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Introduction

This book describes the workings, both architectural and pragmatic, of stan-
dard kernel mode device drivers for Windows NT. It explains how to design
and develop these drivers, as well as how to compile, link, and debug them.

The book focuses on standard Kernel mode device drivers, which are the kind
of driver you would write to support a custom add-on device in Windows NT.
The types of devices for which a standard Kernel mode driver are typically
written range from those as simple as a specialized parallel or serial port to
devices as complex as DMA-based realtime video encryption devices. While
this book might be generally useful to developers writing other types of drivers
on NT, we have shamelessly restricted our discussion of details in most cases to
those relevant to the development of standard Kernel mode device drivers.

We have designed this book to be useful to software engineers who have never
written a device driver, to those who have written drivers on other operating
systems, and even to those engineers who have already written a few drivers on
Windows NT. The book does assume a basic knowledge of operating systems
internals and a solid knowledge of the C programming language. We also
assume that the reader has a general understanding of how devices work: what
device registers are and how interrupts work. But, even if you’ve got a vague
grasp of these topics, this book should be within your reach.

If you’ve written lots of device drivers on Windows NT, you will undoubtedly
know much of what we present in this book. In fact, you will probably already
know the vast majority of the information. However, we hope that we will be
able to add at least one or two items of information to the repertoire of even
these old NT driver hands.
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Not a Cookbook

This book is not a cookbook with easy answers about how to write device dri-
vers. Over the past five years, we’ve written several dozen NT drivers. We've
also taught something like 3,000 students how to write NT drivers in our three
day Windows NT Kernel Mode Device Drivers seminar. During that time
we’ve come to the conclusion that the cookbook approach to driver writing
only works if you’re writing a device driver for a cookbook. In other words, it
almost never works at all.

Rather, what we have done in this book is identify, organize, and present as
clearly as possible all the information that a typical device driver writer will
need to truly understand how Windows NT device drivers “work.” We have
mixed this with pragmatic hints, tips, and details which we have gained
through our experience designing and developing NT drivers for the real
world. We have deliberately traded breadth for depth. Thus, instead of cover-
ing every possible topic that might be of interest to some device driver writer
somewhere, we typically focus on those topics that we have found to be critical
for device driver writers to understand. We cover those topics fully and in
detail.

Basically, our goal was to give you all the information that we wish we had
when we started writing NT drivers. Understanding this information will allow
you to write not just any driver for your device, but the most optimal driver
for your device. It will enable you to make your own intelligent design trade-
offs. This approach will also allow you to make better sense of the information
presented in the Windows NT Device Driver Kit (DDK).

The order in which the material is presented in this book is loosely based on
our seminar. Our seminar, and thus this book, utilizes what we have come to
call “The OSR Approach” to teaching people how to write device drivers. This
approach emphasizes the fact that a device driver is really an operating system
extension. In order to extend Windows NT effectively, a developer needs to
understand many of the details of how the operating system works. Thus, we
approach the task of explaining how to write a device driver in the following
steps:

1. Start with general Windows NT operating systems concepts relevant to
driver writers

2. Progress to more detailed information about the operating system, such
~ as the virtual memory subsystem, interrupt management, and synchro-
nization issues

3. Next discuss in detail how the I/O Subsystem works, and how drivers
interact with the I/O subsystem and with each other
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4. Discuss in detail the implementation of standard Kernel mode drivers

5. Discuss, in great detail, the implementation of specific categories of stan-
dard Kernel mode drivers

6. Use the knowledge of standard Kernel mode drivers to describe alterna-
tive Windows NT driver architectures, such as SCSI, NDIS, and Video
Miniport drivers.

Organization of the Book

To reinforce the approach described previously, we have divided the book into
three parts. Part One (Chapters 1-7) discusses details of the overall Windows
NT architecture relevant to driver writers. If you’re new to working with the
Windows NT operating system at the internals level, understanding the con-
tents of these chapters is absolutely vital to understanding how to design
Windows NT drivers. If you’re an old hand at working with NT internals, you
should still probably skim these chapters to be sure that you’re up on all the
terminology we use in the remainder of the book.

Part Two (Chapters 8-20) covers the details of implementing standard kernel
mode drivers for Windows NT. In this part, we first discuss the basics of the
NT I/O Subsystem, and how I/O requests are described and processed. We then
move on to a detailed discussion of how Windows NT device drivers are orga-
nized. After that, we delve into the major sections of an NT device driver (first
Driver Entry, then dispatch entry points, followed by ISRs and DPCs). Next,
we cover in great detail how both programmed I/O and DMA data transfers
are performed in NT drivers. In so doing, we present code for two nontrivial
sample device drivers. Part Two ends with a discussion of how drivers are built

and debugged on NT.

As we discuss each of the topics in Part 2, we try to give you the benefit of our
experience of writing NT drivers. We tell you not only how certain things are
supposed to work, but how they actually do work in our experience. Our goal
here is to help you shorten your learning curve by avoiding many of the mis-
takes that we have made.

Part Three (Chapters 21-24) expands on the knowledge gained in the other
parts of the book, and provides a basic overview of some of the additional dri-
ver types used in Windows NT. This part relates the information already pre-
sented about standard Kernel mode drivers to File System drivers, NDIS drivers,
SCSI Miniport drivers, and Video drivers. In so doing, our goal isn’t to cover in
any depth or detail how to write these types of drivers. Rather, it is to provide
you with enough information to be able to understand the architecture and
structure of these special types of drivers.
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This book focuses on NT V4.0. However, we have gathered what information
on NT V5 that we can (and that we think is reliable) and placed that in
Appendix C. As of this writing, NT VS is still a pretty distant goal. More
information about NT VS5 can be found on our Web site.

Web Site Support

We have dedicated a portion of the OSR Web site (http://www.osr.com) to sup-
porting this book. On our Web site you will find complete downloadable
source code for the sample drivers presented in Chapters 16 and 17. You will
also find updates, technical errata, clever utilities, and other things that may be
useful to driver writers.

We also will be placing information on our Web site about NT V35 as it
becomes available. By the time NT V35 is fully stable, we expect to have the
two sample drivers presented in the book available in both NT V4 and NT V5
versions. Come visit our Web site often!

Conventions Used in This Book

The following conventions are used in this book:

Tips provide you with belpful ways of completing a task

A note explains terms or concepts that relate to what is discussed in the
text, but doesn’t warrant full explanation in the text, as it may be dis-
tracting.

A warning is a system critical reminder or guideline that provides cau-
tionary advice to help limit exposure to potential problems, failures, secu-
rity gaps, and so forth.

Function prototypes appear in boxes without shading and provide explanation
of function parameters.

Dispatch entry points appear in shaded boxes and provide explanation of entry
point parameters.
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Bug Bounty

This book contains thousands of technical details. We have worked very hard
to try to ensure every one of these details is correct. I have no doubt that we’ve
missed some. Thus, we ask for your help in ferreting out any remaining techni-
cal glitches that might remain in this book.

To this end, the authors and Macmillan Technical Publishing are pleased to
offer you a “bug bounty” on this book. If you are the first to report a signifi-
cant technical error in this book, we will provide you with gifts from both
OSR and the publisher as a token of our thanks. And, of course, we will keep
an up-to-date technical errata available on our Web site. This is part of the
commitment to technical accuracy that we make to you, our readers.
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Chapter 1

Windows NT Operating
System Overview

This chapter will review:

Windows NT Major Characteristics. This section describes the key archi-
tectural features of the Windows NT operating system.

User Mode Programs and Environment Subsystems. Environment
Subsystems provide the interface between most User mode programs and
the Windows NT operating system. This section describes the role that
Environment Subsystems play in the Windows NT operating system.

The Windows NT Executive. The Kernel mode component of the
Windows NT operating system that interfaces with applications and
makes operating system policy decisions is called the Executive. This sec-
tion provides an overview of the Executive’s subsystems, and the func-
tions those subsystems perform.

Windows NT Microkernel. The Windows NT Executive is built on top of
a Microkernel, which provides processor-specific support for the
Executive layer. This section describes the Microkernel.

Hardware Abstraction Layer. The Hardware Abstraction Layer (HAL)
decouples other parts of the operating system from the specific implemen-

tation of underlying hardware. This section provides a brief introduction
to the HAL.

This chapter provides an overview of the architecture and characteristics of the
Windows NT operating system. If you’re new to systems programming on
Windows NT, the information in this chapter will provide the background you
need to understand how the various pieces of the operating system that are dis-
cussed in later chapters fit together. Even if you’re experienced at using and
programming Windows NT, we recommend that you at least briefly skim this
chapter to become familiar with the terminology used throughout the book.




10  Part I: Windows NT Architecture

Windows N'T Major Characteristics

How do you begin to describe an operating system? One way is to look at its
major characteristics or key features. The major characteristics of Windows
NT are that it implements:

¢ Multithreading
e Pre-emptive multitasking

¢ Demand paged virtual memory, which utilizes a single, global common
cache

¢ Multiprocessing

¢ A processor-independent architecture

¢ An internal OS structure based on a modified Microkernel model
e Integrated networking

e Multiple operating system emulation

The following sections consider each of these characteristics in a bit more
detail.

Although different processors have differing numbers of privileged execu-
tion levels, Windows NT always uses only two processor-privilege levels.
It uses the most privileged processor execution level (Ring 0 on x86
architecture systems), which it calls Kernel mode. NT also uses the least
privileged mode of execution (Ring 3 on x86 architecture systems), which
is referred to as User mode.

Multithreading

The Windows NT model for executing programs is: Each program that exe-
cutes is represented by a process. The process is created when program execu-
tion is requested (for example, via the Win32 API function CreateProcess(), or
via the native NT system service NtCreateProcess()).

A process is simply a container for the various resources and attributes of the
program. For example, the process “owns” the address space used by the pro-
gram. It also owns any handles (more about that later) that the program opens.
Resource utilization and quotas are tracked by the process. The process also
owns one or more threads of program execution.

The unit of execution and scheduling on Windows NT is the thread. An initial
thread is created when a process is created. That thread may create additional
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threads (via the Win32 API function CreateThread() or the native NT
NtCreateThread() system service) at any time. Unlike in OS/2, for example, no
thread within the process has any special status of any kind.

It is absolutely vital to understand that threads in Windows NT are truly the
basic units of execution and scheduling. Unlike some UNIX operating systems,
Windows NT threads are not “lightweight threads” (although NT does sup-
port a variant of lightweight threads called fibers).

In Windows NT, each thread has its own scheduling priority and is
autonomous in terms of scheduling. That is, the operating system does not take
into account the process to which a thread belongs when it makes scheduling
decisions. Thus, all other things being equal, two runnable threads within the
same process will compete for CPU time in precisely the same way that two
runnable threads from two different processes do.

Multitasking

As in any modern, general-purpose operating system, Windows NT allows
multiple units of execution to run simultaneously. It rapidly switches among
these units of execution, allowing each to run for a short period of time. This
characteristic is termed multitasking.

In NT, multiple threads may run at one time. The decision of which thread is
selected to run is almost entirely based on priority. NT has 32 possible thread
priorities:

e Priorities 0-15 are dynamic priorities.
o Priorities 16-31 are real-time priorities.

NT implements what is known as pre-emptive multitasking. In NT, when a
thread is selected to run, it is scheduled to run for a time period called a
quantum. The quantum indicates the maximum length of time the thread will
be allowed to run before another thread is scheduled. If the thread waits or is
blocked during its quantum, a new thread is scheduled. While a given thread is
running, if a thread with a higher priority becomes runnable, the lower priority
thread is stopped from running and the higher priority thread is started. If the
thread runs for its entire quantum, the system pre-empts the thread from run-
ning and selects a new thread to run.

The quantum value varies considerably, according to the platform (Intel or
Alpha), the operating system type (Workstation or Server), whether the thread
in question is in the foreground or background, and the system tuning settings.
Suffice it to say that on an x86 architecture system running Windows NT
Workstation, the value used for quantum will typically range from 20
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milliseconds to 90 milliseconds. On NT Server, the values typically range from
120 milliseconds to 180 milliseconds.

Scheduling is discussed in more detail in Chapter 5, “Dispatching and
Scheduling.”

Demand Paged Virtual Memory

Windows NT utilizes a virtual memory architecture in which each process has
its own 4GB virtual address space. This virtual address space is subdivided into
pages, in which each page is 4KB on x86 architecture systems or 8KB on
Alpha architecture systems. Typically, user applications have access to 2GB of
their processes’ virtual address space, with the remaining 2GB of address space
to be used by the system. A tuning mechanism in Windows NT Enterprise
Server allows this to be extended to 3GB (leaving 1GB of address space for use
by the system).

Virtual memory pages are loaded on reference. When the amount of virtual
memory exceeds the amount of physical memory, excess read-only image pages
may be freed (to be reloaded later from their original location), and read-write
pages may be temporarily written to one of the available paging files.

The NT virtual memory model allows the same physical addresses space to
appear within the virtual address space of multiple processes. This enables the
implementation of various methods of inter-process data sharing.

Multiprocessing

Although Windows NT was originally designed to support both asymmetric
and symmetric multiprocessing systems, today only symmetric multiprocessing
(SMP) systems are supported. In NT’s model of SMP, all systems share the
same main memory, and each system has equal access to peripheral devices.
The operating system runs on all the processors in the SMP system. In
Windows NT, there is no concept of “master” or “slave” CPUs, as there is in
some other multiprocessing operating systems. In NT, thread-scheduling and
interrupt-handling can be equally distributed among all the processors in the
SMP complex.

The basic Windows NT architecture supports SMP systems with up to 32
CPUs. The actual number of CPUs that may be enabled, however, is governed
by licensing restrictions. By default, Windows NT Workstation systems support
up to only two processors. Windows NT Server systems, by default, support up
to four processors, and Windows NT Enterprise Server supports up to eight
processors. Hardware vendors, with appropriate license rights from Microsoft,
can alter these numbers.
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Processor Architecture Independence

Windows NT was designed to work on a wide variety of processors. To facili-
tate this, most Windows NT operating system code is written in the C pro-
gramming language. Use of Assembly language has been deliberately kept to a
minimum. Throughout its history, Windows NT has been supported on a vari-
ety of processors. As of this writing, Windows NT supports the x86 and Alpha
processor architectures.

The Windows NT operating system code is divided into three major groups:
* The Executive, including the major operating system subsystems
¢ The Microkernel
e The Hardware Abstraction Layer (HAL)

The relationship among these major groups can be seen in Figure 1.2 (which
appears later in this chapter). The Executive-level components utilize services
provided by both the Microkernel and the HAL. The HAL and Microkernel
work together to isolate the Executive-level components from processor archi-
tecture dependencies. This is one of the keys to Windows NT’s processor-
independent architecture.

Another aspect of Windows NT processor-independence that is of particular
interest to driver writers is that Kernel mode drivers are compatible across var-
ious processor architectures at the source level. This means that a driver writer
need only write a driver once. That driver can then be compiled by using the
Windows NT Device Driver Kit (DDK) to support any of the processor archi-
tectures that Windows NT supports.

Although there are a few drivers that are compatible between Windows

NT V4 and Windows 9x, the standard Kernel mode drivers described in
this book are not portable across these two operating systems. Windows
NT and Windows 9x have very different internal structures, and do not
share any significant operating system code between them.

Microkernel Model

The Windows NT operating system is based on a much-modified version of the
Microkernel architecture that was first pioneered by the Mach operating system.
Mach was designed by Carnegie Mellon University in the mid- to late-1980s.
In Mach, privileged-mode activities were restricted to a very small subset of
functions, which resided in the Microkernel.
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In Windows NT, the Microkernel is the module of the operating system that
typically deals with the mechanics of doing things on the system. It is the
Microkernel that is responsible, for example, for handling and routing inter-
rupts, and for saving and restoring thread context during a task-switching
operation. The Microkernel has deliberately been kept small and tight, and is
for the most part processor-dependent.

Services provided by the Microkernel are utilized by the Executive-level com-
ponents of the operating system. The Executive-level components are generally
responsible for implementing policy (that is, deciding what the operating sys-
tem should do next).

It is important to realize that Windows NT is an exceptionally weli-designed
operating system, which never arbitrarily adheres to a given set of architecture
constructs. Thus, although policy code is generally not implemented in the
Microkernel, exceptions are made when such a division is not practical. One
example of this is scheduling. In Windows NT, thread scheduling (or thread
dispatching, as it’s often called) is the responsibility of the Microkernel.
Although moving scheduling to an Executive-level component would have been
more architecturally correct, the resulting overhead would be unacceptable.

Integrated Networking

From the time of its initial inception, Windows N'T was designed to support
networking. This is in dramatic contrast to other PC-based operating systems
of the time (late 1989 and early 1990), which had networking added to them
as an afterthought.

