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Introduction 

This book describes the workings, both architectural and pragmatic, of stan
dard kernel mode device drivers for Windows NT. It explains how to design 
and develop these drivers, as well as how to compile, link, and debug them. 

The book focuses on standard Kernel mode device drivers, which are the kind 
of driver you would write to support a custom add-on device in Windows NT. 
The types of devices for which a standard Kernel mode driver are typically 
written range from those as simple as a specialized parallel or serial port to 
devices as complex as DMA-based realtime video encryption devices. While 
this book might be generally useful to developers writing other types of drivers 
on NT, we have shamelessly restricted our discussion of details in most cases to 
those relevant to the development of standard Kernel mode device drivers. 

We have designed this book to be useful to software engineers who have never 
written a device driver, to those who have written drivers on other operating 
systems, and even to those engineers who have already written a few drivers on 
Windows NT. The book does assume a basic knowledge of operating systems 
internals and a solid knowledge of the C programming language. We also 
assume that the reader has a general understanding of how devices work: what 
device registers are and how interrupts work. But, even if you've got a vague 
grasp of these topics, this book should be within your reach. 

If you've written lots of device drivers on Windows NT, you will undoubtedly 
know much of what we present in this book. In fact, you will probably already 
know the vast majority of the information. However, we hope that we will be 
able to add at least one or two items of information to the repertoire of even 
these old NT driver hands. 
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Not a Cookbook 
This book is not a cookbook with easy answers about how to write device dri
vers. Over the past five years, we've written several dozen NT drivers. We've 
also taught something like 3,000 students how to write NT drivers in our three 
day Windows NT Kernel Mode Device Drivers seminar. During that time 
we've come to the conclusion that the cookbook approach to driver writing 
only works if you're writing a device driver for a cookbook. In other words, it 
almost never works at all. 

Rather, what we have done in this book is identify, organize, and present as 
clearly as possible all the information that a typical device driver writer will 
need to truly understand how Windows NT device drivers "work." We have 
mixed this with pragmatic hints, tips, and details which we have gained 
through our experience designing and developing NT drivers for the real 
world. We have deliberately traded breadth for depth. Thus, instead of cover
ing every possible topic that might be of interest to some device driver writer 
somewhere, we typically focus on those topics that we have found to be critical 
for device driver writers to understand. We cover those topics fully and in 
detail. 

Basically, our goal was to give you all the information that we wish we had 
when we started writing NT drivers. Understanding this information will allow 
you to write not just any driver for your device, but the most optimal driver 
for your device. It will enable you to make your own intelligent design trade
offs. This approach will also allow you to make better sense of the information 
presented in the Windows NT Device Driver Kit (DDK). 

The order in which the material is presented in this book is loosely based on 
our seminar. Our seminar, and thus this book, utilizes what we have come to 
call "The OSR Approach" to teaching people how to write device drivers. This 
approach emphasizes the fact that a device driver is really an operating system 
extension. In order to extend Windows NT effectively, a developer needs to 
understand many of the details of how the operating system works. Thus, we 
approach the task of explaining how to write a device driver in the following 
steps: 

1. Start with general Windows NT operating systems concepts relevant to 
driver writers 

2. Progress to more detailed information about the operating system, such 
as the virtual memory subsystem, interrupt management, and synchro
nization issues 

3. Next discuss in detail how the I/O Subsystem works, and how drivers 
interact with the I/O subsystem and with each other 
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4. Discuss in detail the implementation of standard Kernel mode drivers 

5. Discuss, in great detail, the implementation of specific categories of stan
dard Kernel mode drivers 

6. Use the knowledge of standard Kernel mode drivers to describe alterna
tive Windows NT driver architectures, such as SCSI, NDIS, and Video 
Miniport drivers. 

Organization of the Book 
To reinforce the approach described previously, we have divided the book into 
three parts. Part One (Chapters 1-7) discusses details of the overall Windows 
NT architecture relevant to driver writers. If you're new to working with the 
Windows NT operating system at the internals level, understanding the con
tents of these chapters is absolutely vital to understanding how to design 
Windows NT drivers. If you're an old hand at working with NT internals, you 
should still probably skim these chapters to be sure that you're up on all the 
terminology we use in the remainder of the book. 

Part Two (Chapters 8-20) covers the details of implementing standard kernel 
mode drivers for Windows NT. In this part, we first discuss the basics of the 
NT 110 Subsystem, and how 110 requests are described and processed. We then 
move on to a detailed discussion of how Windows NT device drivers are orga
nized. After that, we delve into the major sections of an NT device driver (first 
Driver Entry, then dispatch entry points, followed by ISRs and DPCs). Next, 
we cover in great detail how both programmed 110 and DMA data transfers 
are performed in NT drivers. In so doing, we present code for two nontrivial 
sample device drivers. Part Two ends with a discussion of how drivers are built 
and debugged on NT. 

As we discuss each of the topics in Part 2, we try to give you the benefit of our 
experience of writing NT drivers. We tell you not only how certain things are 
supposed to work, but how they actually do work in our experience. Our goal 
here is to help you shorten your learning curve by avoiding many of the mis
takes that we have made. 

Part Three (Chapters 21-24) expands on the knowledge gained in the other 
parts of the book, and provides a basic overview of some of the additional dri
ver types used in Windows NT. This part relates the information already pre
sented about standard Kernel mode drivers to File System drivers, NDIS drivers, 
SCSI Miniport drivers, and Video drivers. In so doing, our goal isn't to cover in 
any depth or detail how to write these types of drivers. Rather, it is to provide 
you with enough information to be able to understand the architecture and 
structure of these special types of drivers. 
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This book focuses on NT V4.0. However, we have gathered what information 
on NT VS that we can (and that we think is reliable) and placed that in 
Appendix C. As of this writing, NT V 5 is still a pretty distant goal. More 
information about NT VS can be found on our Web site. 

Web Site Support 
We have dedicated a portion of the OSR Web site (http://www.osr.com) to sup
porting this book. On our Web site you will find complete downloadable 
source code for the sample drivers presented in Chapters 16 and 17. You will 
also find updates, technical errata, clever utilities, and other things that may be 
useful to driver writers. 

We also will be placing information on our Web site about NT V 5 as it 
becomes available. By the time NT VS is fully stable, we expect to have the 
two sample drivers presented in the book available in both NT V4 and NT VS 
versions. Come visit our Web site often! 

Conventions Used in This Book 
The following conventions are used in this book: 

Tips provide you with helpful ways of completing a task 

Note 

A note explains terms or concepts that relate to what is discussed in the 
text~ but doesn't warrant full explanation in the text~ as it may be dis
tracting. 

A warning is a system critical reminder or guideline that provides cau
tionary advice to help limit exposure to potential problems~ failures~ secu
rity gaps~ and so forth. 

Function prototypes appear in boxes without shading and provide explanation 
of function parameters. 

Dispatch entry points appear in shaded boxes and provide explanation of entry 
point parameters. 
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Bug Bounty 
This book contains thousands of technical details. We have worked very hard 
to try to ensure everyone of these details is correct. I have no doubt that we've 
missed some. Thus, we ask for your help in ferreting out any remaining techni
cal glitches that might remain in this book. 

To this end, the authors and Macmillan Technical Publishing are pleased to 
offer you a "bug bounty" on this book. If you are the first to report a signifi
cant technical error in this book, we will provide you with gifts from both 
OSR and the publisher as a token of our thanks. And, of course, we will keep 
an up-to-date technical errata available on our Web site. This is part of the 
commitment to technical accuracy that we make to you, our readers. 









Chapter 1 
Windows NT Operating 

System Overview 

This chapter will review: 

• Windows NT Major Characteristics. This section describes the key archi
tectural features of the Windows NT operating system. 

• User Mode Programs and Environment Subsystems. Environment 
Subsystems provide the interface between most User mode programs and 
the Windows NT operating system. This section describes the role that 
Environment Subsystems play in the Windows NT operating system. 

• The Windows NT Executive. The Kernel mode component of the 
Windows NT operating system that interfaces with applications and 
makes operating system policy decisions is called the Executive. This sec
tion provides an overview of the Executive's subsystems, and the func
tions those subsystems perform. 

• Windows NT Microkernel. The Windows NT Executive is built on top of 
a Microkernel, which provides processor-specific support for the 
Executive layer. This section describes the Microkernel. 

• Hardware Abstraction Layer. The Hardware Abstraction Layer (HAL) 
decouples other parts of the operating system from the specific implemen
tation of underlying hardware. This section provides a brief introduction 
to the HAL. 

This chapter provides an overview of the architecture and characteristics of the 
Windows NT operating system. If you're new to systems programming on 
Windows NT, the information in this chapter will provide the background you 
need to understand how the various pieces of the operating system that are dis
cussed in later chapters fit together. Even if you're experienced at using and 
programming Windows NT, we recommend that you at least briefly skim this 
chapter to become familiar with the terminology used throughout the book. 
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Windows NT Major Characteristics 
How do you begin to describe an operating system? One way is to look at its 
major characteristics or key features. The major characteristics of Windows 
NT are that it implements: 

• Multithreading 

• Pre-emptive multitasking 

• Demand paged virtual memory, which utilizes a single, global common 
cache 

• Multiprocessing 

• A processor-independent architecture 

• An internal as structure based on a modified Microkernel model 

• Integrated networking 

• Multiple operating system emulation 

The following sections consider each of these characteristics in a bit more 
detail. 

Note 

Although different processors have differing numbers of privileged execu
tion levels~ Windows NT always uses only two processor-privilege levels. 
It uses the most privileged processor execution level (Ring 0 on x86 
architecture systems)~ which it calls Kernel mode. NT also uses the least 
privileged mode of execution (Ring 3 on x86 architecture systems)~ which 
is referred to as User mode. 

Multithreading 
The Windows NT model for executing programs is: Each program that exe
cutes is represented by a process. The process is created when program execu
tion is requested (for example, via the Win32 API function CreateProcess (), or 
via the native NT system service NtCreateProcess ()). 

A process is simply a container for the various resources and attributes of the 
program. For example, the process "owns" the address space used by the pro
gram. It also owns any handles (more about that later) that the program opens. 
Resource utilization and quotas are tracked by the process. The process also 
owns one or more threads of program execution. 

The unit of execution and scheduling on Windows NT is the thread. An initial 
thread is created when a process is created. That thread may create additional 
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threads (via the Win32 API function CreateThread () or the native NT 
NtCreateThread () system service) at any time. Unlike in OS/2, for example, no 
thread within the process has any special status of any kind. 

It is absolutely vital to understand that threads in Windows NT are truly the 
basic units of execution and scheduling. Unlike some UNIX operating systems, 
Windows NT threads are not "lightweight threads" (although NT does sup
port a variant of lightweight threads called fibers). 

In Windows NT, each thread has its own scheduling priority and is 
autonomous in terms of scheduling. That is, the operating system does not take 
into account the process to which a thread belongs when it makes scheduling 
decisions. Thus, all other things being equal, two runnable threads within the 
same process will compete for CPU time in precisely the same way that two 
runnable threads from two different processes do. 

Multitasking 
As in any modern, general-purpose operating system, Windows NT allows 
multiple units of execution to run simultaneously. It rapidly switches among 
these units of execution, allowing each to run for a short period of time. This 
characteristic is termed multitasking. 

In NT, multiple threads may run at one time. The decision of which thread is 
selected to run is almost entirely based on priority. NT has 32 possible thread 
priorities: 

• Priorities 0-15 are dynamic priorities. 

• Priorities 16-31 are real-time priorities. 

NT implements what is known as pre-emptive multitasking. In NT, when a 
thread is selected to run, it is scheduled to run for a time period called a 
quantum. The quantum indicates the maximum length of time the thread will 
be allowed to run before another thread is scheduled. If the thread waits or is 
blocked during its quantum, a new thread is scheduled. While a given thread is 
running, if a thread with a higher priority becomes runnable, the lower priority 
thread is stopped from running and the higher priority thread is started. If the 
thread runs for its entire quantum, the system pre-empts the thread from run
ning and selects a new thread to run. 

The quantum value varies considerably, according to the platform (Intel or 
Alpha), the operating system type (Workstation or Server), whether the thread 
in question is in the foreground or background, and the system tuning settings. 
Suffice it to say that on an x86 architecture system running Windows NT 
Workstation, the value used for quantum will typically range from 20 
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milliseconds to 90 milliseconds. On NT Server, the values typically range from 
120 milliseconds to 180 milliseconds. 

Scheduling is discussed in more detail in Chapter 5, "Dispatching and 
Scheduling. " 

Demand Paged Virtual Memory 
Windows NT utilizes a virtual memory architecture in which each process has 
its own 4GB virtual address space. This virtual address space is subdivided into 
pages, in which each page is 4KB on x86 architecture systems or 8KB on 
Alpha architecture systems. Typically, user applications have access to 2GB of 
their processes' virtual address space, with the remaining 2GB of address space 
to be used by the system. A tuning mechanism in Windows NT Enterprise 
Server allows this to be extended to 3GB (leaving 1 GB of address space for use 
by the system). 

Virtual memory pages are loaded on reference. When the amount of virtual 
memory exceeds the amount of physical memory, excess read-only image pages 
may be freed (to be reloaded later from their original location), and read-write 
pages may be temporarily written to one of the available paging files. 

The NT virtual memory model allows the same physical addresses space to 
appear within the virtual address space of multiple processes. This enables the 
implementation of various methods of inter-process data sharing. 

Multiprocessing 
Although Windows NT was originally designed to support both asymmetric 
and symmetric multiprocessing systems, today only symmetric multiprocessing 
(SMP) systems are supported. In NT's model of SMP, all systems share the 
same main memory, and each system has equal access to peripheral devices. 
The operating system runs on all the processors in the SMP system. In 
Windows NT, there is no concept of "master" or "slave" CPUs, as there is in 
some other multiprocessing operating systems. In NT, thread-scheduling and 
interrupt-handling can be equally distributed among all the processors in the 
SMP complex. 

The basic Windows NT architecture supports SMP systems with up to 32 
CPUs. The actual number of CPUs that may be enabled, however, is governed 
by licensing restrictions. By default, Windows NT Workstation systems support 
up to only two processors. Windows NT Server systems, by default, support up 
to four processors, and Windows NT Enterprise Server supports up to eight 
processors. Hardware vendors, with appropriate license rights from Microsoft, 
can alter these numbers. 
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Processor Architecture Independence 
Windows NT was designed to work on a wide variety of processors. To facili
tate this, most Windows NT operating system code is written in the C pro
gramming language. Use of Assembly language has been deliberately kept to a 
minimum. Throughout its history, Windows NT has been supported on a vari
ety of processors. As of this writing, Windows NT supports the x86 and Alpha 
processor architectures. 

The Windows NT operating system code is divided into three major groups: 

• The Executive, including the major operating system subsystems 

• The Microkernel 

• The Hardware Abstraction Layer (HAL) 

The relationship among these major groups can be seen in Figure 1.2 (which 
appears later in this chapter). The Executive-level components utilize services 
provided by both the Microkernel and the HAL. The HAL and Microkernel 
work together to isolate the Executive-level components from processor archi
tecture dependencies. This is one of the keys to Windows NT's processor
independent architecture. 

Another aspect of Windows NT processor-independence that is of particular 
interest to driver writers is that Kernel mode drivers are compatible across var
ious processor architectures at the source level. This means that a driver writer 
need only write a driver once. That driver can then be compiled by using the 
Windows NT Device Driver Kit (DDK) to support any of the processor archi
tectures that Windows NT supports. 

Note 

Although there are a few drivers that are compatible between Windows 
NT V 4 and Windows 9x~ the standard Kernel mode drivers described in 
this book are not portable across these two operating systems. Windows 
NT and Windows 9x have very different internal structures~ and do not 
share any significant operating system code between them. 

Microkernel Model 
The Windows NT operating system is based on a much-modified version of the 
Microkernel architecture that was first pioneered by the Mach operating system. 
Mach was designed by Carnegie Mellon University in the mid- to late-1980s. 
In Mach, privileged-mode activities were restricted to a very small subset of 
functions, which resided in the Microkernel. 
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In Windows NT, the Microkernel is the module of the operating system that 
typically deals with the mechanics of doing things on the system. It is the 
Microkernel that is responsible, for example, for handling and routing inter
rupts, and for saving and restoring thread context during a task-switching 
operation. The Microkernel has deliberately been kept small and tight, and is 
for the most part processor-dependent. 

Services provided by the Microkernel are utilized by the Executive-level com
ponents of the operating system. The Executive-level components are generally 
responsible for implementing policy (that is, deciding what the operating sys
tem should do next). 

It is important to realize that Windows NT is an exceptionally well-designed 
operating system, which never arbitrarily adheres to a given set of architecture 
constructs. Thus, although policy code is generally not implemented in the 
Microkernel, exceptions are made when such a division is not practical. One 
example of this is scheduling. In Windows NT, thread scheduling (or thread 
dispatching~ as it's often called) is the responsibility of the Microkernel. 
Although moving scheduling to an Executive-level component would have been 
more architecturally correct, the resulting overhead would be unacceptable. 

Integrated Networking 
From the time of its initial inception, Windows NT was designed to support 
networking. This is in dramatic contrast to other PC-based operating systems 
of the time (late 1989 and early 1990), which had networking added to them 
as an afterthought. 

Windows NT has always supported multi protocol networks. Out of the box, 
Windows NT supports the following protocol families: 

• AppleTalk 

• DLC 

• NetBEUI 

• IPXlSPX 

• TCP/IP 

Multiple Operating System Emulation 
One of the least-known attributes of Windows NT is that it was designed with 
the goal of being able to emulate multiple operating systems. Thus, NT sup
ports execution of Win32, PO SIX, OS/2, DOS, and Windows 3.1 programs 
with their native semantics. 
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This is not to say that any programs written for any of the operating systems 
listed can be executed without restriction on Windows NT. Rather, the point is 
that Windows NT was designed at a time when there were many different 
operating systems contending to be "the one dominant operating system." It 
was not clear, for example, whether the IEEE 1003 (POSIX) standard was 
going to be preeminent in the marketplace, whether OS/2 was going to become 
a major success, or whether Windows was going to catch the public's fancy. 
Thus, being rather clever folks, the Windows NT development team designed 
an operating system that was capable of emulating each of the popular operat
ing systems of the day, providing their native APIs and semantics. 

As the market developed, the Win32 API has become preeminent. As a result, 
the multiple operating system support features in Windows NT have become 
less important. More emphasis is now being placed on getting Windows exe
cutables to execute as fast as possible. However, understanding that these facil
ities exist is vital to understanding the overall architecture of Windows NT. 

User Mode Programs and Environment 
Subsystems 
Processes in Windows NT typically run under the control of a specific 
Environment Subsystem. An Environment Subsystem is an independent User 
mode process that exports a set of APIs for use by applications, exercises con
trol over those applications, and communicates with the Windows NT operat
ing system on behalf of those applications. Figure 1.1 shows the relationships 
between a typical user application program, an Environment Subsystem being 
used by that user application, and the Windows NT operating system. 

As shown in Figure 1.1, a User mode application utilizes one or more APIs that 
are provided by an Environment Subsystem. These APIs are typically imple
mented by a client-side DLL, to which the user application links. When the 
application calls an API function in the client-side DLL (as shown in Step 1 in 
Figure 1.1), the DLL checks to see if it can handle the request locally. By this, 
we mean that that DLL can process the request entirely within the client-side 
DLL, without reference to any other module. If the request can be handled 
locally, the client-side DLL processes the request and returns an appropriate 
reply to the requestor. 

Most requests cannot be handled directly within the client-side DLL, however. 
When a function is called, the client-side DLL typically builds a message that 
represents that function and sends the message to the Environment Subsystem 
(Step 2 in Figure 1.1). The message is sent using Windows NT's Local 
Procedure Call facility, a highly optimized interprocess communication method, 
designed specifically for this purpose. 
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Figure 1.1. User mode program and Environment Subsystem. 

User Mode 

Kernel Mode 

When a thread running within the Environment Subsystem's process receives 
the request from the application, it will typically perform any Environment 
Subsystem-specific processing required, and then translate that request to a 
native Windows NT system service. The Environment Subsystem then issues 
the Windows NT system service request on behalf of the user application (Step 
3 in Figure 1.1). 

The Windows NT operating system processes the system service, and returns 
its results to the Environment Subsystem, which in turn forwards the relevant 
portion of the results to the requesting user application. This is shown in Step 
4 of Figure 1.1. 

Hopefully, an example will make the relationships between the user applica
tion, the Environment Subsystem, and the NT operating system clear. Suppose 
an OS/2 application is running under the control of the OS/2 Environment 
Subsystem. This application issues a DosExecPgm () function call (which requests 
the execution of a child process). This function is implemented by code in the 
OS/2 Environment Subsystem's client-side DLL. When the DosExecPgm() func
tion is called, the code in the DLL assembles all the arguments and a unique 
code representing the function requested (DosExecPgm(), in this case), and sends 
all this to the OS/2 Environment Subsystem using NT's LPC facility. 
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A server thread running as part of the OS/2 Environment Subsystem process 
receives the message sent by its client-side DLL. It notes that it has received a 
request to process a DosExecPgm () function. It then does whatever OS/2 sorts of 
things it needs to do to process this request, implementing OS/2 semantics for 
the request. For example, the Environment Subsystem determines whether the 
execution of this new process was requested to be synchronous (in which case, 
the request is not completed until the requested process exits), asynchronous 
(and hence parallel with the requesting process), or background (totally inde
pendent of the requesting process). 

To actually execute the requested process, the OS/2 Environment Subsystem 
issues the native Windows NT system service NtCreateProcess () to the NT 
operating system. When the NT process is created in response to the request, 
the OS/2 Environment Subsystem will keep track of that process as being a 
child of the requestor. If the new process was requested to be synchronous, the 
OS/2 Environment Subsystem waits until the process has completed to return 
status to the requestor. If the request was for an asynchronous OS/2 process, 
status is returned immediately. 

The POSIX Environment Subsystem implements support for fork () and exec ( ) 

in the same way that the OS/2 Environment Subsystem implements support for 
DosExecPgm(). The POSIX Environment Subsystem applies POSIX-specific rules 
and semantics to the function calls it receives. It translates received requests 
into native Windows NT system service calls on behalf of the requestor, and 
sends these system service calls to the NT operating system for processing. 
Results are passed back to the original requesting process. 

Originally, the Win32 Environment Subsystem was implemented in precisely 
the same way as the POSIX and OS/2 Environment Subsystems. However, NT 
V4.0 introduced a number of optimizations that resulted in much of the Win32 
Environment Subsystem being moved from user mode to kernel mode. These 
are discussed later in this chapter, in the section entitled "The Win32 
Environment Subsystem." 

Bypassing the Environment Subsystem 
In some cases, the client-side DLL can directly map a request to a native 
Windows NT system service. This is the case when the native Windows NT 
system service is close enough in terms of syntax to the original request, and 
the Environment Subsystem does not need to perform any "value-added" pro
cessing to ensure that its semantics are maintained. This direct path is shown 
by the dotted line in Figure 1.1. 

The most common case when the direct path is used is for file and device I/O 
operations. In addition to avoiding the overhead inherent in first sending the 
request to the Environment Subsystem, the direct path allows the I/O operation 
to initially execute in the context of the requesting thread. 
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The Native Windows NT API 
Windows NT implements a native set of system services that were designed to 
facilitate operating system emulation. This API was never intended for direct 
use by applications programmers, however, and is therefore largely undocu
mented. 

A simple example of how the native NT API is specifically aimed at supporting 
multiple Environment Subsystems is demonstrated by the NtCreateFile () func
tion. This system service may be used to either create a new file or open a file 
that already exists. In either case, part of the information passed to the 
NtCreateFile () system service indicates whether the call should treat the sup
plied filename as case-sensitive or not. This is important because in the Win32 
API, filenames are always non-case-sensitive. Thus, the names foo. txt and 
FOO. TXT (in the same directory) refer to the same file. However, in PO SIX, file
names are always considered case-sensitive. Thus, the names foo. txt and 
FOO. TXT (and Foo. Txt, and FOO. txt, and so on) all refer to different files. 

A number of Windows NT native system services are documented in the DDK 
in their Zw variants. The functions documented include those used for I/O such 
as ZwCreateFile (), ZwReadFile (), ZwWri teFile (), ZwClose (), 

ZwSetInformationFile (), and ZwGetInformationFile (). Although either variant of 
the function may typically be called from Kernel mode, the Zw variant is used in 
place of the Nt version to cause the previous mode (and hence the mode in 
which the request was issued) to be set to Kernel mode. 

To request a native Windows NT system service, the service parameters are 
pushed on the stack and the system service is called. On x86 architecture sys
tems, Windows NT native system services are called by using software inter
rupt 2E. On Alpha systems, system services are called by using the syscall 

instruction. 

The Win32 Environment Subsystem 
Starting with Windows NT V4.0, changes were made to the operating system 
to enable faster support for programs running under the control of the Win32 
Environment Subsystem. Prior to NT V4.0, all requests, except for file and 
device I/O requests, were sent to the Win32 Environment Subsystem in the 
manner described previously for the POSIX and OS/2 subsystems. Starting 
with NT V4.0, however, many of the Win32 functions were moved directly 
into Kernel mode. This allows the Win32 client-side DLLs (the Win32 subsys
tem uses multiple client-side DLLs) to use the direct path of sending requests 
directly to the Windows NT operating system more often than was previously 
possible. 
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The modules moved from User mode to Kernel mode in NT V4.0 include the 
Window Manager code, the Graphics Device Interface (GDI), and display dri
vers. Moving this code into Kernel mode significantly reduces the overhead of 
making graphics requests. This is because significantly fewer transitions 
between User mode and Kernel mode are required in NT V4.0 to perform a 
given function. 

The Windows NT Executive 
The Windows NT operating system is divided into individual modules, as 
shown in Figure 1.2. 

Executive and System Services 

Window Manager 

1/0 and 

Manager Security Local 
Graphics Device 

Object Process Cache Interface 
Reference Procedure Memory 

I~ 
Manager Monitor Manager Call Manager Manager 

Graphics 
Mode Device 

Drivers Drivers 

Executive 

Microkernel 

Hardware Abstraction Layer (HAL) 

Figure 1.2. Windows NT operating system structure. 

The Windows NT operating system is comprised of a number of different mod
ules. As Figure 1.2 illustrates, and as previously discussed in this chapter, these 
modules are grouped together into three groups: 

• The Executive, which includes the operating system subsystems 

• The Microkernel 

• The Hardware Abstraction Layer (HAL) 

The Executive is actually a specific module within the NT operating system 
that is responsible for many miscellaneous functions, including system service 
dispatching and managing the paged and non-paged system pools. The 
Executive module utilizes services provided by the other Executive-level com
ponents (such as the I/O Manager, Object Manager, and so forth), and thus 
lends its name to this entire group of operating system modules. 

In addition to the Executive module itself, the major components within the 
Executive level of the operating system are: 

• I/O Manager 

• Object Manager 
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• Security Reference Monitor 

• Process Manager 

• Local Procedure Call facility 

• Memory Manager 

• Cache Manager 

• Win32 support, including Window Manager, and Graphics Device 
Drivers. 

The following sections describe each of these components in more detail. 

110 Manager 
As you can probably guess from its name, the 110 Manager is responsible for 
managing the input/output subsystem of the operating system. The 110 
Manager does this by supporting create, read, write, set information, get infor
mation, and a whole host of other operations on File Objects. The 110 
Manager implements what is basically a packet-based asynchronous 110 sub
system that uses 110 Request Packets (IRPs) to describe 110 operations. 

The 110 Manager is also responsible for providing a framework for Kernel 
mode drivers, and provides support for those drivers. Kernel mode drivers are, 
in fact, dynamically loaded into the operating system and may be thought of as 
part of the 110 Manager. Because much of this book is about the 110 Manager, 
and how it supports and provides an environment for device drivers, we will 
defer any additional discussion of the 110 Manager for later. More general 
information about the 110 Manager appears in Chapter 9, "The 110 Manager." 

Object Manager 
The Object Manager is a key part of the Windows NT operating system. 
Programmers who mostly work in User mode are typically unaware of the 
Object Manager's existence because it is not directly manipulated from User 
mode and, by default, its names pace is not visible. 

The Object Manager is responsible for maintaining a single namespace for all 
named objects on the system. It is also responsible for the creation, deletion, 
and management of named and unnamed NT system objects. The following 
sections describe some of the major duties performed by the Object Manager 
that are of particular relevance to driver writers. 

Resolving System Names 
As mentioned previously, the Object Manager is responsible for maintaining a 
single namespace for all named system objects. In fact, the Object Manager 
serves as the root of all namespaces on a Windows NT system. The Object 
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Manager's namespace can be examined by using the obj dir utility that is pro
vided with the DDK, or the winobj utility that is provided with the SDK. Figure 
1.3 shows the Object Manager's top-level namespace, as displayed by objdir. 

Figure 1.3. The Object Manager's root namespace. 

To illustrate how the Object Manager's namespace is used in Windows NT, 
let's examine how the Object Manager works together with the I/O Manager 
to parse a file specification provided to a file open request. 

A user that wants to access a file will typically use the Win32 API to issue a 
function call that might look something like the following: 

hFile = CreateFile( "c:\\foo\\bar.txt", II dey, path, name 
GENERIC_READ: GENERIC_WRITE, II access 
0, II share mode 
NULL, II security 
OPEN_EXISTING, II disposition 
FILE~TTRIBUTE_NORMAL, II attributes & flags 
NULL); II template file 

If successful, this function call creates a File Object (that's why the function is 
called createFile) that represents an open instance of the named file, on the 
named path, on the named device. The function returns a handle to this File 
Object that may be used for subsequent I/O operations on the file. 
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In assisting the 110 Manager with processing this function, it is the Object 
Manager that is responsible for initially parsing the supplied name 
(c: \foO\bar.txt). It passes that part of the name that it cannot parse on to the 
110 Manager for interpretation by the appropriate file system. 

As previously discussed, when the CreateFile () Win32 API call is issued, the 
Win32 Environment Subsystem's client-side DLL converts this function call to 
the native NT system service NtCreateFile (). As part of the process of convert
ing the parameters, Win32 converts the supplied name to a native format name 
that Windows NT can understand. It does this by pre-pending the supplied 
name with the string "\?? \ ". Thus, when it issues the native NT system service 
NtCreateFile(), it does so by using the name \??\c:\foo\bar.txt. 

The Executive's system service Dispatcher calls the 110 Manager to process the 
NtCreateFile () request. The 110 Manager in turn calls the Object Manager to 
create a File Object to represent the entity named in the function call. Part of 
the Object Manager's job in creating the File Object is to parse the provided 
name. 

The Object Manager parses the provided name, one piece at a time, with each 
piece being delimited by a backslash character. Thus, the Object Manager 
starts by looking to see if it has an entry in its top level namespace that corre
sponds to "\ ??". As Figure 1.3 illustrates, in fact it does, and this entry is an 
Object Manager directory. Figure 1.4 shows a sample of the contents of the 
Object Manager's \?? 

, ,'>'>bJdh! '17 
boectol"Y of: 'X" 
~D"Lpn 

a1il1 ... id 
UK 
~ev 
DR4USD 

~. 3 entl".ies

"> 

Figure 1.4. The Object Manager's \?? directory. 
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With the first piece of the name resolved, the Object Manager next attempts to 
resolve the next piece of the name within the \?? directory. The next piece of 
the name is "c:". As shown in Figure 1.4, c: represents a symbolic link to the 
Object Manager name \Device\Harddisk0\Partition1. Thus, the Object 
Manager substitutes \Device\Harddisk0\Partition1 for the name c: in the origi
nal name. 

The Object Manager continues parsing the name. It returns to its base directo
ry and attempts to resolve the first piece of the name, which is now" \Device". 

As shown in Figure 1.3, this is a directory, which the Object Manager next 
opens. Figure 1.5 shows the contents of the \Device directory on a sample 
system. 
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Figure 1.5. The Object Manager's \Device directory. 

The Object Manager continues parsing pieces of the supplied name. Within the 
\Device directory, the Object Manager finds an entry that represents Harddisk0. 

This is also a directory, the contents of which are shown in Figure 1.6. 

Now within the \Device\Harddisk0 directory, the Object Manager continues 
parsing the provided name. The next piece of the name is Partition1, which 
represents the name of a Device Object within this directory. Because a Device 
Object was located (and not another Object Manager directory or symbolic 
link), the Object Manager passes control to the 110 Manager's parse method 
for Device Objects. 
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Figure 1.6. The Object Manager's \Device\Harddisk0 directory. 

The Object Manager passes the 110 Manager's parse method the remaining 
part of the name (\foo\bar.txt) to be resolved. The 110 Manager's parse 
method resolves this part of the name by finding the File System mounted for 
the indicated Device Object, building an 110 Request Packet representing the 
Create File request, and thus passing the remaining part of the name on to the 
File System for parsing and validation. If the file system decides the supplied 
name is valid, and if the requested access can be granted to the entity by the 
file system to the user, then the 110 Manager and Object Manager complete the 
request successfully, returning a handle to the created File Object. 

System Object Management 
As mentioned previously, in addition to parsing names, the Object Manager is 
responsible for the actual creation, deletion, and management of NT system 
objects. These objects include the File Objects, Device Objects, and Driver 
Objects used by the 110 Manager; the Process Objects and Thread Objects 
used by the Process Manager; and Section Objects used by the Memory 
Manager, among others. The Object Manager is also responsible for maintain
ing reference counts on system objects, managing object handles, and tracking 
the access granted to each object via each handle. The Object Manager also 
supports converting a handle to a given object to a pointer to that object. 

To illustrate the 110 Manager's role in the management of system objects, let's 
expand on the open file example that we started in the previous section. 

As discussed in the previous section, to access a file, a user must create a File 
Object that represents that file. This File Object can be created by using the 
Win32 API function CreateFile () or directly via the NT native API 
NtCreateFile ( ). Both of these functions allow the caller to specify the name of 
the entity to be accessed (such as the device, directory path, and name of the 
file to be opened), as well as the access being requested to the entity. 
NtCreateFile () is processed by the 110 Subsystem, which calls the 110 Manager 
to create a File Object on its behalf. 

If the Object Manager successfully creates the File Object, and if the Object 
Manager, 110 Manager, and file system successfully parse the supplied file 
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specification, the 110 Manager returns a handle to the newly created File 
Object to the requestor. This implies that the access requested to the entity 
underlying the File Object was successfully granted. The Object Manager cre
ates an entry in the handle table for the current process to track this File 
Object, and records the access that was successfully granted to the object. 

On subsequent 110 operations to this File Object, the requestor supplies the 
File Object handle (typically referred to as a file handle, for convenience). 
Using the current process' handle table, the Object Manager converts the file 
handle to a pointer to a File Object and increments the reference count on the 
File Object. At the same time, the Object Manager also checks to see if the 
access required by the 110 operation that is being requested is allowed by the 
access that was granted to this File Object when the File Object was created. If 
the access is not allowed, the 110 Manager immediately aborts the 110 opera
tion with an error status. If the requested access is allowed, the 110 Manager 
proceeds to build an 110 Request Packet that represents the requested 110 oper
ation on this File Object. 

As can be seen from the preceding description, the Object Manager plays a key 
role in the Windows NT system. It's important to realize that the Object 
Manager doesn't just work with the 110 Manager, as shown in the preceding 
example. Rather, the Object Manager works with all the Executive-level 
subsystems in much the same way as it works with the 110 Manager in the 
example. 

Security Reference Monitor 
The Security Reference Monitor is responsible for implementing Windows NT 
security access policy. As such, it is not of much interest to device driver writ
ers. However, its existence and its responsibilities are worthy of a brief men
tion. 

The Security Reference Monitor implements Access Control Lists (ACLs) and 
Security Identifiers (SIDs) for use in implementing system security policy. It 
supports a unique per-thread security profile, and supports security-based vali
dation for access to objects. 

It is particularly interesting to note that Windows NT implements a unified 
security policy. That is, access to all system resources (that are access
controlled) is the responsibility of the Security Reference Monitor. For exam
ple, access validation to files on the NTFS file system is implemented not by an 
internal NTFS security policy, but rather by NTFS utilizing the services provid
ed by the Security Reference Monitor. 

Another interesting aspect of the Security Reference Monitor is support for 
what NT refers to as impersonation. This allows one thread to pass along to 
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another thread the right for the second thread to use the first thread's security 
credentials. This is most often used in client-server operations. In these opera
tions, the client will authorize the server to impersonate the client, thereby 
allowing the server to use the client's security credentials when performing a 
particular operation. 

Process Manager 
The Process Manager is responsible for process and thread creation and dele
tion. The Process Manager accomplishes this by working with the Object 
Manager to build Process Objects and Thread Objects, and with the Memory 
Manager to allocate virtual address space for the process. 

Local Procedure Call Facility 
The Local Procedure Call (LPC) facility provides a local implementation of the 
RPC interprocess communication service. LPC supports passing data between 
clients and servers by using either messages or shared memory. One interesting 
feature of LPC is that messages may be passed between clients and servers 
without the overhead of a scheduling operation. 

LPC was specifically designed for use between an application and its 
Environment Subsystem. As a result, the API needed to access LPC is not docu
mented. It is interesting to note that RPC requests between applications on the 
same Windows NT system will actually use LPC as the transport mechanism. 

Memory Manager and Cache Manager 
The Memory Manager and Cache Manager together form what we refer to as 
Windows NT's Virtual Memory Subsystem. The Virtual Memory Subsystem is 
described in detail in Chapter 3, "Virtual Memory." Here, we will mention 
some of the main characteristics of NT's implementation of virtual memory as 
a quick introduction to the topic. 

The NT Virtual Memory Subsystem provides a 32-bit demand paged environ
ment. Although 64-bit support is being added to Windows NT, it is not avail
able in NT V4.0 or earlier. 

The Virtual Memory Subsystem supports the sharing of physical pages among 
multiple processes. It supports shared read-only as well as shared read-write 
memory segments. 

The Virtual Memory Subsystem is responsible for implementing Windows NT's 
data and file caching mechanisms. File data may be accessed on Windows NT 
via the I/O Manager, using standard read and write operations to files, or via 
the Memory Manager by mapping the file's data directly into virtual memory. 
To ensure cache coherency between these two access methods, the Windows 
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NT Cache Manager implements a single, global, common cache. This single 
cache is used to cache both process data pages and file data pages. 

Win32 Support Components 
As discussed previously, the Win32 support components are new to NT V4.0. 
The Window Manager implements Windowing, Windows messaging, and the 
like. It comprises much of that code that formerly resided in the User compo
nent of the Win32 Environment Subsystem. 

The Win32 support components also include the Graphics Device Interface 
(GDI) and its associated display drivers. These facilities interface between GUI 
applications and graphics devices, and provide a set of standard text and draw
ing primitives. 

Windows NT Microkernel 
The Windows NT Microkernel is responsible for providing processor-specific 
support for all low-level functions in the operating system. Unlike the HAL, 
which provides support for processor resources that can change among specific 
models within a family of processors, the Microkernel provides support for 
basic architectural constructs, such as handling and dispatching interrupts, sav
ing and restoring thread context, and multiprocessor synchronization. 

The Microkernel exports two different types of kernel objects: Dispatcher 
Objects and Control Objects. 

Kernel objects are distinct from Object Manager (or Executive-level) objects. 
Kernel objects provide the lowest level of support for certain entities. Kernel 
objects are often the basis for Object Manager objects. 

One type of kernel object is the Dispatcher Object. Dispatcher Objects are used 
for scheduling (or "dispatching," as it's called in Windows NT) and synchro
nization. Dispatcher Objects are prefixed by a common DISPATCH_HEADER (the 
definition of which appears in the standard DDK header file, ntddk. h). A pic
ture of the DISPATCHER_HEADER is shown in Figure 1.7. 

Dispatcher Objects have an attribute called "signal state." Using the appropri
ate system service a caller can wait, with an optional timeout, on a Dispatcher 
Object until the object is signaled. Kernel Dispatcher Objects include events, 
mutexes, semaphores, and timers. 

Many kernel objects may be directly manipulated by device drivers and the 
Executive. A simple example of such an object is the kernel Event Object. 
Space for a kernel Event Object may be allocated from any non-paged loca
tion, including non-paged system pool. A driver may then initialize this event 
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(using the Microkernel-supplied function KeInitializeEvent ()) to either sig
naled or not-signaled state. Any Kernel mode thread with a pointer to this 
object may then wait for it to become signaled by calling the Microkernel func
tion KeWai tForSingleOb j ect ( ). 

Inserted I Size I Absolute I Type 

SignalState 

WaitListHead (LIST_ENTRY) 

Figure 1.7. DISPATCHER_HEADER. 

An example of how a Kernel Object can form the basis of an Executive-level 
object is also provided by the Event Object. Event Objects in the Win32 sub
system (created by the Win32 API function CreateEvent ()) are actually 
Executive-level (Object Manager-created and managed) Event Objects. Each 
Executive-level Event Object contains a kernel-level Event Object. Waiting for 
an Executive-level Event Object is accomplished via the Win32 API function 
WaitForSingleObj ect () which, once translated to an NT native system service 
and processed by the Object Manager, results in a call to 
KeWaitForSingleObj ect () on the kernel Event Object that forms the basis of the 
Object Manager's Event Object. 

The second type of object exported by the kernel is the Control Object. These 
objects are used to control specific aspects of system operations. Control 
Objects include Asynchronous Procedure Call (APC) Objects, Deferred 
Procedure Call (DPC) Objects, Interrupt Objects, and Profile Objects. 
Although it is a bit complicated to explain Control Objects at this point, one 
example is the Interrupt Object. The Interrupt Object is responsible for con
necting a specific interrupt vector to a device driver's Interrupt Service 
Routine (ISR). 

Hardware Abstraction Layer 
The Hardware Abstraction Layer (HAL) is responsible for providing a stan
dard interface to processor-specific resources. This standard interface is used by 
the Microkernel and the Executive-level components. Understanding this stan
dard interface is one of the keys to understanding how Windows NT imple
ments its processor-independent architecture. 

The HAL is discussed in detail in the next chapter, Chapter 2, "Achieving 
Hardware Independence with the HAL." 



Chapter 2 
Achieving Hardware 

Independence with the HAL 

This chapter will review: 

• The HAL's Role in the Windows NT Operating System. The HAL pro
vides a standard interface to processor resources for use by the rest of the 
NT operating system. This section discusses the HAL's specific role in 
building the portable operating system environment in which NT runs. 

• Device Addressing. This section describes the abstraction provided by the 
HAL for identifying a specific device address on a given 110 bus. 

• 110 Architecture. The HAL provides a set of standard routines that pro
vide access to device registers. This section describes these routines and 
how they may be used to access device addresses that reside in port I/O 
space or memory space. 

• Interrupt Management. This section introduces the HAL's model for 
interrupt handling. 

• DMA Operations. The HAL, working with the 110 Manager, provides a 
unique model for DMA operations on Windows NT. This section intro
duces the basics of that model. 

• Other HAL Facilities. This section describes the role the HAL plays in 
clock and timer management, interfacing to the BIOS, and handling sys
tem configuration. 

• Processor Architecture Differences Not Handled by the HAL. The HAL 
doesn't even attempt to handle certain basic differences in processor 
architecture. This section describes a number of those differences. 
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This chapter discusses how the Hardware Abstraction Layer (HAL) helps pro
vide processor architecture independence on Windows NT systems. You will 
also learn about some of the fundamental services that the HAL provides. 
Finally, the chapter ends with a discussion of the types of processor 
architecture-specific features that the HAL does not include in its abstractions. 

The HAL's Role in the Windows NT 
Operating System 
One of the most unique attributes of the Windows NT operating system is that 
it is not dependent on the design of one particular hardware platform or archi
tecture. This is in strong contrast to earlier systems, such as OS/2, Windows, 
and DOS, which were very closely tied to their underlying system hardware. 
The component of Windows NT that provides this hardware independence is 
the Hardware Abstraction Layer (HAL). 

Fundamentally, the HAL is merely a set of operating system services that device 
drivers utilize to interact with both processor resources and their specific hard
ware. Although there is no way for NT to enforce the requirement that a 
device driver utilize the HAL services, the advantages of portability are lost if 
the HAL isn't used. To use HAL services, device drivers (and other system 
components) call HAL functions and utilize HAL macros. These functions and 
macros handle converting the driver's requests into operations appropriate for 
the particular hardware platform. In many cases, this conversion is straightfor
ward. For some platforms, however, the HAL may have to perform consider
able additional processing in order to perform the requested operation. 

The HAL implements a standard model (or "abstraction," as it's often called) 
of available system resources, and a standard view of certain hardware plat
form capabilities. The HAL also provides a standard interface through which 
all other Executive-level system components access these resources. This inter
face does not change, based on the system upon which NT is running. Thus, 
the HAL maps requests made by other operating system components to its 
abstract interface to the actual hardware existing on a given platform. Figure 
2.1 illustrates this model. 

It is very important to understand that the HAL does not provide abstractions 
for every processor architecture-dependent facility that exists, or that could 
exist, in a system. Rather, the HAL's abstractions are typically limited to those 
items that either 

• Are regularly used by operating system components other than the 
Microkernel and the HAL itself 
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• Could change among specific system implementations within a given 
processor architecture 

Standard HAL Interface: 
READ_PORT _xxx(), 

READ_REGISTER_xxxO, 
HaITranslateBusAddress(), etc. 

Standard x86 HAL 

Standard HAL Interface: 
READ_PORT _xxx ( ), 

READ_REGISTER_xxxO, 
HaITranslateBusAddress(), etc. 

Specific Alpha HAL 

Figure 2.1. The HAL's upper edge stays the same; the actual implementation may 
change, based on the underlying hardware platform. 

The processor-dependent features that the HAL does not implement are dis
cussed in greater detail later in this chapter. 

The facilities and resources for which the HAL provides an abstraction include 
the following: 

• Device Addressing 

• I/O Architecture 

• Interrupt Management 

• DMA Operations 

• System Clocks and Timers 

• Firmware and BIOS Interfacing 

• Configuration Management 

For device drivers, the HAL's standard interface means that hardware access is 
platform-independent. Thus, instead of having the particular system platform 
dictate how a device driver interfaces with its hardware, the driver uses the 
standard interfaces provided by the HAL. The HAL is responsible for dealing 
with any platform-specific differences. Because the interface to the HAL does 
not change from hardware platform to hardware platform, a driver that prop
erly uses the HAL to access its device requires no changes (other than recompi
lation!) to enable it to run on the various Windows NT hardware platforms. 

Note 

It's important to understand that the HAL provides an unchanging 
abstraction of processor architecture-based resources, not an abstraction 
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of specific hardware devices. Therefore~ the HAL needs to be changed 
only when support is required for a different set of processor architecture 
capabilities. This might include~ for example~ if support for a new 110 
bus needs to be added~ or if the mechanics of the way the system clock 
works changes. The HAL does not provide abstractions of individual 
devices on the system~ such as a serial port~ a disk device~ or a keyboard. 

The HAL provides the following services: 

• A common set of services, available on all Windows NT platforms. 

• A portable implementation of inherently platform-specific services. 

• A uniform mechanism for ALL kernel code to access underlying hard
ware platform resources. 

The sections that follow examine some of the resource abstractions provided 
by the HAL, and describe how the HAL handles them. 

Mote 

The actual set of routines that make up the HAL has changed over time. 
As the NT development team has identified new functions that are 
platform-specific~ these routines have been moved into the HAL. Device 
driver developers can learn precisely what is included in the HAL simply 
by examining the HAL export list. To examine the HAL export list~ use 
the dumpbin utility included with the Platform SDK and select to display a 
list of exported functions~ as shown in the following example: 

dumpbin lexports c:\winnt\system32VJal.dll 

A surprising number of routines do not start with a Hal prefix. These rou
tines presumably originated in other parts of the operating system and 
were only later moved into the HAL. 

Device Addressing 
The HAL implements a very flexible model for device addresses. In this model, 
devices are connected to buses, each of which has its own address space, as 
illustrated in Figure 2.2. 

The HAL views device addresses, as identified by the devices themselves, as 
strictly bus-relative. These addresses may be located in either port I/O space or 
memory space. Notice in Figure 2.2 that both PCI buses have the bus-relative 
address OxCOOOO. Similarly, according to the HAL's abstraction, it is possible 
for two devices on different buses to both have registers located at port I/O 
space address Ox180. 
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Figure 2.2. Different bus address spaces. 
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Before a device address can be accessed from a driver by using one of the HAL 
functions described later in this chapter, the address must be converted from a 
bus-relative address to a HAL-translated address. This translated address is one 
of the class of addresses called logical addresses on Windows NT. A device
logical address is unambiguous and not tied to any particular bus. 

It is very important to understand that logical addresses are managed solely by 
the HAL on Windows NT. This means that logical addresses are best thought 
of as opaque values, with special meaning only to the HAL. In this way, they 
are not unlike HANDLEs. Further, how logical addresses are interpreted varies 
widely among processor architectures and HALs. For example, on one proces
sor architecture, logical addresses might actually be identical to physical 
addresses in host memory. On another processor, logical addresses might quite 
literally be encoded values that indicate the bus and port on that bus to which 
the logical address refers. 

110 Architecture 
Perhaps the most significant difference among processor architectures that is 
relevant specifically to device driver writers is the mechanism by which device 
control and status registers are accessed. The Intel x86 processor family allows 
devices to present control and status registers in one of two discrete address 
spaces: port 110 space or memory space. Because these two address spaces are 
distinct, x86 architecture processors implement specific instructions that sup
port access to each of these address spaces. Port space addresses are accessed 
using in and out instructions. That is, addresses that appear on the in or out 
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instruction are interpreted by the processor as addresses in port I/O space. All 
other instructions (such as mov) interpret any memory references as references 
to addresses in memory space. 

Of course, not all processors support the concept of distinct port I/O and mem
ory spaces. RISC architecture CPUs, such as the Alpha, support only memory 
address space. Device control and status registers thus appear mapped into 
memory space, according to a scheme implemented by the system designer. 

Complicating this issue is the fact that I/O architecture is not solely a function 
of the cpu. Rather, it is also a function of the device buses attached to the sys
tem. All buses commonly used with x86 architecture systems (including the 
PCI, ISA, and EISA buses) specifically support the concept of distinct port and 
memory address spaces. 

To enable drivers to support systems with differing I/O architectures without 
any source code changes, the standard model that the HAL provides to device 
drivers includes both port I/O and memory spaces. Device drivers access their 
devices' control and status registers using HAL-provided functions. The HAL 
in turn implements whatever code is necessary to access the indicated device 
register on the specific platform on which the driver happens to be running. 

Choosing the Correct HAL Function for 
Device Access 
The HAL provides functions that allow drivers to read and write registers in 
either port I/O space or memory space. These functions are specific to the size 
of the register being accessed. That is, there are functions to read and to write 
UCHAR, USHORT, and ULONG registers that reside in either port I/O space or memory 
space. The complete list of such functions is as follows: 

READ_PORT_UCHAR{) WRITE_PORT_UCHAR{) 

READ_PORT_USHORT{) WRITE_PORT_USHORT{) 

READ_PORT_ULONG{) WRITE_PORT_ULONG{) 

READ_REGISTER_UCHAR{) WRITE_REGISTER_UCHAR{) 

READ_REGISTER_USHORT() WRITE_REGISTER_USHORT() 

READ_REGISTER_ULONG() WRITE_REGISTER_ULONG() 

The driver selects whether to use the UCHAR, USHORT, or ULONG variant of the func
tion, depending on the size of the device register to be accessed. A UCHAR is 
defined in NT as an unsigned 8-bit value. A USHORT is defined as an unsigned 
16-bit value. A ULONG is defined as an unsigned 32-bit value. 
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A driver selects whether to use one of the PORT or one of the REGISTER 
functions, based on the location of the register to be accessed on the devi ... e 
itself. Registers located on a device in port I/O space are accessed using the 
HAL's PORT functions. Registers located on a device in memory space are 
accessed using the HAL's REGISTER functions. 

Thus, if a driver writer wants to access a register on a PCI device, the driver 
writer must know in advance whether that register is wired to port I/O space 
or register space on the device. Because the location of a given device register is 
decided by the device's designer when the device is built, the location of a par
ticular register is never ambiguous, and never varies from system to system. 
Thus, the driver never selects which function type to use, based on the system 
on which it is running. It is the HAL's job to ensure that the driver's function 
calls "do the right thing" on the processor architecture on which a driver hap
pens to be running. 

Figures 2.3 and 2.4 show the prototypes for the functions READ_PORT _UCHAR () 

and READ_REGISTER_UCHAR (). The prototypes for the other HAL read functions 
differ only in the size of the register read and data item returned. 

UCHAR 
READ_PORT_UCHAR(IN PUCHAR Port}; 

Port: The port I/O address to use for reading this device port. 

Figure 2.3. READ_PORT _UCHAR () function prototype. 

UCHAR 
READ_REGISTER_UCHAR(IN PUCHAR Register}; 

Register: The address to use for reading this device register. 

Figure 2.4. READ_REGISTER_UCHAR function prototype. 

Figures 2.5 and 2.6 show the prototypes for WRITE_PORT_UCHAR() and WRITE_ 

REGISTER_UCHAR ( ). The prototypes for the other HAL write functions differ only 
in the size of the register and data item written. 
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VOID 
WRITE_PORT_UCHAR(IN PUCHAR Port, 

IN UCHAR Value); 

Port: The port 110 address to use for writing this device port. 

Value: The data value to write to the port. 

Figure 2.5. WRITE_PORT_UCHAR() function prototype. 

VOID 
WRITE_REGISTER_UCHAR(IN PUCHAR Register, 

IN UCHAR Value); 

Register: The address to use for writing this device register. 

Value: The data value to write to the register. 

Figure 2.6. WRITE_REGISTER_UCHAR function prototype. 

These HAL "functions" are in fact either actual functions or macros, depend
ing upon the precise requirements of the underlying hardware platform. For 
example, WRITE_PORT _UCHAR () is a function on the x86 platform. The declaration 
in ntddk. h, specific to the x86 platform is: 

NTKERNELAPI 
VOID 
WRITE_PORT_UCHAR( 

PUCHAR Port, 
UCHAR Value 
)j 

For the Alpha platform, the declaration is identical. For the Power PC (no 
longer supported, but still present in ntddk. h), the declaration of 
WRITE_PORT_UCHAR () is: 

#define WRITE_PORT_UCHAR(x, y) { 

*(volatile UCHAR * const)(x) = Yj 
KeFlushWriteBuffer()j 

On the x86 platform, the HAL code that implements the routine for 
WR ITE _PORT _ UCHAR () looks something like the following: 

mov edx,[esp+4] 
mov eax,[esp+8] 
out dx,al 
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For the Alpha platform, the code that implements the routine for 
WRITE_PORT _UCHAR () looks considerably different from either its x86 or PPC 
counterpart. Indeed, the Alpha implementation of this code handles the com
plex addressing architecture used by the Alpha platform to support port 110 
operations. 

Regardless of the precise implementation, the essential point is that the device 
driver source code uses the function appropriate for the device register it is 
accessing. If the device in question is a PCI device utilizing 110 registers in port 
110 space, the HAL functions for accessing 110 registers in port 110 space are 
used. The precise combination of hardware and software used by the platform 
to transform the HAL operation into a port 110 access to the device is unim
portant to the device driver developer. Thus, device drivers can be developed 
in a cross-platform fashion. 

Note 

As noted earlier in the chaptet; some functions may have migrated from 
other parts of the operating system into the HAL. In some cases, opera
tions that are described as being part of the HAL are implemented within 
the microkernel. For example, on the x86 platform, the register routines 
(such as READ_REGISTER_UCHAR()) are implemented within the microkernel, 
and not within the HAL itself 

HAL Buffer Functions 
Before completing our discussion of registers and ports, another notable group 
of functions provided by the HAL for port and register access are the BUFFER 
functions, specifically: 

READ_PORT_BUFFER_UCHAR() WRITE_PORT_BUFFER_UCHAR() 

READ_PORT_BUFFER_USHORT() WRITE_PORT_BUFFER_USHORT() 

READ_PORT_BUFFER_ULONG() WRITE_PORT_BUFFER_ULONG() 

READ_REGISTER_BUFFER_UCHAR() WRITE_REGISTER_BUFFER_UCHAR() 

READ_REGISTER_BUFFER_USHORT() WRITE_REGISTER_BUFFER_USHORT() 

READ_REGISTER_BUFFER_ULONG() WRITE_REGISTER_BUFFER_ULONG() 

These functions all read from or write to multiple locations in the data buffer, 
accessing a device register that is of the indicated length. Figure 2.7 and Figure 
2.8 show the prototypes for READ_PORT_BUFFER_UCHAR() and 
WRITE_PORT _BUFFER_UCHAR (), respectively. The other READ_PORT _BUFFER_xxx () 
and WRITE_PORT _BUFFER_xxx () functions differ only in the size of the data item 
and register referenced. 
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VOID 
READ_PORT_BUFFER_UCHAR(IN PUCHAR Port, 

IN PUCHAR Buffer, 
IN ULONG Count); 

Port: The port 110 address to use for reading this device port. 

Buffer: A pointer to a buffer to which the read port data is to be 
copied. 

Count: The count of UCHAR values to be read from the port. 

Figure 2.7. READ_PORT_BUFFER_UCHAR() function prototype. 

VOID 
WRITE_PORT_BUFFER_UCHAR(IN PUCHAR Port, 

IN PUCHAR Buffer, 
IN ULONG Count); 

Port: The port 110 address to which to write the data. 

Buffer: A pointer to a buffer from which the port data is to be copied. 

Count: The count of UCHAR values to be written to the port. 

Figure 2.8. WRITE_PORT_BUFFER_UCHAR() function prototype. 

For the PORT_BUFFER functions, note that data is always transferred between a 
single port 110 register location and a range of addresses in the indicated data 
buffer. That is, WRITE_PORT _BUFFER_UCHAR (PortX, Buffer, NumChars) does the 
equivalent of: 

while (NumChars--) { 
WRITE_PORT_UCHAR(PortX, *Buffer++)j 

Figure 2.9 and Figure 2.10 illustrate the prototypes for 
READ_REGISTER_BUFFER_UCHAR () and WRITE_REGISTER_BUFFER_UCHAR (), respectively. 
The other READ_REGISTER_BUFFER_xxx() and WRITE_REGISTER_BUFFER_xxx() func
tions differ only in the size of the data item and register referenced. 
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VOID 
READ _REGISTER_BUFFER_UCHAR(IN PUCHAR Register, 

IN PUCHAR Buffer, 
IN ULONG Count); 

Register: The starting address of a range of memory-mapped device 
addresses from which to read. 

Buffer: A pointer to a buffer to which the read data is to be copied. 

Count: The count of UCHAR values to be read from the register. 

Figure 2.9. READ_REG ISTER_BUFFER_UCHAR () function prototype. 

VOID 
WRITE_REGISTER_BUFFER_UCHAR(IN PUCHAR Register, 

IN PUCHAR Buffer, 
IN ULONG Count); 

Register: The starting address of a range of memory-mapped device 
addresses to which the data is to be written. 

Buffer: A pointer to a buffer from which the port data is to be copied. 

Count: The count of UCHAR values to be written to the register. 

Figure 2.10. WRITE_REGISTER_BUFFER_UCHAR () function prototype. 

It's very important to notice that the REGISTER_BUFFER functions do not work the 
same way as the PORT_BUFFER functions with respect to the way they handle the 
device address. The REGISTER_BUFFER functions move data between a range of 
memory-mapped register locations on the device, and a range of addresses in 
the indicated data buffer. That is, WRITE_REGISTER_BUFFER_UCHAR (RegisterX, 

Buffer, NumChars) does the equivalent of: 

while (NumChars--) { 
WRITE_REGISTER_UCHAR(RegisterX++, *Buffer++)i 

Thus, for the PORT_BUFFER functions, a single port device address is used; for the 
REGISTER_BUFFER functions, a range of memory device addresses is used. This 
allows the REGISTER_BUFFER functions to be used to move data between host 
memory and mapped memory areas on a device. 
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Here's a hint that often bites new NT driver writers: In the BUFFER 
functions, the values provided for Count is the number of data items
which is not necessarily the number of bytes-to be moved. That is, 
Count is the number of UCHARS, USHORTS, or ULONGs to be moved, depending 
on the function chosen. 

Interrupt Management 
Because it is the HAL's job to isolate the rest of the system from platform
specific architectural issues, the HAL is responsible for managing and handling 
interrupts. This includes not only managing the way interrupts are routed, but 
also assigning relative priorities to the various interrupts. Like device addresses, 
the HAL's model for interrupt vectors is that such vectors, as identified by the 
devices themselves, are bus-relative. Thus, before an interrupt vector can be 
referenced, it must be translated to a logical interrupt priority value. 

In Windows NT, device drivers may register to have a function called when a 
particular device interrupts. The HAL, along with the NT microkernel, is 
responsible for the specifics of interrupt-controller management and program
ming. The device driver identifies a HAL-defined interrupt vector to which to 
connect, and a function to be called when an interrupt occurs at that vector. 
The HAL (working with the 110 Manager and the microkernel) registers the 
device driver's Interrupt Service Routine (ISR) function to be called when the 
indicated interrupt is to be serviced. 

Because the number of discrete interrupt priorities-and the ways such priori
ties are managed-vary widely among processor architectures, the HAL pro
vides an abstraction of hardware logical interrupt priorities. This abstraction is 
the Interrupt Request Level (IRQL). The HAL provides a set of symbolic values 
for IRQLs; ranging from the IRQL PASSIVE_LEVEL, which is defined as the lowest 
possible IRQL on the system, to IRQL HIGH_LEVEL, which is defined as the high
est possible IRQL. IRQLs are discussed in much more detail in Chapter 6, 
CCInterrupt Request Levels and DPCs." 

Note 

IRQLs have nothing to do with the Windows NT scheduling priority of a 
thread. 
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On some platforms, managing the interrupt controller is a simple task. For 
example, on a standard x86 platform, the interrupt hardware is a pair of 8259-
compatible programmable interrupt controllers (PICs). The second controller is 
attached to the first controller, with each controller managing eight interrupts, 
for a total of 15 usable interrupts. The assignment of IRQL values to these 
individual interrupts is completely a function of the HAL. Thus, there is 
absolutely no requirement that the HAL use IRQL 6 for the PIC's IRQ 6! 

For more complex systems, programming the interrupt controller is more chal
lenging. Hardware platforms might restrict certain interrupts so they are handled 
only on specific CPUs. Programmable interrupt controllers must be managed to 
mask interrupts on some processors while leaving them enabled on other proces
sors. Interrupts may be "cascaded" so that one interrupt represents a set of other 
interrupts. 

Whenever an ISR is to be called in response to a device interrupt, the HAL and 
microkernel (working together) first raise the system's current interrupt priority 
to the IRQL that has been assigned to the interrupting device. This has the 
effect of blocking subsequent interrupts from the interrupting device, and for 
any device with interrupts of the same or lower IRQL value. Once the device 
driver's ISR has completed servicing the interrupt, it simply executes a return 

statement. The IRQL of the system is then altered, as necessary, to service 
other interrupts that may be pending. 

The important thing to realize about interrupt management on NT is that it's 
almost entirely the HAL's responsibility. Device drivers do not manually 
"hook" interrupt vectors, program interrupt controllers, or issue lRET or EOl 

instructions. By using the HAL-supplied functions, drivers are able to work 
unchanged on the wide array of processor architectures supported by 
Windows NT. 

DMA Operations 
The HAL also provides abstractions that support an underlying processor's 
DMA capabilities. This includes both system DMA and busmaster DMA capa
bilities. The HAL's model for both system and busmaster DMA are described 
in detail in Chapter 8, "I/O Architectures," and Chapter 17, "DMA Data 
Transfers." This section provides merely a brief introduction to these capabili
ties. 

The HAL provides a standard DMA model, in which devices perform DMA 
operations using logical addresses in host memory. The HAL, working with the 
I/O Manager, is responsible for providing, translating, and managing these log
ical addresses. 
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As discussed previously in this chapter, the address space on each bus connect
ed to the system is considered discrete, as illustrated in Figure 2.2. For the pur
poses of busmaster D MA, the HAL converts logical addresses used by devices 
during DMA operations to host memory addresses using map registers as illus
trated in Figure 2.11. 

Figure 2.11. Translating logical addresses to host memory addresses via map registers 
for DMA operations. 

The HAL also provides an abstraction for use by devices that support System 
DMA. System DMA utilizes a set of centralized DMA controllers that perform 
DMA on behalf of suitably configured devices. This frees the devices them
selves from having to have a DMA engine on board. The HAL provides a 
model by which system DMA channels resources may be shared among multi
ple devices and reserved for use by a specific device for the duration of a trans
fer. Because System DMA operations may also entail logical to physical host 
memory address translation, map registers may be used for this process. 

Finally, the HAL also provides an abstraction called system scatter/gather. This 
facility provides special support for DMA devices that do not support 
scatter/gather, that is, devices that are capable of performing DMA operations 
from only one logical base address per transfer. For such devices, the HAL uses 
its map registers to create logically contiguous buffers from buffers that are 
physically discontiguous in host main memory. This facility saves devices that 
do not themselves support scatter/gather the overhead of having to perform 
multiple discrete DMA operations for non-contiguous buffers. More details 
about the HAL's support for scatter/gather and DMA devices appears in 
Chapter 8, "110 Architectures," and Chapter 17, "DMA Data Transfers." 
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Other HAL Facilities 
The HAL also provides support for system clocks and timers, firmware and 
BIOS interfacing, and configuration management. 

The HAL provides a standard set of routines used by higher-level entities for 
programming and handling the system's clocks. This includes both interval
timer management and time-of-day clocks. The abstraction that the HAL 
presents of these facilities is that the system clock keeps track of time in 
lOOns-intervals, with time starting on January 1, 1601. Of course, the HAL is 
responsible for managing the underlying system clocks, and converting between 
the actual clock frequency and the 100ns-intervals. 

When the system is bootstrapped, it is the HAL that is responsible for working 
with the system BIOS or firmware to determine the system's device configura-

, tion. The HAL creates a system-independent description of the hardware pre
sent on the system. This configuration information is stored in the Registry, 
and utilized by the micro kernel and I/O Manager. 

The HAL is also responsible for retrieving bus-level configuration information 
(where available) from the underlying architecture. For example, the HAL pro
vides standardized interfaces to retrieve PCI, EISA and MCA information from 
those buses. 

Processor Architecture Differences Not 
Handled by the HAL 
As mentioned at the beginning of this chapter, the HAL provides an abstrac
tion of only a subset of features present in a given system. The differences that 
the HAL handles are primarily those that could be changed relatively easily 
between implementations of the same processor family. For example, the num
ber of interrupt levels and the way these are managed could conceivably vary 
among implementations of x86 systems-even among implementations of x86 
systems using the same processor. Thus, this is one of the differences handled 
in the HAL. 

There are many differences the HAL does not manage. For example, the HAL 
does not attempt to handle system architecture differences such as: 

• Physical address size 

• Virtual memory implementation (LDT/GDT, TLB, etc.) 

• Caching/pipelining (separate I&D cache, independently flushed, out-of
order execution, etc.) 

• Processlthread context (number, type, and size of registers, etc.) 



44 Part I: Windows NT Architecture 

These attributes are fundamental to a processor's architecture and do not 
change between different implementations of a particular processor. For exam
ple, the number of general-purpose registers on an x86 architecture system is a 
fundamental architectural feature of the x86 processor that is not going to 
change from motherboard to motherboard. This is also true of the basic char
acteristics of virtual memory. It is just not practical to change the hardware 
implementation of virtual memory without affecting the entire design of the 
cpu. 

These fundamental attributes are mostly managed by the microkernel. To 
change one of these fundamental attributes requires porting Windows NT to 
the new architecture. This is a far more involved and complex undertaking 
than simply changing the HAL. 



Chapter 3 
Virtual Memory 

This chapter will review: 

• Demand Paged Virtual Memory. Windows NT provides a virtual memory 
system that loads elements into memory as required. This section 
describes the rationale and basic mechanism involved in the Windows NT 
VM system. 

• Address Translation. A key element of the virtual memory system is 
translating virtual addresses to physical addresses. This section describes 
the process Windows NT uses to manage this translation process. 

• Physical-Memory Management. Because physical memory is a scarce 
resource, one of the primary goals of the VM system is to ensure proper 
sharing of this scarce resource between the various programs demanding 
memory. This section describes the process Windows NT uses to manage 
this sharing of physical memory in a reasonable and fair manner. 

• Memory-Manager Tuning. The Memory Manager component of 
Windows NT allows users to control its behavior using a number of 
Registry parameters. This section describes those parameters of most 
interest and describes how they impact the VM system. 

• Drivers and VM. Windows NT device driver writers must understand 
how VM works in order to write device drivers that operate correctly. 
This section describes the key issues confronting device driver developers 
who must manage virtual addresses in both user and system address 
spaces. 

This chapter discusses general concepts of demand paged virtual memory oper
ating systems, and examines how Windows NT implements its support for vir
tual memory. A thorough understanding of how Windows NT virtual memory 
works will clarify the purpose for many of the mechanisms used within a 
Windows NT device driver for handling memory. 
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Demand Paged Virtual Memory 
Windows NT utilizes a 32-bit pointer value for accessing data within the oper
ating system. Because of this, the address space of any process is 232 bytes, or 
4GB. Managing this large address space is a complex and demanding process, 
requiring that the as balance the needs of many conflicting demands for physi
cal memory so that the system performs acceptably under a wide variety of 
loads. This is accomplished by using a virtual memory system. 

Windows NT's virtual memory system is a demand paged virtual memory sys
tem. Because of this, all references to memory are done by way of an indirect 
reference-a lookup table. The precise mechanism used for implementing this 
lookup table is actually quite specific to the processor hardware being used. 
However, Windows NT implements its common set of functionality uniformly 
across all the hardware platforms. Figure 3.1 demonstrates an example of this 
indirection model. 

Address 
Space A 

Figure 3.1. Demand paged virtual memory. 
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Figure 3.1 shows two separate address spaces (or "processes," as they are 
called in Windows NT). Each address space is divided into a set of virtual 
pages. These virtual pages then in turn may point to physical pages. Because 
of this virtual-to-physical page mapping, a single physical page can be shared 
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between two separate address spaces-and that shared page can either be read
only or it can be writeable. Further, a shared physical page can have the same 
virtual address in each address space or it can have different virtual addresses 
in each address space. 

In addition, some physical pages are designated as free and are available for 
use if one of the address spaces needs additional physical memory. For exam
ple, Process A in the Figure 3.1 has a virtual page (page 2) with no correspond
ing physical page. If Process A needs to access data on page 2, the VM system 
will be required to allocate physical memory (such as free physical page 102) 
to contain the actual data for virtual page 2. 

Note that one advantage of using a lookup table is that more than one such 
table can exist, although only one table can be in use at any given time. Of 
course, on a multiprocessor system, each CPU will be using a table. In fact, it is 
possible for two different CPUs to be using the same table. Thus, Figure 3.1 
shows two separate virtual lookup tables. Each table has a set of entries, with 
each entry potentially referring to a physical page. Given that there are two 
such lookup tables, each may refer to different pages-or they both may refer 
to the same common page. 

Note 

It is important to emphasize that Windows NT implements a hardware 
platform-independent virtual memory system. Thus, while it is tempting 
to discuss the characteristics of some particular hardware platform (such 
as the X86 platform), it does not describe how Windows NT actually 
works. Instead, this generalized model is mapped onto the support pro
vided by the specific hardware platform. This promotes the flexibility of 
porting Windows NT to any CPU architecture. 

Rationale for Demand Paged Virtual Memory 
The demands of the Windows NT virtual memory system are a source of com
mon confusion for new NT kernel driver writers. This is because many of the 
basic operations performed by device drivers require that the driver writer 
manipulate memory in order to manipulate and manage these virtual address
es, despite the complexity of the virtual memory system itself. 

Given that virtual memory is not required for an operating system, it is useful 
to explore the reasons why virtual memory turns out to be useful and well 
worth the complexity involved in supporting it. As well, by better understand
ing virtual memory, the driver writer is able to exploit that understanding to 
build Kernel mode device drivers with better performance and a wider range of 
capabilities. 
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Many operating systems exist that do not support virtual memory. For exam
ple, the venerable MS-DOS does not support virtual memory. Despite this 
restriction, MS-DOS has proven to be a useful operating system during the 
past 17 years since it was first introduced. 

One universal problem that operating systems have to deal with is scarcity of 
physical memory. In the case of MS-DOS, a number of techniques evolved to 
allow physical memory to be shared among multiple programs or even pieces 
of programs. These techniques enable the system to run programs or utilize 
data that exceed the size of physical memory. 

Even though physical memory is more plentiful today than it was when the 
Windows NT design team first decided to support virtual memory, physical 
memory is still a relatively scarce resource that must be shared among all parts 
of the system. As application programs continue to grow in functionality, and 
hence in size, virtual memory will continue to play an important role in allow
ing them to grow yet further. 

A number of different techniques have been used by operating systems in the 
past to allow for memory sharing. For example, one technique was to divide a 
computer program into a series of discrete pieces. When program code from a 
particular piece was needed, it was read from disk into memory, overlaying 
whatever program code was there previously. Although this overlay technique 
did allow application developers to build feature-rich applications without too 
much concern over memory limitations, such applications were not necessarily 
high-performance because of the cost involved in loading the overlay image 
from disk. 

Implementations of simple paging systems were nothing more than a refine
ment of the overlay technique. Overlay systems had a single overlay region. 
Code was loaded into that one overlay region, as needed. With these simple 
paging implementations, memory was divided into a series of discrete pieces 
(pages), with each of these pages being independently managed. Although this 
approach minimized some of the disadvantages of overlays, such as the cost of 
loading the new overlay, actual code was still tied to a particular page. Thus, 
interactions between the code within each of these pages could cause interac
tions that in turn made the application run very slowly. 

The use of virtual memory solved the "locality" problem because, rather than 
tying the address being used to a location in physical memory, it refers to a 
location within a lookup table. By carefully exploiting a virtual-to-physical 
mapping, the operating system can actually move the contents of individual 
physical pages to other physical pages. Because each reference to the virtual 
page is translated via a lookup table, fixing up the lookup table allows this 
relocation within physical memory without breaking the application. 
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Virtual memory decouples the various parts of a program from its location in 
physical memory. By incorporating support for the virtual-to-physical transla
tion within the computer system hardware and ultimately within the CPU 
itself, the virtual-to-physical translation is done as part of every memory refer
ence. 

Of course, using a lookup table that allows an arbitrary location for every byte 
would be prohibitively expensive. Using the "page" concept, the translation 
table can instead be used to refer to the location of a range of bytes. Thus, the 
bytes within a given virtual page correspond one-to-one to the bytes within a 
specific physical page. Using this scheme, as the size of the page increases; the 
size of the lookup table decreases. Counterbalancing this, as the size of a page 
increases; the degree of sharing that can be accommodated decreases. For the 
systems on which Windows NT currently runs, the page sizes are normally 
either 4 K or 8K bytes. 

The next section discusses the duties of the Memory Manager in greater detail. 

Note 

One optimization that Windows NT utilizes on the Pentium, Pentium 
Pro, and Pentium II systems is support for large pages. In addition to the 
normal4KB-page size supported by these platforms, they also offer sup
port for a 4MB-page size. Although these large pages aren't frequently 
required, they do turn out to be useful. This is because 4MB of memory 
is equal to 1024 4KB-pages. Instead of using 1024 virtual-to-physical 
mapping entries (page table entries), only one is used. This conservation 
of memory is particularly important in the kernel environment because 
page table entries are a scarce resource. 

For example, on systems with enough memory, Windows NT uses a sin
gle 4MB-page for the operating system image, HAL, boot drivers, and 
initial portion of non-paged pool. 

The Memory Manager only uses these large pages in limited circum
stances because such large pages are not reclaimed. Thus, any reference to 
a virtual address within the particular 4MB range will always be valid 
because the physical memory is locked for use by that virtual page. 

Memory Manager Operations 
Once all of memory has been divided into a series of physical pages, the 
Memory Manager within Windows NT controls their use. As individual 
processes require physical memory, pages are removed from the pool of avail
able pages and assigned to hold information. The actual references to these 
physical pages are by way of the virtual-to-physical translation table. 
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Balancing this, the Memory Manager also reclaims pages that are no longer in 
use or that have not been used in some time. Indeed, one of the most impor
tant tasks for the Memory Manager is to ensure that there is always a ready 
supply of physical pages that are not currently in use. This allows them to be 
used to satisfy the demand for new physical pages. Indeed, maintaining a ready 
supply of available physical pages is essential to ensuring that the system con
tinues to operate properly. Once the supply of available physical pages is total
ly exhausted, it may not be possible for the Memory Manager to recover. In 
such a case, the system halts with the ominous STOP code NO_PAGES_AVAILABLE. 

Because pages can be reclaimed simply because they have not been used recent
ly, it is possible that when the CPU is performing a virtual-to-physical transla
tion, it may find that there is no physical page currently allocated for the given 
virtual address. This process is known as a page fault; when it occurs, the 
underlying CPU transfers control to the registered page fault handler within 
the operating system-in this case, the Windows NT Memory Manager. The 
Memory Manager must then analyze the page fault and determine three things: 

1. Was the virtual address actually valid? It is possible that the application 
has referenced memory that does not exist. If so, the Memory Manager 
returns an error to the application. Frequently such errors manifest as 
"Dr. Watson" dialog boxes on Windows NT. 

2. Was the page fault caused because the user attempted to access the page 
in a manner that was "incompatible" with the protection on the page? As 
we will describe in more detail, each virtual page has protection bits, 
indicating whether it can be accessed by a user application, or written by 
the application or the kernel. 

3. If the page fault was legitimate, the Memory Manager must then allocate 
a physical page and retrieve the contents of that page. Typically, they are 
stored on disk and the Memory Manager must allocate a new physical 
page and then ask the I/O Manager to read the data from disk into that 
new physical page. Only then is the page fault resolved. 

Thus, the Memory Manager transparently handles page faults. When such 
page faults occur, the Memory Manager will allocate a new physical page and 
retrieve its contents (via the I/O Manager, and in turn via the file system), if 
necessary. This process is referred to as demand paging because pages are allo
cated and their contents are "filled-in" on demand. 

Address Space Separation and Control 
Windows NT also takes advantage of virtual memory by implementing address 
spaces. Each address space is represented by its own virtual-to-physical transla
tion table (or, as they are normally called, page tables). Because each set of 
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page tables may define a distinct virtual-to-physical page translation, each set is 
logically distinct. Furthermore, because the CPU always uses a particular page 
table when performing operations on memory, it is not possible for a program 
running in one address space to interfere with a program running in a different 
address space. 

Another mechanism for providing address space separation is provided by the 
memory-management hardware, and is based upon the protection mode of the 
memory and the execution mode of the processor. For example, both the Alpha 
and X86 architecture systems support four such hierarchical protection modes. 
Regardless of the number of modes available in the processor hardware, 
Windows NT only uses two: the "least-privileged" mode, referred to as User 
mode; and the "most-privileged" mode, referred to as Kernel mode. Note that 
Windows NT does require the underlying hardware support at least two such 
protection modes. 

Windows NT's virtual memory implementation supports a bit in each virtual
to-physical page table entry that indicates if the page can be accessed from 
User mode. In NT's model, all valid pages are always accessible from Kernel 
mode. Thus, if the page protection bit is set so that it indicates that a particular 
page is accessible from User mode, whenever the processor is running in any 
mode, the software can access the indicated page. If instead the page was set so 
that it was not accessible in User mode, then that page would be inaccessible 
when the CPU's execution mode was User mode. The page would be accessible 
only when the CPU was running at the more privileged Kernel mode. When a 
page access is attempted from User mode, and such access is not allowed 
according to the page-protection bit in the virtual-to-physical page table entry, 
the CPU generates an exception condition, much like it does when the virtual
to-physical translation is not valid. 

Windows NT's page-protection mechanism allows the system to partition the 
memory described by a single page table so that only a portion of it can be 
accessed from User mode. The remaining portion of the address space 
described by the page table contains data that is available for use only when 
the CPU is running in Kernel mode. Thus, because the operating system over
sees all cases in which the CPU transitions from User mode to Kernel mode, 
Windows NT can protect data that is not accessible from User mode, such as 
operating system control structures, from damage by errant (User mode) appli
cation programs. 

User and System Address Spaces 
On a single CPU, only one virtual-to-physical mapping can be in use at any 
time. To provide Kernel mode components (including drivers) with an environ
ment where they know that their memory references are always valid, 
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Windows NT uses precisely the same virtual-to-physical mappings for a partic
ular range of addresses. Thus, each time a new virtual-to-physical mapping is 
loaded into the CPU (a "context switch") some portion of that new mapping 
table has exactly the same information as the previous version of the mapping 
table. This constant range of addresses is protected from applications because 
the individual pages have been marked as not being accessible from User mode. 
The portion of the address space accessible from User mode is the user address 
space. The portion of the address space accessible from Kernel mode is the sys
tem address space. The management, layout, and utilization of these two 
address spaces are considerably different and are managed differently by the 
Memory Manager. Because of this, you should understand the logistics of the 
user address space and how it is handled separately from the system address 
space. First, you need to turn your attention to the division of the entire 4GB 
address range between these two address spaces. 

Figure 3.2 shows the standard division of an address space on Windows NT. 
Dividing the address space into two pieces is not the only possible approach. 
Some versions of Windows NT support alternative address space divisions. 

High 2GB T System Space 
4GB 

Kernel --------- Address 
Low 2GB Space 

User Space 

1 (maps current 
process) 

Figure 3.2. Windows NT Standard Address Space Division. Figure 3.3 shows the "4 
Gigabyte Tunable" address space that is supported by Windows NT 4.0 Enterprise 
Server. 

High 1 GB (Min) T System Space 
(Variable) 

--------- 4GB 
Kernel 

Address 
Low 3GB Space 

User Space 

1 (maps current 
process) 

Figure 3.3. Windows NT 4GB address space division. 

While 4GB may seem like an almost inexhaustible supply' of memory, in fact it 
can prove to be inadequate for larger server class systems running database 
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applications. Clearly, the right solution to this is to take advantage of 64-bit 
pointer support, which yields a 16 exabyte (264

) address space! Unfortunately, 
such a change will require new hardware and software support and as such is 
not included in Windows NT V4, nor is it expected to be in Windows NT VS. 
Instead, Windows NT V 5 will provide limited support for a larger address 
space. 

NT V 5 supports Very Large Memory (VLM) systems by using 64-bit pointers, 
but only takes advantage of three additional bits. Three extra bits will extend 
the size of the virtual address space on Windows NT from 4GB to 32GB. The 
extra 28GB of address space will be made available to specially written User 
mode applications and to some parts of the Windows NT operating system 
itself. Figure 3.4 shows how Windows NT lays out VLM support in NT VS. 

4GB-32GB User Space 
(non-paged) 

2GB-4GB System Space 

Low 2GB User Space 
(maps to current process) 

T 
32GB 
Kernel 

Address 
Space 

1 
Figure 3.4. Windows NT VLM address space division. 

Because VLM takes advantage of 64-bit pointers, it will only work on hard
ware platforms that support such large memory pointers, such as the Alpha or 
Merced. In addition, VLM has several other unusual properties: 

• The VLM virtual-to-physical mapping tables are shared among all 
processes. 

• Physical memory assigned to VLM virtual addresses are not reclaimed 
until the virtual mapping is deallocated (thus, VLM memory is not 
"paged"). 

• Drivers will not need to handle 64-bit virtual addresses, because 
Windows NT will create 32-bit mappings when communicating with 
drivers. 

Thus, VLM is a limited change to Windows NT to increase the available virtu
al address space for a range of application programs, such as databases. Note 
that VLM is a short-term solution within Windows NT that will be addressed 
in the future 64-bit version. 
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System Address Space Layout 
As noted previously, the Memory Manager handles the system address space 
differently from the user address space. This is partially due to the unique char
acteristics of the system address space: 

• The system address space is visible, regardless of what user address space 
is active. This also means that system addresses are valid for all threads in 
the system. 

• The system address space consists of memory regions that are not paged. 

• The system address space contains the file system data cache. 

Because of these unique characteristics, the system address space is divided into 
a series of regions, each of which is managed differently. For example, the non
paged pool is a set of system addresses that point to actual physical memory 
that is always present. Thus, if memory in this region is referenced and it is not 
present, the Memory Manager treats it as a fatal error. Similarly, the paged 
pool is a different set of system addresses that act more like memory in an 
application program. They are paged in as needed, and their physical memory 
is reclaimed as needed. 

Figure 3.5 illustrates the layout of memory on a typical X86-based platform. 
Note that the specific layout on other platforms or even on other systems may 
vary, because the details of the layout are not constant across platforms or even 
releases of Windows NT. 

The lowest system space address is the base of the operating system image 
itself, which is located at 0x80000000. In addition, for the Pentium class systems, 
Windows NT may use a large physical page for the operating system, so it will 
use the remaining memory to load device drivers and the initial portion of non
paged pool. 

Beginning at 0xA0000000 is a region for memory-mapped view (memory-mapped 
files are described later in this chapter) within the system address space. 
Win32k.sys is typically mapped into this region, although this is not required 
for it to function properly. 

The range from 0xA3000000-0xC0000000 is unused so addresses in this range are 
invalid. 

The range of addresses from 0xC0000000-0xC0800000 is used for various Memory 
Manager data structures that actually describe the virtual page tables and 
Virtual Address Descriptor (or VAD) tree for the current process. This region is 
referred to as hyperspace. The specifics of the VAD tree are covered later in 
this chapter. 
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OxFFFFFFFF 
HAL 

OxFFCOOOOO 
Crash Dump Information 

OxFFBEOOOO 
Non-Paged Pool 

Paged Pool 
OxE1000000 

Cache Manager Mapped Views 
OxC1000000 

Cache Manager Hyperspace 
OxCOCOOOOO 

Unused 
OxC0800000 

Hyperspace 
OxC0400000 

Page Directory Entries 
OxC0300000 

Page Table Entries 
OxCOOOOOOO 

Unused 
OxA3000000 

Memory Mapped Files 
OxAOOOOOOO 

Operating System Image 

Ox80000000 

Figure 3.5. Normal system address space layout (X86). 

The range from 0xC0800000-0xC0C00000 is unused so addresses in this range are 
invalid. 

The range from 0xC0C00000-0xC1000000 is used for managing the working set for 
the file cache. The file cache consists of views into various mapped files and 
shares physical memory with the rest of the operating system. The file cache's 
resource consumption requires that it have a working set (described later in the 
section called, "Working Sets"), so that pages can be trimmed-just as if the 
file cache were a separate process. 

The range from 0xC1000000-E1000000 is actually used by the file cache to map 
views of individual files while they are being read or written via the cache 
itself. Note that this does not restrict file sizes to 512MB (the size of the range) 
because a file may be partially mapped. In that case, only a portion of the file 
itself is mapped at anyone time. Thus, by deleting existing maps and creating 
new maps, it is possible to perform read and write operations on very large 
cached files. 
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The range from 0xE1000000-0xFFBE0000 is used for both the paged and non
paged pool within the system, where the paged pool begins at 0xE1000000 and is 
extended to higher memory addresses. The non-paged pool begins at 
0xFFBE0000 and is extended to lower memory addresses. 

The range from 0xFFBE0000-0xFFC00000 is used to store information about the 
location of the paging file located on the boot device, so that in case of a sys
tem crash, a copy of physical memory can be copied to that file. It can then be 
recovered when the system reboots. 

The range from 0xFFC00000-0xFFFFFFFF is used to store HAL information. 

]}Jete 

There is an inherent danger for Kernel mode device driver developers 
because crash dump information is stored in high memory. This informa
tion contains disk block addresses where a crash dump will be written 
after a system crash. However, it is possible for the Kernel mode device 
driver to actually overwrite this region in memory. In such a case~ writing 
the crash dump to disk will write it to random locations on the disk 
itself. 

We were working with one client who experienced precisely this problem. 
After the system would crash~ the client would reboot the machine and 
then receive an ominous warning-No O/S Found. After reinstalling 
Windows NT several times~ we concluded that when the driver did crash~ 
we should reset the system rather than allow it to continue using the debug
ger. This ensured that crash dump information was not written to disk. 

Of course~ this simply demonstrates that developing kernel code is inher
ently riskier than developing application code. Unlike application code~ in 
which the operating system has been designed so it does not trust the 
parameters passed by application programs~ when a Kernel mode device 
driver passes invalid parameters~ they are dutifully used~ irrespective of 
the ultimate repercussions. 

With the reorganization of the address space for 4GB, the actual layout of the 
system virtual address is a bit different on X86 platforms using the 4GT 
option. Figure 3.6 provides a description of the layout we found on one of our 
own systems. Of course, this is not the only possible configuration. 

Access Control 
Earlier, we described how individual virtual pages are access-controlled, indi
cating whether they can be accessed from User mode. In the Windows NT 
model, access control has an additional attribute that indicates whether the 
page can be written. These two access-control bits are used to completely man
age access to the given virtual page. 
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OxC2000000 

Operating System Image 
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Figure 3.6. System address space layout with 4GT (X86). 

It is important to understand that access control is done on the virtual page. 
There is no inherent protection for a physical page. As it turns out, this is 
important because the use of page tables effectively means that a single physi
cal page can have multiple virtual references to the physical page. Indeed, one 
of the common techniques used by drivers to manage buffers is to create a new 
virtual mapping to a User mode buffer. Instead of relying upon the User mode 
address to obtain access to the buffer, a system space address is created for the 
same physical buffer memory. 

Windows NT's model of protection is considerably simpler than the models of 
protection offered by the underlying hardware. This allows NT to support the 
widest possible variety of processor architectures. For example, on many plat
forms there are access bits to indicate whether the page may be read, written, 
or executed; in addition to access controls for each processor mode (except 
"most-privileged," of course). Thus, with the Windows NT VM protection 
model, assuming that a page is valid, the following statements are true: 

• The page can always be read from Kernel mode. 

• It can only be written from Kernel mode if "write access" has been 
granted. 
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• It can only be read from User mode if "User mode" access has been 
granted. 

• It can only be written from User mode if both "User mode" access and 
"write access" have been granted. 

• If a page can be read, it can be executed. 

By using a simple access model, Windows NT retains a greater degree of plat
form independence and greater portability. Even with this simple access model, 
however, Windows NT is fully capable of supporting a wide range of useful 
virtual memory techniques. Thus, the simplicity does not come at the cost of 
functionality. 

Memory Sharing 
The capability for two page tables to reference the same physical memory is a 
powerful technique. It allows applications to share data between them, without 
otherwise compromising their independence from one another. It even allows 
the sharing of code, such as dynamic link libraries (DLLs), between two appli
cations so that only one copy of the DLL is present in memory at any time. 

JSiote 

In our description of DLLs and how they are shared, our interest is in 
the sharing of the code portion of the DLL, including its import table. 

This sharing is possible because the use of a page table allows two (or more) 
virtual pages to reference the same physical page. As Figure 3.7 shows, using 
the same physical page for two separate virtual page entries results in shared 
memory. Any changes made by either application to this shared memory region 
will be immediately visible to the other application. 

As with any virtual page, the attributes stored within that page dictate the 
allowable access to the memory using that virtual page. There is no require
ment that says that, if there are two virtual references to the same physical 
page, those two virtual page table entries must contain the same attributes. 
Thus, it is possible for a single page to be readable but not writeable by one 
process, while the other process can both read and write the image. It would 
even be possible for the same virtual page table to contain two separate entries 
pointing to the same physical page, with each entry granting a different type of 
access. 

Copy-On-Write 
Support for copy-an-write virtual memory is a convenient mechanism for 
allowing shared memory access when appropriate. When shared memory 
access is not appropriate, a copy of the memory is made. 
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Figure 3.7. Page tables sharing physical memory. 

Thus, this mechanism preserves physical memory, allows Windows NT to more 
efficiently utilize this scarce resource, and hence allows Windows NT to effi
ciently run more applications. 

The very name copy-an-write tells you exactly what is happening. When the 
virtual page is first added to the address space, one of its attributes is that the 
page cannot be written. In addition, a separate attribute indicates that the page 
is copy-on-write. As long as the page is not being modified, copy-on-write 
operates very much like any other shared memory page. The only time that its 
copy-on-write status becomes an issue is when one process attempts to modify 
the memory. If the memory is merely "shared," the change is visible to each 
address space that is sharing the page. 

Note 

Although the primary use for copy-on-write is for code sharing of DLLs, 
it can also be used for debugging an application program. In such a case, 
if the debugger is used to change the contents of a shared code page, such 
as by setting a breakpoint, that shared page is copied at the point where 
the first breakpoint is set-ensuring that only the application being 
debugged is affected. 

When the application program, or the operating system on behalf of the appli
cation program, attempts to modify that particular page, a CPU exception of 
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some sort is generated. That exception is caught by Windows NT. Eventually, 
the exception is handled as a page fault and is dispatched to the Virtual 
Memory Manager. After analyzing the cause of the page fault, the Memory 
Manager determines that this particular virtual page is copy-on-write. 

The contents of the current physical page are copied to a new physical page. 
The virtual page table entry is then adjusted to point to the new physical page. 
Both the copy-on-write and read-only attribute are cleared for that page. From 
that point forward, subsequent modifications to that page will be made to this 
private copy of the page. Thus, the page is no longer shared. 

We once had a former student report the following problem: Within his 
driver an application would provide him with a copy-on-write buffer. His 
driver proceeded to build an MDL and write into the buffer, but, much to 
his surprise, the original version was actually modified instead of creating 
a new copy of the data. Indeed, his presentation of the problem at the 
time was sufficiently confusing and we had to really think about what 
was going on before we came up with the correct answer. 

Within his driver, he created a new virtual mapping to the user's buffer so 
that he had a system virtual address to the user buffer. This allowed him 
to use the system virtual address within his driver in an arbitrary context. 
Because he created a new virtual mapping, the copy-on-write attributes of 
the original mapping were lost. Thus, when he modified the buffer, the 
copy operation he expected didn't occur. 

Thus, when manipulating user buffers in your Kernel mode device driver, 
keep in mind that virtual memory attributes, such as read-only, User 
mode accessible, and copy-on-write are associated with the virtual map
ping, not the physical page. 

Although copy-on-write might sound like a rather arcane feature, it is exten
sively used within Windows NT. Perhaps one of the most common uses of it is 
for sharing executable code via DLLs. When a DLL is built, the developer spec
ifies what the default load address will be for that DLL. Although most parts 
of the DLL are written to be position-independent so that they can be loaded 
almost anywhere in memory, some parts of the DLL are not position
independent. 

When Windows NT attempts to load a DLL for an application, it first tries to 
use virtual memory addresses at the default load address for the DLL. If that 
address is available and large enough to contain the DLL, it will be loaded into 
the address space at the default load address location. 
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However, if the DLL cannot be loaded at its base load address, Windows NT 
performs relocation on the DLL. This requires that some of the code within the 
DLL be modified. Rather than make a complete copy of the DLL, Windows 
NT maps the DLL into the new location. The pages are all set up so they are 
copy-an-write. Then, as individual pages are written to perform any relocation 
fix-up that is necessary, the sharing is broken. 

This technique ensures that much of the DLL is still shared between applica
tions and that only those small pieces that must be updated are actually copied. 

Nore ' 

Although using copy-on-write within D LLs does ensure that they are 
always mapped into the application address space correctly, this process 
can slow the loading time of applications. In order to minimize the 
amount of fix-up that must be performed, individual D LLs should be 
built so they use a default load address that does not conflict with any 
other DLL used by the application. 

Indeed, most of the standard Windows NT DLLs are built so they each 
use a separate load address. This simple mechanism maximizes the speed 
at which applications load and thus enhances the performance of the 
Windows NT systems. 

Copy-on-write is also useful when debugging programs. It is important to 
ensure that any changes to the program, such as setting a breakpoint within 
the program, only occurs on the copy being debugged. Otherwise, other run
ning copies of the same code would also execute the same breakpoint! 
Additionally, it is important that the breakpoint not be written back to the 
original file. Thus, if the Memory Manager needs to reclaim the page contain
ing the breakpoint, it must store it in a temporary location-not back in the 
original executable file. The copy-on-write mechanism accomplishes exactly 
this task. 

Because of this, all executable user applications are memory-mapped on 
Windows NT by using this copy-on-write mechanism. The goal is to ensure 
that executable code sharing is always correct, even if the executable code is 
modified in one address space. 

The copy-on-write technique is not generally useful for sharing data, pre
cisely because it makes a copy of the original page when it is modified. 
Data-sharing is typically done using standard shared memory because the 
goal is to ensure that there is only one copy of the data shared between 

continues 
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Continued 

multiple address spaces. For example~ Win32 maintains a list of all cur
rent valid drive letters. This information is maintained in a single physical 
page that is shared between all processes. Because this information can be 
updated by any process (via the DefineDosDevice API call in Win32~ for 
example) ~ using copy-on-write memory to maintain this global system 
state would potentially result in every process having its own view of the 
available drives! 

Memory-Mapped Files 
As previously stated, DLLs are loaded into an address space. Although concep
tually correct, the reality is a bit more complex. Windows NT uses a mechanism 
known as file-mapping to accomplish this. Normally, applications access files 
using read and write operations. When a file is memory-mapped, its content is 
represented as a range of virtual addresses in memory. This is functionally 
equivalent to an application program allocating memory, reading the contents in 
from the disk into a buffer in memory, and later writing the contents of that 
memory buffer back to the file when it is finished. The reading and writing are 
entirely handled by the Memory Manager rather than by the application. 
Further, only pages of the file that are actually changed in memory will be writ
ten back to the file. 

It's important to note that merely mapping a file into the address space of a 
program does not by itself include reading the file's contents. When a file is 
mapped, the Memory Manager reserves virtual memory addresses for the file. 
At that time the Memory Manager also sets up information so that when an 
address in the memory range is first referenced, the Memory Manager will be 
called (as a result of a page fault) to read the contents of the referenced page 
from the file on disk. For example, this technique is used when application 
programs are executed. Rather than "loading" the image into memory, it is 
mapped into memory, and then individual page references fault and cause the 
page to be fetched from the file containing the executable program code. 

Because memory-mapped files can actually be shared between address spaces, 
the Memory Manager not only tracks where a particular file is mapped into an 
address space, but it also tracks what physical memory is currently being used 
to store individual pieces of the memory-mapped file. As described later in the 
chapter, the Memory Manager ensures that only a single copy of the memory
mapped file appears in physical memory so that it can be properly shared 
between all the address spaces that refer to it. This is done by using an internal 
Memory Manager structure known as the Section Object. 

One of the common uses of memory-mapped files on Windows NT is for the 
instantiation of processes. All executable images on Windows NT are mapped 
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into memory, and loaded as memory-mapped files-with the special copy-on
write attribute discussed in the previous section. If the image is modified within 
a particular address range (perhaps by setting a debugger breakpoint), the 
modified pages are no longer shared with the other processes. Instead, those 
pages are private to that particular address space. Indeed, when the address 
space is destroyed, such changes are normally discarded because they are no 
longer needed. 

Another common time to use memory-mapped files is when a file is copied. The 
Win32 API called CopyFile () typically memory-maps the input file. Because the 
file now appears as a "buffer" in the application address space, it is trivial for it 
to pass a pointer into the source file (which looks like a memory buffer) to the 
Wri teFile () call, which then writes the data to the destination file. 

Of course, there are other uses for memory-mapped files on Windows NT
these are only representative of the types of use found on Windows NT. 

Paging 
Much of the mechanism discussed thus far has been how virtual addresses are 
translated into physical addresses. Sometimes, virtual addresses do not in fact 
have an associated physical address. One reason this occurs is because the 
Memory Manager vigilantly scans the various address spaces within the sys
tem, reclaiming pages from them. 

Reclaiming pages refers to the Memory Manager changing individual entries in 
the virtual page table so that, instead of pointing to the actual physical page, it 
is marked as invalid. If the virtual page table entry indicates that the page is 
dirty, the Memory Manager will write the contents of the physical page to its 
backing store. Typically, this is somewhere on the disk drive. 

The driving need here is that the number of physical pages within the system is 
strictly limited. Thus, it is essential to ensure that this scarce resource is shared 
fairly. Otherwise, some applications would perform poorly or not function at 
all because they did not have enough memory. On the other hand, reclaiming 
pages from one application to give to another application can lead to a condi
tion in which the system spends most of its time performing I/O to disk and 
reclaiming pages. This condition is known as memory thrashing; normally the 
only way to resolve it is to either use less memory by running fewer applica
tions or to add additional memory to the system. 

The remainder of this section discusses the details of how the various demands 
on physical memory are balanced against one another. These topics include: 

• Working Sets. The working set is used by the Memory Manager to ensure 
that no process is deprived of all physical memory, and that no process 
can use all physical memory. 
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• Balance Set Manager. The Balance Set Manager is used by the 
Microkernel to periodically call into the Memory Manager to reclaim 
physical memory from processes that might no longer be using it. 

• Modified Page Writer. The Modified Page Writer scans all physical pages, 
looking for dirty pages that should be written. 

• Mapped Page Writer. The Mapped Page Writer accepts pages from the 
Modified Page Writer that are part of memory-mapped files and writes 
them to disk. 

• Lazy Writer. The Lazy Writer scans data cached by the file systems and 
writes out any dirty pages to disk. This is how Windows NT implements 
write-behind caching for the file systems. 

Working Sets 
The Memory Manager on Windows NT maintains a working set for each user 
process. For the system process, a working set is used to track the usage of 
memory for the file system cache maintained by the Cache Manager. The 
working set information is used by Windows NT to balance the use of memory 
between competing processes and the file cache. 

Thus, a working set consists of information about the process, including the 
following: 

• Number of Page Faults. This information indicates the level of paging 
activity experienced by this working set. 

• Size. This information indicates the current size of the working set. 

• Peak Size. This information indicates the "high-watermark" of the work
ing set. 

• Maximum Size. This information indicates the largest working set 
allowed by the system. 

• Minimum Size. This information indicates the size at which trimming is 
performed by the system. 

For example, a process is not subject to memory trimming until it has reached 
the Minimum Size of its working set quota, while Maximum Size indicates the 
threshold beyond which new pages are added at the expense of older pages 
being removed. 

Note that these values are not static. Instead, Windows NT modifies them as 
necessary to improve the performance of the program. For example, the 
Maximum Size is increased whenever a process needs additional memory, as 
detected by the Number of Page Faults and available memory. 
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This flexible strategy is essential to allowing Windows NT to adjust the basic 
working set for each process as necessary and as resources are available v-ithin 
the system itself. 

Balance Set Manager 
The Balance Set Manager, which is part of the Microkernel, is actually a dedi
cated thread that runs in the system process. As such, it is a Kernel mode-only 
thread, responsible for performing a variety of background processing opera
tions to optimize memory usage on the Windows NT system. 

This background thread awakens periodically and looks for work to perform. 
On an idle system, the Balance Set Manager typically awakens only to find 
there is no work to perform and quickly returns back to a blocking (sleep) 
state. 

When the system is active or when it has been recently active, the Balance Set 
Manager invokes the Memory Manager to actually look through the list of 
processes and attempt to remove pages from the working set. The Memory 
Manager's algorithm for this attempts to ensure that it does not trim pages that 
have recently been loaded (to prevent "memory thrashing") or from processes 
that are experiencing many page faults. As the demand for memory increases 
between processes, the Memory Manager trims pages from the working set 
more aggressively. 

Once the Memory Manager has determined that a particular process working 
set should be trimmed, it then scans the process working set, looking for its 
oldest pages. As it scans from the oldest to newest pages, the Memory 
Manager attempts to locate pages that have not been recently used, based on 
the "accessed" bit that is maintained by the hardware and stored within the 
virtual page table entry. If the page has not been accessed since the last time the 
Memory Manager scanned, it removes the page from the working set. 
Otherwise, the Memory Manager simply clears the "accessed" bit. By using the 
"accessed" bit, the Memory Manager ensures that it does not trim pages that 
have been used since the last time trimming was performed. Of course, if the 
system is experiencing a memory shortage, the period between scanning 
decreases and hence the number of pages available for trimming increases. 

Once a page has been found that should be trimmed, the Memory Manager 
updates the process virtual page tables to indicate that this page is no longer 
valid. Thus, the next time that virtual page is accessed, a page fault will result. 
Separately, the Memory Manager maintains a reference count on the physical 
page and this reference count is decremented. This is necessary because physi
cal pages might be shared between processes, as described earlier. In the case 
where the physical page is shared, two separate virtual page tables reference 
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that one page. Clearly, we cannot recycle that page until all such references 
have been released. 

When the reference count for the physical page drops to zero, the page can be 
recycled. Before the page is reused, it enters an intermediate state known as the 
transition state. In this stage, the physical page has not been reused, so its con
tents have not changed. If a process references its virtual page table, the entry 
will be marked as "invalid" and a page fault will occur. While processing this 
page fault, the Memory Manager will note that this virtual page is "in transi
tion" and, based upon information within the working set, that transitional 
page is reclaimed. We describe this in more detail later in this chapter in the 
discussion on "Virtual-to-Physical Address Translation." 

Another important task performed by the Balance Set Manager is to swap out 
kernel stacks. Normally, kernel stacks are "pinned" into memory so they can
not be paged out. Under certain circumstances, however, they can be removed 
from memory. This can only happen when the process is inactive and the 
thread in question is in a "User mode" wait state. 

lV!ote 

The DDK function KeWai tForSingleObj ect () includes a Wai tMode parame
ter that indicates the type of wait being performed. The two possible val
ues are KernelMode and UserMode. When the thread is blocked in a UserMode 

wait state, the Balance Set Manager is allowed to unpin its stack so that 
the physical memory used for the stack can be reused by the operating 
system. However, the actual process of removing the kernel stack is done 
by the Memory Manager. Note that if a thread is blocked in a KernelMode 

wait state, its kernel stack cannot be safely unpinned, so the Balance Set 
Manager leaves it alone in memory. Given that each user thread normally 
consumes 12KB (X86) or 16KB (alpha) of memory, the capability to 
share this physical memory is important when many threads are present 
in the system. 

Of course, for a Kernel mode device driver writer, the fact that the stack can be 
paged out is not a big concern. This is because most Kernel mode device dri
vers call KeWaitForSingleObject() in a KernelMode wait state, and hence the stack 
cannot be paged out. Further, when the thread is scheduled to run again, its 
stack is read back in from the paging file and pinned in memory. Thus, when 
writing a Kernel mode device driver, it is inherently safe to assume that the ker
nel stack is non-paged memory. Of course, you must then use only the 
KernelMode () wait state because otherwise the kernel stack might be paged! 
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Modified Page Writer 
The Memory Manager actually maintains two separate dedicated high-pr:ority 
threads for the sole purpose of writing out a steady stream of dirty pages back 
to the backing store~ which is typically a disk drive, although it might be a disk 
drive on a remote system. This background write process is imperative because 
it ensures that the number of dirty pages never exceeds some threshold. 

In essence, the Memory Manager implements a "leaky-bucket" algorithm (akin 
to filling a bucket with a fire hose and draining it with a pinhole leak). The fire 
hose is the rate at which application programs can create new dirty pages. The 
pinhole leak is the rate at which the Memory Manager can write pages back to 
disk. Given that the speed of modifying memory is nearly five orders of magni
tude faster than writing to disk, this is a serious problem. 

The real reason this is a problem is that if the number of pages available for 
recycling falls too low, the Memory Manager will find itself in an untenable 
situation-one where it requires more physical pages to continue running so 
that it can write pages out to disk. Such situations ultimately lead to a dead
lock of some sort, causing the system to halt. 

The Modified Page Writer is responsible for writing pages that have been mod
ified ("dirty pages") back to the paging file. If the modified page is from a 
memory-mapped file (which is described later in this chapter, in the section 
entitled "Memory-Mapped Files"), the page is queued and the Mapped Page 
Writer handles writing them back to the correct file. Once the page has been 
written, it is no longer dirty; if necessary, it can be reclaimed for use in some 
other virtual address space. Thus, an available pool of clean pages can always 
be guaranteed. 

Note 

The algorithm used by the Modified Page Writer does not write all dirty 
pages. Instead~ it tries to write enough dirty pages to ensure that the sup
ply of clean pages is large enough that the system does not run into a 
memory exhaustion state-because such a state is fatal. 

Thus~ the Memory Manager is not concerned about writing out dirty 
pages to disk to preserve their data contents. Indeed~ if an application 
modifies a very small set of pages on a continual basis~ those pages may 
not ever be written out to disk. This can be a problem with the pages that 
contain data from a mapped file. In such a case~ the data may sit in mem
ory without ever being written out. Application programs that wish to 
ensure that the data is written to disk must perform this operation 

continues 
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Continued 

explicitly. Of course, applications cannot assume that data from a 
memory-mapped file is only written to disk when they ask. This is 
because the Memory Manager will write data when it chooses, inde
pendent of the needs or requirements of the application. 

Mapped Page Writer 
The Mapped Page Writer is responsible for writing dirty pages back to memory
mapped files. For those new to Windows NT, this might seem to be a rare con
dition. In fact, it turns out to be extremely common because essentially all files 
on Windows NT are memory-mapped into the file cache. 

This integrated file cache ensures that the file can be accessed both via the file 
cache (via the file systems using read and write) as well as via memory-mapped 
file access. In this case, the data for the mapped files are shared between all the 
memory-mapped images. Thus, there is only a single copy of the data in mem
ory, which ensures that changes made using read/write are coherent with 
changes made using memory-mapped access. 

As noted previously, other files are also memory-mapped. For example, exe
cutable images and DLLs are routinely memory-mapped. Unlike data files, 
however, such executable images and DLLs are memory-mapped for read-only 
access. Data files are memory-mapped for read-write access. 

The Mapped Page Writer processes individual pages as they are passed to it 
from the Modified Page Writer. Thus, as memory conditions become low, the 
Modified Page Writer is writing pages to the paging file and queuing pages for 
memory-mapped files to the Mapped Page Writer. This is essential because it 
ensures that writing pages back to disk does not cause page faults (because the 
file systems themselves use paged memory, this is possible, though rare). 

There are a few interesting cases to consider when looking at memory
mapped files. For example, although an executable image is mapped 
read-only and a data file is mapped read-write, this is problematic when 
someone copies a file foo. exe to a different file bar. exe, and then exe
cutes bar. exe. When the file is copied, it is actually modified as if it were 
a data file. However, when the file is executed, it is mapped into memory 
in a read-only fashion. Whenever the usage of a file is changing in this 
fashion (from a data file to an executable or vice versa), the file system is 
actually responsible for ensuring the consistency of the data of the two 
separate mappings. Normally, it does this by ensuring that any dirty data 
(such as for the new file bar. exe in our example) has been written to disk, 
and then deleting the data cached in system memory. Similarly, when the 
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file has recently been executed and then is overwritten~ it must delete the 
data cached in memory and then create a new set of pages to represent 
the new copy. 

This is one reason that it isn't possible to copy a new executable image 
over an existing executable image when it is running-the very process of 
doing this requires that the current in-memory copy be discarded (or 
CCpurged") so that the new copy can be stored in memory. Because the 
current copy is in use, an attempt to purge its pages fails. 

Lazy Writer 
The Lazy Writer is part of the Cache Manager. As such, it is responsible for 
writing dirty file cache data back to disk. Unlike the Mapped Page Writer, the 
Lazy Writer does not attempt to write all dirty data in memory back to disk. 
Instead, the Lazy Writer attempts to ensure that any dirty cached-file data is 
written back to disk. It only does this for files that are modified via the 
read/write path. In this case, the file is memory-mapped into the file cache. The 
file systems then call the Cache Manager as needed to perform the actual read 
and write I/O operations. 

When an application requests that data be written back to the file, the Lazy 
Writer copies the data contents of the user buffer to the file cache. The Cache 
Manager copies the data into these memory-mapped files. As noted with 
memory-mapped files, the Memory Manager does not attempt to ensure that 
data in a memory-mapped file is written back to disk-the Memory Manager 
writes what data it needs to ensure that there are clean pages and no more. 

Thus, like any application that uses memory-mapped files, the Lazy Writer 
must actively write the contents of dirty pages back to disk to ensure that file 
system data is eventually written. However, by performing the writes in the 
background, it appears to users that application writes (such as when saving a 
file from a word processor) complete quickly. Data is then written to disk in 
the background, while applications can continue ordinary processing. 

There is an inherent risk in delaying write operations because the system might 
fail between the time the application data is copied into the file cache and the 
time the data is written to disk. To minimize this window of vulnerability, 
Windows NT uses an aggressive time schedule, so the Lazy Writer begins writ
ing data back to disk in the seconds immediately following the application 
write. Thus, user data is written back to disk quickly. 

Address Translation 
Of course, this mechanism in the Windows NT virtual memory system is there 
to facilitate one fundamental process-address translation. Whenever the CPU 
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is presented with an address-perhaps using the instruction pointer or stack 
pointer, or using a load or store memory operation-that address is interpreted 
as a virtual address and is translated to a corresponding physical address. 

As we discussed in Chapter 2, "Achieving Hardware Independence with the 
HAL," and as you'll see in Chapter 8, "I/O Architectures," Windows NT has 
three different types of addresses: 

• Virtual Addresses. These addresses are translated into physical addresses 
prior to actual use. 

• Physical Addresses. These addresses actually refer to physical memory. 
Note that such memory always appears on the memory bus, although the 
actual memory might be normal RAM or it might be memory presented 
to the system by a device. 

• Logical Addresses. This "catch-all" case is used for special addresses that 
are used by the HAL when communicating with a device driver. Thus, the 
HAL is responsible for managing these addresses. 

Understanding the type of address the Kernel mode device driver is using is 
essential to ensuring that the driver functions properly. For example, using a 
logical address when the system believes it is a virtual address will cause the 
address to be translated and the translated address will be used. This typically 
results in either a system crash (the blue screen of death) or changes to data 
that you did not want to change, causing instability and improper behavior. 

The following sections describe the detailed mechanisms used to map virtual 
addresses to physical addresses in more detail. In summary, these techniques 
include: 

• Page Tables. A page table is the precise mechanism the Virtual Memory 
system (and sometimes the underlying hardware) uses to translate 
between a particular virtual address and the specific physical address. 

• Virtual-to-Physical Translation. The underlying hardware utilizes its own 
hardware-dependent mechanism to map a virtual address to a physical 
address. Only when the hardware is unable to accomplish this does it 
invoke the operating system. 

• Virtual Address Descriptors (VADs). The Memory Manager uses the VAD 
to describe the complete virtual memory layout for a given address space. 
This allows the Memory Manager to resolve page faults quickly and cor
rectly. 

• Context. Given that there are many address spaces within the system, the 
context is defined by the address space that is currently in use. This con
cept is particularly important to kernel mode device driver developers, 
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because understanding context is essential to writing a correctly function
ing device driver. 

Page Tables 
Typically, the system CPU will translate all virtual addresses to physical 
addresses. It does this by using page tables. Figure 3.8 shows how a single vir
tual address is translated to point to a particular byte on a particular physical 
page. 
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Figure 3.8. Page tables. 
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For the Intel platform, the 10 most significant bits of the virtual address are 
used as a reference into the page directory. This page directory consists of 
nothing more than a series of (virtual) pointers to individual page tables. The 
next 10 bits of the virtual address are used as a reference into the page table. 
Like the page directory, the page table consists of an array of pointers to indi
vidual pages. Unlike the page directory, however, these pointers are physical 
references rather than virtual references. This physical reference is to the physi
cal page that contains the data in question. 

The last 12 bits of the virtual address are used as an offset to a particular byte 
within the physical page. Thus, on the Intel platform we note: 

• Each page consists of 4096 bytes of data (212) 

• A single page table can contain 1024 page references because the page 
table is 4KB and each reference is 32 bits. 
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• One page table describes 4MB of physical memory: 1024 entries x 4KB 
per page. 

• A single page directory can contain 1024 page table references because 
the directory page is 4KB and each reference is 32 bits. 

• One page directory page describes 4GB of physical memory: 1024 entries 
x 4MB per page table. 

Of course, the Windows NT virtual memory system is not tied to a particular 
page size. Although the page size is a manifest constant on any given platform 
(you can use the PAGE_SIZE constant in the Kernel mode device driver), it can 
vary from platform to platform. For example, on the Alpha platform, one page 
is 8KB rather than 4KB. 

Page Table Entries 
In addition to the hardware definition of a page table, the Memory Manager 
also defines several other "special-purpose" types of page table entries. These 
special-purpose entry types store information within the page table when the 
entry is not marked as valid. This works because the CPU will not interpret 
the contents of a page table entry if the special "valid" bit is not set to indicate 
the entry is valid. A page table entry is normally referred to as a PTE. Figure 
3.9 shows a typical PTE. 

31 2726 7 6 3 2 

Page Address Pagefile State 

5 bits 20 bits 4 bits 3 bits 

Figure 3.9. Sample page table entry. 

Note that the PTE is 32 bits wide. Thus, Figure 3.9 labels each of these bits in 
the sample PTE, as well as the fields within it, to provide a general sense of 
size and usage for the various fields within a typical PTE. There are, in fact, 
several different PTE layouts defined by the Memory Manager, with the layout 
of the bits depending upon the precise type of the PTE. They are: 

• Hardware. The precise layout of the hardware PTE is specific to the 
hardware platform. 

• Prototype. This PTE is used for shared memory pages (more on this 
later). 

• Demand Zero. This PTE indicates that the page must be zeroed before it 
can be used. 
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• Paging File. This PTE indicates that the data contents of this page are 
stored in the paging file. 

• Unused. This PTE indicates that the particular entry is available for use. 

Hardware PTE 

The Hardware PTE type is used whenever the page itself is valid. Typically, this 
will include information such as: 

• One bit to indicate if the page has been accessed. As previously noted, the 
Memory Manager uses this bit when performing page trimming. 

• A few bits to indicate the access rights on the page. For Windows NT, 
this must support at least User mode and write mode. Frequently, other 
bits will indicate other access rights, such as execute, or access for other 
CPU modes. 

• The physical address of the page. The Intel platform requires 20 bits, 
while the Alpha platform requires 19 bits. 

• Typically, a few bits are reserved for the as to use. NT uses these to indi-
cate special page attributes such as copy-on-write. 

Prototype PTE 

Perhaps the most interesting type is actually the Prototype PTE. The fundamen
tal problem for the Memory Manager is how to handle shared memory pages. 
Figure 3.10 illustrates the problem that occurs when a shared memory page is 
currently located in the paging file. 

In this case two different page tables (presumably in two different processes) 
reference the same page. The page contents are currently stored in the paging 
file. When one process references that shared memory page, the Memory 
Manager will allocate a new physical page and read the data from the paging 
file. The second process, with its own page table, still refers to the data in the 
paging file. Thus, to avoid losing the advantages of data sharing, the Memory 
Manager needs to update all references to the physical page. 

The Memory Manager does this by using a Prototype PTE. These "extra" 
entries are maintained by the Memory Manager for any shared memory struc
ture. When valid, the particular PTE refers to the physical page containing the 
data. However, when the particular PTE is not valid, it refers to the Prototype 
PTE. The Prototype PTE in turn refers to the physical page, if there is one, or 
to the actual location of the data-such as in a paging file. Figure 3 .11 depicts 
the situation in which the Prototype PTE points to the paging file. 
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Figure 3.11. Prototype PTE with data in paging file. 
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If the Prototype PTE points to the paging file, and an application references the 
page using its own page table; the Memory Manager allocates a new page, 
fixes the prototype PTE so it points to the newly allocated physical page, and 
fixes the PTE for the application's address space to point to the correct 
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physical page. Figure 3.12 illustrates the references to the correct physical page 
once the PTE has been fixed up. Note that one address space has a valid refer
ence to the physical page and the other address space still maintains a reference 
to the Prototype PTE. 
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Figure 3.12. Prototype PTE with data in memory. 

This ensures that if an application in a different address space with a reference 
to the Prototype PTE references that page, the Memory Manager will adjust its 
page tables to point to the correct physical page. This situation was illustrated 
earlier in Figure 3.7. 

Demand Zero PTE 

A variation on the Prototype PTE is the Demand Zero PTE. This page is estab
lished so that it points to a special reserved page that is zero-filled. Attempts to 
read these pages will return nothing more than zeros. However, when the page 
is written, a "clean" page (one filled with nothing other than zeros) is substi
tuted. Ensuring that pages filled with zeros are always allocated to new pages 
ensures that user applications cannot read the previous contents of memory 
using malloc ( ). Otherwise, it would be possible for User mode applications to 
compromise the security of the system by reading the data created by other 
applications-or even the operating system. 
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Demand Zero pages actually have an interesting attribute that causes a prob
lem for certain types of storage devices when used with Windows NT. 
Specifically, Demand Zero pages are automatically marked as "dirty" by the 
Memory Manager in its private database. When the application modifies the 
page, the PTE is also marked as dirty. Normally, this doesn't make any differ
ence. However, when the file Cache Manager is the "application" that receives 
a new, clean Demand Zero page, it is possible that timing of the Mapped Page 
Writer and Lazy Writer can cause the page to be written twice. 

This is because there are really two dirty bits-one bit in the Memory Manager 
private database (more on the "page frame database" later in this chapter) and 
one bit in the PTE. 

If the Lazy Writer writes the dirty page first, only one copy of the data is writ
ten out to disk. If the Mapped Page Writer writes the dirty page first and then 
the Lazy Writer writes the dirty page, it is written again. For most disk subsys
tems, this is just a little inefficient. For Write Once Read Many (WORM) stor
age devices, that extra write takes extra disk storage. Although this doesn't 
cause an incorrect operation, it often surprises those who develop WORM 
storage drivers when they first observe this phenomenon. 

Paging File PTE 

The Paging File PTE describes the location of data while it is stored in the pag
ing file itself. The sample PTE illustrated in Figure 3.9 showed four bits 
reserved for the paging file number. This number indicates which paging file 
currently holds the contents of the page. Hence, the Memory Manager can uti
lize up to 16 paging files, which should be sufficient for even the most extreme 
environments. 

Of course, the same 20 bits that were used to describe the physical page 
address can be used to describe the location of the data within the paging file. 

Unused PTE 

The Unused PTE indicates that the PTE entry itself is not presently being used. 
Thus, any attempts to reference this page will not be resolved by the Memory 
Manager. Instead, an error will be generated and sent to the application thread 
that caused the invalid memory reference. 

Virtual-to-Physical Address Translation 
The precise mechanism that the various hardware platforms use to perform 
virtual-to-physical address translation is dependent upon the specifics of the 
underlying hardware platform. Although we have described the page directory, 
page tables, and physical pages, only some hardware platforms actually sup
port this translation mechanism. 
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For example, the MIPS family of CPUs does not traverse the page tables when 
performing virtual-to-physical address translation. Instead, they rely solely 
upon a Translation Lookaside Buffer (TLB), which is implemented in hard
ware, and stores the virtual-to-physical mapping in a hardware associative 
cache. In this case, the CPU uses the virtual address to look up the correspond
ing physical address in the TLB. If the entry is not present in the TLB, it causes 
a page fault. 

Indeed, all of the hardware platforms rely upon some form of translation 
buffer mechanism to improve the performance of virtual-to-physical address 
translation. The size of this translation table is small-it could be as small as a 
single entry or large enough to contain over a hundred entries. 

The translation buffer differs from the page table in that the translation buffer 
is merely a cache of recently used virtual-to-physical address translations, while 
the page table describes all possible virtual-to-physical translations. Thus, we 
rely upon the translation buffer to increase the performance of address transla
tion and fall back to the page tables only when the necessary information is 
not cached. 

For most other platforms, the hardware actually walks through the page tables 
to translate a virtual address to a physical address. Even some of these plat
forms utilize a TLB to optimize this process. Utilizing a TLB provides a fast 
way to cache virtual-to-physical address translation. 

Note 

For additional information on how the underlying hardware platforms 
support virtual memory, you should read the Pentium II Family 
Developer's Manual, Volume 3: Operating System Writer's Guide, or the 
Alpha Architecture Reference Manual. Each of these manuals describes 
the details involved in page-fault handling with respect to the particular 
hardware platform. For the X86 family of processors, Windows NT typi
cally utilizes a CCflat model" segmentation scheme with paging, although 
there is some use of segments for supporting DOS programs. 

There are always addresses that the CPU cannot translate, either because the 
access to the page is incompatible with the PTE or because the virtual address 
does not have a corresponding physical address. In either case, these complex 
problems must be deferred to the Memory Manager itself. This process is a 
page fault and must be handled by the Memory Manager. 

When a page fault occurs, it is actually trapped by the Microkernel. The 
Microkernel builds a canonical description of the fault and then passes this 
into the Memory Manager. By building a canonical representation of the page 
fault, the kernel furthers the platform independence described in Chapter 1, 
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"The Windows NT Operating System Overview." The information it receives 
is as follows: 

• Whether the fault is a load or store operation 

• What virtual address is being accessed 

• What the CPU processor mode is when the fault occurs 

Note that when the Memory Manager is invoked, the CPU processor mode is 
KernelMode because processing page faults is a privileged operation requiring 
OS intervention. 

In analyzing a particular page fault, the Memory Manager must first analyze 
the PTE. In doing so, it must handle some very complex cases. For example, a 
page fault might occur on multiple processors on a multiprocessor system. 
Thus, when the Memory Manager is called, it might find that the page causing 
the fault is actually valid because it has since been updated by a different 
processor (or even a different thread on the same processor). 

A fault might occur in User mode. In this case, the Memory Manager must tra
verse the page directory, find the page table, and find the specific page table 
entry. It is even possible while doing this that the Memory Manager will find 
that the page directory and page table are paged out! 

Once the Memory Manager finds the appropriate PTE, it must then determine 
if the PTE itself is valid. If the PTE is valid, the Memory Manager's work is 
done-it can just return to the kernel, and the kernel in turn will restart the 
faulting instruction. 

If, as is more often the case, the PTE is invalid, the Memory Manager must 
check for each of the various conditions that might have occurred. These are 
based upon the particular type of PTE that is stored in the page table (recall 
that the Memory Manager defines the contents of a PTE when it is invalid). 

For example, if the PTE indicates that the given page is a Demand Zero page, 
the Memory Manager must actually allocate a new zero-filled page, and update 
the PTE to point to the newly allocated zero-filled page. Then, when the kernel 
restarts the faulting instruction, the CPU will be able to access the page. 

When a virtual address is in system space, the Memory Manager handles those 
differently from addresses in Kernel mode. As noted in the section, "System 
Address Space Layout," the layout of addresses in the system address space is 
regimented so that the Memory Manager knows how to handle these page 
faults. This is necessary because the Memory Manager does not manage the 
system address space the same way it does the kernel address space. 
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Virtual Address Descriptor 
Although the page tables are essential to managing the translation of virtual-to
physical translation, we have thus far ignored the issue of what the Memory 
Manager does when a virtual page is being "demand-paged." In such a case, 
the PTE is marked as "invalid" and thus when that page is actually referenced, 
it causes a page fault. 

The Memory Manager must allocate a physical page. In addition, it must also 
be able to obtain the contents of that page from its current storage location, 
typically a disk drive. To do this, the Memory Manager must ask the I/O 
Manager to retrieve the contents of the page. In turn, the I/O Manager calls 
the actual storage device, typically via a file system, to retrieve the actual data 
contents of the page. 

Thus, given a virtual address, the Memory Manager must be able to locate the 
data, indicating where the actual data contents of the page are stored. This is 
done by using the Virtual Address Descriptor (VAD) tree. Each VAD entry 
describes one range of pages within the address space and indicates where data 
within that region is actually located. All the VAD entries are stored together in 
a binary tree and describe how the entire address space for this particular 
process is constructed. Hence, there is one VAD tree for each address space. 

A single VAD entry describes a range of virtual pages. It includes information 
about the attributes of pages in that range and where the backing store for the 
virtual pages is located. For example, a VAD entry associated with a memory
mapped file would describe the range of pages in use by that memory-mapped 
file, and indicate that the address range is "backed" by the mapped file. 

An additional example is an application program that allocates storage within 
its address space, such as by using the standard malloe () call. To accommodate 
the new range of virtual pages required to describe the additional physical 
memory that has been allocated, a VAD descriptor would be created (or an 
existing one extended). Memory that is not associated with a particular file, 
such as that allocated by a malloe () operation, is backed by the paging file. 
The paging file is thus nothing more than a special file on disk that is used to 
store temporary data that should be discarded by Windows NT when the 
address space is deleted. 

The process of adding a new range of addresses into a process is thus divided 
into two steps: 

1. A range of virtual addresses are "reserved," and that information is then 
stored in the VAD. 

2. The VAD is modified to indicate the backing store for the range of 
addresses. 



80 Part I: Windows NT Architecture 

Thus, Windows NT "commits" the address range to some actual location. 

For an example, return to the now familiar case of a DLL. When a DLL needs 
to be mapped into memory, the first step is to reserve an address range for the 
DLL. Once that is done, the VAD is updated to point to the DLL file itself, so 
that the VAD is committed to the DLL file. 

The VAD entries are combined together to form a tree structure. Using a tree 
has several advantages: 

• The VAD tree can be searched quickly to find the correct VAD for a given 
virtual address. 

• The VAD tree can represent a sparse address range. Thus, if nothing 
exists in a given virtual address range, there will not be any information 
about the VAD tree. 

• The VAD tree allows a single VAD to be split into multiple pieces, as nec
essary. 

Context 
Perhaps the most important issues with respect to virtual addresses require that 
the driver writer always consider the context for a given operation. With 
respect to virtual memory, the context identifies which virtual memory map
pings the system is using to translate virtual addresses to physical addresses. 

Thus, in a driver, when attempting to access a user address (that is, an address 
below the 2GB-or 3GB for an Enterprise Server-boundary), the CPU will 
actually use the current set of page tables to translate that address. Given this, 
the concept of an arbitrary thread context is one in which your driver cannot 
be certain what set of mappings is in use. Using an arbitrary memory address is 
likely to lead to one of three possible problems: 

• The address will not be valid. In this case, the Memory Manager will 
raise an exception that must either be handled or the system will crash. 

• The address will be valid. In this case, your driver will read (or write) 
using this essentially arbitrary memory address, with unpredictable 
results. 

• The address will be valid and will point to the correct memory. 

It often surprises device driver writers that the third scenario in the preceding 
list will often occur in their test scenarios. This is because frequently the "arbi
trary thread" chosen to perform their work will be the only active program on 
the system-namely, their test program. In such circumstances, a driver might 
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even appear to work correctly. Instead, the problem shows up during later test
ing or even after it has been shipped to customers. 

An invalid pointer is the most common reason the Windows NT operating sys
tem halts. For example, the most frequently observed STOP codes when 
Windows NT provides the Blue Screen of Death (BSOD) all relate to invalid 
memory references. The reason that there are several is that the invalid memo
ry reference can occur in several different ranges of memory. The BSOD is 
described in more detail in Chapter 18, "Building and Debugging." 

For example, IRQl_NOT _lESS_OR_EQUAl often indicates that a segment of memory 
was not valid. Because the page was invalid, a page fault occurred, and control 
was transferred to the Microkernel. In turn, the Microkernel then determined 
that the IRQL of the system is at a level where page faults are prohibited 
(DISPATCH_lEVEL or above). In this case, a bug check is generated immediately. 
(Chapter 6, "Interrupt Request Levels and DPCs," discusses IRQLs in more 
detail.) 

Another example of an invalid memory reference causing the system to halt is 
PAGE_FAUlT_IN_NONPAGED~REA. As described previously in the chapter, the 
Memory Manager organizes the system space portion of the address space into 
several different ranges, with each range having a particular purpose. One such 
region is the non-paged pool. This region is referred to as non-paged because 
all virtual references within this region of memory are either valid and point to 
physical memory, or they are invalid. Thus, when a page fault occurs for 
addresses within this range, the Memory Manager expects to find a physical 
memory reference. Thus, after the Memory Manager has been invoked to han
dle the page fault, if it finds that the virtual address is within this range, it halts 
the system because there is a serious bug-some kernel component, such as a 
device driver, is referring to non-existent kernel memory addresses. 

The third example of an invalid memory reference causing the system to halt is 
KMODE_EXCEPTION_NOT_HANDlED. This typically occurs when a Kernel mode compo
nent, such as a device driver, references an address in user space and it is not 
valid. In this case, the Memory Manager generates an exception. The 
Microkernel then scans the kernel stack to determine if there is a registered 
exception handler. If there is no such exception handler, the Microkernel halts 
the operating system. 

Thus, in order to avoid catastrophic results, it is imperative that a device driver 
developer understand the context in which it is going to operate. The simplest 
model for device driver developers is the one in which they can always 
assume they will not be called in the correct thread context. For example, 
intermediate- and lowest-level storage drivers typically do not need to worry 
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about context because they are always called with kernel addresses and kernel 
data structures. Drivers that can be called in thread context, such as all high
est-level drivers, or some intermediate drivers, need to always be aware of any 
context assumptions they are making when developing their driver. 

Physical Memory Management 
Independent of the translation of virtual-to-physical memory, the Memory 
Manager must also track the usage of physical memory. When the system first 
initializes, it determines the available physical memory and builds data struc
tures that are, in turn, used to manage all physical memory in the system (these 
structures are actually stored in virtual memory-in the non-paged pool to be 
precise.) 

The following sections describe in more detail the three mechanisms used by 
the Memory Manager to manage the allocation and usage of physical memory: 

• Page Frame Database. The page frame database is a table describing the 
state of each physical memory page in the system. By tracking the state of 
each page (active, free, and so forth) the Memory Manager can reclaim 
and allocate memory as needed. 

• Page Recovery Algorithm. The Memory Manager actually handles the 
transition of pages through several states as part of page recovery. This 
mechanism ensures that page recovery is both efficient and inexpensive. 

• Section Object. The Section Object is used by the Memory Manager to 
track resources that are available to be memory-mapped into the various 
address spaces. 

Page Frame Database 
The Memory Manager maintains the page frame database to track the state 
and usage information about each physical page of memory that is present on 
the system at the time the as started. The page frame database does not 
describe device physical memory, a point that is important to understand when 
building MD Ls for device memory. 

Individual entries within the page frame database are typically referred to by 
their page numbers. Hence, this database is normally referred to as the page 
frame number (PFN) database. An individual entry within the page frame data
base describes how a given physical page is currently being used. On Windows 
NT, a page is always in one of eight states: 

• Active. The physical page is in active use. The PFN database includes 
reference-counting information to indicate the number of active references. 
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• Transition. The physical page is part of one or more working sets, but all 
PTE entries to it are marked invalid. This state is used as part of recycling 
the page. 

• ModifiedNo Write. The physical page is part of one or more working sets, 
contains dirty data, but is not presently scheduled to be written to disk. 

• Modified. The physical page may be part of one or more working sets, 
contains dirty data, and is presently scheduled to be written to disk. 

• Standby. The physical page is not part of any working sets, although the 
page may still contain useful data. This state is the "last resort" for pages 
before they are recycled for other uses. 

• Zeroed. The physical page has been completely filled with zeros. The 
Memory Manager maintains a set of such pages so that when a Demand 
Zero page fault occurs, it can immediately satisfy it using one of these 
pages. 

• Free. The physical page is unused and contains no useful data. Unlike 
zeroed pages, pages in the Free state may have data remaining in them 
from their prior use. 

• Bad. The physical page has been marked as Bad. This can be used with 
hardware that supports identification and removal of pages that are not 
performing correctly (perhaps they've failed an ECC check.) 

In Figure 3.13, we provide a simple graphic description of these lists. Note that 
the "pages" are actually tracked via their PFN database entries, with every 
physical page present on exactly one list. Note that these lists map one-to-one 
with the various states listed. Thus, a physical page is in the "free" state when 
it is on the "free" list. 

Note that not all physical memory is described within the PFN database. For 
example, device drivers can indicate the memory that is resident on their device 
using MmMaploSpace(} (the prototype for which is shown in Figure 13.15 in 
Chapter 13, "DriverEntry"). While the Memory Manager builds a virtual-to
physical translation for this memory, it uses non-paged pool for this purpose. 
Such memory does not have an entry in the PFN database. 

The Page Recovery Algorithm 
Note that the Windows NT page recovery algorithm might appear a bit unusu
al when first described. From the pure operating system perspective, the page 
reuse mechanism should implement a least-recently-used (LRU) algorithm. 
Then, each time a page was accessed, it would be moved to the front of the 
list. As pages were needed for other processes, the Memory Manager would 
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remove them from the tail of the list-in essence, removing those pages that 
had not been used recently. 

Valid I---

Free 

- Modified 

Standby 

PTE J .... 
Zeroed 

Bad 

PTE .... I+--- Valid 

Valid I+-
PTE 

Free 

PTE 
Modified 

Valid -+-
Standby 

J .... 

Zeroed 
I .... 

Zeroed J .... 

Valid -+-
Figure 3.13. Memory Manager page lists. 

While theoretically optimal, the cost of a strict LRU mechanism requires con
stantly moving the PFN entries from the middle of the list to the head of the 
list. For CPUs that didn't support this, the OS would have to ensure that a 
page fault occurred for every page except the current one. Instead of LRU, 
Windows NT utilizes a much more efficient three-step, FIFO algorithm for 
recycling the physical pages. First, as we described earlier, there is an 
"accessed" bit that is set by the MMU. This allows Windows NT to chose to 
trim only pages from a particular process working set when the page has not 
been recently accessed, specifically since the last time the working set was 
scanned by the Memory Manager. Then, a page is moved to the Transition list. 
If it is referenced at this point, the data is in memory and the page can be 
cheaply recovered. Once a page has become the oldest page on the Transition 
list it is moved to the Standby list. It can still be recovered at this point, but 
once it becomes the oldest page on the standby list it is reclaimed-either to be 
zeroed and added to the zero list, or to become part of a processes address 
space because the physical page has been recycled. 
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Thus, this algorithm approximates the strict LRU algorithm without the costly 
overhead of LRU. 

Section Object 
The Memory Manager in Windows NT exports a single control data structure: 
the Section Object. Like other objects within Windows NT, the Section Object 
can be named. Figure 3.14 shows the Devices directory within the Object 
Manager. This shows one Section Object of particular interest to device driver 
writers-the PhysicalMemory Section Object. This Section Object can be used 
from a device driver to map device memory into an application space. This 
allows device memory to be accessed directly from a custom application, 
although this should be set up from the device driver. 
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Figure 3.14. Physical Memory Section Object. 

Section Objects are used within the Memory Manager to describe anything 
that can be "mapped" into memory. Perhaps the best example of this is for 
memory-mapped files, each of which has exactly one Section Object (although 
there are potentially many open references to that one file, with one file object 
for each open reference). This mechanism is essential to ensuring that no mat
ter how many mapped instances of a file exist in the system, there is only one 
copy of the data. 

Memory-Manager Tuning 
There are a number of instances when it may be necessary to tune the perfor
mance of the Windows NT Memory Manager in order to increase the available 
pool of resources for a particular device driver. Figure 3.15 shows a view of the 
Registry keys that control the behavior of the Memory Manager. 
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Figure 3.15. Memory Manager Registry control keys. 

From Figure 3.15, the Registry key values of interest are as follows: 

• DisablePagingExecutive. This value disables the paging of the operating 
system and device drivers. A value of zero indicates that paging is enabled, 
while any non-zero value disables paging. When paging is disabled, the 
code portion of all drivers in the system are locked into memory. 

• IoPageLockLimi t. This REG_DWORD value ranges from a minimum of 512KB 
to a value approximately 7MB less than the total physical memory on the 
system. It is used to restrict the amount of memory that can be locked by 
a Kernel mode driver on behalf of a User mode process. Drivers that 
transfer large blocks of data in multi-threaded programs find it useful to 
increase this value; otherwise, certain operations will fail due to the quota 
being exceeded. 

• NonPagedPoolSize. This value establishes the total available non-paged 
memory size. A value of zero indicates that the "default" value, which is 
computed based upon the available physical memory, should be used. A 
larger value indicates the size that should be used. Note that the maxi
mum acceptable value is a function of the available physical memory and 
the version of Windows NT. For NT V4. SP3 on an X86 platform, the 
version dependent limit is 128MB. 

• SystemPages. This value establishes the number of PTEs reserved by the 
operating system for describing system memory. The default value is a 
function of the version and platform, but for a typical system it is 10,000. 
The maximum value also varies as a function of the version and the plat
form, but it is less than 50,000. Each PTE allows Windows NT to 
describe one PAGE_SIZE unit of memory (4KB on X86, 8KB on Alpha). 
Increasing this value is typically necessary when a device has a large 
amount of memory and the driver must access that memory. 
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These are only the Memory Manager-related values that are typically of inter
est to Kernel mode device driver developers. Chapter 4, "The Registry," 
describes the Registry in more detail. 

Drivers and VM 
While an understanding of Virtual Memory is useful to gain an appreciation of 
the operating system, it is also important when developing Kernel mode device 
drivers because device driver writers routinely must manipulate virtual, physi
cal, and logical addresses. 

For example, as you will see in more detail in Chapter 14, "Dispatch Entry 
Points," the I/O Manager can pass one of three types of addresses containing 
input from a User mode application: 

• The virtual address of the User mode application's buffer 

• The virtual address of a system buffer 

• The physical description of the user's buffer as a Memory Descriptor List 
(MDL) 

The issue of context will come up again in Chapter 12, "Driver Structure," but 
for the purposes of discussing virtual memory, knowing the context of a partic
ular operation is critical to being able to handle virtual addresses correctly. 
This is because for the VM system, context defines which page tables to use 
when translating the address. 

Thus, the virtual address of the User mode application's buffer must be trans
lated by using the same set of page tables that were used by the application 
when building that buffer. Otherwise, the virtual-to-physical address transla
tion might point to the right physical memory, but often will not. 

Note 

It comes as some surprise to new Kernel mode driver developers that 
when they are in an "arbitrary" context, using a user virtual address may 
resolve to the correct physical memory. Indeed, frequently this problem 
may go undetected in the developer's testing environment because the 
only use of the system is to debug the driver. Hence, often the "arbitrary" 
context is the last application that ran-the test program! In such a case, 
the bug often shows up the first time it is tested by a third party that is 
using the system for other tasks as well as for testing the driver. 

The advantage of using a virtual address for a system buffer is that addresses 
in the system address space are identical, regardless of the actual context. This 
is because all contexts share the system space mappings, as described earlier in 
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this chapter. Unfortunately, the I/O Manager accomplishes this by allocating a 
buffer from the non-paged pool and copying data into it. Although this is 
acceptable for small blocks of data, it can become unbearably slow for larger 
blocks of data. 

The third alternative is for the I/O Manager to pass a description of the physi
cal pages that make up the user's buffer. Of course, as discussed earlier, a virtu
al address is not required to point to a valid physical address. Thus, in the 
process of building the description of the physical pages, the Memory Manager 
(at the request of the I/O Manager) must ensure that the virtual-to-physical 
address mapping is valid and remains valid. The process of ensuring that the 
virtual-to-physical address mapping is valid is known as probing. The process 
of ensuring that a valid virtual-to-physical mapping remains valid is known as 
locking. Hence, the Memory Manager routine that performs this task is 
MmProbeAndLockPages (). The prototype for this function is shown in Figure 16.3 
(in Chapter 16, "Programmed I/O Data Transfers.") 

Memory Descriptor Lists 
The Memory Manager uses the Memory Descriptor List (MDL) structure for 
describing a set of physical pages that make up the user application's virtual 
buffer. Once a device driver has an MDL describing a user buffer, that MDL 
can be used to create a mapping in the system virtual address space or it can be 
used to obtain logical addresses that can be given to the device for performing 
Direct Memory Access (DMA.) DMA is described in more detail in Chapter 
17, "DMA Data Transfers." 

Building a system virtual address mapping is straightforward for the Memory 
Manager once it has a set of physical page addresses because it can simply find 
a range of unused PTEs in the system virtual address space, and then fix those 
PTEs to point to the appropriate physical pages. This is important because if a 
Kernel mode device driver tries to use the physical address directly, the CPU 
will perform a virtual-to-physical translation on that physical address. Of 
course, it is extremely unlikely that this translation will result in a correct oper
ation. 

Frequently, Kernel mode device drivers allow the I/O Manager to interact with 
the Memory Manager when creating the MDLs for a user buffer. Those same 
drivers then use the MDL as a parameter to pass into the Memory Manager, 
either to obtain a system virtual address using MmGetSystemAddressForMdl ( ), or 
by translating the physical addresses within the MDL into logical addresses for 
use in programming the device using IoMapTransfer(). The prototype for 
MmGetSystemAddressForMdl() is shown in Figure 16.1 (in Chapter 16.) The pro
totype for IoMapTransfer() is shown in Figure 17.7 (in Chapter 17.) 
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It is also possible for Kernel mode device drivers to build MDLs directly from 
user virtual addresses. Although this is unusual for Kernel mode device drivers, 
it can prove to be useful under certain limited circumstances. Chapter 16 dis
cusses handling user buffers directly in more detail. Drivers that do manipulate 
user virtual addresses directly must be certain to handle invalid memory refer
ences. For example, the Memory Manager routine MmProbeAndLockPages () raises 
an exception when a user memory reference is invalid. 

Structured Exception Handling 
One very important technique for handling certain types of memory access 
problems is Structured Exception Handling (SEH). This technique is a feature 
of the operating system that is supported by the standard Microsoft C/C++ 
compiler. Although it can be used for general error handling, the interest here 
is to ensure that user addresses are valid. 

Using Microsoft C, SEH is accomplished by using the keywords _try and 
_except. Microsoft's build environment for Kernel mode drivers (discussed in 
greater detail in Chapter 18) defines the keywords try and except in terms of 
the actual compiler primitives. This is done using the arguments -Dtry=_try 

and -Dexcept=_except when compiling standard C programs. 

C++ code compiled using Microsoft's build environment must use the native 
_try and _except versions of these keywords because C++ defines its own 
exception-handling mechanism using the try keyword. This C++ exception
handling mechanism is incompatible with the exception-handling mechanism 
supported by the Microkernel for Kernel mode device drivers. 

1\lote 

The Structured Exception Handling model described here should not be 
confused with the termination handling that is also available. A termina
tion handler is a segment of code that will always be executed once a 
particular region has been entered~ regardless of the way control is trans
ferred out of the code region. For example, this is often used to ensure 
proper cleanup of resources such as locks or allocated memory. A termi
nation handler also uses the _try clause to introduce it~ but uses a 
_finally to represent the termination code. The _try/_except mecha
nism is independent of the _try/_finally mechanism. The two may be 
both be used within your code. 

Example 3.1, which follows shortly, demonstrates how to use SEH when 
accessing an address in the user portion of the address space. A few important 
notes about SEH on NT: 
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• The _except clause is executed only if the expression evaluates to TRUE. 

• The routine GetExceptionInformation can only be called within the 
_except expression. This can be used to retrieve extended information 
about what caused the exception. 

• The routine GetExceptionCode can be used within the _except expression 
or within the _except clause in order to retrieve the basic information 
about what caused the exception. 

• Not all exceptions can be handled. For example, an illegal instruction 
exception cannot be trapped with an exception handler. 

• If an exception does not occur, the code within the exception-handling 
clause is not called. 

Your own driver can generate exceptions using the Executive subsystem routine 
ExRaiseStatus ( ). 

Example 3.1. Using Structured Exception Handling 

/I 
II We'll be reading data from the user mode address. We should make certain it 
II is valid. 
/I 
BOOLEAN OsrProbeForRead(PVOID Buffer, VLONG Length) 
{ 

ULONG indexj 
UCHAR dummyArgj 
PUCHAR effectiveAddressj 

/I 
II Probe the input buffer by reading a byte from each page in the range -
II that's enough. 

try { 

for (index = ADDRESS_AND_SIZE_TO_SPAN_PAGES(Buffer, Length)j 
indexj 
index- -) { 

effectiveAddress = (PUCHAR) Bufferj 

effectiveAddress += ((index-1) * PAGE_SIZE)j 

dummyArg = *effectiveAddressj 
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} except (EXCEPTION_EXECUTE_HANDLER) { 

DbgPrint("Exception is 0x%x\n", GetExceptionCode()); 

return FALSE; 

/! 
II If we make it to here, the input buffer is valid. 
/! 

return TRUE; 

When an exception occurs, the Microkernel analyzes the registered exception 
handlers until it either finds an exception handler willing to handle the excep
tion or it runs out of exception handlers. An unhandled exception in Kernel 
mode causes the system to halt. 

Example 3.1 demonstrates an unconditional exception handler, because the 
macro EXCEPTION_EXECUTE_HANDLER is defined as TRUE. Thus, the exception han
dler will always be invoked if there is an exception. If any exception occurs 
while referencing the memory, in this case it will unconditionally trap into the 
exception handler. Sometimes, you might only want to handle exceptions that 
occur because of memory errors, in which case you should provide a function 
that can be used to examine the cause of the exception and determine whether 
it should be handled or not (see Example 3.2). 

Example 3.2. A Selective Exception Handling Expression 

ULONG BackgroundExceptionFilter( ULONG Code, PEXCEPTION_POINTERS pOinters) 
{ 

PEXCEPTION_RECORD ExceptionRecord; 
PCONTEXT Contextj 

ExceptionRecord = pointers->ExceptionRecordj 
Context = pOinters->ContextRecordj 

return EXCEPTION_EXECUTE_HANDLERj 

Example 3.3 demonstrates a code fragment, showing how to use this expres
sion. If an exception occurs while calling the function within the _try block, 
the Microkernel will call the routine BackgroundExceptionFil ter to determine if 
the exception handler should be invoked. In Example 3.3, it is invoked. An 
error is printed and processing continues because the exception has been 
handled. 
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Example 3.3. Using the Exception Handling Expression 

]'&ote 

runAgain = FALSE; 

runAgain = (*backgroundTask->BackgroundTaskProc) 
(backgroundTask->Context); 

} __ except ( BackgroundExceptionFilter(GetExceptionCode(), 
GetExceptionlnformation()) ) { 

DbgPrint(("Unexpected exception when calling routine\n")); 

Perhaps the most challenging part about using SEH is debugging the sys
tem when something goes wrong. In such a case, it can be useful to use 
an exception filter routine, similar to the one in Example 3.2, and utilize 
a hard-coded breakpoint. By doing this, the debugger is invoked before 
the stack has been unwound, making it easier to debug what has actually 
happened. 



Chapter 4 
The Registry 

This chapter will review: 

• Viewing and Modifying the Registry. This section examines the tools used 
to navigate and edit Registry entries. Coverage includes the following 
utilities: regedt32. exe, regedi t . exe, regdmp. exe, and regini. exe. 

• Registry Organization. This section explains the hierarchy, values, and 
data types typically found within the Registry. Coverage of the 
UNICODE_STRING string structure and wide-character null-terminated strings 
is also included. 

• Registry Keys of Interest to Device Driver Developers. This section covers 
the HARDWARE, SOFTWARE, and SYSTEM Registry subkeys that are more relevant 
to the working environment of device driver writers. Coverage of control 
sets is also included for further clarification. 

This chapter discusses the Windows NT Registry, emphasizing those parts of 
the Registry that are of interest to Kernel mode device driver developers. Note 
that this chapter merely introduces the Registry and points out some of the 
particular keys of interest. The actual Registry entries needed to install and 
start a driver in Windows NT are described in Chapter 20, "Installing and 
Starting Drivers." 

The Registry is nothing more than a database of configuration and administra
tive information about the operating system and related utilities. However, 
because it has evolved to accumulate all the configuration information on 
Windows NT, the organization of the information within th~ Registry has 
become complex. 

Although the Registry is described as if it were a single component, it is in fact 
constructed by combining several independent components called hives into a 
single, coherent namespace. For example, information about the hardware con
figuration of the current system is recomputed as part of system initialization, 
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and is modified as individual drivers and services load. Other parts of the 
Registry, such as those used to maintain user-specific and system-specific con
figuration data, are stored on disk and maintained in memory so they can be 
quickly accessed as necessary. 

