goals were to

• Be very small-and there are two kinds of small. The actual code
needed to be small because we had space restrictions. But more
importantly, we wanted the representation of the data to be as
compact as possible.

• Be robust against power and/or crashing such that you would never
lose your entire file system because of a glitch. The big goal was
transactioning: to be able to essentially take a fault or have the
power go off anywhere and be able to roll back appropriately and
leave the object store in a consistent state.

• Have a small working set in terms of memory requirements.

• Be fast.

. In terms of overall design, because we wanted to
optimize for being built on top of RAM, we decided that
proprietary was definitely best. We were going to store
the file system in RAM as opposed to on a big disk, so we
couldn't afford the drawbacks of clusters and the FAT file
system, which rounds up to the nearest 512 or nearest
1024 bytes. Michael Ginsberg

The key decision was to have a cOmmon heap and
a heap manager that managed the RAM for the object store. We'd build the
file system, the database, and the registry on top of this common heap. This
internal heap is the heart and soul of the file system.

Heap

Compression Transactioning

All elements of the object store-the built-in proprietary file system, the registry, and the
property database-are built on a common underlying heap. Windows CE 2.10 sets their
combined maximum size, which is the overall size of the object store, at 16 MB.

64

4 Data Storage

TRANSACTION SUPPORT

The goals for the heap were to provide enough functionality to support a file
system and a database while incurring very low overhead, and to provide
transactioning so that even if you were in the middle of allocating a block,
you would not lose the entire heap.

Sharad Mathur

We achieved that by logging our changes. Every
time a byte is changed in the heap, if that byte needs to
be recovered to undo an operation, we log the previous
value of that byte, then perform the operation. When
we finish enough operations and reach an atomic stage,
we flush the log, committing those changes. Ifwe don't
make it, we reboot and look at the log and see the three
or four changes that were made. We can then undo them,

because we stored the previous values.
We don't necessarily have to log every single byte. For in~tance, if we're

copying a buffer, we take a free block, mark it as allocated, and fill in the
bytes. If we die, we unmark the block. We don't have to restore the bytes
because the block had been free.

We restrict the amount of space reserved for this log, so we can't do
unbounded logging requirement operations. And so for tasks like deleting
a file or deleting a database, since we have an unlimited number of opera
tions, we roll forward instead of rolling backward. We leave a note saying,
"I am deleting file Foo," then shorten the file bit by bit. We blow away the
first block, commit that, blow away the second block, commit that. The log
says, "My goal is to delete the file." So if we reboot, we see that the goal is
to delete the file and we keep hacking away at it. But we hack away at it piece
by piece, telling the heap, "I've killed this block, reset; I've killed this block,
reset." Otherwise we have to free potentially thousands of blocks, remem
bering each free as we go, which would require infinite storage space for the
logging.

The log is basically a chunk of uncached memory. That's why we
wouldn't want to log every single byte, because writing to uncached memory
is very slow-the log's bytes have to be written out to the actual RAM. You
want to log only a few bytes for every operation. The log grows a little bit
and then just bounces back and forth. Its maximum size is 4 KB, with 16 bytes
for each entry-an opcode and three DWORDs. The DWORDs often repre
sent an address, a value,'and a length.

65

Inside Microsoft Windows CE

The log allows the object store heap to recover from a shutdown or fault. This example
shows a memory operation; the log also supports file deletion and memory compaction.
If the atomic operation does not complete, the heap can restore the previous values. When
an operation successfully completes, a LOG_ENDBLOCK is issued, and the log entries
are discarded.

The file system and database also need logging, so they use the same
logging structure. "Delete a file" goes in the tog in the same way that a block
marked as free goes in the log, even though the blocks are at different logi
cal levels. Big notes and small notes all fit in the log.

The log is single-threaded: only one thread at a time can manipulate
the log. The log is for our internal use only. If we were to allow apps to get
to the log and the apps were slow, everyone else would be locked out of the
file system.

If we were to expose transactioning at the user level, we would severely
restrict the possibility of concurrency, and one person would be able to block
everyone else out indefinitely. So we don't support it. Even if we wanted to
have two logs or multithreading, we couldn't really do it bec.ause we would
violate the ability to transaction the neap operations. In terms of allowing
concurrency, you can'thavetwo logs wi~ a single heap. You can have only
one transaction at anyone time.

TESTING THE HEAP

One of the biggest issues was how to test the heap. We had to make sure that
we could reset at all points in time. We cart't just saYi "The Handheld PC has
been off and running for three months and hasn't had any problems," because
faults won't occur at every possible place during the heap operation~. We
actually have to target the heap operations for testing by putting debug
breaks in the code.

We wrote a test where every time you wrote to the log, you pretended·
to roll back the whole log to make sure youcoulq. walk the entire heap, and

Q6

4 Data Storage

then you rolled it forward again. In the test you say, "If we crashed right now,
could we walk the heap?" That's a pretty good test of whether the heap is
intact. It doesn't prove you have all your data, but it does prove that both
the file system and the database are still reachable, thatno large nodes are
chopped off.

We were forcing single-threadedness and that was a good enough test.
We wrote the critical sections without interthread race conditions, so it was
good enough to stop, look around, say everything looks good, and then go
forward again.

THE MASTER AND SECONDARY HANDLE TABLES

The heap is organized as a series of movable blocks with handles. Every
thing outside the context of the heap is referenced by a 16-bit handle. These
handles point to the actual memory locations, so we're free to move blocks
around when you're not in a transaction.

Movable blocks are also important because when you reboot, the file
system might not be at the same place it was the last time you booted. When
you reboot, the app goes away, it's re-created, and you have no guarantee
that the virtual mapping is the same. Everything must be relative-basically,
an offset-and the handles provide that. We keep pointers that are valid only
in the sense of a virtual memory context, in terms of your app.

When you either perform lots of free operations relative to the number
of alloc operations, or when you have very little free space in the largest.
single free block compared to the overall number of free bytes, a compaction
thread starts sliding the blocks and trying to create bigger holes.

We had to figure out how often to compact. We observed the heap in
action and came up with empirical numbers. The heap tries to compact on
the fly, but if it gets desperate it locks down memory and then performs the
compacting. If the heap's really in trouble, it will loop until it has created big
pieces. Otherwise, it yields as it goes; people can't perform operations while
it's compacting.

When we were designing the handle table, we said, the problem with
a fixed table size is that it's pre-allocated. If you allocate a small amount of
memory for the table, you can't have many handles; but if you allocate a big
amount, you're wasting a lot of memory up front.

67

Inside Microsoft Windows CE

Subtables

The heap design is a good example of general Windows CE design goals: use memory
efficiently and be flexible. The two-level handle table structure minimizes overhead
while allowing the number of entries to grow as needed.

So we created a two-level handle table. We have a small master table
with 64 entries. Each entry in the master table points to a subtable contain
ing 1024 handles. With this scheme we can have up to 64,000 handles. To
prevent reuse of the same handle, we store the current ID of the handle in
the secondary handle table. Versioning bits make the IDs unique. So if you
free a handle and allocate a handle and you get the same handle, you'll see
a unique handle ID. The handle is in the same place but has a different num
ber, which prevents bugs in apps. If an app has a stale handle lying around,
its ID will be invalid.

Our design turned out to be very nice when we decided to add data
bases on external volumes such as Flash cards. The solution is to create a
similar looking heap on that external volume, Because the addresses are free
to change and everything is just an offset into a handle table, we can create
a database volume on a card-all different memory out in the middle of
nowhere-and the database code doesn't know the difference. It just says,
"I've got a handle table, I've got a pointer, I can go party." We made some'
code changes to recognize multiple tables, but deep down, bytes are manipu
lated the same way.

68

4 Data Storage

THE WINDOWS CE DATABASE

Sharad Mathur

Our requirements were to provide small, really efficient storage and to make
the storage simple and easy. We needed to be compatible with.the property
design in MAPI because we knew that synching with the desktop was going
to be a big requirement. We had a PIM, we had an address book and a calen
dar, andwe knew Microsoft Outlook and Microsoft Schedule Plus stored
properties and PROPIDs.

But we didn't have the option of just saying, "We'll be compatible with
Wm32," because Win32 didn't have a database API. And the MAPI interface
was COM-based, and we wanted to minimize the amount of data copying
and other overhead. In MAPI, when you read a bunch of properties, you get
back a structure that points to one memory block per property, and when
you're done you have to free each individual memory block. We found that
this process was very error prone-applications were leaking memory.

So we said, "Let's just take the minimalist approach. We have property
sets, and we have a database that consists of property sets." (We call a prop
erty set a record.) We stayed away from a fixed schema. We said the develop
ers can define their own properties. They can also have multiple databases,
but we won't make a huge namespace of databases-we'll just keep all data
bases flat, in one common area.

Property

The Windows CE property database consists of records, which are sets of properties. Like
the MAP! property on which its design was based, the Windows CE property consists of

. an ID,a data type, and a data item. .

69

Inside Microsoft Windows CE

When you read a bunch of Windows CE properties, they are marshaled
into a single structure so that you have to free only one piece of memory. We
allow developers to pass in the memory and have us fill it so that they can
reuse the same block of memory. If they don't know the size, they can just
pass a NULL and we allocate the block of memory in their address space.
To minimize overhead, we store one PROPID per property. That' sjust 4 bytes.

The transactioning was a very important requirement. We wanted
people to be able to read or write an entire property set in a single transac
tion. We didn't want every property to be an individual heap block because
that fragments the heap a lot more. So we decided that every property set
every record-is a heap block in a single contiguous piece of memory. And
because we wanted to be really efficient on space, we wanted to have siz
able pieces of memory at the heap level. So we move these blocks while
compacting, and to keep the time bounded per iteration of the compactor,
we limit the size of a heap block to 4 KB. If the record is within 4 KB, it's a
single memory block, and if it's over 4 KB, it'sa linked set of memory blocks.

We have restrictions on the maximum size of the property set. Those
restrictions come directly from the fact that we have a limit on how much
we can log in the heap because we need to transaction the write operation
of the property set. For a single record, we limit the number of heap blocks
that we need to allocate. And so that's where the limit for the size of the
record comes from.

We didn't want a fancy structure for each property set. We didn't ex
pect to have millions of records in a particular database, but we knew that
developers needed to be able to read sorted property sets. In your address
book, you sort by last name, first name, things like that-We knew we needed
to have some way of keeping sorts in the database. And so we decided not
to have any sort of fancy hashing or indexing schemes-we don't keep B
trees of all the property sets. Instead, we did the really simple thing. From
the design, it turned out that it was cheap for us to keep four sort orders. We
have four linked lists threading through the entire set of property sets, one
for each sort order. And that's where we got our four sort orders: because
these handles are 16 bits (one word), with just four words, you have access
to the entire sorting scheme.

To be able to do things a little more efficiently, when you seek to a par
ticular record, we don't start from the beginning and walk the entire list.
Instead, we keep pointers that divide the set into 64 different spaces, we walk
down that pointer list to find the section of the database your seek value is

70 -

4 Data Storage

in, then we search for the record within that section. So we basically cut the
seek operation down by a factor of 64, which helps a lot considering the num
bers of records we're optimized for.

To speed things up, we cache a DWORD worth of data from proper
ties that we sort on. For instance, if you: re sorting on the last name, we cache
the first two Unicode characters. So most ,of the time you don't actually have
to unmarshal the property and extract the data.

Again, because space was such a: huge issue, we wanted to compress
everything in the database, especially because we expected that a lot of the
data would be Unieode text. Getting good compression ratios is really hard
unless you have a reasonable amount of data. What helps us is that all the
properties are globbed together in one marshaled memory block, and we
compress that entire memory block. We also keep the PROPIDs separate
from the properties themselves so that when you're looking for a specific
property, you can juSt walk the PROPIDs and find the property. This pro
cess allows us to keep like data together without breaking it up with the
PROPIDs in theririddle.

Windows CE tries several compression schemes and useS the winner. One that is often
very efficient for Unicode strings involves separate compression for its odd bytes and its
even bytes .

. We try compressing the data in two ways. We do a normal LZ pass on
the data, and we also do a pass where we split the data into two streams: the
odd bytes and the even bytes. Because a lot of the data is Unicode, more
commonality exists among the high bytes than across the whole stream. If

71

Inside Mic;rosoft Windows CE

you have a Unicode string and most of the high bytes are zeroes, then one
stream ends up being compressed into a really small number of bytes. We
compress it both ways, see which way is better, and then perform the com
pression the better way. The compression itself doesn't actually cost that
much because most of the cost is in writing out the compressed bits.

THE REGISTRY

Michael Ginsberg

In Windows CE 1.0, the registry was based on a file, so it lived on top of the
file system. The drawback was that the registry was a layer on top of a layer .
on top of a layer-the ReadFile/WriteFile API. In 1.0, the registry didn't know
anything about the heap. The file system and the database shared common
decompress buffers and common cache buffers, but the registry was its own
world and needed its own buffers. And it was a little bit slow.

In version 1.01, we decided that implementation wasn't good enough.
So I rewrote the registry from scratch, on top of our heap layer, similar to
the way the file system and database are on top of our heap layer. Therefore
the registry uses all the native logging and transacting. Basically the registry
is Win32-compatible. It's currently designed for small devices, but it can hold
hundreds of thousands of keys-whatever you want to throw at it-quite
happily.

THE FILE SYSTEM

The file system is pretty straightforward. The hard part was designing the
heap. Both the file system and registry are, pretty much, very lightweight
layers on top of the heap. The database is a somewhat more complicated
layer, with sorting and seeking. The file system just lays out the data and
provides simple functions to walk the data.

An interesting feature of our file system is that it also supports files
stored in ROM. These show up in the Windows directory in the same way
that files in the RAM fiie system do, but they don't take up any RAM.

If you create a file with the same name as a ROM file, it shadows the
ROM file-you see only the new one. So if you have a ROM file that the file
system exposes as \ Windows \Foo, and a user opens an editor and saves
\ Windows \Foo, any user who looks for Foo now sees the RAM version
instead of the ROM version. You're in essence modifying the ROM file with-

72-

4 Data Storage

out actually modifying the ROM. This has an interesting side effect in that
if you delete the RAM version of the file, you'll again see the ROM versio?
with the old size and the old time. The user can hide a ROM file by putting
something else in front of it, but he can't delete it. He can hide the bytes but
not the filename.

RAM 1
!

1
ROM

The file system searches for the specified filename in RAM before searching in ROM.
This feature offers a way to "update" ROM files: supply a file in RAM with the same
name as the ROM file. This is known as "file shadowing."

Initially, we provided ways to add new file systems. We had PCMCIA,
FAT file system cards, and SRAM cards. The Auto PC guys were support
ing a CD player. We had a DVD player, an ATA hard disk. Previously only
we at Microsoft could write installable file systems because the design was
cobbled together and you had to have internal header files. With Windows
CE 2.10, we started exposing a layer to ISVs so that they could write their
own file systems. Now we have a very nice layer. Jeff Parsons wrote a library
so that you don't have to actually understand it all; you just have to hook in.
You say, "Here's my read function, here's my write function, here's my seek,
go," and it hooks you into our layers very nicely-all the behind-the-scenes
stuff is taken care of for you. It's a brand new, very light layer, designed to
isolate you from the as.

INSTALLABLE FILE SYSTEMS

Jeff Parsons

WindowsCE 1.0 offered some services for registering your own alternate
file system: RegisterAFS and DeregisterAFS. In version 1.01, we added
RegisterAFSName and DeregisterAFSName so that if you used the AFS ser
vices, you could control how your file system was registered. But the work

73

Inside Microsoft Windows CE

involved in creating and installing a file system driver was still pretty sub
stantial. You had to understand how to create API sets and vtables. The FSD
also had to be hardwired to a particular release.

We wanted to abstract that process of creating and installing a file sys
tem driver a little bit and make it easier. So I went ahead and created the FSD
Manager component. The way you should think of the whole system archi
tecturally is that applications make file system calls which go to the built
in file system first, then to the FSD Manager (if the request specifies a volume
it registered), and finally on to the appropriate FSD. The FSD Manager has
complete control over what the FSD sees. The FSD shouldn't see any calls
across power cycles, for example.

If the file system call specifies an installed file system, the FSD Manager passes the call to
the appropriate file system. .

Let's say you want to create the Foo file system. You create Foo.dll,
which exports all desired functionality. By convention, all of its exported
function names start with "FOO_". If that DLLis appropriately registered
in the registry, when a new device is detected, the Device Manager
(Device.exe) loads Foo.dIl, notices that Foo.dll has the FOO_MountDisk and
FOO _UnmountDisk exports, and in tum, loads the FSD Manager (Fsdmgr.dll)
to talk to this new Foo file system.

All Foo.dll has to do is export the interfaces it wants to support. There
are 30 different interfaces: the path-based interfaces such as CreateDirectoryW
and RemoveDirectoryW; the handle-based interfaces such as CreateFileW,
ReadFile, and WriteFile; and the find interfaces such as FindFirstFileW and
FindNextFileW.

74 -

4 Data Storage

The FSD Manager looks up all these required export names, such as
FOO_CreateDirectoryW, fills in the appropriate vtable, creates an API set, and
registers the file system. The FSD Manager automatically supplies stub func
tions for any missing exports, so if anFSD doesn't want to support a folder
hierarchy, for example, it simply doesn't export any path-based functions.
The stubs return ERROR_NOT_SUPPORTED.

FSD MANAGER INTERFACE CATEGORIES IMPLEMENTED BY THE FILE SYSTEM

API Category

Path-based functions

Handle-based functions

Find functions

System event functions

Device event functions

API Functions

CreateDirectoryW, RemoveDirectoryW, GetFile
Attributes, SetFileAttributes, DeleteFile, MoveFile,
DeleteAndRenameFile, GetDiskFreeSpace

CreateFileW, ReadFile, ReadFileWithSeek, WriteFile,
WriteFileWithSeek, SetFilePointer, GetFileSize, GetFile
InjormationByHandle, FlushFileBuffers, GetFileTime,
SetFileTime, SetEndOjFile, DeviceloControl, CloseFile

FindFirstFileW, FindNextFileW, FindClose

CloseVolume, Notify, RegisterFileSystemFunction

MountDisk, UnmountDisk

Once Foo.dll is loaded, it calls back into FSD Manager, which provides
a variety of services. FSDMGR_RegisterVolume records the volume name and
a DWORD of FSD volume-specific data that the FSD must keep associated
with that volume. That data is passed in tum to the various entry points. So
when FOO_CreateDirectoryW or one of the other path-based file system inter
faces is called, that volume-specific data is passed as the first parameter. The
rest of the parameters are identical to the standard API prototypes for those
functions.

If Foo.dll registers a volume as Foo Disk and an application wants to
create a folder on that disk, it calls

CreateDirectoryW("\\\\Foo Disk\\\\NewFolder", NULL);

which would ultimately result in a call to

FOO_C~eateDirectoryW(dwVolumeSpecificData, "\\\\New Folder",
NULl) ;

75

Inside Microsoft Windows CE

When an FSD's CreateFileW interface is called, it must call the
FSDMGR_CreateFileHandle service to create the file handle object. The same
goes for the find services-when FindFirstFileW is called, it must call
FSDMGR_CreateSearchHandle to create the actual search handle. No special
service is required to close those handles; they're all closed with CloseHandle.

Like FSDMGR_RegisterVolume, both of the handle-creation services
also record a DWORD of FSD handle-specific data that the FSD needs to
keep associated with that handle. So if an application wants to create and
write to a file on the Foo Disk volume, it would call

hFile = CreateFileW("\\\\Foo Disk\\\\New File",
GENERIC_WRITE ...);

WriteFile(hFile; buffer, sizeof(buffer), ..•);

which would ultimately result in calls to

FOO_CreateFileW(dwVolumeSpecificDat~, hProcess, "\\\\NewFile",
GENERIC_WRITE, ...);

FOO_WriteFil e (dwHandl eSpecifi cData, buffer, s i zeof (buffer) ,
...) ;

FSD Manager also sends device-independent interfaces (FSDMGR_
GetDisklnfo, FSDMGR_ReadDisk, and FSDMGR_ WriteDisk) back to the under
lying device driver. FSD Manager provides these services to avoid forcing the
FSD to have specific knowledge about how a particular device driver works.
Drivers shipped with Windows CE 1.0 support one set of IOCTLs for read
ing and writing sectors on a disk, and the WDM drivers support a different
set. FSD Manager figures out what kind of driver you're talking to and uses
the right IOCTLs.

Another issue is power cycling. Every time you turn the system off, the
PCMCIAhardwareloses its power too. When you turn the system back on,
we have to simulate a device removal and reinsertion which, to a file sys
tem, would look as if the user pulled the card out and put the card back in.
If we didn't do anything special, every time you turned your device back on,
the folder would disappear for a moment and then reappear.

So we have some logic that detects the power transitions. This logic
gets called right before the device is turned off and sets a mark on the wall:
a flag. When the device comes back on, if that flag is set, the FSD Manager
doesn't let any more API requests go to the FSD. It knows the requests are

76

4 Data Storage

just going to fail because the driver is being unloaded and reloaded. It holds
off all API requests until it gets a special broadcast from the device sub
system that says, "Okay, all the devices have been reinitialized," and then
it allows requests to come in again. An FSD shouldn't have to be aware of
this goofy case. The card wasn't really removed-:-the device just lost power
and got it back later.

Before the power goes off, all the FSD should see is a flurry of Flush
FileBuffer requests as the FSDManager tries to ensure that all the files on the
media are as up-to-date as possible.

One of the reasons we implemented FSD Manager as a DLL is that if
our requirements change over time and we have to support device driver
types other than the two basic kinds we have now, we can provide this new
DLL to developers distributing their own file systems. When developers
install Foo.dll, they can install the new FSD Manager as well. The alternative
was to build the DLL as a static library that third-party file system writers
could statically link to. That alternative would give them the benefit of ab
straction, but it wouldn't give them the benefit of being able to work with
any device. The writers would have to build new versions of the binaries for
different devices.

Let me briefly summarize the benefits of FSD Manager:

• It registers a volume with a file system.

• It creates file handles and find handles.

• It installs the necessary API handlers, meaning that the FSD just
provides a bunch of exports and FSD Manager takes care of reg
istering those addresses.

• It masks arbitrary differences between drivers such as the
IOCTLs ..

• It takes care of blocking API requests to ensure file system con
sistency across power cycles.

This model incurs a small amount of overhead. For example, FSD Man
ager has to keep track of all the handles being allocated to ensure that all
handle-based requests come to it first. Then it has to decide that it's okay to
go ahead and pass the call on to the FSD. FSD Manager allocates a small
amount of additional memory for every registered volume and every open
handle. But that shouldn't be a big deal.

77

Inside Microsoft Windows CE

RESOURCES

Topic

Configuring the Filesys module

Windows CE database API
functions

Registry and file system API
functions

Creating your own installable file
system

Resource

Microsoft Windows CE Embedded
Toolkit for Visual C++

Programming WindowsCE, by Doug
Boling (Microsoft Press, 1998)

Microsoft Platform SDK documentation
MSDN

Microsoft Windows CE Embedded
Toolkit 'for Visual C++

78

The eWE
Subsystem

Inside Microsoft Windows CE

T he Microsoft Windows NT and Microsoft Windows 95 libraries that contain
the core Windows functionality are named Kernel32, User32, and GDI32. The

Microsoft Windows CE libraries have different names. The kernel functionality ap
pears in Nk, while the GDI32 and User32 functionality is combined into one library
called GWE, which stands forgraphics, window manager, and event manager.

Windows CE developers still use the shorthand term "User" to refer to the
GWE functionality that comes from User32: the user input system, the event man
ager, and the window manager. The user input system handles input from the key
board, the mouse, or the stylus; the event.manager handles messages and message
queues. Both of these subsystems work with the window manager to route Windows
messages to the appropriate application window.

"GDI," which stands for graphics device interface, refers to the 2-D raster
graphics API package, which supports drawing operations using the GDI primi
tives: lines and curves,filled areas, bitmaps, and text. Windows CE supports either
raster fonts or TrueType fonts.

In this chapter, the Windows CE developers offer a brief overview of each
area of GWE and then discuss how Windows CE differs from other Windows imple
mentations.

Sharad Mathur introduces the overall design goals. Mathur, the core OS

development manager, wrote the dialog manager. Jason Fuller explains the chal
lenges involved in the componentization of GWE and describes the window man
ager code.

Keith Bentley describes message queues in detail. A message loop is a while

loop in a Windows application that gets and dispatches messages from the system
until the system indicates that no more messages will be sent. Every Windows ap
plication must have the entry point WinMain, which contains the message loop. Every
window must also provide a window procedure, or WndProc, which processes that
window's messages. For example, most implementations ofWndProc handle the
paint message, WM_PAINT, and the shutdown message, WM_DESTROY. The
window procedure is usually implemented as a large switch statement. It explicitly
checks for the messages it wants to process and performs the processing for those
messages. The window procedure can also choose to let Windows handle messages
by dropping through the switch statement and calling the default window procedure,
DefWindowProc. The Windows CE SDK contains full documentation for all
Windows messages and associated data. The best single introduction to the Win
dowsmessage-based architecture is the book by Charles Petzold, Programming

Windows 95 (Microsoft Press, 1996).

80

5 The CWE Subsystem

Note that the term "event" has two distinct meanings. It refers to events such
as user input or timer signals that can be represented by Windows messages and
placed on a message queue. It also refers to the general-purpose Win32 thread syn
chronization objects managed by the kernel. To distinguish between the two meanings
of the term event, the Win32 thread synchronization objects are called "Win32 event
objects" throughout this chapter. (CWE implements the synchronization offered by
the SendMessage call by creating its own internal Win32 event objects.)

Anthony Lapadula and Martin Shetter worked on the team that wrote the
multiple bit-depth implementation of CD!. They introduce the Windows graphics
model, explaining the key concepts of device contexts, realization, and raster opera
tions. They then list the graphics objects defined by CDI and describe how Windows
CE differs from other Windows implementations. One of the most significant dif
ferences involves the Windows CE palette model .

•
DESIGN GOALS

Sharad Mathur

When we moved to the newkemel and to the Win32 APIs, one of the first
things we did was to redo GDI and User. User has several different levels:
the window manager, user input, and the message queue. The design goals
were to be really fast, small, and efficient.

We decided to optimize the window manager for
small devices. We expected most of the apps to be full
screen all the time, so we optimized the paint algorithms
to work well when you had full-screen apps coming and
going. We eliminated the minimize / maximize states.

Sharad Mathur

We also tried to minimize the number of process
transitions. We didn't see the need to allow people to cus':'
tomize the non-client area: all these non-client messages

are sent to the process space and come back to DefWindowProc in the server
space. DefWindowProc usually just handles default processing for non-client
messages and then returns. It's a lot of back and forth for no real reason, so
we don't send the non-client messages.

The user input at the message queue level is'where we discovered that
the focus activation and capture semantics of the Windows API are really
weird. Windows 95 and Windows NT do completely different things, so we
had to pick and choose which one to be compatible with. Keith Bentley can

81

Inside Microsoft Windows CE

tell you the gory details. Because the semantics are so complicated, we didn't
really want to invent our own. We just bit the bUllet and did all the work so
that we were compatible with Win32.

In terms of user input, again our goals were to eliminate extra threads,
eliminate extra layers. And so we just integrated the keyboard driver and
touch driver directly into GWE, and we made the drivers deliver events
directly into the global event queue.

Apart from that, the basic design and concepts of Windows CE are very
much the same as Win32. We really don't innovate any new APIs or designs,
but we do have a much cleaner implementation of the Windows semantics.
Once you know everything you have to do, you can design the code to be
fairly small.

Jason Fuller

Before we actually started writing any of this code, there was the idea that
maybe these three components-the graphics, the window manager, and the
event manager-should be different processes living totally independently:·
you'd pass all data across processes. We decided not to do that, which was
the right decision. Because the window manager and the event manager can
share data, the event manager can look into the window structure.

I was mainly working on the window manager, although I touched on
the other areas. We originally looked at supporting the Windows NT win
dow manager but found that it wouldn't meet our size and performance.
goals. And so basically, we decided to start from scratch. In some cases, we
had small utility functions that were relatively independent of the operat
ing system, and so we could just take the code from [Windows] NT. In other
cases, we read the Windows NT code, understood what it was doing, and
copied the basic algorithms.

So these were our original design goals and reasoning:

• Small ROM footprint. To get this, we wrote the code from scratch
and componentized it.

• Small RAM footprint. Writing the code from scratch kept this small.
We didn't want all this extra legacy code that was in the operat
ing systemoruy for historic reasons.

• Good functionality on devices with small screens. We tried to con
serve screen real estate and provide enough functionality so that
you could write apps that work well on small screens.

82

5 The eWE Subsystem

• Win32-compatibility. We take that compatibility for granted, but
that's one of the most important features of GWE. We're Win32 ..
compatible so that if you know how to program to Windows, you
know how to program to Windows CE.

• . Support for multiple bit depths and small bit depths, such as 2 bits per
pixel. Windows NT and Windows 95 never had to support mul
tiple and small bit depths.

• A design that accommodated low-powered, battery-powered devices.
This kind of design includes functionality like time management
and knowing when to shut the device off, knowing when the user
hasn't used it.

GWE FUNCTIONALITY OVERVIEW

Currently the window manager is very componentized. You can pick and
choose which features you want. You can have a non-client area or not. You
can pick and choose any combination of the individual controls such as the
edit control, list box, and so on.

Controls

All the controls are provided as individual components. The Windows CE implementation
of menus differs slightly from other versions of Windows: menus are implemented as
controls.

83

Inside Microsoft Windows CE

The non-client area in Windows CE is quite a bit different from the non
client area in Windows NT or Windows 95. It is tightly integrated with the
window manager. For some products, having a separate menu bar and a
separate toolbar takes up too much screen real estate, so we combined the
menu bar and the toolbar and invented a new control called the command bar:

Originally menus were built into the non-client area. When develop
ers added toolbars, the toolbars ended up in the client area. When we went
to do it all over again, we decided that menus should just be a control like
any other control. So we actually have a menu control, although it's not
publicly exposed as such. To put a menu inside the command bar, the c;om
mand bar uses the menu control.

The menus are very componentized. You can have or not have cascad
ing menus. You can have or not have scrolling menus. The menu VI can work
in two different ways: you drag a stylus over the menu, or you tap on the
item you want to select. The cascading menus can overlap or be next to each
other. Some products with very small screens need overlapping menus so
that the menus don't hit the screen edge quickly.

The dialog manager sits on top of the window manager. If you have a
dialog manager, you can implement a message box on top of that: a message
box is really just a dialog. All of the controls (edit box, list box, combo box,
button, etc.) also sit on top of the window manager: A menu historically has
been thought of as something different, but it's implemented as a control.

The graphics are totally compdnentized. You can have either TrueType
or raster fonts. You can have or not have message boxes. You can have a dia
log manager or not. Some utility functions in GWE are also pretty indepen
dent, functions like LoadBitmap, Loadlcon, Loadlmage, LoadString, DrawIcon.

GWE is responsible for keeping track of the amount of time the system,
has been running. It keeps track of the idle timeout, so if you don't type
anything for three minutes, GWE shuts off the device.

GWE also contains the out-of-memory dialog and the out-of-memory
handler. Technically, this dialog and handler don't have to be part of GWE.
But it was the most obvious place to put them because they have VI associ
ated with them. The out-of-memory dialog pops up a window when you're
low on memory, gives you a list of all the running applications, and gives
you the opportunity to close them. The out-of-memory handler is something

84

5 The eWE Subsystem

new that we added because we work on devices that don't have a hard disk
and don't have a lot of RAM. Once you run out of memory, you can't just
swap to the disk because there is no disk. So you have to explicitly deal with
the case where you might run out of memory or come close to running out
of memory, which is not something that normally happens on a Windows
NT device.

GWE contains the startup screen that appears when you first turn on
the device and that asks for your password or tells you your name or splash
screen. The screen is optional. GWE also contains the calibration screen, so
if your device has a touch screen, you've got support for calibrating the touch
screen to the LCD. The UI to do this is in GWE, too.

The event manager is pretty tightly coupled to the window manager,
although we have factored this out to the point where you can combine the
event manager with a minimal window manager. The minimal version gives
you a GWE that has only nongraphical windows as event handlers. That
configuration of GWE still manages window creation, window destruction,
window lifetime, event passing, extra window data, and window styles
but nothing graphical. You still have classes, WndProcs, and message pumps,
but they just pass messages.

And obviously there are some dependencies between the modules. The
standard window manager depends on GDI to do the actual drawing and
to manage regions and device contexts. Both the 1.0 and 2.0 versions of GDI
implement a subset of the Win32 interface. GDI doesn't call anything in the
window manager. It's entirely one-way. The window manager just calls GDI.
Taking the existing window manager and plugging in a new GDI wasn't that
hard. I mean, the GDI group did it practically without even telling us.

The whole point of cOJ:nponentization is that products don't have to
pay a price for features they don't want. If the code doesn't exist on a sys
tem, it doesn't take up ROM space. We try not to make products absorb fea
tures they're not using. But there are always trade-offs. When you design
something to be componentized, you've always got at least a little bit of
overhead that you wouldn't have if you just combined the code mono
lithically. The advantage is, however, that if you're not using a component,
you can just get rid of all its code. And so it's a big win.

85

Inside Microsoft Windows CE

USER

K~ithJ3~}ltl~y

When we first sat down to look at User, we realized right away that we
weren't going to be able to take existing Windows code and pound on it and
get it small enough for what we wanted for Windows CEo So we wrote the
major portion of eWE from scratch. We looked at the original Windows code
to guide us or, in other cases, we just coded completely from scratch.

Keith Bentley

The message queue, event passing, and input sys
tem-those are the core parts of User. Built on top of the
event management system is the input system, which
handles mouse and touch and keyboard input. Basi
cally, the input system takes information passed up by
the keyboard driver and the touch/mouse driver and
then uses the message passing mechanism to pass the
input messages to the foreground window. User employs

both the windowing system and the message passing system to implement
the input system.

These are the main components of User:

*' Msgque. Message queue is needed for anything that passes mes
sages, which tends to be just about everything, right? Because
you generally need message passing if you're going to have any
kind of input.

*' Wmbase. This is the component required to create a window, give
the window a WndProc, and send messages to it.

*' Winmgr. Window manager is the component responsible for
drawing on the screen-all the real graphics parts.

THE MESSAGE QUEUE

The message queue performs two functions. It handles all aspects of sending
and receiving messages, and it acts as a repository for input state informa
tion-for example, the cursor size and caret blink rates-everything associ
ated with an input context.

86

5 The GWE Subsystem

Applications

GWE
Msgque

The main components of the "User" part of eWE include the window manager,the mes
sage queue, and the base window functionality components.

In terms of message passing, the two basic flavors are SendMessage and
PostMessage. SendMessage is a synchronous message-sending mechanism: a
sender sends a message, the receiver picks up the message, and then the
sender waits for the message processing to complete. A one-to-one relation
ship exists between threads and message queues; if you look at the actual
API call, you see that you send messages to windows, and each window is
owned by a particular thread. The SendMessage call specifies the window that
the message is supposed to go to. Behind the scenes, we look up which thread
is associated with a particular window and synchronize the message pass
ing. If the window is in the same thread that is calling SendMessage, the call
just degenerates into a subroutine call into the WndProc, the window proce
dure specified for that window.

87

Inside Microsoft Windows CE

PostMessage works a little bit differently. The message just gets pack
aged up and put into the message queue. The sender continues running,
regardless of where the message is being passed. At some later point in time,
the posted message is removed from the queue and dispatched.

So as you can see, each window is associated with a particular message
queue by virtue of being associated with a thread. The windows act as tar
gets of sent messages. So we've got threads, associated message queues,
windows, and window procedures. The relationships are set up: a window
knows its owner thread, its message queue, and its window procedure.

And then there's the infamous message loop in the application's
WinMain:

while (GetMessage(&msg ...)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}

When a thread calls GetMessage, we go out and look on the actual
message queue for that thread.

The simplest part of this process is posted messages. In our imple
mentation, part of the internal message queue structure points off to all the
messages that have been posted to it. When GetMessage is called, it looks at
this posted message queue. Assuming a message is out there, GetMessage
plops the message into your msg argument, where you want the message
information to go. GetMessage then returns, and the main loop calls Dispatch
Message. DispatchMessage looks at the message information, finds the window
that goes along with it, finds its particular window procedure, and then calls
that procedure with the message and the wParam and IParam parameters.
This result is exactly what you'd expect. There are no tricks to it. Pull the
message off the queue, stuff it into the argument. When it comes time to dis
patch the message, find the window, find the procedure, call that procedure.

From the sender's perspective, all that happens in the call to PostMessage
is that arguments are packaged up and put into the appropriate message
queue. Posting to a window in your thread or in a different thread is handled
the same way. The message gets packaged up and goes into the appropriate
queue. At some point, assuming that thread is running correctly, the thread
pulls messages off its queue and eventually gets to that message and dis
patches it. There's no explicit form of synchronization for posted messages.

88

5 The GWE Subsystem

Vislilat(:hMleSStl'Ze(&msg) .

Whether posted by the thread that owns the window or by another thread, posted messages
are handled the same way. The message is simply put into the "posted message queue"
portion of the message queue structure and processed asynchronously. The calling
thread continues.

SendMessage is a little bit trickier: it is synchronous so you know that
when it returns, the message has been processed by whomever you sent it
to. It can go through two paths, depending on whether you're sending a
message to a window in your own thread or in another thread.

The simplest case is sending a message to your own thread. Send
Message realizes that the window is in your thread, dir~ctly calls the window
procedure, and then unwinds. If the message is going to your own thread,
it just turns into a subroutine call.

The more complicated case is sending a message to a window in an
other thread. Themessage queue has a subqueue that deals with the messages
that are sent to a particular window and thread. SendMessage realizes that
it's sending a message to a different message queue, packages up the mes
sage, puts it into the other message queue, and then waits. So now we have
this calling thread waiting for a response, waiting on an internal Win32
event object. This wait allows the receiver thread to pick up the message and
process it.

89

Inside Microsoft Windows CE

The key point here is that when the message is going to a window in
another thread, the owner thread of that wi1J.dow actually executes the code.
Your thread calls SendMessage, but the WndProc of the other thread gets the
message.

SendMessage(hWnd, .. J; _______ ~.

When the thread that owns the window sends a message to that window, the message is
not actually placed in the message queue. SendMessage directly calls its WndProc.

And just to get into all the details-while the sending thread is hang
ing out waiting for a response, it also has to look for messages that may have
been sent back to it. The window that the sending thread sent a message to
can in tum sends a message back. And so while hanging out waiting for a
response, that thread is also waiting for incoming sends.

The other difference between sent and posted messages is that sent
messages are handled by GetMessage completely internally. When a thread
is in its message loop, the sent message comes into the loop and gets com
pleted within that call to GetMessage:

while (GetMeisage(&msg ...);) (
TranslateMessage(&msg ...);
bispatchMessage(&msg ...);

}

90

5 The GWE Subsystem

SendMessage(hWnd, ...);

When a thread sends a message to another thread's window, the message is placed in the
"received message queue" and GetMessage makes the call to the WndProc. The caller
waits on a Win32 event (managed by eWE) until the WndProc is complete.

The main loop of the application never sees the GetMessage call return.
GetMessage looks and says, "Okay, have any messages been sent? Have any
messages been posted?" GetMessage just works its way down the hierarchy
of messages. Sent messages are handled and dispatched right then and there.

There's a behind-the-scenes priority for messages that you don't actu
ally see spelled out in the documentation. You see hints of the priority in the
documentation, but it's never actually spelled out:

Priority Message Type

1 Sent messages-Messages sent to a thread are
processed with the highest priority.

2 Posted messages-Messages posted by calling
PostMessage are processed with the next highest
priority.

3 WM_QUIT messages.

4 WM_PAlNT messages.

5 WM_TIMER messages.

91

Inside Microsoft Windows CE

So if you've got a window or a thread that's hung for some reason, the
most common reason is that some thread is waiting on a Wm32 event object
instead of being in its main message loop. And if this thread is hung, the
sender will also get hung waiting for a response to come back. That led to
development of MsgWaitForMultipleObject, an API that says, "Wait for a
Win32 event object, but if a message comes in, go ahead and process it."
That's the best that you can do if you want to use the mixed model, which
uses both Win32 event objects and sent messages.

If you don't go with the mixed model, you have to decide that either
a thread waits on Win32 events and does its own event handling or a thread
works strictly with messages.

These are the key issues to remember:

• Sending is synchronous.

•. Posting is asynchronous.

• All messages, from dispatched messages to behind-the-scenes
messages in GetMessage, work their way to the window procedure.

• When you're using the message passing mechanism, the thread
that created the window always has the window procedure that
is executing the code. You won't have one thread calling Send
Message and then that same thread executing another window
procedure. You don't have to use critical sections or anything like
that in your window procedures, because you know that as long
as you get the messages via SendMessage, they've been serialized
by the message queue mechanism.

MANAGING INPUT

In terms of managing the input context, there's a whole subsystem that deals
with, in the Windows parlance, the foreground window, the active window,
and the focus window. All this tends to confuse a lot of folks, so it's worth
describing.

Each thread has one particular window called the active window. This
is a top-level window that is owned by that particular thread and picked out
to be active. The active wmdow or one of its children can be the focus window.

92

5 The eWE Subsystem

The focus is generally set up to receive keyboard messages. One particular
thread/ message queue in the syst~m is picked to be the foreground thread,
and the active window of that thread becomes the foreground window.

These three windows interrelate. Setting the focus can change the ac
tive window. Setting the active window can change the focus. Setting the
foreground window or the active window can change the Z-positions of
windows, and changing window positions can change the foreground win
dow. So all three form a sort of "rock, .paper, scissors" arrangement, where
if one of them changes, the others are affected.

SetActiveW~ndow(...)
SetFocus(.. .)
SetForegroundWindow(...)

The active, focus, and foreground windows are interrelated, imd changes to anyone set
ting can affect the other two. Each thread has an active window and a focus window. One
thread in the system is the foreground thread; its active window is the foreground window.
The SetForegroundWindow function sets the window that receives keyboard input.

The active window and focus window information is kept in the mes
sage queue structure, so the active window and focus window are on a per
thread basis. By calling SetActiveWindow, a thread can move the activation
around to windows that are in the same thread. SetFocus changes the focus
to any window in your thread-to either a top-level window or a child
window. When the focus and activation change, the WM_SETFOCUS,
WM_KILLFOCUS, and notification messages are sent.

This works on a systemwide basis because a thread in the input sys
tem is responsible for sending out input events .. This thread keeps track of
the foreground thread and by implication its message queue. It picks one
thread out of the entire system to be the foreground thread, and when the
user presses a key, keyboard input is sent to that foreground thread's focus.

93

Inside Microsoft Windows CE

What tends to confuse folks is, in the older Windows versions, you
called SetActiveWindow to change the activation. But calling it doesn't work
in this model. Windows CE is the same as Windows NT and Windows 95 in
that the input information is on a per-thread basis. You've really got a third
function call now-SetForegroundWindow-that's responsible for changing
this information in the input system so that keyboard input is routed properly.

A user can get confused because his app might not be the foreground
thread. Internally, his app calls SetActiveWindow and SetFocus, and he doesn't
see his window come to the top. Everything looks consistent. GetActive-.
Window says that his window is the active window. GetFocus says that the
app's window has the focus, but it doesn't. It hasn't been chosen as the fore
ground because its thread is not the chosen foreground thread.

And so that's why this <:all for setting the foreground window was
added. It tells the system, "This is the window you want in the foreground
to handle user input." This call causes a whole series of interactions so that
the desired window will be repositioned on the top. It can potentially change
the activation from one thread to another and possibly trigger focus changes
so that the proper window gets keyboard input.

Similarly, if you are the foreground thread and you bring some other
top-level window to the top (by using SetWindowPos to position it, for ex
ample), that top-level window will become the foreground window. And if
you decide to change the focus from one window to another, the activation
can change.

The one invariant in the midst of all of this change is that the focus
window is always the active window or a child of the active window. It can
also be null.

So the big picture is, you've got your entire memory structure, with one
slot per process; GWE exists as one of these processes. Internal to GWE is a ,
thread waiting for input events. The keyboard driver or the touch driver puts
an event into this main input queue, which corresponds to the system input
queue but is not quite as elaborate as the Windows NT and Windows 95
system queues. A thread in there pulls off an event.

If an -event is a touch event, the event manager calls into the window
manager to find out which window was hit. It then.uses the PostMessage
mechanism to package that message up and put the input message into the
appropriate queue for that window. -

94

5 The eWE Subsystem

Input message queue

GWEinput
thread

Keyboard message

;
PostMessage()

Appropriate window to
receive input events

The system input queue posts touch events' into the message queue of the appropriate
window and posts keyboard e1}ents into the message queue of the foreground thread.

If the event is a keyboard event, the event manager goes back and posts
the information 'it has about the foreground window and foreground mes~
sage queue to the foreground thread. The information would show up as a
posted message. So this posting mechanism is running asynchronously, just
taking all this input and routing it to whichever thread it needs to go to.
When the other threads get a chance to run, they will pull these messages
off their message queues and process them.