Windows NT has always supported multiprotocol networks. Out of the box,
Windows NT supports the following protocol families:

¢ AppleTalk
e DLC

e NetBEUI
e IPX/SPX
e TCP/IP

Multiple Operating System Emulation

One of the least-known attributes of Windows NT is that it was designed with
the goal of being able to emulate multiple operating systems. Thus, NT sup-
ports execution of Win32, POSIX, 0S/2, DOS, and Windows 3.1 programs
with their native semantics.
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This is not to say that any programs written for any of the operating systems
listed can be executed without restriction on Windows NT. Rather, the point is
that Windows NT was designed at a time when there were many different
operating systems contending to be “the one dominant operating system.” It
was not clear, for example, whether the IEEE 1003 (POSIX) standard was
going to be preeminent in the marketplace, whether OS/2 was going to become
a major success, or whether Windows was going to catch the public’s fancy.
Thus, being rather clever folks, the Windows NT development team designed
an operating system that was capable of emulating each of the popular operat-
ing systems of the day, providing their native APIs and semantics.

As the market developed, the Win32 API has become preeminent. As a result,
the multiple operating system support features in Windows NT have become
less important. More emphasis is now being placed on getting Windows exe-
cutables to execute as fast as possible. However, understanding that these facil-
ities exist is vital to understanding the overall architecture of Windows NT.

User Mode Programs and Environment
Subsystems

Processes in Windows NT typically run under the control of a specific
Environment Subsystem. An Environment Subsystem is an independent User
mode process that exports a set of APIs for use by applications, exercises con-
trol over those applications, and communicates with the Windows NT operat-
ing system on behalf of those applications. Figure 1.1 shows the relationships
between a typical user application program, an Environment Subsystem being
used by that user application, and the Windows NT operating system.

As shown in Figure 1.1, a User mode application utilizes one or more APIs that
are provided by an Environment Subsystem. These APIs are typically imple-
mented by a client-side DLL, to which the user application links. When the
application calls an API function in the client-side DLL (as shown in Step 1 in
Figure 1.1), the DLL checks to see if it can handle the request locally. By this,
we mean that that DLL can process the request entirely within the client-side
DLL, without reference to any other module. If the request can be handled
locally, the client-side DLL processes the request and returns an appropriate
reply to the requestor.

Most requests cannot be handled directly within the client-side DLL, however.
When a function is called, the client-side DLL typically builds a message that
represents that function and sends the message to the Environment Subsystem
(Step 2 in Figure 1.1). The message is sent using Windows NT’s Local
Procedure Call facility, a highly optimized interprocess communication method,
designed specifically for this purpose.
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Figure 1.1. User mode program and Environment Subsystem.

When a thread running within the Environment Subsystem’s process receives
the request from the application, it will typically perform any Environment
Subsystem-specific processing required, and then translate that request to a
native Windows NT system service. The Environment Subsystem then issues
the Windows NT system service request on behalf of the user application (Step
3 in Figure 1.1).

The Windows NT operating system processes the system service, and returns
its results to the Environment Subsystem, which in turn forwards the relevant
portion of the results to the requesting user application. This is shown in Step
4 of Figure 1.1.

Hopefully, an example will make the relationships between the user applica-
tion, the Environment Subsystem, and the NT operating system clear. Suppose
an OS/2 application is running under the control of the OS/2 Environment
Subsystem. This application issues a DosExecPgm() function call (which requests
the execution of a child process). This function is implemented by code in the
0S/2 Environment Subsystem’s client-side DLL. When the DosExecPgm() func-
tion is called, the code in the DLL assembles all the arguments and a unique
code representing the function requested (DosExecPgm(), in this case), and sends
all this to the OS/2 Environment Subsystem using NT’s LPC facility.
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A server thread running as part of the OS/2 Environment Subsystem process
receives the message sent by its client-side DLL. It notes that it has received a
request to process a DosExecPgm() function. It then does whatever OS/2 sorts of
things it needs to do to process this request, implementing OS/2 semantics for
the request. For example, the Environment Subsystem determines whether the
execution of this new process was requested to be synchronous (in which case,
the request is not completed until the requested process exits), asynchronous
(and hence parallel with the requesting process), or background (totally inde-
pendent of the requesting process).

To actually execute the requested process, the OS/2 Environment Subsystem
issues the native Windows NT system service NtCreateProcess() to the NT
operating system. When the NT process is created in response to the request,
the OS/2 Environment Subsystem will keep track of that process as being a
child of the requestor. If the new process was requested to be synchronous, the
OS/2 Environment Subsystem waits until the process has completed to return
status to the requestor. If the request was for an asynchronous OS/2 process,
status is returned immediately.

The POSIX Environment Subsystem implements support for fork() and exec()
in the same way that the OS/2 Environment Subsystem implements support for
DosExecPgm(). The POSIX Environment Subsystem applies POSIX-specific rules
and semantics to the function calls it receives. It translates received requests
into native Windows NT system service calls on behalf of the requestor, and
sends these system service calls to the NT operating system for processing.
Results are passed back to the original requesting process.

Originally, the Win32 Environment Subsystem was implemented in precisely
the same way as the POSIX and OS$/2 Environment Subsystems. However, NT
V4.0 introduced a number of optimizations that resulted in much of the Win32
Environment Subsystem being moved from user mode to kernel mode. These
are discussed later in this chapter, in the section entitled “The Win32
Environment Subsystem.”

Bypassing the Environment Subsystem

In some cases, the client-side DLL can directly map a request to a native
Windows NT system service. This is the case when the native Windows NT
system service is close enough in terms of syntax to the original request, and
the Environment Subsystem does not need to perform any “value-added” pro-
cessing to ensure that its semantics are maintained. This direct path is shown
by the dotted line in Figure 1.1.

The most common case when the direct path is used is for file and device /O
operations. In addition to avoiding the overhead inherent in first sending the
request to the Environment Subsystem, the direct path allows the I/O operation
to initially execute in the context of the requesting thread.
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The Native Windows N'T API

Windows NT implements a native set of system services that were designed to
facilitate operating system emulation. This API was never intended for direct
use by applications programmers, however, and is therefore largely undocu-
mented.

A simple example of how the native NT API is specifically aimed at supporting
multiple Environment Subsystems is demonstrated by the NtcreateFile() func-
tion. This system service may be used to either create a new file or open a file
that already exists. In either case, part of the information passed to the
NtCreateFile() system service indicates whether the call should treat the sup-
plied filename as case-sensitive or not. This is important because in the Win32
API, filenames are always non—case-sensitive. Thus, the names foo.txt and
F00.TXT (in the same directory) refer to the same file. However, in POSIX, file-
names are always considered case-sensitive. Thus, the names foo.txt and
F00.TXT (and Foo.Txt, and F00.txt, and so on) all refer to different files.

A number of Windows NT native system services are documented in the DDK
in their zw variants. The functions documented include those used for VO such
as ZwCreateFile(), ZwReadFile(), ZmiriteFile(), ZwClose(),
zwSetInformationFile(), and zwGetInformationFile(). Although either variant of
the function may typically be called from Kernel mode, the zw variant is used in
place of the Nt version to cause the previous mode (and hence the mode in
which the request was issued) to be set to Kernel mode.

To request a native Windows NT system service, the service parameters are
pushed on the stack and the system service is called. On x86 architecture sys-
tems, Windows NT native system services are called by using software inter-
rupt 2E. On Alpha systems, system services are called by using the syscall
instruction.

The Win32 Environment Subsystem

Starting with Windows NT V4.0, changes were made to the operating system
to enable faster support for programs running under the control of the Win32
Environment Subsystem. Prior to NT V4.0, all requests, except for file and
device I/O requests, were sent to the Win32 Environment Subsystem in the
manner described previously for the POSIX and OS/2 subsystems. Starting
with NT V4.0, however, many of the Win32 functions were moved directly
into Kernel mode. This allows the Win32 client-side DLLs (the Win32 subsys-
tem uses multiple client-side DLLs) to use the direct path of sending requests
directly to the Windows NT operating system more often than was previously
possible.
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The modules moved from User mode to Kernel mode in NT V4.0 include the
Window Manager code, the Graphics Device Interface (GDI), and display dri-
vers. Moving this code into Kernel mode significantly reduces the overhead of
making graphics requests. This is because significantly fewer transitions
between User mode and Kernel mode are required in NT V4.0 to perform a
given function.

The Windows NT Executive

The Windows NT operating system is divided into individual modules, as
shown in Figure 1.2.

Executive and System Services

Window Manager

110 and
Graphics Device
Manager Obi Security | Local Cach ra?me,face Executive
" ject | Reference | Process | procedure :Allemory acne
Kernel anager | ponitor | Manager Call anager | Manager Graphics
Mode Device
Drivers Drivers
| Microkernel |
I Hardware Abstraction Layer (HAL) ]

Figure 1.2. Windows NT operating system structure.

The Windows NT operating system is comprised of a number of different mod-
ules. As Figure 1.2 illustrates, and as previously discussed in this chapter, these
modules are grouped together into three groups:

* The Executive, which includes the operating system subsystems
e The Microkernel
e The Hardware Abstraction Layer (HAL)

The Executive is actually a specific module within the NT operating system
that is responsible for many miscellaneous functions, including system service
dispatching and managing the paged and non-paged system pools. The
Executive module utilizes services provided by the other Executive-level com-
ponents (such as the /O Manager, Object Manager, and so forth), and thus
lends its name to this entire group of operating system modules.

In addition to the Executive module itself, the major components within the
Executive level of the operating system are:

e ]/O Manager
¢ Object Manager
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e Security Reference Monitor
® Process Manager

® Local Procedure Call facility
¢ Memory Manager

e Cache Manager

* Win32 support, including Window Manager, and Graphics Device
Drivers.

The following sections describe each of these components in more detail.

I/0 Manager

As you can probably guess from its name, the I/O Manager is responsible for
managing the input/output subsystem of the operating system. The I/O
Manager does this by supporting create, read, write, set information, get infor-
mation, and a whole host of other operations on File Objects. The /O
Manager implements what is basically a packet-based asynchronous I/O sub-
system that uses I/O Request Packets (IRPs) to describe I/O operations.

The I/O Manager is also responsible for providing a framework for Kernel
mode drivers, and provides support for those drivers. Kernel mode drivers are,
in fact, dynamically loaded into the operating system and may be thought of as
part of the /O Manager. Because much of this book is about the /O Manager,
and how it supports and provides an environment for device drivers, we will
defer any additional discussion of the /O Manager for later. More general
information about the /O Manager appears in Chapter 9, “The /O Manager.”

Object Manager

The Object Manager is a key part of the Windows NT operating system.
Programmers who mostly work in User mode are typically unaware of the
Object Manager’s existence because it is not directly manipulated from User
mode and, by default, its namespace is not visible.

The Object Manager is responsible for maintaining a single namespace for all
named objects on the system. It is also responsible for the creation, deletion,
and management of named and unnamed NT system objects. The following
sections describe some of the major duties performed by the Object Manager
that are of particular relevance to driver writers.

Resolving System Names

As mentioned previously, the Object Manager is responsible for maintaining a
single namespace for all named system objects. In fact, the Object Manager
serves as the root of all namespaces on a Windows NT system. The Object
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Manager’s namespace can be examined by using the objdir utility that is pro-
vided with the DDK, or the winobj utility that is provided with the SDK. Figure
1.3 shows the Object Manager’s top-level namespace, as displayed by objdir.
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Figure 1.3. The Object Manager’s root namespace.

To illustrate how the Object Manager’s namespace is used in Windows NT,
let’s examine how the Object Manager works together with the /O Manager
to parse a file specification provided to a file open request.

A user that wants to access a file will typically use the Win32 API to issue a
function call that might look something like the following:

hFile = CreateFile( "c:\\foo\\bar.txt", /] dev, path, name
GENERIC_READ ! GENERIC_WRITE, /1 access
0, /| share mode
NULL, /1 security
OPEN_EXISTING, /] disposition
FILE_ATTRIBUTE_NORMAL, /1 attributes & flags
NULL); /] template file

If successful, this function call creates a File Object (that’s why the function is
called createFile) that represents an open instance of the named file, on the
named path, on the named device. The function returns a handle to this File
Object that may be used for subsequent I/O operations on the file.
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In assisting the I/O Manager with processing this function, it is the Object
Manager that is responsible for initially parsing the supplied name
(c:\foo\bar.txt). It passes that part of the name that it cannot parse on to the
I/O Manager for interpretation by the appropriate file system.

As previously discussed, when the createFile() Win32 API call is issued, the
Win32 Environment Subsystem’s client-side DLL converts this function call to
the native NT system service NtCreateFile(). As part of the process of convert-
ing the parameters, Win32 converts the supplied name to a native format name
that Windows NT can understand. It does this by pre-pending the supplied
name with the string “\?2\”. Thus, when it issues the native NT system service
NtCreateFile(), it does so by using the name \??\c:\foo\bar.txt.

The Executive’s system service Dispatcher calls the I/O Manager to process the
NtCreateFile() request. The I/O Manager in turn calls the Object Manager to
create a File Object to represent the entity named in the function call. Part of
the Object Manager’s job in creating the File Object is to parse the provided
name.

The Object Manager parses the provided name, one piece at a time, with each
piece being delimited by a backslash character. Thus, the Object Manager
starts by looking to see if it has an entry in its top level namespace that corre-
sponds to “\?2”. As Figure 1.3 illustrates, in fact it does, and this entry is an
Object Manager directory. Figure 1.4 shows a sample of the contents of the
Object Manager’s \?2.
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Figure 1.4. The Object Manager’s \7? directory.
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With the first piece of the name resolved, the Object Manager next attempts to
resolve the next piece of the name within the \?7 directory. The next piece of
the name is “c:”. As shown in Figure 1.4, ¢: represents a symbolic link to the
Object Manager name \Device\Harddiske\Partition1. Thus, the Object
Manager substitutes \Device\Harddiske\Partitiont for the name c: in the origi-
nal name.

The Object Manager continues parsing the name. It returns to its base directo-
ry and attempts to resolve the first piece of the name, which is now “\Device”.
As shown in Figure 1.3, this is a directory, which the Object Manager next
opens. Figure 1.5 shows the contents of the \Device directory on a sample
system.
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The Object Manager continues parsing pieces of the supplied name. Within the
\Device directory, the Object Manager finds an entry that represents Harddiske.
This is also a directory, the contents of which are shown in Figure 1.6.

Now within the \Device\Harddiske directory, the Object Manager continues
parsing the provided name. The next piece of the name is Partition1, which
represents the name of a Device Object within this directory. Because a Device
Object was located (and not another Object Manager directory or symbolic
link), the Object Manager passes control to the /O Manager’s parse method
for Device Objects.
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Figure 1.6. The Object Manager’s \Device\Harddiske directory.

The Object Manager passes the I/O Manager’s parse method the remaining
part of the name (\foo\bar.txt) to be resolved. The /O Manager’s parse
method resolves this part of the name by finding the File System mounted for
the indicated Device Object, building an I/O Request Packet representing the
Create File request, and thus passing the remaining part of the name on to the
File System for parsing and validation. If the file system decides the supplied
name is valid, and if the requested access can be granted to the entity by the
file system to the user, then the I/O Manager and Object Manager complete the
request successfully, returning a handle to the created File Object.

System Object Management

As mentioned previously, in addition to parsing names, the Object Manager is
responsible for the actual creation, deletion, and management of NT system
objects. These objects include the File Objects, Device Objects, and Driver
Objects used by the I/O Manager; the Process Objects and Thread Objects
used by the Process Manager; and Section Objects used by the Memory
Manager, among others. The Object Manager is also respounsible for maintain-
ing reference counts on system objects, managing object handles, and tracking
the access granted to each object via each handle. The Object Manager also
supports converting a handle to a given object to a pointer to that object.

To illustrate the /O Manager’s role in the management of system objects, let’s
expand on the open file example that we started in the previous section.

As discussed in the previous section, to access a file, a user must create a File
Object that represents that file. This File Object can be created by using the
Win32 API function createFile() or directly via the NT native API
NtCreateFile(). Both of these functions allow the caller to specify the name of
the entity to be accessed (such as the device, directory path, and name of the
file to be opened), as well as the access being requested to the entity.
NtCreateFile() is processed by the I/O Subsystem, which calls the I/O Manager
to create a File Object on its behalf.

If the Object Manager successfully creates the File Object, and if the Object
Manager, I/O Manager, and file system successfully parse the supplied file
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specification, the /O Manager returns a handle to the newly created File
Object to the requestor. This implies that the access requested to the entity
underlying the File Object was successfully granted. The Object Manager cre-
ates an entry in the handle table for the current process to track this File
Object, and records the access that was successfully granted to the object.