Viewing and Modifying the Registry 
Although Windows NT provides two separate utilities to examine and modify 
the Registry, neither of these tools is presented to users via the standard Start 
menus. Instead, these utilities must either be manually invoked or added to the 
menus. regedt32. exe is the original utility built by Microsoft for examining and 
modifying the Registry. This utility is tied tightly to the Windows NT platform 
and understands certain data types that are unique to Windows NT. 
regedi t. exe is a separate utility that works with any system supporting the Win 
32 Registry API-notably Windows 95, Windows 98, and Windows NT 4.0. 
Figure 4.1 and Figure 4.2 illustrate the basic appearance of the regedit32 and 
regedit utilities, respectively. 

What is available within the Registry is restricted using the standard Windows 
NT security mechanisms. Thus, each key within the Registry can be protected 
much like files are protected within the file system. Kernel mode device drivers 
typically need not worry about this security because Kernel mode access is nor
mally granted as a matter of course. 

Figure 4.1. regedt32. exe: Windows NT-specific Registry Editor. 



Chapter 4: The Registry 95 

Figure 4.2. regedit. exe: Win32 Registry Editor for Windows 95/98 and Windows NT. 

Although both the regedi t. exe and regedt32. exe utilities perform similar func
tions, their appearances are distinctive and each provides slightly different fea
tures. For example, the two utilities frequently display Registry information in 
slightly different forms. Figure 4.3 shows the information displayed by the 
regedt32. exe utility for the HAL resources on a multiprocessor system. 

Figure 4.3. regedt32. exe's presentation of HAL resources. 

Note that by selecting one of the two entries at this level of the Registry (either 
. raw or . translated), the Registry Editor can display detailed information 
about this information. 

Compare the display in Figure 4.3 to the presentation of the same information 
by the regedi t . exe utility in Figure 4.4. 
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Figure 4.4. regedit. exe's presentation of HAL resources. 

Instead of providing a detailed display of the meaning of this Registry informa
tion, regedi t . exe presents this information as binary data without any interpre
tation. Thus, it is useful to know that the regedt32. exe utility was constructed 
with explicit knowledge of the detailed data structures that Windows NT 
maintains about hardware resources, while the regedi t . exe utility does not. 

One benefit of using the regedi t. exe utility is that it can search all parts of the 
Registry for a particular textual value. Figure 4.5 shows the Find option within 
regedit .exe. 

Figure 4.5. reg edit .exe's Find capability. 
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Although regedt32. exe has a search facility, it is restricted to searching for a 
textual match, with respect to the name of keys within the Registry. A ke~T in 
the Registry corresponds to a particular level, much like a directory within 
Explorer. A key acts as a container of additional keys or values, where values 
actually contain the data elements within the Registry. The actual organization 
of the Registry is described in more detail later in this chapter in the section 
"Registry Organization." 

Figure 4.6 shows the Find option used with regedt32. exe. 

Figure 4.6. regedt32. exe's Find capability. 

Again, note that the regedt32. exe utility'S Find option is restricted to searching 
on the names of individual keys, rather than for textual strings anywhere with
in the Registry-notably within the data portion of values. Thus, when search
ing for a particular string anywhere in the Registry, the regedi t . exe utility may 
be better suited to the task. 

For example, if you wish to find all values that contain data with the word 
"Microsoft," you cannot do this by using regedt32. exe, although you can do 
so by using regedit.exe. You could find all the keys that have the word 
"Microsoft" in their names, but this is often less useful. 

In addition to these standard Windows NT utilities, the Windows NT DDK 
also includes two additional command-line utilities: regdmp. exe and regini. exe. 
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The regdmp. exe utility can be used to dump all or a portion of the Registry. For 
example, to dump the HAL portion of the Registry displayed earlier in Figures 
4.3 and 4.4, use the command (all one line): 

regdmp "HKEY_LOCAL_MACHINE\Hardware\ResourceMap\Hardware Abstraction Layer\MPS 
1.4 - APIC Platform" 

This command displays quite a considerable amount of text information that 
describes this Registry key, but this represents the same information observed 
earlier using regedt32. exe and regedi t. exe-again, using a different format for 
the information. 

The regini. exe utility can be useful when developing drivers because it allows 
the developer to build a simple textual description of the Registry key and its 
values rather than building a complete installation program. The Registry keys 
necessary for driver installation are described in detail in Chapter 20. The 
regini. exe utility takes a text file and builds Registry information based upon 
the information within the Registry itself. The input of the regini. exe utility is 
compatible with the output of the regdmp. exe utility. 

Registry Organization 
The Registry is organized into a series of different top-level keys. Each key rep
resents a distinct type of information. In Windows NT, the standard top-level 
keys are as follows: 

• HKEY_ClASSES_ROOT. This key indicates special handling for various file 
extensions. 

• HKEY_CURRENT_USER. This key indicates configuration information for the 
current logged-on user. 

• HKEY_CURRENT_CONFIG. This key indicates miscellaneous configuration state. 

• HKEY_lOCAl_MACHINE. Of interest to device driver writers, this key indicates 
system state. 

• HKEY _USERS. This key provides local information on this machine about 
users. 

Note that individual Registry keys may in fact be links to other keys. While 
reading the contents of the Registry, these links point to other parts of the 
Registry. For example, the HKEY_CURRENT_USER key points to the correct entry in 
the HKEY _USERS portion of the Registry. Thus, this linkage is normally transpar
ent to programs and utilities reading the Registry, and it allows Windows NT 
to construct a logical name space for the Registry, where the "correct" contents 
are determined by the system as necessary. 
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Indeed, we will discuss one of these links-the current control set-that is 
important to the configuration state for device drivers later in the section "The 
SYSTEM Subkey and Control Sets." 

Subkeys, Values, and Data Types 
Within the Registry, each key may contain additional keys that may also con
tain values. A value has a name that is unique within the current key and has 
associated data, as well as type information for interpreting the data itself. 
Figure 4.7 shows a simple example of this hierarchical decomposition. 

Figure 4.7. Microsoft key within HKEY_LOCAL_MACHINE\SOFTWARE. 

Figure 4.7 shows the Microsoft key. Selecting the key displays additional infor
mation, as shown in Figure 4.8. 

For our purposes, the Windows NT key was selected because it also shows where 
the current configuration data is maintained within the Registry. For this exam
ple, the system used to capture these images was running CurrentBuildNumber 

1381 (which indicates that this was an NT V4 system) and the CSDVersion 

Service Pack 3. 

In addition, each of these entries identifies the type of data. For both 
CurrentBuildNumber and CSDVersion, the REG_SZ indicates that this is a null
terminated string (the "Z" indicates a null-terminated string because the wide 
character value zero is the null character). The Registry supports a variety of 
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different data types, but those of primary interest to device driver developers 
are as follows: 

• REG_NONE. No type 

• REG_SZ. Null-terminated wide character string 

• REG_EXPAND_SZ. Null-terminated wide character string, with environment 
variable expansion 

• REG_BINARY. Binary format data 

• REG_DWORD. 32-bit value 

• REG_DWORD_LITTLE_ENDIAN. Same as REG_DWORD 

• REG_DWORD_BIG_ENDIAN. 32-bit value in big endian format 

• REG_LINK. Link within the Registry 

• REG_MULTI_SZ. Multiple null-terminated wide character strings; list ends 
with an empty string 

• REG_RESOURCE_LIST. Resource list 

• REG_RESOURCE_REQUIREMENTS_LIST. Resource requirements list 

• REG_FULL_RESOURCE_DESCRIPTOR. Description of device assigned resources 
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Figure 4.8. Windows NT key within HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft. 
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Managing Wide Character Strings 
Describing strings on Windows NT can be confusing because Windows NT 
provides two different ways to represent strings. One is using the 
UNICODE_STRING structure, which is declared for the DDK in ntdef. has: 

typedef struct _UNICODE_STRING { 
USHORT Length; 
USHORT MaximumLength; 

PWSTR Buffer; 
} UNICODE_STRING; 

The other mechanism used to describe a string is to follow the convention that 
it is terminated by a null character. The rich programming environment of the 
Windows NT DDK utilizes both forms of strings, with some functions taking 
wide character strings and others taking pointers to the UNICODE_STRING data 
structure. Furthermore, the DDK documentation uses these terms interchange
ably. We have found that new device driver developers often first experience 
these two different mechanisms when they begin interacting with the Registry 
itself. 

One technique you can use when managing these strings is to maintain them 
by using the UNICODE_STRING structure, but ensure that there is an additional 
wide character at the end of the Buffer pointed to by the structure. In this case, 
the Length field in the structure indicates the size in bytes of the string stored 
within the Buffer, while the MaximumLength field will indicate a size of at least 
two bytes more than the Length (because it requires two bytes to store a single 
null wide character terminator). 

Registry Keys of Interest to Device 
Driver Developers 
For device driver developers, there are only a few keys of general interest with- ' 
in the Registry. These keys are located within the HKEY_LOCAL_MACHINE top-level 
key (refer to Figure 4.1). 

HARDWARE 
The HARDWARE subkey describes the current hardware configuration, including 
resources that have been reserved for use by a particular device by its device 
driver. This key is entirely dynamic and is reconstructed each time the system 
boots. Thus, if a device driver does not load, its device resources will not be 
present in this portion of the Registry because they have not been reserved with 
the operating system. The HARDWARE key is the first key available as the operat
ing system initializes. 



102 Part I: Windows NT Architecture 

Individual values stored within the HARDWARE subkey can describe complete sets 
of configuration or resource information. For example, Figure 4.9 shows the 
information displayed for an Ethernet card on a particular system. These 
resources have been reserved by the device driver to ensure that other devices 
on the system do not use the same resources. 

Figure 4.9. Resources in use by an Ethernet device. 

An example of a utility that reads this information and displays it is the stan
dard diagnostic program winmsd. exe. This program reads the Registry informa
tion and displays the resource utilization list, as shown in Figure 4.10. 

Figure 4.10. winmsd. exe reporting I/O port usage. 
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Although these values are certainly of interest to device driver writers, they are 
never directly created by the device driver. Instead, device driver writers rely 
upon I/O Manager functions, such as IoAssignResources () or 
IoReportResourceUsage() (described in Chapter 13, "Driver Entry"). These rou
tines in turn create and record the necessary Registry information. 

SOFTWARE 
The SOFTWARE subkey describes the configuration state and information for the 
various software packages installed on the system. Figure 4.8 showed one piece 
of information that can be useful to a device driver-the current version and 
CSD (patch) applied to the system. Typically, device drivers do not store infor
mation in this portion of the Registry because it is typically used by the various 
services and applications installed on the system. 

Comparing the Classes subkey of SOFTWARE side-by-side with the top-level 
HKEY_CLASSES_ROOT reveals that they are identical (see Figure 4.11). 

Figure 4.11. HKEY_CLASSES_ROOT and HKEY_LOCAL_MACHINE\SOFTWARE\Classes. 

Rather than being two identical copies of the same information, one is a link 
to the other. For any application program or device driver that reads this infor
mation, either path will point to exactly the same information. 
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The SYSTEM Subkey and Control Sets 
The SYSTEM subkey contains all static configuration information, and is of par
ticular interest to device drivers because it includes the static configuration 
information about which drivers can be loaded on this system. Figure 4.12 
shows the layout of the SYSTEM subkey. 

Figure 4.12. SYSTEM subkey. 

The actual system startup information is maintained as a control set. Each con
trol set describes the parameters to use when initializing the system, the drivers 
and services to load, and other information essential to proper configuration of 
the system as it is booted. 

The Registry actually maintains as many as four such control sets. Figure 4.12 
illustrated two control sets: ControlSet001 and ControlSet002. The key 
CurrentControlSet is actually a link within the Registry to the control set used 
when the system started. 

The Select key within the Registry indicates the interpretation of the four pos
sible control set values and their mapping to the actual control sets. These val
ues are as follows: 

• Default. This value is the "default" control set that should be booted 
when the system is started. 

• Current. This value is the "current" or actual control set that was booted 
when the system was started. 

• Failed. This value is a control set that was overridden manually (during 
boot loading). 

• LastKnownGood. This value is the last control set that was in use when 
someone successfully logged onto the system. 



Chapter 4: The Registry 105 

These values are set and modified as changes to the control set are made to 
add or remove services, as well as when a boot fails because the control set is 
invalid and has been replaced by the system. For example, when Windows NT 
boots, it provides a mechanism for reverting to the "last known good" config
uration. This means that the control set indicated by the LastKnownGood value in 
the Registry will be used to determine the control set to use. 

A control set-such as CurrentControlSet-is made up of four subkeys: Control, 
Enum, Hardware Profiles, and Services. Of these, Control and Services are of 
interest to device driver developers. 

Figure 4.13 illustrates the Control subkey, which describes system startup and 
tuning parameters that are used to control the precise manner in which 
Windows NT will operate. 
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Figure 4.13. Control set. 
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For example, the CrashControl subkey describes what the system should do if a 
system crash occurs-including creating a crash dump, rebooting, and so forth. 
Some of the information, such as the DumpFile value, is used when the system 
reboots to indicate where the crash dump should be copied because it is stored 
in the paging file when the system crashes. 

The GroupOrderList and ServiceGroupOrder subkeys control the order in which 
device drivers load during system initialization. These keys are described in 
greater detail in Chapter 20. 

The Session Manager subkey (this is not the same as the SessionManager subkey, 
which is a different subkey but is in the same location and has a deceptively 
similar name) contains configuration information used by the executive subsys
tems during their own initialization. For example, as described in Chapter 3, 
"Virtual Memory," the Memory Manager uses the values in the Memory 
Management subkey. This was shown in Figure 3.15. 
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The Services subkey describes the services, including device drivers, which can 
be loaded by the system. This key is scanned three times during system initial
ization just to determine the correct set of drivers and services to load as part 
of starting up the Windows NT system. Chapter 20 describes this process in 
greater detail. 

The Services subkey contains listings for device drivers; for other types of 
Kernel mode drivers, such as file system drivers or file system recognizer dri
vers; and for User mode services. 

Note 

The Service Control Manager (services. exe) actually scans the Services 
subkey when it first initializes. It builds an in-memory database of the 
information it finds in the Services subkey. Chapter 20 describes the pro
grammatic interface into the Service Control Manager in more detail. 

Because it performs a scan of this subkey once when it starts, if the 
Registry is changed externally, such as with regedt32. exe, the Service 
Control Manager does not know about the changes to the Registry until 
the next time it scans it-the next time the system starts up. Because the 
Service Control Manager is normally used to start new services (such as 
with the Control Panel applet or the net start command-line command), 
if it scans its own list of services and doesn't find the entry, it cannot load 
it. Hence, the requirement that a system be rebooted after manually 
changing the Registry. 



Chapter 5 
Dispatching and Scheduling 

This chapter will review: 

• Dispatching. Dispatching is the process of switching from one thread of 
execution to another thread of execution. This section describes the basic 
dispatching model on Windows NT. 

• Scheduling. Scheduling is the process of determining which thread is to 
execute next on a given processor. This section describes the. basic sched
uling model on Windows NT. 

This chapter discusses the basics of scheduling on Windows NT. Note that this 
chapter is not intended to be an exhaustive treatise on Windows NT schedul
ing; it is designed to emphasize those portions of scheduling that are of interest 
to device driver writers. 

Scheduling is, in fact, often one of the most complex parts of any operating 
system. In this regard, Windows NT is no exception. For example, the 
Windows NT scheduling algorithm for multiprocessor systems has changed 
throughout the lifetime of Windows NT to further tune its performance. 
Sometimes achieving this optimal performance means that the default schedul
ing rules are set aside. This chapter does not describe these details because they 
are beyond the scope of interest for device driver writers and are subject to 
change between versions of Windows NT. 

Dispatching 
Dispatching is the way the operating system switches between threads-the 
units of execution on Windows NT. As such, dispatching is distinct from the 
act of scheduling, which is the determination of the next thread to run on a 
given CPU. Thus, we start by describing the process of dispatching (switching 
between threads) in this section, and we discuss scheduling (choosing which 
thread to run next) in the next section. 
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Windows NT is organized around the concepts of processes and threads. All 
threads are associated with a particular process, and each process encapsulates 
shared resources, such as the VM page tables discussed in Chapter 3, "Virtual 
Memory." Thus, two threads within the same process have access to the same 
resources, while two threads within different processes normally do not share 
resources. 

Threads between processes can share resources~ but it requires explicit 
programming so that each of the threads can locate the resource. For 
example~ two threads might open the same file and share the data con
tents of that file. Normally~ this is done by using a ~~well-known name" 
for the shared resources~ and this is allowed by several Win32 APIs that 
are used for opening or creating resources. 

An example of this is the event that can be shared between two or more 
applications~ or even between an application and a Kernel mode driver. 
Such an event is normally created by using the CreateEvent () API avail
able in Win32. By providing the optional name for the event~ the event is 
visible to all applications within the system. Indeed~ a Kernel mode driver 
can even access this event by using the standard DDK API call 
IoCreateNotificationEvent (). There is one trick. Win32 API operations 
create their events in a special directory within the Object Manager 
namespace-the BaseNamedObj ects directory. Thus~ this name must be 
explicitly used for the Kernel mode API~ while it is not used for the 
Win32 level API. 

Threads are the units of execution within Windows NT. What this means is 
that each "thread" consists of sufficient information for the OS to be aware of 
the state of a particular thread at any point in time. In addition, the OS must 
also have enough information to be able to safely change that thread's state. 
Typical states for threads are as follows: 

• Wait. A thread in the wait state is blocked from running until some event 
(or set of events) occurs. 

• Ready. A thread in the ready state is eligible to run but must wait until 
NT decides to schedule it. 

• Running. A thread in the running state is presently active on some CPU 
in the system. 
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For example, when a device driver calls the function KeWai tForSingleObj ect () 
to wait for an event to be signaled, the Microkernel places the current thread 
into a wait state. This is accomplished by using a KWAIT _BLOCK member that is 
present in the thread control block-the ETHREAD or KTHREAD structure, which are 
normally used interchangeably. This is because the KTHREAD structure represents 
the Microkernel state for the given thread, and is just the first part of the 
ETHREAD structure, which represents the executive state for the given thread. 

The ETHREAD structure keeps track of all threads, regardless of their state. If the 
thread is waiting to run because it is ready, it will be tracked via the ready 
queue, which is a kernel data structure used to track threads while they await 
being scheduled. 

When the thread is running, the kernel's processor control block, the KPRCB 
(which is referenced from the PCR) identifies which thread is active at the time, 
as well as two other threads-the next thread to run and the idle thread. The 
idle thread runs whenever no other threads are ready to run in the system. In 
such a case, the idle thread performs some CPU-specific operations waiting for 
something to happen-frequently the idle thread will continue to run until a 
device interrupts because some I/O operation has completed. This will eventu
ally cause a thread to become ready to run. 

When the kernel switches from one thread to another thread (a process 
referred to as dispatching), it stores the current thread's context, such as the 
contents of various CPU registers. The kernel then loads the new context, such 
as those CPU registers, of the next thread to run. This is done by the routine 
KiSwapThread (). This is why KiSwapThread () is frequently seen on the stack of 
threads not currently running. Figure 5.1 shows, with the aid of the kernel 
debugger, a thread's stack ending with KiSwapThread (). 

Another routine that is called to perform dispatching is KiSwi tchToThread (). 
This function dispatches to a particular thread. This technique is important for 
optimiZing client/server communications via the LPC subsystem. Specifically, 
KiSwitchToThread() allows a thread to send a message and then switch control 
to the recipient of that message (see Figure 5.2). 

Because all threads call KiSwapThread () and KiSwitchToThread (), the return of 
the threads implies that they have been rescheduled. The thread continues 
running at the point where the dispatch-the call to KiSwapThread() or 
KiSwitchToThread()-occurred. Because the register state was restored, the OS 
creates the illusion that multiple threads were running in parallel by using this 
technique. 
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Figure 5.1. Kernel debugger display of blocked thread. 

Of course, because Windows NT supports symmetric multiprocessing as 
described in Chapter 1, "Windows NT Operating System Overview," it is actu
ally possible for multiple threads to be running in parallel-one on each CPU. 
However, the basic mechanism used in a multiprocessor (MP) system for dis
patching is quite similar to the mechanism used in a uniprocessor (UP) system. 
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Figure 5.2. Kernel debugger display of KiSwi tchToThread () call. 

Scheduling 

111 

Although dispatching is the process by which the as switches from one thread 
to another, scheduling is the process by which the as picks the next thread to 
run. For example, if you look at the kernel processor control block (KPRCS) for 
the Alpha platform as it appears in ntddk. h, you'll note that it includes the field 
NextThread which indicates the next thread to run: 

typedef struct _KPRCB 

I! 
II Major and minor version numbers of the PCR. 
I! 

I! 

USHORT MinorVersion; 
USHORT MajorVersion; 

II Start of the architecturally defined section of the PReB. This section 
II may be directly addressed by vendorlplatform specific HAL code and will 
II not change from version to version of NT. 
1/ 
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II 

struct _KTHREAD *CurrentThreadj 
struct _KTHREAD *NextThreadj 
struct _KTHREAD *IdleThreadj 
CCHAR Numberj 
CCHAR Reservedj 
USHORT BuildTypej 
KAFFINITY SetMemberj 
struct _RESTART_BLOCK *RestartBlockj 

II End of the architecturally defined section of the PRCB. This section 
II may be directly addressed by vendorlplatform specific HAL code and will 
II not change from version to version of NT. 
II 
} KPRCB, *PKPRCB, *RESTRICTED_POINTER PRKPRCBj 

This architecture allows the kernel to be disconnected from the actual schedul
ing algorithm, in keeping with the original design goal that the micro kernel 
avoid implementing operating system policy whenever possible. Thus, the exec
utive subsystems can implement scheduling policy without requiring any 
changes in the underlying dispatching scheme as implemented in the microker
nel. 

The code within the kernel that is responsible for dispatching control to a new 
thread always runs at or above IRQL DISPATCH_LEVEL. This is necessary because 
there are a number of intermediate states, such as when the registers for the 
threads are being restored, where it is not safe to allow for arbitrary pre
emption. Thus, we typically describe the dispatcher as running at IRQL 
DISPATCH_LEVEL. 

Other code within the system also runs at IRQL DISPATCH_LEVEL, and any such 
code is similarly protected against pre-emption. All such code is restricted from 
dispatching-and the results of performing a dispatching operation at IRQL 
DISPATCH_LEVEL are unpredictable. Under some circumstances, the system will 
crash; in other circumstances, performing a dispatching operation at IRQL 
DISPATCH_LEVEL may interfere with the correct operation of arbitrary user 
threads. 

Note 

The effect of disabling dispatching when running at IRQL DISPATCH_LEVEL 
can be seen in the following example. We recently heard from one unfor
tunate driver writer who wanted to understand why his call to 
KeWaitForSingleObj ect () returned STATUS_SUCCESS, even though the event 
was never signaled. After some discussion~ we learned that this call was 
being made from a Deferred Procedure Call (DPC) in the context of the 
system idle thread (DPCs are discussed in detail in Chapter 15~ 
'''Interrupt Service Routines and DPCs"). The call to 
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KeWaitForSingleObj ect () called the dispatch code. The dispatch code 
determined that there were no threads to run~ so it would explicitly 
choose to run the system idle thread. The dispatcher thus returned 
STATUS_SUCCESS, so ultimately KeWai tForSingleObj ect () also returned 
STATUS_SUCCESS, even though the event was not signaled. All we could say 
was "Yikes!" 

The balance of this section covers the following topics: 

• Thread Priorities. Although individual components within the executive 
are allowed to augment the basic scheduling policy, the kernel provides a 
default scheduling mechanism based on priorities. 

• Pre-emption. To ensure that system resources are shared between all 
threads on the system, the kernel restricts them to running for no longer 
than some small period of time. When that time expires, another thread 
is scheduled-a process referred to as pre-emption. 

• The Impact of Scheduling on Drivers. Scheduling requires that Kernel 
mode device drivers be constructed so that their shared data structures 
are properly protected. 

Thread Priorities 
A priority is a numeric value that indicates the relative importance of a particu
lar thread with respect to scheduling. As Figures 5.1 and 5.2 demonstrated, 
there are actually two priority fields: 

• Priority. The value for this field is the current numeric value that will 
actually be used for scheduling. 

• BasePriority. The value for this field indicates the minimum value for 
Priority. In other words, the as can adjust the Priority of a given thread 
arbitrarily, as long as it is equal to or greater than the BasePriori ty value 
for that thread. 

On Windows NT, numeric priority values range between 0 and 31, although 
the value 0 is reserved by the operating system. Thus, no threads, except spe
cially designated as threads, may use this priority. This range is divided into 
two categories: dynamic priorities and real-time priorities. 

Dynamic priorities are values between 1 and 15. They are referred to as 
"dynamic" because the operating system varies the priority of threads in this 
range. Thus, for example, it is not possible for a thread in this range to "steal" 
the CPU and cause starvation of other threads that are waiting to run. 

Real-time priorities are values between 16 and 31. They are referred to as 
"real-time" because the operating system does not vary the priority of threads 
in this range. Real-time range threads can continue to control the CPU, as long 
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as no other threads of equal or higher priority are scheduled. Thus, it is possi
ble for a real-time thread to "steal" the CPU and cause starvation of other 
threads that are waiting to run. Because of this, the right to use real-time prior
ities is restricted to those users or processes having the necessary privilege. 

Note 

The Priority value determines whether the thread is "real-time" or 
"dynamic/' not the BasePriority value. Indeed, it is quite possible for a 
thread to have a BasePriority value in the "dynamic" range and a 
Priority value in the "real-time" range. This is indicative thatl the 
Priori ty value has been modified by code outside the microkernel. 

Establishing Thread BasePriori ty Values 
For either dynamic or real-time priorities, the BasePriori ty is established when 
the thread is first created and may be programmatically adjusted via such calls 
as KeSetBasePriorityThread() (see Figure 5.3). Typically, the BasePriority value 
is established by the subsystem to which the thread is bound. For example, 
Win32 combines two values: The priority of the process (the value of which is 
not used as part of scheduling) and the relative priority of the thread, as speci
fied to the Win32 API call CreateThread (). Other subsystems presumably make 
similar decisions about their respective threads. 

LONG 
KeSetBasePriorityThread (IN PKTHREAD Thread 

IN LONG Increment); 

Thread: A pointer to a thread object for which the base priority is to be 
set. 

Increment: A priority increment to apply to this thread's base priority. 

Figure 5.3. KeSetBasePriorityThread () function prototype. 

Adjusting Priority Values for Dynamic Threads 
For dynamic threads, the Priority starts out equal to the BasePriority, but 
may be adjusted by the operating system. This is based upon the particular 
scheduling requirements of the various executive components-again, relieving 
the microkernel of the burden of implementing anything other than the basic 
scheduling algorithm. Examples of events that impact the current priority are 
as follows: 
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• I/O completion. When a device driver completes an I/O request, it indi
cates an optional priority boost given to the thread's current priority. (See 
Figure 13.2, IoCompleteRequest ().) 

• KeSetEvent (). When a device driver sets an event, it indicates (as shown 
in Figure 5.4) an optional priority boost given to the thread's current 
priority. 

• Quantum exhaustion. When a thread has run for its complete time slice, 
or quantum. In this case, the OS decreases the current priority back 
toward the base priority. Quantum exhaustion is discussed later in this 
chapter. 

• Not running. When a thread has not run for a period of time, the OS 
provides it with a priority boost to ensure it has a chance to run. This 
prevents CPU starvation. 

There are other reasons the as also adjusts the Priority value of a given 
thread, but the first two are those most directly applicable to Kernel mode 
device driver writers, and allow Kernel mode drivers to participate in the 
scheduling algorithm for threads. 

LONG 
KeSetEvent (IN PRKEVENT Event, 

IN KPRIORITY Increment, 
IN BOOLEAN Wait); 

Event: A pointer to an event object to be changed to signaled state. 

Increment: A priority increment to apply to any waiting threads. 

Wait: TRUE if the call to KeSetEvent is to be followed immediately by a 
call to Ke WaitXxx. 

Figure 5.4. KeSetEvent () function prototype. 

Adjusting Priority Values for Real-Time Threads 
For real-time threads, the OS never adjusts the Priority value, although it can 
be changed programmatically, such as with the call KeSetPriori tyThread () (see 
Figure 5.5). Because of this, and because the as will not boost threads into the 
real-time range, real-time threads must be used with caution because a thread 
with a real-time Priority value runs, as long as it does not wait, until some 
other thread of equal or greater Priority becomes ready to run. 
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KPRIORITY 
KeSetPriorityThread (IN PKTHREAD Thread, 

IN KPRIORITY Priority); 

Thread: A pointer to a thread object for which the current priority is to 
be set. 

Priority: A priority to set for this thread's current priority. 

Figure 5.5. KeSetPriorityThread () function prototype. 

Viewing Threads by Priority Level and State 
The OS maintains a sorted list of threads, based upon their priority level. One 
thread is identified by using the KPRCB, and this is the thread that will run next. 
In addition, other threads are maintained in the ready queue. Figure 5.6 shows 
a listing of the currently ready threads, plus the currently running thread infor
mation by using the kernel debugger. 

Figure 5.6. Kernel debugger display of running and ready threads. 
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Figure 5.7 shows the PCR describing the current state of this processor. From 
the PCR, you can see the value of CurrentThread (0x8058DBE0), NextThread (0x0), 
and IdleThread (0x80145A80)-these values were extracted from the KPRCB via 
the PCR. 

.

:;~:~I f8QDf568 
f8c6ff~0 
tDe6dOOO 
00000000 
00000000 
00000000 
?ffdQOOO 

SelfPQr; ffdffOOO 
Frob: ffdfU20 
!rql: 0000001a 

IRR; 00000000 
!DR: tfU2aeB 

Interruptl!cde; 00000000 
IDT; 80036400 
GDT: 80036000 
T85; 802e£000 

CurrentThread: 8059dheO 
aeKtThre"d; 00000000 
IdleThread; 80145a80 

Figure 5.7. Kernel debugger display of PCR Information. 

A NextTh read value of zero indicates that no thread has yet been selected to 
run, even though there are threads currently in the ready queue. The as will 
select a new thread to run once the currently running thread exhausts its quan
tum. (due to pre-emption-described in the next section) or blocks, waiting for 
some event. 

Pre-emption 
As was mentioned in Chapter 1, Windows NT is a pre-emptive, multithreaded, 
and multitasking operating system. It employs a traditional operating system 
technique to provide this multitasking capability by associating a quantum 
with each thread when it starts running. This quantum is the period of time 
that this particular thread will execute. 
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Periodically, a hardware clock generates an interrupt. Each time that interrupt 
occurs, the as updates its current time and determines what actions, if any, it 
should take. One such action is to decrease the remaining quantum for the cur
rently running thread. Once the current thread has been running for a time 
period equal to or greater than its quantum, the microkernel invokes the sched
uling algorithm to choose a new thread to run. 

The precise value of the quantum for a given thread depends upon the particu
lar version and type of Windows NT system. For example, on one Windows 
NT v4 system, the quantum for all threads on a server system was 120 milli
seconds. Threads running on the same hardware that used the Workstation 
version of Windows NT had a 60-millisecond quantum if they were the fore
ground thread, and only 20 milliseconds if they were a background thread. 

When a thread finishes its quantum and a new thread is scheduled to run, the 
thread has been pre-empted. A thread being pre-empted moves from the run
ning state to the ready state. This is different from when a thread dispatches
when a thread dispatches, it moves from the running state to the waiting state. 

The other primary cause of thread pre-emption in Windows NT is that the cur
rently running thread schedules a higher-priority thread to run. In this case, the 
currently running thread transitions from the running state to the ready state, 
and the higher-priority thread transitions from the ready state to the running 
state. 

When the as pre-empts one thread so that another thread may run, the cur
rently running thread transitions from the running state to the ready state. For 
real-time threads, the as does not adjust the Priority value. For dynamic 
threads, the as adjusts the Priority value by decreasing it by PriorityDecrement 

+ 1. Thus, even when PriorityDecrement is zero, the Priority field is decreased 
by one-but never less than the thread's BasePriority. Note that the value for 
the PriorityDecrement field was listed in Figures 5.1 and 5.2 as part of the stan
dard thread information. The DecrementCount field is used by the LPC subsys
tem when using the KiSwi tchToThread () call. 

Once the new Priority value has been computed for the thread, it is placed in 
the ready queue. Figure 5.8 shows this process for a thread "A" that has run to 
the end of its quantum. 

The Priority value for thread "A" is decreased by at least one (assuming 
Priority> BasePriority), and it is then inserted at the tail of the priority queue 
associated with its new priority. As depicted in Figure 5.8, thread "B" will be 
the next thread to run. 

Figure 5.9 shows the case for quantum exhaustion with real-time threads. 



• • • 

• • • 

Chapter 5: Dispatching and Scheduling 119 

"<,,]-------1~Thread B ___ ~'Th.,~~,.j 

Figure 5.8. Ready queue after dynamic priority thread "A" exhausts its time quantum. 

• • • 

• • • 

Thread B Thread C Thread D 

Figure 5.9. Ready queue after real-time priority thread "X" exhausts its time quantum. 
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In this case, the Priority value of the thread does not change. In the example, 
the next thread to run will be thread "Y." Because the Priority value of real
time threads does not decay, and because the Microkernel will not boost the 
Priority value of dynamic threads into the real-time range, such threads must 
be used with care because they can steal the CPU so that it is not available for 
lower-priority threads. 

The Impact of Scheduling on Drivers 
With respect to the impact of scheduling, writing a Kernel mode device driver 
is akin to writing a multithreaded Win32 application program. As noted in 
Chapter 3, the system address space is shared between all threads in the sys
tem. Because of this, Kernel mode device drivers must assume that their code 
will be utilized by many different system threads. Even in a uniprocessor envi
ronment, it may be possible for a thread running through the driver's code to 
be pre-empted. Thus, it is the responsibility of the driver writer to ensure cor
rect serialization of threads with respect to one another. 



Chapter 6 
Interrupt Request Levels 

and DPCs 

This chapter will review: 

• Understanding Interrupt Request Levels (IRQLs). Understanding IRQLs 
is key to understanding how Windows NT works. This section defines 
IRQLs and explains the basics of how they are used. 

• How IRQLs Are Used. This section delves into more detail on how 
Windows NT uses each of the individual IRQL levels, from IRQL 
PASSIVE_LEVEL through IRQL HIGH_LEVEL. 

• Deferred Procedure Calls (DPCs). This section describes DPCs in detail, 
including how DPCs are invoked by the Windows NT operating system, 
key DPC characteristics, and the details of how DPCs work on multi
processor systems. 

• The DpcForIsr. This section describes the specific instance of the DPC 
implemented by the 110 Manager for interrupt completion. 

Windows NT synchronizes Kernel mode activity by using a set of Interrupt 
Request Levels (IRQLs). This chapter describes in detail how IRQLs are used 
by Windows NT to achieve synchronization within the operating system. Once 
you thoroughly understand IRQLs, you will become familiar with the process
ing that occurs at each IRQL. This includes processing Deferred Procedure 
Calls (DPCs), which are used to perform callback processing of non-time
critical operations within the operating system. 
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Understanding Interrupt Request 
Levels (IRQLs) 
In Windows NT, higher-priority activities or events interrupt those activities 
or events running at lower priorities. Consider, for example, how the device 
Interrupt Service Routines (ISRs) are managed. If the serial port device's ISR 
(typically a relatively low-priority device in the system) is running, and a clock 
interrupt occurs on the same processor, the serial port device's ISR will stop 
executing and the clock's ISR will be started. When the clock's ISR is complet
ed, control is transferred back to the serial port device's ISR at the point where 
it was previously interrupted. 

The relative priority of an activity within the Windows NT operating system is 
defined by its Interrupt Request Level (IRQL). The current processor's IRQL 
indicates the relative priority of the activity currently taking place on that CPU. 
IRQL values are assigned to both software and hardware activities, with soft
ware IRQLs being lower than hardware IRQLs. If an event occurs on a given 
processor that has a higher IRQL than the processor's current IRQL, the 
higher-priority event will interrupt the lower-priority event. If an event with an 
IRQL lower than the processor's current IRQL occurs on that CPU, processing 
of that event waits until all other events at higher IRQLs have been processed. 
Thus, the processor's current IRQL functions as an interrupt mask, deferring 
(masking) those activities requested at the same or lower IRQLs than the 
processor's current IRQL. 

Because Windows NT executes on a broad range of system architectures, some 
of which differ widely in terms of their hardware priority support, NT uses 
a set of mnemonics to define IRQL values. Table 6.1 shows the standard 
Windows NT IRQL names, how they are used, and the numeric value assigned 
on x86 systems. 

Table 6.1. Windows NT IRQL names. 
Numeric value on x86 
Architecture Systems 

IRQL Mnemonic (for reference) Example of Usage 

HIGH_LEVEL 31 NMI, machine check 

POWER_LEVEL 30 Power failure handling 

SYNCH_LEVEL 30 Synchronization level 

IPI_LEVEL 29 Inter-processor interrupt 

CLOCK2_LEVEL 28 Clock handling 
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IRQL Mnemonic 

PROFILE_LEVEL 

DISPATCH_LEVEL 

APC_LEVEL 

PASSIVE_LEVEL 

Numeric value on x86 
Architecture Systems 
(for reference) 

27 
12-27 

2 

1 

o 

Example of Usage 

Profile timer 

Device IRQs on some x86 
systems 

Dispatcher and DPCs 

Kernel APC handling; Paging 

Ordinary thread execution in 
both Kernel and User modes 

The lower-level IRQLs (IRQLs PASSIVE_LEVEL through DISPATCH_LEVEL) are used 
internally for synchronization of the operating system software. These IRQLs 
are modeled as software interrupts. IRQLs above DISPATCH_LEVEL, whether they 
have a specific mnemonic or not, reflect hardware-interrupt priorities. Thus, 
these hardware IRQLs are often referred to as Device IRQLs (or DIRQLs). 

The specific values assigned to the IRQL mnemonics vary from system to sys
tem. The relationship between the software IRQLs, and the fact that the soft
ware IRQLs are lower priorities than the hardware IRQLs, remains constant, 
however. Thus, IRQL PASSIVE_LEVEL is always the lowest IRQL in the system, 
APC_LEVEL is always higher than PASSIVE_LEVEL, and DISPATCH_LEVEL is always 
higher than APC_LEVEL. All these IRQLs are always lower than the lowest 
DIRQL. 

Unlike the software IRQLs, the values assigned to and the relationship among 
the hardware IRQLs can change, depending on the system's hardware imple
mentation. For example, as Table 6.1 illustrates, on x86 architecture systems, 
IRQL PROFILE_LEVEL is lower than IRQL IPI_LEVEL, which is in turn lower than 
IRQL POWER_LEVEL. On MIPS systems, however, IRQL POWER_LEVEL and IRQL 

. IPI_LEVEL are the same value, and both are lower than IRQL PROFILE_LEVEL. 

IRQLs Are Not Scheduling Priorities 
A very important point to understand is that IRQLs are not the same as 
Windows NT process-scheduling priorities. In fact, all User mode thread execu
tion takes place at IRQL PASSIVE_LEVEL. Scheduling priorities are artifacts of 
the Windows NT Dispatcher, which uses them to determine which thread to 
next make active. 

IRQLs, on the other hand, are best thought of as interrupt priorities used by 
the operating system. An interrupt at any IRQL above PASSIVE_LEVEL will inter
rupt even the highest-priority User mode thread in the system. This is because, 
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as stated previously, all user threads run at IRQL PASSIVE_LEVEL when they are 
running in User mode. 

Determining the IRQL 
The current IRQL is tracked on a per-CPU basis. A Kernel mode routine can 
determine the IRQL at which it is running by calling the function 
KeGetCurrentIrql(), the prototype for which is shown in Figure 6.1. 

KIRQL 
KeGetCurrentIrql( }; 

Figure 6.1. KeGetCu rrentI rql () function prototype. 

KeGetCurrentIrql() returns the IRQL of the current CPU. 

Most device driver routines are called by the 110 Manager at an architecturally 
defined IRQL. That is, the driver writer knows the IRQL(s} at which a given 
function will be called. Kernel mode routines may change the IRQL at which 
they are executing by calling the functions KeRaiselrql() and KeLowerlrql(), the 
prototypes for which are shown in Figure 6.2 and Figure 6.3, respectively. 

VOID 
KeRaiseIrql(IN KIRQL Newlrql, 

OUT PKIRQL Oldlrql}; 

Newlrql: The value to which the current processor's IRQL is to be 
raised. 

Oldlrql: A pointer to a location into which is returned the IRQL at 
which the current processor was running, before the IRQL was raised 
to Newlrql. 

Figure 6.2. KeRaiselrql() function prototype. 

VOID 
KeLowerIrql(IN KIRQL Newlrql}; 

Newlrql:The value to which the current processor's IRQL is to be 
lowered. 

Figure 6.3. KeLowerlrql() function prototype. 
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Because IRQLs are a method of synchronization, most Kernel mode routines 
(specifically, device drivers) must never lower their IRQL beyond that at which 
they were called. Thus, drivers may call KeRaiseIrql() to raise to a higher 
IRQL, and then call KeLowerlrql() to return back to the original IRQL at 
which they were entered (from the I/O Manager, for example). However, a dri
ver must never call KeLowerIrqlO to lower its IRQL to a level less than that at 
which it was entered. Doing so can cause highly unpredictable system opera
tion, which will likely end with a system crash. 

How IRQLs Are Used 
IRQLs are the chief method used for prioritizing operating system activities 
within Windows NT. Raising the IRQL allows an operating system routine to 
both control its re-entrancy and to ensure that it can continue its work without 
pre-emption by certain other activities. The following sections describe how the 
most common IRQLs are used within Windows NT. 

IRQL PASSIVE_LEVEL 
IRQL PASSIVE_LEVEL is the ordinary IRQL of execution in the operating system, 
both in User mode and Kernel mode. A routine running at IRQL PASSIVE_LEVEL 

is subject to interruption and pre-emption by almost anything else happening 
in the system. Thus, threads running at IRQL PASSIVE_LEVEL are subject to pre
emption by the Dispatcher at the end of their quantum. Pre-emption was dis
cussed in Chapter 5, "Dispatching and Scheduling." 

Most executive-level routines in Windows NT (that is, Kernel mode routines 
other than the Microkernel and the HAL) strive to keep the IRQL as low as 
possible. In most cases, this results in most routines running at IRQL 
PASSIVE_LEVEL. This policy maximizes the opportunity for higher IRQL activi
ties to take place. 

IRQL APe_LEVEL 
IRQL APC_LEVEL is used by Kernel mode routines to control re-entrancy when 
processing Asynchronous Procedure Calls (APCs) in Kernel mode. APCs are 
operating system function callbacks that are required to take place within a 
particular process and thread context. 

To fully understand how IRQL APC_LEVEL is used, take a look at an example of 
how APCs are used within the kernel. When the 110 Manager ultimately com
pletes an 110 request for an application, it returns to the thread two longwords 
that make up the 110 status. The 110 status is returned in a location indicated 
by the application as part of its call to an 110 system service. In order for the 
110 Manager to return the 110 status to the application, it must execute in the 
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context of the application's process. That is, the application's address space 
must be mapped in the lower portion of kernel virtual address space (as dis
cussed in Chapter 3, "Virtual Memory"). 

Of course, I/O operations are typically asynchronous in Windows NT, and thus 
may complete in an arbitrary thread context. The problem is, therefore, how 
the I/O Manager will return to the context of the requesting thread, so that it 
can complete the I/O request and return its I/O status information. The I/O 
Manager does this by requesting a special kernel APC. Specifically, the APC 
that is requested is the Special Kernel APC for I/O Completion, which is dis
cussed in more detail in Chapter 10, "How I/O Requests Are Described," and 
in Chapter 14, "Dispatch Entry Points." The I/O Manager requests this APC 
and indicates the thread to which the APC is to be queued and a function to be 
called when the APC is granted. 

The APC is requested by generating a software interrupt at IRQL APe_LEVEL. 

If the thread that is the target of the APC is currently executing on the current 
processor, and the current IRQL is less than APe_LEVEL, the Special Kernel APC 
for I/O Completion will be serviced immediately. The IRQL is raised to IRQL 
APe_LEVEL and the Special Kernel APC for I/O Completion routine is called. 

If the target thread is currently executing on the current processor, but the 
processor's IRQL is IRQL APe_LEvEL or higher, the request for an APe_LEVEL 

interrupt is recorded and the APC is queued to the thread. The requested 
APe_LEVEL interrupt will be recognized when the IRQL drops to below 
APe_LEVEL. If at that time the currently executing thread is the target thread, the 
APC will be dequeued from the thread and the Special Kernel APC for I/O 
Completion will be processed. 

If the target thread is not executing on the current processor, the Microkernel 
queues the APC to the thread, clears the APe_LEVEL interrupt on the current 
processor, and returns. The Special Kernel APC for I/O Completion will be 
processed when the target thread is next scheduled and the system is running 
at, or about to return to, an IRQL less than IRQL APe_LEVEL. 

The point of this example is that when an APC is to be queued, it is queued to 
a particular thread. If that thread is running on the current processor, and the 
current processor's IRQL is below APe_LEVEL, the Special Kernel APC for I/O 
Completion is processed immediately. Thus, by manipulating the IRQL, the 
currently executing kernel routine can block the delivery of APCs. Further, 
because Kernel mode APC processing occurs at IRQL APe_LEvEL, the processing 
of Kernel mode APCs is serialized. 
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Note 

Although the entire foregoing discussion is correct, there are a number of 
subtleties that affect the delivery of Kernel mode APCs that we have 
glossed over. This is intentional. The point here is not to document in 
detail all of the undocumented behavior of Kernel mode APCs. Rather, it 
is our intention to provide a real example of how IRQL APe_LEVEL is 
used within the kernel. 

IRQL DISPATCH_LEVEL 
IRQL DISPATCH_LEVEL is used within Windows NT for two different activities: 

• Processing Deferred Procedure Calls (DPCs) 

• Running the Dispatcher (NT's scheduler) 

DPC processing is discussed later in this chapter, in a section of its own. 
Therefore, we limit our present discussion to the Dispatcher. The Dispatcher, as 
described in Chapter 5, is Windows NT's thread scheduler. It is responsible for 
implementing the NT scheduling algorithm, which chooses what thread is exe
cuted and implements pre-emption at quantum end. 

The Windows NT Dispatcher receives requests to perform a reschedule opera
tion at IRQL DISPATCH_LEVEL. When the operating system decides to change the 
thread that is running on the current processor, it can sometimes call the 
Dispatcher directly. However, when the system is running at an IRQL higher 
than DISPATCH_LEVEL, it requests a DISPATCH_LEVEL software interrupt. This 
results in the Dispatcher running on the current processor the next time IRQL 
DISPATCH_LEVEL is the highest-priority interrupt to be serviced by the system. 

Consider, for example, the case of a thread running in User mode. Because it is 
running in User mode, this thread is, of course, running at IRQL PASSIVE_LEVEL. 

While the thread is running, the clock is periodically interrupting to indicate 
the passage of time to the operating system. With each clock tick that passes, 
the clock interrupt service routine decrements the remaining quantum of the 
currently running thread. When the thread's remaining quantum is decrement
ed to zero, the clock interrupt service routine generates a DISPATCH_LEVEL inter
rupt to request the Dispatcher to run and choose the next thread to run. 
Because the clock's interrupt service routine runs at an IRQL that is higher 
than DISPATCH_LEVEL (it runs at IRQL CLOCK2_LEVEL on x86 processors), process
ing of the request for the Dispatcher is deferred. 

After generating the DISPATCH_LEVEL interrupt, the clock interrupt service rou
tine finishes whatever other work it has to do and returns to the Microkernel. 
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The Microkernel then recognizes the next highest-priority interrupt that is 
pending. Each interrupt is serviced in turn. When there are no interrupts to ser
vice above DISPATCH_LEVEL, the DISPATCH_LEVEL interrupt service routine is exe
cuted. This interrupt service routine processes the DPC list (discussed later), 
and invokes the Dispatcher to choose a new thread to run. 

When the Dispatcher is invoked, it notices that the current thread's quantum 
has been decremented to zero. The Dispatcher then implements Windows NT's 
scheduling algorithm to determine the next thread to be scheduled. If a new 
thread is chosen (the previously executing thread could be rescheduled), a con
text switch occurs. If there are no APCs pending for the newly selected thread, 
the thread's code will be executed when the system returns back to IRQL 
PASSIVE_LEVEL. 

Other Kernel Routines Running at IRQL DISPATCH_LEVEL 
IRQL DISPATCH_LEVEL is an important priority in Windows NT. Because the 
Dispatcher runs at IRQL DISPATCH_LEVEL, any routine that runs at IRQL 
DISPATCH_LEVEL or above is not subject to pre-emption. Thus, when a thread's 
quantum expires, if that thread is currently running at IRQL DISPATCH_LEVEL or 
above, it will continue to run until it attempts to drop the current processor's 
IRQL below DISPATCH_LEVEL. This should be obvious, because running at a 
given IRQL blocks the recognition of other events requested at that IRQL 
or at any lower IRQLs. 

What may be less obvious is that when code is executing at IRQL 
DISPATCH_LEVEL or above, it cannot wait for any Dispatcher Objects that are not 
already signaled. Thus, for example, code running at IRQL DISPATCH_LEVEL or 
above cannot wait for an event or mutex to be set. This is because the act of 
yielding the processor requires (at least conceptually) the Dispatcher to run. 
However, if a routine is running at or above DISPATCH_LEVEL, the DISPATCH_LEVEL 

interrupt will be masked off and therefore not immediately recognized. The 
result? A return directly back to the code that issued the wait operation! 

Even less obvious may be the fact that code running at IRQL DISPATCH_LEVEL or 
above may not take any page faults. This means that any such code must itself 
be non-paged, and must touch only data structures that are non-paged. This is 
essentially because code running at or above IRQL DISPATCH_LEVEL can't wait 
for a Dispatch Object to be signaled. Thus, even if a paging request was 
processed, the thread with the page fault couldn't be descheduled while the 
needed page was read in from disk! 

DIRQLs 
As mentioned previously, the IRQLs higher in priority than IRQL 
DISPATCH_LEVEL are called Device IRQLs (DIRQLs). These IRQLs are used for 
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processing hardware interrupts from devices. When a device of a given IRQL 
interrupts, the interrupt service routine for that device executes at the syn--:hro
nize IRQL that was specified when the device driver for that device connected 
to the interrupt. Connecting to interrupts and specifying a synchronize IRQL is 
described in detail in Chapter 13, "Driver Entry." 

A vitally important point about DIRQLs is that these IRQLs do not necessarily 
preserve the relative priorities that may be implied by a given bus's external 
interrupt signaling method. For example, the HAL has complete discretion in 
terms of how it maps IRQs (bus Interrupt ReQuest lines) to IRQLs. In some 
HALs, such as the standard x86 architecture multiprocessor HAL, the IRQ 
assigned to a device may have no relationship to the IRQL assigned to that 
device (beyond ensuring that the device is mapped to an IRQL within the range 
of Device IRQLs). 

Note 

Because this can be such an important point for device driver writers in 
certain systems, we'll say it again: The relationship between two IRQs 
assigned to two particular devices is not necessarily preserved when 
IRQLs are assigned to those devices. Whether a device with a more 
important IRQ is assigned a higher (that is, more important) IRQL is 
totally up to the HAL. Indeed, in most standard x86 multiprocessor 
HALs for systems that use APIC architectures, the relationship of IRQ 
to IRQL is not preserved. 

Suppose a system has two devices configured: Device A and Device B. 
Because the driver writer considers Device A more important than Device 
B, he assigned Device A to a more important (numerically lower) IRQ 
than device B. On some systems, such as DOS or Win9x, this implies 
that Device A can interrupt Device B. On Windows NT, the relationship 
between the interrupt priorities of these two devices is up to the HAL. 
Assigning them to particular IRQs indicates nothing beyond which line 
each device asserts when it wants to request an interrupt. 

IRQL HIGH_LEVEL 
IRQL HIGH_LEVEL is always defined as the highest IRQL on a Windows NT sys
tem. This IRQL is used for NMI (Non-Maskable Interrupt) and other inter
rupts of very high priority. In the exceedingly rare case in which a device driver 
needs to disable interrupts on a particular processor for a short period, the dri
ver may raise its IRQL to HIGH_LEVEL. However, a device driver raising to IRQL 
HIGH_LEVEL is considered a very drastic step, and it is almost never required in 
Windows NT. 
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l'flote 

Raising the IRQL to HIGH_LEVEL should be something that most drivers 
in Windows NT never do. Disabling interrupts is a commonly used 
method for achieving synchronization on other operating systems (such 
as DOS or Win9x). Howevet; on Windows NT, simply raising to IRQL 
HIGH_LEVEL for synchronization purposes will not work on multiprocessor 
systems. Kernel mode code performs serialization by using spin locks~ 
which are described in detail in Chapter 7~ "Multiprocessor Issues. " 

Deferred Procedure Calls (DPCs) 
In addition to its use for running the NT Dispatcher, IRQL DISPATCH_LEVEL is 
also used for processing Deferred Procedure Calls (DPCs). DPCs are callbacks 
to routines to be run at IRQL DISPATCH_LEVEL. DPCs are typically requested 
from higher IRQLs to allow more extended, non-time-critical, processing to 
take place. 

Let's look at a couple of examples of when DPCs are used. Windows NT 
device drivers perform very little processing within their interrupt service rou
tines. Instead, when a device interrupts (at DIRQL) and its driver determines 
that a significant amount of processing is required, the driver requests a DPC. 
The DPC request results in a specified driver function being called back at 
IRQL DISPATCH_LEVEL to perform the remainder of the required processing. By 
performing this processing at IRQL DISPATCH_LEVEL, the driver takes less time at 
DIRQL, and therefore decreases interrupt latency for all the other devices on 
the system. 

Another common use for DPCs is in timer routines. A driver may request to 
have a particular function be called to notify it that a certain period of time 
has elapsed (this is done using the KeSetTimer () function, which is described in 
Chapter 16, "Programmed I/O Data Transfers"). The clock interrupt service 
routine keeps track of passing time, and when the specified time period has 
elapsed, requests a DPC for the routine that the driver specified. Using DPCs 
for timer notification allows the clock interrupt service routine to return quick
ly, but still results in the specified timer routines being called without undue 
delay. 

DPC Objects 
A DPC is described by a DPC Object. The definition of a DPC Object (KDPC) 

appears in ntddk. h and is shown in Figure 6.4. 
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DPC Object (KDPC) 

Importance I Number I Type 

DpcListEntry 

DeferredRoutine 

DeferredContext 

SystemArgument1 

SystemArgument2 

Lock 

Figure 6.4. DPC Object. 

A DPC Object may be allocated by a driver from any nonpageable space (such 
as nonpaged pool). DPC objects are initialized by using the function 
KelnitializeDpc(), the prototype for which appears in Figure 6.5. 

VOID 
KeInitializeDpc(IN PKDPC Dpc~ 

IN PKDEFERRED_ROUTINE DeferredRoutine, 
IN PVOID DeferredContext); 

Dpc: Points to the DPC object to be initialized. 

DeferredRoutine: A pointer to the function to which the deferred call 
is to be made at IRQL DISPATCH_LEVEL. 

DeferredContext: A value to be passed to the DeferredRoutine as a 
parameter, along with a pointer to the DPC object and two additional 
parameters. 

Figure 6.5. KelnitializeDpc () function prototype. 
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A request to execute a particular DPC routine is made by placing the DPC 
Object that describes that DPC routine into the DPC Queue of a given CPU, 
and then (typically) requesting an IRQL DISPATCH_LEVEL software interrupt. 
There is one DPC Queue per processor. The CPU to which the DPC Object is 
queued is typically the current processor on which the request is issued. How 
the processor for a particular DPC is chosen is discussed later in this chapter, 
in the section "DPC Object Characteristics." A DPC object is queued by using 
the KeInsertOueueDpc () function, as shown in Figure 6.6. 

BOOLEAN 
KelnsertQueueDpc(IN PKDPC Dpc~ 

IN PYOID SystemArgumentl~ 
IN PYOID SystemArgument2); 

Dpc: Points to the DPC object to be queued. 

SystemArgumentl: A value to be passed to the DeferredRoutine as a 
parameter, along with a SystemArgument2, a pointer to the DPC 
object, and the DeferredContext argument specified when the DPC 
Object was initialized. 

SystemArgument2: A value to be passed to the DeferredRoutine as a 
parameter, along with SystemArgumentl, a pointer to the DPC object, 
and the DeferredContext argument specified when the DPC Object 
was initialized. 

Figure 6.6. KeInsertOueueDpc () function prototype. 

Invoking and Servicing DPCs 
Issuing a DISPATCH_LEVEL software interrupt results in the processor recognizing 
the interrupt when it becomes the highest IRQL event pending on that proces
sor. Thus, after calling KeInsertOueueDpc (), typically the next time the processor 
is ready to return to an IRQL below DISPATCH_LEVEL, it will return instead to 
IRQL DISPATCH_LEVEL and attempt to process the contents of the DPC Queue. 

As noted earlier in the chapte~ IRQL DISPATCH_LEVEL is used both for 
dispatching and for processing the DPC Queue. In NT V4~ when a 
DISPATCH_LEVEL interrupt is processed~ the entire DPC Queue is serviced 
first~ and then the Dispatcher is called to schedule the next thread to run. 
This is reasonable because the processing done within a DPC routine 
could change to alter the state of the thread scheduling database~ for 
example~ by making a previously waiting thread runnable. 
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The DPC Queue is serviced by the Microkernel. Each time the DPC Queue is 
serviced, all entries on the DPC Queue for the current processor are processed. 
One at a time, the Microkernel removes a DPC Object from the head of the 
DPC Queue, and calls the DeferredRoutine indicated within the DPC Object. 
The Microkernel passes as parameters to the DeferredRoutine a pointer to the 
DPC Object, plus the contents of the DeferredContext, SystemArgumentl, and 
SystemArgument2 field of the DPC Object. 

Because the DPC Queue is serviced at IRQL DISPATCH_LEVEL, DPC routines are 
called at IRQL DISPATCH_LEVEL. Because the DPC Queue is serviced whenever 
IRQL DISPATCH_LEVEL is the highest priority IRQL to be serviced (such as imme
diately after an interrupt service routine has run and before returning to the 
interrupted user thread), DPCs run in an arbitrary thread context. By arbitrary 
thread context, we mean that the DPC executes in a process and thread that 
may be entirely unrelated to the request that the DPC is processing. Execution 
context is described in more detail in Chapter 11, "The Layered Driver 
Model." 

The DPC routine completes its processing and returns by executing a return 

statement. On return from a DPC routine, the Microkernel attempts to remove 
another DPC Object from the DPC Queue and process it. When the DPC 
Queue is empty, DPC processing is complete. The Microkernel proceeds to call 
the Dispatcher. 

Multiple DPC Invocations 
A given DPC is described by a specific DPC Object. As a result, whenever 
KeInsertQueueDpc () is called and detects that the DPC Object passed to it is 
already on a DPC Queue, KeInsertQueueDpc() simply returns (taking no action). 
Thus, whenever a DPC Object is already on a DPC Queue, any subsequent 
requests to queue that same DPC Object that occur prior to the DPC Object 
being removed from the DPC Queue are ignored. This makes sense because the 
DPC Object can physically be linked into only one DPC Queue list at one time. 

The next obvious question might be: What happens when a request is made to 
queue a DPC Object, but the system is already executing the DPC routine indi
cated by that DPC Object (on the current or a different processor)? The answer 
to this question can be found by a careful reading of the previous section of 
this chapter. When the Microkernel services the DPC Queue, it removes the 
DPC Object at the head of the queue, and then calls the DPC routine indicated 
by the DPC Object. Thus, when the DPC routine is called, the DPC Object has 
been removed from the processor's DPC Queue. Therefore, when a request is 
made to queue a DPC Object and the system is executing within the DPC rou
tine specified in that DPC Object, the DPC is queued as normal. 
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DPes on Multiprocessor Systems 
Contrary to what has been stated in other publications, and as should be 
evident from the preceding discussions, a single DPC routine may be actively 
executing on multiple processors at the same time. There is absolutely no inter
locking performed by the Microkernel to prevent this. 

Consider the case of a device driver that has multiple requests outstanding on 
its device at a time. The driver's device interrupts on Processor 0, the driver's 
interrupt service routine executes, and subsequently requests a DPC to com
plete interrupt processing. This is the standard way that drivers work in 
Windows NT. When the interrupt service routine completes and the system is 
ready to return to the user thread that was interrupted, Processor O'S IRQL is 
lowered from the DIRQL at which the ISR ran to IRQL DISPATCH_LEVEL. As a 
result, the Microkernel services the DPC Queue, removing the driver's DPC 
Object and calling the indicated DPC routine. The driver's OPC routine is now 
executing on Processor 0. 

Just after the driver's D PC routine has been called, the device once again inter
rupts. This time, however, for reasons known only to the hardware, the inter
rupt is serviced on Processor 1. Again, the driver's interrupt service routine 
requests a OPC. And, again, when the interrupt service routine is complete, the 
system (Processor 1) is ready to return to the interrupted user thread. During 
this process, Processor 1's IRQL is lowered to IRQL DISPATCH_LEVEL, and the 
Microkernel services the DPC Queue. In so doing (and still running on 
Processor 1), it removes the driver's OPC Object and calls the driver's DPC 
routine. The driver's OPC routine is now executing on Processor 1. Assuming 
that the driver's OPC routine has not yet completed running on Processor 0, 
note that the same OPC routine is now running in parallel on both processors. 

Note 

This example highlights the importance of utilizing the proper set of mul
tiprocessor synchronization mechanisms in drivers. Specifically, spin locks 
must be used to serialize access to any data structures that must be 
accessed atomically within the driver's DPC if the driver's design is such 
that multiple DPCs can be in progress simultaneously. Spin locks are 
described in detail in Chapter 7, "Multiprocessor Issues." 

DPC Object Characteristics 
DPC Objects have two characteristics that influence the way they are 
processed. These characteristics are the Importance and Number fields, which can 
be seen in Figure 6.4 and are discussed in greater detail in the sections that fol
low. 
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DPe Importance 
Each DPC Object has an importance, which is stored in the DPC Object's 
Importance field. The values for importance are enumerated in ntddk. h as being 
HighImportance, MediumImportance, and LowImportance. The importance of a DPC 
Object affects where in the DPC Queue the DPC Object is placed when it is 
queued, and whether or not an IRQL DISPATCH_LEVEL interrupt is issued when 
the DPC Object is queued. KeIni tializeDpc () initializes DPC Objects with 
MediumImportance. The Importance of a DPC Object can be set by using the 
function KeSetImportanceDpc(), the prototype for which appears in Figure 6.7. 

VOID 
KeSetImportanceDpc(IN PKDPC Dpc, 

IN KDPC_IMPORTANCE Importance); 

Dpc: Points to the DPC object in which the Importance field is to be set. 

Importance: The importance value to set into the DPC Object. 

Figure 6.7. KeSetImportanceDpc () function prototype. 

DPC Objects with either MediumImportance or LowImportance are placed on the 
end of the DPC Queue when they are queued. DPC Objects with 
HighImportance are queued at the beginning of the DPC Queue. 

The importance of a DPC Object also affects whether or not a DISPATCH_LEVEL 

software interrupt is generated when the DPC Object is placed on the DPC 
Queue. When a HighImportance or MediumImportance DPC Object is queued to 
the current processor, a DISPATCH_LEVEL interrupt is always generated. The 
DISPATCH_LEVEL interrupt is generated for LowImportance DPCs or for DPCs that 
are specifically targeted to a processor other than the current processor, accord
ing to a complex (and undocumented) scheduling algorithm. 

J5Jote 

Most device drivers should never need to set the importance of their DPC 
Objects. In the rare case that the latency between requesting a DPC and 
that DPC running is excessive, and the driver writer is not able to solve 
this latency through other means, you can try setting the DPC Object to 
Highlmportance. Typically, however, device drivers on Windows NT do 
not alter their DPC importance from the default of Mediumlmportance. 

DPe Target Processor 
In addition to an importance, each DPC Object has a target processor. This 
target processor is stored in the Number field of the DPC Object. The target 
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processor indicates whether or not a DPC is restricted to execute on a given 
processor on the system, and, if so, on which processor. By default, 
KeInitializeDpc () does not specify a target processor. Consequently, by 
default, DPCs will run on the processor on which they were requested (that is, 
the DPC will be invoked on the processor on which KeInsertQueueDpc () was 
called). 

A DPC may be restricted to executing on a specific processor using the 
KeSetTargetProcessorDpc () function, the prototype for which is shown in 
Figure 6.8. 

VOID 
KeSetTargetProcessorDpc(IN PKDPC Dpc~ 

IN CCHAR Number); 

Dpc: Points to the DPC object for which the target processor is to be 
set. 

Number: The zero-based processor number on which the DPC is to be . 
executed. 

Figure 6.8. KeSetTargetProcessorDpc () function prototype. 

Note 

Like DPC importance~ a DPC's target processor is almost never set by a 
device driver. The default behavior; which is for the DPC to execute on 
the current processor; is the behavior that is almost always desired. 

When a specific target rrocessor is set for a DPC Object, that DPC Object will 
always be queued on the indicated processor's DPC Queue. Thus, for example, 
even though KeInsertQueueDpc() is called on Processor 0, a DPC Object with its 
target processor set to Processor 1 will be inserted on the D PC Queue for 
Processor 1. 

The DpcForIsr 
As discussed previously in this chapter, the most common use of DPCs is for 
Interrupt Service Routine (ISR) completion. To make it easy for device drivers 
to request DPCs for ISR completion from their ISRs, the 110 Manager defines a 
specific DPC that may be used for this purpose. This DPC is called the 
DpcForIsr. 
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The 110 Manager embeds a DPC Object in each Device Object that it creates. 
This embedded DPC Object is initialized by a device driver, typically when the 
driver is first loaded, by calling the function IoIni tializeDpcRequest () (see 
Figure 13.18 and the related description in Chapter 13). 
IoIni tializeDpcRequest () takes as input a pointer to the Device Object in 
which the DPC Object is embedded, a pointer to a driver function to call, and 
a context value to pass to that function. IoIni tializeDpcRequest (), in turn, calls 
KelnitializeDpc() to initialize the embedded DPC Object, passing the pointer 
to the driver's function as the DeferredRoutine parameter and the context 
value as the DeferredContext parameter. 

To request the DPC from its ISR, a driver simply calls IoRequestDpc () (see 
Figure 13.2 and surrounding text), passing a pointer to a Device Object. 
IoRequestDpc () in turn calls KelnsertQueueDpc () for the DPC Object embedded 
in the Device Object. 

Because all device drivers have Device Objects, and all drivers that utilize inter
rupts also utilize DPCs, using the 110 Manager's DpcForlsr mechanism is very 
convenient. In fact, most device drivers in Windows NT never directly call 
Kelni tializeDpc () or KelnsertQueueDpc (), but call IoInitializeDpcRequest () and 
IoRequestDpc () instead. 





Chapter 7 
Multiprocessor Issues 

This chapter will review: 

• The Problem with Shared Data. This section describes the problem with 
sharing data between two simultaneously executing entities. 

• Using Locks to Serialize Access to Shared Data. This section describes 
how locks are used to serialize, and thus protect, access to shared data. 

• Spin Locks. Spin locks are the tools provided by the NT operating system 
to allow Kernel mode programmers to protect shared data. This section 
describes the two types of spin locks available to driver writers on 
Windows NT. It also describes how these locks are implemented on both 
multiprocessor and uniprocessor systems. 

• Spin Lock Issues. This section discusses a few implementation issues with 
using spin locks efficiently. 

Because Windows NT supports multiprocessing, all Kernel mode code must be 
multiprocessor-safe. Multiprocessor safety involves maintaining cache coheren
cy among processors, virtual memory issues, and even interrupt handling. 
Fortunately, the Microkernel and the HAL handle most of these issues trans
parently to the driver writer. 

However, as discussed briefly in several prior chapters, driver writers must be 
careful to properly synchronize access to shared data structures. Of course, 
care in synchronizing access to shared data is required anytime a routine can 
be re-entered. This is the case, even on a uniprocessor implementation of 
Windows NT. However, adding multiprocessor support makes such synchro
nization even more vital. This chapter describes the problems inherent in shar
ing data structures in a multiprocessor environment. You will also become 
familiar with the tools that Windows NT makes available to driver writers to 
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help solve those problems. The chapter concludes the discussion of multi
processor issues with a description of enforcing atomic operation on uniproces
sor systems. 

The Problem with Shared Data 
Anytime a data structure is shared among two threads of processing, there is 
the potential for sharing problems if each thread does not have exclusive access 
to the data being shared for the time period during which the data is being 
modified. Consider, for example, two threads, each of which attempts to incre
ment a reference count on a data structure (see Figure 7.1). 

Thread 
#1 

Read 

Thread 
#2 

Figure 7.1. The need for synchronizing access to shared data structures. 

Thread #1 reads the reference count, increments it, and writes it back to its 
storage location in memory. Thread #2 does the same thing-it reads the refer
ence count, increments it, and writes it back to memory. A problem occurs 
either if Thread #1 is pre-empted between the time it reads the value and the 
time it writes it back, or if Thread #1 and Thread #2 execute in parallel on 
two different processors. The problem scenario is: . 

1. Thread #1, executing on Processor 0, reads the reference count from the 
data structure into a register. The value read for the reference count is 
zero. 

2. Thread #2, simultaneously executing on Processor 1, reads the reference 
count from the data structure into a register. The value read for the refer
ence count is also zero. 

3. Thread #1 increments the value. The reference count value that Thread 
#1 has in its internal register is now one. 
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4. Thread #2 increments the value. The reference count value that Thread 
#2 has internally is now one. 

s. Thread #1 writes the value back to storage. The reference count is one. 

6. Thread #2 writes the value back to storage. The reference count is one. 

This sequence of processing results in a reference count that is incorrect 
because, with two threads actively referencing a data structure, the reference 
count should obviously be two. 

Using Locks to Serialize Access to 
Shared Data 
The solution to the problem of simultaneous access to shared data is to use a 
lock to guard the reference count. Before the reference count can be modified, 
the lock must be acquired. After the reference count has been modified, the 
lock is released. Thus, using locks to properly implement the reference count 
example described in the last section, the sequence of operations is as follows: 

1. Thread #1, executing on Processor 0, attempts to acquire the lock that 
guards the reference count. The lock is successfully acquired. 

2. Thread #2, simultaneously executing on Processor 1, attempts to acquire 
the lock that guards the reference count. The lock cannot be acquired 
because it is already owned by Thread #1. Thread #2 therefore waits. 

3. Thread #1 reads the reference count from the data structure into a regis
ter. The value read for the reference count is zero. 

4. Thread #1 increments the value. The reference count value that Thread 
#1 has in its internal register is now one. 

s. Thread #1 writes the value back to storage. The reference count is one. 

6. Thread #1 releases the lock guarding the reference count. 

7. Thread #2 resumes executing. 

8. Thread #2 reads the reference count from the data structure into a regis
ter. The value read for the reference count is one. 

9. Thread #2 increments the value. The reference count value that Thread 
#2 has internally is now two. 

10. Thread #2 writes the value back to storage. The reference count is two. 

11. Thread #2 releases the lock guarding the reference count. 
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This sequence of processing results in a reference count that is correct. 

An appropriate Dispatcher Object, such as a mutex, can be used for synchro
nization to guard the shared data structure. This works fine, as long as all the 
threads that modify the data being shared execute only at IRQL PASSIVE_LEVEL 

or IRQL APC_LEVEL. Thus, using a mute x would be a perfect solution for syn
chronizing access to data that is shared between two user threads because User
mode threads always execute at IRQL PASSIVE_LEVEL. 

However, using a Dispatcher Object such as a mutex would not be possible if 
any thread that modifies the shared data is running at IRQL DISPATCH_LEVEL or 
above. This is due to the fact that running at IRQL DISPATCH_LEVEL or higher 
blocks recognition of the DISPTACH_LEVEL interrupt that is used to trigger the 
Dispatcher. Thus, it is impossible for a thread running at IRQL DISPATCH_LEVEL 

or above to yield control of the processor to wait, in case the Dispatcher 
Object is not available. This was discussed in detail in Chapter 6, "Interrupt 
Request Levels and DPCs." 

Spin Locks 
Fortunately, there is a simple solution to sharing data when one or more of the 
modifying threads may be running at IRQL DISPATCH_LEVEL or above. The solu
tion is to use a spin lock. 

Spin locks are standard Windows NT data structures, located in nonpageable 
memory. Every spin lock has an IRQL implicitly associated with it. That IRQL 
is at least IRQL DISPATCH_LEVEL, and it is the highest IRQL from which the lock 
may ever be acquired. Spin locks may be used only by routines running in 
Kernel mode because they imply a transition to an IRQL above PASSIVE_LEVEL. 

Figure 7.2 illustrates the process of acquiring a spin lock on a multiprocessor 
system. 

As Figure 7.2 illustrates, the reason spin locks have their name is that if the 
lock is not available, the thread that attempts to acquire the lock simply spins 
(or "busy waits" as it is often called), repeatedly trying to acquire the lock 
until the lock is free. Of course, because this spinning occurs at IRQL 
DISPATCH_LEVEL or above, the processor on which the lock is being acquired is 
not dispatchable. Thus, even when the currently executing thread's quantum 
expires, the thread will continue running. 

When an attempt is made to acquire a spin lock, the routine called to acquire 
the lock does not return to the caller until the lock has been acquired. In addi
tion, there is no interface available to driver writers to enable the specification 
of a timeout value. Finally, there is no interface available to check the state of a 
spin lock before attempting to acquire it. 
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Figure 7.2. Acquiring a spin lock on a multiprocessor system. 

There are two kinds of spin locks: Executive Spin Locks and Interrupt Spin 
Locks. Each of these spin locks is acquired in a different way, and is used for a 
slightly different purpose. The following sections describe each of these spin 
locks in detail. 

Executive Spin Locks 
Executive Spin Locks are the type of spin lock most frequently used in an NT 
device driver. They are defined in ntddk. h as data structure type KSPIN_LOCK. 

Executive Spin Locks operate at IRQL DISPATCH_LEVEL. Storage for an Executive 
Spin Lock is allocated by the lock's creator from nonpageable storage. For 
device drivers, this means that spin locks are typically allocated from non
paged pool. After space for the lock has been allocated, the lock is initialized 
by using the function KeInitializeSpinLock(), the prototype for which is shown 
in Figure 7.3. 
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VOID 
KelnitializeSpinLock(IN PKSPIN_LOCK SpinLock); 

SpinLock: A pointer to previously allocated storage for spin lock to be 
initialized. This storage must be non-pageable. 

Figure 7.3. KelnitializeSpinLock() function prototype. 

Once a spin lock has been initialized, it may be acquired. Executive Spin Locks 
may be acquired by callers running at less than or equal to IRQL 
DISPATCH_LEVEL by calling KeAcquireSpinLock (), the prototype for which is 
shown in Figure 7.4. 

VOID 
KeAcquireSpinLock(IN PKSPIN_LOCK SpinLock~ 

OUT PKIRQL Oldlrql); 

SpinLock: A pointer to previously initialized spin lock to be acquired. 

Oldlrql: A pointer to a location into which to return the IRQL at 
which the processor was executing prior to the spin lock being 
acquired. 

Figure 7.4. KeAcquireSpinLock () function prototype. 

When KeAcquireSpinLock () is called on a multiprocessor system, the steps 
shown earlier in Figure 7.2 are taken. The current IRQL at which the proces
sor is running is first saved. Next, KeAcquireSpinLock () raises the IRQL on the 
current processor to IRQL DISPATCH_LEVEL. The function next tries to acquire 
the indicated spin lock, repeatedly if necessary, until the attempt succeeds. 
When the indicated spin lock has been acquired, KeAcquireSpinLock() returns to 
its caller. 

Spin locks are mutual exclusion locks. This means that they may be acquired 
by only one requestor at a time. Spin locks are not recursively acquirable. An 
attempt to acquire a spin lock that is already held by the calling thread is a 
fatal error and will result in the (Free Build of the) system hanging. 
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Note 

Remember: After an Executive Spin Lock has been successfully acquired~ 
the caller is running at IRQL DISPATCH_LEVEL. Thus~ for the entire time 
that the spin lock is held~ only actions that are legal at IRQL 
DISPATCH_LEVEL (as discussed in the previous chapter) may be taken by 
the driver. 

Of course, if the caller knows that it is already running at IRQL 
DISPATCH_LEVEL, returning the current IRQL and then attempting to raise it to 
IRQL DISPATCH_LEVEL is a waste of time. This would be the case, for example, 
when a driver is running within a DPC routine. Therefore, NT provides an 
optimized version of KeAcquireSpinLock () for use when the caller is already run
ning at DISPATCH_LEVEL. This function is called KeAcquireSpinLockAtDpcLevel(). 

The prototype for this function is shown in Figure 7.5. 

VOID 
KeAcquireSpinLockAtDpcLevel(IN PKSPIN_LOCK SpinLock}; 

SpinLock: A pointer to previously initialized spin lock to be acquired. 

Figure 7.5. KeAcquireSpinLockAtDpcLevel() function prototype. 

KeAcquireSpinLockAtDpcLevel () works exactly the same way as 
KeAcquireSpinLock () except, as previously mentioned, it assumed the caller is 
running at IRQL DISPATCH_LEVEL. It therefore does not bother to raise the IRQL 
of the current processor to IRQL DISPATCH_LEVEL and, because the pre-call 
IRQL is assumed to be DISPATCH_LEVEL, it does not return the previous IRQL to 
the caller. 

It is very important to note that it is a very serious logic error to acquire an 
Executive Spin Lock when running at an IRQL greater than IRQL 
DISPATCH_LEVEL. This is because the IRQL of an Executive Spin Lock is IRQL 
DISPATCH_LEVEL, which is the highest IRQL at which an Executive Spin Lock 
can be acquired. Because Executive Spin Locks cannot be acquired from IRQLs 
above DISPATCH_LEVEL, Executive Spin Locks can never be acquired from within 
an interrupt service routine. Attempting to acquire an Executive Spin Lock 
from an IRQL greater than DISPATCH_LEVEL results in a crash with the error 
code IRQL_NOT_GREATER_OR_EQUAL. 
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Executive Spin Locks that were acquired with KeAcquireSpinLock () must be 
released using the function KeReleaseSpinLock ( ). Executive Spin Locks that 
were acquired with the function KeAcquireSpinLockAtDpcLevel() must be 
released using the function KeReleaseSpinLockFromDpcLevel ( ). The prototypes 
for these two functions are shown in Figure 7.6 and Figure 7.7, respectively. 

VOID 
KeReleaseSpinLock(IN PKSPIN_LOCK SpinLock, 

IN KIRQL Newlrql); 

SpinLock: A pointer to a spin lock to release. 

Newlrql: IRQL to which to return after the spin lock has been 
released. 

Figure 7.6. KeReleaseSpinLock () function prototype. 

VOID 
KeReleaseSpinLockFromDpcLevel(IN PKSPIN_LOCK SpinLock); 

SpinLock: A pointer to a spin lock to release. 

Figure 7.7. KeReleaseSpinLockFromDpcLevel() function prototype. 

Both of these functions release the indicated spin lock, and thus make it avail
able for acquisition by another requestor. The only difference between the two 
is that after releasing the spin lock, KeReleaseSpinLockFromDpcLevel () stays at 
IRQL DISPATCH_LEVEL, whereas after releasing the spin lock, 
KeReleaseSpinLock() returns to the IRQL indicated by Newlrql on the function 
call. 

Notice that the names of the routines used to acquire a spin lock from 
DISPATCH_LEVEL and to release it are not symmetrical. The function to 
acquire the spin lock is KeAcquireSpinLockAtDpcLevel (); the function to 
release a spin lock thereby acquired is KeReleaseSpinLockFromDpcLevel (). 

Also, notice that these calls refer to IRQL DISPATCH_LEVEL as "DPC 
level." This name is slang for the IRQL level at which DPCs run
DISPATCH_LEVEL. Officially, however, there is not now, and never has 
been since NT V3.1, an IRQL DPC_LEVEL defined in ntddk. h. 
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U sing Multiple Executive Spin Locks Simultaneously 
In complex drivers, it is often necessary to acquire a second Executive Spin 
Lock while already holding another Executive Spin Lock. Although the DDK 
clearly states that driver writers should "avoid using nested spin locks" (section 
16.2.5 of the Kernel-Mode Guide), this is often not possible. The problem the 
DDK is trying to help avoid is the problem of deadlocks. The process illustrat
ed in Table 7.1 shows one example of a deadlock. 

Table 7.1. A "deadly embrace" deadlock. 
Code Path on 
Processor #1 

Attempt to acquire 
spin lock FOO 
(successful) 

Do some work 

Acquire spin 
lock BAR ~Deadlock~ 

Code Path on 
Processor #2 

Attempt to acquire 
spin lock BAR 
(successful) 

Do some work 

Acquire spin 
lockFOO 

In Table 7.1, the thread executing on Processor #1 calls KeAcquireSpinLock () 

and successfully acquires the spin lock at location Faa. It does this presum
ably because it needs to modify the data located in a shared data area protect
ed by Faa. More or less simultaneously, the thread running on Processor #2 
calls KeAcquireSpinLock () to acquire the spin lock at location BAR. Again, this 
is assumed because this thread needs to modify the data protected by the BAR 
spin lock. Next, the thread running on Processor #1 decides that it (also) needs 
to modify the data protected by the BAR spin lock. Thus, it calls 
KeAcquireSpinLock ( ), specifying spin lock BAR. Because spin lock BAR is cur
rently held by the thread running on Processor #2, the thread on Processor #1 
spins, waiting for the lock to become available. Finally, the thread running on 
Processor #2 that is holding the BAR spin lock decides that it needs to modify 
some data protected by the Faa spin lock. The Processor #2 thread then calls 
KeAcquireSpinLock () in an attempt to acquire spin lock Faa. Of course, 
because the thread running on Processor #1 is holding the Faa spin lock, the 
thread running on Processor #2 spins, waiting for the Faa spin lock to 
become free. 

The result? The system is hopelessly deadlocked. This type of deadlock is 
called a "deadly embrace." When will this situation be resolved? Whenever the 
user presses the reset button on the system! 

This situation is all too common in the real world of developing device drivers. 
Consider the device driver that needs to remove a request from one queue 
while placing it on another. If each queue is guarded by a different spin lock 
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and the locks are not managed correctly, the deadlock problem cited earlier is a 
real possibility. 

Fortunately, such problems are very easy to avoid. Whenever multiple locks are 
used, a locking hierarchy must be defined. The locking hierarchy simply lists 
all the locks in the system that could possibly be held simultaneously, and pre
scribes the order in which these locks must be acquired whenever multiple 
locks are required. A locking hierarchy is typically created by listing the locks 
used in a system, from left to right, in order of frequency of their acquisition. 
This list becomes the hierarchy. Whenever multiple locks must be held simulta
neously, the locks are acquired in the order in which they appear in the list. 
This process works with any number of locks. 

For our Faa and BAR spin lock example, cited earlier, we could create a sim
ple locking hierarchy that lists: Faa, BAR. This hierarchy means that "any 
time we need to hold both Executive Spin Locks Faa and BAR, acquire Faa 
first and then acquire BAR." Note that if we need to acquire only BAR to 
modify the data that it protects, we do not necessarily need to also acquire 
Faa. We need to acquire both spin locks only when we need to simultaneous
ly modify the data that both spin locks protect. And, when we need to hold 
both spin locks, we must acquire them in the order specified in the hierarchy. 

The order in which the locks are released is not important (as long as the 
correct IRQL is preserved). You can't cause a deadlock by releasing spin 
locks in the wrong order. 

The example illustrated in Table 7.2 shows the FOO and BAR example from 
Table 7.1 corrected to properly implement the locking hierarchy previously 
mentioned. 

Table 7.2. Using two Executive Spin Locks-deadlock-free. 
Code Path on Processor #1 

Attempt to acquire spin 
lock FOO (successful) 
Do some work 

Acquire spin lock BAR 

Do more work 

Release spin lock BAR 

Release spin lock FOO 

Code Path on Processor #2 

Attempt to acquire spin lock 
BAR (successful) 
Do some work 

Release spin lock BAR 

Attempt to acquire spin lock FOO 
(spin, waiting) 

Succesfully acquire spin lock FOO 

Attempt to acquire spin lock BAR 

Do some other work 

Release spin lock BAR 
Release spin lock FOO 
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In Table 7.2, the thread on Processor #1 acquires spin lock Faa, and the 
thread on Processor #2 acquires spin lock BAR, just as it was before the lock
ing hierarchy was introduced. When the thread on Processor #1 needs to 
acquire BAR, it may simply acquire it because it has already acquired Faa, 
and the locking hierarchy states that if both Faa and BAR are required, BAR 
may not be acquired unless Faa is already held. Thus, when the thread on 
Processor #2 decides that it needs to hold both Faa and BAR simultaneously, 
it first releases BAR. This is because, according to our locking hierarchy, if 
both Faa and BAR are needed, Faa must be acquired before BAR can be 
acquired. With BAR released, the thread on Processor #2 is free to attempt to 
acquire Faa (which eventually succeeds after a short wait), and then acquire 
BAR. 

The result? Processing is deadlock-free. 

Note 

The only trick to using locking hierarchies is that the code that acquires 
multiple spin locks must be aware of which spin locks it requires~ and 
which spin locks have already been acquired. This isn~t impossible~ or 
even extraordinarily difficult. It just requires some advance planning and 
design on the part of the driver writer. 

Debugging Executive Spin Locks 
It is a little-known fact that the Checked Build of Windows NT (described in 
Chapter 18, "Building and Debugging") provides a few helpful assists for 
debugging problems with Executive Spin Locks-at least on x86 architecture 
systems. As with many internal features of Windows NT, these are not docu
mented, so their behavior is subject to change without notice. 

One helpful feature in the Checked Build checks to see whether a thread 
attempts to acquire a spin lock that it already owns. If this occurs, the Checked 
Build crashes with a STOP error. Kii386SpinOnSpinLock will be found a few 
locations down the kernel stack. The kernel virtual address of the spin lock is 
the STOP code. If a debugger is hooked up when the crash occurs, a message 
similar to the following is displayed: 

*** Fatal System Error: 0xF962F6A0 (0x00000000,0x00000000,0x00000000,0x00000000) 

The error code (0XF962F6A0 from the preceding message) is the kernel virtual 
address of the spin lock that has been attempted to be recursively acquired. 
The current thread is the thread that attempted to recursively acquire the lock. 

Similarly, the Checked Build includes a spin lock timeout. This timeout appears 
to be rather short (less than a second). Therefore, it is possible to encounter 
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this timeout on the rare occasion when you have a hotly contested spin lock on 
a system with many processors, when one processor has to wait a long time for 
the lock. If a debugger is not hooked up to the checked system when the time
out occurs, the system crashes with a KMODE_EXCEPTION_NOT_HANDLED error. If a 
debugger is attached when the timeout occurs, the message "Hard coded 
breakpoint hit" is displayed. At the top of the kernel stack will be the function 
SpinLockSpinningForTooLong. Simply resuming from the breakpoint (typing "G" 
in WinDbg) will result in additional attempts to acquire the spin lock, with 
corresponding time out. 

Interrupt Spin Locks 
Interrupt Spin Locks, which are sometimes referred to as ISR spin locks, are 
the rarer of the two types of spin locks on Windows NT. Interrupt Spin Locks 
operate at a DIRQL, specifically the SynchronizeIrql that is specified when a 
driver calls IoConnectInterrupt () (which is described in Chapter 13, "Driver 
Entry"-refer to Figure 13.7 and the surrounding text). Interrupt Spin Locks 
are always associated with a particular Interrupt Object, and are thus associat
ed with a particular interrupt service routine for a particular device. Interrupt 
Spin Locks are typically stored within an Interrupt Object, although they may 
be stored externally to the Interrupt Object and be pointed to by a field in the 
Interrupt Object (again, see Chapter 13 for a complete explanation). Interrupt 
Spin Locks are initialized by the 110 Manager when IoConnectInterrupt () is 
called. 

The Interrupt Spin Lock for a particular interrupt service routine is always 
acquired by the Microkernel prior to its calling the interrupt service routine. 
The Microkernel releases the Interrupt Spin Lock after the interrupt service 
routine returns. 

Note 

Note that because the appropriate Interrupt Spin Lock is acquired and 
released by the Microkernel around a driver's interrupt service routine, 
that interrupt service routine will always be running holding the spin 
lock. This means that the ISR connected to a given vector by a given 
Interrupt Object will never be running on two processors simultaneously! 
This is described in much greater detail in Chapters 13 and 15. 

Driver routines other than the interrupt service routine may acquire a particu
lar Interrupt Spin Lock by calling KeSynchronizeExecution ( ). This is the only 
way that an Interrupt Spin Lock can be acquired by a driver (aside from 
having the Microkernel automatically acquire the Interrupt Spin Lock prior to 
calling the driver's interrupt service routine). KeSynchronizeExecution () in par
ticular, and Interrupt Spin Locks in general, are described in more detail in 
Chapter 15, "Interrupt Service Routines and DPCs." 
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Spin Lock Implementations on Uniprocessor 
Systems 
The Windows NT operating system code is different on uniprocessor systems 
than it is on multiprocessor systems. For example, because there is only one 
processor on a uniprocessor system, spinning waiting for a spin lock to become 
free is not useful (because there is no other processor on which a thread could 
release the lock!). 

Using spin locks, however, results in execution of the "locked" code sequence 
at IRQL DISPATCH_LEVEL. This masks DISPATCH_LEVEL interrupts on the processor, 
and thus disabled preemption on that processor. Consider, for example, the 
case of inserting an entry into a doubly linked list. On a multiprocessor system, 
you might worry about a DPC routine executing on this processor or another 
processor attempting to. simultaneously update the same list. On a uniprocessor 
system, you would still need to be assured that the thread inserting the entry 
was not interrupted at IRQL DISPATCH_LEVEL or pre-empted (that is, desched
uled) midway through its insertion. If another thread were to come along 
and attempt to insert an entry into the same list, the list would obviously be 
corrupted. 

Thus, even on uniprocessor systems, drivers must protect atomic operations by 
using locks. Where code may be running at IRQLs greater than or equal to 
IRQL DISPATCH_LEVEL, such atomic operations must be protected with spin 
locks. 

Figure 7.8 illustrates NT's implementation of spin locks on uniprocessor systems. 

Return Current 
IRQL 

Raise IRQL to 
Spin Lock's 

IRQL 

Figure 7.8. Acquiring a spin lock on a uniprocessor system. 

KeAcquireSpinLock () is implemented on uniprocessor systems as, basically, a 
call to KeRaiseIrql(). Because raising the IRQL to IRQL DISPATCH_LEVEL or 
above results in dispatching being disabled, a thread that runs at one of these 
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IRQLs will continue to run until it lowers its IRQL below IRQL 
DISPATCH_LEVEL. Similarly, KeReleaseSpinLock () on uniprocessor systems simply 
results in the IRQL being lowered, as in a call to KeLowerIrql(). The atomic 
execution of the code between the calls to KeAcquireSpinLock () and 
KeReleaseSpinLock () is maintained. 

Spin Lock Issues 
There are a number of issues that must be considered when using spin locks. 
For example, the length of time a spin lock is held should be kept to the short
est amount of time reasonably necessary. After all, other processors could be 
spinning, waiting for the lock to become free. 

On the other hand, it is likely to be a worse error to repeatedly acquire and 
release the same spin lock. Acquiring and releasing a spin lock is almost sure to 
be expensive on any system because an interlocked memory operation is 
required. 

Note 

The DDK provides a recommended guideline of 25 microseconds as the 
maximum amount of time a spin lock should be held. This guideline is 
just plain silly. The 25-microsecond value is actually a holdover from the 
earliest days of NT. Consider the fact that the work that can be done in 
25 microseconds on a 700MHz Alpha processor is certainly much differ
ent from the work that can be done in 25 microseconds on a slow 486 
processor! Why would elapsed time matter? 

The only real guideline is to "be careful" to hold spin locks only as long 
as they are actually needed. True, this doesn't provide a handy numerical 
guideline to follow. But it is the only true guideline. Similarly, balance the 
cost of holding a spin lock with the cost of releasing and reacquiring the 
same lock. In most cases, it is our experience that it is better to hold a 
lock for a little longer than it is to drop and reacquire the lock repeatedly. 







Chapter 8 
I/O Architectures 

This chapter will review: 

• Programmed 110 Devices. This section discusses Programmed I/O devices 
that move data under program control between the device and host 
memory. 

• Busmaster DMA Devices. This section discusses Busmaster DMA devices 
that autonomously transfer data between themselves and host memory, 
using intelligence built into the device. 

• System DMA Devices. This section discusses System DMA devices that 
utilize a systemwide DMA controller, provided as part of the basic system 
logic set, to transfer data between themselves and host memory. 

Devices utilize different mechanisms to move data between the device and host 
memory. Windows NT places devices, and hence their drivers, into one of three 
major categories depending on their capabilities: 

This chapter describes each of these three types of devices and how drivers deal 
with them on a Windows NT system. 

Programmed 110 Devices 
Programmed I/O (PIO) devices are usually the simplest of the three main cate
gories of devices. The driver for a PIO device is responsible for moving the 
data between host memory and the device under program control. This charac
teristic is, in fact, what gives this category its name. A driver may access a PIO 
device via shared memory, memory space registers, or port I/O space registers. 
How the device is accessed depends on the device's design. Figure 8.1 illustrates 
the relationships between a device driver, a PIO device, and a user application's 
data buffer in host memory. 
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Figure 8.1. Accessing a shared memory buffer on a PIO device. 

DeviceBuffer: 
(for example 

4KB starting at 
OxBOOOO) 

The device shown in Figure 8.1 has a 4KB-memory buffer. This buffer is part 
of the hardware device itself, not something created by the driver. During ini
tialization, the driver maps the device's memory buffer into kernel virtual 
address space via calls to the Memory Manager. 

To transfer data to the device, the driver moves the data under program con
trol to a location within the device's memory buffer. The move would most 
likely be performed by using the HAL function WRITE_REGISTER_BUFFER_ULONG (). 

The destination address that the driver uses for the move would be the kernel 
virtual address that the driver previously mapped to the device. The code the 
driver might use to implement the write operation might be something like the 
following: 

WRITE_REGISTER_BUFFER_ULONG(deviceBuffer, userBufferVa, longwordsToCoPY)j 

In the preceding code, the variable deviceBuffer contains the kernel virtual 
address of the destination location in the device's memory buffer. The variable 
userBufferVa contains the kernel virtual address of the user buffer to copy. The 
variable longwordsToCopy contains the number of longwords to be copied to the 
device. 

This one statement copies the indicated number of longwords from the 
requestor's buffer to the device buffer. 

Figure 8.2 shows a similar arrangement to that shown in Figure 8.1, but in this 
example, the interface to the device is via a longword register located in memo
ry space. 
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Figure 8.2. Accessing a memory space register on a PIO device. 

DeviceBuffer: 
(for example, 1 

longword at 
OxB0020) 

During initialization, the driver will map the physical addresses that the 
device's memory space registers occupy into kernel virtual address space. The 
driver then accesses the device using the HAL routines READ_REGISTER_ULONG() 

and WRITE_REGISTER_ULONG (). 

One example of the configuration shown in Figure 8.2 would be when the reg
ister shown is the data input register for the device. When the driver for this 
device has a buffer of requestor data to provide to the device, it copies the con
tents of the requestor's buffer to the device's data input register, one longword 
at a time. Thus, given that: 

• deviceAddress contains the kernel virtual address of the device's register 

• longwordsToCopy contains the number of longwords to be moved to the 
device 

• userBufferVa is a PULONG containing the kernel virtual address of the user 
buffer to copy 

The driver might use the following code to move the data from the requestor's 
buffer to the device: 

While(longwordsToCopy··) { 
WRITE_REGISTER_ULONG(deviceAddress, *userBufferVa++)i 

The driver simply steps through the requestor's data buffer, one longword at a 
time, moving each longword of data to the device's data input register. The 
move is accomplished by using the appropriate HAL function. 
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Note 

A point that should not be missed in the preceding two examples is that 
the device is always accessed by using the HAL functions. Although 
sometimes it works~ it would not be correct to access the device by using 
RtlCopyMemory()~ memcpy()~ or even by simply dereferencing a pointer. 
Using the HAL routines ensures cross-platform compatibility. As dis
cussed in Chapter 2~ "Achieving Hardware Independence with the HAL~" 
you should not be too concerned that the HAL routines will introduce 
unnecessary overhead in these operations. The HAL strives to perform 
operations with as little overhead as possible~ consistent with cross
platform compatibility and data integrity. 

Figure 8.3 shows a final example of a PIO device. 

Figure 8.3. Accessing a port I/O space register on a PIO device. 

DevicePort: 
(for example, 1 

longword on PCI 
bus 0, port 

address Ox180) 

Figure 8.3 shows that the interface to the device in question is via a longword 
register in port I/O space. Because this register is not in memory space, the dri
ver does not need to (and, in fact, cannot) map the register into kernel virtual 
address space. Instead, to access the port I/O space register, the driver uses the 
HAL READ_PORT_ULONG() and WRITE_PORT_ULONG() functions. 

Given that: 

• deviceAddress contains the (translated) port I/O space address of the 
device's data input register 

• longwordsToCopy contains the number of longwords to be moved to the 
device 

• userBufferVa is a PULONG containing the kernel virtual address of the user 
buffer to copy 
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The code a driver might use to write to this device is the following: 

While(longwordsToCopy--) { 
WRITE_PORT_ULONG(deviceAddress, *userBufferVa++)j 

In this example, the data is moved by using the HAL function from the user's 
buffer to the device's port I/O space data input register. 

Although each of the three aforementioned devices is accessed in a slightly dif
ferent way, they all share one common attribute. To get data to the device or 
retrieve data from the device, the driver is required to "manually" move the 
data under program control. This data movement consumes CPU cycles. So, 
while the driver is moving data between a requestor's buffer and a peripheral, 
the CPU is not being used to do other useful work, like processing a user's 
spreadsheet. This is the primary disadvantage of a PIO device. 

Busmaster DMA Devices 
Busmaster DMA devices vary enormously in both architecture and complexity. 
The single characteristic that these devices have in common is that a Busmaster 
DMA device autonomously transfers data between itself and host memory. The 
device driver for a Busmaster DMA device gives the device the starting logical 
address of the data to be transferred, plus the length and direction of the trans
fer; and the device moves the data itself without help from the host CPU. 
Because the host CPU is not required to perform the transfer, Busmaster DMA 
devices leave the host CPU free to perform other useful work. 

~ate 

It is vital to understand that DMA transfers on NT are always performed 
by using logical addresses. Logical addresses were explained in Chapter 
2~ "Achieving Hardware Independence with the HAL/' and are discussed 
further in the section "Logical Addresses, jj which appears later in this 
chapter. 

Two Categories of Busmaster DMA Devices 
Windows NT categorizes Busmaster DMA devices as being one of two types. 
The specific functioning of a device's hardware determines into which category 
a given device falls. The two categories are Packet-Based DMA devices and 
Common-Buffer DMA devices. 

Packet-Based DMA devices are the most common type of Busmaster DMA 
device. Packet-Based DMA devices typically transfer data tolfrom different log
ical addresses for each transfer. Typically, these devices transfer data directly 
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from the data buffer within the requestor's process. Thus, for each transfer, the 
driver provides the device with the logical base address and length of the 
requestor's data buffer, as well as the direction of the transfer. The device inter
rupts when the transfer is completed. 

Common-Buffer DMA devices typically utilize the same buffer for all transfer 
operations. Many network interface cards are Common-Buffer DMA devices. 
In these devices, the driver and the device have a buffer in host memory in 
common. The buffer typically contains control structures, the format of which 
is defined by the device and understood by the driver. These control structures 
typically describe pending transfers to or from the device. The driver maps the 
common buffer into kernel virtual addresses space, and thus accesses it by 
using kernel virtual addresses. 

During initialization, the driver typically provides the device with the logical 
address of the base of the common buffer. When the driver has a transfer 
request for the device, it fills information about that request into the shared 
data structures in the common buffer. The device accesses these control struc
tures (via Busmaster DMA) as required to identify and process requests, and 
ultimately to return status to the driver. 

The two types of DMA devices, and the specifics of their support in Windows 
NT, are described in detail in Chapter 17, "DMA Data Transfers." 

Logical Addresses 
DMA operations from devices on a Windows NT system are performed to log
ical addresses. These logical addresses are managed by the HAL, and correlate 
to physical host memory addresses in a hardware-specific and HAL-specific 
manner. 

In the standard NT DMA model supported by the HAL, logical addresses are 
translated to host memory physical addresses by the HAL through the use of 
map registers. Figure 8.4 shows the HAL's standard view of how devices and 
host memory are connected. 

A device bus has a logical address space, managed by the HAL, which is differ
ent from the physical address space used for host memory. When processing a 
DMA transfer request, a device driver calls the 110 Manager and HAL (using 
the function IoMapTransfer ( ), described in detail in Chapter 17) to allocate a set 
of map registers, and program them appropriately to perform the DMA data 
transfer. Each map register can relocate up to one physical page of addresses 
(which is 4KB on current x86 systems, 8KB on current Alpha systems). 
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Figure 8.4. Logical DMA addresses mapped to physical addresses via the HAL's use of 
map registers. 

It is important to understand that map registers are part of the HAL's standard 
abstraction of system facilities. How the logical addresses used in DMA opera
tions are implemented, including how these logical addresses are translated to 
physical addresses and thus even how map registers themselves are implement
ed, is entirely a function of how a particular HAL is implemented on a given 
platform. 

Some HALs, such as those for certain Alpha platforms, implement logical-to
physical address translation using Translation Lookaside Buffers (TLBs), locat
ed in bus bridge logic provided by the platform hardware. In this case, the 
translation of logical addresses to physical addresses is performed by a combi
nation of hardware (the TLB) and software (the HAL). Thus, in this case, the 
HAL's conceptual map registers are implemented by using actual hardware 
(window) registers. 

Other HALs perform logical address to physical address translation entirely in 
software. For example, consider the problems inherent in ISA bus devices 
addressing the full extent of memory on x86 architecture systems. The ISA bus 
has only 24 address bits, which only allows devices on the bus to address 
memory locations up to 16MB. Consequently, memory above 16MB is not 
directly reachable via DMA from the ISA bus. To support DMA operations on 
the ISA bus, most common x86 HALs implement a software-only map register 
scheme, such as that shown in Figure 8.5. 
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Figure 8.5. Map registers implemented in software. 

HAL copies data 
between "map registers" 

and requestor's data buffer 

In Figure 8.5, the HAL implements map registers by allocating a physically 
contiguous set of 4KB buffers below 16MB. Each of these buffers serves as a 
map register. The HAL allocates these buffers once, at system startup time. 
When supporting a DMA transfer request for an ISA bus device driver, the 
HAL reserves a set of these buffers. The HAL provides the device driver with 
the physical address of a mapping register (that is, actually the physical address 
of one of the buffers in low memory) as the logical address to be used by the 
device for the DMA operation. The HAL is responsible for copying the data 
between the actual requestor's data buffer and the low memory map register. 

Note that, irrespective of how the HAL actually implements map registers, the 
conceptual abstraction of map registers exported by the HAL is always the 
same. In this model, DMA operations are always performed to logical address
es, never physical addresses. Further, in this model, the HAL is responsible for 
translating logical addresses to physical addresses through the use of map 
registers. 

Scatter/Gather 
Because Windows NT uses virtual memory, the physical memory pages that 
comprise a requestor's data buffer need not be contiguous in host memory, as 
illustrated in Figure 8.6. 

Simple DMA devices are capable of transferring data by using only a single 
logical base address and length pair. Therefore, drivers for such devices must 
reprogram the device for each logical buffer fragment in the requestor's buffer. 
This can require both extra overhead and latency. 
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Figure 8.6. Virtually contiguous data buffers need not be physically contiguous. 

More-sophisticated DMA devices support an optional feature called 
scatter/gather. This feature, also known as "DMA chaining," allows the device 
to be programmed with multiple pairs of base addresses and lengths simultane
ously. Thus, even a logically fragmented requestor's buffer can be described to 
the DMA device by its driver in one operation. 

To help reduce the overhead required to support devices that do not implement 
scatter/gather, the HAL implements a facility known as system scatter/gather. 
To implement this feature, the HAL utilizes its map registers to create a single, 
contiguous, logical address range that maps to the requestor's noncontiguous 
buffer in physical memory. This contiguous logical address range can then be 
addressed by a device that does not support scatter/gather with a single logical 
base address and length. 

As with other logical-to-physical address translation operations, how the HAL 
implements system scatter/gather is totally platform- and HAL-specific. On sys
tems utilizing actual hardware-translation schemes, HALs may implement sys
tem scatter/gather by using these translation registers, as shown in Figure 8.7. 

On systems in which map registers are implemented by the HAL in software, 
such as most x86 architecture systems, the HAL implements system 
scatter/gather exactly the same way it implements DMA on the ISA bus. Refer 
again to Figure 8.5. To support DMA devices that do not implement their own 
scatter/gather, the HAL allocates a block of physically contiguous "map regis
ters" from low memory, and provides the base address of this buffer to the 
device driver as the logical address of the requestor's buffer. For a read opera
tion (from the device) the HAL provides the logical base address to the device, 
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the device performs the DMA transfer, and then the HAL copies the data from 
the "map registers" to the actual requestor's data buffer. For a write operation 
(to the device), the HAL copies the contents of the requestor's data buffer to 
the physically contiguous "map registers" prior to the DMA transfer. 

Logical base address 
for DMA transfer 

Logical Address Space 

System Physical 
Address Space 

OxOOOOOO 

OxOO 

Figure 8.7. Using hardware map registers to support system scatter/gather. 

The HAL's system scatter/gather support mostly frees drivers for DMA devices 
from having to program their devices multiple times to perform a single DMA 
request. The cost of this support obviously varies. On systems where map reg
isters are implemented in hardware, little or no extra overhead results from the 
HAL's support of this feature. In fact, system scatter/gather on these systems is 
clearly "a win" in terms of saving CPU time and increasing transfer speed. 

On systems that do not have hardware map registers, the advantage is less 
clear. The overhead of recopying all the data for each user DMA transfer must 
be balanced against the overhead of the device driver having to reprogram the 
device multiple times to perform each requested DMA transfer. Whether this is 
a savings or not is likely to be rather system dependent. 

In most HALs~ a device driver can bypass the HAL's system 
scatter/gather support by setting the ScatterGather field of the 
DEVICE_DESCRIPTION data structure to TRUE prior to calling 
HalGetAdapter (). This eliminates the intermediate buffering performed 
by most x86 architecture HALs. 

This can be especially useful for taking performance measurements of 
your driver, both with and without the system scatter/gather facility 
enabled. However, be aware that this also eliminates the very helpful 
hardware-based scatter/gather support that may be provided in other 
HALs. 
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System DMA Devices 
System DMA (also called slave DMA) is a vestige of the original IBM PC 
design. In the original IBM PC, the 8088 CPU didn't have enough horsepower 
to do everything that needed to be done. Therefore, an Intel 8237-5 chip was 
configured on the motherboard as a systemwide DMA controller. This con
troller was originally used to offload memory-refresh operations and floppy 
disk transfers from the CPU. 

Later systems (such as the PC AT and PS/2) modified the original design slight
ly, moving memory refresh logic to dedicated hardware, and adding a second 
8237-compatible DMA controller (for a total of eight DMA channels). 
However, the concept of a systemwide DMA controller being available has 
stuck. And, even though nobody has even seen an Intel 8237-5 chip in years, 
the presence of eight general-purpose DMA controller channels lis now a funda
mental part of "industry standard" PC-compatible design. To this day, most 
floppy disk controllers still utilize System DMA for their device support. 

System DMA provides the capability for a device on the system to use a com
mon DMA controller to perform transfers between itself and host memory. 
This capability results in a device that is inexpensive (like a PIO device), but 
that can move data without using host CPU cycles (like Busmaster DMA). 

System DMA, as it is supported in Windows NT, is very much like Busmaster 
DMA, with the following exceptions: 

• System DMA devices share a DMA controller that is provided as part of 
the system, whereas Busmaster DMA devices have a dedicated DMA con
troller built into their devices. 

• System DMA devices do not support scatter/gather. 

• The HAL programs the System DMA controller; the device then utilizes 
the functionality of the System DMA controller to transfer data between 
itself and host memory. 

Though it's rare, System DMA can be supported on buses other than the 
ISA, EISA, and M CA bus. Some HALs could actually have the capability 
to support System DMA on the PCI bus! This feature could be used, for 
example, by a floppy disk controller that happens to be attached to the 
system's internal bus. We don't actually know whether any existing hard
ware actually uses such facilities in any real-world NT systems, however. 
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The System DMA controller provides eight channels for DMA support. NT 
allows devices to share these channels; however, only one device may use a 
given channel at a time. Like Busmaster DMA devices, System DMA devices 
may support Packet-Based System DMA or Common-Buffer System DMA. 
Common-Buffer System DMA is also referred to as "auto-init" System DMA. 

The HAL is responsible for supporting system DMA on Windows NT plat
forms. Drivers never interface directly to the system DMA components on 
Windows NT. Rather, the system DMA controllers are programmed via the 
HAL. As with Busmaster DMA, the HAL uses map registers to translate 
between logical DMA addresses and host memory addresses. 

Few new devices are developed today that utilize System DMA. Use of this 
facility is typically restricted to legacy floppy disk drives and some sound 
cards. 



Chapter 9 
The I/O Manager 

This chapter will review: 

• 110 Subsystem Design Characteristics: An Overview. This section intro
duces the I/O Subsystem and the attributes discussed in the remaining sec
tions of the chapter. 

• Key Design Characteristics Explained. The remaining sections in the 
chapter describe in more detail the major design characteristics of the NT 
I/O Subsystem of interest to driver writers. 

The Windows NT I/O Manager defines the structure of and provides interfaces 
to Windows NT Kernel mode drivers. This chapter describes the design charac
teristics of the I/O Manager, and hence the characteristics of the entire 
Windows NT I/O Subsystem. This chapter also describes the major data struc
tures used and managed by the I/O Manager. The chapter concludes with a 
preview of the Windows NT layered driver model and its use of Packet-Based 
110. 

1/0 Subsystem Design Characteristics: 
An Overview 
In this chapter, the Windows NT I/O Subsystem refers to all those components 
that together provide the capability to perform I/O to peripherals on the sys
tem. This includes the I/O Manager and all the Kernel mode device drivers in 
the system. 

Unlike the I/O subsystems in other operating systems, such as DOS or Win9x, 
the Windows NT I/O Subsystem was designed from the ground up to have a 
well-defined, yet extensible interface that accommodates modern intelligent 
peripherals. The Windows NT 110 Subsystem has more in common with the 
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VMS and UNIX operating systems than with Windows or DOS. In fact, driver 
writers familiar with VMS or many of the common UNIX variants will find 
much about the NT 110 Subsystem that is familiar. 

The following list provides the major design characteristics of the Windows 
NT 110 Subsystem. The Windows NT 110 Subsystem is: 

• Consistent and highly structured 

• Portable across processor architectures 

• Configurable 

• As frequently pre-emptible and interruptible as possible 

• Multiprocessor safe on MP systems 

• Object-based 

• Asynchronous 

• Packet-driven 

• Layered 

The remaining sections of the chapter briefly discuss each of these NT 110 
Subsytem characteristics. 

The NT 110 Subsystem Is Consistent 
and Highly Structured 
The NT 110 Manager provides the interface between device drivers and the 
remainder of the Windows NT operating system. This interface is provided by 
the 110 system services, which provide basic 110 support to the operating sys
tem through the implementation of its functions: NtCreateFile ( ), NtReadFile ( ), 

NtWri teFile (), NtDeviceloControlFile (), and a few other less well-known native 
APIs. Figure 9.1 illustrates the relationship between the 110 Manager, the 110 
system services, device drivers, and user applications. 

The 110 system services provide a device-independent interface between appli
cations that issue requests and the rest of the 110 subsystem. This interface 
does not change, regardless of the mode (Kernel or User) from which the 
request is being initiated, the environment subsystem (such as Win32, POSIX, 
or none) under which the requestor is running, or the device to which the 
requestor is communicating. 
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Viewed from another perspective, the 110 system services and 110 Manager 
always provide Kernel mode drivers with a standard description of 110 
requests. This standardization frees Kernel mode drivers from having to deal 
with differences among requestors. 

Client-Side 
DLL 

I/O System 
Service Request 

FAT 
File 

System 
Driver 

Disk 
Class 
Driver 

Hardware Abstraction Layer 

Processor, Adapter, and Controller Hardware 

User Mode 

Kernel Mode 

File 
System 
Driver 

Intermediate 
Drivers 

Device 
Drivers 

Figure 9.1. The relationship of the I/O Subsystem to user applications. 

A final aspect of the 110 Subsystem being consistent and highly structured is 
that the 110 Manager clearly defines the basic ways in which drivers interact, 
both with the 110 Manager and with other drivers. The 110 Manager defines 
a detailed and specific set of interfaces to be implemented by device drivers. 
These interfaces are well-documented. Further, the 110 subsystem itself pro
vides a broad set of support routines which may be called by device drivers 
to facilitate certain operations. 
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The NT 110 Subsystem Is Portable 
Across Platforms 
Like the rest of the Windows NT operating system, the 110 subsystem is inde
pendent from the CPU architecture upon which it is running. This platform 
independence is provided through use of functions provided by the 
Microkernel and the HAL. 

Device drivers are written in C, like the 110 Manager itself, and may be moved 
among processor architectures simply by being recompiled. Because the HAL 
provides Kernel mode drivers with a standard abstraction of the underlying 
processor facilities, drivers need not be concerned with the architectural 
specifics of the processor on which they are running. 

While it is true that Kernel mode drivers are typically written in C, it is 
also possible to write Kernel mode drivers in C++ using one of the com
mercially available packages of class libraries. However, the native inter
faces between the I/O Manager and Kernel mode drivers are C Language 
interfaces. Additionally complicating the picture for c++ developers is 
that the operating system does not supply a c++ runtime library, and 
Microsoft does not officially support development of Kernel mode drivers 
in C++. So, while developing Kernel mode drivers for Windows NT in 
C++ is certainly possible, it is presently a bit more complicated than sim
ply using C. 

The Windows NT operating system uses a set of NT-specific data types that 
are specifically designed to be independent of processor architecture. These 
data types are defined in the include file ntdef. h. This include file is automati
cally referenced when ntddk. h, the master include file used for writing drivers, 
is included. To help ensure cross-platform compatibility, driver writers should 
use the NT-specific data types instead of the more traditional C language data 
types. Table 9.1 provides some examples of common C language data types 
and their NT equivalents: 

Table 9.1. Standard C language/NT data type equivalents. 

Standard C Data Type 

char 

short 

long 

int64 
(64-bit signed integer) 

NT Data Type 

CHAR 

SHORT 

LONG 

LONG LONG 



Standard C Data Type 

unsigned __ int64 
(64-bit unsigned integer) 

unsigned char 

unsigned short 

unsigned long 

unsigned char * 

unsigned short * 

unsigned long * 

unsigned char 
(used for logical value) 

Note 
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NT Data Type 

ULONGLONG 

UCHAR 

USHORT 

ULONG 

PUCHAR 

PUSHORT 

PULONG 

LOGICAL or BOOLEAN 

It can be useful, and almost interesting, to read ntdef . h. In addition to 
the typedefs previously referred to, it includes definitions for several utili
ty macros that might be useful to driver writers. Check it out! 

You might find it hard to believe that efficient device drivers can be written for 
Windows NT with absolutely no CPU architecture dependencies. However, the 
HAL and Microkernel do such a good job of isolating drivers from processor 
differences that platform-independent drivers are indeed the rule. One of the 
authors has written a number of drivers that were initially designed, tested, 
and released on x86 architecture platforms, which were later ported to Alpha 
architecture platforms without any more trouble than recompilation. The key 
to such success is assiduously following the standard NT driver model, and 
carefully using the HAL's abstractions. 

The NT 110 Subsystem Is Configurable 
All Kernel mode drivers in Windows NT are dynamically loaded. Typically, 
drivers are started at system startup time. However, drivers may also be loaded 
after the system has started either programmatically or manually on command. 

When a driver is loaded, it determines information about the configuration of 
the devices it intends to support, and of the system when necessary, dynamical
ly. The driver does this by calling functions provided by the I/O Manager, by 
querying the Registry, by interacting with the HAL, or through a combination 
of these means. In any case, drivers use the NT-prescribed methods for deter
mining device configuration to dynamically determine the configuration of 
their devices. Properly written device drivers in Windows NT do not contain 
machine- or processor architecture-dependent values. 
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The NT 110 Subsystem Is Pre-emptible 
and Interruptible 
As mentioned in Chapter 6, "Interrupt Request Levels and DPCs," executive 
level components such as the I/O Subsystem strive to keep their IRQLs as low 
as possible during as much of their processing as possible. Keeping the IRQL 
low allows more important, more time-critical, processing to take place rapidly 
in the system. 

This I/O Manager helps keep drivers pre-emptible and interruptible as much as 
possible by calling most driver entry points at the lowest possible IRQL. Most 
of the time, this results in driver entry points being called at IRQL 
PASSIVE_LEVEL. 

The NT 1/0 Subsystem Is 
Multiprocessor Safe 
Like the rest of the Windows NT operating system, the I/O Manager is 
designed to run on multiprocessor systems. Given the wide availability of mul
tiprocessor systems, most Kernel mode drivers should be designed, implement
ed, and tested with multiprocessor support. 

Proper support for multiprocessor systems entails appropriately guarding 
shared data that can be simultaneously accessed on multiple CPUs. When this 
data is accessed only at IRQL PASSIVE_LEVEL, a variety of techniques may be 
used to appropriately serialize access. When shared data may be accessed at 
IRQL DISPATCH_LEVEL or above, spin locks must be used. Spin locks were dis
cussed in detail in Chapter 7, "Multiprocessor Issues." 

Even if a driver does not support execution on multiprocessor systems, it 
should be multiprocessor safe. This means that if a driver is restricted to run
ning on only uniprocessor systems, at startup it should check the number of 
CPUs on the system and refuse to load if there is more than one CPU. This 
number of processors in the system may be determined by querying the loca
tion KeNumberProcessors, as shown in the following example: 

Example 9.1. Checking the number of CPUs in a system. 

II 
II Ensure that we've been loaded on a system with only 
II one active CPU 
II 
if (*KeNumberProcessors > 1) 

II 
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II Refuse to load by returning any error code. 
II STATUS_DEVICE_CONFIGURATION_ERROR is as good as 
II any other. 
/! 
return(STATUS_DEVICE_CONFIGURATION_ERROR)j 

The NT 1/0 Subsystem Is 
Object-Based 
The Windows NT I/O Subsystem is based on a collection of "objects." These 
objects are defined by the Microkernel, HAL, and the I/O Manager and 
exported to other Kernel mode modules, including device drivers. The I/O 
Manager and device drivers use these objects, as well as other data structures, 
in performing their functions. 

As mentioned in Chapter 1, the NT operating system in general, and the I/O 
Subsystem in particular, is object-based, but not necessarily object-oriented. 
The majority of the operating system is written in C, with a few processor spe
cific portions of the Microkernel and HAL written in Assembly. Thus, the defi
nitions for the objects that the operating system uses are simply typedefs for 
structures defined in C. These definitions are typically exported for use by dri
vers in the file ntddk. h. 

Objects are created by drivers by calling defined operating system functions. 
When an object is created by calling a Kernel mode function, a pointer to that 
object is usually returned. Most objects used within the I/O Subsystem are con
sidered partially opaque. This means that a subset of fields within the object 
can be directly manipulated by kernel modules, including drivers. Examples of 
partially opaque objects include Device Objects and Driver Objects, both of 
which are discussed in more detail later. A few objects used within the I/O 
Subsystem (such as DPC Objects or Interrupt Objects) are considered fully 
opaque. This means that Kernel mode modules (other than the creating mod
ule) must call functions that understand and manipulate the fields within the 
object. 

How does a driver know which objects are partially opaque and which are 
fully opaque? And how does a driver know which fields in a partially opaque 
object can be modified? The answers are simple: Where there are routines pro
vided to manipulate the fields within an object, those routines should always 
be used. Also, the Kernel Mode Drivers Reference Manual in the DDK docu
ments the accessible fields in a variety of objects. If the field isn't documented, 
Microsoft would like you to consider the field opaque. 
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Note 

When a field isn't documented in the DDK, access to that field (to retrieve 
or change its value) is at a driver writer's own risk. In general, the policy 
that we follow is that when a field is accessible through a defined func
tion, we always use that function. If the field isn't documented and its 
content is not accessible via an NT-provided function, examining the con
tents of a field will rarely prove to be a problem. But, be careful! Future 
changes to the operating system may result in the contents of undocument
ed fields being changed. Caveat driver writer! 

The remainder of this section describes some of the objects that are most com
monly used within the I/O subsystem. For each, we give the object's name, 
describe its purpose, and briefly describe its structure. Figure 9.2 shows the 
relationship among several of these objects. 

Figure 9.2. Structures commonly used within the I/O subsystem. 

File Objects 
The File Object is defined by the NT structure FILE_OBJECT, which is illus
trated in Figure 9.3. 

A File Object represents a single open instance of a file, device, directory, sock
et, named pipe, mail slot, or other similar entity. A single shared file that is 
opened multiple times will have one File Object for each time the file is 
opened. File Objects are created by the NtCreateFile () system service, or its 
Win32 equivalent, CreateFile (). When a File Object is created, a handle to that 
File Object is returned to the creator. This handle identifies the file for subse
quent operations, such as read, write, or device control operations. 
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CSHORTSize CSHORTType 

PDEVICE_OBJECT Device Object 

PVPBVpb 

PVOID FsContext 

PVOID FsContext2 

PSECTION_OBJECT _POINTERS SectionObjectPointer 

PVOID PrivateCacheMap 

NTSTATUS FinalStatus 

PFILE_OBJECT RelatedFileObject 

BOOLEAN BOOLEAN BOOLEAN BOOLEAN 
WriteAccess ReadAccess DeletePending LockOperation 

BOOLEAN BOOLEAN BOOLEAN BOOLEAN 
Shared Delete SharedWrite SharedRead DeleteAccess 

ULONG Flags 

UNICODE_STRING FileName 

LARGE_INTEGER CurrentByteOffset 

ULONG Waiters 

ULONG Busy 

PVOID LastLock 

KEVENT Lock 

KEVENT Event 

PIO_COMPLETION_CONTEXT Completion Context 

Figure 9.3. The File Object. 

While the I/O Manager creates a File Object for each open instance of a file or 
device, manipulation of File Objects is typically restricted to the I/O Manager 
and file systems. Device drivers rarely refer to the File Objects created for open 
instances of their devices. 

Driver Objects 
The Driver Object describes where a driver is loaded in physical memory, the 
driver's size, and its main entry points. The format of a Driver Object is 
defined by the NT structure DRIVER_OBJECT. Figure 9.4 illustrates the fields in 
a Driver Object. 
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CSHORTSize I CSHORTType 

PDEVICE_OBJECT Device Object 

ULONG Flags 

PVOID DriverStart 

ULONG DriverSize 

PVOID DriverSection 

PDRIVER_EXTENSION 
DriverExtension 

UNICODE_STRING DriverName 

PUNICODE_STRING 
Hardware Database 

PFAST _IO_DISPATCH 
FastloDispatch 

PDRIVER_INITIALIZE Driverlnit 

PDRIVER_STARTIO DriverStartlo 

PDRIVER_UNLOAD Driver Unload 

PDRIVER_DISPATCH 
MajorFunction[IRP _MJ_MAXIMUM_ FUNCTION 

+1] 

Figure 9.4. The Driver Object. 

The Driver Object is created by the 110 Manager. The 110 Manager provides a 
pointer to a driver's Driver Object when a driver is first loaded. As part of 
standard initialization processing, during its Driver Entry routine, a driver fills 
into its Driver Object pointers to the remainder of its entry points. For exam
ple, a driver fills into its Driver Object a pointer to a routine for each 110 
major function code that the driver supports. This is described in detail in 
Chapter 13, "Driver Entry." 

Device Objects 
The Device Object represents a physical or logical device that can be the target 
of an 110 operation. The format of the Device Object is defined by the NT 
structure DEVICE_OBJECT (see Figure 9.5). 

Unlike many operating systems, in Windows NT, Device Objects are created 
directly by drivers themselves. While a Device Object may be created at any 
time by a driver by calling IoCreateDevice (), Device Objects are normally creat
ed when a driver is first loaded. When a driver creates a Device Object, it also 
specifies the size of the Device Extension to be created. The Device Extension is 
a per-device area that is private to the device driver. The driver can use this 
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area to store anything it wants, including device statistics, queues of requests, 
or other such data. The Device Extension is typically the main global data 
storage area. Both the Device Object and Device Extension are created in 
non-paged pool. 

CSHORTSize I CSHORTType 

LONG Reference Count 

PDRIVER_OBJECT DriverObject 

PDEVICE_OBJECT NextDevice 

PDEVICE_OBJECT AttachedDevice 

PIRP Currentlrp 

PIO_ TIMER Timer 

ULONG Flags 

ULONG Characteristics 

PVPBVpb 

PVOID DeviceExtension 

DEVICE_TYPE Device Type 

I I I CCHAR 
StackSize 

LIST_ENTRY ListEntry 

ULONG AlignmentRequirement 

KDEVICE_QUEUE DeviceQueue 

KDPC Dpc 

ULONG ActiveThreadCount 

PSECURITY _DESCRIPTOR SecurityDescriptor 

KEVENT DeviceLock 

USHORT Spare1 1 USHORT SectorSize 

PDEVOBJ_EXTENSION DeviceObjectExtension 

PVOID Reserved 

Figure 9.5. The Device Object. 
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When a Device Object is created, it is optionally assigned a name by the driver. 
This name will be the native Windows NT name for the device. Device Objects 
that are not named are typically used for internal operating by a device driver, 
and are not directly accessible outside the driver that created them. Named 
Device Objects are accessible via the NtCreateFile () system service. Device 
names in Windows NT do not necessarily follow any specific convention. 
Thus, it is possible to name a device almost anything. 

The capability for a driver to create its own Device Objects gives the driver 
complete control over what a Device Object represents. For example, if a par
ticular hardware device has one controller that controls multiple units, it is up 
to the driver to decide whether the Device Objects it creates corresponds to the 
controller, to the units on the controller, or even both. This allows the driver 
writer to create Device Objects that make sense to the users that will be access
ing them, as opposed to having Device Objects necessarily following the 
specifics of the hardware that may be installed. 

Using Device Objects 
An example of how Device Objects can be used might be in order. Assume 
you're writing a driver for a computer controlled 32-bit PCI-based toaster 
oven. Each toaster oven PCI card controls a single toaster oven, which is prob
ably located on a kitchen countertop. The toaster oven driver implements a 
whole range of 110 operations to the toaster, including operations to set toast 
brownness, begin toasting, and pop up the toast. The driver also implements a 
set of oven commands, such as set temperature, preheat, set the timer, and the 
like. 

The driver writer's first inclination is probably to create a single Device Object 
named, appropriately enough, "Toaster Oven," that will handle all these 
requests. The user of the toaster oven device would then issue a Win32 
CreateFile () function call to open the toaster oven device (thus directing the 
110 Manager to create a File Object that refers to the toaster oven device), and 
use the returned file handle to perform the subsequent toasting or oven opera
tions. 

However, this device design has a few problems. Users not intimately familiar 
with the toaster oven device may not know which 110 operations specifically 
refer to toasting and which correspond strictly to oven operation. This could 
lead to users issuing sequences of operations such as: set toast brownness, pre
heat, begin toasting, and then set timer. This is a mixture of both toaster and 
oven commands. In this situation, the driver would have to keep track of the 
commands issued to determine the mode (toaster or oven) of the device. 
Request validation in this scheme becomes more complicated than it should be. 
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An alternative approach would be for the driver to create two Device Objects 
instead of one. One Device Object would be the "Toaster" device; the other 
would be the "Oven" device. When a user wants to perform toasting opera
tions they (naturally) open the Toaster device. When they want to perform 
oven operations, they would open the Oven device. Thus, the user's intent-to 
toast or to use the oven-is clear from the start. 

Each 110 operation that can be issued by a user is associated with either the 
toaster or the oven device. This makes the user's interface to the device easier 
to understand. In addition, using two separate Device Objects makes the dri
ver's job of request validation much simpler. Once the user has opened the 
Toaster device, any oven requests (such as preheat or set timer) sent by the user 
to that device will be rejected by the driver. Similarly, toaster requests sent to 
the oven device would be rejected. Of course, the driver would need to keep 
some global state to ensure that when the toaster device was opened, the oven 
device on the same toaster oven could not be opened simultaneously. 

Deciding precisely what a Device Object represents when designing a new 
device driver is a major architectural decision. Choosing correctly can result in 
a driver that is both easier to use and easier to develop. 

Note 

While a toaster oven might seem a silly example, there are many real 
devices that follow the toaster oven model. We designed a driver for a 
bus-based industrial controller that precisely fits this model. The device 
could be accessed in either of two modes. By making each of these access 
modes a separate Device Object, documentation and use of the device 
were significantly simplified. Even more importantly, the job of designing, 
writing, and testing the driver was made much easier. 

Interrupt Objects 
The Interrupt Object is created by the I/O Manager, and is used to connect a 
driver's interrupt service routine to a given interrupt vector. The structure, 
KINTERRUPT, is one of the few fully opaque structures used in the 110 Subsystem. 
Its internal format does not appear in ntddk. h. 

Adapter Objects 
The Adapter Object is used by all DMA drivers. It contains a description of the 
DMA device, and represents a set of shared resources. These resources may be 
a DMA channel or a set of DMA map registers. Use of this object facilitates 
resource sharing in DMA operations. 
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The format of the Adapter Object is defined by the HAL. A pointer to an 
Adapter Object is returned to a driver as a result of calling HalGetAdapter(). 

The Adapter Object is fully opaque. Its structure is defined as ADAPTER_OBJECT. 

Its internal format does not appear in ntddk. h. 

The NT 1/0 Subsystem Is 
Asynchronous 
One of the main design characteristics of the Windows NT I/O Subsystem is 
that it uses an asynchronous I/O model. Figure 9.6 illustrates the comparison 
between synchronous and asynchronous I/O approaches. 

Synchronous Request 
Model 

Execution I/O 
Begins Request 

Thread ~ I 

Execution I 

I/O I 

Processing I .. 
Processing 

Begins 

Execution 
Resumes 

T ,t 

I ; .. 
Processing 
Completes 

Asynchronous Request 
Model 

Execution I/O I/O Status 
Begins Request Returned 

Thread T •• ___ T ____ T----j.~ 
Execution 

I/O l. , 
Processing I I .. .. 

Processing Processing 
Begins Completes 

Figure 9.6. Synchronous versus asynchronous I/O. 

In an inherently synchronous I/O model, a thread that initiates an I/O opera
tion is blocked while the I/O operation is processed. Thus, the request to per
form a read or write operation, for example, does not return until that read 
or write operation has completed. This is the model used, for example, in 
MS-DOS. 

In contrast, the Windows NT I/O Subsystem supports asynchronous I/O. In 
Windows NT, I/O requests are described by an I/O Request Packet, a pointer 
to which is passed to a driver for processing. At any point during processing, a 
driver may indicate that the I/O operation is pending. This allows the request
ing thread to (optionally) continue execution, thus overlapping its I/O opera
tion with performing useful work. 

Of course, threads in Windows NT may optionally request to wait until a 
requested I/O operation completes before resuming processing. This is, in fact, 
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the default for VO operations initiated via the Win32 environment subsystem. 
In this case, the thread waits on a Dispatcher Object until the request com
pletes. The Dispatcher then finds another ready thread to run. 

Having an inherently asynchronous VO subsystem results in some interesting 
attributes. For one, a single thread may have multiple VO operations in 
progress simultaneously. These requests may be to different devices, or to the 
same device. Another interesting attribute is that when multiple VO operations 
are outstanding simultaneously, the requests will not necessarily complete in 
the order in which they were initiated. 

To make these concepts clear, take a look at a simple example. Consider a 
thread that issues four simultaneous VO requests to the same file, with the fol
lowing parameters: 

• Read 1000 bytes starting at byte offset 80000 in the file 

• Read 1000 bytes starting at byte offset 81000 in the file 

• Read 1000 bytes starting at byte offset 0 in the file 

• Read 1000 bytes starting at byte offset 15000 in the file 

The Windows NT VO Subsystem does not make any guarantees about the 
order in which these I/O requests will complete. Such ordering is totally file 
system dependent, and will likely be the result of the prior activity that has 
taken place on the file. 

The NT I/O Subsystem Is 
Packet-Driven 
As previously mentioned, the Windows NT VO Subsystem is a packet-driven 
system. In this system, each VO operation can be described by a single VO 
Request Packet (IRP). The VO Manager builds the IRP as a result of a request 
to one of the VO system services. Once the IRP has been built and initialized, a 
pointer to the IRP, and a pointer the Device Object to which the IRP was 
directed, is passed to the appropriate driver. IRPs are discussed in greater detail 
in Chapter 10, "How VO Requests Are Described." 

The NT I/O Subsystem Is Layered 
The Windows NT VO Subsystem uses a layered driver model. In this model, 
layers or "stacks" of drivers work together to process VO requests. This layer
ing is shown in Figure 9.1, which appears earlier in the chapter. 
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At the highest level of the stack are File Systems Drivers. These drivers are typ
ically responsible for name space management and mapping file-relative I/O 
requests to volume-relative requests. Below File System Drivers sit Intermediate 
Drivers. These drivers perform value-added or class-based processing for 
devices. At the bottom of the stack are device drivers. These drivers actually 
interact with and manage hardware. 

It is important to understand that not every I/O request on Windows NT goes 
through every layer in the stack. If a requestor issues an I/O operation to the 
toaster device that was previously discussed, this request would be serviced 
directly by the toaster device driver. 

The concept of layering in the Windows NT I/O Subsystem is described in 
detail in Chapter 11, "The Layered Driver Model." 



Chapter 10 
How I/O Requests Are 

Described 

This chapter will review: 

• IRP Structure. This section describes the format of an 110 Request Packet 
(IRP) and its I/O Stack locations. 

• Data Buffers. Driver writers have a choice of how the 110 Manager 
describes a requestor's data buffers. This section describes the three 
choices. 

• I/O Function Codes. 110 functions in Windows NT are described by 
using major and minor function codes. These codes are reviewed in 
this section. 

• Predefined and Custom I/O Control Functions. When an 110 operation 
requests a particular device's specific function, an 110 Control (or 
IOCTL) function is used. This section describes both the IOCTL func
tions that are predefined by NT for standard devices and how a driver 
writer defines custom 110 Control functions for a device. 

• I/O Request Parameters. This section describes how function-specific 
parameters are retrieved from the current 110 Stack location in the 110 
Request Packet. 

Windows NT describes I/O requests by using a packet-based architecture. In 
this approach, each 110 request to be performed can be described by using a 
single I/O Request Packet (IRP). 

When an 110 system service is issued (such as a request to create or read from 
a file), the 110 Manager services that request by building an IRP describing the 
request, and then passes a pointer to that IRP to a device driver to begin pro
cessing the request. 
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IRP Structure 
An IRP contains all the information necessary to fully describe an I/O request 
to the I/O Manager and device drivers. The IRP is a standard NT structure of 
type "IRP." Figure 10.1 shows the structure of an IRP. 

I/O Stack Location 

IRP: 
Fixed 
Part 

I/O Request Packet 

MdlAddress 

Flags 

Associatedlrp.Masterlrp 

Associatedl rp. System Buffer 

loStatus 

RequestorMode 

Cancel 

Cancellrql 

Cancel Routine 

UserBuffer 

Tail.Overlay.Thread 

Tail. Overlay. ListEntry 

I/O Stack Location 3 

I/O Stack Location 2 

I/O Stack Location 1 

Figure 10.1. Format of the IRP and I/O Stack locations. 

As you can see in Figure 10.1, each I/O Request Packet may be thought of as 
having two parts: A "fixed" part and an I/O Stack. The fixed part of the IRP 
contains information about the request that either does not vary from driver to 
driver, or it does not need to be preserved when the IRP is passed from one 
driver to another. The I/O Stack contains a set of I/O Stack locations, each of 
which holds information specific to each driver that may handle the request. 
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Although the size of a particular IRP is fixed when it is created by the 110 
Manager, every IRP that the 110 Manager creates is not the same size. When 
the 110 Manager allocates an IRP, it allocates space for the fixed portion of the 
IRP plus enough space to contain at least as many 110 Stack locations as there 
are drivers in the driver stack that will process this request. Thus, if an 110 
request were issued to write to a file on a floppy disk, the stack of two drivers 
that would process this request would probably be similar to the stack shown 
in Figure 10.2. 

1/0 
System Services 

File 
System 
Driver 

1/0 
Manager Floppy 

Disk 
Driver 

Hardware Abstraction Layer 

Processor, Adapter, and Controller Hardware 

Figure 10.2. Example of a stack of two drivers. 

The 110 Manager creates an IRP to describe this request that has at least two 
110 Stack locations: one location for the File System Driver and a second loca
tion for the Floppy Disk device Driver. 

We said the IRP in the example has at least two 110 Stack locations. To avoid 
allocating every IRP from NT's nonpaged pool, the 110 Manager maintains a 
pair of lookaside lists that hold preallocated IRPs. 

Note 

In NT V4, one of these lookaside lists holds IRPs that have a single I/O 
Stack location. The other lookaside list holds IRPs that have three I/O 
stack locations. 

The 110 Manager always attempts to use an IRP from these lists, if possible. 
Thus, for an 110 request directed to a stack of two drivers, the 110 Manager 
attempts to use one of the IRPs from the lookaside list of IRPs that has three 
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110 Stack locations. If there are no IRPs available on the appropriate lookaside 
list, or if an IRP with more than three 110 Stack locations is needed, the 110 
Manager simply allocates the IRP from the nonpaged pool. 

Note 

Because IRPs are always allocated from nonpaged system space~ they are 
never paged out. As a result~ drivers may reference IRPs at any IRQL 
(without being concerned about causing a potentially fatal page fault at 
elevated IRQL). 

Fields in the IRP's Fixed Part 
As stated previously, the fixed part of the IRP contains information that either 
does not vary from driver to driver or does not need to be preserved when the 
IRP is passed from one driver to another. Particularly interesting or useful 
fields in the fixed portion of the IRP include the following: 

• MdlAddress. This field points to a Memory Descriptor List (MDL) that 
describes the requestor's buffer when a driver uses Direct 110. 

• Flags. As the name implies, this field contains flags that (typically) 
describe the 110 request. For example, if the IRP _PAGING_IO flag is set in 
this field, this indicates that the read or write operation described by the 
IRP is a paging request. Similarly, the IRP _NOCACHE bit indicates that the 
request is to be processed without intermediate buffering. The Flags field 
is typically of interest only to file systems. 

• Associatedlrp.Masterlrp. In an associated IRP, this is a pointer to the 
master IRP with which this request is associated. This field is likely to be 
of interest only to the highest-layer drivers, such as file systems drivers. 

• Associatedlrp.SystemBuffer. This location points to an intermediate buffer 
in nonpaged pool space for the requestor's data, when a driver uses 
buffered 110. 

• IoStatus. This is the 110 Status Block that contains the ultimate comple
tion status of the IRP. When an IRP is completed, the IoStatus. Status 

field is set by the completing driver to the completion status of the 110 
operation, and the IoStatus. Information field is set by the driver to any 
additional information to be passed back to the requestor in the second 
longword of the 110 Status Block. Typically, the IoStatus. Information 

field contains the number of bytes actually read or written by a transfer 
request. 

• RequestorMode. This field indicates the mode (Kernel mode or User mode) 
from which the request was initiated. 
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• Cancel, CancelIrql, and CancelRoutine. These fields are used if the IRP 
needs to be cancelled while in progress. Cancel is a BOOLEAN which, 
when set to TRUE by the 110 Manager, indicates that the cancellation of 
the 110 operation described by this IRP has been requested. CancelRoutine 

is a pointer to a function set by a driver using the appropriate NT
supplied routine, to a function for the 110 Manager to call to have the 
driver cancel the IRP. Because the CancelRoutine field is called at IRQL 
DISPATCH_LEVEL, CancelIrql is the IRQL to which the driver should return. 
Chapter 14 contains more details on cancel processing. 

• UserBuffer. This field contains the requestor's virtual address of the data 
buffer associated with the 110 request, if any. 

• Tail.Overlay.DeviceQueueEntry. This field is used by the 110 Manager for 
queuing IRPs for drivers that use System Queuing. System Queuing is 
descri bed in detail in Chapter 14. 

• Tail.Overlay. Thread. This field is a pointer to the requestor's thread con
trol block {ETHREAD}. 

• TailOverlay. ListEntry. While a driver owns an IRP, it can use this field 
for linking one IRP to the next. 

Fields in the IRP 110 Stack Location 
Each 110 Stack location in an IRP contains information for a specific driver 
about the 110 request. The I/O Stack location is defined by the structure 
IO_STACK_LOCATION. To locate the current 110 Stack location within a given IRP, 
a driver calls the function IoGetCurrentIrpStackLocation (). A pointer to the IRP 
is the sole parameter on the call. The return value is a pointer to the current 
110 Stack location. 

When the 110 Manager initially allocates the IRP and initializes its fixed por
tion, it also initializes the first 110 Stack location in the IRP. The information in 
this location corresponds with information to be passed to the first driver in 
the stack of drivers that will process this request. Fields in the 110 Stack loca
tion include the following: 

• MajorFunction. This field indicates the major 110 function code associated 
with this request. This indicates the type of 110 operation to be per
formed. 

• MinorFunction. This field indicates the minor 110 function code associated 
with the request. When used, this modifies the major function code. 
Minor functions are used almost exclusively by network transport drivers 
and file systems, and are ignored by most device drivers. 
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• Flags. This field indicates the processing flags specific to the I/O function 
being performed. This field is of interest mainly to file systems drivers. 

• Control. This field represents a set of flags that are set and read by the 
I/O Manager, indicating how it needs to handle a particular IRP. For 
example, the SL_PENDING bit is set in this field (by a driver's call to the 
function IoMarklrpPending ()) to indicate to the I/O Manager how comple
tion is to be handled. Similarly, the flags SL_INVOKE_ON_CANCEL, 

SL_INVOKE_ON_ERROR, and SL_INVOKE_ON_SUCCESS indicate when the driver's 
I/O Completion Routine should be invoked for this IRP. 

• Parameters. This field comprises several submembers, each of which is 
specific to the particular I/O major function being performed. 

• DeviceObject. This field contains a pointer to the device object that is the 
target of an I/O request. 

• FileObject. This field is a pointer to the file object associated with an I/O 
request. 

After the fixed portion of the IRP and the first I/O Stack location in the IRP 
are appropriately initialized, the I/O Manager calls the top driver in the driver 
stack at its dispatch entry point that corresponds to the major function code 
for the request. Thus, if the I/O Manager has just built an IRP to describe a 
read request, he will call the first driver in the driver stack at its read dispatch 
entry point. The I/O Manager passes the following as parameters: a pointer to 
the IRP that was just built and a pointer to the device object that corresponds 
to the device on which the driver is to process the request. 

Describing Data Buffers 
The descriptor for the requestor's data ~uffer appears in the fixed portion of 
the IRP. Windows NT provides driver writers with the following three different 
options for describing the requestor's data buffer associated with an I/O opera
tion: 

• Direct 110. The buffer may be described in its original location in the 
requestor's physical address space by a structure called a Memory 
Descriptor List (MDL), which describes the physical addresses of the 
requestor's user mode virtual addresses. 

• Buffered 110. The data from the requestor's buffer may be copied from 
the requestor's address space into an intermediate location in system 
address space (by the I/O Manager before the driver gets the IRP), and 
the driver is provided a pointer to this copy of the data. 
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• Neither 110. The driver is provided with the requestor's virtual address of 
the buffer. 

Drivers must choose a single method for the I/O Manager to use to describe all 
the read and write requests that are sent to a particular device. The choice is 
made when the Device Object is created (typically at initialization time) by set
ting bits in the Flags field of the Device Object. A different method from the 
one chosen for read and write requests, however, may be used for each Device 
I/O Control (IOCTL) code supported by the driver. I/O function codes and 
IOCTLs are covered in detail later in the chapter. 

Describing Data Buffers with Direct 110 
Direct 110 is most often used by "packet-based" Direct Memory Access (DMA) 
device drivers. However, it may be used by any type of driver that wants to 
transfer data directly between a user buffer and a peripheral without having 
the overhead of rebuffering the data (as with Buffer I/O, described later in the 
chapter), and without having to perform the transfer in the context of the call
ing process (as with Neither I/O, also described later in the chapter). 

If a driver chooses Direct I/O, any data buffer associated with read or write 
I/O requests will be described by the I/O Manager by using an opaque struc
ture called a Memory Descriptor List (MDL). This MDL describes the data 
buffer in its original location within the requestor's physical address space. The 
address of the MDL is passed to the driver in the IRP in the MdlAddress field. 

Before the IRP is passed to the driver, the 110 Manager checks to ensure that 
the caller has appropriate access to the entire data buffer. If the access check 
fails, the request is completed by the I/O Manager with an error status, and the 
request is never passed on to the driver. 

After the access check is completed, but still before the IRP is passed to the dri
ver, the I/O Manager locks the physical pages that comprise the data buffer in 
memory (thus making all the requestor's data buffer nonpageable). If this oper
ation fails (for example, if the data buffer is too large to fit into memory at one 
time), the request is completed by the I/O Manager with an error status. If the 
locking operation succeeds, the pages remain locked for the duration of the I/O 
operation (until the IRP is ultimately completed). 

When an IRP is ultimately completed (by calling IoCompleteRequest ( )) and the 
MdlAddress field is non-zero, the I/O Manager unmaps and unlocks any pages 
that were mapped and locked. The I/O Manager then frees the MDL associat
ed with the IRP. 
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Understanding MDLs 
A Memory Descriptor List (MDL) is capable of describing a single data buffer 
that is contiguous in virtual memory, but is not necessarily physically contigu
ous. As shown in Figure 10.3, a single virtually contiguous requestor's buffer 
may span several noncontiguous physical pages. An MDL is designed to make 
it particularly fast and easy to get the physical base addresses and lengths of 
the fragments that comprise the data buffer. The definition for the MDL struc
ture appears in NTDDK.H. 
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Figure 10.3. A requestor's data buffer (shown both in virtual and physical address 
space) and an MD L that describes it. 

Figure lOA shows the contents of an MDL. Even though the structure of an 
MDL is well known, it is one of the few truly opaque data structures in 
Windows NT. By opaque, we mean that the structure of the MD L can never be 
assumed by a driver. Thus, the fields of the MDL should never be directly ref
erenced by a driver. 

The I/O and Memory Managers provide functions for getting information 
about a data buffer using an MDL. These functions include the following: 

• MmGetSystemAddressForMdl(). This function returns a kernel virtual address 
that may be used in an arbitrary thread context to refer to the buffer 
that the MDL describes. As can be seen in Figure 10.4, one of the fields 
in the MDL contains the mapped system virtual address associated with 
the MDL, if one exists. This function is in fact a macro in NTDDK.H. 
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The first time this function is called, it calls MmMapLockedPages () to map 
the buffer described by the MDL into kernel virtual address space. The 
returned kernel virtual address is then stored in the MappedSystemVa field 
of the MDL. On subsequent calls to MmGetSystemAddressForMdl(), the 
value that was previously stored in MappedSystemVa is simply returned to 
the caller. Any mapping that is present is deleted when the MDL is freed 
(that is, when the I/O request is ultimately completed). 

• IoMapTransfer(). This function is used primarily by DMA device drivers 
to get the logical base address and the length of each of the fragments of 
the data buffer for use in a DMA operation. 

• MmGetMdlVirtualAddress(). This function (which is actually a macro) 
returns the requestor's virtual address of the buffer described by the 
MDL. Although this virtual address is of direct use only in the context of 
the calling process, this function is frequently used by DMA device dri
vers because the requestor's virtual address is one of the input parameters 
to IoMapTransfer(). 

• MmGetMdlByteCount (). This function, which is another macro from 
NTDDK.H, returns the length, in bytes, of the buffer described by the 
MDL. 

• MmGetMdlByteOffset (). This function, which is yet another macro, returns 
the offset to the start of the data buffer from the first page of the MDL. 

Next 

Flags I Size 

Process 

MappedSystemVa 

StartVa 

ByteCount 

ByteOffset 

(page*) 

(page*) 

Figure 10.4. Memory Descriptor List (MDL). 
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Thus, given an MDL, a driver writer may use the appropriate function to con
veniently accomplish either of the following tasks: 

Map the requestor's buffer into kernel virtual address space (by calling 
MmGetSystemAddressForMdl()}. 

Get the logical base address of the physical fragments that comprise the 
requestor's buffer for use in a DMA transfer (by calling IoMapTransfer()}. 

Whichever function the driver writer chooses, the requestor's data is available 
to the driver directly from within the requestor's buffer. No intermediate 
buffering or recopying of the requestor's data is performed by the 110 Manager. 

One particularly interesting field in the MDL is called Next. This field is 
used to build "chains" of MDLs that together describe a single buffer 
that is not virtually contiguous. Each MD L in the chain describes a single 
virtually contiguous buffer. MD L chains are designed for use by network 
drivers only, and are not supported by most of the I/O Manager's stan
dard functions. Therefore, MD L chains may not typically be used by 
standard device drivers in Windows NT. 

Describing Data Buffers with Buffered I/O 
An alternative to Direct 110 is Buffered 110. In this scheme, an intermediate 
buffer in system space is used as the data buffer. The 110 Manager is responsi
ble for moving the data between the intermediate buffer and the requestor's 
original data buffer. The system buffer is deallocated by the 110 Manager when 
the IRP that describes the 110 request is ultimately completed. Figure 10.5 
illustrates how Buffered 110 works. 
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Figure 10.5. How Buffered I/O works. 
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To prepare a Buffered 110 request, the 110 Manager checks to ensure that the 
caller has appropriate access to the entire length of the data buffer, just a; it 
did for Direct 110. If the caller does not have appropriate access, the request is 
completed and is not passed along to the driver. As an optimization, this check 
is not performed if the request originated in Kernel Mode. 

The 110 Manager next allocates a system buffer from the nonpaged pool with 
a size that is (at least) equal to that of the data buffer. If this is a write opera-' 
tion, the 110 Manager then copies the data from the requestor's buffer to the 
intermediate buffer. Whether the request is for a read or a write operation, 
the Kernel virtual address of the intermediate buffer is passed to the driver in 
the Associatedlrp.SystemBuffer field of the IRP. The length of the requestor's 
buffer is passed in the Parameters union in the IRP's current 110 Stack location. 
For a read operation, the length of the requestor's buffer is located in 
Parameters. Read. Length; for a write operation, the length of the requestor's 
buffer is located in Parameters. Wri te. Length. 

Note 

Even though the Associatedlrp. SystemAddress field is part of the 
Associatedlrp structure in the IRP, this use of the field has nothing to do 
with associated IRPs/ 

Because the address of the intermediate buffer corresponds to a location in the 
system's nonpaged pool, the address is usable by the driver in an arbitrary 
thread context. The system buffer is virtually contiguous. There is no guaran
tee, however, that the system buffer will be physically contiguous. When using 
Buffered 110, the memory pages comprising the original data buffer are not 
locked during the 110 operation. Thus, their pageability is not affected by the 
110 operation. 