COMPONENTIZATION IN GWE

During our first pass at componentization, we actually tried to do some of
the sample configurations, which exposed a few problems in terms of depen~
dertcies between components, problems that we weren't aware of. Envision
ing some of these configurations let us see where the dividing lines between
components actually were.

Out first sample configurations didn't have any graphics. The app
writers just wanted,to pass messages between Windows, to use the windows
as abstract objects that could send and receive messages. So when we pulled
out the GDI component, even though there were dependencies in terms of

95

Inside Microsoft Windows CE

creating regions for the window on the screen, we realized that these calls
could fail and we could still allow the system to continue running. The win
dow manager was calling into GDI. Because the windows are still useful for
passing messages, we put checks in there to say, "If this call comes back and
says that it's not implemented, it's okay to keep running;"

What we're trying to do is split out what we're calling hard dependencies
from soft dependencies. Currently, most of the dependencies in the system are
hard dependencies, meaning one component needs the other component to
function correctly. For soft dependencies, the caller can continue even though
another componentretums "not implemented./I Soft dependencies are re
solved by using stubs, which are essentially do-nothing functions.

We've done a pretty good job in terms of coming up with at least two
flavors of the window manager: just enough of the window manager to be
able to send and receive messages to and from windows, and the more full
blown window manager that actually draws on the screen.

To guide this whole cornponentization process, we're trying to come
up with realistic scenarios. So for example, in the case of the message queues,
we couldn't really imagine somebody saying, "I want SendMessage but not
PostMessage./I That really sums up our overall guiding principle-not to
componentize just for the sake of componentizing but to try to come up with
realistic scenarios.

THEGDI
Anthony Lapadula and Martin Shetter

In other graphics packages, you pass all the pens, brushes, and fonts
everything you want for every drawing operation. In the Win32 GDI, the
device context (DC) is the drawing surface. You select into the DC the ob
jects that you want to use, and the objects stay in that device context. The DC
is the collection of everything. The draw operation uses all the objects cur
rently selected in the DC.

The API is designed this way for a reason. When you pass a pen or a
brush to each API call, the pen or brush has to be converted to a format that's
compatible with that target surface. So if you had an API that took a sur
face and a pen, for every call, you might have to realize that pen against that
surface. In Windows, you select the pen into the DC, and a target surface
compatible representation of that pen gets cached inside the DC. The pen is
realized only once, but you can make a million lines or rectangles.

96

5 The GWE Subsystem

Realization is a nebulous concept that applies to nearly all GDI graphics
objects and means different things for different objects. You ask for pens and
brushes in an ideal color-maybe a color that doesn't exist on the system
and then the system finds a real color as close to that· one you wanted as
possible. That's realization. Fonts get realized: you specify an idealized ver
sion of what you want for a font and select it into a DC, where it is matched
to an available physical font. Palettes get realized, too; RealizePalette sends
the idealized palette to the physical device. When you select a pattern
brush into a DC (it can be a bitmap of any bit depth), you create a brush that
matches the destination bitmap. This concept of realization applies to all
graphics·objects that you can select.

Most of the time when you're blitting or drawing, you just take the
source and copy it to the destination. But other logical operations also let you
combine the source and destination. The raster operation, or ROP, is your
way of specifying what logical operation to use.

Anthony Lapadula

When you're using a pen to write on a surface, one
possible raster operation (ROP) you can use is to copy
the pen pixels onto the destination surface. You can also
use other operations like XORing pixels or ANDing them
or ~Ring them. There are 16 possible combinatiQns of
source and destination, and those combinations are
known as ROP2. For all the BitBlt APIs, there's a ROP3,
which combines three pixels to produce one destination

pixel: the brush currently selected in the DC is combined with the source and
the destination. The ROP4 is even more obscure and really comes into play
. only with MaskBlt. With a ROP4, a mask says whether pixels are foreground
or background.

BASE GDlOBJECTS

Inside the Windows CE GDI, everything is a C++ object. The base class is
called GDIOBJ, and it has only a few methods on it: Increment, Decrement,
DeleteObject, GetObject, GetObjectType, and SelectObject.

All GDI objects are reference counted, but they're not strong ref-counts
like they are with COM objects, where when the COM object's ref-count hits
zero, the object can basically destroy itself. For a GDi object, if the ref-count
hits zero,a DeleteObject call is allowed to succeed. The programmer is still
responsible for deleting the resources.

97

Inside Microsoft Windows CE

The base GDI object has some virtual functions for tasks all the other
actual GDI objects do: deleting themselves, getting a description of them
selves, and selecting themselves into a DC.

Our handle table is just an array of handles to objects: it takes the
handles that we give to the l,lser process and maps them to the actual objects
iri our code. For us, the mapping is fairly direct. The handles we give to
developers have a 2-bit reuse count that says how many times a slot in the
handle table has been reused, and a 16-bit index into our handle table (which
is just an array). The reuse count just wraps around.

Apps have a lot of problems with stale handles. Let's sayan app calls
CreatePen and gets an HPEN. It deletes the pen and creates a brush, but it still
has this HPEN floating around. So it calls Select Object to select it into a DC
and, goodness, the HPEN is no longer an HPEN but an HBRUSH. And the
call is going to succeed anyway! You thought you selected a pen, but you
actually selected a brush! The app is going to get very, very confused. That's
just the problem with theWin32 API. It's very polymorphic. You pass a
handle and something inside has to figure out what kind of handle it is. It's
very type-unsafe.

By putting those two reuse bits in the handle, we have a 75 percent
chance that a scenario like that won't happen. Our debug builds print error
messages warning people about stale handles. These bugs are really diffi
cult to track down without help from the, operating system.

The operating system is responsible for not leaking objects when apps
don't clean. up after themselves. Suppose an app ~reates an fIPEN and for
gets to delete it before the app goes away. Gwes.exe gets notified when that
application terminates. Then, beca,use of some sleazy bit-packing tricks and
our handle table, we're able to know which process created which GDI ob
ject. So basically we just sweep the handle table and look for any objects that
were owned by the dying process and delete them. The appmisbehaved, but
the as has to make sure that nothing bad happens.

We actually sweep the handle table a couple of times. We sweep through
once and qelete all DCs, and then we sweep througr a~9in and delete ev
erything else. If you have a pen selected into a DQ, wh~~ the DC goes away, ..
the DC releases one ref-count on the pep. After we delete 911 the container
DCs, we can delete the objects safely.

98

5 The GWE Subsystem

Of course, the right way for apps to behave is not to leave stuff around
when they go away. In debug builds, we print out an error message telling
the app which object handle it should have freed. In Win 3.1, if you didn't
delete things, they just leaked out; whereas in Windows CE, as in Windows
95 and Windows NT, the system cleans up after you.

GRAPHICS PRIMITIVES

A fairly significant architectural feature is that the Windows CE GDI never
touches pixels. Everything goes through .the driver; the driver does the ac
tual pixel pushing.

The driver is a subset of the Windows NT DDI. It looks a lot like a
. Windows NT DOl, but without a lot of handshaking capability. A lot of the
functions are eiiminated.

On the desktop (Windows NT, Windows 95, and Windows 98), the
driver always has the option to say, "I don't know how to do that operation,"
and then punt back to GDI; the desktop GDI has the ability to write the pix
els. We don't have that capability. To keep our memory footprint small, we
just dedded the driver has to support everything that actually touches pixels.

The GDI primitives are: rectangle, polyline, polygon, ellipse, and
roundrect. The driver really only knows how to do lines and blits. So how
do you get from all of the GDI drawing primitives to lines and blits?

SetPixel and GetPixel are blits that treat a pixel as a 1-pixel-by-1-pixel
rectangle.

Rectangle is fairly easy because all you have is a series of blits, and you
call into the driver with a brush for the interior and 4 blits for the edges of
the rectangle. You take the brush currently selected in the DC and paint the
interior, and then you take the pen currently selected in the DC and draw
around the exterior. If you want to paint a rectangle, one way is to select
the null pen into the DC and call Rectangle. That will paint the interior of the
rectangle.

Polyline draws a line through the points. If the pen is wide-more than
one pixel wide-we turn it into a region to fill; GDI makes every line seg
ment an area to fill and passes the areas to the driver.

99

Inside Microsoft Windows CE .

Polygon assumes the series of points is closed. If it isn't, we close it for
you. We paint the interior and then go around the outside. The driver sees
one polygon fill followed by either a polyline or, if the pen is more than one
pixel wide, another polygon fill for the wide band on the outside.

Ellipse and RoundRect are the only objects that actually have curves in
them. You pass the bounding rectangle of the ellipse. You can fairly easily
figure out the appropriate Bezier spline for each quadrant of that ellipse: we
have a Bezier flattener that turns each Bezier spline into a series of straight
line segments that the driver can handle.

RoundRect, if you think about it, is nothing more than an ellipse with
a couple of straight-line segments stuck between the curves on the comers.
So it turns out that RoundRect is a pretty trivial addition to an ellipse.

The Microsoft Windows 3.1 default had cosmetic pens. Windows 95
and Windows NT have geometric pens, and you can ask for beveled ends
and square ends. Windows CE doesn't support geometric pens. We support
the simpler pen implementation, closer to cosmetic pens.

The way we handle drawing these shapes is a good example of the
trade-offs we make-we trade memory footprint for execution speed of un
common operations. We could have wide pens, wide-pen ellipses, or any
number of things special-cased in the driver, but it's just not worth the ex
tra bytes.

PALETTES

One of the questions we get asked a lot is, "What is the Windows CE pal
ette?" The answer is that we don't have a Windows CE palette. The device
driver provides its preferred palette on startup and says whether the palette
is changeable. Some devices have a hard-coded palette; the Windows CE
palette on those devices is that hardware's palette.

Although you don't have a universal system palette, you do have a
palette for the device driver that you happen tobe talking to. We do recom
mend strongly that OEMs build into their devices the halftone palette that
we ship as source code. That halftone palette is called different names, such
as the Windows 95 palette or the halftone palette. Windows 95 uses it; Win
dows NT uses it; Internet Explorer uses it. So you can author your resources
to that palette and, we hope, have no color conversion at run time.

100

5 The GWE Subsystem

If you ask developers about the most confusing part of GDI on the
desktop, I think, hands down, they're going to say the palette model. There's
a famous paper on MSDN called "The Palette Manager-How and Why
It Does What It Does." It's a 20-page document. You read this thing; you
scratch your head; and you read it again, and then you scratch your head
some more. I've probably read it ten times. Every time I glean a little bit more
from it.

On the desktop, the palette manager merges requests from multiple
applications to make everybody as happy as possible. When you create a
palette on the desktop, you .can put in these little flags, the peFlags element
of each PALETTEENTRY, that tell the palette manager what you're intend
ing to do with the palette entry. These flags can say, "Don't map this. Don't
let anybody else use this palette entry, or I'm going to change this palette
entry a lot." The desktop makes it very hard to change the upper 10 and
bottom 10 colors, the so-called Windows colors. Even though a call can tell
Windows, "Look, I know what I'm doing," the desktop won't let you set the
first and last entry, which are black and white, respectively.

In Windows CE, we ignore all of that. You just select a palette into the
DC, and the colors have a one-to-one mapping between the logical palette
and the physical palette on the device. AllWindows CE palettes are iden
tity palettes. Windows CE has no palette manager. We refer to the Windows
CE palette design as "the civil libertarian model of palettes." You can do
what you wantto with the system palette. We trust that you'll be a good
palette citizen.

We have no restrictions. You want to select a 256-entry palette that's all
shades of red? Go for it. Your screen will tum red. The task bar, the system
dialogues ... everything will be red.

We really simplified what it means to support palettes in Windows CEo
We're hopeful we have a model that people can actually understand and fit
into their heads. I think we did a good job of simplifying, minimizing the
footprint, and maintaining reasonable functionality.

Our palette allows us also to do a few things that I think the desktop
doesn't do. For example, sometimes on the desktop, if you blit from one DC
to another DC, you simply won't get the right colors. Some weird artifacts·
on the desktop cause you to get the wrong colors unless you use StretchBlt,

101

Inside Microsoft Windows CE

which is smarter about performing color conversions than BitBlt. No such
restriction applies in Windows CE. You can blit from one DC to any other
DC and get the best color conversion possible.

If color must be converted from one .source to one destination, we ac
tually cache that color conversion object in the display driver. Color conver
sion is a very complex problem. Think about blitting from one 8-bit palettized
surface to a different 8-bit palettized surface. In the places where the palettes
don't match, you basically have to take the first entry in the source, find the
nearest entry in the destination, and then repeat. It's a 256-by-256 problem. It's
a very expensive operation. So caching the result of the operation is a really
big performance win.

But developers don't use lots of different kinds of palettes in your ap
plication. The more palettes you use, the more combinations of sources and
destinations you use, and the more likely you are to blow that cache. Your
performance will suffer miserably. Even if the color conversion is cached, if
you're really serious about performance, you should perform blit operations
to the same format and palette as your destination. Do the work up front to
handle the conversion-whether it's cached or not-so that the blit you re
ally want to be fast can proceed without conversion.

People accustomed to the desktop palette model can get into trouble
if they assume that the palette manager is going to bail them out. If you have
a window on top of other windows and you want to change the palette, you
call RealizePalefte. On the desktop, the palette manager runs around and tries
to make everything in the background look, good. But on Windows CE, items
in the background look terrible because they are mapped to a different pal
ette and there is no palette manager. So we tell everybody, don't muck with
the palette. If you must change the system palette, make sure your window
is full-screen exclusive and you cover everything else on the screen or it will '
all look bad. Of course, developers can do whatever they want, but if they
have to change the palette, we ask them not to change the so-called Windows
colors, the first 10 and last 10 colors. For games and for some applications,
owning the palette completely makes sense, but those developers will have
to work harder to be good neighbors.

We have some strange comers in our palette model as well. If you call
CreateDIBSection to create a bitmap, you have to pass in a color table-basi
cally a palette that's attached to the bitmap-which defines how you interpret

102

5 The eWE Subsystem

the pixels in that bitmap. Other APls that create bitmaps don't accept a color
table, and in these cases the color process gets a little bit confusing.

If you call CreateBitmap for any bit depth other than 8 bits, that bitmap
gets associated with the default color table for that bit depth. For I-bit bit
maps, the default we used was (of course) black and white. For 2-bit bitmaps,
the H/PC set the precedent that the default was to be black, dark gray, light
gray, and white. For 4-bit images, we selected the desktop 16-bit EGA pal
ette, a really hideous neon palette. For higher bit depths than 8-that is, for
·16, 24, and 32-we used the default RGB mask specifications that the desk
top uses. So we had compelling defaults for all those cases except for an 8-
bit image.

To allow palette animation to work, we do something different for 8-bit
bitmaps. For 8-bit bitmaps, CreateBitmap returns a bitmap that has no color
table associated with it: how do you interpret the colors? What does a pixel
value of 17 mean? Well, that's where the palette in the DC comes into play.
If you have an 8-bit bitmap with no color table, you interpret the bitmap's
colors relative to the palette that is selected into the DC. That enables things
like palette animation. You can create a bitmap, select in a palette, blit the
bitmap to the screen, then change the palette in the DC and blit it again,
change the palette, blit it again. In retrospect, that's probably one of the more
confusing things about the palette model. When you run on a 2-bit device,
c;reate an 8'-bit bitrn,ap without a color table, and then try to blit off of that
s"urface, we fry to interpret that 8-bit image relative to the four-entry palette
in your DC, and bad things happen. So when people complain that they're
blitting from what they think is an 8-bitcolor bitmap and all they get are
shades of gray, there's a good chance they forgot to select a color palette into
the DC.

BITMAPS

There are different kinds of bi~aps. You can get a handle to a bitmap by
calling CreateDIBSection, CreateBitmap, or CreateCompatibleBitmap. The first
tWo are allocated in system memory. CreateCompatibleBitmap asks the driver
to allocate the memory and, depending on the driver and the hardware, the
driver might be able to allocate video memory. Video memory is a prized
resource because blit operations to it and from it can be much faster. If you're
really concerned about speed, and you really want your bitmaps to be fast,
call CreateCompatibleBifmap.

103

Inside Microsoft Windows CE

On some platforms, hardware acceleration is available only when
both the source and the destination are in video memory. So having both the
source and the destination in video memory boosts video performance a
great deal.

FONTS

Windows CE has a fairly complete implementation of TrueType fonts.
Rasterizing a glyph takes a long time-when you ask for a letter in a brand
new font, we have to get that glyph out of the font file, scale it to the right
siie, and rasterize it. To keep the time down, we have a glyph cache. Once
you've created a glyph at a particular size, it makes sense to cache it and
leave it sitting around. So there are some big performance vs. memory trade
offs involved here with respect to how big you make that cache and when
you flush it.

As a developer, you have control over that in two ways: you can setthe
global size of the glyph cache via the registry at the time you build the Win
dows CE system, or the individual app running on the Windows CE system
can control when the font gets thrown away. The glyph cache is tied to the
HFONT, which is the handle of the font, so when you call DeleteObject on that
font, the glyph cache goes away. If you want fast text performance, it be
hooves you to keep that HFONT sitting around: the glyph cache will live for
that duration. If you're bringing up some line of text over and over again,
and every time you bring up the text you create the font, write the text, and
then delete the HFONT, your system is going to be really slow.

The cache defaults to 4 KB, which is a good cache size for accommo
dating the typical point size for the English alphabet. Most of the letters in
the English alphabet will fit in a 4-KB cache. Really huge letters that fill up
the screen will exceed that cache size. And if you're running a Far East device,
which instead of 52 uppercase and lowercase letters has 10,000 characters,
you have little hope of caching all the glyphs. If you're really serious about
this, try running your app and timing it. You'll see a fairly sharp knee bend
in the timing curve as you increase the size of your cache: because your fonts
stay in the cach~, your performance will suddenly get much better.

104

5 The eWE Subsystem

We support anti-aliased fonts, but only with the cooperation of the
driver, because anti-aliasing is platform-specific. If the driver doesn't report
that it supports this capability, we just turn off the anti-aliased font support.
We don't emulate the capability in GO!.

GDI COMPONENTS

The GOI in Windows CE 2.0 has 17 components. You must include the core
GOI component Mgbase, but other than that, most components are optional.
There are a few dependencies, but for most of the components, you have the
choice to add them or not add them. The common configuration consists of
all the components using either raster fonts or TrueType fonts. That's basi
cally what ships in the H/PC.

i''''''''''''''''''''''''''''''--'' ,

Although the GDl is componentized, not all possible combinations have been tested. For a
current list of tested configurations, see the Embedded Toolkit for Windows CEo

105

Inside Microsoft Windows CE

We also have a game platform under development that handles most
of its graphical output through DirectX. It needs only a very small subset of
GDI. Basically all you can do with that system is to load the bitmaps as re
sources and blit them to the screen, create off-screen bitmaps and draw to
them, and load raster fonts and use them to draw text on the screen. All the
other drawing in that system is done through DirectX.

RESOURCES

Topic

Microsoft Windows message-driven
programming

Componentizing GWE

Specific Microsoft Windows API
functions and Windows messages

Resource

Programming Windows 95, by Charles
Petzold (Microsoft Press, 1996)

Microsoft Windows CE Embedded
Toolkit for Visual C++

Microsoft Windows CE Toolkit for
Visual C++

106

(6)
Porting to New

Hardware

\

Inside Microsoft Windows CE

T his chapter is about porting Microsoft Windows CE to a new device. Using
the Microsoft-provided kernel for the targeted microprocessor, the OEM or em

bedded developer implements the boot loader, the OEM Adaptation Layer (OAL),
and device drivers. Drivers are usually organized into four categories: Windows CE
native drivers, Windows CE stream interface drivers, NDIS network drivers, and
Universal Serial Bus (USB) drivers. Other driver models may also be supported in
future releases of Windows CEo Several third-party companies provide porting
development services and can assist with OAL and driver development. In this
chapter, "OEM" is used to refer to whoever is doing the port.

Note that although Windows CE supports a variety of different microproces
sors, it is not processor-independent. The Microsoft Windows CE OS team ports the
kernel to a specific processor and then makes that processor-specific kernel library
available to OEMs.

The OAL functions communicate between the kernel and device hardware
such as timers, serial ports, parallel ports, and Ethernet hardware. The OAL port
ing effort also includes power management interfaces and hardware interrupt han
dling. The OAL is designed to be very easy to implement, enabling a wide variety
of Windows CE devices. The routines used to implement the boot loader represent
a subset of the OAL and can be reused in the OAL implementation.

Native device drivers are linked with the OS, whereas stream-interface device
drivers can be installed at any time. These differences correspond to the distinctions
in the hardware that the drivers operate. The Windows CE native drivers operate
hardware built into the device, such as the keyboard and touch-sensitive LCD dis
play. The Windows CE stream-interface drivers operate peripherals that can be con
nected to the device via its serial port or PC Card slot, such as modems and digital
cameras.

Microsoft provides sample native device drivers that are split into two parts
to make driver implementation fast and efficient: the Model Device Driver (MOD)
and the Physical Device Driver (POD). The OEM can choose to make device-specific
changes to the thin POD and simply link with the MOD. Although their use is
strongly recommended, the MOD and POD libraries are provided for convenience
only and are not required.

This chapter discusses the new driver models that are unique to Windows CEo
Frank Fite, Thomas Fenwick, and Larry Morris discuss the native drivers, offering
a high-level description of the interrupt service routine (ISR) and interrupt service
thread (IST) model and several examples of implementations. David Kanz discusses

108

6 Porting to New Hardware

the stream interface drivers as implemented using the PC Card Services interface.
Kanz wrote the Plug and Play system and describes its use of the Windows CE
registry for configuration.

Complete procedural documentation and sample native and stream inter
face drivers appear in the Windows CE Embedded Toolkit for Visual C++ and the
Windows CE Device Driver Kit.

Display drivers and printer drivers are considered to be native drivers but
differ slightly from other native drivers. They are not linked to GWE like the other
drivers, and users can load them on demand. The display driver uses a subset of
the Microsoft Windows NT DDI but is most commonly implemented by using the
Microsoft-provided Graphics Primitive Engine (GPE). The printer driver works
with the display driver. Anthony Lapadula and Martin Shetter continue their dis
cussion of the GDI that started in Chapter 5, "The GWE Subsystem," to explain
the internal workings of the display driver and printer driver.

Developers can use several tools to debug device drivers. These tools include
debug messages embedded in the code that can be conditionally activated by using
"debug zones," the remote Windows CE debugging shell with commands to exam
ine the state of the software on the device, and the remote kernel debugger WinDbg.
The debuggers are transport-independent and allow connection to the device using
a serial port, a parallel port, or Ethernet.

By allowing the OEMs to control the lowest levels of the operating system,
Windows CE is suitablefor real-time applications. Although Windows CE is a
general-purpose operatirig system, it was written so that the OS turns off preemp
tion for bounded amounts of time, guaranteeing that interrupts are processed within
specific latencies. And although the OS supports paging, the OS assigns lower
priority values to the paging threads so that they will not interfere with real-time
threads. The OEM can lock real-time threads into memory so that paging is not
required.

Because the OEM implements the native device drivers that process the real
time threads and controls the thread priorities of these device drivers, the OEM can
ensure that the overall system meets its specified performance requirements.

Several options are available to OEMs when profiling the operating system.
port to guarantee that it meets requirements. These include kernel timing and Monte
Carlo profiling. Monte Carlo profiling interrupts the OS rapidly to record the instruc
tion pointer, providing statistical information about where most OS processing
occurs. In addition, Windows CE supports hardware-assisted profiling, with hooks
for OEM-supplied routines to track thread creation, termination, and scheduling .

•
109

Inside Microsoft Windows CE

PORTING FOR EASY ADAPTABILITY

Frank Fite

Easy adaptation is critical. My group doesn't want to get swamped with a
thousand phone calls. We have to make sure the OS is easy to adapt.

Porting Windows CE involves three steps:

1. Porting to a particular processor. Right now, this is done only by
Microsoft, not because we're trying to keep it secret but because
to make a really small, fast kernel, we have to abstract every single
aspect of the processor, which is hard. And so the processor is
bundled into our system; you get a version of the kernel for your
processpr.

2. Porting to a particular bus/memory/interrupt architecture. Windows
CE doesn't require any particular architecture: it doesn't require
a particular bus, it doesn't require memory to be in a certain
place, it doesn't require interrupts to be in a certain place. All
those aspects of the architecture are adaptable by the OEM.

Frank Fite

The OEM just has to implement the OEM
Adaptation Layer to communicate this hardware
specific information to the kernel. This layer is really
a collection of small interrupt service routines and a
small number of interfaces, pretty easy to write. We
provide sample code for different hardware plat
forms, and the OEM can adapt it to their specific
hardware.

The OAL includes, for example, the power management func
tions. Not every single Windows CE device is going to need power
management-a lot of them are going to be plugged into walls.
But devices that need it may have different ways of handling
power management, so the hardware people write this layer.

This step also includes writing the built-in and installable
device drivers.

3. Selecting specific components. After you adapt the sample code to
the hardware, you pick the software components: which APIs
you want in the system, which communications protocols you
want in the system. And that completes the adaptation.

110

6 Porting to New Hardware

OAL FUNCTIONS FOR IMPLEMENTATION

OAt Function Categories

Initialization

Ethernet

High-performance counter (optional)

Interval timer

LED

Parallel port

Power management

Profiling ("instrumented kernel")

Real-time clock functions

Object store (registry and database)

Serial port

System information

Task tracking

Functions to Implement

OEMlnit, OEMGetExtensionDRAM

OEMEthDisableInts,
OEMEthEnablelnts, OEMEthGetFrame,
OEMEthGetSecs, OEMEthlnit,
OEMEthISR, OEMEthQueryClientInfo,
OEMEthSendFrame, (and debugging
related IOCTLs)

QueryPerformanceCounter,
Query PerformanceF requency

GetTickCount

OEMWriteDebugLED

OEMParallelPortGetByte,
o EMParallelPort SendByte

OEMldle,OEMPowerOff

KCP _ScaleDown, KCP _GetStartTime,
KCP _GetElapsedTime,
o EMProfileTimerEnable,
OEMProfileTimerDisable,
o EMProfi1eTimerlnit, 0 EMProfiler ISR

OEMGetRealTime,OEMSetRealTime,
OEMSetAlarmTime

CeChangeDatabaseLCID,
ReadRegistryFromOEM, RegCopyFile,
RegRestoreFile, WriteRegistryToOEM

OEMClearDebugCommError,
OEMlnitDebugSerial,
OEMReadDebugByte,
OEMWriteDebugByte,
OEMWriteDebugString

OEMloControl

LogProcessCreate, LogProcessDelete,
LogThreadCreate, LogThreadDelete,
LogThreadSwitch

Many of our semiconductor partners and system integrators already
provide the appropriate device drivers and adaptation layers. So really,
many OEMs will never have to go'through this porting process. They'll just
get the adaptation code from a system integrator or from the providers of

111

Inside Microsoft Windows CE

their hardware. That's important, because some 'of the OEMs we work with
really aren't software people at all. They're hardware people, and they would
rather get the code they need from someone else than write it themselves.

Thomas Fenwick

The OEM Adaptation Layer is linked with the kernel, Nk.exe. On top of the
kernel and the OAL are GWE, the window manager IUser subsystem, and
Device.exe,the device-driver services. The drivers appear in parallel because
they talk to the hardware directly, but they also talk to the kernel and the
OAL, and they can talk to GWE. There's no good way to draw the picture
they can all talk to one another.

Microsoft-supplied

OEM-supplied

The native drivers-display, battery, keyboard, audio, and touch screen-are linked in to
GWE. Device.exe provides higher-level device driver services to make writing drivers for
. serial and PC Card devices easier.

The Windows CE kernel startup code can't run until the OEMs ini
tialize their hardware. During initialization, a CPU boot vector runs OEM
startup code, which has to set up ROM and DRAM access-anything to do
with turning off refresh and getting the minimum CPU running. So the OEM
startup code runs for a bit, then jumps to KernelStart (a symbol that the ker
nel exports) in unmapped, uncached space.

Thomas Fenwick

The kernel performs some initialization, then calls
OEMInit. OEMInit, which is one of the OAL functions
implemented by the OEM, performs any additional hard
ware setup needed to actually run the system. If as an
OEM, you want to perform minimal hardware diagnos
tics or anything like that, you can do it either in that little
bit of OEM startup code or in OEMInit.

112

6 Porting to New Hardware

Startup

KernelStart

The CPU boot vector jumps to OEM hardware initialization code, which upon comple
tion jumps to the start of the kernel. Early in its startup sequence, the kernel calls the
OEM-implemented function OEMInit, which typically installs #mers, sets up inter-
rupts, and initializes variables that OEMs can set up. '

If the platform-for example, the MIPS or Intel platform-doesn't have
a well understood timer channel for generating periodic interrupts, the OEM
needs to install that timer in OEMlnit so that the kernel can conceptualize
the passage of time. Some of the device drivers and other processes need to
be able to count time, and they can't do that unless the interval timer is run
ning. We expect the timer to have millisecond resolution, so we can get milli
second accuracy for GetTickCount. In fact, GetTickCount is one of the OAL
interfaces that the OEM has to implement.

OEMlnit can also set several variables, such as the variable that indicates
the end of DRAM. We initialize OEMlnit to the value we believe it to be so
that the OEM can move the function up, if desired. Shortly after OEMlnit,
we call OEMGetExtensionDRAM to find out whether an additional noncon
tiguous bank of DRAM exists. Interrupts are enabled right after OEMlnit,

and then shortly after that, the kernel starts up.
Depending on the configuration, we then load Filesys, GWE, and De

vice-whatever files are specified in the registry-and then we're running.
GWE and Device start loading drivers. For the Handheld PC, for example,
GWE loads the keyboard and touch drivers, and Device loads Serial and
PCMCIA.

113

Inside Microsoft Windows CE

As part of our device driver model, during this initialization, the ker
nel tables are set up to associate the interrupt IDs with the interrupt threads.
Probably the easiest way to explain this is to walk through the initialization
for the serial driver. Device.exe is going to call LoadLibrary(" Serial.dll" ...), and
then Serial's initialization routine will set up the hardware:

/1 Serial Initialization routine
II Setup hardware.
hEv~nt = CreateEvent(...) II Create an event.
II Set the event. then an ID.
Interruptlnitialize(hEvent. SYSINTR_SERIAL);
CreateThread(...)

The InterruptInitialize call goes down into the kernel and associates an
event, specified by the event handle, hEvent, with an interrupt ID called
SYSINTR_SERIAL. The ID identifies what kind of interrupt was received.
And that's actually all the kernel really understap.ds. The kernel knows about
the ID, and it knows about that handle. And then, typically, the initialization
routine calls CreateThread to create the interrupt service thread, which is a
standard Win32 user-space thread. So the kernel doesn't really have any
understanding of a particular thread associated with an interrupt; the ker
nel just sets an event whenever the interrupt occurs.

The driver calls InterruptInitialize, passing an ID and an event handle,
and says, 1/ Anytime an ISR returns this interrupt ID, set this event." The
kernel takes that interrupt ID and interrupt event, records them in its tables,
and then calls OEMlnterruptEnable. The kernel is really just a messenger for
most of this interrupt handling. Let me go over what that interrupt service
thread does. The normal service model is this:

whil e (...) {
WaitForSingleObject(hEvent. timeout);
II Process inierrupt
InterruptDone(id);
II Additional processing

} II Loop and wait for next interrupt to process.

The 1ST calls WaitForSingleObject to wait on the event. You do all the
work associated with processing the interrupt, then call InterruptDone. That
tells the OEM adaptation layer that the driver has satisfied the need for this
interrupt; the interrupt can be enabled again when the driver is ready to take
the next ISR~

114

6 Porting to New Hardware

The ISR is typically very short:

II ISR
II Interrupts are disabled.
identify the interrupt;
mask or dismiss the interrupt;
return the interrupt ID:
II Interrupts are on again.

The ISR masks the interrupt and returns the ID to the kernel; the ker
nel calls SetEvent. The 1ST waiting for that event sees that it has been set and
starts running.

The hardware holds off all interrupts while the ISR is running. That's
actually an automatic process that the chip performs when it generates the
interrupt exception-another reason not to spend a lot of time in an ISR.
The more time spent in the ISR, the longer the ISR latency is going to be.

THE DRIVER MODEL

Larry Morris

The Windows CE driver, model is probably not as familiar as other models
to some of the Win32 people, but it is a pretty traditional driver model in
which the interrupt service routine does as little work as possible. It's more
like the' UNIX model.

The reason you don't want to do a whole lot of work
in the ISR is that this version, Windows CE 2.10, doesn~t
support nestable interrupts. While you're servicing one
interrupt, all other interrupts are masked. And as a result,
the longest code path through an ISR ends up affecting
the ISR latency for the entire system. You should do the

Larry Morris smallest amount of work to service the interrupt and get
out of there and do most of the work up in the thread,

which is just a normal Win32 process.
When a driver is initialized, it creates a standard Win32 event and calls

InterruptInitialize to associate that event with a DWORD representing a sys
tem interrupt SYSINTR value. When a hardware interrupt comes in through
the kernel and gets routed to the ISR,the ISR does its work and returns the
SYSINTR value to the. kernel. The kernel looks .at that SYSINTR value and
signals the Win32 event that is associated with the SYSINTR.

115

Inside Microsoft Windows CE

IRQa comes in Hardware

The OEM implements the 1SR and 1ST and makes calls to set up the mappings in the
kernel's lookup tables. The kernel sets an event, which is a very fast thread synchroniza
tion object, to signal the interrupt service thread.

The other important funCtions associated with interrupts are lnterrupt
Done and InterruptDisable. The 1ST calls InterruptDone when the function has
finished servicing the interrupt and is ready for the kernel to unmask it.
InterruptDisable is the opposite of InterruptInitialize and cancels the Win32
event/SYSINTR pairing that was established in InterruptInitialize.

Most ISRs decide only whether the interrupt is a spurious interrupt,
handle that, and then immediately return the SYSINTR. The 1ST does all the
work and calls InterruptDone. At that point, we can unmask that interrupt.
All other interrupts could have occurred during that time, but that particu
lar one is masked until we call InterruptDone.

InterruptDisable is not usually called. Most drivers are not loaded dy
namically; they load up once at boot time and stay there forever, so the inter
rupt is never disabled.

This is how all the native, or built-in, drivers work. Toa large extent
''built-in'' means that the driver has an ISR. Drivers can be layered on top
of built-in drivers that typically won't do any of this handling. (For Example,
the PCMCIA and serial drivers commonly have other drivers layered on
them.) An upper level driver written to open and communicate through the
serial driver isn't going to actually handle any of the interrupts. It won't have
a specific ISR associated with it but will use the serial driver's ISR.

116

6 Porting to New Hardware

Rather than deal directly with the ISR and IST, PC Card client drivers use a different,
higher-level stream interface. A native PC Card driver handles the direct hardware in
teraction with the card and passes the appropriate information to the higher-level client
driver.

Or if the driver is layered on PCMCIA, the PCMCIA driver deals with
all of the actual interrupts. It has the ISR for the PCMCIA card and provides
socket services. You can write a driver that layers above PCMCIA, but that
driver won't deal with interrupts at the bus leveL Of course, the driver will
deal with acknowledging the interrupt at the peripheral. If you need to clear
the interrupt condition on the modem and the modem is a 16550, you might
have to read the LSR or the MSR to clear the interrupt condition at the pe
ripheraL But that situation is separate from the OAL functions InterruptDone
and InterruptEnable, which operate on the interrupt at the system's interrupt
controller.

THE MDD AND PDD
The Module Device Driver (MOD) and Platform Device Driver (POD) librar
ies confuse people a lot. Architecturally, the MOD and POD don't have any
thing to do with how the driver works. It's really more an issue of how the
driver code is organized into libraries.

The theory behind the MOD and POD is that two big tasks are involved
when an OEM writes a driver: talking to Win32 and controlling the periph
eraL Of those, the task that the OEM understands is how to control the pe
ripheral. If I have an SH3 built-in serial port and one of the OEM's SCIs, how
do I enable it? How do I set the baud rate? How do I perform a variety of
functions? The OEMs know how to answer those questions. What we try to
do is split up the responsibility for the tasks and let the OEMs write the plat
form device driver that accesses the hardware.

117

Inside Microsoft Windows CE

The MDD contains the Win32 part: the model of the API set and all the
structures and functions. In theory, the MDD works on any similar device.
For example, as long as your hardware more or less looks like a typical serial
peripheral, the serial MDD will work with it.

OEMs can write the entire device driver themselves (shown here as a monolithic driver)
or can provide a smaller piece called the Platform Device Driver that interacts with the
Microsoft-provided Model Device Driver. The MDD and PDD are simply libraries that
can help OEMs develop drivers quickly.

But remember that MDD /PDD is not the actual driver model: MDD /
PDD refers to the files. The question that often comes up is "What if I don't
like the MDD code or don't want to use it?" That's fine. We provide the code
for your use if you want it. Again, using it is not required. If you wanted to
implement all the Win32 work yourself, you could definitely cut down some
of the overhead. I sure wouldn't say that you'd significantly cut it down, but
I would say that you could mildly improve the performance of your driver
by writing a monolithic driver. However, the trade-off is being unable to take
advantage of our fixes. We keep the MDDs consistent across releases, so if I
find a bug in the upper layers, you can pick up my fix in a subsequent re
lease. Once you've gone to a monolithic driver, you're responsible for fixing
all bugs.

There have been rare cases of people writing a monolithic driver but
not for performance reasons: they wanted to tweak our MDD to do some
thing that it wasn't currently doing. They copied the MDD into their directory,

118

6 Porting to New Hardware

made a few modifications to it, and then linked to the private version rather
than to the one we supplied. Most people use our MDDs.

We try to define the DDSI layer-the layer between the MDD and the
PDD-so that it looks like one of the generic peripherals for that class. The
audio driver was generically patterned after some DMA-based audio trans
fers. For the PCMCIA controller, we figure out the generic functions of most
any PCMCIA controller. For the serial driver, the interface looks like a 16550

. and assumes that four general classes of interrupts exist. For example, when
ever the serial MDD sees a line status interrupt, the MDD calls your line
status handler. If it sees a transmit interrupt return, the MDD calls your
transmit handler.

If you had some really esoteric peripheral that didn't look anything
like a generic serial device, you could just override the interrupt. You could
decide that the receive interrupt is the only interrupt you'll ever return from
your interrupt status function. The MDD would see that and call your re
ceive routine: you could just write a receive routine that did all the work by
using that one function. As you can see, you can override our definition.

GETIING TO PERIPHERALS

One question people ask quite often is, "Since the ISTs are running as just a
standard user-mode thread, how do I get to a peripheral?" Because the ISR
is running in kernel mode, it has access to all the physical memory. However,
once a driver gets up into the interrupt service thread, it's running in the
process space, and it has to map that.

You use the VirtualAlloc and VirtualCopy functions to map physical
memory into your virtual address space and then access it via the pointer.
If you look at all of our sample drivers, you'll see that they call VirtualAlloc

and VirtualCopy to get at that memory space.
We also added support for a number of the Windows NT HAL func:..

tions: HalGetBusData, HalSetBusData, MmMaploSpace, MmUnmaploSpace,
READ_PORT _UCHAR, WRITE_PORT _UCHAR READ _REGISTER_UCHAR,

and WRITE_REGISTER_UCHAR. These functions abstract the way memory
is accessed and, in theory, allow you to write a driver that's basically CPU
and platform-independent.

119

Inside Microsoft Windows CE

ISR AND 1ST DESIGN: LATENCIES

ISRs are relatively fast-a few microseconds maximum latency into the ISR
but the speed depends, of course, on who wrote the ISR and what it's do
ing. The exact value is platform-dependent: But I would hope that the value
is fairly small, on the order of tens of microseconds maximum, because the
latency in your ISR defines the maximum latency for the entire system. Most
ISRs that I've timed have been Significantly under that.

The latency to get up to the interrupt service thread can vary substan
tially, depending on the processor and the clock rate of the processor. It's on
the order of 100 or 200 microseconds.

We support priority inheritance, which is a method for handling pri
ority inversion. Priority inheritance is not a driver issue, per se, but if you're
an OEM and you're writing a driver, you want to think about it. The system
currently has eight priority levels, and drivers normally run at one ·of the
upper two levels, either THREAD_PRIORITY_TIME_CRITICAL or
THREAD]RIORITY_HIGHEST (which is actually the second highest level).

THREAD PRIORITY LEVELS, FROM HIGHEST TO LOWEST PRIORITY

Value Priority

0 THREAD]RIORITY_TIME_CRITICAL

1 THREAD_PRIORITY_HIGHEST

2 THREAD_PRIORITY_ABOVE_NORMAL

3 THREAD]RIORITY_NORMAL

4 THREAD_PRIORITY_BELOW _NORMAL

5 THREAD_PRIORITY_LOWEST

6 THREAD_PRIORITY_ABOVE_IDLE

7 THREAD]RIORITY_IDLE

Windows CE is fully preemptive, and we round-robin within a prior
ity level except in the case of THREAD_PRIORITY_TIME_CRITICAL. Orice
a time-critical thread loads, it's going to run to completion. To eliminate
unnecessary scheduling time, we do not round-robin among the time-critical
threads.

So if you have a serial driver and a PCMCIA driver that are both time
critical, and a PCMCIA interrupt comes in while the serialIST is running,
that PCMCIA interrupt is going to be held off until the serialIST is finished.

120

6 Porting to New Hardware

The interrupt itself is dealt with, but the 1ST, the handling of the event result
ing from the interrupt, is held off. You should not design many time-critical
threads into the system. And you should have a clear understanding of the
impact that one time-critical driver will have on another. THREAD_
PRIORITY_TIME_CRITICAL is powerful, but it's to be used with caution
because of the scheduling characteristics.

We've seen cases of a shared resource between an 1ST and its lower
priority worker threads. The problem, of course, is that if the worker thread
owns that resource at the time the interrupt fires, then we have to do a prior
ity inversion-we have to raise the priority of that worker thread and let it run
as long as it takes to free up the shared resource. Then we have to go through
a context switch to schedule the highest priority thread, which costs time.

And so even though we can say, "Yes, we have deterministic schedul
ing to get to a thread," and "Yes, we have very good latencies into the 1ST,"
if priority inversion occurs, it becomes nondeterministic by the time it's all
. said and done. If some unknown number of priority inversions occurs based
on resource contention, it's a driver issue.

Ideally, the OEM sets up a producer/consumer model that doesn't
require critical sections. You can design the data structures so that the criti
cal thread doesn't ever block on the other thread, as with a properly con
structed ring buffer. Then you don't need to protect that resource. You can
figure out how to make the really time-critical part be their 1ST and move
all the rest of the work out into worker threads.

The main goal is to get rid of resource contention between a high pri
ority thread and a lower priority thread, or even between two threads with
the same priority level. You don't want someone else to own the resource
that prevents your interrupt service thread from running.

WRITING NATIVE DRIVERS: CASE STUDIES

We've done a lot of work with the OEMs on drivers; in Windows CE 1.0, the
people on my team were the primary contacts for all the OEMs.

TOUCH DEVICE DRIVERS

The best case scenario is when the ISR does nothing. Let's say you're an
OEM, and your touch hardware takes care of all the work so that when your
get an interrupt, the hardware says, "Here are the time-correlated, closely

121

Inside Microsoft Windows CE

clustered touch samples." It sends a group of three x and three y positions,
and 12 milliseconds later sends another group of three x, y values; We go
right up to the 1ST, the 1ST reads out of the DMA buffer, and we continue.
That's the beautiful scenario.

But with some touch hardware, you won't find an application-specific
integrated circuit (ASIC) or any hardware assist. You need to go out and
enable some circuit on the left edge of the panel, then wait for a settle time
so that the panel can charge up. Then you kick off the ADC to measure the
x value. You wait another very small amount of time, typically a few micro
seconds, and then enable some other circuit. You delay for a period of time,
and then set up again and grab the y sample. You need to go through that
routine multiple times because normally a single sample isn't sufficient; you
want some type of voting or filtering, so you take three time-correlated
samples. And in order to take three samples, you need about 8 or 10 micro
seconds, far faster than the 1ST's scheduling time. So you need to take care
of that in a little state machine in the ISR.

But, then again, we want to keep the latency small. A 12-microsecond
delay is kind of on the hairy edge. I wouldn't recommend doing a spin loop
in there, but on the other hand, I think you need to look at how fast the pro
cessor is. If the overhead to get out of the current ISR and into the next ISR
is 20 microseconds, then one way or another you're going to eat up the CPU,
so you can do a spin loop. It just comes down to doing the math and figur
ing out the maximum blocked interrupt latency time.

SERIAL DRIVER TIMING ISSUES

Another example scenario involves a 16450-type device. At 115-KB baud, a
character arrives about every 86 microseconds. Even if we run a fairly fast
processor, another character will arrive by the time the 1ST finishes execut
ing. And as soon as we do the InterruptDone, the 1ST immediately firesagain
with the next character, and we have just eaten 100 percent of the CPU by
bouncing back and forth between the ISR and the 1ST.