On subsequent I/O operations to this File Object, the requestor supplies the
File Object handle (typically referred to as a file handle, for convenience).
Using the current process’ handle table, the Object Manager converts the file
handle to a pointer to a File Object and increments the reference count on the
File Object. At the same time, the Object Manager also checks to see if the
access required by the I/O operation that is being requested is allowed by the
access that was granted to this File Object when the File Object was created. If
the access is not allowed, the I/O Manager immediately aborts the /O opera-
tion with an error status. If the requested access is allowed, the /O Manager
proceeds to build an /O Request Packet that represents the requested /O oper-
ation on this File Object.

As can be seen from the preceding description, the Object Manager plays a key
role in the Windows NT system. It’s important to realize that the Object
Manager doesn’t just work with the /O Manager, as shown in the preceding
example. Rather, the Object Manager works with all the Executive-level
subsystems in much the same way as it works with the /O Manager in the
example.

Security Reference Monitor

The Security Reference Monitor is responsible for implementing Windows NT
security access policy. As such, it is not of much interest to device driver writ-
ers. However, its existence and its responsibilities are worthy of a brief men-
tion.

The Security Reference Monitor implements Access Control Lists (ACLs) and
Security Identifiers (SIDs) for use in implementing system security policy. It
supports a unique per-thread security profile, and supports security-based vali-
dation for access to objects.

It is particularly interesting to note that Windows NT implements a unified
security policy. That is, access to all system resources (that are access-
controlled) is the responsibility of the Security Reference Monitor. For exam-
ple, access validation to files on the NTFS file system is implemented not by an
internal NTFS security policy, but rather by NTFS utilizing the services provid-
ed by the Security Reference Monitor.

Another interesting aspect of the Security Reference Monitor is support for
what NT refers to as impersonation. This allows one thread to pass along to
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another thread the right for the second thread to use the first thread’s security
credentials. This is most often used in client-server operations. In these opera-
tions, the client will authorize the server to impersonate the client, thereby
allowing the server to use the client’s security credentials when performing a
particular operation.

Process Manager

The Process Manager is responsible for process and thread creation and dele-
tion. The Process Manager accomplishes this by working with the Object
Manager to build Process Objects and Thread Objects, and with the Memory
Manager to allocate virtual address space for the process.

Local Procedure Call Facility

The Local Procedure Call (LPC) facility provides a local implementation of the
RPC interprocess communication service. LPC supports passing data between
clients and servers by using either messages or shared memory. One interesting
feature of LPC is that messages may be passed between clients and servers
without the overhead of a scheduling operation.

LPC was specifically designed for use between an application and its
Environment Subsystem. As a result, the API needed to access LPC is not docu
mented. It is interesting to note that RPC requests between applications on the
same Windows NT system will actually use LPC as the transport mechanism.

Memory Manager and Cache Manager

The Memory Manager and Cache Manager together form what we refer to as
Windows NT’s Virtual Memory Subsystem. The Virtual Memory Subsystem is
described in detail in Chapter 3, “Virtual Memory.” Here, we will mention
some of the main characteristics of NT’s implementation of virtual memory as
a quick introduction to the topic.

The NT Virtual Memory Subsystem provides a 32-bit demand paged environ-
ment. Although 64-bit support is being added to Windows NT, it is not avail-
able in NT V4.0 or earlier.

The Virtual Memory Subsystem supports the sharing of physical pages among
multiple processes. It supports shared read-only as well as shared read-write
memory segments.

The Virtual Memory Subsystem is responsible for implementing Windows NT’s
data and file caching mechanisms. File data may be accessed on Windows NT
via the I/O Manager, using standard read and write operations to files, or via
the Memory Manager by mapping the file’s data directly into virtual memory.
To ensure cache coherency between these two access methods, the Windows
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NT Cache Manager implements a single, global, common cache. This single
cache is used to cache both process data pages and file data pages.

Win32 Support Components

As discussed previously, the Win32 support components are new to NT V4.0.
The Window Manager implements Windowing, Windows messaging, and the
like. It comprises much of that code that formerly resided in the User compo-
nent of the Win32 Environment Subsystem.

The Win32 support components also include the Graphics Device Interface
(GDI) and its associated display drivers. These facilities interface between GUI
applications and graphics devices, and provide a set of standard text and draw-
ing primitives.

Windows NT Microkernel

The Windows NT Microkernel is responsible for providing processor-specific
support for all low-level functions in the operating system. Unlike the HAL,
which provides support for processor resources that can change among specific
models within a family of processors, the Microkernel provides support for
basic architectural constructs, such as handling and dispatching interrupts, sav-
ing and restoring thread context, and multiprocessor synchronization.

The Microkernel exports two different types of kernel objects: Dispatcher
Objects and Control Objects.

Kernel objects are distinct from Object Manager (or Executive-level) objects.
Kernel objects provide the lowest level of support for certain entities. Kernel
objects are often the basis for Object Manager objects.

One type of kernel object is the Dispatcher Object. Dispatcher Objects are used
for scheduling (or “dispatching,” as it’s called in Windows NT) and synchro-
nization. Dispatcher Objects are prefixed by a common DISPATCH_HEADER (the
definition of which appears in the standard DDK header file, ntddk.h). A pic-
ture of the DISPATCHER_HEADER is shown in Figure 1.7.

Dispatcher Objects have an attribute called “signal state.” Using the appropri-
ate system service a caller can wait, with an optional timeout, on a Dispatcher
Object until the object is signaled. Kernel Dispatcher Objects include events,
mutexes, semaphores, and timers.

Many kernel objects may be directly manipulated by device drivers and the
Executive. A simple example of such an object is the kernel Event Object.
Space for a kernel Event Object may be allocated from any non-paged loca-
tion, including non-paged system pool. A driver may then initialize this event
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(using the Microkernel-supplied function KeInitializeEvent()) to either sig-
naled or not-signaled state. Any Kernel mode thread with a pointer to this
object may then wait for it to become signaled by calling the Microkernel func-
tion KeWaitForSingleObject().

Inserted Size Absolute Type

SignalState

WaitListHead (LIST_ENTRY)

Figure 1.7. DISPATCHER_HEADER.

An example of how a Kernel Object can form the basis of an Executive-level
object is also provided by the Event Object. Event Objects in the Win32 sub-
system (created by the Win32 API function CreateEvent()) are actually
Executive-level (Object Manager-created and managed) Event Objects. Each
Executive-level Event Object contains a kernel-level Event Object. Waiting for
an Executive-level Event Object is accomplished via the Win32 API function
WaitForSingleObject () which, once translated to an NT native system service
and processed by the Object Manager, results in a call to
KeWaitForSingleObject() on the kernel Event Object that forms the basis of the
Object Manager’s Event Object.

The second type of object exported by the kernel is the Control Object. These
objects are used to control specific aspects of system operations. Control
Objects include Asynchronous Procedure Call (APC) Objects, Deferred
Procedure Call (DPC) Objects, Interrupt Objects, and Profile Objects.
Although it is a bit complicated to explain Control Objects at this point, one
example is the Interrupt Object. The Interrupt Object is responsible for con-
necting a specific interrupt vector to a device driver’s Interrupt Service
Routine (ISR).

Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) is responsible for providing a stan-
dard interface to processor-specific resources. This standard interface is used by
the Microkernel and the Executive-level components. Understanding this stan-
dard interface is one of the keys to understanding how Windows NT imple-
ments its processor-independent architecture.

The HAL is discussed in detail in the next chapter, Chapter 2, “Achieving
Hardware Independence with the HAL.”



Chapter 2

Achieving Hardware
Independence with the HAL

This chapter will review:

The HAL’s Role in the Windows N'T Operating System. The HAL pro-
vides a standard interface to processor resources for use by the rest of the
NT operating system. This section discusses the HALs specific role in
building the portable operating system environment in which NT runs.

Device Addressing. This section describes the abstraction provided by the
HAL for identifying a specific device address on a given /O bus.

I/0 Architecture. The HAL provides a set of standard routines that pro-
vide access to device registers. This section describes these routines and
how they may be used to access device addresses that reside in port VO
space or memory space.

Interrupt Management. This section introduces the HALs model for
interrupt handling.

DMA Operations. The HAL, working with the /O Manager, provides a
unique model for DMA operations on Windows NT. This section intro-
duces the basics of that model.

Other HAL Facilities. This section describes the role the HAL plays in
clock and timer management, interfacing to the BIOS, and handling sys-
tem configuration.

Processor Architecture Differences Not Handled by the HAL. The HAL
doesn’t even attempt to handle certain basic differences in processor
architecture. This section describes a number of those differences.
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This chapter discusses how the Hardware Abstraction Layer (HAL) helps pro-
vide processor architecture independence on Windows NT systems. You will
also learn about some of the fundamental services that the HAL provides.
Finally, the chapter ends with a discussion of the types of processor
architecture-specific features that the HAL does not include in its abstractions.

The HAL’s Role in the Windows NT
Operating System

One of the most unique attributes of the Windows NT operating system is that
it is not dependent on the design of one particular hardware platform or archi-
tecture. This is in strong contrast to earlier systems, such as OS/2, Windows,
and DOS, which were very closely tied to their underlying system hardware.
The component of Windows NT that provides this hardware independence is
the Hardware Abstraction Layer (HAL).

Fundamentally, the HAL is merely a set of operating system services that device
drivers utilize to interact with both processor resources and their specific hard-
ware. Although there is no way for NT to enforce the requirement that a
device driver utilize the HAL services, the advantages of portability are lost if
the HAL isn’t used. To use HAL services, device drivers (and other system
components) call HAL functions and utilize HAL macros. These functions and
macros handle converting the driver’s requests into operations appropriate for
the particular hardware platform. In many cases, this conversion is straightfor-
ward. For some platforms, however, the HAL may have to perform consider-
able additional processing in order to perform the requested operation.

The HAL implements a standard model (or “abstraction,” as it’s often called)
of available system resources, and a standard view of certain hardware plat-
form capabilities. The HAL also provides a standard interface through which
all other Executive-level system components access these resources. This inter-
face does not change, based on the system upon which NT is running. Thus,
the HAL maps requests made by other operating system components to its
abstract interface to the actual hardware existing on a given platform. Figure
2.1 illustrates this model.

It is very important to understand that the HAL does not provide abstractions
for every processor architecture-dependent facility that exists, or that could
exist, in a system. Rather, the HAL’s abstractions are typically limited to those
items that either

¢ Are regularly used by operating system components other than the
Microkernel and the HAL itself
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® Could change among specific system implementations within a given
processor architecture

Standard HAL Interface: Standard HAL Interface:
READ_PORT_xxx(), READ_PORT _xxx(),
READ_REGISTER_xxx(), READ_REGISTER_xxx(),
HalTranslateBusAddress(), etc. HalTranslateBusAddress(), etc.

Standard x86 HAL Specific Alpha HAL

Figure 2.1. The HAL’s upper edge stays the same; the actual implementation may
change, based on the underlying hardware platform.

The processor-dependent features that the HAL does not implement are dis-
cussed in greater detail later in this chapter.

The facilities and resources for which the HAL provides an abstraction include
the following:

® Device Addressing
/O Architecture

¢ Interrupt Management
DMA Operations

System Clocks and Timers
e Firmware and BIOS Interfacing
¢ Configuration Management

For device drivers, the HALs standard interface means that hardware access is
platform-independent. Thus, instead of having the particular system platform
dictate how a device driver interfaces with its hardware, the driver uses the
standard interfaces provided by the HAL. The HAL is responsible for dealing
with any platform-specific differences. Because the interface to the HAL does
not change from hardware platform to hardware platform, a driver that prop-
erly uses the HAL to access its device requires no changes (other than recompi-
lation!) to enable it to run on the various Windows NT hardware platforms.

It’s important to understand that the HAL provides an unchanging
abstraction of processor architecture-based resources, not an abstraction
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of specific hardware devices. Therefore, the HAL needs to be changed
only when support is required for a different set of processor architecture
capabilities. This might include, for example, if support for a new 1/0O
bus needs to be added, or if the mechanics of the way the system clock
works changes. The HAL does not provide abstractions of individual
devices on the system, such as a serial port, a disk device, or a keyboard.

The HAL provides the following services:
* A common set of services, available on all Windows NT platforms.
¢ A portable implementation of inherently platform-specific services.

¢ A uniform mechanism for ALL kernel code to access underlying hard-
ware platform resources.

The sections that follow examine some of the resource abstractions provided
by the HAL, and describe how the HAL handles them.

The actual set of routines that make up the HAL has changed over time.
As the NT development team bas identified new functions that are
platform-specific, these routines have been moved into the HAL. Device
driver developers can learn precisely what is included in the HAL simply
by examining the HAL export list. To examine the HAL export list, use
the dumpbin utility included with the Platform SDK and select to display a
list of exported functions, as shown in the following example:

dumpbin lexporis c:\winnt\system32\hal.dll

A surprising number of routines do not start with a Hal prefix. These rou-
tines presumably originated in other parts of the operating system and
were only later moved into the HAL.

Device Addressing

The HAL implements a very flexible model for device addresses. In this model,
devices are connected to buses, each of which has its own address space, as
illustrated in Figure 2.2.

The HAL views device addresses, as identified by the devices themselves, as
strictly bus-relative. These addresses may be located in either port I/O space or
memory space. Notice in Figure 2.2 that both PCI buses have the bus-relative
address 0xC0000. Similarly, according to the HALs abstraction, it is possible
for two devices on different buses to both have registers located at port I/O
space address 0x180.
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{\ < ISA Bus O >

System

Bus Relative
Address 0xC0000
PCI Bus 1
EISA Bus 0

\/ < PCI Bus 0 >
Bus Relative
Address 0xC0000

Figure 2.2. Different bus address spaces.

Before a device address can be accessed from a driver by using one of the HAL
functions described later in this chapter, the address must be converted from a
bus-relative address to a HAL-translated address. This translated address is one
of the class of addresses called logical addresses on Windows NT. A device-
logical address is unambiguous and not tied to any particular bus.

It is very important to understand that logical addresses are managed solely by
the HAL on Windows NT. This means that logical addresses are best thought
of as opaque values, with special meaning only to the HAL. In this way, they
are not unlike HANDLEs. Further, how logical addresses are interpreted varies
widely among processor architectures and HALs. For example, on one proces-
sor architecture, logical addresses might actually be identical to physical
addresses in host memory. On another processor, logical addresses might quite
literally be encoded values that indicate the bus and port on that bus to which
the logical address refers.

I/O Architecture

Perhaps the most significant difference among processor architectures that is
relevant specifically to device driver writers is the mechanism by which device
control and status registers are accessed. The Intel x86 processor family allows
devices to present control and status registers in one of two discrete address
spaces: port /O space or memory space. Because these two address spaces are
distinct, x86 architecture processors implement specific instructions that sup-
port access to each of these address spaces. Port space addresses are accessed
using in and out instructions. That is, addresses that appear on the in or out
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instruction are interpreted by the processor as addresses in port I/O space. All
other instructions (such as mov) interpret any memory references as references
to addresses in memory space.

Of course, not all processors support the concept of distinct port I/O and mem-
ory spaces. RISC architecture CPUs, such as the Alpha, support only memory
address space. Device control and status registers thus appear mapped into
memoty space, according to a scheme implemented by the system designer.

Complicating this issue is the fact that I/O architecture is not solely a function
of the CPU. Rather, it is also a function of the device buses attached to the sys-
tem. All buses commonly used with x86 architecture systems (including the
PCI, ISA, and EISA buses) specifically support the concept of distinct port and
memory address spaces.

To enable drivers to support systems with differing I/O architectures without
any source code changes, the standard model that the HAL provides to device
drivers includes both port I/O and memory spaces. Device drivers access their
devices’ control and status registers using HAL-provided functions. The HAL
in turn implements whatever code is necessary to access the indicated device
register on the specific platform on which the driver happens to be running.

Choosing the Correct HAL Function for
Device Access

The HAL provides functions that allow drivers to read and write registers in
either port I/O space or memory space. These functions are specific to the size
of the register being accessed. That is, there are functions to read and to write
UCHAR, USHORT, and ULONG registers that reside in either port /O space or memory
space. The complete list of such functions is as follows:

READ_PORT_UCHAR () WRITE_PORT_UCHAR ()
READ_PORT_USHORT () WRITE_PORT_USHORT ()
READ_PORT_ULONG() WRITE_PORT_ULONG ()

READ_REGISTER_UCHAR() WRITE_REGISTER_UCHAR ()

READ_REGISTER_USHORT () WRITE_REGISTER_USHORT()

READ_REGISTER_ULONG()  WRITE_REGISTER_ULONG()
The driver selects whether to use the UCHAR, USHORT, or ULONG variant of the func-
tion, depending on the size of the device register to be accessed. A UCHAR is

defined in NT as an unsigned 8-bit value. A USHORT is defined as an unsigned
16-bit value. A uLoNG is defined as an unsigned 32-bit value.
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A driver selects whether to use one of the PORT or one of the REGISTER
functions, based on the location of the register to be accessed on the devi-e
itself. Registers located on a device in port I/O space are accessed using the

HADs PORT functions. Registers located on a device in memory space are
accessed using the HAL’s REGISTER functions.