Before an IRP for a write operation described with Buffered 110 is sent to a 
driver, the 110 Manager copies the data from the requestor's buffer to the 
system space buffer. When a read operation using Buffered 110 is ultimately 
completed, the 110 Manager is responsible for copying the data from the inter
mediate buffer back to the requestor's data buffer. As an optimization, the I/O 
Manager delays this copy operation until the thread issuing the 110 request is 
next scheduled (using a "special Kernel APe for 110 completion"). When the 
requestor's thread is next ready to run, the 110 Manager copies the data from 
the intermediate system buffer back to the requestor's buffer and frees the sys
tem buffer. This optimization not only avoids possible page thrashing, it also 
serves a "cache-warming" function-preloading the processor cache with data 
from the buffer so that it is ready for rapid access by the requestor on return 
from the 110 request. 
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Buffered I/O is most often used by drivers controlling programmed I/O devices 
that use small data transfers. In this case, it is usually very convenient to have a 
requestor's data described by using a system virtual address. 

Describing Data Buffers with Neither 110 
The final option for having a requestor's data buffer described by the I/O 
Manager is called Neither I/O. This option is called Neither I/O because the 
driver does not request either Buffered I/O or Direct I/O. In this scheme, 
the I/O Manager provides the driver with the requestor's virtual address of the 
data buffer. The buffer is not locked into memory-no intermediate buffering 
of the data takes place. The address is passed in the IRP's UserBuffer field. 

Obviously, the requestor's virtual address is only useful in the context of the 
calling process. As a result, the only drivers that can make use of Neither I/O 
are drivers that are entered directly from the I/O Manager, with no drivers 
above them, and can process (and, typically, complete) the I/O operation in the 
context of the calling process. Therefore, drivers for conventional storage 
devices cannot use Neither I/O, because their Dispatch routines are called in 
an arbitrary thread context. Most typical device drivers cannot use Neither I/O 
because the I/O requests in these drivers are often started from their DpcForIsr 
routine, and are thus called in an arbitrary thread context. 

If used appropriately and carefully, Neither I/O can be the most optimal 
method for some device drivers. For example, if a driver performs all of its 
work synchronously and in the context of the calling thread, Neither I/O saves 
the overhead of creating an MDL or recopying the data that would be required 
by Direct and Buffered I/O. These savings can be significant. How about a dri
ver that can't complete every request it receives synchronously in the context of 
the calling thread, you might ask? If such a driver only occasionally needs to 
intermediately buffer the data or create a descriptor that allows the data buffer 
to be referenced from an arbitrary thread context, the overhead saved by using 
Neither I/O may be worthwhile. 

Evaluating Available Data Buffer Descriptor 
Options 
How do you decide whether to use Direct 1/0, Buffered I/O, or Neither I/O in 
your driver? There's one case where the choice is made for you: If you are writ
ing an Intermediate driver that will be layered above another driver, you must 
use the same buffering method that the device below you uses. 

For device drivers, the choice is clearly an architectural decision that will affect 
both the complexity and performance of the driver. If you have a compelling 
reason to use Neither I/O and you can meet the requirements for its use, you 
should choose Neither I/O. 
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Most device drivers, however, do not use Neither 110 because of the con
straints involved. Drivers that transfer at least a page of data or more at "'. time 
usually perform best when they use Direct 110. Although the 110 Manager 
locks the pages in memory for the duration of the transfer, Direct 110 avoids 
the overhead of recopying the data to an intermediate buffer. Using Direct I/O 
for large transfers also prevents tying up large amounts of system pool. Also, 
most DMA drivers want to use Direct I/O. Drivers for packet-based DMA 
devices want to use it because this allows them to easily get the physical base 
address and length of the fragments that comprise the data buffer. Drivers for 
"common buffer" DMA devices want to use it to avoid the overhead of an 
additional copy operation. 

Drivers that move data relatively slowly using Programmed 110, have opera
tions that pend for long periods of time, or transfer data in small blocks, will 
most profitably make use of Buffered 110. These drivers include those that are 
used for traditional serial and parallel port devices, as well as most simple 
machine control drivers. 

Buffered 110 is the simplest method to implement because a pointer to a virtu
ally contiguous buffer in system space containing the data is provided in the 
IRP. 

Although the choice of Buffered 110 versus Direct I/O is an important one, it is 
far from critical in most cases. It has been our experience that first-time NT 
driver writers often spend inordinate amounts of time worrying about which 
method to use. If it is not clear which method you should use in your driver, 
and if you're writing a driver for a programmed IIO-type device, start by using 
Buffered 110. After writing your driver, you can experiment to see whether 
switching to Direct 110 will improve performance. After all, the only differ
ences between the two from a programming standpoint are where you look in 
the IRP for your information (Irp->Associatedlrp.SystemBuffer, versus Irp 
->MdlAddress) and one function call (to MmGetSystemAddressForMdl () to get a sys
tem virtual address mapping a buffer described by an MDL). Hardly a problem 
at all! 

For convenience, the differences between Direct 110, Buffered 110, and Neither 
110 for read and write operations are summarized in Table 10.1 that follows. 

Table 10.1. Characteristics of Direct 110, Buffered 110, and Neither I/O. 

Requestor's 
Data 

Direct 110 

Described by MD L 

Buffered 110 

Intermediately 
buffered in 
nonpaged 
system pool 

Neither 110 

Described by 
requestor's 
virtual 
address 

continues 
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Table 10.1. Continued 
Direct 110 Buffered 110 Neither 110 

Status of Locked in memory Remains Remains 
Requestor's by I/O Manager unlocked unlocked 
Original Buffer 
While 110 
Operation Is 
in Progress 

Buffer Irp-> MdlAddress Irp->Associated Irp->User 
Description in contains pointer Irp.SystemBuffer Buffer 
IRP toMDL contains kernel contains 

virtual address (unvalidated) 
of intermediate requestor's 
buffer in non virtual address 
paged pool of buffer 

Context MDL usable in Kernel virtual Usable only 
Kernel Mode in address usable in context 
arbitrary thread in Kernel Mode of calling 
context in arbitrary thread 

thread context 

lID Function Codes 
Windows NT uses I/O function codes to identify the specific I/O operation 
that will take place on a particular file object. Like most operating systems, 
Windows NT I/O function codes are divided into major and minor I/O func
tions. Both appear in the IRP in the driver's I/O Stack location. Major function 
codes are defined with symbols starting IRP _MJ. Some of the more common 
major I/O function codes include the following: 

• IRP _MJ_CREATE. This major function code creates a new file object by 
accessing an existing device or file, or by creating a new file. This func
tion code represents requests issued via the CreateFile () Win32 function 
or the NtCreateFile () native NT system service. 

• IRP _MJ_CLOSE. This major function code closes a previously opened file 
object. This function code represents requests issued via the Close Handle ( ) 

Win32 function or the NtClose () native NT system service. 

• IRP _MJ_READ. This major function code performs a read operation on an 
existing file object. This function code represents requests issued via the 
ReadFile () Win32 function or the NtReadFile () native NT system service. 
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• IRP _MJ_WRITE. This major function code performs a write operation on an 
existing file object. This function code represents requests issued using the 
Wri teFile () Win32 function or the NtWriteFile () system service. 

• IRP _MJ_DEVICE_CONTROL. This major function code performs a driver
defined function on an existing file object. This function code represents 
requests issued using the Win32 function DeviceloControl () or the 
NtDeviceloControlFile () native NT system service. 

• IRP _MJ_INTERNAL_DEVICE_CONTROL. This major function code performs a 
driver-defined function on an existing file object. There are no user-level 
APls that correspond with this function. This function is typically used 
for inter-driver communication purposes. 

Note 

The complete list of 110 function codes appears in NTDDK.H. Functions 
other than those listed in the preceding section are typically of interest 
only to file systems~ network drivers~ or other very specialized drivers~ 
howeve~ and will never be encountered by ordinary device drivers. 

Minor 110 function codes in Windows NT are defined with symbols that start 
with IRP _MN_. Windows NT mostly avoids using minor function codes to over
load major functions for device drivers, favoring instead the use of I/O Control 
codes. Therefore, almost all IRPs received by device drivers have a minor func
tion code of IRP _MN_NORMAL (which, not surprisingly, has the value OxOO). In 
general, minor I/O function codes are used exclusively by file systems and net
work transports. For example, one file system-specific minor I/O function code 
is IRP _MN_COMPRESSED, indicating that the data should be written to the volume 
in compressed format. 

The major and minor I/O function codes associated with a particular IRP are 
stored in the Maj orFunction and MinorFunction fields of the current I/O Stack 
location in the IRP. These fields may therefore be referenced, as shown 
Example 10.1. 

Example 10.1. Checking an IRP~s major and minor function codes. 

IoStack = IoGetCurrentlrpStackLocation(Irp); 
If (IoStack->MajorFunction == I RP_MJ_READ) { 

If (IoStack->MinorFunction 1= IRP_MN_NORMAL { 
II do something 
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Understanding Device 110 Control Functions 
(IOCTLs) 
Most of the Windows NT major 110 function codes should be fairly self
explanatory. IRP _MJ_DEVICE_CONTROL and IRP _MJ_INTERNAL_DEVICE_CONTROL, how
ever, probably require a bit of explanation. IRP _MJ_DEVICE_CONTROL is the major 
function code used for IRPs resulting from calls to the Win32 function 
DeviceloControl() or the native NT function NtDeviceloControlFile(). Figure 
10.6 shows the prototype of the the Win32 DeviceloControl() function. 

BOOL DeviceIoControl( 
HANDLE hDevice, 
DWORD dwloControlCode, 

LPVOID lplnBuffer, 

DWORD nlnBufferSize, 
LPVOID lpOutBuffer, 

DWORD nOutBufferSize, 
LPDWORD lpBytesReturned, 

II handle to device of interest 
II control code of operation to 
II perform 
II pointer to buffer to supply 
II input data 
II size of input buffer 
II pointer to buffer to receive 
II output data 
II size of output buffer 
II pointer to variable to rcv byte 
II count 

LPOVERLAPPED lpOverlapped II pointer to overlapped 
II structure 

); 

Figure 10.6. DeviceloControl() function prototype. 

The only difference between IRP _MJ_DEVICE_CONTROL and 
IRP _MJ_INTERNAL_DEVICE_CONTROL is that there is no API to request that the 110 
Manager build IRPs with a major function of IRP _MJ_INTERNAL_DEVICE_CONTROL 

from user mode. Therefore, the IRP _MJ_INTERNAL_DEVICE_CONTROL major function 
code can be used only by device drivers that create IRPs manually. IRPs with 
this function code could be used, for example, to provide a private communi
cations mechanism between two drivers. In fact, this is the way the SCSI Class 
Drivers send requests to the SCSI Port Driver. Because IRPs of this type could 
never be built by a user-mode program, the communication mechanism is 
somewhat more secure than it would be if it used regular IRP _MJ_DEVICE_ 

CONTROL functions. 
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So how is lRP _MJ_DEVlCE_CONTROL typically used? When a driver supports a par
ticular type of device, that device is likely to have a set of specialized functions 
that can be controlled via the driver. These are functions other than those that 
can be described using the standard lRP _MJ_CREATE, lRP _MJ_CLOSE, lRP _MJ_READ, 

and lRP _MJ_WRITE function codes. For example, the device driver for a SCSI tape 
unit might want to provide a mechanism that enables users to send a request to 
erase a tape. Such device-specific requests are described using the 
lRP _MJ_DEVlCE_CONTROL major function code. This major function code simply 
means "other" (that is, a request other than Create, Close, Read, or Write is 
being made). Specifically, the device control function to be performed (such as 
"erase the tape") is indicated by an I/O control code (or IOCTL) that is passed 
as part of the request. 

Standard devices that appear in Windows NT systems have predefined sets of 
I/O control codes that they implement. The 1/0 control codes for these func
tions are described in the Windows NT Kernel-Mode Driver Reference manual, 
and are defined in NTDDK.H. For example, the I/O control code used to 
request the SCSI Tape driver to erase a tape is lOCTL_ TAPE_ERASE. Similarly, the 
I/O control code that sets the output volume for the audio channel of a CD
ROM drive is IOCTL_CDROM_SET_VOLUME. If you write a driver for a device that 
corresponds to one of the standard devices in the system, your driver is expect
ed to implement the standard I/O control codes for that device type. 

Defining Custom IOCTLs 
Drivers for nonstandard devices may also want to provide I/O control cocles 
that correspond to the specific functions that they perform. For example, if we 
were writing a device driver for a toaster, we would need to implement an I/O 
control code that enabled a user to send a request to the driver to set the toast 
brownness level on the device. We accomplish this by defining a custom I/O 
control code for each function that we want to implement. 

Some operating systems allow the driver writer to choose values for custom 
I/O control codes at random (values of "1" and "2" are particularly popular). 
Windows NT, however, actually attaches meaning to the values of I/O control 
codes, as shown in Figure 10.7. 

Fortunately, Windows NT provides a macro that defines custom control codes, 
saving us from having to manually pack bits into the I/O Control Code long
word. This macro is named, appropriately, CTL_CODE. The CTL_CODE macro is 
defined in both NTDDK.H (for use by drivers) and in WINIOCTL.H (for use 
by applications programs). This allows a single header file, defining the custom 
IOCTLs that a driver implements, to be shared by the driver and any applica
tion programs that may issue IOCTL requests to the driver. The CTL_CODE 

macro takes the following arguments: 
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CTl_CODE(DeviceType, Function, Method, Access) 

The purpose of each argument is described in the sections that follow. 

31 30 16 15 14 13 12 2 1 0 

C C 
0 u 
m Device Type Req'd s Function Code Transfer 
m Access t Type 
0 0 

n m 

Figure 10.7. Format for I/O control codes. 

CTL_CODE DeviceType Argument 
The DeviceType argument for the CTl_CODE macro is a value (of type 
DEVICE_TYPE) that indicates the category of device to which a given I/O control 
code belongs. Standard NT devices have standard NT device types 
(FILE_DEVICE_DISK for disk drives, FILE_DEVICE_TAPE for tapes, and so on) that 
are defined in the same .H files as the CTl_CODE macro. Custom device types, 
for devices such as our toaster that don't correspond to any standard NT 
device, may be chosen from the range of 32768-65535. These values are 
reserved for use by Microsoft customers. If you're defining a custom device 
type, it doesn't matter what value you choose within this range. Even if you 
choose the same value as another custom device on your system, everything 
will still work fine. 

Note 

In addition to its use in the CTRL_CODE macro, there is another place the 
DEVICE_ TYPE of a device is specified. The DEVICE_ TYPE is also provided 
when a Device Object is created using the function IoCreateDevice(). The 
creation of Device Objects is described in Chapter 13, "Driver Entry." 
Typically, the DEVICE_ TYPE that is specified when a Device Object is creat
ed by a driver is that same DEVICE_ TYPE that is specified when any custom 
IOCTLs are defined for that device by the driver. However, NT does not 
require that a Device Object with a particular DEVICE_ TYPE receive or 
process IOCTLs only of that same DEVICE_TYPE. 

CTL_CODE Function Argument 
The Function argument to the CTl_CODE macro is a value, unique within your 
driver, which is associated with a particular function to be performed. For 
example, we would need to choose a particular function code that represents 
the "set toast brownness level" function implemented by our toaster driver. 
Custom function codes may be chosen from the range of values between 
2048-4095. Again, the specific value you choose doesn't really matter, even if 
you choose the same function value that another driver already uses, as long 
as the value is unique within your driver. 



Chapter 10: How 110 Requests Are Described 201 

CTL_CODE Method Argument 
The Method argument indicates to the 110 Manager how the data buffers sup
plied with this request are to be described. To understand what this parameter 
relates to, take another look at the Win32 DeviceIoControl() function proto
type (refer to Figure 10.6). 

First, notice that there are two data buffers available on the function call. 
DeviceIoControl() is a very rare type of 110 system service because it provides 
the capability to supply multiple data buffers on a single request. Next, notice 
the unusual naming of these two buffers, relative to the direction of data move
ment of their contents. According to the comments in the prototype, the 
InBuffer contains data to be provided by the requestor to the driver. That is, 
the direction of movement of the data in the InBuffer is in to the driver. This 
buffer is typically used to transfer parameters or short chunks of data from the 
requestor to the driver. The comments in the function prototype indicate that 
the OutBuffer contains data coming from the driver. In fact, this buffer is typi
cally used to move larger chunks of data between the requestor and driver in 
either direction. It might have been easier for all of us if they had just named 
these buffers BufferA and BufferB! 

How the 110 Manager decribes these two buffers to a driver is indicated by the 
Method argument of the CTL_CODE macro. Possible values supplied for this argu
ment are as follows: 

• METHOD_BUFFERED. Both the InBuffer and the OutBuffer are handled as 
Buffered 110. 

• METHOD_IN_DIRECT and METHOD_OUT_DIRECT. The InBuffer is handled as 
Buffered 110 and the OutBuffer is handled as Direct 110. The only differ
ence between METHOD_IN_DIRECT and METHOD_OUT_DIRECT is the access check 
that is performed when validating the OutBuffer (METHOD_OUT_DIRECT checks 
the OutBuffer for write access; METHOD_IN_DIRECT checks the OutBuffer for 
read access). 

• METHOD_NEITHER. Both the InBuffer and OutBuffer are handled as Neither 
110. The requestor's virtual address of each buffer is provided in the IRP. 

For METHOD_BUFFERED, the system buffer allocated by the 110 Manager is large 
enough to hold the contents of the requestor's InBuffer or OutBuffer, whichever 
is larger. If an InBuffer was specified on the request, and its length is not zero, 
the contents of the InBuffer are copied to the intermediate system buffer. These 
operations are illustrated in Figure 10.8. As for any Buffered 110 request, the 
address of the system buffer is placed in the IRP in the 
AssociatedIrp.SystemBuffer field. 
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Figure 10.8. An illustration of METHOD_BUFFERED. 
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The IRP containing the request is then passed to the driver. The intermediately 
buffered input data may be read and acted on (even recopied, if necessary) by 
the driver. The driver then places any results to be returned in the OutBuffer in 
the intermediate system buffer, starting at the beginning of the buffer, directly 
over any input data that may have been present. When the request is ultimately 
completed, if an OutBuffer was specified on the request and its length is not 
zero, the number of bytes indicated in the IRP's IoStatus. Information field is 
copied from the intermediate buffer to the requestor's OutBuffer (limited, of 
course, to the size of the OutBuffer). As with any Buffered 110 request, the sys
tem buffer is deallocated when the IRP is ultimately completed. 

In METHOD_IN_DIRECT and METHOD_OUT_DI.RECT, the InBuffer (if one is specified and 
if its length is not zero) is handled exactly as for Buffered 110. That is, an inter
mediate system buffer is allocated, and the data is copied from the requestor's 
InBuffer to the intermediate system buffer. A pointer to the system buffer is 
provided in the IRP in the AssociatedIrp. SystemBuffer field. The OutBuffer (if 
one is specified and if its length is not zero) is handled exactly as for Direct 
110. That is, the OutBuffer is checked for appropriate access, its physical pages 
are locked in memory, and an MDL is built describing it (see Figure 10.9). As 
with Direct 110, a pointer to the MDL is provided in the IRP's MdlAddress field. 

The only difference between METHOD_IN_DIRECT and METHOD_OUT_DIRECT is the 
access check performed by the 110 Manager on the OutBuffer. For 
METHOD_IN_DIRECT, the 110 Manager checks to ensure that the requestor has read 
access to the entire extent of the OutBuffer. In this case, the OutBuffer would be 
used for input to the driver. If METHOD_OUT_DIRECT is used, the 110 Manager 
checks to ensure that the requestor has write access to the entire extent of the 
OutBuffer. 
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Figure 10.9. An illustration of METHOD_IN_DIRECT and METHOD_OUT_DIRECT. 

In METHOD_NEITHER, both buffers are treated as in the Neither I/O method. That 
is, no access checking or intermediate buffering is performed, and no MD Ls 
are built. The requestor's virtual addresses are provided in the IRP. The 
requestor's virtual address of the OutBuffer is supplied in the IRP in the 
UserBuffer field in the fixed portion of the IRP. The requestor's virtual address 
of the InBuffer is provided in the IRP in the I/O Stack location at 
Parameters.DeviceControl.Type3InputBuffer. 

Note 

A couple of words on IOCTL buffering methods seem to be in order. 
Although the DeviceIoControl () function enables the specification of two 
buffers, most IOCTLs use only a single buffer and some require no 
buffer at all. Also, the same constraints apply to using METHOD_NETIHER that 
apply to using Neither I/O for read and write operations. That is, for 
METHOD_NEITHER to be used, the request must be processed in the context of 
the calling process. 

CTL_CODE Access Argument 
The Access argument to the CTL_CODE macro indicates the type of access that 
must have been requested (and granted) when the file object was opened for a 
given I/O control code to be passed on to the driver by the I/O Manager. The 
possible values for this argument are as follows: 

• FILE_ANY_ACCESS. This value indicates that any access may have been spec
ified on the CreateFile () call. 

• FILE_READ_ACCESS. This value indicates that read access must have been 
requested. 
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• FILE_WRITE_ACCESS. This value indicates that write access must have been 
requested. 

Note that FILE_READ_ACCESS and FILE_WRITE_ACCESS can be OR'ed together 
to indicate that BOTH read and write access must have been successfully 
requested when the device was opened for the request to be valid. 

The Access argument is required because I/O control operations are not intrin
sically read or write operations. The I/O Manager needs to know what type of 
access to check for in the handle table before the function is allowed. 

Using the CTL_CODE Macro 
By way of example, suppose we're defining some custom I/O control codes for 
our toaster device. The definitions might be something like the following: 

Example 10.2. Defining custom I/O control codes for a device. 

#define FILE_DEVICE_TOASTER 53334 
#define IOCTL_TOASTER_START_TOASTING 

CTL_CODE(FILE_DEVICE_TOASTER, 2048, 
METHOD_BUFFERED, FILE_ANY_ACCESS) 

#define IOCTL_TOASTER_EJECT_TOAST \ 
CTL_CODE(FILE_DEVICE_TOASTER, 2049, \ 

METHOD_ BUFFERED, FILE_ANY_ACCESS) 
#define IOCTL_TOASTER_SET_BROWNESS \ 

CTL_CODE(FILE_DEVICE_TOASTER, 2050, 
METHOD_ BUFFERED, FILE_WRITE_ACCESS) 

Here, we chose a random value that represents the device type for our toaster 
device. We also defined three custom I/O control codes for this device using the 
CTL_CODE macro: IOCTL_TOASTER_START_TOASTING, IOCTL_TOASTER_EJECT_TOAST, and 
IOCTL_TOASTER_SET_BROWNESS. For each of these custom I/O control codes, we 
chose a function value from the range that is reserved for Microsoft customers 
that makes the I/O control code unique within our driver. For all three of these 
I/O control codes, we specified the buffers to be handled as Buffered I/O by 
specifying METHOD_BUFFERED. In order to be able to issue the SET _BROWNESS I/O 
control code, the issuing user must previously have successfully opened the 
toaster device for write. For the START_TOASTING and EJECT_TOAST I/O control 
codes to be issued, however, no specific access needs to be requested when the 
toaster device was opened. 

The issues involved in choosing the most appropriate buffering method to use 
for a custom 10CTL are pretty much the same as those involved in choosing 
the best method to use for read and write functions. Driver writers should keep 
in mind that InBuffer and OutBuffer need not be used in every 10CTL that is 
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implemented. If small amounts of data or control information are to be trans
ferred, the InBuffer is typically used and the OutBuffer is not referenced. Unless 
METHOD_NEITHER is specified, the data from the InBuffer is always intermediately 
buffered, if present. Thus, if only the InBuffer is to be used, the driver may 
define the IOCTL with METHOD_BUFFERED, METHOD_IN_DIRECT, or 
METHOD_OUT_DIRECT. 

When large amounts of data are to be transferred in either direction between a 
driver and a requestor's buffer, the OutBuffer is typically used. On these 
requests, the InBuffer is most often not referenced. For these IOCTLs, the dri
ver writer needs to choose whether the data being transferred between the 
driver and the requestor's InBuffer should be intermediately buffered. To inter
mediately buffer this data, the driver writer chooses METHOD_BUFFERED. To have 
the pages comprising the requestor's buffer locked into memory and described 
by an MDL, the driver writer will specify METHOD_IN_DIRECT (for data being 
transferred from the requestor's buffer to the driver) or METHOD_OUT_DIRECT (for 
data being transferred from the driver out to the requestor's buffer). 

Single requests that use both buffers tend to pass parameters or control infor
mation in the InBuffer, and to pass the data for the driver to operate on in the 
OutBuffer. Because the InBuffer is always described by using Buffered I/O, the 
choice of how the data for the OutBuffer is to be described to the driver (and 
the direction of data movement) dictates the choice of which buffering method 
to use, as previously described. 

Finally, regardless of whether one or both buffers are used in a request, 
METHOD_NEITHER may be appropriate when a driver can process the request in the 
context of the calling thread. 

As a convenience, Table 10.2 summarizes the differences between the various 
buffering methods for IOCTLs, and where the information about each request 
can be found in the IRP. 

I/O Request Parameters 
Parameters, as specified by the requestor, which are specific to a particular 
major I/O function code, are located in the parameters field of the current I/O 
Stack location in the IRP. The definitions for the parameters fields available to 
device drivers appear in NTDDK.H. The locations of parameters in the current 
I/O Stack location for the most common I/O functions of interest to device dri
vers are described in the following list: 

• IRP _MJ_READ. Parameters for this function code are as follows: 

• Parameters. Read. Length. A ULONG, which contains the size in bytes of 
the requestor's buffer. 
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• Parameters. Read. Key. A ULONG, which ontains the key value to be 
used with this read. This is typically used for supporting byte-range 
locking of files. 

• Parameters. Read. ByteOffset. A LARGE_INTEGER, which contains the 
offset (typically in a file) at which this read operation should begin. 

• IRP _MJ_WRITE. Parameters for this function code are as follows: 

• Parameters. Wri te. Length. A ULONG, which contains the size, in bytes, 
of the requestor's buffer. 

• Parameters.Write.Key. A ULONG, which contains the key value to be 
used with this write. This is typically used for supporting byte-range 
locking of files, which is only of interest to file system drivers. 

• Parameters.Write.ByteOffset. A LARGE_INTEGER, which contains the 
offset (typically in a file) at which this write operation should begin. 

• IRP _MJ_DEVICE_CONTROL. Parameters for this function code are as follows: 

• Parameters. DeviceloControl. OutputBufferLength. A ULONG, which 
contains the length, in bytes, of the OutBuffer. 

• Parameters. DeviceloControl. InputBufferLength. A ULONG, which 
contains the length, in bytes, of the InBuffer. 

• Parameters. DeviceloControl. ControlCode. A ULONG, which contains 
the 110 control code that identifies the particular device control 
function being requested. This control code usually is previously 
defined by the driver using the CTL_CODE macro. 

• Parameters. DeviceloControl. Type3InputBuffer. A PVOID, which con
tains the requestor's virtual address of the InBuffer. It is typically 
used only when an IOCTL uses METHOD_NEITHER. 

Note that IRP _MJ_CREATE has a set of parameters in the current 110 Stack loca
tion, but these parameters are usually of interest only to file system drivers. 

As an example of the way this information is used for an IRP _MJ_READ opera
tion, the offset from which to start reading and the number of bytes to read are 
located in the current 110 Stack location, as shown in Example 10.3: 

Example 10.3. Locating parameters for a read request. 

IoStack = IoGetCurrentlrpStackLocation(Irp); 
Offset = IoStack->Parameters.Read.ByteOffset; 
BytesToRead = IoStack->Parameters.Read.Length; 



Chapter 10: How 110 Requests Are Described 207 

Table 10.2. IOCTL buffering methods. 

METHOD_BUFFERED METHOD _IN_DIRECf METHOD_OUT_DIRECT METHOD_NEITHER 

InBuffer Uses Buffered I/O Buffered I/O Buffered I/O Requestor's virtual 
address 

InBuffer (if present Kernel virtual address in Irp->Associatedhp.SystemBuffer Requestor's 
on call) located via virtual address in 

Parameters. 
DeviceloControl. 
Type31nputBuffer 
of current I/O Stack 

InBuffer length Length in bytes in Parameters.DeviceloControl.lnputBufferLength of current I/O 
Stack Location 

OutBuffer Uses Buffered I/O Direct 110 Direct I/O Requestor's virtual 
address 

OutBuffer (if Kernel virtual MDL pointed to by MDL pointed to by Requestor's virtual 
present on call ) address in Irp->MdlAddress Irp->MdlAddress address in Irp-> 
located via Irp-> UserBuffer 

Associatedlrp. Syst 
emBuffer 

OutBuffer length Length in bytes in Parameters.DeviceloControl.OutputBufferLength of current 110 
Stack Location 

As a further example, our toaster driver might use the code in Example lOA to 
identify the particular operation being requested and the length of the buffers 
being supplied: 

Example 10.4. Identifying requested IOCTL operation and supplied buffer 
lengths. 

IoStack = IoGetCurrentlrpStackLocation(Irp)j 

Code = IoStack->Parameters,DeviceloControl,IoControlCodej 

Switch (Code) { 
case IOCTL_TOASTER_SET_BROWNESS: 

II 
II InBuffer contains longword indicating browness 
II level requested 
II 
InLength 

IoStack->Parameters.DeviceloControl,InputBufferLengthj 

if (InLength 1= sizeof(ULONG)) { 
status = STATUS_BAD_PARAMETER 

continues 
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Continued 

II 
II The OutBuffer will receive the browness level actually set 
II 
Out Length = 

IoStack->Parameters.DeviceloControl.OutputBufferLength; 

if (OutLength 1= sizeof(ULONG)) { 
status = STATUS_BAD_PARAMETER 

II Handle this function_ 
break; 

II Handle this function_ 
break; 

II Handle this function_ 
break; 

In Example 10.4, the driver retrieves the particular I/O control code from the 
current IRP Stack location in the location 
Parameters. DeviceloControl. IoControlCode. The driver then switches, based on 
this code. In processing the IOCTL_TOASTER_SET_BROWNESS function, the driver 
retrieves and validates the lengths of the requestor's InBuffer and OutBuffer. 
The size of the InBuffer I as indicated by the requestor, is retrieved from 
Parameters. DeviceloControl. InputBufferLength in the current I/O Stack location. 
The size of the OutBuffer (as indicated by the requestor) is retrieved from 
Parameters.DeviceloControl.OutputBufferLength. 

Handling and Processing IRPs 
On receiving an I/O request via an I/O system service, the I/O Manager allo
cates and builds an IRP that completely describes that request. The IRP is allo
cated from nonpaged space, using either a preallocated IRP in one of the I/O 
Manager's lookaside lists, or by allocating the IRP directly from nonpaged 
pool. The I/O Manager initializes the fixed portion of the IRP (in the format 
indicated by the driver) with the description of the requestor's buffer. The I/O 
Manager then initializes the first I/O Stack location in the IRP with the func
tion codes and parameters for this request. The I/O Manager then calls the first 
driver in the driver "stack" to begin processing the request. 
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Chapter 11, "The Layered Driver Model," covers in detail exactly how the 
request is processed. 

Case Study: When Neither 110 Was the Only 
Alternative 
We have a colleague, a very talented Windows NT driver writer, who works 
for an imaging company. This company makes high-resolution hardcopy imag
ing devices (printers, really) that are capable of rendering color images. The 
images printed are typically many megabytes in length. The imaging hardware 
itself is a programmed IIO-type device with many megabytes of shared RAM. 

After the device is set up appropriately, image rendering is performed with 
standard IRP _MJ_WRITE functions from a user-mode program. Each write request 
describes a multimegabyte buffer that contains a single image to be rendered. 
Operation of the device is synchronous and single-threaded. Only one render
ing operation can be in progress at a time, and until that rendering operation 
is completed, another one cannot be started. 

The driver for this device would typically utilize Direct 110, due to the size of 
the user buffer. In testing his initial Direct 110 design, however, our colleague 
ran into a problem: On a system with limited amounts of physical memory, it 
was sometimes impossible to lock down the entire data buffer containing an 
image. When it was possible, locking down such a large amount of physical 
memory often caused the system to slow down unacceptably. What did he do 
to fix this? 

The answer was to use Neither 110 to describe the write operations. Because 
no drivers can be layered over this device and requests are sent directly to this 
device driver from user mode applications, this driver will be called in the 
context of the requesting process. In addition, because the device itself is inher
ently synchronous, there was no problem with "blocking" the user mode 
application while moving data from the requestor's data buffer and the device's 
shared memory. 

By using Neither 110, the user virtual address of the requestor's data buffer was 
retrieved from the IRP and used as the source address for the copy operation 
to the device. During the copy operation, if portions of the requestor's data 
buffer were not resident, they were simply automatically page-faulted into 
memory. Because all processing was performed in the driver's Dispatch entry 
point, processing was performed at IRQL PASSIVE_LEVEL, and page faults pre
sented no problem. 





Chapter 11 
The Layered Driver Model 

This chapter will review: 

• User Mode versus Kernel Mode Drivers. Windows NT supports many 
different driver architectures. In this section, we describe the difference 
between User mode drivers and Kernel mode drivers. 

• Intermediate and Device Driver Layering. Windows NT utilizes a layered 
driver architecture. This section describes how Intermediate drivers locate 
and layer themselves over lower-layer device drivers. 

• File System Driver Layering. This section covers how File System drivers 
are dynamically located at the top of the storage driver stack. 

• Processing I/O Requests in Layers. With the details of how driver stacks 
are built already discussed, this section describes how I/O requests are 
processed by being passed from driver to driver until they are completed. 

• Completion Notification. This section describes how higher layer drivers 
may optionally be notified of the ultimate completion of an I/O request 
they have passed on to one or more underlying drivers in the driver stack. 

• Special Understandings Between Drivers. The standard method of passing 
IRPs from driver to driver is not used by all drivers. This section discusses 
some alternative methods that drivers use to communicate. 

• Filter Drivers. This section describes how one driver may dynamically 
attach and layer itself above another driver. This process allows the 
attaching driver to intercept or "filter" the I/O requests originally 
destined for the driver that was attached. 

• Fast I/O. This section describes optimization of the normal "packet
based" I/O model used by most drivers, which NT supports. 
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It's not uncommon for people to get confused when they first start to learn 
about writing Windows NT drivers. Part of the reason for this confusion is the 
fact that Windows NT does not have a single driver model. Rather, there are 
many different things called "drivers" in Windows NT. At the highest level, the 
types of drivers may be divided into two categories: User mode drivers and 
Kernel mode drivers. 

Although this book focuses on Kernel mode drivers, a brief mention of User 
mode drivers might be useful. User mode drivers aren't what most people typi
cally think of when they think of "drivers." User mode drivers are specific to a 
particular environment subsystem and provide support to applications that run 
under the control of that subsystem. User mode drivers often provide a 
subsystem-specific interface to a standard Kernel mode driver. 

In the Win32 Environment Subsystem, User mode drivers are implemented as 
Dynamic Linked Libraries (DLLs). One of the types of User mode drivers used 
by Win32 in NT 4 is Multimedia drivers. Win32 Multimedia drivers are called 
by the Windows Multimedia DLL (WINMM.DLL) to perform various func
tions. These User mode drivers may keep local state and information, and even 
pop-up dialog boxes to request user input. The drivers may be "software-only" 
or may utilize hardware by forwarding requests using standard APls (such as 
CreateFile (), ReadFile (), Wri teFile (), and DeviceloControl ()) to an underlying 
Windows NT Kernel mode driver. As an example, most Audio Compression 
Manager (ACM) drivers, which implement audio compression algorithms, are 
User mode, software-only drivers. On the other hand, Multimedia Control 
Interface (MCI) drivers are User mode drivers that typically interact with 
underlying hardware through the use of a collaborating Kernel mode driver. 
Figure 11.1 illustrates the interaction between a user application, the Win32 
Environment Subsystem, a User mode driver, and its related Kernel mode driver. 

User 
App 

User Mode 

winmm. 
dll 

Figure 11.1. How User mode drivers fit in. 
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Kernel Mode Drivers 
As distinct from User mode drivers, Kernel mode drivers form part of the 
Windows NT Executive layer and run in Kernel mode, as their name implies. 
Kernel mode drivers are accessed and supported by the 110 Manager. Requests 
are sent to the 110 Manager as a result of executing an 110 system service, such 
as a Win32 CreateFile () or ReadFile () function, or a Windows NT native 
function such as NtCreateFile () or NtReadFile (). 

The four types of Kernel mode drivers are as follows: 

• File System drivers 

• Intermediate drivers 

• Device drivers 

• Mini-drivers 

These drivers can be grouped together in "stacks" that work together to com
pletely process a request targeted at a particular Device Object, as shown in 
Figure 11.2. 
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Figure 11.2. A typical NT driver stack. 
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File System Drivers 
File System drivers exist at the top of the NT Kernel mode driver stack. File 
System drivers playa special role in Windows NT because they are tightly cou
pled with the NT Memory and Cache Manager subsystems. File System drivers 
may implement a physical file system, such as NTFS or FAT; however, they 
may also implement a distributed or networked facility such as NT's LanMan 
Redirector, or NT's named pipe communication mechanism. File System drivers 
may also implement a "pseudo-file" system. Development of NT File System 
drivers is currently unsupported by Microsoft, is almost entirely undocument
ed, and requires a special Installable File Systems development kit from 
Microsoft. Further discussion of File System drivers appears in Chapter 21, 
"File System Drivers." 

Intermediate Drivers 
Intermediate drivers form the middle layer of the NT driver hierarchy, sitting 
below File System drivers and above Device drivers. In fact, there may be mul
tiple Intermediate drivers in a stack of NT drivers. Intermediate drivers provide 
either a "value-added" feature (such as mirroring or disk-level encryption) or 
class processing for devices. In either case, Intermediate drivers rely upon the 
Device drivers below them in the NT driver hierarchy for access to a physical 
device. 

The most common type of Intermediate driver is the Class driver. A Class dri
ver typically performs processing for a category of device, having common 
attributes, which is physically accessed via a separately addressable shared bus. 
For example, the Disk Class driver performs processing for disk-type devices 
that are located on a SCSI bus. 

Note 

In NT 4, for the sake of uniformity and simplicity, the Disk Class driver 
also handles requests that go to the ATAPI (ATDISK) driver. This is 
because the ATAPI driver was implemented as a "SCSI Miniport" driver, 
even though it does not sit on a SCSI bus! Mini-drivers are covered later 
in the chapter. 

Another example of a Class driver is the Tape Class driver, which handles 
tape-oriented requests for SCSI tape drives. 

Device Drivers 
Device drivers are what most people think of first when they hear the term 
"drivers." These are the third type of Kernel mode driver in Windows NT. 
Device drivers interface to hardware via the Hardware Abstraction Layer 
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(HAL). In general, device drivers control one or more peripheral devices, in 
response to a user request. Device drivers may receive and process interrupts 
from their hardware. device drivers may exist alone or may be located under 
an Intermediate driver in a driver stack. If a device driver exists in a driver 
stack, it is always at the bottom of the stack. An example of a device driver in 
a driver stack is the NT serial port driver. Our Toaster example driver, men
tioned in previous chapters, would also be a device driver. The Toaster driver 
would probably exist on its own, without an Intermediate or File System driver 
above it. 

Mini-Drivers 
The final type of Kernel mode driver in Windows NT is the Mini-Driver. 
Although Mini-Drivers are typically device drivers in NT 4, there are also 
Mini-Drivers that are Intermediate drivers. What distinguishes a Mini-Driver 
from other Device drivers is that the Mini-Driver exists within a "wrapper." 
The Mini-Driver's interfaces are typically restricted to those provided by the 
wrapper, which dictates the structure of the Mini-Driver. This structure is usu
ally very specific to the type of peripheral being supported. For example, the 
interface for network Mini-Drivers is highly specific to sending and receiving 
communications messages. 

Because the wrapper provides a special environment for the Mini-Driver, most 
properly written Mini-Drivers restrict themselves to calling only interfaces that 
are provided by their wrapper. Thus, the Mini-Driver does not call any of the 
functions supplied by the I/O Manager. Instead, it calls functions provided by 
the wrapper, which in turn may call the I/O Manager's functions, as required. 
Figure 11.3 shows a diagram of a Mini-Driver within its wrapper. 

Wrapper 

liD 
Manager I+---i~ 

Figure 11.3. Mini-Driver/wrapper structure. 

The purpose of the Mini-Driver approach is to make it relatively easy to write 
drivers for common peripherals, such as video cards, net cards, and SCSI 
adapters. All common processing is done in the wrapper; the only work done 
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by the Mini-Driver is the actual interfacing with the hardware. A bonus of this 
approach is that its use makes it quite easy to implement an operating system
independent driver scheme. Because all interfaces between the Mini-Driver and 
the "outside world" are typically via its wrapper, if the wrapper exists on mul
tiple operating systems, the Mini-Driver will automatically be supported. 

Perhaps the best-known example of a Mini-Driver is the SCSI Miniport driver. 
The Miniport driver exists inside the wrapper provided by the SCSI Port driver. 
The SCSI Miniport driver's structure is dictated by the SCSI Port driver. The 
SCSI Port driver handles all the work common to queuing and processing SCSI 
requests, including building an appropriate SCSI Command Data Block. The 
Miniport driver's job is restricted to placing the request on the hardware in a 
manner that is specific to its particular SCSI adapter. In addition to Windows 
NT, Microsoft has provided a SCSI Port driver wrapper for Windows 95. 
Thus, SCSI Miniport drivers are compatible across these two operating sys
tems. Although we don't specifically discuss Mini-Drivers in detail in this book, 
Chapters 22-24 in Part 3 offer a brief overview of SCSI, Video, and NDIS 
Miniport drivers. 

Even though different types of Kernel mode drivers can be very different, they 
all still exist within the larger framework supplied by the 110 Manager. Thus, 
the underlying concepts for the various types of Kernel mode drivers are all the 
same. The differences come in the details of the way each type of driver is 
implemented. 

Intermediate and Device Driver 
Layering 
So, now that you know the different types of drivers that exist, how are they 
organized into stacks? In NT 4, driver stacks are mostly static, being created 
when the system is first started. An example driver stack was shown earlier in 
Figure 11.2. This is a conceptual diagram that shows the FAT File System dri
ver that uses the services of the Intermediate Disk Class driver, which in turn 
uses the services of the SCSI PortiMiniPort Device driver. 

Driver stacks are mostly created by the drivers themselves. The correct creation 
of a driver stack under Windows NT 4 depends on each driver in the stack 
being started at the correct time. The time at which a driver is started is deter
mined by its Registry parameters (for more information on driver startup time, 
see Chapter 4, "The Registry," and Chapter 20, "Installing and Starting 
Drivers"). 

The first driver to start in the example stack shown in Figure 11.2 is the SCSI 
Miniport driver. When the Miniport driver is started, it causes its wrapper, the 
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SCSI port driver, to start. The SCSI PortiMiniport driver searches the bus and 
finds SCSI adapters that it will control. For each adapter found, the SCSI Port 
driver creates a Device Object named \Device\ScsiPortX, where X is an ordinal 
number representing a particular SCSI adapter. 

After all the SCSI Miniport drivers configured in the system have started, the 
Class drivers are started, one at a time. These are the Intermediate drivers in 
the driver stack, and include (for example) the Disk Class driver, the CD-ROM 
Class Driver, and the Tape Class driver. When a Class driver starts, it looks for 
Device Objects that represent SCSI Port devices, since these are the devices over 
which it will layer. The Class driver does this by calling the 
IoGetDeviceObj ectPointer () function shown in Figure 11.4. 

NTSTATUS 
IoGetDeviceObjectPointer( 

IN PUNICODE_STRING ObjectName, 
IN ACCESS_MASK DesiredAccess, 
OUT PFILE_OBJECT *FileObject, 
OUT PDEVICE_OBJECT *DeviceObject); 

ObjectName: Name of Device Object being sought. 

DesiredAccess: Represents the access required to the indicated Device 
Object. 

FileObject: Pointer to the File Object used to access the device. 

DeviceObject: Pointer to the Device Object with the name 
ObjectName. 

Figure 11.4. IoGetDeviceObj ectPointer () function prototype. 

Note that the IoGetDeviceObj ectPointer () function takes the name of the 
Device Object to find, and returns a pointer to the Device Object ultimately 
associated with that name. The function works by sending a Create request to 
the named device. If this request fails, either no device named ObjectName exists 
or the caller cannot be granted the access indicated by DesiredAccess. If the 
Create request succeeds, a File Object is created, which increments the refer
ence count of the Device Object to which the File Object belongs. The I/O 
Manager then artificially increments the reference count on the File Object by 
one, and sends a Close request to the device. As a result of this entire process, 
the Device Object (whose pointer is returned in DeviceObject) cannot be deleted 
until its reference count is decremented. Thus, the lower-layer Device Object 
cannot "go away" while the Class driver has a pointer to it. 
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The Device Object's reference count is decremented when the Class driver calls 
ObDereferenceObj ect () on the File Object, which results in the File Object's ref
erence count going to zero. When a File Object's reference count becomes zero, 
the reference count in the Device Object associated with that File Object is 
decremented. 

Notice that when a Class driver calls IoGetDeviceObjectPointer () to search for 
SCSI Port devices, it does so by name. The Class driver sequentially searches 
for devices named \Device\ScsiPort0, \Device\ScsiPort1, \Device\ScsiPort2, and 
so on until IoGetDeviceObj ectPointer () returns an error. 

Next, having found one or more SCSI Ports, the Class driver enumerates the 
individual device units on each of these SCSI Ports. The Class driver does this 
by sending requests to the SCSI PortiMiniport driver. For each device the Class 
driver finds that it can control, it creates one or more Device Objects. The 
Class driver also "claims" the device by sending a request to the SCSI Port dri
ver, thus preventing a different Class driver from later trying to control the 
same device. 

The specific process that the Disk Class driver follows is an example of the 
general process. The Disk Class driver enumerates the device units on each 
SCSI Port. For each disk found, the Disk Class driver creates a Device Object 
named \Device\HardDiskX\Partition0 (where X is the ordinal number of the 
disk). This Device Object represents the (entire raw) disk volume itself. In addi
tion, the Disk Class driver creates one Device Object for each logical partition 
on the disk with a format that it can identify as supportable under Windows 
NT. These Device Objects are named \Device\HardDiskX\PartitionY, where x is 
the ordinal disk number and Y is the ordinal partition number starting at one 
on that hard disk. The system later assigns actual drive letters (such as C:, D:, 
and so on) to these devices in the form of symbolic links. 

For each Device Object created, the Class driver stores away the Device Object 
pointer for the underlying device to which its device is linked. That is, for each 
Disk Device Object it creates, the Disk Class driver stores (in the disk Device 
Object's Device Extension) the pointer to the SCSI Port Device Object on 
which that disk unit resides. 

Whenever a Device Object is created for a device that is to be layered above 
another device, the high-level Device Object must be initialized carefully to 
reflect the attributes of the lower-layer device. The information about the 
lower-layer device comes from its Device Object, or even from interrogating 
the lower-layer physical device itself. 

In initializing their Device Objects, the Class drivers use information from both 
the SCSI Port's Device Object and from the physical device units that they sup
port. For example, a Disk Class driver checks the information returned from 
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interrogating the physical device to determine whether the device is removable. 
If the device is removable, the Disk Class driver sets the FILE_REMOVABLE_MEDIA 

flag in the Characteristics field of the Device Object, as appropriate. 

Another field that must be carefully initialized is the StackSize field in the 
Device Object. The StackSize field indicates the number of 110 Stack locations 
required for requests going to that device and any devices below it. 
Intermediate drivers set the StackSize field of their Device Objects to one 
greater than the contents of the StackSize field in the Device Object of the 
device over which they are layered. Because the device driver is usually the last 
(that is, lowest) driver in the stack, the value in the StackSize field in the 
Device driver's Device Object is normally 1. 

Finally, the Buffering method and alignment requirement must also be pre
served from lower- to higher-layer Device Objects. The Buffering method indi
cates how the driver wishes to have read and write type requests described to 
it, as described in Chapter 10, "How I/O Requests Are Described." This is 
indicated by the flags DO_BUFFERED_IO or DO_DIRECT_IO in the Device Object. 
Either of these flags, if set in the lower-layer Device Object, must also be set in 
the higher-layer Device Object. Therefore, when the Class driver creates its 
Device Objects, it initializes the Flags field of its Device Objects to reflect the 
Buffering method indicated in the SCSI Port device. 

The AlignmentRequirement field in the Device Object indicates the required base 
alignment of data buffers sent to the device. The alignment requirement of the 
lower-layer device must also be reflected in any higher-layer Device Objects. 
Therefore, when the Class driver creates its Device Objects, it initializes the 
AlignmentRequirement field of the Device Objects it creates by using information 
from the SCSI Port Device Object. 

With all the Class Device Objects created, the first two members of the driver 
"stack" are complete-Class devices over SCSI Port devices. If one SCSI 
adapter existed in a system, with one SCSI disk having two recognizable parti
tions on that SCSI adapter, the created Device Objects look like those shown in 
Figure 11.5. Note that this creates a many-to-one relationship between 
Intermediate-layer Device Objects and Device Objects created at the lowest 
la yer, which is typical in NT. 

We used the SCSI Port driver and Class drivers as examples to illustrate how a 
driver stack is built; however, the process is identical for all stacks involving 
Intermediate and Device drivers. The Device driver starts, then one or more 
Intermediate drivers layer above the Device driver, identifying by name the 
Device Objects of the Device driver that are to be supported. The Device 
Objects created for the Intermediate driver must carefully reflect the informa
tion in the device's Device Objects. 
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Figure 11.5. Disk Class Device Objects layered over the SCSI Port Device Object. 

Note that the driver stack created by this process is static. Only at initialization 
time do the Class drivers search for SCSI Port devices on which the supported 
devices may exist. Therefore, if a SCSI device is added after the Class driver 
starts (as a result, for example, of plugging in a PC Card SCSI Adapter), the 
SCSI Class drivers never see this new port device and never attempt to enumer
ate its bus to find potentially supportable Class devices. Also note that the 
Class drivers are dependent on the actual name of the SCSI Port device. For 
example, if somebody creates a unique Device driver-not utilizing the SCSI 
Miniport architecture-that names its SCSI Port Device objects something 
other than \Device\ScsiPortX, these Device Objects are never found. 
Continuing this example, even if this Driver creates Device Objects named 
\Device\ScsiPortX, the values for X must monotonically increase, starting with 
zero, due to the specific algorithm used by the Class drivers. 

File System Driver Layering 
File System drivers (FSDs) are at the top of the Windows NT driver stack. 
FSDs are added dynamically to the driver stack, as opposed to the way 
Intermediate drivers are added. 
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The first time an 110 operation is directed to a file-structured device, the 110 
Manager initiates a Mount operation for the device. The file-system recogni
tion process then takes place. During file-system recognition, each FSD of an 
appropriate type for the device encountered is called to see whether it recog
nizes the file structure on the media being accessed. If the FSD recognizes the 
file structure present on the media, it creates a Device Object that represents a 
mounted instance of that file system on the particular device. 

The 110 Manager recognizes file-structured devices through the existence of a 
Volume Parameter Block (VPB) for the device. The VPB links the Device 
Object that represents the partition (created by the Class driver) with a Device 
Object that represents a mounted instance of a file system on that partition 
(created by an FSD). On first access, if a VPB exists for the device and if the 
DeviceObj ect pointer in the VPB is NULL, the 110 Manager initiates the Mount 
operation. Figure 11.6 shows the format of the VPB and its relationship to the 
Class driver's Device Object. 

, 

Device Object 
(unnamed) 

FAT File System 

Size Type Mounted On 
"HardDiskO\Partition 1" 

VolumeLabelLength Flags 

DeviceObject ~ 

""'L RealDeviceObject 

SerialNumber 

Device Object 
"HardDiskO\Partition 1" ReferenceCount 

VolumeLabel[32] 

Figure 11.6. How File System Device Objects and Disk Class Device Objects are linked 
by a VPB. 

Using the previous example driver stack, the first time an I/O operation is 
directed to device \Device\HardDisk0\Parti tion1, the 110 Manager notices that 
this is a file-structured device and that it does not presently have a file system 
associated with it. As a result, it will pass a Mount request to registered disk 
type file systems, one at a time, asking them if they recognize the file structure 
on the partition as a type that they support. Disk file systems ordinarily 



222 Part II: The I/O Manager and Device Driver Details 

encountered on Windows NT 4 include NTFS and FAT. The first file system 
that recognizes the format of the data on the partition will mount the device 
successfully. As part of the mount process, the FSD creates an (unnamed) 
Device Object that represents the instance of the mounted file system on that 
partition. This results in the driver stack shown in Figure 11.7. 
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Figure 11.7. A complete stack of Device Objects: File System over Disk Class over 
SCSI Port. 

When the FSD creates its Device Object, it observes most of the same rules for 
layered drivers creating Device Objects that were cited previously. That is, the 
File System driver appropriately sets its StackSize and propagates the 
AlignmentRequirement field from the lower-layer Device Object. Note, however, 
that the Buffer method is specifically not preserved by File System drivers 
(because FSDs use method Neither for their read and write operations). 

With the creation of the File System Device Object, the driver stack is com
plete. In our example illustrated in Figure 11.2, we have a File System driver 
over an Intermediate (Class) driver, which is layered over a Port/Mini-Port 
Device driver. 
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Finding the Driver at the Top of 
the Stack 
Of course, not every I/O request starts at a File System driver. Although we fre
quently discuss layering in Windows NT in terms that might imply there are 
always multiple layers in every driver stack, this isn't necessarily true! Requests 
are ordinarily directed to the driver that owns the Device Object named in the 
Create operation. Thus, if the Create operation specifies a device named 
"Toaster," the request goes directly to the Device driver for the Toaster device. 
This is the normal case for devices that are used for special purposes, such as 
industrial or process control. These devices are not typically file-structured and 
do not typically have Class drivers associated with them. Instead, these drivers 
create Device Objects that are directly accessed by applications (via the Win32 
CreateFile () function or the NT native system service NtCreateFile ()). 

The one interesting exception to this rule is File Systems. When a user wants to 
open a file on a disk, the name c: \ top \ fred. txt might be specified. Although 
the device in this example, C:, corresponds to a Class driver's Device Object 
(probably the Device Object named \Device\HardDisk0\Partition1), the request 
does not first go to the Class driver; it goes to the File System driver. This is 
because when the Create operation is processed, the I/O Manager looks to see 
if a VPB is associated with the device being accessed. If a VPB exists, the I/O 
Manager checks to see if a file system has been mounted on the device. If a file 
system has not been mounted on the device, the Volume Recognition process 
(also called the Mount process) is initiated, as previously described. If a file 
system has been mounted on the device, the I/O Manager substitutes the File 
System's Device Object for the originally requested Device Object. Thus, the 
request is passed to the File System driver at the top of the driver stack, instead 
of directly to the Class driver. 

Understanding Driver Structure 
At this point, it is useful to briefly discuss the structure of NT Kernel mode dri
vers. All of the concepts in this section will be discussed completely, and in 
much greater detail, in ensuing chapters of the book. This section just presents 
the briefest possible summary of these concepts to facilitate our continuing 
description of driver layering. 

All standard NT Kernel mode drivers (that is, all drivers other than Mini
Drivers) share a common basic structure. In Windows NT, drivers have 
specific entry points that are called by the I/O Manager to perform particular 
functions. 



224 Part II: The 110 Manager and Device Driver Details 

When a driver is first loaded, it is called at its DriverEntry entry point. Within 
this entry point, a driver is responsible for determining its configuration, and 
for performing all necessary driver- and device-initialization processing. 

In addition to DriverEntry, a Kernel mode driver may have up to one Dispatch 
routine for each major 110 function code that it supports. When the 110 
Manager has a request of a particular type that it wants a driver to process, it 
calls the driver at the Dispatch routine that corresponds to the request's major 
function code. A pointer to the IRP describing the request and a pointer to the 
Device Object representing the device are passed as arguments by the 110 
Manager to the Dispatch routine. Upon being called at one of its Dispatch rou
tines, the driver must validate the request and process it as far as possible. 
When an IRP is ultimately completed, the driver completing the request calls 
the IoCompleteRequest () function, passing a pointer to the IRP being completed 
as one of the arguments. 

Processing 1/0 Requests in Layers 
Windows NT uses a layered driver model to process 110 requests. In this 
model, drivers are organized into stacks. Each driver in a stack is respon-
sible for processing the part of the request that it can handle, if any. If the 
driver's processing of the request results in its completion, the driver calls 
IoCompleteRequest()to complete the request. If the request cannot be completed, 
information for the next lower-level driver in the stack is set up and the request 
is then passed along to that driver. 

As discussed in Chapter 10, "How 110 Requests Are Described," 110 requests 
in Windows NT are described by using 110 Request Packets (IRPs). When the 
110 Manager receives an 110 system services call, it allocates an IRP with at 
least as many 110 Stack locations as there are drivers in the driver stack. The 
110 Manager determines this quantity by examining the StackSize field of the 
top Device Object in the stack. The 110 Manager then initializes both the fixed 
part of the IRP and the IRP's first 110 Stack location. The 110 Manager then 
calls the first driver in the stack at its appropriate Dispatch routine to start 
processing the request. 

When a driver is called with an IRP to process, it examines both the informa
tion in the fixed portion of the IRP and the information in its 110 Stack loca
tion. On receiving the IRP, a driver calls IoGetCurrentIrpStackLocation () to get 
a pointer to the current 110 Stack location within the IRP and examine the 
IRP's parameters. The driver may do the following: 
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• Process the IRP itself. 

• Pass the IRP on to a lower-layer driver to process and complete, 
sometimes after the higher-layer driver has performed some preliminary 
processing. 

• Hold on to the IRP, and create one or more additional IRPs that are 
passed to lower-level drivers to allow the higher-level driver to ultimately 
satisfy the request. 

Processing the IRP Itself 
If the driver can complete the IRP itself, either immediately or by queuing the 
IRP for later processing, it will do so. 

One example of a driver completing an IRP immediately is when it finds an 
invalid parameter passed in the IRP. This might be an invalid buffer base align
ment or byte offset, for example. Other examples include a request to a Device 
driver to read the temperature from a thermocouple device or a range of blocks 
from a disk. 

Passing IRPs to Lower-Layer Drivers 
If a driver decides that it cannot completely handle a particular request itself, it 
can decide to pass that request on to the next lower-level driver in its driver 
stack. The driver may do this either immediately upon receiving the request, or 
after partially processing a request. In order to pass an IRP to another driver, 
the driver must set up the next I/O Stack location in the IRP for the under
lying driver to which the request will be passed. The driver calls the 
IoGetNextIrpStackLocation () function to get a pointer to the next I/O Stack 
location. Using this pointer, the driver fills in the parameters of the request that 
need to be passed to the next-lowest-level driver. The request is then passed to 
a specific lower-level driver by calling the IoCallDriver () function. This func
tion takes two arguments, as shown in Figure 11.8. 

NTSTATUS 
IoCallDriver(IN PDEVICE_OBJECT DeviceObject, 

INOUT PIRP Irp); 

DeviceObject: A pointer to the Device Object, owned by the nextlow
est-level driver in the stack, to which the request is to be sent. 

IRP: A pointer to the IRP to be sent to the next lowest-level driver. 

Figure 11.8. IoCallDriver() function prototype. 
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When might a driver pass on a request for further processing? Consider the 
case of a File System driver (FSD) that processes a noncached write operation 
to a disk. When the FSD receives and validates the parameters of the request, 
the ByteOffset parameter in the IRP's I/O Stack location reflects an offset from 
the start of a file. Using the file's metadata information (which the FSD itself 
maintains), the FSD sets up the ByteOffset parameter in the next I/O Stack 
location to be relative to the start of the disk. The FSD then sets up the 
remainder of the next I/O Stack location (such as the length of the write and 
the disk driver's Device Object pointer) and passes the request to the disk 
driver for processing. 

Another example of a driver that passes a request on to a lower-level driver is 
an Intermediate driver that performs disk-level encryption. When called with 
an IRP for a write operation, the encryption driver first encrypts the contents 
of the data buffer. The encryption driver then passes the IRP to the lower-level 
disk Device driver so that buffer is written to disk. 

There's a final, and very specific, case in which a driver might pass along a 
request to a lower-level driver. Whenever a higher-level driver receives an 
IRP _MJ_DEVICE_CONTROL function with an I/O Control Code that it does not rec
ognize as its own, it is required to pass that request down to the driver directly 
below it. This scheme enables users to send control type requests to underlying 
devices by using a handle to a File Object that corresponds, for example, to a 
specific file on that volume. 

An example of this scheme is the previously cited I/O Control Code 
IOCTL_CDROM_SET_VOLUME. If a user has an audio file open on a CD-ROM drive, 
the user can issue a Win32 DeviceloControl () function call, specifying this I/O 
control code to set the volume of the CD-ROM's audio channel. This IOCTL 
is handled by a combination of the CD-ROM Class driver and the SCSI 
Port/Miniport drivers, on which the CD-ROM device resides. When the CDFS 
(CD File System) driver receives this IOCTL, it doesn't recognize it as a request 
that it supports. As a result, the CDFS simply passes the request on to the next
lowest driver in the stack. 

The call to the IoCallDriver() function causes the I/O Manager to "push" the 
110 Stack, resulting in the 110 Stack location that had been "next" becoming 
"current." The IoCallDriver() function call also causes the 110 Manager to 
find the driver associated with the target Device Object and to call that driver's 
Dispatch routine that corresponds to the Major Function code in the now
current I/O Stack location. It is important to understand that the call to 
IoCallDriver() causes the I/O Manager to directly call the target driver's 
Dispatch routine after performing a minimal amount of processing; the 110 
Manager does not delay, queue, or schedule this call in any way. Thus, a 
higher-level driver's call to IoCallDriver () does not return until the Dispatch 
routine of the called driver performs a return operation. 
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When the target driver receives the request passed from the higher-layer driver, 
it simply repeats the process already described: it gets the request's currert 110 
Stack location (by calling IoGetCurrentIoStackLocation ()), examines the para
meters passed in the IRP, and determines whether it can process the 110 request 
itself. If the target driver cannot process the 110 request, it sets up the next IRP 
Stack location in the IRP and calls the next-lowest-level driver in the stack. 
This process is repeated until the request is finally completed. Figure 11.9 
shows the layered driver process. 
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Figure 11.9. The layered driver process. 

Creating Additional IRPs to Be Passed to 
Lower-Level Drivers 
A variation on passing an IRP to a lower-level driver is when a driver chooses 
to process an IRP by creating one or more additional (new) IRPs and passes 
these IRPs to a lower-level driver. IRPs may be created by a driver using a 
variety of methods, the most common of which is to call the IoAllocatelrp() 

function. Figure 11.10 shows the prototype for the IoAllocatelrp() function. 
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PIRP 
IoAllocateIrp(IN CCHAR StackSize, 

IN BOOLEAN ChargeQuota); 

Stack Size: Number of I/O Stack locations required in the IRP 

ChargeQuota: Indicates whether the current process' quota is to be 
charged 

Figure 11.10. IoAllocatelrp() function prototype. 

The IoAllocatelrp() function returns a partially initialized IRP. By default, 
IoAllocatelrp() assumes that the calling driver does not want an I/O Stack 
location of its own. The driver allocating the IRP may optionally request 
IoAllocatelrp() to create an IRP with enough I/O Stack locations so that it can 
have one. In this case, the driver must call IoSetNextIrpStackLocation () (a 
macro in NTDDK.H) to set the Stack location. The driver may then call the 
IoGetCurrentIrpStackLocation () function. 

One reason a driver may want its own I/O Stack location is that it wants 
to use it to pass information to its completion routine. Completion 
routines are discussed later in this chapter. 

Once the IRP is allocated, the driver can call IoGetNextI rpStackLocation () to 
get a pointer to the Stack location to be used by the next lowest-level driver in 
the stack. The driver then fills the parameters in to the I/O Stack. If a data 
buffer is required for the request, the driver must either set up an MDL or a 
system buffer, as required by the Buffer method of the driver to be called. The 
IRP may be sent to the target driver by calling the IoCallDriver () function. 

A slightly different approach to calling IoAllocatelrp{) is for a driver to call 
the IoMakeAssociatedI rp () function. Figure 11.11 shows the prototype for the 
IoMakeAssociatedI rp () function. 

PIRP 
IoMakeAssociatedIrp(IN PIRP Mas terlrp , 

IN CCHAR StackSize); 

StackSize: Number of I/O Stack locations required in the IRP 

Masterlrp: Pointer to an IRP with which the newly created IRP is to be 
"associated" 

Figure 11.11. IoMakeAssociatedlrp() function prototype. 
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IoMakeAssociatedlrp () allows the creation of IRPs that are "associated" with a 
"master" IRP. The driver that calls IoMakeAssociatedlrp() must manually ini
tialize the Associatedlrp. IrpCount field of the master IRP to the count of associ
ated IRPs that are created prior to calling IoMakeAssociatedlrp. Associated IRPs 
are the same as any other IRP in NT, except that when an associated IRP is 
completed, the I rpCount field in its master IRP is decremented. When the 
I rpCount field in the master IRP reaches zero, the 110 Manager automatically 
completes the master IRP. 

There are some restrictions that must be observed when using associated IRPs, 
however. Associated IRPs may only be used by the topmost driver in a stack. 
Ordinarily, this is a File System driver. An example of one way that a File 
System driver can use an associated IRP is when the FSD receives a request to 
perform a nonbuffered read from file, in which the corresponding disk blocks 
are not contiguous. In this case, the FSD can create a set of associated IRPs, 
with the original file-oriented read as the master IRP. The FSD sends each of 
the associated IRPs down to the next lower-layer driver for processing. When 
all the associated IRPs that were created for the master IRP are complete, the 
110 Manager automatically completes the master IRP, which represents the 
originally requested read operation. 

Advantages of the Layered Driver Model 
The layered driver model that NT uses has a number of advantages, as high
lighted in the following list. 

• The layered driver model allows each driver to specialize in a particular 
type of function. For example, it decouples file systems from having to 
know about disk drives. 

• The layered driver model allows, in most cases, functionality to be 
dynamically added to a driver stack. Take the case of the disk-level 
encryption driver again, for example. Disk-level encryption can be added, 
without any changes to the FSD or device driver, by simply inserting the 
encryption driver into the stack. 

• The layering scheme utilized by NT is flexible enough to allow an 110 
request to be completed at any layer. Requests do not always travel down 
the entire stack to be processed. For example, when an FSD receives a 
read operation and the data to satisfy that read is in the FSD's cache, the 
FSD completes the read request directly. 

Completion Notification 
A driver may wish to be informed when a request that it has passed to a lower
level driver is completed. It can do this by calling the IoSetCompletionRoutine () 
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function prior to passing the IRP to an underlying driver. Figure 11.12 shows 
the IoSetCompletionRoutine () function prototype. Figure 11.13 shows the 
prototype for the driver function that is called as a result of calling 
IoCompleteRequest () on an IRP that has a completion routine set. 

VOID 
IoSetCompletionRoutine(IN PIRP Irp, 

IN PIO_COMPLETION_ROUTINE CompletionRoutine, 
IN PVOID Context, 
IN BOOLEAN InvokeOnSuccess, 
IN BOOLEAN InvokeOnError, 
IN BOOLEAN InvokeOnCancel}; 

Irp: Pointer to the IRP which, when completed, results in the 
CompletionRoutine being called 

CompletionRoutine: Pointer to the function to call when the IRP is 
completed 

Context: Driver-defined value to be passed as an argument to the 
CompletionRoutine 

InvokeOnSuccess, InvokeOnError, InvokeOnCancel: Parameters 
which, when set to TRUE, indicate that the CompletionRoutine is to 
be called when the IRP is completed with the indicated status 

Figure 11.12. IoSetCompletionRoutine () function prototype. 

NTSTATUS 
CompletionRoutine(IN PDEVICE_OBJECT DeviceObject, 

IN PIRP Irp, 
IN PVOID Context}; 

DeviceObject: Pointer to Device Object on which original IRP was 
received by this driver 

IRP: Pointer to IRP being completed 

Context: Driver-defined context value passed when 
IoSetCompletionRoutine(} was called 

Figure 11.13. Driver's CompletionRoutineO function prototype. 
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The IoSetCompletionRoutine () function is actually a macro defined in 
NTDDK.H. Invoking this function causes a pointer to a completion routine 
and the supplied completion routine's context argument to be stored in the 
next 110 Stack location in the IRP. The appropriate flags are also set in that 
110 Stack location's Flags field, to indicate the conditions (success, error, or 
cancel) under which the completion routine is to be invoked. 

When IoCompleteRequest () is called, the 110 Manager starts at the current 110 
Stack location and walks backward up the stack, calling completion routines as 
it goes. Completion routines are called serially, one after another. Figure 11.14 
illustrates this process. Again, these calls are made directly by the 110 Manager 
from within the IoCompleteRequest () function: there is no queuing or schedul
ing involved. Additionally, note that the Completion routine is called at the 
same IRQL at which IoCompleteRequest () was called. This may be any IRQL, 
up to and including IRQL DISPATCH_LEVEL. 
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Storing the Completion routine information in the IRP's next 110 Stack loca
tion, instead of in the current 110 Stack location, has some interesting implica
tions. One is that if a driver sets a Completion routine in an IRP and later calls 
IoCompleteRequest (), that Completion routine is never invoked. This is because 
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when IoCompleteRequest () is called, the I/O Manager processes Completion 
routine call-backs, starting with the current I/O Stack location. Because the 
current driver's Completion routine is stored in the next I/O Stack location, the 
Completion routine of any driver calling IoCompleteRequest () never gets called. 

Another implication of storing the Completion routine information in the next 
I/O Stack location is that a driver that is the lowest driver in the stack, typical
ly the device driver, must never attempt to set a Completion routine to be 
called. Because this will be the driver calling IoCompleteRequest, this would be 
an error in any case; however, this procedure error may have additional conse
quences because there is no valid I/O Stack location following the I/O Stack 
location used by the lowest driver in the stack! 

Driver Capabilities in a Completion Routine 
What can a driver do in its Completion routine? As you'll see from its proto
type, a driver is called at its Completion routine with a pointer to the IRP 
being completed. The contents of the IRP are still valid when the Completion 
routine is called. Thus, a driver may (once again) get a pointer to its I/O Stack 
location by calling IoGetCurrentIrpStackLocation (). The current IRP Stack loca
tion may thus be used to pass information from the Dispatch routine to the 
Completion routine. Likewise, because the IRP is not yet fully complete, the 
AssociatedI rp. SystemBuffer and the MdlAddress fields are as valid as they were 
when the IRP was initially passed to the driver's Dispatch routine. Using the 
appropriate fields, the driver may examine or even change the user data being 
returned. The driver can also change the I/O Status being returned to the user 
(by changing the contents of IoStatus. Status or the contents of 
IoStatus. Information in the IRP). The only information that the driver will find 
is not still present in the IRP is the content of the next I/O Stack location. With 
the exception of the Maj orFunction, DeviceObj ect, and Completion-related fields, 
the contents of all lower I/O Stack Locations are cleared by the I/O Manager 
before the Completion routine is called. 

One particularly useful technique in a Completion routine is the capability of a 
driver to reclaim ownership of the IRP passed to it. This can be accomplished 
by the Completion routine returning with the status 
STATUS_MORE_PROCESSING_REQUIRED. If a Completion routine exits with any other 
status, the I/O Manager simply continues its "walk" backward through the I/O 
Stack locations in the IRP, looking for Completion routines to call. When the 
I/O Manager reaches the I/O Stack location for the first driver in the stack, 
ultimate completion processing for the IRP takes place. 

When a driver returns STATUS_MORE_PROCESSING_REQUIRED from its Completion 
routine, the I/O Manager immediately stops Completion processing of the IRP. 
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The ownership of the IRP is left with the driver. The driver may choose to per
form additional processing of the IRP itself or it may choose to pass the IRP on 
to another driver for additional processing. When processing for that IRP is 
eventually complete, the driver completing that IRP once again fills in the 
Status and Information fields of the IoStatus block in the IRP, and calls 
IoCompleteRequest () for that IRP. At this point, the I/O Manager performs 
Completion processing for the IRP, looking for Completion routines to call 
starting at the current I/O Stack location and walking backward up the I/O 
Stack. 

As may be evident from the preceding discussion, drivers can use Completion 
routines for a wide variety of purposes. For example, a Class or File System 
driver may want to know the Completion status of a disk read, so that if the 
read fails, it can reissue the request. Alternatively, an Intermediate disk block 
encryption driver may need to know when read operations are completed on a 
disk volume, so that it can decrypt the read data. 

A common mistake is made in implementing Completion routines that 
wish to resubmit an IRP to a lower-layer driver. The mistake is that the 
driver calls IoCallDriver() from its Completion routine to pass the IRP to 
the underlying driver. Although this might initially sound like a good 
idea, this can result in stack overflow problems. Also recall that 
Completion routines may be called at any IRQL <= DISPATCH_LEVEL. 

Because IoCallDriver() results in a target driver's Dispatch routine being 
called directly, this also results in the target driver's Dispatch routine 
being called at IRQL DISPATCH_LEVEL. This is likely to be a fatal error, 
resulting in a system crash, because most drivers expect their dispatch 
routines to be called at IRQL PASSIVE_LEVEL or 'IRQL APC_LEVEL. To avoid 
these problems, Completion routines should send the IRP to a worker 
thread running at IRQL PASSIVE_LEVEL. The worker thread can then call 
IoCallDriver() to resubmit the IRP to the underlying driver. 

Special Understandings Between 
Drivers 
Of course, there are plenty of exceptions to the standard way that NT drivers 
layer themselves upon one another. It is not that uncommon, in fact, for two 
drivers to have what we call a "special understanding" that enables them to 
pass requests between one another using something other than the standard 
mechanism. 
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The simplest way that two drivers can communicate is to simply call each 
other's routines directly. Because all drivers reside within the system process' 
address space, this is fairly easy. One way of implementing this particular spe
cial understanding is for two drivers to link against the same Kernel mode 
DLL. On loading, each driver creates and initializes a structure into which it 
places pointers to the entry points it wishes to export to the other driver, and 
calls a function in a DLL to store this information. When one driver wishes to 
call the other, it simply does so through a set of functions provided by the 
DLL, which calls the appropriate function through one of the previously pro
vided pointers. 

This is precisely how TDI (Intermediate layer) drivers interface with NDIS dri
vers. The NDIS wrapper is the common library DLL. When the TDI has a mes
sage that it wants the NDIS driver to send, it calls a function in the NDIS 
wrapper, which in turn directly calls the NDIS driver. The status returned by 
the NDIS driver is returned by the NDIS wrapper as the status of the TDI's 
call. Likewise, when the NDIS driver receives a message, it passes that message 
to the TDI by calling the TDI's Receive function through a function provided 
by the NDIS wrapper. 

Other drivers may implement a similar scheme to allow them to call each 
other's functions directly, without the use of an intermediate DLL, as shown in 
Figure 11.15. 
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Figure 11.15. Inter-driver communication via a common structure. 
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In this scheme, one of the drivers-we'll call it Driver A-creates a common 
structure in a nonpaged pool. Driver A fills into the structure pointers to the 
functions it wants Driver B to be able to call. Driver A then sends a pre
arranged IRP to Driver B (using IocallDriver()), passing a pointer to the 
structure in a prearranged field in Driver B's 110 Stack location. Driver B then 
fills its function addresses into the structure, and completes the IRP (by calling 
IoCompleteRequest ()). This 110 completion signals to Driver A that Driver B 
has completed its initialization processing of the structure. Each driver now has 
all the information it needs to call the functions that were exported by the 
other driver. We have used this scheme a number of times in drivers we have 
written, with excellent results. 

The Class drivers and SCSI Port drivers use yet another "special understand
ing" to facilitate their communication. When it receives an IRP, the Class dri
ver builds an auxiliary data structure called a SCSI Request Block (SRB) in a 
nonpaged pool. A pointer to this structure is stored in a prearranged field in 
the SCSI Port driver's 110 Stack location. When the SCSI Port driver receives 
the IRP, it primarily looks to the SRB for information to describe the request. 

Why do NT drivers go to the trouble of creating such "special understandings" 
between each other? One obvious reason is that two drivers want to be able to 
pass more information than is conveniently possible using the IRP structure. 
This is the reason that the Class and SCSI Port drivers use the SRB. Another 
common reason is that if two drivers communicate very frequently, they may 
just not want the bother or overhead of creating IRPs every time they want to 
communicate. For example, if Driver A frequently wants to pass the value of a 
single parameter to Driver B, it may not make sense to create an IRP and call 
IoCallDriver () to pass this parameter. 

The disadvantages of creating a "special understanding" between two drivers 
really need to be examined before embarking on such a scheme. How extensi
ble is the scheme that's being created? Will it work in future versions of 
Windows NT? Is it maintainable? Given that IoCallDriver() has very little 
overhead, is a sufficient amount of time or overhead really being saved to 
justify "rolling your own" scheme? 

Filter Drivers 
No discussion of driver layering in NT would be complete without a discussion 
of Filter drivers. The Windows NT 110 Manager includes the capability for one 
Kernel mode driver to "attach" one of its Device Objects to a Device Object 
created by a different driver. The result of this is that IRPs destined for the dri
ver associated with the original Device Object will be sent to the driver associ
ated with the "attached" Device Object. This attached driver is a Filter driver. 
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The Filter driver can then examine, modify, complete, or pass along the IRPs it 
receives to the original driver. Filter drivers may be inserted at any layer in the 
Windows NT driver stack. 

There are a couple of different mechanisms that allow a Filter driver to attach 
its Device Object to that of another driver. One way is for the Filter driver to 
first find the Device Object for the device it wants to attach using 
IoGetDeviceObjectPointer(), which was discussed previously. The Filter driver 
then attaches its Device Object to the found Device Object using the 
IoAttachDeviceToDeviceStack () function. Figure 11.16 shows the prototype for 
the IoAttachDeviceToDeviceStack() function. 

PDEVICE_OBjECT 
IoAttachDeviceToDeviceStack( 

IN PDEVICE_OBjECT SourceDevice, 
IN PDEVICE_OBjECT TargetDevice); 

SourceDevice: Pointer to original Device Object to be attached 

TargetDevice: Pointer to Filter driver's Device Object 

Figure 11.16. IoAttachDeviceToDeviceStack () function prototype. 

Every Device Object has a field named AttachedDevice, which points to the 
Device Object of the first Filter driver that has attached this Device Object. 
If the AttachedDevice field of the Device Object is NULL, there are no attached 
devices. If the AttachedDevice field is not -zero, it points to a Filter driver's 
Device Object. IoAttachDeviceToDeviceStack() finds the end of the 
AttachedDevice list for the Device Object pointed to by TargetDevice, and 
points the AttachedDevice field of this final Device Object to the Filter driver's 
Device Object. Figure 11.17 illustrates a series of Device Objects attached to 
each other. 

The return value of IoAttachDeviceToDeviceStack() is a pointer to the Device 
Object to which the Filter driver's Device Object has been attached. The Filter 
driver can use this pointer to pass requests on to the original device. Although 
this pointer is usually the same as the TargetDevice pointer, it may be that of 
another Filter driver that has attached the same device (refer to Figure 11.17). 

Another way for a Filter driver to attach its Device Object to that of another 
device is to call the IoAttachDevice () function. This function, the prototype for 
which is shown in Figure 11.18, simply combines the functionality provided by 
IoGetDeviceObjectPointer() and IoAttachDeviceToDeviceStack(). 
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Figure 11.17. A set of attached Device Objects. 

NTSTATUS 
IoAttachDevice(IN PDEVICE_OBJECT SourceDevice, 

IN PUNICODE_STRING TargetDevice, 
OUT PDEVICE_OBJECT *AttachedDevice); 

SourceDevice: Pointer to Filter driver's Device Object 

TargetDevice: Unicode string that contains the name of the device to 
be attached 

AttachedDevice: Pointer to Device Object that has been attached 

Figure 11.18. IoAttachDevice() function prototype. 

What effect does attaching a device have? The main one is that any Create 110 
request that is issued to an attached device is redirected to the last Device 
Object in the list of attached devices. This action results in the request being 
sent to the (Filter) driver associated with that Device Object. Thus, if a user 
issues a Create File () Win32 function for the "original" Device Object in 
Figure 11.17, the request is redirected to the Filter driver that created the 
SECOND Filter Device Object. 

This operation (Create requests being redirected to the last attached device in 
the list) is also illustrated by the Device Object pointer returned by the 
IoGetDeviceObj ectPointer () function. Recall that Intermediate drivers use this 
function to retrieve a pointer to a Device Object of a lower-layered device, by 
specifying the name of that lower-layered device's Device Object. When an 
Intermediate driver attempts to locate a lower-level device by calling 
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IoGetDeviceObj ectPointer(), the pointer returned will be that of the last 
attached device in the list of attached devices, if that Device Object is attached. 
Thus, again using Figure 11.17 as an example, if an Intermediate driver were 
to issue IoGetDeviceObj ectPointer() for the "Original" device, the Device 
Object pointer returned would be that of the SECOND Filter device. 

Let's look briefly at an example. Suppose the SCSI Mini-port and Port drivers 
start as normal. Next, a Filter driver for the SCSI Port driver starts. Next, the 
Disk Class driver starts. When the Disk Class driver calls 
IoGetDeviceObj ectPointer(), the Device Object pointer returned will be a point
er to the Filter driver's Device Object. Figure 11.19 shows the completed stack 
of Device Objects, with Filter driver inserted. 
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Figure 11.19. A stack of Device Objects, including one that filters the ScsiPort device. 

It is very important to remember that the 110 Manager only runs the 
AttachedDevice list to find the last attached Device Object as a result of pro
cessing a Create request. No redirection occurs when IoCallDriver () is called. 
Therefore, for a Filter driver to be successful, it must attach any device in 
which it is interested before a higher-layered device calls 
IoGetDeviceObj ectPointer () (which, as previously discussed, issues a Create) to 
find its Device Object. 
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Filter Driver Usage Guidelines 
In our practical experiences with Filter drivers, we have developed a set of 
rules that well-behaved Filter drivers must follow. These rules are as follows: 

• If inserting a Filter driver into the device stack causes anything to break, 
it's automatically the Filter driver's fault. The onus is thus on the Filter 
driver to adapt itself and to make sure that everything is working correct
ly after it is introduced. This is true, even if the Filter driver needs to 
compensate for an error in a lower-layered driver! 

• It is up to the Filter driver to understand how the device to which it 
attaches works. If the Filter driver can't "understand" the requests that it 
receives, it is not the fault of the device to which it attaches. 

• Filter drivers must appear to any drivers that layer above them as close to 
the original device as possible. 

• Filter drivers must plan to work well with other Filter drivers. These 
include Filter drivers that attach a device before them and Filter drivers 
that attach the device after they have attached it. 

The importance of these rules can be demonstrated with a couple of simple 
examples. Take the case of a Filter driver that attaches the SCSI Port driver, as 
in our previous example. In this case, the IRPs that the Filter driver receives 
have SRBs associated with them. As we said earlier, most of the information 
about the request being sent from a Class driver to the SCSI Port driver 
appears in the SRB. If the Filter driver isn't aware of the "special understand
ing" between the Class and SCSI Port drivers, it is surely missing a lot of infor
mation! 

Another example involves Filter drivers that attach themselves above File 
System drivers. Not only must these Filter drivers understand the requests that 
File System drivers expect to receive (no mean feat, considering that this infor
mation is not documented by Microsoft), but they also must be sure that they 
don't do anything to cause the File System driver to malfunction. What makes 
this particularly tricky is that File System drivers typically use method Neither 
to describe their I/O requests. Thus, I/O requests for FSDs must be passed to 
the FSD in the context of the thread originally initiating the request. If a Filter 
driver changes the context of the request, by sending a request off to be 
processed by a worker thread, for example, the File System driver stops 
working. According to our Filter driver rules, this is the Filter driver's fault. 
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Fast 110 
As we mentioned at the start of this chapter, File System drivers are very close
ly coupled with the NT Memory and Cache Manager subsystems. Thus, 
requests to read or write to a File Object often result in nothing more than a 
cached operation in the File System. None of the other driver layers are 
involved. Because these cached operations can be very fast, the 110 Manager 
implements an optimized method for dealing with these requests. This method 
is called "Fast" or "Turbo" 110. 

A driver that supports fast 110 creates what is called a Fast 110 Dispatch Table. 
The structure (FAST_IO_DISPATCH) is documented in NTDDK.H. A driver that 
supports Fast 110 points the FastIoDispatch field of its Driver Object to this 
table. When the 110 Manager receives an 110 request, for certain drivers and 
functions, it checks to see if the driver supports Fast 110 for this function 
before it builds an IRP. If the driver supports Fast 110 for this function, the 110 
Manager calls the driver at its Fast 110 entry point, in the context of the 
requesting thread, with the parameters supplied with the request. If the driver 
can completely handle the request in its Fast 110 routine, it does so, and 
returns TRUE as the result of the call to its Fast 110 entry point. If the driver 
cannot handle the request in its Fast 110 routine, it returns FALSE. 

When a driver returns FALSE as a result of a call to one of its Fast 110 entry 
points, the 110 Manager proceeds as if no Fast 110 entry point had been sup
plied. That is, the 110 Manager builds an IRP in the normal way and calls the 
driver with that IRP. 

Fast 110 is usable by only a small number of Windows NT drivers. First of all, 
except for its use in TDI devices, it comes into use only for drivers that are the 
top driver in a stack. In addition, the 110 Manager restricts most operations, 
including read and write operations, to File System drivers only. That is, unless 
a driver is a File System driver, the 110 Manager never even looks for a Fast 
110 entry point for most operations. 

However, one operation for which the 110 Manager does support Fast 110 for 
non-File System drivers is IRP _MJ_DEVICE_CONTROL. That is, when processing a 
Device Control system service (as a result of calling the Win32 function 
DeviceloControl() or issuing the NtDeviceloControlFile() native NT system ser
vice), the 110 Manager always checks to see whether the top driver in the stack 
supports Fast 110. If it does, it calls its Fast 110 entry point for Device Control 
functions. Figure 11.20 shows the prototype for the FastIoDeviceControl() 

entry point. 
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BOOLEAN 
FastloDeviceControl(PFILE_ 0 B JECT * File 0 bject, 

IN BOOLEAN Wait, 
IN PYOID InputBuffer, 
IN ULONG InputBufferLength, 
IN OUT PYOID OutputBuffer, 
IN ULONG OutputBufferLength, 
IN ULONG IoControlCode, 
OUT PIO_STATUS_BLOCK IoStatus, 
IN PDEVICE_OBJECT Device}; 

FileObject: Pointer to the File Object on which this operation is taking 
place 

Wait: TRUE if the driver can wait while processing this request 

InputBuffer: Requestor's virtual address of InBuffer, supplied on the 
request 

InputBufferLength: Length, in bytes, of the InputBuffer 

OutputBuffer: Requestor's virtual address of OutBuffer, supplied on 
the request 

OutputBufferLength: Length, in bytes, of the OutputBuffer 

IoControlCode: I/O Control Code specified in the request 

IoStatus: Pointer to I/O Status Block to be filled in by driver if return 
value is TRUE 

Device: Pointer to Device Object on which request is being issued 

Figure 11.20. FastloDeviceControl() entry point prototype. 

Although Fast I/O can indeed be a valuable optimization, most device drivers 
will not or cannot make use of even the Device I/O Control functionality that 
it provides. The major restriction imposed by Fast I/O is that the driver must 
be at the top of the stack. For drivers that meet this requirement, the same 
restrictions imposed by METHOD_NEITHER for Device Control operations exist. 
That is, the driver must be able to completely process the request in the con
text of the calling thread. Although some drivers can profitably make use of 
this functionality, they are the exceptions. 
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Case Study: The Importance of 
Load Order 
We had a student a few years back who became all excited when he heard 
about Filter drivers. "This is exactly what I need," he said, "to implement a 
read-only filter for SCSI devices." Apparently this is a project with which he 
had been tasked, and until coming to class he could think of no way to address 
his problem. 

So, he went off and wrote his Filter driver. As he described it to us in a number 
of email messages.this Filter driver layered itself over the SCSI Port driver. 
Whenever it received an IRP with a write request for a restricted device, it sim
ply completed the IRP with STATUS_ACCESS_DENIED. Although we pointed out to 
him that this would solve only part of his problem (for example, this solution 
addressed neither delete nor rename operations!), he insisted that his manager 
would be happy just to have the functionality that he had planned. 

A short time later, we received an emergency phone call from the student. Filter 
drivers didn't work for him! Although he had written his driver according to 
the instructions we provided in our class and his Filter driver loaded without 
any errors, it never received any IRPs! Was NT broken? Did we lead him 
astray about Filter drivers? 

When we asked him to explain how he was doing his testing, the problem soon 
became apparent: He was doing his testing on a spare disk drive on the same 
SCSI controller as his system disk. By his own description, he started his sys
tem, logged in, and then used the Devices Control Panel applet to start his 
Filter driver. He could see his driver print debug messages on loading, and he 
knew that it loaded successfully because he never received any IRPs. 

The problem occurred, of course, when his Filter driver was loading. When the 
system started, the SCSI Port driver loaded, and then the Disk Class driver 
loaded. Sometime after both of these drivers started, our student logged into 
the system. It was then that he started his Filter driver. Recall that the only 
time the list of attached Device Objects is traversed is during Create process
ing. Therefore, because the Disk Class driver had already started, it already 
issued its call to IoGetDeviceObjectPointer to get a pointer to the Device Object 
of the SCSI Port driver. The Disk Class driver then used this pointer whenever 
it sent requests to the SCSI Port driver using IoCallDriver. 

Sometime after this initialization took place, our student's Filter driver loaded 
and successfully attached the SCSI Port driver. However, because the Disk 
Class driver already got its pointer to the SCSI Port driver's Device Object, no 
requests ever went to the Filter driver. 
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The fix? Simply change the time at which the Filter driver loaded. By having 
the Filter driver automatically start during system startup and specifying an 
appropriate value for the "Group" startup parameter, the driver started after 
the SCSI Port driver but before the Disk Class driver. 

Another mystery solved! 





Chapter 12 
Driver Structure 

This chapter will review: 

• DriverEntry Points. In this section, we provide a description of the most 
common entry points in Windows NT device drivers. We also indicate 
where in the book information about these entry points can be found. 

• Understanding Driver Organization. Before we can discuss the details of 
each driver entry point in the following chapters, it's important to under
stand the general concepts of the way Windows NT device drivers are 
organized. In this section, we look at a device driver as a whole and 
describe when the various entry points in a driver are called. We also 
examine the typical path that a driver implements to process a request. 

Before discussing the details of the processing that takes place at the major 
entry points in a driver, which we do in the next chapter, it is helpful to discuss 
the basics of driver structure. This structure includes the various entry points in 
a Device driver, the context in which a driver's entry points may be called, and 
the flow of processing for typical requests. 

DriverEntry Points 
The Windows NT driver architecture uses an entry point model, in which the 
I/O Manager calls a particular routine in a driver when it wants the driver to 
perform a particular function. Of course, at each entry point the I/O Manager 
passes a specific set of parameters to the driver to enable it to perform the 
req uested function. 

The basic driver entry points, used by most NT Kernel mode device drivers, are 
as follows: 

• DriverEntry. The I/O Manager calls this function in a driver when a dri
ver is first loaded. Drivers perform initialization for both themselves and 
any devices they control within this function. This entry point is required 
for all NT drivers. The DriverEntry entry point is described in detail in 
Chapter 13, "DriverEntry." 



246 Part II: The I/O Manager and Device Driver Details 

• Dispatch entry points. A driver's Dispatch entry points are called by the 
I/O Manager to request the driver to initiate a particular I/O operation. A 
driver can have up to one Dispatch entry point for each major I/O func
tion that it supports. Dispatch entry points are described in detail in 
Chapter 14, "Dispatch Entry Points." 

• Interrupt Service Routine (ISR). This entry point is present only if a dri
ver supports interrupt handling. Once a driver has connected to inter
rupts from its devices, its ISR will be called whenever one of its devices 
requests a hardware interrupt. ISRs are described in detail in Chapter 15, 
"Interrupt Service Routines and DPCs." 

• DpcForIsr and/or CustomDpc. A driver uses these entry points to com
plete the work that needs to be done as a result of an interrupt occurring 
or another special condition. DpcForIsr and CustomDpc entry points are 
discussed in detail in Chapter 15. 

Other entry points are applicable to the processing of a specific IRP or set of 
IRPs. These entry points include the following: 

• Cancel. A driver can define a Cancel entry point for each IRP that it 
holds in an internal queue. If the I/O Manager needs to cancel a specific 
IRP, it calls the Cancel routine associated with that IRP. Cancel opera
tions and the Cancel entry point are discussed in detail in Chapter 14. 

• Completion routine. As discussed in Chapter 11, "The Layered Driver 
Model," a higher-layer driver can establish a Completion routine in an 
IRP. The I/O Manager calls this routine after all lower-layer drivers have 
completed the IRP. 

Finally, several entry points are applicable only if specific functionality is used 
or supported by a driver. Most of these entry points apply only to specific 
types of drivers. The entry points include the following: 

• Reinitialize. The I/O Manager calls this entry point, if one has been regis
tered, to allow a driver to perform secondary initialization. The 
Reinitialize_entry point is discussed in detail in Chapter 13. 

• Startlo. The I/O Manager utilizes this entry point only in drivers that use 
System Queuing (described in Chapter 14). For such drivers, the I/O 
Manager calls this entry point to start a new I/O request. The StartIo 
entry point is discussed in detail in Chapter 14. 

• Unload. The I/O Manager calls this entry point to request the driver to 
ready itself to be immediately removed from the system. Only drivers that 
support unloading should implement this entry point. The Unload entry 
point is discussed in Chapter 13. 
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• loTimer. The I/O Manager calls this entry point approximately every sec
ond in drivers that have initialized and started loTimer support. This 
entry point is discussed in Chapter 13. 

• Fast 110. Instead of one entry point, this is actually a set of entry points. 
The I/O Manager or Cache Manager calls a particular Fast I/O routine to 
initiate a specific "Fast I/O" function. These routines are almost exclu
sively supported by file system drivers. Fast I/O entry points were dis
cussed in Chapters 10 and 11, and are further discussed in Chapters 13 
and 15. 

• AdapterControl. The I/O Manager calls this entry point to indicate that 
the driver's shared DMA resources are available for use in a transfer. 
Only certain DMA device drivers implement this entry point. This entry 
point is discussed in detail in Chapter 17, "DMA Data Transfers." 

• Timer DPC. This entry point is called when a driver-requested timer 
expires. Timer entry points are discussed in Chapter 15 and Chapter 16, 
"Programmed I/O Data Transfers." 

• Synchronize Function. The I/O Manager calls this entry point in response 
to a driver's request to acquire one of its ISR Spin Locks. This entry point 
is described in detail in Chapter 15. 

Understanding Driver Organization 
Of course, a driver is more than a random collection of entry points. 
Throughout this section, we'll discuss, in general terms, when and how the I/O 
Manager calls the major driver entry points. We also discuss the processing 
that takes place at these entry points. Finally, we discuss how a typical I/O 
request moves through a driver during its processing. 

The goal of the sections that follow is to introduce you to the general opera
tion of a Windows NT driver. Bear in mind that the details of the processing 
that takes place at each entry point, and all the exceptions to the general rules 
that are presented, are described in later chapters. 

Loading and Initialization 
As discussed in previous chapters, NT drivers are dynamically loaded. In NT 4, 
drivers are almost always loaded during system startup. When a driver is 
loaded, the I/O Manager calls its DriverEntry entry point. A pointer to the dri
ver's Driver Object and a pointer to a Unicode string containing the driver's 
registry path are passed as parameters to the driver at its DriverEntry entry 
point. It is during DriverEntry processing that a driver performs internal initial
i~ation, and locates and initializes hardware that it will control. 
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If a driver returns an error status to the 110 Manager's call to DriverEntry, the 
driver is unloaded from the system (unless the driver was started at boot time; 
see Chapter 20, "Installing and Starting Drivers") and the 110 Manager makes 
no further references to the driver. On return from DriverEntry with success, the 
I/O Manager begins passing I/O requests to the driver, in the form of IRPs, in 
response to user requests. 

Some drivers or devices might take a long time to perform initialization or 
require their devices to be initialized in stages. After initial processing in 
DriverEntry, a driver can call the I/O Manager to register a Reinitialization 
entry point after such a driver has determined that it will load successfully. The 
Reinitialization entry point is called after all the other drivers in the system 
that are waiting to be loaded have completed loading. 

Request Processing for Device Drivers 
Figure 12.1 is a flow chart that illustrates the typical sequence of request pro
cessing for device drivers. Use this flow chart to follow the steps described in 
the remainder of this section. Although every device is not constrained to fol
low this precise processing sequence, this is the basic sequence utilized by 
many NT drivers for typical devices. 

Dispatch Routine Processing 
When the I/O Manager has a request for a driver to process, it calls the driver 
at the Dispatch entry point associated with the request's major function code. 
For example, when the I/O Manager has an IRP with an lRP _MJ_READ function 
code for a particular driver to process, it calls that driver's Dispatch Read 
entry point. As parameters to the driver's Dispatch entry point, the I/O 
Manager passes a pointer to the Device Object to which the request is directed 
and a pointer to the IRP that describes the request. Drivers may have up to 
one Dispatch entry point per function code that they support. 

When called at its Dispatch entry point with an IRP, it is the driver's job to 
process the IRP as far as possible before returning to the I/O Manager. The 
status that the driver returns from its Dispatch routine is the status of the I/O 
request for which the driver was called. Thus, if the driver can complete the 
request in its Dispatch routine, it does so and returns the status of the request 
to the I/O Manager. The reason for completing the request may be that one or 
more of the request's parameters were in error (such as the buffer length being 
inappropriate for the device), or that the driver could complete the request on 
the device successfully. 

If immediate completion of the request is not possible, the device driver queues 
the IRP for later processing. This is the typical case for most device drivers. 
A typical driver, upon receiving a request to perform a data transfer function, 
such as an IRP with a major function code of lRP _MJ_READ, cannot immediately, 
complete the request because one of the following is true: 
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• The driver needs to wait for the device to become available before the 
operation can be initiated. In this case, the driver marks the IRP as pend
ing and places the IRP on a queue of pending requests. 

• The driver can initiate the operation, but it needs to wait for the request
ed data to become available on the device or the transfer to complete. In 
this case, the driver marks the IRP as pending and stores a pointer to the 
in-progress IRP. 

Save some state 
Acknowledge 

Interrupt to device 
Request DpcForlsr 

Complete 
processing 

request; 
Complete IRP 

Start request 
described by IRP 

on device and 
return 

Figure 12.1. Typical sequence of request processing for device drivers. 
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In either case, the driver returns STATUS_PENDING to the I/O Manager. To indicate 
that the I/O request is presently in progress on the device driver, the I/O 
Manager returns STATUS_PENDING at this point to the thread that requested the 
I/O operation. 

ISR and DpcForIsr Processing 
When a device driver returns from a call to its Dispatch entry point with a 
request pending, when does that request ultimately get completed? Although 
this depends on the specific architecture of the device, it is safe to say that the 
request will be completed as a result of a Deferred Procedure Call (DPC). 

Consider, for example, a simple device that is capable of one single operation 
at a time. If the device is free when the driver is called at its Dispatch entry 
point to process a transfer operation (such as a read or a write), the driver 
starts the request on the device. The driver saves a pointer to the IRP so that it 
can be retrieved later for completion, and it indicates that the device is now 
busy (using some internal control mechanism of its own devising). The driver 
next marks the IRP as pending and returns from its Dispatch routine with 
STATUS_PENDING to the I/O Manager. 

When the transfer operation is complete, the device interrupts. As a result of 
this interrupt, the driver's Interrupt Service Routine (ISR) for the device is 
called. The driver's ISR is passed a pointer to the driver's Interrupt Object and 
a driver-defined context value as parameters. In the ISR, the driver determines 
(typically by querying the device hardware) whether the device indicated by the 
context argument is currently requesting an interrupt. If the device indicated by 
the context argument is requesting an interrupt, the driver acknowledges to its 
hardware that it has seen the interrupt, saves any required state for later use, 
and requests a DpcForIsr. 

When the DPC is processed, the driver is called at the DpcForIsr entry point 
associated with that device. The driver determines the reason that it has been 
called by referring to the previously saved state information or the device hard
ware itself. In the example, the driver is in the DpcForIsr to complete a transfer 
operation. The driver retrieves the pointer to the in-progress IRP that it stored 
in its Dispatch routine, and performs any hardware-specific completion pro
cessing that may be required. This might include actually moving the data from 
the device to the requester's data buffer (for a programmed I/O type device), 
re-enabling interrupts on the device, or (for some devices) nothing at all. With 
the request now completely processed, the driver completes the IRP by calling 
IoCompleteRequest(). 

The next step is very important: Prior to returning from its DpcForIsr entry 
point, the driver needs to propagate its own execution. Because the driver has 
just completed a request in the DpcForIsr, the device is usually now available 
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to start a new request. Therefore, before returning from the DpcForIsr, the dri
ver checks to see whether there are any requests queued, waiting for the device 
to become available. 

If there are requests queued, the driver starts one of these requests (it chooses 
which one to start by using an internal algorithm). If there are no pending 
requests, the driver clears its own internal indication that the device is busy. 
In either case, the driver returns from its DpcForIsr entry point. 

The example discussed also illustrates how a request is processed if the device 
driver's Dispatch routine was called and it determined that the device was busy 
and the request could not be immediately started. In this case, the driver marks 
the IRP pending, and queues the request. The driver starts this request in the 
DpcForIsr entry point as a result of a previous request being completed. 

Although the previous example was for a transfer request, the same sequence 
of operations would take place for any interrupt driven request. Even polled 
drivers follow a similar sequence. Such drivers typically utilize a private worker 
thread to periodically query a device's registers. When an in-progress request is 
complete, a polling driver typically requests a CustomDpc entry point, in place 
of the DpcForIsr entry point, to complete the request. 

Request Processing for Intermediate Drivers 
The sequence of processing requests for Intermediate layer drivers is typically 
simpler than that for device drivers. So, as for device drivers, when the I/O 
Manager has a request to be processed, it calls an Intermediate driver at the 
Dispatch entry point that corresponds to the request's major function code. 
When it's called at its Dispatch entry point, an Intermediate driver processes 
its request as far as possible, returning the status of the request to the I/O 
Manager as the status of its Dispatch entry point. 

For an Intermediate layer driver, processing a request entails validating it and, 
if it is found to be valid, typically using IoCallDriver () to pass the IRP to a 
lower-layer driver for further processing and ultimate completion. Typically, 
the status returned by the next lowest layer driver to the IoCallDriver() func
tion call is returned by the Intermediate driver as the status from its Dispatch 
entry point. 

Optionally, the Intermediate driver can set a Completion routine in the IRP, 
prior to passing the IRP along to a lower-layer driver. This is done by using the 
function IoSetCompletionRoutine ( ). When a Completion routine is set by an 
Intermediate driver for a given IRP, the driver is called at its Completion rou
tine when all the lower-layer drivers have completed the IRP. The process by 
which Intermediate drivers pass requests on for processing and are called back 
at their completion is described in detail in Chapter 11, "The Layered Driver 
Model." 
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As an example, consider how the Disk Class driver processes a read request. 
The Disk Class driver is called at its read Dispatch entry point, with an IRP 
having a major function code of lRP _MJ_READ. The driver validates the parame
ters in the IRP. If any of the IRP's parameters is not valid, the IRP is immedi
ately completed with an error status, and the Disk Class driver returns that 
same error status from its read Dispatch entry point to the I/O Manager. 

If the IRP's parameters are valid, the Disk Class driver will process the request 
by sending it along to the appropriate Disk Device driver, which is usually the 
next lower-layer driver below the Disk Class driver. The Disk Class driver 
sends the request to the disk Device driver by calling loCallDriver (). The Disk 
Class driver then returns from its read Dispatch routine, returning the status 
returned by loCallDriver() to the I/O Manager. 

Dynamic Unloading 
Windows NT supports not only the dynamic loading, but also the dynamic 
unloading of a driver from the running system. Support for dynamic unloading 
is optional in a driver. A driver indicates to the I/O Manager that it can be 
dynamically unloaded by supplying a pointer to an Unload entry point in its 
Driver Object. 

After a driver has been requested to dynamically unload, when there are no 
further I/O requests in progress for any of the driver's Device Objects, the I/O 
Manager calls the driver at its Unload entry point. A pointer to the driver's 
Driver Object is passed as a parameter. When called at its Unload entry point, 
the driver basically undoes the work it did within its DriverEntry routine. The 
driver resets any devices under its control and disables the interrupts from 
those devices. The driver disconnects from interrupts, deletes its Device 
Objects, pending timers are stopped, and all other driver-allocated structures 
are returned to the pool. 

If a driver chooses to support dynamic unloading~ it must properly 
unload when the I/O Manager calls its Unload entry point. It cannot 
"choose" not to unload after it has been called. Indeed~ the driver is 
unconditionally unloaded once this entry point has returned. 

Request Processing Context 
When a driver is called to process a request, what context is it called in? Stated 
simply, this question means: What is the current thread, as established by the 
(NT Microkernel) dispatcher? Because every thread belongs to only one 
process, the current thread implies a specific current process. Together, the cur
rent thread and current process imply all those things (handles, virtual memory, 
scheduler state, and registers) that make the thread and process unique. 
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Process Context 
Recall that in Windows NT, a process is really just a container for a set of 
threads. The process contains most of the resources and attributes used by each 
of its threads. 

A simple example of process context is handles, such as those returned from 
the Win32 function Create File () (or the NT native function NtCreateFile ()). 

Because handles are specific to a particular process, a handle created within the 
context of one process is of no use in another process's context. Because han
dles are "owned" by a process, they can be shared by all the threads in that 
process. 

Virtual memory context is perhaps the aspect of process context that is most 
important to driver writers. Recall that NT maps user processes into the low 
2GB of virtual address space, and processes the operating system code itself 
into the high 2GB of virtual address space. When a thread from a user process 
is executing, its virtual addresses range from 0 to 2GB, and all addresses above 
2GB are set to "no access," which prevents direct user access to operating 
system code and structures. When the operating system code is executing, the 
virtual addresses for the operating system code range from 2-4GB, and the 
current user process (if there is one) is mapped into the addresses between 0 
and 2GB. 

In Windows NT Enterprise Serve~ user processes may have up to 3GB of 
virtual address space. Thus, in this version of the system, user processes 
are mapped into the low 3 G B of virtual address space, with the operating 
system mapped into the high 1 G B. 

In NT, the code mapped into the high 2GB of address is the operating system 
code, which includes all drivers, and paged and nonpaged pool. This map
ping never fundamentally changes (well, to be precise, most of the mapping 
never changes. The data mapped in the "hyperspace" area, for example, does 
change). However, the user code mapped into the lower 2GB of address space 
changes, based on which process is current. 

In NT's specific arrangement of virtual memory, a given valid user virtual 
address x within process P (where x is less than or equal to 2GB) corresponds 
to the same physical memory location as kernel virtual address x. This is true, 
of course, only when process P is the current process and (therefore) process 
P's physical pages are mapped into the operating system's low 2GB of virtual 
addresses. Another way of expressing this last sentence is "This is true only 
when P is the current process" or "This is true only in the context of process 
P." So, for all user processes, user virtual addresses and kernel virtual addresses 
up to 2GB refer to the same physical locations, given the same process context. 
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Thread Scheduling Context 
Another aspect of context that's important to drivers is thread scheduling con
text. When a thread waits (such as by issuing the Win32 function 
WaitForSingleObj ect () for an object that is not signaled), that thread's schedul
ing context stores information that defines what the thread is waiting for. 
When issuing an unsatisfied wait, the thread is removed from the ready queue, 
to return only when the wait has been satisfied. This occurs when the 
Dispatcher object for which the thread was waiting becomes signaled. 

Classes of Context 
In NT, Kernel mode drivers run in three different classes of context: 

• System process context 

• Specific thread (and process) context 

• Arbitrary thread (and process) context 

During its execution, certain parts of every Kernel mode driver eventually run 
in each of the three context classes listed previously. For example, a driver's 
DriverEntry() function always runs in the context of the system process, which 
is the process that is first created when the system starts. It has an arbitrary 
user process mapped into the lower 2GB of the kernel's virtual address space. 

On the other hand, a driver's DpcForIsr entry point always runs in what's 
referred to as an "arbitrary thread context." This means that the thread that is 
the current thread, in terms of the dispatcher, is unrelated to the request(s) 
being processed in the DpcForIsr while the DpcForIsr is executing. Because any 
thread might be the current thread, any user process (or no user process) might 
be mapped into the lower 2GB of kernel virtual addresses. This "works" 
because the code for the DpcForIsr is running in the high 2GB of system virtu
al addresses, and the code mapped at these addresses (as already mentioned) 
does not change from process to process. 

Dispatch Routines and Context 
The context in which a driver's Dispatch routine runs is a particularly interest
ing issue. In some cases, a driver's dispatch routines run in the context of the 
calling user thread. Figure 12.2 shows why this is so. 

When a user thread issues an I/O function call to a device, for example by call
ing the Win32 ReadFile () function, this results in a system service request. On 
Intel architecture processors, such requests are implemented by using software 
interrupts that pass through an interrupt gate. The interrupt gate changes the 
processor's current privilege level to Kernel mode, causes a switch to the kernel 
stack, and then calls the system service dispatcher. The system service dispatch
er in turn copies the system service arguments from the user stack to the kernel 
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stack, and calls the I/O Manager to build an IRP and call the Read Dispatch 
routine of the top driver in the driver stack. All this happens at IRQL 
PASSIVE_LEVEL. 

User Application 

, 
" 

" 

push arg1 
push arg2 
push argn 

mov eax, sys_svc_code 
mov ebx, #_oCparams 

int2E 

r----'=-~-~"'- - - - - - - - - - - ., 

, System Service Dispatcher 

I 

I 

I 
." Device DispatchRead( ... ) I 

1/0 Ma~ger ' { 

loAliocatarlp( ... ); , , " (setup IRP & I'1Q stack) , , " Perform request 
loCaIiDriver(.~.r ~ ~ loCompleteRequest( ... ); 

return(STATUS_SUCCESS) 
} 

Figure 12.2. Calling a stack of drivers in requestor's context. 
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Throughout this entire process, no queuing of the I/O request takes place. 
Therefore, no change in thread and process context could have taken place. In 
this example, then, the Dispatch routine for the driver at the top of the stack is 
called in the context of the thread that issued the ReadFile () request. This 
means that when the driver's Read Dispatch routine is running, it is the calling 
thread executing the Kernel mode driver code. 

Thus, any driver that is called directly by the I/O Manager, with no other inter~ 
vening drivers, is called in the context of the calling thread. This includes File 
System drivers, for example, because they sit at the top of their driver stacks. It 
also includes device drivers that provide functions directly to User mode appli
cations with no intervening intermediate or file system drivers, such as the 
Toaster driver mentioned in earlier chapters. 

A driver's Dispatch routine does not always run in the context of the request
ing thread, however. If a driver is layered below another driver, its Dispatch 
routine almost always assumes that it is running in an arbitrary thread context. 
This is because, as described in Chapter 11, a higher-layer driver may queue 
any request it receives for later processing. When the driver later decides to 
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pass that request to a lower-layer driver, it can be running in a different thread 
context from which the request was received. Of course, the higher-layer driver 
may queue some requests and not others. The context in ;Which the lower-layer 
driver is called may, therefore, sometimes be that of the requesting thread, and 
at other times not. Because the lower-layer driver has no way of knowing when 
it is being called in the context of the calling thread and when it is not, the ' 
lower-layer driver must always assume its context to be a'rbitrary. 

Note 

A filter driver, attaching over a device driver that would otherwise be 
called in the context of the requesting thread,' cannot cause the device dri
ver to be called in a different thread context and then malfunction. This 
is because, according to the rules for filter drivers in Chapter 11, if insert
ing a filter driver above another driver causes the driver being filtered to 
break, this is a problem in the filter driver. 
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DriverEntry 

This chapter discusses the details of processing at the DriverEntry entry point. 
It also discusses how drivers may support dynamic unloading by supplying an 
Unload routine. Specifically, this chapter will review: 

• Determining Device Configuration. Because drivers in Windows NT are 
loaded dynamically, they must dynamically locate the device(s) that they 
will support. In this section, we describe how a driver finds the devices it 
will support. 

• Creating Device Objects. In Windows NT, Device Objects are created 
dynamically by the device driver. In this section, we discuss in detail how 
Device Objects are created, and how devices are made accessible to users. 

• Claiming Hardware Resources. In this section, we describe how a driver 
reserves specific hardware resources-such as I/O Ports, shared memory 
regions, IRQs, and DMA channels-for its own use. 

• Translating Bus Addresses. Hardware resources used by devices are bus
specific. Before these resources can be used by a driver via the HAL, they 
must be translated to systemwide logical values. This section describes 
how this is done. 

• Exporting Entry Points. In this section, we describe how a driver makes 
its many entry points known to the I/O Manager. 

• Connecting to Interrupts and the Registering DpcForIsr. Most drivers are 
interrupt-driven. In this section, we describe how a driver connects its 
Interrupt Service Routine to a particular device's interrupts, and how the 
driver registers its DPC routine for ISR completion. 

• Getting an Adapter Object. DMA'device drivers need an Adapter Object 
in support of almost all their transfer operations. This section describes 
how a driver gets a pointer to its Adapter Object. 
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• Performing Device Initialization. This section briefly discusses device
specific initialization that a driver may need to perform. 

• Other DriverEntry Operations. Some drivers have special needs. In this 
section, we discuss some optional operations that some drivers may need 
to perform during DriverEntry. 

• Dynamic Driver Unloading. Just as drivers are dynamically loaded in 
Windows NT, they can also optionally be dynamically unloaded. In this 
section, we describe how a driver can declare its support for dynamic 
unloading. 

The 110 Manager calls a driver's DriverEntry function when the driver is 
loaded. In NT, only one instance of a driver is loaded, regardless of the number 
of physical devices that the driver will control. Thus, a driver's DriverEntry 
entry point is called by the 110 Manager only once, regardless of the number of 
devices the driver will control. DriverEntry is called at IRQL PASSIVE_LEVEL in 
the context of the system process. Figure 13.1 shows the prototype for the 
DriverEntry entry point. 

Figure 13.1. DriverEntry entry point. 

The return value from DriverEntry is NTSTATUS. If the driver returns a status 
indicating success, the I/O Manager immediately allows processing of requests 
for the Device Objects created by the driver. If a status other than success is 
returned, the driver is unloaded. 
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The specific work performed by a driver in DriverEntry does, of course, 
depend on the type of device being supported. The main job of a driver v'hen 
called at DriverEntry is to do whatever is necessary to ready itself and its 
devices to process 110 requests. The typical steps that a driver performs at the 
DriverEntry include the following: 

1. Locate physical hardware devices that the driver will control. 

2. Create one or more Device Objects. 

3. Claim hardware resources to be used by the driver and, where necessary, 
translate those resources for use by the driver with the HAL. 

4. Export other driver entry points (such as Dispatch entry points). 

5. Connect to interrupts and register a DpcForIsr. 

6. For DMA devices, describe the device's characteristics and get an Adapter 
Object. 

7. Do whatever initialization and setup is necessary to make the devices 
under the driver's control ready for processing. 

People new to writing NT drivers are often surprised at the length and com
plexity of the processing that takes place during DriverEntry. Because all dri
vers determine their configuration and reserve resources in NT when they 
load, however, all the work needed to prepare the driver and its devices for 
operation takes place during DriverEntry. 

Determining Device Configuration 
Unlike other operating systems, drivers in NT locate the hardware resources 
for the device(s) they support dynamically when they are loaded. Hardware 
resources, in this case, refer to the 110 ports, shared memory segments, device_ 
registers (in both memory and port space), interrupt vectors, and system DMA 
channels that a device utilizes. The three ways to locate this information in NT 
are as follows: 

• Query the system's device-configuration data. During startup, the system 
locates and identifies a subset of devices that are present on the system. 
Information about these devices may be retrieved using the 
IoQueryDeviceDescription () function. 

• Query bus configuration data. Drivers for PCI, EISA, and M CA devices 
may retrieve information about device identification and configuration 
for any given slot on these buses. This retrieval operation is accomplished 
using the HalGetBusData () function. 
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• Query the driver's "Parameters" subkey in the Registry. During the dri
ver's installation procedure, information about a device's configuration 
can be requested from the user and stored in the Registry. Drivers may 
retrieve this information by using the RtlQueryRegistryValues () function. 
More information about driver installation procedures can be found in 
Chapter 20, "Installing and Starting Drivers." 

The method that a driver uses is a function of the type of device it supports. 
Many drivers use a combination of methods. For example, a driver for a serial 
port device typically queries the system's configuration data to determine its 
hardware resources. This method is used because serial port devices are one of 
the standard devices discovered and identified during system startup. For a 
more complex device, such as an exotic PCI-based serial port, the process can 
be more involved. For example, the driver might attempt to augment the sys
tem configuration data by also retrieving the device-specific PCI slot configura
tion data. 

On the other hand, a driver for a PCI-based Toaster device typically relies sole
lyon querying each slot on each PCI bus that's present on the system to locate 
its hardware resources. Because Toasters aren't standard devices, the system 
can't locate them during startup. Thus, it's completely up to the driver to locate 
such devices. 

Regardless of any other method used to identify hardware resources, most 
drivers also retrieve device or driver-specific information from the driver's 
"Parameters" subkey in the Registry. This information, which was usually 
stored by the driver's installation procedure when the driver was installed, can 
include any information relevant to the driver, such as information to override 
default configuration values or even license information. 

Resource Lists, Descriptors, and Partial 
Descriptors 
Before discussing the methods used to retrieve configuration information, it 
might be helpful to discuss the major structures that the NT Configuration 
Manager uses to describe hardware resources. All the structures described in 
this section are defined in NTDDK.H. 

The Configuration Manager describes individual hardware resources by using 
a CM_PARTIAL_RESOURCE_DESCRIPTOR structure. This structure would contain, for 
example, the base address and length of an I/O port; or the level, vector, and 
affinity of an interrupt. These CM_PARTIAL_RESOURCE_DESCRIPTOR structures may 
be grouped together in a CM_PARTIAL_RESOURCE_LIST that contains a count of the 
CM_PARTIAL_RESOURCE_DESCRIPTOR structures it contains. All the resources used by 
a particular device, for example, would be grouped together in a single 
CM_PARTIAL_RESOURCE_LIST. 
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The values contained in a CM_PARTIAL_RESOURCE_LIST are the untranslated, bus
relative values, however. These values are only meaningful when the bus 
type and bus number on which they appear are also supplied. Thus, the 
CM_PARTIAL_RESOURCE_LIST is part of a CM_FULL_RESOURCE_DESCRIPTOR that also 
includes the InterfaceType (which indicates the bus type) and the bus number 
with which the CM_PARTIAL_RESOURCE list is associated. To enable the description 
of multiple sets of resources across multiple buses, the CM_FULL_RESOURCE 
_DESCRIPTOR may be contained in a CM_RESOURCE_LIST. The CM_RESOURCE_LIST con
tains a count of the number of CM_FULL_RESOURCE_DESCRIPTORS that it contains. 
Figure 13.2 shows the relationship of these structures. 

CM_RESOURCE_LIST 
ULONG Count 
CM_FULL_RESOURCE_DESCRIPTOR List[1] 

INTERFACE_TYPE InterfaceType 
ULONG BusNumber 
CM_PARTIAL_RESOURCE_LIST PartialResourceList 

USHORT Version 
USHORT Revision 
ULONG Count 
CM_PARTIAL_RESOURCE_DESCRIPTOR PartialDescriptors[1] 

UCHAR Type 
UCHAR ShareDisposition 
USHORT Flags 
union u 

Port II Type == CmResourceTypePort 
PHYSICAL_ADDRESS Start 
ULONG Length 

Interrupt 
ULONG Level 
ULONG Vector 
ULONG Affinity 

IIType == CmResourceTypeInterrupt 

Memory II Type == CmResourceTypeMemory 
PHYSICAL_ADDRESS Start 
ULONG Length 

Dma II Type ==CmResourceTypeDma 
ULONG Channel 
ULONG Port 
ULONG Reserved1 

DeviceSpecificData II CmResourceTypeDeviceSpecific 
ULONG DataSize 
ULONG Reserved1 
ULONG Reserved2 

Figure 13.2 Relationship of Resource Lists, descriptors, and partial descriptors. 
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Querying System Configuration Data 
As discussed earlier in this chapter, NT is able to locate and identify some sub
set of devices that is connected to the system during system startup. These 
subsets include devices that comprise the system itself, such as the CPU, 
floating-point unit, and certain buses. Of more interest to driver writers, 
however, is that many "standard" devices, such as disk, keyboard, serial, and 
parallel devices, are also detected. 

The way system devices are detected is dependent on the system architecture. 
For X86 architecture systems, the NTDETECT program queries the BIOS to 
locate and identify such devices. For RISC architecture systems, such as the 
Alpha, the Advanced RISC Consortium (ARC) console firmware performs the 
task of locating and identifying standard devices. Whichever way the detection 
is performed, the data is first stored in memory in a standardized format and 
then later written to the Registry under the 
\HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION key. You can examine this key your
self (using the regedit or rededt32 utilities) to get an idea of the sorts of devices 
that the system finds during startup on your system. 

Because the configuration information is stored in the Registry in a well-known 
location, drivers may use any method they like to retrieve this information. 
Methods include using RtlQueryRegistryValues () or directly using the native 
Zw functions. However, due to its ease of use, most drivers choose to use the 
I/O Manager-provided function IoQueryDeviceDescription () for this purpose. 
Figure 13.3 shows the prototype for the IoQueryDeviceDescription () function. 
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NTSTATUS 
IoQueryDeviceDescription(lN PINTERFACE_TYPE BusType, 

IN PULONG BusNumber, 
IN PCONFIGURATI ON_TYPE ControllerType, 
IN PULONG ControllerNumber, 
IN PCONFIGURATION_TYPE PeripheralType, 
IN PULONG PeripheralNumber, 
IN PIO_QUERY_DEVICE_ROUTINE CalloutRoutine, 
IN PVO ID Context); 

BusType: A pointer to the interface type being sought (such as Isa, 
PCIBus, and similar). 

BusNumber: A pointer to a ULONG containing the zero-based bus 
number for which information is being sought. 

ControllerType: A pointer to the controller type (such as 
DiskController, Serial Controller, etc.). 

ControllerNumber: A pointer to a ULONG containing the zero-based 
controller number. 

PeripheralType: A pointer to a value indicating the type of peripheral 
for which information is being sought. Drivers looking for controller 
information set this and PeripheralNumber, following, to NULL. 

PeripheralNumber: A pointer to a ULONG containing the zero-based 
peripheral number. 

CalloutRoutine: A pointer to a routine in the driver to call with infor
mation about each item found. The prototype for this function is 
shown in Figure 13.4. 

Context: A driver-defined value to be passed as a parameter to the 
CalloutRoutine. 

Figure 13.3. IoQueryDeviceDescription function prototype. 
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IoQueryDeviceDescription () enables a driver to retrieve information about the 
buses on a system and the controllers that appear on those buses. A driver 
might call this function to determine which serial port controllers appear on 
the ISA bus in the system, for example. The IoQueryDeviceDescription() func
tion also enables drivers to directly determine to which controller certain spe
cific peripheral devices are attached. A driver can call 
IoQueryDeviceDescription () to find to which serial port in the system a mouse 
that it controls is attached, for example. 

For the IoQueryDeviceDescription () function, interfaces (which are really buses) 
are defined as being one of the enumerated values of INTERFACE_TYPE. Examples 
of enumerated values include Isa, Eisa, and PCIBus. Similarly, controllers and 
peripherals are specified as values of CONFIGURATION_TYPE. Example values for 
controllers are DiskController, KeyboardController, ParallelController, and 
SerialController. Examples of peripheral values are DiskPeripheral, 

FloppyDiskPeripheral, and PointerPeripheral (for the mouse). 

Note 

The complete definitions of these enums appear in NTDDK.H. 

When calling IoQueryDeviceDescription () the BusType parameter is required. 
If a driver wants to locate information about its devices on a particular bus, it 
supplies the value indicating that bus for Bus Type. Most drivers of standard 
system devices don't limit the devices they support to residing on a particular 
bus, however. In this case, IoQueryDeviceDescription() is called in a loop that 
supplies values for BusType from 0 to MaximumlnterfaceType. Calling 
IoQueryDeviceDescription () does not, however, require the provision of either a 
ControllerType or PeripheralType. However, the values for these parameters 
must be set with care and with regard to each other. If a driver is searching for 
controllers of a specific type to support, but does not care about peripherals, it 
sets PeripheralType to NULL. On the other hand, if a driver is searching for a 
specific PeripheralType, it must specify the ControllerType on which the partic
ular peripheral device resides. Failing to provide a ControllerType, even if a 
specific PeripheralType is specified, results in IoQueryDeviceDescription () 

returning only information about the various buses in the system. For example, 
suppose that a driver is capable of supporting a particular type of mouse, 
regardless of whether it is on a serial controller or on its own interface card. 
This driver would call IoQueryDeviceDescription () twice, each time specifying 
PeripheralType PointerPeripheral: once specifying ControllerType 
SerialController and a second time specifying ControllerType MouseController. 

When IoQueryDeviceDescription () is called to retrieve information about a par
ticular controller or peripheral, it calls the driver at the driver's CalloutRoutine 
for each matching item found. Figure 13.4 shows the prototype for this 
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CalloutRoutine. The CalloutRoutine is called at IRQL PASSIVE_LEVEL in the 
same context as that in which the driver called IoQueryDeviceDescription (). 

Within the CalloutRoutine, the driver can perform whatever functions it 
requires to validate or further identify the device it will support. 

NTSTATUS 
QueryDeviceCalloutRoutine(IN PVOID Context, 

IN PUNIC ODE_STRING PathName, 
IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PKEY_ VALUE_FULL_INFORMATION *BusInformation, 
IN CONFIGURATION_TYPE ControllerType, 
IN ULONG ControllerNumber, 
IN PKEY _ VALUE_FULL_INFORMATION 

* Controller Information, 
IN CONFIGURATION_TYPE PeripheralType, 
IN ULONG PeripheralNumber, 
IN PKEY_ VALUE_FULL_INFORMATION 

*PeripheralInformation); 

Context: The driver-supplied context value specified on the call to 
IoQuery DeviceDescri ption. 

BusType: The interface type of the bus described in BusInformation. 

BusNumber: The zero-based bus number of the bus described by 
BusInformation. 

BusInformation: A pointer to a vector of 
KEY_ VALUE_FULL_INFORMATION structures describing the bus. 

ControllerType: The type of the controller described by 
Controller Information. 

ControllerNumber: The zero-based number of the controller described 
by ControllerInformation. 

ControllerInformation: A pointer to a vector of KEY_ VALUE_FULL_ 
INFORMATION structures describing the controller. 

PeripheralType: The type of peripheral described by 
PeripheralInformation. 

PeripheralNumber: The zero-based number of the peripheral described 
by PeripheralInformation. 

PeripheralInformation: A pointer to a vector of KEY_ VALUE_FULL_ 
INFORMATION structures describing the peripheral found. 

Figure 13.4. CalioutRoutine from IoQueryDeviceDescription function prototype. 
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Probably the trickiest part of using IoQueryDeviceDescription is figuring out 
how to interpret the bus, controller, and peripheral information passed to the 
CalioutRoutine. The prototype shown in Figure 13.3 shows that this informa
tion is passed to the driver in a pointer to a pointer to a KEY_FULL_VALUE_ 

INFORMATION structure. This really means that the driver is passed a pointer to 
an array of KEY_VALUE_FULL_INFORMATION structures. 

The first entry in the array, which has the symbolic index 
IoQueryDeviceIdentifier, contains the information from the Identifier value in 
the Registry. This comprises the name, if any, of the component. 

The second entry in the array, IoQueryDeviceConfigurationData, contains the 
data from the ConfigurationData value in the Registry. 

The third array element, IoQueryDeviceComponentInformation, comprises the data 
from the ComponentInformation value in the Registry. 

The KEY_VALUE_FULL_INFORMATION structure contains the name and data for the 
Registry value that's being returned. The data field for the 
IoQueryDeviceConfigurationData entry is a CM_FULL_RESOURCE_DESCRIPTOR, which 
contains all the information known about the DMA, interrupt, shared memory, 
port, and device-specific resources used by the device. 

Certain devices~ such as those for (loppy disks~ serial ports~ and key
boards. retrieve device-specific data using IoQueryDeviceDescription (). 

This data specifies configuration information~ such as media density~ port 
speed~ and which LEDs to light by default on the keyboard. The format 
for device-specific data is defined by structures named CM_XXX_DEVICE_ 

DATA~ where xxx is the name of the device. Refer to NTDDK.H for the 
definitions of these structures. Also~ see the appropriate example drivers 
in the DDK (such as the sermouse driver) for ways to use this data. 

The DDK contains several example drivers that use IoQueryDeviceDescription. 

The example that we find easiest to follow is the intpar driver 
(\ddk\src\comm\intpar). In the file initulo.c, the function ParGetConfigInfo 

demonstrates how to call IoQueryDeviceDescription to look for a particular 
controller (Parallel Controller, in the example) across all the buses defined in 
the system. The intpar driver's CalioutRoutine is ParConfigCallback. This func
tion demonstrates how to get the CM_FULL_RESOURCE_DESCRIPTOR from the 
PKEY_FULL_VALUE_INFORMATION structure passed with the controller information. 
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Querying Bus-Configuration Data 
Drivers for PCI, EISA, and MCA bus devices, other than those that the system 
locates and identifies during startup, need to get their device information from 
the relevant bus. As mentioned earlier, some drivers for "standard" system 
devices that reside on the PCI, EISA, or MCA bus may also want to supple
ment the information they can retrieve from the Registry by querying the 
bus-supplied configuration information. 

Drivers can query bus-supplied information for their devices by searching each 
applicable bus in the system for their device. This is done using the 
HalGetBusData function shown in Figure 13.5. 

ULONG 
HalGetBusData(IN BUS_DATA_TYPE BusDataType~ 

IN ULONG BusNumber, 
IN ULONG SlotNumber, 
IN PVOID Buffer, 
IN ULONG Length); 

BusDataType: The type of data to be returned, such as 
PCIConfiguration, EisaConfiguration, or POS. 

BusNumber: The zero-based bus number for which data is being 
sought. 

SlotNumber: The bus-defined slot number for which data is being 
sought. For PCIConfiguration, this is the AsULONG member of the 
PCI_SLOT _NUMBER structure. 

Buffer: A pointer to a buffer into which the requested data is to be 
returned. This buffer may be from local storage or paged or non-paged 
pool. 

Length: The length, in bytes, of the supplied buffer. For 
PCIConfiguration data, this buffer should be at least 256 bytes long. 

Figure 13.5. HalGetBusData function prototype. 

Drivers call HalGetBusData for each slot on each bus on which their device is 
supported. From each call, HalGetBusData returns the bus-configuration data for 
the device in the indicated slot. The format of the data varies, according to the 
type of bus being searched. 
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Calling HalGetBusData () and HalAssignSlotResources () for PCI Bus 
Devices 
For PCI buses, HalGetBusData () is called with a BusDataType of 
PClConfiguration. In this case, the SlotNumber parameter is not an integer; it is 
a PCl_SLOT_NUMBER structure. This structure contains a union, one member of 
which is a ULONG. This part of the union is used when passing the slot num
ber information as the SlotNumber parameter on HalGetBusData ( ). The other 
member of the union is a sequence of bit fields that indicate the device and 
function number for which PCI configuration information is being sought. 
Figure 13.6 shows the PCl_SLOT_NUMBER structure. 

AsULONG 

Reserved FunctionNumber DeviceNumber 

Figure 13.6. pel_SLOT_NUMBER structure. 

On return from HalGetBusData (), the contents of Buffer contain contents of PCI 
configuration space for the device and function indicated by SlotNumber, 
which NT describes by using the PCl_COMMON_CONFlG structure. The return value 
of the function indicates the length of the data returned in Buffer, which for all 
valid devices and functions is 256. If HalGetBusData() returns a value of two, no 
device exists at the indicated SlotNumber (that is, no device exists correspond
ing to the device number and slot number supplied on the call). In this case, 
the Vendorld field of the returned PCl_COMMON_CONFlG structure contains the 
reserved value PCl_INVALID_VENDOR_ID. If the return value from HalGetBusData() 

is zero, the PCI bus indicated in BusNumber does not exist. Because PCI buses 
are assigned contiguous numbers starting with zero, discovering that a particu
lar PCI bus does not exist means that no other PCI buses exist with greater 
numbers. 

Drivers must never attempt to subvert the Hardware Abstraction Layer 
(HAL) and manipulate PCl configuration registers directly. Doing this is, 
at best, platform-specific; and, worse, it can cause the HAL problems. 
To get or set information in PCl configuration space, always use the 
provided HAL functions. 
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A driver attempts to find its devices on all the PCI buses connected to a system. 
The driver does this by enumerating all the devices and functions on all the 
PCI devices in the system. This may be done by calling HalGetBusData () for 
PCI_MAX_FUNCTION for each device and for PCI_MAX_DEVICES for each bus, until 
HalGetBusData () returns a value of zero, which indicates that there is no such 
PCI bus in the system. For each call that returns a valid PCI_COMMON_CONFIG 
structure in Buffer, the driver checks the Vendorld and Deviceld fields of the 
structure looking for a match for the Vendor ID (VID) and Device ID (DID) of 
its device. If the VID and DID match the VendorID and DeviceID fields in the 
PCI_COMMON_CONFIG structure, the driver saves away the BusNumber and 
SlotNumber on which the device was found. 

The code to do this is probably easier to understand than the preceding 
explanation, so refer to Example 13.1. 

Example 13.1. Finding devices on PCl buses connected to the system. 

/I 
II Keep looking at buses until there are no more 
/I 
moreBuses = TRUE; 
for (busNumber = 0; moreBuses; busNumber++) { 

II 
II Ennumerate all the devices on this bus 
II 
for (deviceNumber = 0; 

moreBuses && deviceNumber < PCI_MAX_DEVICES; 
deviceNumber++) { 

II 
II Ennumerate all the functions on each device 
II 
for (functionNumber = 0; 

moreBuses && functionNumber < PCI_MAX_FUNCTION; 
functionNumber++) { 

slotNumber.u.bits.Reserved = 0; 
slotNumber.u.bits.DeviceNumber = deviceNumber; 
slotNumber.u.bits.FunctionNumber = functionNumber; 

/I 
II Get the configuration space for the adapter in this slot 
II 
length = HaIGetBusData(PCIConfiguration, 

busNumber, 
slotNumber.u.AsULONG, 
configlnfo, 
sizeof(PCI_COMMON_CONFIG) ); 

continues 
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Continued 

II 
II A return value of zero indicates no more PCI buses on the system 
II 
if (length == 0) { 

moreBuses = FALSE; 

break; 

II 
II If there's nothing in this slot, PCI_INVALID_VENDORID is 
II returned as the vendor ID. If this is the case, just 
II continue running the bus. 
II 
if (configInfo->VendorID == PCI_INVALID_VENDORID) 

} 

II 

continue; 

II Is this the PCI device for which we've been searching? It is 
II if both the vendor and device ID match 
II 
if ( (configInfo->VendorID == OSR_PCI_VID) && 

(configlnfo->DeviceID == OSR_PCI_DID) ) 

} 
II 

ULONG index; 

II 
I I FOUND IT! 
II 
II 
II 

***Driver does something useful here, including (at least) 
storing away the slot and bus numbers. 

II If this function 0 and this is not a multifunction device, 
II move on to the next device. 
II 
if (functionNumber == 0) && 

!(configInfo->HeaderType & PCI_MULTIFUNCTION) ) { 

break; 
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Note 

Although PCl bus numbers are continuous;> starting with zero, this is not 
true for device numbers. Thus, to find all their devices, drivers have to 
query devices zero through PCI_MAX_DEVICES on every valid bus. 

A driver might be able to take some shortcuts in Example 13.1, depending on 
the device the driver supports. Although most device drivers in NT are capable 
of supporting multiple devices, those that support only a single unit can stop 
their search as soon as they find their device. In addition, drivers of single
function devices (which are by far the majority of devices) can just query func
tion zero of each device, instead of enumerating every function on every device. 

Note 

"What about devices that exist behind PCl-PCl bridges?" you ask. NT 
conveniently handles the bridge for you. Therefore, no special handling is 
required for devices that are located behind bridges. 

Once the driver finds its devices, and the bus number and slot number for each 
device has been saved, the device's hardware resources can be determined. 
Drivers should almost never read and interpret a device's hardware resources 
directly by using the information returned by HalGetBusData ( ). Instead, PCI dri
vers call the HalAssignSlotResources () function, shown in Figure 13.7, which 
returns the actual device hardware resources in a CM_RESOURCE_LIST. 
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NTSTATUS 
HalAssignSlotResources(IN PUNIC ODE_STRING R egis tryPath, 

IN PUNIC ODE_STRING DriverClassName, 
IN PDRIVER_OBJECT DriverObject, 
IN PDEVICE_OBJECT DeviceObject, 
IN INTERFACE_TYPE Bus Type, 
IN ULONG BusNumber, 
IN ULONG SlotNumber, 
IN OUT PCM_RESOURCE_LIST * AllocatedResources); 

RegistryPath: A pointer to a Unicode string containing a Registry key, 
under which information about requested resources will be stored. If 
DeviceObject is NULL, this may be the same as the RegistryKey 
passed in to DriverEntry. If DeviceObject is not NULL, this value must 
point to a key under the driver's Registry key. 

DriverClassName: An optional Unicode string that provides a name 
for the subkey under 
HKEY _LOCAL_MACHINE\HARDWARE\RESOUR CEMAP, under 
which the driver's configuration information will be stored. 

DriverObject: A pointer to the driver's Driver Object, as passed in at 
DriverEntry. 

DeviceObject: A pointer to the Device Object for which these 
resources are being claimed. If this value is NULL, resources are being 
claimed for driver-wide use. 

Bus Type: The interface type on which the device resides. 

SlotNumber: The slot number in which the device resides. For PCIBus 
interfaces, this is the AsULONG field of the PCI_SLOT _NUMBER 
structure. 

AllocatedResources: A pointer into which the function returns a point
er to a CM_RESOURCE_LIST, describing the resources which have 
been claimed for the device in slot SlotNumber on Bus BusType. 

Figure 13.7. HalAssignSlotResources() function prototype. 

The driver passes HalAssignSlotResources () the location of the device via the 
BusType, BusNumber, and SlotNumber parameters. HalAssignSlotResources 

returns a CM_RESOURCE_LIST, describing the device's hardware resources. A 
pointer to this structure is returned in AllocatedResources. The storage for the 
CM_RESOURCE_LIST is allocated within the function from nonpaged pool. After 
extracting the information from this structure, the driver must return the 
storage for the CM_RESOURCE_LIST to pool (by calling ExFreePool (»). 
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In addition to returning the resource information to the driver, 
HalAssignSlotResources () automatically reserves the resources in the list for use 
by the driver by calling IoAssignResources () (described later in this chapter). 
The primary resources requested in the call to IoAssignResources () are the 
resource values specified in the PCI Configuration space. When possible, 
HalAssignSlotResources () may also provide alternative acceptable values to 
IoAssignResources (). The RegistryPath, DriverClassName, DriverObject, and 
DeviceObject parameters on the call to HalAssignSlotResources () are identical 
to those same parameters in IoAssignResources (). See the discussion of 
IoAssignResources () following Figure 13.12 for more information on these 
parameters. 

Because of its integration with the HAL and 110 Manager, 
HalAssignSlotResources () should be used by PCI drivers to determine and 
reserve hardware resources for the devices they support, whenever possible. 
Calling HalAssignSlotResources () for a particular device fails in some rare 
cases, however. This is typically due to an error in the PCI configuration infor
mation in the device itself. In other cases, a device may have unusual require
ments that need to be communicated to the driver in a nonstandard way. 
Finally, perhaps a device has data in the device-specific portion of its PCI con
figuration space that needs to be retrieved by the driver. In these cases, drivers 
may fetch device-configuration information directly from the device's PCI con
figuration space. If device configuration for a PCI device is determined by a 
method other than calling HalAssignSlotResources(), the driver should register 
the device's resources by calling IoAssignResources (). Note also that drivers 
may write to PCI configuration space, when necessary, by using 
HalSetBusData() and HalSetBusDataByOffset(). 

Calling HalGetBusData () for EISA or MCA Bus Devices 
Drivers for EISA and MCA bus devices search these buses for their devices 
using HalGetBusData(), in a manner similar to that of the PCI buses described in 
the preceding section. For the EISA and MCA buses, the SlotNumber parame
ter is a ULONG integer, not a structure. For EISA buses, the BusDataType 
parameter is EisaConfiguration; for MCA buses it is pOS. 

EISA configuration information is returned in much the same format as it is 
returned from the EISA BIOS routines. The buffer passed on the 
HalGetBusData() call is filled with a CM_EISA_SLOT_INFORMATION structure, which 
will immediately be followed by zero or more CM_EISA_FUNCTION_INFORMATION 

structures. 

P~S information is returned for MCA buses in a CM_MCA_POS_DATA structure. 



274 Part II: The I/O Manager and Device Driver Details 

For both EISA and MeA bus devices, drivers determine a device's hardware 
resources by directly reading the information returned by HalGetBusData ( ). 
Drivers for devices on these buses do not call HalAssignSlotResources (). 

Querying the Registry 
Some drivers may have no way to determine their device configuration, other 
than querying the Registry. These drivers include almost all non-PNP ISA 
devices. Other drivers that determine some of their device-configuration infor
mation by using other means, such as calling HalGetBusData ( ), can store addi
tional information in the Registry, which needs to retrieved during DriverEntry 
processing. This data can include any device-specific parameters, including 
tuning, configuration, or even license information. 

By convention, drivers store device specifics in the Registry under the key 
\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters, 
where DriverName is the name of the driver. Drivers that support multiple 
device units typically create subkeys under the \DriverName key. Thus, a dri
ver with two devices can have the following three keys: 

\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters 
\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Device0\ 

Parameters 
\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Device1\ 

Parameters 

In this scheme, configuration information that applies to the entire driver 
appears under the ... \DriverName\Parameters key, whereas configuration infor
mation that applies to a particular device appears under the appropriate 
device-specific key. 

Note 

Where and how a driver stores its device-specific configuration informa
tion in the Registry is up to the driver; and its installation and configura
tion programs. No specific structure is required by Windows NT. 

Although there are several ways that a driver can query the Registry for device
specific configuration parameters, calling RtlQueryRegistryValues () is clearly 
the easiest. You may doubt this the first time you read the description for 
RtlQueryRegistryValues () in the DDK, however, because this function can be 
used in many different ways. Here, we describe a way to use the function that's 
truly quick and easy. When you look through the sample drivers in the DDK, 
you'll see that they most frequently call RtlQueryRegistryValues () this same 
way. Our description of RtlQueryRegistryValues () is restricted to this one 
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method of using the function. For more information, see the complete descrip
tion in the DDK. The prototype for this function is shown in Figure 13.8. 

NTSTATUS 
RtlQueryRegistryValues(IN ULONG RelativeTo, 

IN PWSTR Path, 
IN PRTL_ QUERY_REGISTRY_TABLE QueryTable, 
IN PYOID Context, 
IN PYOID Environment); 

RelativeTo: The symbolic value that indicates the base of the Path 
parameter. Where Path specifies a complete Registry key, this is 
RTL_REGISTRY _ABSOLUTE. 

Path: A pointer to a wide string that contains the Registry path of the 
information to be read. 

QueryTable: A pointer to a vector of structures describing the informa
tion to be retrieved from the Registry. The table ends with an all-zero 
element. 

Context: A driver-defined context argument to be passed when each 
query routine, if any, is called. 

Environment: A pointer to the environment with which to interpret 
REG_EXPAND _SZ values. Drivers typically pass this parameter as 
NULL. 

Figure 13.8. RtlQueryRegistryValues function prototype. 

RtlQueryRegistryValues () takes a Path, indicating where it should start reading 
in the Registry. This function also takes as input QueryTable, which is a point
er to a vector of RTL_QUERY_REGISTRY_TABLE entries, each entry of which 
describes a value to be read from the Registry. Each QueryTable entry specifies 
the name of the value to be read, and it can also supply a default value to be 
used if the entry is not present. Setting RelativeTo to RTL_REGISTRY_ABSOLUTE 

causes Path to be interpreted as an absolute Registry path. 

What's particularly useful about the RtlQueryRegistryValues () function is that 
it can be used to query multiple values from the Registry and supply appropri
ate defaults for each, all in one call. 

Given the following definitions and the Registry Path parameter passed in at 
DriverEntry: 

PWCHAR pathToReadj 
RTL_QUERY_REGISTRY_TABLE queryTable[2]j 
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ULONG zero = 0j 
ULONG bufferCount = 10j 

#define MAX_PATH_LENGTH 256 

Example 13.2 demonstrates calling RtlQueryRegistryValues (). 

Example 13.2. Calling RtlQueryRegistryValues () . 

II 
II Create a wide character string that starts with our Registry 
II Path (passed in to DriverEntry) and adds "\Parameters" to it. 
II 
pathToRead = ExAllocatePool(PagedPool, MAX_PATH_LENGTH)j 

RtlZeroMemory(pathToRead, MAX_PATH_LENGTH)j 
RtlMoveMemory(pathToRead, RegistryPath->Buffer, RegistryPath->Length)j 
wcscat(pathToRead,L"\\Parameters")j 

II 
II Zero the parameter table 
II Note: A fully zeroed entry marks the end of the table 
II 
RtlZeroMemory(&queryTable[0j, sizeof(queryTable))j 

II 
II Set up the parameters to read and their default values 
II 
,queryTable[0j . Flags = RTL_QUERY_REGISTRY_DIRECTj 
queryTable[0j .Name = L"BufferCount"j 
queryTable[0j . EntryContext = &bufferCountj 
queryTable[0j.DefaultType = REG_DWORDj 
queryTable[0j .DefaultData = &zeroj 
queryTable[0j.DefaultLength = sizeof(ULONG)j 
II 
II Get the values from the Registry 
1/ 
code = RtlQueryRegistryValues( 

RTL_REGISTRY_ABSOLUTE RTL_REGISTRY_OPTIONAL, 
pathToRead, 
&queryTable[0j, 
NULL, 
NULL) j 

if(!NT_SUCCESS(code)) 

DbgPrint("RtlQueryRegistry FAILED! Code = 0x%0x\n" , code)j 

DbgPrint("Value for BufferCount = %d.\n", bufferCount)j 
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Drivers that determine their device configurations from the Registry should 
read the user-supplied configuration information, and then attempt to reserve 
the indicated resources before trying to access them. For example, a driver 
might read the port address for its master control registry from the Registry 
where the port address was stored, based on user input during the driver's 
installation or configuration process. 

Prior to actually using the value it reads, the driver should call 
IoAssignResources () (or IoReportResourceUsage (), both of which are described 
later in this chapter in the section "Claiming Hardware Resources") to attempt 
to reserve the indicated port address. If the driver is successful in reserving the 
address, it may then go on to verify that the address is valid by accessing the 
device. If the request to reserve the hardware resource fails, another driver has 
already claimed the indicated resource. This conflict will have to be corrected 
before the driver can successfully control this particular device. 

Note 

Drivers in NT generally avoid searching for device ports by walking 
through port space and attempting to find ports associated with particu
lar devices. This is due to the "danger" to system stability inherent in 
doing this. Remember, multiple users can be using a particular machine 
simultaneously. 

Creating Device Objects 
After a device driver has determined the devices it will support, it creates one 
or more Device Objects to represent those devices. The general concepts relat
ing to Device Objects were discussed in detail in Chapter 9, "The I/O 
Subsystem." This section covers ways to create Device Objects and make them 
accessible to user mode programs. 

A Device Object represents the entity that can be the target of a CreateFile () 

request to the I/O Manager or referenced from another driver for communica
tions using IoGetDeviceObj ectPointer (). As discussed in Chapter 9, the decision 
of what a Device Object corresponds to for a particular driver is probably the 
most important architectural decision that the driver writer makes. Drivers cre
ate Device Objects using the IoCreateDevice () function, the prototype for 
which is shown in Figure 13.9. Device Objects are always created in non-paged 
pools. 
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NTSTATUS 
IoCreateDevice(IN PDRIVER_OBJECT DriverObject, 

IN ULONG DeviceExtensionSize~ 
IN PUNICODE_STRING DeviceName~ 
IN DEVICE_TYPE DeviceType~ 
IN ULONG DeviceCharacteristics~ 
IN BOOLEAN Exclusive~ 
OUT PDEVICE_OBJECT *Device0 bject); 

DriverObject: A pointer to the Driver Object passed in to DriverEntry. 

DeviceExtensionSize: The size, in bytes, of a per-device storage area to 
be allocated along with the Device Object. The format and contents of 
this storage area are defined by the driver. 

DeviceName: If a named Device Object is being created, this is a 
pointer to a Unicode string containing the name of the device. This 
name should typically be in the Object Manager's "\Device" directory. 

DeviceType: One of the predefined DEVICE_TYPEs if a Device Object 
for a standard device is being created; otherwise, a random value from 
the range "reserved to Microsoft customers." 

DeviceCharacteristics: A set of flags that indicate the overall character
istics of this device. Examples include FILE_READ_ONLY_DEVICE 
and FILE_REMOVABLE_MEDIA. 

Exclusive: A boolean value, set to TRUE, to indicate that only one file 
handle may be open on this device at a time. 

DeviceObject: A pointer to receive the pointer to the created Device 
Object. 

Figure 13.9. IoCreateDevice() function prototype. 

The DriverObject parameter on the IoCreateDevice call is a pointer to the 
Driver Object passed in to the driver by the I/O Manager at the DriverEntry 

entry point. 

Device Extensions 
A driver may also choose to create a Device Extension when it creates a Device 
Object. The Device Extension is also located in nonpaged pool. The Device 
Extension is a structure associated with a device that is reserved for use solely 
by the driver. The driver determines its format and controls its use, and its size 
is passed by the driver as the DeviceExtensionSize parameter to 
IoCreateDevice ( ). Drivers typically use the Device Extension to store 
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device-specific data, including device statistics, listheads for queues of requests, 
synchronization objects like mutexes, and spin locks to protect these fields. 

Device Names 
The Device Object name supplies the native Windows NT name for a device. 
These names are Unicode strings, and should be created in the Object 
Manager's Device directory. A pointer to the UNICODE_STRING structure that con
tains the name of the device is passed as the DeviceName parameter on 
IoCreateDevice (). Device names may be any legal Object Manager name, which 
means that they can contain any character other than a path separator. 
Although there appears to be no absolute limit on the length of Device Object 
names, for practical purposes, names are limited in length to 
MAX_FILENAME_LENGTH (256 bytes). 

How are Device Objects for standard Windows NT devices named? They are 
typically named with the name of the device, and immediately followed by the 
unit number, starting at zero. For example, the first CD-ROM device on the 
system is named CdRomO and the first floppy disk drive is named FloppyO. In 
order to allow other drivers to locate their devices, drivers that implement 
standard Windows NT devices (such as disks, floppys, CDs, and serial and par
allel ports), call IoGetConfigurationInformation () to determine the next avail
able unit number for their devices. The prototype for this function appears in 
Figure 13.10. 