So we actually put a small ring buffer in the ISR that stores not only the
characters but also some of the line status information, because we wanted
that information correlated with the characters that arrived. The ISR gobbles
characters and stuffs them into the software ring buffer.

122

6 Porting to New Hardware

We implemented different designs. When we had a hardware timer
available and could implement a character-timeout interrupt, we stuffed
characters into the software buffer until a certain amount of time had gone
by without any new characters arriving, then we signaled the 1ST that we
had the data. Or sometimes we'd signal the 1ST all the time and just assume
we're going to eat most of the CPU because the 1ST is continually getting
interrupts saying data is available. But at least we don't ever have to worry
about overrunning the FIFO and actually dropping a byte. If you don't have
some type of character timeout, you have no way of knowing when to signal
the 1ST. You can't say, "Oh, I'm going to signal at eight characters," because
the device on the other side might only send seven and the ISR will never
generate the interrupt. So you're going to use most of the CPU.

I can't think of any other interesting ISRs we've handled. But you can
pretty much tweak the driver model however you want within certain con
straints-if you consume time in the ISR, you're going to change the latency
of the system.

PORTING DEVELOPMENT TOOLS

We offer a number of development tools to bring up Windows CE on a new
platform. Let me describe them.

BOOT LOADERS

Once the basic kernel is running, typically you install a boot loader. The boot
loader is a very small Windows CE image, usually modified from the sample
supplied in the embedded toolkit. The boot loader communicates with the
debug shell and downloads .bin files to either RAM or Flash. RAM images
are preferred since they let you set breakpoints in the debugger.

REMOTE DEBUG SHELLS

. We just added a new shell called Cesh.exe, which supports the parallel port
and two more transports: serial and Ethernet. Ethernet is the preferred trans
port because it allows the boot loader, the debug shell, the debugger, and the
debug tonsole to communitate over a single physical transport.

123

Inside Microsoft Windows CE

Ethernet, serial,
or parallel

Cesh

To examine the state of the device, the Cesh remote debug shell can communicate with the
device over Ethernet, serial, and parallel connections. This illustration shows the GI, or
Get Information command for processes, including the process name, its access key, and
the start address for its slot in virtual memory.

The debug shell lets the developer launch executables and examine the
state of the system. If a file and/ or an executable is requested but not found
in the target's local file system, the debug shell acts as a remote file system,
loading the file into the device as if it were part of the root file system. Other
debug shell commands list all threads, modules, or processes; examine the
state of all threads in the system; and tum on and off various debug zones.

DEBUG PORTS

The debug port is an output-only port where RETAILMSG and DEBUGMSG
send their output. In version 1 and version 2, this port was always a serial
port, and the developer typically used a null cable and ran a terminal pro
gram on the desktop to display the messages while debugging. In Windows
2.1, the debug console can be routed through the debug Ethernet connection
and displayed in a window on the desktop. Eshell is the controlling program
for all of the Ethernet debug utilities and the Ethernet boot loader.

KERNEL-LEVEL DEBUGGERS

The kernel-level debugger is typically used for debugging kernel, OAL, and
device-driver modules. The kernel-level debugger requires a special kernel
stub to run. When a break occurs in the kernel-level debugger, all process-

124

6 Porting to New Hardware

ing on the target stops. With the application-level debugger, a breakpoint
stops scheduling for only the process containing the break. The app-level
debugger does not use a dedicated transport but instead communicates over
the standard IP stack. This is why the app-level debugger can't be used to
debug device drivers-as soon as a breakpoint is encountered in a device
driver, the debug link is dropped because the process containing all of the
device drivers is no longer scheduled.

In Windows CE 1.0 and 2.0, the kernel debugger communicated over the
debug serial port by calling the OEMWriteDebugString and OEMReadDebug
String functions. This functionality has now been extended to enable either
the serial interface or the Ethernet interface. Again, the Ethernet interface is
preferred if available, since it is easier to configure and significantly faster
than the serial-based debugger.

We also added another API to support debugging, OEMWriteDebug
LED. This routine provides a standard way for drivers and applications to
write values to diagnostic LEDs.

PC CARD SERVICES

David Kan~

On Windows NT and Windows 95, drivers are .SYS or .VXD files, but on
Windows CE, the native drivers are Win32 DLLs. And so instead of using
port I/O, the peripheral is mapped to a range of memory, and you use regu
lar read and write operations instead of port in and out operations.

David Kanz

Because the drivers are user-mode Win32 DLLs,
they can't access the physical address directly and have
to use a virtual address. You know your device's physi
cal address range and its length in memory, so you call
VirtualAlloc to get the virtual address, and then call Virtual
Copy to map the virtual address to the physical range.
The driver can then use that virtual address to access the
device. You call VirtualFree to clean up when you're done.

The PCMCIA specification defines a card-services interface that shields
the PC Card driver from system-specific PCMCIA hardware. On WinCE,
Pcmcia.dll abstracts the hardware specifics so that a PC Card driver can run
unchanged on systems with wildly different PCMCIA socket controllers.

125

Inside Microsoft Windows CE

Typically in the CPU's memory map, a physical range is mapped to
PCMCIA. The PCMCIA driver itself then maps regions of PCMCIA to the
card. The PCMCIA driver is platform-specific, but the card-specific drivers
are not. All they know about is the particular PC Card that they're going to
drive, such asthe modem or the flash disk. The client driver knows the regis
ters it wants to control, and the PCMCIA driver knows where the registers
are in system memory and can provide the virtual mapping. So the card
services interface calls set up this virtual mapping, and then the client-specific
driver can use that virtual address to directly access the PC Card.

The PC Card driver calls CardRequest Window and CardMap Window and,
if the card is an I/O card, CardRequestConfiguration. Our implementation of
CardMap Window in the native PCMCIA driver makes the calls to VirtualAlloc
and VirtualCopy.

VirtualAlloc
Virtual Copy

System memory

PC Card device-driver developers can write one driver that will operate on all platforms.
Their client drivers use the card services interface to interact with the native PCMCIA
driver, and the native PCMCIA driver makes the VirtualAlloc and VirtualCopy calls
on their behalf.

The PCMCIA driver handles the actual interrupts, such as the card
detect interrupt and the one that is usually the most interesting, the data
interrupt. The PCMCIA 1ST associates the interrupt with the correct client
driver and directly calls that client driver within that IST context. All the
demultiplexing is handled by the PCMCIA driver. To the client driver, no
number is associated with the interrupt-all it knows is that the interrupt
is attached to its card.

126

6 Porting to New Hardware

PLUG AND PLAY

When we designed the Plug and Play system, we decided to keep track of
active devices in a way that any other process could access: by using the
registry. We also added two APIs that make it convenient to access these
registry entries: EnumDevices and GetDeviceKeys.

With PCMCIA, you can load a PC Card driver in two ways. The first
way is to detect the driver based on the card's Plug and Play ID. The Plug
and Play system reads the appropriate tuples in the card's attribute space,
generates the Plug and Play ID, then looks for the ID in the registry under
HKEY_LOCAL_MACHINE \ Drivers \PCMCIA \PNPID, where PNPID is
the Plug and Play ID. The system tries to open that key and look for the DLL
name and the device prefix. If it finds those values, it loads that driver.

\HKEY_LOCAL_MACHINE\Orivers\PCMCIA\PNPID
DLL= ...
Prefi X= ...

If the system doesn't find an entry for the generated ID, its second
approach is to run through its list of detect functions, listed in the registry
under \ HKEY_LOCAL_MACHINE\ Drivers \ PCMCIA \ Detect. This list is
numbered, with detect functions ranging from 00 through 99.

\HKEY_LOCAL_MACHINE\Drivers\PCMCIA\Detect
[113]

[513]

[613]

Dll=SERIAL.DLL
Entry=DetectModem

Dll=ATADISK.DLL
Entry=DetectATADisk

Dll=NE2000.DLL
Entry=DetectNE2e00

[99]
Dll=SRAMDISK.DLL
Entry=DetectSRAMDisk

If the independent hardware vendor (IHV) knows that the Plug and
Play ID won't be constant but that a range of devices can use the same driver,
the IHV can choose to create the registry entries under a detect number.

127

Inside Microsoft Windows CE

The IHV should decide the sequence of its detect function based on
how intrusive it is. The least intrusive detect method should run first, and
the most intrusive should run last. With Serial.dll, and even with Atadiskdll,
all the IHV has to do is read the card's information structure to figure out
what's going on. The Sramdiskdll detect function is the most intrusive, so
I put it last, at detect function No. 99.

Most SRAM cards don't have a card information structure. So OEMs
have to write a test pattern, read the pattern back and compare it with what
they originally wrote, and then restore the original data. They have to do the
testing in chunks because they're not only detecting whether it is an SRAM
card but also how big the SRAM card is.

When the detect function detects the card, it returns a string value that
is used as a key under HKEY\ Drivers \PCMCIA. Device.exe opens this key
and uses it. For Serial.dll, the string value is "Modem". And for ATADisk, it's
"ATADisk".

There is also a third way to load the driver-you can ask the user for
the DLL name. Let's say a user sticks in a new PC Card, but because you
haven't registered the device driver's detect function yet, the registry doesn't
have a Plug and Play ID entry and the detect functions in the registry do not
detect that card. When all the detect functions fail, Device.exe displays a
dialog that says, :'Enter the DLL name." To enable users to just stick in the
card and enter the DLL name, driver writers should implement a function
called InstallDriver. If the user enters a valid DLL name, Device.exe calls
LoadLibrary to load the DLL, then calls its InstallDriver function.

The InstallDriver call also provides an opportunity for the driver to
install its registry keys for the next time the card is inserted. Driver writers
can implement the InstallDriver entry point so that it sets up the registry keys.

One other interesting fact about the Plug and Play system that I de
signed for Windows CE is that I originally did it for PCMCIA-you know,
thePC Cards. But when we added USB support, USB also used the Plug and
Play support routines.

DISPLAY DRIVERS

ADJh~}lyJ/lPadula 'i1}d Mar!iXl Shet!~

In Windows CE version 2.0 and later, GDI talks to a display driver and the
display driver talks to the physical device. The display driver exports an
interface called the DDI-the same DDI interface as Windows NT.

128

6 Porting to New Hardware

Although the display driver uses the standard Windows NT DDI interface, most embed
ded developers will not implement the DDI routines. They will instead use the Microsoft
supplied implementation called CP and supply their own optimized implementations of
selected CPE routines. Full documentation for the CPE classes appears in the Windows
CE DDK.

You can replace the display driver with your own. But the default ver
sion that we ship has all kinds of functionality-such as any bit depth to
any bit depth conversion blits-so we don't expect you to rewrite the dis
play driver from scratch. What people usually do is add extensions to the
display driver. For instance, if special hardware capabilities can give accel
erated blits, your display driver can enable that hardware. This is a pretty
common thing for OEMs to do. The main component in the display driver
is just a library named graphics primitives engine (GPE) that does all the
actual pixel twiddling. All you do is add hardware capabilities and build
them into your own DDI.DLL.

I've talked about how we map GDI drawing operations to the display
driver and how Windows NT DDI is the interface layer. Gm talks to·the
driver through this Windows NT DDIlayer, but nobody ever writes a dis
play driver to that layer and you really shouldn't. We have the GPE library,
which handles all the communication with that DDI layer. It's a huge helper
for display driver. writers.

129

Inside Microsoft Windows CE

The first thing -any prospective display driver writer says is, "Well, I
write to the DDI layer./I In most cases, that's the wrong approach. The right
approach is to start with the GPE. You can write a display driver to that DDI
laye;, but you'd be a whole lot better offtaking advantage of the GPE class.
It'll do a whole lot of the work for you.

By sitting down and working with this GPE class, you can make a driver
pretty quick. If you have a video frame buffer that's in standard Windows
bitmap format, which is pretty common, all you have to do is tell GPE how
big the memory is and give it a pointer to its pixels, and GPE will pretty
much take care of everything else.

It can be pretty easy to write a display driver that way, but the driver
might be slow. To speed up your display driver, you need to hook out spe
cific operations. Every time there's a blit call, you get notified, and you can
look at all the parameters for that blit and say, "Oh, I have hardware that
can do that faster./I Then you can replace the slow blit operation with your
fast hardware blit operation. Illustrations of how to do this are in the DDK
sample code.

You can also write code that runs faster than the generic implemen
tation in GPE. For example, GPE has one function that handles all blits, all
color conversions, and all ROPs. This one monster function literally does
everything, but it's pretty slow. So if you profile your system and learn that
you spend 50 percent of your time setting the background of windows to
white-well, you can create a solid white color fill in software. You can tar
get the fill operation to the bit depth of your device and get a significant
increase in speed from tiny pieces of code.

We ship sample source code for a function library with GPE, and you
can hook out and decide which of those functions to use. If your hardware
doesn't support an operation that you really want to be as fast as possible,
you can examine the source code to see how it's done and then pick the fast-
est software version of the operation. .

For example, the library supports certain ROPs that show up frequently,
like DSTINVERT. This is what Microsoft Pocket Excel uses to display in
verted colors when you select a range of cells. We provide sample source
code for source copy blits where there's no color conversion: we have sample
source code that shows how to do 2-bit to 2-bit copies or 8-bit to 8-bit copies
or 16-bit to 16-bit copies. You can take these functions and extend them
pretty easily.

130

6 Porting to New Hardware

PRINTER DRIVERS

In Windows CE version 2.0, we added printing support. We shipped one
sample printer driver for PCL3 printers called PCL.DLL. You would expect
the printer driver to be analogous to the display side, but it's not. We do all
the page imaging on the client.

Suppose a program needs to print a page. The page has some text,
some graphics. The program creates a printer DC and makes all of its calls:
it calls StartDoc, then StartPage, then everything else to fill up the page of
output. These calls are actually stored away in an internal data structure in
GDI. And then it calls EndPage, and it has now accumulated all the com
mands necessary to draw the entire page.

To create the page, we allocate an in-memory bitmap that's as wide as
the page but not as tall as the page. Thein-memory bitmap represents a band,
which is a bitmap strip, a piece of the final page. This band can be incred
ibly big because it's at printer resolution-say, 8 1/2 inches across at 300 dpi
and as tall as we can allocate. We take this page data and play it against this
band, clipping it so that only the appropriate piece of the page is drawn. The
display driver does all of this drawing. It has no idea that it's doing a print
job: all it knows is that it's rendering the image at a particular height.

Print image Bands

Each page of output is sent to the printer driver in sections called bands, which are rendered
by the display driver. The size of each band depends on the amount of available memory.

Once this band is complete, we give it to the printer driver. The printer
driver is very simple-it knows how to initialize itself, how to start a new
page, and how to receive a band. It's really pretty incredibly stupid. The

131

Inside Microsoft Windows CE

printer driver takes this print band, which is just a normal bitmap like
anything else, and compresses it into whatever format the physical printer
supports. Run-length encoding (RLE) and five or six different kinds of com
pression can go on here. The driver just picks the compression type that
works best for the printer.

So the first band gets compressed, shipped over the wire, and rendered
on the page. Then GDI shifts down to the next band and does the same thing:
it sends the bitmap to the printer driver, the printer driver compresses the
band and sends it over the wire, and the band gets rendered on the page.
This process is repeated until the entire page is processed. Then the printer
gets told, "Go ahead and eject the page; get ready for the next one."

It's a nice architecture. The display driver is the only piece of the sys
tem that pushes pixels around.

RESOURCES

Topic

Current list of supported micro
processors

Windows CE system integrators
that can help port the OAL and
device drivers

Detailed procedures for porting
Windows CE to a new device and
using the porting debugging tools,
including developing the bootloader,
developing the OAL layer, and pro
filing system performance

Detailed procedures for developing
and configuring native drivers and
stream-interface drivers

132

Resource

http://www.microsoft.com/windowsce

http://www.microsoft.com/windowsce/
embedded/partners/sysinteg. htm

Microsoft Windows CE Embedded
Toolkit for Visual C++

Microsoft Windows CE Device
Driver Kit

?Ie· .. · . ommunlcatlons

Inside Microsoft Windows CE

T he Microsoft Windows CE development group was formed from the merger
of two groups working on mobile computing devices. One group worked on a

consumer device that offered wireless communications, while the other worked on
a business device, a Microsoft Windows desktop companion.

This organizational history meant that from the very first version, Windows
CE supported a rich mix of communications options for both consumers and busi
ness. As additional interfaces became popular or were supported by other Microsoft
operating systems, the development team created Windows CE versions for those
interfaces as well, adding such options as infrared communications and Internet
standards and protocols.

The Windows CE architecture includes a wide variety of communications and
connectivity options, providing subsets of all major Microsoft communications
programming interfaces. The modular design of Windows CE allows OEMs and
third-party developers to easily add drivers and protocols, to enhance and even re
place the supplied communications components.

The communications API options are best described in layers, working up
from the lowest level that communicates with the hardware to the higher levels that
represent more abstract services.

Windows CE offers a variety of communications options based on subsets of
the standard Win32 API.

134

7 Communications

At the lowest level, Windows CE offers support for serial connections through
the Win32 Serial API to the serial driver; local area networks through a subset of
NDIS to Ethernet drivers; Infrared Data Association (IrDA) standards through
IrDA to the infrared driver; and fax and modem support via TAPI and Unimodem
to installable PCMCIA fax/modem card drivers. At the intermediate level, Windows
CE supports Remote Access Services (built on the serial connection) and Winsock,
which uses the TCP/IP and PPP/SLIP modules to communicate via either serial,
Ethernet, or infrared. At the highest level of the communications programming
interfaces, Windows CE supports the WinINet API, which provides FTP and HTTP
services and access to a Common Internet File System (CIFS) redirector for access
to remote printers and files. The highest level also includes the Windows network
ing API, which enumerates network resources and manages connections. Both the
WinINet and WNet interfaces are built on top of Winsock.

Version 2.10 also includes support for secure communications at all levels
of the model. At the lowest level, Windows CE offers data-link authentication us
ing Password Authentication Protocol (PAP), Challenge Authentication Protocol
(CHAP), and Microsoft CHAP. At the intermediate level, Windows CE offers se
cure socket connections through the Winsock and WinINet APIs over any of three
provided security protocols: SSL 2:0, SSL 3.0, and PCT 1.0. At the highest level,
Windows CE supports the Microsoft CryptoAPI. These API functions allowappli
cations to manage data encryption, decryption, and the certificates used to exchange
encryption keys.

In this chapter, Mark Miller, the Windows CE communications lead, offers
perspective on the choices made by the Windows CE developers and discusses some
possible directions for the future. David Kanz describes the Ethernet networking
support. Bill Mitchell, who leads the Mobile Computing Products team, and Charles
Wu, who developed the desktop connectivity interfaces, describe the ActiveSync in
terfaces and the extensible Windows CE Remote API (RAPI). (Windows CE also
defines a set of file filter interfaces to transfer files between the desktop and the device.)

In addition to the communications capabilities provided by the Windows CE
operating system services, Microsoft exposes an authoring interface for its Mobile
Channels viewer application. Mobile Channels is an extension of Internet Explorer's
Channel Definition Format (CDF), which gives content providers a way to effi
ciently deliver data to mobile devices. Jay McLain, the Mobile Channels development
lead, describes support for standard HTML authoring and for the new advanced
authoring model.

135

Inside Microsoft Windows CE

Mark Mi!l~.r
I worked on Pulsar, which was a predecessor project to Windows CEo Pul
sar was supposed to be an inexpensive, portable consumer device with
wireless communications and a touch screen, no keyboard. The average
person on the street could use the device to get general information. You
could walk into a strange city and say, "I'm interested in Italian food." Be
cause the device has GPS, it knows your location. It answers, "Oh, you want
to go to Tony's around the comer; it's a great place and here's the menu with
the prices."

Mark Miller

TCP/IP

We tried to build a device in the $250-$300 range
that would be an unconscious carry. The concept is that
you'd get up in the morning, pick this device up off your
dresser, and put it in your pocket. I don't thl:rlk I've ever
left the house without my wallet, keys, and glasses; the
Pulsar device was meant to be like your watch-pretty
much always with you.

In terms of communications· Pulsar was a wireless device, so we worked
on a generic Winsock-like provider. We had a TCP lIP transport stack that
worked with paging devices. After we started working on the Handheld PC,
we decided that because the device was a desktop companion, we had to
have a protocol stack that could talk to the desktop and that was compatible
with Windows 95 and Windows NT. So we decided to go with the TCP lIP
stack from Windows 95 and Windows NT. At that time, it was called the
"Rhino" stack.

We tried to look down the road, and we thought TCP lIP was a plat
form that we could leverage to do other things. We were very conservative
about our ROM size. If we had written a proprietary protocol and some
body else added TCP lIP, we would have wasted ROM space by having
two protocols.

The original plan for Pulsar didn't include an Internet Explorer and a
Pocket Mail component. This was before the Internet craze. At that point
TCP lIP wasn't even the Microsoft standard. The standard at that time was

136 -

7 Communications

whatever was on corporate LANs-NetBEUI, NetBIOS, and IPX. But even
back then, when we first started, we liked TCP lIP, and some people in the
group really believed it had a lot of support in the industry.

At a previous job, I worked on an application that broadcast stock data
on a network of Sun workstations. I had all of my processes linked together
using TCP lIP, giving me 24-hour reliability. If my main big processor died,
I needed to be able to run pieces of the whole system on various worksta
tions in the office and link them all together using TCP lIP-you know, brute
force multiprocessing. We had some experience with TCP lIP and believed
it was the right thing to use. And we had a fallback. Because it was supposed
to be used only for desktop communication, if TCP lIP didn't work out, we
could in effect hide our decision.

We did make a number of changes to the TCP lIP code. In the desk
top environment you don't worry as much about how much memory your
stack is using, whereas in our environment the user sometimes is working
with a big spreadsheet or Word document and memory has to be available.
So we freed memory when the stack wasn't using it instead of caching it for
use later.

We also removed some features. Some were #ifdef' ed out because they
weren't needed for the first generation of the product. We're adding some
of those features back in as the OS adds more support.

THE WINSOCK API

We also looked at how the protocol was exposed to the application space.
The Winsock API set was originally derived from the requirements of get
ting TCP lIP to work on a Windows 3.1 system. Windows 3.1 wasn't really
multithreaded (it used cooperative multiprocessing), and Winsock was an
extension of the Berkeley Sockets API, which supported this cooperative
multiprocessing model.

In Windows 3.1, you couldn't block on a receive because you wouldn't
get any mouse or keyboard events from the user. You had to indicate to the
protocol stack that you wanted a packet so that the stack could send you a
window message when that packet was available. Your main thread pro
cessed the window messages.

137

Inside Microsoft Windows CE

Why would you ever want to do that in a true multiprocessing system,
where you can spin a thread? From a pure protocol perspective, that mes
sage is just additional overhead. A message comes up and has to go through
some message path to be able to get to my application. Threads aren't free,
but they're certainly more lightweight than messages.

So we decided to completely cut the asynchronous functions and really
focus on the core Berkeley Sockets implementation: socket, recv, send. The
implementation is compatible with Winsock in that it's a subset, but the async
APls are not supported. This saved ROM space. If we had supported the
async APls, we would need a thread to manage the receive packets and s.end
back window messages.

Windows CE implements the core Berkeley Sockets API functions, but does not imple
ment redundant functions and does not support the asynchronous functions.

The Windows NT group has now extended the asynchronous capa
bility to use events, which makes more sense for a threaded model. My
thread gets a pretty lightweight, efficient event mechanism to notify me
that a packet's available. For a future generation of the Windows CE sock
ets implementation, using events makes a lot of sense, although it does
mean that people who have applications running on Windows 95 or Win
dows NT with the window-based messages might need to change their
code somewhat. At least they'll end up changing their code in a way that
should be more efficient.

138

7 Communications

IRDA: INFRARED COMMUNICATIONS

We also added IrDA support. IrDA was being used in Windows 95, and we
investigated using it but actually decided pretty early on that trying to port
the Windows 95 code wouldn't work for Windows CEo A better approach
would be to start from ground zero. So we had IR; and we had this concept
of squirting data to exchange information.

From the beginning, the group was separated into the as team and the
applications team. In my role on the as team, I really wanted to provide an
infrastructure that made the most sense. So the team came up with the raw
IrDA protocols to enable IrDA communication. In each release, we've im
proved some of the low-level features in the protocol layers.

Windows CE modified
transport device interface

(TDI): not exposed

Protocol stacks

The Windows CE implementation significantly changed the transport device interface
(TDI) and so does not expose this layer to developers. Developers should instead use the
Winsock 2.0 layered protocol service provider interface model.

The IrDA stack plugs in under what's known as the TDI interface, which
is between the protocol manager layer and the protocol stack. The TDI in
terface is a somewhat complicated interface, and because we really wanted
to get the product out in a certain time frame, we consciously decided not to
expose the TDI interface. We're still a small team at Microsoft, especially in
terms of external support, and we want to think carefully about the APls that
we expose. We always have to ask ourselves, IICanwe adequately test this?"

139

Inside Microsoft Windows CE

OurTDI interface is modified, and it works differently from the origi
nal TDI interface in a number of ways. So it wouldn't be that simple to port
existing TDI code from Windows NT to our modified TDI interface. We're
trying to concentrate on developing areas where people can add value, which
is why we've gone to the Winsock 2.0 model. It has a layered service provider
interface and a way to install additional stacks.

THE WIN32 SERIAL APIs AND TELEPHONY APIs

About midway through the project, we decided to add support for modems
and more Internet connectivity applications. The whole reason we put TCP
in the software was to enable that support, and now we were actually tak
ing advantage of it.

We really focused on the minimum features required for the first
generation product, the HIPe. The features that made sense to include were
modems, Internet Explorer, and mail. The H/PC would have a modem that
could dial out, but we couldn't imagine anybody taking an incoming fax or
telephone call on it. Because we didn't have staff, we said, "What's the mini
mum we can do that doesn't make us miss our schedule?"

We had already decided that Win32 interfaces were the way to go.
Rather than inventing a new API, we used a subset of the existing API so that
people could use existing applications with some changes. When we come
up with our next version, developers will need to extend their applications
only slightly to get a whole lot more functionality. So you start thinking
about what you are going to expose: a subset of Winsock? That makes sense.
The serial APIs? Those are pretty much identical to the Win32 API set. And
the telephony API-TAPI-is also very similar to the Win32 API set.

TAPI was an obvious choice for talking to modems. TAPI is a very
robust API, and for 1.0 we really focused on what we needed to call out.
Through the service provider interface and through the generic Unimodem,
TAPI provides an extensible solution for supporting modems.

We made our Unimodem very robust. It supports most of the available
PCMCIA card modems without having to be modified. We actually got away
with one standard setting in the Modem.inf file, and although you can over
ride it if you want to take advantage of your particular modem's features
by entering your particular modem settings in the registry-in general, you
don't have to think about it.

140

7 Communications

TAPI illustrates how the Windows CE team selected subsets from the Win32 API: focus
on the functionality that is appropriatefor the device and minimize memory use. From
more than 100 Win32 TAPI functions, Windows CE initially implemented the basic tele
phony services for outgoing calls.

In version 1.0, we focused on outbound data modem support. In our
2.0 release, we exposed the TAPI service provider interface so that a third

(

party can create its own service provider. If third-party developers want a
soft modem, they can support something other than the AT command set.·
Our modem knows only how to send ATDT-type commands and a phone
number.

And now, as more people request dial-in support for various products
. such as faxes, phone terminal devices, and other phone products, we'll be
adding more and more TAPI extensions-the TAPI functions that deal with
terminals, phone terminal devices, and inbound calls.

But you know, if I were to develop a phone device today on a standard
Windows CEsystem, I don't know if I'd really want full TAPI support. TAPI
makes the phone hardware available to a large number of apps and helps
manage the users of that hardware. But is that functionality really in the
spirit of the devices that Windows CE is targeting? There's no reason why
the app can't handle its voice call operations by talking directly to the phone
hardware. You need TAPI only if you have two phone apps that need to be
able to communicate with the hardware.

141

Inside Microsoft Windows CE

I don't want to restrict people, but adding generic support means more
code, greater size. If we stop worrying about the size, we could potentially
blow up the 05 infinitely. And that's something we do want to avoid.

COMING FULL CIRCLE: WIRELESS

Back when we were working on the Pulsar project, the market wasn't really
ready for the paging capability and the wireless features. The infrastructure
wasn't in place; the costs associated with it just didn't make sense.

We're now revisiting these features and capability in the context of the
Palm-size PC project, so we're kind of coming full circle. And all that work
we did four and a half years ago-I was in the Research team then, and
now that research is finally becoming a reality. The infrastructure is a little
cheaper; we can send more data; the backbone has higher data rates; and the
hardware costs and power requirements have improved. 50 looking back,
I'd say that pausing Pulsar then was exactly the right thing to do; we're start
ing it up again now and taking some of its ideas into the Palm-size Pc.

NETWORKING

We have a new client component on Windows CE that lets you browse net
work resources on Windows 95 and Windows NT machines. You might be
in your hotel room and realize you forgot a file, and you can call RAS and
access your corporate server and get the file to your device. The device sup
ports the Windows NT (Lan Manager) 5MB spec, with long filename and
Unicode support. It's important to note that all system files on Windows CE
support UNC names; the network resources use strings rather than drive
letters.

David Kanz

In Windows CE 2.0, we added an 5MB redirector
that was leveraged off the Windows 95 redirector. That
redirector uses NetBIOS, but we didn't want to have a
supported NetBIOS interface, so we created a pseudo
NetBIOS that's used internally by the 5MB redirector.
Developers should be writing to Windows Sockets.

NDIS (Network Driver Interface Specification) pro-
vides a generic interface between a transport and a low

level driver that talks to an Ethernet adapter. The miniport for any adapter
is written such that it is operating system-independent-all the operating

142

7 Communications

system-specific support is encapsulated in NDIS calls. Our interface is just
like the Windows NT version of NDIS, but with the current limitations of
Windows CE: having only the TCP lIP transport and supporting only
Ethernet.

Windows CE implements a subset of NDIS 4.0 to support miniportdrivers. To validate
miniport driver ports, Microsoft also provides a test tool called Ndistest that performs
junctional and stress testing.

NDIS supports Ethernet miniport drivers that are source-level compat
ible with Windows NT. You can perform all of your driver development on
a Windows NT machine, change your driver to a DLL, and the driver should
work on Windows CEo We ported some Windows NT miniport drivers for
Ethernet adapters, mostly for proof of concept so that other independent

, hardware vendors (IHVs) could then port their drivers. I actually ended up
porting three or four miniports that the IHVs are now responsible for main
taining and distributing.

CONNECTING TO THE DESKTOP

Bill Mitchell

There was a huge difference of opinion over what we should do for the desk
top connectivity software for version 1.0. It was going to be a key bit of
functionality, but what exactly should it do? At the time, no one in the mar
ket had created anything that had real file synchronization or PIM data
synchronization. One group of people said, "All we need is file transfer; we
don't need PIM data." Another group said, "Forget about Pocket Word and

143

Inside Microsoft Windows CE

Pocket Excel. We don't need to move those files back and forth, all we need
is PIM data sync." Then there were the unified field theory people who said
that what we needed was a grand scheme to sync all types of data, whether
files or finer-grained data.

Synchronizing all kinds of data was a beautiful
idea, but there were a ton of issues, both with architec
ture and with presentation in the UI. Think about what
happens when you round-trip the data, when you send
it to the device and then back to the desktop. We can
round-trip PIM data: when we synchronize, an appoint-

Bill Mitchell ment makes it back to Microsoft Outlook with all the data
it started with and we don't lose any of the information.

But when a Pocket Word document is moved from the desktop to the device,
we prune off all the OLE embeddings. When the file goes back to the PC, do
you really want it to write over that original document?

Ultimately the 1.0 team took a very pragmatic and unpopular ap
proach: "Hey, two different types of data-let's treat them separately." We
synchronized only the PIM data and let you drag and drop other files using
a little Explorer window. It was an unpopular approach internally because
it wasn't as elegant and perfect as the sync-everything vision. So we kept
working on the architecture, and we persevered and delivered a very clean
design that can handle all kinds of data: ActiveSync.

THE ACTNE5YNC ARCHITECTURE

Charles Wu

The ActiveSync architecture allows synchronization of any kind of data be
tween any Windows CE device and desktop application. We already have
ActiveSync for Microsoft Outlook, Schedule Plus, the Windows CE file sys
tem, and Active Channel, and we're looking forward to ActiveSync becoming
available to more apps as ISVs synchronize their own particular applications.

. This architecture requires ISV s to develop two com-

Charles Wu

ponents: one on the desktop and one on the device. The
desktop component is an OLE in-process server that ex~
poses two interfaces, IReplStore and IReplObjHandler,
which I'lltalk more about later. As long as those two in
terfaces are fully implemented, the ActiveSync engine on
the desktop asks the components to enumerate the ob-

144

7 Communications

jects, request changes, and so on. If the engine sees that the object is to be
synchronized down to the device, it asks the ActiveSync component to se~
rialize the data-in other words, to convert the object into a series of bytes
in any desired format. The engine then sends the bytes down to the device.
The ActiveSync component on the device takes serialized data and converts
it to the corresponding object on the device.

Desktop development
station

IReplStore
lReplObjHandler

Device

InitObjType
GetObjTypelnfo
ObjectNotify
ReportStatus

By implementing two interfaces on the desktop and four functions on the device, the de
veloper is able to use. the common services provided by the ActiveSync engine and offer
data synchronization with a minimum of development work.

Synchronizing Outlook or Schedule Plus appointments requires tasks
that are common to both apps:

• Transferring the actual appointment data

• Providing a mapping between the appointment on the desktop
and the appointment on the device, which usually involves main
taining a table

• Detecting conflicts, when you change an object on either the desk~
top or the device before you synchronize

All these common services--data transfer, table management, and con~
flict resolution-are managed by the ActiveSync engine. For example, the
ActiveSync engine automatically detects the conflict, gets a description of
the two objects, and presents these descriptions to the user, who can choose
either object.

The ActiveSync engine also supports remote synchronization, in which
the device dials into the desktop. Let's say you're in a hotel room, and you
want to synchronize. You hookup your modem by using your hotel phone
and dial into a desktop in your office a thousand miles away. Or you dial into

145

Inside Microsoft Windows CE

your corporate RAS server, establish a network connection, and synchro
nize there. You don't have to worry about whether you're talking over the
Internet, infrared, or a serial line. The remote synchronization uses all of
the communication options in Windows CE, and the whole process is totally
transparent.

You don't have to reinvent the wheel. The design abstracts all of the
common services into one place-the ActiveSync engine-enabling you to
focus solely on your own data. That saves you a lot of time.

If you think you have perfect, lossless conversion, all you have to do
is move the data back and forth. But if your conversion process is imperfect
and data can be lost, you have the option to, say, pop upa message box stat
ing that the user risks losing some of the data by transferring. We give ISVs
a lot of freedom to design their own VI, their own options, their own set
tings dialog, and their own data transfer dialog. The ActiveSync architecture
handles every kind of data; the ISV just has to implement the interfaces to
support it.

THE ACTIVESYNC INTERFACES

On the device, the ActiveSync component exports four functions: InitObj
Type, GetObjTypeInfo, ObjectNotify, and ReportStatus. If those four functions
are fully implemented, ActiveSync serializes or deserializes the data going
back and forth, reads the registries for options, and so on.

As mentioned earlier{ on the desktop you have to implement two COM
interfaces, IReplStore and IReplObjHandler. IReplStore is the interface that
~eals with the collection of data. Its methods can be organized into these
categories:

• Object enumeration. You have to be able to tell how many objects
are in the store and be able to retrieve them.

• Object management. The ActiveSync engine gives the component
a piece of data-a checksum, a timestamp, a change number, any
thing you define-and the component decides what this piece of
data is. By comparing this piece of data with the existing data, the
engine knows where the change occurs.

• Data conversion and validation. The validation methods ask the
component whether a piece of data is valid. This is important
because you could have an invalid timestamp, for example.

146

7 Communications

• Option setting. Options are set in an ISV-defined dialog, which
offers a lot of freedom. An ISV can do anything it wants in its VI.
For exampk, the ActiveSync component for Outlook can display
a dialog that allows the user to sync all appointments starting
with those that occurred two weeks in the past and ending with
those scheduled in the future.

• Folder-management, store-management, and miscellaneous.

IREPLSTORE FUNCTION CATEGORIES AND ASSOCIATED METHODS

IReplStore Category

Object enumeration

Object management

Folder management

Store management

Option setting via end-user UI

Data conversion and validation

Miscellaneous

Methods

FindFirstItem, FindItemClose, FindNextItem

CompareItem, IsItemChanged, IsItemReplicated,
UpdateItem

GetFolderInfo, IsFolderChanged

CompareStoreIDs, GetStoreInfo

ActivateDialog, GetObjTypeUIData

BytesToObject, CopyObject, FreeObject,
Is ValidObject, ObjectToBytes

GetConfiidInfo, Initialize, RemoveDuplicates,
ReportStatus

IReplObjHandler is the main interface that communicates with the desk
top store, which is a collection of objects on a desktop: a Microsoft Outlook
store, a Schedule Plus store, and an Internet Explorer store. This interface
deals mainly with serialization, deserialization, and deletion of the object.

How does this interface work? The ActiveSync engine realizes that an
object needs to be updated and calls IReplObjHandler to serialize the data.
The ActiveSync engine sends this byte stream to the other party and calls
its IReplObjHandler to deserialize the byte stream-that is, convert the byte
stream back into an object.

The beauty of the design is that the ActiveSync component has total
freedom to define the format of the byte stream. The ActiveSync engine
doesn't care about the format of the bytes; it guarantees that whatever it gets
from one end will be received in exactly the same order on the other end,
with the same number of bytes. There's absolutely no limitatioI). on the size

147

Inside Microsoft Windows CE

or the form of the byte stream. That gives the ISV maximum flexibility to
serialize its data in any convenient way it wants. You can share code on both
sides because you design your own format.

These interfaces are all just standard public COM interfaces. They can
be used not only by Windows CE services but by anyone who chooses to
support them. The ActiveSync component can be reused as long as the user
follows the interface requirements. The ISV can also develop the container
that controls all the ActiveSync components, so it can write any program it
desires to enable it to talk to the ActiveX component. All that's kind of cool.

We'll try our best to make sure that future versions of ActiveSync are
compatible with version 2.0. But we cannot guarantee object code compati
bility-you know, that this DLL, without any changes, can be reused in the
next version. We cannot promise that. You might need to recompile your
module or update header files. But we can guarantee that most of your in
tellectual property can be reused in the next version.

REMOTE API

In addition to the synchronization, we have an extendable Remote API
(RAPI). So if all you really want to do is make a simple call from a desktop
to query some data or to retrieve some status information, you can use the
Remote API instead of using ActiveSync.

Desktop development
station

CeRapiInit(.. .)
CeRapiInvoke(MyDLL.dU, MyFunction, .. .)

Device

MyDLL.dll
MyFunction

The Windows CE Remote API (RAPI) supports its own flavor of remote procedure call.
The RAPIfunction CeRapiInvoke lets you specify the DLL,function, and parameters to
call that function on the remote device. Sample code is provided in the Windows CE SDK.

RAPI offers a very small, nonstandard RPC (remote procedure call). It's
not the standard RPC that Windows NT is using. We don't provide the MIDL
compiler and those tools. It's our own version-a very lightweight, simple

148

7 Communications

version of the remote procedure calls because the device has limited memory
and limited support. I5Vs are allowed to develop on the device their own
functions that can be called freely from the desktop. Basically, I5Vs are re
sponsible for their own parameter marshaling.

But if you're developing an application, you have a piece of data on the
desktop, just want to get it down, and don't care about the current state or
whether the data was changed, the Remote API is probably what you want.
For example, if you wanted to find out how many applications are running
on a device, you'd just want to use simple RAPL

MOBILE 'CHANNELS

Jay McLain

We certainly handle plain HTML, and people can author web sites to be
viewed on these smaller devices. But because most people aren't designing
their sites with these devices in mind yet, the smaller Windows CE form fac
tors don't really lend themselves to Internet browsing. The displays are very
small, and without a keyboard, you can't navigate easily by typing in URLs.

So in addition to handling standard HTML, we added
some advanced features that people can choose to take
advantage of. We developed the offline Mobile Channels
reader-the Channels application, which introduces the
idea of offline reading or viewing of content.

Jay McLain

The Mobile Channels mechanism is a pretty con
venient way to access data. You can give users some
general information, such as news, stocks, sports, and

weather; or local information that changes frequently over time, like mov
ies and restaurant reviews. For intranet scenarios, you might have vertical
information such as sales tracking and routing.

Channels are a feature of Internet Explorer. The Mobile Channels ex
tend the Internet Explorer architecture. We leverage the CDF standard, not
only for describing a web site but also for updating its content. We've taken
the 1.1 version of the Pocket InternetExplorer control, moved that into the
Palm-size PC device, and built the Channels application around it. The Mo
bile Channels technology is based on the XML and CDF standards.

149

Inside Microsoft Windows CE

If you want to go beyond standard HTML and use this advanced
authoring scheme, you want to start to think about your site in terms of view
and data: How do you want users to view the data, and what data do you want
them to view? And you want to organize the hierarchy of data that you are
going to show the user.

Using this type of authoring, you can define the hierarchy in the .CDF
file and define the presentation in the form of mobile channel script (.MCS)
files. The only part of the channel that will really change over time is the data,
which appears in the mobile channel data (.MCD) files.

Straight
HTML

Advanced
scripting

Data-only
updates

In addition to standard HTML, the Mobile Channels technology supports advanced script
ing for smaller form1actor devices. One of the authoring designs extends the Internet
Explorer CDF standard and represents the data structure, data presentation, and the
data itself in different files. This design minimizes the transmitted data.

You can associate scripts with the channels and the data items that you
are presenting to the user. You can have different scripts per channel or dif
ferent scripts per item, so you don't have to present the same layout to the
user all the time.

We also support logging and tracking on the device, in case you're
interested in knowing what items or what pages the user views the most
often. For exampl~, if you display advertisements on your web site, we can
tell you which advertisements are displayed most frequently. We can track
the hit information on the Palm-size PC device and migrate that hit informa
tion to the desktop during synchronization. Then, when the Mobile Channel
is finally updated on the desktop, that updated information is transmitted
all the way back up to your server.

150

7 Communications

Another cool thing we've added to the mix is notifications. Notifica
tions allow you to set up a page that refreshes when its data changes. For
example, you can associate a database with a URL that is updated when the
database changes. Or you can use notifications on the Active Desktop to
refresh your current day's appointments.

You can see how powerful it is to separate the data from the view. If
you choose to use this advanced method, we don't always have to download
a whole bunch of new HTML code; we just download the new data.

RESOURCES

Topic

Communications API, writing your own
file filters, synchronizing data with the
desktop using ActiveSync, writing your
own remote API, developing a TAPI
service provider

Mobile channels

151

Resource.

Microsoft Windows CE Toolkit for
Visual C++

Microsoft Windows CE Mobile
Channels SDK

S)
User Interface

and Shell Services

Inside Microsoft Windows CE

A shell is a set of user-interface components and underlying support routines
that translates user input into useful operating system actions. Each Microsoft

Windows CE device can have its own unique shell, developed and customized for
I that device and its target audience. Creating a shell is one of the greatest challenges

facing embedded systems designers.
Version 2.10 of Windows Cf, offers several modules and components that

support UI and shell development. These include the base functionality needed by
GWE; common controls and dialogs; shell-related APIs such as shortcuts and notifi
cations; the control panel; and a console, or command window. The embedded toolkit
does not currently include a complete ready-made shell, except for a minimum
implementation offered as a sample. The complete Microsoft-developed shells are
currently offered only as part of complete devices, such as the Handheld PC (H/PC)
or the Palm-size Pc.

In addition to the visually-oriented "point and click" interface, some Windows
CE-based platforms developed by Microsoft also support alternative methods of
interaction, such as rich inking and voice commands. For example, handwriting
recognition components are used in the Palm-size PC and in Far East versions of -
the H/pC. Voice recognition and text-to-speech (TTS) components are used in the
Auto Pc.

In this chapter, Tandy Trower, Microsoft's senior UI design specialist, provides
an introduction to the general principles used in UI design. Sarah Zuberec, Tony
Kitowicz, Scott Shell, and William Vong, all part of the Handheld PC 1.0 team,
describe the design of the H/PC shell. Steve Masters describes the voice recognition
components that ship with the Auto Pc. Greg Hullender describes the design of the
handwriting recognition components used in the Far East versions of the H/PC.
Roberto Cazzaro explains the process of "localizing" the system and applications
that is, making them suitable for use in different languages, countries, and cultures.
Arul Menezes, the shell developer in the Windows CE Core as team, describes the
components available to OEMs interested in developing their own shells .

•
GENERAL VI DESIGN CONSIDERATIONS

Tandy Trower

As the senior user-interface design specialist for Microsoft, I'm responsible
for reviewing and critiquing ongoing work on the products. I'm also respon
sible for providing to third parties our guidelines for designing applications.