Thus, if a driver writer wants to access a register on a PCI device, the driver
writer must know in advance whether that register is wired to port I/O space
or register space on the device. Because the location of a given device register is
decided by the device’s designer when the device is built, the location of a par-
ticular register is never ambiguous, and never varies from system to system.
Thus, the driver never selects which function type to use, based on the system
on which it is running. It is the HALs job to ensure that the driver’s function
calls “do the right thing” on the processor architecture on which a driver hap-
pens to be running.

Figures 2.3 and 2.4 show the prototypes for the functions READ_PORT_UCHAR ()
and READ_REGISTER_UCHAR(). The prototypes for the other HAL read functions
differ only in the size of the register read and data item returned.

UCHAR
READ_PORT_UCHAR(IN PUCHAR Port);

Port: The port I/O address to use for reading this device port.

Figure 2.3. READ_PORT_UCHAR() function prototype.

UCHAR
READ_REGISTER_UCHAR(IN PUCHAR Register);

Register: The address to use for reading this device register.

Figure 2.4. READ_REGISTER_UCHAR function prototype.

Figures 2.5 and 2.6 show the prototypes for WRITE_PORT_UCHAR() and WRITE_
REGISTER_UCHAR(). The prototypes for the other HAL write functions differ only
in the size of the register and data item written.
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VOID
WRITE_PORT_UCHAR(IN PUCHAR Port,
IN UCHAR Value);
Port: The port I/O address to use for writing this device port.
Value: The data value to write to the port.

Figure 2.5. WRITE_PORT_UCHAR() function prototype.

VOID
WRITE_REGISTER_UCHAR(IN PUCHAR Register,
IN UCHAR Value);
Register: The address to use for writing this device register.
Value: The data value to write to the register.

Figure 2.6. WRITE_REGISTER_UCHAR function prototype.

These HAL “functions” are in fact either actual functions or macros, depend-
ing upon the precise requirements of the underlying hardware platform. For
example, WRITE_PORT_UCHAR() is a function on the x86 platform. The declaration
in ntddk.h, specific to the x86 platform is:
NTKERNELAPI
VOID
WRITE_PORT_UCHAR
PUCHAR Port,
UCHAR  Value
)i

For the Alpha platform, the declaration is identical. For the Power PC (no
longer supported, but still present in ntddk.h), the declaration of
WRITE_PORT_UCHAR() is:

#define WRITE_PORT_UCHAR(xX, y) { \
*(volatile UCHAR * const)(x) =vy; \
KeFlushWriteBuffer(); \

}

On the x86 platform, the HAL code that implements the routine for
WRITE_PORT_UCHAR() looks something like the following:
mov edx, [esp+4]

mov eax, [esp+8]
out dx,al
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For the Alpha platform, the code that implements the routine for
WRITE_PORT_UCHAR() looks considerably different from either its x86 or PPC
counterpart. Indeed, the Alpha implementation of this code handles the com-
plex addressing architecture used by the Alpha platform to support port I/O
operations.

Regardless of the precise implementation, the essential point is that the device
driver source code uses the function appropriate for the device register it is
accessing. If the device in question is a PCI device utilizing I/O registers in port
I/O space, the HAL functions for accessing I/O registers in port I/O space are
used. The precise combination of hardware and software used by the platform
to transform the HAL operation into a port I/O access to the device is unim-
portant to the device driver developer. Thus, device drivers can be developed
in a cross-platform fashion.

As noted earlier in the chapter, some functions may have migrated from
other parts of the operating system into the HAL. In some cases, opera-
tions that are described as being part of the HAL are implemented within
the microkernel. For example, on the x86 platform, the register routines
(such as READ_REGISTER _UCHAR()) are implemented within the microkernel,
and not within the HAL itself.

HAL Buffer Functions

Before completing our discussion of registers and ports, another notable group
of functions provided by the HAL for port and register access are the BUFFER
functions, specifically:

READ_PORT_BUFFER_UCHAR() WRITE_PORT BUFFER_UCHAR()
READ_PORT_BUFFER_USHORT () WRITE_PORT_BUFFER_USHORT ()
READ_PORT_BUFFER_ULONG () WRITE_PORT_BUFFER_ULONG ()

READ_REGISTER_BUFFER_UCHAR() WRITE_REGISTER_BUFFER_UCHAR()
READ_REGISTER_BUFFER_USHORT()  WRITE_REGISTER_BUFFER_USHORT ()
READ_REGISTER_BUFFER_ULONG() WRITE_REGISTER_BUFFER_ULONG()

These functions all read from or write to multiple locations in the data buffer,
accessing a device register that is of the indicated length. Figure 2.7 and Figure
2.8 show the prototypes for READ_PORT_BUFFER_UCHAR() and
WRITE_PORT_BUFFER_UCHAR(), respectively. The other READ_PORT_BUFFER_xxx()

and WRITE_PORT_BUFFER_xxx () functions differ only in the size of the data item
and register referenced.
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VOID

READ_PORT_BUFFER_UCHAR(IN PUCHAR Port,
IN PUCHAR Buffer,
IN ULONG Count);

Port: The port /O address to use for reading this device port.

Buffer: A pointer to a buffer to which the read port data is to be
copied.
Count: The count of UCHAR values to be read from the port.

Figure 2.7. READ_PORT_BUFFER_UCHAR() function prototype.

VOID
WRITE_PORT_BUFFER_UCHAR(IN PUCHAR Porz, .
IN PUCHAR Buffer,
IN ULONG Count);
Port: The port VO address to which to write the data.
Buffer: A pointer to a buffer from which the port data is to be copied.
Count: The count of UCHAR values to be written to the port.

Figure 2.8. WRITE_PORT_BUFFER_UCHAR() function prototype.

For the PORT_BUFFER functions, note that data is always transferred between a
single port I/O register location and a range of addresses in the indicated data
buffer. That is, WRITE_PORT_BUFFER_UCHAR (PortX, Buffer, NumChars) does the
equivalent of:

while (NumChars--) {

WRITE_PORT_UCHAR(PortX, *Buffer++);
}

Figure 2.9 and Figure 2.10 illustrate the prototypes for
READ_REGISTER_BUFFER_UCHAR() and WRITE_REGISTER_BUFFER_UCHAR(), respectively.
The other READ_REGISTER_BUFFER_xxx () and WRITE_REGISTER_BUFFER_xxx() func-
tions differ only in the size of the data item and register referenced.
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VOID

READ_REGISTER_BUFFER_UCHAR(IN PUCHAR Register,
IN PUCHAR Buffer,
IN ULONG Count);

Register: The starting address of a range of memory-mapped device
addresses from which to read.

Buffer: A pointer to a buffer to which the read data is to be copied.
Count: The count of UCHAR values to be read from the register.

Figure 2.9. READ_REGISTER_BUFFER_UCHAR() function prototype.

VOID

WRITE_REGISTER_BUFFER_UCHAR(IN PUCHAR Register,
IN PUCHAR Buffer,
IN ULONG Count);

Register: The starting address of a range of memory-mapped device
addresses to which the data is to be written.

Buffer: A pointer to a buffer from which the port data is to be copied.
Count: The count of UCHAR values to be written to the register.

Figure 2.10. WRITE_REGISTER_BUFFER_UCHAR() function prototype.

It’s very important to notice that the REGISTER_BUFFER functions do not work the
same way as the PORT_BUFFER functions with respect to the way they handle the
device address. The REGISTER_BUFFER functions move data between a range of
memory-mapped register locations on the device, and a range of addresses in
the indicated data buffer. That is, WRITE_REGISTER_BUFFER_UCHAR (RegisterX,
Buffer, NumChars) does the equivalent of:

while (NumChars--) {

WRITE_REGISTER_UCHAR(RegisterX++, *Buffer++);
}

Thus, for the PORT_BUFFER functions, a single port device address is used; for the
REGISTER_BUFFER functions, a range of memory device addresses is used. This
allows the REGISTER_BUFFER functions to be used to move data between host
memory and mapped memory areas on a device.




40  Part I: Windows NT Architecture

Here’s a hint that often bites new NT driver writers: In the BUFFER
functions, the values provided for Count is the number of data items—
which is not necessarily the number of bytes—to be moved. That is,
Count is the number of UCHARs, USHORTS, or ULONGs to be moved, depending
on the function chosen.

Interrupt Management

Because it is the HALs job to isolate the rest of the system from platform-
specific architectural issues, the HAL is responsible for managing and handling
interrupts. This includes not only managing the way interrupts are routed, but
also assigning relative priorities to the various interrupts. Like device addresses,
the HADL’s model for interrupt vectors is that such vectors, as identified by the
devices themselves, are bus-relative. Thus, before an interrupt vector can be
referenced, it must be translated to a logical interrupt priority value.

In Windows NT, device drivers may register to have a function called when a
particular device interrupts. The HAL, along with the NT microkernel, is
responsible for the specifics of interrupt-controller management and program-
ming. The device driver identifies a HAL-defined interrupt vector to which to
connect, and a function to be called when an interrupt occurs at that vector.
The HAL (working with the I/O Manager and the microkernel) registers the
device driver’s Interrupt Service Routine (ISR) function to be called when the
indicated interrupt is to be serviced.

Because the number of discrete interrupt priorities—and the ways such priori-
ties are managed—vary widely among processor architectures, the HAL pro-
vides an abstraction of hardware logical interrupt priorities. This abstraction is
the Interrupt Request Level (IRQL). The HAL provides a set of symbolic values
for IRQLSs; ranging from the IRQL PASSIVE_LEVEL, which is defined as the lowest
possible IRQL on the system, to IRGL HIGH_LEVEL, which is defined as the high-
est possible IRQL. IRQLs are discussed in much more detail in Chapter 6,
“Interrupt Request Levels and DPCs.”

IRQLs have nothing to do with the Windows NT scheduling priority of a
thread.
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On some platforms, managing the interrupt controller is a simple task. For
example, on a standard x86 platform, the interrupt hardware is a pair of 8259-
compatible programmable interrupt controllers (PICs). The second controller is
attached to the first controller, with each controller managing eight interrupts,
for a total of 15 usable interrupts. The assignment of IRQL values to these
individual interrupts is completely a function of the HAL. Thus, there is
absolutely no requirement that the HAL use IRQL 6 for the PIC’s IRQ 6!

For more complex systems, programming the interrupt controller is more chal-
lenging. Hardware platforms might restrict certain interrupts so they are handled
only on specific CPUs. Programmable interrupt controllers must be managed to
mask interrupts on some processors while leaving them enabled on other proces-
sors. Interrupts may be “cascaded” so that one interrupt represents a set of other
interrupts.

Whenever an ISR is to be called in response to a device interrupt, the HAL and
microkernel (working together) first raise the system’s current interrupt priority
to the IRQL that has been assigned to the interrupting device. This has the
effect of blocking subsequent interrupts from the interrupting device, and for
any device with interrupts of the same or lower IRQL value. Once the device
driver’s ISR has completed servicing the interrupt, it simply executes a return
statement. The IRQL of the system is then altered, as necessary, to service
other interrupts that may be pending.

The important thing to realize about interrupt management on NT is that it’s
almost entirely the HAL’s responsibility. Device drivers do not manually
“hook” interrupt vectors, program interrupt controllers, or issue IRET or EOI
instructions. By using the HAL-supplied functions, drivers are able to work
unchanged on the wide array of processor architectures supported by
Windows NT.

DMA Operations

The HAL also provides abstractions that support an underlying processor’s
DMA capabilities. This includes both system DMA and busmaster DMA capa-
bilities. The HALs model for both system and busmaster DMA are described
in detail in Chapter 8, “I/O Architectures,” and Chapter 17, “DMA Data
Transfers.” This section provides merely a brief introduction to these capabili-
ties.

The HAL provides a standard DMA model, in which devices perform DMA
operations using logical addresses in host memory. The HAL, working with the
I/O Manager, is responsible for providing, translating, and managing these log-
ical addresses.
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As discussed previously in this chapter, the address space on each bus connect-
ed to the system is considered discrete, as illustrated in Figure 2.2. For the pur-
poses of busmaster DMA, the HAL converts logical addresses used by devices
during DMA operations to host memory addresses using map registers as illus-
trated in Figure 2.11.

Map Registers

Figure 2.11. Translating logical addresses to host memory addresses via map registers
for DMA operations.

The HAL also provides an abstraction for use by devices that support System
DMA. System DMA utilizes a set of centralized DMA controllers that perform
DMA on behalf of suitably configured devices. This frees the devices them-
selves from having to have a DMA engine on board. The HAL provides a
model by which system DMA channels resources may be shared among multi-
ple devices and reserved for use by a specific device for the duration of a trans-
fer. Because System DMA operations may also entail logical to physical host
memory address translation, map registers may be used for this process.

Finally, the HAL also provides an abstraction called system scatter/gather. This
facility provides special support for DMA devices that do not support
scatter/gather, that is, devices that are capable of performing DMA operations
from only one logical base address per transfer. For such devices, the HAL uses
its map registers to create logically contiguous buffers from buffers that are
physically discontiguous in host main memory. This facility saves devices that
do not themselves support scatter/gather the overhead of having to perform
multiple discrete DMA operations for non-contiguous buffers. More details
about the HALs support for scatter/gather and DMA devices appears in
Chapter 8, “I/O Architectures,” and Chapter 17, “DMA Data Transfers.”
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Other HAL Facilities

The HAL also provides support for system clocks and timers, firmware and
BIOS interfacing, and configuration management.

The HAL provides a standard set of routines used by higher-level entities for
programming and handling the system’s clocks. This includes both interval-
timer management and time-of-day clocks. The abstraction that the HAL
presents of these facilities is that the system clock keeps track of time in
100ns-intervals, with time starting on January 1, 1601. Of course, the HAL is
responsible for managing the underlying system clocks, and converting between
the actual clock frequency and the 100ns-intervals.

When the system is bootstrapped, it is the HAL that is responsible for working
with the system BIOS or firmware to determine the system’s device configura-

. tion. The HAL creates a system-independent description of the hardware pre-

sent on the system. This configuration information is stored in the Registry,
and utilized by the microkerne! and /O Manager.

The HAL is also responsible for retrieving bus-level configuration information
(where available) from the underlying architecture. For example, the HAL pro-
vides standardized interfaces to retrieve PCI, EISA and MCA information from
those buses.

Processor Architecture Differences Not
Handled by the HAL

As mentioned at the beginning of this chapter, the HAL provides an abstrac-
tion of only a subset of features present in a given system. The differences that
the HAL handles are primarily those that could be changed relatively easily
between implementations of the same processor family. For example, the num-
ber of interrupt levels and the way these are managed could conceivably vary
among implementations of x86 systems—even among implementations of x86
systems using the same processor. Thus, this is one of the differences handled
in the HAL.

There are many differences the HAL does not manage. For example, the HAL
does not attempt to handle system architecture differences such as:

® Physical address size
¢ Virtual memory implementation (LDT/GDT, TLB, etc.)

e Caching/pipelining (separate I&D cache, independently flushed, out-of-
order execution, etc.)

o Process/thread context (number, type, and size of registers, etc.)
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These attributes are fundamental to a processor’s architecture and do not
change between different implementations of a particular processor. For exam-
ple, the number of general-purpose registers on an x86 architecture system is a
fundamental architectural feature of the x86 processor that is not going to
change from motherboard to motherboard. This is also true of the basic char-
acteristics of virtual memory. It is just not practical to change the hardware
implementation of virtual memory without affecting the entire design of the
CPU.

These fundamental attributes are mostly managed by the microkernel. To
change one of these fundamental attributes requires porting Windows NT to
the new architecture. This is a far more involved and complex undertaking
than simply changing the HAL.



This

Chapter 3
Virtual Memory

chapter will review:

Demand Paged Virtual Memory. Windows NT provides a virtual memory
system that loads elements into memory as required. This section
describes the rationale and basic mechanism involved in the Windows NT
VM system.

Address Translation. A key element of the virtual memory system is
translating virtual addresses to physical addresses. This section describes
the process Windows NT uses to manage this translation process.

Physical-Memory Management. Because physical memory is a scarce
resource, one of the primary goals of the VM system is to ensure proper
sharing of this scarce resource between the various programs demanding
memory. This section describes the process Windows NT uses to manage
this sharing of physical memory in a reasonable and fair manner.

Memory-Manager Tuning. The Memory Manager component of
Windows NT allows users to control its behavior using a number of
Registry parameters. This section describes those parameters of most
interest and describes how they impact the VM system.

Drivers and VM. Windows NT device driver writers must understand
how VM works in order to write device drivers that operate correctly.
This section describes the key issues confronting device driver developers
who must manage virtual addresses in both user and system address
spaces.