IoGetConfigurationInformation () returns a pointer to the I/O Manager's 
memory-resident CONFIGURATION_INFORMATION data structure. This structure con
tains a count of the number of devices of each type found. Drivers supporting 
any of the device types tracked by this structure should use the value from this 
structure to set the unit numbers for their devices. As it creates each device, the 
driver should increment the value in the CONFIGURATION_INFORMATION structure. 

PCONFIGURATION_INFORMATION 
IoGetConfigurationlnformation( ); 

This function takes no parameters. 

Figure 13.10. IoGetConfigurationInformation function prototype. 

Device Types and Characteristics 
The DeviceType and DeviceCharacteristics parameters to IoCreateDevice () may 
require some explanation. DeviceType is the value that indicates the type of 
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device. The value for the DeviceType parameter is the same as the DeviceType 
parameter on the CTRL_CODE macro that is used for defining Device I/O Control 
codes. 

For drivers of standard devices, such as disks, tapes, or serial ports, NT defines 
standard device numbers in NTDDK.H. These definitions start with 
FILE_DEVICE, for example; FILE_DEVICE_DISK for a standard disk type device. 
Custom devices assign their own device types from the range reserved for cus
tom devices, which is 32768-65535. If you're implementing a standard device, 
you should use the standard type value when you create your device. If you're 
implementing a custom device, the value you choose really doesn't matter, as 
long as it's in the range reserved for custom devices. The value you use here 
should, of course, be the same as that used to define any Device 1/0 Control 
codes (but, in fact, it doesn't strictly have to be!). 

Note 

Custom device types are not registered with Microsoft. Frequently, this 
can cause some concern for device driver writers, who fear that they 
might choose a custom device type that is the same as some other device's 
custom device type. Although this can occur, for an application to actual
ly use this device type in passing I/O Control operations to your driver, it 
must also know the name of the driver. Because it isn't possible for two 
devices using the same name to coexist on a particular host, there really is 
no reason to worry about "collisions" of custom device types. 

The DeviceCharacteristics parameter is a set of flags that indicate a standard 
set of attributes. The values for these flags include FILE_REMOVABLE_MEDIA, 

FILE_READ_ONLY_DEVICE, and FILE_REMOTE_DEVICE. These values are also of interest 
only to drivers of standard devices. 

Device Exclusivity 
A final parameter of interest on the IoCreateDevice () function is the Exclusive 
parameter. When this parameter is set to TRUE, only one single open File Object 
at a time is allowed by the I/O Manager on the device. All subsequent 
IRP _MJ_CREATE requests, after the first successful one, will be rejected by the I/O 
Manager before they reach the driver, until the first File Object is closed. 
Setting this parameter to FALSE causes all IRP _MJ_CREATE requests to be sent to 
the driver, where it may decide which requests, or how many simultaneous 
open requests, to grant. 
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Note 

Of all the parameters on all the functions in DriverEntry, it's our experi
ence that the Exclusive parameter is the one set incorrectly most often. 
Almost all devices will want to set Exclusive to FALSE, which results in the 
driver getting every valid IRP _MJ_CREATE issued for the device. 
Contrary to the D D K documentation, this flag has nothing to do with 
how many threads can send I/O requests to the device (except that if only 
one open is possible, only those threads in that process can successfully 
send requests to the device). 

Example 13.3 demonstrates calling IoCreateDevice (). Of course, the DDK has 
many similar examples. 

Example 13.3. Creating a Device Object. 

1/ 
II Initialize the UNICODE device name. This will be the "native NT" name 
I I for our device. 
1/ 
RtlInitUnicodeString(&devName, L"\\Device\\OSRDevice"}j 

1/ 
II Ask the I/O Manager to create the device object and 
/1 device extension 
/I 
code = IoCreateDevice(DriverObj, 

sizeof(OSR_DEVICE_EXT), 
&devName, 
FILE_DEVICE_OSR, 
0, 
FALSE, 
&devObj) j 

Device-Naming Considerations 
It is interesting to note that naming the Device Object is, in fact, optional. 
An unnamed Device Object can obviously not be the target of a call to 
CreateFile (), IoGetDeviceObj ectPointer(), or IoAttachDevice () because these 
functions require the name of the device being targeted. Therefore, unnamed 
Device Objects are created relatively rarely. When they are created, they are 
typically restricted to being used for internal control purposes within a driver. 
File System drivers also create unnamed Device Objects to represent the 
instance of the file system mounted on a particular device partition. 
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When a Device Object is created, it is initialized by the 110 Manager. A pointer 
to the device's Device Extension is returned as the DeviceExtension field of 
the Device Object. Device drivers for storage devices will want to initialize 
the AlignmentRequirement field of newly created Device Objects to one of the 
FILE_xxxx_ALIGNMENT values defined in NTDDK.H, as well as setting the 
SectorSize field to an appropriate value. Drivers with particular requirements 
may also wish to set the StackSize field, which indicates the number of 110 
Stack locations required by this device, and any other devices, layered beneath 
it. The 110 Manager initializes this value to one when the Device Object is 
created. 

After the Device Object is created, the driver needs to set the Device Object's 
Flags field to indicate the way the driver wants IRP _MJ_READ and IRP _MJ_WRITE 

requests to be described. The options available to a driver were described in 
detail in Chapter 10, "Describing 110 Requests." If the driver elects to have 
Read and Write requests described by using Buffered 110, the DO_BUFFERED_IO 

bit must be set in the Flags field. If the driver wants to use Direct 110, the 
DO_DIRECT _IO bit must be set. To use Neither 110, neither bit is set (hence, its 
name). What do you get if you set both bits? This is an invalid combination, 
but it seems to always result in getting Buffered 110 (well, at least today). 
Finally, remember that Device Control (IOCTL) functions can use a different 
buffering method from that chosen for IRP _MJ_READ and IRP _MJ_WRITE requests. 

Mote 

Although we discuss their creation in the chapter on DriverEntry~ Device 
Objects may~ in fact~ be created any time a driver is running at IRQL 
PASSIVE_LEVEL. If a driver creates a Device Object outside of its 
DriverEntry routine~ the driver must manually clear the DO_DEVICE_ 

INITIALIZING bit in the Device Object's Flags field. On return from 
DriverEntry~ the I/O Manager clears this bit for all Device Objects 
created within DriverEntry. 

Device Symbolic Links 
Recall that applications are under the control of their environment subsystems. 
Typical Windows NT subsystems, notably the Win32 and NTVDM subsys
tems, restrict their applications so that they can access only certain devices. 
Thus, simply creating and naming a Device Object is not sufficient to allow 
that device to be easily accessed by such a user mode application. Furthermore, 
most of the familiar device names (such as C: or COM1) are not native NT 
names. These names are symbolic links within the Object Manager namespace 
to the native NT names of the devices. 
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Typically, whenever a Win32 application calls CreateFile ( ), the Win32 subsys
tem prefixes the name supplied on the call with the string "\?? \ ". This causes 
the Object Manager to look for the name supplied, starting in its "17" directo
ry. This directory (which, prior to NT 4.0, was named DosDevices) contains 
logical links from the familiar names to the native NT Device Objects in the 
Object Manager's "Device" directory. Thus, "\ ??\LPT1" is a symbolic link, 
probably to the device named" \Device\Paralle10". 

To enable users to access devices you create, you need to create a symbolic link 
from the Object Manager's "??" directory to the native NT name for your 
Device Object. Note that because this link is created on a name basis, you will 
not be able to create a symbolic link to it if your device object is unnamed. The 
function that is used to create symbolic link is named, appropriately enough, 
IoCreateSymbolicLink (), the prototype for which appears in Figure 13.11. 

NTSTATUS 
IoCreateSymbolicLink(IN PUNIC ODE_STRING SymbolicLinkName, 

IN PUNIC ODE_STRING DeviceName); 

SymbolicLinkName: A pointer to a Unicode string that contains the 
name of the symbolic link to be created. To make devices accessible to 
Win32 subsystem applications, this link should be created in the 
Object Manager's "\ n" directory. 

DeviceName: A pointer to the native NT device name for which the 
symbolic link is being created. 

Figure 13.11. IoCreateSymbolicLink () function prototype. 

The two parameters to this function are self-explanatory. An example of the 
IoCreateSymbolicLink() function appears in Example 13.4. 

Example 13.4. Creating a symbolic link for a Device Object. 

RtllnitUnicodeString(&linkName, L"\\??\\MyDevice"); 

code = IoCreateSymbolicLink(&linkName, &devName); 

Example 13.4 creates the symbolic link" \ n\MyDevice" to the native NT device 
with a name equal to the Unicode string contained in &devName. Thus, User 
mode applications in the Win32 subsystem would attempt to open this device 
using the Create File () function in a manner something like the following: 
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Handle = CreateFlle("\\\\.\\MyDevlce", 
GENERIC_READ: GENERIC_WRITE, 
0, 
0, 
OPEN_EXISTING, 
0, 
0) ; 

Note that the name of the symbolic link and the native NT name of the device 
need not be related in any way. Furthermore, multiple symbolic links may be 
created to point to a single native NT device. 

Note 

Symbolic link names must be valid in the environment in which they will 
be used. For example~ although the I/O Manager allows you to create a 
symbolic link named" \ ?? \ * . *" ~ it is unlikely a Win32 user that tries to 
open your device using this symbolic link name will get what he expects! 

One final note on symbolic links: it is a mistake to assume that not creating a 
symbolic link for your device means that User mode applications can never 
open the device. Creating or omitting a symbolic link to a native NT device 
name does not provide any measure of security to a created device. User mode 
applications that use the native NT API can, of course, access devices by their 
native NT names. And, although applications that run under the control of the 
Win32 subsystem cannot directly open devices by using their native NT names, 
the applications can programmatically create symbolic links that can open the 
devices. This is done by using the Win32 DeflneDosDevice () function. 

Note 

Some symbolic links~ such as the drive letters~ are created by the I/O 
Manage~ based upon which devices are present during boot loading. 
Because of this~ some devices that load later must create their own sym
bolic links. Devices should always do this by using a Win32 program or 
helper service that uses the DefineDosDevice () function. This ensures that 
other Win32 applications~ such as Explore~ are notified when their drive 
letters are created and deleted. Otherwise~ Win32 programs may not be 
notified of the change. 
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Claiming Hardware Resources 
Once a driver's hardware resources are identified, the next step is for the driver 
to attempt to claim the identified resources with the 110 Manager. Claiming the 
resources has three purposes: 

1. It allows the 110 Manager and HAL to ensure that the resources a driver 
expects to use are valid. 

2. It allows the 110 Manager to determine that resources that are exclusively 
required by a driver are not already in use by another driver. 

3. It allows configuration-display programs (such as winmsd) to display 
helpful information about which resources are being used, and by which 
drivers and devices. 

When resources are claimed by a driver, the 110 Manager makes an entry in 
the Registry under the \HKEY_LOCAL_MACHINE\HARDWARE\RESOURCEMAP key, indicating 
the hardware resources the driver uses. 

Most drivers written since the release of NT V3.51 claim resources by using 
the IoAssignResources () function. The prototype for this function appears in 
Figure 13.12. IoAssignResources () (almost) completely replaces the original 
function that was used for this purpose: IoReportResourceUsage (). 

IoReportResourceUsage () can still be called, and it has a couple of unusual fea
tures that IoAssignResources () does not have. However, most people writing 
new drivers should call IoAssignResources () because of its much greater 
functionality. 
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NTSTATUS 
IoAssignResources(IN PUNIC ODE_STRING RegistryPath, 

IN PUNIC ODE_STRING DriverClassName, 
IN PDRIVER_OBJECT DriverObject, 
IN PDEVICE_OBJECT DeviceObject, 
IN PIO_RESOURCE_REQUIREMENTS_LIST 

RequestedResources:J 
IN OUT PCM_RESOURCE_LIST * AllocatedResources); 

RegistryPath: A pointer to a Unicode string that contains a Registry 
key, under which information about requested resources will be stored. 
If the value for DeviceObject is NULL, this may be the same as the 
RegistryKey passed in to DriverEntry. If DeviceObject is not NULL, 
this value must point to a key under the driver's Registry key. 

DriverClassName: An optional Unicode string that provides a name 
for the subkey under 
HKEY_LOCAL_MACHINElliARDWARE\RESOURCEMAP, under 
which the driver's configuration information will be stored. 

DriverObject: A pointer to the driver's Driver Object, as passed in to 
DriverEntry. 

DeviceObject: A pointer to the Device Object for which these 
resources are being claimed. If this value is NULL, resources are being 
claimed for driver-wide use. 

RequestedResources: A pointer to a Resource Requirements List that 
describes the resources needed for this device, as well as optionally 
describing alternative resources. 

AllocatedResources: A pointer into which the function returns a point
er to a CM_RESOURCE_LIST that describes the resources that have 
been claimed for the device. 

Figure 13.12. IoAssignResources() function prototype. 

Drivers that claim resources by using IoAssignResources () are typically limited 
to those for ISA, EISA, and MCA bus devices. Drivers for PCI bus devices call 
HalAssignSlotResources (), which internally calls IoAssignResources () on behalf 
of the driver. Therefore, the only time drivers for PCI bus devices directly call 
IoAssignResources () is when they add resources to those that were reserved by 
HalAssignSlotResources (). How IoAssignResources () is used to add resources to 
those previously allocated is discussed later in this section. 
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Resources to be claimed in a call to IoAssignResources () are described to the 
110 Manager using an IO_RESOURCE_REQUIREMENTS_LIST. This Resource 
Requirements List contains one or more Resource Lists 
(IO_RESOURCE_LIST), each of which contains one or more Resource 
Descriptors (IO_RESOURCE_DESCRIPTOR). Each Resource Descriptor describes a sin
gle hardware resource (a port, interrupt, memory range, or DMA channel) that 
the driver wishes to claim. Attributes of the resources include whether the port 
address is in memory or Port 110 space, whether a shared memory segment is 
read-only or read-write, and whether interrupt resources are edge- or level
triggered. Each resource is also indicated as either being required for exclusive 
use or being sharable. See the complete description of the IoAssignResource() 

function's parameters in the DDK. 

IoAssignResources () is very powerful in that it allows drivers to indicate both 
preferred resources and possible alternatives as part of its Resource 
Requirements List. The 110 Manager assigns preferred resources when they are 
available, but if another driver has already claimed a preferred resource, the 
110 Manager will attempt to fulfill the driver's request by using one of its alter
natives. Drivers may also indicate certain hardware resources as having no 
alternatives. On successful return from IoAssignResources (), the driver receives 
a CM_RESOURCE_LIST that describes all the resources that have been claimed by 
the driver. 

Thus, for example, a driver for an ISA bus device might indicate that it has an 
110 Port resource (its main control and status register) located at port 110 
address Ox300, that this resource is 8 bytes long, and that there are no alterna
tives acceptable to the driver for this resource. This ISA card I/O port address 
would presumably be set on the card using jumpers, and therefore could not be 
changed programmatically by the driver. The driver might also indicate that it 
requires the use of IRQ 9 and that no other IRQ is acceptable (again, probably 
due to a hardware constraint on the device). The driver might further indicate 
that its device has a lKB shared memory segment and that the preferred loca
tion for this segment is OxCOOOO. The driver can also indicate that alternative 
acceptable base addresses for this segment are OxDOOOO and OxEOOOO. This is 
done by setting up a single Resource List that contains multiple Resource 
Descriptors. One Descriptor would describe the required port 110 address, one 
Descriptor would describe the required IRQ, one Descriptor would describe 
the preferred memory segment base address, and one Resource Descriptor 
would describe each of the two alternative acceptable memory base addresses. 
An example of how these lists might be set up appears in Example 13.5. 

Given the following declarations: 

PIO_RESOURCE_REQUIREMENTS_LIST resReqListj 

PIO_RESOURCE_LIST resListj 
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PIO_RESOURCE_DESCRIPTOR resDescriptor; 
ULONG sizeToAllocate; 
PCM_RESOURCE_LIST cmResList; 

The code is as follows: 

Example 13.5. Calling IoAssignResources () . 

sizeToAllocate = sizeof(IO_RESOURCE_REQUIREMENTS_LIST) + 
sizeof(IO_RESOURCE_DESCRIPTOR) * 4; 

resReqList = ExAllocatePool(PagedPool l sizeToAllocate); 

RtlZeroMemory(resReqList l sizeToAllocate); 

resReqList->ListSize = sizeToAllocate; 
resReqList->InterfaceType = Isa; 
resReqList->BusNumber = 0; 
resReqList->SlotNumber = 0; 

1/ 
II There is one Resource List 
1/ 
resReqList->AlternativeLists = 1; 

res List = &resReqList->List[0]; 

resList->Version = 1; 
resList->Revision = 1; 

1/ 
II This Resource List contains 5 Resource Descriptors 
1/ 
resList->Count = 5; 

resDescriptor = &resList->Descriptors[0]; 

1/ 
II Set the required port resource 
1/ 
resDescriptor[0] .Option = 0; II Required - No alternative 
resDescriptor[0].Type = CmResourceTypePort; 
resDescriptor[0].ShareDisposition = CmResourceShareDeviceExclusive; 
resDescriptor[0].Flags = CM_RESOURCE_PORT_IO; 

resDescriptor[0].u.Port.Length = 8; 
resDescriptor[0].u.Port.Alignment = 0x01; 

resDescriptor[0].u.Port.MinimumAddress.LowPart = 0x300; 
resDescriptor[0].u.Port.MinimumAddress.HighPart = 0; 
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resDescriptor[0].u.Port.MaximumAddress.LowPart = 0x307j 
resDescriptor[0].u.Port.MaximumAddress.HighPart = 0j 

/! 
II Next, the interrupt resource 
/! 
resDescriptor[1].Option = 0j II Required - No alternative 
resDescriptor[1].Type = CmResourceTypelnterruptj 
resDescriptor[1].ShareDisposition = CmResourceShareDeviceExclusivej 
resDescriptor[1].Flags = CM_RESOURCE_INTERRUPT_LATCHEDj 

resDescriptor[1].u.lnterrupt.MinimumVector = 9j 
resDescriptor[1].u.lnterrupt.MaximumVector = 9j 

/! 
II Next, the shared memory segment. 
/! 

/! 
II Start with the descriptor for the preferred base address 
/! 
resDescriptor[2] .Option = IO_RESOURCE_PREFERREDj 
resDescriptor[2].Type = CmResourceTypeMemorYj 
resDescriptor[2].ShareDisposition = CmResourceShareDeviceExclusivej 
resDescriptor[2] .Flags = CM_RESOURCE_MEMORY_READ_WRITEj 

resDescriptor[2] .u.Memory.Length = 0x400j 
resDescriptor[2] .u.Memory.Alignment = 0x1j 

resDescriptor[2].u.Memory.MinimumAddress.LowPart = 0xC0000j 
resDescriptor[2] .u.Memory.MinimumAddress.HighPart = 0j 

resDescriptor[2] .u.Memory.MaximumAddress.LowPart = 0xC03FF; 
resDescriptor[2].u.Memory.MaximumAddress.HighPart = 0; 

/! 
II Next, specify the first alternative 
/! 
resDescriptor[3] .Option = IO_RESOURCE_ALTERNATIVEj 
resDescriptor[3].Type = CmResourceTypeMemorYj 
resDescriptor[3].ShareDisposition = CmResourceShareDeviceExclusivej 
resDescriptor[3].Flags = CM_RESOURCE_MEMORY_READ_WRITEj 

resDescriptor[3].u.Memory.Length = 0x400j 
resDescriptor[3].u.Memory.Alignment = 0x1j 

resDescriptor[3].u.Memory.MinimumAddress.LowPart = 0xD0000j 
resDescriptor[3].u.Memory.MinimumAddress.HighPart = 0j 

continues 
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Continued 

resDescriptor[3] .u.Memory.MaximumAddress.LowPart = 0xD03FFj 
resDescriptor[3] .u.Memory.MaximumAddress.HighPart = 0j 

/I 
II Next, specify the second alternative 
/I 
resDescriptor[4] .Option = IO_RESOURCE_ALTERNATIVEj 
resDescriptor[4].Type = CmResourceTypeMemorYj 
resDescriptor[4].ShareDisposition = CmResourceShareDeviceExclusivej 
resDescriptor[4] .Flags = CM_RESOURCE_MEMORY_READ_WRITEj 

resDescriptor[4] .u.Memory.Length = 0x400j 
resDescriptor[4].u.Memory.Alignment = 0x1j 

resDescriptor[4].u.Memory.MinimumAddress.LowPart = 0xE0000j 
resDescriptor[4].u.Memory.MinimumAddress.HighPart = 0j 

resDescriptor[4].u.Memory.MaximumAddress.LowPart = 0xE03FFj 
resDescriptor[4].u.Memory.MaximumAddress.HighPart = 0j 

code = IoAssignResources(RegistryPath, 
&className, 
DriverObj, 
NULL, 
resReqList, 
&cmResList) j 

if(!NT_SUCCESS(code) ) 

DbgPrint("*** IoAssignResources Failed. Code = 0x%0x\n" , code)j 

else { 

II Decode the CM_RESOURCE_LIST here to determine the resources 
II the I/O Manager has claimed for the driver 

Note in Example 13.5 that the type of bus (INTERFACE_TYPE), bus number, and 
slot number are specified in the IO_RESOURCE_REQUIREMENTS_LIST. For ISA bus 
devices, the slot number is not used. 

On return from I oAssignResou rces () (after checking to ensure a successful sta
tus return), the driver examines the returned CM_RESOURCE_LIST to determine 
which of its alternative resources the I/O Manager claimed for it. The returned 
information must be stored, and the memory that the I/O Manager reserved for 
the CM_RESOURCE_LIST must be freed by the driver (by calling ExFreePool ()). 
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So, in one call, a driver may indicate the required, preferred, and alternative 
resources that it needs. However, IoAssignResources () has yet another int('rest
ing feature-it enables drivers to specify complete alternative resource schemes. 
Although most devices are not able to take advantage of this capability, this 
feature enables a driver writer to establish alternative Resource Lists, with the 
I/O Manager being required to choose one of the Resource Lists from among 
the set of alternatives. The Resource Descriptors within the Resource List indi
cate the hardware resources required by the indicated alternative. This enables 
a driver, for example, to indicate that it requires the I/O Manager to allocate 
resources from one of the following alternatives: 

Base address 300, IRQ 5, and shared memory address OxCOOOO 

or 

Base address Ox300, IRQ 11, and base address OxDOOOO 

The Resource Lists may even contain preferred and alternative resources. 
Again, we don't see many driver writers being able to make use of this 
functionality, but it's nice to know it's there. 

We strongly encourage people who write drivers for non-plug-and-play devices 
to take advantage of the flexibility provided by IoAssignResources (). If your 
device can be programmatically set to work with a variety of hardware 
resources, you should always build your Resource List with one preferred 
resource and as many individual alternative resources as your hardware and 
driver can accommodate. Letting the I/O Manager choose individual resources, 
based on the resources already in use by the system, helps avoid hardware 
conflicts that are otherwise not resolvable. 

Note 

The alternative to IoAssignResources () is the IoReportResourceUsage () 
function. The example drivers in the DDK all call 
IoReportResourceUsage () because they were written prior to the avail
ability of IoAssignResources (). However, IoReportResourceUsage () has 
two features that IoAssignResources () does not. First~ it allows a driver 
to override any conflicts detected by the I/O Manager and HAL~ thus 
forcing resources to be reserved for a driver~s exclusive use~ even if those 
resources are already claimed by another driver. Second~ it allows drivers 
to claim device-specific resources (CmResourceTypeDeviceSpecific( )). The 
capability to override conflicts is of dubious value (two devices can't be 
using the same I/O port~ for example). However, the capability to claim 
device-specific data resources may be useful to some drivers of standard 
system devices identified with IoQueryDeviceDescription (). 
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IoAssignResources () enables a driver to claim its resources on a per-device basis 
or on a driver-wide basis. Resources that are claimed on a per-device basis are 
reserved by the driver for use with a specific Device Object, and can be 
released separately from resources claimed for driver-wide use or for other 
devices. Resources that are claimed on a driver-wide basis are generally those 
hardware resources that are used by the driver in general, not for just one par
ticular device. Whether resources are being claimed on a per-device or driver
wide basis is determined by the DeviceObject and RegistryPath parameters on 
the call to IoAssignResources (). 

If resources are being claimed on a driver-wide basis, DeviceObject is set to 
NULL, and RegistryPath is set to the value that was passed into DriverEntry by 
the I/O Manager. On the other hand, if resources are being claimed on a per
device basis, DeviceObject points to the Device Object with which the 
resources are associated and RegistryPath must point to a unique key under 
the driver's HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName 

Registry key. Although there's no established convention about how to name 
this key, we usually just specify a key under DriverName equal to the unit 
number. Thus, the RegistryPath used for claiming resources for the first 
Toaster device would be 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Toaster\0. 

Although it might seem that the distinction between per-device and driver-wide 
resources is more architectural than practical, there's actually a very pragmatic 
consequence of this choice. IoAssignResources () can be called to claim an ini
tial set of resources, to release a previously set of claimed resources, or to add 
to or delete from a pre-existing list of resources. Suppose that your driver 
needs to claim resources for each of its three devices. In all likelihood, the code 
in your driver will probably call IoAssignResources () three times, once for each 
device. If you call IoAssignResources () three times, each time indicating that 
the resources are being claimed on a driver-wide basis, the resources that you 
indicate on each subsequent call after the first will replace the previously 
claimed set of resources. On the other hand, if you call IoAssignResources () 

with DeviceObject pointing to a different Device Object each time and have a 
separate RegistryPath specified on each call, the result claims the sum of all the 
resources on each of the three calls. This is probably what you had in mind. 

As already mentioned, previously claimed resources may be released using 
IoAssignResources(). All resources that are allocated for a device on per-device 
basis or for a driver on a per-driver basis may be returned by calling 
IoAssignResources () with a RequestedResources set to NULL. Specific resources 
may be released by calling IoAssignResources () with an IO_RESOURCE_ 

REQUIREMENTS_LIST, including IO_RESOURCE_DESCRIPTORS for all the resources that 
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your driver wants to retain and omitting those it wants to release. In all 
instances, the DeviceObject, RegistryPath, and DriverClassName parameters 
must be specified exactly as they were when the resources were claimed. 

Drivers for PCI bus devices almost never call IoAssignResources () directly 
because HalAssignSlotResources () (used by almost all drivers of PCI bus 
devices) internally does this automatically. However, PCI device drivers do call 
IoAssignResources () on the rare occasions when they need to add an additional 
hardware resource to those already claimed, or to release resources previously 
obtained by calling HalAssignSlotResources (). 

We should probably mention something at this point about the 
DriverClassName parameter to IoAssignResources (). DriverClassName is a 
strictly optional parameter that enables the driver to specify a name for the 
subkey under \HKEY_LOCAL_MACHINE\HARDWARE\RESOURCEMAP, under which the dri
ver's resources will be recorded. If a DriverClassName is not specified, the 
driver's resources will be recorded under the OtherDrivers subkey. 

Translating Bus Addresses 
Regardless of how the hardware resources for a device are determined, until 
their addresses are translated they are bus-specific. That is, the addresses 
returned for ports, registers, and other shared memory spaces as read from the 
Registry, read from the bus configuration data using HalGetBusData ( ), returned 
from HalAssignSlotResources (), or returned from IoQueryDeviceDescription () 

are only valid if the bus type and bus number are also specified. This is due to 
the following two facts about the HAL's abstraction of a system's architecture: 

1. Multiple buses, of the same or different types, may be connected to the 
system simultaneously. These buses may each have their own bus-specific 
address spaces. 

2. A bus's address space does not need to be the same as the system's 
physical address space. 

Figure 13.13 shows a system configured with two separate (not bridged) PCI 
buses on the same system, plus one EISA bus and one ISA bus. 

1!'4ote 

Don't worry about whether or not this is a good bus configuration or a 
reasonable system to build, or whether it's allowed by the various hard
ware specifications. The point here is that the HAL allows this configura
tion. 
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According to the HAL's system abstraction, these buses may have overlapping 
bus-specific address spaces. That is, each bus may have an address OxCOOOO 
that translates to a different logical address that is used to uniquely access the 
bus address via the system. 

The designer of the overall system hardware (that is, the processor, bus sup
port, and memory subsystem) is responsible for determining how buses are 
attached to the system and for creating a discrete mapping between bus-specific 
addresses and unambiguous logical addresses. The HAL for supporting that 
system is responsible for knowing how to perform these translations. 

Thus, before a port or memory address for a device on a specific bus can be 
accessed by a driver, it must be translated to a logical address. This translation 
is performed by using the Hal TranslateBusAddress () function, the prototype for 
which is shown in Figure 13.14. 
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BOOLEAN 
HalTranslateBusAddress(IN INTERFACE_TYPE InterfaceType~ 

IN ULONG BusNumber, 
IN PHYSICAL_ADDRESS BusAddress, 
IN OUT PULONG A ddressSpace, 
OUT PPHYSICAL_ADDRESS TranslatedAddress); 

InterfaceType: The interface type for which the address passed in 
BusAddress is to be translated. 

BusNumber: The zero-based number of the bus for which the address 
passed in BusAddress is to be translated. 

BusAddress: The bus-relative device address to be translated. 

AddressSpace: A pointer to a ULONG. As input to the function, it 
contains a code that indicates the address space in which the device's 
hardware address resides. On successful return from the function, it 
contains a code that indicates the address space in which the 
TranslatedAddress resides on the current processor. Values defined for 
x86 architecture systems include OxOO indicating memory space and 
OxOl indicating Port I/O space. RISC processors may define additional 
values. 

TranslatedAddress: A pointer into which is returned a logical address 
that can be used with the HAL access function (READ/WRITE_PORT_XXXX 

or READ/WRITE_REGISTER_xxxx) to access DeviceAddress on InterfaceType 
bus number BusNumber. 

Figure 13.14. HalTranslateBusAddress () function prototype. 

Hal TranslateBusAddress () takes input parameters that specify a bus relative 
address, plus the address space in which the address resides, the bus type, and 
the bus number. Although the address, bus type, and bus number may be deter
mined dynamically from device-configuration information, the space in which 
the device address resides (that is, Port I/O space or memory space) is a func
tion of the device itself. Hal TranslateBusAddress () returns an unambiguous logi
cal address that the driver may subsequently use to refer to that device. The 
function also returns the address space in which that returned address resides 
on the current system. Note that the returned address can be a physical address 
(in either Port I/O space or memory space-as it is on most x86 architecture 
systems) or a logical address, which is useful only for the purposes of calling 
the HAL access function (as it is on some Alpha systems). 
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Mapping Logical Addresses to Kernel Virtual 
Address Space 
Because the HAL's system abstraction includes Port 110 space, logical addresses 
in Port 110 space are assumed to be directly accessible by the driver using the 
appropriate READ_PORT_XXXX and WRITE_PORT_XXXX HAL access function. 
Addresses in memory space, however, can only be referenced from a driver 
using kernel virtual addresses. So, if Hal TranslateBusAddress () returns an 
address in memory space (as opposed to port space), the driver must ask the 
Memory Manager to map that address into kernel virtual address space so the 
driver can access it. This is done by using the MmMaploSpace () function, the pro
totype for which is shown in Figure 13.15. 

PYOID 
MmMapJoSpace(IN PHYSICAL_ADDRESS PhysicalAddress, 

IN ULONG NumberOfBytes, 
IN BOOLEAN CacheEnable}; 

PhysicalAddress: The physical address to be mapped into kernel virtual 
address space. 

NumberOfBytes: The size, in bytes, of the address space to map. 

CacheEnable: A boolean value, indicating whether the address range 
should be cachable by the processor's cache. TRUE means that the 
address range may be cachable. 

Figure 13.15. MmMaploSpace function prototype. 

MmMaploSpace() maps a physical address into kernel virtual address space. The 
driver passes the address returned from Hal TranslateBusAddress () as the 
PhysicalAddress parameter. The length of the device's memory located at this 
address is specified in the NumberOfBytes parameter. The driver also specifies 
whether the addresses being mapped will be eligible for caching by the CPU in 
the CacheEnable parameter. 

Note 

CacheEnable controls internal CPU caching of the address range, and is 
not related to the disk or virtual memory caching performed by the 
Cache Manager. For simplicity and to ensure consistency between memo
ry contents and what is on the device, most drivers should set 
CacheEnable to FALSE. 
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Examples: Translating Bus Addresses 
Let's look at a couple of examples to see how HalTranslateBusAddress() and 
MmMaploSpace () work, and how they are used by a driver. For the purposes of 
these examples, assume that Port 110 address Ox300 is a valid address on the 
indicated PCI bus. Examples 13.6-13.8 all use the following definitions: 

INTERFACE_TYPE interfaceType; 
ULONG busNumber; 
PHYSICAL_ADDRESS busAddress; 
ULONG addressSpace; 
PHYSICAL_ADDRESS translatedAddress; 
BOOLEAN resultj 
PYOID deviceAddressToUsej 
ULONG valuej 

Translating Bus Addresses on a Standard x86 Architecture System 
The parameters for this example are as follows: 

• System configuration. Standard X86 architecture processor, 1 PCI bus, 
and one ISA bus 

• HAL. Standard x86 single processor HAL 

• Device. PCI device with 4-byte base port address at Ox300, in Port 110 
space 

Example 13.6. Translating Bus Addresses on a Standard x86 Architecture 
System. 

interfaceType = PCIBuSj 
busNumber = 0j 
busAddress.HighPart = 0x00j 
busAddress.LowPart = 0x300j 
addressSpace = 0x01j //0x01== Port I/O Spacej 0x00 == Memory space 

result = HalTranslateBusAddress(PCIBus, 
busNumber, 
busAddress, 
&addressSpace, 
&translatedAddress)j 

In Example 13.6, the value returned in the addressSpace variable will be Ox01, 
denoting that the returned address is in Port 110 space; and the value returned 
in the variable translatedAddress will be Ox300. How do we know this? We 
know this because standard x86 processors implement Port 110 space, and that 
space is shared across all busses. Therefore, there's not much for 
HalTranslateBusAddress() to do! 
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The 110 port on the device can then be read using the low 32-bits from the 
translatedAddress variable and the HAL function READ_PORT_ULONG9(), as follows: 

deviceAddressToUse = translatedAddress.LowPartj 

value = READ_PORT_ULONG(deviceAddressToUse)j 

The READ_PORT_ULONG function on x86 system results in an IN instruction being 
issued to perform the indicated read from Port 110 space. 

Translating Bus Addresses for a MIPS System 
In this example, the device is the same as in Example 13.6, but the system con
figuration is different. The parameters for this example on translating bus 
addresses are as follows: 

• System configuration. MIPS R 4000 processor, 1 PCI bus and one ISA bus 

• HAL. Standard MIPS single processor HAL 

• Device. PCI device with 4-byte base port address at Ox300 in Port 110 
space 

Example 13.7. Translating Bus Addresses for a MIPS System. 

interfaceType = PCIBuSj 
busNumber = 0j 
busAddress.HighPart = 0x00j 
busAddress.LowPart = 0x300j 
addressSpace = 0x01j 110x01== Port I/O Spacej 0x00 == Memory space 

result = HalTranslateBusAddress(PCIBus, 
busNumber, 
busAddress, 
&addressSpace, 
&translatedAddress)j 

In Example 13.7, the value returned in the addressSpace variable will most like
ly be OxOO, denoting that the returned address is in memory space; and the 
value returned in the variable translatedAddress will likely be some very large 
value ending in Ox300. We know this because standard MIPS platforms do not 
have a separate Port 110 space. Thus, the system hardware designer maps 
"port 110 space" addresses into some set of reserved physical addresses on the 
system. 

Because the value returned in the addressSpace variable indicates that the 
returned address is in memory, the next thing that needs to be done is to call 
MmMapIoSpace (), as follows: 

deviceAddressToUse = MmMapIoSpace(translatedAddress, 
0x08, 
FALSE) j 

II logical address to map 
II length of space 
II indicate not cacheable 
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This call to MmMaploSpace () maps the returned logical address into kernel virtual 
address space, making it accessible by the driver. The driver may then read 
from the device's register by using the returned variable deviceAddressToUse and 
the HAL's READ_PORT_ULONG function, as follows: 

value = READ_PORT_ULONG(deviceAddressToUse); 

This function results in a read from the indicated memory location. Despite the 
fact that the translatedAddress variable returned from Hal TranslateBusAddress () 
indicated that the address resides in memory space on this processor, we still 
use READ_PORT_ULONG() to read it. This is because the actual device address (the 
one on the hardware device) is in port space. The actual device address, not the 
AddressSpace value returned by HalTranslateBusAddress(), is what determines 
which HAL access function to use. 

Translating Bus Addresses on an Alpha System 
In this example, the device is the same as in the previous two examples (13.6 
and 13.7), but the system is an Alpha processor. The parameters for this 
example on translating bus addresses are as follows: 

• System configuration. Alpha processor, 1 PCI bus 

• HAL. Standard Alpha HAL 

• Device. PCI device with 4-byte base port address at Ox300 in Port I/O 
space 

Example 13.8 Translating Bus Addresses on an Alpha System. 

interfaceType = PCIBus; 
busNumber = 0; 
busAddress.HighPart = 0x00; 
busAddress.LowPart = 0x300; 
addressSpace = 0x01; //0x01== Port I/O Space; 0x00 == Memory space 

result = HalTranslateBusAddress(PCIBus, 
busNumber, 
busAddress, 
&addressSpace, 
&translatedAddress); 

In this example, the value returned in the add ressSpace variable will most likely 
be OxOl, denoting that the returned value is in Port I/O space. Surprise! Even 
though the Alpha doesn't have Port I/O space, it returns this indicator to indi
cate to the driver that calling MmMapIoSpace () is not necessary. The value 
returned in translatedAddress is Quasi-Virtual Address (QVA) that encodes the 
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bus number and bus relative address. This QVA has meaning only to the HAL 
functions that are called to reference it, as in the following: 

value = READ_PORT_ULONG(deviceAddressToUse)j 

This call results in the HAL performing the translation of the QVA to a device 
address when called and then returning the contents of that memory-mapped 
address. 

Highlights of Bus Address Translation 
To sum up, every Port 110 address and every memory address for a device 
needs to be translated from a bus relative value to a logical address before it 
can be used by the driver. This translation is performed by using 
Hal TranslateBusAddress (). If Hal TranslateBusAddress () returns that the returned 
address is in memory space on the current system, the driver next calls 
MmMaploSpace () to map the returned address into kernel virtual address space. 
The returned address is referenced by using the HAL function indicated by the 
original address space on the device, not the address space returned from 
HalTranslateBusAddress (). Thus, if an address physically resides in Port 110 
space (as defined by the way the hardware device is wired), it is always 
accessed using the HAL READ/WRITE_PORT_XXXX functions, irrespective of the 
address space returned by Hal TranslateBusAddress (). The HAL and the underly
ing hardware are responsible for properly resolving the differences. Thus, the 
driver writer can write a single, portable driver that works on different 
Windows NT platforms. 

A common problem that drivers encounter when they attempt to map 
multiple, large shared-memory segments from their devices into kernel 
virtual address space is that the call to MmMaploSpace () fails. This failure 
sometimes appears to be random-it happens sometimes but not other 
times. Because MmMaploSpace () returns a kernel virtual address and not 
NTSTATUS, this failure is indicated by a return value of NULL. The likely 
cause of this problem is that the system has run out of system Page Table 
Entries (PTEs), with which to describe segments of kernel virtual address 
space. This problem can be rectified by setting the Registry value 
HKEY_LOCAL_MACHINE\CurrentControlSet\Control\SessionManager\Memory 

Management\SystemPages to a value between 20000 and 50000. 
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Exporting Entry Points 
With all of its hardware resources identified and device addresses translated, 
the driver next exports its entry points to the I/O Manager. This is performed 
by placing pointers to the driver's various entry points into the Driver Object, 
which was passed in to the driver at its DriverEntry entry point. 

The driver fills entries into the Driver Object Maj orFunction vector, with a 
pointer to a Dispatch routine for each I/O major function code it supports. 
If the driver uses System Queuing (discussed in Chapter 14, "Dispatch Entry 
Points"), it places a pointer to its Startlo routine in the StartIo field of the 
Driver Object. If the driver supports dynamic unloading, it places a pointer to 
its Unload routine in the Driver Object's DriverUnload field. Drivers that sup
port Fast 110 also fill in a pointer to their Fast I/O Dispatch table in the Driver 
Object's FastIoDispatch field. 

Example 13.9 demonstrates how to fill the various fields into the Driver 
Object. 

Example 13.9. Filling Fields of the Driver Object. 

/! 
II Establish dispatch entry points for the functions we support 
/! 

DriverObj->MajorFunction[lRP_MJ_CREATEj 
DriverObj->MajorFunction[lRP_MJ_CLOSEj 

DriverObj->MajorFunction[lRP_MJ_READj 
DriverObj->MajorFunction[lRP_MJ_WRlTEj 
DriverObj->MajorFunction[lRP_MJ_DEVlCE_CONTROLj 

/! 
II Unload function 
/! 
DriverObj->DriverUnload = OsrUnloadj 

OsrCreateClosej 
OsrCreateClosej 

OsrReadj 
OsrWrite j 
OsrDeviceControlj 

As you saw in Example 13.7, drivers only fill in the MajorFunction vector for 
the I/O Function codes they want to support. Any entries that are not initial
ized by the driver will be connected to a function in the 110 Manager that 
returns STATUS_INVALID_DEVlCE_REQUEST to any requests. Also, note that some 
major functions may be connected to the same Dispatch routine, as is the case 
with lRP _MJ_CREATE and lRP _MJ_CLOSE in the example. 

Although these entry points have been filled into the Driver Object, the driver 
will not start to receive requests via these entry points until it has returned 
from DriverEntry. 
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Connecting to Interrupts and the 
Registering DpcForIsr 
The next step in the DriverEntry entry point, at least for any interrupt-driven 
device, is to connect to interrupts from the device. In this step, the 110 
Manager is given a pointer to the driver's Interrupt Service Routine (ISR), to be 
called each time that an interrupt is received from a particular device. The 110 
Manager and the Microkernel create an Interrupt Object that connects (indi
rectly) the processor's interrupt vector to the driver's ISR. Unlike calls to your 
Dispatch entry points, which cannot be called until DriverEntry returns, a dri
ver must be ready for its ISR to be called as soon as it connects to interrupts. 

Translating Interrupt Levels and Vectors 
Like device addresses, interrupts are also bus-specific. Therefore, before a dri
ver can use an interrupt level and vector that it has read from the Registry or 
identified by using HalGetBusData(), HalAssignSlotResources(), or 
IoQueryDeviceDescription(), the driver must first translate them to systemwide 
logical values. This translation is performed by using the 
HalGetInterruptVector () function, the prototype for which is shown in 
Figure 13.16. 

HalGetInterruptVector () takes the device's InterfaceType and BusNumber as 
parameters, as well as the bus-specific BusInterruptLevel and 
BusInterruptVector. For ISA bus devices, BusInterruptVector is ignored. 
The HalGetInterruptVector() function returns as its return value the translated 
interrupt vector, and returns the device interrupt level translated to an IRQL 
(DIRQL) in the Irql parameter. 



Chapter 13: DriverEntry 303 

ULONG 
HalGetinterruptVector(IN INTERFACE_TYPE InterfaceType, 

IN ULONG BusNumber, 
IN ULONG BusInterruptLevel, 
IN ULONG BusInterruptVector, 
OUT PKIRQL Irq/, 
OUT PKAFFINITY Affinity); 

InterfaceType: The interface type on which the device resides. 

BusNumber: The zero-based number of the bus on which the device 
resides. 

BusInterruptLevel: The bus-relative interrupt level used by the device. 

BusInterruptVector: The bus-relative interrupt vector used by the 
device. For ISA bus devices, this parameter is ignored. 

Irql: The system IRQL corresponding to BusInterruptLevel. 

Affinity: The mask of maximal processor affinity. A bit is set for each 
processor on which the devices interrupt may be service. 

Figure 13.16. HalGetlnterruptVector () function prototype. 

The maximal mask of processor affinities is returned in the Affinity parameter. 
This value is a KAFFINITY structure, in which each bit corresponds to a potential 
CPU on the system. Bit zero corresponds to processor zero and bit 31 corre
sponds to processor 31. A bit is set for each processor on which the interrupt 
may be received. For NT 4, this is always the mask of active processors on the 
system. Thus, on a dual-processor system with two processors running, 
Affinity is always returned with the low two bits set; on a quad-processor 
system, bits 0 through 3 are always set. 

Connecting Driver ISR to Interrupts 
.. With the interrupt vector and level translated, the driver may now connect its 

ISR to the interrupt by using IoConnectInterrupt(), the prototype for which is 
shown in Figure 13.17. Note, a driver must be ready to receive interrupts as 
soon as it calls IoConnectInterrupt (). 
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NTSTATUS 
IoConnectInterrupt( OUT PKINTERRUPT * Interrupto bject, 

IN PKSERVICE_ROUTINE ServiceRoutine, 
IN PVOID Service Context, 
IN PKSPIN_LOCK SpinLock, 
IN ULONG Vector, 
IN KIRQL Irql, 
IN KIRQL SynchronizeIrql, 
IN KINTERRUPT_MODE InterruptMode, 
IN BOOLEAN Share Vector, 
IN KAFFINITY ProcessorEnableMask, 
IN BOOLEAN FloatingSave); 

InterruptObject: A pointer to a location into which is returned, on 
successful completion, a pointer to the Interrupt Object describing this 
interrupt and ISR. 

ServiceRoutine: A pointer to the driver's interrupt service routine 
(lSR). 

Service Context: A driver-defined value to be passed into the ISR when 
an interrupt occurs. Typically, this is a pointer to the Device Object 
responsible for the interrupt. 

SpinLock: An optional pointer to an externally allocated and initial
ized spin lock, which is used when supporting multiple ISRs that need 
to be serialized. Almost always passed as NULL. 

Vector: The interrupt vector to connect to, as returned from 
Hal Getlnterrupt(). 

Irql: The IRQL associated with the device, and at which the ISR will 
execute, as returned from HalGetlnterruptO. 

Synchronizelrql: The IRQL at which the ISR will execute. This is 
almost always set to the same value as Irql; however, if SpinLock is 
not zero, this value may be set to a value higher than Irql to ensure 
serialization among multiple devices. 

InterruptMode: A value indicating whether the interrupts from this 
device are LevelSensitive or Latched. Note that interrupts for PCI 
devices are LevelSensitive. 

Share Vector: A boolean value, indicating whether the driver is willing 
to share this interrupt vector with other devices. Note that PCI devices 
must share interrupts. 
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ProcessorEnableMask: A KAFFINITY mask that indicates the proces
sor on which interrupts from this device will be serviced. This value is 
usually the same as the value returned in Affinity from 
Hal Getlnterru pt Vector(). 

FloatingSave: A boolean value, indicating whether the floating-point 
registers should be saved before the ISR is called, and returned when 
the ISR exits. On x86 architecture processors, this must be set to 
FALSE. 

Figure 13.17. IoConnectInterrupt () function prototype. 

IoConnectInterrupt () takes as input the InterruptVector, Irql, and Affinity 
values returned by HalGetInterruptVector(). 

If the driver wants to restrict the processors on which interrupts will be 
processed, it may set Process EnableMask to a subset of the values returned in 
the Affinity parameter from HalGetInterruptVector(). 

Although it might initially sound like a good idea to restrict the proces
sors on which interrupts occur for a device, our experience is that it is 
better not to do so, except in very special circumstances. Setting 
ProcessorEnableMask on IoConnectlnterrupt () to indicate that the inter
rupt can be processed on all processors enables the hardware and the 
HAL to work together to level interrupts and reduce interrupt latency. 
Restricting interrupts to a subset of the available processors can be a use
ful tool for well-defined, closed systems with set configurations. These 
include process control and similar systems. 

The driver specifies the InterruptMode (either Latched or LevelSensitive), based 
on the characteristics of the hardware device. Similarly, the driver sets 
Share Vector to TRUE I if it is willing to share this interrupt vector with other 
devices; and sets it to FALSE otherwise. Note that PCI devices are required by 
the PCI specification to share interrupt vectors. 

The remainder of the parameters to IoConnectInterrupt () are a bit more 
arcane. The FloatingSave parameter, for example, specifies whether the 
floating-point registers should be saved before and restored after the ISR is 
executed. Almost all device drivers set FloatingSave to FALSE, which is the only 
supported value on x86 architecture systems. 
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This leaves the SpinLock and SynchronizeIrql parameters. The SpinLock para
meter is almost always set to NULL by device drivers. This results in the 
Microkernel using a spin lock internal to the Interrupt Object, to ensure that 
the ISR is only active on one processor at a time. SynchronizeIrql is almost 
always set to the same value as Irql by device drivers. This setting results in 
the ISR executing at the DIRQL specified by the return from Irql by 
HalGetInterruptVector (). This is the normally desired behavior. 

A driver should set SpinLock and SynchronizeIrql to something other than the 
recommended values only if the driver supports multiple interrupt sources and 
it needs to serialize executions of the ISRs associated with those interrupts. 
This is the case, for example, for a device that has two interrupt vectors but 
a single set of registers. When in the ISR because of one interrupt, the driver 
needs to be sure that it isn't interrupted by the other interrupt while accessing 
the registers. 

To achieve serialization across two ISRs shared by a common device, 
IoConnectInterrupt () enables you to specify an external spin lock and the 
IRQL at which the ISR will be executed. To make use of this feature, a driver 
allocates space in a non-paged pool for a KSPIN_LOCK structure, and initializes it 
using KelnitializeSpinLock (). The SpinLock parameter on both calls to 
IoConnectInterrupt () is set to point to this spin lock. The SynchronizeIrql 
parameter is set to the higher of the two device's IRQLs, as returned from 
HalGetInterruptVector (). Because this results in both ISRs using the same spin 
lock and executing at the same DIRQL, the two ISRs now cannot ever 
interrupt each other. 

It is a serious erro~ yet a relatively common one, to acquire the spin lock 
that is optionally pointed to by the SpinLock parameter within a driver 
using KeAcquireSpinLock ( ). This action results in the spin lock being 
acquired at IRQL DISPATCH_LEVEL. Although this effectively blocks the ISR 
using the spin lock from executing on other processors, it can lead to the 
driver deadlocking the current processor. ISR spin locks may only be 
acquired by using KeSynchronizeExecution (). 

IoConnectInterrupt () returns a pointer to a kernel Interrupt Object, which the 
driver must store away (typically in the Device Object's device extension) for 
later use in disconnecting the interrupt or calling KeSynchronizeExecution (). 
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Initializing the DPC Object for the DpcForIsr 
After connecting to interrupts, a driver typically calls the 
IoInitializeDpcRequest () function. This function takes as input a pointer 
to a Device Object and a pointer to the DpcForIsr for that Device Object. The 
function, which is actually implemented as a macro in NTDDK.H, initializes 
the DPC Object embedded in the Device Object with a pointer to the 
DpcForIsr. Consequently, when the driver calls IoRequestDpc (), a DPC is 
queued for the driver's DpcForIsr. The prototype for IoIni tializeDpcRequest () 

appears in Figure 13.18. 

VOID 
IoInitializeDpcRequest(IN PD EVI CE_ OBJECT DeviceO bject~ 

IN PIO_DPC_ROUTINE DpcRoutine); 

DeviceObject: A pointer to the Device Object with which the DPC is 
associated. 

DpcRoutine: A pointer to the driver's DpcForIsr that will be queued as 
a result of the driver calling IoRequestDpc () and specifying 
DeviceObject. 

Figure 13.18. IoIni tializeDpcRequest () function prototype. 

Of course, drivers are not required to utilize NT's built-in DpcForIsr mecha
nism. As an alternative, drivers may wish to allocate a block of storage from 
non-paged pool, sizeof (KDPC) bytes in length, and initialize it by calling 
KelnitializeDpc (). Then, to request a DPC using this DPC object from its ISR, 
the driver calls KelnsertQueueDpc (), specifying this DPC structure instead of 
IoRequestDpc. Some drivers use this design to separate processing for different 
interrupt causes on the same device, queuing a specific DPC to handle each 
type of processing. 

Getting an Adapter Object 
Prior to completing initialization, DMA drivers need to describe the character
istics of each of their devices and indicate the maximum number of map regis
ters that each device will need. The drivers do this by using HalGetAdapter(), 

the prototype for which is shown in Figure 13.19. 
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VOID 
HalGetAdapter(IN PDEVICE_DESCRIPTION DeviceDescription~ 

IN OUT PULONG NumberOfMapRegisters); 

DeviceDescription: A pointer to the DEVICE_DESCRIPTION struc
ture that details the DMA characteristics of this device. 

NumberOfMapRegisters: A pointer to a ULONG, in which the HAL 
returns the maximum number of map registers that may be used at one 
time by this device. 

Figure 13.19. HalGetAdapter() function prototype. 

To indicate a device's characteristics, drivers fill in a DEVICE_DESCRIPTION struc
ture for each of their devices. Drivers typically allocate space for the structure 
from the stack or from paged pool. The DEVICE_DESCRIPTION structure contains 
information about a device's DMA characteristics. This information includes 
whether the device is a busmaster device, whether it supports scatter/gather, 
and whether it is capable of understanding 32-bit addresses. This structure also 
indicates the maximum transfer length supported by the device. 

The DEVICE_DESCRIPTION structure must be completely zeroed before any infor
mation is filled into it. Drivers only fill in those fields that are relevant to their 
type of device. Therefore, busmaster devices do not put anything in the 
DmaChannel, DmaPort, or DmaSpeed fields. The fields themselves are fairly self
explanatory. The DDK supplies definitions for each field, in case there is any 
doubt as to a particular field's meaning. 

HalGetAdapter () returns a pointer to an ADAPTER_OBJECT as its return value. This 
function also returns, as the contents of the NumberOfMapRegisters parame
ter, the maximum number of map registers that the driver may ever use at one 
time with the returned Adapter Object. The driver must save each of these val
ues for later use during DMA operations. On return from HalGetAdapterO, the 
driver-allocated memory for the DEVICE_DESCRIPTION data structure can be 
returned to pool. 

Note 

The NumberOfMapRegisters parameter is often misunderstood. The 
common belief is that this parameter must be set on input to the maxi
mum number of map registers a device requires. This isn~t so! The HALs 
that we are aware of ignore any values passed in via this parameter. 

Typical HALs determine the maximum number of map registers that a 
device requires by dividing the maximum transfer size (as specified in the 
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MaximumLength field of the DEVICE_DESCRIPTION data structure) by the sys
tem's page size, and then adding one. This value is compared to any limit 
that the HAL may impose to determine the maximum number of map 
registers that a driver may request for a particular adapter. That maxi
mum number of map registers is returned by the HAL as the contents of 
the NumberOfMapRegister parameter. 

Example 13.10 demonstrates how to call HalGetAdapter() for a busmaster 
DMA device. 

Example 13.10. Calling the HalGetAdapter() function for a busmaster DMA 
device. 

/! 
II Allocate space for the DEVICE_DESCRIPTION data structure 
/! 
deviceDescription = ExAllocatePoolWithTag(PagedPool, 

sizeof(DEVICE_DESCRIPTION) , 'pRSO')j 

/! 
II Important: Zero out the entire structure first! 
/! 
RtlZeroMemory(deviceDescription, sizeof(DEVICE_DESCRIPTION))j 

/! 
II Our device is a 32-bit busmaster PCI device. It does not support 
II scatter/gather. 
/! 
deviceDescription->Version = DEVICE_DESCRIPTION_VERSIONj 
deviceDescription->Master = TRUE; 
deviceDescription->ScatterGather = FALSE; 
deviceDescription->Dma32BitAddresses = TRUEj 
deviceDescription->BusNumber = devExt->BusNumber; 
deviceDescription->InterfaceType = PCIBus; 
deviceDescription->MaximumLength = OSR_PCI_MAX_TXFERj 

devExt->Adapter = HalGetAdapter(deviceDescription, &devExt->MapRegsGot); 

if(!devExt->Adapter) { 

DbgPrint ("HalGetAdapter FAILED!! \n ") ; 

return(STATUS_UNSUCCESSFUL); 

/! 
II Return the memory allocated from pool 
/! 
ExFreePool(deviceDescription); 
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Performing Device Initialization 
To this point, all the work within DriverEntry has been concerned with finding 
devices, and initializing the interface between the driver and the operating sys
tem. The only thing that remains is to perform any processing required to ini
tialize the devices under the driver's control. On successful return from 
DriverEntry, all the devices supported by a driver should typically be ready to 
process I/O requests. 

The work required to initialize a device varies greatly, depending on the device 
type. In general, devices need to be reset and placed in a known state. Some 
drivers need to download microcode or configuration information to their 
devices, or set up structures in shared memory. 

NT drivers can perform I/O directly from Kernel mode. Consequently~ 
downloading information into devices is relatively easy-not nearly the 
chore it is in some other operating systems. One particularly easy method 
of doing this is to use ZwCreateSection () and ZwMapViewOfSection () to 
memory map the file. The data from the file can then easily be referenced 
with a pointer to a structure referring to the base of the mapped area~ or 
even simply copied to the device using WRITE_REGISTER_BUFFER_xxx (). 

Some devices take a long time to initialize or must be initialized in stages. In 
general, if a driver is going to take longer than a few seconds to initialize, it 
should register for reinitialization by calling 
IoRegisterDriverReinitialization () during DriverEntry. Figure 13.20 shows the 
prototype for the IoRegisterDriverReini tialization () function. 

VOID 
IoRegisterDriverReinitialization( 

IN PDRIVER_OBJECT DriverObject~ 
IN PDRIVER_REINITIALIZE DriverReinitializationRoutine~ 

IN PYOID Context); 

DriverObject: The driver object for which the reinitialization routine is 
being registered. 

DriverReinitializationRoutine: A pointer to a driver reinitialization 
function. 

Context: A driver-defined context value to be passed to the reinitializa
ton routine. 

Figure 13.20. IoRegisterDriverReinitialization () function prototype. 
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When a driver registers for reinitialization, the 110 Manager makes an entry 
for the driver on its internal reinitialization list. After all drivers with boot and 
system start times have been called at their DriverEntry entry points, the 110 
Manager calls each driver that has registered for reinitialization at its 
Reinitialization routine. This entry point is shown in Figure 13.21. As shown 
in the figure, the driver is passed a pointer to its Driver Object, a context 
value, and a count (starting with 1) of the number of times that the driver's 
reinitialization routine has been called. 

Figure 13.21. Entry point: driver reinitialization. 

During reinitialization processing, a driver may once again register for reini
tialization. This results in the 110 Manager replacing the entry for the driver 
on the end of its internal reinitializaton list. The driver's Reinitialization rou
tine will be called again when all other driver Reinitialization routines have 
been called. 

Drivers that either start at auto-start time or are demand-started may register 
Reinitialization routines. Doing this, however, results in the driver's 
Reinitialization routine being called immediately after the driver's DriverEntry 
routine completes. Practical use of driver reinitialization is, therefore, limited 
to drivers that start during the boot-start or system-start phases of startup. 
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Other DriverEntry Operations 
Certain drivers may have additional work to perform in DriverEntry. In this 
section, we describe some of the additional functions that drivers may option
ally want or need to perform in their DriverEntry routine. 

Intermediate Buffers 
Drivers that require static buffers for intermediate storage of data or control 
structures will typically want to allocate space for those buffers during 
DriverEntry. The system's paged and nonpaged pool tend to become fragment
ed over time while the system runs. Therefore, drivers should allocate any stat
ic buffers they require, especially large static buffers, during DriverEntry pro
cessing. 

Drivers that need storage space for control structures or intermediate storage 
can allocate space directly from the system's paged or nonpaged pools by using 
ExAllocatePool ( ). Drivers that require buffer space for DMA operations allo
cate such buffers in a specific manner, described later in the section titled 
"Common Buffers for DMA Devices." 

Drivers that desire memory that is not subject to internal processor caching can 
allocate buffers by using the MmAllocateNonCachedMemory () function, the proto
type for which is shown in Figure 13.22. This function allocates memory in 
PAGE_SIZE increments. The buffer returned from this function is non-cached, 
logically contiguous, and non-paged. It is not necessarily physically contiguous, 
however. On some systems, it may be easier to allocate large chunks of non
paged memory using MmAllocateNonCachedMemory () than by using 
ExAllocatePool () for nonpaged pool. 

PYOID 
MmAllocateN onCachedMemory(IN ULONG NumberOfBytes); 

NumberOfBytes: The size, in bytes, of the non-cached buffer to be 
allocated. 

Figure 13.22. MmAllocateNonCachedMemory() function prototype. 
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Drivers that require physically contiguous memory for buffers may call 
MmAllocateContiguousMemory ( ), the prototype for which is shown in Figure 
13.23. Because almost all drivers for DMA devices allocate buffer space using 
HalAllocateCommonBuffer (), shown in Figure 13.24, other requirements for 
contiguous memory are rare. 

PYOID 
MmAllocateContiguousMemory(IN ULONG NumberOfBytes 

IN PHYSICAL_ADDRESS HighestAcceptableAddress); 

NumberOfBytes: The size, in bytes, of the non-cached buffer to be 
allocated. 

HighestAcceptableAddress: The highest physical address at which the 
top of the buffer may be located. 

Figure 13.23. MmAllocateContiguousMemory () function prototype. 

Common Buffers for DMA Devices 
There are several reasons that DMA drivers may need to allocate buffer space 
during initialization. This is the case when, for example, the driver requires an 
intermediate buffer from which DMA operations are repeatedly performed. 
Another reason is that the device utilizes shared host-based memory structures 
for communications between itself and the driver. In either case, after the driver 
has gotten a pointer to its Adapter Object, it allocates space for a memory
based "common" buffer. This buffer is termed "common" because it is shared 
in common between the DMA device that will access the buffer using logical 
addresses, and the driver that will access the buffer using kernel virtual 
addresses. 

The function used to allocate common buffer space is 
HalAllocateCommonBuffer (), the prototype for which appears in Figure 13.24. 
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PYOID 
HalAllocateCommonBuffer(IN PADAPTER_OBJECT AdapterObject~ 

IN ULONG Length~ 
OUT PHYSICAL_ADDRESS LogicalAddress~ 
IN BOOLEAN CacheEnabled); 

AdapterObject: A pointer to the driver's Adapter Object, previously 
acquired by using HalGetAdapter. 

Length: The length, in bytes, of the required common buffer. 

LogicalAddress: A pointer to a PHYSICAL_ADDRESS structure into 
which, on successful return, the function returns the logical address of 
the allocated common buffer. This address may be used for DMA 
operations. 

CacheEnabled: A boolean value, indicating whether the allocated 
memory should be eligible for caching in the processor. 

Figure 13.24. HalAllocateCommonBuffer() function prototype. 

HalAllocateCommonBuffer() takes as input the length of the buffer required and a 
pointer to the device's Adapter Object. If required for DMA operation on the 
system, the function also maps the allocated space by using the Adapter 
Object's map registers. Note that any map registers used by this function are 
reserved until HalFreeCommonBuffer() is called. If cached memory is not 
required, drivers should set CacheEnabled to FALSE. On some platforms, this 
may make memory allocation easier and less likely to impact the system's 
nonpaged pool. 

To reduce demands for contiguous memory that is required on some plat
forms~ drivers that need multiple common buffers should call 
HalAllocatecommonBuffer() multiple times instead of calling it once to 
request a single large buffer. 

HalAllocateCommonBuffer () examines the device characteristics contained in the 
Adapter Object, and allocates the memory appropriate for use by the device. 
For example, the common buffer allocated for system DMA devices that do 
not support 32-bit addresses will automatically be located in the lower 16MB 
of physical space within the system. 
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HalAllocateCommonBuffer() returns a kernel virtual address that the driver may 
use to access the buffer, and a logical address to be used by the device to 
perform DMA operations to or from the extent of the buffer. 

Note 

Drivers that require buffers for DMA operations must allocate them by 
using HalAllocateCommonBuffer () (or a manual alternative to this func
tion). It may seem reasonable to allocate such buffers by calling 
MmAllocateContiguousMemory (), and then get the address of the buffer for 
DMA by calling MmGetPhysicalAddress (). Although this works on cur
rent x86 architecture systems, it does not work on all platforms. 
Remember, logical addresses used for DMA operations are not necessarily 
the same as physical addresses. Some platforms really do use map regis
ters for DMA operations! 

The only proper alternative to using HalAllocateCommonBuffer () that is available 
to a driver is to manually perform all the activities that 
HalAllocateCommonBuffer () would do. That is, you can allocate the buffer (con
tiguously, if necessary), lock it into memory, map the buffer with an MDL, call 
IoAllocateAdapterChannel() to allocate the necessary map registers, and then 
call IoMapTransfer() to get the logical address (or addresses) of the buffer. 

110 Timers 
Some drivers need to periodically check their devices to ensure that they are 
operating properly. Additionally, drivers often require a clock with a resolution 
on the order of seconds, which allows them to time-out operations. Both of 
these functions can be conveniently implemented by using I/O Timers. 

A driver can initialize an I/O Timer on a per-Device Object basis. The timer 
fires approximately once per second. When the timer is enabled for a device, 
each time that the timer fires, the I/O Manager calls the driver's I/O Timer rou
tine that is associated with that device at IRQL DISPATCH_LEVEL in an arbi
trary thread context. Drivers initialize an I/O Timer by using the function 
IoInitializeTimer(), the prototype for which is shown in Figure 13.25. 
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PYOID 
IoInitializeTimer(IN PDEVICE_OBJECT Device 0 bject, 

IN PIO_TIMER_ROUTINE TimerRoutine, 
OUT PYOID Context}; 

DeviceObject: A pointer to the driver's Device Object with which the 
timer is associated. 

TimerRoutine: A pointer to the driver's I/O Timer routine, to be called 
by the I/O Manager once per second when the I/O Timer is running. 

Context: A driver-defined context value for the I/O Manager to pass 
into the driver's I/O Timer Routine when it is called. 

Figure 13.25. IoInitializeTimer() function prototype. 

I/O Timers are typically initialized during a driver's DriverEntry routine. 

I/O Timers may be started or stopped on a per-Device Object basis, as required 
by the driver. I/O Timers are started by using the function IoStartTimer(), the 
prototype for which is shown in Figure 13.26. 

PYOID 
IoStartTimer(IN PDEVICE_OBJECT DeviceObject}; 

DeviceObject: A pointer to the driver's Device Object with which this 
timer is associated. 

Figure 13.26. IoStartTimer () function prototype. 

Figure 13.27 shows the prototype for the driver's I/O Timer routine. 
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Figure 13.27. IoTimerRoutine () entry point. 

Likewise, an 110 Timer may be stopped by using the function IoStopTimer(), 

the prototype for which is shown in Figure 13.28. While a timer is stopped, 
calls to the driver's 110 Timer routine do not take place. 

PYOID 
IoStopTimer(IN PDEVICE_OBJECT DeviceObject); 

DeviceObject: A pointer to the driver's Device Object with which this 
timer is associated. 

Figure 13.28. IoStopTimer() function prototype. 

Note that I/O Timers are provided for low-resolution timing purposes only. 
The 110 Manager uses a single timer queue entry to process all 110 Timers. 
When this entry comes due, the 110 Manager calls each 110 Timer routine that 
has a timer enabled, one at a time. Therefore, although calls to a driver's timer 
routine are always at least one second apart, they can, in fact, be considerably 
more than one second apart. Drivers that need higher precision timing may ini
tialize and use kernel timers (using the functions KelnitializeTimer (), 

Kelni tializeTimerEx () ,KeSetTimer (), and KeSetTimerEx (). These routines are 
discussed in Chapter 16, "Programmed 110 Data Transfers." 
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Intermediate and Filter Drivers 
Up to this point in the chapter, we've restricted our discussion to initialization 
operations for device drivers. This is perhaps to be expected, given that the 
focus of this book is device drivers. However, a few words about the initializa
tion tasks typically performed by intermediate and filter drivers is in order. 

Because they do not, by definition, control any hardware, initialization for 
intermediate drivers is typically much simpler than it is for device drivers. 
During DriverEntry, intermediate drivers typically get and store away the 
Device Object address of the underlying drivers that will support them. 
Precisely how this is done is device-specific. As described in Chapter 11, "The 
Layered Driver Model," the Disk Class driver, for example, retrieves the Device 
Object address of any devices named "ScsiPortx" by using the 
IoGetDeviceObj ectPointer () function. 

Filter drivers share the characteristics of the devices to which they attach, as 
well as having characteristics specific to the job they perform. During 
DriverEntry, filter drivers typically create a new Device Object, and then attach 
it to the Device Object of the device to be filtered by calling IoAttachDevice () 

or IoAttachDeviceToDeviceStack (), as described in Chapter 11, "The Layered 
Driver Model." Any other initialization performed by a filter driver is driver
and device-specific. 

Dynamic Driver Unloading 
As mentioned previously, just as drivers may be dynamically loaded, drivers in 
NT may also be dynamically unloaded. Support for dynamic unloading is 
optional. If a driver supports dynamic unloading, it fills a pointer to its Unload 
routine into the Driver Object during DriverEntry processing. This was 
described earlier in this chapter, in the section entitled "Exporting Entry 
Points." 

Drivers may be unloaded, either programmatically or interactively, by users 
with administrator privilege. A driver's Unload routine is not called by the 110 
Manager if there are active references to any of the driver's Device Objects. 
Note that if a driver elects to supply an Unload routine, and the driver's 
Unload routine is called, the driver will be unconditionally unloaded on return 
from its Unload routine. Other than delaying in its Unload routine, there is no 
way that a driver can decide that it is not ready to be unloaded. 

A driver's Unload routine is called at IRQL PASSIVE_LEVEL in the context of 
the system process. The prototype for this routine is shown in Figure 13.29. 
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Figure 13.29. UnloadRoutine () entry point. 

The goal of processing in a driver's Unload routine is, in essence, to reverse the 
work done at its DriverEntry entry point. This includes (for example) stopping 
any running timers, disconnecting from previously connected interrupts, 
unmapping any memory that has been mapped by using MmMaploSpaee (), return
ing any reserved hardware resources, unregistering for shutdown notification if 
it was so registered, and deleting any created Device Objects. 

To facilitate its work, a driver may get a pointer to the first Device Object it 
created from the DevieeObj eet field of the Driver Object, a pointer to which is 
passed to the driver at its Unload routine entry point. Further Device Objects 
may be found by following the NextDeviee pointer in each Device Object. 

Before exiting, drivers must be careful to return all the memory they allocate 
during operation (such as memory that was allocated from the system's paged 
or nonpaged pools). 

Making your driver unload properly can be rather time-consuming, due 
to the effort required to ensure that you can undo all that was done in 
the driver. However, this can be time well spent. Making your driver 
dynamically unloadable can greatly speed the debugging process because 
you will not need to reboot the system every time you want to make a 
change to your driver code. 





Chapter 14 
Dispatch Entry Points 

This chapter will review: 

• Validating requests. Before a request can be processed, its parameters 
must first be validated. This section describes that process. 

• Completing requests. A driver must notify the 110 Manager of each IRP it 
processes to completion by calling the IoCompleteRequest () function. This 
section describes how and when IoCompleteRequest () is called. 

• Pending and queuing requests. Anytime a request cannot be immediately 
processed and completed within a dispatch routine, a driver has to mark 
the request "pending" and place it on a queue for later processing. This 
section describes how a driver can use either System Queuing or Driver 
Queuing to manage in-process requests. 

• Request processing. Some requests a driver receives can be processed and 
completed directly in the Dispatch routine. Other requests are completed 
asynchronously. This section reviews the various alternatives. 

• Shutdown notification. One unusual Dispatch entry point is used for dri
ver shutdown notification. This section describes that Dispatch routine. 

• Cancel processing. What happens when a request that is currently pend
ing in a driver is cancelled? This section describes driver cancellation pro
cessing strategies. 

This chapter discusses the basics of how a driver receives, pends, queues, and 
completes I/O requests. It also describes request cancellation. Because so much 
of how a request is processed depends on the architecture of both the driver 
and the device, the details of request processing have been separated from the 
basics that appear in this chapter. The details of request processing specific to 
programmed 110 devices appear in Chapter 16, "Programmed 110 Data 
Transfers." The details of request processing specific to DMA devices appear in 
Chapter 17, "DMA Data Transfers." 
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When the I/O Manager has an I/O request for a driver to process, the I/O 
Manager calls the driver at one of its Dispatch entry points. The specific 
Dispatch entry point called depends on the I/O major function code of the 
request. During its initialization processing in DriverEntry, the driver provides a 
pointer to a Dispatch entry point for each I/O major function code it supports 
by filling in the MajorFunction vector of its Driver Object. The I/O Manager 
calls the driver's Dispatch entry point, passing a pointer to one of the driver's 
Device Objects and a pointer to an I/O Request Packet (IRP), as shown in 
Figure 14.1. 

Figure 14.1. Dispatch entry points. 

When the I/O Manager calls a driver at one of its Dispatch entry points, the 
I/O Manager is asking the driver to perform the I/O request described by the 
IRP on the device described by the driver's Device Object. 

Dispatch entry points are typically called at IRQL PASSIVE_LEVEL within an 
arbitrary thread context. There are, however, exceptions to this practice. The 
IRP _MJ_READ and IRP _MJ_WRITE Dispatch entry points of drivers in the storage 
stack may be called at IRQL APe_LEVEL to process paging requests. 
Furthermore, the Dispatch entry point of a driver at the top of its driver stack 
(that is, the first driver called by the I/O Manager to process a request) runs in 
the context of the requesting thread. 
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Driver writers new to Windows NT often think that Dispatch entry 
points are called at IRQL DISPATCH_LEVEL. Not so! The unfortunate use of 
the term "dispatch" in both places has completely different meanings. 

Note 

Although it is neither well documented nor common, Windows NT does 
allow higher-layer drivers to call the Dispatch routines of lower-layer dri
vers (using IoCallDriver()) at IRQL DISPATCH_LEVEL. Windows NT's con
vention for indicating that an IRP is being passed to a driver's Dispatch 
routine at IRQL DISPATCH_LEVEL is set to the IRP's MinorFunction field to 
IRP _MN_DPC. Special drivers for audio or video capture, as well as for file 
systems, deal with such requests. Note that typical device drivers (includ
ing those supplied with NT) neither check for nor handle this option. 
Any device drivers you develop may assume that they will be called 
according to the IRQL rules mentioned previously. 

The goals of processing at a device driver's Dispatch entry point are as follows: 

1. Validate the YO request. If the request is invalid, the driver immediately 
completes it with an error status. Although the I/O Manager typically has 
already checked the overall I/O request for validity, the driver checks the 
IRP for validity in terms of the operation being requested for the specific 
device. Depending on the device, this check might include validating the 
length and byte offset of the request or checking to ensure that the sup
plied I/O control code is valid. The information being validated can come 
from the fixed portion of the IRP or from the IRP's current I/O Stack 
location. 

2. Process the IRP as far as possible. The extent of possible processing varies 
based on the architecture of the driver, the device, and the I/O function 
being requested. Most drivers can complete a subset of I/O requests 
directly within their Dispatch routines. Additionally, a driver can typically 
initiate the processing of certain requests (such as Transfer functions) 
within its Dispatch routines, but must await completion of the request 
before the IRP can be completed. Some drivers may have a subset of 
requests that cannot even be started on the device from within the 
Dispatch routine. Some simple requests can be completed entirely within 
the Dispatch function and require no additional processing by the actual 
device. 

3. Queue the IRP for further processing if immediate completion is not pos
sible. If a request cannot be fully processed within the driver's Dispatch 
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routine, the driver queues the request for completion later. This is the 
case, for example, when a disk driver initiates a read request for its 
device. The driver queues the IRP representing that request until the read 
has been completed. Drivers also queue requests received for a device that 
is already busy processing another request. Such requests are queued and 
initiated when the currently in-process request is completed. 

The amount and type of "processing" a request entails varies significantly 
depending on the layer at which the driver resides in the Windows NT driver 
stack. For device drivers, processing a request usually entails performing the 
110 operation described by the request on the device and calling 
IoCompleteRequest () when the 110 operation is complete. Bear in mind, howev
er, that for Intermediate drivers and FSDs, "processing" a request typically 
involves only passing the request on to an underlying driver by calling 
IoCallDriver (). 

Unless otherwise specifically noted in this chapter, all references to drivers refer 
specifically to device drivers and not File System Drivers (FSDs) or 
Intermediate layer drivers. 

The value returned by a driver to the 110 Manager from its Dispatch routine 
reflects the outcome of the 1/0 operation it was called to dispatch. If the 110 
operation described by the IRP was completed by the driver within the 
Dispatch routine, the driver returns the completion status of the 110 operation. 
On the other hand, if the 110 operation is queued by the driver for later pro
cessing and completion, the driver returns STATUS_PENDING. You will find more 
about STATUS_PENDING later in this chapter. 

Validating Requests 
When one of its Dispatch entry points is called, the first step any driver takes is 
to validate the newly received I/O request. The type of validation that must be 
performed varies depending on the design of the driver and the particular 
device being supported. Even the 110 method (direct, buffered, or neither) 
impacts the type of validation to be performed. 

Drivers can assume a few things about the validity of every 110 request they 
receive. For example, drivers can assume that the 110 request contains a valid 
IRP _MJ function code in the Maj orFunction field of the IRP. Drivers can assume 
that any requests they receive (other than IRP _MJ_CREATE) have been preceded by 
an IRP _MJ_CREATE operation. Hence, drivers can assume that the requesting 
thread has the appropriate security access to the device object to enable it to 
perform the requested function. Drivers can also assume that received requests 
are valid based on the requested access specified in the corresponding 



Chapter 14: Dispatch Entry Points 325 

lRP _MJ_CREATE request. Thus, if a device is opened only for read data access, the 
driver should not receive any write data requests; all requests that do not 
match the originally requested access are completed with an error status by the 
110 Manager. 

The type of validation that most drivers have to perform is to check the appro
priateness of each received request relative to the driver's and device's con
straints. For example, drivers usually check to ensure that the length of transfer 
requests is within the supported limits of both the driver and the device. 

The I/O Manager considers zero bytes to be a valid buffer length for an 
I/O operation. When the requestor's buffer length is zero, the I/O 
Manager does not allocate a Memory Descriptor List (for devices sup
porting direct I/O) or an intermediate buffer (for devices supporting 
buffered I/O). Thus, a driver should always check for zero length trans
fers before checking any other parameters. 

If the requested transfer length is not zero bytes, a driver can assume that the 
requestor's buffer has been described in the method requested according to the 
Flags bits in the Device Object (for lRP _MJ_READ and lRP _MJ_WRITE operations) or 
the Method parameter specified on the CTl_CODE macro (for lRP _MJ_DEVlCE_CONTROl 
operations). 

Drivers that support Neither 1/0 for either readlwrite or device control opera
tions must perform additional checks. Because the requestor's buffer address 
stored in the UserBuffer field of the IRP is a direct copy of what the requestor 
specified in its 110 request, this parameter must be validated. At a minimum, 
drivers validating user mode buffer addresses should check to ensure that the 
entire buffer resides at an address less than or equal to MM_USER_PROBE_ADDRESS, 
and that the provided length does not cause the address to "wrap." Drivers 
that have to check for write access to such a buffer should, at a minimum, also 
attempt to write to each page in the buffer within a try ... except exception 
handler. Example 14.1 demonstrates this validation operation. 

Example 14.1. Buffer validation for Neither I/O. 

PVOID addressj 
PIO_STACK_LOCATION ioStack; 
ULONG length; 
BOOLEAN userBufferIsValidj 

ioStack = IoGetCurrentIrpStackLocation(Irp); 

length = ioStack->Parameters.Write.Length; 

continues 
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Continued 

address = Irp->UserBuffer; 

userBufferIsValid = TRUE; 

II 
II Validate the buffer. Note: This driver does not consider 
II zero to be a valid buffer length! 
1/ 
if ( (length == 0) :: 

II 

((ULONG)address+length < (ULONG)address) :: 
((ULONG)address+length > (ULONG)MM_USER_PROBE-ADDRESS)) { 

userBufferIsValid = FALSE; 

else 

II 
II Probe the input buffer by writing a byte to each page 
II in the range 
II 
try { 

ULONG index; 
PUCHAR addressToTest; 

for (index = ADDRESS_AND_SIZE_TO_SPAN_PAGES(address, length); 
index; 
index--) { 

addressToTest = (PUCHAR)address; 
addressToTest += ((index-1) * PAGE_SIZE); 
*addressToTest = 0x00; 

except (EXCEPTION_EXECUTE_HANDLER) 

userBufferIsValid = FALSE; 

II If the buffer failed any of our checks, complete the request 
II right now with an error status 
1/ 
if (userBufferIsValid == FALSE) { 

Irp->IoStatus.Status = STATUS_INVALID_PARAMETER; 
Irp->IoStatus.Information = 0; 
IoCompleteRequest(Irp, IO_NO_INCREMENT); 

return(STATUS_INVALID_PARAMETER); 
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The code in Example 14.1 first checks to ensure that the supplied address and 
length are valid. Next, it writes a byte to each page within the buffer, using an 
exception handler to catch any invalid accesses. If either of these tests fails, the 
IRP is completed with STATUS_INVALID_PARAMETER (see the next section in this 
chapter for further information on completing 110 requests). 

Drivers should perform any other validity checking that is possible for a 
request within their Dispatch routines. For example, some requests may be 
valid only if they have been preceded by other requests or if the device is cur
rently in a particular state. This checking is typically performed within the 
Dispatch routine. 

A final word about validating IRP _MJ_DEVICE_CONTROL and 
IRP _MJ_INTERNAL_DEVICE_CONTROL requests. Drivers must check the received I/O 
control code, passed in the current IRP Stack location in the 
Parameters. DeviceloControl. IoControlCode field, for validity. Device drivers 
should reject unrecognized 110 control codes with an appropriate status, typi
cally STATUS_INVALID_PARAMETER. Intermediate and file system drivers, however, 
must pass any requests containing unrecognized 110 control codes to the driver 
directly below them in the driver stack. This requirement is discussed in detail 
in Chapter 11, "The Layered Driver Model." 

Completing Requests 
To inform the 110 Manager that a request it has processed is complete, a driver 
fills in the IO_STATUS_BLOCK structure in the IRP with status information about 
the completed request and calls IoCompleteRequest (). Figure 14.2 shows the 
prototype for the IoCompleteRequest () function, which may be called at IRQL 
<= IRQL DISPATCH_LEVEL. 

NTSTATUS 
10CompleteRequest(IN PIRP Irp, 

IN CCHAR PriorityBoost); 

Irp: Pointer to an 110 Request Packet describing the 110 operation to 
be completed. 

PriorityBoost: A positive value to be added to the requesting thread's 
current scheduling priority. 

Figure 14.2. IoCompleteRequest () function prototype. 
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The IO_STATUS_BLOCK structure is located in the IoStatus field of the IRP. The 
IO_STATUS_BLOCK structure comprises two fields, as shown in Figure 14.3. 

ULONG Status 

ULONG Information 

Figure 14.3. The IO_STATUS_BLOCK structure. 

The Status field of the 110 status block is set with an NTSTATUS value indicating 
the completion status of the I/O request. Successful completion is typically indi
cated by the value STATUS_SUCCESS. Requests that are invalid or that complete 
their device operations unsuccessfully should be completed with an appropriate 
error status. The complete list of status values defined by Windows NT 
appears in the file NTSTATUS. H in the DDK's \inc directory. Driver writers nor
mally select an error code from this set of NT-defined values. 

Although it is not commonly done, driver writers can invent their own error 
codes. These codes must follow the format shown in NTSTATUS. H and must have 
the "customer code flag" bit (bit 29) set. 

One common area of confusion with respect to the use of status codes is 
their handling by the Win32 subsystem. Win32 translates the standard 
Windows NT status codes returned by a driver to Win32 error values. 
The Win32 subsystem uses a predefined mapping to accomplish this 
translation. The full set of Windows NT error status codes and their 
Win32 equivalents are given in Appendix A~ "Windows NT Status 
Codes/Win32 Error Codes~'; however, note that there are not Win32 
status codes that correspond to every Windows NT status code. Any 
Windows NT status code that has no Win32 equivalent is translated to 
ERROR_MR_MID_NOT_FOUND or another similar, very general, error code by the 
Win32 subsystem. Windows NT status values with the "customer code 
flag" set are returned without translation by Win32. Thus~ even though 
your driver returns a particular error code~ Win32 may translate that 
code to an entirely different error code. Other Windows NT subsystems 
may use an entirely different set of mappings as well. 

Driver writers should always try to use unique error codes to denote each of 
the error returns associated with processing a particular 110 function in their 
drivers. Doing so greatly increases the usability of the driver by enabling the 
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requestor to determine precisely what went wrong with the request by examin
ing the returned I/O status. Note that driver writers are generally free to use 
any of the standard NT error status values, and supply their own interpreta
tion of them. Thus, STATUS_INVALID_DISPOSITION returned from a lathe driver 
could mean that it is impossible for the driver to complete an operation 
because of the current state of the lathe, even though the standard NT meaning 
of this error relates to exception handling. 

The Information field of the I/O status block contains additional information 
about the completion of the request. This field is typically set by the driver to 
the number of bytes actually transferred as a result of the I/O operation. Thus, 
for example, an application can perform a read operation, specifying a 2000-
byte-long input buffer. The driver completing this request indicates the number 
of data bytes actually returned in the requestor's buffer by setting the contents 
of the Information field of the I/O status block in the IRP. 

Note 

Setting the contents of the IoStatus. Information field in the IRP to the 
number of bytes actually read or written for a transfer function is 
required, not optional, whenever the transfer request is completed with a 
success status. The 110 Manager relies on the contents of this field when, 
for example, it copies data read with METHOD_BUFFERED. 

One particularly effective use of the Information field is to return additional 
information when a request is completed with an error status. In this case, the 
I/O Manager makes no assumption about the contents of the Information field. 

Boosting 110 Request Thread Priority 
The IoCompleteRequest () function takes as parameters a pointer to the IRP 
being completed and a PriorityBoost. The PriorityBoost parameter enables a 
driver to temporarily increase the priority of a thread in the dynamic priority 
range, consequently allowing the thread to be optimally responsive to the com
pletion of its I/O request. The value given for PriorityBoost is added to the cur
rent scheduling priority of the requesting thread (if the thread is in the dynamic 
priority range). 

Note 

Because of the way this parameter is processed, no matter what value is 
provided for PriorityBoost, the thread's resulting priority is never less 
than its priority when IoCompleteRequest () was called. Therefore, 
PriorityBoost cannot be a negative value. Furthermore, no matter how 
large the value is for PriorityBoost, the requestor's thread can never be 

continues 
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Continued 

boosted out of the dynamic range and into the real-time range. A thread 
receiving a PriorityBoost that would result in its being boosted out of the 
dynamic range has its priority set to the highest priority within the 
dynamic priority range (15). Finally, let us restate that PriorityBoost 
applies only to threads running in the dynamic scheduling range-it has 
no effect on threads running in the real-time scheduling range. 

Drivers that do not want to boost the priority of the requesting thread should 
specify the value IO_NO_INCREMENT for PriorityBoost, which is defined in NTDDK. H 

as zero. Drivers should use PriorityBoost with care. Recall from the discussion 
of scheduling in Chapter 5, "Dispatching and Scheduling," that boosts to a 
thread's current priority are cumulative. That is, when multiple 110 requests 
are completed for a thread, the PriorityBoost specified on each call to 
IoCompleteRequest () is added to the thread's current scheduling priority. Thus, 
even moderate values for PriorityBoost for threads running within the typical 
range of priorities can result in a thread reaching priority 15 (the highest 
dynamic priority) rapidly. 

Although it is not usually a concern for device driver writers, it is important to 
note that only the driver actually completing the processing of an 110 request 
calls IoCompleteRequest (). Therefore, only one driver in a stack of drivers typi
cally calls IoCompleteRequest () for a given IRP. For example, if DriverA passes 
an IRP it received at one of its Dispatch entry points to DriverB for processing 
(as an Intermediate layer driver would), only DriverB calls IoCompleteRequest () 

for that IRP. 

Once a driver calls IoCompleteRequest (), it ceases to "own" the IRP it is com
pleting. No further references to the IRP by the driver can occur after 
IoCompleteRequest () is called. 

Because the Dispatch routine must return the same status as the comple
tion status of the IRP, many beginning NT driver writers make the error 
of completing the IRP within their Dispatch routine and then ending 
their dispatch routine with return I rp-> IoStatus . Status. This is a poten
tially fatal error because the IRP no longer belongs to the driver as soon 
as IoCompleteRequest ( ) is called. 

How the 110 Manager Completes Requests 
It is important to understand the process the 110 Manager typically follows 
when IoCompleteRequest () is called. The sequential process is as follows: 
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1. When IoCompleteRequest 0 is called, the 110 Manager begins its process
ing by calling any completion routines that have been registered for this 
IRP by higher-layer drivers. This process is described in detail in Chapter 
11, "The Layered Driver Model." 

2. After all registered completion routines (if any) have been called, the 110 
Manager checks whether this IRP is an Associated IRP. If an Associated 
IRP is being completed, the I/O Manager checks whether it is the last IRP 
associated with its Master IRP; if it is, the I/O Manager calls 
IoCompleteRequestofor the Master IRP (and waits for completion process
ing for the Master IRP to finish). 

3. If the IRP has an associated MDL (in Irp->MdlAddress), the I/O Manager 
unlocks the pages in the buffer described by the MDL. 

4. Assuming that the request is being completed asynchronously, the I/O 
Manager queues a Special Kernel APC for 110 Completion function to the 
thread that initiated the I/O. This results in the PriorityBoost being added 
to the requesting thread's priority. At this point (typically before the APC 
is actually processed), IoCompleteRequest () returns to the caller. 

The Special Kernel APC for I/O Completion function runs the next time the 
requesting thread is scheduled and is running at IRQL PASSIVE_LEVEL. When the 
APC runs, the I/O Manager copies the I/O Status Block from the IRP to the 
requesting process's address space. The I/O Manager also copies any data that 
has been intermediately buffered to the requestor at this time. 

As you can see from this discussion, the overhead involved in a call to 
IoCompleteRequest () greatly depends on the details of the I/O request being 
completed. For example, if several higher-layer drivers have registered comple
tion routines (as may be the case for a storage device driver), the time required 
to call these routines can be considerable. Moreover, if the request being com
pleted happens to be an Associated IRP, the time is further multiplied. On the 
other hand, if a device driver is not layered below other drivers, the overhead 
inherent in a call to IoCompleteRequest () is minimal. 

The code segment in Example 14.2 shows how a request is completed. 

Example 14.2. Completing a request. 

II Complete the request with success status 
II 
Irp->IoStatus.Status = STATUS_SUCCESS; 
Irp->IoStatus.Information = bytesTransfered; 

IoCompleteRequest(Irp, IO_NO_INCREMENT); 
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Example 14.2 shows how IoCompleteRequest () is called for a function that 
involves transferring data. The Status field of the IRP's I/O Status Block is set 
to indicate that the request completed successfully; the Information field of the 
IRP's I/O Status Block is filled in with the number of bytes actually transferred 
(in this example, this value is taken from a local variable). The IRP is complet
ed by calling IoCompleteRequest ( ). No increase in the requesting thread's priori
ty is provided as a result of completing this request because IO_NO_INCREMENT is 
specified as the PriorityBoost argument. 

Pending and Queuing Requests 
Anytime immediate completion of a request is not possible within a Dispatch 
routine, a driver must indicate to the I/O Manager that the request remains in 
progress. The device driver does this by returning STATUS_PENDING from its 
Dispatch routine. STATUS_PENDING indicates that the requested I/O operation is 
still in progress and that "ownership" of the IRP remains with the driver. Early 
in the Dispatch routine, before it initiates any processing of the IRP and before 
the IRP is queued, the driver must also mark the IRP itself pending by calling 
IoMarkIrpPending (). Failure of the driver to do both of these things causes 
improper system behavior. Figure 14.4 shows the prototype for the 
IoMarkIrpPending () function. This function is actually a macro that sets the 
SL_PENDING_RETURNED bit in the current IRP stack location. 

VOID 
IoMarkIrpPending(IN PIRP Irp) 

IRP: A pointer to the IRP which is to be marked as pending. 

Figure 14.4. IoMarkI rpPending () function prototype. 

When SL_PENDING_RETURNED is set in an IRP, it indicates to the I/O Manager that 
the IRP will be completed by the driver calling IoCompleteRequest ( ) at a later 
time. Example 14.3 shows a Dispatch routine that returns with the received 
IRP pending. 

Example 14.3. Marking an IRP pending in a Dispatch routine (System 
Queuing). 

NTSTATUS OsrSimpleWrite(PDEVICE_OBJECT DeviceObject, PIRP Irp) 
{ 

PIO_STACK_LOCATION ioStack; 
NTSTATUS code; 
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ioStack = IoGetCurrentIrpStackLocation(Irp)i 

1/ 
II If the Write is too big, fail the request 
1/ 
if (ioStack->Parameters.Write.Length == 0) :: 

(ioStack->Parameters.Write.Length > OSR_MAX_WRITE) ) { 

Irp->IoStatus.Status = STATUS_INVALID_PARAMETER; 
Irp->IoStatus.Information = 0; 

IoCompleteRequest(Irp, IO_NO_INCREMENT); 

} else { 

1/ 
II We will return with this request pending 
/I 
IoMarkIrpPending(Irp); 

1/ 
II Queue the request and/or start it on the device if necessary 
1/ 
IoStartPacket(DeviceObject, Irp, NULL, NULL); 

code = STATUS_PENDING; 

return(code) ; 

In Example 14.3, the Dispatch routine OsrSimpleWrite () is called to process a 
write IRP. The function validates the received IRP by checking to ensure that 
the length of the write is not zero and is not longer than the maximum sup
ported by the device. If the length is too large, the driver completes the request, 
setting the I/O Status Block Status field in the IRP to STATUS_INVALID_PARAMETER 
and the I/O Status Block Information field to zero. The request is then complet
ed by calling IoCompleteRequest (). The function completes by returning 
STATUS_INVALID_PARAMETER. If the length of the write is valid, the driver marks 
the IRP pending by calling the IoMarkI rpPending () function. Note that the dri
ver does this as soon as the IRP is validated and before any further processing 
is performed on the IRP. The driver next uses System Queuing (described later 
in this chapter) to either start the request or queue it for later processing. In 
this example, the function completes by returning STATUS_PENDING to the I/O 
Manager. 
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If a driver is going to queue an IRP it receives in its Dispatch routine, it 
is vital that a driver mark the IRP pending by calling IoMarklrpPending() 

before it queues the IRP for processing. This is true regardless of the 
queuing method chosen by the driver (as described later). If the driver 
queues the IRP first and then marks it pending, incorrect driver or system 
operation may result. 

A driver can return from its Dispatch routine with an 110 request in progress 
for two reasons: 

• The request has been started on the device, and the driver is awaiting the 
request's completion. 

• The request cannot be started at the current time on the device, and the 
driver is waiting for the device to become available before it can be 
started. 

A request started on a device may have to pend for many reasons. The obvious 
case is when the request itself has been passed to the device and the driver is 
merely awaiting the request's completion to be indicated by the device (through 
an interrupt, for example). There are, however, other reasons drivers may pend 
an "in-progress" request. For example, a device may have to reach a specific 
internal state before a request can be initiated (an old-fashioned disk drive that 
has to perform a seek before executing a read, or a data communications 
device that has to have a virtual circuit established before a message can be 
sent, for example). In all these cases, the driver marks the IRP pending, stores 
the address of the in-progress IRP in a convenient location (such as the device 
extension), and returns STATUS_PENDING to the 110 Manager. 

It may not always be possible to immediately initiate every request received by 
a driver. Most devices limit the number of requests they can process simultane
ously. For many devices, only one operation can be in progress at a time. When 
an IRP cannot be immediately initiated, the driver has to maintain a queue of 
outstanding IRPs. In such cases, the driver marks the IRP pending, places the 
IRP in a queue, and returns STATUS_PENDING to the 110 Manager from its 
Dispatch routine. 

Windows NT provides two methods drivers can use to queue requests for their 
devices: 

• Drivers can use the NT 110 Manager to queue requests. This is called 
System Queuing. 

• Drivers can manage the queuing operation themselves. This is called 
Driver Queuing. 
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These methods are discussed in the following sections. 

System Queuing 
The simplest method a driver can use for queuing IRPs is called System 
Queuing. This method provides a combined capability for managing in
progress and queued requests. In System Queuing, the driver supplies a Startlo 

entry point. If a request received at a Dispatch entry point is valid and cannot 
be immediately completed within the Dispatch routine, the driver marks the 
IRP pending, calls IoStartPacket(), and returns STATUS_PENDING to the 110 
Manager. Figure 14.5 shows the prototype for the IoStartPacket () function. 
The example in the "Pending Requests" section provides an example of how 
IoStartPacket () is called. 

VOID 
IoStartPacket(IN PDEVICE_OBJECT DeviceObject, 

IN PIRP Irp, 
IN PULONG Key, 
IN PDRIVER_CANCEL CancelFunction); 

DeviceObject: A pointer to the Device Object to which the request is 
directed. 

IRP: A pointer to the IRP describing the 110 operation being 
requested. 

Key: An optional pointer to a value used to determine the IRP's posi
tion in the queue of pending requests. If the pointer is NULL, the IRP 
is placed at the end of the queue. 

CancelFunction: An optional entry point in the driver that can be 
called if this request is cancelled by the 110 Manager while it is in the 
queue. 

Figure 14.5. IoStartPacket ()function prototype. 

IoStartPacket () is called with four parameters. The DeviceObject and Irp para
meters are a pointer to an IRP describing an 110 request and a pointer to the 
Device Object on which to perform the 110 operation described by the IRP. 
These are typically the same pointers passed into the driver's Dispatch routine 
by the 110 Manager. The Key parameter, if non-zero, points to a value that 
determines the position of this IRP relative to other IRPs placed on the queue 
for the same device. The CancelFunction parameter, if non-zero, points to a 
driver-supplied cancel routine that the 110 Manager will call if it has to cancel 
this request while it resides in the system queue. The process of handling IRP 
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cancellation is discussed later in this chapter in the section "System Queuing 
and IRP Cancellation." 

Calling IoStartPacket () results in the I/O Manager calling the driver at the dri
ver's Startlo entry point if there is a request to process and the device to which 
the request is directed is free. The I/O Manager maintains a pointer to the in
progress IRP in the Currentlrp field of the Device Object. Within its Startlo 

routine, the driver makes the request active on the device. Figure 14.6 shows 
the prototype for the Startlo entry point. 

Figure 14.6. Startlo entry point. 

The device later indicates to the driver that the in-progress operation is com
plete, typically by issuing an interrupt. From within the device's Interrupt 
Service Routine (ISR), the driver requests a DpcForIsr. In the DpcForIsr, the dri
ver completes the in-progress request and calls the IoStartNextPacket () function 
to propagate its execution. Figure 14.7 shows the prototype for the 
IoStartNextPacket () function. 

VOID 
IoStartNextPacket(IN PDEVICE_OBJECT DeviceObject, 

IN BOOLEAN Cancelable); 

DeviceObject: A pointer to the Device Object for which the driver 
wants to dequeue another packet. 

Cancelable: A boolean value indicating whether this request could 
potentially be cancelled while it is queued. 

Figure 14.7. IoStartNextPacket () function prototype. 
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IoStartNextPacket () takes two parameters: DeviceObject, which is a pointer to a 
Device Object on which the driver is requesting that a new request be started; 
and Cancelable, which, when set to TRUE, indicates that the IRPs in this queue 
are cancelable. If the CancelRoutine was set to a non-zero value when 
IoStartPacket () was called, the Cancelable parameter must be set to TRUE when 
calling IoStartNextPacket (). 

Calling IoStartNextPacket () results in the 110 Manager calling the driver at the 
driver's Startlo entry point if there is a request to process for the indicated 
device. 

When System Queuing is used, the I/O Manager keeps track of when a given 
device (represented by a Device Object) is free or busy, and which IRPs are 
pending for each device. This tracking is accomplished using a Device Queue 
Object embedded in the Device Object. The 110 Manager uses this Device 
Queue Object to manage the system queue of IRPs pending for a given device. 
The Busy field of the Device Queue Object indicates whether a request is in 
progress from that Device Queue. The Busy field is set to TRUE immediately 
before the driver's Startlo routine is called. The Busy field is cleared any time 
IoStartNextPacket () is called and there are no IRPs pending in the Device 
Queue. 

Although System Queuing is the easiest method a driver can use to manage 
arriving IRPs, it also has a significant limitation. Drivers that use System 
Queuing can have only one operation per device in progress at a time. 

Note 

Using System Queuing (as it is typically implemented) implies that only 
one IRP can be in progress per device at a time. That means one read or 
one write or one device controls operation. Not one IRP of each type
just one IRP. 

This IRP in-progress limitation is acceptable to drivers for some devices (such 
as serial or parallel port devices) which, by their very nature, can have only 
one request in progress at a time. Drivers that find this limitation unacceptable 
must use Driver Queuing, described in the following section. 

The advantage of System Queuing is that it provides a very clear and easy-to-
,implement model for managing both in-progress and queued requests. In addi
tion to storing a pointer to the active IRP in the Device Object, the driver is 
provided with a pointer to the active IRP in both its Interrupt Service Routine 
(ISR) and DpcForIsr. This is certainly very convenient. 
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Example 14.3, earlier in this chapter, demonstrates how an IRP is marked 
pending and provides an example of System Queuing. As you saw in that 
example, if the IRP's parameters are valid, the IRP is marked pending and 
IoStartPacket () is called. 

Driver Queuing 
A driver does not have to rely on the I/O Manager to manage either its in
progress IRPs or queue of pending IRPs. By using Driver Queuing, a driver can 
decide for itself which and how many operations may be in progress simultane
ously on each of its devices. Although more complex to implement than System 
Queuing, Driver Queuing provides a driver with total control over parallel 
device operations. This is vital for drivers of modern intelligent, high-speed, 
I/O peripherals. Using Driver Queuing, a driver can decide, for example, that it 
can have three writes and two reads in progress at a time, but only when there 
isn't a device I/O control operation already in progress (or any similar combi
nation of requests). 

With Driver Queuing, a driver creates and manages its request queues in any 
manner it likes. If a received request is valid and cannot be immediately com
pleted within the Dispatch routine, the driver determines whether the request 
can be started on the device. If it can, the driver marks the IRP pending, starts 
the request on the device, and returns STATUS_PENDING from its Dispatch entry 
point to the I/O Manager. The driver stores a pointer to the in-progress IRP in 
any convenient location (typically, the device extension of the Device Object). 
If multiple requests are in progress simultaneously, the driver maintains a struc
ture with pointers to each of the in-progress IRPs. 

Later, when the device indicates that an in-progress request has completed 
(typically with an interrupt), the driver locates the IRP that corresponds to that 
request in a driver-and-device-specific manner (typically in a combination of 
the driver's ISR and DpcForIsr). The driver completes any processing it may 
have to perform on the IRP. Within the DpcForIsr, the driver completes the IRP 
and checks to see whether there are any pending requests in its queue(s) that 
can be started on completion of the in-progress request. If there are any such 
requests, the driver starts them on the device, thus propagating its own execu
tion. 

If the request cannot be started on the device when it is received in a Dispatch 
routine (for whatever hardware-specific reason), the driver marks the IRP 
pending, inserts the IRP into one of its internal queues, and returns 
STATUS_PENDING to the I/O Manager. 
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In Driver Queuing, queues of IRPs are usually managed using NT's standard 
list-manipulation functions. The IRP structure has a LIST_ENTRY the driver can 
use for this purpose while it owns the IRP. This structure is at 
Irp->Tail.Overlay.ListEntry. The list head for the queue of IRPs is typically 
stored in the driver's device extension. Because it is likely that IRPs placed on 
the queue in a driver's Dispatch routine will be removed within the driver's 
DpcForIsr, each IRP queue must be protected by a spin lock. This spin lock 
must be separately allocated and initialized by the driver from a nonpaged 
pool. The driver can then acquire and release the spin lock in the conventional 
way, calling KeAcquireSpinLock(AtDpcLevel) () and 
KeReleaseSpinLock (FromDpcLevel) ( ). Alternatively, the driver can manipulate the 
IRP queues by using the executive interlocked ExI nterlocked ... List () func
tions. Spin locks are discussed in Chapter 7, "Multiprocessor Issues." 

Note 

Drivers must be careful whenever they intermix list access by using the 
KeAcquireSpinLock(AtDpcLevel) () and ExInterlocked ... List(). The 
ExInterlocked ... List () functions allow access to lists at IRQLs > IRQL 
DISPATCH_LEVEL. If a particular list is accessed at IRQL > DISPATCH_LEVEL 

using the ExInterlocked ... List () functions, that particular list cannot be 
accessed elsewhere using KeAcquireSpinLock(AtDpcLevel) () functions. 
Failing to heed this warning can result in deadlocks. Note that 
KeAcquireSpinLock(AtDpcLevel) () and ExInterlocked ... List () functions can 
be used to access the same list if ExInterlocked ... List () is never called at 
IRQLs > DISPATCH_LEVEL. 

Example 14.4 demonstrates Driver Queuing of a write request. 

Example 14.4. Driver Queuing of a write request. 

NTSTATUS OsrWrite(PDEVICE_OBJECT DeviceObject, PIRP Irp) 
{ 

POSR_DEVICE_EXT devExt = DeviceObject->DeviceExtensionj 
KIRQL oldIrqlj 
NTSTATUS code = STATUS_SUCCESSj 
BOOLEAN listWasEmptYj 
ULONG tempj 

II 
II (validate any parameters ... code omitted) 
II 

continues 



340 Part II: The 110 Manager and Device Driver Details 

Continued 

1/ 
II We always return with this request pending 
1/ 
IoMarklrpPending(Irp); 

1/ 
II Take out the Writ~ list lock because we'll insert this IRP 
II onto the write queue 
1/ 
KeAcquireSpinLock(&devExt->WriteQueueLock, &oldlrql); 

1/ 
II Is there anything on the list before we insert the arriving IRP? 
1/ 
listWasEmpty = IsListEmpty(&devExt->WriteQueue); 

1/ 
II Put this request on the end of the write queue 
1/ 
InsertTailList(&devExt->WriteQueue, &Irp->Tail.Overlay.ListEntry); 

1/ 
II Because we've queued this request, set a routine to be called 
II by the IIO Manager in case it needs to cancel this IRP 
1/ 
IoSetCancelRoutine(Irp,OsrCancelFromWriteQueue); 

1/ 
II 00 we need to start this request on the device? 
1/ 
II If a request is in progress already, the IRP we just queued will 
II start in the OPC when the currently in-progress IRP is completed. 
1/ 
if (listWasEmpty) 

1/ 

1/ 
II No write presently active. Start this request ... 
1/ 
OsrStartWritelrp(OeviceObject,Irp); 

II We're done playing with the write queue now 
1/ 
KeReleaseSpinLock(&devExt->WriteQueueLock, oldlrql); 

return(STATUS_PENOING); 

Although Example 14.4 is, like any well-written source code, self-explanatory, 
a few specific points are worth noting. The device supported by the example 
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driver function is limited to having one write operation in progress at a time. 
Instead of maintaining a separate location with a pointer to the in-progress 
write IRP, or a flag indicating that a write request is presently in-progress on 
the device, the example uses a single queue of write requests. The request at 
the head of this queue is always the request currently in progress on the device. 
Thus, on entry to the routine and after acquiring the spin lock that protects the 
queue, the driver checks to see whether the write queue is empty (by calling 
IsListEmpty (»). The arriving IRP is then placed at the end of the queue. If the 
queue was empty on entry, the arriving IRP is at the head of the queue and 
must be made active on the device. This is done by calling OsrStartWriteIrp(). 

Before returning with STATUS_PENDING, the spin lock protecting the write queue 
is released. 

Supplementary Device Queues 
For the sake of completeness, we should mention that there is a rarely used 
cross between System Queuing and Driver Queuing that enables drivers to 
process multiple simultaneous requests. Using this method, drivers create sup
plementary Device Queues by allocating space for the extra Device Queue 
Object from a nonpaged pool and initializing it by using 
Kelni tializeDeviceQueue (). IRPs are placed on these supplementary Device 
Queues by using KeInsertDeviceQueue () or Ke InsertByKeyDeviceQueue (), and are 
removed by calling KeRemoveDeviceQueue () or KeRemoveByKeyDeviceQueue (). Some 
requests are then processed by calling IoStartPacket ()fIoStartNextPacket (); oth
ers are processed by using KeInsert (ByKey) DeviceQueue ()f 
KeRemove(ByKey)DeviceQueue(). We are aware of only a single driver (NT's SCSI 
port driver) that uses this architecture. Although we're sure that supplementary 
Device Queues can be useful for special circumstances, we can't think of any 
that justify what we view as the inherent confusion implied in this approach. 
Thus, we recommend against using supplementary Device Queues unless you 
take great care to clearly document their use. 

Request Processing 
As discussed so far, when a device driver is called at one of its Dispatch entry 
points, it performs the following sequence of events: 

1. Validates the received request and completes the request if it is not valid. 

2. Processes the request as far as possible. This includes completing the 
request if all processing can be completed within the Dispatch routine. 

3. If the request can be started within the Dispatch routine, marks the 
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3. If the request can be started within the Dispatch routine, marks the 
request pending and queues it for later completion. 

4. If the device required by the request is busy, marks the request pending 
and queues it for later initiation. 

The following sections discuss synchronous processing, asynchronous process
ing, and a combination of synchronous and asynchronous processing. 

Synchronous Processing and Completion 
Requests that can be processed and completed immediately within the Dispatch 
routine should always be handled this way. This method of request completion 
is called synchronous completion because the request completes within the con
text of the calling thread, which is forced to wait while the request is in 
progress. For example, most device drivers have no device processing that is 
required to support the lRP _MJ_CREATE and lRP _MJ_CLOSE functions. Example 
14.5 is a very common implementation of a single Dispatch routine that han
dles both of these functions. 

Example 14.5. A typical device driver Create/Close Dispatch routine. 

NTSTATUS OsrCreateClose(PDEVlCE_OBJECT DeviceObject, PIRP Irp) 
{ 

1/ 
II Nothing much to do ... 
1/ 
Irp->IoStatus.Status = STATUS_SUCCESSj 
lrp->IoStatus.lnformation = 0j 

loCompleteRequest(lrp, IO_NO_INCREMENT)j 

return(STATUS_SUCCESS)j 

In Example 14.5. the driver simply completes the received request without any 
additional required processing. Likewise, operations that set or retrieve device 
state settings or parameters can often be completed synchronously. This is true 
of many device control requests, such as those shown in Listing 14.6. 

Example 14.6. Dispatch device control routine~ using synchronous request pro
cessing and completion. 

NTSTATUS ToasterDeviceControl(PDEVICE_OBJECT DeviceObject, PIRP lrp) 
{ 

POSR_DEVICE_EXT devExtj 
ULONG controlCodej 
PIO_STACK_LOCATlON ioStackj 
NTSTATUS codej 
ULONG tempj 
ULONG newBrownessj 
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devExt (POSR_DEVICE_EXT)DeviceObject->DeviceExtensionj 

II 
II Get pOinter to our current 1/0 stack location 
II 
ioStack = IoGetCurrentIrpStackLocation(Irp)j 

II 
II Retrive specified control code. This indicates which specific 
II device control function to perform 
II 
controlCode = ioStack->Parameters.DeviceIoControl.IoControICodej 

II 
II Default to no information returned 
II 
Irp->IoStatus.Information = 0j 

switch (controICode) { 

II 
/1 If a browness level for the toast has been set, attempt 
1/ to start toasting. 
II 
if(devExt->BrownessLevel 1= 0) 

code = ToasterStartToasting(DeviceObject, FALSE); 

else { 

breakj 

/I 
1/ Immediately eject the toast, no matter what's in progress. 
II 
WRITE_PORT_ULONG(devExt->ToasterBaseRegisterAddress+MCSR_OFF, 

TOASTER_MCSR_EJECT) 

code = STATUS_SUCCESSj 

breakj 

/I 

continues 
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Continued 

II Save the previous browness setting 
II 
temp = devExt->BrownessLevel; 

II 
II NOTE: This request uses METHOD_BUFFERED. 
II 
II Is the supplied input buffer a valid length? 
II 
if ioStack->Parameters.DeviceloControl.InputBufferLength 

< sizeof(ULONG)) { 

else 

II 
II The length is valid. Get the new requested browness level 
/! 
newBrowness = *(ULONG *)(Irp->Associatedlrp.SystemBuffer); 

/! 
II If the supplied browness level is not valid, don't 
/! set it. 
/! 
if (newBrowness > TOASTER_MAX_BROWNESS) { 

else 

/! 
II Save the browness setting for the next toasting 
II operation. Note that a newBrowness setting of zero just 
II retrieves the current browness level for the device 
/! 

if (newBrowness 1= 0) { 

devExt->BrownessLevel = newBrowness; 

/! 
II The request succeeds -- we set the browness level -
II whether or not we return the previous setting below. 
/! 
code = STATUS_SUCCESS; 

/! 
II Return the previous browness setting to the user's 
II OutBuffer if the buffer is large enough. 
/! 



/I 

break; 

default : 

/I 
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if ( ioStack->Parameters.DeviceIoControl.OutputBufferLength 
>= sizeof(ULONG)) { 

*(ULONG *)(Irp->AssociatedIrp.SystemBuffer) = temp; 

/I 
II Indicate number of bytes being returned 
/I 
Irp->IoStatus.Information = sizeof(ULONG); 

II Other IOCTLs are invalid 
/I 
code = STATUS_INVALID_DEVICE_REQUESTi 

break; 

II Complete the I/O request 
/I 
Irp->IoStatus.Status = code; 

IoCompleteRequest(Irp, IO_NO_INCREMENT); 

return(code)i 

Example 14.6 processes three device control operations for the Toaster device. 
The specific device control operation to be performed is indicated by the I/O 
control code. For this example, the codes are as follows: 

• IOCTL_TOASTER_EJECT_TOAST 

You may want to study Example 14.6 closely because it illustrates many of the 
concepts discussed throughout this chapter. For example, notice that all the 
error cases in this Dispatch routine return unique values. This allows the 
caller to easily distinguish between an invalid device control request (which is 
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sent with an invalid buffer size (completed with STATUS_INVALID_BUFFER_SIZE) or 
which was not valid because of the current state of the device 
(STATUS_DEVICE_NOT_READY). 

The first operation supported in the sample ToasterDeviceControl() function is 
IOCTL_TOASTER_START_TOASTING. The driver validates this request by checking to 
see whether a toast brownness level has been set (using 
IOCTL_TOASTER_SET_BROWNESS) before receiving this request. If the brownness level 
has been set, the driver calls ToasterStartToasting () to start the toasting opera
tion and sets the Status field of the IRP's 110 status block to the returned value. 
If a brownness level has not yet been set, the driver immediately completes the 
request with STATUS_DEVICE_NOT_READY. 

The next device control code supported is IOCTL_TOASTER_EJECT_TOAST. To 
process this request, the driver sets the TOASTER_MCSR_EJECT bit in the Toaster 
device's master control and status register using the HAL function 
WRITE_PORT_ULONG. This request cannot fail, and is completed immediately with 
STATUS_SUCCESS. 

The last operation the ToasterDeviceControl () function supports is 
IOCTL_TOASTER_SET_BROWNESS. This is probably the most interesting 110 control 
code. Note that IOCTL_TOASTER_SET_BROWNESS uses METHOD_BUFFERED, and the 
requestor specifies a ULONG value in the InBuffer containing the new desired set
ting for the brownness level. If desired, the user can also supply an OutBuffer 

with a length at least sizeof (ULONG), which receives the previous brownness 
level set in the Toaster. If a brownness level of zero is supplied by the user in 
the InBuffer, the brownness level is not altered-only the current brownness 
level is returned. 

The driver first saves the current brownness setting, which is stored in the 
Device Extension of the Device Object. The driver then validates the size of 
input data by checking Parameters. DeviceIoControl. InputBufferLength in the 
current 110 Stack location. If the supplied buffer is at least big enough to hold 
a ULONG value, the new brownness level is retrieved from the device extension. If 
the new requested brownness level is greater than TOASTER_MAX_BROWNESS, the 
request is completed with STATUS_INVALID_PARAMETER. If the supplied valid is not 
zero, it is saved in the Device Object's device extension. The size of the sup
plied OutBuffer is then checked. If the OutBuffer is at least big enough to hold a 
ULONG value, the previous brownness level is placed in the system buffer, over
writing the input data. The Information field of the 110 Status Block in the IRP 
is set to sizeof(ULONG), and the request is completed with STATUS_SUCCESS. This 
status results in the 110 Manager copying the ULONG value in the system buffer 
to the requestor's OutBuffer. 

Note that the processing of IOCTL_TOASTER_SET_BROWNESS raises some issues 
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Note that the processing of IOCTL_TOASTER_SET_BROWNESS raises some issues 
regarding simultaneous device access. The careful reader will notice that it is 
possible for two different requestors to be attempting to set the brownness 
level at the same time. This can occur, for example, on a multiple process 
system if two threads, each running on a separate CPU, simultaneously issue 
IOCTL_TOASTER_SET_BROWNESS device control requests. Because Dispatch entry 
points are typically called at IRQL PASSIVE_LEVEL, simultaneous device access 
could occur even on a single processor system. One requesting thread could be 
pre-empted while processing one request, consequently allowing another thread 
to take control of the CPU and issue a second request. 

Two threads simultaneously setting the toaster brownness can result in the cur
rent brownness setting being retrieved by both threads, and a new brownness 
setting being established by each. Depending on the exact timing involved, the 
previous brownness setting, returned by the Dispatch routine in the OutBuffer, 

could therefore be incorrect for one of the threads. 

Note that the problem of simultaneous access is at least partially mitigated by 
allowing only one opening of the Toaster device at a time. This can be accom
plished either by making the Toaster device an exclusive device (by setting the 
Exclusive parameter on IoCreateDevice to TRUE when the device is created), or 
designing the Toaster driver's IRP _MJ_CREATE Dispatch entry point so that any 
simultaneous open requests after the first are rejected. Even in these cases, two 
threads in the same process can issue simultaneous requests attempting to 
IOCTL_TOASTER_SET_BROWNESS. 

Is simultaneous access a problem? That depends on the specific device being 
supported. For a Toaster device, the capability to set the brownness level and 
receive back the correct previous brownness setting without interruption is 
probably not critical. Furthermore, based on how toasters are generally used, 
it's not very likely that multiple threads-in the same or different processes for 
that matter-will issue requests simultaneously to one toaster. 

For a different type of device, however, simultaneous access during a set
parameters operation could be a big problem. To prevent such simultaneous 
access, the driver need only protect the operation with an appropriate lock. In 
the case of the Toaster device, the driver would acquire the lock immediately 
on entering case IOCTL_TOASTER_SET_BROWNESS. The driver would drop the lock 
just before the break in the case, resulting in an atomic set operation. 

'1slote 

Of course~ protecting the set operation with a lock doesn~t stop another 
thread from issuing a simultaneous IOCTL_ TOASTER_SET _BROWNESS request. 
The lock just delays the processing of the second request until the initial 

continues 
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continued 

request finishes. If you use a lock and allow only one IRP _MJ_CREATE to the 
Toaster device~ howeve~ the problem can be caused by only two threads 
within the same process (or one thread issuing two simultaneous 
requests). In reality~ both of these issues are nonsense; it is simply a usage 
error and can~t be avoided. 

Although not shown in any of the previous examples in the chapter, it is cer
tainly possible to complete IRP _MJ_READ and/or IRP _MJ_WRITE requests synchro
nously on devices that support such operations. For example, a driver that 
supports a device in which write operations are processed by copying them to 
a shared memory segment might support synchronous completion of such 
requests. In processing these requests, locking must be carefully implemented 
to avoid jumbling the transfer data. 

If you cannot assume that the device is always available to perform an opera
tion, attempting to process requests synchronously can get rather complicated. 
In this case, synchronous completion requires the driver to block in the 
Dispatch routine until the device becomes available, perhaps waiting on a 
Dispatcher Object signaled from a DPC. Although this approach is indeed a 
valid driver architecture, it is not typical of NT drivers and should generally be 
avoided. One problem with this design is that it blocks the current thread. If a 
device driver is not layered under any other drivers (and is hence called in the 
context of the requestor's thread), the requestor's thread is blocked, keeping it 
from potentially being able to perform any useful work while waiting for the 
device to become free. Worse, if a device driver is layered under another driver, 
the thread being blocked is potentially unrelated to the request being 
processed! Thus, one user can issue a read request for a disk supported by such 
an ill-conceived driver on a server, and a totally different user's thread could be 
blocked while the driver waits for the device to become available. Clearly, this 
is not a good idea. Another problem created by this approach is that proper 
cancel operations (discussed later in this chapter in the section, "Cancel 
Processing") are much trickier to implement in this architecture. Chapter 16 
discusses the pros and cons of this topic in more detail. 

A better architecture is to process the request asynchronously: Start the request 
if the device is free, queue it if the device is busy, and in either case, return 
STATUS_PENDING from the Dispatch routine. This is the typical way NT drivers 
handle such requests (and we have been discussing this asynchronous approach 
throughout this chapter). 
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Asynchronous Processing and Completion 
When a driver has to wait for a request to be completed or a device to become 
available, the best supporting architecture is one that processes requests asyn
chronously. As described earlier in this chapter, drivers can implement an asyn
chronous request architecture using either System Queuing or Driver Queuing. 
In both of these approaches, the driver queues the request and returns 
STATUS_PENDING to the requestor. This provides the requestor with the option to 
continue to do useful work while the 110 operation is in progress. 

Several examples of asynchronous processing have already been presented. See 
the functions OsrWrite() and OsrSimpleWrite{), in Examples 14.3 and 14.4, ear
lier in this chapter. 

Combining Synchronous and Asynchronous 
Approaches 
Most well-implemented drivers use a mixture of both synchronous and asyn
chronous approaches. As mentioned previously, when a driver receives a 
request, it should validate the request and complete it immediately if the 
request is not valid. The driver should then process the request as far as possi
ble within the Dispatch routine. When rapid or immediate completion of a 
request is possible within a Dispatch routine, the driver should complete the 
request in the Dispatch routine. When processing the request involves waiting a 
significant period of time for its completion or for the device to become avail
able, the driver should queue the request and return STATUS_PENDING. 

Of course~ the issue for you might be precisely what constitutes "rapid 
completion" or a "significant period of time" to wait. There is no single 
correct answer to this question. The amount of time that is significant is 
one thing on a dedicated system used for process control~ and quite 
another thing on a general-purpose workstation. Even then~ the overall 
importance of the device and its requests must be taken into account. For 
people who simply have to have numbers~ we like to tell people that if 
you have to wait longer than 50 microseconds~ you should queue the 
request. If you need to wait less than 50 microseconds~ call 
KeStallExecutionProcessor (). Of course~ this value is completely arbitrary. 

Shutdown Notification 
One unusual IRP major function code that is supported is IRP _MJ_SHUTDOWN. 

This Dispatch entry point can be used to request the operating system to call a 
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driver as the system is shutting down. Drivers export an entry point for dis
patching shutdown requests the same way that they export other Dispatch 
entry points, as shown in the following syntax: 

DriverObj ect->MajorFunction [IRP_MJ_SHUTDOWN] = OsrShutdownj 

Simply exporting a shutdown entry point is not sufficient to result in a driver 
being called at its shutdown Dispatch routine. The driver must also call 
loRegisterShutdownNotification(}, specifying one or more of its Device Objects. 
Figure 14.8 shows the prototype for the loRegisterShutdownNotification () 

function. Drivers can register for shutdown processing for each Device Object 
they create, or only once, depending on the driver's requirements. 

NTSTATUS 
IoRegisterShutdownNotification(IN PDEVICE_ OBJECT DeviceObject); 

DeviceObject: A pointer to the Device Object for which to register the 
shutdown notification routine. 

Figure 14.8. IoRegisterShutdownNotification () function prototype. 

When a driver registers for shutdown notification, the I/O Manager makes an 
entry in one of its internal lists. When system shutdown is requested, the I/O 
Manager traverses its shutdown notification list sending lRP _MJ_SHUTDOWN IRPs 
to the drivers for each registered Device Object. 

Note that Dispatch shutdown routines are called in the inverse order in which 
loRegisterShutdownNoti fication () is called (that is, last in, first out). Drivers, 
however, should not rely on this fact to ensure proper shutdown ordering 
among specific devices. Shutdown notification is intended as a general notifica
tion mechanism to enable drivers to determine that system shutdown is immi
nent. Any ordering required among drivers should be handled by the drivers 
themselves. Similarly, file-structured mass storage drivers should never register 
shutdown routines. Instead, these drivers should rely on the file systems and 
Intermediate drivers layered above them to properly purge all pending requests. 

Cancel Processing 
Anytime a request is held by a driver for an extended period of time, the driver 
must make provisions for that request to be cancelled. When a thread exits or 
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is terminated, the I/O Manager attempts to cancel any I/O requests outstanding 
at the time of termination for that thread. 

The goal of cancel processing is for the driver to cancel the indicated IRP at its 
first reasonable opportunity. What makes cancel processing tricky is the need 
to guard against race conditions that could result in either completing the IRP 
multiple times (causing a system crash) or not completing the IRP at all (result
ing in the ugly I/O Manager message box indicating a rundown failure). 
Cancellation works best in drivers designed from the beginning with the 
requirement to handle cancellation. Too often, it seems, driver writers complete 
the development of the driver and only then think about adding cancel sup
port. This is generally not the best approach. 

Windows NT uses a unique I/O request cancellation model. In this model, a 
driver associates a specific Cancel routine with each IRP being held in the driver. 
This enables the driver to specify a Cancel routine for an IRP specific to the 
IRP's function type or state. For example, a driver may want to use one Cancel 
routine for IRPs on its write queue, another for IRPs on its read queue, and a 
third for requests currently in progress. A driver establishes a Cancel routine in 
an IRP using the IoSetCancelRoutine() function shown in Figure 14.9. 

PDRIVER_ CANCEL 
IoSetCancelRoutine(IN PIRP Irp, 

PDRIVER_ CANCEL CanceIRoutine); 

Irp: The IRP for which the cancel routine is to be registered. 

CancelRoutine: Pointer to a cancel routine that the I/O Manager should 
call if it wants to cancel the IRP. 

Figure 14.9. IoSetCancelRoutine function prototype. 

The IoSetCancelRoutine () function takes two parameters: Irp, which is a 
pointer to the IRP for which to establish the cancel routine, and CancelRoutine, 

which is a pointer to the cancel routine to be called if the I/O Manager has to 
cancel the IRP. If the I/O Manager has to cancel the IRP, it calls the driver's 
cancel routine, the prototype for which is shown in Figure 14.10. 
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Figure 14.10. CancelRoutine entry point. 

The driver's Cancel routine is called at IRQL DISPATCH_LEVEL and with the 
systemwide cancel spin lock held. When a driver's Cancel routine is called, 
it must perform the following tasks: 

• Determine whether the indicated IRP is currently being held in a cance
lable state within the driver. 

• If the IRP is currently held by the driver and is cancelable, the driver 
must remove the IRP from any queues on which it resides, release the sys
temwide cancel spin lock, set the Cancel routine in the IRP to NULL, and 
complete the IRP setting Irp->IoStatus .Status to STATUS_CANCELLED and 
Irp->IoStatus. Information to zero. 

• If the IRP is not currently held by the driver in a cancelable state, the 
driver simply releases the systemwide cancel spin lock and returns. 

The systemwide cancel spin lock is released by calling the function 
IoReleaseCancelSpinLock (), the prototype for which appears in Figure 14.11. 

VOID 
IoReleaseCancelSpinLock(IN KIR Q L Irq l); 

Irql: IRQL to which the system should return if the systemwide cancel 
spin lock has been released. 

Figure 14.11. IoReleaseCancelSpinLock() function prototype. 
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The Irq] argument specifies the IRQL to which the system should return after 
the system-wide cancel spin lock is released. Note that when called from ·vithin 
a Cancel routine, the IRQL to which the system should return can be retrieved 
from the CancelIrql field of the IRP pointed to by the Irp parameter passed in 
to the cancel routine entry point. This is shown in Listing 14.7, later in this 
chapter. 

At certain times, drivers have to acquire the systemwide cancel spin lock before 
setting the Cancel routine in the IRP. This is discussed in detail later in this sec
tion. To acquire the systemwide cancel spin lock, a driver calls the 
IoAcquireCancelSpinLock () function, the prototype for which is shown in 
Figure 14.12. 

VOID 
IoAcquireCancelSpinLock(OUT PKIRQL Irql); 

Irql: Pointer to a location to which to return the IRQL at which the 
system was running prior to acquiring the sytemwide cancel spin lock. 

Figure 14.12. IoAcquireCancelSpinLock() function prototype. 

The I/O Manager requests cancellation of one IRP at a time. The IRP to be 
canceled is marked by setting the Cancel field in the fixed portion of the IRP to 
TRUE before the driver's Cancel routine is called. When a thread exits, the I/O 
Manager attempts to cancel all outstanding IRPs issued by that thread. The I/O 
Manager calls the Cancel routine specified in each IRP (if there is one) to effect 
this cancellation. The I/O Manager delays the thread's termination until all the 
outstanding IRPs have been completed (with STATUS_CANCELLED or any other sta
tus) or for five minutes, whichever comes first. If a thread terminates with any 
IRPs still outstanding, the I/O Manager displays a message box indicating the 
I/O rundown failure. 

i5Jote 

Before an IRP is completed with STATUS_CANCELLED or any other status, its 
Cancel routine must be set to NULL. Because the I/O is now completed 
and beyond the point at which cancellation is possible, it is a driver logic 
error to complete an IRP with a non-NULL Cancel routine. As an aid to 
driver writers, anytime an IRP is completed with a non-NULL Cancel rou
tine, the Checked Build of the operating system takes a break point with 
an ASSERT failure. 
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To aid driver writers in implementing simple and effective cancel strategies, 
both the DDK and this book suggest specific methods for implementing IRP 
cancellation; however, these methods are only recommendations. Any architec
ture that cancels IRPs reliably in a reasonably short period of time is accept
able. 

System Queuing and IRP Cancellation 
Drivers that use System Queuing to manage in-progress and pending IRPs must 
provide a mechanism to cancel IRPs that can pend for extended periods. To do 
this, the driver supplies a pointer to its Cancel routine in the CancelFunction 
parameter of IoStartPacket (). The 110 Manager calls this Cancel routine when 
the IRP is to be cancelled. In general, drivers that use System Queuing have to 
hold the systemwide cancel spin lock whenever they check or modify the cancel 
information in the IRP. 

When the cancel routine is called to cancel an IRP pending on one of the sys
tem queues, the driver first checks to see whether the request is the current 
request. If it is, it releases the systemwide cancel spin lock and asks the 110 
Manager to start another packet. If the request being cancelled is not the cur
rent request, the driver removes the IRP to be cancelled from the queue using 
the KeRemoveEntryDeviceQueue () function, the prototype for which appears in 
Figure 14.13, and releases the systemwide cancel spin lock. 

BOOLEAN 
KeRemoveEntryDeviceQueue(IN PKDEVICE_ QUEUE DeviceQueue, 

IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry}; 

DeviceQueue: Pointer to the Device Queue from which to remove the 
entry. This is usually a pointer to the Device Queue object located in 
the Device Object at offset DeviceQueue. 

DeviceQueueEntry: Pointer to the device queue entry to be removed. 
This is usually a pointer to the Tail.Overlay.DeviceQueueEntry field of 
an IRP to be cancelled. 

Figure 14.13. KeRemoveEntryDeviceQueue function prototype. 

Whether the request is current or not, the IRP is then completed by setting 
IoStatus.Status to STATUS_CANCELLED and IoStatus. Information to zero and call
ing IoCompleteRequest ( ). A typical Cancel routine, which follows this proce
dure, appears in Example 14.7. 
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Example 14.7. A typical Cancel routine used with System Queuing. 

VOID 
OsrCancel(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp) 
{ 

1/ 
II Is the currently in-progress request being cancelled? 
1/ 
if (Irp == DeviceObject->Currentlrp) 

1/ 

1/ 
II Yes. Drop the system-wide cancel spin lock and ask the 
II I/O Manager to start another packet. We'll cancel the in-progress 
II IRP below. 
1/ 
IoReleaseCancelSpinLock(Irp->Cancellrql)j 

IoStartNextPacket(DeviceObject, TRUE)j 

else 

1/ 
II No, a queued request is being cancelled. Take it off 
II the device queue. 
1/ 
KeRemoveEntryDeviceQueue(&DeviceObject->DeviceQueue, 

&Irp->Tail.Overlay.DeviceQueueEntrY)j 

IoReleaseCancelSpinLock(Irp->Cancellrql)i 

II Cancel the request 
1/ 
Irp->IoStatus.Status = STATUS_CANCELLED; 

Irp->IoStatus.lnformation = 0; 
IoSetCancelRoutine(Irp, NULL)i 
IoCompleteRequest(Irp, IO_NO_INCREMENT)i 

return; 

When the driver's StartIo () routine is called to start an IRP, the driver typically 
wants to change or reset the Cancel routine in the IRP. This is because the IRP 
is no longer being held in the Device Object's Device Queue. To change the 
cancel routine in an IRP from within a StartIo routine, the driver does the fol
lowing: 
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1. Acquires the systemwide cancel spin lock, using 
IoAcquireCancelSpinLock(). 

2. Checks whether the IRP has been canceled by checking whether the 
Cancel field in the IRP is set to TRUE. If the IRP has been canceled, the 
driver releases the systemwide cancel spin lock (by calling 
IoReleaseCancelSpinLOck()) and returns. 

3. If the IRP has not been canceled, the driver changes the IRP's Cancel rou
tine using IoSetCancelRoutine () as desired and then drops the systemwide 
cancel spin lock (using IoReleaseCancelSpinLock ()). 

Example 14.8 shows how the driver changes the Cancel routine in an IRP from 
within a StartIo () routine. 

Example 14.8. Cancel operations in a driver's Startlo() routine. 

VOID 
FooStartIo(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp) 
{ 

PDEVICE_EXTENSION devExtj 
PIO_STACK_LOCATION ioStackj 
KIRQL cancelIrqlj 
NTSTATUS codej 

1/ 
II Was this request cancelled while it was queued? 
1/ 
IoAcquireCancelSpinLock(&cancelIrql)j 

if (Irp->Cancel) { 
IoReleaseCancelSpinLock(cancelIrql)j 
return; 

1/ 
II Reset the Cancel routine in the IRP, making it no longer 
II cancelable. We're going to start this request on the device. 
1/ 
IoSetCancelRoutine(Irp, NULL)j 

IoReleaseCancelSpinLock(cancelIrql)j 

Notice that, in Example 14.8, if the request to be started is not marked as can
celled, the driver sets the IRP's Cancel routine to NULL. This makes the in
progress request noncancellable, and frees the DpcForlsr from having to check 
the IRP's cancel status and set the Cancel routine to NULL before completing the 
request. 

It is very important to realize that proper handling of cancel requests requires 
that the cancel routine and StartIo() functions work together to appropriately 
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cancel pending requests. In Example 14.8, if the StartIo() routine receives an 
IRP that has its Cancel field set to TRUE, it simply drops the cancel spin lock and 
returns. This results in the IRP being cancelled and another IRP started, 
because of the way the Cancel routine shown in Example 14.7 works: When 
the Cancel routine in Example 14.7 is called, it checks to see whether the cur
rently in-progress IRP is being cancelled; if it is, the Cancel routine calls 
IoStartNextPacket () to propagate the driver's execution and then cancels the in
progress IRP. There are, of course, numerous other ways to implement this 
same functionality. 

Driver Queuing and IRP Cancellation 
Drivers that queue requests using Driver Queuing must provide a mechanism 
for canceling those queued requests. In general, drivers that use Driver 
Queuing do not use the systemwide cancel spin lock because such drivers pro
tect their queues with their own locking mechanisms. Thus, the only thing 
most drivers that use Driver Queuing have to do with the systemwide cancel 
spin lock is to release it immediately on entry to their cancel routines. Aside 
from this, the systemwide cancel spin lock can safely be ignored. 

A driver that uses Driver Queuing typically sets a cancel routine into an IRP 
(using IoSetCancelRoutine ()) before it places the IRP on one of its queues. The 
driver does not have to hold the systemwide cancel spin lock to do this. When 
its cancel routine is called, the driver typically releases the systemwide cancel 
spin lock immediately and then searches the appropriate queues for an IRP 
with Irp->Cancel set to TRUE. Note that except for using its CancelIrql field to 
drop the systemwide cancel spin lock, the driver ignores the pointer to the IRP 
passed into the Cancel routine. If the driver finds an IRP to be canceled, it 
removes the IRP from the queue and completes the IRP, setting IoStatus .Status 
to STATUS_CANCELLED and IoStatus. Information to zero. If an IRP to cancel is not 
found, the driver simply releases the systemwide cancel spin lock and returns. 
Example 14.9 shows how to implement this approach. 

Example 14.9. A common implementation of a Cancel routine in a driver by 
using Driver Queuing. 

VOID OsrCancelFromReadQueue(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp) 
{ 

PIRP irpToCancelj 
POSR_DEVICE_EXT devExtj 
KIRQl oldIrqlj 

/I 
II Release the system-wide cancel spin lock as soon as we can 
/I 
IoReleaseCancelSpinlock(Irp->CancelIrql)j 

continues 
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Continued 

} 

devExt = DeviceObject->DeviceExtensionj 

II 
II Take out the read queue lock while running the list 
II 
KeAcquireSpinLock(&devExt->ReadQueueLock, &oldIrql); 

II 
II See whether we can find the request to cancel on the Read queue. 
II If it is found, remove it from the queue and return the pOinter. 
II 
irpToCancel = OsrFindQueuedRequest(&devExt->ReadQueue); 

II 
II Drop the lock that protects the Read queue. We're done running 
II the list. 
II 
KeReleaseSpinLock(&devExt->ReadQueueLock, oldIrql); 
II 
II If we found the requ~st to cancel, we cancel it 
II 
if (irpToCancel) 

II 
II We found the request to cancel 
II 
IoSetCancelRoutine(irpToCancel, NULL); 

irpToCancel->IoStatus.Status = STATUS_CANCELLED; 
irpToCancel->IoStatus.Information = 0; 

IoCompleteRequest(irpToCancel, IO_NO_INCREMENT); 

The implementation of the OsrCancelFromReadQueue () function in Example 14.9 
relies on a complementary implementation when a request is removed from 
one of the driver's queues and is started on the device. Whenever the driver 
removes a request from one of its queues, it checks to see whether the IRP has 
its Cancel field set to TRUE. If it does, the driver simply dequeues another 
request. If the IRP is not presently being cancelled, the driver sets the IRP's 
Cancel routine to NULL. The code in Example 14.10, taken from a driver's 
DpcForIsr, shows this approach. 

Example 14.10. Handling a Cancel routine when initiating a request (Driver 
Queuing). 

II 
II See whether there's another read request to start 
II 
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queueEmpty = FALSE; 
irp = NULL; 

do 

II 
// Acquire the lock for the read queue 
II 
KeAcquireSpinLockAtDpcLevel(&devExt->ReadQueueLock); 

II 
// Get the first entry on the queue 
II 
entry = RemoveHeadList(&devExt->ReadQueue); 

II 
// Drop the Read Queue lock ... 
II 

KeReleaseSpinLockFromDpcLevel(&devExt->ReadQueueLock); 
II 
// Anything on the queue? 
II 
if (entry == &devExt->ReadQueue) 

II 
// NO. Flag the queue as being empty. 
II 
queueEmpty = TRUE; 

else 

II 
// Yes. We have an IRP from the queue 
II 
irp = CONTAINING_RECORD (entry , IRP, Tail.Overlay.ListEntry); 

II 
// Check to see whether it has been cancelled. 
1/ 
if (irp->Cancel) 

II 
/1 This IRP is cancelled. 
1/ 

II 
// Complete the request 
irp->IoStatus.Status = STATUS_CANCELLED; 
irp->IoStatus.Information = 0; 

IoCompleteRequest(irp, IO_NO_INCREMENT); 

continues 
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Continued 

irp = NULL; 

} else { 

II 
II Set the Cancel routine to NULL 
II 
IoSetCancelRoutine(irp, NULL); 

} until (queueEmpty :: irp); 

As was true in Example 14.7, note that the approach in Example 14.10 works 
because the Cancel routine and cancel code in the DpcForIsr work cooperative
ly. Both access the driver's queue of IRPs only while holding the spin lock that 
protects this queue. Note that there is no reason for either routine to hold the 
systemwide cancel spin lock. When the cancel routine is called, it cancels the 
request only if it finds the request on the driver's queue. In propagating execu
tion of the driver, when the DpcForIsr removes an entry from the driver's queue 
and discovers that the Cancel flag is set, the DpcForIsr immediately cancels the 
IRP. In both cases, the search of the queue is protected by a spin lock; there
fore, there is no chance of the request being completed twice-and the request 
is sure to be completed. The guidelines presented in this section show just one 
possible way to implement cancel routines. There are many other possible (and 
equally valid) implementations. 

Canceling In-Progress Requests 
Drivers generally should avoid canceling requests in progress on a hardware 
device because of the complexities involved with getting the hardware to "do 
the right thing." The best practice is usually to avoid attempting to cancel any 
request that will be in progress on a device for anything less than a few sec
onds. 

On the other hand, drivers should usually attempt to cancel any requests that 
can stay in progress on a device for an extended period. Fortunately, such 
requests are typically relatively easy to cancel. Of course, the precise method of 
cancellation depends on the driver and the device hardware. Recall that the 
absolute upper bound on the amount of time a cancelled request can pend on a 
device is five minutes. After five minutes, the 110 Manager displays a message 
box indicating its failure to successfully cancel the outstanding I/O for the 
existing thread. 
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Summary 
For most drivers, initiating requests in their Dispatch routines is only the first 
part of the job. Drivers also have to deal with devices interrupting to indicate a 
change in state, such as the completion of a pending request. Chapter 15, 
"Interrupt Service Routines and DPCs," discusses this topic at length. 





Chapter 15 
Interrupt Service Routines 

and DPCs 

This chapter will review: 

• Interrupt Service Routines. In this section, we discuss ISR processing. 
Specifically, we describe the structure of Windows NT Interrupt Service 
Routines and different methods for passing context information from the 
ISR to the D PC. 

• The DpcForIsr and CustomDpc. Interrupt processing in Windows NT 
drivers is commonly deferred until a DPC can be executed. In this sec
tion, we describe the mechanics of the DpcForIsr and CustomDpc. We 
also discuss some typical designs used to support different types of 
devices. 

• ISR and DpcForIsr Design. In this section, we discuss the ways that ISR 
and DpcForIsr routines are designed to work optimally together. We con
clude with a discussion of ISR to DPC latency; and what can be done 
within the driver, within the system, and within the hardware to manage 
that latency. 

Most devices interrupt to indicate a change in their condition to their driver. 
The interrupt might indicate that a previously requested I/O operation is com
plete, that an error has occurred, or that the device requires some other action 
on the part of the driver. Whatever the condition is that is being brought to the 
driver's attention by the device, the driver's ISR and DpcForIsr work together 
to service it. When a device interrupts, the driver's ISR is called. The ISR gath
ers information about the device by interrogating the device hardware, and 
passes that information along to the DpcForIsr for processing. This chapter 
describes how the ISR, DpcForIsr, and (optionally) CustomDpc work together 
to act on device requests. 
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Remember, the HAL provides a standard interrupt architecture for use by 
drivers that is consistent across all processor architectures. Therefore, NT 
device drivers never directly access any architecture-dependent structures, 
such the interrupt vectors or 8259 PIC (interrupt controller chip). 

Interrupt Service Routines 
The connection between the interrupt vector and the device driver's Interrupt 
Service Routine (ISR) was established earlier during DriverEntry, as described 
in Chapter 13, "Driver Entry." The driver created an Interrupt Object that 
made the connection between the interrupt vector and the ISR by calling 
IoConnectInterrupt(). Figure 15.1 shows the prototype for the ISR entry point. 

Figure 15.1. Entry point: Interrupt Service Routine. 

The ISR is called in an arbitrary thread context. The ISR runs at the DIRQL 
associated with its Interrupt Object, as specified by the SynchronizeIrql argu
ment supplied by the driver in its call to IoConnectInterrupt (). The goals of a 
driver's ISR are as follows: 

1. Determine whether the interrupt source (usually a specific device) that is 
described by the Service Context argument is interrupting. If it is not, the 
driver immediately returns from the ISR with FALSE as the ISR's return 
value. 
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2. Acknowledge the interrupt to the device hardware, causing the device to 
cease asserting its interrupt request. 

3. Process the condition indicated by the interrupt appropriately, given the 
fact that the driver is running at DIRQL. 

4. Queue a DPC to continue request processing, if complete processing of 
the request is either not possible or desirable within the ISR. 

5. Return TRUE from the ISR to indicate that the interrupt has been recog-
nized. 

When running in the ISR for a given Interrupt Object, all interrupts on the 
current processor at or below the Interrupt Object's Synchronize IRQL are 
masked off. This means that interrupts at priorities less than or equal to the 
Interrupt Object's Synchronize IRQL will not be serviced on the current 
processor until after the ISR has completed. 

Prior to entering the driver's ISR, NT acquires the interrupt spin lock associat
ed with the Interrupt Object. This is either the spin lock within the Interrupt 
Object itself or the spin lock that was identified by the SpinLock parameter 
when IoConnectInterrupt () was called, as indicated by the Interrupt Object. 
The spin lock restricts the ISR for that Interrupt Object to running on only one 
processor at a time in a multiprocessor system. While the ISR is running, how
ever, it may be interrupted at any time by a higher IRQL interrupt on the cur
rent processor. When the driver returns from the ISR, NT releases the ISR's 
interrupt spin lock. 

Note 

To be absolutely clear: Only one instance of a particular ISR~ associated 
with one Interrupt Object~ will ever be running at a time because that 
instance of the ISR is protected by the Interrupt Object spin lock. This 
spin lock is automatically acquired and released by NT around the ISR~ 
and it is not optional. The ISR runs at Synchronize IRQL~ as specified by 
the Interrupt Object~ which blocks lower-priority interrupts on the cur
rent processor (only). The ISR may be interrupted by higher-priority 
interrupts. Note that if two Interrupt Objects reference the same ISR~ it is 
possible for each separate instance of the ISR to be running simultaneous
lyon a multiprocessor system. This is the case for a system with multiple 
instances of the same device~ for instance. 

Processing Within an ISR 
In general, ISRs for NT device drivers are very short. The typical NT device 
driver ISR simply determines whether its device is interrupting and, if it is, 
acknowledges the device (perhaps disabling interrupts in the process), stores a 
small amount of context information away, and requests a DpcForIsr. Thus, 
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the previously stated goals for the ISR are met while performing the least possi
ble work within the ISR. 

ISR processing is kept to a minimum both by NT convention and by the fact 
that you can call only a few support functions at DIRQL. Most notably, 
IoCompleteRequest () cannot be called from within an ISR. Therefore, any driver 
that completes I/O requests as a result of an interrupt must have a DPC to per
form this completion. 

Identifying and Acknowledging Interrupts 
When a driver's ISR is called, its first task is to determine whether the device 
described by the ServiceContext parameter is interrupting. This is required 
because devices in Windows NT may share interrupts (see the section 
"Interrupt Sharing and ISRs" later in the chapter). If the indicated device is not 
interrupting, the ISR immediately returns the value FALSE. If the indicated 
device is interrupting, the ISR must return the value TRUE upon completion. 

The driver acknowledges the interrupt on the device in a device-specific man
ner. For some devices, this simply means clearing a bit to indicate that the 
interrupt has been "seen" by the driver. For other devices, the interrupt may be 
automatically acknowledged to the device by the driver reading the device's 
interrupt status register. For still other types of devices, acknowledging the 
interrupt implies disabling interrupts for the specific interrupt source on the 
device. No matter how it is done, it is the driver's responsibility to acknowl
edge the interrupt and stop the device from actively interrupting (due to the 
indicated cause) before leaving the ISR. 

Storing Interrupt Information for the DPC 
After acknowledging the interrupt and before requesting the DpcForIsr to 
process the interrupt, the driver typically stores information about the inter
rupt's cause for the DPC to use. This can be tricky, depending on the design of 
the driver and its device, because multiple requests to queue a particular DPC 
Object may result in only a single invocation of the routine associated with 
that DPC Object. This was described previously in Chapter 6, "Interrupt 
Request Levels and DPCs." Example 15.1 shows a typical ISR. 

Example 15.1. A typical ISR~ storing interrupt information by accumulating 
bits in the Device Extension. 

BOOLEAN AmccInterruptService(PKINTERRUPT Interrupt, PVOID ServiceContext) 
{ 

BOOLEAN handledInt = FALSEj 
PAMCC_DEVICE_EXT devExt = (PAMCC_DEVICE_EXT)ServiceContextj 
ULONG intRegisterj 
ULONG csrRegisterj 
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II 
II Get the current value of the Interrupt Control and Status Register 
II 
intRegister = READ_PORT_ULONG(devExt->AmccBaseRegisterAddress+ICSR_OFF); 

II 
II Is our device interrupting? 
II 
if (intRegister & AMCC_INT_INTERRUPTED) 

1/ 

II 
I I Yes, it is 
II 
handledInt = TRUE; 

/I 
II Save any bits from the ICSR that are now set in our Device Extension 
II 
devExt->IntCsr := (intRegister & AMCC_INT_ACK_BITS); 

II 
II Acknowledge the interrupt to the device 
/I 
WRITE_PORT_ULONG(devExt->AmccBaseRegisterAddress+ICSR_OFF, 

intRegister); 

II 
II Request our DpcForIsr if a read or write operation is complete 
II 
if(intRegister & (AMCC_INT_READ_COMP : AMCC_INT_WRITE_COMP)) 

IoRequestDpc(devExt->DeviceObject, 0, NULL); 

II Return TRUE if our device was interrupting; FALSE otherwise 
/I 
return(handledInt); 

Note that the ServiceContext parameter in Example 15.1 is a pointer to the 
Device Object's device extension. This parameter was established by the driver 
when it called IoConnectInterrupt (). Either a pointer to the device extension or 
a pointer to the Device Object is typical as the ServiceContext parameter. 

Requesting the Device DpcForIsr 
The driver associated with the ISR shown in Example 15.1 has previously 
stored a pointer to the base address of the register set of the device, as returned 
by Hal TranslateBusAddress () in the device extension. This enables the ISR to 
locate the device's hardware. If the device associated with the device extension 
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is interrupting when the ISR is executed, the ISR returns TRUE. Otherwise, it 
returns FALSE. The example driver acknowledges the interrupt by writing the 
interrupt acknowledge bits in the interrupt control and status register. On the 
example device, this acknowledges the interrupt and resets the bits, indicating 
the interrupt cause. After acknowledging the interrupt on the device, the driver 
requests its DpcForIsr to be executed by calling the IoRequestDpc () function, 
the prototype for which appears in Figure 15.2. 

VOID 
IoRequestDpc(IN PDEVICE_OBJECT DeviceObject, 

IN PIRP Irp, 
IN PVOID Context); 

DeviceObject: A pointer to the Device Object associated with the 
interrupt and DPC in a previous call to IoInitializeDpcRequestO. 

Irp: A pointer to the current 110 Request Packet for the interrupt and 
Device Object. 

Context: A driver-defined context value to be passed as the Context 
parameter to the DpcForIsr. 

Figure 15.2. IoRequestDpc () function prototype. 