154

Tandy Trower

8 User Interface and Shell Services

I put together the book The Windows Interface Guide- .
lines for Software Design (Microsoft Press, 1995), which is
about how you should design your applications-what
controls you should use under what circumstances. It
contains fundamental information about basic user-inter
fate design principles: the importance of consistency
and simplicity, and the importance of keeping.the user
in control of what's going on in the interface.

A section in Windows Interface Guidelines talks about basic design meth:
odology and the process that a product team should follow in designing an
interface. I highly recommend using an iterative design process, in which
the UI is designed not only as the product is being defined but throughout
the development cycle. After the team investigates basic issues such as how
a user performs a task, it puts forth a design prototype followed by a cycle
of usability testing to find out what works and what doesn't. The team takes
the results and cranks them back into redesigning the product. The team
prototypes and tests again, and it follows this testing cycle through the entire
design process to improve the product. I'm really focusing on just a part
of the whole design cycle. The book provides much more detail at each step
of the. way.

The Windows CE Handheld PC team came to me early on in the devel
opmentprocess. The device had a smaller form factor and used stylus input
rather than a mouse. The team asked me if I could work with them in extend
ing the standard Microsoft Windows guidelines to include the Handheld PC
platform. For example, to enhance the required interaction with the stylus
device, the team was interested in reducing the number of double clicks re
quired to perform tasks. With the Internet and Microsoft Internet Explorer
integrated into the Windows interface, the trend now is to require only a
Single click to open a window. 50 in some ways, the HIPC design foreshad
owed the direction that the desktop Windows operating systems were going.

USABILITY TESTING

Sarah Zuberec

Our products are interesting .because we leverage the Windows concept,
but some of our devices have smaller screens, so we have to modify the
design. Our modifications sometimes deviate from Windows, and we have to

155

Inside Microsoft Windows CE

determine whether they still make sense. We sometimes have quite a few hard
problems to solve because we can't cram everything onto the tiny screen.

Sarah Zuberec

We perform what is called iterative testing. I sit with
the team, so I have a pretty good understanding of the
work that goes on day to day and know when features
are ready to test. We get a build from the developer, test
it, and report needed changes. These changes go back to
the program manager and the developer, and a month
later we test again.

Back in the beginning we wanted a finger-accessible
device. We thought about the same types of applications that we did eventu
ally ship on the H/PC-Microsoft Word documents, Microsoft Excel spread
sheets, email-but our original product design had silk-screened buttons
that you tapped with your finger.

Design

Design

Design

Development
prototype

Development
prototype

Development
prototype

The user interface design process is iterative. The developers create a prototype that is
subjected to usability tests, which in turn provide guidance on how to improve the de
sign, leading to a new prototype and more usability tests.

When we started developing the Windows 95-like interface with the
taskbar, I performed a usability test to determine the smallest area a per
son could accurately hit. The usability test subjects hit a button-a little "x"

156

8 User Interface and Shell Services

target-to start the timing of the application. If they couldn't hit the target
in three tries, we went to the next-sized target. We just collected a whole heck
of a lot of data about using different-sized targets from a lot of people. It's
been good data because we've shared it with other groups designing touch
screens and have used it in products throughout the company.

We realized that the targets were just too small for a finger to hit accu
rately, so we adopted a keyboard/stylus-based design. I just looked at the
results of the second usability test: [reading from the report] "Overall recom
mendations for Windows 95 similarity. The Handheld PC should be de
signed to incorporate the necessary features of Windows 95, but at the same
time optimize the design./I I wrote this report in May of '95. So by that date,
we had become Windows.

In June 1995, we had a really good outline of all our applications, and
I started testing the address book and the calendar. By then, we already had
the command bar. Microsoft Office adopted this concept. They liked the way
we combined the menu and the buttons. We argued a lot about whether the
buttons should have labels on them. A lot of research indicates that show
ing text plus a picture is the best way togo, but because we were so con.,
strained by space, we were able to use only the picture.

We made a radical change with our OK and X buttons and put them
in the upper right comer of the command bar. Jeff [Blum] and I always joked
that we were going to get fired because this was such a non-Windows stan
dard. But we tested it, and it was marvelous and worked really well. It saved
us all that space in the interface.

Wherever possible, wherever it made sense for a handheld product, we
tried to leverage the desktop. All in all, I think developing the similar inter
face was the right thing to do. It's very interesting-you can give a person
a Handheld PC device or a Palm-size :pC, and the interface is enough like
Windows that, in a matter of seconds, the person knows how to use it.

THE FAMILIAR WINDOWS

INTERFACE: THE H/Pe SHELL

Tony Kitowicz

Originally, we had a social interface and we weren't getting anywhere. It
just seemed like every month we were changing the VI focus. The software
wasn't getting anywhere; nothing was getting done.

157

Tony Kitowicz

Inside Microsoft Windows CE

Wm9S was going to ship that summer, so around the
end of February I wrote a small Microsoft Windows NT
application that looked like the Win9S desktop. It had a
hokey little taskbar on it with a Start menu and a little Ex
plorer-like window. And I mad.e the mistake of showing
it to Bill Mitchell! [laughing] The application was pretty
simple. It w,as just like Win9S, which was about to ship.
People could pick it up and, if they used the desktop com

puter, already be familiar with it. So I wrote this little thing that worked, and
I think that started other people thinking. The personal information guys
started thinking, "Well, let's start looking like Microsoft Schedule Plus or
Microsoft Outlook. Let's just go for it."

It had a window the physical size of our screen, which at that time was
320 pixels by 240 pixels. It displayed four shades of gray, and it actually
explored a hard drive using the Win32 FindFile APIs. It was real code. I didn't
see any point in just throwing up bitmaps. It was a lot easier to just write the
code to allow you to actually manipulate things. That code became the demo
for BillG, and it became the code base for the real shell.

On Memorial Day weekend we had the BillG review, and Thomas
Fenwick, Mike Ginsberg, and Sharad [Mathur] got a kernel working with a
small window manager and a very limited subset of GDI. I got the shell
working and provided enough controls to actually give us a real Win9S-like
shell, limping along. It was actually pretty cool. It took about 1 MB of ROM
and used 1 MB of RAM.

And at that point everyone said, "Okay, let's just copy the desktop."
The usability studies helped us out a great deal. In our first version, our
basic font was too small and hard to see. I wrote a test program that blasted
a lot of different fonts to the screen, and Sarah [Zuberec] tested the fonts
with users. The tests proved that we needed a bigger system font. And in
the second version, the screens became a lot more readable. We also learned
that we should hide the taskbar to get more screen space, so version 2.0 al
lowed that.

I think our approach served the version 1.0 product very well. Of
course, the Version 2.0 product went beyond copying the desktop. We went
ahead and modified our shell to provide seamless integration so that you can
browse the web and browse the file system in a single window.

158

8 User Interface and Shell Services

Accessories My Documents PIM Pocket Excel Pocket Word Recycle Bin

Windows Control Panel registry

The prototype that Kitowicz wrote for the Bill Gates project review incorporated the
taskbar along the bottom, and the command bar, which combined the menus and tool
bar, at the top. Both features shipped in the final Handheld PC user interface.

We have several different components in the H/PC shell:

• The common controls. Windows CE has the same common controls
as Win9S. It has the rebar control (which some people call the
"little bar"), the tree view control, property sheets-all those
things. It is its own little independent portion of the shell.

• An HTML control. We separated the HTML control so that in the
future ISVs can write applications that use it. One example of this
type of application is our own internal help application, which
loads help just like the rest of the desktop systems, through the
HTML control.

• A forms package that provides containers for COM objects. The file
system browser and the web browser are doc objects. The appro
priate browser is loaded into the container based on which ad
dresses you're trying to browse.

• The Explorer puts the form together with the necessary toolbars
and loads the appropriate browser into the form.

• Standard control panel applets and a control panel browser. The archi
tecture is very similar to what's on the desktop now. But to make
the code fit on the device, we wrote the code (except for the com
mon controls) from scratch.

• The taskbar.

159

Inside Microsoft Windows CE

For version 2.10, we also did the real componentization of the shell to
make available to embedded developers more shell functionality as optional
components. .

One pretty cool result was that when we shipped VI, a lot of people
thought we just used the Win9S sources, but we didn't. It was ali from
scratch, brand-new.

INTERNET-ACCESSIBLE SHELL COMPONENTS

Scott Shell

I was 0)1 the shell team, working on common dialogs and ShellExecuteEx
and fun stuff like that. Harel [Kodesh] sat with me and Tony [Kitowicz] at
lunch one day and said, "How hard would it be to display web pages?" So
I sat down that weekend and started hacking together the basic pieces of
a browser.

Scott Shell

Originally the thought was, "OK, HTML is really
simple; we'll just strip out all the HTML tags and display
the text." I quickly got carried away and decided, "You
know, this stuff isn't so complicated-I'll just render the
HTML. And OK, sure, we'll display images." We threw
something together and Bill Mitchell decided to take it to
the BillG review, and BillG said, "Cool, great, you have
a web browser. Ship it." [laughing] I thought, "Wait! This

is a little side project! I have other work to do!"
Though the web is very simple, the way it has evolved has made it the

essence of anarchy. Everybody comes up with their own way of doing things.
People write specs that try to coalesce the nature of things, but the pages that
exist out there violate every spec ever written. It's a practice in deviance-
how badly everybody can write everything. Eventually Tony took ove~ all
of my shell work and I started working on the browser full time. I spent two
years keeping up and adding new features.

The basic architecture from VI had two separate pieces: the web
browser window with its command bar; and the HTML control, essentially
like any other Windows control, which the window creates in its client area.
For the first version, we ignored color. All backgrounds were always white;
all foregrounds were always black. For Pocket Internet Explorer 1.1, we
added security via the secure channel.

160

8 User Interface and Shell Services

One of the big challenges in V2 was to support color. People also wanted
frames, which divide up the web page, creating two or more independent
HTML areas in the window. And we wanted to combine the shell and web
browser, as was done in Internet Explorer 4.0.

The new infrastructure, based on ActiveX and the document object
model, is hooked together in essentially the same way as the desktop web
browser: you plop in an ActiveX control, and the ActiveX control does every
thing itself. If you click on a link, the ActiveX control handles the click inter
nally and knows how to navigate the web.

The ActiveX controls provide a whole new programming interface. I
started completely rewriting this new interface when somebody said, "What
about backward compatibility?" The HTML control in VI was such a nice
tool for laying out HTML that we exposed it to ISVs. So we had to continue
to support that in V2, not only for ISVs but also for our own help program,
which used that HTML interface. This support created another level of com
plexity in the architecture in V2. The new HTML control is basically ActiveX,
so I created a wrapper container to export the old interfaces. The window
control creates the HTML control inside the container and exports the old
interface on top of the new interface. Their roles are reversed: the new inter
face is now the primary way of talking to the HTML control, and the old
interface is the external interface.

ActiveX control
container

The RIPe 2.0 browser architecture uses ActiveX controls. The container swaps in either
an HTML control or a file system browser,. depending on whether the user enters a web
address or a filename.

161

Inside Microsoft Windows CE

Tony wrote the piece that hosts controls. The asForm component is an
. ActiveX forms package that knows how to contain ActiveX objects. When
the web browser gets created, it creates an instance of the form-an outer
form-that hosts exactly one thing: another form, exactly like itself, that
manages the ActiveX controls. The text and the pictures are treated as the
background of the form. The form says, "Yoo-hoo, HTML control, please
paint all of this background."

If you enter an address that needs a file system browser instead of a
web browser, we delete the entire web browser and then insert into the form
a different ActiveX control, Tony's shell. Explorer manages the top-level
complexity such as the Back and Forward arrows, the history list, and the
favorites list. It creates a list view window for displaying icons and basically
runs the shell.

So basically for free-well, by using Tony's component-we got ActiveX
hosting and the ability to contain objects. That's how the H/PC shell pieces
fit together.

William Vong

After the demise of Pulsar and WinPad, Steve Isaac hired an outside firm to
come in and participate in what we called a "VI camp." We were to sit in
a room for a week and design from scratch what we now know as the
Handheld Pc. We were going to totally revolutionize the design. Our team
consisted of Sarah [Zuberec], Lila Silverstein, Lisa Dreger, Jeff [Blum], Adrian
Wyard, Michael McDevitt, Cathy Linn, and myself.

At first the VI was a hybrid of the WinPad and Pulsar model. We en
visioned a device with a silk-screen area on the left side of the display con
taining the labels Menu, Help, Applications, and so forth. The device had a
four-way navigation pad with action and exit buttons. But this very new,
proprietary design was not expandable at all; we couldn't change the silk
screen. The labels were printed on the device. We eventually realized that
the silk-screen area, which behaved like the Start button and the taskbar,
wasn't scalable enough for our needs.

I wanted to promote really good industrial design to make these prod
ucts part of our everyday lives. That's why we incorporated the notification
LED. The LED feature addressed the personal and portable aspect of the
design. It was positioned to be visible in all orientations, whether it was
open, closed, on, off, in your pocket, or on your desk. This feature is still used
in almost all of the Windows CE devices.

162

8 User Interface and Shell Services

During this time, Tony Kitowicz prototyped a Windows 95-like shell
and presented this to the team. Tony planted a seed, and Marketing backed
it up; they really wanted to leverage the Windows 95 affinity. Users could
look at the interface and say, "I know how to use this. I can leverage whatever
I know from the PC and take it to this H/PC." We started by prototyping a
taskbar. The more we went along, the more we adopted the Windows 95
look-the annunciator tray, the start menu, the toolbar-and it cascaded
from there.

A cornerstone of the HIPC was to provide the best PC connectivity on
the market. At that time, data synchronization between a PC and a handheld
device was a relatively new notion.

We conducted a considerable number of usability studies. Sarah
[Zuberecl developed a lot of touch screen metrics. We learned that if we
wanted a finger-accessible design, we would sacrifice a lot oithe screen real
estate due to the size of the controls. So we started moving toward adopting
the stylus. We were also aware of the difficulties with handwriting recogni
tion at that time and opted to include a hard keyboard.

My first prototype was a device oriented like a tablet, but with a key
board that slid out underneath the LCD and tilted like a small laptop. I pre
sented this concept to one of our OEMs. The OEM liked the idea but said
manufacturing it would be too hard and too expensive. I moved on to promote
a clamshell design with a basic keyboard, touch screen, LCD, and stylus.

Using my hardware prototypes and bitmap storyboards, we demoed
this product to mobile professionals across the country. These focus group
tests were the first simulations to incorporate PC synchronization, infrared
capabilities, and the clamshell design with the touch screen and keyboard.
They ate it up! The focus-group testing reinforced our thinking about con
nectivity and the need for a stylus .and a keyboard.

OPTIMIZING THE VI FOR SMALL DEVICES

We leveraged the Windows 95 VI, but we made a conscious decision to devi
ate where appropriate. There are some noticeable differences between the
Windows 95 desktop ~d the Windows CE interface for the Handheld Pc.

163

Inside Microsoft Windows CE

A major design accommodation was the command bar, which munges
the menu bar and toolbar into one control. The menu bar was designed in
white and bordered by a single black line to promote legibility and contrast
to the toolbar. In V2, we added a gripper control that allows you to stretch or
grow either area at the expense of the other. You can also drag the toolbar off
the command bar for placement below the menu bar, similar to the Microsoft
Office toolbar model.

All primary windows were full-screen. Only secondary windows
floated. We removed title bars from the primary full-screen windows to save
real estate. Secondary dialog boxes such as option dialog boxes still had the
title bar. However, in the primary window we rely on the taskbar to provide
title bar information. In the secondary dialogs, to conserve dialog space, we
deviated dramatically and placed the OK and X command buttons in the title
bar. Vsing the X button as a "Cancel" function breaks the Windows VI guide
lines. We consulted with Tandy [Trower] about this, and he was very much
against this feature, but we had to deviate to save space in both the title bar
and the dialog areas of the VI. The word "Cancel" was just too large for a
button. This might still be a sore point with Tandy today.

Primary windows can not be resized or restored. We put the minimize
and maximize window functionality into the taskbar so that if I press the
taskbar button for an open window, the window is minimized. That behav
ior was unique at the time, but IE 4.0 also added it.

We increased the contrast for the 2-bit-per-pixel displays for version
1.0. On the Windows 95 desktop, dialogs and text are gray. To make our text
more legible, dialogs and windows were in white, and any text displayed
on gray was bold. We designed a 3-D common control scheme that used dark
gray instead of light gray for all the highlight edges. On the Win95 desktop,
light gray is used as the outside border to provide the three-dimensionality
of buttons, edit boxes, and combo boxes, but a single pixel line of light gray
on white is very hard to see.

We added different file formats, including 2-bit gray format icons. I
took all the color icons and mapped them down to four grays. The amazing
thing was that they translated really well. All of our ICOs have both the color
and 2bpp gray resources in them. We made other small changes, such as the
way icons display in the annunciator tray on the taskbar. Instead of a gray
recessed well, the tray was painted white to increase legibility and contrast
for text, icons, and application buttons. I argued left and right with dev to
get that in white.

164

8 User Interface and Shell Services

Gripper control Command bar

dialog box

The command bar shows the addition for version 2.0, a gripper control that lets you in
crease the size of the menu bar or toolbar at the expense of the other, or drag the toolbar
below the menu bar. The floating secondary dialog shows the OK and X buttons in the
upper right corner.

We incorporated animations to show where items were coming from,
particularly on the taskbar. When you selected a particular program on a
taskbar, an animation showed it growing out of the taskbar to give the user
a sense of origination.

By default, we played sounds for daily PIM and clock alarms, which
are all tied into the notification APIs that wake up the device, flash the LED,
and playa particular wave file.

Cascading lists weren't implemented due to time constraints. This was
a huge loss for me; I pushed for this very hard. My friend Tim Sharpe de
cided to do this on his own time and this feature was eventually packaged
in the Power Toys.

DESIGNING VI FOR THE WINDOWS CE·FAMILY
You will start seeing a variety of devices powered by Windows CEo The
challenge is to design each product to be the best in its category, while still
retaining the Wmdows CE affinity. In the end, people buy individual products
because those products address utilitarian needs. Our challenge is to address
the utility of the product but still allow for cross-product synergy. I think we
can only go so far in pushing the Windows 95 VI into new products such as

165

Inside Microsoft Windows CE

the Auto PC and Palm-size Pc. You will start seeing the slow divergence of
the VI in terms of the look and feel of various products, but we're hopeful
that devices will retain the same interoperability and usability.

You cansee an evolution from the H/PC shell to the Palm-size PC shell.
The Palm-size PC shell has a taskbar, which accommodates a start button,
a soft input panel (SIP) button, and an annunciator tray that provides the
time, the date, and any annunciators for your appointments, battery status,
or connectivity status. The SIP button allows you to toggle your keyboard
or your particular input modality on and off.

Keyboard button not depressed

Keyboard button depressed

An icon on the Palm-size PC taskbar lets you choose to enter input through the soft key
board or one of the other built-in soft input panels (SIPs). Developers can also add their
own input panels.

We have hard up-arrow and down-arrow buttons to scroll within a list,
hard enter and exit buttons to confirm or exit a task, and hard program but
tons to quickly switch you to the applications-functionality that's very
much like the taskbar's.

Because this model is considerably smaller and more task-based, we
removed the X [close] button from each window. You should be able to move
between tasks by simple clicks with one hand.

With the Auto PC, you need hard button navigation. So we prOVide a
Start button. that brings you to the shell, which is a circular list of icons pre
sented horizontally. We've gone with the center-focused model, which allows
the user to look at a single location every time he wants to see what he has
selected. Text-to-speech and voice recognition are also very important com
ponents of the deSign. We offer prompts and voice queues so that you can
get to applications by saying only the application name.

166

8 User Interface and Shell Services

VOICE INTERFACES

Steve Masters

On the Auto PC, we support a discrete recognizer as opposed to a continu
ous recognizer. A continuous recognizer is always evaluating the spoken

. audio stream and trying to pick out commands, whereas a discrete recog
nizer requires some amount of pause, or white space, around the command.
When you say the word "radio" and then the word "on" with distinct pauses
in between, the discrete recognizer picks it all up and processes the words
as a single command.

Steve Masters

One reason that we support the discrete recognizer
rather than the continuous recognizers is memory con
straints. Continuous recognizers require much larger
data dictionaries and larger grammar databases. Another
reason is CPU power. People do not tolerate radio or CD
playback interruptions that occur when they issue com
mands or touch buttons. We wanted to limit how much
CPU bandwidth the recognizer would use.

Ours is also an independent recognizer, meaning that it functions in
dependently of the individual user. So it's very likely that somebody from
Boston or Atlanta or Albuquerque can say the same word and be recognized
'without any training. The speech vendor that provided this particular engine
recorded over 500 voice samples of each word in the command grammar:
350 samples in an office environment and 150 samples in a car with road
noise built in. The car samples included what it would sound like sitting
in a car in a parking lot, with the engine running, with the windows up,
and with the fan on; and driving at 35 miles an hour and 60 miles an hour.
The vendor also tried to get people of different genders, ages, and other
demographics.

We can also train words. If for some reason the system just doesn't
recognize you, you can add a new template with your speech pattern. Be
cause both the default speaker-independent template and your template are
active, the system has good recognition accuracy for both you and for others
using the independent template; accuracy is not degraded.

167

Inside Microsoft Windows CE

This table lists some of the words that will be recognized by the Auto PC's discrete recog
nizer. These words will be present in ROM an4 available to application developers. The
Auto PC SDK will also include additional words, and developers can add their own.

The Auto PC system will ship with about 50 words in ROM; these are
the words we need to run the main system functions. The development kit
will include another 150 words that we think cover a pretty broad spectrum
of tasks in the application suite: words needed for controlling a security sys
tem, moving the windows up and down, locking and unlocking the doors,
and running the heater and air conditioner. We've even put in words for
games: hearts, spades, clubs, deal, draw, spin, roll, and pull. We tried to an
ticipate which applications interact with car systems, and we tried to encom
pass information access-the words needed to receive and parse through
email or paging messages. We prerecorded the words that we anticipated de
velopers would need and provided them in the SDK. And of course other
words not in the SDK can also be added.

Those 50 words in ROM are required in every system-that's part of
the Microsoft license agreement. You need to guarantee that those 50 words
are on every system and have the given functionality. I need to know that
on any system, I can say "start radio" and the radio app will launch.

168

8 User Interface and Shell Services

We also use various spoken output methods. The main output is text-to
speech (TTS). Any application can be built to pass a textual message through
. the Speech API (SAPI) to the TIS engine and transmit that message as speech
to the user. W~ also support prosody. The TTS output strings can contain
embedded control tags-for example, to add emphasis to certain words.

TAGS ENABLING CHANGES TO PLAIN TEXT

Prosody Command

Com

Emp

Pau

Pit

Prn

Pro

Prt

Rst

Spd

Vce

Vol

Description

Comment: embeds a comment in the string

Emphasize: emphasizes the next word in'the string

Pause: pauses speech for a specified length. of time

Pitch: changes the average pitch of the TTS speaker

Pronounce: specifies how a particular word or
phrase is to be pronounced

Prosodic rules: activates or deactivates prosodic
rules '

Part of speech: indicates the part of speech of the
next word

Reset: resets all tags to the engine's default settings

Speed: changes the average rate of speech

Voice: selects a speaking voice, either "male" or
"female".

Volume: changes the average volume

We're also using recorded speech in some areas. Recorded speech
sounds nicer than TTS, but it takes up a lot of space and it's not very dy
namic. I don't see any way to record a bunch of words and store them in
some library that an app developer could then call to cobble together some
sentence. The library would be too big, and the speech just wouldn't sound
right. We use recorded speech to traverse the shell, to tell you which appli
cation you're currently focused on.

One of the goals of the Auto PC was to enable you to operate the sys
tem while keeping your hands on the wheel and your eyes on the road. With
TTS output and a speech interface for command and control, you can run in
a hands-free, eyes-free environment.

169

Inside Microsoft Windows CE

HANDWRITING RECOGNITION

Greg Hullender

On Windows CE devices for the Far East, the user provides most of the input
by using electronic ink to write on the device. The handwriting recognition
components tum electronic ink into Unicode strings. As an input method for
6600 characters, handwriting is a lot more feasible than a 106-key keyboard.

The best way to think of electronic ink is as a col
lection of strokes, where a stroke is an array of points.
You've got a big array of x and y coordinates that corre
spond to the points that, when written out, look like a
character.

Greg Hullender

Now Windows does not have a /I get ink" call. The
obvious way to collect ink is to use the mouse move
events; the left button down and left button up events

correspond to the stylus touching the surface and the stylus coming off the
surface, respectively. The problem is that Windows coalesces mouse move
events. If you get two or more mouse move events in the queue at the same
time, Windows throws out the older ones. Applications just want to put the
mouse cursor in the correct final position, so it throws out intermediate posi
tions to prevent them from filling up the queue. This isn't a problem for the
mouse; the user just sees the mouse cursor position jump. But this is a prob
lem for electronic ink, because if the intermediate points are eliminated, your
chances of getting the character you wanted are slim to none.

To solve this, Windows CE provides a new API called GetMouseMove
Points, which gives you all the missing points at digitizer resolution. The rec
ognizer performs better with higher resolution, especially if it has all the
points. So calling GetMouseMovePoints is critical.

Our API set is a small, simplified subset of the old Pen Windows API.
Pen Windows provided about 100 APIs because it had to do several different
things to get around the fact that it had very little support from the operat
ing system, but we've boiled the necessary APIs down to 11. We have as
support; we're integrated into the Input Method'Editor (IME).

170

1
2

3

n

8 User Interface and Shell Services

1
2

3
4

To show handwriting, Microsoft Windows must save all the input mouse move events.
They are represented as an array ofx,y positions. This illustration shows the input points
for a cursive letter J; the far right shows how the information would be lost if it had been
coalesced into four points.

The original Pen Services offered five services:

• Pen as mouse. It provided services to enable the pen to act like a
mouse. Obviously, any Windows CE device has to do that.

• Pen events at digitizer coordinates. GetMouseMovePoints provides
both this service and the pen as mouse service.

• Ink data type. This data type had a lot of interesting functionality,
but to reduce the number, of APIs, we dropped support for it. If
you really need this, you can accomplish pretty much the same
functionality by maintaining your own array of strokes.

• Data squirted into the app. The appdidn't have to be pen-aware;
as long as it had an edit control, you could get ink input into the
app. Now, with.Windows CE, we assume that input goes through
the Input Method Manager (IMM); the. app thinks it's getting
keyboard input. The way all this works is a whole different dis
cussion, but basically, you have an intermediate buffer between

171

Inside Microsoft Windows CE

your app and its input with a VI that consists of a few boxes and
buttons. Your inking appears in one box; your translated text
appears in the other box. The application sits in the background
and when you're done; you hit a button and the text is squirted
into the application .

• ' Handwriting. We support about a dozen APIs. The full reference
is in the SDK documentation.

An application that handles handwriting usually has an initialization
phase and a loop:

II initialization phase
HwxCreate(...);
HwxSetGu ide (...) ;
HwxALCValid(...)
1/ get ink ~nd process ink
wh i 1 e (...) {

Hwxlnput(...);
HwxProcess(...)~
HwxResultsAvailable(...);
HwxGetResults(...);

The initialization phase has three steps:

1. HwxCreate. Create a handwriting recognition context, an HRC,
which is like a file handle.

2. HwxSetGuide. Give the handwriting recognizer the GVIDE struc
ture. The GVIDE structure defines the coordinates you're using
and the boxes the characters are going to be in so that it can tell
one character from another. That's how it performs character seg
mentation. We tend to use only two or three boxes, and as you pen
down in the next box, the user interface clears any other boxes
that have ink in them. That's how it knows you're finished writ
ing the character. The problem with other VIs was that you con
stantly had to say, "OK, I'm finished," which was distracting.
This sort of VI, where you write in multiple boxes, lets you write
and write without pause. It's very popular in Japan.

172

8 User Interface and Shell Services

3; HwxALCValid. Set an ALC (alphabetic code) structure to de
scribe. the alphabet that's allowed. The ALC tells the recognizer
which character set to use. For English, typically the character set
is either everything-digits, uppercase and lowercase characters,
punctuation, math symbols, and white space-or only digits. But
you can restrict the set in different ways if you have a special field.

After the initialization phase, the code enters a loop where the user
adds ink that is constantly fed to the recognizer. One immediately apparent
effect is that adding the ink and getting the results are asynchronous. A user
might add a lot of ink and get nothing, and then add just a little bit of ink
and suddenly get a whole bunch of characters. That happens because the
user finally entered something that resolved an ambiguity.

The recognizer refrains from giving the user results until it's seen some
thing that clarifies what's going on. Consider two strings: "007" and "OOPS".
After the first two characters are entered, the system doesn't know whether
those characters are digits or letters. After the third character is entered, the
system can tell what's going on from the context.

At the point where the user is constantly writing and you're updating
asynchronously, the app needs two threads: one thread to handle the inking
and another thread to handle the actual handwriting recognition. We've got
a sample that shows how to do that.

The loop has these calls, basically in this order:

1. HwxInput. This call adds ink.

2. HwxProcess. This call tells the system to go ahead and recognize
as much as it can. If HwxEndInk hasn't been called, more ink
might still be coming.

3. . HwxResultsAvailable. This call tells you how much you can re
trieve at this point. It actually gets you the count of characters. H
there are none, it just returns O. So then you know exactly how
much space to allocate.

4. HwxGetResults. After HwxGetResults, the loop returns back to
HwxInput.

173

Inside Microsoft Windows CE

HwxEndlnput means no more ink is coming. You generally call it when
the user clicks a "done" button in the user interface. Otherwise the system
still has the last little bit of ink hanging out'there. For all it knows, the user
got up, will be back in five minutes, and will write some more. The system
might not be prepared to give a response, but when you call HwxEndlnput,
you tell the system that nothing more is coming and to make up its mind
based on what it has.

Other than making the user write into a box, we're a lot more gener
ous with what we'll let people write than almost any other system out there.

DEVELOPING INTERNATIONAL ApPLICATIONS

Roberto Cazzaro

I'm responsible for the localization strategy for all the Windows CE-based
products. Many people are approaching the international market cautiously,
thinking that it's too hard to develop for. You don't really need to invest a
lot of resources up front to get into international markets.

You don't need to do everything at the same time; localization can be
handled in stages. I usually define it in four steps:

1. International enabling, or writing the code so that it can handle
different formatting conventions everywhere in the world

2. Writing the code in such a way th?t simplifies localization, which
means making it easy for a non-technical person to change the
user interface

3. Localizing the system-that is, actually translating the software
to other languages

4. Developing specific products for target local markets

Let's analyze the four steps one by one. The distinction between the
steps is mainly academic, but you might find it helpful to visualize the re
sources required. In real life, the four steps are usually happening at the
same time.

174

8 . User Interface and Shell Services

STEP 1: INTERNATIONAL ENABLING

The first step, and by far the most important step, is international enabling,
that is, writing code in such a way that people in different countries with
different conventions can use your software. The set of conventions for a
country is' called the "locale," and it specifies the country's date format,
number format, currency format, currency symbols, alphabet, and sort orders.

Western World Enabling
Western world enabling is obviously the simplest kind of enabling. Systems
that are candidates for this type of enabling use the same United States char
acter set and system functionality but recognize different locales-different
date formats and currency formats. If your code just supports local conven
tions, you can sell the untranslated United States version abroad. You can
target niche markets in foreign countries just by enabling locales, especially
if you target technical users, where the level of English knowledge is usually
pretty high.

Eastern European Support
Eastern European scripts are still simple left-to-right scripts, but the alpha
bets are completely different. Often, when we talk about Eastern Europe, we
mean Russia, all of Eastern Europe, and also Turkey and Greece, which geo
graphically are not part of Eastern Europe but share technical issues: You
need different glyphs for the Greek alphabet and for the Turkish alphabet.
If your font supports multiple glyphs (called "fat fonts" in our jargon), you
can support all those countries at the same time. Windows CE, for example,
supports all the glyphs for these countries.

Far East Support
The Chinese language and the Japanese language each have around 6000
kanji, more or less-that's 6000 characters-and a character is a word or a
concept. You need big fonts to support these 6000 characters, and unless
you've got a 6000-character keyboard, there's no way you can input char
acters except by using a trick called the input method editor (!ME), or hand
writing recognition.

175

Inside Microsoft Windows CE

An IME is an application that enables you to "build" a kanji character
in two different ways: either by "spelling" the kanji sound and then select
ing the correct symbol from a list of similar sounding symbols or by "build
ing" the kanji from the root symbols forming that concept. For example, the
kanji for "flower" is a combination of the symbols for "grass" and "change."

One interesting aspect of the Japanese system is that everyone learns
how to write a kanji character in exactly the same way, with the same type
and number of strokes. This means the character recognizer can achieve a
very high recognition rate. Moreover, a symbol is a whole word or concept,
making it easier to fully recognize a full sentence. A full English sentence
might be formed by, say, 50 different characters, and each one has to be cor
rectly recognized, even when handwriting styles vary a great deal. A full
Japanese sentence can be only four or five symbols, all written by individuals
in exactly the same way. Handwriting recognition programs are very com
mon in Japan and have great success.

Bidirectional (Bi-DB Support
The Hebrew and Arabic languages are written from left to right for charac
ters, from right to left for numbers, and also in both directions at the same
time. If you are writing a name and then a number, you compose the name
from left to right but the number from right to left, and the system has to be
smart and figure that out on the fly. Moreover, Arabic has ligatures, and
glyphs change according to the characters that follow them. We display a
glyph one way if it's a standalone glyph, but if the glyph is followed by
another, the preceding glyph changes its form.

Issues to Consider
You don't want to limit yourself when writing software. You want to write
software that can run anywhere, so never think about just one language.
Think about a family of languages. Every time you write software for one
specific language, you can assume that the other languages in that family are
free apart from the translation cost. Let's say that you have a business case
to sell a product in Germany; Germany is a pretty big market, but writing
code that will work only in Germany turns out to be a pretty bad idea. With
the same effort that you will apply to the German market, you can also tar
get other Western European countries, like France, Italy, and Spain.

176

8 User Interface and Shell Services

You cannot assume that locale conventions are the same as linguistic

conventions. Just think of a French product that can be used both in Canada
and in France, and then remember that the conventions in Canada differ
from the conventions in France. If you assume that every single French user
will run your software with French settings, well, users in Canada will be
very upset. Even people in France who need to do business in, say, Belgium,
will not be able to use your ~oftware-the currency symbols are different.

FormatConvennons

Conventions for displaying currency, dates, and numbers can change not only between
languages, but within a single language as it is used in different countries. The NLS API
supplies the appropriate formatting for the specified locale.

The Windows CE operating system has what is called national lan
guage support (NLS), which is fullsupport for character set, sort order, date
format, and currency format. NLS is written specifically to support inter
national code. If you use the NLS APls properly, all the formatting work is
done for you. You don't need to worry about supporting different date or
currency formats or about how numbers.are going to be displayed. You don't
have to write an extra line of code; you just use the correct NLS call and your
code will work everywhere without needing changes from you. Windows
CE supports an almost complete subset of the NLS APls that are supported
by Winp.ows NT, simplifying the porting of international code between
platforms.

177

Inside Microsoft Windows CE

Windows CE is also Unicode-based, meaning everything-the file
system, the registry, databases, everything-is based on Unicode. Unicode
is a linear space of 65,535 characters; all characters can be encoded with just
2 bytes. Unlike Windows 95, which had a "code page" concept with only 255
characters (or more, for FE countries, where a very complex encoding sys
tem called DBCS is used), Windows CE is very easy to write for. Basically
you can have any character you want. All you need are the fonts.

We have input method editors and input method managers for Far East
support, and we will be supporting more and more locales. We are target
ing Eastern Europe and are thinking of adding bidirectional support for
Arabic and Hebrew. So very shortly you will be able to write on the same
platform all over the world.

STEP 2: WRITING CODE THAT CAN BE LOCALIZED

Now that we have written our software to work in different locales, we want
to go one step further and make sure that we can translate our software. The
second step is to make a system that is localizable. Making it localizable
means making it easy for a nontechnical person to change the user interface.
Basically, if you can separate the user interface completely from the code
behind it, all you need is a tool that strips the U.S. face and puts another face
in its place. Ideally, you develop in Esperanto, which is a completely neu
trallanguage, and then put on the U.S. face and all other faces as a localiza
tion step. This way, from the very beginning, everyone focuses on making
localization an integral part of development, rather than as an add-on. Some
times, just for fun, I suggest that we develop the original version in Pig Latin.

To limit the time hit for test and development, you want to write code
that works everywhere in the world without needing to be recompiled.
Don't use language-specific #ifdef's because, for example, if you have #ifdef

\

GERMAN and #ifdef FRENCH, every time you work on another language,
another developer has to change the code and recompile for you. If you have
to recompile, you must build an environment for every new language, and
instead of incurring a small incremental cost, you will incur big up-front
costs to rebuild, retest (because you might introduce bugs), and ensure that
the software is ready to ship. At Microsoft, we use a "no-compile" strategy.
No-compile means, "I don't need a developer to translate the software; I just

178

8 User Interface and Shell Services

need a person wh() knows how to translate the language." At Microsoft,
when we ship the American product, we know that product is capable of
being localized and shipped anywhere else in the world.

Satellite DLLs
You can localize your code at different levels; the way you write your code
determines how localizable your product is. For example, you can hard
code the strings but you won't be able localize them later. Moving strings
into resources is a reasonably good strategy but still goes only halfway.
Having separate DLLs for each language with only resources, not code, is
the way to go, because testing is easier. The phrase we use to describe this
is "resource satellite DLLs." If you want to change languages, all you have
to do is recompile with a different satellite DLL.

The nice thing about satellite DLLs is that you can have many of them
in different languages resident on the same system, which is very important
for consumer devices. By flipping a setting in the registry, you can change
the language on the fly.

Let's say that you have a bug fix. If you have code and resources tied
together, you will have to relocalize the bug fix in 20 languages. But if you're
using sat~llite DLLs, you issue a bug fix in the code, and that bug fix will
work in all the languages.

The other advantage to this approach is that you usually freeze the user
interface much earlier than the code, so you can localize a month in advance
and then keep on ,working and churning out code. The moment the code is
ready, you have 10 languages ready at the same time. No wasted time. If you
don't usethis approach, and the code and the language are c!osely tied to
each other, you have to wait until the product is done to start localizing. And
then you have two weeks or a month of wait time, which is something we
try to avoid.

STEP 3: TRANSLATING THE CODE

Once your code is able to work everywhere in the world, you are ready to
have it translated. This is the third step. In this stage of the localizing pro
cess/you find someone with linguistic skills and the right tools to put a new
face on your software and test it. You are also trying to make the software
feel more natural to the user so that it will be perceived as "right."

179

Inside Microsoft Windows CE

When software uses standard terminology, the user finds the product
much easier to use. Microsoft is pretty successful abroad, so by now people
are really used to Microsoft terminology. We put our international glossaries
on the web for other developers.

Art
One frequently overlooked item needing localization is art. Too frequently
people design art that uses conventions that are very well known to North
Americans, but that don't make sense in other markets. You want to be wary
of art that can be offensive in some countries. Some art might also be con
fusing. For example, the mailbox symbol is well known in the U.S., but for
most people in Europe, that icon looks like a bam with a flag. Localizing art
is much harder than localizing software or localizing strings because you
need a skilled artist, not just a translator.

STEP 4: DEVELOPING SPECIFIC PRODUCTS

AND FEATURES FOR THE LOCAL MARKET

The last of the four steps is the most costly step and the one that requires
more research, but it is also the one that can have a big payoff. With inter
national software, you have to think, "How can I sell the product in a par
ticular country?" You want to make your product more interesting for that
selected market.

Let's look at a few examples. Hyou're working on a phone for the Euro
pean market, you work on GSM-specific features. H you're working on the
Auto PC for Japan, however, you have to completely change the maps and
the navigation engine because the Japanese people don't use street names.
The U.S. navigation engine is based on a grid: "Go to Main and Fifth." But
in Japan, there is no Fifth. The code needs to be reworked to say, "Tum right
after the yellow post box next to the red brick building." This translation
process is the most expensive step, and so unfortunately, not many people
are doing it yet. You usually need people in the target country to help you
understand specific feature requests.

180

8 User Interface and Shell Services

So where is Windows CE in the international market? Windows CE is
still a young operating system; it's still growing in international support. Yes,
Windows CE supports Unicode. Yes, you can process any language you want
on a Windows CE device, even Russian or Japanese. But there's still other
work to be done to enable all the tools to be fully Unicode-compliant. If you
want to ship in Arabic or Hebrew tomorrow, well, we're not quite there yet.
We will be soon. But I would say that Windows CE is a very solid founda
tion on which to build real international applications in the future. If you
invest in Windows CE now, everything will eventually be available so that
in the future, you can ship in any language you can think of.

DEVELOPING YOUR OWN SHELL FOR WINDOWS CE
Arul Menezes

Before Windows CE was fully componentized, some of the shell-related APls
weren't available to embedded developers because they were implemented
only in the H/PC shell. If the H/PC shell was missing when third-party apps
called the shell APls ShellExecuteEx, SHGetFileInfo, SHCreateShortcut, SHGet
ShortcutTarget; the notification APls; and a few other miscellaneous shell
APls, the calls failed in a not very clean way, GWE was also affected because
it depends on a blank desktop window for proper repainting of the back
ground and for hiding windows. Without the shell, the afterimage of the
previous window would remain displayed until something else was drawn
on top of it. This window and the shortcut keys Alt-Tab and Ctrl-Esc were
also originally implemented in the H/PC shell.

Arul Menezes

So we moved these system services and the back
ground repaint and shortcut keys into a set of OS modules
and components to provide minimal shell functionality.
We created several shell modules so that you can choose
whether or not to include each module in your operating
system configuration.

181

Inside Microsoft Windows CE

The shell modules, new to version 2.10, support embedded developers who are creating
their own shells. The full list of system modules and components is provided in the em
bedded toolkit.

The module that glues all the other shell services together is the
"taskman" module. It provides the hidden desktop window that repaints
when windows are hidden or closed, and taskman also registers the window
that GWE uses for shortcut keys. Pressing Alt-Tab and Ctrl-Alt-Delete brings
up the Windows CE task manager, which provides the ability to switch be
tween apps. We also added a Run button, which gives you a very rudimen
tary version of the functionality you get in the Start/Run dialog.

Some OEMs want to develop a real shell. You will be able to pretty
reasonably produce a device for a vertical market if you want to run just one
app or a couple of apps. An OEM or a third party can easily take these com
ponents and add in a fixed set of icons that launch the apps. With these new
components, it won't be hard for them to implement a usable shell.

182

8 User Interface and Shell Services

RESOURCES

Topic

User interface design

Enabling systems and applications
for other countries and markets

International glossaries for soft
ware development

Win32 resource files and
satellite DLLs

Developing your own shell

Developing voice-aware
applications for the Auto PC

Developing handwriting-aware
applications for Windows CE;

. using the Input Method Editor
and Input Method Manager

Windows CE Power Toys

Resource

The Windows Interface Guidelines for
Software Design, by Tandy Trower
(Microsoft Press, 1995)

Developing International Software for
Windows 95 and Windows NT, by
Nadine Kano (Microsoft Press, 1995)

ftp://ftp.microsoft.com/deveiopr/msdn/
newup/glossary

Microsoft Visual C++ product docu
mentation (Resource Editor)

Wmdows CE Embedded Toolkit for
Visual C++

Microsoft Windows CE for the Auto PC
Software Development Kit

Microsoft Windows CE Toolkit for
Visual C++ 5.0

http://mscominternal/windowsce/hpc/sup
port/wcel/powerr.htm

183

g)
Testing Your

Embedded System

Inside Microsoft Windows CE

A lthough Microsoft tests a set of as configurations for each Microsoft Windows
CE as and embedded toolkit release, embedded developers are responsible for

providing quality assurance (QA) for their final Windows CE-based systems.
This chapter describes Microsoft's internal QA efforts as a way of providing

general guidelines that can be adopted by embedded systems developers working on
their own products. This chapter focuses on Microsoft's approach to testing mul
tiple versions of the componentized as, highlights the management strategies that
can ensure successful QA efforts, and describes some test resources that are avail
able to embedded developers in the embedded toolkit.

The principal function of a QA or Test group, writes Jim McCarthy in his
book, Dynamics of Software Development (Microsoft Press, 1995), "is to con
tinuallyassess the state of the product so that the rest of the team's activities can
be properly focused." QA keeps a team in touch with reality. It provides" a compre
hensive list of tested and missing functionality, bug count sorted by severity, bug
arrival rate, bugfix rate, projected total bug count, and the other vital metrics." QA
provides information so that it is obvious to the entire team when the product is ready
(and not ready) to ship.

As Windows CE team members point out in this chapter, customers expect
higher quality from consumer electronics and from embedded systems than they
expect from PCs. Success in these new markets will require rigorous testing and the
adoption of a broad set of project management and QA initiatives across the devel
opment process.

The Microsoft development team members emphasize the importance of work
ing in a layered, bottom-up fashion, starting with hardware testing to establish a
common, "blessed" hardware platform; testing the drivers; and then working up to
higher levels in the system, such as the shell and applications. They describe the
benefits of a test harness that can run automated tests in different sequences and
combinations. Other important steps include establishing a phy~ical (or a virtual)
test lab that can run regular regression testing and ensuring timely communica
tion among the team members. The Microsoft team uses bug databases, intranet web
sites, and email to share the latest build, test, and product bug status information.