This chapter discusses general concepts of demand paged virtual memory oper-
ating systems, and examines how Windows NT implements its support for vir-
tual memory. A thorough understanding of how Windows NT virtual memory
works will clarify the purpose for many of the mechanisms used within a
Windows NT device driver for handling memory.
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Demand Paged Virtual Memory

Windows NT utilizes a 32-bit pointer value for accessing data within the oper-
ating system. Because of this, the address space of any process is 2* bytes, or
4GB. Managing this large address space is a complex and demanding process,
requiring that the OS balance the needs of many conflicting demands for physi-
cal memory so that the system performs acceptably under a wide variety of
loads. This is accomplished by using a virtual memory system.

Windows NT’s virtual memory system is a demand paged virtual memory sys-
tem. Because of this, all references to memory are done by way of an indirect
reference—a lookup table. The precise mechanism used for implementing this
lookup table is actually quite specific to the processor hardware being used.
However, Windows NT implements its common set of functionality uniformly
across all the hardware platforms. Figure 3.1 demonstrates an example of this
indirection model.
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Figure 3.1. Demand paged virtual memory.

Figure 3.1 shows two separate address spaces (or “processes,” as they are
called in Windows NT). Each address space is divided into a set of virtual
pages. These virtual pages then in turn may point to physical pages. Because
of this virtual-to-physical page mapping, a single physical page can be shared
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between two separate address spaces—and that shared page can either be read-
only or it can be writeable. Further, a shared physical page can have the same
virtual address in each address space or it can have different virtual addresses
in each address space.

In addition, some physical pages are designated as free and are available for
use if one of the address spaces needs additional physical memory. For exam-
ple, Process A in the Figure 3.1 has a virtual page (page 2) with no correspond-
ing physical page. If Process A needs to access data on page 2, the VM system
will be required to allocate physical memory (such as free physical page 102)
to contain the actual data for virtual page 2.

Note that one advantage of using a lookup table is that more than one such
table can exist, although only one table can be in use at any given time. Of
course, on a multiprocessor system, each CPU will be using a table. In fact, it is
possible for two different CPUs to be using the same table. Thus, Figure 3.1
shows two separate virtual lookup tables. Each table has a set of entries, with
each entry potentially referring to a physical page. Given that there are two
such lookup tables, each may refer to different pages—or they both may refer
to the same common page.

It is important to emphasize that Windows NT implements a hardware
platform-independent virtual memory system. Thus, while it is tempting
to discuss the characteristics of some particular hardware platform (such
as the X86 platform), it does not describe how Windows NT actually
works. Instead, this generalized model is mapped onto the support pro-
vided by the specific hardware platform. This promotes the flexibility of
porting Windows NT to any CPU architecture.

Rationale for Demand Paged Virtual Memory

The demands of the Windows NT virtual memory system are a source of com-
mon confusion for new NT kernel driver writers. This is because many of the
basic operations performed by device drivers require that the driver writer
manipulate memory in order to manipulate and manage these virtual address-
es, despite the complexity of the virtual memory system itself.

Given that virtual memory is not required for an operating system, it is useful
to explore the reasons why virtual memory turns out to be useful and well
worth the complexity involved in supporting it. As well, by better understand-
ing virtual memory, the driver writer is able to exploit that understanding to
build Kernel mode device drivers with better performance and a wider range of
capabilities.
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Many operating systems exist that do not support virtual memory. For exam-
ple, the venerable MS-DOS does not support virtual memory. Despite this
restriction, MS-DOS has proven to be a useful operating system during the
past 17 years since it was first introduced.

One universal problem that operating systems have to deal with is scarcity of
physical memory. In the case of MS-DOS, a number of techniques evolved to
allow physical memory to be shared among multiple programs or even pieces
of programs. These techniques enable the system to run programs or utilize
data that exceed the size of physical memory.

Even though physical memory is more plentiful today than it was when the
Windows NT design team first decided to support virtual memory, physical
memory is still a relatively scarce resource that must be shared among all parts
of the system. As application programs continue to grow in functionality, and
hence in size, virtual memory will continue to play an important role in allow-
ing them to grow yet further.

A number of different techniques have been used by operating systems in the
past to allow for memory sharing. For example, one technique was to divide a
computer program into a series of discrete pieces. When program code from a
particular piece was needed, it was read from disk into memory, overlaying
whatever program code was there previously. Although this overlay technique
did allow application developers to build feature-rich applications without too
much concern over memory limitations, such applications were not necessarily
high-performance because of the cost involved in loading the overlay image
from disk.

Implementations of simple paging systems were nothing more than a refine-
ment of the overlay technique. Overlay systems had a single overlay region.
Code was loaded into that one overlay region, as needed. With these simple
paging implementations, memory was divided into a series of discrete pieces
(pages), with each of these pages being independently managed. Although this
approach minimized some of the disadvantages of overlays, such as the cost of
loading the new overlay, actual code was still tied to a particular page. Thus,
interactions between the code within each of these pages could cause interac-
tions that in turn made the application run very slowly.

The use of virtual memory solved the “locality” problem because, rather than

tying the address being used to a location in physical memory, it refers to a

location within a lookup table. By carefully exploiting a virtual-to-physical

mapping, the operating system can actually move the contents of individual

physical pages to other physical pages. Because each reference to the virtual .
page is translated via a lookup table, fixing up the lookup table allows this

relocation within physical memory without breaking the application.
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Virtual memory decouples the various parts of a program from its location in
physical memory. By incorporating support for the virtual-to-physical transla-
tion within the computer system hardware and ultimately within the CPU
itself, the virtual-to-physical translation is done as part of every memory refer-
ence.

Of course, using a lookup table that allows an arbitrary location for every byte
would be prohibitively expensive. Using the “page” concept, the translation
table can instead be used to refer to the location of a range of bytes. Thus, the
bytes within a given virtual page correspond one-to-one to the bytes within a
specific physical page. Using this scheme, as the size of the page increases; the
size of the lookup table decreases. Counterbalancing this, as the size of a page
increases; the degree of sharing that can be accommodated decreases. For the
systems on which Windows NT currently runs, the page sizes are normally
either 4K or 8K bytes.

The next section discusses the duties of the Memory Manager in greater detail.

One optimization that Windows NT utilizes on the Pentium, Pentium
Pro, and Pentium II systems is support for large pages. In addition io the
normal 4KB-page size supported by these platforms, they also offer sup-
port for a 4MB-page size. Although these large pages aren’t frequently
required, they do turn out to be useful. This is because 4MB of memory
is equal to 1024 4KB-pages. Instead of using 1024 virtual-to-physical
mapping entries (page table entries), only one is used. This conservation
of memory is particularly important in the kernel environment because
page table entries are a scarce resource.

For example, on systems with enough memory, Windows NT uses a sin-
gle 4MB-page for the operating system image, HAL, boot drivers, and
initial portion of non-paged pool.

The Memory Manager only uses these large pages in limited circum-
stances because such large pages are not reclaimed. Thus, any reference to
a virtual address within the particular 4MB range will always be valid
because the physical memory is locked for use by that virtual page.

Memory Manager Operations

Once all of memory has been divided into a series of physical pages, the
Memory Manager within Windows NT controls their use. As individual
processes require physical memory, pages are removed from the pool of avail-
able pages and assigned to hold information. The actual references to these
physical pages are by way of the virtual-to-physical translation table.
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Balancing this, the Memory Manager also reclaims pages that are no longer in
use or that have not been used in some time. Indeed, one of the most impor-
tant tasks for the Memory Manager is to ensure that there is always a ready
supply of physical pages that are not currently in use. This allows them to be
used to satisfy the demand for new physical pages. Indeed, maintaining a ready
supply of available physical pages is essential to ensuring that the system con-
tinues to operate properly. Once the supply of available physical pages is total-
ly exhausted, it may not be possible for the Memory Manager to recover. In
such a case, the system halts with the ominous STOP code NO_PAGES_AVAILABLE.

Because pages can be reclaimed simply because they have not been used recent-
ly, it is possible that when the CPU is performing a virtual-to-physical transla-
tion, it may find that there is no physical page currently allocated for the given
virtual address. This process is known as a page fault; when it occurs, the
underlying CPU transfers control to the registered page fault handler within
the operating system—in this case, the Windows NT Memory Manager. The
Memory Manager must then analyze the page fault and determine three things:

1. Was the virtual address actually valid? It is possible that the application
has referenced memory that does not exist. If so, the Memory Manager
returns an error to the application. Frequently such errors manifest as
“Dr. Watson” dialog boxes on Windows NT.

2. Was the page fault caused because the user attempted to access the page
in a manner that was “incompatible” with the protection on the page? As
we will describe in more detail, each virtual page has protection bits,
indicating whether it can be accessed by a user application, or written by
the application or the kernel.

3. If the page fault was legitimate, the Memory Manager must then allocate
a physical page and retrieve the contents of that page. Typically, they are
stored on disk and the Memory Manager must allocate a new physical
page and then ask the /O Manager to read the data from disk into that
new physical page. Only then is the page fault resolved.

Thus, the Memory Manager transparently handles page faults. When such
page faults occur, the Memory Manager will allocate a new physical page and
retrieve its contents (via the I/O Manager, and in turn via the file system), if
necessary. This process is referred to as demand paging because pages are allo-
cated and their contents are “filled-in” on demand.

Address Space Separation and Control

Windows NT also takes advantage of virtual memory by implementing address
spaces. Each address space is represented by its own virtual-to-physical transla-
tion table (or, as they are normally called, page tables). Because each set of
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page tables may define a distinct virtual-to-physical page translation, each set is
logically distinct. Furthermore, because the CPU always uses a particular page
table when performing operations on memory, it is not possible for a program
running in one address space to interfere with a program running in a different
address space.

Another mechanism for providing address space separation is provided by the
memory-management hardware, and is based upon the protection mode of the
memory and the execution mode of the processor. For example, both the Alpha
and X86 architecture systems support four such hierarchical protection modes.
Regardless of the number of modes available in the processor hardware,
Windows NT only uses two: the “least-privileged” mode, referred to as User
mode; and the “most-privileged” mode, referred to as Kernel mode. Note that
Windows NT does require the underlying hardware support at least two such
protection modes.

Windows NT’ virtual memory implementation supports a bit in each virtual-
to-physical page table entry that indicates if the page can be accessed from
User mode. In NT’s model, all valid pages are always accessible from Kernel
mode. Thus, if the page protection bit is set so that it indicates that a particular
page is accessible from User mode, whenever the processor is running in any
mode, the software can access the indicated page. If instead the page was set so
that it was not accessible in User mode, then that page would be inaccessible
when the CPU’s execution mode was User mode. The page would be accessible
only when the CPU was running at the more privileged Kernel mode. When a
page access is attempted from User mode, and such access is not allowed
according to the page-protection bit in the virtual-to-physical page table entry,
the CPU generates an exception condition, much like it does when the virtual-
to-physical translation is not valid.

Windows N’ page-protection mechanism allows the system to partition the
memory described by a single page table so that only a portion of it can be
accessed from User mode. The remaining portion of the address space
described by the page table contains data that is available for use only when
the CPU is running in Kernel mode. Thus, because the operating system over-
sees all cases in which the CPU transitions from User mode to Kernel mode,
Windows NT can protect data that is not accessible from User mode, such as
operating system control structures, from damage by errant (User mode) appli-
cation programs.

User and System Address Spaces

On a single CPU, only one virtual-to-physical mapping can be in use at any
time. To provide Kernel mode components (including drivers) with an environ-
ment where they know that their memory references are always valid,
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Windows NT uses precisely the same virtual-to-physical mappings for a partic-
ular range of addresses. Thus, each time a new virtual-to-physical mapping is
loaded into the CPU (a “context switch”) some portion of that new mapping
table has exactly the same information as the previous version of the mapping
table. This constant range of addresses is protected from applications because
the individual pages have been marked as 7ot being accessible from User mode.
The portion of the address space accessible from User mode is the user address
space. The portion of the address space accessible from Kernel mode is the sys-
tem address space. The management, layout, and utilization of these two
address spaces are considerably different and are managed differently by the
Memory Manager. Because of this, you should understand the logistics of the
user address space and how it is handled separately from the system address
space. First, you need to turn your attention to the division of the entire 4GB
address range between these two address spaces.

Figure 3.2 shows the standard division of an address space on Windows NT.
Dividing the address space into two pieces is not the only possible approach.
Some versions of Windows NT support alternative address space divisions.

High 2GB |
System Space

4GB
Kernel

Address
Low 2GB Space

User Space
(maps current
process)

Figure 3.2. Windows NT Standard Address Space Division. Figure 3.3 shows the “4
Gigabyte Tunable” address space that is supported by Windows NT 4.0 Enterprise

Server.
High 1GB (Min)
System Space
(Variable)

---------- 4GB
Kernel

Address
Low 3GB Space

User Space
(maps current
process)

Figure 3.3. Windows NT 4GB address space division.

While 4GB may seem like an almost inexhaustible supply of memory, in fact it
can prove to be inadequate for larger server class systems running database
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applications. Clearly, the right solution to this is to take advantage of 64-bit
pointer support, which yields a 16 exabyte (2%) address space! Unfortunately,
such a change will require new hardware and software support and as such is
not included in Windows NT V4, nor is it expected to be in Windows NT V5.
Instead, Windows NT V3§ will provide limited support for a larger address
space.

NT VS5 supports Very Large Memory (VLM) systems by using 64-bit pointers,
but only takes advantage of three additional bits. Three extra bits will extend
the size of the virtual address space on Windows NT from 4GB to 32GB. The
extra 28GB of address space will be made available to specially written User
mode applications and to some parts of the Windows NT operating system
itself. Figure 3.4 shows how Windows NT lays out VLM support in NT V5.

4GB-32GB User Space
{non-paged)
32GB
Kernel
Address
Space

2GB-4GB System Space

Low 2GB User Space
(maps to current process)

Figure 3.4. Windows NT VLM address space division.

Because VLM takes advantage of 64-bit pointers, it will only work on hard-
ware platforms that support such large memory pointers, such as the Alpha or
Merced. In addition, VLM has several other unusual properties:

¢ The VLM virtual-to-physical mapping tables are shared among all
processes.

¢ Physical memory assigned to VLM virtual addresses are not reclaimed
until the virtual mapping is deallocated (thus, VLM memory is not
“paged,,).

¢ Drivers will not need to handle 64-bit virtual addresses, because
Windows NT will create 32-bit mappings when communicating with
drivers.

Thus, VLM is a limited change to Windows NT to increase the available virtu-
al address space for a range of application programs, such as databases. Note
that VLM is a short-term solution within Windows NT that will be addressed
in the future 64-bit version.
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System Address Space Layout

As noted previously, the Memory Manager handles the system address space
differently from the user address space. This is partially due to the unique char-
acteristics of the system address space:

* The system address space is visible, regardless of what user address space
is active. This also means that system addresses are valid for all threads in
the system.

* The system address space consists of memory regions that are not paged.
¢ The system address space contains the file system data cache.

Because of these unique characteristics, the system address space is divided into
a series of regions, each of which is managed differently. For example, the non-
paged pool is a set of system addresses that point to actual physical memory
that is always present. Thus, if memory in this region is referenced and it is not
present, the Memory Manager treats it as a fatal error. Similarly, the paged
pool is a different set of system addresses that act more like memory in an
application program. They are paged in as needed, and their physical memory
is reclaimed as needed.

Figure 3.5 illustrates the layout of memory on a typical X86-based platform.
Note that the specific layout on other platforms or even on other systems may
vary, because the details of the layout are not constant across platforms or even
releases of Windows NT.

The lowest system space address is the base of the operating system image
itself, which is located at exseeeoeee. In addition, for the Pentium class systems,
Windows NT may use a large physical page for the operating system, so it will
use the remaining memory to load device drivers and the initial portion of non-
paged pool.

Beginning at 0xA2000000 is a region for memory-mapped view (memory-mapped
files are described later in this chapter) within the system address space.
Win32k.sys is typically mapped into this region, although this is not required
for it to function properly.

The range from 0xA3000000—0xC0000000 is unused so addresses in this range are
invalid.

The range of addresses from oxceoooeoe—oxcosoeeoo is used for various Memory
Manager data structures that actually describe the virtual page tables and
Virtual Address Descriptor (or VAD) tree for the current process. This region is
referred to as byperspace. The specifics of the VAD tree are covered later in
this chapter.
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OXFFFFFFFF
HAL
OxFFCO00000
Crash Dump Information
OxFFBEQ00O
Non-Paged Pootl
Paged Pool
0xE 1000000
Cache Manager Mapped Views
0xC1000000
Cache Manager Hyperspace

ger rypersp 0xC0C00000

Unused
0xC0800000
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yP 0xC0400000
Page Directory Entries
0xC0300000
Page Table Entries

0xC0000000

Unused
0xA3000000

Memory Mapped Files
0xA0000000
Operating System Image

0x80000000

Figure 3.5. Normal system address space layout (X86).