IoRequestDpc () is a macro that calls KelnsertQueueDpc () to attempt to queue the 
DPC Object embedded in the Device Object pointed to by DeviceObject, and 
thus request the execution of the driver's DpcForIsr. See Chapter 6 for a 
complete discussion of how DPCs are requested, queued, and executed. By 
convention, the Irp parameter to IoRequestDpc () is typically a pointer to the 
IRP currently in progress on the device. This is most commonly used by drivers 
that utilize System Queuing because such drivers have only one request active 
on a device at a time. In this case, the pointer to the one in-progress IRP is 
found in the CurrentIrp field of the Device Object. In many cases, however, set
ting the Irp parameter on IoRequestDpc () to an IRP address is either not possi
ble or not desirable. Because the 110 Manager does not access this parameter, 
drivers may use both the Irp and Context parameters as driver-defined context 
values, which are passed (along with a pointer to the Device Object) as para
meters to the DpcForIsr. 

CustomDpc Routines 
When a driver wants to choose among multiple DPC routines to request from 
within its ISR, the driver may preallocate and initialize a DPC Object to 
describe each of these DPC routines. These are typically called CustomDpc 
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routines, to distinguish them from the DpcForIsr that is requested by calling 
IoRequestDpc ( ). When the driver wants to request the execution of one of these 
DPC routines, the driver calls KelnsertQueueDpc () to request that the DPC 
Object be inserted into the DPC queue. There is no difference in terms of how 
a DPC request is handled between a driver requesting its DpcForIsr to be exe
cuted by calling IoRequestDpc ( ), and requesting an alternative CustomDpc 
using KelnsertQueueDpc (). The 110 Manager supplies IoRequestDpc () as a conve
nience to driver writers to make requesting the standard DpcForIsr easy and 
straightforward. 

One example of the way a CustomDpc routine may be used appears in the 
"intpar" driver in the DDK. Although the intpar driver typically requests its 
DpcForisr by calling IoRequestDpc (), the driver queues a CustomDpc if certain 
unusual situations arise. In one particular case, the intpar driver queues 
a CustomDpc (the StartBusyTimerDpc, which calls the routine 
ParStartBusyTimer ()) when it needs to start a timer to defer the processing 
of a request until later. 

Methods of Passing Context Information from ISR to DPC 
In Example 15.1, the driver stores information about the cause of interrupt in 
the IntCsr field of its device extension before requesting the DPC. Access to 
this field is implicitly protected by the interrupt spin lock because this lock is 
always held within the ISR. The driver stores the information for later use by 
the DPC, so that when the DPC is invoked, it can determine what action it 
needs to take. 

Where, and even if, a driver stores such context information totally depends on 
the device hardware and the driver's design. In Example 15.1, the ISR ORs the 
bits from the device's interrupt status register into a field in the device exten
sion. The driver in this example is careful to store the interrupt cause bits in a 
manner that will preserve any previously set bits because there can be multiple 
operations in progress on the device simultaneously. Thus, the code in Example 
15.1 has been designed so that if two interrupts for different causes are 
received before the DpcForIsr runs, the information about both interrupts is 
preserved. 

Accumulating interrupt cause bits is just one of many possible methods of 
communicating the reason an interrupt has occurred to the DPC. In simple dri
vers, the reason for the interrupt is often implicit in the structure of the driver. 
Consider, for example, a device that uses System Queuing and that can process 
only one outstanding request at a time. The driver initiates a write on the 
device in its Dispatch write entry point. The device then interrupts to indicate 
that the write data has been processed. This driver's interrupt service routine 
might look like Example 15.2. 
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Example 15.2. Example ISR for a simple device using System Queuing. 

BOOLEAN FooIsr(IN PKINTERRUPT Interrupt, IN PVOID Context) 
{ 
PDEVICE_OBJECT devObj = (PDEVICE_OBJECT)Contextj 
PFOO_DEVICE_EXT devExt = devObj->DeviceExtensionj 
ULONG intStatus = 0j 

/I 
II Get our device's interrupt status info 
/I 
intStatus = READ_PORT_ULONG(devExt->IntStatus)j 

/I 
II If it's not our device that's interrupting, just return 
/I 
if (!(intStatus & FOO_R_INT_COMPLETE) 

return(FALSE)j 

/I 
II It IS our device ... Acknowledge the interrupt 
/I 
WRITE_PORT_ULONG(devExt->IntStatus, FOO_W_INT_ACK)j 

/I 
II If no IRP outstanding, just exit 
/I 
if (!devObj->Currentlrp) 

return(TRUE)j 

/I 
II Request our DpcForlsr, passing back current IRP 
II and errorlsuccess status 
/I 
IoRequestDpc(devObj 

devObj->Currentlrp, 
(intStatus & FOO_R_INT_ERROR) )j 

return(TRUE)j 
} 

Within the ISR in Example 15.2, the driver interrogates the device's interrupt 
status register to determine if the device is interrupting. 

Because this driver has only one request outstanding on the device at a time, 
the driver knows that the only reason the device could be interrupting is to 
indicate that the one in-progress request is complete. The driver passes the 
DpcForIsr a pointer to the in-progress IRP via the Irp argument of the call to 
IoRequestDpc (). The driver also passes a flag to the DpcForIsr, indicating 
whether the device detected an error while processing the request via the 
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Context argument to IoRequestDpc ( ). Alternatively, because this driver has 
access to the current IRP, the ISR can set the status of the operation and 
the number of bytes actually transferred directly into the 110 Status Block 
in the IRP. The major point to note here is that when the DpcForIsr is called, 
the operation to be completed is the only operation in progress at the time. 

A final example shows the ISR for an intelligent device that maintains a shared 
set of queues and structures between it and the driver. Such a device (a high
speed communications device, for example) would use Common-Buffer DMA 
(described in Chapter 17, "DMA Data Transfers"). This particular example 
device can have multiple read IRPs and multiple write IRPs in progress simul
taneously. 

Each individual request in progress on the device is described by a DEV _REQUEST 
structure in host memory, which both the driver and the device access (the 
device accesses these structures via DMA). The DEV_REQUEST structure is com
pletely specified by the device architecture, and is not a standard NT structure 
of any type. The driver places information about the request (such as the base 
address and length of the transfer) in a DEV_REQUEST structure, and then puts 
that structure on the read or write request queue for processing by the device. 
The device reads the entries in the request queues (reading information about 
each request from the DEV_REQUEST structure), performs the indicated requests, 
and places the status of each completed operation in the DEV_REQUEST structure. 
This complicated device can have the very simple ISR demonstrated in 
Example 15.3. 

Example 15.3. A typical ISR for an intelligent device. 

BOOLEAN SmartDevIsr(IN PKINTERRUPT Interrupt, IN PVOID Context) 
{ 

PDEVICE_OBJECT devObj = (PDEVICE_OBJECT)Contextj 
PFOO_DEVICE_EXT devExt = devObj->DeviceExtensionj 
BOOLEAN ourlnterrupt = FALSEj 

1/ 
II Read complete?? 
1/ 
if ( (READ_PORT_ULONG(devExt->ReadStatus) & SMART_READ_COMPLETE) ) { 

1/ 
II Tell the device we've seen the interrupt 
1/ 
WRITE_PORT_ULONG(devExt->ReadStatus, SMART_READ_ACK)j 

ourInterrupt = TRUEj 

1/ 
II Queue a Read Complete DPC 

continues 
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1/ 
KelnsertQueueDpc(&devExt->ReadDoneDpc, NULL, NULL)j 

1/ 
1/ Write compelete?? 
1/ 
if ( (READ_PORT_ULONG(devExt->WriteStatus) & SMART_WRITE_COMPLETE) ) { 

II 

II 
// Tell the device we've seen the interrupt 
II 
WRITE_PORT_ULONG(devExt->WriteStatus, SMART_WRITE_ACK)j 

ourlnterrupt = TRUEj 

II 
// Queue a Write Complete DPC 
II 
KelnsertQueueDpc(&devExt->WriteDoneDpc, NULL, NULL); 

// Return TRUE if it was one of ours ... FALSE otherwise 
II 
return(ourlnterrupt)j 

In Example 15.3, the ISR starts by checking the device's status to see if a read 
has been completed by the device. If a read has been completed, the ISR 
acknowledges the interrupt to the device, and queues a CustomDpc to process 
the read completion. The ISR then goes on to check the device's status to see 
whether a write has been completed; if it has, the ISR acknowledges it and 
queues a different CustomDpc. 

Note that the driver never touches or manipulates the request queues from 
within the ISR. Also, note that the driver queues different DPCs to indicate 
read complete and write complete. There is nothing about this ISR design or 
device architecture that makes this strictly necessary, but it may make the 
DPCs easier to write, debug, and later maintain. 

Finally, note that some devices have interrupt status bits that are separate from 
their interrupt acknowledge bits. On such devices, a driver (depending, of 
course, on its design) might elect to acknowledge the interrupt and return no 
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information to the DpcForIsr. In this case, the DpcForIsr would directly inter
rogate the device's interrupt status bits to determine the work that needs to be 
performed. 

ISR to DPC Communication Issues 
The goal of ISR-to-DPC communication is for the ISR to communicate enough 
information to the DPC to enable the DPC to complete whatever interrupt pro
cessing is required. The complexity involved is that there is only one DPC 
Object per Device Object (unless a CustomDpc is used), and that one DPC 
Object can be queued only once, to one DPC queue, at anyone time. 

Thus, if a given device interrupts, resulting in the driver calling IoRequestDpc ( ) , 

the DPC Object that represents the driver's DpcForIsr will be placed on the 
current processor's DPC queue. If the same device interrupts again, before the 
DpcForIsr has begun executing, when the ISR once again calls IoRequestDpc ( ) 

this call will be ignored because the DPC Object is already on a DPC queue. 
This was discussed in detail in Chapter 6, "Interrupt Request Levels and 
DPCs." 

The result of this situation is that the Irp and Context parameters from the sec
ond call to IoRequestDpc(), which may have been intended to convey informa
tion to the DpcForIsr, will be lost. This issue arises only in drivers that can 
have multiple requests outstanding simultaneously on one device. And, even in 
such drivers, this is a problem only if the driver's design relies on passing infor
mation from the ISR to the DPC via the Irp and Context parameters. 

The driver writer simply needs to be aware of the way that DPCs work, and 
ensure that information is passed appropriately between the ISR and DPC. One 
example of such a mechanism was shown in Example 15.1. In this example, 
the ISR accumulates bits in a location in the Device Extension, which the 
DpcForIsr subsequently examines. The Irp and Context parameters to 
IoRequestDpc () are not used. Further, the ISR and DpcForIsr synchronize their 
access to this shared status location in the Device Extension via the ISR Spin 
Lock. 

Interrupt Sharing and ISRs 
The fact that Windows NT supports interrupt sharing affects a number of 
things within a driver. NT allows sharing, regardless of interrupt mode. That 
is, both LevelSensitive (that is, "level triggered") and Latched (otherwise 
known as "edge triggered") interrupts may be shared. All drivers that attempt 
to share a single interrupt vector must specify the same mode for the interrupt 
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and also must specify that they allow interrupt sharing when they call 
IoConnectInterrupt (). Thus, if a driver that's not willing to share interrupts 
attaches to a given interrupt vector before your driver that wants to share that 
same vector, your call to IoConnectInterrupt () will fail. 

The interrupt mode (Latched or LevelSensitive) affects the way NT calls ISRs 
when an interrupt occurs. When an interrupt occurs for a vector that has been 
connected by drivers as LevelSensi tive, NT calls the ISRs attached to that vec
tor until all the connected ISRs have been called or until an ISR returns TRUE, 

whichever comes first. This makes sense because if more than one 
LevelSensitive device is interrupting at a time, each device will continue to 
interrupt until the interrupt is acknowledged. 

On the other hand, if an interrupt occurs for a Latched vector, NT always calls 
all the ISRs that are connected to that vector. In fact, NT will continue calling 
them (going back to the beginning of the list if necessary) until all the connect
ed ISRs return FALSE. All the ISRs need to be called because there is no way to 
determine how many Latched interrupts have been requested. 

Furthermore, the ISRs need to be called iteratively until all return FALSE, to 
ensure that no interrupts are lost. 

Note that the behavior described in this section is a description of how we 
have observed Windows NT V4 to operate. This behavior has not been docu
mented by Microsoft, and therefore may change in a future release or service 
pack. 

The DpcForIsr and CustomDpc 
The goals for processing in a DpcForIsr or CustomDpc routine are as follows: 

• Service all outstanding device requests. This includes calling 
IoCompleteRequest () for any newly completed IRPs. 

• Propagate the execution of the driver by starting any previously queued 
I/O requests, which can now be initiated as a result of a change in the 
device's status, such as an in-progress request completing. 

The DpcForIsr Entry Point 
Figure 15.3 shows the prototype for the DpcForIsr entry point. Recall that 
DPC routines are called at IRQL DISPATCH_LEVEL and in an arbitrary thread 
context. 
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Figure 15.3. Entry point: DpcForIsr. 

Note that in SMP systems, the same DPC routine may be executing simultane
ously on more than one processor. Further, note that the DPC routine(s) that 
are executing can also be running in parallel with the ISR. Thus, DPC routines 
must be careful to appropriately serialize access to shared data. This includes 
queues that are updated and even hardware registers. 

Note 

It is absolutely correct that a single DPC routine can be executing on 
multiple processors at one time, contrary to the assertion in other publi
cations that this is not the case. This is easy to see when the same DPC 
routine is associated with multiple Device Objects by drivers that support 
multiple devices. If two different devices under the driver's control inter
rupt on different processors, two DPC Objects will be queued and can 
easily be executed in parallel. 

Even more interesting is the case when a single DPC Object (for exam
ple, the DPC Object describing the DpcForIsr for a single device) can be 
active on two processors at the same time. Consider a device that can 
have multiple operations in progress at one time. An interrupt occurs and 

continues 



376 Part II: The 110 Manager and Device Driver Details 

Continued 

the DpcForlsr is requested by calling IoRequestDpc ( ). Once the DpcForlsr 
starts executing~ the device interrupts a second time~ this time on a differ
ent processor from where the DpcForlsr is executing. The ISR once again 
calls IoRequestDpc () to queue the DPC Object. That DPC Object can cer
tainly be dequeued and its DPC routine started on the second processo~ 
prior to the DPC on the first processor existing. Thus~ the same DPC 
routine~ with the same DPC Object~ executes on two different processors 
simultaneously. Thank goodness for spin locks~ eh? 

The last three parameters passed into the DpcForIsr entry point are simply spe
cific instances of the standard DPC parameters that are specified as type PYOID. 

Thus, instead of "DeferredContext, SystemArgument1, and 
SystemArgument2" (which are the last three parameters for standard DPC rou
tines), the last three DpcForIsr parameters are "DeviceObject, Irp, Context. ~~ 
The Irp and Context parameters (or SystemArgument1 and SystemArgument2 
parameters for the CustomDpc) are passed directly from the parameters of the 
same name specified by the driver on its call to IoRequestDpc () (or 
KelnsertQueueDpc () for the CustomDpc) that caused the DPC to be queued. 

Remembe~ as mentioned previously in this chapter in the section "ISR to 
DPC Communication Issues/~ multiple calls made to IoRequestDpc () 

before the DPC begins executing result in a single invocation of the DPC 
routine. The Irp and Context parameters passed into the DPC are speci
fied on the first call to IoRequestDpc()~ that is to say~ the call that actually 
caused the DPC Object to be queued. The values for Irp and Context 
supplied on subsequent calls to IoRequestDpc ()~ which were made prior to 
the DPC executing~ are lost. 

The differences between a DpcForIsr and CustomDpc are summarized in 
Table 15.1 

Table 15.1. DpcForlsr Versus CustomDpc 

Parameters 

Requested via 

DPC Object location 

DpcForIsr 

PYOID 
DeferredContext, 
PYOID 
SystemArgumentl ~ 
PYOID 
SystemArgument2 

KeInsertQueueDpc( ) 

Embedded in Device 
Object 

CustomDpc 

PDEVICE_OBJECT 
DeviceObject, PIRP 
Irp, PYOID Context 

IoRequestDpc( ) 

Allocated by driver 
from nonpaged storage 
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As is clear from Table 15.1, the DpcForIsr and CustomDpc differ only slightly. 
Otherwise, these two routines are identical in all ways. Most drivers written 
for NT have only a DpcForIsr that is requested from the ISR by calling 
IoRequestOpc (). The less-typical driver, which needs to be able to queue DPC 
Objects other than the ones embedded in its Device Objects, calls 
KelnsertQueueOpc() directly. Because all the issues handled by the DpcForIsr 
and CustomDpc are identical, the remainder of this chapter will refer only to 
the DpcForIsr. However, all points apply equally to any CustomDpc queued 
from an ISR. 

Processing Within the DpcForlsr 
As previously mentioned, the goals for processing within the DpcForIsr are to 
service any device requests that were communicated to the DpcForIsr from the 
ISR, and also to propagate the execution of the driver. The way that the 
DpcForIsr meets these goals is dependent on the capabilities of the device it 
supports (such as whether or not the device can support multiple simultaneous 
operations) and the specific design chosen by the driver writer to communicate 
information from the ISR to the DPC. 

In the following sections, we describe some of the more common DpcForIsr 
designs and show how these designs interact with the ISR to meet their goals. 

DpcForlsr Example for Devices with One Request Outstanding 
The DpcForIsr routine for devices that can have only a single request outstand
ing is very straightforward. Consider, for example, the DpcForIsr routine for 
the Foa device. This DpcForIsr (shown in Example 15.4) would run as a result 
of being called from the Foolsr routine shown in Example 15.2. 

Example 15.4. DpcForIsr routine for the Foo device. 

VOID FooDpc(PKDPC Opc, PDEVICE_OBJECT DeviceObject, PIRP Irp, PVOID Context) 
{ 

BOOLEAN errorDuringProcessing = (BOOLEAN)Context; 

1/ 
II Set the 1/0 Status block. Note the IoStatus.lnformation 
II field is set with the length of the transfer in the 
II Startlo function, so we don't need to set it here unless 
II it needs to be altered. 
/! 
if (errorDuringProcessing) { 

Irp->IoStatus.Status = STATUS_UNSUCCESSFUL; 
Irp->IoStatus.lnformation = 0; 

} else { 

continues 
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lrp->loStatus.Status = STATUS_SUCCESS; 

1/ 
II Start another request now 
1/ 
loStartNextPacket(DeviceObject, TRUE); 

1/ 
II Complete the request 
1/ 
loCompleteRequest(Irp, lO_NO_lNCREMENT); 

return; 

Because this DpcForIsr is called with a pointer to an IRP to complete and the 
Context parameter indicates its completion status, the DPC routine itself is 
very straightforward. The driver simply completes the currently outstanding 
IRP and propagates the driver's execution by calling loStartNextPacket (). 
Notice, however, that the DpcForIsr performs these two operations in the 
opposite order than expected. This order of operation increases device utiliza
tion and maximizes throughput. The driver attempts to start a new request on 
the device as soon as possible. Calling loStartNextPacket o results in the driver's 
Startlo routine being called immediately if any IRPs are pending for the device. 
With the new request in progress on the device, the driver is now free to take 
whatever time might be required to complete the previous request by calling 
IoCompleteRequest(). 

Note that there is no need to use any type of locking to guard the structures in 
this example because only one request can be in progress at a time and the 
queue of pending requests is managed by the I/O Manager, using System 
Queuing. The I/O Manager, of course, protects the queue of pending IRPs that 
it maintains in the Device Object, using an appropriate lock. Also, note that 
this example assumes that the relevant StartIo function (such as FooStartIo, 
shown in Example 13.8 in Chapter 14, "Dispatch Entry Points") has set the 
Cancel routine to NULL before initiating the I/O operation. If this were not the 
case, the DpcForIsr would need to handle it appropriately. 

DpcForlsr Example for Devices with One Read and One Write 
Request Outstanding 
DpcForIsr processing for devices that may have only a single read and a single 
write outstanding request is similarly straightforward. The DpcForIsr for such 
devices checks to see the following: 
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1. Whether a write request is complete; and if it is, completes it. 

2. Whether a write request is queued, waiting to be initiated on the device; 
and if it is, initiates it. 

This same process is then repeated for read requests. 

The "trick," if there is one, is the way the ISR communicates which operations 
have been completed back to the DpcForIsr. In the AmcclnterruptService ISR 
shown in Example 15.1, this was done by accumulating status bits in the 
IntStatus field of the device extension. Example 15.5 shows the DpcForIsr that 
matches this ISR. 

Example 15.5. DpcForlsr example, handling one simultaneous read and write 
request outstanding. 

VOID AmccOpcForlsr(PKOPC Opc, POEVICE_OBJECT OeviceObject, PIRP Unused, PYOID 
Context) 

PAMCC_DEVICE_EXT devExt = (PAMCC_OEVICE_EXT) DeviceObject->OeviceExtension; 
PIRP irp; 

/I 
II Write complete?? 
/I 
if( KeSynchronizeExecution(devExt->InterruptObject, 

WritelsOone, 
devExt)) { 

1/ 
II Yes .. Get the Write Queue lock 
1/ 
KeAcquireSpinLockAtDpcLevel(&devExt->WriteQueueLock); 

1/ 
II Get the active Write IRP to complete 
1/ 
irp = devExt->CurrentWritelrp; 

1/ 
II Set no IRP presently in progress 
1/ 
devExt->CurrentWritelrp = NULL; 

1/ 
II Release the Write Queue spin lock 
1/ 
KeReleaseSpinLockFromOpcLevel(&devExt->WriteQueueLock); 

1/ 
II if there is an IRP in progress, complete it 

continues 
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II 

/I 
if (irp) 

/I 

/I 
II Set length of data written 
/I 
irp->IoStatus.Status = STATUS_SUCCESS; 
irp->IoStatus.lnformation = devExt->WriteTotalLength; 

/I 
II Complete the request 
/I 
IoCompleteRequest(irp, IO_NO_INCREMENT); 

II Get the Write Queue lock again 
II 
KeAcquireSpinLockAtDpcLevel(&devExt->WriteQueueLock); 

II 
II Start the write 
II 
AmccStartNextWrite(DeviceObject); 

II 
II Release the Write Queue spin lock 
II 
KeReleaseSpinLockFromDpcLevel(&devExt->WriteQueueLock); 

II Read complete?? 
II 
if( KeSynchronizeExecution(devExt->InterruptObject, 

ReadlsDone, 
devExt)) { 

II 
II (same code as for write case, above ... but processing the read queue) 

return; 

The function WriteIsDone (), which is called via KeSynchronizeExecution () 
(described later), that works with the DpcForIsr shown in Figure 15.5, appears 
next in Figure 15.6: 
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Example 15.6. WriteIsDone() function. 

BOOLEAN WriteIsDone(IN PYOID SynchronizeContext) 
{ 

PAMCC_DEVICE_EXT devExt = (PAMCC_DEVICE_EXT)SynchronizeContextj 

/! 
II Write complete set in the copy of the IntCsr saved in the ISR? 
/! 
if(devExt->IntCsr & AMCC_INT_WRITE_COMP) 

/! 
II Yes. Clear it. 
/! 
devExt->IntCsr &= -AMCC_INT_WRITE_COMPj 

return(TRUE) j 

return(FALSE) j 

Note that in Example 15.5, the DpcForIsr uses KeSynchronizeExecution () to 
check whether a write operation has been completed. Figure 15.4 shows the 
prototype for this function. 

BOOLEAN 
KeSynchronizeExecution(IN PKINTERRUPT Interrupt, 

IN PKSYNCHRONIZE_ROUTINE SynchronizeRoutine, 
IN PYOID SynchronizeContext}; 

Interrupt: A pointer to an Interrupt Object, returned by a prior call to 
IoConnectInterrupt(} . 

SynchronizeRoutine: A pointer to a function to call holding the 
Interrupt spin lock, and at the synchronize IRQL defined by Interrupt. 

SynchronizeContext: A driver-defined context value to be passed as the 
Context parameter to the SynchronizeRoutine. 

Figure 15.4. KeSynchronizeExecution () function prototype. 

The function KeSynchronizeExecution () takes three parameters: 

• Interrupt. A pointer to an Interrupt Object previously returned to the dri
ver by calling IoConnectInterrupt (). 

• SynchronizeRoutine. A pointer to a function to be called at DIRQL and 
holding the interrupt spin lock used by Interrupt. 
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• SynchronizeContext. A parameter to be passed to SynchronizeRoutine. 
The SynchronizeRoutine is sometimes also called a SynchCritSection rou
tine. 

Outside of an ISR, the only way a driver can acquire an interrupt spin lock
and thus serialize its execution against an ISR-is to call 
KeSynchronizeExecution (). Unlike KeAcquireSpinLock (), KeSynchronizeExecution () 

does not simply acquire the indicated spin lock and return to the caller. 
KeSynchronizeExecution () asks the microkernel to acquire the interrupt spin 
lock associated with the indicated Interrupt Object, raise to the DIRQL of the 
Interrupt Object, and call the SynchronizeRoutine, passing Synchronize Context 
as a parameter. The micro kernel performs this call synchronously. That is, the 
microkernel returns from KeSynchronizeExecution () only after 
SynchronizeRoutine has returned. Figure 15.5 shows the prototype for the 
SynchronizeRoutine entry point. 

Figure 15.5. Entry point: SynchronizeRoutine. 

Because the SynchronizeRoutine is called directly as a result of calling 
KeSynchronizeExecution (), it is called in the same context as the DpcForIsr 
(which is arbitrary), but it is called at DIRQL and with the ISR spin lock held. 
The SynchronizeRoutine returns a BOOLEAN value, which is returned as the 
return value of KeSynchronizeExecution ( ). 

Returning to the Examples 15.5 and 15.6, AmccDpcForIsr calls 
KeSynchronizeExecution(), which in turn calls WriteIsDone() at DIRQL and 
holds the interrupt spin lock used by the indicated Interrupt Object. 
Wri teIsDone () checks to see whether the write complete bit is set in the saved 
IntCsr value in the device extension. If the write complete bit is set, 
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WriteIsDone () clears it and returns TRUE. If the write complete bit is not set, 
WriteIsDone () returns FALSE. Thus, by using KeSynchronizeExecution (), the dri
ver protects the IntCsr value in the device extension with the interrupt spin 
lock. 

No~, . 

Note that the driver in Examples 15.5 and 15.6 could not call 
KeAcquireSpinLock () to acquire the interrupt spin lock. Further, merely 
acquiring an executive spinlock (via KeAcquireSpinLock ( )) will do nothing 
to serialize the driver with its ISR. This is because KeAcquireSpinlock ( ) 

always raises the IRQL to DISPATCH_LEVEL. The only way to acquire 
the interrupt spin lock is to call KeSynchronizeExecution (). 

Another thing to note in Example 15.5 is that the function holds the 
WriteQueueLock (a spin lock defined by the driver) whenever it is reading or 
updating shared data, such as the CurrentWritelrp field in the device extension. 
The driver also holds the WriteQueueLock while it calls AmccStartNextWri te ( ) , 

which propagates the execution of the driver (presumably checking the queue 
of pending write IRPs, and removing one, starting it on the device, and placing 
its address in CurrentWritelrp). Holding the WriteQueueLock protects the state 
of the write queue and the CurrentWritelrp field from simultaneous access by 
either the Dispatch routine (running on the same or a different processor) or 
another instance of the DpcForIsr running on a different processor. 

DpcForlsr Example for Devices with Multiple Outstanding 
Requests 
The approach taken in the DpcForIsr for a device with multiple simultaneous 
outstanding requests can be a bit more complex than the previously discussed 
cases. Example 15.7 illustrates the CustomDpc used for write completion by 
the SmartDevIsr shown in Example 15.3. 

Example 15.7. SmartDevceWriteDoneDpc. 

VOID SmartDevWriteDoneDpc(PKDPC Dpe, 
PDEVICE_OBJECT DevieeObjeet, 
PIRP Unused1, 
PVOID Unused2) 

PSMART_DEVICE_EXT devExt = (PSMART_DEVICE_EXT) 
DevieeObjeet->DeviceExtension; 

PIRP irp; 
PDEV_REQUEST request; 
BOOLEAN didOnej 

continues 
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1/ 
II Loop until we've no more requests to complete 
1/ 
do 

II 
II Get the write list lock 
II 
KeAcquireSpinLockAtDpcLevel(&devExt->WriteListLock)j 

II 
II Assume we'll not complete a request 
II 
didOne = FALSEj 

II 
II Get a pOinter to the first entry in the write list 
II 
request = devExt->WriteListHeadVaj 

II 
II A non-zero Status field in the DEV_REQUEST structure indicates 
II the request has been completed 
II 
if(request && 

request->Status) 

/I 
II Remove the DEV_REQUEST structure from the write queue 
/I 
devExt->WriteListHeadVa = request->Nextj 

KeReleaseSpinLockFromDpcLevel(&devExt->WriteListLock)j 

irp = request->Irp; 

/I 
II Set the IIO Status block based on the returned 
II status of the request. Positive value for Status 
II are the number of bytes transferred. Negative values 
II are standard Smart Device status codes. 
/I 
if(request->Status > 0) 

irp->IoStatus.Status = STATUS_SUCCESSj 
irp->IoStatus.lnformation = request->Status; 

} else { 

irp->IoStatus.Status = STATUS_UNSUCCESSFULj 
irp->IoStatus.lnformation = request->Statusj 
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II 
II Return the DEV_REOUEST structure 
II 
SmartDevFreeBlock(request); 

II 
II Complete the request 
II 
IoCompleteRequest(irp, IO_NO_INCREMENT); 

didOne = TRUE; 

} else { 

KeReleaseSpinLockFromDpcLevel(&devExt->WriteListLock); 

} while (didOne); 

1/ 
II We're outa here ... 
II 
return; 

As described prior to Example 15.3, this DPC routine operates on an intelli
gent device that has multiple operations in progress at a time. Each individual 
operation is described to the device using a shared DEV_REOUEST structure, 
which is a structure defined by the device's architecture. The DPC routine 
shown in Example 15.7 acquires the write list spin lock, and checks to see 
whether the entry at the head of the list of in-progress writes has been complet
ed. If so, the D PC routine removes the entry from the list, releases the write list 
spin lock, returns the now unused DEV _REQUEST structure to the driver's private 
pool, and completes the request. Otherwise, if there are no entries remaining in 
the list or the entry at the head of the list is not complete, the DPC routine 
releases the write list spin lock and returns. 

The Write List Lock protects the write list against simultaneous access from this 
DPC (running on another processor) or from the Dispatch routine (running on 
this or another processor). Note that this DPC routine does not need to do 
anything to propagate the driver's execution because (presumably) all incoming 
requests are placed directly on the device's queue. Thus, no requests are ever 
"pending," waiting for the device to become available. All received requests are 
made active on the device. Also, note that the in-progress requests are not can
celable in this example. This is due to the speed with which the device com
pletes the requests. 

What's particularly interesting about this example is that it completes requests 
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busy in a large multiprocessor system. Let's say the DPC routine is running on 
Processor B on this system. If the device hardware is fast, a request could enter 
the driver's Dispatch write routine on Processor A, be initiated on the device, 
be completed on the device, and then have IoCompleteRequest () called in the 
DPC routine on Processor B. All this could happen while Processor B is loop
ing in the driver's DPC routine! 

Although this situation can result in very good throughput on the supported 
device, it can also potentially result in very long latencies for (other devices') 
DPCs queued after this one. This is not usually considered good driver citizen
ship for drivers running on general-purpose servers and workstations. All that 
is necessary to mitigate the impact that this design can have on another driver's 
latency is implementation of a "fairness counter," which limits the maximum 
number of iterations (and, thus, request completions) that are allowed before 
exiting the DPC routine. When this counter is decremented to zero, the DPC 
routine sets a timer that results in the DPC routine being recalled after a nomi
nal time period has elapsed. The starting value of the fairness counter can 
either be hard-coded after some experimentation, or left as a tuning parameter 
for the running system. 

ISR and DpcForIsr Design 
As can be seen from the information discussed so far in this chapter, the ISR 
and DpcForIsr must be designed to work together. In this section, we discuss 
some of the issues involved when the ISR and DpcForIsr are taken together as 
a whole. 

ISR Versus DPC 
There is considerable controversy regarding how much processing should be 
done within the ISR itself, versus how much processing should be deferred into 
the DPC. Standard NT dogma, as set forth in the DDK, holds that "an ISR 
should return control as quickly as possible" and "must run at DIRQL for 
[only] the shortest possible interval" (see Chapter 8, "NT Kernel Mode Drivers 
Design Guide," in the Windows NT 4.0 Device Driver Kit). This, however, 
should be viewed as an implementation guideline and not as an inviolable rule. 

The argument against most drivers doing extensive processing within their ISRs 
is sound. While the ISR is running, it blocks interrupts from all devices with 
lower DIRQLs on the same processor. Thus, interrupt latency will increase for 
lower-priority devices, the more time a driver spends in its ISR. Better aggre
gate device performance at the system level, and hence overall system through
put, is thus obtained when devices do not spend excessive amounts of time at 
DIRQL. 
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This is not the same, however, as a driver not being allowed to perform any 
processing within its ISR. Unfortunately, this is precisely what the Windo-iVs 
NT guidelines are often misinterpreted to mean. 

How request processing is balanced between the ISR and DPC is a decision 
that must be made in light of the purpose for which the driver, device, and sys
tem are intended. For example, a lot less ISR processing is tolerable in a disk 
driver on a general-purpose workstation than is reasonable in a data acquisi
tion driver for a process control system. If an entire system is dedicated to the 
task of running a particular device, the only limit to the amount of time that 
device's driver can spend in its ISR is that beyond which the remainder of the 
devices in the system cease to function. 

In general, processing that is highly time-critical should be undertaken within 
the ISR. Any processing that will take a significant amount of time, or which 
can wait for the queued DPC to run, should be undertaken within a DPC asso
ciated with the ISR. As mentioned earlier, as a practical matter this balance is 
all but enforced by the fact that most utility and support routines that a driver 
calls are not callable above IRQL DISPATCH_LEVEL. 

ISR to DPC Routine Latency 
Probably the mostly frequently asked question about ISR and DpcForIsr design 
for NT is: How long will it take for my DPC routine to run after I call 
IoRequestDpc () in my ISR? Unfortunately, the only correct answer to this ques
tion is: It depends. 

As discussed in Chapter 6, "Interrupt Request Levels and DPCs," a request to 
run a DPC routine is made by placing the DPC Object describing that routine 
onto a particular processor's DPC queue. This is done by calling 
KeInsertQueueDpc () (or, alternatively, IoRequestDpc (), which in turn calls 
KeInsertQueueDpc () ). The length of time that elapses before a specific DPC 
Object is dequeued and its associated DPC routine is executed, is the sum of 
the following two operations: 

• The length of time the system spends at IRQLs > IRQL DISPATCH_LEVEL 

prior to the DPC routine in question being executed 

• The length of time spent within DPC routines associated with DPC 
Objects preceding the DPC routine in question on the DPC queue 

The only time the system spends at IRQL > DISPATCH_LEVEL is time spent servic
ing interrupts. Only on the most interrupt-bound systems is this amount of 
time significant. On the other hand, the amount of time spent running the DPC 
routines preceding a particular DPC Object on the DPC queue is a completely 
unknown quantity. This depends on the design of the drivers associated with 
the DPC routines and the devices they are servicing. 
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For example, consider a driver on a multiprocessor system that requests a DPC 
on the same processor on which SmartDevWriteDoneDpc() (shown in Example 
15.7) is running. The length of time before the driver's DPC routine runs is a 
function of how long SmartDevWri teDoneDpc () executes. Of course, the length 
of time SmartDevWri teDoneDpc () executes is a function of how busy the 
"SmartDev" device is. This, in turn, is a function of how many requests arrive 
at the device from all the other processors in the system. 

Thus, the latency between requesting a DPC routine from within an ISR and 
when that DPC routine actually executes can vary widely. Although on most 
general-purpose systems, ISR-to-DPC latency is typically less than a millisec
ond, it can vary widely-up to several milliseconds in some cases. Just to make 
a point, note that the largest DPC latency that we have ever measured was 300 
milliseconds! This is not characteristic, of course. It's merely the very longest 
time we've ever measured. (Of course, it was our driver that ran for 300 mil
liseconds within its DPC routine! This was a special-purpose device with an 
architecture not unlike that of the example SmartDev.) 

Driver-Based Strategies for Dealing with DPC to ISR Latency 
There are a number of strategies that you can use in your driver to combat this 
widely varying latency: 

• Move some processing from the DPC to the ISR. As discussed earlier, the 
appropriateness of this strategy must be viewed within the entire scope of 
how a system will be used. For mass-market, general-purpose systems, 
doing significant amounts of processing in the ISR is typically a bad idea, 
and it is guaranteed to cause trouble with other drivers on the system. On 
the other hand, queuing a DPC for every interrupt taken by a character 
interrupt device may not be the best solution, either. Driver writers need 
to balance the time they spend at DIRQL carefully against the throughput 
required by their devices. 

• Use high importance DPCs. As mentioned in Chapter 6, the manner in 
which DPCs are queued can be altered by changing the DPC importance. 
Normally, when KelnsertQueueDpc () is called, the DPC Object is placed at 
the end of the processor's DPC list. DPC Objects with Highlmportance are 
queued at the head of the processor's DPC list. This can significantly 
decrease latency, but only if setting a DPC to Highlmportance is reserved 
for those operations truly requiring the lowest latency levels. 

• Do as much work as possible in each DPC invocation. If a device can 
have multiple requests outstanding simultaneously, doing as much work 
as possible each time the DPC is invoked can result in fewer total DPC 
invocations. This, in turn, results in lower latency-but only for the dri
ver in question! As discussed with Example 15.7, this strategy will typi
cally increase latency for all other drivers in the system. 
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Clearly, none of the listed strategies is without cost. It is the driver writer's job 
to choose a design that will enable devices to meet their usage requirements 
within their expected environments. 

System-Based Strategies for Dealing with DPC-to-ISR Latency 
If you can affect the configuration of the system on which your driver will be 
running, there are further techniques available for decreasing ISR-to-DPC 
latency. An obvious technique is to increase processor speed; however, this 
is not guaranteed to help, given that the device speed could be the limiting 
factor-not the speed of the processor. 

Another possibility is to add more CPUs to a multiprocessor system. Because 
interrupts are typically distributed across processors (more or less) evenly, 
adding more CPUs tend to reduce the length of a given processor's DPC queue. 
This, in turn, results in shorter times between a driver requesting its DPC and 
having that DPC execute. 

Hardware-Based Strategies for Dealing with DPC-to-ISR Latency 
If you can affect your hardware design, there is another alternative for manag
ing ISR-to-DPC latency that is probably the best alternative of all. This is to 
simply expect widely varying latency and deal with it in hardware. You can do 
this by measuring what you believe will be the worst-case latency level and 
designing your hardware so that it will not fail when that worst-case level of 
latency is encountered. You can do this by using deeper FIFOs, larger buffers, 
or some method of flow control in your hardware. 

Obviously, this alternative is not without cost, either; however, it does con
tribute to the best system throughput possible. As Windows NT becomes more 
widely deployed, you can expect to see this alternative used much more fre
quently. 

Case Study 
A while ago, we had the opportunity to design a driver for a very specialized 
device. This device had a custom built GAsFET front end, which allowed it to 
sample particular kinds of data at multimegabit rates. When in use, the device 
generated multiple streams of data, using nearly continuous DMA back to a 
buffer. When one DMA operation completed, the driver needed to restart the 
DMA operation within microseconds to keep the data stream from failing. An 
entire sample was only a few seconds long; however, if any of the sample data 
were lost, none of the sample data would be usable. 

This device was targeted to run on the highest possible speed system, with 
Windows NT as the required platform. The good news is that while the device 
was sampling, the entire system could be dedicated to this task. Thus, the 
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impact that the device's driver had on the rest of the system was not of any 
concern. 

The design we settled on was to do all device-processing at DIRQL, except for 
a small amount of presample initialization work. In our design, the driver 
locked down all required memory buffers prior to starting the sample proce
dure, and essentially polled the device at DIRQL to determine the end of each 
DMA operation. 

I'll never forget a meeting we had with the client to discuss our potential 
design. We were discussing the use of the system during the sampling period: 
"We won't be using the system for anything while we're taking a sample," said 
the client, "so it's OK with us if the mouse doesn't move all that well while the 
sample is actually being taken." "That's good," I told them, "because not only 
won't the mouse move during the sample, the cursor won't blink either!" They 
were aghast. 

While clearly ludicrous for use in a general-purpose system, this design met the 
requirements of the device in the environment for which it was intended. That's 
why there are few solid rules that can be applied to performance and latency 
issues in driver design. The only real rule is to "make the design suitable for its 
intended purpose." 



Chapter 16 
Programmed I/O Data Transfers 

This chapter will review: 

• Processing Programmed 110 Data Transfers. This section discusses the 
details of how Windows NT device drivers implement data transfer oper
ations on programmed I/O devices. 

• Programmed 110 Example Driver. To help illustrate the concepts 
described earlier in the chapter, this section presents a sample PIO device 
driver. The source code, description, and functionality is provided for 
each important routine in the driver. 

• Design Issues for Programmed 110 Device Drivers. This section examines 
issues specific to slightly less common driver operations such as polling 
and synchronous I/O processing. 

In this chapter, we discuss the details of how a driver implements data transfer 
operations for programmed I/O type (PIO) devices. Although this chapter 
focuses on data transfers performed in response to IRP _MJ_READ and 
IRP _MJ_WRITE requests, all the principles discussed may also be applied to 
IRP _MJ_DEVICE_CONTROL requests that are used for transferring data. The only 
difference, and it is minor, is the way the requestor's data buffer is located. 
Locating the requestor's data buffer was described in detail in Chapter 14, 
"Dispatch Entry Points." 

Processing Programmed 1/0 Data 
Transfers 
Let's review, briefly, what we've discussed up to this point in the book. The 
steps for processing any I/O request received at a driver's Dispatch entry point 
are as follows: 
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1. Validate the I/O request. 

2. Process the IRP as far as possible. 

3. Queue the IRP for further processing if immediate completion is not pos
sible. 

If a request can't be completed immediately (for example, the request can't be 
completed from within the driver's Dispatch or Startlo routine), the driver's 
ISR and DpcForIsr (or CustomDpc) will work together to complete the 
request. 

Processing a programmed I/O data transfer is simply the process of implement
ing the three steps previously outlined. When an IRP is received, it is validated, 
as described in Chapter 13. If the request is not valid with respect to the 
device's general restrictions or current state, the driver fills the appropriate 
error status and information values into the IRP's IoStatus structure and imme
diately completes the request by calling IoCompleteRequest ( ). 

If the request is valid, the driver checks to see whether the device is available 
for the operation. The way the driver does this is dependent upon the queuing 
method the driver has chosen. If the driver uses System Queuing, it marks the 
IRP pending by calling IoMarkI rpPending ( ), calls IoStartPacket ( ), and returns 
STATUS_PENDING from its Dispatch routine. Example 14.3, in Chapter 14, illus
trates this process (as does the example driver presented later in this chapter). 
Because of the IoStartPacket () call, the I/O Manager will call the driver's 
Startlo routine when the device is available to start processing the request. 

If the driver uses Driver Queuing, the driver itself determines whether the 
device is available to start the particular transfer operation requested. This 
determination is completely device-specific. For example, many PIO devices, 
such as the well-known 16550 DART, can process a single read and a single 
write operation simultaneously. These devices cannot, however, meaningfully 
process more than one read or one write operation at the same time. Thus, it 
is up to the driver to determine whether the device is available to start the 
requested operation. If the device is not available (because, for example, an 
IRP _MJ_WRITE operation has been requested and a write is already in progress on 
a device that allows only a single write operation at a time), the driver will typ
ically mark the IRP pending by calling IoMarklrpPending(), queue the IRP, and 
return STATUS_PENDING from the Dispatch routine. In this case, the IRP will be 
started at a later time, probably from within the DpcForIsr, when the device is 
able to handle the request. If the device is available to start the transfer, the dri
ver starts processing the request on the device. If the request cannot be com
pleted in the Dispatch routine, the driver marks the IRP pending (by calling 
IoMarkI rpPending ()) and returns STATUS_PENDING from the Dispatch routine. This 
entire process is shown in Figure 14.4, in Chapter 14. 
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Whether request processing is initiated in the Startlo routine in a driver that 
uses System Queuing, or in the Dispatch routine or DpcForIsr of a driver that 
uses Driver Queuing, the steps required to actually process the request are the 
same. Typically, these steps are as follows: 

1. Get the requestor's buffer address and buffer length. Depending on the 
direction of the transfer, the requestor's buffer address will serve as either 
the source or destination of the programmed 110 data transfer. The man
ner in which the requestor's buffer address is determined is dependent on 
the buffer method chosen by the driver. The buffer length is located in the 
Parameters field of the IRP's current 110 Stack Location. 

2. Manipulate the device, via its control and status registers, to request and 
control the transfer. Depending on the device and the operation being 
performed, the processing in this step may range from doing nothing to 
setting values into a group of device registers by using the appropriate 
HAL function and waiting for the device to interrupt. Further, again 
depending on the device, this manipulation may need to take place before 
the actual data transfer, after the data transfer, or may even need to take 
place in multiple steps. 

3. Move the data between the device and the requestor's buffer. This entails 
the driver using the appropriate HAL function to copy the data in the 
appropriate direction between the device and the requestor's buffer. 
Different device architectures require the use of different HAL functions 
to accomplish this. Sometimes, data movement is accomplished in stages, 
with intervening interrupts or pauses to indicate that the device is ready 
to continue processing the transfer. 

The following sections describe the previously outlined steps in more detail. 

Getting the Requestor's Buffer Address 
To perform a programmed 110 data transfer, a driver needs a kernel virtual 
address that corresponds to the start of the requestor's buffer. Whether this 
address is used as the source or destination address for the PIO data transfer is 
dependent on whether the request is an IRP _MJ_WRITE (which moves data to a 
device) or an IRP _MJ_READ (which moves data from a device). How the 
requestor's buffer address is determined is dependent on the buffer method that 
the driver specified in the Flags field of the DEVICE_OBJECT. 

Getting the Buffer Address When Using Buffered 110 
If the driver utilizes Buffered 110, the 110 Manager provides the driver with the 
kernel virtual address of an intermediate buffer in system space. This kernel 
virtual address is located in the IRP in I rp->AssociatedI rp. SystemBuffer. 

Because this address corresponds to a location in the system's nonpaged pool, 
the address is valid for use by the driver in an arbitrary thread context. 
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Getting the Buffer Address When Using Direct liD 
If the driver has chosen Direct 110 as its buffer method, the requestor's buffer 
will be described in the IRP by a Memory Descriptor List (MDL). A pointer 
to the MDL is stored by the 110 Manager in the IRP at Irp->MdlAddress. To 
map the requestor's buffer, described by the MDL, into kernel virtual address 
space, the driver calls the function MmGetSystemAddressForMdl (), the prototype 
for which is shown in Figure 16.1. 

PYOID 
MmGetSystemAddressForMdl(IN PMDL Mdl); 

Mdl: A pointer to a Memory Descriptor List that describes a locked 
buffer. 

Figure 16.1. MmGetSystemAddressForMdl() function prototype. 

MmGetSystemAddressForMdl() takes as input a pointer to an MDL that describes a 
buffer, the pages of which have previously been locked into physical memory, 
and returns a kernel virtual address (usable in an arbitrary thread context) that 
corresponds to the start of the buffer. Because mapping pages into (and out of) 
kernel virtual address space can be expensive, MmGetSystemAddressForMdl () per
forms this mapping operation only if the buffer hasn't already been mapped 
into system space via this MDL. 

MmGetSystemAddressForMdl(), which is a macro in NTDDK.H, checks a series of 
bits in the MDL to determine whether the buffer that the MDL describes has 
already been mapped into kernel virtual address space; if it has, it returns the 
currently mapped kernel virtual address of the buffer. If the buffer described by 
the MDL has not already been mapped into kernel virtual address space, the 
macro calls MmMapLockedPages ( ), which maps the pages comprising the buffer 
into kernel virtual address space and returns the resulting address. 

lfN:ote 

You may notice that there is apparently no function that undoes the oper
ation that MmGetSystemAddressForMdl () performs. This is deliberate~ to 
facilitate maximum reuse of the one mapping of the buffer into kernel 
virtual address space. Although it is certainly possible for a driver to call 
MmUnmapLockedPages () to undo the map operation performed by 
MmGetSystemAddressForMdl()~ this is at the least unnecessary~ and at worst 
counterproductive. When an IRP with an accompanying MDL is ulti
mately completed~ the I/O Manager and Memory Manager automatically 



Chapter 16: Programmed va Data Transfers 395 

perform the requisite unmap operation as part of unlocking the buffer 
pages from physical memory. Thus, there is almost never any need for a 
driver to manually unmap the pages of an MDL that have been mapped 
as a result of calling MmGetSystemAdd ressForMdl (). 

As previously mentioned, calling MmGetSystemAddressForMdl() to map a 
requestor's buffer into kernel virtual address space can be expensive in terms of 
the number of instructions required (although NT does attempt to take some 
reasonable shortcuts where possible). Even worse, the unmap operation, which 
takes place when the IRP is ultimately completed and the MDL is freed, can 
potentially require flushing processor caches on all processors (except the cur
rent one) in a multiprocessor system. Therefore, in terms of the amount of 
overhead incurred, it is almost always best to use Buffered 110 for devices that 
typically transfer fewer than one page of data per operation. This is the 
absolute minimum guideline, and we have gotten very good performance by 
using Buffered 110 on data buffers up to several pages in size. 

Getting the Buffer Address When Using Neither 110 
If a driver elects to utilize the Neither 110 Buffer Method, the 110 Manager 
supplies the driver with requestor's virtual buffer address in the IRP's 
UserBuffer field. Because user virtual addresses and kernel virtual addresses 
below 2GB map to the same physical memory location, given the same process 
context, a driver can directly access a requestor's buffer using a User mode 
address in Kernel mode. The restriction inherent in this, of course, is that the 
address is valid only in the context of the calling process. As a result, Dispatch 
routines using Neither 110 must be called in the context of the requestor's 
process, as was described in Chapter 12, "Driver Structure." 

If a driver that uses Neither 110 determines that it requires a kernel virtual 
address for the requestor's buffer that is usable in an arbitrary thread context, 
it must do the following: 

1. Create an MDL to describe the requestor's buffer. 

2. Check the pages that comprise the buffer for accessibility and lock the 
pages into physical memory. 

3. Map the requestor's buffer described by the MDL into kernel virtual 
address space. 

Creating an MDL to Describe the Requestor's Buffer 

Although there are several methods in NT for creating MDLs, the easiest and 
most optimal is to call IoAllocateMdl ( ), the prototype for which is shown in 
Figure 16.2. This function returns a pointer to an allocated and initialized 
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MDL for use by the driver. MDLs allocated by using IoAllocateMdl () are typi
cally taken from the I/O Manager's list of preallocated MDLs, and not allocat
ed directly from nonpaged pool. 

PMDL 
IoAllocateMdl(IN PYOID VirtualAddress~ 

IN ULONG Length, 
IN BOOLEAN SecondaryBuffer, 
IN BOOLEAN ChargeQuota, 
IN OUT PIRP Irp); 

VirtualAddress: A currently valid virtual address that points to the 
start of the buffer to be described by the MDL. 

Length: The size, in bytes, of the buffer to be described. 

SecondaryBuffer: If set to TRUE and Irp is non-NULL, the created 
MDL will be linked through the Next pointer of the MDL pointed to 
by Irp->MdIAddress. 

ChargeQuota: Set to TRUE to indicate that the current thread's quota 
should be charged for the allocation of the MD L. 

Irp: If not NULL and SecondaryBuffer is FALSE, a pointer to the allo
cated IRP is filled into the MdlAddress field of the indicated IRP. If not 
NULL and SecondaryBuffer is TRUE, it performs the operation 
described under SecondaryBuffer. 

Figure 16.2. IoAllocateMdl () function prototype. 

When calling IoAllocateMdl(), if a pointer to an IRP is supplied in the Irp 
parameter, the I/O Manager will store a pointer to the allocated MD L in 
Irp->MdlAddress. This can be very handy because when the IRP is com
pleted, the I/O Manager will automatically unmap and unlock any pages 
associated with this MDL, and even return the MDL appropriately. 

Checking the Pages That Comprise the Buffer for Accessibility and Locking the 
Pages into Physical Memory 

The driver passes IoAllocateMdl () a pointer to a currently valid kernel virtual 
address and length of the buffer to be described by the MDL. IoAllocateMdl() 
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allocates and partially initializes the MDL to describe the indicated buffer. 
However, to complete the initialization of the MDL, the driver must next call 
MmProbeAndLockPages(), the prototype for which is shown in Figure 16.3. 

VOID 
MmProbeAndLockPages(IN OUT PMDL MemoryDescriptorList, 

IN KPROCESSOR_MODE AccessMode, 
IN LOCK_OPERATION Operation); 

MemoryDescriptorList: A pointer to an MDL that has been partially 
initialized to contain the virtual address, length, and offset of a buffer. 

AccessMode: Either KernelMode or UserMode, which indicates the 
mode in which the access check is to take place. An AccessMode of 
UserMode causes NT to check to ensure that the entire buffer resides 
within user address space. 

Operation: Either IoReadAccess, IoWriteAccess, or IoModifyAccess. 
Indicates the type of access for which the function should check. 

Figure 16.3. MmProbeAndLockPages () function prototype. 

MmProbeAndLockPages() checks the pages of a buffer described by an MDL for 
accessibility in the mode indicated by AccessMode. The type of access 
MmProbeAndLockPages () checks is indicated by the Operation parameter. If the 
check is successful, MmProbeAndLockPages() locks (that is to say, "pins") the 
pages that comprise the buffer into physical memory. The pages remain locked, 
at least until the MDL is returned or MmUnlockPages () is called by the driver 
(whichever is first). 

Unlike almost any other function in NT, MmProbeAndLockPages () indicates an 
error by raising an exception. Thus, any time that MmProbeAndLockPages () is 
called, it must be called within a try () ••• except () condition handler. 

IoAllocateMdl () does not, by itself, sufficiently initialize the MDL to 
describe a buffer in an arbitrary thread context. In fact, the page pointers 
within the MDL (which actually locate the buffer in physical memory
see Chapter 10, "How I/O Requests Are Described") are filled into the 
MDL by MmProbeAndLockPages(). Thus, the MDL does not contain a com
plete buffer description until a driver successfully returns from its call to 
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MmProbeAndLockPages ( ). Further, note that MmProbeAndLockPages () must be 
called in the context of the process in which the virtual address stored 
within the MD L is valid. 

Mapping the Requestor's Buffer Described by the MDL into Kernel Virtual 
Address Space 

The final step in getting a kernel virtual address usable in an arbitrary thread 
context for a requestor's buffer is to perform the actual mapping operation. 
Because we have an MDL, this mapping is performed by calling 
MmGetSystemAddressForMdl(), as described earlier in this chapter. 

Getting the Requestor's Buffer Length 
The size of the buffer is located in a function-dependent field of the current 
IRP Stack location. For example, for IRP _MJ_WRITE operations, the length, in 
bytes, of the requestor's buffer appears in the current 110 Stack location in the 
IRP at Parameters. Write. Length. For IRP _MJ_READ operations, the length, in 
bytes, of the requestor's buffer is stored in the current 110 Stack location in the 
IRP at Parameters. Read. Length. 

Keep in mind that Parameters. Write. Length and Parameters. Read. Length access 
the same location within the 110 Stack location. That is, the offset of these 
fields within the Parameters union is the same. Drivers that have common rou
tines for processing read and write operations, including drivers that are part 
of Windows NT, rely on this fact. So, although few things are guaranteed not 
to change in later releases of the operating system, it is a fairly safe assumption 
to make within a driver that these two fields will refer to the same longword in 
the 110 Stack location. Of course, the truly paranoid among us could provide 
an ASSERT () statement to ensure that this remains true. 

Manipulating the Device to Request and Control 
the Transfer 
After the driver has determined the requestor's buffer address and length of the 
transfer, the driver must next set the device into the appropriate state for the 
start of the transfer. For some devices, there is nothing that the driver needs to 
do to ready the device for a transfer. This is the case, for example, for the stan
dard parallel (printer) port interface. On the other hand, a driver may need to 
perform considerable work in this step. This is true, for example, in a serial 
port driver that needs to manipulate and monitor various status signals to 
handshake properly with a modem (that is, assert R TS and wait for the modem 
to assert CTS, and the like). 
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The only "rules" here are that the driver must perform the requisite hardware 
manipulation using the translated device address and the appropriate HAL 
functions. The translated device address was determined by the driver in its 
Driver Entry routine, as a result of calling Hal TranslateBusAddress () and possi
bly MmMaploSpace (). This process was described in detail in Chapter 13, 
"DriverEntry," in the section called "Translating Bus Addresses." 

If the device registers being manipulated are in Port 110 space, the driver must 
use the HAL's port functions (such as READ_PORT_xxx, WRITE_PORT_xxx, 

READ_PORT_BUFFER_xxx, and WRITE_PORT_BUFFER_xxx, where xxx is one of UCHAR, 

USHORT, or ULONG) (described in Chapter 2, "Achieving Hardware Independence 
with the HAL"). If the device registers being accessed are in memory-mapped 
space, the driver must use the HAL's register functions (such as 
READ_REGISTER_xxx, WRITE_REGISTER_xxx, READ_REGISTER_BUFFER_xxx, and 
WRITE_REGISTER_BUFFER_xxx). 

It is very important to understand what~ specifically~ determines whether 
a driver uses the HAL register functions or the HAL port functions. The 
determination of which function set to use is based strictly upon the 
hardware implementation of the device. If the device's registers are imple
mented in the device hardware in Port I/O space~ the driver uses the HAL 
port functions. This is true~ regardless of whether the current processor 
architecture on which the driver is running has a separate Port I/O space~ 
and irrespective of the value returned in the AddressSpace parameter 
from the driver~s earlier call to Hal TranslateBusAddress () (see Figure 
13.14). Likewise~ if the device~s registers are implemented in hardware in 
memory space~ the driver uses the HAL register functions. It is the HAL's 
job to access the device properly on each platform. Therefore~ the choice 
of HAL function is determined strictly on the device's hardware~ and not 
on any runtime consideration. 

Moving the Data Between the Device and the 
Requestor's Buffer 
Once the driver has readied the device for the data transfer, the driver is 
responsible for moving the data (in the correct direction) between the 
requestor's data buffer and the device. On some devices, data is stored and 
retrieved using a register (often backed by a FIFO), which may be a byte, a 
word, or a longword wide. Again, the appropriate HAL function must be used 
to access this register. 
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On some devices, a driver will move data between the requestor's buffer and a 
buffer in "shared memory" on the device. In this architecture, the device's 
hardware provides a region of memory that is used for data transfers. Some 
devices have relatively small shared-memory areas (just a few thousand bytes, 
for example); other devices have many megabytes of shared memory. During 
initialization (typically in the driver's DriverEntry routine), the driver translates 
the starting address of the shared memory region by using 
Hal TranslateBusAddress (), and maps the region into kernel virtual address 
space by using MmMaploSpace (). The specific layout of this memory is, of course, 
device-dependent. 

To access a shared memory section, the driver uses the HAL register access 
function. As an example, the Dispatch routine in Example 16.1 copies data 
from the requestor's buffer to a shared memory buffer on the device: 

Example 16.1. Copying data from the requestor~s buffer to a shared memory 
buffer on the device. 

NTSTATUS NeitherWrite(PDEVICE_OBJECT DeviceObject, PIRP Irp) 
{ 

PIO_STACK_LOCATION ioStackj 
NEITHER_DEVICE_EXTENSION devExtj 

II 
II Get a pOinter to the current IRP stack 
ioStack = IoGetCurrentlrpStackLocation(Irp)j 

II 
II Get a pOinter to our device extension 
II 
devExt = DeviceObject->DeviceExtensionj 

II 
II Move the data to the device 
II 
WRITE_REGISTER_BUFFER_UCHAR(devExt->TranslatedDeviceBuffer, 

II 

Irp->UserBuffer, 
ioStack->Parameters.Write.Length)j 

II Tell the device the data is there 
II 

WRITE_PORT_UCHAR(devExt->TranslatedWriteCtrl, NEITHER_DATA_READY)j 

II 
II Complete the IRP with success 
II 
Irp~>IoStatus.Status = STATUS_SUCCESSj 
Irp->IoStatus.lnformation = ioStack->Parameters.Write.Lengthj 
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IoCompleteRequest(Irp, IO_NO_INCREMENT)j 

return(STATUS_SUCCESS)j 

Note that Example 16.1 is very simple: It assumes that the driver is always 
called in the context of the requesting thread and that the device is always 
ready to accept the transfer. Example 16.1 also does not attempt to handle the 
case of multiple simultaneous write requests to the device, which could lead to 
corrupt data. The example is simple with as low overhead as possible. 

In Example 16.1, the driver has specified Neither 110 for read and write 
requests. Because this driver is called in the context of the calling process, the 
requestor's virtual address will be valid when interpreted as a kernel virtual 
address. The requestor's buffer address is located in the UserBuffer field of the 
IRP. The driver moves the data from the requestor's buffer to a shared memory 
buffer on the device by using the HAL function WRITE_REGISTER_BUFFER_UCHAR ( ). 

After the driver moves the data, it informs the device that the data is ready by 
setting the NEITHER_DATA_READY bit in one of the device's control registers. 

Could the driver in Example 16.1 have just called memcpy() (or the NT 
runtime library function RtlCopyMemory ()) instead of using the HAL func
tion WRITE_REGISTER_BUFFER_UCHAR ( )? The answer to this very common 
question is a resounding "NO!" Although countless drivers have been 
written this way, and most even appear to work most of the time, there is 
no guarantee that they will either continue to work or that they will work 
when moved to other platforms. For example, the HAL function properly 
(lushes the internal write post buffer on Pentium processors. So, although 
memcpy () might work on a particular system, the HAL function can 
always be counted on to "do the right thing." Always use the HAL func
tions and avoid unforeseen difficulties! 

Also notice in Example 16.1 that the driver did not need to do anything to 
ready the device for the transfer. As mentioned previously, the steps that need 
to be taken are dependent on the specific device hardware. After the data has 
been moved, the driver informs the device that the data is available by setting a 
bit in its write control register. Because the device's hardware locates this regis
ter in Port 110 space, the driver uses the HAL function WRITE_PORT_UCHAR() to 
manipulate the register. 

Programmed 1/0 Example Driver 
To illustrate some of the concepts discussed so far in this chapter, let's examine 
parts of a complete driver example for a popular PIO device. We'll look at all 
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the code entailed in processing transfer requests: from the Dispatch routine 
to the ISR, DPC, and ultimate request completion. The driver example sup
ports the ATA (AT Attachment-popularly known as IDE) disk interface, and 
it is loosely based on the ATDISK driver supplied in the NT DDK. Although 
some IDE/ATA disks support DMA, they all support PIO. The complete code 
for this disk driver is available from the OSR Web site (http://www.osr.com). 
For the sake of clarity, some nonessential code (such as logic for retries and 
DbgPrint () statements) have been eliminated from the routines that appear in 
the book. 

Before looking at the code, it might be helpful to understand a bit about how 
the ATA disk controller works. In PIO mode, this device is one of the simplest 
you can imagine. To read from the disk, the driver does the following: 

1. The driver programs the controller with the sector (specified as sector, 
cylinder, and head) at which the read is to start and the number of sectors 
to be read. 

2. The driver then issues a read command to the controller. 

3. The controller interrupts when it has read the first sector available for the 
driver in its internal buffer. This buffer is a word-wide location in Port 
I/O space. 

4. The driver then copies the data out of the controller's sector buffer to the 
requestor's buffer. 

5. The driver interrupts again when the next sector is available. 

6. The process of interrupting and copying is repeated until all sectors have 
been transferred. 

To write to the disk, the process is almost identical: 

1. The driver programs the controller with the sector (again, specifying the 
sector, cylinder, and head) where the write is to start and the number of 
sectors are to be written. The driver then gives the controller the write 
command. 

2. When the controller indicates that it is ready (by asserting a bit in one of 
its registers), the driver copies one sector of data to the controller's sector 
buffer. 

3. When the controller's sector buffer is full, it writes the data to the disk in 
the indicated location, and then interrupts. 

4. On receiving the interrupt, the driver copies another sector of data to the 
controller's sector buffer. 

s. This process is repeated until all the requested data has been written. 
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Note 

Attention Disk Experts! This example driver is just that; an example 
designed to illustrate how to write a device driver. As such, we're sure 
there are better, faster, cheaper, newer, more efficient, or more widely 
applicable methods for implementing the functionality in this driver, 
based on intimate knowledge of the ATA specification. That's not the 
point. The driver really works on the systems it was tested on. We hope 
that what it does is easy to understand, that it serves as a good illustra
tion of how to write drivers under Windows NT, and that it's a more 
interesting example than a parallel port. Thafs the point. 

Dispatch and StartIo Routines 
Because the ATAIIDE disk controller can support only a single transfer opera
tion at a time, we chose to implement this driver using System Queuing. Read 
and write operations thus share a single Dispatch routine, as illustrated in 
Example 16.2. 

Example 16.2. Read and write Dispatch entry point for the example pro
grammed I/O driver. 

NTSTATUS 
IdeDispatchReadWrite(IN PDEVICE_OBJECT DeviceObject, 

IN OUT PIRP Irp) 

PPARTITION_DATA partitionData = (PPARTITION_DATA)DeviceObject 
->DeviceExtensionj 

PIDE_DEV_EXT devExt = partitionData->Partition0j 
PIO_STACK_LOCATION ioStackj 
ULONG firstSectorOfRequestj 
LONG LONG byteOffsetj 
LONG LONG partitionLengthj 
ULONG transferLengthj 

partitionLength = partitionData->Pi.PartitionLength.auadPartj 

/I 
II Get a pOinter to the current 1/0 stack location 
/I 
ioStack = IoGetCurrentlrpStackLocation(Irp)j 

/I 
II Pick up some handy parameters from the current 1/0 Stack. 
II NOTE that although we access the parameters from the READ union, 
II we could be processing EITHER a READ or a WRITE operation. The 
II parameters are at the same locations in both 1/0 Stacks. 
/I 

continues 
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Continued 

byteOffset = ioStack->Parameters.Read.ByteOffset.QuadPartj 
transferLength = ioStack->Parameters.Read.Lengthj 

1/ 
II Validate the IRP 
1/ 
1/ 
1/ 
1/ 
1/ 
1/ 
1/ 
1/ 
1/ 

Here we check to see if the parameters are valid with respect to the 
device. Specifically: 

- The transfer size must not be zero. 
- The transfer size must not be > MAXIMUM_TRANSFER_LENGTH bytes 
- The transfer must be entirely within one disk partition 
- The transfer size must be an even multiple of the sector size 

if ((transferLength == 0) :: 

1/ 

(transferLength > MAXIMUM_TRANSFER_LENGTH) :: 
((byteOffset + transferLength) > partitionLength) :: 
(transferLength % devExt->BytesPerSector)) { 

1/ 
II One of the parameters is not valid 
1/ 
Irp->IoStatus.Status = STATUS_INVALID_PARAMETERj 
Irp->IoStatus.lnformation = 0j 

10CompleteRequest(Irp, IO_NO_INCREMENT)j 

return(STATUS_INVALID_PARAMETER)j 

II The IRP is valid. We will therefore be returning with the IRP 
II pending., so mark it pending before queuing it. 
1/ 
IoMarklrpPending(Irp)j 

1/ 
II Convert the partition-relative request to one relative to the 
II start of the disk, and store it back in the IRP for later use. 
1/ 
byteOffset += partitionData->Pi.StartingOffset.QuadPartj 
ioStack->Parameters.Read.ByteOffset.QuadPart = byteOffsetj 

1/ 
II Determine the sector at which the request starts 
1/ 
firstSectorOfRequest = (ULONG)(byteOffset » devExt->ByteShiftToSector)j 

1/ 
II Attempt to start the request. 
1/ 
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II NOTE that we sort the queue of IRPs based on the starting sector 
II of the request. Because requests are processed quickly on the disk, 
II we do not make them cancellable. 
1/ 
IoStartPacket(devExt->DeviceObject, 

1/ 

Irp, 
&firstSectorOfRequest, 
NULL) ; 

II Return with the request queued 
1/ 
return(STATUS_PENDING); 

The IDE/ATA driver uses Direct I/O to describe requestor data buffers. As a 
result, when the I/O Manager builds an IRP to be passed to the driver, it 
probes the buffer for accessibility, locks the pages that comprise the requestor's 
buffer into physical memory, and builds an MDL describing the buffer. A 
pointer to the MDL is placed in Irp->MdlAddress. 

On entry to the Dispatch routine, the driver validates the IRP parameters. 
Here, the driver checks to ensure that the requested transfer length is not zero, 
that it is not greater than the maximum transfer length supported by the 
device, and that it is an integral number of sectors (Note that disks can transfer 
data only a sector at a time. Thus, if an application wants to read 100 bytes 
from a file, the file system must read at least one sector of data from the disk 
and return the requested 100 bytes to the application. The sector size for IDE 
disks on NT is 512 bytes). The driver also checks to be sure that the transfer is 
completely contained within one partition on the disk. If any of the parameters 
in the IRP is not valid, the driver immediately completes the IRP with 
STATUS_I NVALID_PARAMETER. 

With the IRP validated, the driver marks the IRP to be pending. The driver 
then calculates the starting sector number of the request. Finally, the driver 
attempts to start the packet by calling IoStartPacket (), specifying the starting 
sector number as the Key parameter. This causes requests on the queue to be 
sorted by starting sector number. The driver does this as a performance opti
mization to keep the heads moving across the disk surface. After returning 
from its call to IoStartPacket (), the driver returns to the I/O Manager with 
STATUS_PENDING. 

The careful reader might note that, because the CancelFunction parameter on 
the call to IoStartPacket () is NULL, this driver does not supply a Cancel routine 
for the IRPs that are queued. The writer of this driver decided that no Cancel 
routine was necessary because disk I/O requests complete quickly. 
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When the device is free, the I/O Manager will call the driver at its StartIo entry 
point, as illustrated in Example 16.3. 

Example 16.3. Startlo entry point for the example programmed I/O driver. 

VOID 
IdeStartlo(IN PDEVICE_OBJECT DeviceObject, 

IN PIRP Irp) 

PIDE_DEV_EXT devExt = (PIDE_DEV_EXT) DeviceObj ect->DeviceExtension j 
PIO_STACK_LOCATION ioStackj 

II 
II Get a pOinter to the current 1/0 Stack Location 
II 
ioStack = IoGetCurrentlrpStackLocation(Irp)j 

II 
II Set up the major function, length, and starting sector of the transfer 
II in the device extension. They'll be quicker to get at from the ISR 
II in the devExt than if we leave them in the IRP. 
II 
devExt->OperationType = ioStack->MajorFunctionj 

devExt->RemainingTransferLength = ioStack->Parameters.Read.Lengthj 

devExt->FirstSectorOfRequest = 
(ULONG)(ioStack->Parameters.Read.ByteOffset.QuadPart » 

devExt->ByteShiftToSector)j 

II 
II This driver uses Direct 1/0 for transfer operations. 
II Map the requestor's buffer into system address space. 
II 
ASSERT(Irp->MdlAddress)j 
devExt->CurrentAddress = MmGetSystemAddressForMdl(Irp->MdlAddress)j 

II 
II We start the request on this device at DIRQL so serialize 
II access to the data structures and the HW registers 
II 
(VOID)KeSynchronizeExecution(devExt->ControllerData->InterruptObject, 

returnj 

IdeStartThisRequestOnDevice, 
devExt) j 

The I/O Manager calls IdeStartIo (), the driver's StartIo entry point, when the 
disk controller is available to process a new request. StartIo functions are 
always called at IRQL DISPATCH_LEVEL. This driver's StartIo function is very 



Chapter 16: Programmed I/O Data Transfers 407 

simple. The function starts by initializing fields in the disk's device object 
extension with basic information about the current transfer. This information 
includes the function code (which obviously determines the transfer direction), 
the length of the transfer, and the sector at which the transfer starts. 

The Startlo function's next task in this driver is to get the kernel virtual address 
of the start of the requestor's data buffer. This driver (like all disk drivers on 
NT) utilizes Direct 110. The driver indicated this during initialization process
ing, after it created its Device Object, by setting the DO_DIRECT_IO bit in the 
Flags field of the Device Object. Because it uses Direct 110, the 110 Manager 
describes the requestor's data buffer with an MDL. Prior to passing the IRP to 
the driver, the 110 Manager checked the requestor's data buffer for appropriate 
access, and locked the requestor's data buffer pages into physical memory. To 
map the requestor's data buffer into kernel virtual address space, the driver 
calls MmGetSystemAddressForMdl (). This function returns a kernel virtual address 
that the driver can use to refer to the requestor's data buffer in an arbitrary 
thread context. Because the physical pages that comprise the requestor's buffer 
are locked into physical memory (that is, they are not pageable), the driver can 
safely refer to these pages at any IRQL without fear of a page fault. 

The last thing the Startlo routine does in this driver is call 
IdeStartThisRequestOnDevice () via a call to the function 
KeSynchronizeExecution (). IdeStartThisRequstOnDevice () actually programs the 
controller's registers to perform the transfer. In this example driver, the con
troller's registers are also accessed extensively in the interrupt service routine. 
Therefore, the driver protects the device's registers with the Interrupt Spin Lock 
associated with the device's ISR to avoid any conflicts. Thus, 
IdeStartThisRequestOnDevice () is called with the device's Interrupt Spin Lock 
held, and at the device's Synchronize IRQL. A pointer to the controller's device 
extension is passed as the context parameter to IdeStartThisRequestOnDevice ( ), 
the syntax for which appears in Example 16.4. 

Example 16.4. Starting a request in the example programmed I/O device. 

BOOLEAN 
IdeStartThisRequestOnDevice(IN OUT PVOID Context) 
{ 

PIDE_DEV_EXT devExtj 
PCONTROLLER_DATA controllerDataj 
NTSTATUS ntStatusj 
UCHAR controllerStatusj 
UCHAR sectorCount, sectorNumber, cylinderLow, cylinderHigh, 

driveHeadj 

1/ 
II set some locals 

continues 
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Continued 

I! 
devExt = Contextj 
controllerData = devExt->ControllerDataj 

I! 
II get the current state of the controller 
I! 
controllerStatus = 

READ_PORT_UCHAR(devExt->ControllerData->ControllerAddress + 
STATUS_REGISTER)j 

I! 
II We will soon cause an interrupt that will require servicing by 
II the DPC, so set the flag to note that we require a DPC. 
I! 
controllerData->InterruptRequiresDpc = TRUEj 

I! 
II Determine the parameters for the controller 
I! 
sectorCount = (UCHAR)(devExt->RemainingTransferLength 

devExt->BytesPerSector)j 

sectorNumber = (UCHAR) ((devExt->FirstSectorOfRequest % 
devExt->SectorsPerTrack) + 1); 

cylinderLow = (UCHAR) (devExt->FirstSectorOf Request I 
(devExt->SectorsPerTrack * 

devExt->TracksPerCylinder)) & 
0xffj 

cylinderHigh = (UCHAR)(devExt->FirstSectorO~Request 
(devExt->SectorsPerTrack * 

devExt->TracksPerCylinder) » 
8) j 

driveHead (UCHAR) (((devExt->FirstSectorOfRequest 
devExt->SectorsPerTrack) % 

devExt->TracksPerCylinder) : 
devExt->DeviceUnit)j 

II 
II Give the controller the cylinder and head of the start of the transfer. 
II Also tell it how many sectors we want to transfer. 
II 
WRITE_PORT_UCHAR(controllerData->ControllerAddress + SECTOR_COUNT_REGISTER, 

sectorCount)j 

WRITE_PORT_UCHAR(controllerData->ControllerAddress + 
SECTOR_NUMBER_REGISTER, 

sectorNumber)j 

I 

I 
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WRITE_PORT_UCHAR(controllerData->ControllerAddress + CYLINDER_LOW_REGISTER, 
cylinderLow) ; 

WRITE_PORT_UCHAR(controllerData->ControllerAddress + 
CYLINDER_HIGH_REGISTER, 

cylinderHigh) ; 

WRITE_PORT_UCHAR(controllerData->ControllerAddress + DRIVE_HEAD_REGISTER, 
driveHead) ; 

II 
II Actually start the request, based on the direction of the transfer. 
II Note that we've already stored that length and starting VA of 
II the transfer in the device extension (in the Startlo routine). 
II 
switch (devExt->OperationType) 

II 
II Tell the controller to do a read. 
II 
II The controller will interrupt when it has a complete sector 
II of data for us to retrieve from it. 
II 
WRITE_PORT_UCHAR(controllerData->ControllerAddress + 

COMMAND_REGISTER, 
devExt->ReadCommand); 

break; 

II 
II Set the write precomp 
II 
WRITE_PORT_UCHAR( 

controllerData->ControllerAddress + WRITE_PRECOMP_REGISTER, 
(UCHAR) (devExt->WritePrecomp)); 

II 
II Give the controller the WRITE command 
II 
WRITE_PORT_UCHAR(controllerData->ControllerAddress + 

II 

COMMAND_REGISTER, 
devExt->WriteCommand); 

II The way writes work is that after giving the controller the 
II WRITE command, we stuff a sector's worth of data into it. BUT, 
II before we can start stuffing, the controller has to drop its 

continues 
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Continued 

II BUSY status, and assert DATA_REQUEST_STATUS. That's our signal 
II to load 'er up! 
/I 
(VOID) IdeWaitControllerReady(controllerData, 10, 5000)j 

/I 
II Get the controller status after the Wait 
/I 
controllerStatus = 

/I 

READ_PORT_UCHAR(devExt->ControllerData->ControllerAddress + 
STATUS_REGISTER)j 

II As a sanity check, get it 1 more time, just in case 
/I 
if (!(controllerStatus & DATA_REQUEST_STATUS)) { 

/I 

controllerStatus = 
READ_PORT_UCHAR(devExt->ControllerData->ControllerAddress + 

STATUS_REGISTER)j 

II If the controller's ready, start slamming data to it 
/I 
if (controllerStatus & DATA_REQUEST_STATUS) 

PVOID buffer j 

buffer = devExt->CurrentAddressj 

/I 
II Update the address and lengths now because the 
II numbers mean "the number of bytes left to go". 
II Thus, when the interrupt occurs to signal the end 
II of this write, the bytes have "already gone". This 
II is necessary to keep the arithmetic straight. 
/I 
devExt->CurrentAddress += devExt->BytesPerInterruptj 
devExt->RemainingTransferLength .= devExt->BytesPerInterruptj 

/I 
II Write the first buffer (which will cause an interrupt 
II when the write has been completed and it's time for us 
II to send it another sector) 
/I 
WRITE_PORT_BUFFER_USHORT( 

(PUSHORT) (controllerData->ControllerAddress + 

DATA_REGISTER), 

III 

I 

I 
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break; 

default: 

II 

buffer, 
devExt->BytesPerlnterrupt/2); 

II Can't get here. 
II 
DbgBreakPoint(); 

break; 

return (TRUE) ; 

IdeStartThisRequestOnDevice () actually does the somewhat messy job of pro
gramming the controller to perform the requested transfer. This function starts 
by calculating the starting sector of the request in the terms the controller 
wants to receive it (that is, the sector, cylinder, and head for the start of the 
transfer), as well as the number of sectors for this request. The function then 
programs the disk controller with this information. 

Next, IdeStartThisRequestOnDevice () switches, based on the IRP major function 
code of the request. If the request is a read, the driver gives the controller a 
read command. If the request is a write, the driver gives the controller a write 
command and then waits for the controller to become ready for the transfer. 
For an IDE/ATA device, "becoming ready" entails the controller first clearing 
its busy bit. The driver waits for this bit to clear in the function 
IdeWaitControllerReady(). The second part of becoming ready requires the con
troller to assert its data request bit (DATA_REQUEST_STATUS, in the example). After 
this bit has been set, the driver then copies a sector of data to the controller's 
data register using the HAL function WR ITE _PORT_BUFFER _ USHORT (). This function 
takes data from the requestor's buffer (which was mapped into kernel virtual 
address space in the Startlo routine) and copies it to the device's data register 
located in Port I/O space. 

Interrupt Service Routine 
With either the read or the write request thus established, the driver next 
awaits an interrupt from the device. When the device interrupts, the driver's 
ISR is called, as illustrated in Example 16.5. 
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Example 16.5. Interrupt service routine for the example programmed I/O 
driver. 

BOOLEAN 
IdeISR(IN PKINTERRUPT Interrupt, 

IN OUT PVOID Context) 

PDEVICE_OBJECT deviceObjectj 
PCONTROLLER_DATA controllerData = (PCONTROLLER_DATA)Contextj 
PIDE_DEV_EXT devExtj 
PIO_STACK_LOCATION ioStackj 
UCHAR controllerStatus; 

1/ 
II Get the controller status. Note that this will STOP all interrupts 
lion the controller. 
1/ 
controllerStatus = 

1/ 

READ_PORT_UCHAR(controllerData->ControllerAddress + 

STATUS_REGISTER); 

II Check if this is an interrupt that we should service. 
1/ 
II We should service this interrupt if the IDE controller is not busy (i.e. 
II he's waiting for US to do something) and the driver has had a chance to 
II fully initialize (i.e. the controller data structure is set up) 
1/ 
if ( (controllerStatus & BUSY_STATUS) :: (!controllerData->DeviceObject) ){ 

return(FALSE) ; 

1/ 
II Get pointer to our device object and device extension 
1/ 
deviceObject = controllerData->DeviceObject; 

devExt = deviceObject->DeviceExtensionj 

1/ 
II If the controller is not indicating an error, check to see if 
II there's anything to do ... 
1/ 
if (!(controllerStatus & ERROR_STATUS)) 

II 
II If there's data remaining to move, do it right here. 
II 
if (devExt->RemainingTransferLength) 

1/ 
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II if we're not ready, do 1 ping and try again 
/I 
if (!(controllerStatus & DATA_REQUEST_STATUS)) 

/I 

controllerStatus = READ_PORT_UCHAR( 
controllerData->ControllerAddress + STATUS_REGISTER); 

II Check to be sure the device is ready 
/I 
if (controllerStatus & DATA_REQUEST_STATUS) 

PVOID buffer; 

/I 
II Update the controller with the next chunk of data 
/I 

/I 
II Save the requestor's buffer address 
/I 
buffer = devExt->CurrentAddress; 

/I 
II adjust the address and counts in expectation 
II that this 1/0 will complete 
/I 
devExt->RemainingTransferLength .= devExt->BytesPerInterrupt; 
devExt->CurrentAddress += devExt->BytesPerInterrupt; 

/I 
II Move the data 
/I 
if (devExt->OperationType == IRP_MJ_READ) 

II 
II Move the data from the controller to the Requestor's 
II data buffer 
/I 
READ_PORT_BUFFER_USHORT( 

else 

/I 

(PUSHORT) (controllerData->ControllerAddress + 
DATA_REGISTER) , 

buffer, 
devExt->BytesPerInterrupt/2); 

/I It's a WRITE 
II Move the data from the requestor's data buffer to 
II the controller 

continues 
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Continued 

I! 

I! 

I! 
WRITE_PORT_BUFFER_USHORT( 

(PUSHORT) (controllerData->ControllerAddress + 
DATA_REGISTER), 

buffer, 
devExt->BytesPerInterrupt/2)i 

II If this is not the last transfer, don't 
II request a DPC yet. 
I! 
if ( (devExt->RemainingTransferLength) > 0) { 

controllerData->InterruptRequiresDpc = FALSEi 

else { 

controllerData->InterruptRequiresDpc = TRUE; 

else { 

DbgBreakPoint()i 

II Request the DpcForIsr 
I! 
if (controllerData->InterruptRequiresDpc) 

controllerData->InterruptRequiresDpc = FALSEi 

IoRequestDpc(deviceObject, 
deviceObject->CurrentIrp, 
(PVOID)controllerStatus)i 

return (TRUE) ; 

When the driver's ISR is entered, the driver reads the controller's status register 
into a local variable. For the IDE/ATA device, reading the status register 
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acknowledges and clears any interrupt that may be pending. The driver then 
checks to see if the controller indicated by the Context parameter (passed into 
the function by the I/O Manager) is interrupting, and if the driver has been 
fully initialized. If either of these conditions is not the case, the driver returns 
from the ISR with the value FALSE. 

Assuming the controller is interrupting and the driver has been fully initialized, 
the driver next checks to see if the controller has raised an error. If there is an 
error indicated, a DPC is requested. If there is no error indicated, the driver 
next ensures that the controller is ready for the next transfer. Assuming the 
controller is ready, the driver proceeds, based on whether it is processing a 
read or a write operation. 

If a read is being processed, the driver reads a sector of data, one USHORT at a 
time, from the controller's data register and places it in the requestor's buffer. 
This operation is accomplished by calling the HAL function 
READ_PORT_BUFFER_USHORT(). 

If a write is being processed, the driver copies the next sector of data from the 
requestor's buffer to the controller's data register using the function 
WRITE_PORT_BUFFER_USHORT (). Note that the USHORT variants of these functions 
were chosen because the controller's data register is 16 bits (one USHORT) wide. 
As previously mentioned, the port HAL functions were chosen because the 
data register is implemented in hardware in Port I/O space. 

With the next sector of data transferred, the driver checks to see if all the data 
to be transferred by this request is complete. If the transfer is complete, the dri
ver requests its DpcForIsr by calling IoRequestDpe ( ). The driver passes the con
tents of the controller's status register back to the DPC as a context value. 

DPC Routine 
The driver's DpcForIsr routine is executed as a result of being requested from 
the ISR. According to the standard DPC-handling procedure, the DPC will be 
invoked the next time that the system attempts to transfer control to an IRQL 
lower than DISPATCH_LEVEL. The DpcForIsr code appears in Example 16.6: 

Example 16.6. The DpcForIsr code for the example programmed I/O driver. 

VOID 
IdeDPC(IN PKDPC Dpe, 

IN PVOID DeferredContext, 
IN PVOID SystemArgument1, 
IN PVOID SystemArgument2) 

PDEVICE_OBJECT deviceObjectj 
PIDE_DEV_EXT devExtj 

continues 
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Continued 

PCONTROLLER_DATA controllerDatai 
PIRP irpi 
PIO_STACK_LOCATION ioStacki 
NTSTATUS returnStatusi 
ULONG controllerStatusi 
NTSTATUS ntStatusi 

II 
II setup locals 
II 
deviceObject = (PDEVICE_OBJECT)DeferredContexti 
devExt = deviceObject->DeviceExtensioni 
controllerData = devExt->ControllerDatai 

II 
II Default to completing the IRP with success 
II 
returnStatus = STATUS_SUCCESSi 

II 
II Get the controller status. Note that because this device only has 
II one operation in progress at a time, passing back the controller 
II status this way from the ISR presents no problem. 
II 
controllerStatus = (ULONG)SystemArgument2i 

II 
II Get a pOinter to the IRP currently being processed 
II 
irp = deviceObject->Currentlrpi 

ASSERT(irp)i 

ioStack = IoGetCurrentlrpStackLocation(irp)i 

II 
II If the controller is busy, wait for it to become ready ... 
II 
ntStatus = IdeWaitControllerReady(controllerData, 10, 5000)i 

II 
II Did the controller become ready? 
II 
if (NT_SUCCESS(ntStatus)) 

II 
II We're not in a data request phase, right? 
II 
if (READ_PORT_UCHAR( 

controllerData->ControllerAddress + STATUS_REGISTER) & 
DATA_REQUEST_STATUS) { 
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controllerStatus := ERROR_STATUS; 

else 

/I 
II Controller stayed busy?? 
/I 
controllerStatus := ERROR_STATUS; 

/I 
II Was there a problem? 
/I 
if (controllerStatus & ERROR_STATUS) 

1/ 

1/ 
II Do errorlretry stuff here 
1/ 

II NOW, test for the success/failure of the operation. 
/I 
if (NT_SUCCESS(returnStatus) } { 

1/ 

/I 
II Successl II 
1/ 
returnStatus = STATUS_SUCCESS; 

irp-~IoStatus.Information = ioStack->Parameters.Read.Length; 

else 

1/ 
II We tried but the request failed. Return the error 
II status and move along ... 
1/ 
irp->IoStatus.Information = 0; 

II Time to complete the request and start another one ... 
/I 

/I 
II In order to properly complete a read requests we need to flush 
II the I/O buffers. 

continues 
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Continued 

1/ 
if (ioStack->MajorFunction == IRP_MJ_READ) 

KeFlushIoBuffers(irp->MdlAddress, TRUE, FALSE)j 

1/ 
// Start the next packet by key ... Next sector first scan to try to keep 
// the heads moving forward! Such an optimization ... 
1/ 
IoStartNextPacketByKey(devExt->DeviceObject, 

1/ 

FALSE, 
devExt->FirstSectorOfRequest)j 

// Set the status in the IRP (Note .Information field set above) 
1/ 
irp->IoStatus.Status = returnStatusj 

IoCompleteRequest(irp, IO_DISK_INCREMENT)j 

returnj 

After the request for the DpcForIsr has been queued, on the next attempt by 
that processor to lower its IRQL below DISPATCH_LEVEL, NT will process that 
processor's DPC list. As described in Chapter 6, "Interrupt Request Levels and 
DPCs," processing the DPC list entails removing DPC Objects from the head 
of the DPC list, one at a time, and then calling the DPC routine associated 
with that object at IRQL DISPATCH_LEVEL. When the example driver's DPC 
Object is dequeued, the driver's DpcForIsr is called. 

Conceptually, all that this driver needs to do in its DpcForIsr is to complete the 
read or write request that was in progress and attempt to start a new request 
to propagate the driver's execution. There is, however, just a bit more that 
needs to be done to ensure that the device works properly. On entry to the 
DpcForIsr, the driver gathers some local data. The driver then waits for the 
controller to become ready by calling the function IdeWaitControllerReady(}. 
After the controller has become ready, the driver checks to see if the controller 
is still asserting DATA_REQUEST_STATUS. If so, this indicates data overrun or under
run during the transfer. 

The driver next checks to see if the DPC or ISR has identified a controller 
error. If an error is identified, the driver deals with it appropriately (note that 
we've left this code, which isn't very interesting, out of the printed example at 
the location Do error/retry stuff here). If no error is detected, the driver is 
ready to complete the current request and start another one. 

I, 
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If the current request was a read request, the driver flushes the data from cache 
to the requestor's buffer by calling KeFlushloBuffers (). (Note that this fU:"1ction 
is actually implemented as a NULL macro on x86 architecture processors, but it 
is important on various RISC processors.) The driver then calls 
IoStartNextPacketByKey (). This call results in the driver's Startlo routine being 
called to initiate the next 110 operation. Finally, the driver completes the 
DpcForIsr by completing the previously pending IRP by calling 
IoCompleteRequest (), with a priority increment of IO_DISK_INCREMENT (the stan
dard increment value for completion of disk 110 operations). To maximize 
device throughput and reduce request latency (as discussed in Chapter 14), we 
call IoStartNextPacketByKey () before calling IoCompleteRequest () to complete 
the pending IRP. 

DPC Versus ISR in the Example Driver 
The one aspect of the example driver's design that is slightly atypical is the fact 
that it actually performs its 110 processing directly within the ISR. That is, the 
data transfer between the device and the user's buffer is almost completely 
implemented in the driver's ISR. In a more traditional design, each time the 
controller interrupts, indicating that it is ready to transfer another sector of 
data, the driver requests its DpcForIsr. When the DpcForIsr executes, the driver 
then moves the data. This is, in fact, the design used in the NT ATDISK driver 
upon which the example driver is based. 

So, why did the designers of this driver choose to implement the data transfer 
in the ISR instead of in the DPC? Making the tradeoff between doing work in 
the DPC and doing work in the ISR was discussed in Chapter 15, "Interrupt 
Service Routines and DPCs." One reason for the tradeoff was that the design
ers, of course, knew that they were building only a sample driver, and so the 
decision was not a critical one. If this had been a driver for a real product, 
however, what would be the specific factors that resulted in making this design 
decision? Some of these factors are as follows: 

• The general role of disks in the system. A disk drive usually plays an inte
gral role in a general-purpose computer system. Thus, the thinking was 
that if data cannot be moved between memory and a disk rapidly, total 
system performance would rapidly degrade. Thus, the designers of this 
driver decided that the latency required by queuing a DPC for every 512 
bytes transferred would adversely impact overall system performance, 
even at the cost of higher interrupt latency for other devices on the sys
tem. 

• The amount of work required during each interrupt. The work done in 
each interrupt is limited to moving 256 words of data between an already 
mapped user buffer and an 1/0 Port. Of course, the same number of CPU 



420 Part II: The 110 Manager and Device Driver Details 

cycles need to be expended to move every sector of data (ignoring the 
vagaries of processor caching), regardless of whether those cycles are 
expended in the ISR or DPC. Thus, the only issue is whether those cycles 
should be spent in the ISR. Although the overhead of 256 OUT instructions 
cannot be considered trivial, introducing this much interrupt latency on 
most systems was not viewed as being likely to cause a problem. In fact, 
no problems have been observed when the sample driver is used for 
general-purpose disk I/O on an NT system. 

• No parallel operation. Because the controller does not process requests in 
parallel, it has at most one request in progress at a time. It is not possible, 
therefore, for interrupt latency caused by the driver to "add up," due to 
multiple simultaneous transfers. 

• The availability of other, non-CPU intensive solutions. The designed solu
tion places the importance of disk performance ahead of interrupt laten
cy. By nature, the PIO-based IDE/ATA controller is a CPU-intensive 
method of moving data between disks and memory. If the CPU utilization 
or interrupt latency introduced by this driver proved unacceptable in a 
particular configuration, other reasonable cost solutions that do not 
exhibit these characteristics are available. 

To summarize, we're not advocating doing all I/O processing for general
purpose devices in the ISR. As discussed in Chapter 15, most I/O processing is 
best done in the DPC. However, we also don't agree that it's good engineering 
to avoid all 1/0 processing in the ISR, as has become the conventional wisdom. 
The important thing is for driver designers to use good engineering judgment, 
consider the impact of their decisions, and carefully take into account the larg
er environment in which their driver will be used. If these things are done, the 
right decisions will typically be made-even if at times two good engineers 
might come to different conclusions. 

Design Issues for Programmed 1/0 
Device Drivers 
The remainder of this chapter deals with specific design issues that may be 
encountered in drivers for programmed I/O devices. Some of these considera
tions include the following: 

• Mapping device memory into user space 

• Polling 

• Synchronous driver implementations 
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Mapping Device Memory into User Space 
One of the questions students ask us most frequently in our device driver class
es is "Is there a way to map a device's shared memory into user space?" The 
answer to this question is always "Yes, but ... ". Although it is certainly possible 
to map a device's shared memory buffer directly into an arbitrary User mode 
application's address space, there are few legitimate reasons to ever do this 
under Windows NT. 

Most of the time, people want to map device memory directly into an applica
tion's address space to more closely match the design of a system that was pre
viously running under DOS or Windows9x. There are, in fact, many problems 
with implementing a similar design under Windows NT. For example, 
Windows NT considers it a security violation for User mode applications to 
have direct access to device registers in Port I/O space. As a result, on x86 
architecture systems, user applications running on NT do not have the appro
priate I/O Privilege Level (IOPL) to perform "IN" or "OUT" instructions. 

Of course, whether an application has IOPL or not on an x86 is a moot point 
because NT supports multiple hardware architectures via the HAL. HAL func
tions such as WRITE_PORT_UCHAR() and the like are not available to User mode 
applications. Thus, ignoring Port I/O space access, even if a driver were to map 
a shared memory segment of a device into an application's address space, how 
would it properly move data to that device buffer? The application can't call 
the HAL function WRITE_REGISTER_BUFFER_UCHAR() (or whatever is appropriate). 
Therefore, the application would be reduced to having to understand the spe
cific hardware on which it was running and deal with any of its complexities. 

But even if a programmer were willing to accept that Port I/O space registers 
cannot be accessed and that the application written would be highly platform
specific, could this scheme be made to work properly? The answer to this ulti
mate question is "yes" for some systems, and "no" for others. For example, an 
application could manually flush the Pentium's internal write post buffer when 
moving data to the device. So, supporting the current generation of x86 sys
tems would probably work. But there's no practical way for that same applica
tion to flush the data cache on a RIse processor. So the application could be 
made to work on some processors that NT supports, but not on others. 

Moving data from an application directly to a device memory buffer is proba
bly no~ a good idea. After all, the only difference in overhead between a driver 
moving the data to the device and the application doing the same is the cost of 
the system service invocation. This overhead is minimal, relative to the time it 
takes to move even a small buffer of data. 

One situation that exists where it actually might make sense to map a device 
buffer directly into User mode memory is when the application can examine or 
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operate on the data directly in the device's buffer without having to recopy it. 
This approach could save the overhead of the driver copying the data from the 
device into the user's buffer. Even this most simplified of approaches may not 
work on all hardware platforms, however. Thus, the cases when this is likely to 
be the best overall architecture are rare. 

Note 

For those rare cases in which the driver writer really wants to map device 
memory directly into User mode memory~ the DDK has an example of 
one way to do this. This example is mapmem in the \ddk\src\general folder. 
Although this example is neither particularly well documented nor partic
ularly well written, it does at least provide a starting point for driver 
writers who want to pursue this approach. Remember, however, that 
access to device memory without use of the HAL functions will likely 
result in a processor-specific implementation. 

Polling 
The Windows NT I/O Manager is pretty much designed around the concept of 
interrupt-driven device drivers. In fact, the NT V4 DDK explicitly states in sec
tion 16.3: 

An NT device driver should avoid polling its device unless it is 
absolutely necessary. 

So, when a driver writer considers implementing a polling device driver, per
haps the question becomes: "What constitutes absolutely necessary?" 

Few devices designed these days must be polled in the traditional sense. Here, 
we're talking about those old-time devices that did not support interrupts, but 
rather signaled a change in their status by simply setting a bit in one of their 
interface registers. There was no way for a driver to detect the change in the 
device's state, other than spinning in a loop and waiting for the appropriate bit 
to be set in the device's register. 

There is, however, a category of high-performance devices that can go through 
stages where polling the device registers can be advantageous. Consider, for 
example, a high-speed telemetry device with a receive FIFO that can buffer 
only a small part of a received data block. The start of a block of data might 
be signaled to the device's driver through an interrupt. After the data has start
ed to arrive, the driver could begin polling to retrieve the data from the FIFO, 
thus ensuring that the FIFO does not overflow. Once the complete data block 
has been retrieved, the driver stops polling and awaits the next interrupt from 
the device. 

One of the difficulties of polling from NT drivers is the fact that system timers 
have only a resolution of about 10 milliseconds (ms), and that the actual 
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resolution varies among processor architectures. There is no easy way to modi
fy this timer resolution from Kernel mode. Of course, this is not a problem if a 
device needs to be polled fewer than 100 times per second. To do this, a driver 
simply calls KeSetTimer() or KeSetTimeEx() to queue a CustomDpc every 
lams or more. The prototypes for these functions are shown in Figures 16.4 
and 16.5. 

BOOLEAN 
KeSetTimer(IN PKTIMER Timer, 

IN LARGE_INTEGER Due Time, 
IN PKDPC Dpc); 

Timer: A pointer to timer object, located in nonpaged pool, that has 
been previously initialized by calling KeInitializeTimer() or 
KeInitialize Timer Ex(). 

DueTime: The time at which the timer is due. If negative, this is the 
number of laO-nanosecond (ns) intervals from the current time at 
which the timer is due. If positive, this is the future absolute time when 
the time is due. 

Dpc: An optional pointer to a DPC object, located in nonpaged pool, 
that has been previously initialized by calling KeInitializeDpcO. 

Figure 16.4. KeSetTimer () function prototype. 

BOOLEAN 
KeSetTimerEX(IN PKTIMER Timer, 

IN LARGE_INTEGER DueTime, 
IN LONG Period, 
IN PKDPC Dpc); 

Timer: A pointer to timer object, located in nonpaged pool, that has 
been previously initialized by calling KelnitializeTimer() or 
Kelnitialize TimerEx(). 

DueTime: The time at which the timer is to initially expire. If negative, 
this is the number of lOa-nanosecond (ns) intervals from the current 
time after which the timer is to initially expire. 

Period: The number of milliseconds for which the timer should be 
periodically rescheduled, after it becomes due the first time. 

Dpc: An optional pointer to a DPC object, located in nonpaged pool, 
which has been previously initialized by calling KeInitializeDpcO. 

Figure 16.5. KeSetTimerEx() function prototype. 
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Given that Timer Objects are NT Dispatcher Objects, another way of using 
timers for polling is to set the timer (using one of the previously described 
functions) and then wait for it to be signaled using KeWaitForSingleObj ect (). 

Obviously, this wait must take place at an IRQL < DISPATCH_LEVEL. This is 
equivalent to the thread calling KeDelayExecutionThread (). The only other way 
for a kernel thread to stall for a prescribed period of time is for the thread to 
call KeStallExecutionProcessor ( ), the prototype for which is shown in Figure 
16.6. 

VOID 
KeStallExecutionProcessor(IN ULONG Microseconds); 

Microseconds: The number of seconds for which the processor should 
busy-wait, spinning within the KeStallExecutionProcessor() function, 
before returning to the caller. 

Figure 16.6. KeStallExecutionProcessor () function prototype. 

The KeStallExecutionProcessor () function causes the current processor to spin 
in a tight loop for the requested number of microseconds, before returning to 
the caller. Although very effective for short wait intervals, this method of 
delaying the execution of a driver thread is highly consumptive of CPU time. 
Worse yet, because the stall period is so short and the driver is busy-waiting, 
calling KeStallExecutionProcessor () does not result in the current thread auto
matically yielding control of the processor for other threads to run during the 
stall period. 

One way that drivers can implement polling is to create a dedicated system 
thread. A driver may create a system thread by calling the function 
PsCreateSystemThread (). Figure 16.7 shows the prototype for this function. 
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NTSTATUS 
Ps Create System Thread ( OUT PHANDLE ThreadHandle, 

IN ACCESS_MASK DesiredAccess, 
IN POBJECT _ATTRIBUTES ObjectAttributes, 
IN HANDLE ProcessHandle, 
OUT PCLIENT _ID ClientId, 
OUT PKSTART_ROUTINE StartRoutine, 
IN PYOID StartContext); 

ThreadHandle: A pointer to a location to receive the returned handle 
for the created thread. 

AccessMask: An access mask indicating the required access to the 
newly created thread. 

ObjectAttributes: A pointer to an OBJECT_ATTRIBUTES structure 
describing the newly created thread. 

ProcessHandle: A handle to a process in which the thread should be 
created. A value of NULL here causes the thread to be created within 
the system process. 

Clientld: A pointer to a location to receive the client id of the newly 
created thread. This pointer is primarily useful for interprocess com
munication. 

StartRoutine: A pointer to a function to be invoked by the newly creat
ed thread. 

StartContext: A value to be passed to StartRoutine. 

Figure 16.7. PsCreateSystemThread () function prototype. 

In spite of what many might view as a daunting set of parameters, 
PsCreateSystemThread () is actually extremely easy to use from within a driver to 
create a worker thread. This is because many of the parameters can be default
ed or ignored. Example 16.7 demonstrates creating a thread that starts execut
ing with the driver function ThreadFunction () with the parameter 
ThreadParameter. 

Example 16.7. A simple way to call PsCreateSystemThread () to create a work
er thread. 

status = PsCreateSystemThread( &threadHandle, 
THREAD_ALL_ACCESS, 
NULL, 
(HANDLE)0L, 

continues 
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Continued 

NULL, 
ThreadFunction, 
ThreadParameter) ; 

To ensure reasonable performance, a driver should set the priority of any dedi
cated polling threads it creates to LOW_REAL TIME_PRIORITY+1 or LOW_REAL TIME_ 

PRIORITY+2. The created thread runs at IRQL PASSIVE_LEVEL. The newly created 
thread can therefore poll the device at the appropriate frequency, using an 
appropriate method of waiting between attempts. 

18lote 

Remember, a thread that is perennially runnable in the real-time priority 
range will result in no threads with lower priorities ever running. Thus, 
any time that a driver uses such a thread for polling a device, that thread 
should voluntarily relinquish control of the CPU periodically, if the per
formance of user applications on that CPU matters. Of course, depending 
on the overall system configuration, it is entirely possible that the perfor
mance of user applications on the system is of no concern during the 
polling interval. This might be the case, for example, in a process-control 
application. 

When the need arises, drivers can poll their devices from their DPC or even 
from their ISR. This might be required in the case of a very high-speed device, 
such as the satellite telemetry device that was previously mentioned. Note, 
however, that cases where this is truly required are extremely rare. Even high
bandwidth devices can be polled effectively at IRQL PASSIVE_LEVEL from a 
driver-created system thread. The only thing gained by polling at IRQL 
DISPATCH_LEVEL or above is avoidance of some operating system and ISR over
head. Before implementing a polling scheme at raised IRQL, carefully consider 
the impact that this will have both on the operating system and on other 
devices attempting to operate on that system. After such careful consideration, 
the idea of polling in the DPC or ISR is almost universally discarded! 

Often, the absolute best place to solve the issue of how or when to poll is 
in the hardware, not in the driver. If the hardware design for the device 
can be affected, polling could be implemented on the board, with a single 
interrupt to 18lT when device servicing is required. This entirely eliminates 
the need for the driver to implement polling, precisely as the DDK rec
ommends! 
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Often seemingly small hardware changes, like increasing the size of a 
FIFO, can yield dramatic increases in device performance and overall sys
tem throughput. It's always preferable to design your hardware with the 
target operating system in mind. 

Synchronous Driver Implementations 
The code for the NeitherWrite() function, shown previously in Example 16.1, 
illustrates the implementation of synchronous processing for a write operation. 
Chapter 14, "Dispatch Entry Points," initially discussed synchronous process
ing. Let's now discuss it a bit further. 

Although NT has an asynchronous I/O subsystem, it is typically not a problem 
if a driver chooses to process an I/O request synchronously. Specifically, syn
chronous I/O processing does not typically present a problem when: 

• The application expects the request to be completed synchronously, and 
therefore is not adversely impacted by having to wait. 

• The context in which the wait is performed is that of the application that 
issued the request. 

If a driver processes an I/O request synchronously in the context of the request
ing thread, the I/O operation will be synchronous even if the requesting thread 
has requested asynchronous completion. Thus, if an application expects to 
issue an I/O request, and then return and do useful work while the I/O request 
is in progress on the driver, but the driver implements the I/O operation syn
chronously, the result will be a synchronous I/O operation-and the applica
tion is not likely to function optimally. 

Worse yet is the case when a driver processes I/O operations synchronously, 
but that driver is not the one initially entered by the calling application. For 
example, consider a disk driver that implements synchronous I/O processing. 
A user application issues a read request to a file system. By the time this read 
request winds its way down to the disk driver, the disk driver may be running 
in an arbitrary thread context. Therefore, if the disk driver performs its pro
cessing synchronously, it is "stealing" time from an application that is likely 
to be unrelated to the one issuing the file read. 

If the amount of time required to synchronously complete a request is small, as 
it would be in the NeitherWrite() function shown in Example 16.1, the amount 
of time "stolen" from the unrelated application probably doesn't matter. The 
real problem occurs when the device is not free to start a transfer operation 
immediately. Take for example, the following slightly altered version of the 
NeitherWrite() function in Example 16.8. 



428 Part II: The 110 Manager and Device Driver Details 

Example 16.8. Even if the IRP being processed is cancelled, this driver's Cancel 
routine will not be called while it waits with KeWaitForSingleObj ect (). 

NTSTATUS NeitherWriteTwo(PDEVlCE_OBJECT DeviceObject, PlRP Irp) 
{ 

PlO_STACK_LOCATlON ioStackj 
NEITHER_DEVlCE_EXTENSlON devExtj 

1/ 
II Get a pOinter to the current lRP stack 
ioStack = loGetCurrentlrpStackLocation(lrp)j 

1/ 
II Get a pOinter to our device extension 
1/ 
devExt = DeviceObject->DeviceExtensionj 

II 
II Before we wait, set a Cancel routine to be called 
II in case this thread wants to terminate 
II 
IoSetCancelRoutine(Irp, SynchCancel)j 

II 
II Wait for the device to become available 
II before proceeding 
II 
KeWaitForSingleObject(&devExt->ReadyEvent, 

II 

Executive, 
KernelMode, 
FALSE, 
NULL); 

II No longer cancelable 
II 
IoSetCancelRoutine(Irp, NULL)j 

II 
II Move the data to the device 
1/ 
WRlTE_REGlSTER_BUFFER_UCHAR(devExt->TranslatedDeviceBuffer, 

1/ 

lrp->UserBuffer, 
ioStack->Parameters.Write.Length)j 

II Tell the device the data is there 
1/ 

WRlTE_PORT_UCHAR(devExt->TranslatedWriteCtrl, NElTHER_DATA_READY)j 

1/ 

I· 

I 
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/1 Complete the lRP with success 
/I 
lrp->loStatus.Status = STATUS_SUCCESS; 
lrp->loStatus.lnformation = ioStack->Parameters.Write.Length; 

loCompleteRequest(lrp, lO_NO_lNCREMENT); 

return(STATUS_SUCCESS); 

Changes between this example and the original NeitherWrite () example are 
shown in bold. In Example 16.8, the driver needs to wait for an event to be set 
before it can process the write operation on the device. The driver sets this 
event from the driver's DpcForlsr, whenever the device is available. 

As stated previously, waiting for a device to be available isn't a problem as 
long as the application being blocked is the application that requested the I/O 
and the application is designed to expect this wait. This could be a big prob
lem, however, if the driver waits in an arbitrary thread context. Consider what 
might happen if the arbitrary thread that was blocked by the driver happened 
to be the system's Modified Page Writer thread. The result could be seriously 
degraded system performance (if not an outright system hang). 

But there is another, more insidious problem. Note that prior to performing the 
KeWaitForSingleObj ect () call, the driver sets a Cancel routine in the IRP by call
ing loSetCancelRoutine ( ). However, if the thread is aborted while the wait is in 
progress, the IRP's Cancel routine will not be called. This is true, regardless of 
whether the driver waits alterable or nonalterable, or in Kernel or User mode. 

Although there is no completely satisfactory way of handling this situation, one 
alternative is for the driver to wait in User mode. This results in the wait being 
satisfied and STATUS_USER_APC being returned to the driver in response to the 
KeWai tForSingleObj ect () call. Although the driver's Cancel routine is still not 
called, the driver could interpret the return of STATUS_USER_APC here to mean 
that the pending IRP has been canceled. Obviously, this works only if there is 
no other reason for the current thread to receive a User mode APC. To wait in 
User mode instead of Kernel mode, the driver would specify UserMode for the 
WaitMode parameter of the KeWai tForSingleObj ect () function call, instead of 
KernelMode, as shown in the example. The only differences between waiting in 
User mode and waiting in Kernel mode are that while waiting in User mode, 
the delivery of User mode APCs is enabled and the driver's stack is pageable. 

Example 16.9 shows the corrected code, implementing the scheme just 
described. 
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Example 16.9. One method of handling cancel operations in drivers that per
form synchronous processing. 

NTSTATUS NeitherWriteThree(PDEVlCE_OBJECT DeviceObject, PIRP Irp) 
{ 

PlO_STACK_LOCATION ioStackj 
NEITHER_DEVICE_EXTENSION devExtj 

/I 
// Get a pOinter to the current lRP stack 
ioStack = loGetCurrentlrpStackLocation(lrp)j 

/I 
// Get a pOinter to our device extension 
/I 
devExt = DeviceObject->DeviceExtensionj 

/I 
// Wait for the device to become available 
/1 before proceeding 
II 
status = KeWaitForSingleObject(&devExt->ReadyEvent, 

Executive, 
UserMode, 
FALSE, 
NULL); 

II 
II The only reason we could wake up with a user APC being 
II delivered is if the thread is being terminated. This means 
II that we should cancel the current IRP. 
II 
if (status == STATUS_USER_APC) 

II 

} 

/I 

II Cancel the IRP! 
/I 
Irp->IoStatus.Status = STATUS_CANCELLED; 
Irp->IoStatus.lnformation = 0; 

IoCompleteRequest(Irp, IO_NO_INCREMENT); 

return(STATUS_CANCELLED); 

/1 Move the data to the device 
II 
WRITE_REGlSTER_BUFFER_UCHAR(devExt->TranslatedDeviceBuffer, 

lrp->UserBuffer, 
ioStack->Parameters.Write.Length)j 
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/I 
II Tell the device the data is there 
/I 

WRITE_PORT_UCHAR(devExt->TranslatedWriteCtrl, NEITHER_DATA_READY); 

/I 
II Complete the IRP with success 
/I 
Irp->IoStatus.Status = STATUS_SUCCESS; 
Irp->IoStatus.Information = ioStack->Parameters.Write.Length; 

IoCompleteRequest(Irp, IO_NO_INCREMENT); 

return(STATUS_SUCCESS); 

Once again, we have highlighted the differences between Example 16.9 and 
Example 16.8 in bold. As previously described, the NeitherWriteThree Dispatch 
routine waits for the device to be available, by waiting for a Dispatcher Object. 
This wait is done in User mode. If the thread issuing the request terminates, 
KeWai tForSingleObj ect () will return STATUS_USER_APC. The driver then interprets 
this return status to mean that the pending IRP should be canceled. Note that 
because the Cancel routine will never be called in this circumstance, the driver 
doesn't bother setting a Cancel routine in the IRP. 

Note 

Before getting too worried about the details of cancel processing in syn
chronous drivers, it's important to keep the issue in perspective. Refer to 
the discussion of cancel processing in Chapter 14. For example, if the 
wait in the NeitherWriteThree Dispatch routine is going to be brief (that 
is, less than a few seconds), there's probably no need to deal with request 
cancellation at all. 





Chapter 17 
DMA Data Transfers 

This chapter will review: 

• Processing DMA Transfer Requests. This section briefly outlines the steps 
necessary for performing any DMA data transfer. 

• Adapter Objects and Map Registers. Before getting into too much detail 
about how DMA data transfers are processed, we discuss the shared 
resources that need to be acquired by any DMA device driver. These 
resources are the Adapter Object and map registers. 

• DMA Device Architectures. This section discusses the differences between 
packet-based and common-buffer DMA on Windows NT. 

• Packet-Based DMA Transfers. This section discusses in detail how a dri
ver sets up and manages packet-based DMA transfers. 

• Common-Buffer DMA Transfers. This section discusses in detail how a 
driver sets up and manages common-buffer DMA transfers. 

• Packet-Based DMA Sample Driver To help illustrate the concepts 
described earlier in the chapter, this section presents a sample packet
based DMA device driver. The source code, description, and functionality 
are provided for each important routine in the driver. 

• Design Issues. This section examines the slightly less-common issues of 
data buffer alignment and System DMA support. 

This chapter discusses the details of how a driver implements data transfer 
operations for DMA devices. As in the preceding chapter on PIO data trans
fers, this chapter will focus on data transfers that are performed in response to 
IRP _MJ_READ and IRP _MJ_WRITE requests. However, the concepts presented may 
also be applied to IRP _MJ_DEVICE_CONTROL requests used for transferring data 
via DMA. 
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Processing DMA Data Transfers 
As is the case for any 110 request received at a driver's Dispatch entry point, 
the steps a driver takes to process a DMA data transfer request are as follows: 

1. Validate the 110 request. 

2. Process the IRP as far as possible. 

3. Queue the IRP for further processing if immediate completion is not pos
sible. 

DMA data transfer requests are rarely completed immediately because the dri
ver will typically have to wait for the DMA hardware to actually move the 
data. Therefore, in almost all cases, the driver will return with the IRP pending 
from its Dispatch routine. The obvious exception to this is when the IRP fails 
the driver's validation tests. 

As was true for PIO data transfers, processing a DMA data transfer consists of 
implementing the previously stated three steps. When an IRP is received, it is 
validated, as described in Chapter 14, "Dispatch Entry Points." There may be 
special considerations for validating 110 requests to DMA devices, however, 
such as starting buffer alignment or buffer length. These considerations are 
described later in this chapter. If the request fails the driver's validation tests, 
the driver fills the appropriate error status and information values into the 
IRP's IoStatus structure and immediately completes the request by calling 
IoCompleteRequest(). 

If the request is valid, the driver checks to see whether the device is available to 
start the transfer. The way the driver does this is dependent upon the queuing 
method the driver has chosen. If the driver uses System Queuing, it marks the 
IRP pending by calling IoMarkI rpPending (), calls IoStartPacket (), and returns 
STATUS_PENDING from its Dispatch routine. This was shown in Example 14.3, in 
Chapter 14. As a result of the IoStartPacket () call, the 110 Manager will call 
the driver's StartIo routine when the device is available to start processing the 
request. 

If the driver uses Driver Queuing, the driver itself determines if the device is 
available to start the particular transfer operation requested. This determina
tion is completely device-specific. Some DMA devices, such as many devices 
based on the popular AMCC S5933 chip, are capable of having both a DMA 
read and a DMA write operation in progress at the same time. Such devices 
typically cannot, however, have more than one read or write operation in 
progress simultaneously. It is therefore up to the driver to determine whether 
the device is available to start the operation being requested. 
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If the device is not available (because, for example, an IRP _MJ_WRITE operation 
is being requested and a write is already in progress on a device that allows 
only a single write operation at a time), the driver will typically mark the IRP 
pending by calling IoMarkIrpPending(), queue the IRP, and return STATUS_ 

PENDING from the Dispatch routine. In this case, the IRP will be started at a 
later time, probably from within the DpcForIsr, when the device is able to han
dle the request. If the device is available to start the transfer, the driver starts 
processing the request. The driver marks the IRP pending (by calling 
IoMarkI rpPending ()) and returns STATUS_PENDING from the Dispatch routine. This 
entire process is shown in Example 14.4 in Chapter 14. 

Throughout this chapter, our discussion of DMA focuses on Busmaster DMA 
operations. Unless otherwise explicitly specified, all remarks in this chapter 
relate only to Busmaster DMA and do not apply to System (otherwise known 
as "Slave-Mode") DMA. System DMA is discussed in a separate section at the 
end of this chapter. 

Before discussing further how transfer requests are processed, you first need to 
understand the two resources required by a driver when performing any DMA 
transfer-the Adapter Object and map registers. 

Adapter Objects 
All DMA device drivers in Windows NT utilize one or more Adapter Objects 
for managing DMA transfers. The NT HAL uses Adapter Objects to synchro
nize access to sharable resources such as mapping registers, HAL internal inter
mediate buffers, system scatter/gather registers, or DMA channels (for System 
DMA devices). A byproduct of this is that Packet-Based DMA drivers also typ
ically utilize the Adapter Object to serialize DMA transfers. 

During initialization, DMA device drivers call HalGetAdapter() (as described in 
Chapter 13, "Driver Entry") to get a pointer to an Adapter Object for later 
use. Recall from that discussion (and Example 13.8 in that Chapter) that 
HalGetAdapter () takes two input parameters: a pointer to a DEVICE_DESCRIPTION 

data structure and a pointer to a ULONG variable, in which to return the maxi
mum number of map registers to be used by a device at anyone time. The 
DEVICE_DESCRIPTION data structure describes the characteristics of the DMA 
device, such as whether it is a Busmaster device, whether it understands 32-bit 
addresses, the maximum length transfer the device can support, and whether or 
not it supports scatter/gather. As a result of calling HalGetAdapter(), the HAL 
returns a pointer to an Adapter Object and also to the maximum number of 
map registers that the driver should use, both of which the driver stored away 
for later use. 
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In the model used by Windows NT, each DMA operation that can be in 
progress simultaneously requires a separate Adapter Object. Thus, drivers 
should allocate one Adapter Object for each DMA operation on each device 
that can be simultaneously in progress. For example, a driver for a device that 
can have a write operation and a read operation in progress simultaneously 
should allocate two Adapter Objects: one for use with read operations, and 
one for use with write operations. 

Furthermore, drivers that utilize a combination of Common-Buffer DMA and 
Packet-Based DMA should allocate a dedicated Adapter Object for the com
mon buffer, and separate Adapter Objects for use in the Packet-Based transfers. 
When calling HalGetAdapter() to get the Adapter Object for the common buffer, 
the driver should specify the total size of the common buffer area in the 
MaximumLength field of the DEVICE_DESCRIPTION data structure. 

The advice to use one Adapter Object per simultaneous transfer is contrary to 
the conventional wisdom, and even the established practice, of many experi
enced NT driver writers. However, thinking the issue through shows why one 
Adapter Object per simultaneous transfer is the correct design. Calling 
HalGetAdapter() informs the HAL of future requirements for DMA resources 
(such as mapping registers, scatter/gather support, and the like). The HAL may 
use these calls to determine how many of these resources should be allocated in 
the system, or perhaps even reserved for use with particular Adapter Objects. 

By utilizing one Adapter Object per DMA transfer, the driver accurately 
reflects to the HAL the level of simultaneous resource usage that the HAL can 
expect. This is true, even though IoAllocateAdapterChannel() (described later in 
this chapter) serializes Adapter Object usage because a driver's AdapterControl 
routine (also described later) can complete but allow the driver to continue to 
tie up DMA resources (by returning DeallocateObj ectKeepRegisters). Further, 
utilizing multiple Adapter Objects allows the driver to actually initiate multiple 
DMA operations on a device in parallel with no delay. This is not possible, 
even when supported by a device, if a single Adapter Object is used. 

Map Registers 
In the DMA model used by NT, the memory addresses used for DMA opera
tions are termed logical addresses. Logical addresses are translated to physical 
addresses in main host memory by map registers. Depending on the underlying 
processor architecture and the specific DMA operation being performed, a log
ical address may be identical to a physical host memory address. Alternatively, 
a logical address may need to be translated to a physical host memory address 
by software, hardware, or a combination of both. This was discussed in 
Chapter 8, "I/O Architectures." 
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Logical addresses represent the set of addresses directly accessible from a 
device. Map registers are used to translate such addresses to physical addresses 
in host memory. For example, ISA bus devices can reference addresses only 
below 16MB. This 16MB-address space is considered the device's logical 
addressing capability. Assuming that such a device has been described correctly 
to the HAL (via the DEVICE_DESCRIPTION data structure, passed to 
HalGetAdapter()), the HAL will automatically provide the driver with only 
appropriate logical addresses for its DMA transfers. That is, all the logical 
addresses provided by the HAL for such a device will always be less than 
16MB. Writers of drivers for these devices, therefore, do not need to concern 
themselves with the location of the requestor's data buffer in physical memory. 

Mote 

The distinction between logical addresses and physical addresses is very 
important. DMA operations on NT are always performed to logical 
addresses. Drivers that perform DMA operations directly by using physi
cal addresses (such as those returned from MmGetPhysicalAddress ()) violate 
the NT DMA model. While this will work for some devices on some 
processor architectures (such as 32-bit Busmaster devices on the x86~ 
where physical addresses can be used as logical addresses)~ it will not 
work for all devices on all processors. The only way to ensure cross
platform compatibility is to scrupulously observe the NT DMA model. 

Map registers are also used to implement a facility known as system 
scatter/gather. This facility (not to be confused with System DMA) provides 
devices that do not themselves support DMA transfers from multiple discon
tiguous physical locations in memory with the capability to transfer physically 
fragmented data buffers in one DMA operation. Thus, devices that do not sup
port scatter/gather are freed from having to perform multiple DMA transfers in 
order to complete a request that references a physically fragmented requestor's 
data buffer. The HAL provides such devices with a single logical base address 
and length that typically allows the device to transfer the entire contents of a 
requestor's buffer in one operation. See Chapter 8 for a more complete discus
sion of how the HAL implements system scatter/gather. 

The HAL is responsible for managing map registers and allocating those regis
ters for use by drivers during DMA operations. Each map register is capable of 
translating, at most, one physical page (that is, PAGE_SIZE bytes) of logical to 
physical address space. And, like physical pages, each map register starts its 
addressing on a physical page boundary. Map registers may be associated with 
a particular Adapter Object by the HAL. 

As described in Chapter 8, the way that map registers are implemented on a 
particular system is totally up to the HAL used on that system. Some NT 
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HALs, such as the standard x86 HALs, implement map registers entirely via 
software. Other HALs, such as some of the standard Alpha HALs, implement 
map registers by using a combination of hardware and software. 

Irrespective of the way that map registers are implemented on a particular sys
tem, in the NT DMA model, map registers must always be allocated prior to 
undertaking any DMA transfer. Drivers must request that the HAL allocate 
enough map registers to complete the transfer, but never more than the maxi
mum number indicated by the HAL as a result of the driver's call to 
HalGetAdapter() (described previously in this chapter and in Chapter 13). The 
transfer is then performed, using the map registers to translate from logical to 
physical memory addresses and to implement system scatter/gather support, if 
required. After the driver's use of the map registers is complete, the driver must 
return the map registers it used for the transfer to the HAL for reuse. 

Map registers are a limited resource that the HAL allocates to drivers as 
they are needed. Except for drivers that implement Common-Buffer 
DMA architectures, driver writers should not retain map registers for 
extended periods of time. This can lead to poor throughput on other 
devices in the system, and ultimately may even result in total system 
failure. 

It is extremely important to understand that logical addresses and map regis
ters, like Adapter Objects and the system scatter/gather facility, are conceptual 
abstractions exported by the HAL. That is, these things are part of the 
Windows NT conceptual model of DMA processing. There mayor may not be 
any real, hardware, map registers in a given system. However, this is largely 
irrelevant to the driver writer. As discussed in Chapter 2, "Achieving Hardware 
Independence with the HAL," the HAL provides driver writers with a single, 
unchanging, model of processor resources and facilities. Driver writers design 
and develop their drivers according to this model. The HAL is responsible for 
converting, as efficiently as possible, between its abstract model and the actual 
processor resources that happen to be present on a particular system. 

Also, as discussed in Chapter 2, performing this conversion efficiently means 
that the HAL tries not to introduce unnecessary overhead in the process. This 
is particularly true on systems such as the x86, where the functionality provid
ed by some of the HAL's abstractions is not required. For example, because 32-
bit DMA devices can address all of main memory on most x86 systems, the 
logical addresses used by these devices are in fact physical addresses. If such 
devices support scatter/gather, the HAL does not actually allocate any map reg
isters during DMA operations by these devices. This is because x86 processors 
typically do not implement map registers in hardware, and 32-bit Busmaster 



Chapter 17: DMA Data Transfers 439 

DMA devices that support scatter/gather have no need for any additional 
software-provided support from the HAL. For such devices, the HAL simply 
provides the driver with the base address and length of each fragment of the 
requestor's data buffer (via the IoMapTransfer() function, discussed later), and 
gets out of the way while the driver performs the transfer. 

On the other hand, typical x86 systems do not provide any hardware facility 
for implementing features such as system scatter/gather. Therefore, how do typ
ical x86 HALs implement this facility? On standard x86 systems, when a dri
ver for a device that does not support scatter/gather sets up a Packet-Based 
DMA transfer (using the standard NT DMA procedures), the HAL provides a 
physically contiguous intermediate buffer for use during the transfer. Thus, for 
a write operation, the HAL copies the contents of the requestor's physically 
fragmented data buffer to a physically contiguous intermediate buffer that the 
HAL allocates and manages internally. The HAL then provides the driver with 
the logical base address and length of the physically contiguous buffer for use 
as the base address for the DMA transfer. 

The bottom line is that, except in extraordinary circumstances, drivers should 
follow the NT DMA model. Let the HAL do its job. By programming to the 
architecture implemented by the HAL, driver writers have the best level of 
cross-platform compatibility. 

DMA Device Architectures 
As described previously in Chapter 8, "I/O Architectures," DMA operations in 
Windows NT fall into one of two categories: Packet-Based DMA and 
Common-Buffer DMA. Devices, and hence drivers, may utilize one or both of 
these DMA architectures. The following sections describe the basic characteris
tics of Packet-Based DMA and Common-Buffer DMA, explain Common-Buffer 
and Packet-Based DMA transfers, and provide a practical Packet-Based DMA 
driver example. 

Packet-Based DMA 
Packet-Based DMA is by far the most common type of DMA used in standard 
Kernel mode device drivers. In Packet-Based DMA, drivers utilize Direct I/O to 
describe the requestor's data buffers. The driver provides the logical address 
and length of each physical fragment of the requestor's data buffer, and the 
transfer direction, to the device. If a device supports scatter/gather, the driver 
supplies the device with multiple base address and length pairs per transfer to 
describe a physically fragmented data buffer. The number of base address and 
length pairs (and, hence, the number of data buffer fragments) that can be pro
vided to a device at one time is device-dependent. Well-designed scatter/gather 
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devices will typically allow a driver to specify enough fragments to completely 
describe even an unusually fragmented requestor's buffer, thus allowing the 
buffer to be transferred in a single DMA operation. 

Devices that do not support scatter/gather can process only a single logical 
base address and length per D MA operation. Therefore, such devices would 
need to perform multiple DMA operations to transfer a fragmented data 
buffer. Setting up and managing these multiple DMA transfers can result in sig
nificant overhead. To avoid this overhead for non-scatter/gather devices, the 
NT DMA model provides a facility called system scatter/gather. This facility 
provides the driver with a single logical base address and length, which is then 
used by the device to transfer the entire requestor's buffer in one DMA opera
tion. One common DMA engine used in PCI devices is the AMCC S5933 (a 
sample driver for this appears later in this chapter). 

Common-Buffer DMA 
Common-Buffer DMA operations utilize the same data buffer repeatedly for 
DMA transfers between the host and the device. The most frequently encoun
tered Common-Buffer architecture is one in which the device and the driver 
share a buffer in host memory containing device-specific data structures. This 
is often referred to as "continuous" DMA. An example of this type of device is 
the "SmartDev" device, described in Chapter 15, "Interrupt Service Routines 
and DPCs." During the initialization of such a device, a driver typically pro
vides to its device the logical address of a buffer in host memory that the driver 
has previously allocated and initialized. The driver and device then manipulate 
the device-defined data structures within this buffer, as required to initiate and 
complete data transfers. The device will typically access the data structures in 
host memory, via DMA, without further programming by the driver. Thus, the 
driver is not necessarily aware of when the device is performing its DMA oper
ations. The device will typically interrupt to indicate a change in status. This 
interrupt will usually cause the driver to interrogate the data structures in 
shared memory to determine the action taken by the device. In this approach, 
the data to be transferred may be copied by the driver between the data struc
tures in shared memory and the requestor's data buffer. More commonly, how
ever, the device-defined data structures in shared memory contain the logical 
addresses of the physical fragments of the data buffers to be used for the 
transfer. 

Common-Buffer DMA of this kind is most frequently used by high-speed intel
ligent devices, such as network interface cards or high-end disk devices. The 
Common-Buffer DMA architecture is well suited for use with these devices 
because a single device can often have many requests in each direction in 
progress simultaneously. Using a set of shared data structures in host memory 
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to manage such transfers is often more convenient and efficient than having the 
driver repeatedly program registers on the device. Because support for this 
architecture requires firmware in the device, whether or not a driver uses this 
type of Common-Buffer DMA is inherent in the design of the device. 

Another less-frequently utilized form of Common-Buffer DMA is actually a 
cross between the DMA and PIO architectures. In this approach, the driver 
allocates a common buffer in host memory that serves as an intermediate 
buffer for all DMA transfer operations. The driver may provide the logical 
base address of this buffer to the device during driver initialization. To process 
a transfer request, the driver moves (under program control) the data to be 
transferred between the requestor's data buffer and the common buffer in host 
memory. To start the transfer, the driver programs the device with the length of 
the transfer and the transfer direction. For example, in devices of this design, 
when processing a write operation the driver will copy the contents of the 
requestor's data buffer to the prereserved buffer in host memory. The driver 
then starts the request on the device by providing the byte count to the device 
and transferring direction of the DMA operation. The device generates an 
interrupt when it has finished transferring the data from the common buffer 
via DMA. In a variant of this scheme, a driver allocates two intermediate com
mon buffers for use by the device: one for read operations and the other for 
write operations. The decision of whether to implement this type of Common
Buffer DMA is a decision that is made by the driver writer. It is most often 
used for devices that do not support scatter/gather, and when DMA transfers 
on the device are expected to be few. However, Windows NT's Packet-Based 
DMA architecture, and its inherent support for agglomerating physical buffer 
fragments for devices that do not support scatter/gather, typically makes the 
use of this design unnecessary. 

Comparing Packet-Based DMA with 
Common-Buffer DMA 
The following table summarizes the differences between the Packet-Based and 
Common-Buffer DMA architectures. 

DMA operation 

Packet-Based 
DMA 

Driver program
ming device 

Common-Buffer 
DMA (with re
questor data 
recopy) 

Data structures 
in common buffer 

Common-Buffer 
(with transfer 
directly from 
requestor's 
data buffer 
pages) 

Data structures 
In common 

continues 
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Requestor's 
data DMA'd 

Map registers 
allocated 

Map registers 
returned 

Packet-Based 
DMA 

registers 

Original re-
questor's 
buffer pages 

For each trans-
fer via Io 
Allocate 
Adapter 
Channel( ) 

After each 
transfer via 
IoFreeMap 
Registers () 

Common-Buffer 
DMA (with re-
questor data 
recopy) 

shared between 
device and driver 

Common buffer 
area 

During initial-
ization via 
HalAllocate 
CommonBuffer() 

On driver unload 
via HalFreeCommon 
Buffer() 

Packet-Based DMA Transfers 

Common-Buffer 
(with transfer 
directly from 
requestor's 
data buffer 
pages) 

buffer shared 
between device 
and driver 

Original 
requestor's 
buffer pages 

Both during 
initialization 
via HalAllocate 
CommonBuffer() 
and for each 
transfer via Io 
AllocateAdapter 
Channel() 

Registers allo
cated per trans
fer freed via 
IoFreeMap 
Registers (); 
Registers 
allocated for 
common buffer 
freed via 
HalFreeCommon 
Buffer() 

When a driver determines that the device that it supports is free to perform a 
DMA transfer, it initiates the request on the device. The steps required to 
process the request are typically as follows: 

1. Prepare for the transfer. This step includes flushing processor cache back 
to memory, determining the number of map registers to be used for the 
current transfer, and requesting the HAL (via the 110 Manager) to allo
cate an Adapter Object and whatever shared resources that might be 

I. 



I 

"I 

Chapter 17: DMA Data Transfers 443 

required to perform the transfer. When the Adapter Object is free and the 
HAL has the necessary resources for the transfer available, the driver's 
AdapterControl routine is called to perform the next step. 

2. Program the device with request information. In this step, the driver gets 
the logical base address and length of one or more fragments of the 
requestor's data buffer, and passes them on to the device. A driver for a 
device that supports scatter/gather will retrieve and provide the device 
with multiple base address and length pairs. With the user buffer logical 
address determined, the driver programs the device to start the transfer. 

3. Complete the transfer. Once the transfer is complete, the driver flushes 
any data from system internal DMA caches; and returns any shared 
resources, such as map registers, that may still be in use. 

4. Propagate the execution of the driver. The driver next checks to see if the 
entire request is completed as a result of the transfer just completed. This 
might not be the case, for example, if a request had to be divided into 
multiple transfers due to restrictions on the availability of mapping regis
ters. If the request is complete, the driver calls IoCompleteRequest () and 
attempts to initiate a new request, if one is pending. If the request is not 
complete, the driver initiates a new transfer for the next portion of the 
request. 

The following sections describe the preceding steps in more detail. 

Preparing for the Transfer 
After a particular IRP to process has been selected, and it has been determined 
that the device is available to perform a request, a driver undertakes a few 
steps in preparation for a Packet-Based DMA data transfer. This preparation 
involves ensuring that the driver, the device, and the HAL are all in the proper 
state for the DMA transfer to be requested. If a driver uses System Queuing for 
management of its IRPs, this preparation phase will typically take place in the 
StartIo routine. In a driver that uses Driver Queuing, the preparation will be 
done after the driver has determined that a request can be started on a given 
device. 

The first thing a driver does to prepare the system for the transfer is to ensure 
that the contents of the requestor's data buffer is sufficiently coherent with the 
host's processor cache to allow the transfer. This is done by calling the function 
KeFlushloBuffers(), the prototype for which is shown in Figure 17.1: 
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VOID 
KeFlushIoBuffers(IN PMDL Mdl~ 

IN BOOLEAN ReadOperation~ 
IN BOOLEAN DmaOperation); 

Mdl: A pointer to an MDL that describes the buffer to be flushed. 

ReadOperation: A boolean value, indicating the direction of the trans
fer planned for the buffer. TRUE indicates the transfer will be a read 
operation (out of memory and to the device). 

DmaOperation: If set to TRUE, indicates that the buffer is planned for 
transfer via D MA. 

Figure 17.1. KeFlushloBuffers () function prototype. 

On some RIse processors, DMA operations are not coherent with respect to 
the contents of processor cache. That is, DMA write operations (from memory 
to the device) are performed on main memory without consideration of the 
contents of the processor's cache. Likewise, DMA read operations (from the 
device into memory) update main memory but do not necessarily automatically 
update or invalidate the contents of the processor cache for the requestor's 
buffer. The result of this lack of coherency is that the processor cache and main 
memory can hold different values, and the DMA operation appears to "not 
work right." 

To avoid this problem, drivers call KeFlushloBuffers () prior to performing any 
DMA operations. This function takes a pointer to the MDL that describes the 
requestor's buffer, as well as a pair of BOOLEAN values that indicates whether the 
request is a DMA request and the direction of the transfer. KeFlushloBuffers() 

uses this information and flushes the requestor's data buffer from processor 
cache to host main memory, if this is required to correctly perform the DMA 
operation. Note that x86 architecture systems are cache-coherent with respect 
to DMA operations. Therefore, KeFlushloBuffers () is defined in NTDDK.H for 
x86 systems as a null macro. 

After calling KeFlushloBuffers (), the driver next determines the number of map 
registers it will request from the HAL for this transfer. In the NT DMA model, 
a driver requests and returns map registers for every DMA transfer. The HAL 
determines whether the map registers are actually required, and provides them 
only if necessary. The number of map registers that the driver requests will typ
ically be the number required to completely map the requestor's data buffer. 
One map register is required for each physical memory page that contains data 
to be transferred. The driver may determine the number of physical memory 
pages spanned by the requestor's buffer by using the macro 
ADDRESS_AND_SIZE_ TO_SPAN_PAGES. Figure 17.2 illustrates this macro. 

II 
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ULONG 
ADDRESS_AND_SIZE_TO_SPAN_PAGES(IN PYOID Va, 

IN ULONG Size}; 

Va: An address, not necessarily in the current operating mode, indicat
ing the start of a buffer 

Size: Length, in bytes, of the buffer 

Using the virtual address and size of the requestor's data buffer, the 
ADDRESS_AND_SIZE_ TO_SPAN_PAGES macro determines the number of physical pages 
that the data buffer references. 

The virtual address of the requestor's buffer (in the requestor's mode), which is 
passed to the macro as the Va parameter, can be retrieved from the MDL by 
using the function MmGetMdlVirtualAddress (), which is shown in Figure 17.3. 

PYOID 
MmGetMdlVirtualAddress(IN PMDL Mdl}; 

Mdl: A pointer to an initialized MDL. 

Figure 17.3. MmGetMdlVirtualAddress () function prototype. 

Remember that the MDL is an opaque data structure. It is never a good idea to 
directly access the fields within the MDL. Always use the functions supplied by 
the Memory Manager. In most cases, these functions are actually macros that 
expand to reference the appropriate MDL fields. This is the case, for example, 
with MmGetMdlVirtualAddress (). 

Don't confuse the functions MmGetMdlVirtualAddress () (used here) and 
MmGetSystemAddressForMdl() (described in Chapter 16, "Programmed I/O 
Data Transfers")! These are two very different Memory Manager func
tions with similar-sounding names. Both take as input a pointer to an 
MDL and return a PVOID. MmGetMdlVirtualAddress () returns the requestor's 
virtual address of the start of the data buffer described by an MDL, sim
ply by returning the contents of one of the MDL's internal fields. 
MmGetSystemAddressForMdl () I on the other hand, performs a memory
management operation that maps the requestor's data buffer described 
by an MD L into kernel virtual address space. 



446 Part II: The I/O Manager and Device Driver Details 

Referring to Figure 17.3, you'll note that even a data buffer that is less than 
one page long can span memory in two physical pages. This is because the data 
can start at the end of one page and continue into the start of another, as 
shown in Figure 17.4. 

Physical Memory 
with page boundaries 

OxOOOOOOOO "----------.... 

Figure 17.4. A 2K-user data buffer spanning two physical memory pages. 

A driver is not always allowed to request the number of map registers required 
to map the entire requestor's buffer, however. Recall that when the driver 
called HalGetAdapter() during initialization, the HAL returned the maximum 
number of map registers that the driver could use at one time. The driver is 
therefore constrained to request no more than this number of map registers for 
a given transfer. Thus, if a requestor's buffer requires more map registers than 
the HAL will allow the driver to request, the driver must request only the max
imum number allowed by the HAL. This will result in the driver having to 
process the request as multiple DMA transfers, each one using no more than 
the maximum number of map registers allowed by the HAL. 

The code segment in Example 17.1 that follows shows the process of determin
ing the number of map registers that will be requested by the driver: 
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Example 17.1. Determining the number of map registers that will be used by 
the driver for a particular transfer. 

1/ 
II How many map registers are need to entirely map the requestor's 
II buffer? 
1/ 
requestorsVa = MmGetMdIVirtuaIAddress(Irp->MdIAddress)j 

mapRegsNeeded = 

1/ 

ADDRESS_AND_S I ZE_TO_SPAN_PAGES (requestorsVa, 
ioStack->Parameters.Write.Length)j 

II Determine the number of map registers we'll request from the HAL 
II for this transfer. Use the number required to map the entire 
II requestor's buffer unless that exceeds the maximum number the 
II HAL told us we could ask for when we called HalGetAdapter() 
1/ 
if (mapRegsNeeded > devExt->MapRegsGot) { 

devExt->MapRegsThisDma = devExt->MapRegsGotj 

else { 

devExt->MapRegsThisDma = mapRegsNeededj 

The driver in the example code determines the requestor's virtual buffer 
address, given the MDL address in the IRP being processed by calling 
MmGetMdlVirtualAddress (). The resulting value is passed-along with the length 
of the requestor's buffer, as determined from 'the Parameters. Wri te. Length field 
in the IRP's current 110 Stack Location-to the ADDRESS_AND_SIZE_ TO_SPAN_PAGES 
macro. This macro returns the number of pages, and hence the number of map 
registers, required to completely map the requestor's data buffer. The driver 
determines the number of map registers it will request from the HAL by using 
this value. However, the driver limits the number of map registers it will 
request to the maximum number of map registers that the HAL indicated the 
driver may request as a return value from HalGetAdapter(). Example 13.8 in 
Chapter 13 shows where this maximum value is returned. The driver stores the 
number of map registers that will be used for the current DMA operation in its 
device extension for later use. 

Once the driver has flushed the requestor's data buffer from processor cache 
and determines the number of map registers to be requested for the current 
transfer, the driver is ready to request the HAL to allocate the resources 
required for the transfer. The driver does this by calling 
IoAllocateAdapterChannel (). The prototype is shown in Figure 17.5. 



448 Part II: The 110 Manager and Device Driver Details 

NTSTATUS 
IoAllocateAdapterChannel(IN PADAPTER_OBJECT AdapterObject, 

IN PDEVICE_OBJECT DeviceObject, 
IN ULONG NumberOfMapRegisters, 
IN PDRIVER_CONTROL ExecutionRoutine, 
IN PYOID Context); 

AdapterObject: A pointer to the Adapter Object for the transfer 

DeviceObject: A pointer to the Device Object representing the device 
for the transfer. 

NumberOfMapRegisters: The number of map registers the driver is 
requesting the HAL to reserve for this transfer. 

ExecutionRoutine: A pointer to the driver's AdapterControl routine. 

Context: A driver-defined context argument to be passed to the driver's 
AdapterControl routine. 

Figure 17.5. IoAllocateAdapterChannelO function prototype. 

IoAllocateAdapterChannel() takes as input a pointer to the Adapter Object and 
Device Object, as well as the number of map registers being requested for the 
transfer. This function also takes a pointer to the driver's AdapterControl rou
tine and a context value to be passed to that routine. The only "trick" to call
ing IoAllocateAdapterChannel () is that it must be called at IRQL DISPATCH_LEVEL. 

This is not usually a problem because drivers often call this function from 
either their Startlo or DpcForIsr routines, which are already running at IRQL 

DISPATCH_LEVEL. If a driver is running at an IRQL lower than DISPATCH_LEVEL, it 
need only call KeRaiseIrql () to raise its IRQL to DISPATCH_LEVEL, call 
IoAllocateAdapterChannel(), and then call KeLowerIrql() to return the IRQL to 
the previous level. 

When the adapter pointed to by AdapterObject and the number of map regis
ters indicated by NumberOfMapRegisters are available, the HAL calls the dri
ver's AdapterControl routine pointed to by ExecutionRoutine, passing Context 
as a parameter. Figure 17.6 shows the prototype for the driver's 
AdapterControl routine. It is within the driver's AdapterControl routine that 
the driver can program the device to actually perform the transfer. 
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Figure 17.6. AdapterControl routine entry point. 

Programming the Device 
The HAL calls the driver's AdapterControl routine when all of the resources 
required to perform the transfer are available. The AdapterControl routine is 
always called at IRQL DISPATCH_LEVEL and in an arbitrary thread context. The 
HAL passes four parameters in to the AdapterControl routine, as follows: 

• DeviceObject. A pointer to the Device Object on which the transfer is to 
be requested. 

• Irp. The contents of DeviceObj ect->CurrentIrp, which is a pointer to the 
current IRP to be processed if the driver uses System Queuing. If the dri
ver does not use System Queuing, this parameter is meaningless and 
should be ignored. 

• Map Register Base. A handle that the HAL uses to identify the block of 
map registers that have been reserved for use by this transfer operation. 
The driver will provide this handle as input to IoMapTransfer (), described 
later. 

• Context. The Context parameter, passed by the driver in its call to 
IoAllocateAdapterChannel (). For drivers that use Driver Queuing, this 
parameter is often a pointer to the IRP to be processed. 



450 Part II: The I/O Manager and Device Driver Details 

It is the goal of the driver's AdapterControl routine to program the device and 
initiate the DMA transfer. To do this, the driver will get the logical base 
address and length of the fragments that comprise the requestor's data buffer. 
Recall that if the device supports scatter/gather, multiple logical base address 
and length pair will likely be required to describe the requestor's buffer. Also, 
recall that if the device does not support scatter/gather, NT's system 
scatter/gather facility (as provided by the HAL) will agglomerate the physically 
fragmented requestor's buffer and provide a single logical base address and 
length that the driver will use for the transfer. 

However, there is a slight complication involved. The driver may not use more 
map registers for the transfer than were reserved by the HAL. The number of 
map registers reserved by the HAL was either the number of map registers 
required to completely map the requestor's buffer, or the maximum number of 
map registers that the driver is allowed by the HAL to request at one time, 
whichever is smaller. The number of map registers to request the HAL to 
reserve was determined by the driver prior to calling 
IoAllocateAdapterChannel ( ), and passed as a parameter to the function call. 

This complication means that within the AdapterControl routine, the driver 
may not be able to initiate a single DMA request that will handle all of the 
requestor's data buffer. This is true, irrespective of whether or not the device 
supports scatter/gather. When the requestor's data buffer is larger than can be 
mapped with the maximum number of map registers that the driver is allowed 
to request, the request will need to be split into multiple transfers. 

To get the logical base address and length of the requestor's data buffer frag
ments, the driver calls the function IoMapTransfer (). The prototype is shown in 
Figure 17.7. 
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PHYSICAL_ADDRESS 
IoMapTransfer(IN PADAPTER_OBJECT AdapterObject, 

IN PMDL Mdl, 
IN PYOID MapRegisterBase, 
IN PYOID CurrentVa, 
IN OUT PULONG Length 
IN BOOLEAN WriteToDevice); 

AdapterObject: A pointer to the Adapter Object for the transfer. 

Mdl: A pointer to the MDL that represents the requestor's buffer for 
the transfer. 

MapRegisterBase: The HAL-supplied handle of the same name, passed 
in to the driver at its AdapterControl routine. 

Current Va: A pointer, in the requestor's address space, to the starting 
location in Mdl for this transfer. 

Length: Length, in bytes, of the transfer. 

WriteToDevice: BOOLEAN indicating the direction of the transfer. 
TRUE indicates a transfer to the device (out of memory). 

Figure 17.7. IoMapTransfer() function prototype. 

IoMapTransfer () is a rather inconvenient and even confusing function to call. 
Parameters to this function include a pointer to the Adapter Object to be used 
for the transfer (AdapterObject); a pointer to the MDL that describes the 
requestor's data buffer to be used for the transfer (Mdl); and the 
MapRegisterBase value, as passed into the AdapterControl routine. Note that 
drivers of Busmaster devices traditionally pass NULL as the pointer to the 
Adapter Object when calling this function. However, either NULL or a pointer to 
the Adapter Object may actually be passed. IoMapTransfer () also takes a 
BOOLEAN (WriteToDevice) that indicates the direction of the transfer (set to TRUE 

if the operation is a DMA write operation-going to the device). These para
meters are all easy enough to manage. 

IoMapTransfer () takes two additional parameters, described in the following 
short list: 

• CurrentVa. This is a pointer to the next location in the requestor's data 
buffer to be transferred, in the requestor's virtual address space. This 
pointer is used by IoMapTransfer () as an index into the current data 
buffer. The initial value for this parameter is obtained by the driver call
ing MmGetMdlVirtualAddress() with a pointer to the MDL describing the 
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requestor's data buffer. After each call to IoMapTransfer (), this pointer 
must be incremented by the length of the requestor's data buffer fragment 
returned from the call. 

• Length. This is a pointer to a ULONG variable. On input to IoMapTransfer ( ), 
the content of this variable is the remaining length of the requestor's data 
buffer. That is, it contains the number of bytes of the requestor's data 
buffer that have not yet been described by logical base address and length 
pairs returned by IoMapTransfer (). On output from IoMapTransfer (), the 
content of this variable contains the size, in bytes, of the current fragment 
of the requestor's buffer. 

The return value from a call to IoMapTransfer() is the logical base address of 
the fragment of the requestor's buffer that starts at CurrentVa. As previously 
mentioned, the length of that fragment is returned as the contents of the 
Length parameter. 

Drivers that do not implement scatter/gather will make a single call to 
IoMapTransfer (), as shown in Example 17.2 that follows. 

Example 17.2. Calling IoMapTransfer() in a driver for a non-scatter/gather 
device. 

totalLength = ioStack->Parameters.Write.Length; 
length = totalLength; 
baseVirtualAddress = MmGetMdlVirtualAddress(irp->MdlAddress); 

logicalBaseAddress = IoMapTransfer(NULL, 
irp->MdlAddress, 
MapRegisterBase, 
baseVirtualAddress, 
&length, 
TRUE); / / WriteToDevice 

On return from the call to IoMapTransfer() in Example 17.2, 
logicalBaseAddress contains the logical base address to be used for the DMA 
transfer, and length contains the length of the fragment starting at 
logicalBaseAddress. Note that the total length of the request is saved in 
totalLength. The only time that the returned length of the requestor's buffer 
fragment will not be equal to the total length of the requestor's buffer (that is, 
length ! = totalLength) is if the number of map registers reserved for the opera
tion is insufficient to map the entire requestor's buffer. If this is the case, the 
driver will need to initiate another DMA transfer to complete the request when 
this transfer is complete. 
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Note 

Although it is true that one map register is capable of mapping only one 
physical page at one time~ typical NT HALs provide drivers with the 
obvious optimization: When IoMapTransfer() is called~ if map registers 
span adjacent logical pages~ the HAL will return the logical base address 
of the first map register as the base of the fragment~ and the total length 
of the spanned area as the fragment length. Therefore~ for example~ if a 
10K-transfer is mapped by three adjacent map registers~ IoMapTransfer() 
on most HALs will return the logical base address of the first map regis
ter and a length of 10K (as opposed to returning three separate frag
ments). Of course~ different HALs can do different things~ so there is no 
guarantee that this optimization will be provided. 