This chapter features Anna Boyd, test lead for the Handheld PC 1.0; Sharad
Mathur, the core as development lead; Bryan Trussel and Patrick Copeland, the
former and current core as test leads, respectively; and Kieu Nguyen, who estab
lished the Windows CE as Test Lab and acted as program manager for the Device
Driver Test Kit (DDTK).

186

9 Testing Your Embedded System

The device driver tests and test harness created by the Windows CE QA team
are available to embedded developers in the DDTK, which is provided as part of the
Windows CE Embedded Toolkit for Visual c++. The NDIS Test tool provides vali
dation of NDIS miniport drivers.

Embedded developers can accelerate their system software development and
QA efforts by using one of several reference platforms that operate with the Embed
ded Toolkit. These development platforms, such as the Hitachi D9000 Development
System and the CEPC, a standard PC-based hardware development platform, are
configurable so that embedded developers can simulate different target platform
capabilities.

Independent test organizations are also available to validate some or all of the
Windows CE software and hardware as part of the Windows CE logo program. For
more information, see http://www.microsoft.com/windowsce/logo/ .

•
TESTING STRATEGIES

Anna Boyd

With the Handheld PC, we started out with some very broad test responsibili
ties because we had so few people: one person on the OS, one on replication,
one on applications; I was going to own all the device drivers. As things
progressed, I started taking on bigger and bigger responsibilities, and even
tually I took over Testing. I ended up hiring a lot of temps into the group and
built the team up to about 40 temps.

Ideally, we have a lot of test automation so that we don't have to manu
ally go through every build and every release candidate (RC), but we started
running out of time. We had commitments to OEMs and reached the des
peration point where we said, "OK, we need as many hands as we can to get
pounding on the device." We needed to know: Does the Handheld PC device
work? Does it work as advertised, with the different applications? Overall,
we did a pretty good job of getting that product out.

Back in the 1.0 release, we used a lot of reference platforms from the
OEMs, and they all worked differently, and they were all getting revved.
We went through this hassle where we were fighting broken reference plat
forms along with build problems. We didn't know what to trust. Finally we

187

Inside Microsoft Windows CE

said, "OK, you reference platforms have to pass minimal functionality tests
before we'll let you come into the lab with the rest of us." So before the team
ever saw a platform, Kieu [Nguyen] ran through these basic tests. If a plat
form passed all the tests, the rest of the team was allowed to have it. Even
so, we dealt with several flavors of devices right to the end. Because the
OEMs shipped only about 20 devices for both dev and test, everyone worked
with a different one. I was managing not only people but also devices. I had
to figure out which testers needed hardware with a PCMCIA slot.

OEMs usually develop device drivers on some kind of reference plat
form. You can probably get 80 percent of your testing done on the reference
platform. We use the 09000 for the platform and hook up a Microsoft Win
dows NT station for debug and logging. But you definitely want to check out
your actual final device before you ship your product out the door. If you
use a different CPU, and especially if you have PCMCIA slots, you'll prob
ably get much better results using the actual device.

When testing an upper layer, the software layer, the number one thing
to test for is memory leaks. I also recommend running your application on
as many different CPUs as you possibly can, because CPUs vary so much in
speed. For the most part, people are writing in Ci so they don't really care
about the CPU, but they should care about the speed differences. You could
really throw some tiny, tiny timing loops. Page size can really make a differ
ence too. When you're allocating memory, you can run out of memory much
faster on a system with 4-KB pages as compared to l-KB pages.

As an embedded systems developer, you can set up two test teams: the
"component test" team,which tests the specific device driver, and the "sys
tem test" team, which tests the whole system. If you had, say, a Palm-size
PC device, ideally you would know which apps were added onto it. You'd
test each of those applications to find out what impact the device driver had
on them and on the overall device. You might not think you'd find any in
teraction between an app and the driver, but you'd be surprised. That's
where things tend to break down. The OEMs usually test their components
pretty well, but we do find some problems during system testing.

You can use the Microsoft Windows Hardware Quality Lab (WHQL)
for verifying your device drivers. We are also using the National Software
Test Lab (NSTL) for the logo program.

188

9 Testing Your Embedded System

TOOLS FOR THE COMPONENTIZED as
5harad Mathur

With version 2.0, one of our big challenges was figuring out how to test the
OS configurations. Many of the automated tests were monolithic tests that
assumed the presence of lots of components. The tests weren't actually com
ponentized, so we ended up running most of our stress and integration test
ing on the monolithic configuration, which has almost all the components
of the OS.

Sharad Mathur

We still needed to test whether a component's be
haviordiffered from one configuration to another. To do
that, we tried to figure out, given our entire universe of
tests, which test could run on that particular configura
tion. We realized we needed automated tools in place to
try to help us keep things sane, so we started work on a
tool, named Coffup, which could grunge about all of the
.0BJs and all the executables, derive dependencies be

tween components, and verify that everything was right.
This tool is still a work in progress, but it's pretty amazing. It reads all

the .OBJ files and derives all the exports and imports for every library. It
creates a database and does cross-matching so that it can figure out which
APls and what other components each component needs.

Among the very practical functions Coffup performs is to take a test,
figure out which APls it needs, look at a configuration file, and spit out
whether or not the test will be able to run on that particular configuration.
Coffup also enables us to come up with the list of APls that are exposed by
a particular configuration and a list of all APls that should be exposed by a
configuration~ We populate asmall Microsoft Access database, which is also
used by the doc team to make sure that all the exposed APls are documented.
So you take what's being exposed from the .DEFfile and you check to make
sure that the same APls are being exposed from the header file.

This tool can do all kinds of cool work for you. In its ideal form, the
tool would output a dependency graph for all components in the system. It
would be able to verify that the exposed header files and APls are consis
tent, that the import libraries are consistent, and that a configuration is self
consistent. If you want to use component A, which needs component B,
Coffup would warn you when you specify A without also specifying B.

189

Inside Microsoft Windows CE

We could also come up with a tool to allow you to create configura
tions. You could say, "I want this component," and based on the generated
component dependency graph, the tool could say, "Okay, you're going to
also need this component, and these are the APIs that you're getting, and
here are all the sizes." You could very easily use this tool to plan your ROM.
All you'd have to say is, "I have 2 MB and I want these features," and you
could trade off features and sizes until you have what you need: "Okay, this
is my configuration." Boom! There it goes: you have your header files, your
import libraries, and your OS-you can start developing for it.

We have invested a lot of time and effort in making these tools work
with componentization. During 2.0, we put a lot of the framework in place.
And this is going to be a big thrust for us as we go forward-adding more
stability and making the componentization process a lot easier.

THE CHALLENGE OF TESTING as CONFIGURATIONS

Bryan Trussel

For Windows CE 1.0, our entire goal Was to ship a working HIPe. That is a
much easier task than shipping a generic embedded OS to OEMs who are
going to build something we've never seen, with a variety of hardware, for
all of these fundamentally different devices. For Windows CE 2.0 we said,
"We'll make the OS generic, and we'll let people build doorbells and fire
alarms and factory automation controllers and game consoles and TVs and
whatever they want."

I don't know whether anybody at Microsoft had ever done that before.
To complicate matters even further, we are in RC?M, so if we have to update
the software, we can't mail out a floppy or tell users to download a patch
from a web site. The ROM has to be replaced, and the users aren't necessar
ily knowledgeable enough to do that. So we've got this super high quality
bar, a super high risk for potential bugs, and a super serious situation if we
ship with a bug.

We can't apply to Windows CE too many of the lessons we learned
from all our experience in the desktop PC world. The consumer electronics
market has a really quick turnaround time, and the quality has to be much
better for consumer electronics products than for the desktop. People toler
ate application crashes every once in a while on the desktop, but on VCRs
and TVs-well, our customers are going to expect those products to behave
like VCRs and TVs.

190

9 Testing Your Embedded System

If you're shipping Microsoft Word or Windows NT, you're shipping on
a Pc. That means you know who the target audience is and you know what
you want. With Windows CE for embedded systems, we had to guess what
the product would be, guess who the customer would be, and guess what the
demand for the quality level would be. I think this is the most complicated
test matrix anybody has at Microsoft. We have the platforms times the pro
cessors times the componentization, which is a huge number.

ARM

PPC

x86

SH4

SH3

MIPS
Minkem Mininput Mincomm Mingdi . Minwmgr Minshell Maxall

The number of distinct systems to be tested in each release can be represented as a three
dimensional matrix, Each box in the matrix, with different axes for platforms, micropro
cessors, and software configurations, represents a distinct system that needs to be tested.

We had five processors; the most we ever had before was probably
three, and that was for Windows NT at its peak. We had various hardware·
platforms too. We had the D9000 development platform, the CEPC, and the
multimedia reference platform.

The componentization was the most technically difficult piece. You can
have a system with window· messaging but no display, or a system with no
network, or a system with a network and some VI and no keyboard input. We
thought, "OK, we'll have 200 components and it will be like ordering off a
menu in a restaurant. You can just say, 'I'll have that, that, and that,' put them
together, and build a product." We were naive,but that's what we thought we
were going to do. When we saw how hard achieving that goal actually was,
we thought, "Look, we're on a schedule,'let's just get out the most important
configurations: a kernel that has no VI, a kernel with communications." We
ended up with the seven configurations that are in the embedded toolkit:
minkern, mininput, mincomm, mingdi, minwmgr, minshell, and maxall.

191

Inside Microsoft Windows CE

Most of the bugs that we find aren't componentization bugs; they are
in the API. So we grabbed what we call the "monolithic configuration," which
has all the components, and that's where We ran all the tests, every day, on
every processor, thinking that 95 percent of the bugs fall under that category.
We hammered on the other configurations on a rotating schedule. It took
about two weeks to cycle through and exhaustively hit all the configurations
on all the CPUson all the platforms.

Another big challenge was our tests, which were all written to this
monolithic H/PC version 1.0 configuration. The test harness assumed there
was a VI; the GOI tests assumed the network was there for logging. On all
these configurations where the guts were yanked out, and suddenly there
was no communications support or no graphics support, we tried to run our
tests but they wouldn't run. And given that we were trying to ship again in
a matter of months after 1.0, we couldn't possibly modify all of the test code
that we had been developing for two years.

We wrote a tool called Coffup, and that ended up working out pretty
well. When you go back and look over the database, plain vanilla as bugs
accounted for 85 percent of total bugs, platform bugs accounted for 10 per
cent, configuration bugs equaled 2 percent, and the rest were CPU related.
I don't know whether we got lucky or just thought hard enough aboutit, but
it turned out about how we'd expected.

At some point in every Windows CE product development cycle, many of the layers in
the system represent prototypes-both hardware and software. The QA team took a divide
and conquer approach, verifying each layer independently and building up the layers to
help isolate bugs. The use of reference platforms and a hardware validation process helped
isolate hardware issues.

192

· 9 Testing Your Embedded System

Originally, the H/PC hardware manufacturers provided us with proto
type hardware, so we had prototype drivers, prototype as, noncode com
plete applications, and our tests. And when the system blew up, we had
to guess which of those pieces didn't work. It was just murder there for a
while before we got the reference platforms because we couldn't lock onto
anything. We made the lab a choke point before any code went to Test. We
said, "Before the hardware goes out to anybody it goes through the lab."
We either wrote low-level tests or designed manual test procedures to flush
out hardware and driver issues. That helped because we were all on the
same hardware. We knew it was blessed; we knew it had some level of
functionality.

When we went to 2.0, we didn't want to go through that pain again, so
we came up with the D9000 reference platform. The as testing for 2.0 never
actually tested H/PC devices. The as was completely platform-independent;
the H/PC was only one of many platforms, and it didn't make sense to con
centrate on only that. We moved to a tiered system with quality checkpoints
all the way along. The as test team said, "We know the as works on this
processor with our drivers on the reference platform." So the H/PC lab had
a basic assumption of what was worki:n,g and could build on that by running
its BVTs for the H/PC platform before releasing to the team.

But we did bang on it hard. We had a lot of people working really,
really hard at the end. The saying is true: You can't test quality into a product.
Don't expect Test to find everything and work it all out. But this efforlcame
as close to actually doing that as any similar effort I've seen. We banged on
it from every angle, and we actually did test a fair amount of quality into the
product.

The big challenge going forward is more CPUs. We shrank the configu
ration matrix down, but now the CPU matrix is exploding, and that means
more cross-compilers.

Patrick Copeland

The Microsoft way of testing is to do a lot of black box API-level and driver
level testing. The main objective is to find a lot of bugs. In other companies,
testing is not as rigorous: "Let's do a pass and make sure everything works."
But at Microsoft, our testers are software developers, and QA is our secret
added advantage in the market.

193

Patrick Copeland

Inside Microsoft Windows CE

Our as QA group writes code focused on making
sure the OS works. We don't test the as on the. shipping
platforms but on the reference platforms. After we deliver
a working as, the HIPC group, Palm-size PC group, or
Auto PC group picks up the as and augments it. They
write code on top of the OS, and then they test those aug
mentations. By doing that, they provide additional test
ing for the as too, because they find a small number of

as bugs that somehow made it through. And so they throw those bugs back
over the wall to us, and we investigate those.

We try to model the configurations that we test, so we look at the scale
of what we're supporting. We scale from a full-blown version of Windows
all the way down to just a kernel, and we pick slices in there that are close
to existing configurations. For example, one picks a configuration that's like
an HIPC and one that's like the Palm-size PC, and we push those configu
rations through the lab. The lab has two reference platforms, and we try to
pipe all these configs through all the chips and run all the tests.

Minkem Mininput Mincomm Maxall

The Windows CE as QA team examines the entire spectrum of possible configurations
and chooses slices along the spectrum that correspond to systems that embedded develop
ers are most likely to use.

194

9 TestingYour Embedded System

Think about the number of permutations in componentization. GDI
alone has thousands of different permutations-it's got 17 different compo
nents and exclusive OR relationships in which you can have this component
but not that component. Take all those combinations and combine them with
the rest of GWE, with COM, with the file systems, and with the kernel/and
that total number of combinations is just impossible to test. We have to be
smart about how we pick the configs.

Our first decision was to keep our existing tests. We didn't try to com
ponentize the tests because that would have taken probably six months to
a year. We decided instead to use Coffup to see which tests we could run and
then fill in the holes. First we got the picture of what the Swiss cheese looked
like and then started filling in the holes. We wrote component verification
tests (CVTs) to touch every single API in a way that would not require any
other component.

We then took all that information and maintained a database with all
the tests, components, owners of the components, and people testing those
components. That database enabled me to hit a button and list all of the APls
for a tester, or tell the lab which tests run on a given configuration, tell them
the command lines for all those tests, where the tests are, what component
they're testing. Part of the challenge is documenting what's going on be
cause you don't want to miss any components. So we look through the
whole source tree, through all the APls, and then I create another list and say,
"Component A isn't covered well enough." The process puts a spotlight on
where the problems exist.

We also have a group that does backwards compatibility (BC) testing.
We have people who are really good at running through apps on a Version 1
and a Version 2 device and then comparing the two. We're constantly think
ing about potential backwards compatibility effects.

PLANNING FOR QUALITY: PROCESSES AND TOOLS

We try to incorporate QA objectives throughout the development process .
. For example, whenever developers create a new feature, they write devel
oper regression tests (DRTs), which are like code specs. We can take a writ
ten DRT and augment it or say, "Here's what Development tested, so we'll
go in this other direction." It gives us an idea of where to start.

195

Inside Microsoft Windows CE

We've invented some new processes. Windows CE is special in that
we have to worry about the hardware and the kernel ports and the refer
ence platforms. We have to worry about all these other partners, all the CPU
vendors, and make sure they come in exactly on time. If they don't come in
on time, we won't have enough time to stabilize the kernel port-we won't
have enough time to make sure that the chip is working correctly. So we
defined a new milestone called "Initial Integration Period" that marks the
time when we expect CPUs to start arriving at our lab. We have acceptance
criteria, meaning we accept a CPU in the lab if it meets these minimum re
quirements: it boots, you can load it, you can run a small set of tests on it.
We also added a "Final Integration Period," which means that if the chip
doesn't arrive by a specified date, we're not going to test it.

Bug
Count 1_._---

Sept 97

Initial Final
Integration Code Integration

Period Complete Period

Jan 98

Compiler
Lock Down

RTM

Jun 98

The Windows CE QA team augmented the Microsoft software development model by
adding milestones to integrate the new CPU and its compiler.

THE TEST HARNESS

We try to create tests that Development can run. Whenever we write a bug,
we have to write our command line for the test, and then make it easy for
Development to go grab that test and duplicate the problem. One way we
make it easier is to use a test harness. It simplifies the process. We just write
test code in one area, and the test harness can run the test, manage permu
tations, and run multiple threads. It can load suite files that run certain com
binations of tests. To test for a specific condition, we write special suites that
create the proper preconditions.

196

9 Testing Your Embedded System

A test harness can be something as simple as an .EXE that loads DLLs
and provides a common interface--for example, a common command line
specifying the way that the DLL talks to an .EXE. Our test harness is called
"Tux." It's a very simple program. You pass Tux a DLL on the command line,
and Tux calls LoadLibrary on that DLL. That DLL is expected to include a table
with entry points. After messages are passed between the .EXE and the DLL,
the .EXE can start running the first test.

We used to have three or four different harnesses for testing, and we've
now moved to supporting Tux. We had to rewrite some tests, but we saved
time. Tux is the test case launcher, and Kato is a generic logging engine that
we use to enumerate, select, and launch tests in an automated way. Tux and
Kato really have a very low memory footprint, so they wouldn't interfere
with your hardware platform. If you are just getting started with the DDTK,
you can use the Tuxdemo sample to learn about its capabilities.

The Kato client class library lets you create a hierarchical log with multiple levels of test
reporting detail, called "verbosity levels." The log can be filtered by hierarchicallevel,
verbosity level, or by a 32-bit data item defined by the test application. This item typi
cally specifies a time, a process, or a computer data stamp. In addition to being provided
in the class library, Kato API functions are provided in C.

As the as evolves, the tools have to evolve. We try to take advantage
of all the newest features of the OS. For example, as Ethernet support came
online, we were able to control 09000 reference platforms across the net

197

Inside Microsoft Windows CE

wherever they are connected to a Pc. So I can control all the test platforms
in the building, and I can tell them all to run tests and report back what's
going on. At night, we convert the whole building into a virtual lab.

QUALITY METRICS

You also want to be able to track how the project is going. I watch the bug
counts to determine if we're on track to ship. We want to control the period
when new features come in because getting a bug fixed takes a while. For
version 1.0, the mean time was four days and the average was about seven
days to fix any given bug. We have a milestone called "code complete,"
which means the developers think that they're finished with the bulk of the
coding for their features. We try to hammer everything down and close down
shop early, which gives us time to go through code finding bugs. It also gives
Development time to go back and start closing out all the bugs.

We use charts to track all these metrics. We're pretty chart-happy; every
component is charted. We chart size and performance over time. We write
benchmark tests that call a specific API for 1000 cycles and time its perfor
mance from the beginning to the end, to figure out how much time it took
per cycle. It's kind of an early warning signal that something's going wrong,
and you can go back and adjust it before it shows up in other tests.

THE as TEST LAB

Our as test lab is a regression lab, to run the tests across all the CPUs and
all the reference platforms, and then report what happens. The lab actually
files bugs against our tests so we'll know which things to fix. If a test breaks,
it gets fixed. It's just like the relationship with developers. A testing group
doesn't have any benefit unless it's finding bugs and the bugs are getting
fixed. The lab is our client, and they report back to the whole group about
what's going on.

The test owner writes a test and hands it to the lab. The lab reports a
failure back to the test owner. The test owner looks at the log. When you look
at the big picture for the day, you can tell: "Okay, a lot of the BVTs failed on
one chip but not on any other chips. This looks like the compiler or a chip
problem as opposed to an OS problem. An as problem would go across all
the chips." Having a good reporting mechanism helps us to visualize what's
going on. For example, we'd get a different idea of what's going on if every
thing were failing: the problem would either be an as bug or a test bug.

198 -

9 Testing Your Embedded System

Testing is a complicated process because we are not only dealing with
chips but with reference platforms, cards that are written on the chips, tools,
the kernel, and the compiler. We try to identify each kind of failure. Basi
cally, there are five variables: the compiler's broken, the chip needs a rev, the
reference platform is screwed up somehow, the tests are broken, or there's
an as break.

We test with multiple configurations by using our monolithic tests and
our CVT tests; And after that whole combination of tests, we come up with
an as that is fully tested. We don't claim to test more than we do. We just
say, "This is how much we test. You can build your own config, and we think
that will work." But we're not to the point yet where we randomly create a
config, test it, and see that it works.

KieuNguyen

My background is working with the low-level network architecture. Testing
the as is pretty cool, it's low level; I love that. I remember back in October
1996, Bryan [Trussel] was saying, "We need an as lab; we need to test all
these CPUs-it's yours." That's how Bryan and I work together: he just says,
"This is yours." I'm learning now that when he says, "How busy are you?"
I need to look at him and ask, "Why?" [laughs]

KieuNguyen

I'd never done anything like this kind of testing
before. So I went with Callie [Wilson] to look at the lab
and opened the door. It had been a game room and some
body had just moved out. There was a lot of junk in there
and the lights were broken. There was nothing. That's
how the as lab was. And from there we ordered benches,
stole hardware left and right, and collected all the cables.
We built it from scratch. So when I think of that lab at the

beginning, I feel like saying, "Oh, what a nightmare!" But I'm really very
fond of it because we built it from scratch.

You surely need a lab where you can run automated tests. During,the
as testing for the Handheld PC, I dealt with the OEM platform and hard
ware issues, the driver issuel', and automation. Basically I was the customer
for the testers who designed and wrote the test code. I took what they wrote
and ran the tests.

We had a tremendous challenge because we had CPU issues, hardware
platform variations, and different configurations. And for us, the tests them
selves created a fourth dimension. So it was a tremendous challenge. We

199

Inside Microsoft Windows CE

cannot test everything every day, so we came up with this scheme to rotate
through the tests, and set up an internal web page to report the test results.
When we click on a build version, the web page comes up with the latest
results for any configuration based on the last time the tests were run.

The hardest part about testing an as is that you can lose your focus on
the customers, the real people using it. For example, maybe an SRAM card
doesn't get detected all the time. When you look at the whole as, that's not
such a big deal. But when you think about somebody buying a Handheld
PC and paying 200 buckS for an SRAM card that doesn't work, you realize
that your customer would be pretty steamed. I think it' scrucial to make sure
that your test team remembers the customers. Look at what you're trying to
build. Break it out into components as fast as you can and see how you can
test each component independently. Use people who know how to test your
system as components and people who know how to test the whole system.
When you hire people, you have to realize that testers are different. In the
same way developers have different strengths, some testers are good at low
level testing and some are good at high-level testing.

Make sure you have tests for troubleshooting the drivers. Find a way
. to test those drivers immediately. With the Handheld PC, we first developed
manual driver verification tests. Once you know those are working, then
build up to the next layer. Don't start by building the whole thing together
and testing all of it at once, because you won't know where the heck things
are going wrong. The DDTK can help you.

THE DEVICE DRIVER TEST KIT

I was in charge of putting together the Device Driver Test Kit (DDTK). We
took our driver tests, cleaned up the source code, and made sure that devel
opers could build in the Embedded Toolkit environment. For version 1.01
we provided only a few drivers, but we shipped out more with 2.0, and we're
adding more and more. We have tests for display drivers, keyboard drivers,
audio, serial, PCMCIA,FATFS, and network communication.

The DDTK is self-contained and designed for running with the Embed
ded Toolkit. Basically, you download the tests to a device that boots and runs
them. You can put them in RAM or Flash memory.

200

Debugger
window

Cesh
window

9 Testing Your Embedded System

The Tux test harness allows you to launch different sets of tests and run them in different
sequences. Tux is often used with another tool provided in the DDTK, the Kato logging
engine.

These driver tests don't require any components for the window
manager or controls; they just send their output to the debug port. You can
view them on the desktop by using Windbg, which communicates with the
device via the serial port-a COM port on your machine and a debug port
on your device. We also provide a little tool called ComRoute, which cap
tures the COM port on the desktop side. Windbg, you know, doesn't have a
very big'buffer, so ComRoute lets you save all of the output messages.
That's how we do automation. You can run overnight, over and over and
over, and ComRoute keeps on capturing. You can send the output to a file
or to the screen.

The decision we had to make with the DDTK was how much of our test
suite to ship. With drivers especially, there are so many timing issues. We
ship the binaries of the test harness, Tux, and we ship the source code of
the test DLL itself so that people can change it, modify it, and enhance it.
The ideal situation is that we send out our set of tests. to the OEMs, and as
the OEMs enhance the tests, they send the enhancements back to us. That
would be perfect. We're not there yet, but we're getting there.

201

Inside Microsoft Windows CE

RESOURCES

Topic

Certification and logo program

Development methodology

Hardware reference platforms:
D9000 and the CEPC

The Device Driver Test Kit (DDTK),
Tux, and Kato

Resource

http://www.microsoft.com/windowsce/logo/

Debugging the Development Process, by
Steve McGuire (Microsoft Press, 1997);
Code Complete, by Steve McConnell
(Microsoft Press, 1997); Dynamics of
Software Development, by Jim McCarthy
(Microsoft Press, 1995)

Microsoft Windows CE Embedded
Toolkit for Visual C++

Microsoft Windows CE Embedded
Toolkit for Visual C++

202

11(0)
. Development Tools

Inside Microsoft Windows CE

W hile the development team was proceeding with work on the operating sys
tem and on the first Microsoft Windows CE-based products, two other

teams were simultaneously working on development tools. One of those teams,
under the guidance of Randy Kath, created the Software Development Kit (SDK)
and the Device Driver Kit (DDK) for application and driver developers, while the
other team, under Roland Ayala, created the OEM Adaptatio,!- Kit (OAK) to help
OEMs port the operating system to their specific platforms. The strategy was to pro
vide commercial development tools in three phases for these three different groups:

• Microsoft Visual C++ application developers

• Microsoft Visual Basic·and Microsoft Visual J++ developers

• Embedded systems developers

The integrated development environment (IDE) on desktop products offered
a popular CUI in which to write, compile, link, and debug applications. To extend this
development model to Windows CE devices, Kath's team decided to offer emulation
and remote debugging.

Using emulation, developers can simulate the appearance and behavior of
some devices on the desktop Pc. This enables much of the development to take place
without a reference platform or Windows CE device. After debugging the application
under emulation, the developer at the PC development station can use remote de
bugging to test the application and examine or manipulate the state of the remote
device. The remote debugging technology allows all the standard operations on the
remote device: single-stepping through code, setting breakpoints, and examining
memory. Version 2.10 supports connections between the development station and
the device via serial port, parallel port, or Ethernet connection.

The development products also include support for such programming models
as COM, MFC, ATL, and ActiveX. Microsoft's language-independent Component
Object Model (COM) extends earlier work on Object Linking and Embedding (OLE)
to offer a standard for creating robust software components. These components,
called COM objects, can be reused and assembled into larger systems. An ActiveX
control is a specific type of COM object that exposes properties, methods, and events,
so it can be driven by scripts in such languages as VBScript and JScript. In this
chapter, Kenneth Macleod describes the underlying OLE/COM/ActiveX infrastruc
ture in version 2.10.

Randy Kath explains the vision behind the first several offerings of the SDK
and Visual C++ toolkits for application development. Chris Stirrat and Keith Szot
explain the Visual Basic and Visual J++ products,respectively. Roland Ayala walks

204 -

10 Development Tools

through the command-line development environment used to build the OS from its
components. These tools were originally packaged as part of the OAK and are now
available in the Windows CE Embedded Toolkit for Visual c++. Scott Horn, the
program manager responsible for the embedded toolkit, describes these tools and
future directions for the graphical IDE .

•
PHASE 1: SUPPORTING VISUAL C++ DEVELOPERS

Randy Kath

In the world today, 4.76 million Win32 developers use Microsoft Visual C++,
Visual Basic, Visual J ++, and other tools. Those developers represent a tremen
dous human resource. We recognized that if we could get therri to apply their
Win32 skills to this new category of non-PC devices, we would essentially
jump-start a new industry, enabling many experienced developers to extend
their skills and products to the new devices.

Randy Kath

We began by building Visual C++ for Windows CE.
Windows CE works with many new processors. Our
strategy was to build cross-compilers and host all these
different architectures out of Microsoft Visual Studio on
the x86 desktop-the same environment that developers
work with today in building applications for Microsoft
Wmdows NT, Microsoft Windows 95, and Microsoft Wm
dows 98. By doing this, we really felt like we were en

abling people to develop everything, from device drivers and the OEM
adaptation layer all the way up to third-party applications.

We worked on remote debug, auto-download features, and some nice
ties to integrate our environment as seamlessly as possible with the desktop
environment. People liked it, but when they started to look more carefully
at Windows CE, they said, "Hey, we can build apps, but where's MFC and
where's Visual Basic and where's Java?" We realized we had to complete
the offering and produce the rest of the tools that Win32 developers are used
to working with. So we expanded the Visual C++ product to include sup
port for new as features like COM and ActiveX controls. The corollary in
Visual Studio is ATL, which gives you very good support for ActiveX con
trol development.

205

Inside Microsoft Windows CE

PHASE 2: SUPPORTING VISUAL BASIC

AND VISUAL J++ DEVELOPERS

Phase 2 of the strategy was about building Visual Basic and Visual J++ for
Windows CEo Visual Basic was an interesting challenge because on the desk
top, it has all the client/server work, really great database access, and lots
of different controls that just c,irop in to enable easy development. In the
Windows CE environment, however, much of this functionality doesn't work
in the same way. So we spent a lot of time thinking, "What is the best way
to offer VB in the Windows CE environment?" Although a lot of people have
VB language expertise, they're not necessarily going to build the same kinds
of applications for these devices as for the desktop.

The key was to build a run time [library] that enabled developers to
apply their language expertise and experience to this new category of com
puters. So we built what I would characterize as a very small, lightweight
run time and a very minimal object model. We leveraged the extensibility
of ActiveX controls so that developers can build everything, from tiny but
very effective applications that literally take only a week to build, to very big,
scalable, or distributed applications with a robust set of ActiveX controls that
require a lot of time to build.

If you stop and think about a more commercial or industrial environ
ment, such as a factory floor, you see that the challenge is in building the
software to run systems like automation controllers, Suppose the develop
ers said, "Let's control this factory floor with a lot of microprocessors. We'll
install embedded versions of Windows CE with the Visual Basic run time
and then add some RAM so there's some room to w()rk. And we'll network
all these together using TCP /IP, which is built into Windows CEo We could
b()ot up all the systems, and they could communicate very easily."

With Windows CE, a team of IS developers who are familiar with Visual
Basic can build the ActiveX controls and Visual Basic scripts hecessary to
control the factory floor. The developers can build all this functionality in a
lab .and deploy the apps across their distributed solution. The system is very
flexible, easy to develop, and easy to modify. If for example, the company
wanted to change the order in which events occur on the factory floor, the
developers could very easily change the logic of the script. VB makes the sys
tem very flexible.

206

10 Development Tools

In fact, most of the requests for Visual Basic weren't from people proto
typing the UI but from people on the manufacturing side of the business who
wanted to reduce the amount of time they spend scripting systems like fac
tory automation systems. It was really very interesting-Visual Basic adds
value to our system differently from the way it adds value to the desktop.

With Visual J++, we offer the same benefits as Visual C++ and Visual
Basic: remote debugging, downloading, and an SDK that allows you to choose
a component set of the class libraries rather than the whole set. We spent a
considerable effort enabling the Java virtual machine (VM) to run on Win
dows CE, getting the class library, and defining how the VM would best
work in the environment with smaller memory footprint.

Suppose you want only the I/O class from AWT. You can reduce the
footprint substantially by picking and choosing just the I/O class compo
nent.So again, we're taking advantage of the knowledge developers have
about the desktop development environment, but we're adapting the non
PC device environment to reflect what developers are trying to build and
what Windows CE brings to the table.

PHASE 3: SUPPORTING

EMBEDDED SYSTEMS DEVELOPERS

Along the way, we also introduced a new product-the embedded toolkit.
Initially, we didn't envision needing this, but as we got more and more in
volved in the embedded industry, we realized it was necessary.

We originally had a kit called the OAK-the OEM Adaptation Kit. We
took everything we used to build the system, put it all in a box, and said,
"Here, embedded systems engineers. Go figure it out. We figured it out; you
can, too." The kit provides all the enabling technology, but it doesn't make
development any easier for them. Maybe only one or two thousand devel
opers in that 4.76 million can actually overcome such a steep learning curve.
We need hundreds of thousands of developers picking this up and running
with it. So we invented the Embedded Toolkit product to encapsulate what
the OAK was delivering and bring it into the Visual Studio development
environment.

207

Inside Microsoft Windows CE

Embedded development is full of complexity. The engineers might be
working with a VME bus from AMD with their special processor and a whole
new set of peripherals. To get all the hardware working, they have to write
some drivers and build a ROM image and flash the image into ROM and see
if it works. And they'll probably encounter a couple of hurdles along the way
where they're performing some very painful kernel driver debugging. Even
today, when Thomas Fenwick and Mike Ginsberg bring up a kernel on a new
processor, they use LEDs to get hex numbers to walk through the code
really rudimentary debugging techniques.

The embedded community is very fragmented, with lots of different
tools and operating system options. Developers and others in that commu
nity are plowing forward on their own with very few standards. The desk
top is much more mature at this point. It has standard APIs, standard object
models, and even standard programming languages. The desktop PC is a
much more standards-based environment. We're trying to bring that same
model to the embedded community.

For us the holy grail was getting the IDE debugger to debug remotely
so that developers usifig Visual Studio could use the exact same debugging
methodology they use on the desktop. The only perceptible difference be
tween the two is that remote debugging is a little bit slower because it is
running over a connection to the remote device; otherwise, it works the
same way.

Tool

Windows CE Spy++

Windows CE Registry
Editor

Windows CE Process
Viewer

Windows CE Heap Walker

Windows CE Zoomin

Windows CE Remote
Object Viewer

REMOTE TOOLS

Description

Graphical tool used to display information about
a window and its messages (all messages or se-
lected types) ,

Manages the desktop, emulation, or device
registry

Examines detailed information about processes,
threads, and memory on the remote Windows CE
device, and modifies many settings

Examines the contents of system memory

Examines the contents of the device display

Examines files, registry entries, or database
objects in the object store on the remote device

208

10 Development Tools

This debugger is really cool. Even though you're debugging against
different remote RISC targets, the debugger knows what type you're debug
ging against, and the RISC target information is available. For example, the
x86 and R4300 register sets are nothing alike; the number of registers each
has is different and they have different register names. But in either case, you
work with the debugger in exactly the same way, and the debugger takes
care of all the hardware specifics for you.

We adapted the Windows NT kernel debugger, Windbg, as a remote
debugger for Windows CEo We allow you to debug over a serial port, par
allel port, and Ethernet connection. You can also have multiple ports so that
you can debug over one while using the other, which becomes critical when
you're performing tasks like debugging the serial driver. You know, if you
set a breakpoint on the driver for the debug port, well, you kill yourself.

The architecture is transport-independent today; all we're doing is
writing more transports. And as we add new transports, we'll make sure the
tools for VB, VJ++, and VC++ will work on all of them.

So our challenge is to allow developers familiar with existing systems
to continue working with what they know. If you want to set a breakpoint
on some kernel-level driver, you shouldn't have to learn a new debugger and
a new way to set that breakpoint. You should be able to use the tools and
strategies you already understand. You should be able to apply the exact
same technique to a problem. Whether that technique is JTAG or EJTAG
(IEEE Standard 1149.1), BDM (background debug mode), or anything else,
you shouldn't have to know which processor or which board you're work
ing on. We are now working very closely with our semiconductor partners
to integrate capabilities such as hardware or system debugging.

ENABLING EXTENSIBILITY: OLE, COM, ACTIVEX

Kenneth Macleod

Our requirements were to support ActiveX controls, which you can use with
your Visual C++ and Visual Basic appsi support Microsoft Internet Explorer
4.0; and support desktop compatible storage. And that's what we got. We
support the basic COM infrastructure, automation, and storage.

209

Inside Microsoft Windows CE

On the desktop are a container and an object, and in between them is
OLE. When you use the apartment model, or make a call to an object in a
different process, OLE is always in between the container and the object.

But on Windows CE, we support only in-process servers and the free
threading model. So we went into the code and thwack! [Macleod draws
lines through the OLE block to indicate removing it.] Because it's just left
over from Win16, right? I mean, Win16 had this horrible crap where OLE was
putting messages into the message queue, and it had all these OLE APIs for
message handling and message filtering, which we don't need for Windows
CEo So OLE on the CE platform never gets in between your calls. The calls
just go straight through. OLE is a bunch of APls and a bunch of interfaces,
but it never gets in the way of things.

Windows CE supports only in-proc servers and free threading, allowing the development
team to simplify the OLE/COM/ActiveX implementation. Containers directly call the
COM objects.

The most commonly called API is CoCreatelnstance. For Windows CE,
the implementation is just this huge LoadLibrary. A programmer passes the
class ID to CoCreatelnstance. We fish for the DLL in the registry, then call
LoadLibrary to spin up the DLL and hand back a pointer so that the devel
oper can talk directly to the object. The developer's thread does direct jumps
into the other code, straight through.

The object needs to be thread-safe. It needs to be able to handle as many
threads as the container spins up. We tried to drive that point home. In fact,
before we shipped Windows CE, we stripped out the code for Colnitialize and

210

10 Development Tools

Olelnitialize an~ replaced them with ColnitializeEx, which forces you to pass
in a flag that says what thread model you support. We accept only the flag
for multithreading.

The desktop's version of the storage code was ported and then ignored.
We wrote our own version of desktop storage, which is about 150 KB. Stor
age itself is optional-I believe the Palm-size PC is dumping OLE storage
altogether-but if you use storage, you have to select all of its components.

Desktop storage is optional, but when desktop storage is selected all three components
must be present. The full list of OLE/COM-related modules, components, and API func
tions appears in the embedded toolkit.

The desktop's version of the automation code was ported and shred
ded. Well, some of the automation stuff is genuinely based on the desktop.
We analyzed that and rewrote some of the fundamental APIs and then re
wrote the type library code because it's sort of the top level of functionality.

THE WINDOWS CE TOOLKIT FOR VISUAL BASIC

Chris Stirrat

We want to enable the millions of VB developers to program for a handheld
device with a minimal learning curve, and the way to do that is to add tools
that integrate as seamlessly as possible into the VB environment. VB has a

211

Inside Microsoft Windows CE

new project type called the Windows CE Project. You layout your form and
put code behind it the same way you would in VB. The new Windows CE
specific project properties indicate the target environment, emulator or remote
for the remote device, and indicate the build type, either debug or regular.

Chris Stirrat

When you want to run your application, you click
the Run button. The tool then automatically compiles to
the Windows CE file format, sends the file to the device,
and starts the file on the device for you.

We support full remote debugging so that you can
remote debug to your device from your desktop. The de
bug environment has all the same debugging tools that
you'd expect to see in VB: step into, step out of, step

over, looking at variables, the watch window, and the immediate window.
In addition, we support remote tools such as Zoom, Spy, Heap Walker, Pro
cess Viewer, and Registry Editor (for remote registry editing). There is also
a Control Manager to help you keep track of which controls are available for
the desktop and the remote device.

The new Windows CE project properties let you choose whether to build for. the emulator
or build for the remote device. You can also click the Make tab to select debug or retail
builds. The Windows CE menu added to the Visual Basic menu bar offers access to the
remote debugging tools.

212

10 . Development Tools

We also have full support for an emulation environment that ships with
the product. It's the standard Windows CE SDK emulation environment,
which allows you to emulate a Handheld PC, so you can lay your forms out
and see what they look like. Essentially 90 percent of your development can

be completed in your emulation environment without even using a device.
The Windows CE version of Visual Basic is a subset of the desktop

version. Because Windows CE is designed to run on small devices without

the CPU or memory power of a desktop, we had to find a compelling sub
set of the language and forms package. The forms package is a subset of
VBS.O that contains the objects you would expect to see, such as forms, con
trols, and error objects. The actual language support is a subset of VBS.O. One
key difference is that all VB for Windows CE variables are VARIANTS and

cannot be typed. Some of the language statements are also not supported.
We took what we thought was a good subset, put it on the device, got

customer feedback, and tailored it based on the feedback.

In the run time, we give you the objects, forms, and controls. We pro
vide you with the intrinsic controls, which are always available with the run
time: the buttons, check boxes, list boxes, and combo boxes. Then if you want
to add functionality, our extensibility story is to use ActiveX controls. We
shipped five ActiveX controls to cover additional functionality that people

wanted to see and released six more controls in our control pack. We will
soon be releasing an ADO (data access) control. We have a pretty rich set of
controls, each componentized and packaged separately so that you can man
age your RAM space.

ACTIVEX CONTROLS IN WINDOWS CE PRODUCTS

Product

Microsoft Windows CE Toolkit
for Visual Basic 5.0

Microsoft Windows CE ActiveX
Control Pack

Controls

Intrinsic controls and five ActiveX controls:
picture box, image, Winsock, file system,
and serial port.

Six ActiveX controls: grid, tabstrip (for
tabbed dialogs), tree view, list view, image
list, and common dialogs. (The ADO control
will be added as soon as it is available.)

213

Inside Microsoft Windows CE

DESIGNING VB ApPLICATIONS FOR WINDOWS CE

A lot of people say, "I want to take my VB app and compile it for Windows
CE." We can't really do that today. Porting existing applications directly to
Windows CE would be tough. We can't anticipate which of the controls that
you depend on might not exist for Windows CEo It really makes a lot more
sense if you think about it this way: You have a desktop application con
nected to a network, you have a handheld device, and you want to take some
of your users mobile. Instead of porting the whole application, you probably
really want a piece of that application to be local on the device.

Desktop

Update and
synchronize

To take users mobile, VB developers should use a slightly different application model than
is used on the desktop. The application should contain the smallest amount of code needed
to create or update data in the field. The mobile device and desktop are synchronized to
share data updates.

You want to send some data to the device, disconnect, take the device
with you in the world, use the data, display it, capture more data, and then
sync back up at the end of the day. You want to take a subset of the applica
tion functionality, reirnplement that functionality in VB for Windows CE, and
put it on the device. The key part of this whole process is moving the data.

ADO is the standard Windows database API, so we will have an ADO
control that makes the object store on the device appear as an ADO recordset
or as a database. Your desktop application will have programmatic access
to the data on your device so that you can synchronize data between your
desktop and device. And we'll also offer automatic synchronization to Mi
crosoft Access and Microsoft SQL Server databases through Active Sync: you
can drag an MDB file into your synchronize folder, and we automatically
build the tables on the device and keep them in sync.

214

10 Development Tools

Every developer we talk to loves VB and is totally sold on the fact that
developing with it is easy. Developers also like that it's processor-independent.
The PVB app that you write will run on any device as long as it has a VB run
time library. Right now, we support VB for Windows CE on the HIPC de
vice only. As we move forward, we will start releasing on more platforms
and CPUs-for example, the Auto PC, PC companion devices, and custom
devices. Then we will make VB available to all embedded developers as
components in the embedded toolkit. This will allow OEMs to create" open"
devices so that others can add value for that platform. This will give the
OEMs access to a large programming community to create applications for
their custom devices.

We have a flexible run-time architecture because we can't anticipate
what your platform is going to look like. If you can picture the difference
between the UI on an Auto PC and the UI on an HIPC, you can picture a
completely different paradigm. We will have the flexibility in the run-time
architecture to handle custom forms packages. That's definitely the direction
we're going.

WINDOWS CE TOOLKIT FOR VISUAL J++
~~ith~~zot

You have to think about supporting the Java programming language from
two perspectives; providing the appropriate development tools and provid
ing run-time support on the actual platform. A lot of people ask, "Why do I
need a toolkit for Java? If I have a desktop compiler that creates Java byte
codes, I can just put the compiled application on the device and run it." Well,
that's true~ you could do that, but you wouldn't have the ability to develop
on your PC using emulation, and you wouldn't have the remote development
technology. The remote technology enables you to download and execute an
application on a device connected to your host development PC and to per
form interactive debugging with control of the Microsoft virtual machine
(M5VM) on the device.

That remote debugging and emulation is what our add-on product
provides. The tools are fully integrated into Visual J++ and offer the same
type of experience that a Visual J ++ developer would have developing apps
for the desktop. The learning curve for becoming productive in this environ
ment is very low.

215

Keith Szot

Inside Microsoft Windows CE

We also support the Raw Native Interface (RNI) so
that as a developer, you can take advantage of the unique
functionality provided by the Windows CE platform. Let's
say you want to take advantage of the Windows CE com
mand bar or IrOA functionality that is not exposed to you
through the JOK 1.1. You can us~ RNI to call directly to
the Win32 API provided by the Windows CE OS. Or you
could use RNI to call into your own OLL, if you have a

fast routine in C or C++ or even assembly that you want to integrate with
your application written in Java.