The range from 0xC0800000—0xC0c00000 is unused so addresses in this range are
invalid.

The range from exceceeose—exc1eeeeee is used for managing the working set for
the file cache. The file cache consists of views into various mapped files and
shares physical memory with the rest of the operating system. The file cache’s
resource consumption requires that it have a working set (described later in the
section called, “Working Sets”), so that pages can be trimmed—just as if the
file cache were a separate process.

The range from oxC1000000—£1000000 is actually used by the file cache to map
views of individual files while they are being read or written via the cache
itself. Note that this does not restrict file sizes to 512MB (the size of the range)
because a file may be partially mapped. In that case, only a portion of the file
itself is mapped at any one time. Thus, by deleting existing maps and creating
new maps, it is possible to perform read and write operations on very large
cached files.
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The range from oxE1000000—0xFFBE0E®0 is used for both the paged and non-
paged pool within the system, where the paged pool begins at oxE1000000 and is
extended to higher memory addresses. The non-paged pool begins at
oxFFBEQ00e and is extended to lower memory addresses.

The range from exFFBE@00@—@xFFC00000 is used to store information about the
location of the paging file located on the boot device, so that in case of a sys-
tem crash, a copy of physical memory can be copied to that file. It can then be
recovered when the system reboots.

The range from oxFrceeooe—exrFFFFFFF is used to store HAL information.

There is an inberent danger for Kernel mode device driver developers
because crash dump information is stored in high memory. This informa-
tion contains disk block addresses where a crash dump will be written
after a system crash. However, it is possible for the Kernel mode device
driver to actually overwrite this region in memory. In such a case, writing
the crash dump to disk will write it to random locations on the disk
itself.

We were working with one client who experienced precisely this problem.
After the system would crash, the client would reboot the machine and
then receive an ominous warning—No 0/S Found. After reinstalling
Windows NT several times, we concluded that when the driver did crash,
we should reset the system rather than allow it to continue using the debug-
ger. This ensured that crash dump information was not written to disk.

Of course, this simply demonstrates that developing kernel code is inher-
ently riskier than developing application code. Unlike application code, in
which the operating system has been designed so it does not trust the
parameters passed by application programs, when a Kernel mode device
driver passes invalid parameters, they are dutifully used, irrespective of
the ultimate repercussions.

With the reorganization of the address space for 4GB, the actual layout of the
system virtual address is a bit different on X86 platforms using the 4GT
option. Figure 3.6 provides a description of the layout we found on one of our
own systems. Of course, this is not the only possible configuration.

Access Control

Earlier, we described how individual virtual pages are access-controlled, indi-
cating whether they can be accessed from User mode. In the Windows NT
model, access control has an additional attribute that indicates whether the
page can be written. These two access-control bits are used to completely man-
age access to the given virtual page.
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Figure 3.6. System address space layout with 4GT (X86).

It is important to understand that access control is done on the virtual page.
There is no inherent protection for a physical page. As it turns out, this is
important because the use of page tables effectively means that a single physi-
cal page can have multiple virtual references to the physical page. Indeed, one
of the common techniques used by drivers to manage buffers is to create a new
virtual mapping to a User mode buffer. Instead of relying upon the User mode
address to obtain access to the buffer, a system space address is created for the
same physical buffer memory.

Windows NT’s model of protection is considerably simpler than the models of
protection offered by the underlying hardware. This allows NT to support the
widest possible variety of processor architectures. For example, on many plat-
forms there are access bits to indicate whether the page may be read, written,
or executed; in addition to access controls for each processor mode (except
“most-privileged,” of course). Thus, with the Windows NT VM protection
model, assuming that a page is valid, the following statements are true:

® The page can always be read from Kernel mode.

* It can only be written from Kernel mode if “write access” has been
granted.
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e Tt can only be read from User mode if “User mode” access has been
granted.

¢ It can only be written from User mode if both “User mode” access and
“write access” have been granted.

* If a page can be read, it can be executed.

By using a simple access model, Windows NT retains a greater degree of plat-
form independence and greater portability. Even with this simple access model,
however, Windows NT is fully capable of supporting a wide range of useful
virtual memory techniques. Thus, the simplicity does not come at the cost of
functionality.

Memory Sharing

The capability for two page tables to reference the same physical memory is a
powerful technique. It allows applications to share data between them, without
otherwise compromising their independence from one another. It even allows
the sharing of code, such as dynamic link libraries (DLLs), between two appli-
cations so that only one copy of the DLL is present in memory at any time.

In our description of DLLs and how they are shared, our interest is in
the sharing of the code portion of the DLL, including its import table.

This sharing is possible because the use of a page table allows two (or more)
virtual pages to reference the same physical page. As Figure 3.7 shows, using
the same physical page for two separate virtual page entries results in shared
memory. Any changes made by either application to this shared memory region
will be immediately visible to the other application.

As with any virtual page, the attributes stored within that page dictate the
allowable access to the memory using that virtual page. There is no require-
ment that says that, if there are two virtual references to the same physical
page, those two virtual page table entries must contain the same attributes.
Thus, it is possible for a single page to be readable but not writeable by one
process, while the other process can both read and write the image. It would
even be possible for the same virtual page table to contain two separate entries
pointing to the same physical page, with each entry granting a different type of
access.

Copy-On-Write
Support for copy-on-write virtual memory is a convenient mechanism for

allowing shared memory access when appropriate. When shared memory
access is not appropriate, a copy of the memory is made.
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Figure 3.7. Page tables sharing physical memory.

Thus, this mechanism preserves physical memory, allows Windows NT to more
efficiently utilize this scarce resource, and hence allows Windows NT to effi-
ciently run more applications.

The very name copy-on-write tells you exactly what is happening. When the
virtual page is first added to the address space, one of its attributes is that the
page cannot be written. In addition, a separate attribute indicates that the page
is copy-on-write. As long as the page is not being modified, copy-on-write
operates very much like any other shared memory page. The only time that its
copy-on-write status becomes an issue is when one process attempts to modify
the memory. If the memory is merely “shared,” the change is visible to each
address space that is sharing the page.

Although the primary use for copy-on-write is for code sharing of DLLs,
it can also be used for debugging an application program. In such a case,
if the debugger is used to change the contents of a shared code page, such
as by setting a breakpoint, that shared page is copied at the point where
the first breakpoint is set—ensuring that only the application being
debugged is affected.

When the application program, or the operating system on behalf of the appli-
cation program, attempts to modify that particular page, a CPU exception of
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some sort is generated. That exception is caught by Windows NT. Eventually,
the exception is handled as a page fault and is dispatched to the Virtual
Memory Manager. After analyzing the cause of the page fault, the Memory
Manager determines that this particular virtual page is copy-on-write.

The contents of the current physical page are copied to a new physical page.
The virtual page table entry is then adjusted to point to the new physical page.
Both the copy-on-write and read-only attribute are cleared for that page. From
that point forward, subsequent modifications to that page will be made to this
private copy of the page. Thus, the page is no longer shared.

We once had a former student report the following problem: Within his
driver an application would provide him with a copy-on-write buffer. His
driver proceeded to build an MDL and write into the buffer, but, much to
his surprise, the original version was actually modified instead of creating
a new copy of the data. Indeed, his presentation of the problem at the
time was sufficiently confusing and we had to really think about what
was going on before we came up with the correct answer.

Within his driver, be created a new virtual mapping to the user’s buffer so
that be had a system virtual address to the user buffer. This allowed him
to use the system virtual address within his driver in an arbitrary context.
Because be created a new virtual mapping, the copy-on-write attributes of
the original mapping were lost. Thus, when he modified the buffer, the
copy operation he expected didn’t occur.

Thus, when manipulating user buffers in your Kernel mode device driver,
keep in mind that virtual memory attributes, such as read-only, User
mode accessible, and copy-on-write are associated with the virtual map-
ping, not the physical page.

Although copy-on-write might sound like a rather arcane feature, it is exten-
sively used within Windows NT. Perhaps one of the most common uses of it is
for sharing executable code via DLLs. When a DLL is built, the developer spec-
ifies what the default load address will be for that DLL. Although most parts
of the DLL are written to be position-independent so that they can be loaded
almost anywhere in memory, some parts of the DLL are not position-
independent.

When Windows NT attempts to load a DLL for an application, it first tries to
use virtual memory addresses at the default load address for the DLL. If that
address is available and large enough to contain the DLL, it will be loaded into
the address space at the default load address location.
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However, if the DLL cannot be loaded at its base load address, Windows NT
performs relocation on the DLL. This requires that some of the code within the
DLL be modified. Rather than make a complete copy of the DLL, Windows
NT maps the DLL into the new location. The pages are all set up so they are
copy-on-write. Then, as individual pages are written to perform any relocation
fix-up that is necessary, the sharing is broken.

This technique ensures that much of the DLL is still shared between applica-
tions and that only those small pieces that must be updated are actually copied.

Although using copy-on-write within DLLs does ensure that they are
always mapped into the application address space correctly, this process
can slow the loading time of applications. In order to minimize the
amount of fix-up that must be performed, individual DLLs should be
built so they use a default load address that does not conflict with any
other DLL used by the application.

Indeed, most of the standard Windows NT DLLs are built so they each
use a separate load address. This simple mechanism maximizes the speed
at which applications load and thus enhances the performance of the
Windows NT systems.

Copy-on-write is also useful when debugging programs. It is important to
ensure that any changes to the program, such as setting a breakpoint within
the program, only occurs on the copy being debugged. Otherwise, other run-
ning copies of the same code would also execute the same breakpoint!
Additionally, it is important that the breakpoint not be written back to the
original file. Thus, if the Memory Manager needs to reclaim the page contain-
ing the breakpoint, it must store it in a temporary location—not back in the
original executable file. The copy-on-write mechanism accomplishes exactly
this task.

Because of this, all executable user applications are memory-mapped on
Windows NT by using this copy-on-write mechanism. The goal is to ensure
that executable code sharing is always correct, even if the executable code is
modified in one address space.

The copy-on-write technique is not generally useful for sharing data, pre-
cisely because it makes a copy of the original page when it is modified.
Data-sharing is typically done using standard shared memory because the
goal is to ensure that there is only one copy of the data shared between

continues
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Continued

multiple address spaces. For example, Win32 maintains a list of all cur-
rent valid drive letters. This information is mainiained in a single physical
page that is shared between all processes. Because this information can be
updated by any process (via the befineDosbevice API call in Win32, for
example), using copy-on-write memory to maintain this global system
state would potentially result in every process having its own view of the
available drives!

Memory-Mapped Files

As previously stated, DLLs are loaded into an address space. Although concep-
tually correct, the reality is a bit more complex. Windows NT uses a mechanism
known as file-mapping to accomplish this. Normally, applications access files
using read and write operations. When a file is memory-mapped, its content is
represented as a range of virtual addresses in memory. This is functionally
equivalent to an application program allocating memory, reading the contents in
from the disk into a buffer in memory, and later writing the contents of that
memory buffer back to the file when it is finished. The reading and writing are
entirely handled by the Memory Manager rather than by the application.
Further, only pages of the file that are actually changed in memory will be writ-
ten back to the file.

It’s important to note that merely mapping a file into the address space of a
program does not by itself include reading the file’s contents. When a file is
mapped, the Memory Manager reserves virtual memory addresses for the file.
At that time the Memory Manager also sets up information so that when an
address in the memory range is first referenced, the Memory Manager will be
called (as a result of a page fault) to read the contents of the referenced page
from the file on disk. For example, this technique is used when application
programs are executed. Rather than “loading” the image into memory, it is
mapped into memory, and then individual page references fault and cause the
page to be fetched from the file containing the executable program code.

Because memory-mapped files can actually be shared between address spaces,
the Memory Manager not only tracks where a particular file is mapped into an
address space, but it also tracks what physical memory is currently being used
to store individual pieces of the memory-mapped file. As described later in the
chapter, the Memory Manager ensures that only a single copy of the memory-
mapped file appears in physical memory so that it can be properly shared
between all the address spaces that refer to it. This is done by using an internal
Memory Manager structure known as the Section Object.

One of the common uses of memory-mapped files on Windows NT is for the
instantiation of processes. All executable images on Windows NT are mapped
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into memory, and loaded as memory-mapped files—with the special copy-on-
write attribute discussed in the previous section. If the image is modified within
a particular address range (perhaps by setting a debugger breakpoint), the
modified pages are no longer shared with the other processes. Instead, those
pages are private to that particular address space. Indeed, when the address
space is destroyed, such changes are normally discarded because they are no
longer needed.

Another common time to use memory-mapped files is when a file is copied. The
Win32 API called copyFile() typically memory-maps the input file. Because the
file now appears as a “buffer” in the application address space, it is trivial for it
to pass a pointer into the source file (which looks like a memory buffer) to the
writeFile() call, which then writes the data to the destination file.

Of course, there are other uses for memory-mapped files on Windows NT—
these are only representative of the types of use found on Windows NT.

Paging

Much of the mechanism discussed thus far has been how virtual addresses are
translated into physical addresses. Sometimes, virtual addresses do not in fact
have an associated physical address. One reason this occurs is because the
Memory Manager vigilantly scans the various address spaces within the sys-
tem, reclaiming pages from them.

Reclaiming pages refers to the Memory Manager changing individual entries in
the virtual page table so that, instead of pointing to the actual physical page, it
is marked as invalid. If the virtual page table entry indicates that the page is
dirty, the Memory Manager will write the contents of the physical page to its
backing store. Typically, this is somewhere on the disk drive.

The driving need here is that the number of physical pages within the system is
strictly limited. Thus, it is essential to ensure that this scarce resource is shared
fairly. Otherwise, some applications would perform poorly or not function at
all because they did not have enough memory. On the other hand, reclaiming
pages from one application to give to another application can lead to a condi-
tion in which the system spends most of its time performing I/O to disk and
reclaiming pages. This condition is known as memory thrashing; normally the
only way to resolve it is to either use less memory by running fewer applica-
tions or to add additional memory to the system.

The remainder of this section discusses the details of how the various demands
on physical memory are balanced against one another. These topics include:

® Working Sets. The working set is used by the Memory Manager to ensure
that no process is deprived of all physical memory, and that no process
can use all physical memory.
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® Balance Set Manager. The Balance Set Manager is used by the
Microkernel to periodically call into the Memory Manager to reclaim
physical memory from processes that might no longer be using it.

* Modified Page Writer. The Modified Page Writer scans all physical pages,
looking for dirty pages that should be written.

e Mapped Page Writer. The Mapped Page Writer accepts pages from the
Modified Page Writer that are part of memory-mapped files and writes
them to disk.

o Lazy Writer. The Lazy Writer scans data cached by the file systems and
writes out any dirty pages to disk. This is how Windows NT implements
write-behind caching for the file systems.

Working Sets

The Memory Manager on Windows NT maintains a working set for each user
process. For the system process, a working set is used to track the usage of
memory for the file system cache maintained by the Cache Manager. The
working set information is used by Windows NT to balance the use of memory
between competing processes and the file cache.

Thus, a working set consists of information about the process, including the
following:

e Number of Page Faults. This information indicates the level of paging
activity experienced by this working set.

e Size. This information indicates the current size of the working set.

® Peak Size. This information indicates the “high-watermark” of the work-
ing set.

¢ Maximum Size. This information indicates the largest working set
allowed by the system.

e Minimum Size. This information indicates the size at which trimming is
performed by the system.

For example, a process is not subject to memory trimming until it has reached
the Minimum Size of its working set quota, while Maximum Size indicates the
threshold beyond which new pages are added at the expense of older pages
being removed.

Note that these values are not static. Instead, Windows NT modifies them as
necessary to improve the performance of the program. For example, the
Maximum Size is increased whenever a process needs additional memory, as
detected by the Number of Page Faults and available memory.
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This flexible strategy is essential to allowing Windows NT to adjust the basic
working set for each process as necessary and as resources are available vithin
the system itself.

Balance Set Manager

The Balance Set Manager, which is part of the Microkernel, is actually a dedi-
cated thread that runs in the system process. As such, it is a Kernel mode-only
thread, responsible for performing a variety of background processing opera-
tions to optimize memory usage on the Windows NT system.

This background thread awakens periodically and looks for work to perform.
On an idle system, the Balance Set Manager typically awakens only to find
there is no work to perform and quickly returns back to a blocking (sleep)
state.

When the system is active or when it has been recently active, the Balance Set
Manager invokes the Memory Manager to actually look through the list of
processes and attempt to remove pages from the working set. The Memory
Manager’s algorithm for this attempts to ensure that it does not trim pages that
have recently been loaded (to prevent “memory thrashing”) or from processes
that are experiencing many page faults. As the demand for memory increases
between processes, the Memory Manager trims pages from the working set
more aggressively.