Recall from the earlier discussion that typical x86 HALs implement NT's sys
tem scatter/gather facility (used by devices that do not themselves support scat
ter/gather) by copying data between the physically fragmented requestor's 
buffer to a physically contiguous, HAL-controlled intermediate buffer. It is dur
ing the call to IoMapTransfer () that the HALs typically do this copy for write 
operations. 

The process of calling IoMapTransfer() is slightly more complicated for drivers 
of devices that implement scatter/gather. Example 17.3 shows a complete 
AdapterControl function for a scatter/gather driver: 

Example 17.3. Calling IoMapTransfer() in a driver for a device that supports 
scatter/gather. 

FooAdapterControlWrite(PDEVICE_OBJECT DevObj, PIRP Irp, 
PVOID MapRegisterBase, PVOID Context) 

PVOID baseVa; 
ULONG length, mapRegsLeft; 
PHYSICAL_ADDRESS laToGiveDevice; 
PIO_STACK_LOCATION ioStack; 
FOO_DEVICE_EXTENSION devExt; 

devExt = DevObj->DeviceExtension; 

ioStack=IoGetCurrentIrpStackLocation(Irp); 

II 
II Save the map register base for use in the DpcForIsr. 
II We'll need this to call both IoFlushAdapterBuffers() and 
II IoFreeMapRegisters() 
II 
devExt->MapRegBase = MapRegisterBase; 

continues 
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Continued 

II 
II Get the length of the current request. At this pOint, 
II devExt->LengthSoFar contains either zero (if this is the 
II first part of this request) or the length already transferred 
II (if we've had to split a request into multiple transfers due 
II to the length of the requestor's data buffer exceeding 
II the maximum number of map registers available). 
II 
length = ioStack->Parameters.Write.Length -

devExt->LengthSoFarj 

II 
II Remember where this request started. We'll need this in the 
II DpcForlsr to call IoFlushAdapterBuffers(). 
II 
devExt->StartingOffset = devExt->LengthSoFarj 

II 
II Pointer to start of the transfer, in requestor's virtual 
II address space. 
II 
baseVa = MmGetMdIVirtuaIAddress(Irp->MdIAddress)j 

/I 
II Number of map registers requested when IoAllocateAdapterChannel() 
II was called 
II 
mapRegsLeft = devExt->MapRegsThisDmaj 

/I 
II As long as there are still fragments to map, and we have 
II map registers, map them, and put them into scatterlgather list 
/I 
While(length && mapRegsLeft--) { 

laToGiveDevice = IoMapTransfer(NULL, 

/I 

Irp->MdIAddress, 
MapRegisterBase, 
baseVa+devExt->LengthSoFar, 
&length, 
TRUE) j 

II Store the logical addressllength pair for our device. 
II Note that the precise mechanism used to do this is 
II a function of our device, not NT. 
II 
FooSetFragToWrite(laToGiveDevice, length)j 

devExt->LengthSoFar += lengthj 
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length = ioStack->Parameters.Write.Length -
devExt->LengthSoFar 

II Program the device to start the DMA write. 
II Again, the manner we use to accomplish this is 
II a function of our device, not NT. 
I! 
FooStartTheDmaWrite(devExt)j 

return(DeallocateObjectKeepRegisters)j 

The code in Example 17.3 iteratively calls IoMapTransfer (), receiving back from 
each call the logical base address and length of a fragment of the requestor's 
data buffer. Each time after returning from IoMapTransfer(), the driver 
immediately calls its own internal function FooSetFragToWrite (), which passes 
the logical base address and length pair to the device. When all the fragments 
that comprise the buffer have been retrieved, or when the number of available 
map registers has been reached, the driver calls its own internal function 
FooStartTheDmaWri te () to initiate the DMA request on the device. 

As was the case for the non-scatter/gather device driver, the only time that this 
driver will leave its AdapterControl routine without having set up a DMA 
operation for the entire requestor's buffer is if the requestor's buffer required 
more map registers than the HAL allowed the driver to reserve at one time. 

With its device programmed to initiate the DMA transfer, the driver returns 
from its AdapterControl routine. However, on return from its AdapterControl 
routine, the driver must tell the HAL what to do with the Adapter Object and 
map registers that it reserved prior to AdapterControl being called. To do this, 
the driver must return one of the following three return values from its 
AdapterControl routine: 

• KeepObject. This status value indicates that the driver does not want the 
HAL to return either the allocated Adapter Object or the allocated map 
registers. This value is typically returned by drivers of System (that is, 
Slave-mode) DMA devices. Drivers returning this status will need to man
ually return both the Adapter Object and the map registers used during 
the transfer. 

• DeallocateObject. This status indicates that the HAL should return both 
the allocated Adapter Object and the allocated map registers. This value 
might be used by a Busmaster DMA driver that determines, for some 
unusual reason, that a transfer will not be started from its 
AdapterControl routine. 
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• DeallocateObjectKeepRegisters. This status instructs the HAL that the 
Adapter Object is free, but the mapping registers that have been allocated 
for the driver are still in use. This is the status that most Busmaster DMA 
device drivers return from their AdapterControl routines. Drivers that 
return this status will need to manually return the map registers after the 
transfer has completed. 

With the DMA operation requested on the device, the driver waits for the 
device to indicate that it has completed the transfer. 

Completing the Transfer 
Once the device has completed the DMA transfer, it will typically interrupt. 
When the driver's interrupt service routine is called, it will usually request a 
DpcForIsr. The driver completes the transfer within the DpcForIsr routine. 

Completing the transfer involves flushing caches and returning resources that 
were reserved for the transfer. 

Flushing Caches 
To flush any data that may remain in the DMA controller on some systems, 
drivers call the function IoFlushAdapterBuffers (), the prototype for which 
appears in Figure 17.8. 

BOOLEAN 
IoFlushAdapterBuffers(IN PADAPTER_OBJECT AdapterObject, 

IN PMDL Mdl, 
IN PYOID MapRegisterBase, 
IN PYOID CurrentVa, 
IN OUT PULONG Length 
IN BOOLEAN WriteToDevice); 

AdapterObject: A pointer to the Adapter Object for the transfer. 

Mdl: A pointer to the MDL that represents the requestor's buffer for 
the transfer. 

MapRegisterBase: The HAL-supplied handle of the same name, passed 
in to the driver at its AdapterControl routine. 

Current Va: Pointer, in the requestor's address space, to the starting 
location in Mdl for this transfer. 

Length: Length, in bytes, of the transfer. 

WriteToDevice: BOOLEAN indicating the direction of the transfer. 
TRUE indicates a transfer to the device (out of memory). 

Figure 17.8. IoFlushAdapterBuffers() function prototype. 
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The IoFlushAdapterBuffers () function must be called by all DMA drivers to 
complete a DMA transfer. Note that the following are all input parameters to 
this function: a pointer to the MDL describing the data buffer, the map register 
base used during the transfer, the starting virtual address of the transfer in the 
requestor's virtual address space, and the length of the transfer. These values 
must therefore be stored away by the driver in the AdapterControl routine, so 
that they are available for this function call. 

Note 

Recall from the earlier discussion that typical x86 HALs implement NT's 
system scatter/gather facility (used by devices that do not themselves sup
port scatter/gather) by copying data between the physically fragmented 
requestor's buffer and a physically contiguous, HAL-controlled intermedi
ate buffer. HALs typically do this copy for read operations during the call 
to IoFlushAdapterBuffers(). 

Returning Resources Used During the Transfer 
After calling IoFlushAdapterBuffers (), drivers must return any resources that 
were reserved for use during the transfer operation, but not freed on return 
from the AdapterControl routine. For Busmaster DMA devices, this means 
returning the map registers that were retained when the AdapterControl rou
tine returned the status DeallocateObj ectKeepRegisters. To return the retained 
map registers, drivers call IoFreeMapRegisters ( ), the prototype for which is 
shown in Figure 17.9 

VOID 
IoFreeMapRegisters(IN PADAPTER_OBJECT AdapterObject, 

IN PVOID MapRegisterBase, 
IN ULONG NumberOfMapRegisters); 

AdapterObject: A pointer to the Adapter Object for the transfer. 

MapRegisterBase: The HAL-supplied handle of the same name, passed 
in to the driver at its AdapterControl routine. 

NumberOfMapRegisters: The number of map registers allocated for 
the (now complete) transfer, as specified when the driver called 
IoAllocateAdapterChannel(). 

Figure 17.9. IoFreeMapRegisters () function prototype. 

As shown in the prototype, IoFreeMapRegsiters () takes as input a pointer to the 
Adapter Object used for the transfer, as well as the map register base and the 
number of map registers used for the transfer. Note that as a result of freeing 
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the map registers, drivers that had called IoAllocateAdapterChannel() but were 
awaiting map registers before their AdapterControl routine could be called, 
may have their wait satisfied. 

Note 

Drivers must correctly track the number of map registers they are using 
and the associated map register base. Typical HALs do not track the map 
registers that devices have outstanding, once the Adapter Object associat
ed with that transfer has been returned. Thus, failure to call 
IoFreeMapRegister (), or calling IoFreeMapRegisters () with incorrect values 
for MapRegisterBase and NumberOfMapRegisters, can result in undesir
able system behavior. 

With the adapter buffers flushed and the map registers returned, it is time for 
the driver to complete the cur~ent request, if possible, and propagate its execu
tion by finding the next operation to perform. 

Propagating Driver Execution 
With a DMA transfer operation completed, the driver must next determine 
whether the entire current request is complete. In most cases, it will be; howev
er, in the case in which the transfer was limited by the number of map registers 
available to the driver, the driver will have to set up and perform another 
DMA transfer for the remaining part of the requestor's buffer. If the entire cur
rent request is complete, the driver completes the IRP describing the request, 
and attempts to start another request on the now free device. Example 17.4 
illustrates these steps. 

Example 17.4. DMA completion processing. 

1/ 
II Did this completed transfer also complete the entire current 
II request? 
1/ 
if( (ioStack->Parameters.Write.Length - devExt->LengthSoFar) > 0) { 

1/ 
II Nope. More left to do. Re-allocate the Adapter Object and 
II necessary map registers and continue. First, determine how many 
II map registers we'll request for this transfer. 
1/ 
baseVa = MmGetMdlVirtualAddress(irp->MdlAddress) + devExt->LengthSoFarj 

length = ioStack->Parameters.Write.Length - devExt->LengthSoFarj 

1/ 
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II Limit the number of map registers being requested to the maximum 
II the HAL said we could ask for. 
/I 
if (mapRegsNeeded > devExt->MapRegsGot) 

devExt->MapRegsThisDma = devExt->MapRegsGot; 

} else { 

devExt->MapRegsThisDma = mapRegsNeeded; 

IoAllocateAdapterChannel(devExt->Adapter, 
DevObj, 
devExt->MapRegsThisDma, 
FooAdapterControlWrite, 
NULL) ; 

} else { 

/I 
II The current IRP is done. Complete it and attempt to start another 
/I 
Irp->IoStatus.Status = STATUS_SUCCESS; 

Irp->IoStatus.lnformation = ioStack->parameters.write.length; 

IoCompleteRequest(Irp, IO_NO_INCREMENT); 

devExt->LengthSoFar = 0; 

IoStartNextPacket(DevObj, FALSE); 

As Example 17.4 demonstrates, if the current transfer completed the pending 
request, the driver completes the IRP describing the pending request, and 
attempts to start a new request. If the driver uses System Queuing, as in the 
preceding example, the driver calls IoStartNextPacket () to inform the I/O 
Manager that the device represented by DevObj is available to start another 
request. If using Driver Queuing, the driver checks its own internal queues to 
determine whether there is another request to be started. 

On the other hand, if the entire requestor's buffer has not yet been processed, 
the driver sets up to process the remaining piece of the user's buffer. This 
entails determining the number of map registers to be requested. The number 
requested is either the number required to map the remainder of the requestor's 
buffer or the maximum number the driver is allowed by the HAL to use, 
whichever is smaller. And, again, IoAllocateAdapterChannel() is called to reserve 
the resources required for the transfer. 
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If you find it too cumbersome to track how much of the requestor~s 
buffer has been transferred~ and to check whether it will require addition
al transfers to complete a request, here~s an idea. If practical for your 
device and applications, you can limit the maximum size transfer that 
your driver will accept to the maximum size that can be described using 
the number of map registers that HAL will allow your driver to reserve. 
Simply take the maximum number of map registers value returned by the 
HAL from HaIGetAdapter(), subtract one, and multiply by PAGE_SIZE. 

Then reject any requests that are larger than the resulting value in your 
Dispatch routine with STATUS_INVALID_PARAMETER. This results in your dri
ver always being able to process a DMA request in one transfer. 

Although this may sound a bit extreme (and, we admit, it is a bit of a 
"hack"), it~s not as bad as it first sounds. Further, taking this approach 
can eliminate coding and testing a lot of cumbersome code. 

The reason this approach isn't quite as bad as it may at first seem is that 
the number of mapping registers that the standard HALs allow drivers to 
reserve is not typically determined dynamically based on system load. 
Thus, the value returned is not likely to change for a given platform. In 
most cases, you will find that this approach results in a maximum trans
fer length of at least 64KB. 

Further, drivers for 32-bit Busmaster DMA devices that support 
scatter/gather can use this strategy particularly effectively. This strategy is 
effective because these drivers are rarely limited in the number of map 
registers they are allowed to allocate by the HAL. In fact, on typical x86 
processors, drivers for these devices do not, in fact, utilize any map regis
ters at all. 

Of course, this "trick" works only if you have control of the applications 
that will be using your driver. If applications are written to try larger 
buffer sizes, but back off to smaller ones, this approach can be useful. Of 
course, if you must support existing applications that don't back off, this 
won~t work for you. Although we don't recommend this approach be 
used for most typical drivers, there are special cases where it might be 
worthwhile. 

Common-Buffer DMA Transfers 
The steps required to process Common-Buffer DMA transfers are far more 
device-specific than those required for Packet-Based DMA transfers. In general, 
the following steps will be required to process Common-Buffer DMA transfers: 
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1. Allocate the common buffer. During initialization, the driver will usually 
allocate a common buffer. This buffer will comprise the shared ("com
mon") memory area accessed by both the device and the driver. 

2. Perform the transfer using the common buffer. This may be as simple as 
copying data from the requestor's buffer to the common buffer, or as 
complex as setting up a Packet-Based DMA transfer with the scatter/ 
gather list stored in a device-specific data structure in the common 
buffer. In either case, the driver uses device-specific means to complete 
the transfer. 

3. Propagate the driver's execution. The device will typically interrupt when 
there is work for the driver to do. The driver will typically interrogate the 
device-specific structures in shared memory, and determine if in-progress 
requests may be completed and if pending requests may be started. 

The following sections describe the preceding steps in more detail. 

Allocating the Common Buffer 
The first step to setting up a driver to support Common-Buffer DMA is, not 
surprisingly, allocating the buffer. The common buffer should usually be allo
cated as early as possible in the driver, preferably during driver initialization 
processing. This gives the driver the best chance to get the contiguous memory 
required for the buffer. 

Drivers that perform Common-Buffer DMA operations should get an Adapter 
Object from the HAL, exclusively for use with the common buffer. To do this, 
drivers should specify the total size of the common buffer area in the 
MaximumLength field of the DEVICE_DESCRIPTION data structure. Drivers should 
also indicate that their devices support scatter/gather by setting the 
ScatterGather field of the DEVICE_DESCRIPTION data structure to TRUE. 

A common buffer for DMA operations is allocated by using the function 
HalAllocateCommonBuffer (). This function and the process of allocating the com
mon buffer were described in Chapter 13, "Driver Entry," in the section 
"Common Buffers for DMA Devices." Refer to that section to review the 
important details on how common buffers are allocated. 

To briefly review the information discussed in Chapter 13, 
HalAllocateCommonBuffer () takes as input a pointer to an Adapter Object, the 
length of the buffer to allocate, and a BOOLEAN value indicating whether the 
memory should be cached or noncached. Drivers should typically allocate non
cached memory for a common buffer. The function returns both the kernel vir
tual address and the logical address of the common buffer for use in DMA 
operations. HalAllocateCommonBuffer () is a very clever function that refers to 
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the Adapter Object passed as input and allocates memory that is appropriate 
for the device. That is, when a driver for an ISA bus device calls 
HalAllocateCommonBuffer(), the logical address of the memory returned will 
always be less than 16MB. 

Note 

We said it in Chapter 13~ but it~s worth repeating here: Drivers that 
require buffers for D MA operations must allocate them by using 
HalAllocateCommonBuffer() (or a manual alternative to this function). A 
very common driver error is to allocate memory for DMA transfers by 
calling MmAllocateContiguousMemory () and then getting the physical address 
by calling MmGetPhysicalAddress ( ). This is obviously incorrect because in 
the NT model~ DMA operations are performed to logical addresses~ not 
physical addresses. And while this will work on current x86 platforms 
(where physical addresses can be used directly as logical addresses)~ this 
will not work on other systems. 

Performing the Transfer 
Common-Buffer Busmaster DMA processing is very different, depending on the 
type of device being supported. For simple Common-Buffer devices, in which 
the driver copies the data between the requestor's data buffer and the common 
buffer, performing a transfer is much like performing a PIa request to a shared 
memory block. The driver manipulates structures within the common buffer to 
control transfers. 

Unlike shared memory in PIa devices, however, drivers for Common-Buffer 
devices may copy data between the requestor's data buffer and the common 
buffer by using RtlCopyMemory ( ) l which is the NT runtime library equivalent 
of memcpy ( ). This is because the common buffer actually resides in host memo
ry, not on a device (as with PIa shared memory). As is the case for PIa device 
drivers, Common-Buffer drivers typically use whatever method is convenient 
(Direct 110, Buffered 110, or Neither 110) to describe 110 requests. 

Note 

If the common buffer was allocated cached~ which is normally not a good 
idea~ drivers will need to flush data back from processor cache to the 
common buffer at appropriate times by using KeFlushloBuffers(). In 
order to call KeFlushloBuffers()~ a driver must build an MDL (using 
IoAllocateMdl() and MmBuildMdlForNonPagedPool() l which are described 
later) to describe the common buffer. Note that there is no equivalent for 
IoFlushAdapterBuffers () l which is used (or needed) for Common-Buffer 
DMA. 
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Some Common-Buffer DMA devices utilize a shared set of data structures in 
memory that contain one or more scatter/gather lists for DMA operations. 
Figure 17.10 shows an example of such a set of data structures. 

Write Listhead 

Next 

Next f----
DriveContext 

TotalLength 

Status 

DevAdd1 

DevAdd2 

TransferLength 

ScatterGather 

ScatterGather 

ScatterGather 

ScatterGather 

Write Queue Entries 

Figure 17.10. Example of Common-Buffer DMA data structures. 

These drivers are identical to Packet-Based DMA drivers, except that the device 
is controlled via shared data structures in host memory, instead of via 110 Ports 
or memory-based registers. Thus, drivers for these devices utilize Direct VO 
and Driver Queuing to manage incoming requests. 

On receiving a request in its Dispatch routine, the driver determines if the 
device is available to initiate a new operation; if it is, the driver determines the 
number of map registers to request from the HAL. Just as for Packet-Based 
DMA, drivers for these devices are subject to the HAL-imposed limit on the 
number of map registers that can be used. The driver next marks the IRP pend
ing (calling IoMarkIrpPending()), and calls HalGetAdapter() to allocate the 
Adapter Object and any necessary map registers. The driver then returns 
STATUS_PENDING from its Dispatch routine to the 110 Manager. 

In the AdapterControl routine, the driver iteratively calls IoMapTransfer() to 
build the scatter/gather list to give the device. The driver then fills in the appro
priate shared structures in the common buffer to appropriately program the 
device and initiate the transfer. 

Propagating Driver Execution 
Common-Buffer DMA devices typically indicate a change of status via an inter
rupt. When an interrupt is received, the driver will typically query the shared 
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memory data structures to determine what actions to take. Taking the data 
structures shown in Figure 17.10 as an example once again, on receiving an 
interrupt, the driver requests a DpcForIsr. In the DpcForIsr, the driver traverses 
the write request queue, checking the status field in each entry, to determine if 
it is complete. If the request is complete, the driver will remove the request 
from the list and call IoCompleteRequest () on the IRP associated with the 
request. 

When one or more operations are completed, the driver determines whether 
others may be started. Again, this operation is completely device- and driver
specific. 

Packet-Based DMA Driver Example 
To illustrate some of the concepts discussed so far in this chapter, let's examine 
parts of a complete driver example for a popular DMA device. Just as we did 
in Chapter 16 on PIO, we'll look at all the code entailed in processing a trans
fer request, starting with the Dispatch routine and completing in the DpcForIsr. 
This driver example supports the AMCC 55933 DMA controller, as used in the 
DK1 evaluation board for that device (the PCI Matchmaker Controller 
Developer's Kit, available from AMCC distributors). Of course, the complete 
code for this driver is available from 05R's Web site (http://www.osr.com). For 
the sake of clarity, some nonessential code (such as logic for error handling and 
some DbgPrint() statements) have been eliminated from the routines as they 
appear in this book. 

The DK1 is a simple evaluation board that allows the basic facilities of the 
55933 DMA controller chip to be exercised. The device does not support 
scatter/gather, but is capable of performing both DMA reads and DMA writes 
in parallel. That is, a single transfer of each type may be in progress on the 
device at one time. Because the device allows multiple 110 operations to be in 
progress simultaneously, the driver uses Driver Queuing to manage its queue of 
IRPs. 

To program the device, it is provided with the 32-bit base address of the 
requestor's buffer, the length of the transfer in bytes, and the transfer direction. 
The maximum transfer length for the device is limited to 64 M -1 bytes 
(Ox3FFFFFF). The device interrupts on transfer completion. The reason for this 
interrupt is contained in the device's interrupt status register. 

Note 

One eccentricity of this device is that it requires the start of the 
requestor's buffers to be aligned on an even longword boundary. That is, 
the low two bits of the logical address of the requestor's buffer are 
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ignored by the device. This driver manages this restriction "automatical
ly" using NT's system scatter/gather facility. Therefore, the driver doesn't 
worry about it. See the section on alignment and length issues later in this 
chapter for a more complete discussion of the issues involved. 

Dispatch Routine 
Processing starts, of course, in the Dispatch routine, where the driver is called 
by the 110 Manager with an IRP to be processed. The code for this driver's 
Dispatch write routine appears in Example 17.5. The code for the Dispatch 
read routine is identical, with the exception of the specific operation being per
formed. 

Example 17.5. Dispatch write routine for the example DMA driver. 

NTSTATUS OsrWrite(PDEVICE_OBJECT DeviceObject, PIRP Irp) 
{ 

POSR_DEVICE_EXT devExt = DeviceObject->DeviceExtensionj 
KIRQL oldIrqlj 
NTSTATUS code = STATUS_SUCCESSj 
BOOLEAN listWasEmptYj 
PIO_STACK_LOCATION ioStackj 
ULONG tempj 

1/ 
II Validate the IRP we've received 
1/ 
ioStack = IoGetCurrentIrpStackLocation(Irp)j 

1/ 
II If the length of the requested transfer is either zero or too long, 
II we immediately compelte the IRP with an error status. 
1/ 
if (ioStack->Parameters.Write.Length == 0 :: 

ioStack->Parameters.Write.Length > OSR_PCI_MAX_TXFER) 

Irp->IoStatus.Status = STATUS_INVALID_USER_BUFFERj 
Irp->IoStatus.Information = 0j 

IoCompleteRequest(Irp, IO_NO_INCREMENT)j 

II Take out the Write list lock, since we'll insert this IRP 
II onto the write queue 
1/ 
KeAcquireSpinLock(&devExt->WriteQueueLock, &oldIrql)j 

continues 
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Continued 

II 
II Since we'll probably be queuing this request, set a routine 
II to be called by the 1/0 Manager in case he needs to cancel 
II this IRP. 
II 
IoSetCanceIRoutine(Irp, OsrCancelFromWriteQueue)j 

II 
II Before we queue this request, has it been cancelled?? 
II 
II What we're doing here is closing that tiny window between the time 
II the Dispatch routine is called and when we acquired the queue spin 
II lock. Once the queue spin lock is held, and the IRP is queued, the 
II cancellation routine will deal with any requests to cancel the IRP. 
II 
if (Irp->Cancel) 

II 

II 

II Can't complete a request with a valid cancel routine! 
II 
IoSetCanceIRoutine(Irp, OsrCancelFromWriteQueue)j 

KeReleaseSpinLock(&devExt->WriteQueueLock, oldIrql)j 

Irp->IoStatus.Status = STATUS_CANCELLED; 
Irp->IoStatus.Information = 0j 

IoCompleteRequest(Irp, IO_NO_INCREMENT)j 

return(STATUS_CANCELLED); 

II If we get this far, we will return with this request pending 
II 
IoMarkIrpPending(Irp)j 

II 
II Do we need to start this request on the device? 
II 
II If there is no IRP currently in progress, we'll start the 
II one we've just received. 
II 
if (devExt->CurrentWriteIrp == NULL) 

II 
II No write presently active. Start this request ... 
II (Note that we're still holding the queue lock here) 
II 
OsrStartWriteIrp(DeviceObject,Irp)j 

else { 
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II 
II Put this request on the end of the write queue 
II 
InsertTailList(&devExt->WriteQueue, &Irp->Tail.Overlay.ListEntrY)j 

II We're done playing with the write queue now 
1/ 
KeReleaseSpinLock(&devExt->WriteQueueLock, oldlrql)j 

return(STATUS_PENDING)j 

The routine starts by validating the received write request. Validation for this 
device is straightforward: 

1. The driver checks to see if the requested transfer length is zero or if it 
exceeds the maximum supported by the device. 

2. If either of these conditions is true, the driver immediately completes the 
request with STATUS_INVALID_USER_BUFFER and returns to the 110 Manager 
with that same status. 

If the request is valid, the driver acquires the write queue spin lock. The driver 
uses this lock to protect the queue of write requests to the device. While hold
ing the lock, the driver sets the Cancel routine in the IRP and then checks to 
see if the IRP has been cancelled. If it has, the lock is immediately dropped, the 
Cancel routine is reset, and the request is completed with STATUS_CANCELLED. 
The driver returns STATUS_CANCELLED to the 110 Manager. 

The driver performs the check for the request being cancelled while holding the 
write queue lock because, in this driver, the queue lock appropriate to the 
request is also used to guard cancel processing. This check for IRP cancellation 
guards against the possibility that the IRP was cancelled prior to the driver 
acquiring the write queue spin lock. If the IRP is subsequently cancelled prior 
to being initiated on the device, the driver's Cancel routine finds the IRP on the 
write queue (after acquiring the write queue lock, of course), and cancels it. 

If the incoming IRP has not been cancelled, the driver marks the IRP pending 
by calling IoMarklrpPending (). If a write request is not already in progress on 
the device, the driver calls OsrStartWriteIrp() to start the request. If a write 
request is already busy on the device, the driver inserts the received IRP at the 
end of the write queue. In either case, the driver returns STATUS_PENDING from 
its Dispatch routine. 
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Preparing for the Transfer 
Given that the device is available to start a write transfer and that the IRP to 
be started is at the head of the write queue, the OsrStartWritelrp () function is 
called. The code for this function appears in Example 17.6. 

Example 17.6. Starting the write request for the example DMA driver. 

VOID 
OsrStartWritelrp(PDEVICE_OBJECT DeviceObject, PIRP Irp) 
{ 

POSR_DEVICE_EXT devExt = DeviceObject->DeviceExtensionj 
PIO_STACK_LOCATION ioStackj 
ULONG mapRegsNeededj 

ioStack = IoGetCurrentlrpStackLocation(Irp)j 

1/ 
II In progress IRPs cannot be cancelled 
1/ 
IoSetCancelRoutine(Irp, NULL)j 

1/ 
II There is no in-progress request. Start this request on the 
II device. 
1/ 
devExt->CurrentWritelrp = Irpj 

devExt->WriteTotalLength = ioStack->Parameters.Write.Lengthj 

devExt->WriteSoFar = 0j 

devExt->WriteStartingOffset = 0j 

1/ 
II Start the watchdog timer on this IRP 
1/ 
(ULONG) Irp->Tail.Overlay.DriverContext[0] = OSR_WATCHDOG_INTERVALj 

1/ 
II Since we're about to initiate a DMA operation, ensure the user's data 
II buffer is flushed from the cache back into memory, on processors that 
II are non-DMA cache coherent. 
1/ 
KeFlushloBuffers(Irp->MdlAddress, FALSE, TRUE)j 

1/ 
II Determine the number of map registers we'll need for this transfer 
1/ 
mapRegsNeeded = 

ADDRESS_AND_SIZE_TO_SPAN_PAGES(MmGetMdlVirtualAddress(Irp->MdlAddress), 
ioStack->Parameters.Write.Length)j 
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1/ 
II If the number of map registers required for this transfer exceeds the 
1/ maximum we're allowed to use (as reported to us from HalGetAdapter() ), 
1/ we'll need to limit ourselves to the maximum we're allowed. 
1/ 
devExt->MapRegsThisWrite = ((mapRegsNeeded > devExt->WriteMapRegsGot) ? 

devExt->WriteMapRegsGot : mapRegsNeeded)j 

1/ 
1/ Ready to GO! Allocate the appropriate Adapter Object and map registers. 
1/ 
IoAllocateAdapterChannel(devExt->WriteAdapter, 

DeviceObject, 
devExt->MapRegsThisWrite, 
OsrAdapterControlWrite, 
Irp)j 

The OsrStartWriteIrp() function starts by setting the Cancel routine for the 
newly in-progress IRP to NULL. This results in the IRP not being cancellable 
while it is in progress on the device. The driver next saves a pointer to the IRP 
in the CurrentWriteIrp field of the device extension. The driver then starts the 
"watchdog timer" value into one of the driver's context fields in the IRP. Each 
second, the driver's watchdog timer code will run and decrement this count in 
the in-progress IRP. In the rare case that the count reaches zero, the device is 
assumed to have stopped functioning. The driver therefore does a soft reset on 
the device, and the currently in-progress request is cancelled by the driver. 

The driver continues by calling KeFlushloBuffers () to flush the contents of the 
requestor's data buffer from processor cache to main memory on systems 
where this is required. The driver then determines the number of map registers 
required to completely map the requestor's buffer, and determines the number 
of map registers that it will request from the HAL. This is the number of map 
registers required to map the user's buffer, up to the limit imposed by the HAL. 

The driver then asks the HAL to reserve its Adapter Object and map registers 
for the transfer by calling IoAllocateAdapterChannel (). The HAL calls the dri
ver's AdapterControl routine (in this instance, OsrAdapterControlWrite ()) when 
the resources for the transfer are available. As a convenience, the driver passes 
a pointer to the IRP to be processed to its AdapterControl routine in the 
Context parameter of the IoAllocateAdapterChannel () function. This is neces
sary because the Irp parameter that the HAL passes into the AdapterControl 
routine is not valid (because the example driver uses Driver Queuing). 

On return from its call to IoAllocateAdapterChannel(), the driver returns from 
the OsrStartWriteIrp() function. This results in returning to the Dispatch rou
tine, which called it (OsrDispatchWrite()), and a return the I/O Manager with 
the status STATUS_PENDING. 
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Programming the Device 
When the Adapter Object and map registers are available for this transfer, the 
HAL calls the driver at the AdapterControl routine specified on the call to 
IoAllocateAdapterChannel (). This function is called at IRQL DISPATCH_LEVEL in 
an arbitrary thread context. The code for the AdapterControl routine 
OsrAdapterControlWrite () appears in Example 17.7. 

Example 17.7. AdapterCantral routine for the sample DMA driver. 

I O_AL LOCAT I ON_ACT ION 
OsrAdapterControlWrite(IN PDEVICE_OBJECT DeviceObject, IN PIRP NotUsed, 

PIRP irp = (PIRP) Contextj 
PIO_STACK_LOCATION ioStackj 
POSR_DEVICE_EXT devExtj 
PUCHAR baseVaj 

IN PVOID MapRegisterBase, IN PVOID Context) 

devExt = DeviceObject->DeviceExtensionj 

ioStack = IoGetCurrentIrpStackLocation(irp)j 

devExt->WriteLength = ioStack->Parameters.Write.Length -
devExt->WriteSoFarj 

/! 
II Get set-up for the transfer 
/! 
devExt->WriteMapRegBase = MapRegisterBasej 

baseVa = MmGetMdlVirtualAddress(irp->MdlAddress)j 

devExt->WriteStartingOffset = devExt->WriteSoFarj 

/! 
II Get the base address and length of the segment to write. 
/! 
devExt->WritePaToDevice = IoMapTransfer(NULL, 

irp->MdlAddress, 
MapRegisterBase, 
baseVa+(devExt->WriteSoFar), 
&devExt->WriteLength, 
TRUE)j II WriteToDevice 

/! 
II Update the length transfered so far 
/! 
devExt->WriteSoFar += devExt->WriteLengthj 

/! 
II Put the request on the device 
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II 
(VOID)KeSynchronizeExecution(devExt->InterruptObject, 

OsrStartWriteOnDevice, 
DeviceObject) j 

return(DeallocateObjectKeepRegisters)j 

OsrAdapterControlWrite () is also a rather straightforward function. On entry, 
the driver adjusts the length of the request to reflect any previous transfers that 
have been performed on this buffer. This will be the case only when you have 
re-entered this routine to continue processing a requestor buffer that could not 
be completely mapped by NT's system scatter/gather facility. The driver then 
performs some simple bookkeeping-storing away the map register base and 
starting offset for this transfer for later use in the DpcForIsr. 

The driver then calls IoMapTransfer (), passing in the traditional NULL as the 
pointer to the Adapter Object, a pointer to the IRP describing the requestor's 
buffer, the map register base, the base virtual address (in the requestor's 
address space) of the start of the transfer, the remaining length of the transfer, 
and a value of TRuE-indicating that the current operation is a write operation. 
IoMapTransfer () returns the logical address to be passed to the device, as well 
as the length to be written. Both these parameters are stored in the device 
extension by the driver. The driver then stores the number of bytes that this 
request will have successfully written so far. 

At this point, the driver is ready to program the device to perform the DMA 
write operation. The starting logical address and length of the transfer have 
been stored in the device extension. The driver next requests the kernel to call 
the driver's routine that actually programs the device while holding the ISR 
spin lock (in order to interlock this check against the driver's ISR). The driver 
does this by calling KeSynchronizeExecution (), which was described fully in 
Chapter 15, "Interrupt Service Routines and DPCs" (see Figure 15.4 for the 
function prototype). 

KeSynchronizeExecution () raises to the synchronize IRQL of the device's ISR, 
acquires the ISR spin lock, and directly calls the driver function 
OsrStartWriteOnDevice(). OsrStartWriteOnDevice() programs the AMCC device 
hardware for the write operation, using the appropriate HAL functions 
(WRITE_PORT_ULONG and READ_PORT_ULONG). When OsrStartWriteOnDevice() returns, 
KeSynchronizeExecution () returns to the caller in OsrAdapterControlWri te (). At 
this point, the device has been programmed to perform the indicated transfer. 
The device will interrupt when the transfer is complete. The driver returns 
from its AdapterControl routine with the status DeallocateObj ectKeepRegisters, 
which indicates that the HAL may free the Adapter Object, but that the driver 
retains the map registers for the duration of the transfer. These map registers 
will be explicitly returned by the driver in the DpcForIsr. 
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Because OsrStartWri teOnDevice () is totally device-specific, and rather ugly and 
boring, this code has been omitted. We pick up the flow of control in the 
Interrupt Service Routine. 

Interrupt Service Routine 
When the transfer is complete, the device generates an interrupt. This results in 
the driver's ISR being called. The code for the ISR appears in Example 17.8. 

Example 17.8. Interrupt Service Routine for the example DMA driver. 

BOOLEAN 
OsrHandleInterrupt(PKINTERRUPT Interupt, PYOID ServiceContext) 
{ 

BOOLEAN ourDeviceInterrupting = FALSE; 
POSR_DEVICE_EXT devExt = (POSR_DEVICE_EXT)ServiceContext; 
ULONG intRegister; 
ULONG csrRegister; 

II 
II Get the current interrupt CSR from our device 
II 
intRegister = READ_PORT_ULONG(devExt->AmccBaseRegisterAddress+ICSR_OFF); 

II 
II Is our device presently interrupting? 
II 
if (intRegister & AMCC_INT_INTERRUPTED) 

II 
II Yes, it is! 
II 
ourDeviceInterrupting = TRUE; 

II 
II Store away some context so when we get to our DpcForIsr we'll know 
II what caused the interrupt. Specifically, we accumulate bits in the 
II "IntCsr" field of our device extenstion indicating what interrupts 
II we've seen from the device. Note that since we support simultaneous 
II read and write DMA operations, we could get both a read complete 
II interrupt and a write complete interrupt before the DpcForIsr has 
II had a chance to execute. Thus, we must carefully ACCUMULATE the 
II bits. 
II 
II N.B. We guard these bits with the Interrupt Spin Lock, which is 
II automatically acquired by NT before entering the ISR. The bits 
II cannot be set or cleared unless holding that lock. 
/! 
devExt->IntCsr := (intRegister & AMCC_INT_ACK_BITS); 
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II 
II Acknowledge the interrupt on the device 
II 
WRITE_PORT_ULONG(devExt->AmccBaseRegisterAddress+ICSR_OFF, 

intRegister}j 

II 
II IF the interrupt was as a result of a READ or WRITE operation 
II completing (either with success or error) request our DpcForIsr. 
II 
if(intRegister & (AMCC_INT_READ_COMP : AMCC_INT_WRITE_COMP)} 

IoRequestDpc(devExt->DeviceObject, 0, NULL}j 

return(ourDeviceInterrupting}j 

The ISR is entered at the device's synchronize IRQL, as specified on the driver's 
call to IoConnectInterrupt (), and in an arbitrary thread context. When entered, 
the system is holding the ISR spin lock associated with this ISR's Interrupt 
Object. 

As in any ISR, this routine first checks to see if the device described by the 
Service Context parameter passed into the ISR is interrupting. If it is not, the 
ISR returns FALSE. 

If the driver's device is interrupting, the driver carefully accumulates bits indi
cating the reason for the interrupt in a storage location in its device extension. 
These bits indicate, for example, whether a DMA read operation is complete 
or a DMA write operation is complete. 

The driver next acknowledges the interrupt on the device, and requests its 
DpcForIsr by calling IoRequestDpc (). Note that the driver does not attempt to 
pass any context back from its ISR to its DpcForIsr via the Context parameter 
to IoRequestDpc () because multiple DMA operations can be in progress at one 
time. Thus, any attempt to pass context back via IoRequestDpc () would be 
futile, because multiple requests to invoke the DpcForIsr, prior to the 
DpcForIsr running, will result in one DpcForIsr invocation. This was discussed 
previously in Chapter 15, in the section "DpcForIsr and CustomDpc." 

The ISR returns TRUE to indicate that its device was interrupting when the ISR 
was called. As a result of calling IoRequestDpc(), the next routine entered is the 
driver's DpcForIsr. 
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Completing the Transfer and Propagating 
Driver Execution 
When the processor next attempts to return to an IRQL below DISPATCH_LEVEL, 
the DPC Object for the example driver will be de queued, and the driver's 
DpcForIsr will be called. The code for this DpcForIsr appears in Example 17.9. 

Example 17.9. DpcForlsr for the sample DMA driver. 

VOID 
OsrDpcForIsr(PKDPC Dpc, PDEVICE_OBJECT DeviceObject, PIRP Unused, PVOID 

Context) 

POSR_DEVICE_EXT devExt = (POSR_DEVICE_EXT) DeviceObject->DeviceExtensioni 
PLIST_ENTRY entrYi 
PIRP irpi 
PVOID baseVa i 
ULONG mapRegsNeeded; 

/! 
II Write complete?? 
/! 
if( KeSynchronizeExecution(devExt->InterruptObject, 

WritelsDone, 
devExt)) { 

/! 
II Get the write queue lock 
/! 
KeAcquireSpinLockAtDpcLevel(&devExt->WriteQueueLock); 

/! 
II Get the address of the in-progress request 
/! 
irp = devExt->CurrentWritelrp; 

/! 
II See if there's an entry on the Write queue that needs to be 
II completed or continued. 
/! 
if (irp) 

II 
II There is an IRP currently in progress. 
II 
baseVa = (PUCHAR)MmGetMdlVirtualAddress(irp->MdlAddress)+ 

devExt->WriteStartingOffset; 

IoFlushAdapterBuffers(devExt->WriteAdapter, 
irp->MdlAddress, 
devExt->WriteMapRegBase, 
baseVa, 
devExt->WriteSoFar
devExt->WriteStartingOffset, 
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TRUE) ; II writeToDevice == TRUE 

II 
II Tell the HAL the map registers we were using are free 
II 
IoFreeMapRegisters(devExt->WriteAdapter, 

II 

devExt->WriteMapRegBase, 
devExt->MapRegsThisWrite)j 

II See if there's more of the user's buffer left for us to DMA. 
II Be sure the request was not cancelled whilst in progress. 
II 
if( (devExt->WriteTotalLength - devExt->WriteSoFar) && 

(! irp->Cancel)) { 

II 
II The user buffer has NOT been completely DMA'ed. 
II How many map regs can we use this time? 
II 
mapRegsNeeded = 

ADDRESS~ND_SIZE_TO_SPAN_PAGES( 

MmGetMdlVirtualAddress(irp->MdlAddress)+ 
devExt->WriteSoFar, 
devExt->WriteTotalLength-devExt->WriteSoFar)j 

devExt->MapRegsThisWrite = 
((mapRegsNeeded > devExt->WriteMapRegsGot) ? 

devExt->WriteMapRegsGot 
mapRegsNeeded)j 

IoAllocateAdapterChannel(devExt->WriteAdapter, 
DeviceObject, 
devExt->MapRegsThisWrite, 
OsrAdapterControlWrite, 
irp)i 

else 

II 
II We're going to complete this request 
II 

II 
II Information field contains number of bytes written 
II 
irp->IoStatus.Information = devExt->WriteTotalLengthj 

II and all requests are completed with success ... 
II 
irp->IoStatus.Status = STATUS_SUCCESSj 

continues 
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Continued 

1/ 
1/ 
II ... unless the in-progress I/O operation is cancelled. 
1/ 
if(irp->Cancel == TRUE) 

1/ 

irp->IoStatus.Status = STATUS_CANCELLED; 
irp->IoStatus.lnformation = 0; 

II Complete the request now 
1/ 
IoCompleteRequest(irp, IO_NO_INCREMENT)j 

1/ 
II N.B. We're STILL HOLDING the write queue lock. 
1/ 

1/ 
II No write in progress right now 
1/ 
devExt->CurrentWritelrp = NULL; 

1/ 
II Keep removing entries until we start one. 
1/ 
while ( ldevExt->CurrentWritelrp && 

1 IsListEmpty(&devExt->WriteQueue) ) { 

entry = RemoveHeadList(&devExt->WriteQueue)j 

irp = CONTAINING_RECORD(entry, 

1/ 

IRP, 
Tail.Overlay.ListEntry); 

II If this IRP is cancelled, cancel it now, without 
II initiating it on the device 
1/ 
if (irp->Cancel) 

irp->IoStatus.Status = STATUS_CANCELLED; 
irp->IoStatus.lnformation = 0; 

1/ 
II Complete the request now 
1/ 
IoCompleteRequest(irp, IO_NO_INCREMENT)j 



1/ 

/I 
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else { 

1/ 
II Make this IRP the current write IRP, and 
II start the request on the device. This routine 
II sets devExt->CurrentWritelrp 
1/ 
OsrStartWritelrp(DeviceObject, irp); 

II while (ldevExt->CurrentWritelrp && 
II 1 IsListEmpty(devExt->WriteQueue) 

II Drop the lock 
/I 
KeReleaseSpinLockFromDpcLevel(&devExt->WriteQueueLock); 

II Read Complete?? 
1/ 
if( KeSynchronizeExecution(devExt->InterruptObject, 

ReadlsDone, 
devExt)) { 

/I 
II Code eliminated from listing ... 
/I 

/I 
II We're outa here ... 
1/ 
return; 

For the sake of brevity, we have included only the DpcForIsr code related to 
write completion here. Suffice it to say that the code for read completion is 
identical, except that it refers to the appropriate data structures. 

On entry to the DpcForIsr, the driver checks to see if it needs to process a write 
completion. The driver checks this by calling the function 
KeSynchronizeExecution (), which in turn calls the driver's WriteIsDone () routine 
at synchronize IRQL, while holding the ISR spin lock. As described in Chapter 
15, this operation is required because in this driver, the accumulated status bits 
in the device extension are protected by the ISR spin lock. 
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If a write is not complete, the DpcForIsr continues on to check whether a read 
is complete. 

If a write is complete, the driver acquires the write queue spin lock and checks 
to see whether a write request is in progress. If no write request is in progress, 
the driver falls out of the if statement and proceeds to check to see whether a 
read request is complete. If there is a write request in progress, the driver com
pletes the DMA transfer by flushing any remaining data from the adapter 
buffers by calling IoFlushAdapterBuffers (). The driver then returns the map 
registers that were reserved, calling IoFreeMapRegisters (). Note that both the 
map register base and the number of map registers reserved were stored away 
previously by the driver for use in this call. 

Next, the driver checks to see whether part of the requestor's buffer remains to 
be transferred. That is, the driver checks to see whether there were too few 
map registers available on the last transfer to completely map the requestor's 
buffer. If the entire request has not yet been completed, and if the outstanding 
request has not been cancelled, the driver determines the number of map regis
ters to request, and once again calls IoAllocateAdapterChannel () to continue 
with the request. This call results in OsrAdapterControlWrite () being called, 
which will set up for another piece of the user buffer to be transferred. The dri
ver releases the write queue lock and proceeds to check to see whether a read 
has been completed. 

If the current write transfer completed the entire request (or if the current 
request had the cancel flag set while it was in progress), the driver sets the 
result status in the IRP's IoStatusBlock .fields. If the current IRP has had its 
cancel flag set, the driver sets the completion status to STATUS_CANCELLED and 
the IRP's IoStatus. Information field to zero. The driver then calls 
IoCompleteRequest () to complete the IRP. 

Finally, with the previous operation complete, the driver propagates its execu
tion by checking to see if there are any requests remaining on the write queue. 
If there are, the driver removes the request and checks to see if it has been can
celled. Note that this cancel check determines if the request has been cancelled 
in the time that the DpcForIsr has been holding the write queue spin lock. If 
the request had been cancelled prior to the DpcForIsr acquiring the write 
queue spin lock, the request would have been removed from the write queue 
and cancelled by the driver's cancel routine. If the new request has its cancel 
flag set, the driver completes the request with STATUS_CANCELLED and attempts to 
dequeue another IRP from the write queue. If the newly dequeued request does 
not have its cancel flag set, the driver calls OsrStartWriteIrp() (the code for 
which appears Example 17.6) to begin the processing of this next request. 
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Design Issues for DMA Device Drivers 
The remainder of this chapter deals with specific issues that may be encoun
tered in drivers for DMA devices. The following issues are discussed: 

• Alignment restrictions 

• System DMA 

Alignment Restrictions 
As discussed several times previously, the first step that a driver performs to 
process any transfer request is to validate the parameters passed in the IRP. 
This validation normally includes checking things such as the length of the 
transfer to ensure that they meet the device's requirements. DMA devices, how
ever, sometimes have additional hardware restrictions concerning data buffers 
that drivers will need to check before they can consider a particular request 
valid. These restrictions typically apply to the alignment, length, or fragmenta
tion of the requestor's data buffer. 

It is not uncommon for DMA devices to require that requestor data buffers 
begin on particular memory boundaries. For example, the AMCC S5933 DMA 
controller used as our Packet-Based DMA driver example requires all frag
ments of the requestor's data buffer to be aligned, starting on an even long
word boundary. In Windows NT, a driver has only two options for enforcing 
such requirements: 

• Pass the requirement on to the user. That is, inform users of the device 
that all data buffers used for data transfers must be properly aligned, 
and/or must be of an appropriate length. The alignment requirement can 
be enforced by the driver appropriately setting the AlignmentRequirement 

field in the Device Object. Because buffer alignment in virtual address 
space is the same as buffer alignment in physical address space, users can 
actually control whether this requirement is met. Thus, the physical (but 
not logical) alignment of the requestor's data buffer can be ascertained by 
examining the Irp->UserBuffer field in the IR~. 

• Rebuffer the request if a received requestor's data buffer does not meet 
the alignment requirements. If a request cannot be refused due to faulty 
alignment, the driver has no choice but to provide an appropriately 
aligned intermediate buffer for use in the transfer. The driver is then 
responsible for copying the data between the intermediate buffer and the 
actual requestor's data buffer. 
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Compounding the problem of validating requests for buffer alignment is the 
fact that the driver can't be sure that an alignment requirement will not be met 
until it receives the logical address for the transfer back from IoMapTransfer ( ). 
Consider, for example, the case of a device that does not support scatter/gather 
and a HAL that performs intermediate buffering for the purpose of buffer frag
ment agglomeration. This is the case for the AMCC example driver and the 
standard x86 HAL. In this case, checking the base address of the data buffer 
prior to the intermediate buffering operation will be pointless. In fact, when 
the HAL rebuffers requests, it will typically use an internal buffer that is 
aligned on a page boundary. 

The solution most often offered by hardware colleagues, that of moving the 
first few bytes of the data via PIa to achieve the required alignment, is rarely 
possible. In most hardware designs, DMA input is directly wired to device 
output. There is rarely a "way around" the DMA mechanism that allows a 
random few bytes to be moved prior to a DMA transfer. 

~(Jte 

Although alignment restrictions are not unique to NT, several UNIX 
variants rebuffer requests on nicely aligned boundaries. Therefore~ even 
software-savvy hardware designers often make the mistake of thinking 
that alignment requirements are not onerous to driver writers. 

There is no ideal solution to the problem of alignment constraints on NT. The 
best solution, of course, is to intervene early in the hardware design process to 
ensure that such restrictions aren't introduced. If this is not possible, remember 
that rebuffering requests to make them aligned really isn't that bad. 

System DMA 
As described in Chapter 8, "110 Architectures," System DMA utilizes the hard
ware system-supplied controller to perform DMA operations. System DMA is 
a legacy of the original PC design and few devices that are developed today use 
system DMA. The notable exceptions are sound cards and floppy disk drivers, 
both of which are typically System DMA devices. 

System DMA transfers are performed by using DMA channels. On NT, multi
ple devices may share one DMA channel. Access to a device's DMA channel is 
coordinated by using the Adapter Object, along with its access to map regis
ters. Because System DMA devices can have only one request in progress at a 
time, drivers for these devices typically use System Queuing of IRPs. 

Packet-Based System DMA 
The procedures for a driver to support Packet-Based System DMA are almost 
identical to Packet-Based Busmaster DMA. Because they perform Packet-Based 
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DMA operations, drivers for Packet-Based System DMA devices typically have 
their requests described by using Direct 110. System DMA devices do not sup
port scatter/gather. Thus, drivers for these devices will call IoMapTransfer() one 
time within their AdapterControl routine. 

When a Packet-Based System DMA device calls IoMapTransfer(), the HAL pro
grams the system DMA controller for the transfer. After IoMapTransfer() has 
been called, the driver programs the device with the transfer information and 
requests it to start the transfer. The device subsequently interacts with the sys
tem DMA controller to actually move the data between the device and the 
requestor's data buffer. 

AdapterControl routines for System DMA devices return the status KeepObject 

to indicate to the HAL that they need to retain their Adapter Object and the 
associated DMA Channel and map registers. As a result of this, in the 
DpcForIsr the driver will need to return the Adapter Object to the HAL by 
calling IoFreeAdapterChannel (). This function also automatically returns any 
map registers that were reserved. The prototype for this function appears in 
Figure 17.11: 

VOID 
IoFreeAdapterChannel(IN PADAPTER_OBJECT AdapterObject); 

AdapterObject: A pointer to the Adapter Object for the transfer 

Figure 17.11. IoFreeAdapterChannel() function prototype. 

After the Adapter Object has been freed, the driver completes the outstanding 
request. The driver completes its processing in the DpcForIsr by propagating its 
execution, typically by calling IoStartNextPacket (). 

Common-Buffer System DMA 
Common-Buffer System DMA is a bit more complicated to implement. This 
type of DMA is used by drivers that utilize "auto-initialize" System DMA 
mode. 

A Common-Buffer System DMA driver works much like a cross between a 
Packet-Based and Common-Buffer Busmaster driver. During initialization, the 
driver gets a pointer to its adapter by calling HalGetAdapter(). Drivers for 
System DMA devices should get one Adapter Object per supported simultane
ous transfer. For most devices, this will mean that the driver gets only a single 
Adapter Object. Due to the coordination required with the system DMA con
troller, drivers for Common-Buffer System DMA devices must not call 
HalGetAdapter () to allocate a separate Adapter Object for use with the common 
buffer (unlike Common-Buffer Busmaster DMA drivers). 
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During driver initialization, the driver allocates the common buffer by calling 
HalAllocateCommonBuffer (). Using the logical address returned by 
HalAllocateCommonBuffer(), the driver next builds an MOL to describe the com
mon buffer. This MOL is required in order to call IoMapTransfer(), later during 
processing of a particular I/O request. The MOL is built by calling 
IoAllocateMdl () (the prototype for which appears in Figure 16.2 in Chapter 
16), and the unlikely sounding function MmBuildMdlForNonPagedPool (). This 
function, the prototype for which is shown in Figure 17.12, builds an MOL 
for any nonpageable system memory, including nonpaged pool and common 
buffers for DMA. 

VOID 
MmBuildMdlForNonPagedPool(IN PMDL Mdl); 

Mdl: A pointer to a partially initialized MOL. 

Figure 17.12. MmBuildMdlForNonPagedPool () function prototype. 

When a request is received, the driver will typically validate the request, mark 
it pending by calling IoMarkI rpPending ( ), and call IoStartPacket ( ). When the 
device is available, the I/O Manager will call the driver's StartIo routine. 
Within this routine, if the request is a write to the device, the driver moves the 
data from the requestor's data buffer to the common buffer. The driver then 
calls IoAllocateAdapterChannel () to request the HAL to allocate the Adapter 
Object, System DMA channel, and any map registers that may be required to 
perform the transfer. 

Once in its AdapterControl routine, the driver calls IoMapTransfer () once, pro
viding the MOL built earlier to describe the common buffer area. This results 
in the HAL programming the appropriate system DMA controller for the 
transfer. The driver then programs the device appropriately, using the returned 
logical address and length of the data to be transferred. The driver then returns 
KeepObj ect from its AdapterControl routine. 

It may seem like there's a natural optimization to the process just dis
cussed: Perhaps you could call IoMapTransfer () only once, during initial
ization, instead of calling it every time from the AdapterControl routine. 
However, this optimization is not possible. This is because 
IoMapTransfer() does much more than just return the contents of the 
MDL. For System -DMA, IoMapTransfer ()actually programs the System 
DMA controller for the transfer. 
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When the transfer is completed, the device will interrupt and the driver will 
request a DpcForIsr. Within the DpcForIsr, the driver must flush the adaI ter 
buffers to ensure that the transfer is complete. This is accomplished by calling 
IoFlushAdapterBuffers (). The driver must then return the Adapter Object, 
DMA channel, and map registers that were allocated for the transfer by calling 
IoFreeAdapterChannel (). The driver then completes the 110 request and propa
gates its execution, most likely by calling IoStartNextPacket ( ). 





Chapter 18 
Building and Debugging Drivers 

This chapter will review: 

• Setting Up the Driver Development Environment. Installing and con
figuring the software needed to develop, test, and debug drivers can be 
difficult for driver developers who are new to the Windows NT environ
ment. This section describes in detail all the steps needed to set up a fully 
functional driver development environment. 

• Building Drivers. This section describes the utilities, control files, and 
procedures used for compiling and linking drivers. 

• Driver Debugging. With your driver built and your environment estab
lished, how do you actually debug your driver? This section answers all 
of your questions about debugging. 

• Debugging and Testing Hints and Tips. Debugging kernel drivers is a 
slow process. This section provides several tips learned through long 
experience that will help you along the way. 

• Behind the Blue Screen. When Windows NT crashes, it displays the omi
nous "blue screen of death." This section provides an introduction to the 
blue screen, and helps you interpret its meaning. 

• Crash Dumps. Many driver writers are not aware that Windows NT 
contains support for post-mortem debugging. This brief section describes 
how to enable this feature and how to debug the resulting dump files. 

This chapter discusses how you set up a driver development environment, 
including what you need to build drivers for Windows NT, as well as the steps 
that are necessary to set up the debugger. The chapter concludes with some 
hints and tips for driver testing and debugging. 
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Setting Up the Driver Development 
Environment 
Setting up the environment needed to support Windows NT driver develop
ment entails setting up two systems: a Development System and a Test System. 
We describe this process in several steps, which are as follows: 

1. Getting the necessary software. You'll need an appropriate compiler and 
the other Microsoft components that supply the header files, libraries, 
test environment, and the utilities necessary for driver development. 

2. Setting up the systems. This step entails installing two systems, with 
appropriate versions of the operating system and other software you 
accumulated in Step 1. 

3. Setting up debugging. In this step, you'll enable kernel-debugging support 
on the Test System, and configure the kernel debugger on the 
Development System. 

The following sections describe these steps in detail. 

Getting the Necessary Software 
To build drivers under Windows NT, you'll need a compiler. For all practical 
purposes, this means that you must use Microsoft Visual c++ (MSVC). For 
Windows NT V4, you'll need at least MSVC V4.1 or later. Although it is possi
ble to use other vendors' C compilers, the Windows NT Device Driver Kit 
(DDK) and debugger software assume that you're using MSVC. This means the 
necessary header files have been optimized for use with MSVC. Thus, unless 
you have a specific and compelling reason to do otherwise, we strongly recom
mend that you stick with MSVC. 

The compiler itself is not enough, however. The next thing you'll need is a sub
scription to the Microsoft Developer's Network (MSDN), available directly 
from Microsoft (see http://www.microsoft.com/MSDN). Because MSDN subscrip
tions come in several different flavors, you'll need at least a subscription to the 
Professional Edition. When you subscribe, you'll need to specifically request 
the DDK (Device Driver Kit) CDs. While you're at it, if you're writing code for 
other than the United States market or you would find the international ver
sions of Windows NT useful, you can also specifically request the international 
CDs. There is no extra cost associated with requesting either the DDK or the 
international CDs as part of the MSDN Professional Edition subscription. 
However, these components do have to be specifically requested or you will 
not get them as part of your subscription. 
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The MSDN CDs contain lots of Microsoft software, not just the software nec
essary for writing drivers. Distributions of Windows 9x, Windows NT, and 
many development kits are provided. In addition to the Windows NT operat
ing system software itself, there are three things that MSDN provides that per
tain to writing drivers: The Microsoft Developer Network Library CDs, the 
Platform Software Development Kit (SDK), and the DDK. 

The DDK contains the documentation and header files that are needed to write 
NT drivers. The documentation is provided in online format, accessed via 
Info Viewer. This makes it easily searchable, and it's even moderately easy to 
print hard copies of the documentation for casual perusing. 

What is most impressive and useful about the DDK is that it comes complete 
with source code examples of more than 50 real Windows NT drivers. The 
provided samples span (almost) the entire range of the NT driver-writing 
realm: from SCSI Miniport drivers to standard Kernel mode drivers and almost 
everything in between. Only file system examples are absent (and those are 
available as part of the separately licensed Windows NT Installable File 
Systems Kit). Here is what's particularly useful about the provided samples: 
When the name of one of the sample drivers is the same as a "real" driver that 
is provided as part of the regular Windows NT distribution kit, the sample dri
ver is usually the actual source code for that driver on the NT Kit. This allows 
you to see and understand how many things work in the NT 110 subsystem. 
This benefit also allows you to build and modify one of the provided sample 
drivers from source, substitute it for the existing NT driver, and watch how it 
works. 

The SDK contains all the header files and tools normally required to build User 
mode applications for Windows NT. For driver building, you need to install 
only the SDK tools. The most important tool to install is WinDbg, the debug
ger from the SDK that supports Kernel mode debugging. 

Finally, there are the MSDN Library CDs. These CDs contains a wealth of 
wide-ranging information about software development on all the supported 
Microsoft platforms. The Library CDs include the Knowledge Base (KB). 
The Knowledge Base is a collection of articles written to address specific issues 
(often as the result of a problem or bug report). Some KB articles describe 
otherwise undocumented features or system behavior. Others describe known 
problems and workarounds. The KB is searchable by keyword. It is worth 
your time to wander through the KB periodically and check what new things 
pop up. 

Setting Up the Systems 
To develop drivers on Windows NT using the Microsoft-supplied tools, you 
will need two systems that are capable of running Windows NT. One of these 
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systems will be your Development System, which is the system on which you 
will edit and build your driver. This will also be the system on which you run 
the debugger. The goal is to keep this system stable and not subject it to the 
random crashes that running a new driver tends to cause. For maximum pro
ductivity, your Development System should be configured with a reasonable 
CPU and as much memory as possible. While CPU speed is nice to have, there 
really is no substitute for lots of memory. A 120MHz Pentium and 64MB of 
memory is really the minimum for good performance on your Development 
System. Doubling the memory and CPU speed is not at all unreasonable. 

The second system will be your Test System. Your Test System will be the sys
tem on which you will be running your driver under test. The Test System can 
be much more conservatively configured than your Development System. 
Whatever Pentium CPU is available and 32MB of memory will typically serve 
as a reasonable Test System. As described in detail later, you will use your 
Development System to control your Test System, via the kernel debugger. 

!Slate 

Numega Technologies, Inc. has a product for Windows NT called 
SoftICE. This product allows driver development and debugging by using 
a single system. Even if you use SoftICE, we recommend that you use 
two systems for driver development. This prevents the potential problems 
of losing files if your driver crashes and, by a stroke of bad luck, wipes 
out your file system. While not likely, this is certainly possible. 

Setting Up the Test System 
There are two versions of the Windows NT operating system that are provided 
with MSDN and used during driver development. These two versions are 
known as the Free Build (also sometimes called the Retail Build) and the 
Checked Build (also known as the Debug Build). 

The Free Build is the normal, ordinary Windows NT binary distribution kit. It 
doesn't say anything unusual on the MSDN distribution CD. This version is 
intended for regular distribution, and is built by Microsoft using compiler opti
mizations and without much cross-checking or debug-specific code. In contrast, 
the Checked Build is a version of NT that Microsoft specifically designed for 
use by device driver writers. It is clearly labeled "Checked Build" on the 
MSDN distribution CD. When the Checked Build is compiled by Microsoft, it 
is compiled with many fewer optimizations (making the code easier to trace). It 
also has the symbol DBG defined at compile time. Defining this symbol in the 
operating system source code causes lots of conditional debugging code to be 
included in the build. This debugging code checks many function parameters 
for "reasonableness," and in general attempts to identify and trap various run
time errors. 
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The Checked Build is only intended for use on a Test System. While it could be 
used on a regular Development System, the inclusion of all the debugging code 
and lack of compiler optimizations makes it run slower than the Free Build. 
This is especially true because when you install the Checked Build, you get the 
checked version of everything. You get a checked NT operating system, a 
checked HAL, plus the checked versions of every single driver and Kernel 
mode DLL in the system. 

You can install the Checked Build on your Test System by using the Checked 
Build distribution kit included in MSDN. This build of the operating system is 
installed in the same way as any other version of Windows NT. However, as 
mentioned previously, this installs checked versions of every component in the 
system, which can result in a rather slow system. 

One alternative to installing the complete Checked Build on your Test System 
is to install the Free Build, and then replace the individual Free Build compo
nents of interest to use with their Checked Build counterparts. Thus, for exam
ple, if you are writing a standard Kernel mode driver, you would install the 
Free Build of NT on the Test System. You would then replace the Free version 
of the operating system (ntoskrnl. exe or ntkrnlmp. exe, depending on whether 
the system is single processor or multiprocessor) and HAL (hal. dll) with the 
same files from the Checked Build. 

The only difficulty with this alternative approach is that finding and replacing 
these files may not be quite as simple as it sounds. First, you absolutely must 
replace the HAL and NTOS images together. You can't have, for example, the 
Checked version of the HAL and the Free version of NTOS. They either both 
have to be Checked or they both have to be Free, or the system will not boot. 
These files all live in the \SystemRoot\System32 directory. To replace the Free 
versions with the Checked versions, copy the files you want to replace from the 
\i386 or \alpha directory of the Windows NT Checked Build distribution disk 
supplied with MSDN to the \SystemRoot\System32 directory of your Test 
System. 

There are still a couple of "tricks" left to discuss, however. One is that you 
might need to determine which HAL your Test System is using. The file in 
\SystemRoot\System32 is always called HAL.DLL. However, the original HAL 
file that was copied to create this file might be named something else. This will 
be true, for example, when your Test System is a multiprocessor system. To 
find out which HAL is installed on your Test System, check the contents of the 
file \SystemRoot\Repair\setup.log. This file will contain a line such as the fol
lowing: 

\WINNT\system32\hal.dll = "halmps.dll","1a01c" 
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This shows that the HAL being used on the current system is actually 
halmps. dll. If you have trouble even finding setup.log in the 
\SystemRoot\Repair\ directory, it's because it's a hidden file. Just attrib it -h and 
you should have no problem! 

The remaining trick is that the image of the HAL on the Checked distribution 
kit might be compressed. This is a good trick to know in general because the 
files that are distributed compressed on the Windows NT kit disk can change 
over time. You can identify a compressed file by a file type that ends with an 
underscore. Thus, if the HALMPS image is not compressed on the Checked 
distribution kit, you'll be able to find it in the \i386\ directory and it will be 
named halmps. dll. On the other hand, if the file is compressed, it will be in the 
\i386\ directory and will be named halmps. dl_. 

To expand a compressed file, use Microsoft's Expand utility. The easiest way to 
do this is to copy the desired file to its ultimate location by copying halmps. dl_ 

from the \ i386 \ directory on the Checked Build CD to 
,1\SystemRoot\system32\HALMPD. DL_. Then, simply use the expand command from 
the command shell, as follows: 

expand -r halmps.dl_ 

The preceding command expands the file and automatically names the result
ing expanded file halmps. dll. 

A second alternative to installing the complete Checked Build on your Test 
System is to install the Free Build, and then copy the Checked Build compo
nents of interest to your Test System-placing them in their usual directories, 
but with unique names. Thus, instead of copying the appropriate files from the 
checked distribution kit to the \SystemRoot\System32 directory and naming them 
ntoskrnl. exe and hal. dll, you copy these same files (the checked kernel and 
HAL images) and name them, for example, ntoscheck.exe and halcheck.dll. 

You may then create a boot option, specifying these checked system compo
nents by editing the file boot. ini and specifying the /KERNEL= and /HAL= switch
es. The process of editing boot. ini is discussed later. 

When you~re developing a drive~ make sure you test it on both the Free 
and Checked versions of NT! The timings on these systems are very dif
ferent~ due to the extra parameter checking in the Checked Build of the 
operating system. You should use the Checked version of NT exclusively 
during the early stages of driver development. Once the majority of your 
driver code is running, switch to testing and debugging on the Free Build 
of the system. Prior to release, run a complete set of tests on both the 
Checked and the Free Builds of Windows NT. 
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Setting Up the Development System 
To properly set up your Development System, install the Free Build of 
Windows NT with whatever service packs or hot fixes that are required to 
make it most current. You also must install MSVC, the DDK, and the SDK on 
the Development System. To maximize the ease of installation and later use, 
install these software components by using the account from which you'll be 
doing your driver development. In addition, it usually works best to install the 
SDK first, followed by MSVC, and then the DDK. Note that you do not need 
to install these components on your Test System-they are installed only on 
your Development System. 

Connecting the Development and Test Systems 
In the standard Windows NT driver development environment, the Test System 
is controlled by the debugger running on the Development System. The two 
systems are connected via a serial null-modem cable, attached to a serial port 
on each system. Choose a free serial port on each system and connect the two 
systems via a serial null-modem cable. Remember which serial port you use on 
each system, because later you'll have to tell the software which port to use. 

Note 

Some people have trouble determining what specific type of serial null
modem cable to use to connect the Development System and the Test 
System. In fact~ the cheapest possible serial cable wired in a null-modem 
configuration will typically work best. This configuration wires pin 2 on 
one end of the cable to pin 3 on the othe~ pin 3 on one end of the cable 
to pin 2 on the othe~ and connects the ground pins together. We have 
had particularly good luck ordering serial LapLinkTM cables as debugger 
cables. Not only do they work~ but also they typically have both 9-pin 
and 25 -pin connectors at each end. 

Setting Up Debugging 
To set up the Windows NT dual-system debugging environment used for driver 
debugging, you need to do two things: 

1. Enable kernel debugging on your Test System, which will allow you to 
control the Test System from the debugger on the Development System. 

2. Set up and start the debugger on your Development System. This process 
entails setting all the right options in the debugger to enable it to commu
nicate with the kernel debugger running on the Test System. 

The next two sections specifically discuss these procedures. 
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Enabling Kernel Debugging on the Test System 
Kernel-debugging support is included in all Windows NT systems, regardless of 
whether the system is Free or Checked. Ordinarily, kernel debugging is not 
enabled on a system. To enable it on your Test System, you need to instruct 
Windows NT to turn on debugging support at boot time. On x86 architecture 
systems, you do this by editing the file boot. ini in the root directory of the 
boot volume. 

To enable kernel debugging on Alpha systems, instead of editing boot.ini, 
you modify the OSLOADOPTIONS environment variable from the ARC 
console firmware. You use the same switches (such as /DEBUGPORT=x 

/BAUDRATE=y), described later in this chapter for x86 systems. 

boot. ini is the control file that directs the Windows NT boot process. Figure 
18.1 illustrates what the contents of boot. ini look like when Windows NT v4 
is initially installed on a system. 

[boot loader] 
t:t~.oUt';10 
default·.ult! (O)d1sk.( O)rdisk I 0lparU Uon(1) WINNY 
[Dper~t~ng systerras] 
ou1 tit O)d1Sk (D)rdiskl·O) parti tion( 1 )\I!INHT ="Windows NTWorkstaUon Uersion 4. DO" 
oulti(Old1sk(D)rdisk(O).partition(1lWINHY."liindo.s NT WorkstaUon Uersion 4.00 [UG~. "ode}" Ibose.iileo Isos 

Figure 18.1. boot. ini before editing to enable debugging. 

Each line in the [operating systems] section of the file points to the 
SystemRoot (that is, the base directory into which Windows NT was installed 
on the system) of a Windows NT system that can be potentially started. 
During NT system startup, the ntldr program reads boot. ini and displays this 
list of systems. The user selects the operating system that they want to start 
from this list. If no selection is made, a default choice is taken after a timeout 
period. 

Debugging support is enabled in an NT system by adding switches to a partic
ular operating system line in boot. ini. These switches tell NT which system 
files to load, whether or not kernel debugging support should be enabled when 
the system is started, and (if kernel debugging support is enabled) how to com
municate with the remote debugger. Some of the most common switches used 
to control kernel-debugging options are as follows: 

• /DEBUG. Enables kernel-debugging support and indicates that during sys
tem bootup the system should attempt to connect with the remote kernel 
debugger. 
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• IDEBUGPORT=x. Specifies that serial port x should be dedicated to use with 
the kernel debugger. Implies IDEBUG. 

• IBAUDRATE=y. Indicates the speed at which serial port x should be set. 
Obviously, this speed must be the same as that used by the kernel debug
ger on the Development System. 

• IKERNEL=filename. Indicates that for this boot option the kernel image 
named filename should be loaded from the \SystemRoot\System32\ 

directory. 

• IHAL=filename. Indicates that for this boot option, the HAL image named 
filename should be loaded from the \SystemRoot\System32\ directory. 

The best way to enable kernel debugging for a system is to add an additional 
choice to the list of systems to start. If kernel-debugging support is desired, the 
system with kernel-debugging support can be selected from the list shown at 
boot time. If kernel-debugging support is not required, a system without 
kernel-debugging support enabled can be started. 

To add an additional choice to boot. ini, simply copy the line in the [operating 

systems] section that describes the operating system image that you want to 
boot. Put this copy on a line by itself in boot. ini and append the appropriate 
debugger control switches listed previously. Figure 18.2 shows a version of 
boot. ini that has been updated to include a third operating system option to 
be started, which has debugging enabled. 

NT Workstation Uerslon 4.00 fUCA I1lUde]"' Ibase.ideo 1505 !):~mi1:m~mi~:i:~m~~:H.i~:::m~=m~:E:::!:~:~:: NT Wo~kstation Ue.sio" 4.00" 
HT Workstation Ue.sioo 4.00" /debugporte co",1 IbaUdrate·19200 

Figure 18.2. boot. ini after it has been edited to add a boot choice with kernel debug
ging enabled. 

Note in Figure 18.2 that COM1 has been chosen as the serial port on the Test 
System that will be connected via the null-modem cable to the Development 
System. The speed chosen for this port is 19200 bps. 

!$late 

When setting up our Test and Development Systems~ we always initial
ly choose a very low baud rate. This makes it easier to establish the 
initial connection between the two systems. Late~ when you have veri-

continues 
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Continued 

tied connectivity between the two systems~ you can raise the baud rate 
(on both) to the highest working speed (typically 115200). Using a 
higher speed makes debugging a lot more pleasant. 

The next time that NT is started on the Test System with the boot. ini that 
appears in Figure 18.2, there will be three choices of which system to start dis
played. The third choice will indicate that the debugger is enabled. To enable 
kernel debugging on the Test System, reboot the system and select the choice 
with debugging enabled. 

There is one trick that you have to be aware of when you edit boot. ini. This is 
the fact that, by default, boot. ini is a read only, system, hidden file. Therefore, 
before you can edit boot. ini successfully, you will need to change its attributes 
(by using Explorer or another appropriate utility) to remove at least the read 
only attribute. The other attributes do not have to be changed. Further, after 
editing boot. ini, there is no need to restore the read only attribute. 

Setting Up and Running the Debugger on the 
Development System 
Enabling kernel debugging on your Test System merely allows that system to 
be controlled by another system running an appropriate kernel debugger. The 
next step in the process of getting a driver development environment estab
lished entails setting up and running the kernel debugger on your Development 
System. 

The standard remote debugger that is supplied as part of the Windows NT 
SDK is WinDbg (pronounced "wind bag" by all those who know and love it). 
This debugger includes kernel-debugging support, which will let you control 
your Test System from your Development System. To set WinDbg up with 
kernel-debugging support, start WinDbg (by selecting \Start\Platform 
SDK ... \Tools ... \WinDbg), and select Options from the View Menu Item. In the 
WinDebug Options dialog box, select the Kernel Debugger tab, as shown in 
Figure 18.3. 

To enable kernel debugging, click the Enable Kernel Debugging check box in 
the Flags section of the WinDebug Options dialog box. In the Communications 
section of this same dialog box, set the appropriate options regarding your 
communications setup. Set the Baud Rate option to the baud rate for the null
modem connection to the kernel debugger. This must match the baud rate that 
you previously set in boot. ini on the Test System. Using the Port option, select 
the port on your Development System that will be connected via the null
modem cable to the Test System. The Cache Size parameter indicates the initial 
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size of WinDbg's cache, which is used to hold values. The default is usually 
sufficient. Finally, set the Platform option to correctly indicate the processor 
architecture (x86 or Alpha) of the Test System. When satisfied with your selec
tions, click on the Symbols tab of the WinDebug Options dialog box to pro
ceed to setting up the symbol search path. Figure 18.4 shows the Symbols tab 
of the Options dialog box. 

Figure 18.3. The Kernel Debugger tab of the WinDebug Options dialog box. 

Figure 18.4. The Symbols tab of the WinDebug Options dialog box. 

Note that WinDbg can be used to debug drivers on an Alpha system 
from an x86 architecture system~ or vice versa; by selecting the 

continues 
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Continued 

appropriate processor architecture as WinDbg's Platform value. This 
cross-platform setup can be useful in a pinch. Howeve1; it's not ideal 
as a normal environment because the MSVC compilers are not cross
compilers. To produce an Alpha architecture executable, you run the 
Alpha version of the MSVC compiler on an Alpha system. This means 
your Development System will have to be an Alpha system, as well as 
your Test System. 

From the Symbols tab, enter the path that WinDbg should search for debug
ging symbols in the text box labeled "Path used to search for the debugging 
symbols." You should dedicate a directory on your Development System to 
hold debugging symbols, such as c: \DEBUG. This will be referred to as your ded
icated debugging directory. When you first set up WinDbg, your dedicated 
debugging directory should be empty. The contents of this directory are dis
cussed later. The remaining options, such as Load Time and Symbol Suffix, in 
the Symbols tab of the WinDebug Options dialog box may be ignored. 

When you are satisfied with your choices, click OK. Then start WinDbg by 
selecting the Go option from the Debug menu (or hit F5). WinDbg should dis
playa message similar to that shown in Figure 18.5. 

Figure 18.5. WinDbg, ready and waiting to establish a kernel debugger connection. 
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Note 

There are many other tabs that have other selections you could make in 
the WinDebug Options dialog box. Our best advice is to stay away from 
options other than those mentioned specifically in this chapter. Most of 
the other options are not applicable to Kernel mode debugging but can 
still cause nasty side effects when using the kernel debugger. For example, 
while it is indeed possible (and may even seem reasonable) to alter the 
settings in the Transport Layer tab, do not change any of the settings 
shown. LOCAL must remain the selected transport, although you're not 
doing kernel debugging on the same machine. Changing these settings 
will cause WinDbg to not function properly. 

The message in WinDbg's command window indicates that it is waiting to 
establish a kernel debugger connection on a particular port at a specific speed. 
Check this information to be sure it's correct. If your Test System is already 
running, is connected to your Development System via the null-modem cable, 
and has been booted with debugging enabled; you can try to get WinDbg and 
your Test System to "sync up." You can either select the Debug menu item, 
and then choose Break; or type Control-C in WinDbg's command window. If 
you have a good connection between WinDbg and your Test System, and if the 
parameters in both boot. ini on your Test System and in WinDbg are correct, 
WinDbg should respond to the control-break by issuing a message similar to 
that shown in Figure 18.6. 

!oFlIIIIIWlndbg nto~klOl f"Xt' ~~~~~ 
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ITbreacl Creal:.e:proeess"O, ThreaC1=O 
iKerne~ deJougger we,it;1ngt;o ·.connect on· ·001l\S @ ·115200. ),aud 
!Ctrl+C <process stopping .•• > 
!K",.rnel. DehUgger. ;,onnecUon estahl1shedon canlS@115200haud 
iKernel V"rsion 1381 Cheeked loac:led @ .OX80100000 
!HI OdUl .. e. Load: NTOSKRNL.tXE (no symlOola loaded) 
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Figure 18.6. WinDbg, stopped by typing Control-C, with a connection established to a 
Test System with kernel debugging enabled. 
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Note that the last message displayed in the WinDbg command window is Hard 

coded breakpoint hit. This is WinDbg's quaint way of telling you that your 
Test System is now stopped. At this point, you may enter other debugging 
commands (discussed later) via the Debug menu, or by typing directly into the 
command window. Enter the KS command to show the contents of the kernel 
stack. You should see a display similar to that in Figure 18.7. 

del;lugger waltingto eonnect.on 001113 $.115:>'00 !:laud 
<process stoppinq .•• > 
Debugger conneCtiO/!l establisbed on CONS B 115200 baud 
Version laSl·Cbeoked loaded 1l ·OxS0100000 
Load: NTOSKRNL.EXE !no sl/lillJols loaded) 

coded breakpoint hit 

Figure 18.7. A WinDbg kernel stack trace, without symbols set up. 

Note that at this point, the information displayed is not very helpful! We'll fix 
that shortly. At this time, continue your Test System by pressing F5, selecting 
the Debug menu's Go option (or type the 9 command-followed by a carriage 
return, of course) in the command window. 

Setting Up Debugging Symbols 
To enable you to get traces with symbolic names, and also to allow you to 
manipulate variables and other symbols in your driver code under develop
ment, WinDbg needs access to symbol table information. The operating system 
components, such as the kernel, the HAL, and the operating system-supplied 
drivers, have the symbol table information removed from their executable 
images. The symbols for these operating system components are typically 
located on the operating system distribution disk, under the 
\Support\Debug\i386\Symbols directory. Note that the symbols for the Free 
(Retail) components appear on the standard (Free, Retail) distribution kit in 
this directory. The symbols for the Checked components appear in this 

! ' 
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directory on the Checked (debug) distribution kit. You must use the symbols 
for the build (that is, Checked or Free) that match the components you have 
installed on your test machine. Thus, if you installed the Checked versions of 
the NTOSKRNL.EXE and HAL.DLL, as recommended previously, you need to 
provide the Checked versions of the symbols (from the Checked distribution 
kit) to the debugger. 

All symbol files supplied with Windows NT have the file type . DBG. To make it 
a bit easier to find particular files (and because components that differ by only 
file type can't be in the same directory), Microsoft separates the symbol files 
under the \Support\Debug\i386\Symbols directory by file type. Under this direc
tory, there are subdirectories named Acm, Com, Cpl, D11, Drv, Exe, Scr, and Sys. 

Thus, the symbols for NTOSKRNL. SYS for the x86 architecture would be located 
in the file \Support\Debug\i386\Symbols\Sys\NTOSKRNL.DBG. The symbols for 
HAL. DLL would be located in \Support\Debug\i386\Symbols \D11 \ HAL. DBG. 

Now that you cali find the appropriate symbols, copy the symbols for any 
components of interest from the appropriate distribution kit to your dedicated 
debug directory on your Development System. This directory is the one that 
you entered the path to in the Symbols tab of the WinDebug Options dialog 
box, discussed earlier. Typically, you should always copy the symbols for the 
kernel (NTOSKRNL) and the HAL (remember to copy the correct version of the 
HAL symbols and rename it HAL.DBG in the debug directory!). 

Note 

Updates to Windows NT that are issued by Microsoft between versions 
are called service packs. The executable images of the kernel, HAL, and 
the drivers can change in each service pack release. Thus, the symbols for 
these components change. Check your MSDN disks for the most recent 
service pack and the symbols that correspond to that service pack. Service 
packs (and other vital fixes, called hot fixes) and symbol files are usually 
available online from Microsoft. Check out 
ftp://ftp.microsoft.com/bussys/winnt/winnt-public/fixes/. 

Once your symbols have been correctly set up, if you tell WinDbg to stop 
executing the Test System (by selecting Debug and then Break, or by typing 
Control-C in the command window), you should be able to get a symbolic 
stack dump, as shown in Figure 18.8. 

Note that in Figure 18.8, you now see the name of the function at which the 
system is stopped. The system was stopped in the function 
RtlpBreakWi thStatuslnstruction, in the module NT, which was called from the 
function KeUpdateSystemTime, which was called from the function KiIdleLoop. 

If you did not see a symbolic stack dump, try issuing the . RELOAD command. 



500 Part II: The I/O Manager and Device Driver Details 

(That's a period, immediately followed by the word RELOAD.) This command 
causes WinDbg to attempt to scan for and reload any symbol-table files. 

At this point, you should have a kernel driver development and debugging 
environment completely set up. You have communications established and test
ed between your Development System and your Test System. Now, it's time to 
move on to actually building and debugging your driver. 

e01760£bNT! RClpSl:eal<;W1tb!i1;aCuslnset1.lctiO:Il 
80.171310. NT!p;eOpdateSystemTilne+0~19:f 

ffd:f:fSOO NT 'Xi IdleLoop+OXlO 

Figure 18.8. A WinDbg kernel stack trace, showing symbolic debugging information. 

Building Drivers 
The standard driver development environment at present is not integrated into 
MSVC's Developer Studio. Thus, drivers are built from the command line. 
From the Windows NT DDK program group, select either the Checked Build 
Environment or Free Build Environment icon, depending on which type of dri
ver you want to build. This will result in the display of a command window. If 
you select Checked Build Environment, for example, any drivers built in the 
displayed command window will be checked. That is, they will have the sym
bol DBG set equal to one, will be built with symbols in their executable images, 
and will be built with fewer compiler optimizations (to facilitate debugging). 

The driver build environment carefully and specifically sets a vast number 
of compiler and linker options~ and provides a very specific set of 
#defines. These are required to build drivers correctly. Therefore~ it is not 
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possible to simply use the default Developer Studio environment to build 
drivers under NT. It is~ however, possible to use Developer Studio to 
build drivers if the right build procedures are established. An explanation 
of how to do this, and a working build command procedure for use with 
Developer Studio, is available on the OSR Web site (http://www.osr.com). 

Note 

Note that the version of NT may be either Free or Checked; in addition~ 
you may build either a Free or Checked version of your driver. You can 
run either the Free or Checked version of your driver on either the Free 
or Checked version of the operating system. 

Driver development is controlled by the BUILD utility. This utility, located in 
the \ddk\bin directory, provides a DDK-specific front end to the driver building 
process. BUILD (and NMAKE, which it directly controls) reads inputs from 
files named sources, dirs, and makefile. BUILD creates files named build .log, 

build. err, and build. wrn as outputs. If all goes well, the ultimate result of exe
cuting the BUILD utility is the creation of an executable version of your driver. 
This file will have a . SYS file type. 

The BUILD utility supports a wide variety of command options. To obtain a 
list of these options, which are self-explanatory, use the command BUILD -? 

BUILD must be run in a command window, with the default directory set to 
the directory that BUILD is to start processing. That directory must contain 
either a DIRS file, or a SOURCES file and a makefile file. 

The DIRS file contains a list of directories for BUILD to process. These directo
ries must all be subdirectories of the current directory. Figure 18.9 shows a 
sample DIRS file from the \ddk\src\comm directory of the NTv4 DDK. 

Figure 18.9. A sample DIRS file. 

This file directs BUILD to look in the specified directories (named intpar, 

parclass, and so forth in Figure 18.9) under the current directory. In each of 
these directories, BUILD will either find another DIRS file, or a SOURCES file and 
a makef ile file, instructing it how to proceed. 
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Continuing with the example, in the intpar directory of the DDK (to be specif
ic, that's the directory \ddk\src\comm\intpar), there is a SOURCES file that tells the 
BUILD utility how to build the source files contained in that directory. Figure 
18.10 shows the SOURCES file. 

IHT1~AR.GI'T.Fl.ILEQ=parl.og. h 

\ 
\ 

Figure 18.10. A sample SOURCES file. 

The SOURCES file contains macros that instruct the BUILD utility about what to 
build, where to get inputs, and where to put outputs. Microsoft supplies some 
documentation for BUILD in the DDK Programmer's Guide. Although many of 
the BUILD macros are self-explanatory, some of the more common BUILD 
directives are listed in Table 18.1 for easy reference. 

Table 18.1. Brief list of BUILD utility directives. 

Command 

INCLUDES= 

NTTARGETFILE0= 

SOURCES= 

TARGETNAME= 

TARGETPATH= 

TARGETTYPE= 

Use 

Used to provide #define switches to the compiler. For 
example, C_DEFINES=/DFT_BUILD defines the symbol 
FT_BUILD. 

Set equal to the path indicating directories to search 
for INCLUDE files. 

Allows warning switches to be set. For example, 
MSC_WARNING_LEVEL=/W4 enables warnings at level 4. 

Creates the indicated file as part of pass zero of the 
build, by executing the commands in makefile. inc in 
the current directory. 

Set to the list of source files jn the current directory to 
be compiled. Filenames can be separated with spaces 
or tabs. 

Specifies the name for the executable file being built. 

Indicates where the executable image should be 
placed. Note that $(BASEDIR) refers to the base direc
tory where the DDK was installed (typically \ddk). 

Indicates type of image being created. Typically one of 
DRIVER or DYNLINK. 
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The file named makef ile is a standard file that must appear unchanged in every 
directory with a SOURCES file, the contents of which are illustrated in Figure 
18.11. 

DO NOT EDIT THIS FILEtf' Edit .\sources. if .\Iou want to add a new source 
file to this cOlllponent. This file tnel'ely indirl!cts to tlie I'eal Inake fill! 
that is shared by all thl! driver cOlnponents of the Windows NT DDK 

INCLUDE $(NTMAKEENU)'lnalC!!fill!.def 

Figure 18.11. The standard makefile. 

Notice that the purpose of a makefile is simply to include makefile. def from 
the \ddk\inc directory as part of the build process. 

lNote 

\ ddk \ inc \ makef ile . def can be very interesting reading! Once you have 
mastered the basics of building drivers in the NT environment~ take the 
time to read the contents of makefile. def-it has a lot of interesting infor
mation about the default driver build environment. 

To compile and link a driver, set your default directory in the appropriate DDK 
environment command prompt window to the directory at which you want to 
start the build. Then, all you need to do is type BUILD, followed by a carriage 
return. If the compiler, SDK, and DDK have all been installed correctly, the 
result will be similar to that shown in Figure 18.12. 

:'ddk)cd Sl'C'co .... ,intp;tl' 

u~t~'~~'i'i:"'~~tE~~b~!;di386 
UILD: LoaXin!j' E:,DDK\bIlUd.dat ••• 
UILD: COlnput1ng Inclllde. file dependencies: 
UILD: Exalnining. e :\ddk'src\colnIII'intpal' dil'ectory for files to cooipile. 
UILD: Bllilding· genel'ated files in e:'\ddk"'rc\cOtnlll'dntp;tl' 
UILD: Exanlining e:\ddk's"c'collll1l'intpar dil'ecto>'y for files to co .. pile. (2nd 
> 

e : \ddk"' .. c\co .... 'intpa.. - 3· sOlll'ce files (6.873 lines> 
UILD: COlnpiling e :'ddk'sl'c'co .... \intp;t .. du'ectol'!} 
ol1lpiling - parallel. .. c fa., i386 
olllpiling - pal'dl'Ul'.c for i386 

~j~~i£t.k~~i:~~ldk\s~~!!=~intPa .. directo .. y 
inking Execlltable - e"ddk'Ub'i386'checked\intpar.sys fo .. i386 

lLD: Done 

" files cOI"piled - 3436 LPS 
1 execlltables bllilt 

:'ddk''' .. c'co .... 'intpar>_ 

Figure 18.12. Output from BUILD. 
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When BUILD is run, it potentially creates several output files. BUILD always 
creates the file build .log in the current directory. This file lists the detailed out
put from the compiler and linker. If BUILD encounters any warnings during 
the build process, it places the warning messages in the file build. wrn. If BUILD 
encounters any errors during the build process, it places the error messages in 
the file build. err. If there are no warnings and no errors, neither of these files 
is created. 

The executable driver image is placed in the location indicated in the SOURCESS 

file. This is typically based in the \ddk\lib directory. BUILD automatically dis
tributes executables based on target process architecture, and the Free or 
Checked status of the driver being built. BUILD uses a hierarchy of subdirecto
ries, based on processor architecture and Free or Checked status. Thus, the 
executable image for a driver will be placed in targetpath\arch\status, where 
targetpath is the directory specified in the TARGETPATH= macro in the SOURCES file; 
arch is either i386 for x86 architecture systems or Alpha for Alpha systems; 
and status is free if building a Free build of the driver, and Checked if a 
Checked version of the driver is being built. 

This may sound confusing, but an example or two should clear things up. 
Assume that TARGETPATH= in the SOURCES file specifies $ (BASED! R) \ lib, as do most 
of the examples in the DDK, and that the DDK was installed into a directory 
named \ddk. Then, if a Free x86 architecture driver is built, the executable will 
be placed in the \ddk\lib\i386\free directory. If a Checked x86 architecture 
driver is built, the executable will wind up in the directory 
\ddk\lib\i386\checked. If a Free Build of the driver is created for an Alpha 
architecture system, the driver executable will be located in 
\ddk\lib\alpha\free. If a Checked version of an Alpha driver is created, it will 
be located in \ddk\lib\alpha\checked. The default file type for a Windows NT 
driver is . sys. 

While at first this distribution of output files may seem cumbersome~ it 
actually comes in handy if you~re building executables for multiple archi
tectures. Because BUILD will automatically distribute the executables~ 
you can direct the output of your build process to a single server volume. 
This volume can then contain Alpha and x86 architecture executables~ 
with no conflict in directories used. 

Driver Debugging 
Once your driver is built, if you want to debug it you'll need to copy the exe
cutable image to two places: 
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• The Test System. Place your driver in the expected location so it can be 
started. By default, executable driver images are located in the 
\NT\System32\Drivers director~ 

• The Dedicated Debugging Directory. Copy your driver executable image 
to the dedicated debugging (symbol) directory on your Development 
System that you identified when you set up the WinDbg. By default, dri
ver images include debugging symbols (this is true for both the free and 
the checked builds of drivers). Thus, putting a copy of your executable 
driver image into your dedicated debugging directory will allow WinDbg 
to access symbol information while your driver is running on your Test 
System. 

Assuming that your driver has been copied to the two locations mentioned pre
viously, installed, and started, you may begin debugging your driver. 

N'ate 

Here, we assume that you've installed your driver by making the nec
essary entries in the Registry. This pracess is described in detail in 
Chapter 20, "Installing and Starting Drivers." 

WinDbg is a full-featured multi-window debugger. It supports source-level 
debugging in either C or assembler language. You may set breakpoints of all 
types (static, conditional, and the like) by using your driver's source code; 
examine and change local variables; single-step program execution (stepping 
either into or over called functions); and view and even walk back up the call 
stack. Figure 18.13 shows an example of a WinDbg driver-debugging session in 
progress. 

Nate 

Daes it all saund too good ta be true? Full multi-window source-level 
debugging available to driver writers? Well, it is true. The N'T driver 
debugging environment is far superior to any other we've used. But, there 
is a catch: While WinDbg is very useful, it is also absolutely famous 
among the NT development community for being flaky. Sometimes it 
ignores breakpoints. Sometimes it just hangs. Sometimes it gets its symbol 
table confused. If you encounter any these problems or others (and if you 
use WinDbg, you will), just exit and restart WinDbg. Microsoft is slowly 
working on the problems and has said that they are dedicated to making 
WinDbg the best debugger available anywhere. Reaching this goal will 
likely take some time. 

How do you actually use WinDbg? For the most part, you use it precisely like 
any other debugger. You'll just have to experiment. However, to get you started 
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on the right foot, the outlined procedure for setting a breakpoint in the source 
code of your Kernel mode driver follows. This procedure assumes that your 
Test and Development Systems have been set up correctly, as described earlier, 
that your driver executable file has been copied to your dedicated debugging 
directory, and that your driver executable file has been copied to and is run
ning on the Test System. To set a breakpoint in a currently loaded driver, do 
the following: 

1. From WinDbg's File menu, select Open Source File. 

2. In the Open Source File dialog box, select one of your driver's source files 
in the location in which it was built. 

3. Page through the newly opened source file (using the Page Up and Page 
Down keys, or the up and down arrow keys) until you find a source code 
line at which you would like to set a breakpoint. Place the mouse on this 
source code line and click the left mouse button. 

4. Stop the Test System by selecting WinDbg's Debug menu and then 
choosing Break. The message Hard coded breakpoint hit will be displayed 
in WinD bg's command window. 

S. To set a breakpoint at the location currently indicated by the cursor in 
the source file window, click on the Insert/Remove BreakPoint icon on 
the toolbar. This icon looks like an open hand, signaling STOP. The select
ed line in the source code window should be highlighted in red. The red 
highlighting means that the breakpoint has been set succesfully. 

6. If, at this point, after a long pause, the selected line in the source code 
window is highlighted in purple instead of red, the breakpoint has been 
requested but not instantiated. This is typically due to WinDbg not being 
able to find the symbol table for the driver. The most frequent causes of 
this problem are that the driver executable was not being copied to the 
dedicated debugging directory, or that the dedicated debugging directory 
was not properly set up in WinDbg's View\Options ... \Symbols dialog 
box, as described earlier in this chapter. 

7. If the breakpoint was set successfully, execution of the Test System can be 
resumed by selecting Go from WinDbg's Debug menu. When the driver 
next attempts to execute the line of code where the breakpoint appears, 
the Test System will stop and the message Breakpoint #0 hit will be dis
played in WinDbg's command window. 

Kernel Debugger Extensions 
In addition to the standard retinue of debugging commands, WinDbg also pro
vides an extensible command interface. You can write your own extensions, 
starting from the samples provided in the ddk's \src \krnldbg\kdexts directory. 
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Figure 18.13. A WinDbg driver debugging session. 

Windows NT also supplies a set of kernel debugger extensions that can be use
ful when debugging drivers. Before these extensions can be used, the DLL con
taining the appropriate version of the extensions must be copied from the 
\support\debug\i386 or \support\debug\alpha directory on the distribution kit 
(depending on the system on which WinDbg is running) to the \ddk\bin 

directory on the Development System. The filename of the x86 kernel debug
ger extension library is kdextx86. dll; the filename of the Alpha kernel debugger 
library is kdextalp. dll. Note that the Checked and Free versions of the exten
sion libraries are not the same. The extension library must match the kernel 
and HAL being debugged. Thus, a checked version of the extensions library 
must be copied from the Checked distribution kit if the Checked version of the 
kernel and HAL is running on Test System. 

The kernel debugger extensions provide many powerful debugging commands. 
All kernel debugger extension commands start with the exclamation point (! ) 
character. For a complete list of kernel debugger extension commands, enter!? 
in the WinD bg command window. 

Debugging and Testing Hints and Tips 
This section contains a mostly random collection of hints and tips regarding 
driver debugging. 
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Displaying Output in WinDbg 
Drivers can display output that appears in WinDbg's command window by 
using the DbgPrint () macro. This macro is the Kernel mode equivalent of C's 
standard printf () function. Since DbgPrint () is active in both Free and 
Checked versions of the driver, it is often enclosed in #i f DBG and #endi f condi
tionals. This results in the DbgPrint () statements appearing only in Checked 
versions of the driver. 

Where to Build Your Project 
Until you are familiar with the location of the various files, it's usually easiest 
to build your drivers in the Microsoft-supplied DDK source tree. Simply add 
one or more of your own directories under the \ddk\src\ directory, and build 
your project there. Once you become familiar with other environment variables 
that may need to be changed, feel free to use an arbitrary directory for your 
drivers. 

Installing Multiple System Images on Your 
Test System 
Using the various options in boot. ini, you can install multiple system images 
on your test system. This can allow you to have a Free, a Checked, and possi
bly several different versions (such as a released version of NTv4 and a beta 
test release of NTv5) installed on the same Test System. You can choose the 
image you want to start at boot time. 

Turning Up the Serial Port Speed 
Once you verify that you have a kernel debugger connection properly estab
lished between your Development System and your Test System, crank the 
speed up on the serial port as high as you can. 115200 works on most systems. 
Don't forget to change the speed in boot. ini on the Test System and in 
WinDbg! 

SysRq Stops the Test System 
Is your Test System caught up in a tight loop? Is it ignoring requests from 
WinDbg to stop? Just hit the SysRq key on the keyboard of the Test System. 
The system will stop immediately in the debugger, showing the familiar Hard 

coded breakpoint hit message. 

Asserting Assumptions 
A well-known Microsoft technique for writing solid code is the use of the 
ASSERT () macro. This function allows you to check, at runtime, that your 



Chapter 18: Building and Debugging Drivers 509 

assumptions are true. For example, suppose that a pointer is passed into one of 
your functions as a parameter. Further, suppose that one of the rules for using 
this function is that this pointer can never be NULL. Instead of just "trusting" 
that your function was called correctly, you could ASSERT () that the pointer was 
not equal to NULL, as follows: 

VOID GetAOne(PULONG MyValue) 
{ 

ASSERT(MyValue != NULL); 
*MyValue = 1; 

In the preceding example, the first statement uses the ASSERT () macro to ensure 
that the value of the parameter My Value is not equal to NULL. If this assertion is 
correct, execution continues. If the statement within the parentheses evaluates 
to FALSE, however, the system displays a message in WinDbg's command win
dow that indicates that an assertion failed. This message includes the source 
filename and line number of the assertion, and optionally allows you to take a 
breakpoint. 

This facility is terrific, but see the next hint. 

ASSERT () Works Only in the Checked Build 
The ASSERT () macro does nothing if you build your driver Free, or if you run 
your Checked driver on a Free build of Windows NT. For ASSERT () to work, 
your driver must be built Checked, and your Checked driver must be running 
on a Checked Build of Windows NT. If you find this constraining, there's 
always the next hint ... 

Define Your Own ASSERT () Macro 
Do you like the idea of the ASSERT () macro but prefer it did something different 
(such as something in the Free Build of the operating system)? Define your own 
macro for ASSERT () and override the system-provided one. Personal preference 
plays a big role here, but one option might be the following: 

#define ASSERT(_c) \ 
if(!Cc)) \ 

DbgPrint("Assert Failed in file %s, line %d.\n", \ 
__ FILE __ , __ LINE __ ) 

Test on MP Systems 
Assuming that your driver is supported on multiprocessor configurations of 
NT (as it probably should be), be sure to test your driver on multiprocessor 
systems prior to its release; There is absolutely no way you can be sure your 
driver is MP safe without actually testing it on an MP system. To speed up 
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your testing, use a system with as many processors as possible. Quad-processor 
systems are more than twice as good at finding multiprocessor errors as dual
processor systems are. 

Use the Tools Supplied in the DDK 
There are a number of extremely useful tools in the DDK's \bin directory. 
Most useful of these to writers of standard Kernel mode drivers are the 
POOLMON and KERNPROF utilities. 

POOLMON provides a dynamically updating display of both paged and non
paged pool usage by pool tag. The utility must be run on a system with pool
tracking enabled, such as the Checked Build. For more information on 
POOLMON, run it, and then type an h to display a help screen. 

KERNPROF is a utility that can be used to profile the amount of time spent in 
various kernel routines. This utility will allow you to pinpoint hot spots in 
your driver. For more information on KERNPROF, enter the command 
KERNPROF -? 

Unfortunately, the POOLMON and KERNPROF utilities are neither compre
hensively documented nor supported by Microsoft. 

Check Your Driver with Performance Monitor 
The standard Windows NT Performance Monitor utility can be very useful in 
debugging device drivers. Using this utility, you can monitor system internal 
behavior. Things such as the number of interrupts processed and DPCs queued 
per second by the system can be clues to how your driver is working. 

Enable Pool Checking 
Windows NT has a terrific set of pool-validation features built into it. 
Unfortunately, some of the most helpful features for driver writers appear in 
the Checked Build, but are not enabled by default. 

Pool tail checking places guard words after each allocated pool block. The sys
tem checks these guard words to ensure that the caller has not written past the 
end of the allocated segment. 

Pool free checking sets freed pool segments to a defined value. Using this value, 
the system can check to see whether a pool segment is written to after it has 
been freed. . 

To enable either of these features, you have to manually set the appropriate NT 
GlobalFlags (Enable Pool Tail Checking, Enable Pool Free Checking) in the 
Registry, either manually or by using the GFLAGS utility from the Windows 
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NT Resource Kit (supplied as part of MSDN). Make the Registry change and 
reboot. Again, note that these features only appear to be active in the Checked 
Build. 

According to Microsoft Knowledge Base article Q147314: 

FLG_POOL_ENABLE_TAIL_CHECK 
FLG_POOL_ENABLE_FREE_CHECK 

0x00000100 
0x00000200 

We recommend that everyone start testing their code with these values ON by 
default. If the system finds an error, it takes a breakpoint after displaying a 
cryptic error message. 

Note ' 

Be careful! You can't be "clever" and decide to turn this checking on 
from your driver by setting these values on a running system. They need 
to be enabled when the system starts, or the appropriate signature is not 
initially written into pool, and everything looks like an error. 

Test on Both the Free and Checked Builds 
The road is littered with the bodies of developers whose last words were: "It 
worked in the Checked Build." Be sure you test the Free Build of your driver 
on both the Free and Checked Builds of Windows NT prior to shipping. 

Stay Up-to-Date 
Regularly check the Microsoft Web site for information on driver development 
issues. At the time this book went to press, the locations on Microsoft's Web 
site with the best information for driver writers were 
http://www.microso"ft.com/hwdev and 
http://support.microsoft.com/support/ddk_hardware/NTDDK/. 

Turn to the World for Help 
Although the signal-to-noise ratio can sometimes get a bit too high, the best 
source for online peer assistance is the Usenet newsgroup comp. os. ms-

windows. programmer. nt. kernel- mode. Lots of knowledgeable people answer ques
tions in this forum, including this book's authors and many of the Microsoft 
support people. Remember, Use net assistance is "unfiltered" ... take any advice 
proffered from whence it comes. 

Behind the Blue Screen 
When a Windows NT system, either Free or Checked, encounters what it con
siders to be an unacceptably fatal condition, it stops and displays a blue screen 
with white letters. This is called "the blue screen of death," or "BSOD," by 
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driver writers-who typically get to see this screen much more frequently than 
they would hope. Figure 18.14 shows a sample BSOD. 

Figure 18.14. Windows NT's infamous blue screen of death. 

There is a lot of mythology about "debugging" system problems from the blue 
screen. Unfortunately, often there is not enough information displayed on the 
blue screen to allow even a highly experienced driver writer to identify the 
underlying reason that the system crashed. 

This section provides a brief introduction to the blue screen, and provides 
some basic guidelines to help you understand it and deal with it. Much more 
information is available on MSDN and at the Microsoft support Web site 
(http://support.microsoft.com). 

Blue Screen Format 
The blue screen itself is divided into five sections. The first section, located at 
the top of the screen, provides the reason for the system failure. In Figure 
18.13, this section reads: 

*** Stop: 0x0000000A (0x802aa502, 0x00000002, 0x00000000, 0xFA84001c) 
IROL_NOT_LESS_OR_EOUAL*** Address fa84001c has base at fa840000 -
i8042prt.sys 

This section is the most important part of the blue screen display. The first line 
contains the system bug check code and parameters. The complete list of 
Windows NT bug check codes appears in the DDK-provided file \ddk\inc\ 
bugcodes. h. The second line provides an interpretation of the error code, and 
a guess as to the driver or component that might be the cause of the crash. 
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In the preceding example, the system bug check code is 0x0000000A, which 
translates to the error IRQL_NOT_LESS_OR_EQUAL, as shown on the second lip,::. 
The values in parentheses on the first line are parameters to the bug check. The 
meaning of these parameters varies by bug check code, and even by the loca
tion at which the bug check is encountered. 

The second section of the blue screen identifies the system on which the crash 
occurred. In Figure 18.13, the data in the second section reads: 

CPUID: GenuineIntel 5.2.c irql: if SYSVER:0xF00000565 

This line indicates the type of processor on which the crash occurred. The irql 
represents the IRQL at the time the blue screen is displayed, which on x86 
architecture systems is always 1 f. Note that this is not the IRQL at which the 
system was running when the problem occurred. The SYSVER variable indicates 
the type of system and the Windows NT baselevel number. In the example, the 
baselevel number in hex is 565, which translates to the decimal value 1381, 
which is the baselevel for Windows NT V4.0. 

The third section of the blue screen contains a list of the drivers and Kernel 
mode DLLs that were loaded in the system when it crashed. The base address, 
date stamp, and name of each of these modules are listed. The date stamp is 
taken from the header that was created when the driver or DLL was linked, 
and can be used to verify the version of the driver that was running. It can be 
matched with the date displayed by the SDK's dumpbin utility. 

The fourth section of the blue screen comprises a dump of the kernel stack, 
taken at the time the system crashed. The stack address appears in the first col
umn, and the contents of the stack appear in the subsequent columns. In the 
rightmost column, the name of the driver corresponding to the stack informa
tion is displayed. 

The stack dump can be useful in identifying what drivers were running and 
were on the call stack when the system crashed. Typically, the module that 
caused the crash is located in the first or second stack entry. 

The final section of the blue screen contains the information message telling 
you to contact your system administrator or technical support group. 

Reporting or Interpreting Blue Screens 
Suppose you're trying to identify the reason the system crashed. To do this, 
you'll need a record of the information on the blue screen. But you don't have 
to copy down all the hex values that are displayed. You need to record only 
the "important stuff." 
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Anytime the system crashes and you want to identify the cause yourself or you 
want to work with Microsoft support to identify the cause, be sure to write 
down all the information from the first section of the blue screen. Without the 
information displayed in the first two lines of the blue screen, there is nothing 
anybody can do to identify the reason for the crash. 

In addition to this, at a bare minimum, you'll want to copy down the names of 
the drivers or modules on the kernel stack (shown in the rightmost column 
of section four of the blue screen). It is rarely helpful to copy down any more 
of the information from this section. 

With this information in hand, either you or a support person might be able to 
at least get a clue as to the cause of the problem. 

Crash Dumps 
Windows NT systems can optionally be set up to save the contents of memory 
to a debugging or "crash dump" file when a crash occurs. This option can be 
enabled on the Recovery section of the Startup/Shutdown tab of the System 
Control Panel Applet, as shown in Figure 18.15. 

Figure 18.15. Enabling crash dumps. 

Once a crash dump has been saved, it may be debugged by using WinDbg. 
Many of the standard techniques used for debugging on a running system can 
be used to debug a crash dump. 

The crash dump file can be opened from WinDbg's File menu. WinDbg can 
then be used to examine the crashed system in an attempt to determine the 
cause of the crash. 



Chapter 19 
Creating a Finished Driver 

This chapter will review: 

• Driver Error Logging. One part of creating a finished driver is having the 
driver write useful, human-readable messages to the system event log. 
This section shows you how. 

• Defining Driver Version Resources. This section describes how to create 
version resources that will allow both driver writers and users to easily 
identify which version of a driver is in use. 

This chapter discusses some of the smaller, optional items that can help make 
your driver seem to be truly "finished." Specifically, you'll learn about error 
logging and driver version resources. 

Driver Error Logging 
There are many reasons for drivers to log information to persistent storage for 
later review. For example, it's often useful to have your driver log information 
about software or hardware problems that are encountered. This can be 
particularly useful for diagnosing problems at customer sites, when a driver
debugging environment is not available. Drivers may also just want to log 
information about their normal operation, which might include logging 
dynamically determined parameters, major state transitions, or other opera
tional information. 

Windows NT provides a centralized facility for logging events of significance. 
This facility, known as the Event Logging Facility, is extensively documented in 
the Platform SDK. There are actually three event logs-one each for system 
events, security events, and application events. All of these logs are located by 
default in the directory %SystemRoot%\System32\config. The content of these logs 
is stored in binary, and is interpreted and viewed by applications, including the 
Event Viewer system application. 
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The I/O Manager provides an interface that drivers can use to write informa
tion to the system event log. This interface includes a well-defined structure for 
event log entries from drivers. This structure is the IO_ERROR_LOG_PACKET. The 
information provided by the driver in this packet includes: 

• An error message code, corresponding to a predefined textual error mes
sage. This may be either a generic message that has been defined by the 
I/O Manager for use by drivers, or an error message of the driver's devis
ing that has been compiled by the Message Compiler and linked with the 
driver. 

• A set of I/O Manager-defined parameters. These parameters are filled into 
the IO_ERROR_LOG_PACKET by the driver. 

• Optional Unicode text strings to be inserted in the textual error message. 

• An optional block of binary "dump data." 

The standard logging mechanism in Windows NT is known as the Event 
Logging Facility. The I/O Manager interface to this facility~ however, uses 
the term error log rather than event log. The error log that the 110 
Manager mentions and the Windows NT event log are the same thing. 

Defining Error Messages 
Error messages are logged and stored in the event log file by error message 
code. The message code is interpreted by the Event Viewer application when a 
user reviews the contents of the event log. This scheme makes the internation
alization of event log messages easy. 

The I/O Manager provides a standard set of error messages, which are defined 
in the file \ dd k \in c \ nt iolog c . h. The messages provided allow a driver to easily 
log errors such as common configuration errors, parity errors, timeouts, and 
the like. To use these messages, a driver needs only to include ntiologc. h at 
compile time. 

The problem with the I/O Manager's standard error definitions is that they are 
generic, sometimes to the point of being confusing. If you are going to go 
through the effort to add error logging to the driver, do you really want to log 
a message such as "Driver detects an internal error in its data structures?" If 
the point of error logging is to make your driver more supportable, you proba
bly don't want to generate event log messages that themselves are the cause of 
support calls. Therefore, most complex drivers tend to define their own custom 
error messages for the event log. 
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Custom error messages for the event log are defined by using the Microsoft 
Windows Message Compiler, which is a standard part of the SDK. This com
piler (MC. EXE) compiles an error message-definition file into a binary resource
definition (. RC) file. This file may then be either directly compiled by the 
Resource Compiler, or included in the driver's existing resource-definition file 
for compilation by the Resource Compiler. 

The Message Compiler reads an error message-definition (. MC) file and creates 
two standard output files. These output files have the same name as the input 
. MC file, but are different file types. There does not appear to be any way to 
change the filenames that the Message Compiler generates. For example, if the 
file Message. MC is successfully compiled by the Message Compiler, the following 
two files will be generated: 

• Message. H. A header file for inclusion in your driver source code that 
defines the error message codes. ntiologc. hand ntstatus. h are examples 
of the . h file that the Message Compiler generates. 

• Message. RC. The resource-definition file that defines the messages. This file 
is to be further compiled by the Resource Compiler. 

In addition to these two files, the Message Compiler generates a set of . BIN 

files named MSG0000x. BIN, where x is the language number. English-language 
error messages are created in the file MSG00001 . BIN. The contents of these files 
are the binary message texts to be included in your driver's executable image 
file. 

The DDK contains a number of sample error message-definition (.MC) files and 
even a sample that is dedicated specifically to error logging 
(\ddk\src\general\errorlog). Example 19.1 provides another example. 

Example 19.1. Sample error message-definition file. 

ill 
i/lModule Name: 
ill 
ill NOTHING_MSG.MC 
ill 
i/lAbstract: 
ill 
ill Message definitions 
ill 
i/lRevision History: 
ill 

i#ifndef NOTHINGLOG - -

continues 
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Continued 

i#define _NOTHINGLOG_ 

ill 
ill Status values are 32 bit values layed out as follows: 
ill 
ill 332 222 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 
;11 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 432 1 0 
ill + ... +.+ ......................... + ............................... + 

ill: Sev: C: Facility : Code : 
i I I + ... +.+ ......................... + ............................... + 

ill 
ill where 
;11 
ill Sev is the severity code 
;11 
;11 00 . Success 
i I I 01 Informational 
ill 10 Warning 
ill 11 . Error 
ill 
ill C . is the Customer code flag 
ill 
ill Facility· is the facility code 
;11 
ill Code· is the facility's status code 
ill 

MessageIdTypedef=NTSTATUS 

SeverityNames=(Success=0x0:STATUS_SEVERITY_SUCCESS 
Informational=0x1:STATUS_SEVERITY_INFORMATIONAL 
Warning=0x2:STATUS_SEVERITY_WARNING 
Error=0x3:STATUS_SEVERITY_ERROR 

) 

FacilityNames=(System=0x0 
RpcRuntime=0x2:FACILITY_RPC_RUNTIME 
RpcStubs=0x3:FACILITY_RPC_STUBS 
Io=0x4:FACILITY_IO_ERROR_CODE 
NOTHING=0x7:FACILITY_NOTHING_ERROR_CODE 

) 

MessageId=0x0001 Facility=NOTHING Severity=Error SymbolicName=NOTHING_MESSAGE_1 
Language=English 
This is sample message number 1 

MessageId=0x0002 Facility=NOTHING Severity=ErrorSymbolicName=NOTHING_SAMPLE 
Language=English 
This is another sample message. 
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MessageId=0x0003 Facility=NOTHING Severity=Informational SymbolicName=NOTHING
MSG-VALUE 
Language=English 
%1 logs the following message: %2 

j#endif /1 _NOTHINGLOG_ 

The format of the .Me file shown in Example 19.1 is fairly self-explanatory. 
Documentation of the . Me file format is provided as part of the Platform SDK. 
In Example 19.1, lines preceded by semicolons (j) are treated as comments by 
the Message Compiler. The Message Compiler removes the semicolons and 
copies the remaining contents of the line to the output . H file. Severity and 
facility names are defined by using the SeverityNames and FacilityNames for use 
in the later message file definitions. Note that the "facility" code needs to be a 
unique value among the messages generated by your driver. The standard sys
tem error messages (such as STATUS_INVALID_PARAMETER) use facility code zero. 
The I/O Manager's standard error-logging messages, defined in ntiologc. h J use 
facility code four. Therefore, drivers typically use facility codes greater than 
four for private error messages. Example 19.1 uses a facility code value of 
seven. 

fiJote 

Don't worry about having to choose a value for a facility code that's 
unique among all drivers. Just choose one that is not used by the stan
dard NT components. As previously stated, using any value greater than 
four will work. As a matter of convention, most driver writers use either 
five or seven. 

The message-definition section of the . Me file contains the error message ID, 
symbolic name, error severity, and text to be displayed by the Event Viewer 
when a message with the indicated Message ID is logged. The text may be pro
vided in multiple languages. Text strings may be optionally inserted into these 
messages, using the escape sequence %n, where "n" is the number of the text 
string to insert. The I/O Manager always provides text string number one, 
which is defined as being the name of the device logging the message (if the 
IoObject specified when the error packet is allocated is a pointer to a Device 
Object, as described later in this section). Therefore, text strings, which are 
provided by the driver to be inserted into the error message, start with %2. A 
few other escape sequences are available for use in message definitions. Refer 
to the SDK for the complete list. The text of each error message is terminated 
by a period . as the first character on the line. 
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Note 

Even though there is a severity STATUS_SEVERITY_SUCCESS, and it is possible 
to define messages with this severity, this is not an acceptable severity 
level in the Windows NT event-logging model. In fact, the Event Viewer 
application will display any messages logged with STATUS_SEVERITY_ 

SUCCESS with an Error severity. 

Allocating the Error Log Packet 
When a driver wants to write a message to the error log, it allocates an error 
log packet large enough to hold the standard I/O Manager error log informa
tion packet, plus any additional data (such as text-insertion strings or even 
binary data) that it wants to record. This packet is allocated by using the func
tion IoAllocateErrorLogEntry(), the prototype for which is shown in Figure 
19.1. 

PYOID 
IoAllocateErrorLogEntry(IN PYOID IoObject, 

IN UCHAR EntrySize); 

IoObject: A pointer to either the driver's Driver Object or Device 
Object associated with this error. If an error is associated with a partic
ular device, the driver should provide a Device Object pointer for this 
parameter. 

EntrySize: The total size in bytes of the error log packet to be allocat
ed, including any arguments or data provided by the driver. This must 
not exceed ERROR_LOG_MAXIMUM_SIZE bytes. 

Figure 19.1. IoAllocateErrorLogEntry() function prototype. 

The IoObject argument to IoAllocateErrorLogEntry() dictates the translation of 
the %1 parameter in the error message string. If the IoObject parameter is set 
to a pointer to a Device Object, the name of the device replaces % 1 in the 
error-message definitions. If the IoObject is a pointer to a Driver Object, the 
% 1 parameter is replaced by the I/O Manager with a NULL. 

The driver-accessible fields of the IO_ERROR_LOG_PACKET structure are zeroed by 
the I/O Manager before the packet is returned to the driver. The packet con
tains the following fields that are filled in by drivers: 

• Maj orFunctionCode. This field indicates the IRP major function code asso
ciated with the request that was in progress when the error was detected. 

I 

I 
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• RetryCount. This field contains the number of attempts the driver has 
made prior to logging this error. 

• DumpDataSize. This field indicates the length of any binary data that the 
driver will log. This value is the size over and above the size of the 
lO_ERROR_LOG_PACKET structure itself and the size of any text strings to be 
inserted into the log message. 

• NumberOfStrings. This field indicates the number of driver-supplied text 
strings to be inserted into the log message. 

• TextOffset. This field indicates the offset in bytes from the start of the 
lO_ERROR_LOG_PACKET to the start of the first null-terminated Unicode char
acter string to be inserted into the log message. 

• EventCategory. According to the documentation, this is an optional "event 
category" from a driver's custom-defined message file. We hate to say it, 
but we don't understand what that means and we don't know what this 
field is supposed to be for. We've never seen it used, and we've never seen 
a system component log a message that uses it. We do know that a driver 
can set this to any USHORT value it wants, and that value will be displayed 
(in decimal) in the Category column in the Event Viewer. 

• ErrorCode. This field indicates the code for the event log message to be 
displayed. This is the symbolic name from either a system-defined or 
driver-defined message file. 

• UniqueErrorValue. This field is a driver-defined value that uniquely identi
fies the location or cause of the error. Drivers most often use this value as 
a further qualifier to the ErrorCode. For example, there may be a number 
of places where a driver logs an lO_ERR_CONFlGURATION_ERROR ErrorCode 

value. Each location that logs this error will utilize a unique 
UniqueErrorValue that allows the driver's developers to identify the specif
ic cause of the error. 

• FinalStatus. This field indicates the ultimate NTSTATUS in which the 
operation in error resulted. 

• SequenceNumber. This field indicates a monotonically increasing IRP 
sequence number kept by the driver. 

• loControlCode. If the Maj orFunction field indicates an error on an 
lRP _MJ_DEVlCE_CONTROL or lRP _MJ_lNTERNAL_DEVlCE_CONTROL operation, this 
field contains the 110 Control Code. 

• DeviceOffset. This value is the offset into the device where the error 
occurred. Obviously, this field is more relevant to disk and tape drivers 
than it would be for, say, a, serial port driver. 
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• DumpData. This field indicates the start of a driver-defined area of 
DumpDataSize bytes that contains binary data that the driver wants to log 
along with the standard 110 Manager error log packet. 

As is evident from the preceding descriptions, the fields in the 110 Manager's 
error log packet structure are fairly rigidly defined. Driver writers don't need to 
be constrained by the documented meanings of the fields in the 
IO_ERROR_LOG_PACKET, however. For example, drivers of devices that don't have a 
"device offset" can use the DeviceOffset field of the IO_ERROR_LOG_PACKET for 
anything the driver wants. Similarly, although the 110 Manager's error-logging 
guidelines require it, most drivers do not implement IRP sequence numbers for 
the SequenceNumber field. A common use of this field is to hold a value that is 
incremented for each packet written to the event log. 

Writing Packets to the Event Log 
Once an IO_ERROR_LOG_PACKET has been allocated and filled in, the driver calls 
the 110 Manager function IoWriteErrorLogEntry(), the prototype for which 
appears in Figure 19.2. 

PYOID 
IoWriteErrorLogEntry(IN PYOID EIEntry); 

EIEntry: A pointer to a filled-in error log packet that has been previ
ously allocated by calling IoAllocateErrorLogEntry(). 

Figure 19.2. IoWriteErrorLogEntry() function prototype. 

The IoWriteErrorLogEntry () function passes the error log packet to the 110 
Manager, who in turn passes it to the systemwide event-logging facility. The 
IO_ERROR_LOG_PACKET is automatically returned by the 110 Manager; the driver 
does not deallocate or return this packet. Example 19.2 shows how to use the 
IoAllocateErrorLogEntry () and IoWri teErrorLogEntry() functions, including 
inserting a text string. 

Example 19.2. Allocating~ filling in~ and writing an error log entry. 

II 
II Log a message to the error log 

II 
10gMsg = L"Error processing WRITE request."j 

len = (UCHAR)wcslen(logMsg)*sizeof(WCHAR) + sizeof(WCHAR)j 
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II 
II Allocate the packet with enough space for the insertion string. 
II 
errorLogEntry = (PIO_ERROR_LOG_PACKET) 

IoAllocateErrorLogEntry(devObj, 
(UCHAR) (sizeof(IO_ERROR_LOG_PACKET)+len) )j 

II 
II Initialize the packet 
II 
errorLogEntry->ErrorCode = (ULONG) NOTHING_MSG_VALUEj 
errorLogEntry->NumberOfStrings = 1j 
errorLogEntry->StringOffset = FIELD_OFFSET(IO_ERROR_LOG_PACKET, 

DumpData)j 

II 
II The rest of the fields are "optional" - That is, the message will be 
II written even if they are not supplied. 
II 
errorLogEntry->MajorFunction = ioStack->MajorFunction; 
errorLogEntry->UniqueErrorValue = WriteErrorBaseValue+12j 
errorLogEntry->FinalStatus = STATUS_INVALID_DEVICE_REQUESTj 
errorLogEntry->SequenceNumber = ErrorLogSequenceNumber++j 

II 
II Copy the insertion string to the packet 
II 
RtlCopyMemory(&errorLogEntry->DumpData[0j, 10gMsg, len)j 

II 
II Write the packet to the event log 
II 
IoWriteErrorLogEntry(errorLogEntrY)j 

The code in Example 19.2 shows how the error log packet is allocated, filled 
in, and written by the driver. Note that some of the 110 Manager-defined fields 
are filled in. Other fields, such as the SequenceNumber field, are filled in but with 
a slightly different interpretation than the ordinary one used by the 110 
Manager. Other fields are not referenced at all. 

Note 

We must admit that our favorite way to use the event log is to define a 
single error message at each severity level with the content "%1: %2". 

This lets us write any string we want-preprocessed by sprintf (), if 
required-to the event log. Granted, this makes internationalization diffi
cult. But it makes adding concise, specific error messages very easy. This 
is especially true during debugging. 
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Invoking the Message Compiler with BUILD 
You've decided to include error logging in your driver. How do you actually 
get the Message Compiler to process your. MC file as part of the build process? 

Unfortunately, the BUILD utility does not automatically know how to process 
. MC files. Therefore, the driver writer will need to create a makef ile . inc file, 
including the rules defining how to build the message file. BUILD is then 
directed to read this file by using the macro NTTARGETFILE0 in the SOURCES file for 
the driver. Figure 19.3 shows a sample SOURCES file that uses NTTARGETFILE0 to 
cause BUILD to read and process makef ile . inc, located in the same directory. 
Figure 19.4 shows the associated makefile. inc file that directs the compilation 
of the message-definition file. 

: MAJORCoMP~ntos 
MINORCOMP~osr 

TARGlrrNAME::~NOTHtNG 
TARGlrrPATHb$(BASE::[)!R):\l ib 
TARGlrrTY~E~DRIVER 

;INCLUOE;S';S (BASED!!l;)\ inc 

: NTTA!l;GlrrFILEo .. nothing.J!lsg.h 

: sbURCE::Si;oNOTHING....MSG; RC \ 
, NOTHING. c 

Figure 19.3. SOURCES file illustrating the use of NTTARGETFILE0 to compile a message
definition file. 

Figure 19.4. makefile. inc with rules for compiling a message-definition file. 

Note in Figure 19.4 that the Message Compiler is invoked with the -c switch. 
This causes the "customer code flag" bit to be set in the generated messages. 
While not absolutely necessary, it is correct to set this bit for messages that are 
not defined by Microsoft. 

Registering Your Driver As an Event Logging 
Source 
Drivers that define their own error messages must register themselves as an 
event logging source. This enables Event Viewer and other applications to 
interpret log entries written by the driver. 
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All that is required to register your driver as an event logging source is to cre
ate a key in the Registry under the key 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\System. llhe 
key you create must be equal to the name of your driver. llhe values placed 
under this key must be as follows: 

• EventMessageFile. Set this value equal to the REG_EXPAND_SZ string that is 
the path to your driver's executable image file. llhis value may contain 
paths to multiple files that define event log messages-each separated by 
a semicolon. llhus, for example, if a driver writes both standard Nll 110 
Manager messages and its own event log messages, this value must be set 
equal to the path to the driver's image file and also equal to the path to 
the I/O Manager's message file, which is 
%SystemRoot\System32\IoLogMsg.DLL. 

• TypesSupported. Set this value to a REG_DWORD equal to the facility number 
(typically Ox07) that your driver implements. 

llhese Registry changes are normally made as part of the driver's installation 
procedure. 

Defining Driver Version Resources 
Although not a crucial design element, the capability to quickly and easily 
determine the version of a driver can save a lot of time and frustration. One 
thing that makes such identification easy is adding a version resource (techni
cally, a VERSIONINFO resource) to your driver. llhis resource can be viewed 
from the Windows Nll Explorer (right-click on the file, select Properties, and 
choose the Version tab). 

llhe VERSIONINFO resource is defined in the driver's resource-definition (. RC) 
file. Complete documentation on creating VERSIONINFO resources appears in 
the Platform SDK documentation. llhis section provides a brief overview of 
this topic as it relates specifically to Nll drivers. 

Defining . RC Files from the Microsoft-Supplied 
Templates 
If you look through the DDK example drivers (which, as we said earlier, are 
mostly sources for "real" Nll drivers from the distribution kit), you'll find 
many resource-definition (. RC) files that resemble the one shown in Example 
19.3, which is taken from the DDK's parport driver. 
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Example 19.3. A Microsoft standard resource-definition file from the DDK. 

#include <windows.h> 

#include <ntverp.h> 

#define VERJILETYPE 
#define VERJILESUBTYPE 
#define VER_FILEDESCRIPTION_STR 
#define VER_INTERNALNAME_STR 
#define VER_ORIGINALFILENAME_STR 

#include "common.ver" 

#include "parlog.rc" 

VFT_DRV 
VFT2_DRV_SYSTEM 
"Parallel Port Driver" 
"parport.sys" 
"parport.sys" 

Notice in Example 19.3 that the file begins by including NTVERP. H (from the 
\ddk\inc directory), lists a set of definitions, and then goes on to include 
COMMON. VER (also from the \ddk\inc directory). The last line in the example 
includes PAR LOG . RC, which is the . RC file created by the Message Compiler for 
error logging. 

NTVERP. H is Microsoft's systemwide, standard version-definition file that 
includes definitions relevant to Windows NT for the build number, version, 
company name, product name, and legal trademark. COMMON. VER is a template 
that actually defines the version resource. Note that the version-specific defini
tions in all these files (such as VFT_DRV, VFT2_DRV_SYSTEM, and the like) are 
defined in the SDK include file, WINVER. H. 

Driver writers can define version resources for their drivers by building stan
dard resource files using the Microsoft-supplied templates. In this case, unless 
you override the supplied values, you will get Microsoft's information. You can 
override these values in your . RC file, as shown in Example 19.4, which is the 
. RC file for OSR's "nothing" example driver. 

Example 19.4. A resource-definition file to override standard Microsoft 
resources. 

/I 
II Resources 
/I 
#include <windows.h> 
#include <ntverp.h> 

#ifdef VER_COMPANYNAME_STR 
#undef VER_COMPANYNAME_STR 
#endif 

#ifdef VER_PRODUCTNAME_STR 
#undef VER_PRODUCTNAME_STR 
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#endif 

#ifdef VER_PRODUCTVERSION_STR 
#undef VER_PRODUCTVERSION_STR 
#endif 

#ifdef VER_PRODUCTVERSION 
#undef VER_PRODUCTVERSION 
#endif 

#define VER_COMPANYNAME_STR "OSR Open Systems Resources, Inc," 
#define VERJILEDESCRIPTION_STR "The OSR Nothing Driver" 
#define VERJILEVERSION_STR "3,0a" 
#define VER_INTERNALNAME_STR "nothing" 
#define VER_LEGALCOPYRIGHT_STR " ©1998 OSR Open Systems Resources, Inc," 
#define VER_ORIGINALFILENAME_STR "nothing,sys" 

#define VER_PRODUCTNAME_STR 
#define VER_PRODUCTVERSION_STR 

#define VER_FILEVERSION 
#define VER_PRODUCTVERSION 
#define VER_FILETYPE 
#define VER_FILESUBTYPE 

#include <common,ver> 

#include "nothing_msg,rc" 

"Developing Windows NT Device Drivers" 
"Windows NT V4" 

4,00,01,001 
4,00,01,001 
VFT_DRV 
VFT2_DRV_SYSTEM 

II Type is Driver 

Example 19.4 redefines all the resources that you'll need to override to avoid 
defaulting any parameters (not counting the FILEFLAGS and FILEFLAGS mask. See 
the SDK.) to Microsoft-specific values. 

Creating Your Own Resource-Definition File 
By the time you override all the Microsoft-specific values, we think the result is 
complicated and ugly enough that you might just as well create your own ver
sion resource-definition file. It's easy enough to do, Example 19.5 shows a 
sample version resource-definition file. 

Example 19.5 A custom resource-definition file, 

II 
II Resources 
II 
#include <winver,h> 

#ifdef RC_INVOKED 

#if DBG 

continues 
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Continued 

#define VER_DBG VS_FF_DEBUG 
#else 
#define VER_DBG 
#endif 

VS_VERSION_INFO VERSIONINFO 
FILEVERSION 3,00,01,00 
PRODUCTVERSION 3,00,01,00 
FILEFLAGSMASK VS_FFI_FILEFLAGSMASK 
FILEFLAGS 
FILEOS 
FILETYPE 
FILESUBTYPE 
BEGIN 

VER_DBG 
VOS_NT 
VFT_DRV 
VFT2_DRV_SYSTEM 

BLOCK "StringFileInfo" 
BEGIN 

END 

BLOCK "040904B0" 
BEGIN 

VALUE "CompanyName", 
VALUE "FileDescription", 
VALUE "FileVersion" , 
VALUE "InternalName", 
VALUE "LegalCopyright"," 
VALUE "OriginaIFilename", 
VALUE "ProductName", 
VALUE "ProductVersion", 
VALUE "For Support Call", 

END 

BLOCK "VarFileInfo" 
BEGIN 

"OSR Open Systems Resources, Inc." 
"The Nothing Driver" 
"V3.0a" 
"Nothing" 
©1998 OSR Open Systems Resources, Inc." 
"Nothing.Sys" 
"Developing Windows NT Device Drivers" 
"NT V4.0" 
"OSR at (603) 595-6500" 

VALUE "Translation", 0x0409, 0x04B0 
END 

END 

#endif 

#include "nothing_msg.rc" 

Example 19.5 shows a custom resource-definition file for the "nothing" driver. 
This file is only slightly longer than f,xample 19.4, which uses the Microsoft 
templates. This file has the advantage of omitting Microsoft-specific informa
tion (like the copyright notice) that you might overlook when overwriting the 
file, and which might consequently incur the wrath of your company's lawyers. 
Defining your own version resource also has the added advantage of allowing 
you to define your own driver- or company-specific values. In Example 19.5, 
note the addition of a "For Support Call" value. 



Chapter 20 
Installing and Starting Drivers 

This chapter will review: 

• How Drivers Are Started. Device drivers in Windows NT are all started 
dynamically. This section describes how drivers are started and how the 
startup order of device driver may be specified. 

• Driver- and Device-Specific Parameters. Most drivers need to store some 
sort of driver- or device-specific parameters during their installation pro
cedure. This section makes some suggestions as to where those parame
ters may be stored. 

• Driver Installation. This section describes the different methods for 
installing device drivers on a Windows NT system. 

As mentioned several times previously in the book, Windows NT drivers are 
dynamically started, typically during the process of bootstrapping the system. 
Precisely when a driver is started or whether it is automatically started at all, is 
dependent on information stored in the Registry about the driver. This chapter 
covers installation procedures for Windows NT device drivers, and the Registry 
entries needed to control how and when a driver is started. 

As in the rest of the book, we limit our discussion in this chapter to standard 
Kernel mode device drivers. Although we mention in passing some issues relat
ed to the installation and startup of mini-port drivers (such as video, SCSI, or 
NDIS drivers) and User mode drivers (such as multimedia drivers); we do not 
pretend to thoroughly or completely address the issues related to the installa
tion of drivers for these types of devices. The NT DDK includes both clear 
explanations and examples of how to install these devices. 
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How Drivers Are Started 
Kernel mode drivers are started according to information in the Windows NT 
Registry. Each driver in Windows NT must have its own key in the Registry, 
named with the driver's name, under the 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services key. Values stored under 
the driver's key tell the system when and if a driver is to be started. Figure 20.1 
shows the Registry key (displayed by the regedt32 utility) for the standard 
Windows NT "Beep" driver. 

Figure 20.1. Services key for the Beep driver. 

As you can see in Figure 20.1, the Beep driver has a key named 
HKLM\SYSTEM\CurrentControlSet\Services\Beep. Under this key (in the right pane 
in Figure 20.1), are value entries named ErrorControl, Group, Start, Tag, and 
Type. These value entries provide the information the system needs to be able 
to start the Beep driver at the appropriate time. Briefly, the value entries rele
vant to driver startup that may appear under a driver's Services key are as fol
lows: 

• Type. This value indicates the type of component (driver, file system, or 
application, for example) that this entry represents. 
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• Start. This value tells the system whether it should attempt to start this 
driver during system startup and, if so, during what phase of system 
startup it should attempt it. 

• Group. This value allows the driver writer to specify a specific startup 
order for their driver order within a given system startup phase. 

• Tag. This value allows the driver writer to establish a specific order with
in a particular startup group. 

• ErrorControl. This value indicates what action the system should take if 
it attempts to start a driver but fails. 

• DependOnGroup/DependOnService. This value identifies a prerequisite 
group or specific driver on which the driver depends. 

• ImagePath. This value contains the path to the driver image file. 

• DisplayName. This is the text name of the driver to be displayed. 

In addition to drivers, Windows NT services also have entries with these values 
under the Services key in the Registry. Services are User mode applications 
(similar to daemons on UNIX) that run automatically, in the background, at 
system startup. 

Driver Service Entries 
Each of the value entries relevant to driver startup is described in detail in the 
sections that follow. In these sections, for those value entries with DWORD 
values, the hex value, as well as the Service Control Manager symbolic values, 
are shown. Coverage of how the Service Control Manager CreateService() 

function can be used to build a custom installation procedure is provided later 
in this chapter. 

Note 

Case is not significant in Registry keys or, typically~ Registry values. Thus~ 
although the case of various value entries or values is set by convention 
(such as \HKEY_LOCAL_MACHINE\SYSTEM being uppercase); be assured that 
whether a key~ value entry~ or value related to driver installation and 
startup is specified in upper-~ lower-~ or mixed case is of no significance 
to the system. 

Type 
The Type value entry is set to a REG_DWORD that indicates the general service type 
that this Registry entry represents. Table 20.1 shows the values for Type that 
are relevant to drivers. 
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Table 20.1. Type value entries. 

Hex Value 

OxOl 
Ox02 
Ox04 

Ox08 

Service Control Manager 
Definition 

SERVICE_KERNEL_DRIVER 

SERVICE_FILE_SYSTEM_DRIVER 

SERVICE_ADAPTER 

SERVICE RECOGNIZER_DRIVER 

Meaning 

Entry is a Kernel mode driver 

Entry is a file system driver 

Entry is a network adapter or 
component 

Entry is a file system recognizer 

There are other valid values for Type, for use by Win32 services. Unless a dri
ver is a file system or file system recognizer, it should use type 
SERVICE_KERNEL_DRIVER. 

Start 
The Start value entry (a REG_DWORD) indicates if and when a driver is to be start
ed. If the driver is to be started automatically during system startup, Start also 
indicates the phase of system startup during which the driver should be started. 
Table 20.2 lists the value entries for Start. 

Table 20.2. Start value entries. 

Hex 
Value 

OxOO 

OxOl 

Ox02 

Ox03 
Ox04 

Service Control 
Manager Definition 

Startup Type 
Shown by 
Device Control 
Panel Applet 

Boot 

SERVICE_SYSTEM_START System 

SERVICE_AUTO_START Automatic 

SERVICE_DEMAND_START Manual 

SERVICE_DISABLED Disabled 

Meaning 

Driver is started at the first 
opportunity during the boot
strap process by nddr 

Driver is started with the 
"core" set of system drivers 

Driver is started by the 
Service Control Manager dur
ing system and application 
startup 

Driver is started on request 

Driver cannot be started, even 
if explicitly requested 

Drivers that start at boot start time (Start value of OxOO) are loaded from the 
boot media by the ntldr utility by using a special boot file system, and are 
started during operating system initialization. The only drivers that should 
start at boot start time are those that are required for the operating system to 
boot. Because the operating system is still in the process of initializing during 
boot start, drivers that start at this time will encounter certain limitations. Such 

I' 

I 
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limitations include the fact that drive letters are not yet assigned, much of the 
Registry has not yet been loaded, and the event-logging service has not been 
started. Examples of standard NT drivers that start at boot start time are the 
SCSI adapter driver and class driver that control the boot disk. 

Drivers that start at system start time (Start value of OxOl) start with the core 
set of NT drivers. Unless you have a specific reason to start your driver earlier 
or later, this is probably the start time to use for your driver. System start time 
begins while the startup "blue screen" is still being displayed and continues 
approximately until you see the logon prompt displayed. Most standard NT 
drivers start at system start time, including drivers for the keyboard, floppy 
disk, CD-ROM, video display, and sound system. 

Auto-start time (Start value of Ox02) takes place immediately following system 
start. This is the last opportunity for drivers to be automatically started during 
the system boot process. Auto-start time is typically used by network compo
nents and services, as well as by low-priority Kernel mode drivers. NT ordinar
ily starts the parallel and serial port drivers, as well as the network adapter 
driver, during this phase of startup. It is worth noting that users might be able 
to log into the Windows NT system before all the drivers that are scheduled to 
start at Auto-start time have started. This means that drivers started at Auto
start time may not be immediately available as soon as a user gains access to 
the system. 

A driver with its Start entry set to SERVICE_DEMAND_START will be started only on 
request. This can be by request of a user, for example, by using the appropriate 
Control Panel applet, or programmatically via the service control manager 
interface. Drivers that are set to demand start may also be started automatical
ly during system startup, if they are indicated as a prerequisite, via the 
DependOnGroup or DependOnService value entries, for a driver that starts in the 
Auto-start group. See the description of DependOnGroup/DependOnService later in 
this chapter for a complete explanation of this phenomenon. 

When debugging or testing a drive~ it's usually most convenient to start 
it manually, if this is possible. Thus, the Start entry would be set to 
SERVICE_DEMAND_START. Starting the driver manually avoids the problem 
of having the driver crash the system during startup, thus preventing the 
driver writer from easily replacing the driver! 

It is important to understand that the value of Start determines driver start 
time at the coarsest possible level. Therefore, all drivers with Start set to 
SERVICE_BOOT_START will be started before any drivers with Start values of 
SERVICE_SYSTEM_START. Likewise, all drivers with Start values indicating 
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SERVICE_SYSTEM_START will be started before any drivers set to 
SERVICE_AUTO_START will be started. 

Group 
The Group value entry indicates the load order group to which the driver 
belongs. The load order group determines when the driver starts, within its 
indicated start time. The load order group is specified as a REG_SZ value, taken 
from a list of values in HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control \ 

ServiceGroupOrder\List. This value entry is a REG_MUL TI_SZ that contains an 
order listed of load order groups .... \ServiceGroupOrder\List by default con
tains the following groups: 

1. System Bus Extender 

2. SCSI miniport 

3. port 

4. Primary disk 

5. SCSI class 

6. SCSI CDROM class 

7. filter 

8. boot file system 

9. Base 

10. Pointer Port 

11. Keyboard Port 

12. Pointer Class 

13. Keyboard Class 

14. Video Init 

15. Video 

16. Video Save 

17. file system 

18. Event log 

19. Streams Drivers 

20. PNP_TDI 

21. NDIS 
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22. TDI 

23. NetBIOSGroup 

24. SpoolerGroup 

25. NetDDEGroup 

26. Parallel arbitrator 

27. extended base 

28. RemoteValidation 

29. PCI Configuration 

This list indicates that within a given start time, a driver that sets its Group 

value entry to System Bus Extender will be started before a driver with the 
Group value entry SCSI miniport. Similarly, drivers with the Group value entry 
SCSI miniport will be started before drivers with a Group value entry port, and 
so on. Drivers that have a Group value that does not appear in 
... \ServiceGroupOrder\List are started after the drivers that list a valid Group 
value. Drivers that provide no Group value entry are started last within their 
start time. 

Tag 

Note 

The Windows NT DDK documentation claims in at least one place that 
the Group value entry is used only for drivers that start at boot start and 
system start times. This is not correct. The Group value is also used to 
order the startup of drivers started at auto-start time. 

The value for Tag sets the order in which a driver starts within its startup 
group if the driver starts within boot start or system start time. The system 
ignores Tag values for drivers that start at auto-start time. Possible values for 
Tag are specified for each group in the Registry under the key 
HKEY_LOCAL_MACHINE\CurrentControlSet\Control\GroupOrderList. Under this key is 
a set of value entries, the name of which corresponds to the names of the vari
ous startup groups. Each value entry comprises a tag vector. 

Figure 20.2 shows the ... \Control \GroupOrderList key opened in the regedt32 
application. In the right pane are the value entries that are stored under this 
key. Notice that not every group that appears in the ... \ServiceGroupOrder\List 

value entry has a value under ... \Control \GroupOrderList. This is because only 
those groups that need to control the startup order of drivers within the group 
require value entries under the ... \Control \GroupOrderList key. 
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Figure 20.2. GroupOrderList key in the Registry. 

The format of the tag vector is rather arcane. The tag vector is in REG_BINARY 
format. The first byte of the tag vector indicates the number of longword tags 
that appear. The subsequent longwords comprise an ordered list of tag values. 

The tag vector for the Pointer Port group is shown opened in regedt32's binary 
editor in Figure 20.2. Note that this tag vector has Ox03 tags indicated. The 
tags, in the order that they appear in the tag vector, are Ox00000002, 
Ox00000001, and Ox00000003. Note that the tag vector is rounded out to an 
integral number of longwords. The Pointer Port tag vector indicates that there 
are three tags. Among the drivers within the group Pointer Port, the driver 
with its Tag value entry set to Ox02 will be started first, the driver with a Tag of 
OxOl starts next, and the driver with Tag Ox03 starts third. 

Figure 20.3 shows the Registry entry for the serial mouse (Sermouse) driver. 

Figure 20.3 shows that the Sermouse driver is Type : SERVICE_KERNEL_DRIVER 
(OxOl); starts at system start time (Start is set to SERVICE_SYSTEM_START which is 
OxOl); and during system start time, starts within the startup group Pointer 
Port (Group is set equal to Pointer Port). Within the startup group Pointer 
Port, Sermouse will be the first driver started. This is because the Sermouse dri
ver has a Tag value entry of Ox02, and Ox02 is the first value in Pointer Port 
tag vector (stored under the value entry ... \Control\GroupOrderList\Pointer 
Port). 
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Figure 20.3. Sermouse driver Registry entry. 

ErrorControl 
The value entry ErrorControl determines what action the system takes if a dri
ver fails to successfully start at boot, system, or auto-start time. The reason for 
the failure could be due to errors in its Registry service key or the driver 
returning a status other than STATUS_SUCCESS from its driver entry routine. 
ErrorControl is ignored for drivers that start at auto-start time. Table 20.3 
shows the possible values for ErrorControl and their meanings. 

Table 20.3. ErrorControl value entries. 
Hex 
Value 

OxOO 
OxOl 

Ox02 

Ox03 

Service Control 
Manager Definition 

SERVICE_ERROR_IGNORE 

SERVICE_ERROR_NORMAL 

Meaning 

Load errors are ignored. 

Load errors are logged to the system event log; 
system continues booting. 

Load errors are logged to the system event log; 
if Last Known Good configuration is being 
booted, load continues; otherwise, the system 
is restarted by using Last Known Good config
uration. 

Load errors are logged to the system event log; 
if the Last Known Good configuration is being 
booted, the boot is aborted; otherwise, the sys
tem is restarted by using Last Known Good 
configuration. 
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Whenever the CurrentControlSet in the Registry is modified, the Registry makes 
a backup copy of the previous control set that was used to successfully start 
the system. This backup control set is known as the Last Known Good control 
set. 

If a driver specifies an ErrorControl value of SERVICE_ERROR_SEVERE, if the driver 
fails to start, the boot process checks to see whether it is already starting by 
using the last known good control set. If the driver is not already started by 
using the Last Known Good control set, the system is rebooted by using the 
Last Known Good control set. Once the system is started by using the Last 
Known Good control set, the system startup process continues. 

The only difference between an ErrorControl value of SERVICE_ERROR_CRITICAL 

and SERVICE_ERROR_SEVERE is that if a driver specifying SERVICE_ERROR_CRITICAL 

fails to start, and the Last Known Good control set is already being used, the 
system boot process is halted by a system crash. 

!Vote 

Obviously, it's important to use the ErrorControl values 
SERVICE_ERROR_SEVERE and SERVICE_ERROR_CRITICAL carefully. Failure to do 
so can result in an unbootable system! Further, our experience has been 
that although SERVICE_ERROR_SEVERE and SERVICE_ERROR_CRITICAL do indeed 
result in the system being rebooted, they do not always result in the sys
tem being rebooted with the Last Known Good control set. Thus, if you 
have a driver that specifies one of these ErrorControl values, and the dri
ver encounters an error, you may have to manually reboot the system and 
then manually elect to start the system by using the Last Known Good 
control set. 

DependOnGroup/DependOnService 
The DependOnGroup and DependOnService value entries cause more confusion than 
any other entries about how Windows NT drivers are started. Documentation 
to the contrary, these two value entries appear to apply only during auto-start 
time. Further, their actual actions can be quite surprising. 

DependOnGroup is a REG_MUL TI_SZ that contains one or more startup groups on 
which the driver is dependent. At auto-start time, when a driver with a 
DependOnGroup is started, the Service Control Manager will attempt to start all 
the drivers in the prerequisite groups that have not already been started and 
are not explicitly marked as SERVICE_DISABLED. Thus, even drivers in a prerequi
site group that are marked as SERVICE_DEMAND_START will be started. Such drivers 
are still started at the time specified by their Group value, however. If any of 
the drivers in the prerequisite group start, the driver with the dependency will 
be started. 
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An example might make this a little clearer. Assume that you have the follow
ing drivers to start: 

Nothing.sys 

Fred.sys 

Type: REG_DWORD: SERVICE_KERNEL_DRIVER 
Start: REG_DWORD: SERVICE_AUTO_START 
Group: REG_SZ: Primary disk 
DependOnGroup: REG_MULTI_SZ: MyGroup 

Type: REG_DWORD: SERVICE_KERNEL_DRIVER 
Start: REG_DWORD: SERVICE_DEMAND_START 
Group: REG_SZ: MyGroup 

In this example, when the Service Control Manager encounters Nothing. sys 
with its prerequisite group MyGroup, it will attempt to start all the drivers not 
already started and not set to SERVICE_DISABLED, including Fred. sys. If any of 
the drivers in MyGroup started successfully, either because they started successful
ly during their normal start opportunity or because they were started as a 
result of a dependency for Nothing. sys, Nothing. sys will be started. Note that 
the prerequisite drivers can have been started at boot start time, system start 
time, or auto-start time. 

This gets complicated, however. Suppose the group Primary disk appears in the 
... \Control \ServiceGroupOrder\List before MyGroup, and there are no other dri
vers in MyGroup other than Fred. sys. In this case, the dependency will fail (and 
Nothing. sys will not be started) because Fred. sys will not actually be started 
until it is MyGroup I s turn, according to the ... \Control \ServiceGroupOrder\List. 

DependOnService works the same way that DependOnGroup works, except it 
works on a specific driver (or service) name, instead of on an entire group of 
drivers. Thus, if DriverA is listed in a DependOnService value entry for 
DriverB, when DriverA is successfully started, DriverB will also start success
fully. 

Note 

We admit it: We've given up trying to figure out all the nuances of how 
DependOnGroup and DependOnService really work. What's clear is that 
these value entries do not appear to us to work either the way they are 
documented, or the way many people seem to think they work. It's our 
practice to avoid these two value entries and order our drivers using the 
Group value entry. If one of our drivers is dependent on anothe~ we sim
ply have the dependent driver check in its Driver Entry routine to see 
whether the prerequisite driver has created its Device Object. If it hasn't, 
we know the prerequisite driver did not load successfully. 
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ImagePath 
The ImagePath value entry specifies the location of the driver image on disk. 
This value entry lets you locate your driver executable file in a location other 
than %SystemRoot%\System32\Drivers, which is the default. Precisely how this 
entry is specified is a function of the start time of the driver. 