For the run-time library, not only is it important to provide the full
functionality of JOK 1.1, it's important to make sure it works well in the
resource-constrained environment of Windows CEo You typically have re
stricted RAM and ROM availability on the device; and the processors have
lower processing power compared to the desktop. For example, you can't
JIT -use just-in-time technology-on these types of devices; doing so would
fill in all available RAM, which is impractical.

Corporations are very interested in the Wmdows CE-based H/PC prod
ucts. Those wanting the benefits of programming in Java are looking to our
toolkit implementation to bring the best of those two worlds together, to
create corporate solutions written in Java running on top of the Windows CE
H/PC platform. One of the features we offer is a componentization of the
Java classes so that you can build custom OLLs with only the classes needed
by your application: the application class files, the MSVM, and the associ
ated native method OLLs. An ISV or corporation wanting to run a specific
application on a particular device can provide that application in the form
of a custom OLL. The OLL has the application's class file included, so it has
everything it needs. Another nice feature of the single OLL is that it resolves
the references to all those different classes for you; the classes don't have to
be resolved at run time, which increases your performance and decreases
your overall startup time.

Our complete implementation on SH3 is a little under 3.6 MB in foot
print, and on MIPS it is about 3.9 MB. That's pretty dang good from a desk
top perspective, because the typical desktop implementations are at least
double that. We've done a pretty good job of slimming it down. The more
choice and flexibility OEMs and developers have, the happier they are. What
ever we can do to minimize the resource requirements ultimately improves
the developers' choices for minimizing the footprint.

216

10 Development Tools

We focused on Windows CE for the Handheld PC for the first release.
Initially, we felt it was important to ensure that developers could get access
to the Win32 API to get the full functionality and power of the Windows CE
platform. Right now, we don't support J /Direct, but that's definitely some
thing that we're working on for an upcoming release. And we will continue
to integrate into future releases of the Visual J++ products. We will provide
an add-on to Visual J++ 6.0 and extend WFC support to Windows CE so that
developers making the move to Visual J ++ 6.0 can be confident about car
rying their new knowledge to Windows CEo

CREATING AN as WITH THE TOOLS

Roland Ayala

The embedded toolkit was origrr',.ally called the OAK, and that's exactly what
it is--'an OEM Adaptation Kit. It gives OEMs everything they need to adapt
the Windows CE operating system to new hardware platforms-all the nec
essary compilers, assemblers, li!1kers, and debugger support.

We also provide a lot of sample code. The CEPC with the x86 archi
tecture is a good example: CEPe users can see Windows CE come up as a
working system fairly quickly because we have already ported to that stan
dardized architecture.

Roland Ayala

The Windows CE command-line build environment
that was in the OAK and is preserved in the embedded
toolkit is almost identical to the environment used for the
Windows NT DDK, so if you've worked with the Win
dows NT device driver kit, you'll feel very much at home.
The environment is command-line driven and very ar
cane. OEMs who get the toolkit spend about a week get
ting comfortable with the build environment because we

use so many switches and environment variables for the build tools. Many
of those tools are set up automatically when you create your build environ
ment using the Wince.bat file, but you can also choose different settings by
manually setting environment variables-for example; you can switch from
a debug build to a retail build. It takes time to learn them all.

We provide demo files with the toolkit for two reasons: to show the OS
capabilities in different configurations and to give engineers a complete
picture of system functionality. Seven different demos, each with its own
configuration, can show you how to tum all the knobs to get the right effect.

217

Configuration

Minkern

Mininput

Mincomm

Mingdi

Minwmgr

Minshell

Maxall

Inside Microsoft Windows CE

SAMPLE CONFIGURATIONS

Description

Contains the kernel and the parts of Filesys needed to boot
plus the registry and heap

The Minkern configuration with minimal event system from
GWE, offering user input and native driver support

The Mininput configuration with support for PC cards, net
working, and serial communications including infrared

The Mininput configuration with graphics device interface
(GDI) support

A combination of the Mingdi and Mincomm configurations
with window manager support

The Minwmgr configuration with COM and shell API sup
port; a nearly complete version of Windo1"'s CE featuring
the task manager and command shell

Includes nearly all available components (except those com
ponents with exclusive OR relations to other components)

Right now, we give you code for two sample platforms: the Hitachi
09000 development platform and the CEPe. Our directory structure, or
build tree, is structured to include the directories for those platforms. OEMs
can generally glean the information they need from these samples and ap
ply it to their particular platforms.

THE PROCESS

An OEM first selects desired components by creating an ASCII batch file
calledCesysgen.bat. This file is used in the Sysgen phase, which is the pro
cess of building the OS from the selected components. Right now, it's really
arcane. An OEM has to know the components and the dependencies among
the components. This process is typically iterated until the OEM can get a
Sysgen that truly meets the product requirements.

Basically, an OEM edits Cesysgen.bat to set up a bunch of environment
variables and then runs a batch file called Sysgen. bat that issues the com
mand, nmake sysgen. As part of the make operation, the sysgen tools read the
environment variables to understand how to link all the various components
together to give you the desired OS components. We provide all the system
libraries, and the OEM links them together to get one big final executable.

218

Project
independent

binaries
specified in

Sysgen phase

10 Development Tools

All embedded developers will perform the system generation step and port the kernel, and
almost all will port the eWE subsystem. Driver development can be performed in paral
lel to save time. The final ported system software is combined with project-specific appli
cations to create the system file, Nk.bin.

After selecting the components, an OEM implements the hardware
dependent portion of the kernel, the OEM Adaptation Layer (OAL), and links
it with the Microsoft deliverable part of the kernel, Nklib. This is why an
OEM has to use a supported processor: we provide debug and retail Nk.lib
binaries only for the supported processors.

Most OEMs will want the GWE subsystem and at this point will start
porting GWE. Ninety-eight percent of all systems are going to want to use the
Windows event manager. GWE is highly componentizable. Like the kernel,
GWE has a platform-independent portion and the OEM-dependent portion.
The platform-dependent portion involves the drivers. The native drivers are
the keyboard, the display, the video, the touch screen or mouse, the battery,
and the notification LED drivers.

The OEMs will definitely parallelize their driver development efforts
to get the products out their doors quickly. Drivers vary in complexity, but
you can figure'six to eight weeks of development time for each of these
drivers. That's just Roland's rule of thumb. A really hot-shot developer or
a developer working on a keyboard driver very similar to a PC keyboard
controller will produce .a driver in less than six to eight weeks. In fact, a
developer working with the PC keyboard controller pretty much already has
the driver from our samples. I'm talking six to eight weeks if the developer
actually has to implement the POD.

219

Inside Microsoft Windows CE

For the common drivers, Microsoft offers the MOD jPOO model. Un
less an OEM has a compelling reason to avoid using our MOD, not using it
is really silly because it comprises over 85 percent of the code. All the OEM
has to do is worry about the platform-dependent portion.

When the driver development is all said and done, you take all the
platform-dependent binaries, system-independent binaries, and project bi
naries-the apps-and roll them all into the operating system image file. (We
name this file Nkbin by default, but you don't have to use this name.) Nkbin
then gets loaded onto the platform. You could also load it all into Flash, a
ROM chip, or RAM for development purposes. Windows CE is different in
that you're not putting a bunch of system files on a hard drive. You're stor
ing all the files into one big huge file-an image-and then loading that
image into memory. Because everything is already in memory when you
turn the system on, Windows CE boots and loads quickly. Boom! It's there.

SYSGEN AND BUILD

For componentization, we offer the Sysgen tool. For compiling and linking,
we offer the Build.exe tool. Build.exe takes the Oirs file and Sources file as
input. If Build sees a Oirs file, it walks into each of the directories listed in
that file and looks for Sources files or other Oirs files. You can start at the top
of a tree and then walk down to build everything under it by adding Oirs
files. At the end of each path, a Sources file has to be present in order for the
system to build.

You put a Sources file wherever you store the code for your module.
The Build tool is really nice because you don't have to worry about questions
like: "What are all the right linker options and switcl').es and stuff for build
ing for CE?" The tool makes your work very simple. You tell the tool, target
type=program, or target type=DLL, or target type=library. You tell it the source
modules. You can also pass additional parameters, too, if you need to.

Wherever there is a Sources file, there is also a local makefile. When
you call Build, Build calls the local makefile, which includes Makefile.def.
Makefile.def is this huge, long, five-page makefile with all the intricacies of
the correct linker options, the correct compiler options, the directory struc
ture, and so forth. This is the master makefile that really does all the work

220

Project
independent

binaries
specified in

Sysgen phase

10 Development Tools

Sysgen
too[

Build tool,
nmake;
compilers,
linkers, to
g~ne~ate
omanes

Makeimg
tool

Romimage
tool

The Build tool, the compilers, and the linkers are used to generate the executables and
libraries. The Sysgen phase generates the input files needed for the Makeimg and
Romimage tools. Eventually, all the files are built into a single image file, Nk.bin.

This master makefile allows a few very knowledgeable people such as
Mike [Ginsberg] or Sharad [Mathur] or Thomas [Fenwick] to say, "These are
the correct compiler switches and this is how you need to link." If we check
in a new compiler tomorrow, Mike changes the switches required for that
new compiler, and business goes on as usual.

221

Inside Microsoft Windows CE

The Build tool traverses the directory structure beneath the directory in which it is in
voked. For example, when invoked in the drivers directory, Build processes the dirs file,
which directs it in turn to the touchp, sramdisk, and other driver directories. Those direc
tories contain Sources files specifying the source files to be compiled and linked into li
braries or executables ..

Personally, I love Build. It manages the complexity. Even though a tree
might have 15 different components in 15 different directories, you can go
to the root of the Platform directory and just say "Build!" That's all you've
got to do.

MAKEIMG AND ROMIMAGE

When your system is building cleanly, you need touse the Makeimg and
Romimage tools to combine all the files generated by the Build process into
one big file, Nk.bin. The Makeimg tool puts all the files in .BIB files, puts
registry settings in .REG files, and puts databases in .DB files. The Romimage
tool takes all the files that are specified in the .BIB and makes an Nk.bin
for you.

222

10 Development Tools

Back when we released H/PC 1.0, we just had one big .BIB file, one big
registry setting file, and so many #defines. We had to #ifdef this OEM's plat
for~ and #ifdef that OEM's platform. We were starting different projects,
plus we had the Japanese version, and it was all totally insane! One project
would change the .BIB file and break the builds for everybody.

That was why we organized the files and the registry settings as com
mon, platform-specific, or project~specific:

• Common files and settings. These are set up by the Sysgen tool.

•. Platform-specific files and settings. For any given platform, you
need a specific version of the kernel. Some driver files and reg

. istry settings are always the same for that platform. For example,
the platform-specific files for the CEPC platform never change
from one system to another.

• Project-specific files and settings. Project settings change tJ:1.e most
frequently. By breaking out the project-specific .BIB file, registry
setting files, and database files, for example, you need to worry
only about changing the .BIB file and registry settings for your
particular work.

The Makeimg tool combines all the .BIB files (Config.bib, Platform. bib,
Project.bib, and Common.bib) into one big Ce.bib file. You have the database
files, Common.db, Platform.db, and Projectdb. Makeimg also creates one
big Reginit.ini file with the registry settings and compresses it into a file
called Default.fdf. Do you know what .PDF stands for? Franklin D. Fite.

Makeimg performs some other functions for you too, such as localiza
tion. In your registry settings, for example, you can specify that you want
to include a particular file that has some constants. When Makeimg sees that
setting, it substitutes either the U.S. text or, say, the Japanese text.

After using the Makeimg tool, you need to use Romimage. Romimage
collects whatever is specified in the .BIB file and puts it all into an image file
for you. That's how you get your .BIN image.

CESH AND THE BOOT LOADER

We provide a tool called Cesh, and your Windows NT host development
mach4'te runs a service so that you can set up a two-way link between the
development machine and the target platform to transfer files and commu
nicate. The toolkit provides a boot loader that works with Cesh, which OEMs

223

Inside Microsoft Windows CE

can port to their platforms. And generally that's what OEMs can use to port
the kernel. Much of the platform-independent kernel boot loader is also used
in the OAL.

The embedded toolkit Setup ptogramconfigures Windows NT for you
so that when you tum your target platform on, the Windows NT develop
ment machine sends an image file to the target device. The boot loader on
the target device listens for this image file, and a little header in the image
file tells the boot loader "Hey, I'm a bin image" or "Hey, I'm a Motorola S
file" so that the boot loader knows which file is being downloaded and its
size. The boot loader performs some error checking to make sure the file is
not corrupt After the image is downloaded, it jumps into the kernel; the boot
loader is gone, and now you're running the kernel.

You can then execute commands from the development host to see
which processes are running. You can start processes, kill processes, view
memory, and view debug flags (the DpCurSettings flags). Let's say you have
a complete debug image running on your platform and you want to view
only debug messages in your part of the code. When you write your driver,
you can specify these DpCurSettings flags, and when you send a debug mes
sage, YOl,1. can specify which flags you want associated with that message.
When you're debugging you can configure these DpCurSettings from the
Cesh shell so that you can turn them on and off: you want to see these de
bug messages, but you don't want to see those.

And what's really cool is, let's say you're iterating through your appli
cation, and you don't want to create and load the whole .BIN image every
iteration. Loading a 4-MB image, for example, takes some time. So you don't
include the application in the image; you use the Cesh s command to load
only your application. If the kernel doesn't find the app in the image, and
you're running Cesh, the kernel will attempt to retrieve it from the devel
opment host. That's really nice because you can try it out, and if it doesn't
work, that's fine, because you can recompile it, build it, use the Cesh s com
mand again to load the new version, and run the app. Getting the app from
the development host is much easier than recreating and uploading new
.BIN images every time you want to test a new version.

As we move forward with the ETK, we're working on making these
tools very GUI-based and knowledge-based and on minimizing the learn
ing curve.

224

10 Development Tools

THE EMBEDDED TOOLKIT FOR WINDOWS CE

Scott Horn

Learning about the kinds of devices people want to build is amazing
everything from bakery ovens to manufacturing automation systems to web
phones. It's incredible. You have embedded developers coming from a UNIX
background, and you have people from the Win32 desktop world who want
to create versions of their corporate applications for these custom devices.
Our challenge is to make it very easy for all of them to take their existing
knowledge and skill sets into this custom device world.

The OAK required Microsoft to give its customers a great deal of atten
tion and handholding. But we're seeing so much interest in the embedded
market that we think potentially millions of people are going to want to build
these custom devices, and we cart't afford the same level of support for that
many customers. So we built an Embedded Toolkit product that everybody
can use easily. .

The embedded toolkit, or ETK, makes these tools and the Windows CE
as bits available via the retail channel, which is a pretty different business
model than you've seen before in the embedded space. You can walk into a
store or call a number on a mail-order catalog and say, "Hey, I want to buy
an ETK." The product cost is an order of magnitude less than what other
folks are offering, and no restrictions apply. You can use the ETK for all of
your development and testing, and when you want to distribute your ap
plication commercially, you can contact either Microsoft or an authorized
distributor. .

Another interesting feature of the ETK that differentiates us from other
vendors is that few vendors out there support multiple chip architectures. We
currently support five different chip architectures: the MIPS, the PowerPC, the
x86, the SH3/SH4, and the ARM/StrongARM. We really are treating all chip
architectures equally. Very few.systems in this embedded space offer that
kind of wide support.

And for the first time in the embedded space, people can use an x86 PC
asa development platform. You know, typically in embedded systems, if
somebody wanted a hardware reference platform, he'd have to spend be
tween $5,000 and $10,000. We're enabling people to start developing on a
486 or a Pentium-class machine, which you can get for 500 bucks. We have

225

Inside Microsoft Windows CE

prebuilt as images for the PC-based development platform so that very

quickly-within 30 minutes of buying the product-a developer, right out
of the box, can read the Getting Started guide, load the prebuild images on a

floppy, stick the floppy in the PC, and experience the as.
We're actively working on the next release. Hereare some of the chal

lenges we face:

• Providing developers with everything they need in a single product. We
want developers to have whatever they need to develop applica
tions, the OAL, drivers, the as extensions-everything-so the

ETK also includes the SDK and the DDK. We provide the built
in drivers for standard device types, but we also enable develop

ers to create completely different device types and drivers for
those devices.

•. Improving our debugging support for issues like bringing up the kernel
on a chip. We want to help developers understand what's hap

pening on the chip, for example, in the on-chip cache.

• Enabling developers to figure out which APIs are supported by their OS
builds. As you know, Windows CE is a componentized as, and
you have a lot of flexibility in terms of the modules and compo

nents you can select. If you're an OS developer, you want to know
which APIs are supported by the configuration and how much

space the configuration takes. One component you add might
also require another, so the OEM also needs automatic depen

dency resolution, which is something we're looking at intently.
The application developer wants to know, "What's supported by

this aS?" We want to enable a very easy handoff between the as
builder and the application developer.

• Providing CUI versions of the OAK command-line tools. Right now
the ETK has some of the command-line flavor of the OAK. Some
of our developers prefer that. We're also working to provide al
ternative wrappers in the IDE so that a developer has the option
to build the OS in the IDE.

.• Providing a seamless handoff between the ETK and Visual Basic for
Windows CEo A seamless handoff means that an ETK developer
can create an as that includes the VB run time and hand it off to
a person who has Visual Basic for Windows CE, and that person
could write an app for the as ..

226

10 Development Tools

We know that the typical developers of embedded systems aren't Win32
developers, so we're trying to better understand their needs and make the
ETK accessible to them. We want the Unix developer, for example-which is
what I was before coming to Microsoft-to get comfortable with the Wmdows
CE environment.

We're going to invest a lot of resources in the embedded space. We're
going to sponsor magazines, developer conferences, web sites, system inte
grator networks, and distributors. We're building a whole network so that
developers can choose from a rich set of resources. That network is another
of our unique contributions to this embedded systems space. We're really
good at partnering with a wide range of companies to support our develop
ment community.

RESOURCES

Topic

Using the embedded toolkit

Licensing Windows CE

Developing COM and ActiveX
. controls

Makeimg, Romimage, and other
embedded tools

Microsoft Windows CE ActiveX
Control Pack

Windows CE application devel
opment in C++, Java, and Visual
Basic

Resource

Embedded Systems Development with Microsoft
Windows CE and Visual C++ (Microsoft Press,
forthcoming)

http://www.microsoft·com/windowsce/embedded/
licensing/

Understanding ActiveX and OLE, by David
Chappell (Microsoft Press, 1996); Inside COM,
by Dale Rogerson (Microsoft Press, 1997);
Microsoft Windows CE Programmer's Guide,
(Microsoft Press, forthcoming)

Microsoft Windows CE Embedded Toolkit
for Visual C++

http://www.microsoft·com/windowsce/developer

Microsoft Windows CE Toolkit for Visual
C++ 5.0, Microsoft Windows CE Toolkit for
Visual J++ 1.1, Microsoft Windows CE
Toolkit for Visual Basic 5.0

227

11 . A Look at Some
WindowsCE
Configurations

Inside Microsoft Windows CE

T his chapter describes several configurations of Microsoft Windows CE based
on the core set of modules and components available in the embedded toolkit.

Some are created by Microsoft, and others are created independently by embedded
developers. Kimberly Gregory, group program manager for the Windows CE core
OS team, describes work on such new devices for point-of-sale terminals and GPS
based automobile navigation systems. Gregory also describes how developers are
installing specialized applications on the standard Handheld PC (H/PC) and de
ploying the H/PC as a dedicated vertical device. The versatility of the H/PC is

demonstrated by the variety of vertical market customers: the Pittsburgh Police
Department, Vail Resorts, the Seattle Mariners Baseball Club, and the United States
Marine Corps.

In addition to developing the Windows CE OS and tools, Microsoft defines a
base hardware specification for some devices, assists OEMs who are porting to that
platform, provides a certification program, and creates all of the system software,
including a specialized shell and an initial set of applications. The first two ship
ping devices of this kind were the Handheld PC and the Palm-size Pc. The Palm
size PC always includes its shell and a baseline set of applications: Pocket Outlook,
Voice Recorder, Mobile Channels, Note Taker, Calculator, Clock, and the game Soli
taire. OEMs can also choose to include other applications, but customers know that,
at a minimum, these Microsoft-developed applications will be present on all Palm
size PCs. A baseline set of applications is also defined and provided for the Handheld
Pc. Microsoft has also officially announced the Auto PC, a collaboration with Sega
on the Dreamcast home video game system, and Windows-based terminals.

Roland Ayala describes the Windows CE terminal devices that connect to the
Windows NT 4.0 Terminal Server Edition. Ted Kummert describes the Windows CE
OS configuration used in the Sega Dreamcast home video game system. Patrick Volk
was the senior program manager for the Auto PC and discusses its architecture and
its core OS modules and components.

Dave Wecker served as development manager for the Palm-size PC and walks
through its overall system goals and features. Because the Handheld PC has already
been discussed in detail in other chapters, it is not described as extensively here.
Robert O'Hara, one of the original members of the Windows CE team and author
of Introducing Windows CE for the Handheld PC (Microsoft Press, 1997), and
Cathy Linn, group program manager for Handheld PC 1.0, wrap up the discussion
with their stories.

230

11 A Look at Some Windows CE Configurations

Several other Windows CE-based products under development at Microsoft
had not been announced at press time. Watch the Windows CE web site, http:/ I
www.microsoft.com/windowsce. for information on these additional devices.

EMBEDDED CUSTOMERS

Kimberly Gr~~IY

A fair amount of confusion still exists in the marketplace when it comes to
distinguishing the Windows CE operating system from Windows CE products,
such as the Handheld PC, which are built on top of the operating system.
Undoubtedly, the introduction of many more devices based on Windows CE
will lessen this one-to-one binding in people's minds.

Kimberly Gregory

ware platform.

When I first started thinking about the embedded
space, I used the term "embedded OEM" to describe the
market that seemed most interested in our devices, but
now I think I should really use the term" embedded cus
tomer." We have OEMs such as Radiant and Datus devel
oping new devices, but we also have a lot of customers
who aren't OEMs and won't be involved in creating the
hardware and adapting the operating system to the hard-

Meeting with this diverse set of embedded customers has been very
interesting. We've seen Monsanto-one of the biggest agribusiness compa
nies in the United States-and the Marine Corps, and we've seen police
departments and baseball teams and ski resorts. I'm amazed by the variety
of companies that are interested in using embedded systems, that can visu
alize how to use a commercially available system.

Most of the original customers who came to us back in 1997 were in
terested in adapting the Handheld PC for a particular vertical market. Some
needed more capabilities than the H/PC provided at that time: color graph
ics and support for many different screen resolutions, more communications
features, more networking capabilities, the Ethernet. Often they wanted to
be able to consider an x86 solution. Interest in the Java VM and in our Visual
Basic run time has been tremendous. You can run scripting languages either

231

Inside Microsoft Windows CE

in Visual Basic script or in Java script. We provided all of these features in
the version 2.0 OS, and in many cases, these customers have delivered on an
H/PC 2.0 platform.

Many of these customers are interested in Windows CE-based de
vices as a way of reducing their overall system development cost. The U.S.
Marine Corps is an excellent example. Their commercial off-the-shelf (COTS)
initiative, started by U.S. Secretary of Defense [William] Perry, was really key
to their decision to go with a Windows CE device as the basis for their field
deployment.

ADOPTERS OF DEDICATED H/PC DEVICES

Organization

Seattle Mariners Baseball Club

Hoeschst Marion Roussel

Pittsburgh Police Department

Vail Resorts

United States Marine Corps

Windows CE Application

Used to scout baseball players at many dif
ferent game sites; allows standardized entry
of scouting reports and transmission back to
the front office

Provides information to 2,000 field sales rep
resentatives; records physician signatures on
pharmaceutical sample deliveries

Enables more community-oriented policing;
provides instant, secure access to city, state,
and national databases

Matches customers with instructors and
class times at the largest ski school in the
world; operates on site on the mountain in
all weather conditions

Supports position location information (PLI)
and small unit situational awareness; adds a
ruggedized case and extra battery life for
battlefield use

We're currently working closely with the Open Modular Architecture
Controller (OMAC) Users Group. The manufacturing companies included in
this consortium are the big-ticket manufacturers-big chemical companies,
industrial companies, automotive companies. The OMAC group is evaluat
ing Windows CEto benchmark real-time performance.

And these are just a few of the companies that are either planning to
use or have already deployed Windows CE, typically with a single-purpose
application on top of Windows CE.

232

11 A Look at Some Windows CE Configurations

The Chesty, Ir.application, developed for the U.S. Marine Corps by Norman L. Hills of
Casio Corp., allows friendly and enemy positions to be marked on standard topographic
maps, resulting in accurate calculation of artillery range and distance values. Camp
Pendleton, shown here, was the site of a joint exercise.

I also looked at some of the embedded customers who are building
their own devices to determine why they were attracted to Windows CEo
Here's what I learned they wanted:

• Communication support. Customers need quite a lot of communi
cation support-this is true for many embedded customers I've
come in contact with. We have a lot of comm stacks.

• Data storage options. Customers need to store data on nonvola
tile media such as Flash, which we support. In our system, when
your data is sitting out in Flash or on an SRAM card, the system
automatically pages the data in for you. The process is seamless.
You deal only at the file system level, and the system takes care
of everything underneath.

• Graphics flexibility. Customers need some flexibility with graph
ics. Our GDI works with any pixel depth, from 1 bit per pixel all
the way up to 32 bits per pixel. From a programmatic point of
view, our GDI is just as easy to use as other graphics modeis.

• Support for the Java programming language. Some compa~s write
all of their apps in Java., One that we've been working with is
moving ahead with its apps while looking for the und~rlying OS
solution. It evaluated some alternatives and found agrea.t tool
chain with Windows CE-one that integrated seamlessly intuits

233

InSide Microsoft Windows CE

existing desktop product. In version 2.10, we are supporting a 200
MHz processor and the StrongARM 1100 from Digital, and the
customer feels that performance will be sufficient to run the in
terpreted code.

• Rapid application development. Another customer also wanted to
script for rapid application development, so was looking for a
system that would support Visual Basic.

• An established object model. Customers who rely on a component
design methodology were looking for support for an established
object model. Well, of course, Microsoft's object model is ActiveX
and COM, and we support a sufficient subset to enable ActiveX
development.

We can't speak about all of these companies because some of their sys
tems are still under development. We are very excited to be able to talk about
Radiant and Datus. Datu5 is producing a.n automobile global-positioning
system device. It started all this work on its,own; we first became aware of
the company when it asked us what it would take to get the speech engine
that comes with the Auto PC product.

Radiant is building a point-of-sale (PaS) terminal. In fast food chains,
for example, pas terminals, or kiosks, as you might call them, will be set up
to expedite the order entry process. Someone going into that restaurant can
enter an order at the kiosk using a very nice, colorful, intuitive, user-friendly,
multimedia-based application.

After an order is placed, it is automatically relayed to a server that is
tracking all ,orders and that can automatically update the inventory. Radi
ant has configured a fault-tolerant system such that, if its back-end Windows
NT server goes down, it always has a redundant Windows NT server. The
kiosk can ping using our UDP protocol to find the other server, then initiate
wireless communications with it. In fact, Radiant has built a lot of expertise
around Windows CEo They're very interested in Windows CE and are plan
ning to use it in other systems as well.

What Windows CE can offer, first and foremost, is that it's a Microsoft
system. That means the potential for interoperability with the desktop; being
able to capitalize on-what is it Randy Kath says these days?-4.76 million
Win32 developers; a standard tool chain; a single UI paradigm throughout

234

11 A Look at Some Windows CE Configurations

your whole organization. The customer who can buy the operating system,
the application suite, and tools that have been well tested and interoperate
with other existing systems is going to be very happy.

MICROSOFT WINDOWS-BASED TERMINALS

It used to be that only one person at a time could sit down and log on to
Microsoft Windows. With the Windows-based terminal, you can now go
to another device, connect to the Windows NT Terminal Server, and experi
ence the look and feel of the Windows NT machine. Just think of the network
as a virtual cable for your monitor, keyboard, and mouse, where the server
is just pumping all those bits over the network. This brings the Microsoft
Windows experience to very low-cost hardware.

Roland Ayala

Most of the application processing is done on the
server side. Obviously, the Windows-based terminal is
processing the display and managing the keyboard in
put, but all the application processing is taking place on
the remote Windows NT computer. Its official name is

. Wmdows NT 4.0 Terminal Server Edition, but most people
know it by its code name, "Hydra."

The client program is a Win32 application, so you
can connect to Hydra from Windows NT, Win95, or a Windows CE-based
computer. The Windows CE computers are the most interesting because you
can essentially create disposable devices. If one breaks down, you just put
another one in its place.

Microsoft itself endorses a distributed computing model, but customers
have been telling Microsoft that they want a solution that addresses total cost
of ownership (TCO). You can imagine an insurance company or an airline
that wants to bring the Windows experience to its task-based workers. They
don't always want to deploy PCs because they have to worry about hard
ware problems or people installing unreliable applications onto the PCs ..
These Windows-based terminals are more reliable than PCs because there
are fewer parts and because there's no way to install software on them. Here
all of the software can be managed centrally. If administrators want to up
date software for the clients, they can do it in one place, on the Hydra server.

235

Inside Microsoft Windows CE

You can also use these terminals to connect to other servers. Our cus
tomers want to migrate to Windows, but they can't just throwaway their
infrastructure, so other terminal emulation packages are available to connect
to their mainframes and all of their different systems.

This is the first Microsoft project to ship on Windows CE version 2.10.
It uses a vanilla version of Windows CE-not a full as configuration, scaled
down a bit. There are a lot of GDI operations going on because you have to
take those bits that come over the wire and turn them back into graphics.

The Cesysgen.bat file used to configure the Windows CE as for Windows-based termi
nals shows its extensive use of graphics and networking modules and components.

The official name for our display protocol is Microsoft Remote Desk
top Protocol (RDP), also known as T.5hare. It is an optimized version of the
industry standard, T.120, and is the same technology that is used in Microsoft
NetMeeting. The protocol is pretty smart about sending only the changing
information. If you're typing in your document, the only region that changes
is the region with the text that you are typing. Another popular client is the
Citrix ICA.

236

11 A Look at Some Windows CE Configurations

This device uses a dedicated application for its shell. Actually, I wrote
it myself. It is a fixed function shell by design because you don't want the
users to load up and start all kinds of applications but rather use them as
dedicated terminals.

I did some benchmarks and learned that the performance of these ter
minals is highly dependent on the processor speed. You'd think that it was
dependent on the communications, but the client applications are very smart
and do a lot of compression.

THE SEGA DREAMCAST HOME VIDEO GAME SYSTEM

:n~d j<:!!-rrll:n~rJ

We are providi~g a configuration of the operating system that provides the
essential APIs for producing games. Mostly, that means providing a very
lightweight configuration of Windows CE with a fully-featured implemen
tation of the DirectX foundation components.

So we provide only what we believe to be the essential core functions:

• The kernel, with its standard Win32 process and thread model .

• > The file systems. For the purpose of the file system, we needed
asynchronous I/O because you don't want the file
system to block. If you're running a game, you
don't want to be waiting for the CD. So we imple
mented async I/O, in much the same way it is
implemented in [Windows 1 NT's Windows Driver
Model (WDM). It is used by the core of the file sys-

Ted Kummert tem to enable overlapped reads from the file
system.

• GWE. From User and GDI, we've provided just enough to do
text output and just enough for application messaging to allow
for input to the system.

•. Other modules and components. We also support the core connec
tivity, the comm stack.

237

Inside Microsoft Windows CE

We can't really say much more about this system right now. The inter
nals of Windows CE for the Sega Dreamcast system are only really available
to you if you get a development agreement and nondisclosure agreement
with Sega.

The Sega Dreamcast system uses fewer eWE components than the other configurations.
It uses only what it needs from eWE to support the Windows CE implementation of
DirectX.

238

11 A Look at Some Windows CE Configurations

THE AUTO PC
Patrick Yolk

The base design for the Auto PC had a multimedia focus. Because the vehicle
is such a difficult place to mount equipment, we wanted to take advantage
of the standard space for mounting add-on entertainment equipment: the
radio, the CD player, the cassette player. By targeting that one-din or two
din opening in the dashboard, we were committing to providing the same
services that you are used to seeing there as well as all the other features
offered by the Auto Pc. Your information space moves into your car and you
have access now; you can stay connected.

Patrick Volk

Because we moved the system into the dashboard,
it had to be capable of full multimedia, with the ability
to play the radio and the CD. We wanted to match the
high-end systems, so we went with digital audio capable
of surround sound and digital signal processing. This
required isolating a lot of the data streaming for the
speech input, speech recognition, audio input/ output, .
and equalizer handling. We had to provide processing

power external to the CPU because the device is for consumers and the price
has to be suitable. The power management has to be suitable. The device has
to be able to go into very low power mode and not drain the battery.

AUTO PC ARCHITECTURE: SEPARATE PCI AND CPU BUSES

We built our system around an internal PC! bus. The PCI bus is not designed
to be an expansion bus but rather to allow us to move data without much
CPU involvement. The CPU is isolated on its own local bus and can process
speech recognition and the whole normal gamut of tasks that Windows CE
needs to perform: graphics, visuals, the shell, controls. The PCI bus is the
primary hardware differentiator.

The Auto PC also differs from the H/PC and Palm-size PC in its form
factor and UI. We don't have a touch screen because while you're driving,
it's not safe to focus your attention down and not pay attention to other cars
and road activity around you. Same thing with the keypad. We don't expect
people to type email while they're driving down the road. But we had to
offer enough of a keypad to enable access to the system when voice control

239

Inside Microsoft Windows CE

isn't working. Maybe the user has a cold or laryngitis that morning, or she
rolls down all her windows or turns up her stereo system full blast. In a
much noisier environment, activating the system via speech doesn't work
as well.

The Auto PC hardware design includes a separate PCI bus and CPU bus to ensure that
the radio and CD player do not exhibit any performance degradation during peak periods
of CPU processing.

So the CPU, the DRAM, ROM, and the Compact Flash interface are all
on the local CPU bus, which is running at 60 MHz. All the other peripher
als-the CD-ROM drive, the universal serial bus (USB), all the audio in the
support module-are isolated on the other side of the PCI bus.

EXPANSION: USB AND COMPACT FLASH

Remember, I said PeI was not intended for an expansion bus in the system.
People are not going to open up their chassis and expand their systems by
plugging new hardware inside the boxes. They're going to have to plug them
in externally. We use USB for the primary expansion capability-it can sup
port 12 megabits per second. We'll use the USB to talk to the vehicle itself
via a bridge to the vehicle bus. We have analog sensors, which can also be
picked up by the vehicle bus and made available via the USB. A few direct
digital input lines are available, too, so that the system can connect to the

240

11 A Look at Some Windows CE Configurations

ignition and talk to the headlight switch and dim the system when the head
lights are on. Just plugging in using this USB enables you to support CD
Changer, a cell phone, and other USB devices.

The Compact Flash also enables expansion. This is a smaller form fac
tor of a PCMCIA and uses the same standard adopted for the R/PC and the
Palm-size Pc. So customers will be able to plug in their wireless Compact
Flash cards and stay in touch.

All of our device drivers are written to the Windows CE device-driver
model. We added the CD file system to the Windows CE core set.

POWER MANAGEMENT

We've had to work through and solve a lot of automobile-specific prob
lems. For example, although power management is built into Windows CE,
we need to extend it a little bit because of the unique power system of a car.
We have a 12-volt lead acid battery-a nice feature, but you don't want to
get in your car after two weeks of not using it and not be able to start it.

When you're preparing to work on your car, the first thing the me
chanic tells you to do is to disconnect the battery. Because of so many pro
cessors, airbags, and other systems on modem cars-systems that rely to
some extent on power from the battery-the Auto PC system needs some
kind of backup support, some kind of alternative power management. Let's
say you've got wireless and you're going to receive a lot of your informa
tion overnight while your car is parked. The wireless needs to be able to
wake up the system-but not fully, just partially. Sci we're working with the
Windows CE core team to make sure that our environment meets the power
needs of these devices.

SOFTWARE ARCHITECTURE: MULTIUSER SUPPORT

For multiuser support, the Windows CE kernel is intact; we don't do any
thing different with it. We're just building a layer on top of existing system
layers. We've adopted the Win32 subset but we put a Forms Manager on top
of GWE services: the event management, the focus management, and the win
dow hierarchy management. The Forms Manager creates forms into which
we put Auto PC controls and ActiveX controls. You can see that it's not an
extensivelayer we're building; it's a fairly tight, small layer, without a lot of
overhead ..

241

Inside Microsoft Windows CE

Special-purpose programming interfaces are being added for: the Auto Pc. In addition to
the speech API, the Auto PC will offer vehicle interface, position and navigation, audio
control, and tuner APIs.

In the car, we might want to have a multiuser station system, but
. GWE, like the Windows User32, is designed as a single-user system, with
one window hierarchy and one frame buffer. With the Forms Manager ap
proach, it's at least architecturally possible to replicate the GWE concept for
multiple users.

Our Forms Manager gets a device context from the display driver, buff
ers it, and makes it available to the shell and the applications. The Forms
Manager handles events from the keypad device driver that come through
the standard Windows CE event manager, and it dispatches those events to
the controls that have focus. This is functionality we're considering for fu
ture versions.

The Auto PC applications are on top of the Forms Manager. We don't
think our Auto PC apps are the end-all and be-all of applications for radio,
CD, navigation, contacts, and wireless communications, but they will give
people a good grasp of what the platform is able to do for them.

Speech recognition is an important part of running this system. We
want the system to make its best estimate of what a user says and means,
but we don't want the system to be too aggressive in guessing: for a user,

242

11 A Look at Some Windows CE Configurations

repeating a word to clarify a command is a lot easier than figuring out
which application just started and trying to back out of it. I'm pretty excited
about what speech can do now, but I am also very much aware that we need
to make a lot of improvements. We need to increase recognition accuracy all
the time.

Some of the proposed Auto PC commands that will be in ROM and availabk to applica
tion developers. The Auto PC SDK will also include additional words. This list of pro
posed command words is subject to change.

We talked to focus groups about different flavors of products, and
people unanimously got excited about speech control. They were less excited
about navigation, at least for North America. Maybe that's because in North
America, streets are laid out in a grid and finding your way around might
be a little bit easier. But being able to run radio with speech-that really
caught their imagination.

NEW WINDOWS CE API SETS

We've extended Windows CE with API sets that are either car-centric or
necessary for the Auto Pc. Some of them will migrate back into Windows
CE and some of them will likely just stay with the car. Let me describe them
to you.

243

Inside Microsoft Windows CE

Speech API (SAPI)
We ported the Speech API (SAPI) from the Research group, starting with
SAPI 2.0. Now we're compatible with SAPI 3.0. We worked with an outside
vendor to get the speech recognition and the text-to-speech engines into the
Auto Pc. It took some porting to make the engines SAPI-compliant and
WinCE-compliant as well as compatible with the bandwidth that's left over
in the CPU for speech processing.

Audio Control Manager API
The audio control manager API controls the audio source and destination,
allowing you to perform sound mixing and to control whether the input
source comes from the radio, the CD, a .WAV file, or from a microphone or
auxinput.

Tuner Control API
The tuner control API is flexible enough to tune any RF receiver, including
a TV. In the car, we use it for AM/FM tuning and scanning. It gives you basic
information about the tuner, such as its signal strength, and then reports on
its other capabilities, such as whether it's got stereo, etc.

Position and Navigation API (PNAPI)
This is a port of an API that was first created on the desktop for Microsoft
Expedia, Streets, and Trip Planner. We also allow navigation data content
providers to build an engine that is compatible with the system so that oth
ers can participate in the market. Application developers can write appli
cations without being concerned about specific data content providers. Both
developers and providers gain flexibility. Each can increase the function
ality of their products independently of the other. We're hopeful the whole
market will be able to grow without the bottlenecks that come from being
tied to a proprietary solution and proprietary data provider.

Vehicle Control and Information API (VAPI)
VAPI allows a developer to enumerate allof a car's data and controllable
variables,. such as the passenger environment variables. A lot of cars these
days have buses and multiple processors-anywhere from 10 to 30 proces
sors. The bus is either a CAN bus or an ODB II, a JNAT, or some other bus
that vehicle manufacturers have incorporated or adopted. The Auto PC can't

244

11 A Look at Some Windows CE Configurations

possibly define the interfaces for all those different buses and still retain
general flavor. So again, we're making an API that isolates applications from
all the complexity of the specific underlying hardware.

An IHV who knows the specific vehicle and the buses will build the
device that provides a bridge between VAPI and the vehicle, and provide
the information over USB.

The Auto PC modules and components defined in the Cesysgen.bat file reveal that it fea
tures secure communications using the Microsoft CryptoAPI.

We want to work on other functionality for the vehicle in the future,
and we can certainly support that because Windows CE is so flexible. The
system is extensible. You can buy it today and you aren't locked into what
ever set of knobs and functions you buy. You can keep current; you can plug
something into your system tomorrow without having to buy and install a
completely new system. You can add apps such as navigation systems-it's
very flexible. If you don't like the software that comes with your system

. or, if three years from now, somebody has invented a much cooler interface
or service, you can upgrade your system, find new software, and install it.
Users are very familiar with this flexibility on the desktop; they're just not
familiar with it in the car.

245

Inside Microsoft Windows CE

All this new software will change how people perceive time in the car
and their commute. As services and applications become available, the car will
become a much richer space than it is today in terms of how you spend your
time and how you stay connected, entertained, and remain productive.

THE PALM-SIZE PC

Dave Wecker

Plain and simple, the Palm-size PC is a device you want to have with you
at all times. You want to pull it out of your pocket or purse, get information,
take quick pen notes or voice notes, and then put the device back into your
pocket. It's not a platform for editing large Microsoft Word documents or
working with Microsoft Excel spreadsheets; that's not what it's designed for.
The Palm-size PC is a platform category of its own. One of the goals was to
make it smaller and less expensive than the Handheld PC, to complete the
Windows CE solution space-we now have solutions from the desktop an
the way down through the palm-size devices.

Dave Wecker

The platform itself is, of course, based on Win
dows CE. The user interface is the Windows interface
with some minor tweaks. Focus groups have shown a
strong preference for the Windows VI. People don't like
to learn something new if they don't have to. And down
to about this size, the Windows VI still makes sense and
people don't have to arbitrarily change to a different VI.

This is the first portrait-mode device we've created
(as compared to landscape mode for the Handheld PC),so we don't use the
HIPC shell; rather, we created a new Palm-size PC shell specifically for this
device. The VI actually went through four major rewrites as we tried to make
the most information available in the easiest way. We've done lots of little
things to make the device much more efficient.

The task bar looks like a normal Windows taskbar, but no tasks are on
it because all tasks are always running. From the user's point of view, they
are all runrting-apps don't have an exit button. The user just runs app af
ter app and the shell manages everything. Since the shell is doing all this
work, the user has a much simpler model.

246

11 A Look at Some Windows CE Configurations

Serial port (not shown)

Infrared serial port (not shown)

Exit button .Touch screen

Speaker

For selected platforms, Microsoft defines a hardware reference platform. The Palm-size
PC, for example, requires a specific set of hardware buttons, but OEMs can place them in
different locations on the device. This diagram shows one possible hardware design that
meets the requirements.

Underneath, the Windows CE operating system is supporting a maxi
mum of 32 processes, so Palm-size PC applications have to cooperate with
this running application model. When the apps are asked by the shell to give
back memory, they need to do that. If they are asked by the shell to shut
down, they need to be able to save their state and shut down. In the back
ground, the shell shuts down applications to make sure that you're not run
ning out of memory or process space.

NATURAL INPUT MODES FOR TBE PALM-SIZE DEVICE

For this size and form factor, we wanted to support the natural types of in
put to the device. We support voice input. We support rich inking. I like to
scribble as I go; a lot of other people also prefer putting ink directly into the
machine. So we use the Aha! technology, which looks at the ink as you en
ter it and figures out where the words are. You can cut, paste, and copy with
ink: all the operations you're used to performing with standard text, you can

247

Inside Microsoft Windows CE

do with ink. When we synchronize to the desktop, the ink becomes part of
a Word document so that you can edit the text in Word. When you synchro
nize back down to the Palm-size PC, the text becomes ink again. You don't
lose any information.

We have both handwriting recognition and the soft keyboard, or soft
input panel (SIP). In fact, they're related. The hooks for handwriting recog
nition are the same as the hooks for the keyboard. Each is just an implemen-:- .
tation of an input method. We provide two recognizers built into the device:
the natural handwriting recognizer and a simplified character set recognizer.

Many people take notes using the soft keyboard, so we made a vari
ety available in the device, plus you can add your own SIP. One of the things
I like about the soft keyboard architecture is that you can tum anything into
a soft keyboard and pop it in the device. The handwriting recognition plugs
in as an input method, so your program sees only virtual keys coming back
to you. Whether the input is coming from ink being recognized or from the
keyboard itself, the application doesn't care.

The user never has to move the keyboard out of the way because all the
applications use specific techniques to make sure they move themselves out
of the way of the keyboard.