Once the Memory Manager has determined that a particular process working
set should be trimmed, it then scans the process working set, looking for its
oldest pages. As it scans from the oldest to newest pages, the Memory
Manager attempts to locate pages that have not been recently used, based on
the “accessed” bit that is maintained by the hardware and stored within the
virtual page table entry. If the page has not been accessed since the last time the
Memory Manager scanned, it removes the page from the working set.
Otherwise, the Memory Manager simply clears the “accessed” bit. By using the
“accessed” bit, the Memory Manager ensures that it does not trim pages that
have been used since the last time trimming was performed. Of course, if the
system is experiencing a memory shortage, the period between scanning
decreases and hence the number of pages available for trimming increases.

Once a page has been found that should be trimmed, the Memory Manager
updates the process virtual page tables to indicate that this page is no longer
valid. Thus, the next time that virtual page is accessed, a page fault will result.
Separately, the Memory Manager maintains a reference count on the physical
page and this reference count is decremented. This is necessary because physi-
cal pages might be shared between processes, as described earlier. In the case
where the physical page is shared, two separate virtual page tables reference
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that one page. Clearly, we cannot recycle that page until all such references
have been released.

When the reference count for the physical page drops to zero, the page can be
recycled. Before the page is reused, it enters an intermediate state known as the
transition state. In this stage, the physical page has not been reused, so its con-
tents have not changed. If a process references its virtual page table, the entry
will be marked as “invalid” and a page fault will occur. While processing this
page fault, the Memory Manager will note that this virtual page is “in transi-
tion” and, based upon information within the working set, that transitional
page is reclaimed. We describe this in more detail later in this chapter in the
discussion on “Virtual-to-Physical Address Translation.”

Another important task performed by the Balance Set Manager is to swap out
kernel stacks. Normally, kernel stacks are “pinned” into memory so they can-
not be paged out. Under certain circumstances, however, they can be removed
from memory. This can only happen when the process is inactive and the
thread in question is in a “User mode” wait state.

The DDK function KeWaitForSingleObject() includes a WaitMode parame-
ter that indicates the type of wait being performed. The two possible val-
ues are KernelMode and UserMode. When the thread is blocked in a UserMode
wait state, the Balance Set Manager is allowed to unpin its stack so that
the physical memory used for the stack can be reused by the operating
system. However, the actual process of removing the kernel stack is done
by the Memory Manager. Note that if a thread is blocked in a KernelMode
wait state, its kernel stack cannot be safely unpinned, so the Balance Set
Manager leaves it alone in memory. Given that each user thread normally
consumes 12KB (X86) or 16KB (alpha) of memory, the capability to
share this physical memory is important when many threads are present
in the system.

Of course, for a Kernel mode device driver writer, the fact that the stack can be
paged out is not a big concern. This is because most Kernel mode device dri-
vers call KeWaitForSingleObject() in a KernelMode wait state, and hence the stack
cannot be paged out. Further, when the thread is scheduled to run again, its
stack is read back in from the paging file and pinned in memory. Thus, when
writing a Kernel mode device driver, it is inherently safe to assume that the ker-
nel stack is non-paged memory. Of course, you must then use only the
KernelMode () wait state because otherwise the kernel stack might be paged!
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Modified Page Writer

The Memory Manager actually maintains two separate dedicated high-pt ority

threads for the sole purpose of writing out a steady stream of dirty pages back

to the backing store, which is typically a disk drive, although it might be a disk
drive on a remote system. This background write process is imperative because
it ensures that the number of dirty pages never exceeds some threshold.

In essence, the Memory Manager implements a “leaky-bucket” algorithm (akin
to filling a bucket with a fire hose and draining it with a pinhole leak). The fire
hose is the rate at which application programs can create new dirty pages. The
pinhole leak is the rate at which the Memory Manager can write pages back to
disk. Given that the speed of modifying memory is nearly five orders of magni-
tude faster than writing to disk, this is a serious problem.

The real reason this is a problem is that if the number of pages available for
recycling falls too low, the Memory Manager will find itself in an untenable
situation—one where it requires more physical pages to continue running so
that it can write pages out to disk. Such situations ultimately lead to a dead-
lock of some sort, causing the system to halt.

The Modified Page Writer is responsible for writing pages that have been mod-
ified (“dirty pages”) back to the paging file. If the modified page is from a
memory-mapped file (which is described later in this chapter, in the section
entitled “Memory-Mapped Files”), the page is queued and the Mapped Page
Writer handles writing them back to the correct file. Once the page has been
written, it is no longer dirty; if necessary, it can be reclaimed for use in some
other virtual address space. Thus, an available pool of clean pages can always
be guaranteed.

The algorithm used by the Modified Page Writer does not write all dirty
pages. Instead, it tries to write enough dirty pages to ensure that the sup-
ply of clean pages is large enough that the system does not run into a
memory exhaustion state—because such a state is fatal.

Thus, the Memory Manager is not concerned about writing out dirty
pages to disk to preserve their data contents. Indeed, if an application
modifies a very small set of pages on a continual basis, those pages may
not ever be written out to disk. This can be a problem with the pages that
contain data from a mapped file. In such a case, the data may sit in mem-
ory without ever being written out. Application programs that wish to
ensure that the data is written to disk must perform this operation

continues
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Continued

explicitly. Of course, applications cannot assume that data from a
memory-mapped file is only written to disk when they ask. This is
because the Memory Manager will write data when it chooses, inde-
pendent of the needs or requirements of the application.

Mapped Page Writer

The Mapped Page Writer is responsible for writing dirty pages back to memory-
mapped files. For those new to Windows NT, this might seem to be a rare con-
dition. In fact, it turns out to be extremely common because essentially all files
on Windows NT are memory-mapped into the file cache.

This integrated file cache ensures that the file can be accessed both via the file
cache (via the file systems using read and write) as well as via memory-mapped
file access. In this case, the data for the mapped files are shared between all the
memory-mapped images. Thus, there is only a single copy of the data in mem-
ory, which ensures that changes made using read/write are coherent with
changes made using memory-mapped access.

As noted previously, other files are also memory-mapped. For example, exe-
cutable images and DLLs are routinely memory-mapped. Unlike data files,
however, such executable images and DLLs are memory-mapped for read-only
access. Data files are memory-mapped for read-write access.

The Mapped Page Writer processes individual pages as they are passed to it
from the Modified Page Writer. Thus, as memory conditions become low, the
Modified Page Writer is writing pages to the paging file and queuing pages for
memory-mapped files to the Mapped Page Writer. This is essential because it
ensures that writing pages back to disk does not cause page faults (because the
file systems themselves use paged memory, this is possible, though rare).

There are a few interesting cases to consider when looking at memory-
mapped files. For example, although an executable image is mapped
read-only and a data file is mapped read-write, this is problematic when
someone copies a file foo.exe to a different file bar.exe, and then exe-
cutes bar.exe. When the file is copied, it is actually modified as if it were
a data file. However, when the file is executed, it is mapped into memory
in a read-only fashion. Whenever the usage of a file is changing in this
fashion (from a data file to an executable or vice versa), the file system is
actually responsible for ensuring the consistency of the data of the two
separate mappings. Normally, it does this by ensuring that any dirty data
(such as for the new file bar.exe in our example) has been written to disk,
and then deleting the data cached in system memory. Similarly, when the
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file bas recently been executed and then is overwritten, it must delete the
data cached in memory and then create a new set of pages to represent
the new copy.

This is one reason that it isn’t possible to copy a new executable image
over an existing executable image when it is running—the very process of
doing this requires that the current in-memory copy be discarded (or
“purged”) so that the new copy can be stored in memory. Because the
current copy is in use, an attempt to purge its pages fails.

Lazy Writer

The Lazy Writer is part of the Cache Manager. As such, it is responsible for
writing dirty file cache data back to disk. Unlike the Mapped Page Writer, the
Lazy Writer does not attempt to write all dirty data in memory back to disk.
Instead, the Lazy Writer attempts to ensure that any dirty cached-file data is
written back to disk. It only does this for files that are modified via the
read/write path. In this case, the file is memory-mapped into the file cache. The
file systems then call the Cache Manager as needed to perform the actual read
and write I/O operations.

When an application requests that data be written back to the file, the Lazy
Writer copies the data contents of the user buffer to the file cache. The Cache
Manager copies the data into these memory-mapped files. As noted with
memory-mapped files, the Memory Manager does not attempt to ensure that
data in a memory-mapped file is written back to disk—the Memory Manager
writes what data it needs to ensure that there are clean pages and no more.

Thus, like any application that uses memory-mapped files, the Lazy Writer
must actively write the contents of dirty pages back to disk to ensure that file
system data is eventually written. However, by performing the writes in the
background, it appears to users that application writes (such as when saving a
file from a word processor) complete quickly. Data is then written to disk in
the background, while applications can continue ordinary processing.

There is an inherent risk in delaying write operations because the system might
fail between the time the application data is copied into the file cache and the
time the data is written to disk. To minimize this window of vulnerability,
Windows NT uses an aggressive time schedule, so the Lazy Writer begins writ-
ing data back to disk in the seconds immediately following the application
write. Thus, user data is written back to disk quickly.

Address Translation

Of course, this mechanism in the Windows NT virtual memory system is there
to facilitate one fundamental process—address translation. Whenever the CPU
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is presented with an address—perhaps using the instruction pointer or stack
pointer, or using a load or store memory operation—that address is interpreted
as a virtual address and is translated to a corresponding physical address.

As we discussed in Chapter 2, “Achieving Hardware Independence with the
HAL,” and as you’ll see in Chapter 8, “/O Architectures,” Windows NT has
three different types of addresses:

¢ Virtual Addresses. These addresses are translated into physical addresses
prior to actual use.

e Physical Addresses. These addresses actually refer to physical memory.
Note that such memory always appears on the memory bus, although the
actual memory might be normal RAM or it might be memory presented
to the system by a device.

* Logical Addresses. This “catch-all” case is used for special addresses that
are used by the HAL when communicating with a device driver. Thus, the
HAL is responsible for managing these addresses.

Understanding the type of address the Kernel mode device driver is using is
essential to ensuring that the driver functions properly. For example, using a
logical address when the system believes it is a virtual address will cause the
address to be translated and the translated address will be used. This typically
results in either a system crash (the blue screen of death) or changes to data
that you did not want to change, causing instability and improper behavior.

The following sections describe the detailed mechanisms used to map virtual
addresses to physical addresses in more detail. In summary, these techniques
include:

e Page Tables. A page table is the precise mechanism the Virtual Memory
system (and sometimes the underlying hardware) uses to translate
between a particular virtual address and the specific physical address.

e Virtual-to-Physical Translation. The underlying hardware utilizes its own
hardware-dependent mechanism to map a virtual address to a physical
address. Only when the hardware is unable to accomplish this does it
invoke the operating system.

¢ Virtual Address Descriptors (VADs). The Memory Manager uses the VAD
to describe the complete virtual memory layout for a given address space.
This allows the Memory Manager to resolve page faults quickly and cor-
rectly.

¢ Context. Given that there are many address spaces within the system, the
context is defined by the address space that is currently in use. This con-
cept is particularly important to kernel mode device driver developers,
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because understanding context is essential to writing a correctly function-
ing device driver.

Page Tables

Typically, the system CPU will translate all virtual addresses to physical
addresses. It does this by using page tables. Figure 3.8 shows how a single vir-
tual address is translated to point to a particular byte on a particular physical

page.

Dir Table Frame
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Figure 3.8. Page tables.

For the Intel platform, the 10 most significant bits of the virtual address are
used as a reference into the page directory. This page directory consists of
nothing more than a series of (virtual) pointers to individual page tables. The
next 10 bits of the virtual address are used as a reference into the page table.
Like the page directory, the page table consists of an array of pointers to indi-
vidual pages. Unlike the page directory, however, these pointers are physical
references rather than virtual references. This physical reference is to the physi-
cal page that contains the data in question.

The last 12 bits of the virtual address are used as an offset to a particular byte
within the physical page. Thus, on the Intel platform we note:

® Each page consists of 4096 bytes of data (2'?)

e A single page table can contain 1024 page references because the page
table is 4KB and each reference is 32 bits.
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o One page table describes 4MB of physical memory: 1024 entries x 4KB
per page.

* A single page directory can contain 1024 page table references because
the directory page is 4KB and each reference is 32 bits.

® One page directory page describes 4GB of physical memory: 1024 entries
X 4MB per page table.

Of course, the Windows NT virtual memory system is not tied to a particular
page size. Although the page size is a manifest constant on any given platform
(you can use the PAGE_SIZE constant in the Kernel mode device driver), it can
vary from platform to platform. For example, on the Alpha platform, one page
is 8KB rather than 4KB.

Page Table Entries

In addition to the hardware definition of a page table, the Memory Manager
also defines several other “special-purpose” types of page table entries. These
special-purpose entry types store information within the page table when the
entry is not marked as valid. This works because the CPU will not interpret
the contents of a page table entry if the special “valid” bit is not set to indicate
the entry is valid. A page table entry is normally referred to as a PTE. Figure
3.9 shows a typical PTE.

31 27 26 76 3 2 0

| =

s
Protection Page Address Pagefile State
11t L1 11 I [
5 bits 20 bits 4 bits 3 bits

Figure 3.9. Sample page table entry.

Note that the PTE is 32 bits wide. Thus, Figure 3.9 labels each of these bits in
the sample PTE, as well as the fields within it, to provide a general sense of
size and usage for the various fields within a typical PTE. There are, in fact,
several different PTE layouts defined by the Memory Manager, with the layout
of the bits depending upon the precise type of the PTE. They are:

* Hardware. The precise layout of the hardware PTE is specific to the
hardware platform.

o Prototype. This PTE is used for shared memory pages (more on this
later).

* Demand Zero. This PTE indicates that the page must be zeroed before it
can be used.
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* Paging File. This PTE indicates that the data contents of this page are
stored in the paging file.

* Unused. This PTE indicates that the particular entry is available for use.
Hardware PTE

The Hardware PTE type is used whenever the page itself is valid. Typically, this
will include information such as:

* One bit to indicate if the page has been accessed. As previously noted, the
Memory Manager uses this bit when performing page trimming.

* A few bits to indicate the access rights on the page. For Windows NT,
this must support at least User mode and write mode. Frequently, other

bits will indicate other access rights, such as execute, or access for other
CPU modes.

® The physical address of the page. The Intel platform requires 20 bits,
while the Alpha platform requires 19 bits.

¢ Typically, a few bits are reserved for the OS to use. NT uses these to indi-
cate special page attributes such as copy-on-write.

Prototype PTE

Perhaps the most interesting type is actually the Prototype PTE. The fundamen-
tal problem for the Memory Manager is how to handle shared memory pages.
Figure 3.10 illustrates the problem that occurs when a shared memory page is
currently located in the paging file.

In this case two different page tables (presumably in two different processes)
reference the same page. The page contents are currently stored in the paging
file. When one process references that shared memory page, the Memory
Manager will allocate a new physical page and read the data from the paging
file. The second process, with its own page table, still refers to the data in the
paging file. Thus, to avoid losing the advantages of data sharing, the Memory
Manager needs to update all references to the physical page.

The Memory Manager does this by using a Prototype PTE. These “extra”
entries are maintained by the Memory Manager for any shared memory struc-
ture. When valid, the particular PTE refers to the physical page containing the
data. However, when the particular PTE is not valid, it refers to the Prototype
PTE. The Prototype PTE in turn refers to the physical page, if there is one, or
to the actual location of the data—such as in a paging file. Figure 3.11 depicts
the situation in which the Prototype PTE points to the paging file.
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Figure 3.10. Shared memory.
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Figure 3.11. Prototype PTE with data in paging file.

If the Prototype PTE points to the paging file, and an application references the
page using its own page table; the Memory Manager allocates a new page,
fixes the prototype PTE so it points to the newly allocated physical page, and

fixes the PTE for the application’s address space to point to the correct
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physical page. Figure 3.12 illustrates the references to the correct physical page
once the PTE has been fixed up. Note that one address space has a valid refer-

ence to the physical page and the other address space still maintains a reference
to the Prototype PTE.

Address Space A Page . Address Space A Page
Table Prototype PTE [ Table
PTE —

m— Invalid PTE

Physical Memory

A
A

Figure 3.12. Prototype PTE with data in memory.

This ensures that if an application in a different address space with a reference
to the Prototype PTE references that page, the Memory Manager will adjust its
page tables to point to the correct physical page. This situation was illustrated
earlier in Figure 3.7.

Demand Zero PTE

A variation on the Prototype PTE is the Demand Zero PTE. This page is estab-
lished so that it points to a special reserved page that is zero-filled. Attempts to
read these pages will return nothing more than zeros. However, when the page
is written, a “clean” page (one filled with nothing other than zeros) is substi-
tuted. Ensuring that pages filled with zeros are always allocated to new pages
ensures that user applications cannot read the previous contents of memory
using malloc(). Otherwise, it would be possible for User mode applications to
compromise the security of the system by reading the data created by other
applications—or even the operating system.
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Demand Zero pages actually have an interesting attribute that causes a prob-
lem for certain types of storage devices when used with Windows NT.
Specifically, Demand Zero pages are automatically marked as “dirty” by the
Memory Manager in its private database. When the application modifies the
page, the PTE is also marked as dirty. Normally, this doesn’t make any differ-
ence. However, when the file Cache Manager is the “application” that receives
a new, clean Demand Zero page, it is possible that timing of the Mapped Page
Writer and Lazy Writer can cause the page to be written twice.