For drivers that start at boot start time, the value for ImagePath must either 
start with a leading slash and be an absolute ARC path name, or not start with 
a leading slash and indicate a path relative to %SystemRoot%. This is because the 
Object Manager's directory structure has not been set up when the driver is 
loaded. For example, for a boot start driver, specifying the value 
Win32\MyDrivers \Nothing .Sys locates the indicated driver in 
%SystemRoot%\Win32\MyDrivers director~ 

For drivers that start at system start time, the ImagePath value cannot use tradi
tional drive letters because these will not necessarily be created yet. Thus, 
instead of specifying c: \MyDirectory\Nothing.Sys, you must specify 
\Device\HardDisk0\Partition1 \MyDirectory\Nothing. Sys (assuming that c: corre
sponds to \HardDisk0\Partition0, of course). The path must point to a local 
(non-network) volume. The relative syntax supported for drivers started at 
boot time, where a path without a leading slash indicates a path relative to 
%SystemRoot%, also appears to work. 

For drivers that start at either auto-start or demand start, the ImagePath is only 
constrained to be on a local partition. Driver images cannot be opened and 
loaded across the network. 

DisplayName 
The DisplayName value entry contains a Unicode text string that identifies the 
driver. If a DisplayName value is not supplied, the driver's filename is used. 

Driver- and Device-Specific Parameters 
Drivers typically store driver- and device-specific information under a 
\Parameters subkey of their service entry. Figure 20.3 shows the Sermouse's ser
vice entry, including a \Parameters subkey. Device- or driver-specific informa
tion might include tuning parameters, licensing information, or configuration 
information. 

As mentioned in Chapter 13, "Driver Entry," information stored under the 
\Parameters subkey is entirely device- or driver-specific. The system does not 
retrieve or attempt to interpret any of the information stored under this key. 
The structure of the data stored under the Parameter's key is entirely up to the 
driver. There is no specific NT convention that applies. 
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The installation procedure for drivers that do not support dynamic configura
tion, such as those for ISA bus devices, typically store static configuration 
information under the \Parameters subkey. This information, including the port 
address, shared memory address, or IRQ for the device, is retrieved by the dri
ver during the Driver Entry routine. 

In addition to the \Parameters sub key of the driver's service entry, drivers often 
store information in the Registry under the Software key. The convention is 
that information should be stored under what's called a description subkey. 
The entire key has the following form: 
\HKEY_LOCAL_MACHINE\SOFTWARE\CompanyName\ProductName\ProductVersion. 

Again, the information stored in these keys is entirely up to the driver. 

Driver Installation 
Installing device drivers on Windows NT is extremely simple. The entire 
process consists of only two steps: 

1. Copy the necessary files to the system. These files include the driver exe
cutable image (. sys) file, as well as any other files (such as files contain
ing microcode or configuration information) that are required by the 
driver. 

2. Create the necessary Registry entries, as described in the previous section. 
These entries indicate when the driver is to be started, and also store any 
driver- or device-specific information (such as IRQ or device I/O address
es) that the driver may need during its initialization processing. 

Depending on the type of driver being installed and when it is installed, there 
are three options for how the two installation steps are implemented: 

• For Keyboard and Mouse drivers (as well as display and SCSI adapter 
drivers) that need to be installed during the NT system installation 
process, Text Setup installation is used. This process requires the creation 
of a simple TXTSETUP. OEM file that describes the files to be copied and the 
Registry entries to be made. 

• For Keyboard, Mouse, PC Card, Port and Tape drivers (as well as SCSI 
Adapter, display, modem, Telephony, and Multimedia drivers) installed 
after Windows NT has been installed, GUI setup is used. This process is 
directed from a particular Control Panel applet (CPA), and requires the 
creation of an OEMSETUP. INF file to describe the files to be copied and the 
Registry entries to be made. 
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• For all other standard Kernel mode device drivers, a custom installation 
procedure is used. This requires the driver writer to create a custom 
installation program to copy the files and make the necessary Registry 
entries. Alternatively, a third-party installation product such as 
InstallShield can be used. 

As should be evident from the preceding list, most standard Kernel mode dri
vers will be installed using a custom installation procedure. Fear not, however, 
because the actual installation process is very simple. 

Text Setup 
Drivers that are installed during the Windows NT system installation proce
dure are installed using a process called text setup. These drivers include key
board and mouse drivers, as well as display and SCSI adapter drivers. Custom 
HALs are also installed by using this method. 

Text setup requires the creation of an installation script called TXTSETUP. OEM. 

The format of this file is well-defined by the DDK documentation, and several 
examples exist in the \ddk\src\setup directory. This file directs the setup pro
gram to copy the files and create the Registry entries necessary to install the 
driver. 

The TXTSETUP. OEM file contains a series of sections. Each section in the file is 
prefixed by the name of the section in square brackets. For example, the first 
section is the Disks section. This section is identified in TXTSETUP. OEM by [Disks] 

appearing on a line by itself. 

Within the TXTSETUP.OEM file itself, lines that start with a hash mark ("#") or a 
semicolon (";") indicate comment lines. Text scripts are enclosed in double 
quotation marks. 

The sections in TXTSETUP. OEM include: 

• [Disks] 

• [Defaults] 

• [Component] 

• [Files.component.id] 

• [Config.component.id] 

[Disks] Section of TXTSETUP. OEM 
The [Disks] section of the TXTSETUP. OEM file identifies the disks that make up 
the distribution kit for the component to be installed. Each disk is identified by 
one script line. The format of script lines in the disk section is: 

disk = description, tagfile, directory 
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where: 

• disk is the name used later in the script to identify the particular disk in 
the installation kit. 

• description is a text string with the human-readable description of the 
disk; used to prompt the user for the right disk to insert. 

• tagfile is a path, without the device name, that points to a file on the 
distribution disk. Setup looks for this file during installation to determine 
whether the correct disk has been inserted by the user. 

• directory is the base directory on the disk from which the file will be 
copied during installation. 

The following example shows how the [Disks] section of the TXTSETUP. OEM file 
might appear. 

[Disks] 

Disk1= "Rocket Blaster Mouse Driver Disk 1", \rbmouse.1, \ 

In the preceding example, the user will be prompted to "Rocket Blaster Mouse 

Driver Disk 1" when files from that disk are to be copied. When a disk is 
inserted, setup will check to see whether it finds the file rbmouse.1 in the root 
directory of the disk to verify that the proper disk has been inserted by the 
user. Files will be copied from the root directory of the volume. 

[Defaul ts] Section of TXTSETUP. OEM 
The [Defaults] section of the TXTSETUP. OEM file provides the default selection for 
the hardware "components" listed in [component] sections. The format for 
script lines in this section is as follows: 

component = id 

where: 

• component is the hardware component name. This must be one of comput
er, display, keyboard, mouse, CD-ROM, or SCSI. 

• id is the string that identifies the option ID for the component. 

The following example shows how the [Defaults] section of the TXTSETUP.OEM 

file might appear. 

[Defaults] 

mouse = RBMFAST 

In the preceding example, the default option for the hardware mouse compo
nent is the RBMFAST option. The following section covers hardware component 
options in greater detail. 
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[Component] Section of TXTSETUP • OEM 
The [Component] section of the TXTSETUP. OEM file identifies the hardware
component options that the user can select to be installed. The name of this 
section is the hardware component name, which is one of computer, display, 
keyboard, mouse, CD-ROM, or SCSI. Each line represents one option. The 
default option is indicated by the [Defaults] section, previously in the script. If 
no default for a component is present, the first line in the component section is 
used. The format for script lines in this section is: 

id = description, key-name 

where: 

• id is the string that identifies the option id for the component. This is the 
same id string that can appear in the [Defaults] section. 

• description is the human-readable text string that identifies this compo
nent to the user. The user will be asked to choose which option to install 
among the various component options listed. 

• key-name is the name of the services key to create in the Registry for this 
component. 

The following example shows how the [Defaults] section of the TXTSETUP.OEM 
file might appear. 

[mouse] 

RBMFAST = "Rocket Blaster FAST mouse", RBMOUSE 
RBMCORRECT = "Rocket Blaster working mouse", RBMOUSE 
RBMGEN = "Generic rocket blaster mouse driver", RBMOUSE 

In the preceding example, there are three choices for the mouse component. 
Each choice is represented by a separate line in the [mouse] component section 
of the file. The user will be prompted to choose among the listed description 
strings from a menu. Regardless of which option is chosen, the services key in 
the Registry will be named RBMOUSE. 

[Files.component.id] Section of TXTSETUP . OEM 
The [Files. component .id] section of the TXTSETUP. OEM file identifies the files that 
are to be copied for the particular option of a particular component. Each line 
in the script file identifies the type of file to be copied, its disk in the installa
tion kit, and the name of the file to be copied. The name of the section uses the 
word "Files" followed by a period, followed by a hardware component name, 
and then followed by an id that matches a component option id in the compo
nent section of the script. The format of script lines in this section is as follows: 

component = disk, filename 
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where: 

• component is the hardware component name. 

• disk is the identifier, defined in the [Disks] section of the script file, that 
indicates the disk from which the file is to be copied. 

• filename is a file specification that, when appended to the directory speci
fication of the matching [Disks] script line, forms the full path and file 
name of the file to be copied. 

The following example shows how the [Files. component .id] section of the 
TXTSETUP. OEM file might appear. 

[Files.mouse.RBMFAST] 
driver = Disk1, fast\rbmouse.sys 

[Files.mouse.RBMCORRECT] 
driver = Disk1, right\rbmouse.sys 

In the preceding example, there are two sections shown. The first is processed 
when the user selects the RBMFAST option from the component section. In this 
section, the mouse driver is copied from Disk1 (which matches the Disk1 specifi
cation in the [Disks] section at the top of this script file) from the \fast\ direc
tory. The file copied is RBMOUSE. SYS. 

[Conf ig . component. id] Section of TXTSETUP . OEM 
The [Config.component.id] section of the TXTSETUP .OEM file identifies any addi
tional Registry entries that need to be made during installation, beyond those 
that are minimally required to start the driver. The format of the script lines in 
this section is as follows: 

value = subkeyname, valuename, valuetype, valuetoset 

where: 

• value is a keyword. 

• subkeyname is the name of the subkey to be used for the indicated value 
under the \HKEY_LOCAL_MACHINE\CurrentControlSet\Services\key-name key 
in the Registry (where key-name is defined in the component section of the 
script). If the key does not exist, it is created. To place a value directly 
under the driver's services key, specify a null string in this subkeyname 

field. 

• valuename is the name of the value entry to create. 

• valuetype is the Registry-defined value entry type, such as REG_DWORD, 

REG_SZ, REG_EXPAND_SZ, or REG_BINARY. 

• valuetoset is the actual value to be set in the indicated location. 
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The following example shows how the [Component. component. id] section of the 
TXTSETUP. OEM file might appear: 

[Config.mouse.RBMFAST] 
value = Parameters, GoFast, REG_DWORD, 01 

[Config.mouse.RBMCORRECT] 
value = Parameters, GoFast, REG_DWORD, 00 

In the preceding example, two sections are shown. The section processed 
depends on the user's selection during installation. If the RBMFAST component 
option was selected, the value entry named GoFast is created with the value of 
OxOl in the Registry under \HKLM\CCS\Services\RBMOUSE\Parameters key. 

GUI Setup 
Drivers for standard devices that are installed after Windows NT has been fully 
set up, or those that are installed during system installation but can be tailored 
later, use GUI setup procedures. The devices that are supported by GUI setup 
are the keyboard, mouse, PC card, and port and tape devices (as well as the 
SCSI adapter, display, modem, telephony, and multimedia devices). This proce
dure is directed by an . INF file, which has a format that is shared between 
Windows NT and Windows 95. 

The. INF file format is well documented in the DDK, and we will not repeat 
that documentation here. There are also numerous examples in the 
\ddk\src\setup directory of the DDK that can be used as a guide. 

One caution about. INF file format is worth mentioning: Although it is indeed 
true that Windows 95 and Windows NT share a common .INF file format, not 
all sections are supported by both platforms. Thus, it is common to have a 
shared .INF file that has different sections used for Windows NT GUI setup 
and Windows 95 GUI setup. 

Custom Setup 
Most device drivers for Windows NT (at least most of the device drivers devel
oped outside of Microsoft!) are installed by using a custom setup procedure. 
This is because most drivers are installed after the system is installed, and do 
not fit in the category of those devices supported by GUI setup. 

Because device-driver installation is so simple on Windows NT, creation of a 
Win32 program to properly install the drivers is a straightforward task. A 
Win32 installation program can be as elegant or as simple as required. All that 
is required is to copy the needed files so that they are properly accessible at 
start time, and to make the required Registry entries. More complex installa
tion programs query the user for configuration parameters, and store these 
parameters under the driver's \Parameters subkey. 
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Creating the required Registry entries for a driver is made even easier by using 
the Win32 Service Control Manager API function CreateService (). This f'lnc
tion, which is fully documented in the SDK, creates the necessary Service entry 
for the driver and adds the required value entries. An example of installing and 
starting a driver using the Service Control Manager API even appears in the 
DDK in the \ddk\src\general \instdrv directory. Figure 2004 shows the proto
type for the CreateService () function. 

SC_HANDLE 
CreateService( SC_HAND LE hS CManager, 

LPCTSTR lpServiceName, 
LPCTSTR lpDisplayName, 
DWORD dwDesiredAccess, 
DWORD dwServiceType, 
DWORD dwStartType, 
DWORD dwErrorControl, 
LPCTSTR lpBinaryPathName, 
LPCTSTR lpLoadOrderGroup, 
LPDWORD lpdwTagld, 
LPCTSTR lpDependencies, 
LPCTSTR lpServiceStartName, 
LPCTSTR lp Password); 

hSCManager: A handle to the Service Control Manager, previously 
opened using the OpenSCManager() function. 

lpServiceName: A pointer to a NULL-terminated string that contains 
the name of the service key to be created in the 
\HKLM\CCS\System \Services directory. 

LpDisplayName: A pointer that contains a NULL-terminated string 
for the DisplayName value entry in the Registry entry for this driver. 

dwDesiredAccess: The access desired to the service, once it has been 
created. Typically, SERVICE_ALL_ACCESS. See the SDK for details. 

dwServiceType: The value for the value entry Type for this driver. 

dwStartType: The value for the Start value for this driver. 

dwErrorControl: The value to the ErrorControl value entry for this 
driver. 

lpBinaryPathName: A pointer to a NULL-terminated string that con
tains the value for the LoadImage value entry for this driver. 
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IpLoadOrderGroup: A pointer to a NULL-terminated string that con
tains the value for the Group value entry for this driver. If no group 
value is required, specify NULL. 

IpdwTagld: A pointer to a DWORD containing the value for the Tag 
value entry. If no tag is required, specify NULL. 

IpDependencies: A pointer to a string to a list of group or service 
dependencies. Each entry in the list must be terminated with a single 
NULL character, and the entire list must be terminated with two 
NULL characters. By default, any listed entries are placed in the 
DependOnService value entry for the driver. Entries that start with the 
identifier SC_GROUP _IDENTIFIER are placed in the 
DependOnGroup value entry for the driver. If this driver has no depen
dencies, specify NULL. 

IpServiceStartName: A pointer to a NULL-terminated string that speci
fies the ObjectName value entry. For Kernel mode drivers, this value 
should be NULL. 

IpPassword: A pointer to a NULL-terminated string that provides a 
password. For Kernel mode drivers, this value should be NULL. 

Figure 20.4. CreateService () Win32 function prototype. 

Of course, the requisite Registry entries can also be created by using the RTL 
or Registry Win32 functions. One advantage to using the Service Control 
Manager API, however, is that services that are created by using 
CreateService () can be immediately started without rebooting the system by 
using the StartService () function. 

Installation with InstallShield 
Custom setup routines may also be crafted by using InstallShield, a product 
made by InstallShield Software Corporation. Most developers working on PC 
platforms have probably encountered InstallShield at one time or another 
because it is the most common program used for application installation and 
removal. InstallShield provides an attractive and easily customized splash 
screen, as well as application installation and removal. 
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Chapter 21 
File System Drivers 

This chapter will review: 

• File System Driver Characteristics. This section describes the characteris
tics that make File System drivers unique among Windows NT Kernel 
mode drivers. 

• Learning More About Developing File System Drivers. This section pro
vides information on where and how to find out more about developing 
FSDs. 

This chapter briefly compares and contrasts File System drivers with the stan
dard Kernel mode device drivers that were discussed extensively in Part II. At 
the end of the chapter, you'll find a few pointers on where you can learn more 
about developing File System drivers. 

Please note that it is not possible to learn how to write a File System driver 
using the information presented in this chapter. The goal of this chapter is to 
simply provide a brief introduction to File System drivers, and to relate the 
structure of these drivers to the standard Kernel mode device drivers discussed 
previously in this book. 

File System Driver Characteristics 
File System drivers (FSDs) are Windows NT standard Kernel mode drivers. 
When most people first think of "File System drivers," they typically think of 
FSDs that implement physical media file systems, such as NTFS or FAT. 
Although NT FSDs can implement physical media file systems, they are also 
used to implement many more things. FSDs in Windows NT may implement 
network file systems and logical namespace file systems, as well. 

The most common example of a network file system is a redirector, such as the 
Windows NT "RDR" file system. A redirector is responsible for mapping drive 
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letters to remote volumes, accessible over the network. The remote volume is 
shared via a paired server. 

Network file systems may also implement interprocess communications facili
ties. Examples of these include Windows NT's Named Pipe File System (NPFS) 
and Mail Slot File System (MSFS). The FSD provides a generic I/O interface 
(CreateFile(), ReadFile() and WriteFile() from Win32) to interprocess commu
nications. 

There are a wide variety of FSDs that fall into the category of logical name
space File System drivers. A simple example would be an FSD that exports a 
content-addressable data store as a hierarchy of directories and files. One 
example of this type of FSD that we've seen was based on storage for publica
tions: A volume represented a publication, a top-level directory on the volume 
represented a chapter in the publication, and the subdirectories within the 
chapters each represented separate parts of the chapter. 

Other examples of logical namespace file systems are hierarchical storage sub
systems. Again, there are many different things that fall into this category. 
However, the most common variation manages the storage of data, both online 
and "near line" (near line being in a juke box system, for example). All the 
data files in the system appear to the user to be available online at all times. 
Access to the near line data is transparent to the user, except for the delay in its 
initial access. The more sophisticated types of hierarchical storage subsystems 
dynamically balance what data is stored where, thus allowing fast access to fre
quently used data, but providing vast amounts of storage space for infrequently 
accessed information. 

One obvious characteristic that sets an FSD apart from a device driver is that 
the lower-edge interface of an FSD is another driver typically accessed via 
IoCallDriver(), instead of a device accessed via the HAL. Apart from this, 
however, there are specific differences that allow FSDs to fulfill their special 
roles in Windows NT systems. Some of these characteristics include: 

• FSDs are guaranteed to be called in the context of the requesting thread. 

• FSDs are tightly integrated with the NT Memory Manager and Cache 
Manager subsystems. 

• FSDs are closely intertwined with the NT I/O and Object Managers. 

Figure 21.1 shows the file system's place in the stack of Windows NT drivers. 
The following sections discuss each of the FSD characteristics in more detail. 
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Figure 21.1. File System drivers are at the top of the Windows NT driver stack. 

FSDs Are Called in the Context of the 
Requesting Thread 
As discussed in Chapter 11, "The Layered Driver Model," and shown in 
Figure 21.1, FSDs are always logically located at the top of a Windows NT 
stack of drivers. A File System driver is thus always guaranteed to be initially 
called with a request, in the context of the thread making the request. This 
guarantee makes it possible for FSDs to use Neither I/O for describing requests 
and to implement Fast I/O entry points. 

Implementing Neither I/O allows an FSD to manipulate data by using the 
requestor's virtual address. This avoids the overhead of locking buffers in 
memory and creating alternate mappings (as would be required with Direct 
I/O), or copying data to intermediate buffers (as would be required with 
Buffered I/O). When a request cannot be conveniently processed immediately 
in the context of the requesting thread by an FSD, the FSD builds an MDL to 
describe the requestor's buffer. This MDL is, of course, usable in an arbitrary 
thread context. An FSD may utilize "worker threads" to process such requests. 

Because file systems are called in the context of the calling thread, they also 
typically implement Fast I/O. Fast I/O, described in Chapter 11, is a procedure
based interface between the I/O Manager and drivers. The Fast I/O entry point 
is shown in Figure 21.2. The Fast I/O interface makes it possible for FSDs to 
process certain operations, including some read and write operations, without 
the use of IRPs. 

In Fast I/O, request parameters are passed from the I/O Manager to the FSD as 
function parameters. As an example of a Fast I/O entry point, Figure 21.3 
shows the parameters passed by the I/O Manager to an FSD's FastIoRead ( ) 

entry point. Because the FSD is called in the context of the requesting thread, 
the parameters that are passed in are all that the FSD requires to process the 
request. 
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Figure 21.2. Fast I/O processing for a Read operation. 

Figure 21.3. FastIoRead () FSD entry point. 

Note that the FastIoRead () routine is of type BOOLEAN. This allows the FSD 
to inform the I/O Manager about whether it was able to process the request. If 
the FSD was able to completely process the request in its Fast I/O routine, the 
FSD returns TRUE as the status of its Fast I/O routine. This results in the I/O 
Manager completing the request back to the requestor, with the I/O status 
returned in the I/O Status Block. If the FSD could not completely process the 
request, it returns FALSE from its Fast I/O routine. In this case, the I/O Manager 
builds an IRP (typically using Neither I/O, as described previously) that 
describes the I/O request and calls the FSD at the appropriate Dispatch entry 
point. 

Remember: Only File System drivers can implement Fast I/O entry points 
for read and write operations. The I/O Manager will not call the read or 
write Fast I/O entry points of intermediate or device drivers, even if such 
a driver is at the top of its driver stack. 
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FSDs Are Tightly Integrated with the VM 
Subsystem 
Probably the single greatest differentiating factor between File System drivers 
and other drivers is that FSDs tightly integrate with the Windows NT Memory 
Manager and Cache Manager subsystems. Figure 21.4 shows an example of 
this integration. 

liD 
Manager 

(3) 

Cache Blocks 
(each block 1 page) 

At request of FSD. 
Cache Manager 

copies requested data 
(shows as shared area) 

from cache to 
requestor's data buffer 

Figure 21.4. FSD and Cache Manager integration. 

In Figure 21.4, the FSD is called at one of its Fast 110 entry points to process a 
read request from a User mode application (Step (1)). In response to this call, 
assuming that the file was not opened non-cached, the FSD calls the Cache 
Manager (via its CcCopyRead () function) to copy the requested data from the 
system cache to the requestor's data buffer (Step (2)). All of the requested data 
exists in the cache, so the Cache Manager copies the data from the system 
cache to the user's data buffer (Step (3)). 

If all of the requested data does not presently reside in cache, the FSD can 
(optionally) wait while the Cache Manager reads the data from disk. When the 
Cache Manager has to go to disk for data, it performs read-ahead on the 
requested file. Therefore, disk reads are always at least one page in length, and 
are frequently longer. 

The Cache Manager does not simply issue a read for the data from disk, how
ever. The Cache Manager page faults the disk data into memory. The data itself 
is thus loaded from the disk file by the Memory Manager. The Memory 
Manager builds a paging 110 request for the data from disk, and sends it to the 
file system, as shown in Step (3) in Figure 21.5. This results in the data being 
read from the disk, into the system cache (Step (4)). The user's read is eventual
ly completed using this data. 
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Figure 21.5. The Cache Manager goes to disk for data. 

The data is read from disk and placed in an appropriate cache block. On com
pletion of the in-page (disk read) operation, the Cache Manager copies the 
data from the newly filled cache block to the requestor's data buffer. 

Please be aware that this explanation leaves out many of the complex 
details of the file system~ Cache Manager, and Memory Manager's interac
tion. Our goal is only to provide enough information for you to reach an 
understanding of how file systems differ from device drivers. Actually 
implementing a file system requires a bit more information than we can 
include in these few pages! 

FSDs Are Closely Intertwined with the I/O and 
Object Managers 
The final difference between File Systems drivers and device drivers is in the 
level of integration between FSDs and the VO and Object Managers. File sys
tems in Windows NT are each responsible for implementing part of the sys
tem's namespace. 

When a request to open a file named c: \mydir\ fred. txt for read access is 
received by the I/O Manager, the I/O Manager calls the Object Manager to 
help resolve the name that was passed in. The Object Manager traverses its 
namespace, finding the Device Object that corresponds to C:. Decoding the 
remainder of the name, however, is the province of the I/O Manager and the 
File System driver. The decoding process is as follows: 

1. The Object Manager calls the parse method associated with the identified 
Device Object. This parse method is provided by the I/O Manager. 

2. The I/O Manager locates the FSD that has the volume mounted. 
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3. The I/O Manager then builds an IRP with an lRP _MJ_CREATE major func
tion code and passes this IRP to the FSD. 

4. The FSD is then responsible for parsing the remaining parts of the path 
and filename in a file system-dependent manner. 

5. When the name has been parsed, the FSD builds a data structure in mem-
ory called a File Control Block (FCB), which describes the file. 

Although the format of the FCB is generally file system-dependent, part of the 
FCB's structure is known to various NT subsystems such as the I/O Manager. 

The capability to parse and resolve names in I/O requests is one of a file sys
tem's most powerful capabilities. It is this capability that makes file systems 
useful for more than just the support of on-disk structures. 

Learning More About Developing File 
System Drivers 
Unfortunately, File System driver development is not supported by Microsoft at 
the present time. Microsoft has released an installable file systems development 
kit, available separately from MSDN, which enables file system development. 
This kit provides the necessary header file with prototypes of the required 
functions, plus a sample code for a couple of example file systems. More infor
mation on the kit is available on the Web at 
http://www.microsoft.com/hwdev/ntifskit/default.htm. 

The only resource for learning, in detail, how to develop FSDs is OSR's 
Windows NT File Systems Development seminar. This seminar is taught in 
public and private settings all over the world. In the interest of full disclosure, 
this seminar is taught by one of the authors. Check out http://www . osr. com for 
more information, including a seminar outline and the current schedule. 

Rajeev Nagar has authored a very good book, titled Windows NT File Systems 
Internals: A Developer's Guide (O'Reilly, ISBN: 1-56592-249-2). The book is a 
great resource that is clearly written and describes many heretofore undocu
mented details about file-system development. Take care, however, because the 
book is more correct for NT V3.51 than it is for later versions of NT. 





Chapter 22 
Video Miniport Drivers 

We are grateful to our resident graphics expert, OSR Consulting 
Associate Pete Nishimoto, for contributing this chapter. 

This chapter will review: 

• Video Port/Miniport Drivers. This section briefly describes the design and 
architecture of Video Miniport drivers. 

• Display Drivers. Video Miniport drivers provide only part of the support 
needed for graphics devices on NT. This section describes Device Display 
Interface (DDI) drivers. 

• DMA and Video Display Drivers. This section highlights some issues 
regarding DMA support in Video display drivers. 

• Learning More About Developing Video Display Drivers. This section 
provides information on where you can learn more about developing 
Video Display drivers. 

This chapter briefly discusses the structure of Video Display drivers, and com
pares and contrasts their structure to that of standard Kernel mode device dri
vers. The chapter ends with a section that provides information on where you 
can learn more about developing Video Display drivers. 

Please note that it is not possible to learn how to write Video Display drivers 
by using only the information presented in this chapter. The goal of this chap
ter is to simply provide a brief introduction to Video Display drivers, and to 
relate the structure of these drivers to the standard Kernel mode device drivers 
discussed previously in this book. 

A Video Display driver actually consists of two separate drivers: a Device 
Display Interface (DDI) driver and a Video Miniport driver. The DDI is a 
Kernel mode DLL that is responsible for all rendering activities. That is, the 
DDI receives graphics requests from the Win32 subsystem and then interfaces 
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with the video display hardware to produce the correct graphical representa
tion. The Video Miniport driver is a Kernel mode driver that is responsible for 
the nonrendering tasks required by a DDI for a particular graphics adapter (for 
instance, tasks such as graphics-adapter initialization, mapping of adapter reg
isters, or allocation of resources). The Video Miniport driver and DDI driver 
are a matched pair and, together, are considered to be a Video Display driver. 

Video Port/Miniport Drivers 
Video Miniport drivers have some of the same characteristics of other 
Minidrivers in Windows NT. That is, the Video Miniport drivers are 
"wrapped" by a higher-level driver (the Video Port driver), and the Miniport 
driver (if written correctly) is compatible across Windows NT platform archi
tectures. The Video Miniport driver for Windows NT, however, is not compati
ble with the Video Miniport drivers for Windows 9x platforms. 

Video Port Drivers 
The Video Port driver (videoprt. sys) is implemented as a standard NT Kernel 

I 

mode driver. There exists an export library (videoprt . lib) to which the Video 
Miniport driver links. When the Video Port driver is loaded, Windows NT will 
invoke its DriverEntry routine, which will perform the normal device driver 
initialization (routine registration, object creation, and so forth). Once loaded, 
the Video Port driver then queries the Registry for the available video services, 
and, when found, the Video Miniport driver for that service will then be 
loaded. 

The purpose of the Video Port driver is to 

• Isolate Video Miniport drivers from the operating system 

• Perform as much common processing as possible 

The Video Port driver exports a standard interface for use by all Video 
Miniport drivers. The Video Port driver then employs NT mechanisms to 
implement the interface. Video Miniport drivers normally call only those func
tions exported by the Video Port driver; however, because the Video Miniport 
is linked within the environment of standard Window NT Kernel mode drivers, 
the Video Miniport driver may make Windows NT executive function calls 
directly. 

A major goal for the Video PortiMiniport architecture is to keep the Video 
Miniport drivers from having to deal with most typical NT device driver pro
cessing. To achieve this, the Video Port driver handles interfacing to the 
remainder of the NT operating system (such as the 110 Manager), and presents 
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a restricted and controlled view of the NT environment. This frees the Video 
Miniport drivers to concentrate on the display hardware-specific aspects of 
their adapter. 

Video Miniport Drivers 
Because the Video Miniport drivers are wrapped by the Video Port driver, their 
format and interface are much simpler than that of standard Kernel mode 
device drivers. As a result, Video Miniport drivers are typically shorter and 
simpler than an equivalent standard Kernel mode driver. Additionally, the stan
dard structure of a Windows NT Kernel mode driver does' not apply to Video 
Miniport drivers. This section briefly discusses the Video Miniport driver struc
ture, including the actions performed by the driver at some of its major entry 
points, including initialization, request initiation, and interrupt service. 

Note 

The Video Port/Video Miniport interface is a call-return interface, and 
therefore all access to a graphics adapter is serialized. Additionally, there 
is a per-adapter resource lock that the Video Port driver must obtain 
before any request is submitted to the Video Miniport driver, thus impos
ing a single-threaded access paradigm for all Video Miniport requests and 
thus, single-threaded access to the graphics adapter itself. 

Initialization 
Like all drivers in Windows NT, the Video Miniport driver starts with a 
DriverEntry routine that is called when the driver is loaded; however, this is 
where the similarities between the Video Miniport drivers and normal Kernel 
mode drivers end. Initialization consists of a number of sequential calls 
between the Video Miniport and the Video Port driver, culminating in an ulti
mate return from the Video Miniport's DriverEntry routine. 

Within its DriverEntry, the Video Miniport driver allocates and initializes the 
VIDEO_HW_INITIALIZATION_DATA structure. This data structure contains 

• Pointers to the Video Miniport functional entry points 

• Size of the device extension data area that is to be allocated for use for 
device-specific data 

• Some basic information about the devices that will be supported 

After the VIDEO_HW_INITIALIZATION_DATA structure has been initialized, the Video 
Miniport driver calls the Video Port driver's VideoPortlni tialize () routine, 
passing a pointer to the allocated VIDEO_HW_INITIALIZATION_DATA structure and a 
pointer to the Video Miniport's Driver Object (one of the parameters supplied 
with the DriverEntry call). Within the VideoPortInitialize() function, the 
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Video Port driver performs much of the normal Kernel mode device driver 
DriverEntry processing, including initializing the Driver Object dispatch table 
and creating Device Objects for the graphics adapter. 

During VideoPortInitilaize(), the Video Port driver allocates the Device 
Extension data area. The Video Port driver then calls back into the Video 
Miniport driver at the HwVidFindAdapter() entry point, as defined in the 
VIDEO_HW_INITIALIZATION_DATA structure. Within its HwVidFindAdapter() routine, 
the Video Miniport driver locates and configures the graphics adapter that it 
will control. The Video Port driver exports a number of functions to facilitate 
the Video Miniport driver with this process. One such function is 
VideoPortGetAccessRanges (). This routine retrieves bus-configuration informa
tion and will attempt to claim these resources in the Registry. Another function 
is VideoPortGetDeviceBase ( ) I which combines the NT functions 
Hal TranslateBusAddress () and MmMaploSpace (). There are other helper routines 
that are just wrappers for the HAL routines, such as VideoPortGetBusData() I 

(HalGetBusDataByOffset ()), and VideoPortReadRegisterUlong () 

(READ_REGISTER_ULONG()). 

Note 

The Again parameter to HwVidFindAdapter() is used to indicate whether 
the Video Miniport driver wants to be called again at its 
HwVidFindAdapter () routine to process the next adapter. However, 
Windows NT 4.0 SP3 officially supports only a single graphics adapter 
and does not support multiheaded configurations. Setting Again to TRUE~ 
so that HwVidFindAdapter() is called multiple times~ does not deleteriously 
affect the operation of Windows NT; and does indeed result in the Video 
Miniporfs HwVidFindAdapter() routine being called again. However, this 
alone is not at all sufficient to enable multihead support. There is much 
more to providing multihead support than just setting Again to TRUE. 

Upon return from HwVidFindAdapter(), the Video Port driver completes many of 
the standard NT device-driver tasks: reserving resources for the Video 
Miniport driver, obtaining interrupt vectors and connects to that interrupt, ini
tializing timers, and creating symbolic links. 

Request Initiation 
Video Miniport drivers do not use IRPs. Instead, the Video Port driver will 
repackage the IRPs it receives into Video Request Packets (VRPs). And when it 
creates the Device Object for the Video Miniport, the Video Port indicates that 
requests should be described by using Buffered 110. The fields of the originally 
received IRP are copied to the VRP, with the added restriction that the input 
and output buffers have been set up for Buffered 110. 
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When the Video Port driver receives a request to be processed, it calls the 
Video Miniport driver at its HwVidStartIO() routine (as specified in the 
VIDEO_HW_INITIALIZATION_DATA structure). The parameters passed to this routine 
are the adapter's Device Extension and a pointer to the VRP. The IoControlCode 

field of the VRP identifies the function to be performed. The InputBuffer and 
OutputBuffer fields identify the data buffers for the request. The StatusBlock 

field is used to communicate the completion information for this request back 
to the Port driver. 

There is a minimum set of IoControlCodes that must be supported for every 
Video Miniport. These include: 

Interrupt Service 
When the graphics adapter interrupts, the Video Port driver calls the Video 
Miniport driver's HwVidlnterrupt () routine with a pointer to the adapter's 
device extension. In this case, the Video Miniport driver's responsibilities are 
exactly those of a normal Kernel mode driver. 

The HwVidlnterrupt () function must determine whether this interrupt is being 
generated by the graphics adapter. If not, HwVidlnterrupt () must return FALSE. If 
this is an interrupt that is generated by the graphics adapter, HwVidlnterrupt() 

must dismiss the interrupt, do any necessary processing to complete the opera
tion, and then return TRUE back to the Video Port driver. There are restrictions 
on the Video Port driver routines that may be called from HwVidlnterrupt (), 

but most of the functions normally employed during an ISR (notably 
VideoPortReadXxxx () and VideoPortWriteXxxx ()) may be called. 

Display Drivers 
The architecture for the Kernel mode graphics-rendering subsystem for 
Windows NT is notably different from the other Kernel mode subsystems. It 
consists of a device-independent device driver, known as the Kernel mode 
Graphics Device Interface (GDI). The GDI receives User mode graphics 
requests, and determines how these are to be rendered upon the display device. 
GDI will then make graphics requests to the resident device-dependent, 
graphics-rendering driver (DDI). 
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Like the Video Port driver, the GDI is a wrapper for the DDI. However, it is 
not a standard wrapper architecture in the PortiMiniport sense, as is the case 
with the Video Miniport driver. For example, the initial entry point for the 
DDI is not called DriverEntry, there is no type of StartIO routine, and the DDI 
does not handle anything like IRPs. 

GDI is implemented as a Kernel mode driver (win32k. sys). It maintains an 
export library (win32k . lib), against which the DDI links. GDI is loaded after 
the Video Port and Video Miniport drivers have been loaded. The GDI then 
loads the DDI (known through its association with the Video Miniport that 
had been loaded), once the User mode graphics DLLs have also been loaded. 
The purpose of the GDI is threefold: 

• Isolate the DDI from the operating system. 

• Isolate the DDI from the Win32 API. 

• Perform as much graphics adapter-independent processing as possible. 

To isolate the DDI from the operating system, the GDI exports a well-defined 
interface for use by all DDIs. The GDI then employs the NT mechanisms to 
implement the interface. The DDI can call only those functions exported by the 
GDI driver, via the win32k .lib library. Linking to any other library other than 
win32k . lib (and libcnptr . lib) will result in a DDI that GDI will refuse to load. 

With regard to isolating the DDI from the Win32 API, the interface that is 
exported by the DDI does not exactly match the Win32 graphics API. In fact, 
there is usually a one-to-many mapping of Win32 graphics routine requests to 
the actual requests that are serviced by the DDI. The GDI will decompose each 
Win32 graphics request into simpler graphics requests and present these 
requests to the DDI. This architecture allows the reduction in the number of 
graphics primitives that a DDI must implement, and therefore reduces the com
plexity of the supporting graphics software and adapter. 

A major goal for the GDI architecture is to keep the DDI from having to deal 
with any of the processing, either NT driver or graphical processing, which 
would be independent graphics adapter architecture. To achieve the NT driver
processing independence, the GDI handles the entire interface with the 
Windows NT operating system, and presents a restricted and controlled view 
of the NT environment to the DDI. Consequently, the DDI has no access to 
any NT kernel executive functions, except for those exported by the GDI. To 
achieve the graphical-processing independence, the GDI handles all the Win32 
graphics state management, which is not dependent upon graphics display 
characteristics (such as Win32 primitive composition, display resolution, color 
bits per pixel, graphics memory, and so forth). The GDI also determines, in a 
consistent manner, the graphical primitives that are to be rendered. This frees 
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the DDI to concentrate on only the rendering aspects of the specific graphics 
adapter for a known set of graphic-rendering primitives. 

Note 

DDIs cannot call any non CDI-supplied functions. This is an important 
distinction between the CD I wrapper architecture and that used by other 
wrapped Miniport drivers, such as Video Miniport drivers and SCSI 
Miniport drivers. The Video Miniport driver can call Windows NT 
Kernel mode functions. As mentioned, the CDI will refuse to load the 
DDI if it tries to call any function other than those supplied by the CD!. 

Device Display Interface (DDI) Drivers 
DDIs are typically straightforward in implementation, but may contain a large 
amount of rendering code. Furthermore, the standard structure of a Windows 
NT Kernel mode driver does not apply to DDIs. This section briefly discusses 
DDI structure, as well as the actions performed by the driver at some of its 
major entry points, including initialization, drawing requests, and serialization. 
Coverage of other graphics interfaces is also included. 

Initialization 
The DDI has a unique initialization entry point and initialization handshake 
with the GDI. When the GDI determines which DDI to load (based on the 
Video Miniport loaded), the DDI is entered at the DrvEnableDriver() entry 
point. Within DrvEnableDriver (), the DDI builds a table of index/function entry 
point pairs, as specified in the DRVENABLEDATA structure. This table describes to 
the GDI which rendering and graphics-related functions are supported by the 
DDI. 

GDI then invokes the DrvEnablePDEV() function (contained within the 
DRVENABLEDATA structure). This function allocates and initializes the DDl's 
Physical DEVice data structure (PDEV), which is the DDl's context block. The 
GDI then requests that the DDI initialize itself into a specific mode (that is, res
olution, refresh rate, color bits per pixel, and so forth). The DDI returns to the 
GDI an updated DEVINFO structure that details the specific graphics capabilities 
at this mode setting. If the requested mode is supported by the DDI, upon 
return to the GDI, all initial GDI-related resources are allocated and initialized. 

After the graphics state of the DDI has been generated, the GDI then invokes 
the DrvEnableSu rf ace () function (contained within the DRVENABLEDATA structure). 
This will create a drawing surface upon which the GDI can request the DDI to 
render. At this point, the DDI is sufficiently initialized to accept all rendering 
requests from the GDI for all surfaces, including the main display surface-the 
screen/desktop. 
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Drawing Requests 
When a Win32 drawing/rendering request is received by the GDI, it is poten
tially broken down into more than one DDI-rendering request. The GDI has 
the capability of performing all graphics operations, regardless of the diversity 
and complexity of the graphics-request parameters by using a software render
er. Software rendering is likely to be slower, however, than the adapter-specific, 
hardware-assisted rendering that the DDI can perform. 

As the GDI receives Win32 drawing/rendering requests, it processes these 
requests via calls to one or more of the DDI routines specified in the 
DRVENABLEDATA structure vector table. Most request parameters consist of a tar
get surface, the primitive (such as line, rectangle, and so on), a list of clipping 
rectangles (source and/or destination), and raster operation. The actual para
meter list is specific to the graphics function and may contain more GDI graph
ics objects. The DDI graphics function must then traverse the clip list for each 
clip rectangle and perform the rendering operation, returning either TRUE (if 
successful) or FALSE. If FALSE is returned, an error is logged. More importantly, 
this means that the graphics request did not complete, and therefore the dis
play will be missing the graphical update-the desktop display may be "cor-
rupted." . 

There may be cases in which the requested operation may be too difficult for 
the DDI to perform. This may be due to the complexities of the rendering 
operation in conjunction with the specified raster operand, or may be due to 
the fact that the underlying graphics adapter cannot perform the operation, 
based on the request parameters. Instead of returning FALSE and not performing 
any graphics update (and, therefore, "corrupting" the display), the DDI will 
call back into the GDI and have the GDI's Graphics Rendering Engine (GRE) 
perform the graphics request to a temporary surface. After the GDI has done 
the rendering, the DDI will then copy the contents of the temporary surface to 
the target surface and complete the operation by returning TRUE. This technique 
is known as punting the request. With this technique, all graphics operations 
can be realized by the DDI, there will not be any lost graphics, and thus, there 
will be no corrupted displays. This also decreases the burden upon the DDI to 
support all possible variations of the GDI's graphics requests, either in the 
graphics adapter itself or in DDI software emulation. 

Serialization 
An interesting aspect of DDI drivers is that the DDI can optionally specify 
whether or not GDI's access to the DDI is single-threaded. By default, GDI 
allows for multiple threads to access different surfaces simultaneously. 
However, this multithreaded access is constrained by GDI, allowing only 
single-threaded access to each surface. But this means that multiple threads can 
be accessing different surfaces simultaneously. DDI can further augment this 

i 

I 
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constraint by specifying that all accesses to all surfaces are single-threaded, 
effectively making GDI's overall access to DDI single-threaded. 

This single-threaded mode may be desired for some graphics adapters that 
process graphic requests at a rate different from that of the host CPU. 
Specifically, it is assumed that upon return from the graphics request, the DDI 
has completed the entire rendering activity; and the contents of the display (or 
surface) is complete and available for the next request. This has obvious rami
fications if the graphics adapter is still updating an area of the display while 
another GDI thread is accessing that same display area. 

Other Graphics Interfaces 
As stated previously, the GDIIDDI interface maintains the Win32 graphics API 
functionality. However, with the emergence of 3D graphics technology, the 
question was whether to expand the Win32 graphics API or use/create new 
APIs. The current environment for 3D graphics requests is in the form of 
DirectDraw or OpenGL requests. Both of these sets of requests are not part of 
the Win32 graphics API architecture, but are separate entities that require sep
arate major functional modules to be implemented. 

GDI will perform full software emulation for DirectDraw if it is not supported 
by a particular DDI. The DDI can indicate to GDI that it natively supports 
DirectDraw by supplying the DrvEnableDirectDraw() entry point in the 
DRVENABLEDATA structure vector table. 

An OpenGL implementation is not required for a DDI, as opposed to 
DirectDraw, and so there is no software emulation of OpenGL in the GDI. 
DDI can indicate that it supports OpenGL by trapping and returning success 
values for the OpenGL escape query parameters OPENGL_GETINFO and OPENGL_CMD 

for the GDI draw escape QUERYESCSUPPORT. (The GDI draw escape handling is 
done in the DDI routine DrvDrawEscape (»). 

DMA and Video Display Drivers 
As application graphics requirements increase and graphics adapter technology 
evolves, the call/return architecture for each graphics requests proves to be a 
performance bottleneck. To get around this problem, graphics adapter architec
tures have moved toward using DMA for data exchange, buffering graphics 
commands in shared memory, and dispensing them directly to the graphics 
adapter. These graphics commands can take various forms: the translation of 
GDI requests into graphics adapter-specific commands, the buffering of 
DirectDraw/OpenGL requests, or the buffering of intermediate rendering 
primitives specific to the graphics adapter. 
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However, in Windows NT v4 SP3, the video display architecture (DDI and the 
Video Miniport) does not include direct support for DMA. Because the DDI 
and the Video Miniport drivers are both wrappers, by rule, they should not 
call routines outside of their wrapped interfaces. In addition, DDI is prohibited 
from linking/calling any function outside of GDI (win32k. sys) because 
Windows NT will refuse to load any DDI that has linked against other 
libraries. 

Although DDI has this hard restriction, the Video Miniport driver does not 
have the same restrictions. So, although the Video Port driver does not current
ly (as of Windows NT v4 SP3) contain direct support for DMA functionality 
(such as memory functions, event functions, and so forth), the Video Miniport 
driver may use the various NT executive routines to perform the necessary 
ancillary activities to enable DMA. In addition, the DDI can communicate with 
the Video Miniport via IOCTLs (EngDeviceIoControl() as exported from the 
GDI). Given these basic tools, DMA functionality can be supported in a graph
ics device driver subsystem. 

Learning More About Developing 
Video Display Drivers 
Because both the Video Miniport and Device Dependent Interface (DDI) dri
vers are wrappers, the implementation of both drivers is fairly straightforward; 
it depends upon the complexity of the graphics adapter, the applicability of the 
graphics adapter functionality to the functionality required by GDI, and the 
level of I/O activity for the graphics adapter (DMA, for example). The DDK 
does a reasonably good job of documenting how to write DDIs and Video 
Miniport drivers, and includes the source code for four graphics devices. 
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SCSI Miniport Drivers 

This chapter will review: 

• SCSI Miniport Driver Characteristics. SCSI Miniport drivers are a special 
category of driver, which utilize the SCSI Port driver as a wrapper. This 
section discusses the general attributes of SCSI Miniport drivers. 

• SCSI Miniport Driver Structure. This section discusses the structure of the 
SCSI Miniport driver, which is atypical of standard Windows NT Kernel 
mode drivers. Coverage of initialization, request initiation, interrupt ser
vice, and serialization is also included. 

• Learning More About Developing SCSI Miniport Drivers. This section 
points you to the relevant part of the DDK that describes SCSI Miniport 
drivers. 

This chapter briefly discusses the structure of SCSI Miniport drivers, and com
pares and contrasts their structure with that that of standard Kernel mode 
device drivers. The chapter ends with a section on where you can learn more 
about developing SCSI Miniport drivers. 

Please note that it is not possible to learn how to write a SCSI Miniport driver 
using the information presented in this chapter alone. The goal of this chapter 
is to simply provide a brief introduction to SCSI Miniport drivers, and relate 
the structure of these drivers to the standard Kernel mode device drivers dis
cussed previously in this book. 

SCSI Miniport Driver Characteristics 
As described in Chapter 11, "The Layered Driver Model," SCSI Miniport dri
vers are a particular type of device driver. SCSI Miniport drivers exist within 
the wrapper environment created by the SCSI Port Driver. Figure 23.1 shows 
the relationship of SCSI Miniport drivers to other NT Kernel mode compo
nents. 
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Figure 23.1. SCSI Miniport driver in a stack of NT drivers. 

SCSI Miniport drivers, like other mini-drivers, share a common format 
between Windows NT and Windows 9x platforms, which means that the same 
SCSI Miniport driver will work on both platforms. The SCSI Miniport driver's 
format and interface are controlled by the SCSI Port driver. 

The SCSI Port driver is implemented as a Kernel mode DLL to which the SCSI 
Miniport driver links. The SCSI Port driver is loaded when the first SCSI 
Miniport driver is loaded on the system. Since it is a DLL, the SCSI Port driver 
does not have its own DriverEntry entry point, or create device objects for its 
own use. The purpose of the SCSI Port driver is to perform the following tasks: 

• Isolate SCSI Miniport drivers from the operating system. The SCSI Port 
driver exports a standard interface for use by SCSI Miniport drivers. The 
Port driver then uses operating system specific features to implement this 
interface. SCSI Miniport drivers may call only those functions explicitly 
provided by the SCSI Port driver. SCSI Miniport drivers that call other 
functions will, obviously, not be compatible across operating system plat
forms. 

• Perform as much common processing as possible. One of the major goals 
of the SCSI Port driver is to keep the SCSI Miniport drivers from having 
to deal with most of the common processing that's required for handling 
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SCSI requests. To achieve this, the SCSI Port driver works in consort with 
the various class drivers. This allows SCSI Miniport drivers to deal only 
with the hardware-specific aspects of their adapters. 

• Provide a custom-tailored interface, specific to SCSI devices. The interface 
the Port driver provides to the SCSI Miniport driver is SCSI-specific. Both 
functions and data structures are specifically designed with the goal facili
tating the support of SCSI adapters. 

Because SCSI Miniport drivers are wrapped by the SCSI Port driver, their for
mat and interface are much simpler than those of standard Kernel mode device 
drivers. As a result, SCSI Miniport drivers are typically shorter and simpler 
than an equivalent standard Kernel mode driver. 

Another characteristic of SCSI Miniport drivers is that their execution is 
always serialized. Therefore, SCSI Miniport drivers do not have to be con
cerned about acquiring spin locks for shared data. This serialization (presum
ably) occurs in the SCSI Port driver, where a lock is acquired before the SCSI 
Miniport driver is entered. 

Note 

As previously mentioned, SCSI Miniport drivers are typically restricted to 
calling only functions supplied by the SCSI Port driver (and defined in 
miniport. h, which is the standard include file for SCSI Miniport drivers). 
SCSI Miniport drivers that do not comply with this restriction can be 
built, but they might not be certified by Microsoft, and will not be com
patible across operating system platforms. 

SCSI Miniport Driver Structure 
Because the SCSI Miniport driver's interfaces are dictated by the SCSI Port 
wrapper, the standard structure of a Windows NT Kernel mode driver does not 
apply to SCSI Miniport drivers. The topics within this section briefly discuss 
the structure of a SCSI Miniport driver, including the actions performed by the 
driver at some of its major entry points, such as: 

• Initialization, performed at the DriverEntry () and HwScsiFindAdapter () 

entry points. 

• Request initiation, performed at the HwScsiStartIo() entry point. 

• Interrupt service, performed at the HwScsiInterrupt () entry point 
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Initialization 
Like all drivers in Windows NT, SCSI Miniport drivers start with a 
DriverEntry routine that is called when the driver is loaded. This is where the 
obvious similarities with standard Kernel mode drivers end, however. Within 
DriverEntry, the SCSI Miniport driver builds and initializes an 
HW_INITIALIZATION_DATA data structure. This data structure includes pointers to 
the SCSI Miniport driver's entry points, the size of the Device Extension 
required by the SCSI Miniport driver for each device supported, and rudimen
tary information about the type of SCSI adapter supported. A pointer to the 
HW_INITIALIZATION_DATA data structure, and a pointer to the SCSI Miniport's 
Driver Object (which was provided, as it is to all Kernel mode drivers, as a 
parameter to driver entry) is passed to the SCSI Port driver when the SCSI 
Miniport driver calls ScsiPortInitialize (). 

The SCSI Port and SCSI Miniport drivers work together to implement what is 
really a single standard Kernel mode device driver. When ScsiPortIni tialize () 

is called by the SCSI Miniport driver, the SCSI Port driver performs the operat
ing system-specific part of DriverEntry processing. On Windows NT, this 
means that the SCSI Port driver fills in the Driver Object with pointers to its 
Dispatch entry points and creates a Device Object for each SCSI Adapter sup
ported. 

Before leaving DriverEntry, and from within the ScsiPortIni tialize () function, 
the SCSI Port driver calls the SCSI Miniport driver back at its 
HwScsiFindAdapter () entry point. In this routine, the SCSI Miniport driver 
locates and configures each SCSI adapter that it will control. The SCSI Port 
driver passes a pointer to a Device Extension of the size requested by the SCSI 
Miniport driver to the SCSI Miniport driver's HwScsiFindAdapter () entry point. 
The SCSI Miniport driver may use this Device Extension for storage of device
specific data. 

The SCSI Miniport Device Extension is not identical to the NT Device 
Extension pointed toby the SCSI Port Device Object. 

The SCSI Port driver provides the SCSI Miniport driver with a set of functions 
it can call to facilitate its work in the HwScsiFindAdapter () function. Sometimes 
these functions are simply re-exported versions of standard NT functions; 
other times the Port driver's functions combine the functionality of multiple 
standard NT functions. For example, the ScsiPortGetDeviceBase () function 
combines the standard functions Hal TranslateBusAddress () and MmMaploSpace (). 

On the other hand, the function ScsiPortReadPortUchar () is simply a thinly 
disguised version of the similarly named HAL routine. 
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On return from its call to the Miniport's HwScsiFindAdapter () function, the 
SCSI Port driver performs all the functions that one would expect from a typi
cal Kernel mode device driver, including reserving resources for the SCSI 
Miniport driver, getting a pointer to an Adapter Object (if the SCSI adapter is 
a DMA device), and connecting to interrupts. The SCSI Port driver iteratively 
calls HwScsiFindAdapter () until the SCSI Miniport driver indicates that there are 
no more adapters for it to find. 

Request Initiation 
SCSI Miniport drivers do not use IRPs. Instead, SCSI requests are described to 
the SCSI Miniport driver using a SCSI Request Block (SRB). Figure 23.2 illus
trates the SRB format. 

SrbStatus Function Length 

Lun Targetld Pathld ScsiStatus 

SenselnfoBuffer CdbLength QueueAction QueueTag 
Length 

SrbFlags 

DataTransferLength 

TimeoutValue 

DataBuffer 

SenselnfoBuffer 

NextSrb 

OriginalRequest 

SrbExtension 

QueueSortKey 

UCHAR Cdb[16] 

Figure 23.2. The SCSI Request Block (SRB). 
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Except for a few specific fields, SCSI Miniport drivers treat the SRB as a read
only structure. Private data may be stored by the Miniport driver in the SRB 
Extension (Srb->SrbExtension), the size of which is communicated to the SCSI 
Port driver via the HW_INITIALIZATION_DATA structure. 

The SRB typically contains all the information necessary for the SCSI Miniport 
driver to issue the SCSI request. Note that even the SCSI Command Descriptor 
Block (CDB) has been pre-built for the SCSI Miniport driver. 

To process a typical SCSI request, the SCSI Miniport driver is called at its 
HwScsiStartIo() routine by the Port driver. The parameters passed into this rou
tine are a pointer to the SCSI Miniport driver's Device Extension (which identi
fies the adapter for the request) and a pointer to an SRB (which describes the 
request t9 be processed). The SRB's Function file indicates the type of function 
to be performed. 

By far the most common type of function is SRB_FUNCTION_EXECUTE_SCSI, which 
requests the SCSI Miniport driver to execute a SCSI command. To process this 
function, the SCSI Miniport driver typically need only provide the CDB from 
the SRB to the appropriate adapter under its control. 

Interrupt Service 
When the adapter interrupts, the SCSI Port driver calls the SCSI Miniport 
driver's HwScsiInterrupt () routine with a pointer to the adapter's Device 
Extension. 

SCSI Miniport drivers do not have DpcForIsr routines like standard Kernel 
mode drivers. Instead, when the SCSI Miniport driver's HwScsiInterrupt () rou
tine is called, the SCSI Miniport driver checks to see if the adapter denoted by 
the Device Extension is currently interrupting. If the adapter is not interrupt
ing, the SCSI Miniport driver returns FALSE from its HwScsiInterrupt () function. 

If the current adapter is interrupting, the SCSI Miniport driver determines the 
cause of the interrupt and may then signal the SCSI Port driver to deal with it. 
For example, if a request is initiated on the SCSI adapter, and the adapter 
interrupts to indicate that the request is complete, the SCSI Miniport driver 
will call ScsiPortNoti fication () with a pointer to the SRB to complete. The 
SCSI Port driver then will typically call ScsiPortNotif ication () a second time, 
requesting the SCSI Port driver to start another request. The SCSI Port driver 
then schedules a DPC where the request represented by the SRB is completed 
back to the I/O Manager and a new request is initiated. 
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Learning More About Developing SCSI 
Miniport Drivers 
The typical SCSI Miniport driver is very simple to write. The DDK does a rea
sonably good job of documenting how to write SCSI Miniport drivers. The 
DDK also presently includes source code for five real SCSI Miniport drivers, 
including the SCSI Miniport driver that implements the ATAPI (IDE) disk dri
ver. These files can be found in the DDK in the \ddk\src\storage\miniport 
directory. 





Chapter 24 
NDIS Miniport Drivers 

This chapter will review: 

• The NDIS Family of Standards. This section provides an overview of the 
origins and evolution of the Network Driver Interface Specification. 

• The Windows NT Networking Architecture. This section provides the big 
picture of how NDIS drivers and the NDIS library fit into the overall 
scheme of network operations. 

• NDIS Driver Types and the NDIS Library. This section summarizes the 
three types of NDIS drivers and the role that the NDIS Library plays in 
supporting NDIS drivers. 

• NDIS (LAN) Miniport Drivers. This section discusses the structure and 
actions performed in a typical NDIS (LAN) Miniport driver. Coverage of 
initialization, transmit processing, interrupt and DPC processing, transmit 
completion, message reception, and serialization is used to compare and 
contrast NDIS drivers with other Kernel mode drivers. 

• Learning More About Developing NDIS Drivers. This section covers the 
level of support provided in the DDK for developing NDIS drivers. 

This chapter briefly discusses the NT networking environment in general and 
NDIS drivers in particular. The structure of NDIS (LAN) Miniport drivers is 
then compared and contrasted to that of standard Kernel mode device drivers. 
The chapter ends with a section on where you can learn more about develop
ing NDIS drivers. 

Please note that to fully explain the various types of NDIS drivers would 
require an entire book! The goal of this chapter is to simply provide a brief 
introduction to the various kinds of NDIS Miniport drivers, and to relate the 
structure of these drivers to the standard Kernel mode device drivers discussed 
previously in this book. 
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The NDIS Family of Standards 
The Network Driver Interface Specification (NDIS) was originally conceived as 
an interface to separate a LAN card's driver logic from its protocol implemen
tation. If you remember correctly, the original specification was restricted to 
x86 Assembly language for systems running LAN Manager. 

From these humble beginnings, NDIS has become a whole family of network
ing standards. Today, this family encompasses two different types of local area 
network (LAN) card driver standards, a wide area networking (WAN) driver 
standard, and a standard for intermediate drivers that exist somewhere 
between protocols and net cards. In the next release of NDIS (which is sched
uled for release with Windows NTV5), connection-oriented media support will 
be introduced (via so-called CO-NDIS). 

More than any other driver standard on NT, NDIS has evolved to keep pace 
with changing technologies and feedback from developers. PC networking has 
undergone a number of fundamental changes since the days when NDIS was 
born, when a single LAN card running NetBEUI at 10Mbps was considered a 
"big deal." Today, people regularly run multiple 100Mbps LAN cards in 
machines, and often use much higher speeds (such as 622Mbps) via ATM and 
other technologies. The need for the throughput to support such network 
speeds was never dreamt of when NDIS was originally created. 

Dial-up networking support was originally a "roll-your-own" affair for net
work driver writers. When dial-up networking became ubiquitous, NDIS intro
duced a WAN networking standard, integrated with Microsoft's Remote Access 
Server (RAS) and Telephony API (TAPI). 

Finally, the initial NDIS specification for Windows NT (NDIS V3.0) made it 
exquisitely painful to implement certain typical functions. Based on developer 
feedback and first-person experience, a revised NDIS specification was intro
duced that supported a new type of driver to overcome these difficulties. 

All these changes have not been without cost, however. As a result of both 
gradual evolution and significant innovation, the NDIS standard has grown to 
encompass the wide variety of driver types and interfaces it now includes. 

The Windows NT Networking 
Architecture 
Figure 24.1 shows the networking "big picture." User-written NDIS drivers 
appear .in gray blocks. Microsoft-supplied components appear in white blocks. 
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Figure 24.1. The Networking "Big Picture." 

At the top of the stack of drivers shown in Figure 24.1 are four sample TDI 
Clients. The examples are RDR (the Microsoft networking redirector), AFD 
(the Kernel mode side of the Winsock interface), SRV (the Microsoft network
ing file server), and NPFS (the Named Pipe File System). All these drivers, 
except for SRV (which is a standard Kernel mode driver) are Windows NT File 
System drivers. These TDI clients interface to the protocol implementations 
installed on the system via the Transport Driver Interface (TDI). 

Networking protocols, or "TDI drivers" as they are called; are in fact relatively 
standard Windows NT intermediate layer drivers. They implement a standard 
upper edge, as defined by the TDI specification. This upper edge interface is 
based mostly on receiving and processing lRP _MJ_DEVlCE_CONTROL IRPs contain
ing TDI-specified control code values. On their lower edge, TDI drivers inter
face to the NDIS Library (or NDIS "Wrapper" as it is often called). 

The NDIS Library is implemented as a Kernel mode DLL, similar to the SCSI 
Port driver. The NDIS Library implements the interface among components 
that reference it: TDI drivers, NDIS Intermediate drivers, the NDIS WAN 
support driver, and NDIS LAN and WAN Miniport drivers. The interface 
implemented by the NDIS Library is a "call and return" interface. Drivers call 
functions located in the NDIS Library. The NDIS Library in turn may call 
functions in other drivers to perform operations. IRPs are not utilized in the 
NDIS specification. 
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NDIS Driver Types and the NDIS 
Library 
The three most common types of NDIS drivers are as follows: 

• NDIS (LAN) Miniport drivers. These drivers support LAN Network 
Interface Cards (NICs) and conform to the NDIS V3.1 or NDIS V4.0 
standard. 

• NDIS WAN Miniport drivers. These drivers support WAN interfaces, 
including ISDN, Frame Relay, and Switched 56 with NT Remote Access 
Services (RAS). Support for the PPP framing, authentication, compres
sion, and other options are provided to these drivers via the NDISWAN 
driver (which is itself implemented as an NDIS Intermediate driver). 
NDIS WAN Miniport drivers may also act as a TAPI Service Provider 
(TSPI) in conjunction with the NDISTAPI driver. 

• NDIS Intermediate drivers. NDIS Intermediate drivers receive data from 
protocols, just like NDIS LAN and WAN Miniport drivers. However, the 
bottom edge of an NDIS Intermediate driver is another driver, not the 
NDIS Library interface to a LAN or WAN NIC. NDIS Intermediate dri
vers are very powerful, and can serve multiple purposes, including filter
ing NDIS NIC drivers, implementing specialized protocols, or other such 
functions. 

Since NDIS drivers existing within the environment are created by the NDIS 
Library, the structure and interfaces used by these drivers are defined by the 
NDIS Library. This allows NDIS Miniport drivers to be binary compatible 
across operating system platforms. Thus, the same executable image of an 
NDIS Miniport driver will work on Windows NT and Windows 9x operating 
systems. 

The purposes of the NDIS Library are as follows: 

• Isolate NDIS Miniport and Intermediate drivers from the operating sys
tem. The NDIS Library exports a set of standard interfaces used by all 
NDIS drivers, as well as drivers (such as TDI drivers) that interface to 
NDIS. The NDIS Library uses operating system-specific features to imple
ment this interface. NDIS drivers may call only those functions explicitly 
provided by the NDIS Library. NDIS drivers that call other functions 
will, obviously, not be compatible across operating-system platforms. 

• Perform as much common processing as possible. One of the major goals 
of the NDIS Library is to keep common processing code out of NDIS 
drivers. This means that most NDIS drivers, and Miniport drivers in 

II 
I 
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particular, need to implement only the smallest amount code necessary to 
deal with the hardware-specific aspects of their NICs. 

• Provide a custom-tailored interface, specific to networking. The interface 
the NDIS Library provides to NDIS drivers is designed for networking. 
Network data has many unique attributes, including the fact that it often 
arrives unsolicited. Another interesting attribute of networking data is 
that as a network message travels down protocol layers, headers (and less 
often, trailers) can be added to the original message at each layer. The 
NDIS specification makes it possible to prepend and append such struc
tures without having to recopy the original date message. This capability 
to build network messages without recopying the data is absolutely vital 
to achieving high levels of network performance. The NDIS Library and 
interface standard is designed specifically to make it convenient for dri
vers to handle networking data and to deal with issues specific to net
working support. 

Thus, the NDIS Library creates an entire custom environment for NDIS drivers 
that is both specifically tailored to networking and portable across operating 
systems. The NDIS Library offloads from drivers the burden of dealing with 
many routine chores and provides network-specific facilities that are not nor
mally available to standard Kernel mode drivers. 

NDIS LAN Miniport Drivers 
As mentioned previously, a proper discussion of NDIS drivers would require its 
own book. To help illustrate how NDIS drivers are implemented on Windows 
NT, this section discusses NDIS (LAN) Miniport drivers and actions performed 
at the entry points, including: 

• Initialization, performed in the DriverEntry() and MiniportInitialize() 

entry points. 

• Transmit processing, performed in the MiniportSend () or 
MiniportSendPackets () entry point. 

• Interrupt and DPC processing, performed in the MiniportIsr() and 
MiniportHandlelnterrupt () routines. 

• Transmit Completion and Message Reception, performed in the 
MiniportHandlelnterrupt () entry point. 

Through this discussion, the NDIS LAN Miniport driver architecture is com
pared and contrasted with that of standard Kernel mode drivers discussed in 
most of the book. 
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Note 

NDIS LAN Miniport drivers have the same basic structure as other NDIS 
Miniport drivers; howeve~ each type of NDIS driver has a number of 
unique attributes. To keep things clea~ the description in the following 
sections is restricted to NDIS LAN Miniport drivers. 

Initialization 
Since NDIS Miniport drivers are indeed standard Kernel mode device drivers, 
initialization processing takes place in the driver's DriverEntry routine. This 
routine is far different from that found in a standard Kernel mode driver, how
ever. 

The first thing an NDIS Miniport driver does in its DriverEntry routine is call 
NdisMlni tializeWrapper(), passing as parameters the parameters it received 
from the 110 Manager at DriverEntry. Calling this function ensures that the 
NDIS Library is loaded, and provides the Library with a pointer to the NDIS 
Miniport's Driver Object. NdisMlnitializeWrapper() exports its entry points in 
the Device Object, so when an IRP is received, the 110 Manager calls the NDIS 
Library. 

The NDIS Miniport driver next builds an NDIS_MINIPORT_CHARATERISTICS data 
structure. This structure contains pointers to the NDIS Miniport's entry points. 
The NDIS Miniport driver passes a pointer to this data structure to the NDIS 
Library by calling NdisMRegisterMiniport (). 

From within NdisMRegsiterMiniport (), the NDIS Library calls the NDIS 
Miniport driver's MiniportInitialize() function once for every adapter config
ured for the driver during installation. Within its MiniportInitialize 0 func
tion, the NDIS Miniport driver reads information from the Registry by using 
NdisReadConfiguration (), which is merely a private function that calls 
RtlQueryRegistryValues (). Also provided by the NDIS Library for use by the 
NDIS Miniport driver are calls such as NdisReadPciSlotInformationO and 
NdisReadEisaSlotInformation (). These functions are the NDIS variants of the 
standard HAL functions HalGetBusData ( ). Another NDIS Library provided 
function is NdisMRegisterloPortRange (). This function combines the functions of 
Hal TranslateBusAddress (), MmMaploSpace (), and IoReportResourceUsage (). 

For each adapter supporting interrupts, the NDIS Miniport driver calls 
NdisMRegisterlnterrupt (). NdisMRegisterlnterrupt () in turn translates the inter
rupt, calls IoConnectlnterrupt(), and registers the DpcForIsr on behalf of the 
NDIS Miniport driver. The interrupt is connected to a function in the NDIS 
Library, not directly to the NDIS Miniport's interrupt service routine. 
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On return from the NdisMRegisterMiniport () function, the NDIS Miniport dri
ver's initialization is complete. It returns from DriverEntry with 
NDIS_STATUS_SUCCESS, which is of course a private version of NT's ordinary 
STATUS_SUCCESS status. 

Transmit Processing 
When a TDI client, such as a protocol driver, has a message to transmit, it calls 
the NDIS Library with that message. The NDIS Library in turn calls the 
appropriate NDIS Miniport driver's MiniportSend () or MiniportSendPackets ( ) 

routine. 

NDISv4 supports the option of sending multiple packets with one call to the 
NDIS Miniport driver. These packets are described by an array of pointers, 
each of which is a pointer to an ND IS packet to be sent. This is done via the 
MiniportSendPackets () routine. 

NDIS Miniport drivers that do not support the option of sending multiple 
packets at one time are called by the NDIS Library at their MiniportSend ( ) 

routine with a pointer to an NDIS Packet describing the message to be sent. 

A transmitted or received message is described by an NDIS_PACKET. The structure 
of an NDIS_PACKET is opaque to NDIS drivers. The NDIS Library provides the 
functions necessary to retrieve information about and manipulate the packet 
and the message it describes. Each NDIS_PACKET comprises one or more 
NDIS_BUFFERS, which are also opaque. Each NDIS_BUFFER describes a virtually 
contiguous part of a message located in kernel virtual memory. 

NDIS_BUFFERS in Windows NT are in fact MDLs. However, unlike MDLs used 
by standard Kernel mode drivers, MD Ls used by NT networking are chained 
through their Mdl->Next pointers. This allows TDI drivers to build messages 
made up of virtually discontiguous buffers. Each buffer can hold a separate 
part of the message. Figure 24.2 illustrates the relationship of the NDIS_PACKET 

and NDIS_BUFFER data structures, and the fragments of the message that each 
NDIS_BUFFER represents. 

NDIS_BUFFERs 
NDIS PACKET (MDLs) 

Head ---. --+- --. ~ Next Next Next Next 
"- Tail 

StartVa 

'"'"" ~#. ~-' 
h StartVa ....., 

ByteOffset 

~. ~-
ByteOffset 

r ~- ~ 
I Transport Trailer Message Data I Transport Header I DataLink Header I 

Figure 24.2. NDIS_PACKETS point to NDIS_BUFFERs which point to message fragments. 
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When called at its MiniportSend () entry point with a packet to transmit, the 
NDIS Miniport driver makes the request active on its adapter. The NDIS 
Miniport driver may call a wide variety of support routines in the NDIS 
Library to facilitate this process. 

Interrupt and DPC Processing 
When an adapter interrupts, Windows NT calls the NDIS Library's interrupt 
service routine. What happens next depends on how the NDIS Miniport is con
figured. If the NDIS Miniport driver has registered a MiniportIsr() routine, the 
NDIS Library calls that routine. If the MiniportIsr() returns TRUE, a DpcForIsr 
is requested. 

The NDIS specification encourages Miniport drivers to not register a 
MiniportIsr() routine. In this case, when the NDIS Library receives the inter
rupt, it automatically requests a DpcForIsr. 

The DpcForIsr routine is part of the NDIS Library. When this function is 
entered, the NDIS Library acquires a lock and calls the NDIS Miniport driver's 
MiniportHandlelnterrupt () routine, which is in effect the NDIS Miniport's 
DpcForIsr. It is interesting to note that the NDIS Library serializes NDIS 
Miniport DPC routine execution. Thus, unlike in standard Kernel mode dri
vers, NDIS DPC routines cannot be re-entered multiple times or active on mul
tiple processors simultaneously. 

Transmit Completion 
When the NDIS Miniport driver's MiniportHandlelnterrupt() routine is called 
to indicate that a previously transmitted operation is complete, the NDIS 
Miniport driver calls NdisMSendComplete ( ), with a pointer to the NDIS_PACKET 

that has been completed and the ultimate status of the transmit operation. 

After completing a transmit operation, NDIS Miniport drivers typically do not 
notify the NDIS Library that it may initiate a new transmit operation (the 
exception to this would be a driver that has disabled further transmit opera
tions due to lack of resources). Rather, the NDIS architecture assumes that 
multiple transmit packets can be in progress in the driver simultaneously. 
Therefore, the driver continues to be called at its MiniportSend () routine to 
transmit packets even while other packets are in progress. 

Message Reception 
Of course, the NIC may interrupt because it has received a message. Network 
drivers are unusual in that they must deal with a significant volume of unso
licited input compared to other drivers. Depending on the adapter hardware 
and the version of NDIS being supported, NDIS Miniport drivers will typically 
preallocate and supply the adapter with data buffers for message reception. 
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In the MiniportHandlelnterrupt () routine that runs as a result of an interrupt, 
the driver sees that a new message has been received. How the NDIS Miniport 
driver passes this message to the NDIS Library, and subsequently to TDI dri
vers, depends on the version of NDIS being supported and the features the dri
ver supports. 

In most cases, however, a message is received and buffered internally by the 
NDIS Miniport driver. To inform the NDIS Library that a message has been 
received, the NDIS Miniport driver calls a function such as 
NdisMEthlndicateReceive () (the actual name of the function depends on the 
LAN protocol being used-this example assumes Ethernet). 

From within NdisMEthlndicateReceive(), the NDIS Library informs the various 
protocols that a message has been received by an adapter driver. Each protocol 
driver that wants a copy of the message then calls the NDIS Library with a 
pointer to an NDIS_PACKET. In response to this request, the NDIS Library calls 
back the NDIS Miniport driver at its MiniportTransferData() routine. In this 
routine, the NDIS Miniport driver copies the received message from its inter
nally allocated data buffer to the NDIS_PACKET provided by the TDI protocol 
driver. 

Note 

The preceding example is one among many ways that NDIS drivers han
dle incoming packets. There are others, some of which are more efficient 
than the method described. 

Serialization 
The execution of NDIS Miniport drivers is typically "automatically" serialized 
by the NDIS Library. The NDIS Library holds a spin lock to ensure this serial
ization while it is executing within an NDIS Miniport driver. This frees NDIS 
Miniport drivers from having to worry about most synchronization issues. 

Learning More About Developing 
NDIS Drivers 
NDIS LAN Miniport drivers are well documented in the Windows NT DDK. 
The source code for several example NDIS (LAN) Miniport drivers is provided. 
NDIS WAN Miniport drivers and NDIS Intermediate drivers are also docu
mented in the Windows NT DDK, but not nearly as thoroughly as are NDIS 
LAN Miniport drivers. A sample NDIS WAN Miniport driver appears on the 
DDK, and a sample NDIS Intermediate driver is available from Microsoft. 
These files can be found in the \ddk\src\network directory. 









Appendix A 
Windows NT Status Codes/ 

Win32 Error Codes 

This appendix contains a list of Windows NT status codes (STATUS_xxxx) 
and the corresponding values returned by Win32. Note that NT status values 
are shown in the table in hex (as they are traditionally displayed), but Win32 
error values are shown in the table in decimal (their traditional format). 

Table A.l is sorted in alphabetical order by NT status code name. Table A.2 is 
sorted by Win32 error code name. Note that because there are fewer Win32 
error codes than there are NT status codes, multiple NT status codes map to 
the same Win32 error code. 



Table A.l. Windows NT Status codes and corresponding Win32 error codes. I~ NT Status Win32 Error 
NT Status Value Wm32 Error Code Value 

STATUS_ABIOS_INVALID_COMMAND OxCOOO0113 ERROR_MR_MID_NOT_FOUND 317 ""'C 
~ 

STATUS_ABIOS_INVALID_LID OxCOOOO1l4 ERROR_MR_MID_NOT_FOUND 317 ""1 
.-t 

STATUS_ABIOS_INVALID_SELECTOR OxCOOOO1l6 ERROR_MR_MID_NOT_FOUND 317 -
STATUS_ABIOS_LID_ALREADY_OWNED OxCOOOO1l1 ERROR_MR_MID_NOT_FOUND 317 ~ 
STATUS_ABIOS_LID_NOT _EXIST OxCOOOOllO ERROR_MR_MID_NOT_FOUND 317 > 
STATUS_ABIOS_NOT_LID _OWNER OxCOOO0112 ERROR_MR_MID_NOT_FOUND 317 ""0 

""0 
STATUS_ABIOS_NOT_PRESENT OxCOOOOlOF ERROR_MR_MID_NOT_FOUND 317 (b 

:::3 
STATUS_ABIOS_SELECTOR_NOT_AVAILABLE OxCOOO0115 ERROR_MR_MID_NOT_FOUND 317 0-
STATUS_ACCESS_DENIED OxCOOOO022 ERROR_ACCESS_DENIED 5 ><. 

STATUS_ACCESS_ VIOLATION OxCOOOOO05 ERROR_NOACCESS 998 
(b 
Vl 

STATUS_ACCOUNT_DISABLED Oxcooooon ERROR_ACCOUNT _DISABLED 1331 
STATUS_ACCOUNT_EXPIRED OxCOOO0193 ERROR_ACCOUNT _EXPIRED 1793 
STATUS_ACCOUNT_LOCKED_OUT OxCOOO0234 ERROR_ACCOUNT_LOCKED_OUT 1909 
STATUS_ACCOUNT _RESTRICTION OxCOOOO06E ERROR_ACCOUNT_RESTRICTION 1327 
STATUS_ADAPTER_HARDWARE_ERROR OxCOOOOOC2 ERROR_ADAP _HDW _ERR 57 
STATUS_ADDRESS_ALREADY_ASSOCIATED OxCOOO0238 ERROR_ADDRESS_ALREADY _ASSOCIATED 1227 
STATUS_ADDRESS_ALREADY_EXISTS OxCOOO020A ERROR_DUP _NAME 52 
STATUS_ADDRESS_CLOSED OxCOOO020B ERROR_NETNAME_DELETED 64 
STATUS_ADDRESS_NOT_ASSOCIATED OxCOOO0239 ERROR_ADDRESS_NOT _ASSOCIATED 1228 
STATUS_A GENTS_EXHAUSTED OxCOOOO085 ERROR_NO_MORE_ITEMS 259 
STATUS_ALIAS_EXISTS OxCOOO0154 ERROR_ALIAS_EXISTS 1379 
STATUS_ALLOCATE_BUCKET OxCOOO022F ERROR_MR_MID_NOT_FOUND 317 
STATUS_ALLOTTED_SPACE_EXCEEDED OxCOOOOO99 ERROR_ALLOTTED_SPACE_EXCEEDED 1344 
STATUS_ALREADY_COMMITTED OxCOOOO021 ERROR_ACCESS_DENIED 5 
STATUS_APP_INIT_FAILURE OxCOOO0145 ERROR_MR_MID_NOT_FOUND 317 
STATUS_ARRAY_BOUNDS_EXCEEDED OxCOOOOO8C STATUS_ARRAY_BOUNDS_EXCEEDED 3221225612 
STATUS_AUDIT_FAILED OxCOOO0244 ERROR_MR_MID_NOT_FOUND 317 
STATUS_BACKUP _CONTROLLER OxCOOOO187 ERROR_MR_MID_NOT_FOUND 317 
STATUS_BAD_COMPRESSION_BUFFER OxCOOOO242 ERROR_MR_MID_NOT_FOUND 317 
STATUS_BAD_DESCRIPTOR_FORMAT OxCOOOOOE7 ERROR_BAD_DESCRIPTOR_FORMAT 1361 



STATUS_BAD_DEVICE_TYPE OxCOOOOOCB ERROR_BAD_DEV _TYPE 66 
STATUS_BAD _DLL_ENTRYPOINT OxCOOOO251 ERROR_MR_MID_NOT_FOUND 317 
STATUS_BAD_FUNCTION_TABLE OxCOOOOOFF ERROR_MR_MID_NOT_FOUND 317 > '"0 
STATUS_BAD _IMPERSONATION_LEVEL OxCOOOOOA5 ERROR_BAD_IMPERSONATION_LEVEL 1346 '"0 
STATUS_BAD _INHERITANCE_ACL OxCOOOOO7D ERROR_BAD _INHERITANCE_ACL 1340 

(!) 
::;:l 

STATUS_BAD_INITIAL_PC OxCOOOOOOA ERROR_BAD _EXE_FORMAT 193 0.. 

STATUS_BAD_INITIAL_STACK OxCOOOOO09 ERROR_STACK_ OVERFLOW 1001 
><" 

STATUS_BAD_LOGON_SESSION_STATE OxCOOOOI04 ERROR_BAD_LOGON_SESSION_STATE 1365 ~ 
STATUS_BAD_MASTER_BOOT _RECORD OxCOOOOOA9 ERROR_MR_MID_NOT_FOUND 317 

~ STATUS_BAD_NETWORK_NAME OxCOOOOOCC ERROR_BAD_NET_NAME 67 
STATUS_BAD _NETWORK_PATH OxCOOOOOBE ERROR_BAD_NETPATH 53 S" 

0.. 
STATUS_BAD_REMOTE_ADAPTER OxCOOOOOC5 ERROR_BAD_REM_ADAP 60 0 
STATUS_BAD_SERVICE_ENTRYPOINT OxCOOOO252 ERROR_MR_MID_NOT_FOUND 317 ~ 

Vl 

STATUS_BAD _STACK OxCOOOO028 ERROR_MR_MID_NOT_FOUND 317 Z 
STATUS_BAD_TOKEN_TYPE OxCOOOOOA8 ERROR_BAD_TOKEN_TYPE 1349 ...., 
STATUS_BAD_ VALIDATION_CLASS OxCOOOOOA7 ERROR_BAD_ VALIDATION_CLASS 1348 CJ') 

STATUS_BAD_ WORKING_SELLIMIT OxCOOOOO4C ERROR_INVALID_PARAMETER 
r-t 

87 ~ 
r-t 

STATUS_BIOS_FAILED_TO_CONNECT_INTERRUPT OxCOOOO16E ERROR_MR_MID_NOT_FOUND 317 ,:: 
Vl 

STATUS_BUFFER_TOO_SMALL OxCOOOO023 ERROR_INSUFFICIENT_BUFFER 122 () 
STATUS_CANCELLED OxCOOOO120 ERROR_OPERATION_ABORTED 995 0 
STATUS_CANNOT_DELETE OxCOOOO121 ERROR_ACCESS_DENIED 5 0.. 

(!) 

STATUS_CANNOT_IMPERSONATE OxCOOOOI0D ERROR_CANNOLIMPERSONATE 1368 Vl 

STATUS_CANNOT_LOAD_REGISTRY _FILE OxCOOO0218 ERROR_MR_MID_NOT_FOUND 317 § 
STATUS_CANT _ACCESS_DOMAIN_INFO OxCOOOOODA ERROR_CANT_ACCESS_DOMAlN_INFO 1351 ::;:l 

STATUS_CANT _DISABLE_MANDATORY OxCOOOO05D ERROR_CANT_DISABLE_MANDATORY 1310 
W 
N 

STATUS_CANT_OPEN_ANONYMOUS OxCOOOOOA6 ERROR_CANT_OPEN_ANONYMOUS 1347 t'l1 
STATUS_CANT_TERMINATE_SELF OxCOOOOODB ERROR_MR_MID_NOT_FOUND 317 I-t 

I-t 

STATUS_CANT_WAIT OxCOOOOOD8 ERROR_MR_MID_NOT_FOUND 317 0 
I-t 

STATUS_CHILD_MUST_BE_ VOLATILE OxCOOOO181 ERROR_CHILD_MUST_BE_ VOLATILE 1021 () 
STATUS_CLIENT_SERVER]ARAMETERS_INVALID OxCOOO0223 ERROR_MR_MID_NOT_FOUND 317 0 

0.. 
STATUS_COMMITMENT_LIMIT OxCOOOO12D ERROR_COMMITMENT_LIMIT 1455 (!) 

Vl 
STATUS_CONFLICTING_ADDRESSES OxCOOOOO18 ERROR_INVALID_ADDRESS 487 

continues 
Vt 
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Table A.l. Continued I~ NT Status Wm32 Error 
NT Status Value Wm32 Error Code Value 

STATUS_CONNECTION_ABORTED OxCOOO0241 ERROR_CONNECTION_ABORTED 1236 '"0 
~ 

STATUS_CONNECTION_ACTIVE OxCOOO023B ERROR_ CONNECTION_ACTIVE 1230 1-1 
I'"t 

STATUS_CONNECTlON_COUNT_LIMIT OxCOOO0246 ERROR_CONNECTION_COUNT_LIMIT 1238 ~ 

STATUS_CONNECTION_DISCONNECTED OxCOOO020C ERROR_NETNAME_DELETED 64 ~ 
STATUS_CONNECTlONJN_USE OxCOOO0108 ERROR_DEVICE_IN_USE 2404 > 
STATUS_CONNECTION_INVALID OxCOOO023A ERROR_CONNECTION_INVALID 1229 '"0 

'"0 
STATUS_CONNECTION_REFUSED OxCOOO0236 ERROR_CONNECTION_REFUSED 1225 ('1) 

1:1 
STATUS_CONNECTION_RESET OxCOOO020D ERROR_NETNAME_DELETED 64 Q.. 

STATUS_CONTROL_C_EXIT OxCOOOO13A ERROR_MR_MID_NOT_FOUND 317 ><' 
('1) 

STATUS_CONVERT_TO_LARGE OxCOOO022C ERROR_MR_MID_NOT_FOUND 317 fJJ 

STATUS_COULD_NOT_INTERPRET OxCOOOOOB9 ERROR_MR_MID_NOT_FOUND 317 

STATUS_CRC_ERROR OxCOOOO03F ERROR_CRC 23 

STATUS_CTL_FILE_NOT_SUPPORTED OxCOOOO057 ERROR_NOT_SUPPORTED 50 

STATUS_DATA_ERROR OxCOOOO03E ERROR_CRC 23 

STATUS_DATA_LATE_ERROR OxCOOOO03D ERROR_IO_DEVICE 1117 

STATUS_DATA_NOT_ACCEPTED OxCOOO021B ERROR_MR_MID_NOT_FOUND 317 

STATUS_DATA_OVERRUN OxCOOOO03C ERROR_IO_DEVICE 1117 

STATUS_DEBUG_ATTACH_FAILED OxCOOO0219 ERROR_MR_MID_NOT_FOUND 317 

STATUS_DELETE_PENDING OxCOOOO056 ERROR_ACCESS_DENIED 5 

STATUS_DEVICE_ALREADY_ATTACHED OxCOOOO038 ERROR_MR_MID_NOT_FOUND 317 

STATUS_DEVICE_CONFIGURATlON_ERROR OxCOOO0182 ERROR_INVALID_PARAMETER 87 

STATUS_DEVICE_DATA_ERROR OxCOOOO09C ERROR_CRC 23 

STATUS_DEVICE_DOES_NOT_EXIST OxCOOOOOCO ERROR_DEV _NOT_EXIST 55 

STATUS_DEVICE_NOT_CONNECTED OxCOOOO09D ERROR_NOT_READY 21 

STATUS_DEVICE_NOT_PARTITIONED OxCOOO0174 ERROR_DEVICE_NOT]ARTlTlONED 1107 

STATUS_DEVICE_NOT_READY OxCOOOOOA3 ERROR_NOT_READY 21 

STATUS_DEVICE_POWER_FAILURE OxCOOOO09E ERROR_NOT_READY 21 

STATUS_DEVICE_PROTOCOCERROR OxCOOOO186 ERROR_IO_DEVICE 1117 

STATUS_DFS_EXIT_PATH_FOUND OxCOOOOO9B ERROR_PATH_NOT_FOUND 3 

STATUS_DFS_UNAVAILABLE OxCOOOO26D ERROR_MR_MID_NOT_FOUND 317 



STATUS_DIRECTORY _NOT_EMPTY OxCOOO0101 ERROR_DIR_NOT_EMPTY 145 
STATUS_DlSK_CORRUPT_ERROR OxCOOOO032 ERROR_DISK_CORRUPT 1393 
STATUS_DISK_FULL OxCOOOO07F ERROR_DISK_FULL 112 > '"0 
STATUS_DlSK_OPERATION_FAILED OxCOOOO16A ERROR_DISK_OPERATION_FAlLED 1127 '"0 
STATUS_DISK_RECALIBRATE_FAlLED OxCOOOO169 ERROR_DISK_RECALlBRATE_FAlLED 1126 

(D 

::l 
STATUS_DlSK_RESET_FAILED OxCOOOO16B ERROR_DISK_RESET_FAILED 1128 0-

STATUS_DLL_INIT_FAILED OxCOOOO142 ERROR_DLL_INILFAILED 1114 
><. 

STATUS_DLL_INIT_FAILED_LOGOFF OxCOOO026B ERROR_MR_MID_NOT_FOUND 317 ~ 
STATUS_DLL_NOT_FOUND OxCOOOO135 ERROR_MOD_NOT_FOUND 126 

~ STATUS_DOMAlN_CONTROLLER_NOT_FOUND OxCOOO0233 ERROR_DOMAlN_CONTROLLER_NOT_FOUND 1908 
STATUS_DOMAlN_CTRLR_CONFIG_ERROR OxCOOOO15E ERROR_MR_MID_NOT_FOUND 317 ::l 

0-
STATUS_DO MAIN_EXISTS OxCOOOOOEO ERROR_DOMAlN_EXISTS 1356 0 

STATUS_DOMAlN_LIMIT_EXCEEDED OxCOOOOOEl ERROR_DOMAlN_LIMIT_EXCEEDED 1357 ~ r:n 
STATUS_DOMAlN_TRUST_INCONSISTENT OxCOOOO19B ERROR_DOMAlN_ TRUST_INCONSISTENT 1810 Z 
STATUS_DRIVER_CANCEL_TIMEOUT OxCOOO021E ERROR_MR_MID_NOT_FOUND 317 ~ 
STATUS_DRIVER_ENTRYPOINT_NOT_FOUND OxCOOO0263 ERROR_PROC_NOT_FOUND 127 C/') 

STATUS_DRIVER_INTERNAL_ERROR OxCOOOO183 ERROR_IO_DEVICE 
rt 

1117 ~ 
rt 

STATUS_DRIVER_ORDINAL_NOT_FOUND OxCOOO0262 ERROR_INVALID_ORDINAL 182 C r:n 
STATUS_DRIVER_UNABLE_TO_LOAD OxCOOO026C ERROR_MR_MID_NOT_FOUND 317 (') 
STATUS_DUPLICATE_NAME OxCOOOOOBD ERROR_DUP _NAME 52 0 
STATUS_DUPLICATE_OBJECTID OxCOOO022A STATUS_DUPLICATE_OBJECTID 3221226026 0-

(D 

STATUS_EA_CORRUPT_ERROR OxCOOOO053 ERROR_FILE_CORRUPT 1392 r:n 

STATUS_EA_TOO_LARGE OxCOOOOO50 ERROR_EA_L1ST_INCONSISTENT 255 ~ 
STATUS_EAS_NOT_SUPPORTED OxCOOOOO4F ERROR_MR_MID_NOT_FOUND 317 ::l 
STATUS_END_OF _FILE OxCOOOOO11 ERROR_HANDLE_EOF 38 

W 
tv 

STATUS_ENTRYPOINT_NOT_FOUND OxCOOOO139 ERROR_PROC_NOT_FOUND 127 t'Tj 
STATUS_EOM_OVERFLOW OxCOOOOl77 ERROR_EOM_OVERFLOW 1129 

t; 
t; 

STATUS_EVALUATION_EXPIRATION OxCOOO0268 ERROR_MR_MID_NOT_FOUND 317 0 
t; 

STATUS_EVENTLOG_CANT_START OxCOOOO18F ERROR_EVENTLOG_CANT_START 1501 (') 
STATUS_EVENTLOG_FILE_CHANGED OxCOOOO197 ERROR_EVENTLOG_FILE_CHANGED 1503 0 

0-
STATUS_EVENTLOG_FILE_CORRUPT OxCOOOO18E ERROR_EVENTLOG_FILE_CORRUPT 1500 (D 

r:n 
STATUS_FAIL_CHECK OxCOOOO229 ERROR_MR_MID_NOT_FOUND 317 

continues 
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Table A.l. Continued I~ NT Status Win32 Error 
NT Status Value Win32 Error Code Value 

STATUS_FILE_CLOSED OxCOOOO128 ERROR_INVALID_HANDLE 6 ~ 
~ 

STATUS_FlLE_CORRUPLERROR OxCOOOOI02 ERROR_FILE_CORRUPT 1392 t-t 
t"'t 

STATUS_FILE_DELETED OxCOOOO123 ERROR_ACCESS_DENIED 5 ~ STATUS_FlLE_FORCED_CLOSED OxCOOOOOB6 ERROR_HANDLE_EOF 38 

STATUS_FILE_INVALID OxCOOOO098 ERROR_FILE_INVALID 1006 > 
STATUS_FlLE_IS_A_DIRECTORY OxCOOOOOBA ERROR_ACCESS_DENIED 5 ~ 

~ 
STATUS_FlLE_IS_OFFLlNE OxCOOO0267 ERROR_MR_MID_NOT_FOUND 317 ("b 

::s 
STATUS_FlLE_LOCK_ CONFLICT OxCOOOO054 ERROR_LOCK_ VIOLATION 33 0... 
STATUS_FILE_RENAMED OxCOOOOOD5 ERROR_MR_MID_NOT_FOUND 317 ><" ("b 
STATUS_FILES_OPEN OxCOOOOI07 ERROR_MR_MID_NOT_FOUND 317 en 

STATUS_FLOAT_DENORMAL_OPERAND OxCOOOO08D STATUS_FLOAT_DENORMAL_ OPERAND 3221225613 

STATUS_FLOAT_DIVIDE_BY_ZERO OxCOOOO08E STATUS_FLOAT_DIVIDE_BY_ZERO 3221225614 

STATUS_FLOAT_INEXACT _RESULT OxCOOOO08F STATUS_FLOAT_INEXACT_RESULT 3221225615 

STATUS_FLOAT _INVALID_OPERATION OxCOOOO090 STATUS_FLOAT_INVALID_OPERATION 3221225616 

STATUS_FLOAT _OVERFLOW OxCOOOO091 STATUS_FLOAT_OVERFLOW 3221225617 

STATUS_FLOAT_STACK_CHECK OxCOOOO092 STATUS_FLOAT_STACK_CHECK 3221225618 

STATUS_FLOAT _UNDERFLOW OxCOOOO093 STATUS_FLOAT_UNDERFLOW 3221225619 

STATUS_FLOPPY _BAD_REGISTERS OxCOOO0168 ERROR_FLOPPY_BAD_REGISTERS 1125 

STATUS_FLOPPY _ID _MARK_NOT_FOUND OxCOOO0165 ERROR_FLOPPY_ID _MARK_NOT_FOUND 1122 

STATUS_FLOPPY_UNKNOWN_ERROR OxCOOOO167 ERROR_FLOPPY_UNKNOWN_ERROR 1124 

STATUS_FLOPPY_ VOLUME OxCOOOO164 ERROR_MR_MID_NOT_FOUND 317 

STATUS_FLOPPY _WRONG_CYLINDER OxCOOO0166 ERROR_FLOPPY_ WRONG_CYLINDER 1123 

STATUS_FOUND_OUT_OF _SCOPE OxCOOO022E ERROR_MR_MID_NOT_FOUND 317 

STATUS_FREE_ VM_NOT_AT_BASE OxCOOOO09F ERROR_INVALID_ADDRESS 487 

STATUS_FS_DRIVER_REQUIRED OxCOOO019C ERROR_MR_MID_NOT_FOUND 317 

STATUS_FT _MISSING_MEMBER OxCOOO015F ERROR_IO_DEVICE 1117 

STATUS_FT_ORPHANING OxCOOOO16D ERROR_IO_DEVICE 1117 

STATUS]ULLSCREEN_MODE OxCOOOO159 ERROR_FULLSCREEN_MODE 1007 

STATUS_GENERIC_NOT_MAPPED OxCOOOOOE6 ERROR_GENERIC_NOT_MAPPED 1360 

STATUS_GRACEFUL_DISCONNECT OxCOOO0237 ERROR_GRACEFUL_DISCONNECT 1226 



-

STATUS_GROUP _EXISTS OxCOOOO065 ERROR_GROUP _EXISTS 1318 

STATUS_GUIDS_EXHAUSTED OxCOOOO083 ERROR_NO_MORE_ITEMS 259 

STATUS_HANDLE_NOT_CLOSABLE OxCOOO0235 ERROR_INVALID_HANDLE 6 > "0 
STATUS_HOST_UNREACHABLE OxCOOO023D ERROR_HOST_UNREACHABLE 1232 "0 

(t) 
STATUS_ILL_FORMED_PASSWORD OxCOOOO06B ERROR_ILL_FORMED_PASSWORD 1324 ::s 
STATUS_ILL_FORMED _SERVICE_ENTRY OxCOOOO160 ERROR_MR_MID_NOT_FOUND 317 0-

STATUS_ILLEGAL_CHARACTER OxCOOOO161 ERROR_MR_MID_NOT_FOUND 317 
><. 

STATUS_ILLEGAL_DLL_RELOCATION OxCOOO0269 ERROR_MR_MID_NOT_FOUND 317 ?:> 
STATUS_ILLEGAL_FLOAT_CONTEXT OxCOOOO14A ERROR_MR_MID_NOT_FOUND 317 

~ STATUS_ILLEGAL_FUNCTION OxCOOOOOAF ERROR_INVALID_FUNCTION 1 

STATUS_ILLEGAL_INSTRUCTION OxCOOOOOID STATUS_ILLEGAL_INSTRUCTION 3221225501 ::s 
0-

STATUS_IMAGE_ALREADY_LOADED OxCOOOOI0E ERROR_SERVICE_ALREADY_RUNNING 1056 0 

STATUS_IMAGE_CHECKSUM_MISMATCH OxCOOO0221 ERROR_BAD_EXE_FORMAT 193 $J 
rJ) 

STATUS_IMAGE_MP _UP_MISMATCH OxCOOO0249 ERROR_BAD_EXE_FORMAT 193 Z 
STATUS_IN_PAGE_ERROR OxCOOOOO06 ERROR_SWAPERROR 999 ~ 
STATUS_INCOMPATIBLE_FILE_MAP OxCOOOO04D ERROR_INVALID_PARAMETER 87 Vl 

r-t 
STATUS_INFO_LENGTH_MISMATCH OxCOOOOO04 ERROR_BAD_LENGTH 24 ~ 

r-t 
STATUS_INSTANCE_NOT_AVAILABLE OxCOOOOOAB ERROR_PIPE_BUSY 231 c: 

rJ) 

STATUS_INSTRUCTION_MISALIGNMENT OxCOOOOOAA ERROR_MR_MID_NOT_FOUND 317 (') 
STATUS_INSUFF _SERVER_RESOURCES OxCOOO0205 ERROR_NOT_ENOUGH_SERVER_MEMORY 1130 0 
STATUS_INSUFFICIENT _LOGON_INFO OxCOOO0250 ERROR_MR_MID_NOT_FOUND 317 0-

(t) 

STATUS_INSUFFICIENT_RESOURCES OxCOOOO09A ERROR_NO_SYSTEM_RESOURCES 1450 
rJ) 

STATUS_INTEGER_DIVIDE_BY_ZERO OxCOOOO094 STATUS_INTEGER_DIVIDE_BY_ZERO 3221225620 ~ 
~. 

STATUS_INTEGER_OVERFLOW OxCOOOO095 ERROR_ARITHMETIC_OVERFLOW 534 ::s 
STATUS_INTERNAL_DB_CORRUPTION OxCOOOOOE4 ERROR_INTERNAL_DB_CORRUPTION 1358 

W 
N 

STATUS_INTERNAL_DB_ERROR OxCOOOO158 ERROR_INTERNAL_DB_ERROR 1383 t'Tj 

STATUS_INTERNAL_ERROR OxCOOOOOE5 ERROR_INTERNAL_ERROR 1359 
t"1 
t"1 

STATUS_INVALID_ACCOUNT_NAME OxCOOOO062 ERROR_INVALID_ACCOUNT_NAME 1315 0 
t"1 

STATUS_INVALID_ACL OxCOOOO077 ERROR_INVALID_ACL 1336 (') 
STATUS_INVALID_ADDRESS OxCOOOO141 ERROR_UNEXP _NET_ERR 59 0 

0-
STATUS_INVALID_ADDRESS_COMPONENT OxCOOO0207 ERROR_INVALID_NETNAME 1214 (t) 

rJ) 

STATUS_INVALID_ADDRESS_ WILDCARD OxCOOO0208 ERROR_INVALID_NETNAME 1214 

Vl 
continues \0 
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Table A.l. Continued I~ NT Status Win32 Error 
NT Status Value Win32 Error Code Value 

STATUS_INVALID_BLOCK_LENGTH OxCOOOO173 ERROR_INVALID_BLOCK_LENGTH 1106 ~ 
~ 

STATUS_INVALID_BUFFER_SIZE OxCOOO0206 ERROR_INVALID _USER_BUFFER 1784 I-t .... 
STATUS_INVALID _ CID OxCOOOOOOB ERROR_INVALID_PARAMETER 87 -
STATUS_INVALID _COMPUTER_NAME OxCOOOO122 ERROR_INVALID_COMPUTERNAME 1210 ~ 
STATUS_INVALID_CONNECTION OxCOOOO140 ERROR_UNEXP _NET_ERR 59 > 
STATUS_INVALID_DEVICE_REQUEST OxCOOOO010 ERROR_INVALID_FUNCTION ~ 

~ 
STATUS_INVALID_DEVICE_STATE OxCOOOO184 ERROR_BAD_COMMAND 22 ('D 

~ 
STATUS_INVALID_DISPOSITION OxCOOOO026 STATUS_INVALID_DISPOSITION 3221225510 0-
STATUS_INVALID _DOMAIN_ROLE OxCOOOOODE ERROR_INVALID_DOMAIN_ROLE 1354 ><. 

('D 
STATUS_INVALID_DOMAIN_STATE OxCOOOOODD ERROR_INVALID_DOMAIN_STATE 1353 en 

STATUS_INVALID _FILE_FOR_SECTION OxCOOOO020 ERROR_BAD _EXE_FORMAT 193 
STATUS_INVALID_GROUP_ATTRIBUTES OxCOOOOOA4 ERROR_INVALID_GROUP_ATTRIBUTES 1345 
STATUS_INVALID_HANDLE OxCOOOOO08 ERROR_INVALID _HANDLE 6 
STATUS_INVALID_HW_PROFILE OxCOOO0260 ERROR_MR_MID_NOT_FOUND 317 
STATUS_INVALID _ID ~UTHORITY OxCOOOO084 ERROR_INVALID _ID _AUTHORITY 1343 
STATUS_INVALID_IMAGE_FORMAT OxCOOOO07B ERROR_BAD _EXE_FORMAT 193 
STATUS_INVALID_IMAGE_LE_FORMAT OxCOOOO12E ERROR_BAD _EXE_FORMAT 193 
STATUS_INVALID_IMAGE_NLFORMAT OxCOOOO11B ERROR_BAD _EXE_FORMAT 193 
STATUS_INVALID_IMAGE_NOT_MZ OxCOOOO12F ERROR_BAD _EXE_FORMAT 193 
STATUS_INVALID _IMAGE_PROTECT OxCOOOO130 ERROR_BAD _EXE_FORMAT 193 
STATUS_INVALID_IMAGE_ WIN_16 OxCOOOO131 ERROR_BAD_EXE_FORMAT 193 
STATUS_INVALID_INFO_CLASS OxCOOOOOO3 ERROR_INVALID]ARAMETER 87 
STATUS_INVALID _LDT _DESCRIPTOR OxCOOOO11A ERROR_MR_MID_NOT_FOUND 317 
STATUS_INVALID _LDT _OFFSET OxCOOOO119 ERROR_MR_MID_NOT_FOUND 317 
STATUS_INVALID _LDT_SIZE OxCOOOO118 ERROR_MR_MID_NOLFOUND 317 
STATUS_INVALID_LEVEL OxCOOOO148 ERROR_INVALID_LEVEL 124 

STATUS_INVALID_LOCK_SEQUENCE OxCOOOOO1E ERROR_ACCESS_DENIED 5 
STATUS_INVALID_LOGON_HOURS OxCOOOO06F ERROR_INVALID _LOGON_HOURS 1328 
STATUS_INVALID_LOGON_TYPE OxCOOO010B ERROR_INVALID_LOGON_TYPE 1367 
STATUS_INVALID_MEMBER OxCOOOO17B ERROR_INVALID_MEMBER 1388 



STATUS_INVALlD_NETWORK_RESPONSE OxCOOOOOC3 ERROR_BAD_NELRESP 58 
STATUS INVALID OPLOCK PROTOCOL OxCOOOOOE3 ERROR MR MID NOT FOUND 317 

STATUS=INVALlD=OWNER - OxC000005A ERROR=INVALlD=OwNER 1307 ~ 
STATUS_INVALlD]AGE_PROTECTION OxC0000045 ERROR_INVALlD]ARAMETER 87 "'0 
STATUS_INVALID_PARAMETER OxCOOOOOOD ERROR_INVALID_PARAMETER 87 g 
STATUS_INVALlD_PARAMETER_1 OxCOOOOOEF ERROR_INVALID_PARAMETER 87 9-7 
STATUS INVALID PARAMETER 10 OxCOOOOOF8 ERROR INVALID PARAMETER 87 ~ 
STATUS=INVALID=PARAMETER=l1 OxCOOOOOF9 ERROR=INVALlD=PARAMETER 87 ~ 
STATUS INVALID PARAMETER 12 OxCOOOOOFA ERROR INVALID PARAMETER 87 ~ 

STATUS_INVALlD_PARAMETER_2 OxCOOOOOFO ERROR_INVALID_PARAMETER 87 S 
STATUS_INVALlD_PARAMETER_3 OxCOOOOOFl ERROR_INVALlD]ARAMETER 87 5-
STATUS_INVALID_PARAMETER_ 4 OxCOOOOOF2 ERROR_INVALlD]ARAMETER 87 ~ 

STATUS_INVALlD]ARAMETER_5 OxCOOOOOF3 ERROR_INVALID_PARAMETER 87 ~ 

STATUS_INVALlD_PARAMETER_6 OxCOOOOOF4 ERROR_INVALID_PARAMETER 87 Z 
STATUS_INVALlD_PARAMETER_7 OxCOOOOOF5 ERROR_INVALlD]ARAMETER 87 ..., 
STATUS_INVALlD_PARAMETER_8 OxCOOOOOF6 ERROR_INVALID_PARAMETER 87 ~ 

STATUS_INVALlD_PARAMETER_9 OxCOOOOOF7 ERROR_INVALID_PARAMETER 87 ~ 

STATUS INVALID PARAMETER MIX OxC0000030 ERROR INVALID PARAMETER 87 $:=: 
- - - - - fJ) 

STATUS INVALID PIPE STATE OxCOOOOOAD ERROR BAD PIPE 230 

STATUS=INVALlD=PLUGPLAY_DEVICE_PATH OxC0000261 ERROR=MR_MID_NOT_FOUND 317 Q 
STATUS_INVALID_PORT_ATTRIBUTES OxC000002E ERROR_MR_MID_NOT_FOUND 317 R--
STATUS INVALID PORT HANDLE OxC0000042 ERROR INVALID HANDLE 6 ~ 
STATUS_INVALlD]RIMARY_GROUP OxC000005B ERROR_INVALID_PRIMARY_GROUP 1308 ~ 

STATUS INVALID QUOTA LOWER OxC0000031 ERROR MR MID NOT FOUND 317 5· 
STATUS=INVALID=READ_MODE OxCOOOOOB4 ERROR=BAD]IPE - 230 ~ 
STATUS_INVALlD_SECURITY_DESCR OxC0000079 ERROR_INVALlD_SECURITY_DESCR 1338 tyj 

STATUS_INVALlD_SERVER_STATE OxCOOOOODC ERROR_INVALlD_SERVER_STATE 1352 ~ 
STATUS_INVALID_SID OxC0000078 ERROR_INVALID_SID 1337 g 
STATUS_INVALID_SUB_AUTHORITY OxC0000076 ERROR_INVALID_SUB_AUTHORITY 1335 () 
STATUS_INVALlD_SYSTEM_SERVICE OxC000001C ERROR_INVALID_FUNCTION 8-
STATUS_INVALlD_UNWIND_TARGET OxC0000029 ERROR_MR_MID_NOT_FOUND 317 ~ 

STATUS_INVALID _USER_BUFFER OxCOOOOOE8 ERROR_INVALID _USER_BUFFER 1784 

. v-. 
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Table A.l. Continued 
I~ NT Status Win32 Error 

NT Status Value Win32 Error Code Value 

STATUS_INVALID_VARIANT OxCOOO0232 ERROR_MR_MID_NOT_FOUND 317 ~ 
p) 

STATUS_INVALID_VIEW _SIZE OxCOOOOOIF ERROR_ACCESS_DENIED 5 t; 
t"'t 

STATUS_INVALID_ VOLUME_LABEL OxCOOOO086 ERROR_LABEL_TOO_LONG 154 1-0-1 

STATUS_INVALID_WORKSTATION OxCOOOO070 ERROR_INVALID_WORKSTATION 1329 $ 
STATUS_IO _DEVICE_ERROR OxCOOOO185 ERROR_IO_DEVICE 1117 > 
STATUS_IO_PRIVILEGE_FAILED OxCOOOO137 ERROR_MR_MID_NOLFOUND 317 '"0 

'"0 
STATUS_IO_TIMEOUT OxCOOOOOB5 ERROR_SEM_TIMEOUT 121 (I) 

::s 
STATUS_IP_ADDRESS_CONFLICTl OxCOOO0254 ERROR_MR_MID_NOT_FOUND 317 0-
STATUS_IP_ADDRESS_CONFLICT2 OxCOOO0255 ERROR_MR_MID_NOT_FOUND 317 ~. 

STATUS_KEY _DELETED OxCOOOO17C ERROR_KEY_DELETED 
(I) 

1018 (Jl 

STATUS_KEY_HAS_CHlLDREN OxCOOOO180 ERROR_KEY_HAS_CHlLDREN 1020 
STATUS_LAST_ADMIN OxCOOOO069 ERROR_LAST_ADMIN 1322 
STATUS_LICENSE_QUOTA_EXCEEDED OxCOOO0259 ERROR_LICENSE_QUOTA_EXCEEDED 1395 
STATUS_LICENSE_VIOLATION OxCOOO026A ERROR_MR_MID_NOT_FOUND 317 
STATUS_LINK_FAILED OxCOOOO13E ERROR_UNEXP _NET_ERR 59 
STATUS_LINK_TIMEOUT OxCOOOO13F ERROR_UNEXP _NET_ERR 59 
STATUS_LM_CROSS_ENCRYPTION_REQUIRED OxCOOOO17F ERROR_LM_CROSS_ENCRYPTION_REQUIRED 1390 
STATUS_LOCAL_DISCONNECT OxCOOOO13B ERROR_NETNAME_DELETED 64 
STATUS_LOCK_NOT_GRANTED OxCOOOO055 ERROR_LOCK_ VIOLATION 33 
STATUS_LOG_FILE_FULL OxCOOOO188 ERROR_LOG_FILE_FULL 1502 
STATUS_LOGIN_TIME_RESTRICTION OxCOOO0247 ERROR_LOGIN_TIME_RESTRICTION 1239 
STATUS_LOGIN_ WKSTA_RESTRICTION OxCOOO0248 ERROR_LOGIN_ WKSTA_RESTRICTION 1240 
STATUS_LOGON_FAILURE OxCOOOO06D ERROR_LOGON_FAILURE 1326 
STATUS_LOGON_NOT_GRANTED OxCOOOO155 ERROR_LOGON_NOT_GRANTED 1380 
STATUS_LOGON_SERVER_CONFLICT OxCOOOO132 ERROR_MR_MID_NOT_FOUND 317 
STATUS_LOGON_SESSION_COLLISION OxCOOOOI05 ERROR_LOGON_SESSION_COLLISION 1366 
STATUS_LOGON_SESSION_EXISTS OxCOOOOOEE ERROR_LOG ON_SESSION_EXISTS 1363 
STATUS_LOGON_TYPE_NOT_GRANTED OxCOOOO15B ERROR_LOGON_TYPE_NOT_GRANTED 1385 
STATUS_LOST_ WRITEBEHIND_DATA OxCOOO0222 ERROR_MR_MID_NOT_FOUND 317 
STATUS_LPC_REPLY_LOST OxCOOO0253 ERROR_INTERNAL_ERROR 1359 



- ~--- - -------

STATUS_LUIDS_EXHAUSTED OxCOOOO075 ERROR_LUIDS_EXHAUSTED 1334 

STATUS_MAPPED_ALlGNMENT OxCOOO0220 ERROR_MAPPED_ALlGNMENT 1132 

STATUS_MAPPED_FILE_SIZE_ZERO OxCOOOO11E ERROR_FILE_INVALID 1006 > 
~ 

STATUS_MARSHALL_OVERFLOW OxCOOO0231 ERROR_MR_MID_NOT_FOUND 317 ~ 

STATUS_MEDIA_ WRITE_PROTECTED OxCOOOOOA2 ERROR_WRITE_PROTECT 19 
('1) 

~ 
STATUS_MEMBER_IN_ALIAS OxCOOOO153 ERROR_MEMBER_IN_ALIAS 1378 

p.. 

STATUS_MEMBER_IN_GROUP OxCOOOO067 ERROR_MEMBER_IN_ GROUP 1320 
><. 

STATUS_MEMBER_NOT _IN_ALIAS OxCOOOO152 ERROR_MEMBER_NOT_IN_ALIAS 1377 ~ 
STATUS_MEMBER_NOT_IN_GROUP OxCOOOO068 ERROR_MEMBER_NOT_IN_GROUP 1321 

~ STATUS_MEMBERS_PRIMARY_GROUP OxCOOOO127 ERROR_MEMBERS_PRlMARY _GROUP 1374 5· 
STATUS_MEMORY_NOT_ALLOCATED OxCOOOOOAO ERROR_INVALID_ADDRESS 487 p.. 
STATUS_MESSAGE_NOT_FOUND OxCOOO0109 ERROR_MR_MID_NOT_FOUND 317 0 

STATUS_MISSING_SYSTEMFILE OxCOOOO143 ERROR_MR_MID_NOT_FOUND 317 ~ 
(J) 

STATUS_MORE_PROCESSING_REQUIRED OxCOOOOO16 ERROR_MORE_DATA 234 Z 
STATUS_MUTANT _LIMIT_EXCEEDED OxCOOOO191 ERROR_MR_MID_NOT_FOUND 317 ~ 
STATUS_MUTANT_NOT_OWNED OxCOOOO046 ERROR_NOT_OWNER 288 (FJ 

.-t 
STATUS_NAME_TOO_LONG OxCOOO0106 ERROR_FlLENAME_EXCED _RANGE 206 ~ 

.-t 
STATUS_NEL WRITE_FAULT OxCOOOOOD2 ERROR_NET_ WRITE_FAULT 88 C 

(J) 

STATUS_NETLOGON_NOT_STARTED OxCOOOO192 ERROR_NETLOGON_NOLSTARTED 1792 () 
STATUS_NETWORlCACCESS_DENlED OxCOOOOOCA ERROR_NETWORK_ACCESS_DENIED 65 0 
STATUS_NETWORK_BUSY OxCOOOOOBF ERROR_NETWORK_BUSY 54 p.. 

('1) 

STATUS_NETWORK_CREDENTIAL_CONFLICT OxCOOOO195 ERROR_SESSION_CREDENTIAL_CONFLICT 1219 
(J) 

STATUS_NETWORK_NAME_DELETED OxCOOOOOC9 ERROR_NETNAME_DELETED 64 § 
STATUS_NETWORK_UNREACHABLE OxCOOO023C ERROR_NETWORK_UNREACHABLE 1231 ~ 

STATUS_NO _BROWSER_SERVERS_FOUND OxCOOO021C ERROR_NO_BROWSER_SERVERS_FOUND 6118 
W 
N 

STATUS_NO_CALLBACK_ACTIVE OxCOOO0258 ERROR_MR_MID_NOT_FOUND 317 ~ 
STATUS_NO_EAS_ON_FlLE OxCOOOO052 ERROR_FILE_CORRUPT 1392 1"1 

STATUS_NO_EVENT_PAIR OxCOOOO14E ERROR_MR_MID_NOT_FOUND 317 0 
1"1 

STATUS_NO_GUID_TRANSLATION OxCOOO010C ERROR_MR_MID_NOT_FOUND 317 () 
STATUS_NO _IMPERSONATION_TOKEN OxCOOOO05C ERROR_NO _IMPERSONATION_TOKEN 1309 0 

p.. 
STATUS_NO_LDT OxCOOOO117 ERROR_MR_MID_NOT_FOUND 317 ('1) 

(J) 

STATUS_NO_LOG_SPACE OxCOOOO17D ERROR_NO_LOG_SPACE 1019 

continues 
Vl 
\0 
\0 



Table A.l. Continued 18 NT Status Win32 Error 
NT Status Value Wm32 Error Code Value 

STATUS_NO_LOGON_SERVERS OxCOOOO05E ERROR_NO_LOGON_SERVERS 1311 ~ 
~ 

STATUS_NO_MEDIA OxCOOOO178 ERROR_NO_MEDIA_IN_DRIVE 1112 ""' f"'t 

STATUS_NO_MEDIA_IN_DEVICE OxCOOOOO13 ERROR_NOT_READY 21 !0-004 

STATUS_NO_MEMORY OxCOOOOO17 ERROR_NOT_ENOUGH_MEMORY 8 ~ 
STATUS_NO _PAGEFILE OxCOOOO147 ERROR_MR_MID_NOT_FOUND 317 > 
STATUS_NO_SECURITY_ON_OBJECT OxCOOOOOD7 ERROR_NO_SECURITY_ ON_OBJECT 1350 '"0 

'"0 
STATUS_NO_SPOOL_SPACE OxCOOOOOC7 ERROR_NO_SPOOL_SPACE 62 (D 

::l 
STATUS_NO_SUCH_ALIAS OxCOOOO151 ERROR_NO_SUCH_ALIAS 1376 0-
STATUS_NO_SUCH_DEVICE OxCOOOOOOE ERROR_FILE_NOT_FOUND 2 ><' (D 
STATUS_NO_SUCH_DOMAIN OxCOOOOODF ERROR_NO_SUCH_DOMAIN 1355 en 