We have all sorts of communications channels. You can come in through
the Compact Flash with modems. All the devices come with a docking cradle
or a cable to connect to the desktop for serial synchronization as well as the
standard Windows CE infrared.

On the software side, messaging and remote networking enable you
to dial up to your RAS server. We have a new Active Desktop with Mobile
Channels. A Mobile Channel is an Internet Explorer 4.0 channel designed for
the Palm-size PC screen resolution. You can synchronize the Mobile Channel
to your desktop (where it becomes a nice little desktop component) and
synchronize it to your Palm-size PC every time you pop it into the cradle.
You can use straight HTML or an advanced feature that runs scripting directly
on the device, minimizing the amount of data you have to send and store.

248

11 A Look at Some Windows.CE Configurations

Touch panel events are received by the input method and handed back to eWE. The user
input system then routes these "keyboard events" to the application, which can imple
ment standard Windows keyboard handling code.

We allow for changes in devices over time. The Compact Flash inter
face is both flexible and compatible with the laptop and other computers
with a PC Card slot. You can plug the Compact Flash into a laptop, an H/PC,
and a Palm-size PC, spreading your investment to different types of devices
across many different products. You can use a 56-KB Compact Flash modem
or Compact Flash Ethernet adapter in your Palm-size PC, or plug the Com
pact Flash card into a PC Card adapter and also use it in your laptop. We
announced a Compact Flash pager card with Motorola. Pop this into your
device, and now you have paging capabilities-you can receive any infor-:
mation that anyone wants to send to you over a paging channel.

For the developer, the Windows CE APIs look the same. as the famil
iar Win32 APIs, and the SDK is the same SDK. Developers will notice a few
new APIs for the new hardware buttons and the new input methods, but for
the most part the system uses the same Win32 API functions and Win32
programming model.

249

Inside Microsoft Windows CE

Robert O'Hara

When the WinPadproject started, the intent was to ship a PDA as qU,ickly
as possible. We had a developers' conference when we had just a bare proto
type going, at the end of September '93, and that, as it turned out, was way
too early to host the conference-we didn't have any hardware. So the
moral of that story was, don't have a developers' conference until you ac
tually have hardware from the OEMs, because otherwise you're just touting
vaporware. And we were dependent on Intel, which was building a low
power 386SX called Polar,which was behind schedule. By the summer of '94,
PDAs had clearly not taken the world by storm, and our OEM partners re
alized that these devices were going to sell for close to a thousand bucks, so
there were questions about whether WinPad made any sense at all. And then
finally, Intel said, "We decided to get out of the low-cost 386 chip business.
We want to sell Pentiums and not waste our fab plants making low-cost
386s." We would have killed it anyway, but that was absolutely the last nail
in the coffin.

Robert O'Hara

In hindsight, we shot ourselves in the collective foot
by adding more and more features; I think doing that
hurt us. We could have been very hard core and said,
"Let's get something lightweight shipped first." And so
WinPad and Pulsar were basically thrown together
right around Thanksgiving of '94. New management was
installed. It was handled extremely poorly, but that's a
nontechnical story.

You can see how these experiences shaped Windows CEo We didn't
schedule our first developers' conference until we had hardware ftom ven
dors. We mailed devices to all the people who attended the developers' con
ference within two weeks after the conference. We were not going to put all
our eggs in one manufacturer's basket, so from the very beginning, we felt
that making Windows CE chip set-independent was imperative. We wanted
to have a bunch of OEM partners in case one ,decided to pull the plug or
otherwise faltered. As a reaction to all the negative publicity around PDAs,

250

11 A Look at Some Windows CE Configurations

we had a stealth marketing approach-we did not promote this product at
all. The goal was to underpromise and overdeliver.

The original WinPad applications supported handwriting input. Byron Bishop, an early
member of the WinPad team, kept a pad of notepaper, produced for the development team,
based on this UI design. This screen shot appears in a history of the Handheld PC written
by Robert O'Hara.

As we move toward developing smaller and smaller screens, I think we
will diverge farther and farther from the. Windows VI. The Palm-size PC
creates a new form factor, a smaller size, with a portrait mode screen, no key
board, and handwriting recognition, very much like a smaller version of
what WmPad was going to be. The Palm-size PC is really back to what WmPad
was going to be all along. The hardware's gotten smaller and more power
ful and we're finally completing what we set out to do five years ago.

251

Inside Microsoft Windows CE

The Palm-size PC configuration of Windows CE is very simi/ar to the Handheld PC but
does not include the OLE storage options or support for TrueType fonts.

The Palm-size PC is also the first Windows CE device to offer wireless
communications. It will initially support one-way radios-that is, pager
cards. We're not going to just handle simple messaging in which someone
sends you a page and it appears in the Inbox as a message. We've gone be
yond that functionality to create the Mobile Channels architecture for inte
grating web content and delivering web content updates via the pager card.

Right now we've got the one-way radio down. Give us time and we'll
have two-way radios in the same form factor, which starts to get very, very
interesting. You can find all the movies and starting times within five blocks
of you, all the French restaurants in a particular neighborhood. I think this
whole new location-based assistance has potential. You can have "to-do
lists" based on place. The next time you walk into the hardware store, the
device can turn on, beep, and say, "Remember, you wanted to buy nails." We
can create spontaneous local wireless networks: So now when you're in a
meeting, you can say, "OK,let' s meet Tuesday afternoon at 3:00," and the other

252

11 A Look at Some Windows CE Configurations

Palm-size PCs-the other people in the room-become the default attendees.
You can print to the nearest printer in the building, and the device will tell you
where that printer is. These devices actually will become assistants and will
make things easier for you by being aware of where they are.

THE HANDHELD PC
Cathy Linn

I had fun preparing for the first Handheld PC Design Review because I hadn't
presented to a group in a while. I was working with Bill [Mitchell]. He was
running the infrared demo where we transfer the business card information
back and forth, and I was doing the talking. We practiced several times, and
of course, nothing worked quite right. I was holding the H/PC that was
being projected onto the big screen, and somebody was teasing me, calling
me a great Vanna White.

This was our first public H/PC presentation, our first time showing
external people what we had developed. We thought, "This demo is awe
some; this will blow them away!" But when we actually gave the talk, we
got an unexpected reaction. The audience was dead, completely dead. Now
I've given enough talks to know that sometimes a speaker can be flat, but
there was nothing wrong with this talk; it was a high-energy talk.

Recycle Bin Microsoft
Pocket Excel

The Handheld PC 1.0 shipped with Microsoft Pocket Word, Pocket Excel, and Pocket
Internet Explorer among its standard applications. Microsoft Pocket PowerPoint and
Pocket Outlook were added for Handheld PC 2.0.

253

Cathy Linn

Inside Microsoft Windows CE

We discovered later, in talking to them, that they
were all in shock. We hadn't participated in any pre
announcements or marketing, and nobody expected
working devices. They figured it would take us another
three years. And instead, we suddenly showed up with
this device that had working apps and the SDK. The
developers in the audience were stunned: "What are we
going to do? We've got to rearrange everything we're

doing now because we've got to have apps for the H/PC."
Our strategy was exactly the right approach because if we'd gone with

vaporware, the attendees would have said, "There they go again; it's another
WinPad." But our product was so far along and they'd never heard of it
before, and that really blew them away.

When I first joined the team, I worked for Steve Isaac on the Pulsar,
which was like the Star Trek communicator-way far out there, way cool, .
but not something you could ship in a couple of years. As we merged [with
WinPad], we transitioned over several weeks and started to think about the
standard Windows VI. The VI design strategy became: "How do you map
Windows 95 onto a handheld device? How do you map a device that
doesn't have a mouse but a stylus?" After a few weeks, we started getting
very excited about it. Our attitude became, "We are so cool; we are Win
dows in your hand; look at this-we're Windows 95! You can take us with
you, plug us in, and com:e back synchronized." Life became very produc
tive at that point.

When I came to Pulsar, I was going to be a technical resource because
the PM team at that time was very VI-oriented. Eventually it just became
obvious that, OK, I'm the manager. That initial core group was really focused

. and so productive that from a manager's point of view, the group was ideal
to manage. Everybody was great, incredibly hardworking. I used to be a
professor, so I really liked watching the PMs grow. It was a lot like grad
school, where you supervise your students and then you walk away and
they can do it. That was fun.

254

11 A Look at Some Windows CE Configurations

This list represents a Handheld PC based on the version 2.0 as release. Not all OEMs
offer products based on the 2.10 release, so you must examine each particular product to
determine which as version is supported.

We had a fairly technical PM team; it really does take technical expertise
to gain the developers' respect. Jeff Blum was a key person, a very dedicated,
intense, organized person with a strong technical background. Will Vong
came in as our industrial designer, responsible for a tremendous workload
not only for our product but for other products, too, and pulled it off. Kevin
Shields didn't have a traditional computer science background-he got his
degree in Political Science and had worked in Russia-but he had the abil
ity to think analytically. And we told him, "Look, this is the type of person

255

Inside Microsoft Windows CE

you're going to be working with and this is what you have to do." And he
was able to gain the respect of the developers. Very diverse PM group, an
incredible group.

We had that across the board. Laura Martinez is the type of person
who very quietly gains your respect. She had the ability, in a very nonthreat
ening way, to ask exactly the right technical question. For a short time she
was working with Dave Wecker, who's a fun, loud, off-the-wall, shouting
type of guy, and that interaction was interesting to watch. Dave would have
an idea, and without talking to anybody, he'd spend the weekend writing
code and show up with it Monday morning. The code wouldn't have been
spec'ed, and the VI wouldn't fit at all, and Laura would have to tell him to
change things. He would yell and scream but then the next day he'd have
it changed to what she said. Lots of different personalities and different tech
niques for interacting, and yet we all were able to pull together.

As I think back on it, the amount of work these people put in was in
credible. I can remember leaving at 9:00 some nights, and I was the first of
the PM group to leave. They worked incredible hours all weekend.

No matter how burned out and tired I was, though, when I started show
ing the HIPC to somebody else, the adrenaline started flowing. If some
body needed to know something about the HIPC, I gave them the short,
4S-minute; in-your-office description; thetd say "Wow! Cool!" and every
thing would start flowing. I would be instantly reenergized. I wish the other
PMs could have had more of that; we all needed that. The launch at Comdex
was the ultimate experience. We were the busiest booth around, and people
were coming from a thousand different directions, and they were so im
pressed and so positive about it that it was just a real high. I knew at the time.
r said, "This is really exciting. This is why we did it."

256

11 A Look at Some Windows CE Configurations

RESOURCES

Topic

Selecting modules and components
Input method manager (IMM) and
input method editor (IME)

Marketing case studies and
Windows CE evaluations

Windows NT 4.0 Terminal Server
and Windows-based terminals

The Sega Dreamcast system

DirectX programming

Using the Handheld PC

Developing for the Handheld PC
and the Palm-size PC

The Auto PC

Resource

Microsoft Windows CE Embedded
Toolkit for Visual C++ 5.0

http://www.microsoft.com/windowsce!

http://www.microsoft·com/ntserver/

http://www.microsoft.com/windowsce/
dreamcast/

Inside DirectX, by Bradley Bargen and
Peter Donnelly (Microsoft Press, 1998)

Introducing Microsoft Windows CE for the
Handheld PC, by Robert O'Hara (Mi
crosoft Press, 1997)

Microsoft Windows CE Platform SDK

Microsoft Auto PC Software Develop
mentKit

257

I

;1
!I

il
~•.... 'I' " i

'I

1ld2 The Future of
WindowsCE

Inside Microsoft Windows CE

T his chapter discusses possible future directions for Microsoft Windows CEo
It doesn't need much introduction, except perhaps to explain why a chapter

about the future contains so much about the past. As a famous writer once explained:
"The past is never dead. It's not even past."

Frank Fite looks at the immediate future to discuss system software features
in the next releases of Windows CEo Dave Wecker discusses hardware enhancements
that we can expect to see in the next year or two. Harel Kodesh looks at the impor
tance of TV-based devices in the home and the shift in Microsoft customer demo
graphics from people who are computer-savvy to people who are intimidated by the
computer. Brad Silverberg talks about the organizational and management chal
lenges ahead for the Windows CE team. Tandy Trower describes current and future
high-bandwidth social user interfaces. Microsoft architect Edward Jung discusses
some of the ideas present at the birth of Windows CE that were ahead of their time
and still await implementation. He also discusses the benefits of a single program
ming model for all Microsoft Windows and Windows CE devices.