STATUS_NO _SUCH_FILE OxCOOOOOOF ERROR_FILE_NOT _FOUND 2 

STATUS_NO_SUCH_GROUP OxCOOOO066 ERROR_NO_SUCH_GROUP 1319 

STATUS_NO_SUCH_LOGON_SESSION OxCOOOO05F ERROR_NO_SUCH_LOGON_SESSION 1312 

STATUS_NO_SUCH_MEMBER OxCOOOO17A ERROR_NO_SUCH_MEMBER 1387 

STATUS_NO_SUCH_PACKAGE OxCOOOOOFE ERROR_NO_SUCH_PACKAGE 1364 

STATUS_NO_SUCH_PRIVILEGE OxCOOOO060 ERROR_NO _SUCH_PRIVILEGE 1313 

STATUS_NO_SUCH_USER OxCOOOO064 ERROR_NO_SUCH_USER 1317 

STATUS_NO_TOKEN OxCOOOO07C ERROR_NO_TOKEN 1008 

STATUS_NO_TRUST_LSA_SECRET OxCOOOO18A ERROR_NO_TRUST _LSA_SECRET 1786 

STATUS_NO_TRUST_SAM_ACCOUNT OxCOOOO18B EJ..ill.OR_NO_TRUST_SAM_ACCOUNT 1787 

STATUS_NO_USER_SESSION_KEY OxCOOO0202 ERROR_NO_USER_SESSION_KEY 1394 

STATUS_NOLOGON_INTERDOMAIN_TRUST_ACCOUNT OxCOOOO198 ERROR_NOLOGON_INTERDOMAIN_TRUST_ACCOUNT 1807 

STATUS_NOLOGON_SERVER_TRUST_ACCOUNT OxCOOOO19A ERROR_NOLOGON_SERVER_TRUST_ACCOUNT 1809 

STATUS_NOLOGON_ WORKSTATION_TRUSLACCOUNT OxCOOOO199 ERROR_NOLOGON_ WORKSTATION_TRUST_ACCOUNT 1808 

STATUS_NONCONTINUABLE_EXCEPTION OxCOOOO025 STATUS_NONCONTINUABLE_EXCEPTION 3221225509 

STATUS_NONE_MAPPED OxCOOOO073 ERROR_NONE_MAPPED 1332 

STATUS_NONEXISTENT_EA_ENTRY OxCOOOO051 ERROR_FlLE_ CORRUPT 1392 

STATUS_NONEXISTENT_SECTOR OxCOOOOO15 ERROR_SECTOR_NOT_FOUND 27 

STATUS_NOT_A_DIRECTORY OxCOOO0103 ERROR_DIRECTORY 267 

STATUS_NOT_CLIENT_SESSION OxCOOO0217 ERROR_NOLSUPPORTED 50 



----

STATUS_NOT_COMMITIED OxC000002D ERROR_INVALID_ADDRESS 487 

STATUS NOT FOUND OxC0000225 ERROR MR MID NOT FOUND 317 
STATUS=NOT=IMPLEMENTED OxC0000002 ERROR=INVALID~FUNCTION ? 
~~~~~=~~~=~~~~~PROCESS ~:~~~~~~!~ !:~~=~~~=~~~~~PROCESS !~:2 g 
STATUS_NOT_MAPPED_DATA OxC0000088 ERROR_INVALID_ADDRESS 487 ~ 
STATUS NOT MAPPED VIEW OxC0000019 ERROR INVALID ADDRESS 487 >< 
STATUS=NOT=REGISTRY_FlLE OxC000015C ERROR=NOT_REGISTRY_FlLE 1017 ~ 
STATUS NOT SAME DEVICE OxCOOOOOD4 ERROR NOT SAME DEVICE 17 ~ 

STATUS_NOT_SERVER_SESSION OxC0000216 ERROR_NOT_SUPPORTED 50;S 
STATUS_NOT_SUPPORTED OxCOOOOOBB ERROR-.NOT_SUPPORTED 50 5-
STATUS NOT TINY STREAM OxC0000226 ERROR MR MID NOT FOUND 317 0 

STATUS=NT_CROSS~ENCRYPTION_REQUIRED OxC000015D ERROR=NT~CROSS_ENCRYPTION_REQUIRED 1386 ~ 
STATUS_OBJECT_NAME_COLLISION OxC0000035 ERROR_ALREADY_EXISTS 183 Z 
STATUS_OBJECT_NAME_INVALID OxC0000033 ERROR_INVALID_NAME 123 ~ 

STATUS_OBJECT_NAME_NOT_FOUND OxC0000034 ERROR_FILE_NOT_FOUND 2 ~ 

STATUS_OBJECT_PATH_INVALID OxC0000039 ERROR_BAD_PATHNAME 161 ~ 

STATUS_OBJECT_PATH_NOT_FOUND OxC000003A ERROR_PATH_NOT_FOUND 3 ~ 

STATUS_OBJECT]ATH_SYNTAX_BAD OxC000003B ERROR_BAD]ATHNAME 161 n 
STATUS_OBJECT_TYPE_MISMATCH OxC0000024 ERROR_INVALID_HANDLE 6 0 
STATUS_OBJECTlD_EXISTS OxC000022B STATUS_OBJECTID_EXISTS 3221226027 ~ 
STATUS OPEN FAILED OxC0000136 ERROR MR MID NOT FOUND 317 ~ 
STATUS_OPLOCK_NOT_GRANTED OxCOOOOOE2 ERROR_MR_MID_NOT_FOUND 317 ~ 

STATUS_ORDINAL_NOT_FOUND OxC0000138 ERROR_INVALID_ORDINAL 182 ~ 

STATUS_PAGEFILE_CREATE_FAILED OxC0000146 ERROR_MR_MID_NOT_FOUND 317 N 
STATUS_PAGEFILE_QUOTA OxC0000007 ERROR_PAGEFILE_QUOTA 1454 t'fj 

STATUS_PAGEFILE_QUOTA_EXCEEDED OxC000012C ERROR_MR_MID_NOT_FOUND 317 ::4 
STATUS]ARITY_ERROR OxC000002B STATUS_PARITY_ERROR 3221225515 g 
STATUS_PARTmON_FAILURE OxCOOOOl72 ERROR_PARTITION_FAILURE 1105 n 
STATUS_PASSWORD_EXPIRED OxC0000071 ERROR_PASSWORD_EXPIRED 1330 8-
STATUS_PASSWORD_MUST_CHANGE OxC0000224 ERROR_PASSWORD_MUST_CHANGE 1907 ~ 

STATUS_PASSWORD_RESTRICTION OxC000006C ERROR]ASSWORD_RESTRICTION 1325 

. 0\ 
conttnues 0 

~ 



Table A.l. Continued Is NT Status Win32 Error 
NT Status Value Win32 Error Code Value 

STATUS_PATH_NOT_COVERED OxCOOO0257 ERROR_HOST_UNREACHABLE 1232 ~ 
~ 

STATUS_PIPE_BROKEN OxCOOOO14B ERROR_BROKEN_PIPE 109 t-t 
I""t 

STATUS_PIPE_BUSY OxCOOOOOAE ERROR_PIPE_BUSY 231 ~ STATUS_PIPE_CLOSING OxCOOOOOBl ERROR_NO_DATA 232 

STATUS_PIPE_CONNECTED OxCOOOOOB2 ERROR_PIPE_CONNECTED 535 > 
STATUS]IPE_DISCONNECTED OxCOOOOOBO ERROR_PIPE_NOT _CONNECTED 233 '"0 

'"0 
STATUS_PIPE_EMPTY OxCOOOOOD9 ERROR_NO_DATA 232 (l) 

::l 
STATUS_PIPE_LISTENING OxCOOOOOB3 ERROR_PIPE_LISTENING 536 0-
STATUS_PIPE_NOT_AVAILABLE OxCOOOOOAC ERROR_PIPE_BUSY 231 ><" 
STATUS_PLUGPLAY _NO_DEVICE OxCOOO025E ERROR_SERVICE_DISABLED 1058 

(l) 
V'J 

STATUS_PORT_ALREADY_SET OxCOOOO048 ERROR_INVALID _PARAMETER 87 

STATUS_PORT_CONNECTION_REFUSED OxCOOOO041 ERROR_ACCESS_DENIED 5 

STATUS_PORT_DISCONNECTED OxCOOOO037 ERROR_INVALID_HANDLE 6 

STATUS_PORT_MESSAGE_TOO_LONG OxCOOOOO2F ERROR_MR_MID_NOT_FOUND 317 

STATUS]ORT_UNREACHABLE OxCOOO023F ERROR_PORT_UNREACHABLE 1234 

STATUS_POSSIBLE_DEADLOCK OxCOOOO194 ERROR_POSSIBLE_DEADLOCK 1131 

STATUS_PRINT_CANCELLED OxCOOOOOC8 ERROR_PRINT_CANCELLED 63 

STATUS_PRINT_QUEUE_FULL OxCOOOOOC6 ERROR_PRlNTQ_FULL 61 

STATUS_PRIVILEGE_NOLHELD OxCOOOO061 ERROR_PRIVILEGE_NOT_HELD 1314 

STATUS_PRIVILEGED_INSTRUCTION OxCOOOOO96 STATUS_PRIVILEGED_INSTRUCTION 3221225622 

STATUS_PROCEDURE_NOT_FOUND OxCOOOO07A ERROR_PROC_NOT_FOUND 127 

STATUS_PRO CESS_IS_TERMINATING OxCOOO010A ERROR_ACCESS_DENIED 5 

STATUS_PROFILING_AT _LIMIT OxCOOOOOD3 ERROR_MR_MID_NOT_FOUND 317 

STATUS_PROFILING_NOT_STARTED OxCOOOOOB7 ERROR_MR_MID_NOT_FOUND 317 

STATUS_PROFILING_NOT _STOPPED OxCOOOOOB8 ERROR_MR_MID_NOT_FOUND 317 

STATUS]ROPSET_NOT_FOUND OxCOOO0230 ERROR_MR_MID_NOT_FOUND 317 

STATUS]ROTOCOL_UNREACHABLE OxCOOO023E ERROR_PROTO COL_UNREACHABLE 1233 

STATUS_PWD_HISTORY_CONFLICT OxCOOOO25C ERROR_MR_MID_NOT_FOUND 317 

STATUS_PWD_TOO_RECENT OxCOOOO25B ERROR_MR_MID_NOLFOUND 317 

STATUS_PWD_TOO_SHORT OxCOOO025A ERROR_MR_MID_NOT_FOUND 317 



STATUS_QUOTA_EXCEEDED OxC0000044 ERROR_NOT_ENOUGH_QUOTA 1816 
STATUS QUOTA LIST INCONSISTENT OxC0000266 ERROR MR MID NOT FOUND 317 
STATUS=RANGE=NOiLOCKED OxCOOOOO7E ERROR=NOT_LOCKED - 158 ~ 
STATUS_RECOVERY_FAILURE OxC0000227 ERROR_MR_MID_NOT_FOUND 317 '"0 
STATUS_REDIRECTOR_NOT_STARTED OxCOOOOOFB ERROR_PATH_NOT_FOUND 3 g 
STATUS REDIRECTOR PAUSED OxCOOOOODl ERROR REDIR PAUSED 72 ~ 
STATUS-REDIRECTOR-STARTED OxCOOOOOFC ERROR-MR MiD NOT FOUND 317 :><: 

STATUS=REGISTRY_CORRUPT OxC000014C ERROR=BIDDB - - 1009 ~ 
STATUS_REGISTRY_IO_FAILED OxC000014D ERROR_REGISTRY_IO_FAILED 1016 ~ 

STATUS_REGISTRY_QUOTA_LIMIT OxC0000256 ERROR_MR_MID_NOT_FOUND 317 ~ 
STATUS_REMOTE_DISCONNECT OxC000013C ERROR_NETNAME_DELETED 64 5-
STATUS_REMOTE_NOT_LISTENING OxCOOOOOBC ERROR_REM_NOT_LIST 51 9 
STATUS_REMOTE_RESOURCES OxC000013D ERROR_REM_NOT_LIST 51 ~ 

STATUS_REMOTE_SESSION_LIMIT OxCOOOOI96 ERROR_REMOTE_SESSION_LIMIT_EXCEEDED 1220 Z 
STATUS_REPLY_MESSAGE_MISMATCH OxC000021F ERROR_MR_MID_NOT_FOUND 317 ~ 

STATUS_REQUEST_ABORTED OxC0000240 ERROR_REQUEST_ABORTED 1235 ~ 

STATUS_REQUEST_NOT_ACCEPTED OxCOOOOODO ERROR_REQNOT_ACCEP 71 ~ 

STATUS_RESOURCE_DATA_NOT_FOUND OxC0000089 ERROR_RESOURCE_DATA_NOT_FOUND 1812 ~ 

STATUS_RESOURCE_LANG_NOT_FOUND OxC0000204 ERROR_RESOURCE_LANG_NOT_FOUND 1815 (") 
STATUS_RESOURCE_NAME_NOT_FOUND OxC000008B ERROR_RESOURCE_NAME_NOT_FOUND 1814 0 
STATUS_RESOURCE_NOT_OWNED OxC0000264 ERROR_NOT_OWNER 288 ~ 
STATUS_RESOURCE_TYPE_NOT_FOUND OxC000008A ERROR_RESOURCE_TYPE_NOT_FOUND 1813 ~ 
STATUS_RETRY OxC000022D ERROR_MR_MID_NOT_FOUND 317 ~ 

STATUS REVISION MISMATCH OxC0000059 ERROR REVISION MISMATCH 1306::S 
STATUS=RXACT_COMMIT_FAILURE OxCOOOOllD ERROR=RXACT_COMMIT_FAILURE 1370 ~ 
STATUS_RXACT_INVALID_STATE OxCOOOOllC ERROR_RXACT_INVALID_STATE 1369 t'Ii 
STATUS_SECRET_TOO_LONG OxC0000157 ERROR_SECRET_TOO_LONG 1382 ~ 
STATUS_SECTION_NOT_EXTENDED OxC0000087 ERROR_OUTOFMEMORY 14 g 
STATUS_SECTION_NOT_lMAGE OxC0000049 ERROR_INVALID_PARAMETER 87 (") 
STATUS_SECTION_PROTECTION OxC000004E ERROR_INVALID_PARAMETER 87 8-
STATUS_SECTION_TOO_BIG OxC0000040 ERROR_NOT_ENOUGH_MEMORY 8 ~ 

STATUS_SEMAPHORLLIMIT_EXCEEDED OxC0000047 ERROR_TOO_MANY]OSTS 298 

. 0\ 
contmues 0 
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Table A.i. Continued 
I~ NT Status Win32 Error 

NT Status Value Win32 Error Code Value 

STATUS_SERIAL_NO _DEVICE_INITED OxCOOOO150 ERROR_SERIAL_NO_DEVICE 1118 ""d 
~ 

STATUS_SERVER_DISABLED OxCOOOO080 ERROR_SERVER_DISABLED 1341 I-t 
!""t 

STATUS_SERVER_NOLDISABLED OxCOOOO081 ERROR_SERVER_NOLDISABLED 1342 ~ 

STATUS_SHARED_IRQBUSY OxCOOOO16C ERROR_IRQBUSY 1119 
$ 

STATUS_SHARING_PAUSED OxCOOOOOCF ERROR_SHARING_PAUSED 70 > 
STATUS_SHARING_ VIOLATION OxCOOOO043 ERROR_SHARlNG_ VIOLATION 32 ~ 

~ 
STATUS_SPECIAL_ACCOUNT OxCOOOO124 ERROR_SPECIAL_ACCOUNT 1371 (D 

::s 
STATUS_SPECIAL_GROUP OxCOOOO125 ERROR_SPECIAL_GROUP 1372 0-
STATUS_SPECIAL_USER OxCOOOO126 ERROR_SPECIAL_USER 1373 ><. 
STATUS_STACK_OVERFLOW OxCOOOOOFD ERROR_STACK_OVERFLOW 

(D 
1001 Vl 

STATUS_STACK_OVERFLOW _READ OxCOOO0228 ERROR_MR_MID_NOT_FOUND 317 

STATUS_SUSPEND _COUNT_EXCEEDED OxCOOOO04A ERROR_SIGNAL_REFUSED 156 

STATUS_SYNCHRONIZATION_REQUIRED OxCOOOO134 ERROR_MR_MID_NOT_FOUND 317 

STATUS_SYSTEM_PROCESS_TERMINATED OxCOOO021A ERROR_MR_MID_NOLFOUND 317 

STATUS_THREAD _IS_TERMINATING OxCOOOO04B ERROR_ACCESS_DENIED 5 

STATUS_THREAD _NOT_IN_PROCESS OxCOOOO12A ERROR_MR_MID_NOT_FOUND 317 

STATUS_TIME_DIFFERENCE_ALDC OxCOOOO133 ERROR_MR_MID_NOT_FOUND 317 

STATUS_TIMER_NOT_CANCELED OxCOOOOOOC ERROR_MR_MID_NOT_FOUND 317 

STATUS3IMER_RESOLUTION_NOT _SET OxCOOO0245 ERROR_MR_MID_NOT_FOUND 317 

STATUS_TOKEN_ALREADY_IN_USE OxCOOOO12B ERROR_TO KEN_ALREADY _IN_USE 1375 

STATUS_TOO_LATE OxCOOOO189 ERROR_WRITE_PROTECT 19 

STATUS_TOO_MANY_ADDRESSES OxCOOO0209 ERROR_TOO_MANY_NAMES 68 

STATUS_TOO_MANY_COMMANDS OxCOOOOOCl ERROR_TOO_MANY_CMDS 56 

STATUS300_MANY_CONTEXT_IDS OxCOOOO15A ERROR_TOO_MANY_CONTEXT_IDS 1384 

STATUS_ TOO_MANY _GUIDS_REQUESTED OxCOOOO082 ERROR_TOO_MANY_NAMES 68 

STATUS_TOO _MANY_LINKS OxCOOO0265 ERROR_TOO _MANY_LINKS 1142 

STATUS_TOO_MANY _LUIDS_REQUESTED OxCOOOO074 ERROR_TOO_MANY _LUIDS_REQUESTED 1333 

STATUS_TOO_MANY_NAMES OxCOOOOOCD ERROR_TOO_MANY_NAMES 68 

STATUS_TOO_MANY_NODES OxCOOO020E ERROR_TOO_MANY_NAMES 68 

STATUS300_MANY _OPENED_FILES OxCOOOO11F ERROR_TOO_MANY_OPEN_FILES 4 



STATUS_TOO_MANY]AGING_FILES OxCOOOOO97 ERROR_NOT_ENOUGH_MEMORY 8 
STATUS_TOO_MANY_SECRETS OxCOOOO156 ERROR_ TOO_MANY_SECRETS 1381 
STATUS_ TOO_MANY _SESSIONS OxCOOOOOCE ERROR_TOO _MANY _SESS 69 > "'0 
STATUS_TOO_MANY _SIDS OxCOOOO17E ERROR_TOO_MANY _SIDS 1389 "'0 
STATUS_TOO_MANY_THREADS OxCOOOO129 ERROR_MR_MID_NOT_FOUND 

(l) 
317 ~ 

STATUS_TRANSACTION_ABORTED OxCOOO020F ERROR_UNEXP _NET_ERR 59 0-

STATUS_TRANSACTION_INVALID_ID OxCOOO0214 ERROR_UNEXP _NET_ERR 59 
~. 

STATUS_ TRANSACTION_INVALID_TYPE OxCOOOO215 ERROR_UNEXP _NET_ERR 59 ~ 
STATUS_TRANSACTION_NO_MATCH OxCOOO0212 ERROR_UNEXP _NET_ERR 59 

~ STATUS_TRANSACTION_NO_RELEASE OxCOOO0211 ERROR_UNEXP _NET_ERR 59 Sl" STATUS_TRANSACTION_RESPONDED OxCOOOO213 ERROR_UNEXP _NET_ERR 59 0-
STATUS_TRANSACTION_TIMED OUT OxCOOO0210 ERROR_UNEXP _NET_ERR 59 0 
STATUS_TRUST_FAILURE OxCOOOO190 ERROR_TRUST_FAILURE 1790 ~ 

(n 

STATUS_TRUSTED_DOMAIN_FAILURE OxCOOOO18C ERROR_TRUSTED _DOMAIN_FAILURE 1788 Z 
STATUS_TRUSTED _RELATIONSHIP_FAILURE OxCOOOO18D ERROR_TRUSTED _RELATIONSHIP_FAILURE 1789 ...., 
STATUS_UNABLE_TO_DECOMMIT_ VM OxCOOOO02C ERROR_INVALID_ADDRESS 487 C/) 

STATUS_UNABLE_ TO _DELETE_SECTION OxCOOOOOlB ERROR_INVALID _PARAMETER 87 
M-
~ 
M-

STATUS_UNABLE_TO_FREE_ VM OxCOOOO01A ERROR_INVALID _PARAMETER 87 ~ 
(n 

STATUS_UNABLE_TO _LOCK_MEDIA OxCOOOO175 ERROR_UNABLE30_LOCK_MEDIA 1108 n 
STATUS_UNABLE30_UNLOAD_MEDIA OxCOOOO176 ERROR_UNABLE_ TO _UNLOAD _MEDIA 1109 0 
STATUS_UNDEFINED _CHARACTER OxCOOOO163 ERROR_MR_MID_NOT_FOUND 317 0-

(l) 

STATUS_UNEXPECTED_IO_ERROR OxCOOOOOE9 ERROR_MR_MID_NOT_FOUND 317 
(n 

STATUS_UNEXPECTED_MM_CREATE_ERR OxCOOOOOEA ERROR_MR_MID_NOLFOUND 317 ~ 
STATUS_UNEXPECTED_MM_EXTEND_ERR OxCOOOOOEC ERROR_MR_MID _NOT_FOUND 317 ~ 

<..N 
STATUS_UNEXPECTED _MM_MAP _ERROR OxCOOOOOEB ERROR_MR_MID_NOT_FOUND 317 N 
STATUS_UNEXPECTED _NETWORK_ERROR OxCOOOOOC4 ERROR_UNEXP _NET_ERR 59 t'Ij 
STATUS_UNHANDLED_EXCEPTION OxCOOOO144 ERROR_MR_MID_NOLFOUND 317 1-1 

1-1 

STATUS_UNKNOWN_REVISION OxCOOOO058 ERROR_UNKNOWN_REVISION 1305 0 
1-1 

STATUS_UNMAPPABLE_CHARACTER OxCOOOO162 ERROR_NO _UNICODE_TRANSLATION 1113 n 
STATUS_UNRECOGNIZED _MEDIA OxCOOOOO14 ERROR_UNRECOGl'\TIZED _MEDIA 1785 0 

p... 
STATUS_UNRECOGNIZED _ VOLUME OxCOOOO14F ERROR_UNRECOGNIZED_ VOLUME 1005 (l) 

(n 

STATUS_UNSUCCESSFUL OxCOOOOOOl ERROR_GEN_FAILURE 31 

continues 
0\ 
0 
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Table A.i. Continued I~ NT Status Win32 Error 
NT Status Value Win32 Error Code Value 

STATUS_UNSUPPORTED_COMPRESSION OxCOOO025F ERROR_MR_MID_NOT_FOUND 317 '"0 
Pl 

STATUS_UNWIND OxCOOOO027 ERROR_MR_MID_NOLFOUND 317 I-t 
f"'t 

STATUS_USER_EXISTS OxCOOOO063 ERROR_USER_EXISTS 1316 1-1 

STATUS_USER_MAPPED_FILE OxCOOO0243 ERROR_USER_MAPPED _FILE 1224 ~ 
STATUS_USER_SESSION_DELETED OxCOOO0203 ERROR_UNEXP _NET_ERR 59 ? STATUS_ VARIABLE_NOT_FOUND OxCOOO0100 ERROR_ENVVAR_NOLFOUND 203 ""0 
STATUS_ VDM_HARD_ERROR OxCOOO021D ERROR_MR_MID_NOT_FOUND 317 ("!) 

~ 
STATUS_ VIRTUAL_CIRCUIT_CLOSED OxCOOOOOD6 ERROR_ VC_DISCONNECTED 240 0-
STATUS_ VOLUME_DISMOUNTED OxCOOO026E ERROR_MR_MID_NOT_FOUND 317 ><. 

("!) 
STATUS_ WORKING_SELQUOTA OxCOOOOOA1 ERROR_ WORKING_SET_QUOTA 1453 (Jl 

STATUS_ WRONG_PASSWORD OxCOOOOO6A ERROR_INVALID _PASSWORD 86 
STATUS_ WRONG_PASSWORD_CORE OxCOOOO149 ERROR_INVALID_PASSWORD 86 
STATUS_ WRONG_VOLUME OxCOOOOO12 ERROR_ WRONG_DISK 34 
STATUS_ WX86_FLOAT _STACK_CHECK OxCOOOO270 ERROR_MR_MID_NOT_FOUND 317 
STATUS_ WX86_INTERNAL_ERROR OxCOOOO26F ERROR_MR_MID_NOLFOUND 317 



Table A.2 maps Win32 error return codes to their NT status equivalents. 

Table A.2. Win32 error codes and corresponding Windows NT Status codes. ~ 
Wm32 Error NT Status ""0 

(b 

Wm32 Error Code Value NT Status Value :::s 
0-

ERROR_ACCESS_DENIED 5 STATUS~CCESS_DENIED OxCOOOO022 ><. 
ERROR_ACCESS_DENIED 5 STATUS_ALREADY_COMMITTED OxCOOOO021 ~ 
ERROR_ACCESS_DENIED 5 STATUS_CANNOT_DELETE OxCOOOO121 
ERROR_ACCESS_DENIED 5 STATUS_DELETE_PENDING OxCOOOO056 ~ 
ERROR_ACCESS_DENIED 5 STATUS_FILE_DELETED OxCOOOO123 :::s 
ERROR_ACCESS_DENIED 5 STATUS_FILE_IS_A_DIRECTORY OxCOOOOOBA 0-

0 
ERROR_ACCESS_DENIED 5 STATUS_INVALID_LOCK_SEQUENCE OxCOOOOOIE ~ 
ERROR_ACCESS_DENIED 5 STATUS_INVALID_VIEW _SIZE OxCOOOOOIF 

en 

ERROR_ACCESS_DENIED 5 STATUS_PORT_CONNECTION_REFUSED OxCOOOO041 Z 
ERROR_ACCESS_DENIED 5 STATUS_PRO CESS_IS_ TERMINATING OxCOOOOI0A 

~ 
CFl 

ERROR_ACCESS_DENIED 5 STATUS_THREAD_IS_TERMINATING OxCOOOO04B r-t 
~ 

ERROR_ACCOUNT _DISABLED 1331 STATUS_ACCOUNT _DISABLED Oxcooooon r-t 
~ 

ERROR_ACCOUNT_EXPIRED 1793 STATUS_ACCOUNT_EXPIRED OxCOOOO193 en 

ERROR_ACCOUNT_LOCKED_OUT 1909 STATUS_ACCOUNT_LOCKED_OUT OxCOOO0234 (') 
0 

ERROR_ACCOUNT _RESTRICTION 1327 STATUS_ACCOUNT _RESTRICTION OxCOOOO06E 0-
ERROR_ADAP _HDW _ERR 57 STATUS_ADAPTER_HARDWARE_ERROR OxCOOOOOC2 

(b 
en 

ERROR_ADDRESS_ALREADY_ASSOCIATED 1227 STATUS_ADDRESS_ALREADY _ASSOCIATED OxCOOOO238 ~ ERROR_ADDRESS_NOT_ASSOCIATED 1228 STATUS_ADDRESS_NOT_ASSOCIATED OxCOOOO239 :::s 
ERROR_ALIAS_EXISTS 1379 STATUS_ALIAS_EXISTS OxCOOOO154 <.N 

ERROR_ALLOTTED_SPACE_EXCEEDED 1344 STATUS_ALLOTTED_SPACE_EXCEEDED OxCOOOOO99 
~ 

tyj 
ERROR_ALREADY _EXISTS 183 STATUS_OBJECT _NAME_COLLISION OxCOOOOO35 t; 

t; 
ERROR_ARITHMETIC OVERFLOW 534 STATUS_INTEGER_OVERFLOW OxCOOOOO95 0 

t; 
ERROR_BAD_COMMAND 22 STATUS_INVALID_DEVICE_STATE OxCOOOO184 

(') 
ERROR_BAD_DESCRIPTOR_FORMAT 1361 STATUS_BAD_DESCRIPTOR_FORMAT OxCOOOOOE7 0 
ERROR_BAD_DEV _TYPE 66 STATUS_BAD _DEVICE_TYPE OxCOOOOOCB 0-

(b 

ERROR_BAD_EXE_FORMAT 193 STATUS_BAD _INITIAL_PC OxCOOOOOOA en 

continues 
0\ 
0 
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Table A.i. Continued 
I~ Win32 Error NT Status 
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ERROR_BAD_EXE_FORMAT 193 STATUS_IMAGE_CHECKSUM_MISMATCH OxCOOO0221 ~ 
~ 

ERROR_BAD_EXE_FORMAT 193 STATUS_IMAGE_MP _UP_MISMATCH OxCOOO0249 I-t 
~ 

ERROR_BAD_EXE]ORMAT 193 STATUS_INVALID_FlLE_FOR_SECTION OxCOOOO020 ~ 

ERROR_BAD_EXE_FORMAT 193 STATUS_INVALID_IMAGE_FORMAT OxCOOOOO7B ~ 
ERROR_BAD_EXE_FORMAT 193 STATUS_INVALID_IMAGE_LE_FORMAT OxCOOOO12E > 
ERROR_BAD_EXE_FORMAT 193 STATUS_INVALID_IMAGE_NE_FORMAT OxCOOOOllB ~ 

~ 
ERROR_BAD_EXE_FORMAT 193 STATUS_INVALID _IMAGE_NOT _MZ OxCOOOO12F (D 

::l 
ERROR_BAD_EXE_FORMAT 193 STATUS_INVALID_IMAGE_PROTECT OxCOOOO130 0... 
ERROR_BAD_EXE_FORMAT 193 STATUS_INVALID_IMAGE_WIN_16 OxCOOOO131 ~. 

ERROR_BAD_IMPERSONATION_LEVEL 1346 STATUS_BAD _IMPERSONATION_LEVEL 
(D 

OxCOOOOOA5 Vl 

ERROR_BAD _INHERITANCE_ACL 1340 STATUS_BAD _INHERITANCE_ACL OxCOOOOO7D 
ERROR_BAD_LENGTH 24 STATUS_INFO_LENGTH_MISMATCH OxCOOOOO04 
ERROR_BAD_LOGON_SESSION_STATE 1365 STATUS_BAD_LOGON_SESSION_STATE OxCOOO0104 
ERROR_BAD_NELNAME 67 STATUS_BAD_NETWORK_NAME OxCOOOOOCC 
ERROR_BAD_NET_RESP 58 STATUS_INVALID _NETWORK_RESPONSE OxCOOOOOC3 
ERROR_BAD_NETPATH 53 STATUS_BAD _NETWORK_PATH OxCOOOOOBE 
ERROR_BAD_PATHNAME 161 STATUS_OBJECT_PATH_INVALID OxCOOOO039 
ERROR_BAD_PATHNAME 161 STATUS_OBJECT_PATH_SYNTAX_BAD OxCOOOO03B 
ERROR_BAD_PIPE 230 STATUS_INVALID_PIPE_STATE OxCOOOOOAD 
ERROR_BAD_PIPE 230 STATUS_INVALID_READ_MODE OxCOOOOOB4 
ERROR_BAD_REM_ADAP 60 STATUS_BAD _REMOTE_ADAPTER OxCOOOOOC5 
ERROR_BAD _TOKEN_TYPE 1349 STATUS_BAD _TOKEN_TYPE OxCOOOOOA8 
ERROR_BAD_ VALIDATION_CLASS 1348 STATUS_BAD_ VALIDATION_CLASS OxCOOOOOA7 
ERROR_BADDB 1009 STATUS_REGISTRY_CORRUPT OxCOOOO14C 
ERROR_BROKEN]IPE 109 STATUS_PIPE_BROKEN OxCOOOO14B 
ERROR_CANNOT_IMPERSONATE 1368 STATUS_ CANNOT_IMPERSONATE OxCOOO010D 
ERROR_CANT_ACCESS_DOMAIN_INFO 1351 STATUS_CANT _ACCESS_DOMAIN_INFO OxCOOOOODA 
ERROR_CANT_DISABLE_MANDATORY 1310 STATUS_ CANT_DISABLE_MANDATORY OxCOOOO05D 
ERROR_CANT_OPEN_ANONYMOUS 1347 STATUS_CANT_OPEN_ANONYMOUS OxCOOOOOA6 
ERROR_CHILD_MUST_BE_ VOLATILE 1021 STATUS_CHILD_MUST_BE_ VOLATILE OxCOOOO181 



ERROR_COMMITMENT_LIMIT 1455 STATUS_COMMITMENT_LIMIT OxCOOOO12D 

ERROR_CONNECTION_ABORTED 1236 STATUS_CONNECTION_ABORTED OxCOOO0241 

ERROR_CONNECTION_ACTIVE 1230 STATUS_CONNECTION_ACTIVE OxCOOO023B > "0 
ERROR_CONNECTlON_COUNT_LIMIT 1238 STATUS_CONNECTlON_COUNT_LIMIT OxCOOO0246 "0 
ERROR_CONNECTION_INVALID 1229 STATUS_CONNECTION_INVALID OxCOOO023A 

(b 

::s 
ERROR_CONNECTION_REFUSED 1225 STATUS_CONNECTION_REFUSED OxCOOO0236 0-

ERROR_CRC 23 STATUS_CRC_ERROR OxCOOOO03F 
~" 

ERROR_CRC 23 STATUS_DATA_ERROR OxCOOOO03E ~ 
ERROR_CRC 23 STATUS_DEVlCE_DATA_ERROR OxCOOOO09C 

~ ERROR_DEV _NOT_EXIST 55 STATUS_DEVlCE_DOES_NOT_EXIST OxCOOOOOCO 

ERROR_DEVlCE_IN_USE 2404 STATUS_CONNECTlON_IN_USE OxCOOO0108 
5" 
0-

ERROR_DEVlCE_NOT]ARTlTlONED 1107 STATUS_DEVlCE_NOT_PARTITlONED OxCOOOO174 0 

ERROR_DIR_NOT_EMPTY 145 STATUS_DIRECTORY _NOT_EMPTY OxCOOOO10l ~ 
en 

ERROR_DIRECTORY 267 STATUS_NOT ~_DlRECTORY OxCOOOO103 Z 
ERROR_DISK_CORRUPT 1393 STATUS_DISK_CORRUPT _ERROR OxCOOOO032 ~ 
ERROR_DISK_FULL 112 STATUS_DISK_FULL OxCOOOO07F V'l 

.-t 
ERROR_DlSK_ OPERATION_FAILED 1127 STATUS_DISK_OPERATlON_FAILED OxCOOOO16A Pl 

.-t 
ERROR_DISK_RECALIBRATE_FAILED 1126 STATUS_DISK_RECALIBRATE_FAILED OxCOOOO169 ~ 

en 
ERROR_DISK_RESET_FAILED 1128 STATUS_DISK_RESET_FAILED OxCOOOO16B n 
ERROR_DLL_INIT_FAILED 1114 STATUS_DLL_INIT_FAILED OxCOOOO142 0 
ERROR_DOMAlN_CONTROLLER_NOT_FOUND 1908 STATUS_DOMAIN_CONTROLLER_NOT_FOUND OxCOOOO233 0-

(b 

ERROR_DOMAIN_EXISTS 1356 STATUS_DOMAIN_EXISTS OxCOOOOOEO en 

ERROR_DOMAlN_LIMIT_EXCEEDED 1357 STATUS_DOMAIN_LIMIT_EXCEEDED OxCOOOOOEl ~ 
ERROR_DOMAlN_TRUST_INCONSISTENT 1810 STATUS_DOMAIN_TRUST_INCONSISTENT OxCOOOO19B ::s 
ERROR_DUP _NAME 52 STATUS_ADDRESS_ALREADY _EXISTS OxCOOOO20A 

VJ 
N 

ERROR_DUP _NAME 52 STATUS_DUPLICATE_NAME OxCOOOOOBD tI1 
ERROR_EA_LIST _INCONSISTENT 255 STATUS_EA_TOO_LARGE OxCOOOO050 I-t 

I-t 

ERROR_ENVVAR_NOT_FOUND 203 STATUS_ VARIABLE_NOT_FOUND OxCOOOO100 0 
I-t 

ERROR_EOM_OVERFLOW 1129 STATUS_EOM_OVERFLOW OxCOOOO177 n 
ERROR_EVENTLOG_CANT_START 1501 STATUS_EVENTLOG_CANT_START OxCOOOO18F 0 

0-
ERROR_EVENTLOG_FILE_ CHANGED 1503 STATUS_EVENTLOG_FILE_CHANGED OxCOOOO197 (b 

en 
ERROR_EVENTLOG_FILE_CORRUPT 1500 STATUS_EVENTLOG_FILE_CORRUPT OxCOOOO18E 

continues 
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ERROR_FILE_CORRUPT 1392 STATUS_EA_CORRUPT_ERROR OxCOOOO053 1-0 
~ 

ERROR_FILE_CORRUPT 1392 STATUS_FILE_CORRUPT _ERROR OxCOOO0102 I-t 
rt 

ERROR_FILE_CORRUPT 1392 STATUS_NO_EAS_ON_FILE OxCOOOOO52 ~ 

ERROR_FILE_CORRUPT 1392 STATUS_NONEXISTENT_EA_ENTRY OxCOOOO051 ~ 
ERROR_FILE_INVALID 1006 STATUS_FILE_INVALID OxCOOOO098 > 
ERROR_FILE_INVALID 1006 STATUS_MAPPED_FILE_SIZE_ZERO OxCOOOOIIE ~ 

~ 
ERROR_FILE_NOT_FOUND 2 STATUS_NO_SUCH_DEVICE OxCOOOOOOE ("D 

::l 
ERROR_FILE_NOLFOUND 2 STATUS_NO_SUCH_FILE OxCOOOOOOF 0-
ERROR_FILE_NOLFOUND 2 STATUS_OBJECT_NAME_NOT_FOUND OxCOOOO034 ><. 

("D 
ERRO~FILENAME_EXCED_RANGE 206 STATUS_NAME300_LONG OxCOOOOI06 (J) 

ERROR_FLOPPY _BAD_REGISTERS 1125 STATUS_FLOPPY _BAD_REGISTERS OxCOOOO168 

ERROR_FLOPPY_ID _MARK_NOT _FOUND 1122 STATUS_FLOPPY _ID _MARK_NOLFOUND OxCOOOO165 

ERROR_FLOPPY _UNKNOWN_ERROR 1124 STATUS_FLOPPY _UNKNOWN_ERROR OxCOOO0167 

ERROR_FLOPPY_ WRONG_CYLINDER 1123 STATUS_FLOPPY _ WRONG_CYLINDER OxCOOOO166 

ERROR_FULLSCREEN_MODE 1007 STATUS_FUlLSCREEN_MODE OxCOOOO159 

ERROR_GEN_FAILURE 31 STATUS_UNSUCCESSFUL OxCOOOOOOl 

ERROR_GENERIC_NOT_MAPPED 1360 STATUS_GENERICNOT_MAPPED OxCOOOOOE6 

ERROR_GRACEFUL_DISCONNECT 1226 STATUS_GRACEFUl_DISCONNECT OxCOOO0237 

ERROR_GROUP _EXISTS 1318 STATUS_GROUP _EXISTS OxCOOOO065 

ERROR_HANDLE_EOF 38 STATUS_END _ OF_FILE OxCOOOOO11 

ERROR_HANDLE_EOF 38 STATUS_FILE_FORCED_CLOSED OxCOOOOOB6 

ERROR_HaST_UNREACHABLE 1232 STATUS_HaST_UNREACHABLE OxCOOO023D 

ERROR_HOSLUNREACHABLE 1232 STATUS_PATH_NOT_ COVERED OxCOOO0257 

ERROR_ILL_FORMED_PASSWORD 1324 STATUS_ILL_FORMED_PASSWORD OxCOOOO06B 

ERROR_INSUFFICIENT_BUFFER 122 STATUS_BUFFER300_SMALL OxCOOOO023 

ERROR_INTERNAL_DB_CORRUPTION 1358 STATUS_INTERNAL_DB_CORRUPTION OxCOOOOOE4 

ERROR_INTERNAL_DB_ERROR 1383 STATUS_INTERNAL_DB_ERROR OxCOOOO158 

ERROR_INTERNAL_ERROR 1359 STATUS_INTERNAL_ERROR OxCOOOOOE5 

ERROR_INTERNAL_ERROR 1359 STATUS_LPC_REPLY_LOST OxCOOOO253 

ERROR_INVALlD_ACCOUNT_NAME 1315 STATUS_INVALlD_ACCOUNT_NAME OxCOOOOO62 



ERROR_INVALID_ACL 1336 STA1US_INVALID_ACL OxCOOOOO77 
ERROR_INVALID_ADDRESS 487 STA1US_CONFLICTING_ADDRESSES OxCOOOOO18 
ERROR_INVALID_ADDRESS 487 STA1US_FREE_ VM_NOT_AT_BASE OxCOOOOO9F > "'0 
ERROR_INVALID_ADDRESS 487 STA1US_MEMORY_NOT_ALLOCATED OxCOOOOOAO "'0 
ERROR_INVALID_ADDRESS 487 STA1US_NOT_COMMITTED OxCOOOO02D 

('D 

~ 
ERROR_INVALID_ADDRESS 487 STA1US_NOT_MAPPED_DATA OxCOOOO088 0-

ERROR_INVALID_ADDRESS 487 STA1US_NOT_MAPPED_ VIEW OxCOOOO019 ><" 
ERROR_INVALID_ADDRESS 487 STA1US_UNABLE_TO_DECOMMIT_VM OxCOOOO02C ? 
ERROR_INVALID _BLOCK_LENGTH 1106 STA1US_INVALID_BLOCK_LENGTH OxCOOOO173 

~ ERROR_INVALID_COMPUTERNAME 1210 STA1US_INVALID_COMPUTER_NAME OxCOOOO122 
ERROR_INVALID_DOMAIN_ROLE 1354 STA1US_INVALID_DOMAIN_ROLE OxCOOOOODE ~ 

0-
ERROR_INVALID_DOMAIN_STATE 1353 STA1US_INVALID_DOMAIN_STATE OxCOOOOODD 0 

ERROR_INVALID_FUNCTION STA1US_ILLEGAL_FUNCTION OxCOOOOOAF $J 
CJ) 

ERROR_INVALID_FUNCTION STA1US_INVALID _DEVICE_REQUEST OxCOOOO010 Z 
ERROR_INVALID_FUNCTION STA1US_INVALID _SYSTEM_SERVICE OxCOOOO01C ...., 
ERROR_INVALID_FUNCTION STA1US_NOT_IMPLEMENTED OxCOOOOO02 (J) 

ERROR_INVALID_GROUP _ATTRIBUTES STA1US_INVALID_GROUP _ATTRIBUTES 
.-t 

1345 OxCOOOOOA4 ~ 
.-t 

ERROR_INVALID_HANDLE 6 STA1US_FILE_CLOSED OxCOOOO128 $:=: 
CJ) 

ERROR_INVALID_HANDLE 6 STA1US_HANDLE_NOT_ CLOSABLE OxCOOO0235 n 
ERROR_INVALID_HANDLE 6 STA1US_INVALID_HANDLE OxCOOOOOO8 0 
ERROR_INVALID_HANDLE 6 STA1US_INVALID_PORT_HANDLE OxCOOOO042 0-

('D 

ERROR_INVALID _HANDLE 6 STA1US_OBJECT_TYPE_MISMATCH OxCOOOOO24 CJ) 

ERROR_INVALID_HANDLE 6 STA1US_PORT _DISCONNECTED OxCOOOO037 ~ 
ERROR_INVALID _ID _AUTHORITY 1343 STA1US_INVALID_ID_AUTHORITY OxCOOOO084 ~ 

ERROR_INVALID_LEVEL 124 STA1US_INVALID_LEVEL OxCOOOO148 
c.N 
tv 

ERROR_INVALID_LOGON_HOURS 1328 STA1US_INVALID _LOGON_HOURS OxCOOOO06F t'l1 
ERROR_INVALID_LOGON_TYPE 1367 STA1US_INVALID_LOGON_TYPE OxCOOO010B I-t 

I-t 

ERROR_INVALID_MEMBER 1388 STA1US_INVALID_MEMBER OxCOOOO17B 0 
I-t 

ERROR_INVALID_NAME 123 STA1US_OBJECT_NAME_INVALID OxCOOOO033 n 
ERROR_INVALID_NETNAME 1214 STA1US_INVALID_ADDRESS_COMPONENT OxCOOOO207 0 

0-
ERROR_INVALID_NETNAME 1214 STA1US_INVALID_ADDRESS_ WILDCARD OxCOOO0208 ('D 

CJ) 

ERROR_INVALID_ORDINAL 182 STA1US_DRIVER_ORDINAL_NOT_FOUND OxCOOO0262 

continues 
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ERROR_INVALID_ORDINAL 182 STATUS_ORDINAL_NOT_FOUND OxCOOOO138 ""0 
~ 

ERROR_INVALID_OWNER 1307 STATUS_INVALID_OWNER OxCOOOOOSA 1-1 
.-t 

ERROR_INVALID_PARAMETER 87 STATUS_BAD _WORKING_SET _LIMIT OxCOOOOO4C -
ERROR_INVALID]ARAMETER 87 STATUS_DEVICE_CONFIGURATION_ERROR OxCOOOO182 ~ 
ERROR_INVALID_PARAMETER 87 STATUS_INCOMPATIBLE_FILE_MAP OxCOOOO04D > 
ERROR_INVALID_PARAMETER 87 STATUS_INVALID_CID OxCOOOOOOB "0 

"0 
ERROR_INVALID_PARAMETER 87 STATUS_INVALID _INFO _CLASS OxCOOOOO03 ("!) 

::l 
ERROR_INVALID_PARAMETER 87 STATUS_INVALID_PAGE_PROTECTION OxCOOOO04S 0.... 
ERROR_INVALID_PARAMETER 87 STATUS_INVALID_PARAMETER OxCOOOOOOD ><' 
ERROR_INVALID]ARAMETER 87 STATUS_INVALID_PARAMETER_1 OxCOOOOOEF 

("!) 
rn 

ERROR_INVALID _PARAMETER 87 STATUS_INVALID ]ARAMETER_10 OxCOOOOOF8 

ERROR_INVALID_PARAMETER 87 STATUS_INVALID_PARAMETER_11 OxCOOOOOF9 

ERROR_INVALID]ARAMETER 87 STATUS_INVALID _PARAMETER_12 OxCOOOOOFA 

ERROR_INVALID_PARAMETER 87 STATUS_INVALID _PARAMETER_2 OxCOOOOOFO 

ERROR_INVALID_PARAMETER 87 STATUS_INVALID _PARAMETER_3 OxCOOOOOFl 

ERROR_INVALID_PARAMETER 87 STATUS_INVALID]ARAMETER_ 4 OxCOOOOOF2 

ERROR_INVALID_PARAMETER 87 STATUS_INVALID _PARAMETER_S OxCOOOOOF3 

ERROR_INVALID_PARAMETER 87 STATUS_INVALID_PARAMETER_6 OxCOOOOOF4 

ERROR_INVALID_PARAMETER 87 STATUS_INVALID]ARAMETER_7 OxCOOOOOFS 

ERROR_INVALID _PARAMETER 87 STATUS_INVALID]ARAMETER_8 OxCOOOOOF6 

ERROR_INVALID_PARAMETER 87 STATUS_INVALID _PARAMETER_9 OxCOOOOOF7 

ERROR_INVALID_PARAMETER 87 STATUS_INVALID _PARAMETER_MIX OxCOOOO030 

ERROR_INVALID_PARAMETER 87 STATUS_PORLALREADY _SET OxCOOOO048 

ERROR_INVALID_PARAMETER 87 STATUS_SECTlON_NOT_IMAGE OxCOOOO049 

ERROR_INVALID_PARAMETER 87 STATUS_SECTION_PROTECTION OxCOOOO04E 

ERROR_INVALID_PARAMETER 87 STATUS_VNABLE_TO_DELETE_SECTION OxCOOOOOIB 

ERROR_INVALID]ARAMETER 87 STATUS_VNABLE_TO_FREE_ VM OxCOOOO01A 

ERROR_INVALID_PASSWORD 86 STATUS_ WRONG]ASSWORD OxCOOOO06A 

ERROR_INVALID]ASSWORD 86 STATUS_ WRONG_PASSWORD_CORE OxCOOOO149 

ERROR_INVALID_PRIMARY _GROUP 1308 STATUS_INVALID]RIMARY_GROUP OxCOOOOOSB 



ERROR_INVALID _SECURITY _DESCR 1338 STATUS_INVALID_SECURITY _DESCR OxCOOOOO79 

ERROR_INVALID_SERVER_STATE 1352 STATUS_INVALID _SERVER_STATE OxCOOOOODC 

ERROR_INVALID_SID 1337 STATUS_INVALID_SID OxCOOOO078 > 
~ 

ERROR_INVALID_SUB_AUTHORITY 1335 STATUS_INVALID_SUB_AUTHORITY OxCOOOOO76 ~ 

ERROR_INVALID_USER_BUFFER 1784 STATUS_INVALID_BUFFER_SIZE OxCOOO0206 
(b 

::l 
ERROR_INVALID_USER_BUFFER 1784 STATUS_INVALID _USER_BUFFER OxCOOOOOE8 P-

ERROR_INVALID_WORKSTATION 1329 STATUS_INVALID_WORKSTATION OxCOOOO070 ><' 
ERROR_IO_DEVICE 1117 STATUS_DATA_LATE_ERROR OxCOOOO03D ~ 
ERROR_IO_DEVICE 1117 STATUS_DATA_ OVERRUN OxCOOOO03C 

~ ERROR_IO_DEVICE 1117 STATUS_DEVICE_PROTO COL_ERROR OxCOOOO186 

ERROR_IO_DEVICE 1117 STATUS_DRIVER_INTERNAL_ERROR OxCOOOO183 ::l 
P-

ERROR_IO_DEVICE 1117 STATUS_FLMISSING_MEMBER OxCOOOO15F 0 

ERROR_IO_DEVICE 1117 STATUS_FLO RPHANING OxCOOOO16D ~ 
Vl 

ERROR_IO_DEVICE 1117 STATUS_IO _DEVICE_ERROR OxCOOOO185 Z 
ERROR_IRQ_BUSY 1119 STATUS_SHARED_IRQ_BUSY OxCOOOO16C ~ 
ERROR_KEY_DELETED 1018 STATUS_KEY _DELETED OxCOOOO17C V'J 

r-t 
ERROR_KEY _HAS_CHILDREN 1020 STATUS_KEY _HAS_CHILDREN OxCOOOO180 ~ 

r-t 
ERROR_LABEL_TOO_LONG 154 STATUS_INVALID _VOLUME_LABEL OxCOOOOO86 ~ 

Vl 
ERROR_LAST _ADMIN 1322 STATUS_LAST_ADMIN OxCOOOOO69 n 
ERROR_LICENSE_QUOTA_EXCEEDED 1395 STATUS_LICENSE_QUOTA_EXCEEDED OxCOOO0259 0 
ERROR_LM_CROSS_ENCRYPTION_REQUIRED 1390 STATUS_LM_CROSS_ENCRYPTION_REQUIRED OxCOOOO17F P-

(b 

ERROR_LOCK_ VIOLATION 33 STATUS_FILE_LOCK_ CONFLICT OxCOOOOO54 Vl 

ERROR_LOCK_ VIOLATION 33 STATUS_LOCK_NOT _GRANTED OxCOOOOO55 ~ 
ERROR_LOG_FILE_FULL 1502 STATUS_LOG_FILE_FULL OxCOOOO188 ::l 
ERROR_LOGIN_TIME_RESTRICTION 1239 STATUS_LOGIN_TIME_RESTRICTION OxCOOO0247 

C"N 
N 

ERROR_LOGIN_ WKSTA_RESTRICTION 1240 STATUS_LOGIN_ WKSTA_RESTRICTION OxCOOO0248 m 
ERROR_LOGON_FAILURE 1326 STATUS_LOGON_FAILURE OxCOOOO06D 

~ 
I-t 

ERROR_LOGON_NOT_GRANTED 1380 STATUS_LOGON_NOT _GRANTED OxCOOOO155 0 
I-t 

ERROR_LOGON_SESSION_COLLISION 1366 STATUS_LOGON_SESSION_COLLISION OxCOOO0105 n 
ERROR_LOGON_SESSION_EXISTS 1363 STATUS_LOGON_SESSION_EXISTS OxCOOOOOEE 0 

P-
ERROR_LOGON_ TYPE_NOT_ GRANTED 1385 STATUS_LOGON_ TYPE_NOT _GRANTED OxCOOOO15B (b 

Vl 

ERROR_LUIDS_EXHAUSTED 1334 STATUS_LUIDS_EXHAUSTED OxCOOOO075 

continues 
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ERROR_MAPPED_ALlGNMENT 1132 STATUS_MAPPED _ALIGNMENT OxCOOO0220 '"d 
~ 

ERROR_MEMBER_IN_ALIAS 1378 STATUS_MEMBER_IN_ALIAS OxCOOO0153 t; 
M-

ERROR_MEMBER_IN_ GROUP 1320 STATUS_MEMBER_IN_GROUP OxCOOOO067 -
ERROR_MEMBER_NOT_IN_ALIAS 1377 STATUS_MEMBER_NOT_IN_ALIAS OxCOOO0152 ~ 
ERROR_MEMBER_NOT_IN_GROUP 1321 STATUS_MEMBER_NOT_IN_GROUP OxCOOOO068 > 
ERROR_MEMBERS_PRIMARY _GROUP 1374 STATUS_MEMBERS_PRIMARY_GROUP OxCOOOO127 ""0 

""0 
ERROR_MOD_NOT_FOUND 126 STATUS_DLL_NOLFOUND OxCOOOO135 (b 

::s 
ERROR_MORE_DATA 234 STATUS_MORE_PROCESSING_REQUIRED OxCOOOO016 0-
ERROR_MR_MID_NOT_FOUND 317 STATUS_ABIOS_INVALlD_COMMAND OxCOOO0113 ~. 

(b 
ERROR_MR_MID_NOT_FOUND 317 STATUS_ABIOS_INVALlD_LID OxCOOOO114 en 

ERROR_MR_MID_NOT_FOUND 317 STATUS_ABIOS_INVALlD_SELECTOR OxCOOOO116 

ERROR_MR_MID_NOT_FOUND 317 STATUS_ABIOS_LlD_ALREADY_OWNED OxCOOO0111 

ERROR_MR_MID_NOT_FOUND 317 STATUS_ABIOS_LlD_NOT _EXIST OxCOOOO110 

ERROR_MR_MID_NOT_FOUND 317 STATUS_ABIOS_NOT_LID_OWNER OxCOOO0112 

ERROR_MR_MID_NOT_FOUND 317 STATUS_ABIOS_NOT_PRESENT OxCOOO010F 

ERROR_MR_MID_NOT_FOUND 317 STATUS_ABIOS_SELECTOR_NOT _AVAILABLE OxCOOO0115 

ERROR_MR_MID_NOT_FOUND 317 STATUS_ALLOCATE_BUCKET OxCOOO022F 

ERROR_MR_MID_NOT_FOUND 317 STATUS_APP _INIT_FAILURE OxCOOO0145 

ERROR_MR_MID_NOT_FOUND 317 STATUS_AUDIT_FAILED OxCOOO0244 

ERROR_MR_MID_NOT_FOUND 317 STATUS_BACKUP _CONTROLLER OxCOOO0187 

ERROR_MR_MID_NOT_FOUND 317 STATUS_BAD _COMPRESSION_BUFFER OxCOOO0242 

ERROR_MR_MID_NOT_FOUND 317 STATUS_BAD_DLL_ENTRYPOINT OxCOOO0251 

ERROR_MR_MID_NOT_FOUND 317 STATUS_BAD]UNCTION_ TABLE OxCOOOOOFF 

ERROR_MR_MID_NOT_FOUND 317 STATUS_BAD _MASTER_BOOT_RECORD OxCOOOOOA9 

ERROR_MR_MID_NOT_FOUND 317 STATUS_BAD_SERVICE_ENTRYPOINT OxCOOO0252 

ERROR_MR_MID_NOT_FOUND 317 STATUS_BAD _STACK OxCOOOO028 

ERROR_MR_MID_NOT_FOUND 317 STATUS_BIOS_FAILED_TO_CONNECT_INTERRUPT OxCOOO016E 

ERROR_MR_MID_NOT_FOUND 317 STATUS_CANNOT_LOAD _REGISTRY_FILE OxCOOO0218 

ERROR_MR_MID_NOT_FOUND 317 STATUS_CANT_TERMINATE_SELF OxCOOOOODB 

ERROR_MR_MID_NOT_FOUND 317 STATUS_CANT_ WAIT OxCOOOOOD8 



ERROR_MR_MID_NOT_FOUND 317 STATUS_CLIENT_SERVER_PARAMETERS_INVALID OxCOOOO223 

ERROR_MR_MID_NOT_FOUND 317 STATUS_CONTROL_C_EXIT OxCOOOO13A 
ERROR_MR_MID_NOT_FOUND 317 STATUS_CONVERT_TO_LARGE OxCOOOO22C > 

~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_COULD_NOT_INTERPRET OxCOOOOOB9 ~ 

ERROR_MR_MID_NOT_FOUND 317 STATUS_DATA_NOT _ACCEPTED OxCOOOO21B 
("1) 

::l 
ERROR_MR_MID_NOT_FOUND 317 STATUS_DEBUG_ATTACH_FAILED OxCOOOO219 0-

ERROR_MR_MID_NOT_FOUND 317 STATUS_DEVICE_ALREADY _ATTACHED OxCOOOOO38 
><" 

ERROR_MR_MID_NOT_FOUND 317 STATUS_DFS_UNAVAILABLE OxCOOOO26D ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_DLL_INIT_FAILED_LOGOFF OxCOOOO26B 

~ ERROR_MR_MID_NOLFOUND 317 STATUS_DOMAIN_CTRLR_CONFIG_ERROR OxCOOOO15E 

ERROR_MR_MID_NOLFOUND 317 STATUS_DRIVER_CANCEL_TIMEOUT OxCOOOO21E ::l 
0-

ERROR_MR_MID_NOT_FOUND 317 STATUS_DRIVER_UNABLE_TO_LOAD OxCOOOO26C 0 

ERROR_MR_MID_NOLFOUND 317 STATUS_EAS_NOT_SUPPORTED OxCOOOOO4F ~ 
Vl 

ERROR_MR_MID_NOT_FOUND 317 STATUS_EVALUATION_EXPIRATION OxCOOOO268 Z 
ERROR_MR_MID_NOT_FOUND 317 STATUS_FAIL_CHECK OxCOOOO229 ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_FlLE_IS_OFFLINE OxCOOOO267 C/) 

STATUS_FILE_RENAMED 
rt 

ERROR_MR_MID_NOT_FOUND 317 OxCOOOOOD5 ~ 
rt 

ERROR_MR_MID_NOLFOUND 317 STATUS_FILES_OPEN OxCOOOO107 ~ 
Vl 

ERROR_MR_MID_NOT_FOUND 317 STATUS_FLOPPY _VOLUME OxCOOOO164 (') 
ERROR_MR_MID_NOLFOUND 317 STATUS_FOUND_OUT_OF_SCOPE OxCOOOO22E 0 
ERROR_MR_MID_NOLFOUND 317 STATUS_FS_DRIVER_REQUIRED OxCOOOO19C 0-

("1) 

ERROR_MR_MID_NOT_FOUND 317 STATUS_ILL_FORMED _SERVICE_ENTRY OxCOOOO160 Vl 

ERROR_MR_MID_NOT_FOUND 317 STATUS_ILLEGAL_CHARACTER OxCOOOO161 ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_ILLEGAL_DLL_RELOCATION OxCOOOO269 ::l 
ERROR_MR_MID_NOT_FOUND 317 STATUS_ILLEGAL_FLOAT_CONTEXT OxCOOOO14A 

CoN 
N 

ERROR_MR_MID_NOT_FOUND 317 STATUS_INSTRUCTION_MISALIGNMENT OxCOOOOOAA tT:1 
ERROR_MR_MID_NOT_FOUND 317 STATUS_INSUFFICIENT _LOGON_INFO OxCOOOO250 1'"1 

1'"1 

ERROR_MR_MID_NOT_FOUND 317 STATUS_INVALID_HW_PROFILE OxCOOOO260 0 
1'"1 

ERROR_MR_MID_NOT_FOUND 317 STATUS_INVALID_LDT_DESCRIPTOR OxCOOOO11A (') 
ERROR_MR_MID_NOT_FOUND 317 STATUS_INVALID _LDT_OFFSET OxCOOOO119 0 

0-
ERROR_MR_MID_NOT_FOUND 317 STATUS_INVALID_LDT_SIZE OxCOOOO118 ("1) 

Vl 
ERROR_MR_MID_NOT_FOUND 317 STATUS_INVALID_OPLOCK]ROTOCOL OxCOOOOOE3 

continues 
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ERROR_MR_MID_NOT_FOUND 317 STATUS_INVALID]LUGPLAY_DEVICE_PATH OxCOOOO261 1-0 
~ 

ERROR_MR_MID_NOT_FOUND 317 STATUS_INVALID_PORT_ATTRIBUTES OxCOOOOO2E I; 
n-

ERROR_MR_MID_NOT_FOUND 317 STATUS_INVALID_QUOTA_LOWER OxCOOOOO31 -
ERROR_MR_MID_NOT_FOUND 317 STATUS_INVALID_UNWIND_TARGET OxCOOOOO29 ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_INVALID_VARIANT OxCOOOO232 > 
ERROR_MR_MID_NOT_FOUND 317 STATUS_IO _PRIVILEGE_FAILED OxCOOOO137 "0 

"0 
ERROR_MR_MID_NOT_FOUND 317 STATUS_IP _ADDRESS_CONFLICTl OxCOOOO254 (1) 

::s 
ERROR_MR_MID_NOT_FOUND 317 STATUS_IP _ADDRESS_CONFLICT2 OxCOOOO255 0-
ERROR_MR_MID_NOT_FOUND 317 STATUS_LICENSE_VIOLATION OxCOOOO26A ~. 

(1) 

ERROR_MR_MID_NOT_FOUND 317 STATUS_LOGON_SERVER_CONFLICT OxCOOOO132 (Jl 

ERROR_MR_MID_NOT_FOUND 317 STATUS_LOST_ WRITEBEHIND_DATA OxCOOOO222 

ERROR_MR_MID_NOT_FOUND 317 STATUS_MARSHALL_ OVERFLOW OxCOOOO231 

ERROR_MR_MID_NOT_FOUND 317 STATUS_MESSAGE_NOT _FOUND OxCOOOO109 

ERROR_MR_MID_NOT_FOUND 317 STATUS_MISSING_SYSTEMFILE OxCOOOO143 

ERROR_MR_MID_NOT_FOUND 317 STATUS_MUTANT_LIMIT_EXCEEDED OxCOOOOl91 

ERROR_MR_MID_NOT_FOUND 317 STATUS_NO_CALLBACK_ACTIVE OxCOOOO258 

ERROR_MR_MID_NOT_FOUND 317 STATUS_NO_EVENT_PAIR OxCOOOO14E 

ERROR_MR_MID_NOT_FOUND 317 STATUS_NO_GUID_TRANSLATION OxCOOOO10C 

ERROR_MR_MID_NOT_FOUND 317 STATUS_NO_LDT OxCOOOO117 

ERROR_MR_MID_NOT_FOUND 317 STATUS_NO]AGEFILE OxCOOOO147 

ERROR_MR_MID_NOT_FOUND 317 STATUS_NOT_FOUND OxCOOOO225 

ERROR_MR_MID_NOT_FOUND 317 STATUS_NOT_TINY_STREAM OxCOOOO226 

ERROR_MR_MID_NOT_FOUND 317 STATUS_ OPEN_FAILED OxCOOOO136 

ERROR_MR_MID_NOT_FOUND 317 STATUS_OPLOCK_NOT_GRANTED OxCOOOOOE2 

ERROR_MR_MID_NOT_FOUND 317 STATUS_PAGEFILE_CREATE_FAILED OxCOOOO146 

ERROR_MR_MID_NOT_FOUND 317 STATUS_PAGEFILE_ QUOTA_EXCEEDED OxCOOOO12C 

ERROR_MR_MID_NOT_FOUND 317 STATUS_PORLMESSAGE_TOO_LONG OxCOOOOO2F 

ERROR_MR_MID_NOT_FOUND 317 STATUS_PROFILING_ALLIMIT OxCOOOOOD3 

ERROR_MR_MID_NOT_FOUND 317 STATUS_PROFILING_NOT_STARTED OxCOOOOOB7 

ERROR_MR_MID_NOT_FOUND 317 STATUS_PROFILING_NOT_STOPPED OxCOOOOOB8 



~ 

---- --

ERROR_MR_MID_NOT_FOUND 317 STATUS_PROPSET_NOT_FOUND OxC0000230 
ERROR MR MID NOT FOUND 317 STATUS PWD HISTORY CONFLICT OxC000025C 

ERROR=MR=MID=NOT=FOUND 317 STATUS=PWD=TOO_RECiNT OxC000025B ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_PWD_TOO_SHORT OxC000025A '"0 
ERROR_MR_MID_NOLFOUND 317 STATUS_QUOTA_LIST_INCONSISTENT OxC0000266 g 
ERROR_MR_MID_NOT_FOUND 317 STATUS_RECOVERY_FAILURE OxC0000227 ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_REDIRECTOR_STARTED OxCOOOOOFC >< 
ERROR_MR_MID_NOT_FOUND 317 STATUS_REGISTRY_QUOTA_LIMIT OxC0000256 ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_REPLY_MESSAGE_MISMATCH OxC000021F ~ 

ERROR_MR_MID_NOT_FOUND 317 STATUS_RETRY OxC000022D ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_STACK_OVERFLOW_READ OxC0000228 s.. 
ERROR MR MID NOT FOUND 317 STATUS SYNCHRONIZATION REQUIRED OxC0000134 0 

ERROR=MR=MID=NOT=FOUND 317 STATUS=SYSTEM_PROCESS_TERMINATED OxC000021A ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_THREAD_NOLIN_PROCESS OxC000012A Z 
ERROR_MR_MID_NOT_FOUND 317 STATUS_TIME_DIFFERENCE_AT_DC OxC0000133 ~ 

ERROR_MR_MID_NOT_FOUND 317 STATUS_TIMER_NOT_CANCELED OxCOOOOOOC C/) 

ERROR_MR_MID_NOT_FOUND 317 STATUS_TIMER_RESOLUTION_NOT_SET OxC0000245 ~ 
ERROR MR MID NOT FOUND 317 STATUS TOO MANY THREADS OxC0000129 s:: - - - - - - - Vl 

ERROR MR MID NOT FOUND 317 STATUS UNDEFINED CHARACTER OxC0000163 
ERROR=MR=MID=NOT=FOUND 317 STATUS=UNEXPECTED_IO_ERROR OxCOOOOOE9 ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_UNEXPECTED_MM_CREATE_ERR OxCOOOOOEA ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_UNEXPECTED_MM_EXTEND_ERR OxCOOOOOEC ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_UNEXPECTED_MM_MAP_ERROR OxCOOOOOEB ~ 

ERROR MR MID NOT FOUND 317 STATUS UNHANDLED EXCEPTION OxC0000144 S· 
ERROR=MR=MID=NOT=FOUND 317 STATUS=UNSUPPORTED_COMPRESSION OxC000025F ~ 
ERROR_MR_MID_NOT_FOUND 317 STATUS_UNWIND OxC0000027 tr:l 
ERROR MR MID NOT FOUND 317 STATUS VDM HARD ERROR OxC000021D ~ 
ERROR=MR=MID=NOT=FOUND 317 STATUS=VOUJME_DISMOUNTED OxC000026E g 
ERROR_MR_MID_NOT_FOUND 317 STATUS_WX86_FLOAT_STACK_CHECK OxC0000270 n 
ERROR_MR_MID_NOT_FOUND 317 STATUS_WX86_INTERNAL_ERROR OxC000026F 8-
ERROR_NET_WRITE_FAULT 88 STATUS_NET_WRITE_FAULT OxCOOOOOD2 ~ 

ERROR_NETLOGON_NOT_STARTED 1792 STATUS_NETLOGON_NOT_STARTED OxC0000192 

. 0\ 
contmues ~ 
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Table A.2. Continued I~ Win32 Error NT Status 
Win32 Error Code Value NT Status Value 

ERROR_NETNAME_DELETED 64 STATUS_ADDRESS_CLOSED OxCOOO020B ~ 
~ 

ERROR_NETNAME_DELETED 64 STATUS_CONNECTlON_DISCONNECTED OxCOOO020C 1-1 n-
ERROR_NETNAME_DELETED 64 STATUS_CONNECTlON_RESET OxCOOO020D -
ERROR_NETNAME_DELETED 64 STATUS_LOCALDISCONNECT OxCOOOO13B 

:;:: 
ERROR_NETNAME_DELETED 64 STATUS_NETWORK_NAME_DELETED OxCOOOOOC9 > 
ERROR_NETNAME_DELETED 64 STATUS_REMOTE_DISCONNECT OxCOOOO13C ~ 

~ 
ERROR_NETWORK_ACCESS_DENIED 65 STATUS_NETWORK_ACCESS_DENIED OxCOOOOOCA (I) 

::s 
ERROR_NETWORK_BUSY 54 STATUS_NETWORK_BUSY OxCOOOOOBF 0.. 
ERROR_NETWORK_UNREACHABLE 1231 STATUS_NETWORK_UNREACHABLE OxCOOO023C ><" (I) 
ERROR_NO_BROWSER_SERVERS_FOUND 6118 STATUS_NO_BROWSER_SERVERS_FOUND OxCOOO021C Vl 

ERROR_NO_DATA 232 STATUS_PIPE_CLOSING OxCOOOOOBl 

ERROR_NO_DATA 232 STATUS_PIPE_EMPTY OxCOOOOOD9 

ERROR_NO_IMPERSONATlON_TOKEN 1309 STATUS_NO_IMPERSONATlON_TOKEN OxCOOOOO5C 

ERROR_NO_LOG_SPACE 1019 STATUS_NO_LOG_SPACE OxCOOOOl7D 

ERROR_NO_LOGON_SERVERS 1311 STATUS_NO_LOGON_SERVERS OxCOOOO05E 

ERROR_NO_MEDIA_IN_DRIVE 1112 STATUS_NO_MEDIA OxCOOOO178 

ERROR_NO_MORE_ITEMS 259 STATUS_A GENTS_EXHAUSTED OxCOOOO085 

ERROR_NO_MORE_ITEMS 259 STATUS_GUIDS_EXHAUSTED OxCOOOOO83 

ERROR_NO_SECURITY _ON_OBJECT 1350 STATUS_NO_SECURITY_ON_OBJECT OxCOOOOOD7 

ERROR_NO_SPOOL_SPACE 62 STATUS_NO _SPOOL_SPACE OxCOOOOOC7 

ERROR_NO_SUCH_ALIAS 1376 STATUS_NO_SUCH_ALIAS OxCOOOO151 

ERROR_NO_SUCH_DOMAIN 1355 STATUS_NO_SUCH_DOMAIN OxCOOOOODF 

ERROR_NO_SUCH_GROUP 1319 STATUS_NO_SUCH_GROUP OxCOOOO066 

ERROR_NO_SUCH_LOGON_SESSION 1312 STATUS_NO_SUCH_LOGON_SESSION OxCOOOO05F 

ERROR_NO_SUCH_MEMBER 1387 STATUS_NO_SUCH_MEMBER OxCOOOO17A 

ERROR_NO_SUCH_PACKAGE 1364 STATUS_NO_SUCH_PACKAGE OxCOOOOOFE 

ERROR_NO_SUCH]RIVILEGE 1313 STATUS_NO_SUCH_PRIVILEGE OxCOOOO060 

ERROR_NO _SUCH_USER 1317 STATUS_NO_SUCH_USER OxCOOOO064 

ERROR_NO_SYSTEM_RESOURCES 1450 STATUS_INSUFFICIENT_RESOURCES OxCOOOOO9A 

ERROR_NO_TOKEN 1008 STATUS_NO _TOKEN OxCOOOO07C 



-------

ERROR_NO_TRUST_LSA_SECRET 1786 STATUS_NO_TRUST_LSA_SECRET OxCOOOO18A 
ERROR_NO_TRUST_SAM_ACCOUNT 1787 STATUS_NO_TRUST_SAM_ACCOUNT OxCOOOO18B 
ERROR_NO_UNICODE_TRANSLATION 1113 STATUS_UNMAPPABLE_CHARACTER OxCOOOO162 > 

~ 
ERROR_NO_USER_SESSION_KEY 1394 STATUS_NO_USER_SESSION_KEY OxCOOO0202 ~ 

ERROR_NOACCESS 998 STATUS_ACCESS_ VIOLATION OxCOOOOO05 
('b 

~ 
ERROR_NOLOGON_INTERDOMAIN_TRUST_ACCOUNT 1807 STATUS_NOLOGON_INTERDOMAIN_ TRUST_ACCOUNT OxCOOOO198 0-

ERROR_NOLOGON_SERVER_TRUST_ACCOUNT 1809 STATUS_NOLOGON_SERVER_TRUST _ACCOUNT OxCOOOO19A 
~" 

ERROR_NOLOGON_ WORKSTATlON_TRUST_ACCOUNT 1808 STATUS_NOLOGON_ WORKSTATlON_TRUST_ACCOUNT OxCOOOO199 ~ 
ERROR_NONE_MAPPED 1332 STATUS_NONE_MAPPED OxCOOOO073 

~ ERROR_NOT_ENOUGH_MEMORY 8 STATUS_NO_MEMORY OxCOOOOO17 
ERROR_NOT_ENOUGH_MEMORY 8 STATUS_SECTION_TOO _BIG OxCOOOO040 5" 

0-
ERROR_NOT_ENOUGH_MEMORY 8 STATUS_TOO_MANY_PAGING_FILES OxCOOOO097 0 
ERROR_NOT_ENOUGH_QUOTA 1816 STATUS_QUOTA_EXCEEDED OxCOOOO044 ~ 

rJl 

ERROR_NOT_ENOUGH_SERVER_MEMORY 1130 STATUS_INSUFF _SERVER_RESOURCES OxCOOO0205 Z 
ERROR_NOT_LOCKED 158 STATUS_NOT_LOCKED OxCOOOO02A ...., 
ERROR_NOT_LOCKED 158 STATUS_RANGE_NOT_LOCKED OxCOOOO07E V1 
ERROR_NOT _LOGON_PROCESS 1362 STATUS_NOT_LOGON_PROCESS 

f"'t 
OxCOOOOOED Pl 

f"'t 
ERROR_NOT_OWNER 288 STATUS_MUTANT_NOT_OWNED OxCOOOO046 J;::: 

rJl 
ERROR_NOT_OWNER 288 STATUS_RESOURCE_NOT_OWNED OxCOOO0264 () 
ERROR_NOT_READY 21 STATUS_DEVICE_NOT_CONNECTED OxCOOOO09D 0 
ERROR_NOT_READY 21 STATUS_DEVICE_NOT_READY OxCOOOOOA3 0-

('b 

ERROR_NOT_READY 21 STATUS_DEVICE_POWER_FAILURE OxCOOOO09E rJl 

ERROR_NOT_READY 21 STATUS_NO_MEDIA_IN_DEVICE OxCOOOOO13 ~ 
ERROR_NOT _REGISTRY_FILE 1017 STATUS_NOLREGISTRY_FlLE OxCOOOO15C ~ 

ERROR_NOT_SAME_DEVICE 17 STATUS_NOT_SAME_DEVICE OxCOOOOOD4 
W 
N 

ERROR_NOT_SUPPORTED 50 STATUS_CTCFlLE_NOT_SUPPORTED OxCOOOO057 t't1 
ERROR_NOT _SUPPORTED 50 STATUS_NOT_CLIENT_SESSION OxCOOO0217 I-t 

I-t 

ERROR_NOT _SUPPORTED 50 STATUS_NOT_SERVER_SESSION OxCOOO0216 0 
I-t 

ERROR_NOT_SUPPORTED 50 STATUS_NOT_SUPPORTED OxCOOOOOBB () 
ERROR_NT_CROSS_ENCRYPTlON_REQUIRED 1386 STATUS_NT_CROSS_ENCRYPTION_REQUIRED OxCOOOO15D 0 

0-
ERROR_OPERATION_ABORTED 995 STATUS_CANCELLED OxCOOOO120 ('b 

rJl 
ERROR_OUTOFMEMORY 14 STATUS_SECTlON_NOT_EXTENDED OxCOOOO087 

continues 
0\ ..-
\0 



Table A.2. Continued I~ Win32 Error NT Status 
Win32 Error Code Value NT Status Value 

ERROR]AGEFILE_QUOTA 1454 STATUS]AGEFILE_QUOTA OxCOOOOO07 1-0 
~ 

ERROR_PARTITION_FAILURE 1105 STATUS_PARTITION_FAILURE OxCOOOOl72 I-t 
l""t 

ERROR]ASSWORD_EXPIRED 1330 STATUS_PASSWORD_EXPIRED OxCOOOOO71 -
ERROR_PASSWORD_MUST_CHANGE 1907 STATUS]ASSWORD_MUST_CHANGE OxCOOO0224 ~ 
ERROR_PASSWORD _RESTRICTION 1325 STATUS]ASSWORD_RESTRICTION OxCOOOO06C > 
ERROR_PATH_NOT_FOUND 3 STATUS_DFS_EXIT _PATH_FOUND OxCOOOO09B ~ 

~ 
ERROR_PATH_NOT_FOUND 3 STATUS_OBJECT_PATH_NOT_FOUND OxCOOOO03A ('t) 

::l 
ERROR_PATH_NOT_FOUND 3 STATUS_REDIRECTOR_NOT_STARTED OxCOOOOOFB 0-
ERROR_PIPE_BUSY 231 STATUS_INSTANCE_NOT _AVAILABLE OxCOOOOOAB ><. 

ERROR_PIPE_BUSY 231 STATUS_PIPE_BUSY 
('t) 

OxCOOOOOAE Vl 

ERROR_PIPE_BUSY 231 STATUS_PIPE_NOT_AVAILABLE OxCOOOOOAC 

ERROR_PIPE_CONNECTED 535 STATUS_PIPE_CONNECTED OxCOOOOOB2 

ERROR_PIPE_LISTENING 536 STATUS_PIPE_LISTENING OxCOOOOOB3 

ERROR_PIPE_NOT _CONNECTED 233 STATUS_PIPE_DISCONNECTED OxCOOOOOBO 

ERROR_PORT _UNREACHABLE 1234 STATUS_PORT_UNREACHABLE OxCOOO023F 

ERROR_POSSIBLE_DEADLOCK 1131 STATUS_POSSIBLE_DEADLOCK OxCOOOO194 

ERROR]RINT _CANCELLED 63 STATUS_PRINT_CANCELLED OxCOOOOOC8 

ERROR_PRINTQ]ULL 61 STATUS_PRINT _QUEUE_FULL OxCOOOOOC6 

ERROR_PRMLEGE_NOT_HELD 1314 STATUS_PRMLEGE_NOT _HELD OxCOOOO061 

ERROR_PROC_NOLFOUND 127 STATUS_DRIVER_ENTRYPOINLNOT _FOUND OxCOOO0263 

ERROR]ROC_NOLFOUND 127 STATUS_ENTRYPOINT _NOT_FOUND OxCOOOO139 

ERROR]ROC_NOLFOUND 127 STATUS_PROCEDURE_NOT_FOUND OxCOOOO07A 

ERROR_PROTO COL_UNREACHABLE 1233 STATUS_PROTO COL_UNREACHABLE OxCOOO023E 

ERROR_REDIR_PAUSED 72 STATUS_REDIRECTOR_PAUSED OxCOOOOODl 

ERROR_REGISTRY _10 _FAILED 1016 STATUS_REGISTRY _IO_FAILED OxCOOOO14D 

ERROR_REM_NOT_LIST 51 STATUS_REMOTE_NOLLISTENING OxCOOOOOBC 

ERROR_REM_NOT_LIST 51 STATUS_REMOTE_RESOURCES OxCOOOO13D 

ERROR_REMOTE_SESSION_LIMILEXCEEDED 1220 STATUS_REMOTE_SESSION_LIMIT OxCOOOOl96 

ERROR_REQNOT_ACCEP 71 STATUS_REQUESLNOT _ACCEPTED OxCOOOOODO 

ERROR_REQUESLABORTED 1235 STATUS_REQUEST _ABORTED OxCOOO0240 



ERROR_RESOURCE_DATA_NOT_FOUND 1812 STATUS_RESOURCE_DATA_NOT_FOUND OxC0000089 
ERROR RESOURCE LANG NOT FOUND 1815 STATUS RESOURCE LANG NOT FOUND OxC0000204 

ERROR=RESOURCE=NAME-=-NOiFOUND 1814 STATUS=RESOURCE=NAME-=-NOT-=-FOUND OxC000008B ~ 
ERROR_RESOURCE_TYPE_NOT_FOUND 1813 STATUS_RESOURCE_TYPE_NOT_FOUND OxC000008A "'d 
ERROR_REVISION_MISMATCH 1306 STATUS_REVISION_MISMATCH OxC0000059 g 
ERROR_RXACT_COMMIT_FAILURE 1370 STATUS_RXACT_COMMIT_FAILURE OxC000011D ~ 
ERROR RXACT INVALID STATE 1369 STATUS RXACT INVALID STATE OxC000011C >< 
ERROR=SECREiTOO_LO-NG 1382 STATUS=SECRET-=-TOO_LO-NG OxC0000157?--
ERROR_SECTOR_NOT_FOUND 27 STATUS_NONEXISTENT_SECTOR OxC0000015 ~ 

ERROR_SEM_TIMEOUT 121 STATUS_IO_TIMEOUT OxCOOOOOB5 ~ 
ERROR_SERIAL_NO_DEVICE 1118 STATUS_SERIAL_NO_DEVICE_INITED OxC0000150 5-
ERROR SERVER DISABLED 1341 STATUS SERVER DISABLED OxC0000080 0 
ERROR=SERVER=NOT_DISABLED 1342 STATUS=SERVER=NOT_DISABLED OxC0000081 ~ 
ERROR_SERVICE_ALREADY_RUNNING 1056 STATUS_IMAGE_ALREADY_LOADED OxC000010E Z 
ERROR_SERVICE_DISABLED 1058 STATUS_PLUGPLAY_NO_DEVICE OxC000025E...., 
ERROR_SESSION_CREDENTIAL_CONFLICT 1219 STATUS_NETWORK_CREDENTIAL_CONFLICT OxC0000195 C/) 

ERROR_SHARING_PAUSED 70 STATUS_SHARING_PAUSED OxCOOOOOCF ~ 
ERROR_SHARING_ VIOLATION 32 STATUS_SHARlNG_ VIOLATION OxC0000043 ~ 

ERROR_SIGNAL_REFUSED 156 STATUS_SUSPEND_COUNT_EXCEEDED OxC000004A n 
ERROR_SPECIAL_ACCOUNT 1371 STATUS_SPECIAL_ACCOUNT OxC0000124 0 
ERROR_SPECIAL_GROUP 1372 STATUS_SPECIAL_GROUP OxC0000125 ~ 
ERROR SPECIAL USER 1373 STATUS SPECIAL USER OxC0000126 :s. 
ERROR_STACK_OVERFLOW 1001 STATUS_BAD_INITIALSTACK OxC0000009 <:s 
ERROR STACK OVERFLOW 1001 STATUS STACK OVERFLOW OxCOOOOOFD Er 
ERROR=SWAPERROR 999 STATUS=IN_PAGE_ERROR OxC0000006 ~ 
ERROR_TOKEN_ALREADY_IN_USE 1375 STATUS_TOKEN_ALREADY_IN_USE OxC000012B tT1 
ERROR_TOO_MANY_CMDS 56 STATUS_TOO_MANY_COMMANDS OxCOOOOOC1:=i 
ERROR_TOO_MANY_CONTEXT_IDS 1384 STATUS_TOO_MANY_CONTEXT_IDS OxC000015A g 
ERROR300_MANY_LINKS 1142 STATUS_TOO_MANY_LINKS OxC0000265 n 
ERROR_TOO_MANY_LUIDS_REQUESTED 1333 STATUS_TOO_MANY_LUIDS_REQUESTED OxC0000074 8-
ERROR_TOO_MANY_NAMES 68 STATUS_TOO_MANY_ADDRESSES OxC0000209 ~ 

ERROR_TOO_MANY_NAMES 68 STATUS_TOO_MANY_GUIDS_REQUESTED OxC0000082 

. 0\ 
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Win32 Error Code Value NT Status Value 

ERROR_TOO_MANY_NAMES 68 STATUS_TOO_MANY _NAMES OxCOOOOOCD ~ 
~ 

ERROR_TOO_MANY_NAMES 68 STATUS_TOO_MANY _NODES OxCOOO020E t-t 
f"'t 

ERROR_TOO_MANY _OPEN_FILES 4 STATUS_TOO_MANY_OPENED_FILES OxCOOOO11F I--f 

ERROR_TOO_MANY]OSTS 298 STATUS_SEMAPHORE_LIMIT_EXCEEDED OxCOOOO047 ~ 
ERROR_TOO_MANY_SECRETS 1381 STATUS_ TOO_MANY _SECRETS OxCOOOO156 ? ERROR300_MANY_SESS 69 STATUS_TOO_MANY_SESSIONS OxCOOOOOCE 

~ 
ERROR300_MANY_SIDS 1389 STATUS_TOO_MANY_SIDS OxCOOOO17E (b 

::l 
ERROR_TRUST_FAILURE 1790 STATUS_TRUSLFAILURE OxCOOOO190 0.. 
ERROR_TRUSTED_DOMAIN_FAILURE 1788 STATUS_TRUSTED_DOMAIN_FAILURE OxCOOOO18C ><. 
ERROR_TRUSTED _RELATIONSHIP_FAILURE 1789 STATUS_TRUSTED_RELATIONSHIP _FAILURE OxCOOOO18D 

(b 
rn 

ERROR_UNABLE_TO_LOCK_MEDIA 1108 STATUS_UNABLE_TO _LOCK_MEDIA OxCOOOO175 

ERROR_UNABLE_TO_UNLOAD_MEDIA 1109 STATUS_UNABLE_TO_UNLOAD_MEDIA OxCOOOO176 

ERROR_UNEXP _NET_ERR 59 STATUS_INVALID_ADDRESS OxCOOOO141 

ERROR_UNEXP _NET_ERR 59 STATUS_INVALID_CONNECTION OxCOOOO140 

ERROR_UNEXP _NET_ERR 59 STATUS_LINK_FAILED OxCOOOO13E 

ERROR_UNEXP _NET_ERR 59 STATUS_LINK_TIMEOUT OxCOOOO13F 

ERROR_UNEXP _NET_ERR 59 STATUS_TRANSACTION_ABORTED OxCOOO020F 

ERROR_UNEXP _NET_ERR 59 STATUS_TRANSACTlON_INVALID_ID OxCOOO0214 

ERROR_UNEXP _NET_ERR 59 STATUS_TRANSACTlON_INVALID_TYPE OxCOOO0215 

ERROR_UNEXP _NET_ERR 59 STATUS_TRANSACTlON_NO_MATCH OxCOOO0212 

ERROR_UNEXP _NET_ERR 59 STATUS_TRANSACTlON_NO_RELEASE OxCOOO0211 

ERROR_UNEXP _NET_ERR 59 STATUS_TRANSACTION_RESPONDED OxCOOO0213 

ERROR_UNEXP _NET_ERR 59 STATUS_TRANSACTlON_TIMED_OUT OxCOOO0210 

ERROR_UNEXP _NET_ERR 59 STATUS_UNEXPECTED_NETWORK_ERROR OxCOOOOOC4 

ERROR_UNEXP _NET_ERR 59 STATUS_USER_SESSION_DELETED OxCOOO0203 

ERROR_UNKNOWN_REVISION 1305 STATUS_UNKNOWN_REVISION OxCOOOO058 

ERROR_UNRECOGNIZED _MEDIA 1785 STATUS_UNRECOGNIZED _MEDIA OxCOOOO014 

ERROR_UNRECOGNIZED_ VOLUME 1005 STATUS_UNRECOGNIZED_ VOLUME OxCOOOO14F 

ERROR_USER_EXISTS 1316 STATUS_USER_EXISTS OxCOOOO063 

ERROR_USER_MAPPED_FILE 1224 STATUS_USER_MAPPED_FILE OxCOOO0243 



ERROR_ VC_DISCONNECTED 

ERROR_WORKING_SET _QUOTA 

ERROR_WRITE_PROTECT 

ERROR_WRITE_PROTECT 

ERROR_ WRONG_DISK 

STATUS_ARRAY_BOUNDS_EXCEEDED 

STATUS_DUPLICATE_OBJECTID 

STATUS_FLOAT_DENORMAL_OPERAND 

STATUS_FLOAT _DIVIDE_BY _ZERO 

STATUS_FLO AT_INEXACT_RESULT 

STATUS_FLOAT_INVALID_OPERATION 

STATUS_FLOAT_OVERFLOW 

STATUS_FLOAT_STACK_CHECK 

STATUS_FLOAT_UNDERFLOW 

STATUS_ILLEGAL_INSTRUCTION 

STATUS_INTEGER_DIVIDE_BY_ZERO 

STATUS_INVALID _DISPOSmON 

STATUS_NONCONTINUABLE_EXCEPTION 

STATUS_OBJECTID_EXISTS 

STATUS_PARITY_ERROR 

STATUS_PRIVILEGED _INSTRUCTION 

240 
1453 
19 
19 
34 
3221225612 
3221226026 
3221225613 
3221225614 
3221225615 
3221225616 
3221225617 
3221225618 
3221225619 
3221225501 
3221225620 
3221225510 
3221225509 
3221226027 
3221225515 
3221225622 

---------

STATUS_ VIRTUAL_CIRCUIT_CLOSED 

STATUS_ WORKING_SET_QUOTA 

STATUS_MEDIA_ WRITE_PROTECTED 

STATUS_TOO_LATE 

STATUS_ WRONG_VOLUME 

STATUS_ARRAY _BOUNDS_EXCEEDED 

STATUS_DUPLICATE_OBJECTID 

STATUS_FLOAT_DENORMAL_OPERAND 

STATUS_FLOAT _DIVIDE_BY _ZERO 

STATUS_FLOALINEXACT_RESULT 

STATUS_FLOAT_INVALID_OPERATION 

STATUS_FLOAT_OVERFLOW 

STATUS_FLOAT_STACK_CHECK 

STATUS_FLOAT_UNDERFLOW 

STATUS_ILLEGAL_INSTRUCTION 

STATUS_INTEGER_DIVIDE_BY _ZERO 

STATUS_INVALID _DISPOSITION 

STATUS_NONCONTINUABLE_EXCEPTION 

STATUS_OBJECTID_EXISTS 

STATUS_PARITY_ERROR 

STATUS_PRIVILEGED_INSTRUCTION 

OxCOOOOOD6 
OxCOOOOOA1 
OxCOOOOOAl > 

""0 
OxCOOOO189 ""0 
OxCOOOOO12 

~ 
::l 

OxCOOOO08C 0-

OxCOOO022A ><' 
OxCOOOO08D ~ 
OxCOOOO08E 

~ OxCOOOO08F 
OxCOOOO090 

S· 
0-

OxCOOOO091 0 

OxCOOOO092 ~ 
rJ) 

OxCOOOO093 Z 
OxCOOOO01D ~ 
OxCOOOO094 V'J 

f"'t 
OxCOOOO026 ~ 

f"'t 
OxCOOOO025 r:: 

rJ) 

OxCOOO022B () 
OxCOOOO02B 0 
OxCOOOOO96 0-

~ 
rJ) 

~ 
::l 
w 
N 
m 
'""' '""' 0 

'""' () 
0 
0-
~ 
rJ) 
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Appendix B 
Sources of Information for 

Driver Writers 

Hopefully, this book will serve as a solid starting point for your journey into 
writing NT Kernel mode device drivers. No one source can have absolutely 
every piece of information, however. This appendix assembles some additional 
sources to which you can turn for more help. 

Windows NT systems internals in general, and device driver development in 
particular, are fields that lots of people claim to "know about," but relatively 
few people actually practice in. Thus, when utilizing any of the resources listed 
in this appendix, please carefully consider the source of the information that 
you're getting. Even though an article appears in a reputable publication, it 
doesn't necessarily mean that the article has been carefully technically 
reviewed. Consider the credentials of the author. We're sorry to say it, but 
we've seen articles about Windows NT systems internals in typically trustwor
thy publications that were so wrong that they were laughable. So, caveat driver 
writer! 

This Book's Web Pages 
We've dedicated a set of Web pages to the support of this book. On those 
pages, you'll find source code for the two complete sample drivers that appear 
in Chapters 16 and 17 (one PIO and other DMA), book errata, and lots of 
other assorted information. Check out http://www.osr.com/book. 
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Periodicals and Journals 
The NT Insider 
The cover says it all: "The only publication dedicated entirely to Windows NT 
system software development." This bi-monthly journal is published by OSR 
Open Systems Resources, Inc. (the consulting firm in which the authors are 
partners). Each issue runs about 20 pages, all of which is about NT drivers, file 
systems, and other NT systems internals issues. It may be hard to believe, but 
one-year free subscriptions are available on OSR's Web site at 
http://www.osr.com. Even if we didn't write for this publication, we'd still say 
it's the best deal going. 

Windows NT Magazine 
Even though this publication is aimed more at systems administrators than dri
ver writers, there always seems to be one or two articles per issue that we find 
interesting. Because driver writers need to be aware of a wide variety of sys
tems issues, this publication is certainly worth reading. There's also a regular 
column on NT internals that can at times be a good read, although it's usually 
rather superficial. See http://www . winntmag. com for subscription information. 

Dr. Dobb's Journal 
A long-time publication aimed at "Software tools for the professional pro
grammer," DDJ (as it's called) has published several driver-related articles in 
the past year or so. A recent issue described Windows NT device driver tool
kits, for example. Because this publication covers the entire realm of program
ming, NT systems software is merely a sidelight. See http://www . ddj . com for 
more information. 

Microsoft's Knowledge Base 
The Microsoft Knowledge Base, or KB as it's more commonly known, is the 
collection of known bugs, issues, and workarounds for Microsoft software. A 
subset of the KB comes with MSDN. The KB can be searched online from the 
Web site http://support.microsoft . com/support. The online version is a gold 
mine of information, and can even be searched for new articles on a particular 
topic "within the past 30 days." If you're having problems with NT, this is an 
important place to check. 
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Newsgroups, Mailing Lists, and FAQs 
Here the caveats to inquiring driver writers certainly apply; only much, much 
stronger. 

comp.os.ms-windows.programmer.nt.kernel-mode 
This is the only solid newsgroup for Kernel mode driver writers. The Microsoft 
support folks hang out here and will occasionally answer questions purely in 
the interest of being nice guys. Many other experienced driver writers and con
sultants regularly participate, including the authors. The signal-to-noise ratio of 
this group has gotten much higher in the past year; if you read it frequently, 
you will get sick of seeing the same questions posted over and over and over 
(my favorite being "Can I write drivers using a C-Compiler other than 
MSVC++?"). Hey, what can we say, it's Usenet, right? Despite its flaws, this 
group remains a very important resource. 

microsoft.public.win32.programmer.kernel 
This is an official Microsoft newsgroup that generally has a lot of Win32 ques
tions that somehow the author thinks are related to Kernel mode. Some con
sultants and driver writers answer questions here. Not much in this news group 
is aimed squarely at NT driver writing. 

NTDEV Mailing List 
To subscribe, send email to Maj ordomo@atria. com with "SUBSCRIBE NTDEV" 
in the body of the message. An interesting and ever-changing exchange of 
issues. Worth watching. 

NTFSD Mailing List 
To subscribe, send email tOMajordomo@atria.com. with "SUBSCRIBE NTFSD" 
in the body of the message. This mailing list is the only place in the known 
universe where NT file systems' development issues are regularly discussed, 
except for The NT Insider. Interesting to watch for driver writers, just to gain 
some insight into nondevice-related systems internals issues. 

DDK-L Mailing List 
Moderated by Daniel Norton of Windows 3.x VxD fame, this mailing list actu
ally costs money ($lS/year after a free 30-day trial period) to subscribe to. We 
guess the idea of the subscription price is to raise a barrier to the casual partici
pation of dilettantes. See http://www. albany. netrdanorton/ddk/ddk -11. 
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The Windows NT Kernel-Mode Driver FAQ 
This list of "Frequently Asked Questions" lives at 
http://www.cmkrnl.com/faq.html. Though it hasn't been updated in almost two 
years and is now hopelessly out of date, this FAQ will still be useful to neo
phyte driver writers. Jamie Hanrahan of Kernel Mode Systems, one of the few 
good guys in this field who actually knows what he's talking about, put this 
FAQ together. 

Seminars 
OSR Open Systems Resources, Inc. 
(http://www.osr.com) 
This is the company where the authors are consulting partners, and it is the 
largest provider of NT Kernel mode training, by far. OSR teaches both lecture 
and lab seminars throughout the world on writing Windows NT device drivers, 
file systems, and video drivers. Both public and custom on-site seminar presen
tations are available. 

David Solomon Expert Seminars 
(http://www.solsem.com) 
Another company that does NT training. 



Appendix C 
Changes in NT V5.0 

As this book is being written, Widows NT VS.O is being developed. In fact, 
this book was completed after the Beta 1 release of Windows NT VS.O, but 
before the Beta 2 release. Thus, the precise details of what will be in Windows 
NT VS.O is anybody's guess. Until it has been released by Microsoft, nobody 
knows what will be in the final version. 

We'd like to give you some clue, however, about what is likely to change-in 
our opinion-in Windows NT VS.O. While nothing is cast in concrete, some 
things are very clear. For example, it is clear that the main principles underly
ing driver development on Windows NT will remain the same from NT V4.0 
to NT V 5.0. It is also clear that there are a number of specific things that will 
change. 

This Appendix attempts to address the few issues that are clear at this book's 
press time. As we get more information, we'll be posting it on the OSR Web 
site (http://www.osr.com) for readers of this book. In addition, we expect to 
have a working copy of the major example drivers presented in Chapters 16 
and 17 updated and commented for NT VS.O as soon as we have enough 
information to do this. Check in with us often! 

Note 

Although we have done our best to get the most recent and accurate 
information possible on NT VS.O, almost all of the information in this 
chapter is still speculative. Until NT VS.O ships, we won't know precisely 
how things will really work. Thus, before using the information in this 
chapter for a major project, be sure to check the OSR Web site, the 
Microsoft Web sites, and MSDN for any updated information on NT 
VS.O. 
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NT V4.0 Device Drivers on NT vs.o.o 
In general, as far as we know, standard Kernel mode drivers written and com
piled on NT V4.0 will run unchanged on NT VS.O systems. This means that 
the type of device drivers described in this book should work on NT VS.O sys
tems without any change. 

Of course, NT V4.0 drivers will not be able to participate in plug and play or 
power-management activities on NT VS.O. For many devices and systems, this 
won't be important. However, for other devices or for certain users this can be 
a significant disadvantage. Suppose, for example, that a user has a laptop run
ning NT VS.O that they want to suspend. If one of the drivers on that laptop 
doesn't support power management, the user will at least be warned that sus
pending the laptop is risky (precisely how this will work isn't yet clear). If the 
user chooses to force a suspension, the NT V4.0 driver may not properly re
initialize its device when the system is resumed. 

Driver Entry Changes 
In NT V4, DriverEntry() was the function that handled everything necessary to 
initialize drivers and devices. In DriverEntry(), we export our entry points via 
the Driver Object. We also typically identify our device and create a Device 
Object for each device found. This ordinarily means scanning the bus to find 
the device(s), and calling IoCreateDevice O. Next, in an NT V4.0 driver, we 
reserve the hardware resources to be used by the device. For PCI devices, this 
typically means calling HalAssignSlotResources () and IoAssignResources 0 to 
get a CM_RESOURCE_LIST of the hardware resources that each of the devices will 
use. These resources include ports, shared memory areas, IRQs, DMA 
Channels, and whatever other hardware resources our device(s) require. We 
also connect to interrupts from our device within the Driver Entry routine, 
and, in general, do whatever is necessary to become ready to process requests 
on our device. 

In NT VS.O, the functions previously performed in DriverEntryO are separated 
out into three parts: 

• Things to do with initializing the driver itself. These things, like exporting 
entry points, are still performed in the Driver Entry routine. 

• Things to do with discovering the devices our driver needs to support. 
This step, including creating a Device Object, is now performed in the 
driver's AddDeviceO entry point. This is a new entry point in NT VS.O. 
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• Things to do with device resources and devic~ initialization. Things to do 
with the device hardware itself actually wait until we're called with an 
IRP _MJ_PNP IRP with an IRP _MN_START_DEVICE minor function. In this func
tion, we do stuff like connect to interrupts. 

Driver Entry in NT vs.o 
Just like in NT V4.0, a driver's DriverEntry() entry point is called in NT VS.O 
at IRQL PASSIVE_LEVEL, in the context of the system process when our driver is 
first loaded. 

DriverEntry() in NT VS.O is typically restricted to doing things related to ini
tializing the driver as a whole. This includes exporting entry points via the 
Driver Object. Two new important entry points that NT VS.O drivers will need 
to export are as follows: 

• An AddDevice () entry point, a pointer to which is placed in DriverObj ect

>DriverExtension->AddDevice. 

• The Dispatch entry point for processing IRP _MJ_PNP IRPs (a pointer to 
which must be placed in DriverObj ect ->Maj orFunction[ IRP _MJ_PNP]). 

Although not normally required, before exiting DriverEntry (), you'll have to 
save the Registry path information if you'll need it later. You should really 
need this only if you call one of those functions that requires it as a parameter 
(such as IoRegisterDriverReini tialization (), HalAssignSlotResources (), or 
IoAssignResources ()); or you need to do some Registry lookups in your 
AddDeviceO routine (described in the next section). Of course, good NT VS.O 
drivers won't typically call any of these routines (with the possible exception of 
IoRegisterDriverReini tialization ()). If you do need to save the Registry path, 
be sure to actually save the Registry path data itself, not just a pointer to the 
Registry path. The 110 Manager apparently deallocates the Registry path 
immediately on return from its call to Drive rEnt ry () • 

Although it doesn't say so in the preliminary NT VS.O documentation, it is 
possible to still create Device Objects during DriverEntry (). However, this is no 
longer typically done. In fact, the only Device Object you might want to create 
in DriverEntry() in an NT VS.O driver would be an object for an overall driver 
control type device. Perhaps this would be some sort of operation, administra
tion, or management device. If you do create any Device Objects in 
DriverEntry (), the DO_DEVICE_INITIALIZING bit is still cleared as before NT VS.O. 

That's really all there is to the "all new and improved" version of 
DriverEntry(). What has traditionally been the longest function in many NT 
standard Kernel mode drivers is now rather short indeed! Processing continues 
when the driver's AddDevice () entry point is called. 
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The AddDevice Entry Point 
At some point after your driver has returned from the Driver Entry routine, 
any time a device that is your driver's responsibility is added to the system, the 
110 Manager calls your driver's AddDevice () entry point, the prototype for 
which is shown in Figure C.l. 

Figure C.l. AddDevice () entry point. 

The DriverObject parameter passed into this routine is the same pointer passed 
into your DriverEntry() entry point. The PhysicalDeviceObject parameter is a 
pointer to the Physical Device Object (PDO) that represents your device. This 
Device Object was created by the bus driver when it scanned the bus to see 
what devices were physically connected to the bus. The PDO is used as the 
point of communication between the bus driver, Plug and Play Manager, and 
your driver to inform you of PnP events (such as somebody disconnecting your 
device). Figure C.2 illustrates the connection between the FDa and the PDO. 

Physical 
Device 
Object 

AttachedDevice 

Physical Device 
Object 

Created by Bus 
Driver 

Functional 
Device 
Object 

Functional Device 
Object Created by 

Device Driver 

Figure C.2. Functional Device Object attached to Physical Device Object. 

When you're called at your AddDevice () entry point, there are two major activi
ties for your driver to undertake: 

1. Create one or more Device Objects (and optionally, Device Extensions) to 
represent your device. This is done in the traditional way by calling 
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loCreateDevice ( ). Don't forget that because you're calling loCreateDevice ( ) 

outside of your DriverEntry() entry point, you need to manually clear the 
DO_DEVlCE_lNlTIALIZlNG bit in DeviceObj ect ->Flags. This is an important 
detail-unless this bit is cleared, other Device Objects cannot be attached 
to yours. If you forget to clear this bit, the 110 Manager will remind you 
with a little message in the Checked Build. If required, also create a sym
bolic link to point to your Device Object using loCreateSymbolicLink (), 

just like in NT V4.0, as described in Chapter 13, "Driver Entry." 

2. Attach the newly created Device Object (or, indeed, Device Objects) to 
the physical device that the bus driver has created to describe your device. 
This attachment is done by calling loAttachDeviceToDeviceStack (), passing 
in the pointer to your newly created Device Object and the Physical 
Device Object passed into your AddDevice () entry point. 
loAttachDeviceToDeviceStack () returns a pointer to the actual Device 
Object to which you attached. Be sure to §ave this away because you're 
going to need it later. 

Before leaving your AddDevice () entry point, you should perform any per-device 
initialization that can be performed without touching your hardware. This 
might include checking the Registry (if you saved the path away earlier!) for 
device-specific information or anything else you can dream up. 

Note 

To emphasize the point, we'll say it again: No references to your hard
ware are permitted from within the AddDevice () routine. Your driver still 
has not been given any hardware resources. Your driver has been 
informed only that a device owned by your driver has been found. That 
comes in the next step. 

Also, because you now have a Device Object, it is entirely possible for users to 
issue 110 requests to that Device Object. Because you're not allowed to touch 
your hardware yet, it would be a serious mistake to just go ahead and try to 
process any requests that you receive. Proper NT V 5.0 etiquette requires that 
you keep track of the fact that this device has been created but not yet started 
(that is, you've received an AddDevice () call for this device, but not an 
lRP _MN_START_DEVlCE request-more about that later) and queue any IRPs that 
you receive for later processing on your device. The preliminary NT VS.O doc
umentation suggests keeping a flag in the Device Extension for this purpose. 
This sure seems like a good idea to us! 

Leave AddDevice () with STATUS_SUCCESS if you were successful in your work in 
this routine. Returning an error status results in the load sequence for your dri
ver being aborted. 
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Processing Plug and Play IRPs 
When one of the previously added devices is to be started, the Plug and Play 
Manager will call your driver with an IRP containing an lAP _MJ_PNP major 
function code and an lAP _MN_START_DEVICE minor function code. IRP _MJ_PNP is 
used to identify IRPs that are queued to your driver as a result of plug-and
play events. There are seven minor function codes that uniquely identify the 
type of plug-and-play request to the driver (see Table C.l). In NT V5.0, device 
drivers sit atop a driver stack that may include an underlying bus driver. This 
leads to two issues in a driver handling PnP requests: 

• All lAP _MJ_PNP IRPs must be passed by your device driver to the underly
ing bus driver. This is vital for correct system operation. 

• Some PnP IRPs must be processed (successfully) by the underlying bus 
driver before they can be processed by your device driver. On the other 
hand, some PnP IRPs need to be processed (successfully) by your driver 
before being passed on to the underlying bus driver. 

It is your driver's task to determine who processes each particular PNP IRP 
first (you or the underlying bus driver, depending on the IRP minor function 
code), and then (typically) to pass the IRP to the underlying driver in the nor- . 
mal way by calling loCallDriver(). The Device Object used as the target for the 
loCallDriver () call is the PDEVICE_OBJECT returned when the driver called 
loAttachDeviceToDeviceStack () in its AddDevice () entry point. Fortunately, it's 
pretty easy to figure out from the documentation who is supposed to handle 
which IRP _MN functions when. Table C.l resolves the dilemma of which drivers 
handle a given lAP _MN function and when. 

Table C.l. Driver processing of lAP _MN functions. 

IRP MN Function Code 

I RP_MN_START_DEVICE 

I RP_MN_STOP_DEVICE 

IRP_MN_QUERY_STOP_DEVICE 

IRP_MN_CANCEL_STOP_DEVICE 

I RP_MN_QUERY_REMOVE_DEVICE 

I RP_MN_REMOVE_DEVICE 

IRP_MN_CANCEL_REMOVE_DEVICE 

IRP_MN_QUERY_CAPABILITIES 

Who Processes It First? 

Bus driver 

Device driver 

Device driver 

Bus driver 

Device driver 

Device driver 

Bus driver 

Bus driver 

When we say the device driver processes a request "first," we mean that upon 
receipt, the device driver examines the request. If the request can be accommo
dated, the device driver does what is necessary to carry out the request. When 
the device driver has completed processing the request successfully, it sends the 
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request to the underlying bus driver. If the request cannot be accommodated, 
the device driver completes the request in the ordinary way with an appropri
ate error status. In this case, the IRP does not need to be passed to the underly
ing bus driver. 

Passing an IRP on to another driver given a pointer to the target driver's 
Device Object is done the same way in NT VS.O as it was done in NT V4.0. 
The only difference is that in NT VS.O, we now have a handy macro to use to 
make things a bit easier. To pass a request to an underlying driver, you simply 
copy the current I/O Stack location to the next I/O Stack location, register a 
completion routine if you want one, and pass the IRP to the next driver using 
loCallDriver (). 

When the device driver processes the lRP _MJ_PNP IRP first, a completion routine 
is not normally required. This is because the underlying driver will send your 
driver another PnP IRP, telling you to cancel the operation if it finds the PnP 
operation that you approved unacceptable. Example C.l provides code that 
demonstrates passing on the IRP in this case: 

Example C.l. Passing an IRP to the underlying driver-with no Completion 
routine supplied. 

II 
II Invoke the handy stack copy macro, new to NT VS. 
II 
IoCopyCurrentlrpStackLocationToNext(Irp)j 

II 
II Send the request to the bus driver and return 
II 
return(IoCallDriver(DeviceExtension->PdoPointer, Irp))j 

When the bus driver processes the request first, things are a bit more tricky. To 
indicate that your device can be started, you receive an IRP _MN_START_DEVICE 
IRP that needs to be processed by the bus driver first. When the device driver 
receives the request, it passes the request to the bus driver. During this transac
tion, the device driver does not do any of the request-processing itself. 

Again, just as in NT V4.0, when a driver passes a request to an underlying dri
ver, it is later notified about the request completion by setting a Completion 
routine in the IRP, prior to passing the IRP to the underlying driver. Passing 
requests from driver to driver was discussed in detail in Chapter 11, "The 
Layered Driver Model." None of the concepts will change in NT VS.O. The 
110 Manager will call the completion routine when the underlying driver(s) 
have completed the request. Only when the completion routine has been called 
may the IRP actually be processed by the device driver. Unfortunately, recall 
that completion routines may be called at IRQL >= DISPATCH_LEVEL. This makes 
completion processing more complex than you might like. 
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Although there are many ways to actually code up the solution to this prob
lem, we agree with the preliminary DDK that the best solution is to wait for an 
event in the device driver's Dispatch Routine. When the Completion routine is 
called, it signals the event, thus awakening the Dispatch Routine code, in 
which the IRP is processed to completion. The Completion routine reclaims 
"ownership" of the IRP by returning STATUS_MORE_PROCESSING_REQUIRED to the 
I/O Manager. Example C.2 shows the code for the Dispatch Routine to do this. 

Example C.2. Passing on an IRP to the underlying driver, supplying a comple
tion routine. 

/! 
II Copy the current IRP Stack Location to the next one, using 
II the new macro supplied with NT V5 strictly for this purpose 
/! 
IoCopyCurrentlrpStackLocationToNext(Irp)j 

/! 
II Set a completion routine for this IRP. Have it called regardless 
II of the IRP's completion status. The context passed into the 
II completion routine is a pointer to the event to signal. 
/! 
IoSetCompletionRoutine(Irp, 

/! 

OsrPnpCompRoutine, 
&pnpEvent, 
TRUE, 
TRUE, 
TRUE) j 

II Initialize an event which will be signaled from the 
II completion routine. 
/! 
KelnitializeEvent(&pnpEvent, 

NotificationEvent, 
FALSE) j 

status = IoCallDriver(devExt->NextDriverObject, Irp)j 

/! 
II Wait on the event to be signaled by the completion routine. 
II The completion routine will "reclaim" the IRP so we may 
II continue to process it below. 
/! 
KeWaitForSingleObject(&pnpEvent, 

/! 

Executive, 
KernelMode, 
FALSE, 
NULL) j 
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II After the completion routine wakes us, get the ultimate 
II status of the operation from the IRP. 
/! 

status = Irp->IoStatus.Statusj 

if (NT SUCCESS (status)) { 

1/ 

/! 
II Since the bus driver was happy, we can FINALLY try to 
II process the IRP. 
/! 

status = OsrProcessPnPlrp(Irp)j 

II Since the completion routine ALWAYS reclaims the IRP by 
II returning STATUS_MORE_PROCESSING_REQUIRED, we need to 
II actually complete the IRP here. 
1/ 
Irp->IoStatus.Status = statusj 

Irp->IoStatus.lnformation = 0j 

IoCompleteRequest (Irp, IO_NO_INCREMENT)j 

As previously described, this code not only passes the IRP to the underlying 
driver, it also creates an event and waits for that event to be signaled. The 
event is set to be signaled from the driver's Completion routine, shown in 
Example C.3. 

Example C.3. Sample Completion routine. 

NTSTATUS 
OsrPnpCompRoutine(IN PDEVICE_OBJECT DeviceObject, 

IN PIRP Irp, 
IN PYOID Context) 

PKEVENT event = (PKEVENT)Contextj 

1/ 
II IF this request pended, make sure we mark it as 
II having done so in the current IRP stack location 
1/ 
if (Irp->PendingReturned) 

IoMarklrpPending( Irp )j 

1/ 

continues 
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Continued 

II Set the event on which the Dispatch Routine is waiting 
II 
KeSetEvent(event, 0, FALSE)j 

II 
II Re-claim lRP to that the Dispatch Routine can continue 
II to process it. 
II 
II N.B. Dispatch Routine must recall loCompleteRequest 
II 
return STATUS_MORE_PROCESSlNG_REQUlREDj 

Admittedly, Example C.3 provides a pretty simple Completion routine, but it 
does handle all the basics. One step worth noting is the need to call 
loMarklrpPending() in the Completion routine if lrp->PendingReturned is set. 
The reasons behind this are complex, and haven't changed between NT VS.O 
and NT V4.0. Unfortunately, these reasons are well beyond the scope of this 
appendix. Suffice it to say that this really is required. 

As recommended in the preliminary DDK documentation, the approach shown 
in Examples C.2 and C.3 is probably the best method for handling IRPs that 
need to be processed by the bus driver first. Because it is possible that your 
Completion routine could be called at elevated IRQL, we wait in the Dispatch 
routine instead of trying to process the request in the actual Completion rou
tine. When the Completion routine is called, the IRP is reclaimed by the device 
driver (by returning STATUS_MORE_PROCESSlNG_REQUlRED). The Completion routine 
then wakes the Dispatch Routine by setting the event. Any necessary process
ing is then performed by the device driver in the context of the Dispatch rou
tine. The device driver then completes the IRP, calling loCompleteRequest (), 
with an appropriate status. 

Processing IRP _MN_START _DEVICE Requests 
Given the general process for handling lRP _MJ_PNP requests, you should become 
familiar with the way you specifically process lRP _MN_START_DEVlCE requests. 

As stated previously, when the Plug and Play Manager wants you to start your 
device, it sends you an lRP _MJ_PNP IRP with an lRP _MN_START_DEVlCE minor func
tion. The device to be started is, obviously, the one represented by the Device 
Object pointer received in the Dispatch PNP routine. 
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Recall that lRP _MN_PNP IRPs must be processed by the bus driver before being 
processed by the device driver. Thus, on receiving one of these IRPs, the device 
driver simply passes it on down to the bus driver, and waits for its Completion 
routine to be called. Assume that you'll use the design shown in Examples C.2 
and C.3, where you wait in the Dispatch Routine for an event to be signaled 
by the Completion Routine. In this case, you wake back up in the Dispatch 
routine, and proceed to process the lRP _MN_START_DEVlCE request. 

How do we process this request? Recall that up to this point, we still have nei
ther identified nor reserved the hardware resources required by our device. 
Providing us a list of these resources is the main purpose of the 
lRP _MN_START_DEVlCE IRP. 

Contained in the current I/O Stack location of the lRP _MN_START_DEVlCE IRP are 
two parameters of specific interest: Paramete rs . StartDev ice. AllocatedResou rces 

(which is a pointer to a CM_RESOURCE_LIST that describes the device's resources), 
and Parameters. StartDevice .AllocatedResourcesTranslated (which is a pointer to 
a CM_RESOURCE_LIST that contains the translated values for the device's 
resources). These parameters are the resources that the PnP Manager, the I/O 
Manager, and the HAL have agreed on and allocated for your device's use. In 
NT V4.0 for a PCI device (for example), the untranslated resources are those 
that would have been returned by HalAssignSlotResources (). The Translated 
version of these resources are equivalent to the output from 
HalTranslateBusAddress() and HalGetlnterruptVector(). 

Given the CM_RESOURCE_LIST, the driver may access, initialize, and program its 
device just as in NT V4.0. And, just like in NT V4.0, if a resource is in memo
ry space the driver will need to call MmMaploSpace () to assign kernel virtual 
addresses to it. And, of course, the driver will need to connect to interrupt by 
calling loConnectInterrupt () just as it did in NT V4. 

DMA Implementation Changes 
The overall architectural abstraction and model used for DMA support in 
Windows NT V5.0 is only slightly changed from that in NT V4. In NT V5.0, a 
number of concepts specifically related to Adapter Objects are clarified and 
further defined. 

For example, instead of calling HalGetAdapter() to identify the characteristics 
of a device to the HAL and get a pointer to an Adapter Object,in NT V5.0, 
drivers call loGetDmaAdapter (), the prototype for which is shown in Figure C.3. 
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PDMA_ADAPTER 
IoGetDmaAdapter (IN PDEVICE_OBJECT PhysicalDeviceObject~ 

IN PDEVICE_DESCRIPTION DeviceDescription~ 
IN PULONG NumberOfMapRegisters); 

PhysicalDeviceObject: A pointer to the physical device object (PDO) 
that represents this device. 

DeviceDescription: A pointer to the DEVICE_DESCRIPTION data 
structure (no change from NT V4.0). 

NumberOfMapRegisters: A pointer to a ULONG, into which is 
returned the maximum number of map registers that a driver may use 
at one time (no change from NT V4.0). 

Figure C.3. IoGetDmaAdapter () function prototype. 

Note that this function takes one parameter that HalGetAdapter () didn't. This is 
a pointer to the Physical Device Object associated with the device. In addition, 
instead of a pointer to an Adapter Object, this function returns a pointer to a 
DMA_ADAPTER. This new structure starts with a version and size field, and contains 
a pointer to a DMA_OPERATIONS structure, in addition to HAL and bus driver spe
cific data. The DMA_OPERATIONS structure comprises pointers to bus-specific func
tions that perform common DMA support activities. 

The DMA_OPERATIONS structure is, in fact, key to the NT VS.O implementation of 
the NT DMA model. This was necessary due to bus driver support being 
moved from only in the HAL to being in standard Kernel mode drivers. In 
versions of NT prior to NT VS.O, when a driver called a bus-specific function 
such as IoMapTransfer() or IoFreeMapRegisters(), the 110 Manager called the 
HAL, which in turned called the support routine for the appropriate bus on 
which the operation was to take place. 

In NT VS.O, it appears that bus drivers are moved from being exclusively in 
the HAL to also being within Kernel mode drivers. This eases support for dif
ferent types of buses, extends NT's processor hardware abstraction architec
ture, and facilitates PNP, power management, and other types of bus support. 
Thus, in NT VS.O, a driver acquires a pointer to its DMA_ADPATER structure. 

In early versions of NT VS.O that we've seen, macros have been defined in 
ntddk. h that redefine NT V4.0 calls which take an ADAPTER_OBJECT as an argu
ment, to take a DMA_ADAPTER in its place and perform the NT V 5.0 function of 
calling the appropriate function from within the DMA_OPERATIONS vector of the 
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DMA_ADAPTER structure. This allows drivers that call the NT V4.0 functions to be 
recompiled and work correctly with the NT VS.O DMA_ADAPTER structure. 

According to the existing DDK documentation, a new set of support functions 
will also be defined. The parameters to these functions, and the ways these 
functions are used, remains unchanged from NT V4.0, with the exception that 
instead of a PADAPTER_OBJECT (returned by HalGetAdapter (»), these functions take 
a PDMA_ADAPTER (returned by IoGetDmaAdapter()). Table C.2 lists the NT V4.0 
DMA functions and their NT VS.O equivalents. 

Table C.2. NT V4.0INT VS.O DMA functions. 

NT V 4.0 DMA Function 

HalAllocateCommonBuffer() 

HalFreeCommonBuffer() 

IoAllocateAdapterChannel() 

IoFlushAdapterBuffers() 

IoFreeAdapterChannel() 

IoFreeMapRegisters() 

IoMapTransfer() 

HalGetDmaAlignmentRequirement() 

NT VS.O DMA Function 

AllocateCommonBuffer() 

FreeCommonBuffer() 

AllocateAdapterChannel() 

FlushAdapterBuffers() 

FreeAdapterChannel() 

FreeMapRegisters() 

MapTransfer( ) 

GetDmaAlignment() 

It is not clear at the time of this writing what the final implementation of the 
new DMA interface will be in NT VS.O. All we can advise on this point is to 
visit the OSR Web site for the latest information. 

Note 

One small yet significant change in the functions mentioned previously is 
in MapTransfer (). When calling this function~ drivers for Busmaster 
devices must supply a pointer to their DMA_ADAPTER. This is in contrast 
with the convention established prior to NT VS.O~ in which Busmaster 
device drivers passed NULL to IoMapTransfer () as a pointer to their 
ADAPTER_OBJECT. 

Power Management 
Power management is one of the biggest changes between NT V 4 and NT 
VS.O. It is also one of the changes about which the least information was avail
able when this chapter was written. Thus, in this section we present only a 
brief overview of power management. Check the OSR Web site for updated 
information! 
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Support for power management in a device driver requires supporting three 
new IRP minor function codes of the lRP _MJ_POWER function, as follows: 

• lRP_MN_QUERY_POWER 

• lRP_MN_WAlT_WAKE 

Support for a fourth minor function code, lRP _MN_POWER_SEQUENCE, is optional. 

When a driver receives a power management IRP, it has a choice of ways to 
process it: 

1. If the driver cannot perform the indicated operation (that is, the driver 
cannot enter a power-down state when it receives an lRP _MN_QUERY_POWER 

request), it immediately completes the IRP with an error code. 

2. If the driver can perform the indicated operation, it calls PoCallDriver () 

to pass the request on to other drivers. When the request reaches the bus 
driver, it will ultimately be completed with success. 

In either case, the driver attempts to dequeue another power request by calling 
PoStartNextPowerlrp(). 

lRP MN QUERY POWER 
The lRP _MN_QUERY_POWER request is sent to a driver when the Power Manager 
needs to determine whether the device can enter a sleeping power state. If the 
device can, it calls PoCallDriver () to pass the request along. At this point, the 
driver also stops processing any new requests it receives (queuing them for 
later processing). 

If the driver is not in a state where it can enter a sleep state, it immediately 
completes the IRP with an error status. 

lRP MN SET POWER 
Processing the lRP _MN_SET_POWER request is a bit more complicated than process
ing lRP _MN_QUERY_POWER. This is because the driver may receive set power 
requests that indicate a change in either the device's or the system's power 
state. In addition, the driver may receive a set power request when its device is 
already in the requested state. 

On receiving a set power request, the device driver checks to see whether the 
device is already in the requested state. If it is, it simply completes the IRP with 
success. Device power states are represented by the values DO, Dl, D2, and 
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D3. DO represents fully powered-on device state. D3 represents fully powered
off state. States Dl and D2 represent intermediate states between fully pow
ered-on and fully powered-off. 

If the device is not in the requested state when a set power request is received, 
the way the driver proceeds depends on the request: 

• If the request is to enter power-down state, the device driver calls 
PoSetPowerState () to indicate that it is leaving fully powered state to enter 
power-down state. It then powers the device down, and completes the 
IRP with success. 

• If the request is to enter the power-on state, the device driver powers up 
the device, and when it has reached power-on state, it calls 
PoSetPowerState (). It then completes the IRP with success. 

IRP MN WAIT WAKE 
This minor function code is sent by a device driver to indicate that one or more 
of its devices can wake the system, causing the system to return to a fully pow
ered state. Unfortunately, we have no further information on this function at 
this time. 
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interrupt service routine, 584 

transmit operations, 
completing, 584 

transport processing, 583-584 

Neither 110, describing data 
buffers, 194 

NT V5.0, entry points, 631 

organization, 247 

Packet-Based DMA 

example, 464-471 

execution, propagatip,g, 474-478 

ISRs, 472-473 

performance, measuring, 164 

PIO (Programmed VO), 155-156 

designing, 420-431 

DPCs, 415-419 

ISRs, 412-415 

memory space registers, accessing, 
157-159 

Startlo entry points, 406-411 

Registry parameters, 216 

request processing, 248-252 

classes of context, 254 

Dispatch routines and context, 
254-256 

process context, 253 

threat scheduling context, 254 

scatter/gather, AdapterControl 
function, 453-460 

SCSI Miniport, 216 

characteristics, 569-571 

developing, 575 
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ErrorControl value (Registry), driver startup 657 

initialization, 572-573 

interrupt service, 574 

requests, 573-574 

structure, 571 

stacks, 213, 223 

startup, Registry values, 530 

DependOnGroup, 538-539 

DependOnService, 538-539 

DisplayName value, 540 

ErrorControl value, 537-538 

Group value, 534-535 

ImagePath value, 540 

LastKnownGood control set, 538 

Start value, 532-533 

Tag value, 535-537 

Type value, 531-532 

structure, 223-224 

System DMA devices, 165-166 

System Queuing, 335, 337 

TDI and NDIS, communicating, 234 

testing on MP systems, 509 

User mode, 212 

Video Display, 559-563, 567-568 

wrappers, 215-216 

writers, options, 188-189 

dual system debugging, configuring, 
491-494 

Dumpbin utility, 32 

Dynamic Linked Libraries, see DLLs 

dynamic threads, priorities, 11, 113-114 

dynamic unloading of drivers, 252 

E 

edge triggered interrupts, 373-374 

editing Registry, 94-98 

Select key, 105-106 

see also Registry; values 

EISA buses, querying, 267-273 

emulation, multiple operating 
sytems, 14-15 

enabling 

Development System debugging, 
495-498 

event logging, 525 

pool checking, 510 

entries, driver service, Registry values, 
531-540 

entry points 

DpcForIsr, 375-377 

drivers, 224 

AdapterControl, 247, 449-451 

Cancel, 246 

Completion routine, 246 

CustomDpc, 246 

Dispatch, 246-247, 349-350 

DpcForIsr, 246 

DriverEntry function, 245 

Fast 110, 247 

10 Timer, 247 

ISR (Interrupt Service 
Routine), 246 

Reinitialize, 246 

Startlo, 246 

Synchronize Function, 247 

Timer DPC, 247 

Unload, 246 

exporting, 301 

Fast 110, 553-554 

10Connectlnterrupt, 364-365 

Windows NT V5.0, 631-633 

environment, driver development 

drivers, building, 500-504 

preparing, 486-491 

Test System, configuring, 488-491 

Environment Subsystems, 15-18 

ErrorControl value (Registry), driver 
startup, 531, 537-538 
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errors, 516 

BSOD (blue screen of death), 
512-514 

custom, 517 

.h,517 

logging, 515-516, 522 

.rc, 517 

sample error message definition files, 
517,519 

Windows NT, 328 

Win32, 590-623 

writing, 328 

establishing threads, Registry values, 114 

ETHREAD structure (thread control 
block), 109 

evaluation boards, DK1, 464-467 

Event Logging Facility, 515-516 

events, sharing, 108 

exceptions 

SEH (Structured Exception 
Handling), 89-92 

try ... except, Neither 110 buffer 
validation, 325 

Exclusive parameter, IoCreateDevice( ) 
function, 280 

executable images, copying over existing 
images, 69 

executing 

CustomDpc routines, 368 

DPCs (Deferred Procedure Calls), 
136, 376-377 

Executive level components 
(WindowsNT), 13-14, 19-20 

Cache Manager, 26 

110 Manager, 20 

LPC (Local Procedure Call facility), 26 

Memory Manager, 26 

Object Manager, 20-22, 24-25 

Process Manager, 26 

Security Reference Monitor, 25-26 

executive spin locks, 143 

acquiring, 144-149 

deadlocks, preventing, 147-149 

debugging, 149-150 

hierarchies, defining, 148-149 

releasing, 146 

timeouts, 149-150 

exhausting physical memory, 50 

exhaustion (quantum), 118-120 

Expand Utility (Microsoft), 
decompressing HAL image, 490-491 

exporting entry points, 301 

extensions, kernel debugger, 506-507 

F 

Facility codes, 519 

failed values (Select key), 
configuring, 104 

fairness counters, 386 

FAQs (Frequently Asked Questions), 
Windows NT Kernel-Mode Driver, 628 

Fast 110, 240-241 

entry points, 247, 553-554 

see also 110 

FastIoDeviceControl ( ) function, 241 

fatal errors, BSOD (blue screen of 
death),511-514 

FCBs (File Control Blocks), 557 

fibers, 10 

fields 

AlignmentRequirement, 219 

Characteristics, 219 

DPC objects, 134 

importance, 135 

target processor, 135-136 

error log packets, 520, 522 



fixed part IRPs (110 Request Packets), 
186-187 

Flag, 219 

110 Stack location, 187-188 

priorities, 113 

StackSize, 219 

file cache, 55 

File Objects, 20-21, 174, 218 

File System Drivers, see FSDs 

file systems 

development kit, Web site, 557 

redirectors, 551 

FileObject field, 188 

files 

crash dumps, 514 

handles, 25 

mapping, 62-63 

memory-mapped, 62-63, 67-68 

ntdef.h, 171 

NTSTATUS.H, 328 

text setup, driver installation, 
542-546 

text strings, inserting, 519 

views, mapping, 55 

filter drivers, 235, 256 

case study, 242-243 

Device Object, 236-238 

IoAttachDevice ( ) function, 237 

IoAttachDeviceToDeviceStack () 
function, 236 

IoCallDriver ( ) function, 238 

IoGetDeviceObjectPointer ( ) 
function, 236, 238 

usage guidelines, 239 

finding 

drivers at top of stacks, 223 

Registry values, 96-98 

functions 659 

fixed part (IRPs), fields, 186-187 

Flags field, 186, 188,219 

flushing 

caches, 456 

internal write post buffers, 401 

formats 

.MC files, 519 

SRBs (SCSI Request Blocks), 573-574 

tag vectors, 536 

Free Build, 488-489 

BSOD (blue screen of death), 
511-514 

drivers 

building, 500-504 

testing, 511 

installing, 490-491 

free physical pages, 47 

free state, 83 

FSDs (File System drivers), 220, 551-552 

ByteOffset parameter, 226 

calling, 553 

Device Objects, linking, 221-222 

entry point, implementing, 554 

layering, 220-222 

Object Manager integration, 556-557 

requests directed to, 223 

VM subsystem integration, 555-556 

fully opaque objects, I/O 
Subsystem, 173 

functions 

buffer, accessing device registers, 
37-40 

client-side DLLs, handling, 15-17 

codes, 196-197 

CompletionRoutine ( ), 230 

CreateService(),547-548 

DeviceIoControl ( ), 198 

DriverEntry( ), 245, 630-631 
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Fast 110, 240-241 

FastIoDeviceControl ( ), 241 

HAL (Hardware Abstraction Layer) 

HaIGetAdapter(),307-309 

HalGetInterrupt( ), 302-303 

HalTranslateBusAddress( ), 
295-299 

internal write post buffers, 
flushing, 401 

selecting for device access, 34-37 

IoAllocateAdapterChannel( ), 448 

IoAllocateIrp ( ),227-228 

IoAllocateMdl( ), 396 

IoAssignResources, 287-290, 
292-293 

IoAttachDevice ( ),237 

IoAttachDeviceToDeviceStack (), 236 

IoCallDriver ( ), 226, 238, 324 

IoCompleteRequest(), 324, 327 

IoCreateDevice( ), 277-278 

DeviceType parameter, 279-280 

Exclusive parameter, 280 

IOCTLs, (Device 110 Controls), 198 

arguments, 200-205 

customizing, 199-200 

IoFlushAdapterBuffer( ), 456 

IoFreeMapRegisters(),457-459 

IoGetCurrentIrpStack 
Location ( ), 232 

IoGetDeviceO bject 
Pointer ( ), 236, 238 

IoGetDeviceObjectPrinter ( ), 217 

IoInitializeDpcRequest( ), 307 

IoMakeAssociatedIRP (), 229 

IoMapTransfer ( ), 191,451-455 

IoQueryDeviceDescription(),264-266 

IoRegisterDriverReinitialization, ( ) 
310-311 

IoRequestDpc( ), 367 

IoSetCancelRoutine(),351 

IoSetCompleteRequest ( ), 232 

IoSetCompletionRoutine ( ), 229-231 

IRP _MJ_DEVICE_CONTROL, 
parameters, 206 

IRP _MJ_READ, parameters, 205-206 

IRP _MJ_ WRITE, parameters, 206 

KeAcquireSpinLock(), 144-145 

KeAcquireSpinLockAtDpc 
Level( ), 145 

KeFlushIoBuffers(),444 

KeGetCurrentIrql( ), 124 

KeInitializeDpc(), 131-132 

KeInitializeSpinLock( ), 143 

KeInsertQueueDpc( ), 132 

KeLowerIrql( ), 124 

KeRaiseIrql( ), 124 

KeReleaseSpinLock(), 146 

KeReleaseSpinLockFromDpc 
Level( ), 146 

KeSetTargetProcessorDpc(), 136 

KeSetTimer( ), 423 

KeStallExecutionProcessor( ), 424 

KeSynchronizeExecution( ), 382-383 

KeWaitForSingleObject(),66 

Memory managers, 190-192 

MmGetMdlByteCount ( ), 191 

MmGetMdlByteOffset ( ), 191 

Mm GetMdlVirtualAddress( ), 
191,445-446 

MmGetSystemAddressForMdl ( ), 
190-191, 394 

MmProbeAndLockPages(),397 

PsCreateSystemThread(),425-426 

system services, 18 

variants, 34-37 

Win32,18 



G 

Windows NT V5.0, DriverEntry( ), 
630-631 

WriteIsDone( ), 381-382 

GDI (Graphics Device Interface), 
563-565 

generating 

Device Objects, 277-278 

worker threads, 425-426 

Group value (Registry), driver startup, 
531,534-535 

GroupOrderList subkey (control sets), 
105-106 

GUI setup, driver installation, 546 

guidelines, Filter driver, 239 

H 

HAL (Hardware Abstraction Layer), 13, 
31-32, 214-215 

abstractions, 31-32, 43-44 

DMA operations, 41 

IRQL, 40-41 

system clocks, 43 

Adapter Objects, 435-436 

buffer functions, 37-40 

data transfers, allocating resources, 
447-448 

device addressing, 32-33 

DIRQLs, 129 

functions 

internal write post buffers, 
flushing, 401 

selecting for device access, 34-37 

interrupt management, 40-41 

hierarchies 661 

rna p registers 

logical DMA addresses, mapping 
to physical addresses, 161-162 

managing, 437-439 

mapping IRQs to IRQLs, 129 

port functions, 399 

registers, accessing, 399-403 

resources, displaying in Registry, 
95-97 

selecting for Test System, 489-491 

system scatter/gather, 163-164 

HalGetAdapter( ) function, 307-309 

HalGetInterrupt( ) function, 302-303 

HalTranslateBusAddress( ) function, 
295, 297-299 

handles, 10 

handling 

D pes, PIO devices, 415-419 

exceptions, SEH (Structured 
Exception Handling), 89-92 

page faults, Memory Manager, 50 

read/write requests, DpcForIsr 
routine, 379-386 

hardware 

data transfers, controlling, 399 

IRQLs, 122-123 

logical addresses, 33 

Memory Management, protection 
modes, 51 

PTE (page table entry), 72 

resources 

describing, 260 

locating, 259 

Hardware Abstraction Layer, see HAL 

HARDWARE subkey, 101-103, 105-106 

hierarchies 

executive spin locks, defining, 
148-149 

storage subsystems, 552 
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high memory 

crash dumps, 56 

management, 52-53 

HIGH_LEVEL IRQLs, 129-130 

hives, 93-97 

HKEY_LOCAL_MACHINE 

HARDWARE subkey, 101-103 

SOFTWARE subkey, 103 

SYSTEM subkey, 104-106 

holding spin locks, 152 

hot fixes, 499 

hyperspace, 54 

I-J 
110 Subsystem, 167-169 

accessing memory space register, 
157-159 

Adapter Objects, 179 

architecture, 33-34 

asynchronicity, 180 

Busmaster DMA devices 

Common Buffer, 160 

logical addresses, 160-162 

Packet-Based, 159-160 

scatter/gather, 162-164 

configurability, 171 

consistency and structure, 168 

Device Objects, 176, 178-179 

Driver Object, 175 

drivers, 185-186 

Fast va, 240-241 

File Object, 174 

function codes, 190-192, 196-197 

IRPs (Va Request Packets), 181 

layered driver model, 181 

Neither va, implementing, 553 

partially opaque objects, 173 

PIa devices (Programmed Va), 
155-156 

platform independence, 170 

pre-empting, 172 

Request Packets, see IRPs 

request parameters, 205-208 

Stack location, 184-187 

status block structure, 125 

Information field, 329 

IRPs, 328 

Status field, 328 

synchronous processing, 427-431 

System DMA devices, 165-166 

timers, 315-317 

see also va Manager 

110 Manager, 20, 167-168 

AttachedDevice list, running, 238 

calling drivers, 188 

custom error messages, 516 

Device Objects, creating, 277-278 

Dispatch entry points, 322 

DpcForIsr mechanism, 136 

DPCs, requesting, 137 

Driver Objects, 176 

error log, 516 

fields, 522 

packets, allocating, 520 

File Objects, 20 

FSD integration, 556-557 

Mount operation, initiating, 221 

multiprocessor support, 172 

requests, completing, 330-331 

types, 213 

virtual-to-physical address 
translation, 88 

IDE/ ATA drivers, read/write operations, 
403-411 



identifying 

driver version, 525 

hardware resources, 259 

interrupts, 366 

ImagePath value (Registry), driver 
startup, 531, 540 

images 

executable 

copying over existing images, 69 

memory-mapped, 68 

file-mapping, 62-63 

HAL (Checked Build system), 
decompressing, 490-491 

implementing 

Fast I/O entry points, 554 

Neither I/O, 553 

spin locks on uniprocessors, 151-152 

system scatter/gather, 163-164 

Importance field (DPC objects), 134-135 

incrementing reference counts, 140-142 

indirection model, demand paged virtual 
memory, 46-47 

Information field, 110 status block, 329 

initializing 

devices, 310-311 

DPC objects, 131-132 

drivers, 247-248 

NDIS Miniport, 582 

Video Display, 561-563 

executive spin locks, 143 

initiating 

DMA transfers, 455 

write requests, Packet-Based DMA 
drivers, 468-469 

installing 

Checked Build, 489 

drivers, 541 

custom setup, 546-548 

interrupts 663 

GUI setup, 546 

text setup, 542-546 

Free Build, 490-491 

multiple system images, 
Test System, 508 

InstallShield, 548 

instantiation (processes), 62-63 

integrated networking, Windows NT, 14 

Intel platforms, most significant bits, 
71-75 

intelligent devices 

Common Buffer DMA, 440-441 

ISRs (Interrupt Service Routines), 
372-373 

Inter-process data sharing, 12 

interfaces 

call and return, 579 

device drivers, I/O Manager, 168 

intermediate drivers, 182, 214 

layering, 216-220 

NDIS, 580 

internal write post buffers, flushing, 401 

interpreting BSOD (blue screen of 
death),512-514 

interprocess communication 
facilities, 552 

Interrupt Objects, 179 

Interrupt Request Level, see IRQL 

Interrupt Service Routine, see ISRs 

interrupts, 118-120 

acknowledging, 366 

connecting to driver ISR, 303-306 

IRQLs 

APC_LEVEL, 125-126 

DISPATCH_LEVEL, 127-128 

HIGH_LEVEL, 129-130 

levels, translating, 302-303 

PASSIVE_LEVEL, 125 
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managing, 40-41 

NDIS Miniport drivers, 584 

NMI (Non-Maskable Interrupt), 
129-130 

sharing, 374-375 

spin locks, 150 

storing, 366-367 

interval-timer management, 43 

invalid pointers, 81 

invoking 

DPCs (Deferred Procedure Calls), 
132-134 

Message Compile, 524 

IoAllocateAdapterChannel( ) 
function, 448 

IoAllocatelrp ( ) function, 227-228 

IoAllocateMdl( ) function, 396 

IoAssignResources function, 287-290, 
292-293 

IoAttachDevice ( ) function, 237 

IoAttachDeviceToDeviceStack () 
function, 236 

IoCallDriver ( ) function, 226, 238, 324 

IoCompleteRequest( ) function, 324, 
327-329 

IoCreateDevice( ) function, 277-278 

IOCTLs (Device 110 Controls) 
code, 189 

arguments, 200-205 

buffering methods, 207 

functions, 198 

arguments, 200-205 

customizing, 199-200 

identifying requested operation and 
buffer lengths, 207-208 

IoAllocateErrorLogEntry(), 520 

IoFlushAdapterBuffer() function, 456 

IoFreeMapRegisters( ) function, 457-459 

IoGetCurrentirpStackLocation ( ) 
function, 232 

IoGetDeviceObjectPointer ( ) function, 
236,238 

IoGetDeviceObjectPrinter ( ) 
function, 217 

IoInitializeDpcRequest( ) function, 307 

IoMakeAssociatedIRP ( ) function, 229 

IoMapTransfer( ) function, 191, 
451-455, 457-459 

IoQueryDeviceDescription( ) function, 
264-266 

IoRegisterDriverReinitialization( ) 
function, 310-311 

IoRequestDpc( ) function, 367 

IoSetCancelRoutine( ) function, 351 

IoSetCompleRequest ( ) function, 232 

IoSetCompletionRoutine ( ) function, 
229-231 

IoStatus field, 186 

IoTimer entry points, 247 

IoWriteErrorLogEntry function, 522 

IO_ERROR_LOG_PACKET, 516 

IO_STACK_LOCATION, 187 

IRPs (110 Request Packets), 181-186 

buffer length, requesting, 398 

Buffered 110, 188 

characteristics, 195-196 

describing data buffers, 192-194 

case study, 209 

completing requests, 327 

completion notification, 229-233 

data buffers, describing, 188-189 

Buffered 110, 192-194 

Direct 110, 189-192 

evaluating descriptor options, 194 

Neither 110, 194 

passing to lower-layer drivers, 
227-229 



IRP _MJ_ WRITE (function code) 665 

Direct I/O, 188 

characteristics, 195 -19 6 

describing data buffers, 189-192 

MDLs (Memory Descriptor Lists), 
190-192 

DMA (Direct Memory Access), 189 

driver writers, options, 188-189 

Fast I/O, 240-241 

Filter driver, 236-238 

fixed part, 184-186 

Associatedlrp.MasterIrp field, 186 

Associatedlrp.SystemBuffer 
field, 186 

Cancel field, 187 

CancelIrql field, 187 

Cancel Routine field, 187 

fields, 186-187 

flags field, 186 

loStatus field, 186 

MdlAddress field, 186 

RequestorMode field, 186 

Trail. Overla y.DeviceQueueEntry 
field, 187 

Trail.Overlay.ListEntry field, 187 

Trail.Overlay.Thread field, 187 

UserBuffer field, 187 

handling, 208 

I/O Manager 

calling drivers, 188 

creating, 185-186 

fields in Stack location, 187-188 

function codes, 190-192, 196 

request parameters, 205-208 

running AttachedDevice list, 238 

I/O Stacks, locations, 184-186 

loCallDriver ( ) function, 226 

10CTLs (Device I/O Controls) 
code, 189 

arguments, 200-205 

functions, 198-200 

10_STATUS_BLOCK structure, 328 

layers, 224-229 

lookaside lists, 185-186 

Neither I/O, 189 

characteristics, 195 -19 6 

describing data buffers, 194 

passing to lower-layer drivers, 
225-226 

pending, 332-333 

PIO (programmed I/O) devices, 
processing, 392-393 

Plug and Play, 634 

processing, 208, 323 

queueing, 323 

Stack location, 187 

Control field, 188 

DeviceObject field, 188 

FileObject field, 188 

Flags field, 188 

Major Function field, 187 

Minor Function field, 187 

Parameters field, 188 

status values, 328 

thread priorities, 329 

validating, 323-324, 327 

zero length transfers, 325 

IRP_MJ_CLOSE (function code), 196 

IRP _MJ_CREATE (function code), 196 

IRP _MJ_DEVICE_CONTROL 
(function code), 197, 206 

IRP _MJ_INTERNAL_DEVICE_ 
CONTROL (function code), 197 

IRP _MJ_READ (function code), 196, 
205-206 

IRP _MJ_ WRITE (function code), 
197,206 



666 IRQL (Interrupt Request Level) 

IRQL (Interrupt Request Level), 40-41, 
122-123 

APC_LEVEL, 125-126, 322 

comparing to scheduling 
priorities, 123 

DIRQLs, interrupt spin locks, 150 

DISPATCH_LEVEL, 112, 
127-128, 323 

DPCs, 130-131 

objects 

queuing, 132 

spin locks, 145 

HIGH_LEVEL, 129-130 

levels, assigning, 124 

lowering, 125 

PASSIVE_LEVEL, 125,322 

relationship to IRQs (bus Interrupt 
Request Lines), 129 

see also DIRQLs 

IRQs (bus Interrupt Request lines), 
relationship to IRQLs, 129 

ISA bus, DMA operations, 161-162 

ISRs (Interrupt Service Routine), 28, 
40-41, 122-123,246,364-365 

comparing to DPC, 387-388 

CustomDpc routines, 368 

data transfers, 419-420 

intelligent devices, 372-373 

ISR-to-DPC communication, 373-374 

Packet-Based DMA drivers, 472-478 

PIO (Programmed 110) drivers, 
412-415 

processing, 250-251 

requesting DPCs, 137 

SCSI Miniport Drivers, 574 

storing, 366-367 

spin locks, 150, 365-370 

journals, 626 

K 

KB (Knowledge Base), 487 

KeAcquireSpinLock( ) function, 144-145 

KeAcquireSpinLockAtDpcLevel( ) 
function, 145 

KeFlushIoBuffers( ) function, 444 

KeInitializeDpc function( ), 131-132 

KeInitializeSpinLock( ), 143 

KeInsertQueueDpc( ) function, 132 

KeLowerIrql( ) function, 124 

KeRaiseIrql( ) function, 124 

KeReleaseSpinLock( ) function, 146 

KeReleaseSpinLockFromDpcLevel( ) 
function, 146 

Kernel Event Object, 27-28 

Kernel mode, 10, 51 

buffers, virtual paging, 60 

crash dumps, 56 

debugger 

extensions, 506-507 

threads, sorting, 116-117 

drivers, 167, 169, 212-215 

Device Object, 213 

FSDs (File System Drivers), 214, 
551-554 

Intermediate, 214 

Mini-Driver, 215-216 

Object Manager integration, 
556-557 

VM subsystem integration, 
555-556 

IRQL DISPATCH_LEVEL, 112-113 

objects, 27-28 

paging, 57 

routines 

APC_LEVEL IRQLs, 125-126 

DISPATCH_LEVEL IRQLs, 
127-128 



DPCs, 130-132 

HIGH_LEVEL IRQLs, 129-130 

PASSIVE_LEVEL IRQLs, 125 

spin locks, 142-150 

stacks, 66, 213 

structure, 223-224 

types, 213 

virtual address spaces, mapping to 
PIO devices, 156-159 

Win32 functions, 18 

KeSetTargetProcessorDpc( ) 
function, 136 

KeSetTimer() function, 423 

KeStallExecutionProcessor( ) 
function, 424 

KeSynchronizeExecution( ) function, 
382-383 

Ke WaitForSingleObject( ) function, 66 

keyboard drivers, installing, 541 

keys (Registry), 98-99 

CurrentControlSet, 99, 104-106 

data types, 99-100 

HKEY _LOCAL_MACHINE 

HARDWARE subkey, 101-103 

SOFTWARE subkey, 103 

SYSTEM subkey, 104-106 

Memory Manager, parameters, 86-87 

Microsoft, 99-100 

Services, driver startup, 530-531 

wide character strings, managing, 101 

KiSwitchToThread routine, 109 

Knowledge Base (Microsoft), see KB 

KPRC (kernel processor control block), 
architecture, 111-113 

KTHREAD structure (thread control 
block),109 

listings 667 

L 

laptops, suspending, 630 

Last Known Good 

control set, 538 

values (Select key), configuring, 105 

latched vectors, interrupts, 374-375 

latency 

DPC requests from ISR, 388-390 

interrupts, data transfers, 419-420 

layers 

driver models, 181,216-222,229 

IRPs, processing, 224-229 

layouts, PTEs (page tables entries), 72 

demand zero PTE, 75-76 

prototype PTE, 73-76 

Lazy Writer, 69 

level-triggered interrupts, 374-375 

levels (IRQLs) 

APC_LEVEL, 125-126 

DIRQLs, 128-129 

DISPATCH_LEVEL, 127-128, 130 

HIGH_LEVEL, 129-130 

lowering, 125 

PASSIVE_LEVEL, 125 

library CDs, MSDN (Microsoft Software 
Developer's Network), 487 

linking 

Device Objects, 221-222 

drivers, 503-504 

listings 

Build utility commands, 501-502 

look aside, 185-186 

MDLs (Memory Descriptor Lists), 
190-192 

threads, sorting, 116-117 



668 loading 

loading 

DLLs, 60-61 

drivers, 247-248 

thread context, 109 

locating 

hardware resources, 259 

I/O Stack, 184-187 

Registry values, 96-98 

locks 

hierarchies, 148-149 

serializing shared data access, 
141-142 

logging 

custom error messages, 517 

driver information, 515-516 

logical addresses, 33, 70, 436-439 

Busmaster DMA devices, 160-162 

data buffer fragments, accessing, 
450-451 

Port I/O space, mapping to kernel 
virtual address space, 296 

logical namespace file system 
drivers, 552 

lookaside lists, 185-186 

lookup tables 

demand paged virtual memory, 46-49 

multiprocessor systems, 47 

looping requests, 386 

low system space, management, 52-53 

lowering IRQLs, 125 

LPC (Local Procedure Call), 15-17,26 

LRU algorithm (least recently used), 
83-85 

M 

Mach operating system, 13-14 

macros 

ASSERT( ), defining, 509 

IoRequestDpc( ), 367 

mailing lists 

DDK-L, 627 

NTDEV, 627 

NTFSD, 627 

MajorFunction field, 187 

managing 

address spaces, 52-53 

DMA data transfers, Adapter 
Objects, 435-436 

physical memory, 82-83 

system objects, 24-25 

wide character strings, 101 

manipulating device data transfers, 
398-399 

manual startup, driver testing, 533 

map registers, 161-162,436-439 

logical DMA addresses to physical 
addresses, 161-162 

mapping to data buffer, 444-448 

system scatter/gather, 437-439 

Mapped Page Writer, 67-68 

mapping 

device memory to user spacem, PIO 
devices, 421-422 

file views, 55 

IRQs to IRQLs, 129 

kernel virtual address space to PIO 
devices, 156-159 

logical address to kernel virtual 
address space, 296 



virtual addresses to physical 
addresses, 52, 70 

context, 80-81 

page tables, 71-76 

probing, 88-89 

TLB (translation lookaside 
buffer),77 

masking processor activities, 122-123 

MCA buses, querying, 273 

MCI (Multimedia Control 
Interface),212 

MdlAddress field, 186 

MDLs (Memory Descriptor Lists), 
88-89, 190-192 

buffer addresses, mapping, 394 

opaque structures, 190 

measuring driver performance, 164 

memory 

address space, 33-34 

64-bit pointer support, 53 

loading DLLs, 60-61 

paged pools, 54 

pages, 12 

processes, 12 

system address space, 52-54 

user address space, 52-53 

buffers 

common buffer, allocating, 
461-464 

mapping to kernel virtual address 
space, 156-159 

TLBs (Translation Lookaside 
Buffers), 161-162 

data structures, FCBs (File Control 
Blocks), 557 

demand paged virtual memory, 12, 
46-47 

dirty pages, writing, 67 

Memory Manager subsystem 669 

DMA (Direct Memory Access) 
devices 

logical addresses, 160-162 

scatter/gather, 162-164 

hyperspace, 54 

layout, X86 platforms, 54-57 

paging, overlay technique, 48-49 

physical 

depleting, 50 

managing, 82-83 

transition state, 66 

PIO (Programmed I/O) devices, 
mapping to user space, 421-422 

PTEs (page table entries), 72 

demand zero, 75-76 

prototype, 73-76 

registers, accessing, 35 -37 

shared, data transfers, 58,400-403 

virtual 

address spaces, 50-51 

address translation, 69-77 

context, 80-81 

copy-on-write, 58-61 

VLM (Very Large Memory), 53 

Memory Management subkey (control 
sets), 105-106 

Memory Manager subsystem, 26 

address spaces, managing, 52-53 

breakpoints, reclaiming, 61 

file-mapping, 62-63 

FSD integration, 555-556 

functions, 190-192 

hyperspace, 54 

MDL (Memory Descriptor List), 
88-89 

page faults, 50 

page frame database, physical 
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memory management, 82-83 

page tables, updating, 65-66 

pages, reclaiming, 63 

PTEs (page table entries), 72 

demand zero PTE, 75-76 

prototype PTE, 73-76 

Section object, 62-63, 85 

system address space, 54 

tuning, 85-87 

User mode, 78 

working sets, 63-65 

memory-mapped files, 62-63, 68 

dirty pages, writing, 67 

VADs (virtual address descriptors), 
79-80 

Message Compiler, invoking, 524 

message reception, NDIS Miniport 
drivers, 584-585 

methods, buffering, 219 

Microkernel, 13, 27-28 

Balance Set Manager, 65-66 

DPC Queue, servicing, 133-134 

Mach operating system, 13-14 

Microsoft 

file system development kit, 
Web site, 557 

Microsoft key (Registry), 99-100 

Windows MessageCompiler, custom 
error messages, 517 

Windows NT V5.0, 629 

device drivers, 630 

DriverEntry( ) function, 630-631 

Mini Drivers, 215-216 

NDIS, 580-581 

initializing, 582 

interrupt service routine, 584 

transmit operations, 
completing, 584 

transport processing, 583-584 

SCSI Miniport, 569-571 

developing, 575 

initialization, 572-573 

interrupt service, 574 

requests, 573-574 

structure, 571 

Video Display, 560-561 

MinorFunction field, 187 

MmGetMdlByteCount ( ) function, 191 

MmGetMdlByteOffset ( ) function, 191 

MmGetMdlVirtualAddress( ) function, 
191, 445-446 

MmGetSystemAddressForMdl ( ) 
function, 190-191, 394 

MmProbeAndLockPages() function, 397 

mnemonics, IRQL levels, 123 

Modified Page Writer, 67 

modified state (pages), 83 

ModifiedNoWrite state (pages), 83 

modifying Registry values, 94-98, 
105-106 

modules, Windows NT subsystems, 
19-20 

most significant bits, Intel platform, 
71-75 

Mount operation, initiating, 221 

mouse drivers, installing, 541 

moving data to shared memory, 400-
403 

MPs (multiprocessor systems), 
dispatching threads, 110 

MSDN (Microsoft Developer's 
Network), subscribing, 486-487 

MSFS (Mail Slot File System), 552 

MSVC (Microsoft Visual C++), compil
er,486-487 

Multimedia Control Interface, see MCI 

multiple operating system emulation, 
14-15 
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multiprocessing, 12 

demand paged virtual memory, 
lookup tables, 47 

DPCs (Deferred Procedure Calls), 
execution, 376-377 

interrupts, concurrent operation, 365 

SMP (symmetric multiprocessing), 12 

spin locks, acquiring, 144-146 

synchronization, 139-142 

multiprocessors, 110 Subsystem 
support, 172 

multitasking, 11 

multithreading, 10 

Mutex, synchronizing shared data 
access, 142 

N 

Nagar, Rajeev, 557 

naming 

Device Objects, 279, 281-282 

symbolic links, 282-284 

Native NT APIs, 18 

NDIS (Network Driver Interface 
Specification),578-580 

Library, 580 

Miniport drivers, 581 

initializing, 582 

interrupt service routine, 584 

message reception, 584-585 

serializing, 585 

transmit operations, 
completing, 584 

transport processing, 583-584 

TDI drivers, 234 

near line data storage, 552 

objects 671 

Neither 110, 189 

buffer addresses 

accessing, 395-397 

describing, 194 

characteristics, 195-196 

implementing, 553 

validating, 325 

network file systems, redirectors, 551 

news groups 

Kernel mode driver writers, 627 

Microsoft, 627 

NMI (Non-Maskable Interrupt), 
129-130 

non-paged pool, 56, 81 

notification of completion, drivers, 
229-233 

NPFS (Named Pipe File System), 552 

NT Insider, The, 626 

ntdef.h file, utility macros, 171 

NTDEV, mailing list, 627 

NTFSD, mailing list, 627 

NTSTATUS.H file, 328 

null terminated strings, 99-100 

number field (DPC objects), 134 

Numega Technologies, Inc., SoftICE, 
488-489 

o 
Object Manager, 20-22, 24-25 

BaseNamedObjects directory, 108 

FSD integration, 556-557 

objects 

Adapter, 179 

Device, 176-179,217,219-220 

Disk Class driver, 218-220 

reference counts, 218 

requests directed to, 223 
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DPCs (Deferred Procedure Calls), 
130-131, 134 

importance, 135 

queuing, 132 

target processor, 135-136 

Driver, 175 

File, 174 

reference counts, 218 

110 Subsystem 

fully opaque, 173 

partially opaque, 173 

Interrupt, 179 

Kernel, 27-28 

obtaining adapter objects, 307-309 

opaque data structurers, 190 

operating systems 

images, 49, 62-63 

Mach, 13-14 

physical memory, sharing, 48-49 

uniprocessors, implementing spin 
locks, 151-152 

Windows NT 

Environment Subsystems, 15-17 

Executive level components, 14 

HAL (Hardware Abstraction 
Layer),31-32 

integrated networking, 14 

LPC (Local Procedure Call), 15-17 

Microkernel, 13-14,27-28 

multiple operating system 
emulation, 14-15 

native APIs, 18 

scheduling, 111-120 

synchronization, 130 

optimiZing Memory Manager, 85-87 

organization 

drivers, 247-248 

Registry 

data types, 100 

hives, 93-97 

keys, 98-99 

OSR, Web site, 629 

output 

BUILD utility, 504 

WinDbg, displaying, 508 

overlay systems, 48-49 

p 

Packet-Based DMA, 159-160, 439-440, 
480-481 

comparing to Common Buffer DMA, 
441-442 

data transfers, 442-448 

completing, 457-460 

programming, 449-456 

driver execution, propagating, 
474-478 

example, 464-471 

ISR (Interrupt Service Routine), 
472-473 

logical addresses, 160-162 

packets 

IO_ERROR_LOG_PACKET, 516 

error logs, allocating, 520 

paged pools, 54 

paging, 12 

dirty pages, writing to memory
mapped files, 68 

faults, 50, 77 

LRU algorithm (least recently used), 
84-85 

overlay technique, 48-49 

page directory, 71-75 

page frame database, physical 
memory management, 82-83 



physical 

free, 47 

transition state, 66 

recovery algorithm, 83-85 

removing from working set, 65 

states, 82-83 

tables, 50-51, 71-76, 81 

User mode, 58, 78 

virtual, 46-47 

access control bits, 56-57 

copy-on-write, 59-61 

sharing physical pages, 58 

tables, updating, 65-66 

virtual-to-physical translations, 50 

Paging File PTE (page table entry), 76 

parameters 

ByteOffset, 226 

Control subkey (control sets), 
105-106 

DpcForIsr entry point, 376-377 

110 requests, 205-208 

IoCompleteRequest( ) function, 
PriorityBoost, 329 

IoCreateDevice( ) function 

DeviceType, 279-280 

Exclusive, 280 

read requests, locating, 206 

Registry, configuring, 540-541 

Parameters field, 188 

parsing system names, 22, 24 

partially opaque objects (110 

Subsystem), 173 

PASSIVE_LEVEL IRQLs, 125 

PC Card drivers, installing, 541 

PCI buses, querying, 267-273 

pending requests, 332-333 

PIO (Programmed 110) devices 673 

performance 

data transfers, interrupt latency, 
419-420 

Memory Manager, tuning, 85-87 

Performance Monitor, checking 
drivers, 510 

periodicals, 626 

PFN database (page frame number), 
82-83 

physical memory 

free, 47 

managing, 82-83 

paging 

access control, 57 

memory depletion, 50 

reclaiming pages, 63 

sharing, 48-49, 59-61 

transition state, 66 

VLM systems (Very Large 
Memory),53 

Physical Memory Section Object, 85 

PICs (Programmable Interrupt 
Controllers),41 

PIa (Programmed 110) devices, 155-159 

ATA (AT Attachment) disk 
controllers, 402-403 

data transfers, 391-397 

designing, 420 

mapping memory to user space, 
421-422 

polling, 422-426 

synchronous driver 
implementations, 427-431 

DPCs (Deferred Procedure Calls), 
415-419 

ISRs (Interrupt Service Routines), 
412-415 

memory space register, accessing, 
157-159 

StartIo entry point, 406-411 
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platforms 

independence, 110 Subsystem, 170 

Intel, most significant bits, 71-75 

X86, memory layout, 54-56 

PNP (Plug N Play) IRPs, 634 

policies, scheduling, 112-113 

pool checking, enabling, 510 

port drivers, installing, 541 

port 110 space, 33-34, 296 

portable PCs, suspending, 630 

PO SIX, Environment Subsystem, 17 

pre-emptive multitasking, 11, 118-120 

see also threads 

preventing deadlocks, 147-149 

priorities, 11 

comparing to IRQLs, 123 

DIRQLs, 129 

DPCs, queuing, 133-134 

threads 

dynamic, 113-114 

IRP, 329 

real-time, 113-116 

PriorityBoost parameter, 
IoCompleteRequest() function, 329 

probing, 88-89 

Process Manager, 26 

processing, 10 

address space, 12, 79-80 

asynchronous execution, 17, 349 

comparing ISR and DPC, 387-388 

DMA data transfers, 434-435 

DpcForIsr routines, 250-251 

instantiation, 62-63 

IRPs, 323 

programmed 110 data transfers, 
391-397 

requests 

classes of context, 254 

context, 253-254 

device drivers, 248-252 

thread scheduling context, 254 

synchronous, 427-431 

synchronous execution, 17 

threads, 10 

arbitrary thread context, 133-134 

dispatching, 14, 107-110 

FSDs, calling, 553-554 

FSDs, Object Manager integration, 
556-557 

FSDs, VM subsystem integration, 
555-556 

interrupts, 118-120 

pre-emption, 118-120 

priorities, 113-114 

quantum exhaustion, 115 

quantums, 11, 117 

scheduling, 111-120 

sharing data structures, 140-142 

spin locks, 142-150 

states, 108-109 

values, establishing, 114 

working sets, 64-65 

processors, 13 

architecture 

logical addresses, 33 

x86, incompatible abstractions, 
43-44 

quantity, checking, 172 

Profiles subkey, 105-106 

Programmable Interrupt Controllers, 
see PICs 

Programmed I/O devices, 
see PIO devices 

programming devices, Packed-Based 
DMA transfers, 449-456, 470-471 



programs 

debugging, copy-on-write, 59-61 

multiple operating system emulation 
(Windows NT), 14-15 

processes, 10 

propagating driver execution, 458-460 

Common Buffer DMA devices, 463 

Packet-Based DMA drivers, 474-478 

properties, VLM (Very Large 
Memory),53 

protection mode (memory), address 
spaces, 51 

Prototype PTE (page table entry), 72-76 

prototypes, see functions 

PsCreateSystemThread() function, 
425-426 

PTEs (page table entries), 72 

demand zero PTE, 75-76 

page faults, 78 

prototype PTE, 73-76 

Q 

quantums, 11, 117 

exhaustion, 115 

pre-emption, 118-120 

querying 

bus configuration data, 267-273 

Registry, 260, 274-275, 277 

system 

configuration data, 262, 264-266 

processor quantity, 172 

queueing 

DPC objects, 132 

Driver, 337-340, 357-358 

pending IRPs, 323 

requests, 332-333 

System, 335, 337, 354-356 

registers 675 

R 

raising IRQL levels, 125 

read operations 

Adapter Objects, 436 

Dispatch routine, 403-411 

parameters, locating, 206 

ready queue, sorting threads, 116-117 

ready state (threads), 108 

READ_PORT_BUFFER_UCHAR 
function, 37-40 

READ_PORT_UCHAR function, 35 

READ_REGISTER_UCHAR 
function, 35 

real-time priorities, 11, 113 

BASEPRIORITY values, 
establishing, 114 

PRIORITY values, adjusting, 
115-116 

reclaiming 

breakpoints, Memory Manager, 61 

pages, 63 

redirectors, 551 

reference counts 

Device Objects, 218 

File Objects, 218 

incrementing, 140-142 

references (memory), invalid, 81 

Regedit.exe, 95 

HAL resources, displaying, 96-97 

Registry values, locating, 96-98 

Regedt32.exe, 94-96 

Regini.exe, 97-98 

regions, 54, 81 

registers 

accessing in memory space, 35-37, 
399-403 

data transfers, controlling, 399 

mapping to data buffers, 444-448 
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PIO address space, accessing, 
157-159 

Registry, 93-97 

CurrentControlSet key, 104-106 

data types, 99-100 

driver startup 

DependOnGroup value, 538-539 

DependOnService value, 538-539 

DisplayName value, 540 

ErrorControl value, 537-538 

Group value, 534-535 

ImagePath value, 540 

Services key, 530-531 

Start value, 532-533 

Tag value, 535-537 

Type value, 531-532 

editing, 94-98 

hives, 93-97 

HKEY _LOCAL_MACHINE 

HARDWARE subkey, 101-103 

SOFTWARE subkey, 103 

SYSTEM subkey, 104-106 

keys, 98-99 

data types, 99-100 

Select key, 104-106 

wide character strings, 101 

parameters, 216 

configuring, 540-541 

Memory Manager, 85-87 

querying, 260 

querying, 274-275, 277 

subkeys, 99-100 

values, 96-98 

viewing, 94-97 

Reinitialize entry point, 246 

releasing executive spin locks, 146 

removing pages from working set, 65 

reporting BSOD (blue screen of death), 
513-514 

request parameters, read requests, 206 

RequestorMode field, 186 

requests 

APC (Asynchronous Procedure 
Calls), 126 

asynchronous processing, 349 

buffer length, 398 

cancel processing, 350-353 

Common Buffer DMA transfers, 
460-464 

CustomDpc routines, 368 

DMA data transfers, processing, 
434-435 

DPCs (Deferred Procedure Calls), 130 

DpcForIsr, 365 

DPCs from ISRs, 137 

invoking, 132-134 

latency, 388-390 

objects, 131-132, 134-135 

Driver Queuing, 337-340, 357-358 

Environment Subsystem, 
bypassing, 17 

FSDs (File System Drivers), 553-554 

110, name resolution, 556-557 

IRPs 

pending, 332-333 

processing in layers, 224-229 

looping, 386 

native APIs, 18 

Packet-Based DMA transfers, 
442-448 

completing, 457-460 

device, programming, 449-456 

PNP (Plug N Play), 634 

processing, 341 

classes of context, 254 

context, 253-254 



device drivers, 248-252 

Dispatch routines and context, 
254-256 

drivers, 252 

thread scheduling context, 254 

queuing, 332-333 

read/write, DpcForIsr routine, 
379-386 

SCSI Miniport Drivers, 573-574 

synchronous processing, 341-348 

System Queuing, 335, 337, 354-356 

write 

initiating, Packet-Based DMA 
drivers, 468-469 

validating, Packet-Based DMA 
drivers, 467 

resolving 

deadly embrace deadlocks, 147-149 

system names, 20-22, 24 

resources 

abstractions, device addressing, 32-33 

developing FSDs, 557 

definition files, defining, 526 

HAL (Hardware Abstraction Layer), 
displaying in Registry, 95-96 

hardware 

claiming, 285-293 

describing, 260 

locating, 259 

processes, dispatching threads, 
108-110 

utilization list, displaying, 102-103 

restrictions, DMA device driver 
alignment, 479-480 

retrieving 

context information from ISR, 
369-370 

software, driver development 
environment, 486-489 

scatter/gather 677 

RISC processors, DMA operations, 
444-448 

routines 

AdapterControl, entry point, 449-451 

Boolean, FastIoRead, requesting 
FSDs, 554 

comparing DpcForIsr and 
CustomDpc, 377 

CustomDpc, 375 

Dispatch, 403-411, 465-469 

DpcForIsr, 375-379 

DPCs (Deferred Procedure Calls) 

custom, 368 

multiple invocations, 133-134 

servicing, 132 

DriverEntry, SCSI Miniport drivers, 
572-574 

HAL (Hardware Abstraction Layer), 
accessing PIO device memory space, 
157-159 

ISRs (Interrupt Service Routines) 

completing, 136 

requesting DPCs, 137 

KiSwitchToThread() function, 
dispatching, 109 

spin locks, 142 

executive, 143-150 

interrupt, 150 

StartIo, 403-411 

running state, pre-emption, 108, 
118-120 

s 
sample error message definition files, 

517, 519 

saving crash dumps, 514 

scatter/gather, 162-164,453-460 
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scheduling threads, 11, 14, 111-120, 
127-128 

scripts, installation, 542-546 

SCSI Miniport drivers, 216, 569-571 

Class drivers, 235 

developing, 575 

serializing, 571 

structure, 571 

initialization, 572-573 

interrupt service, 574 

requests, 573-574 

tasks, 570-571 

SDK (Platform Software Development 
Kit), preparing driver development 
environment, 487 

Section Object, 62-63, 85 

security events, logging, 515-516 

Security Reference Monitor, 25-26 

SEH (Structured ExceptionHandling), 89-
92 

Select key, 104-106 

seminars, Kernel mode training (Open 
Systems Resources, Inc.), 628 

serial port speed, increasing, 508 

Serializing 

APC processing, 126 

DDI drivers, 566-567 

Miniport drivers 

NDIS, 585 

SCSI, 571 

shared data access, 141-142 

Service Control Manager, 106 

service packs, 499 

ServiceGroupOrder subkey 
(control sets), 105-106 

Services subkey (control sets), 105-106 

Services.exe (Service Control 
Manager), 106 

servicing DPCs (Deferred Procedure 
Calls), 132-134 

Session Manager subkey (control sets), 
105-106 

shared memory, 58 

accessing, 400-403 

copy-on-write virtual memory, 58-61 

data transfers, 400-403 

file-mapping, 62-63 

physical memory, 47-49 

sharing 

data structures, 140-142 

interrupts, 374-375 

resources (threads), 108 

shutdown notification, 349-350 

SIDs (Security Identifiers), 25-26 

signal state, 27-28 

sites (Web) 

Microsoft file system development kit, 
557 

OSR (Open Systems Resources, Inc), 
628-629 

Windows NT Kernel-Mode Driver 
FAQ,628 

Slave DMA, 165-166 

SMP (symmetric multiprocessing), 12 

SoftICE (Numega Technologies, Inc.), 
488-489 

software 

driver development, accessing, 487 

IRQLs (Interrupt Request Levels), 
122-123 

SOFTWARE subkey, 103 

sorting thread lists, 116-117 

source code, debugging, 488-491, 
505-506 

Special Kernel APC, 126 

specifying IRQL levels, 124 



spin locks, 365 

executive 

deadlocks, preventing, 147-149 

debugging, 149-150 

releasing, 146 

holding, 152 

implementing on uniprocessor 
systems, 151-152 

multiprocessor synchronization, 134 

timeouts, 149-150 

SRBs (SCSI Request Blocks), format, 
573-574 

stacks, 185-186,213 

fields, 187-188 

kernel mode, unpinning, 66 

locating, 184-187,223 

organizing, 216-222 

Registry parameters, 216 

StackSize field, 219 

standards, NDIS (Network Driver 
Interface Specification), 578-579 

standby list, paging, 83-84 

Start value (Registry), driver startup, 
531-533 

starting Development System debugger, 
491, 494-498 

StartIo routine, entry points, 246, 
406-411 

startup, drivers 

auto start time, 533 

demand start, 533 

DependOnGroup value (Registry), 
538-539 

DependOnService value (Registry), 
538-539 

DisplayName value 
(Registry), 540 

ErrorControl value (Registry), 
537-538 

Group value (Registry), 534-535 

subkeys 679 

ImagePath value (Registry), 540 

Kernel mode, 530 

Last Known Good control set, 538 

Start value (Registry), 532-533 

Tag value (Registry), 535-537 

Type value (Registry),531-532 

states 

pages, 82-83 

pre-emption, 118-120 

threads, 108 

status codes, 590-623 

status field, 110 status block, 328 

storing 

interrupts, 366-367 

near line data, 552 

strings 

locating in Registry, 97-98 

null terminated, 99-100 

UNICODE_STRING, 101 

wide character, managing, 101 

structures 

Common Buffer DMA, 463 

drivers, 223-224 

Memory Manager 

MDL (Memory Descriptor List), 
88-89 

Section object, 62-63, 85 

SCSI Miniport Drivers, 571 

initialization, 572-573 

interrupt service, 574 

requests, 573-574 

subkeys, 99-100 

control sets, 105-106 

description, 541 

HKEY _LOCAL_MACHINE 

HARDWARE, 101-103 

SOFTWARE, 103 

SYSTEM, 104-106 



680 subscribing, MSDN (Microsoft Developer's Network) 

subscribing, MSDN (Microsoft 
Developer's Network), 486-487 

subsystems 

Executive, scheduling policy, 112-113 

see also Executive Subsystem 

110 Manager, 167-169 

Adapter Objects, 179 

asynchronicity, 180 

configurability, 171 

consistency and structure, 168 

Device Objects, 176, 178-179 

Driver Object, 175 

File Object, 174 

Interrupt Objects, 179 

IRPs, 181 

layered driver model, 181 

multiprocessor support, 172 

platform independence, 170 

pre-empting, 172 

see also 110 Manager 

VM (virtual memory), FSD 
integration, 555-556 

suspending laptops, 630 

swapping out kernel stacks, 66 

symbolic links, 282-284 

symbols (debugging), configuring, 
498-500 

symmetric multiprocess, see SMP 

synchronization, 130 

multiprocessor, 134 

shared data access, 139-142 

Synchronize Function entry points, 247 

synchronous 110 systems, 180 

Synchronous processing, 341-348, 
427-431 

system address space, 52-54 

system clocks, 43 

system configuration data, querying, 
262,264-266 

System DMA devices, 165-166, 480-483 

system events, logging, 515-516 

system failures, BSOD (blue screen of 
death),512-514 

system names, resolving, 20-22, 24 

system objects, managing, 24-25 

system processes, working sets, 64-65 

System Queuing, 335, 337 

ATAIIDE disk controllers, read/write 
operations, 403-411 

DMA data transfers, processing, 434 

driver execution, propagating, 
459-460 

IRPs 

cancellation, 354-356 

device validation, 392-393 

ISRs, 369-370 

system scatter/gather, 437-439 

system services, Windows NT, 18 

SYSTEM subkey, 104-106 

T 

tables, virtual lookup, 47-49 

Tag value (Registry), driver startup, 531, 
535-537 

Tag vector, format, 536 

target processor (DPC objects), 135-136 

tasks, SCSI Port Driver, 570-571 

IDI drivers, communicating with NDIS 
drivers, 234 

Test System 

Checked Build, installing, 489-491 

configuring, 488-491 

connecting to Development 
System, 491 
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debugging 

drivers, 505-508 

kernel mode, enabling, 491-494 

symbols, configuring, 499-500 

multiple system images, 
installing, 508 

software, accessing, 486-489 

templates, defining resource definition 
files, 526 

testing drivers on MP systems, 509 

text 

setup, driver installation, 542-546 

strings, locating in Registry, 97-98 

threads, 10 

asynchronous I/O operations, 181 

Balance Set Manager, 65-66 

context 

arbitrary, 133-134 

loading, 109 

data structures, sharing, 140-142 

dispatching, 14, 107-110 

disabling, 112-113 

KiSwitchToThread routine, 109 

FSDs (File System Drivers) 

calling, 553-554 

ObjectManager integration, 
556-557 

VM subsystem integration, 
555-556 

interrupts, 118-120 

IRPs, priorities, 329 

IRQLs 

APC_LEVEL, 125-126 

DISPATCH_LEVEL, 127-128 

PASSIVE_LEVEL, 125 

multitasking, 11 

pre-emption, 118-120 

translating 681 

priorities 

adjusting, 115 

comparing to IRQLs, 123 

dynamic, 113-114 

quantums, 11, 115, 117 

ready queue, sorting, 116-117 

scheduling, 111-120 

spin locks, 142 

executive, 143-150 

implementing on uniprocessor 
systems, 151-152 

interrupt, 150 

states, 108 

values, establishing, 114 

worker, creating, 425-426 

time-of-day clocks, 43 

timeouts, spin locks, 149-150 

Timer DPC entry points, 247 

TLBs (Translation Lookaside Buffers), 
161-162 

Trail.Overlay.DeviceQueueEntry 
field, 187 

Trail.Overlay.Thread field, 187 

Trail.OverlayListEntry field, 187 

transferring data 

data between driver and buffer, 
399-411 

data in ISR, 419-420 

DMA (Direct Memory Access) 

Common Buffer, 460-464 

Packet-Based, 442-460 

transition list, paging, 66, 83-84 

translating, 69-70 

bus addresses, 293-295, 297-299 

logical addresses to physical 
addresses, 437-439 

page tables, 71-76 

TLB (translation lookaside buffer), 77 

User mode, virtual-to-physical, 87-88 

virtual-to-physical, 50, 76 



682 Translation Lookaside Buffers 

Translation Lookaside Buffers, see TLBs 

transport proccesing, NDISMiniport 
drivers, 583-584 

trimming working set, 65 

troubleshooting executive spin locks, 
149-150 

see also debugging 

try ... except exception handler, Neither 
110 buffer validation, 325 

tuning Memory Manager, 85-87 

Type value (Registry), driver startup, 
530-532 

11 

UCHAR (function variant), 34-37 

ULONG (function variant), 34-37 

unicode strings, Device names, 279 

UNICODE_STRING structure, 101 

uniprocessors, implementing spin locks, 
151-152 

unloading, dynamic, 252 

unpinning kernel stacks, 66 

unused PTE (page table entry), 76 

UP (uniprocessor systems), 
dispatching, 110 

updating virtual page tables, 65 -66 

User mode, 51 

addresses, 52-53, 87-88 

drivers, 212 

Environment Subsystems, 15-17 

page faults, 78 

working sets, 64-65 

write access, paging, 58 

UserBuffer field, 187 

USHORT (function variant), 34-37 
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Compiler, 524 
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drivers, 510 
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97-98 

regedt32.exe, 94-96 

regini.exe, 98 

service.exe, 106 

winmsd.exe, 102-103 
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79-80 
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IRPs, 323-327, 392-393 
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write requests, Packet-Based DMA 
drivers, 467 
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BASEPRIORITY, establishing, 114 

IRQLs, defining, 122-123 

Registry, 99 

DependOnGroup, 538-539 

DependOnService, 538-539 

DisplayName, 540 

ErrorControl, 537-538 

Group, 534-535 
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102-103 

ImagePath, 540 

locating, 96-98 

Select key, 104-106 



SOFTWARE subkey, 
configuring, 103 

Start, 532-533 

SYSTEM subkey, configuring, 
104-106 

Tag, 535-537 

Type, 531-532 

threads, 118-120 

see also priorities 

variants (functions), 34-37 

vectors, translating, 302-303 

versions 

inserting resources in drivers, 525 

resource definition files, defining, 
526-527 

service packs, 499 

Video Display drivers, 559-563, 567-568 

Video Miniport drivers, 561 

Video Port drivers, 560-561 
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Registry values, 94-97 

resource utilitization list, 102-103 
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address space, 50-51 

mapping to PIO devices, 156-159 
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address translation, 69-70 

page tables, 71-76 
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User mode, 87-88 

context, 80-81 

copy-on-write, 58-61 

demand paged, 46-47 

DMA devices, scatter/gather, 162-164 

file-mapping, 62-63 

FSD integration, 555-556 
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pages, access control bits, 56-57 

PTEs (page table entries), 72, 75-76 

demand zero, 75-76 

prototype PTE, 73-74 

see also demand paging, virtual 
memory 

VLM (Very Large Memory), 53 

VPB (Volume Parameter Block), 221 
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Wait state (threads), 108 

Web sites 
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Microsoft file system development 
kit, 557 

OSR (Open Systems Resources, Inc.), 
628-629 

Windows NT Kernel-Mode Driver 
FAQ,628 

"well-known names," 108 

wide character strings, managing, 101 

Win32 

API, 14-15 

Environment Subsystem, 18 

error codes, 590-623 

subsystem, handling status codes, 328 

WinDbg utility 

activating on Development System, 
494-498 

drivers, debugging, 505-508 

extensible command interface, 
506-507 

output, displaying, 508 
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demand paged virtual memory, 12 

multiprocessing, 12 
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multitasking, 11 

processor architecture 
independence, 13 

Checked Build, debugging executive 
spin locks, 149-150 

Environment Subsystems, 15-17 

Executive level components, 13-14 

Cache Manager, 26 

110 Manager, 20 

LPC (Local Procedure Call 
facility), 26 

Memory Manager, 26 

Object Manager, 20-22, 24-25 

Process Manager, 26 

Security Reference Monitor, 25 

integrated networking, 14 

IRQLs 

APC_LEVEL, 125-126 

DISPATCH_LEVEL, 127-128, 130 

HIGH~LEVEL, 129-130 

PASSIVE_LEVEL, 125 

LPC (Local Procedure Call), 15-17 

Microkernel, 13-14, 27-28 

native APIs, 18 

Registry, 93-97 

data types, 99-100 

hives, 93-97 

keys, 98-100 

regedt32.exe, 94-97 

subkeys, 99-100 

values, 99-100 

threads 

dispatching, 107-110 

priorities, 113-114 

scheduling, 111-113 

version 5.0, 629 

device drivers, 630 

entry points, 631-633 
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Winmsd.exe, 102-103 

worker threads, generating, 425-426 

working sets, 55, 63-65 

WORM devices (write one read many), 
address translation, 76 

wrappers, 215-216 

write access 

Kernel mode, 57 

User mode, 58 

write requests 

Adapter Objects, 436 

Packet-Based DMA drivers 

initiating, 468-469 

validating, 467 

WriteIsDone() function, 381-382 

WRITE_PORT _BUFFER_UCHAR 
function, 37-40 

WRITE_PORT_UCHAR function 
prototype, 37 

writing 

crash dumps, 56 

dirty pages, 67-68 

to disk, 69 

to memory-mapped files, 68 

Dispatch routine, 403-411 

error codes for drivers, 328, 522 

x-z 
X86 platforms 

drivers, debugging, 495-498. 

memory layout, 54-57 

zero length transfers, IRPs, 325 

zeroed state (pages), 83 
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