FUTURE SYSTEM SOFTWARE

Frank Fite
~~~"~-~~~ 

The next releases of Windows CE will have expanded processor support. 
Right now, we run on a good number of processor architectures and distinct 
chips, but there are many more we don't run on, and a lot of new features 
are coming out on processors that we can't yet take advantage of. Another 
big area for us in the future will be multimedia. As Windows CE is embed
ded in multimedia platforms, we'll provide more support for DirectX. 

Yet another area of growth for us is better and better 
connectivity. We have pretty good connectivity now with 
the basic protocols, which let you dial up or hook up to 
Microsoft Windows NT: TCP lIP, PPP, RAS. We have pro
grams for the Windows NT side that enable you to access 
APls on the Windows CE side and move bits back and 

Frank Fife forth. Connectivity right now is really good, but a lot of 
Windows NT developers want to use Windows CE clients 

in a spread-out network program that has object-oriented methodologies 
and tools that we don't yet support. Right now, we have COM support, but 
we support only those objects that are local on our machine and local to a 

260 



12 The Future of Windows CE 

process. With Distributed COM (DCOM), you can have all the objects 
throughout your network talking to one another. So we're currently working 
with DCOM and RPC so that in the future we can move to the new object 
model for Windows NT-COM+. 

It is important to us to be able to hook into Windows NT BackOffice 
applications. We'd like third parties who work on other operating systems 
to connect their server applications to Windows CE too. We'd like Windows 
CE to work with as many systems as possible. 

We already offer real-time, and we will be adding more features that 
customers of real-time operating systems want. Offering more components 
is always a good thing because we can provide more features, but helping 
people put the components together is really critical. We will be making 
componentization much easier for people. The tool set, which is critical for 
both componentization and for real-time functionality, should include sup
port for enhanced debugging, better basic monitoring, and performance 
monitoring-all those perks that hardcore embedded designers really want. 
We can't provide all these enhancements by ourselves. We hope to get a lot 
of help through partnerships with third parties, who will see the value in our 
OS and make money selling their tools for our OS. We'll need all their help. 
The general-purpose embedded market is a big, varied market. Niche mar
kets exist in there; people have expertise in different areas; tools are avail
able for different kinds of products. We're not going to meet the need of 
every customer in every product area, but where we do, we want to have the 
best tool support possible. 

FUTURE DEVICE HARDWARE 

Q?ve Wecker 

I'm principal engineer for all of Mobile Products, so I have technical and 
architectural responsibility for everything under Bill's [Bill Mitchell's J orga
nization-the Auto PC, the Palm-size PC, the Handheld PC-anything not 
attached to a TV set. We're looking at how to add more storage to various 
devices. 

The first of the storage options being made available is Compact Flash. 
These cards currently come in sizes of up to about 30 MB, and next year they 
will be up to 60 MB or so. A Compact Flash memory card is identical elec
trically to a PCMCIA card. It's missing eight data lines and eight address 
lines, but otherwise it's identical to the PC Card; the same driver works for 

261 



Inside Microsoft Windows CE 

both. It's fast, relatively speaking; it's nonvolatile; it doesn't need a battery. 
The problem is, Flash memory isn't cheap. When you get into 100-MB Flash 
memory cards, you get into a price that's a little more expensive than people 
would like. 

In the Palm-size PC, the OEMs built a Compact Flash 
slot that has a bump. We've tried to promote a new stan
dard-a Type 2 Compact Flash-that enables us to do a 
couple of things, the most important of which is allow 
wireless devices. The form factor of the current device, 
which is about 3.3 millimeters in height, isn't big enough. 

Dave Wecker The new one, which is 5 millimeters, is actually big enough 
to insert electrical components other than memory cards. 

You can pop in a pager card, for example. Some companies are building 
modems, and we already have an Ethernet card that plugs in at the regular 
Type 1 form factor. If the Type 2 becomes popular, you'll see more and more 
devices. I think I/O devices in the Compact Flash form factor will be more and 
more interesting. 

A new device named the Clik!TM drive from Iomega is 40 MB, and it will 
be out in a 100-MB size this year. It's very cheap, but you've got to spin the 
media, so drive requires more battery power and the access time is slower. 
We're talking dollars per disk at most instead of hundreds of dollars for Flash 
drives. The media and the drive around it is relatively large-the drive is 
bigger than the whole Palm-size PC device-so using this is more of a possi
bility in larger PC companion devices. 

Some interesting products are coming in very small, fixed, optical drives. 
Hundreds of megabytes on a little piece of plastic that costs less than a dol
lar per media chip. One idea is to use this as a replacement for a Walkman 
because it has no moving parts, meaning that it is completely shock resis
tant. Initial drives will be read-only and probably fit in a Type 3 PCMCIA 
slot. Again, these drives aren't really applicable to smaller devices for the time 
being, but they will shrink dramatically. And if you increase the power-use 
a new technology or organic LEDs-you might be able to make the drives 
read/write. There's also new rotating optical media coming, which looks to 
be very high density. 

262 . 



12 The Future of Windows CE 

BATTERY TECHNOLOGY 

One of the problems is power. The problem with rotating media is you pay 
for it in power. For instance, the HP [Hewlett Packard] color H/PC has a 
lithium ion battery. It doesn't take size AA. So I think you're also going to 
see a lot more in the way of bigger batteries, especially in the larger PC 
companion devices. And as soon as you use bigger batteries because people 
want an 8-hour continuous run, you'll be able to put these little disks in a 
Windows CE device. I don't think it's at all unreasonable to expect to see 
bigger batteries within the next year. 

In terms of the Handheld PCs and Palm-size PCs, battery life isn't as big 
a problem because most of them are going to rechargeables if they haven't 
already. Typically a user pops the device into a cradle to synchronize, and 
every time she does, the battery recharges. There have also been some very 
recent advances in zinc air battery technology, which offers five times the 
battery storage of alkalines. 

WIRELESS 

Wireless communication is also going to affect storage. If you can just pull 
the information you need off the Net or off the air as you need it, why should 
you locally store anything except the page you're looking at? This year we're 
supplying one-way communication, mainly because we want to fit the tech
nology into the smaller size. I can put a one-way pager into the Compact 
Flash form factor. When you go into two-way, unfortunately things get big, 
and you need a transmitter and power for it. 

But we will start growing these devices into phones. Either the Palm
size PC has a phone in it, or the phone has the Palm-size PC software in it
take your pick. In the future, you'll see both. Once you have that technology, 
you have full two-way capabilities: digital PCS services, short messaging 
services, and the like. As soon as I go to digital PCS, I can do full data up and 
down besides doing regular speech. And again, add more battery to the de
vice and now you've got a full phone. There's no reason I can't browse the 
web, retrieve books, and do all this other stuff. Just grab what I need. We 
already handle email with two-way. Besides paging, we'll also do full wire
less email. 

263 



Inside Microsoft Windows CE 

The point is, with the OAL and the driver model we have, anyone can 
write a driver for these various devices. Software isn't holding them back, 
which is great As soon as the technology is developed, we can enable it almost 
instantly. Also, once developers write a driver for one Windows CE device, the 
same core is underneath all the devices. The developers can run this driver 
in the car, on Palm-size PCs, on H/PCs--:-it doesn't matter; it's all Windows 
CEo The driver model is the same, which of course makes life much easier. 

So, in general I don't think there's any problem with all these new 
devices coming. We support them; we enable them; and they're all Win32. 

GROWING THE WINDOWS CE TEAM 

Brad Silv~Iberg 

During the first few years, we were very conscious of staying focused. People 
came to us with all kinds of ideas: "Oh, let's do this thing" and "Let's do that 
thing." I vetoed all of them because I wanted the team completely focused 
on that first device. Staying on track enabled everybody to be totally commit
ted and motivated, giving that initial device its greatest chance for success. 

A good way to kill opportunities is to try to do too 
much too soon. You end up with too many teams that 
don't have enough people. You don't have enough re
sources; you don't have enough management; you don't 
have enough focus. You end up signing too many con
tracts, and then your managers are always flying around 

Brad Silverberg talking to this guy or that guy explaining why this is late 
or why we can't do that. You have to learn how to say no. 

You have to maintain a kind of iron-fisted focus on the initial devices and 
stay close to those OEMs. You just have to say, "Okay, let's get those first ones 
out the door. Let's make those successful, and then we'll broaden our focus." 

It was tight. People worked really hard, but we made it, and I think it 
has proved to be an extremely high-quality operating system. Happy part
ners, you know. If you look back at the history of WinPad,you'll see that the 
partners weren't very happy. The products didn't get delivered; the prod
ucts didn't meet expectations; we had to get out of a lot of contracts. We had 
to clean up a lot of messes. In contrast, the original partners of Windows CE 

264 



12 The Future of Windows CE 

are still around, and we have added new partners. People are pretty happy 
with the way things have turned out. And a lot of that success does come 
from a really clear sense of what we wanted to build, the initial project fo
cus, the discipline, and learning to say no. 

You know, Harel [Kodesh] is really the guy. I was around in the begin
ning to help put the WinPad and the Pulsar teams together. I was in the 
tough situation of having to name somebody to head the new group; both 
the WinPad guys and the Pulsar guys wanted to run the group. You just have 
to bet on one person, so I spent a lot of time with Harel and a lot of time with 
some of the other folks and decided to bet on Harel. I wanted him to do the 
job, and I was going to provide him with advice, feedback, direction, and 
mentoring; I wanted to help him grow: build the team, build the product, 
build the relationships, and grow. And I think that succeeded. He's got a very 
strong team with good products. Probably the most rewarding part for me 
is seeing how people exceed your expectations, even when you have high 
expectations. 

It's gotten to the point now where Windows CE is a pretty hot part of 
the company to work in. It wasn't that way when we started. There were a 
lot of skeptics in the company who told us why we would never succeed. 
But today, you know, there's a lot of excitement. The quality of people work
ing there is very high and they have the ability to attract even more good 
people. I think that's a testament to Harel and the job that he's done to stake 
out a vision, build a team, and provide real leadership. One indicator of 
successful projects is how many of the original people are still around-you 
can see how many people from the original team are still there. 

I think the group has a really good sense of teamwork. You can iden
tify with what I mean: a sports team can have a lot of talented players, but 
if those players aren't really dedicated to the team, the team doesn't typically 

-end up winning, When members of the team understand that the team-the 
product-comes first, they experience a kind of selflessness. Whenever a 
problem comes up, anybody who can help just does whatever he or she can 
to solve it. 

As we move into the future, our challenge will be to maintain that fo
cus. Good managers should groom people underneath them who can take 
on individual projects and demonstrate the same level offocus and disci
pline. Managers need to be able to decide which projects to pursue while 

265 



Inside Microsoft Windows CE 

continuing to make the technology investments, both the conservative ones 
to ensure that the near-term and medium-term projects succeed and the 
more speculative ones that deal with concepts such as voice and handwriting 
recognition. 

WINDOWS CE IN THE HOME 

Over the last few years, we realized that there are three distinct markets for 
Windows CE: embedded systems, the mobile area, and high-end graphics 
systems-TV screens. 

Some of the design wins for embedded systems are going to be generic 
designs for us: We simply give people the embedded toolkit and let them 
build a system. For these generic systems, we don't provide any UI. You can 
do whatever you want with the shell. You can have our shell or somebody 
else's shell or no shell. But for the other markets, we realized that to be stra
tegic we need to claim the domain. In the markets where we are 100 percent 
committed, 100 percent involved, we come up all the way from actually 
testing some of the devices to building the UI. For example, in the TV mar
ket, we are driving the strategy; this is where we just take leadership and 
really drive all the aspects of the business. 

Harel Kodesh 

The TV screen is the most prominent screen in the 
house, not just because it's a big screen-it's probably 
the only 20-something-inch screen that you have at your 
home-but because it's in a strategic place. The TV is al
most like the fireplace of ancient times. It's a social event; 
the whole family gathers around. Even if the TV screen 
isn't perfect (it's interlace and not progressive scan, 
which is much more friendly for computers or consumer 

information appliances), it's still the only thing like it in the home and we're 
not going to start changing consumer preferences. Rather than just create an
other, completely different industry, we're going to work with the TV indus
try to provide data services. 

The TV cable and the satellite cable are the two prominent, high
bandwidth inputs into the home, and we need an information appliance that 
terminates the network. There are a couple of ways to go about that. One is 
to take the PC and add TV-related features. The other is to subset the PC 
functionality for people who want to mix Internet with broadcasting or who 

266 



12 The Future oj Windows CE 

want to play games. We intend to playa very dominant role in this market 
by making sure that we understand what consumers need, that these types 
of devices exist; and that we work with prominent players, everyone from 
game companies to cable companies. 

We will take advantage of whatever technology is available for the trans
mission, whatever is developed for connectivity. Other groups at Microsoft 
are trying to advance the state of the world in that area. ADSL (asynchronous 
digital subscriber line) will be available; IP telephony will be supported on 
these boxes. But if for some reason AD5L doesn't come in the next three 
years, we'll still be able to get value out of Windows CE devices. We take the 
simple approach that we will work with whatever is available. 

We also recognize the need to create new technologies and adopt ex
isting technologies from Microsoft. So for instance, Windows CE is adopt
ing DirectX, our game API. In our case, this is going to be optimized even 
beyond the Pc. Because the device is an information appliance, we don't 
ship the same code to people using graphic accelerator x and people using 
graphic accelerator y. We can optimize the heck out of the software to work 
really well with a specific system. 

The biggest question is how to make our software easier to use as the 
demographic landscape of users of Microsoft products changes. Our mar
ket is changing from computer-savvy people to people who are intimidated 
and don't know how to plug the various components together. 

The way PC software is built today, everybody has to be a do-it-your
self mechanic. With PCs, you have to open the hood once in a while. With 
Windows CE, we don't require people to open the hood-ever. There is no 
hood. Our ideal model is service-based boxes, where somebody on the other 
side of the cable or wire makes sure that you get everything you need and 
thatit is easy for you to use. 

THE NEW INFORMATION ENVIRONMENT 

Icm<:is TrCLweL 

With PC technology, we were limited to sitting at our desks to gain in
formation. But Windows CE is now to the point where we're not limited. 
Wherever 1 am, I have access to information. Sitting in my car, walking down 
the hall, sitting down at my desktop, sitting at an electronic whiteboard
the information can move to any of those spaces. Before, I had to go to the 
information. Now the information is all around me; it can accompany me. 

267 



Tandy Trower 

Inside Microsoft Windows CE 

Technologies now exist that enable me to commu
nicate on a larger bandwidth; I can send you a piece of 
mail, and you can receive it without going back to the 
office. All this means a very rich form of interaction, a 
rich convergence of information, coming in to the user as 
well as going out from the user. The Windows CE plat
form provides the potential to get to a place where my in-
formation space is ubiquitous. 

I see possibilities where the appropriate information comes to me based 
on where I am and the task I'm performing and the device I'm interacting 
with. In my car driving down the road, I might want travel and map in
formation, or hotel and restaurant databases. In the kitchen, I might get infor
mation on recipes or pull up my shopping list. In my family room, I have 
access to online videos or what's playing next. In other situations, the same 
information might be accessible to me but won't be the primary information. 
The information adapts to me and my environment. 

Another interesting area for these portable devices is understanding 
how to display information that is appropriate for the devices. It's likely that 
portable and handheld devices will always have smaller screen capacities 
than desktop systems. Developers should be able to annotate objects for 
display so that an object, like a web page, will know where it's being dis
played, automatically adjust itself to the form factor, and display appropri
ate information for the device. A www.sidewalk.com page on a large desktop 
screen knows ifhas a lot of room and knows how to layout its objects; a page 
viewed under Windows CE automatically rearranges itself or scales down. 

Getting to smaller screens isn't just a matter of scaling everything 
down, it's really a matter of asking: "What information is important to dis
play in this form factor, and what is the best way to lay it out?" Microsoft is 
in the process of developing technologies that will help developers make 
those decisions. 

LINGUISTIC INTERFACES 

I can talk in general about directions that I think the Windows interface will 
go. The interface will support more modalities than the click-and-drag types 
of interaction we have today. Certainly, direct manipulation of the user in
terface has been a fundamental feature of the overall Windows interface. 

268 



12 The Future of Windows CE 

This interface is very intuitive for the user. People understand how to click 
on icons and drag items in the interface because these actions relate to their 
real-world experiences. 

This kind of direct manipulation isn't going away, but we're going to 
extend and enhance that mterface and provide linguistic interfaces that take 
advantage of speech and natural language capabilities, and perhaps gesture 
and handwriting forms of interaction as well. 

One of my ongoing projects right now is called Microsoft Agent. It 
enhances the modalities of the interface by allowing applications to create 
a sense of social presence on the Pc. That major component of the human
computer relationship has been missing. We've focused on the cognitive 
aspects of communication-what we can remember, how we parse visual 
information. What this inquiry has totally left out of the picture, however, 
is an acknowledgement that human beings are social animals. When we talk 
with one another, we exchange nonverbal cues all the time. Like, I'm talking 
to you right now and you're nodding your head. If I was saying something 
that you didn't understand, you'd probably give me a puzzled expression. 
You might tense up. Your body posture tells me a lot about how interested 
you are in what I'm saying. We pass a whole set of social cues back and forth. 

Microsoft's first attempt with the social interface was called Microsoft 
Bob. Although that product failed in the marketplace, its goal, I believe, was 
absolutely correct: to provide a focal point for communication between us
ers and their pes. The second-generation effort was the Microsoft Office 
Assistant in Microsoft Office 97. Microsoft Agent is the third generation, and 
it usually takes Microsoft about three generations to get things right. So 
being immodest for a moment, I think we're getting it right this time. 

Microsoft Agent is an open system; any developer can write to the API, 
which is simple but very rich in that it allows developers to put interactive 
characters on the screen. Those characters can be used for any purpose: as a 
focal point for user assistance, like you see in Office; as tour gUides; as shop
ping assistants; as a means of support-rather than calling in to a support 
line, you query the support character. 

Or the characters could be used simply for entertainment purposes. 
I've seen a couple of applications for Microsoft Agent in traditional computer 
games, like Reversi or chess. The difficulty is personifying the computer, so 
the model is fuzzy. Some of these games have just added an animated char
acter that reacts to your moves. For example, after you make your move, the 

269 



Inside Microsoft Windows CE 

character scratches its head or displays a disgruntled look because it didn't 
like your move. But that changes the whole dimension of the interaction. 
Now you are getting information that you would traditionally get only from 
another human being. This type of interaction is not necessarily a system 
requirement, because you could certainly play chess against the computer 
without it, but it adds an extra, more natural dimension to the interaction. 
And that's really what Microsoft Agent is designed to do. 

We think enhancing the communication channel this way will help us 
introduce speech into the interface. Several studies show that speech works 
much better when it has a focal point. I theorize that those results have to 
do with the mental model users create when interacting with the computer. 
If you're talking to your computer and all you're seeing on the screen is your 
normal CUI interface, you build this mental model: "Wow, this is my com
puter; it's supposed to get everything right; it's the model of precision; it 
shouldn't make any mistakes." But as with most recognition technologies, 
there are breakdowns; mistakes will happen. Breakdowns occur in human 
conversations as well, but we use a variety of different strategies to repair 
the breakdowns. One of them is social feedback. If I start speaking gobbledy
gook, you'll give me a very puzzled expression that lets me know immedi
ately that you don't understand; you don't have to say a thing. You don't 
have to put up an invasive dialog box. All you have to do is give me a puzzled 
look, and I'll know that I'm probably not communicating at that point. 

Speech combined with social cues creates a much more natural model, 
which we learn by communicating face-to-face with each other. From the day 
we're born, we look up into our parents' faces and try to read them. A num
ber of studies show that children are happier when presented with images 
of faces as opposed to just any image. Facial expressions are important to us. 
It's not impossible to communicate without having a face in front of us-we 
do it all the time over the phone or listening to the radio. And we can create 
a social presence without necessarily putting a face on the screen. The clas
sic example is HAL from "2001." Clearly HAL Was a personality, and yet 
he didn't have a face. His personality was expressed in other ways: in the 
way he spoke, in the way his presence was established. But face-to-face vocal 
communication is one of the highest bandwidth communications that hu
mans have. With Agent, we're trying to create the same high-bandwidth 
experience. 

270 



I 

I 

I 

12 The Future of Windows CE 

Character, speech, and natural language understanding are part of the 
linguistic interface. Some of the decision theory research investigates how 
to understand user intent. I think as systems grow to have more memory 
capacity and richer processors, we'll see expanded opportunities to include 
smart interfaces. The software will be able to model the user's intent, offer 
to perform tasks on the user's behalf, and learn which patterns of tasks the 
user will delegate to the software. 

You see some of this functionality in the Microsoft Office applications: 
if you repeat a certain sequence, Office automatically offers the same se
quence to you. For example, in Microsoft Excel, when you enter dates into 
three columns and you tab to the next column, Excel offers to put the date 
in the fourth column automatically. Or consider the smart spelling capabili
ties that you see in Microsoft Word: when you type teh, Word interprets that 
you really meant to type the.and automatically corrects your spelling. If 
Word's correction is not what you intended, you back up and you change 
it; Word doesn't try to change it again. I think building a Bayesian belief 
network about what the user is doing will become important. 

THE FUNDAMENTAL THINGS ApPLY 

The basic principles of user interface design don't change. When designing 
for interaction, the fundamentals apply. For example, keeping the user in 
control is important. One of the lessons we learned with Microsoft Bob is 
users want to be able to control their interaction with characters. One prob
lem with Bob was the ever-present character. Although we are social ani
mals, we need privacy and we need to work on our own. When the character 
was constantly present, people felt the interface was condescending, because 
it implied, "You always need assistance, so I'll always be here, and you can't 
dismiss me because you're not skilled enough to know how to do things on 
your own." There wasn't enough user control. 

Microsoft's three generations of social interfaces: characters from Microsoft Bob, 
Microsoft Office, and Microsoft Agent serve as the focal point of the user interface. 

271 



Inside Microsoft Windows CE 

With Microsoft Agent, we've given the user more control over the in
terface. If the user doesn't want to see a character ever again, she can click a 
check box and none of Agent's characters will show up in her face. Users can 
also control other aspects, too, such as turning off speech input or output in 
environments where they're not effective. Some people simply don't like that 
form of interaction. They work better unassisted, without any other person
alities around them at all. So users always have to be able to control and 
personalize the interface. 

The principle of consistency holds up for the CE platform just like it 
does for the desktop platform. Users are most comfortable with things that 
remain relatively consistent with what they expect. You can allow a certain 
amount of variation as long as the fundamental principle of interaction works 
the same. For example, I show you five different designs for a button and 
as long as each looks like a button, you understand their function and you 
care less about their differences. But as soon as the functionality of something 
familiar changes, you get confused. 

And this all gets back to why we use metaphors in the interface. Meta
phors are intended to provide cognitive bridges from what a user knows to 
a new experience. As human beings, that's how we learn new situations, by 
conscious and unconscious comparisons to previous experiences. You don't 
have to be rigid about staying with the metaphor, but you want to be con
sistent enough to provide a bridge to a new experience. 

THE SINGLE PROGRAMMING MODEL 

Jidw,!rdJ.!lDg 

When we started the Advanced Technology division, one of our big goals 
was insurance against sea changes: "What could wipe out Microsoft? In the 
same way that CDs wiped out vinyl records, what could do the same thing 
to Microsoft?" 

Edward Jung 

Certainly one possibility is that somebody's speech 
interface becomes very usable and takes over, and every
one gears their hardware and tailors their apps to this 
new speech interface. Everything that we've got today 
will fade in importance; all the action and innovation will 
happen somewhere else. That's what will kill us. As a 
software company, we're so dependent on innovation 
happening on our platform. 

272 



I 

12 The Future of Windows CE 

Steve Ballmer's mantra back at the time we started the Advanced Tech
nology division was, "Windows everywhere, Windows everywhere." So we 
had off-site meetings about how to get Windows everywhere. Certainly one 
of the form factors that we were thinking about then was the handheld form 
factor. One of the first projects, Pulsar, was based on two underlying ideas: 

., A traditional, larger form factor PDA with handwriting recogni
tion . 

., A wallet PC that would hold electronic money (e-cash). Think of 
it as a really, really fat smart card. 

The wallet PC functions were centered around purchasing and pager 
messaging. If you went shopping, it could hold your credentials, help you 
find things to buy, and keep track of all that for you. Some studies that cir
culated even suggested that the money supply, Ml, could be affected if you 
had e-cash floating around as opposed to dollar bills! 

We originally believed that electronic wireless communications would 
be fairly prevalent and that e-cash was right around the corner. A lot of the 
early architectural and technical work for Pulsar was based on these con
cepts, which didn't materialize as fast as we thought they would. And when 
they did come into play, they were extremely expensive. Even today, widely 
available wireless communication is measured on a per-minute basis. And 
e-cash doesn'tlook like it's going to happen very soon. 

(Another area where we really guessed wrong for Pulsar was memory. 
When we started, memory was cheap and looked like it was going to get 
really cheap. Of course, as we all know, in themid-1990s memory actually 
got quite expensive compared to the other parts of a Pc. Now it's cheap 
again, but it leveled off for a while before it dropped again. So this idea of 
an operating system that did more than just the bare minimum turned out 
to be expensive and noncompetitive. That memory price hurt us. Oddly 
enough, we also guessed wrong when memory prices were high. We em
barked on a project called Talisman, which was all about trading off memory 
for CPU to get amazing graphics and sound. Of course, just about the time we 
were ready to release that technology, the price of memory dropped through 
the floor. So that was a case where we bet wrong on one side and then we 
bet wrong on the other side. It just shows how tricky it can be to try to plan.) 

After Pulsar merged with WinPad and became the Handheld PC, and 
as we got more and more into the project, we had a lot of really interesting 
ideas that never panned out. Some of the wireless packet radios and pagers 

273 



Inside Microsoft Windows CE 

were running at roughly the same frequency, so we had this idea that the 
pager radio would turn on the wireless radio. The reasoning was, batteries 
for wireless radios last six or seven hours, but the batteries for pagers last a 
couple of weeks. You would get a page and that page would turn on your 
wireless radio, and then you could wire some connectivity so you wouldn't 
eat up your battery. 

So all those ideas about the design of the Palm-size PC-its form factor, 
its size, the handwriting capability-those were all ideas we had at Microsoft 
back in 1994, and I'm sure those ideas also existed at Apple and a billion 
other places that we won't know about. In this industry, every idea is basi
cally the same idea over and over again, just in a different context. It's really 
the timing of the idea that's important. So many things we do today are ideas 
we had a long time ago, but the timing just wasn't right. If you layout the 
history of Pulsar and the H/PC, it's really interesting to see how we change 
and adapt and remold our initial ideas, and how the infrastructure changes. 

When you talk to OEMs about why they were interested in Windows 
CE, you find out that establishing a standard enables them to get access to 
a lot of applications that they don't want to write. They want to be experts 
at their hardware or running their distribution channel. They don't want to 
write every single app out there. If you open it up for anyone to write the 
apps, you win. It's that simple. 

Of every dollar spent on software innovation by a venture capitalist or 
by a bank, the largest fraction of that dollar should go into innovation. When 
everyone spends 50 cents on the dollar for the same work, they're wasting 
money. Before we created Windows, developers had to write every printer 
driver and every graphics hardware driver. This amounted to huge devel
opment, test, and support costs, which the developers had to pay. It made 
software much more expensive, and it also capped innovation for printers 
and graphics and input devices, because the IHVs had to try to sell appli
cation developers on writing drivers for their devices. It was inefficient. If 
innovators have to replicate everything from top to bottom again and again, 
they never get anywhere. But if you always build up the standard, one layer 
at a time, and move forward, your innovation wins. Windows gave you a 
programming model where you wrote to an abstraction and all those driv
ers were handled for you. Microsoft took on the onus of testing a lot of the 
drivers and gave people a standard to test against. 

274 



I 

I 

\! 

12 The Future of Windows CE 

The computing experience that really helps augment your choices in 
life-that's what we want to make as available to you as possible. If you can 
put it in your pocket or carry it around, and it has enough surface area for 
a UI, it should be a Windows CE device: a tablet, a notebook computer, a 
wallet. A wallet makes a lot of sense, if we can make it strong enough to 
avoid breaking when you sit down. It should be something you can carry 
around with you at all times. 

Windows CE is going to straddle a wide range of user interfaces, and 
it will also straddle a huge disparity of bandwidth-sometimes highly 
asymmetric, sometimes symmetric and huge, sometimes symmetric and 
tiny. You don't want to download your entire inbox over a slow wireless 
network that costs 15 cents a minute. Notions of priority and importance 
have to get measured against the cost of moving that message. For example, 
it makes no sense to send a humongous graphic to a wallet device. 

One challenge we'd really like to address in the next several years is 
how to enable people to develop for these different devices without writing 
a separate application for each one. Writing a bunch of separate applications 
will ultimately stifle our innovation. We want to tell developers, "Write to 
this abstraction." We'll handle getting the code onto devices the size of a 
wallet and the size of a whiteboard so that developers don't have to hand
code and test every configuration. Ultimately, we want to say this: "Hey, 
here's one programming model for all those devices." 

One example of that single programming model running with in
house technology is Microsoft's Sidewalk.com; I think we want to get technol
ogy like Sidewalk into our Windows programming model down the line. 
Sidewalk is built in such a way that an application developer can describe the 
intention of what she wants to show the user so that it will be rendered ap
propriately on different form factors. By changing a driver, Sidewalk ren
ders a down-level HTML client, HTML with ActiveX controls, or DHTML, 
so the authors don't have to change any of their back-end content. That's 
a big win for Sidewalk in terms of keeping to their editorial publishing 
schedule and managing their workflow without the worry of how the in
formation is rendered. 

Sidewalk was done in SGML, a predecessor of XML, because XML did 
not exist at the time. XML is certainly becoming the industry-standard for 
describing your information, and applications will probably continue to use 

275 



Inside Microsoft Windows CE 

XML in the future. The developer on the back end describes the capabilities 
of the application, and a run-time library figures out from those capabilities 
what you want to show. That information gets rendered in XML, the XML 
goes across the wire, gets bound to a style sheet, and gets displayed. 

Desktop PCs, 
WindowsCE 
devices 

XML and related standards allow you to define tags that indicate the logical role of 
your data, rather than only its formatting information. Microsoft is currently promoting 
the use of XML in a three-tiered architecture. Information passes between databases, 
Web servers, and end users at a desktop or Windows CE device. The XML content can 
be translated to HTML so that the logical information can be rendered appropriately 
for that device. 

You can do a lot with only XSL or the style sheet languages and bind
ing to logical tags, but there's a limit. Sidewalk, for example, supported a 
telephony interface. To create an adaptive telephony interface, you have to 
be very careful. Your rules are based on the length of the utterances and the 
assumption that the user can remember 7 plus or minus 3 items. The way 
you navigate through the data using a telephony interface is totally differ-

276 



'I 

'I 
~I 
~ I [I 

12 The Future of Windows CB 

ent from the way you would navigate through an HTML page. So a renderer 
that can handle a telephony interface requires different kinds of information 
than you would tend to see in style sheets, which are usually geared to vi
sual presentation. 

Another interesting challenge involves your schedule and email. How 
would you convert it from the full size of the desktop display to less than 
one-eighth of your screen, or even less? You can't just miniaturize it. You 
have to be smart about what data you throwaway. Style sheets aren't usu~ 
ally powerful enough to do that kind of work. They're not good at filtering 
how much data you want to see. 

We're also faced with the challenge of figuring out how adaptable the 
device really has to be and which markets go for the different form factors. 
That's what we're doing today. We did the same research with Microsoft 
Office: we understood which apps were used by whom and we understood 
their relative importance. That was great input when we integrated it all. It 
told us what features had to go into our scripting programming language, 
VBA, and where to emphasize Office assistance. Same thing with Wmdows
we had several years of DOS under our belts helping us understand graph
ics cards and what people thought about layered pixels, the color model, and 
pixel blocks versus true bitmaps. We can learn a lot from the market 

In the next few years, we're going to have a greater understanding of 
the different form factors and how people use them, and that's going to give 
us information on how to build this new programming model. 

RESOURCES 

Topic 

beaM, COM+, RPC 

DirectX 

WebTV 

Microsoft Agent 

XML, XSL, and XQL 

Resource 

The Platform SDK, available through the Microsoft 
Developer Network (MSDN); http://www.microsoft.com/ 
msdn/ 

Inside DirectX, by ,Bradley Bargen and Peter Donnelly 
(Microsoft Press, 1998) 

http://www.webtv.com 

. http://inetsdk/workshop/imedia/agent/ 

http://www.microsoft·com/xmll 

277 





INDEX 

A ASCII (American Standard Auto PC, continued 
Code for Information software architecture, 

Access (Microsoft). See Interchange), 218 241-43 
Microsoft Access ATA hard disks, 62, 73, 128 special-purpose program-

access keys, 52-54 ATDT commands, 141 ming interfaces for, 242 
Active Data Objects (ADO), ATL (Active Template voice interfaces and, 154, 

13,63,213-14 Library), 12, 13, 204, 205 167-70,239,242-44 
Active Desktop, 151, 248 Auto Control Manager, 244 Volk on, 239-46 
ActiveSync architecture, Auto PC Ayala, Roland, 204-5, 230 

144-49, 145, 214 architecture, 239-40 on development tools, 
active window, 92-93 basic description of, 239-46 217..,.22 
ActiveX controls, 12, 33, 234, data storage and, 73 on Microsoft Wind.ows-

275 discrete recognizer, 167-68, based terminals, 
Auto PC and, 241 168 235-37 
basic description of, 13 embedded customers and, 
development tools and, 234 

204-6,209-11,213 GWE and, 241, 242 B 
shells and, 161, 162 hard button navigation 

ADO. See Active Data and, 166 BackOffice (Microsoft). See 

Objects (ADO) international markets and, Microsoft BackOffice 

ADSL (asynchronous digital 180 Ballmer, Steve, 273 

subscriber line), 267 modular operating systems bands, 131 

Agent (Microsoft). See and,8 batch files, 218, 245, 252, 255 

Microsoft Agent multiuser support and, batteries, 83, 241, 263 

Aha! technology, 247-48 241-42 BeginLevel method; 197 

ALC (alphabetic code navigation with, 168, 242, Bentley, Keith, 80, 81-82, 

structure), 173 244-45 86-96 

alloc operations, 67 new API sets for, 243-46 Berkeley Sockets, 137-38 

AMD processors, 7, 52, 208. power management, 239, BitBlt, 97; 102 

See also processors 241 bit depths, 83 

AM/FM tuning, 244 processors and, 239, 240, bitmaps. See also graphics 

anti-aliased fonts, 105 244 GDI graphics and, 97 

ARM processors, 7, 225, 237. product vision, 25, 27 GWE and, 97, 103-4 

See also processors SDKs and, 30, 168 palettes and, 102-3 

art, localization of, 180 printing and, 31, 131-32 

279 



Blum, Jeff, 157, 162, 255 
booting, 76 
Boyd,Aulna, 186, 187-88 
browsers. See Microsoft 

Internet Explorer 
browser 

Build.exe, 8, 220-22 
. Build tool, 8, 220-22, 221-22 
buses, 110, 239-41. See also 

c 

USB (Universal Serial 
Bus) 

Cprogrannr.nll1g,55,216 
portability and, 7 
run-time library functions, 

10 
C++ programIDll1g, 63, 216 

comments, 35 
compilers, 35 
GWE and,97 
MFC and, 13 

Calculator, 230 
calibration screens, 85 
CardMap Window function, 126 
CardRequestConfiguration 

function, 126 
CardRequest Window function, 

126 
cascadll1g lists, 165 
Casio Corporation, 233 
Cazzaro, Roberto, 154, 174-81 
CDF (Channel Definition 

Format) standard, 135, 
149-50 

Ce.bib,223 
CEPC standard, 187, 191, 

217, 218, 223 
Cesgen.bat, 255 
Cesh.exe, 123 
Cesh tool, 123--24, 124, 223--24 
Cesysgen file, 1, 36, 218, 245, 

252 
CGl (Connr.non Gateway 

Interface), 131 
CHAP (Challenge Authenti-

cation Protocol), 135 
character order, 11 
Cherry, Wes, 46 
Chesty Jr. application, 233 

Inside Microsoft Windows CE 

ClFS (Connr.non Internet File 
System), 135 

Citrix, 236 
Click drives, 262 
client/server model, 50-51 
clock, 30, 111, 165, 230 
CloseFile function, 75 
CloseHandle function, 76 
CloseVolume function, 75 
CoCreatelnstance function, 210 
Coffup tool, 189 
ColnitializeEX function, 211 
Colnitialize function, 210-11 
color 

conversion, 130 
GDI graphics and, 97 
palettes, 81, 100-103 
values, limitation to four, 6 

COM (Component Object 
Model), 204, 209-11, 260. 
See also components 

communications and, 148 
data storage and, 69 
embedded customers and, 

234 
functionality and, 33 
programming ll1terfaces 

and, 12-13 
testing embedded systems 

and, 195,201 
user ll1terface and, 159 

command bar, 84, 164--65 
Connr.nent method, 197 
connr.nents, 35, 197 
communications 

infrared, 135, 139-40, 216 
interprocess (JPC), 6, 43 
options, 134 
overview of, 134-51 

Compact Flash, 32, 240-41, 
248-50,261-63 

compatibility, 83 
componentization, 8, 9, 11, 

22, 191. See also 
components 

four important benefits of, 
39 

GWE and, 85, 95-96 
how it works, 35-37 
during system generation, 

35 

280 

components. See also COM 
. (Component Object 
Model); 
componentization 

defining, 37-39 
graphics device ll1terface 

(GDI), 105-6 
porting to new hardware 

and, 110 
compression, 64, 71-72, 71 
ComRoute tool, 201 
control containers, 13 
Control Manager, 212 
Control Panel, 159 
conversion . 

ActiveSync ll1terface and, 
146-47 

color, 100-103 
Copeland, Patrick, 186, 

193-99 
Coreldll.dll, 36 
COTS (commercial-off-the

shelf initiative), 232 
counters, 111 
CPUs (central processll1g 

units). See processors 
CreateBitmap function, 103 
CreateCompatibileBitmap 

function, 103 
CreateDIBSection function, 

102,103 
CreateDirec:toryW function, 

74,75 
CreateFileHandle function, 76 
CreateFileW function, 74 
CreateSearchHandle function, 

76 
CreateThread function, 114 
Create Window function, 36 
currency formats, 11 
CVTs (component verifica

tion tests), 195 

D 
D9000 platform (Hitachi), 

187, 191-92, 197, 218 
databases, 10-11, 63-65, 

68-72,69 
data compression, 64, 71-72 



, 

~i ! 
~ ." " Index ~ 
~:. 

t 

'/ 
data storage. See also file developer regression tests Dreamcast video game 

f systems (DRTs),195-98 system, 230, 237-38 
" basic description of, 61-78 device drivers. See also DDK Dreger, Lisa, 162 
, I , 

embedded customers and, (Device Driver Kit); driver(s). See also device 
T 233 dTiver(s); MDD (Model drivers 

"I 

handle tables and, 67--68 Device Driver) display, 99-100,109,128-30 

!'I 
installable file systems basic description of, 32 model, 115-16 

and,73-78 display drivers, 99-100, native, 121-23 

~I 
Datus, 231, 234 109,128-30 DRTs (developer regression 
DC (device context), 96-,106 kerneland,43,49-50 tests), 195-98 
DCOM (Distributed COM), porting to new hardware DSTINVERT, 130 

261 and, 112-15, 117~19 DVD drives, 28, 62, 73 
DOl (Display Driver " testing embedded systems DWORDs, 56, 65, 71, 115 

Interface), 99-100,109, and,187-88 
128-29,129 device hardware, future, 

DDK (Device Driver Kit), 261-64 E 
204, 217, 226. See also DeviceloControl function, 75 
DDTK (Device Driver Device Manager (Device.exe), EJTAG technique, 209 

Test Kit) 74, 112, 113, 114 Ellipse primitive, 99-100 

basic description of, 14 DHTML (Dynamic HTML), embedded systems, 16-17, 

Build.exe and, 8 275 20-39 

porting to new hardware Digital Equipment Corpora- customers and, 231-35 

and, 109, 130 tion, 234 developers of, supporting, 

DDTK (Device Driver Test DirectX components, 38, 106, 207-8 

Kit), 186-87, 197, 237-38,260,267 testing, 185:-202 

200-201 DispatchMessage, 88 Embedded Toolkit for Visual 

debugging, 208-9, 212, 224. display drivers, 99-100, 109, (:++,14,109,187,205 

See also error(s) 128-30. See also driver(s) debugger in, 27 

GWE and, 98, 99 DLLs (Dynamic Link information on how to 

informa.tion appliances Libraries), 36-37, 148 create a customized shell 

and,23 Coreldll.dll, 36 in,17 

kernel and, 49-50 data storage and, 74, 77 Embedded Toolkit for 

porting to new hardware development tools and, Windows CE (ETK), 9, 

and, 109, 123-25 210, 216, 220, 221 14,224-27 

shells, 123-24 kerneland,50,59--60 EndLevel method, 197 

Decrement method, 97 porting to new hardware EndPage function, 131 

dedicated systems, 16-17 and, 125, 127-28, EnumDevices, 127 

Default.fdf, 223 131-32 enumeration, object, 146-47 

DEF files, 35-36 satellite, 179 EPROMS,44 

DefWindowProc function, 80, space for, in virtual error(s). See also debugging 

81 memory,59 data storage and, 68, 69, 75 

DeleteAndRenamefile testing embedded systems kerneland,42 

function, 75 and, 197 ERROR_NOT_SUPPORTED, 

DeleteFile function, 75 DMA (Direct Memory 75 

DeleteObject method, 97, 104 Access), 119, 122 Ethernet, 198, 209, 231 

deleting docfile component, 211 drivers, 135, 143 

files, 65--66, 73, 75 DOS (Disk Operating NDIS and, 143 

objects, 97, 104 System), 277 Palm-siZe PC and, 249 

resources, 97 DRAMs, 112, 113, 240 porting to new hardware 

dependencies, hard/soft, 96 Drawlcon function, 84 and, 109, 123-25 

Deregister AFS service; 73 remote debug shells and, 
123 

281 



Inside Microsoft Windows CE 

ETK (Embedded Toolkit for Fite, Frank, continued functions, continued 
Windows CE), 9,14, on porting to new FlushFileBuffers, 75, 77 
224-27 hardware, 110-12 GetActiveWindow, 94 

events, use of the term, 81 FlushFileBuffers function, 75, GetDeviceKeys, 127 
Excel. See Microsoft Excel 77 GetDiskFreeSpace, 75 
exception handling, focus window, 92-93 GetDiskInfo, 76 

structured, 55-56 fonts, 104-5 GetFileAttributes, 75 
EXE files, 74, 112-14, 123, 197 FOO_CreateDirectoryW, GetFileInformationByHandle, 

Build.exe, 8, 220-22 75-76 75 
Cesh.exe, 123 foreground window, 93 GetFileSize, 75 
Nk.exe, 6, 42, 45, 80, 112 Forms Manager, 241, 242 GetFileTime, 75 

Explorer, 159 free operations, 67 GetFocus, 94 
extensibility, enabling, 209-11 FSD (File System Driver) GetMessage, 38, 88, 89, 

Manager, 62--63, 74-77 90-92 
FSD Manager library, 63 GetMouseMovePoints, ·170, 

F FSDMGR_ CreateFileHandle, 171 
76 GetObjTypeInfo, 146 

FAT (file allocation table) file FSDMGR_RegisterVolume, GetTickCount, 113 
system, 23, 32, 62, 64, 73. 75 HwxACLValid, 173 
See also file systems FTP (File Transfer Protocol), HwxCreate,l72 

fax/modem card drivers, 135 12,32,135 HwxEndInput, 174 
fax programs, 29 Fuller, Jason, 80, 82-85 HwxGetResults, 173 
Fenwick, Thomas, 108, 158, functions HwxInput, 173 

208,221 CardMapWindow, 126 HwxProcess, 173 
on porting to new CardRequestConfiguration, HwxResultsAvaiiable, 173 

hardware, 112-25 126 . HwxSetGuide, 172 
talent of, Silverberg on,S CardRequestWindow, 126 InitObjType, 146 
work on kernel code, 43, CloseFile, 75 Instal/Driver, 128 

47;48-56 CloseHandle, 76 InterruptDisable, 116 
file shadowing, 73 CloseVolume, 75 InterruptDone, 114, 116, 117, 
Filesys, 113 CoCreateInstance, 210 122 
file systems CoInitializeEX, 211 InterruptEnable, 117 

basic description of, 32, CoInitialize, 210-11 InterruptInitialize, 114-16 
72-73 CreateBitmap, 103 IReplObjHandler, 144, 146, 

FAT file system, 23, 32, 62, CreateCompatibileBitmap, 147 
64,73 103 IReplStore, 144, 146 

installable, 73-78 CreateDIBSection, 102, 103 LoadBitmap, 84 
passing calls to, 74 CreateDirectoryW, 74, 75 LoadIcon, 84 
Sega Dreamcast video CreateFileHandle, 76 LoadImage, 84 

game system and, CreateFileW, 74 LoadLibrary, 38, 114, 128, 
237-38 CreateSearchHandle, 76 210 

structure of, traversing, CreateThread,114 LoadString~ 84 
222 CreateWindow, 36 MountDisk, 75 

FindClosefunction, 75 DefWindowProc, 80, 81 MoveFile, 75 
FindFirstFileW function, 74, DeleteAndRenameFiler 75 MsgWaitForMultipleObject, 

76 DeleteFile, 75 92 
FindNextFileW function, 74 DeviceIoControl, 75 Notify,75 
Fite, Frank, 20, 108 DrawIcon, 84 ObjectNotify, 146 

on the embedded market, EndPage, 131 OEMGetExtensionDRAM, 
28-30 FindClose, 75 113 

on future system software, FindFirstFileW, 74, 76 OEMInit, 112-13 
260--61 FindNextFileW, 74 OEMInterruptEnable, 114 

282 



----

Index 

functions, continued GDI (graphics device GUI (Graphical User 
OEMReadDebugString, 125 interface), continued Interface), 204, 224, 226, 
OEMWriteDebugString, 125 primitives and, 99-100 270 
ReadDisk, 76 terminals and, 236 GUIDE structure, 172 
ReadFile,74 GOl32 library, 80 GWE (Graphics, Window 
ReadFileWithSeek,75 GOlOBJ calls,97 Manager, Event 
RemoveDirectoryW, 74, 75 GetActiveWindow function, 94 Manager), 31, 180-82, 
ReportStatus, 146 GetCurrentLevel method, 197 219 
SendMessage, 81, 87, 89, 90, GetDeviceKeys function, 127 Auto PC and, 241, 242 

91,92. GetDiskFreeSpace fullction, 75 basic description of, 79-106 
SetActiveWindow, 93, 94 GetDisklnJo function, 76 calling, 52 
SetEndOjfile, 75 GetFileAttributes function, 75 componentization in, 95-96 
SetEvent, 115 GetFilelnJormationByHandle functionality overview, 
SetFileAttributes, 75 function, 75 83-85 
SetFilePointer, 75 GetFileSize function, 75 kernel and, 51-53 
SetFileTime, 75 GetFileTime function, 75 managing input and, 92-95 
SetFocus, 93 GetFocus function, 94 native drivers in, 112 
SetForegroundWindow, 93, GetItemData method, 197 Palm-size PC and, 248 

94 GetMessage function, 38, 88, porting to new hardware 
SetWindowPos, 94 89, 9()--92, 91 and,113 
SHCreateShortcut, 181, 182 GetMouseMovePoints Sega Dreamcast video 
ShellExecuteEx, 181, 182 function, 170, 171 game system and, 
SHGetFilelnJo, 181 GetObject method, 97 237-38 
SHGetShortcutTarget, 181, GetObjectType method, 97 subsystem, porting of, 219 

182 GetObjTypelnJo function, 146 touch panel events and, 
StartDoc, 131 GetPixel primitive, 99 249 
StartPage, 131 GetTickCount function, 113 "User" part of, main 
UnmountDisk, 75 GetVerbosityCount method, components of, 87 
VirtualAlloc, 119, 126 197 
VirtualCopy, 119, 125, 126 GinSberg, Michael, 11, 63, 

H VirtualFree, 125 158, 208, 221 
WriteDisk, 76 on data storage, 64-68, 
WriteFile, 74 72-73 handle 
WriteFileWithSeek, 75 talent of, Silverberg on,S locks, 52-54 

work on kernel code, 43, tables, 67-68 

48,5.6-60 handwriting recognition, 

G glyphs, 104-5 170-74, 171, 248, 

GPE (graphics primitive· 250-53 
GDI (graphics device engine), 109, 129-30, 129 hard dependencies, 96 

interface), 22, 31, 37-38, graphics. See also GWE hardware 
96-106 (Graphics, Window porting to new, 107-32 

base objects, 97-99 Manager, Event requirements, 10 
basic description of, 80 Manager) heap operations, 10-11, 208, 
components, 105-6, 105 GWE and, 97, 103-4 212 
display drivers and, 129 palettes and, 102-3 design of, 64-68, 68 
embedded customers and, primitives, 99-100, 109, object store elements in, 64 

233 129-30 testing, 66-67 
GWE and, 80, 81-82, printing and, 31, 131-32 Heap Walker and, 208, 212 

95-100, 105-6 Gregory, Kimberly, 17, 230, Hewlett Packard,S 
porting to new hardware 231-35 HFONT,104 

and,129,132 Hills, Norman L., 233 

283 



Inside Microsoft Windows CE 

Hitachi D9000 Development HTTP (Hypertext Transfer input, continued 
System, 187, 191-92, 197, Protocol), 12, 32, 135, 276 modes, 247-53 
218 Hullender, Greg, 154, 170-74 Instal/Driver function, 128 

HKEY_LOCAL_MACHINE HwxACLValid function, 173 Intel processors, 7, 113. See 
Registry key, 127, 128 HwxCreate function, 172 also processors 

home, devices in, 24-26, HwxEndInput function, 174 interfaces, basic description 
266-67 HwxGetResults function, 173 . of, 12 

Horn, Scott, 205, 225-27 HwxInput function, 173 internal heap, 63, 6H8, 70. 
H/PC (Handheld Pe), 6, 27, HwxProcess function, 173 See also heap operations 

34 HwxResultsAvailable function, international applications, 
basic description of, 2.")3-57 173 174-81 
browser architecture, 159 HwxSetGuide function, 172 Internet Explorer browser. 
communications and, 136, Hydra, 235 See Microsoft Internet 

140 Explorer browser 
componentization and, 22 interprocess communication 
configurations and, 230-35 I (IPe), 6, 43 
development tools and, InterruptDisable function, 116 

213,215,216-17,223 ICA (Citrix), 236 InterruptDone function, 114, 
embedded systems and, 16 IDE (integrated development 116, 117, 122 
Far East versions of, 154 environment), 13, 204, InterruptEnable function, 117 
fonts and, 105 205,208,226 interrupt handling, 54-55, 
future device hardware IHVs (independent hardware 110 

and, 261, 263-64 vendors), 29, 143, 245, InterruptInitia/ize function, 
industrial design and, 18 274 114-16 
kernel and, 49 Plug and Play system and, interval timers, 111 
Linn on, 3, 253-57 127-28 IOCTLs, 76, 77 
modular operating systems production of the DDK for, IP (Internet Protocol), 125, 

and,8 14 267 
palettes and, 103 provision of peripherals IPC (interprocess communi-
porting to new hardware by,27 cation), 6, 43 

and,113 IME (Input Method Editor), IrDA. See Infrared Data 
Pulsar and, 273-74 170,175-76,238 Association (IrDA) 
programming interfaces IMM (Input Method IReplObjHandler function, 

and, 11, 12 Manager), 171, 238 144, 146, 147 
shells and, 154, 161, 181-82 Increment method, 97 IReplStore function, 144, 146 
standard applications, 254 Infrared Data Association IReplStore interface, 144 
testing embedded systems (IrDA), 135, 139-40, 216 Isaac, Steve, 18, 162, 254 

and, 186-88, 190-95, infrared serial ports, 247. See ISRs (interrupt service 
199-200 also serial ports routines), 31, 58-59, 

user interface and, 155, initialization 120-23 
157-60, 159, 163-66 files, 62-63 Morris on, 108, 115-17 

HTML (Hypertext Markup handwriting recognition routing of interrupts to, 7 
Language), 15, 21, 159, and, 172, 173 ISTs (interrupt service 
274-77 OAL function.s for, 111 threads), 119-23, 126 

authoring, support for, 135 porting to new hardware Fenwick on, 108, 114-15 
Dynamic (DHTML), 275 and, 111-12, 114-15 interrupt handlers in, 7 
Mobile Channels and, InitObjType function, 146 ISVs (independent software 

149-51 input. See also IME (Input developers), 3, 26, 29, 73, 
Palm-size PC and, 248 Method Editor) 161 
shells and, 160-62 managing,92-95,171,238 ActiveSync interfaces and, 

146-48 

284 



--~-----

Index 

ISVs (independent software Kitowicz, Tony, 6, 157-60, Macleod, Kenneth, 204, 
developers), continued 163 209-11 

RAPI and, 149 Kodesh, Harel, 5,15,44,265 Makefile.def, 220-21 
ITV team, 3, 6, 43-45 on information appliances, makefiles, 220-21 
IUnknown interface, 12 20,21-23 Make utility, 8 

Mitchell on, 25 Makimg tool, 222-23 
on Windows CE in the MAPI (Microsoft Messaging 

J home, 266-67 API). See Microsoft 
Kummert, Ted, 20, 24, 34, 230 Messaging API (MAPI) 

Java (Sun Microsystems), 39, on embedded devices, 28 Martinez, Laura, 256 
205,207 on the Sega Dreamcast MaskBlt,97 

embedded customers and, video game system, Masters, Steve, 154, 167-70 
231-32,233-34 237-38 Mathur, Sharad, 8-9, 20, 158, 

Virtual Machine (VM), 33, 186,221 
207,231 on data storage, 63, 64-68, 

JIT (just-in-time technology), L 69-72 

I 
216 on GWE, 80, 81-82 

,! JTAG technique, 209 LANs (local area networks), on tools for the compo-

I 
Jung, Edward, 260, 272-77 33,137,142 nentized operating 

I 

Lapadula, Anthony, 81, 109 system, 189-90 
on display drivers, 128-30 on the Windows CE 

I K on the GDI, 96-106 operating system, 34 
latency, 58, 120-21 Mazall configuration, 218 

Kanz, David, 108-9, 135 linguistic interfaces, 268-69 MDD (Model Device Driver), 
on networking, 142-43 Linn, Cathy, 18, 162, 230 108,117-19,118, See also 
on PC Card Services, on the HIPC, 3, 253-57 device drivers 

125-26 on the interface between memory. See also heap 
Kath, Randy, 204, 205-9, 234 marketing and develop- operations; kernel; RAM 
kernel, 6-7,10-11,23,209, ment teams, 17 (random access 

241 Lister, A. M., 9 memory); ROM (read-
basic description of, 31, LoadBitmap function, 84 only memory) 

41-60 loader, 59-60 buffers, 23,27,42,45,52, 
GWE and, 80 LoadIcon function, 84 56 
interrupt handling and, LoadImage function, 84 caches, 104 

54-55 LoadLibrary function, 38, 114, data storage and, 63, 71-72 
ISRs and, 7 128,210 embedded devices and, 27 
-level debuggers, 124-25 LoadString function, 84 footprints, 100 
loader and, 59-60 localization, 178-81, 184-85 GWE and, 84-85, 100, 104 
lookup tables, 116 logging, 65-66, 197 mapping, 10, 126 
OAL functions for, 111 logical AND operation, 52 modular operating systems 
portability and, 55-59 Log method, 197 and,7-8 
porting to new hardware logo program, 187-88 out-of-memory dialogs, 

and, 109, 111-12, 114, loops, 58 . 84-85 
119,124-25 IParam parameter, 88 porting to new hardware 

protection and, 49-50 and, 110, 126 
Sega Dreamcast video 

M 
requirements, 30, 33 

game system and, updating, in the calling 
237-38 process, 53 

startup sequence, 113 McCarthy, Jim, 186 virtual, 10, 50, 51-52, 55-56 
KernelStart, 112-13 McDevitt, Michael, 162 Menezes, Arul, 154, 181-82 
kiosks, 234 McLain, Jay, 135, 149-51 

285 



Inside Microsoft Windows CE 

menus, implementation of, Microsoft Pocket Excel, 130, Microsoft Windows NT, 3-4, 
83-84,83 144, 253. See also 191, 205, 223-24 

message Microsoft Excel communications and, 136, 
handling, 80, 85, 86-92, 89 Microsoft Pocket Internet 138, 142 
-passing paradigm, 11 Explorer browser, DOl (Display Driver 

MFC (Microsoft Foundation 160-61,253. See also Interface), 99-100, 109, 
Classes). See Microsoft Microsoft Internet 128-29 
Foundation Classes Explorer browser DDK (Device Driver Kit), 
(MFC) Microsoft Pocket Outlook, 8, 14, 109, 130, 204, 217, 

Mgbase component, 105 230, 253. See also 226 
Microsoft Access, 63, 189,214 Microsoft Outlook development team, size of, 
Microsoft Agent, 269, 271-72, Microsoft Pocket Word, 3 

271 143-44,253. See also display drivers and, 128-29 
Microsoft At Work operating Microsoft Word embedded customers and, 

system, 28-30 Microsoft Visual Basic, 13, 33, 234 
Microsoft BackOffice, 261 204,206-7,209-15,226 future system software 
Microsoft Bob, 269-71, 271 application design, 214-15, and, 260, 261 
Microsoft Excel, 12, 246. See 214 eWE and, 81-84, 94, 100 

also Microsoft Pocket data storage and, 63 kernel and, 43-44, 49, 
Excel embedded customers and, 55-57 

repeating sequences in, 271 231-32 modular operating systems 
user interface and, 156 programming resources, 39 and,8 

Microsoft Foundation Classes Microsoft Visual C++, 30, 39. palettes and, 100 
(MFC), 12, 13, 204-5 See also Embedded similarity of Windows CE 

Microsoft Internet Explorer Toolkit for Visual C++ to, 31 
browser, 12, 33-34, 249. development tools and, Terminal Server, 235 
See also Microsoft Pocket 205-11 Microsoft Word, 11, 156, 191. 
Internet Explorer modular operating systems See also Microsoft Pocket 
browser and,9 Word 

communications and, 136, programming resources, 39 Palm-size PC and, 246, 248 
140-42 Microsoft Visual J++, 13, 204, repeating sequences in, 271 

development tools and, 206-7,209,215-17 Miller, Mark, 135, 136-42 
209-11 Microsoft Visual Studio, 14, Mincomm configuration, 218 

Mobile Channels, 135, 205,208 Mingdi configuration, 218 
149-51,230,249,253 Microsoft Web site, 231 Mininput configuration, 218 

palettes and, 100 Microsoft Windows 3.1, 4, 57, Minkern configuration, 218 
Palm-size PC and, 249 137 Minshell configuration, 218 
shells and, 160-62 MicrosoffWindows 95, 165, Minwmgr configuration, 218 
user interface and, 155 205 MIPS processors, 113, 216, 

Microsoft Messaging API code page concept, 178 225. See also processors 
(MAPI), 63, 69 communications and, 136, the kernel and, 44, 45, 49 

Microsoft NetMeeting, 236 138 Nkexe and, 44 
Microsoft Note Taker, 230 decision to create an mission statement, 2-3 
Microsoft Office, 156-57, 269, interface resembling, 6 Mitchell, Bill, 3-4, 6, 11, 135, 

271 development team, size of, 160 
Microsoft Office Assistant, 3 on connecting to the 

269 eWE and, 80, 81, 84, 94, desktop, 143-44 
Microsoft Outlook, 69, 100 on mobile devices, 20, 

144-45, 147. See also interface, similarity of the 24-26 
Microsoft Pocket Windows CE interface MMU (memory management 
Outlook to, 2 unit),23 

palettes and, 100 

286 



Mobile Channels, 135, 149-51, 
150, 230, 248, 252 

Mobile Computer Products, 
135 

Modem.inf, 140 
modems, 140,249 
modular operating systems, 

2,7-9,11 
Monsanto, 231 
Montague, Mike, 3, 13,43, 

46-48 
Monte Carlo profiling, 110 
Moore's Law, 30 
Morris, Larry, 108, 115-17 
Motorola, 7, 249 
MountDisk function, 75 
MoveFile function, 75 
msf component, 211 
Msgque (Message queue) 

component, 86-92 
MsgWaitForMultipleObject 

function, 92 
multiuser support, 241-43 

N 
native drivers, 121-23. See 

also driver(s) 
NDIS (Network Driver 

Interface Specification), 
33,135,142-43,143,187 

NDIS Test tool, 187 
NetBEUI, 137 
NetBIOS, 137, 142 
NetMeeting (Microsoft). See 

Microsoft NetMeeting 
Nguyen, Kieu, 186, 188, 

199-200 
Nk.bin, 222-23 
Nk.exe, 6, 42, 45, 80, 112 
NLS (national language 

support), 11, 177 
no-compile strategy, 178-79 
Note Taker (Microsoft). See 

Microsoft Note Taker 
Notify function, 75 
NSTL (National Software 

Test Lab), 188 

Index 

o 
ObjectNotify function, 146 
Odinak, Cilad, 43, 44-45 
OEM GetExtensionD RAM 

function, 113 
OEMInit function, 112-13 
OEMInterruptEnable function, 

114 
OEMReadDebugString 

function, 125 
o EMWriteDebugS tring 

function, 125 
Office (Microsoft). See 

Microsoft Office 
Office Assistant (Microsoft). 

See Microsoft Office 
Assistant 

O'Hara, Robert, 250-53 
OLE (Object Linking and 

Embedding), 13, 144,245 
development tools and, 

204,209-11,210 
OLE32 components, 211 

OMAC (Open Modular 
Architecture Controller), 
232 

Outlook (Microsoft). See 
Microsoft Outlook 

p 
palettes, color, 81, 100-103 
Palm-size PC, 18, 27, 166, 

211,230 
basic description of, 246-53 
communications and, 142, 

149,150 
future device hardware 

and, 261-64 
hardware design, 247 
Mathur on, 34 
modular operating systems 

and,8 
natural input modes for, 

247-53 
O'Hara on, 250-53 

287 

Palm-size Pc, continued 
programming interfaces 

and,12 
shells and, 154 
taskbar, 166 
testing embedded systems 

and,194-95 
PAP (Password Authentica

tion Protocol), 135 
Parsons, Jeff, 63, 73-78 
PC Cards, 62, 108-9, 125-26, 

128 
PC Card Services, 109, 125-26 
PCI bus, 239-40 
PCMCIA interface, 135, 188, 

231,261-62 
device drivers and, 32, 113, 

116-21, 125-26 
file systems and, 23, 73 
power cycling and, 76 
TAPI and, 140 

PDD (Physical Device 
Driver), 108,117-19, 
219-20 

Pegasus,S 
pens, 99-100, 171-72 
Perry, Wi11iam~ 232 
Petzold, Charles, 80 
Pittsburgh Police Depart-

ment, 230, 232 
platform-independence, 119 
Plug and Play, 109, 127-30 
PNAPI (Position and 

Navigation API), 244 
Pocket Excel (Microsoft). See 

Microsoft Pocket Excel 
Pocket Internet Explorer 

browser (Microsoft). See 
Microsoft Pocket 
Internet Explorer 
browser 

Pocket Outlook (Microsoft). 
See Microsoft Pocket 
Outlook 

Pocket Word (Microsoft). See 
Microsoft Pocket Word 

pointers, 48, 52, 70 
Polygon primitive, 99-100 
Polyline primitive, 99 
polymorphism, 98 



Inside Microsoft Windows CE 

portability, 2, 7, 55-59 Pulsar, continued ReadDisk function, 76 
porting program, cancellation of,S, ReadFile function, 74 

development tools, 123-25 29; 162 ReadFileWithSeek function, 75 
for easy adaptability, VI and, 18, 162 RealizePalette, 97, 102 

110-15 Vong on, 162 Rectangle primitive, 99 
to new hardware, 107-32 PVB application, 215 redundancy, in the toolkit, 

pas (point-of-sale) terminal, 11,22,23 
234 RegisterAFS service, 73 

PostMessage, 37, 87, 88, 89, 94 Q Registry, 10-11, 208, 212 
power communications and, 141 

management, 111,241 QA (quality assurance) team, data storage and, 63, 64, 72 
transitions, 76-77 186-87, 192-98 HKEY_LOCAL_MACHINE 

primitives, graphics, 99-100. quality metrics, 198 key, 127, 128 
See also GPE (graphics Plug and Play and, 127 
primitive engine) Registry Editor, 212 

printer drivers, 131-32, 131 R remote debug shells, 123-24 
priority inversion, 57 Remote Object Viewer, 208 
processors, 7, 9-10 R4300 registers, 209 RemoveDirectory W function, 

AMD processors, 7, 52, 208 RAD (rapid application 74,75 
ARM processors, 7, 225, development), 14-16, ReportStatus function, 146 

237 234 RF technology, 28, 244 
Auto PC and, 239, 240, 244 Radiant, 231, 234 RISC processors, 27, 209. See 
development tools and, RAM (random access also processors 

215,225-26 memory). See also RLE (run-length encoding), 
embedded systems and, memory 132 

16,27 data storage and, 62, 64-65, RNI (Raw Native Interface), 
integrating new, mile- 72-73 216 

stones and, 196 development tools and, ROM (read-only memory), 
Intel processors, 7, 113 206,213,216,220 10, 30-31, 220, 240. See 
kerneland,42,44,55,56 embedded systems and, 16 also memory 
MIPS processors, 44, 45, footprints, 82 communications and, 136, 

49, 113, 216, 225 . kernel and, 42, 48, 138 
requirements, 30 51-52 componentization and, 85 
RISC processors, 27, 209 porting to new hardware data storage and, 62, 72-73 
StrongARM processor, 225, and,123 embedded systems and, 

234 requirements, 31 16,208,216 
testing embedded systems testing embedded systems footprints, 82 

and, 188, 192, 198-200 and,200 kernel and, 42, 44, 48, 
voice interfaces and, 167 user interface and, 158 49-52 

profiling, 111 RAPI (Remote API), 135, modular operating systems 
Project Properties dialog box, 148-49, 148 and,8 

212 rapid development, 14-16, porting to new hardware 
PROPIDs, 69-71 234 and,112 
protection, 49-50 RAS (Remote Access testing embedded systems 
PSLs (protected server Services), 12, 135, 238, and,190 

libraries), 50-55 248 usage, minimizing, 50-54 
Pulsar, 3-4, 250, 254, 273--74 Kanz on, 142 voice interfaces and, 168 

Miller on, 136, 142 Wuon, 136 Romimage tool, 222-23 
Montague and, 43, 46-47 RCs (release candidates), 187 Rap (raster operation), 97, 
Odinak and, 43, 44-45 RDP (Remote Desktop 130 

Protocol),236 Roundrect primitive, 99-100 

288 



RPCs (Remote Procedure 
Calls), 13,43-44,47-48, 
148 

Run button, 182 

s 
SAPI (Speech API), 169,244 
scalability, 39 
screens. See also screens, 

touch 
calibration, 85 
startup, 85 

screens, touch, 85, 239 
drivers for, 113, 121:-22 
events from, handling, 

94--95, 95, 249 
Palm-size PC and, 247 
user interface and, 163 

SDKs (software development 
kits), 14, 30 

development tools and, 
204, 207, 213, 226 

GWE and, 80 
handwriting recognition 

and,l72 
Palm-size PC and, 249 
voice interfaces and, 168 

Seattle Mariners Baseball 
Club,230,232 

Sega,230,237-38 
SEH (structured exception 

handling),55-56 
SelectObject method, 97, 98 
SendMessage function, 81, 87, 

89-92,90 
SendSystemData method, 197 
serial ports, 111, 113, 116-17, 

122-24,247 
SetActiveWindow function, 93, 

94 
SetEndOfFile function, 75 
SetEvent function, 115 
SetFileAttributes function, 75 
SetFilePointer function, 75 
SetFileTime function, 75 
SetFocus function, 93 
SetForegroundWindow 

function, 93-94, 93 
SetItemData method, 197 
set-top boxes, 3, 28 

Index 

SetWindowPos function, 94 
Sharpe, Tim, 165 
SHCreateShortcut function, 

181, 182 
Shell, Scott, 160-63 
ShellExecuteEx function, 181, 

182 
shells,33-34,51-52,153-84 
Shetter, Martin, 81,109 

on display drivers, 128-30 
on the GDI, 96-106 

SHGetFilelnfo function, 181 
SHGetShortcutTarget function, 

181,182 
Shields, Kevin, 255 
shutdown, 76 
Sidewalk.com, 268, 275 
Silverberg, Brad, 4--5, 29, 45, 

260,264-65 
Silverstein, Lila, 162 
single programming model, 

272-77 
SIP (soft input panel), 166, 

166, 248, 248 
slot model, 51-52 
soft dependencies, 96 
soft input panel (SIP), 166, 

248 
Solitaire, 230 
Sony Corporation, 20 
speech recognition, 169, 

242-44. See also voice 
interfaces 

SQL Server, 63 
SRAM, 73, 128, 200, 233 
Start button, 166 
StartDoc function, 131 
StartPage function, 131 
startup screens, 85 
Stirrat, Chris, 204, 211-15 
StretchBlt,101-2 
StrongARM processors, 225, 

234. See also processors 
synchronization functions, 31 
Sysgen (system generation) 

tool, 8, 38, 220-22, 221. 
See also system 
generation 

SYSINTR interrupt value, 
115,116 

SYSINTR_SERIAL interrupt 
ID,114 

289 

system generation, 8, 35-36, 
35-36. See also Sysgen 
(system generation) tool 

Szot, Keith, 204, 215-17 

T 
Talisman project, 273 
TAPI (Telephony API), 12, 

140--42 
taskbar, 159 
task manager, 182 
task tracking, 111 
TCl (Tele-Communications, 

Inc.), 20 
TCO (total cost of owner

ship),235 
TCP lIP (Transmission 

Control Protocol! 
Internet Protocol), 32, 
135--40,143,206 

IrDA infrared communica
tions and, 139-40 

Winsock API and, 137-38 
TDI (Transport Device 

Interface), 139 
television appliances, 3, 

21~23,28, 190,266-67 
terminals, 235-37 
testing 

components, 189-91, 191 
configurations, challenge 

of,190-95 
with the DDTK (Device 

Driver Test Kit), 186-87, 
197,200-201 

DRTs (developer regres
sion tests), 195-98 

embedded systems, 
185-202 

internal heaps, 66-67 
representation of, in 

matrices, 191 
selecting configurations 

for, 194 
strategies, 187-88 
usability, 18, 155-57, 156 
verifying layers during, 

192 



Inside Microsoft Windows CE 

THREAD ]RIORITY - UNC (universal naming Voice Recorder (Microsoft), 
NORMAL, 57, 120 convention), 62 230 

THREAD]RIORITL unconscious carry, 136 Volk, Patrick, 230, 239-46 
TIME_CRITICAL, 57, Unicode character set, 71-72, Vong, William, 18, 162-67 
120,121 178,181 

threads, 31, 66, 67 Unimodem, 140 
borrowing, 50 United States Marine Corps, W 
communications and, 230,231,232,233 

137-38 UNIX, 115, 225 WaitForMultipleObject 
GWE and, 81, 87-95 UnmountDisk function, 75 interrupt, 55, 57, 58 
kernel and, 42-43, 48, URLs (Uniform Resource WaitForSingleObject interrupt, 

50-59 Locators), 149, 150 55,57,114 
porting to new hardware usability testing, 18, 155-57, WDM (Windows Driver 

and,120-21 156 Model),237 
timestamps, 146-47 USB (Universal Serial Bus), Web browsers. See Microsoft 
timing issues, 122-23 108, 128,240-41, 245. See Internet Explorer 
TLB (translation look-aside also buses browser 

buffer), 23, 27, 42, 45, 56 User, 37, 81-82, 86-92 Wecker, Dave, 230, 256, 260 
toolbars, 6, 84 User Assistance group, 18 on future device hardware, 
toolkits. See Embedded 261-64 

Toolkit for Visual C++; on the Palm-size PC, 
Embedded Toolkit for V 246-49 
Windows CE (ETK) Wilson, Callie, 199 

touch screens, 85,239 Vail Resorts, 230, 232 Win32 API set, 2-6,10-13,22, 
drivers for, 113, 121-22 validation, 146-47 140-42 
events from, handling, VAPI (Vehicle Control and Auto PC and, 241 

94-95, 95, 249 Information API), communications and, 134 
Palm-size PC and, 247 244-45 data storage and, 62, 69 
user interface and, 163 video game systems, 230, development tools and, 

transaction support, 64, 65-66 237-38 217,225,227 
Trower, Tandy, 154-55, 260, video memory, 103-4. See also file systems and, 32 

267-71 memory GWE and, 81-82, 92, 98 
Trussel, Bryan, 186,190-93 VirtualAlloc function, 119, 126 kernel and, 42, 43, 
TTS (text-to-speech), 154, 169 VirtualCopy function, 119, 45-47 
Tuner Control API, 244 125, 126 Palm-size PC and, 249 
Turner, Frederick Jackson, 17 VirtualFree function, 125 Polyline and, 26 
Tux test, 201 virtual memory, 10, 50, 51-52, porting to new hardware 

55-56. See also memory and,117-19 
Visual Basic (Microsoft). See programming interfaces 

U Microsoft Visual Basic and,11-13 
Visual C++ (Microsoft). See WinDbg, 109, 209 

UDP (User Datagram Microsoft Visual C++ Windows 3.1. See Microsoft 
Protocol), 234, 238 Visual J++ (Microsoft). See Windows 3.1 

UI (user interface), 153-84, Microsoft Visual J++ Windows 95. See Microsoft 
215 Visual Studio (Microsoft). See Windows 95 

general design consider- Microsoft Visual Studio Windows NT. See Microsoft 
ations for, 154-55 VM (Java Virtual Machine), Windows NT 

optimizing, for small 33,207,231 WinINet API, 12, 135 
devices, 163...,65 voice interfaces, 154, 166-70, WinMain, 80 

Palm-size PC and, 246, 251 230. See also speech Winmgr (Window Manager) 
recognition component, 35, 86 

290 



WinPad, 4-5, 162, 264, 273 
handwriting input, 250-51, 

251 
Kodesh on, 21 
O'Hara on, 4, 250-51 

Winsock, 135, 137-38, 140, 
142,238 

wireless communications, 
142,263-64,273-74 

WM_DESTROY message, 80 
WM_KILLFOCUS message, 

93 
WM]AINT message, 80, 91 
WM_QUIT message, 91 
WM_SETFOCUS message, 93 
WM_TIMER message, 91 
WndProc, 80, 85, 90, 91 
Word. See Microsoft Word 
wParam parameter, 88 
WriteDisk function, 76 
WriteFile function, 74 
WriteFileWithSeek function, 75 
Wu, Charles, 135, 144--49 
Wyard, Adrian, 162 

x 
x.86 platforms, 21,45, 209, 

217,225 
XIP (execute in place), 42, 49 
XML (eXtensible Markup 

Language), 15, 149, 
275-76,276 

z 
Zuberec, Sarah, 18, 155-57, 

158,162 

Index 

291 





I 

JOHN MURRAY 

John Murray wandered around the American West as a journalist before 
collecting a computer science degree and working in Utah for five years 
developing flight simulation software. He has written sample code and pro
gramming guide documentation for many Microsoft software developer 
kits, including Win32, RPC, COM, MAPI, networking, interactive television, 
streaming media, and the social user interface. 

John Murray (left) is congratulated on the completion of Inside Microsoft Windows 
CE by the eternal Darryl Rubin, a standup figure of the Microsoft vice president that 
Brian Valentine and the LAN Manager team created for just such golden moments. 





·1 
i 

The manuscript for this book was prepared 
and submitted to Microsoft Press in elec

tronic form. Text files were prepared using 
Microsoft Word 97. Pages were composed by 
Microsoft Press using Adobe PageMaker 6.52 
for Windows, with text and display type in 
Palatino. Composed pages were delivered to 
the printer as electronic prepress files. 

Cover Designer 
Tim Girvin Design, Inc. 

Cover Illustrator 
Glenn Mitsui 

Interior Graphic Designers 
Kim Eggleston, Barbara Remmele 

Principal Artist 
Travis Beaven 

Principal Compositor 
Paula Gorelick 

Principal Proofreader/Copy Editor 
Roger LeBlanc 

Indexer 
Liz Cunningham 





Mwr Inside 

Get moving with Windows CE. 
From roadside computing and pocket PCs to smart appliances 
and rich multimedia home theater, the Microsoft Windows CE 
operating system opens dynamic new development vistas for 
work, home, and everywhere in between. This modular, 
streamlined operating system extends the PC market far beyond 
the desktop to the realm of smaller, mobile, and more specialized 
devices-while its Windows pedigree means compatibility and 
support for an extensive developer base. 

INSIDE MICROSOFT WINDOWS CE reveals the innovative system 
architecture that enables you , the developer or technology 
champion , to capitalize on new markets in consumer and 
industrial electronics, including: 

• Handheld PCs 

• Palm-sized PCs 

• Computers for automobiles 

• Web televisions and Web telephones 

• Game consoles 

• DVD and multimedia devices 

• The undisclosed and the uninvented! 

You'll also find conceptual frameworks to help you understand 
your design options and see real-world examples that 
demonstrate the flexibility and potential of this remarkab le 
operating system. 

INSIDE MICROSOFT WINDOWS CE is the developer's key to 
understanding how Windows CE will launch new concepts 
for computing into motion. 

ISBN 1-57231-854-6 