This is because there are really two dirty bits—one bit in the Memory Manager
private database (more on the “page frame database” later in this chapter) and
one bit in the PTE.

If the Lazy Writer writes the dirty page first, only one copy of the data is writ-
ten out to disk. If the Mapped Page Writer writes the dirty page first and then
the Lazy Writer writes the dirty page, it is written again. For most disk subsys-
tems, this is just a little inefficient. For Write Once Read Many (WORM) stor-
age devices, that extra write takes extra disk storage. Although this doesn’t
cause an incorrect operation, it often surprises those who develop WORM
storage drivers when they first observe this phenomenon.

Paging File PTE

The Paging File PTE describes the location of data while it is stored in the pag-
ing file itself. The sample PTE illustrated in Figure 3.9 showed four bits
reserved for the paging file number. This number indicates which paging file
currently holds the contents of the page. Hence, the Memory Manager can uti-
lize up to 16 paging files, which should be sufficient for even the most extreme
environments.

Of course, the same 20 bits that were used to describe the physical page
address can be used to describe the location of the data within the paging file.

Unused PTE

The Unused PTE indicates that the PTE entry itself is not presently being used.
Thus, any attempts to reference this page will not be resolved by the Memory
Manager. Instead, an error will be generated and sent to the application thread
that caused the invalid memory reference.

Virtual-to-Physical Address Translation

The precise mechanism that the various hardware platforms use to perform
virtual-to-physical address translation is dependent upon the specifics of the
underlying hardware platform. Although we have described the page directory,
page tables, and physical pages, only some hardware platforms actually sup-
port this translation mechanism.
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For example, the MIPS family of CPUs does not traverse the page tables when
performing virtual-to-physical address translation. Instead, they rely solely
upon a Translation Lookaside Buffer (TLB), which is implemented in hard-
ware, and stores the virtual-to-physical mapping in a hardware associative
cache. In this case, the CPU uses the virtual address to look up the correspond-
ing physical address in the TLB. If the entry is not present in the TLB, it causes
a page fault.

Indeed, all of the hardware platforms rely upon some form of translation
buffer mechanism to improve the performance of virtual-to-physical address
translation. The size of this translation table is small—it could be as small as a
single entry or large enough to contain over a hundred entries.

The translation buffer differs from the page table in that the translation buffer
is merely a cache of recently used virtual-to-physical address translations, while
the page table describes all possible virtual-to-physical translations. Thus, we
rely upon the translation buffer to increase the performance of address transla-
tion and fall back to the page tables only when the necessary information is
not cached.

For most other platforms, the hardware actually walks through the page tables
to translate a virtual address to a physical address. Even some of these plat-
forms utilize a TLB to optimize this process. Utilizing a TLB provides a fast
way to cache virtual-to-physical address translation.

For additional information on how the underlying hardware platforms
support virtual memory, you should read the Pentium II Family
Developer’s Manual, Volume 3: Operating System Writer’s Guide, or the
Alpha Architecture Reference Manual. Each of these manuals describes
the details involved in page-fault handling with respect to the particular
hardware platform. For the X86 family of processors, Windows NT typi-
cally utilizes a “flat model” segmentation scheme with paging, although
there is some use of segments for supporting DOS programs.

There are always addresses that the CPU cannot translate, either because the
access to the page is incompatible with the PTE or because the virtual address
does not have a corresponding physical address. In either case, these complex
problems must be deferred to the Memory Manager itself. This process is a
page fault and must be handled by the Memory Manager.

When a page fault occurs, it is actually trapped by the Microkernel. The
Microkernel builds a canonical description of the fault and then passes this
into the Memory Manager. By building a canonical representation of the page
fault, the kernel furthers the platform independence described in Chapter 1,
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“The Windows NT Operating System Overview.” The information it receives
is as follows:

® Whether the fault is a load or store operation
® What virtual address is being accessed
e What the CPU processor mode is when the fault occurs

Note that when the Memory Manager is invoked, the CPU processor mode is
KernelMode because processing page faults is a privileged operation requiring
OS intervention.

In analyzing a particular page fault, the Memory Manager must first analyze
the PTE. In doing so, it must handle some very complex cases. For example, a
page fault might occur on multiple processors on a multiprocessor system.
Thus, when the Memory Manager is called, it might find that the page causing
the fault is actually valid because it has since been updated by a different
processor (or even a different thread on the same processor).

A fault might occur in User mode. In this case, the Memory Manager must tra-
verse the page directory, find the page table, and find the specific page table
entry. It is even possible while doing this that the Memory Manager will find
that the page directory and page table are paged out!

Once the Memory Manager finds the appropriate PTE, it must then determine
if the PTE itself is valid. If the PTE is valid, the Memory Manager’s work is
done—it can just return to the kernel, and the kernel in turn will restart the
faulting instruction.

If, as is more often the case, the PTE is invalid, the Memory Manager must
check for each of the various conditions that might have occurred. These are
based upon the particular type of PTE that is stored in the page table (recall
that the Memory Manager defines the contents of a PTE when it is invalid).

For example, if the PTE indicates that the given page is a Demand Zero page,
the Memory Manager must actually allocate a new zero-filled page, and update
the PTE to point to the newly allocated zero-filled page. Then, when the kernel
restarts the faulting instruction, the CPU will be able to access the page.

When a virtual address is in system space, the Memory Manager handles those
differently from addresses in Kernel mode. As noted in the section, “System
Address Space Layout,” the layout of addresses in the system address space is
regimented so that the Memory Manager knows how to handle these page
faults. This is necessary because the Memory Manager does not manage the
system address space the same way it does the kernel address space.
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Virtual Address Descriptor

Although the page tables are essential to managing the translation of virtual-to-
physical translation, we have thus far ignored the issue of what the Memory
Manager does when a virtual page is being “demand-paged.” In such a case,
the PTE is marked as “invalid” and thus when that page is actually referenced,
it causes a page fault.

The Memory Manager must allocate a physical page. In addition, it must also
be able to obtain the contents of that page from its current storage location,
typically a disk drive. To do this, the Memory Manager must ask the I/O
Manager to retrieve the contents of the page. In turn, the /O Manager calls
the actual storage device, typically via a file system, to retrieve the actual data
contents of the page.

Thus, given a virtual address, the Memory Manager must be able to locate the
data, indicating where the actual data contents of the page are stored. This is
done by using the Virtual Address Descriptor (VAD) tree. Each VAD entry
describes one range of pages within the address space and indicates where data
within that region is actually located. All the VAD entries are stored together in
a binary tree and describe how the entire address space for this particular
process is constructed. Hence, there is one VAD tree for each address space.

A single VAD entry describes a range of virtual pages. It includes information

about the attributes of pages in that range and where the backing store for the
virtual pages is located. For example, a VAD entry associated with a memory-
mapped file would describe the range of pages in use by that memory-mapped
file, and indicate that the address range is “backed” by the mapped file.

An additional example is an application program that allocates storage within
its address space, such as by using the standard malloc() call. To accommodate
the new range of virtual pages required to describe the additional physical
memory that has been allocated, a VAD descriptor would be created (or an
existing one extended). Memory that is not associated with a particular file,
such as that allocated by a malloc() operation, is backed by the paging file.
The paging file is thus nothing more than a special file on disk that is used to
store temporary data that should be discarded by Windows NT when the
address space is deleted.

The process of adding a new range of addresses into a process is thus divided
into two steps:

1. A range of virtual addresses are “reserved,” and that information is then
stored in the VAD.

2. The VAD is modified to indicate the backing store for the range of
addresses.



80  Part I: Windows NT Architecture

Thus, Windows NT “commits” the address range to some actual location.

For an example, return to the now familiar case of a DLL. When a DLL needs
to be mapped into memory, the first step is to reserve an address range for the
DLL. Once that is done, the VAD is updated to point to the DLL file itself, so
that the VAD is committed to the DLL file.

The VAD entries are combined together to form a tree structure. Using a tree
has several advantages:

¢ The VAD tree can be searched quickly to find the correct VAD for a given
virtual address.

e The VAD tree can represent a sparse address range. Thus, if nothing
exists in a given virtual address range, there will not be any information
about the VAD tree.

e The VAD tree allows a single VAD to be split into multiple pieces, as nec-
essary.

Context

Perhaps the most important issues with respect to virtual addresses require that
the driver writer always consider the context for a given operation. With
respect to virtual memory, the context identifies which virtual memory map-
pings the system is using to translate virtual addresses to physical addresses.

Thus, in a driver, when attempting to access a user address (that is, an address
below the 2GB—or 3GB for an Enterprise Server—boundary), the CPU will
actually use the current set of page tables to translate that address. Given this,
the concept of an arbitrary thread context is one in which your driver cannot
be certain what set of mappings is in use. Using an arbitrary memory address is
likely to lead to one of three possible problems:

e The address will not be valid. In this case, the Memory Manager will
raise an exception that must either be handled or the system will crash.

® The address will be valid. In this case, your driver will read (or write)
using this essentially arbitrary memory address, with unpredictable
results.

e The address will be valid and will point to the correct memory.

It often surprises device driver writers that the third scenario in the preceding
list will often occur in their test scenarios. This is because frequently the “arbi-
trary thread” chosen to perform their work will be the only active program on
the system—namely, their test program. In such circumstances, a driver might
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even appear to work correctly. Instead, the problem shows up during later test-
ing or even after it has been shipped to customers.

An invalid pointer is the most common reason the Windows NT operating sys-
tem halts. For example, the most frequently observed STOP codes when
Windows NT provides the Blue Screen of Death (BSOD) all relate to invalid
memory references. The reason that there are several is that the invalid memo-
ry reference can occur in several different ranges of memory. The BSOD is
described in more detail in Chapter 18, “Building and Debugging.”

For example, IRQL_NOT_LESS_OR_EQUAL often indicates that a segment of memory
was not valid. Because the page was invalid, a page fault occurred, and control
was transferred to the Microkernel. In turn, the Microkernel then determined
that the IRQL of the system is at a level where page faults are prohibited
(DISPATCH_LEVEL or above). In this case, a bug check is generated immediately.
(Chapter 6, “Interrupt Request Levels and DPCs,” discusses IRQLs in more
detail.)

Another example of an invalid memory reference causing the system to halt is
PAGE_FAULT_IN_NONPAGED_AREA. As described previously in the chapter, the
Memory Manager organizes the system space portion of the address space into
several different ranges, with each range having a particular purpose. One such
region is the non-paged pool. This region is referred to as non-paged because
all virtual references within this region of memory are either valid and point to
physical memory, or they are invalid. Thus, when a page fault occurs for
addresses within this range, the Memory Manager expects to find a physical
memory reference. Thus, after the Memory Manager has been invoked to han-
dle the page fault, if it finds that the virtual address is within this range, it halts
the system because there is a serious bug—some kernel component, such as a
device driver, is referring to non-existent kernel memory addresses.

The third example of an invalid memory reference causing the system to halt is
KMODE_EXCEPTION_NOT_HANDLED. This typically occurs when a Kernel mode compo-
nent, such as a device driver, references an address in user space and it is not
valid. In this case, the Memory Manager generates an exception. The
Microkernel then scans the kernel stack to determine if there is a registered
exception handler. If there is no such exception handler, the Microkernel halts
the operating system.

Thus, in order to avoid catastrophic results, it is imperative that a device driver
developer understand the context in which it is going to operate. The simplest
model for device driver developers is the one in which they can always

assume they will not be called in the correct thread context. For example,
intermediate- and lowest-level storage drivers typically do not need to worry
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about context because they are always called with kernel addresses and kernel
data structures. Drivers that can be called in thread context, such as all high-
est-level drivers, or some intermediate drivers, need to always be aware of any
context assumptions they are making when developing their driver.

Physical Memory Management

Independent of the translation of virtual-to-physical memory, the Memory
Manager must also track the usage of physical memory. When the system first
initializes, it determines the available physical memory and builds data struc-
tures that are, in turn, used to manage all physical memory in the system (these
structures are actually stored in virtual memory—in the non-paged pool to be
precise.)

The following sections describe in more detail the three mechanisms used by
the Memory Manager to manage the allocation and usage of physical memory:

o Page Frame Database. The page frame database is a table describing the
state of each physical memory page in the system. By tracking the state of
each page (active, free, and so forth) the Memory Manager can reclaim
and allocate memory as needed.

® Page Recovery Algorithm. The Memory Manager actually handles the
transition of pages through several states as part of page recovery. This
mechanism ensures that page recovery is both efficient and inexpensive.

¢ Section Object. The Section Object is used by the Memory Manager to
track resources that are available to be memory-mapped into the various
address spaces.

Page Frame Database

The Memory Manager maintains the page frame database to track the state
and usage information about each physical page of memory that is present on
the system at the time the OS started. The page frame database does not
describe device physical memory, a point that is important to understand when
building MDLs for device memory.

Individual entries within the page frame database are typically referred to by
their page numbers. Hence, this database is normally referred to as the page
frame number (PFN) database. An individual entry within the page frame data-
base describes how a given physical page is currently being used. On Windows
NT, a page is always in one of eight states:

o Active. The physical page is in active use. The PFN database includes
reference-counting information to indicate the number of active references.
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e Transition. The physical page is part of one or more working sets, but all
PTE entries to it are marked invalid. This state is used as part of recycling
the page.

¢ ModifiedNoWrite. The physical page is part of one or more working sets,
contains dirty data, but is not presently scheduled to be written to disk.

® Modified. The physical page may be part of one or more working sets,
contains dirty data, and is presently scheduled to be written to disk.

e Standby. The physical page is not part of any working sets, although the
page may still contain useful data. This state is the “last resort” for pages
before they are recycled for other uses.

e Zeroed. The physical page has been completely filled with zeros. The
Memory Manager maintains a set of such pages so that when a Demand
Zero page fault occurs, it can immediately satisfy it using one of these

pages.

¢ Free. The physical page is unused and contains no useful data. Unlike
zeroed pages, pages in the Free state may have data remaining in them
from their prior use.

e Bad. The physical page has been marked as Bad. This can be used with
hardware that supports identification and removal of pages that are not
performing correctly (perhaps they’ve failed an ECC check.)

In Figure 3.13, we provide a simple graphic description of these lists. Note that
the “pages” are actually tracked via their PFN database entries, with every
physical page present on exactly one list. Note that these lists map one-to-one
with the various states listed. Thus, a physical page is in the “free” state when
it is on the “free” list.

Note that not all physical memory is described within the PFN database. For
example, device drivers can indicate the memory that is resident on their device
using MmMapIoSpace() (the prototype for which is shown in Figure 13.15 in
Chapter 13, “DriverEntry”). While the Memory Manager builds a virtual-to-
physical translation for this memory, it uses non-paged pool for this purpose.
Such memory does not have an entry in the PFN database.

The Page Recovery Algorithm

Note that the Windows NT page recovery algorithm might appear a bit unusu-
al when first described. From the pure operating system perspective, the page
reuse mechanism should implement a least-recently-used (LRU) algorithm.
Then, each time a page was accessed, it would be moved to the front of the
list. As pages were needed for other processes, the Memory Manager would
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remove them from the tail of the list—in essence, removing those pages that
had not been used recently.
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Figure 3.13. Memory Manager page lists.

While theoretically optimal, the cost of a strict LRU mechanism requires con-
stantly moving the PFN entries from the middle of the list to the head of the
list. For CPUs that didn’t support this, the OS would have to ensure that a
page fault occurred for every page except the current one. Instead of LRU,
Windows NT utilizes a much more efficient three-step, FIFO algorithm for
recycling the physical pages. First, as we described earlier, there is an
“accessed” bit that is set by the MMU. This allows Windows NT to chose to
trim only pages from a particular process working set when the page has not
been recently accessed, specifically since the last time the working set was
scanned by the Memory Manager. Then, a page is moved to the Transition list.
If it is referenced at this point, the data is in memory and the page can be
cheaply recovered. Once a page has become the oldest page on the Transition
list it is moved to the Standby list. It can still be recovered at this point, but
once it becomes the oldest page on the standby list it is reclaimed—either to be
zeroed and added to the zero list, or to become part of a processes address
space because the physical page has been recycled.
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Thus, this algorithm approximates the strict LRU algorithm without the costly
overhead of LRU.

Section Object

The Memory Manager in Windows NT exports a single control data structure:
the Section Object. Like other objects within Windows NT, the Section Object
can be named. Figure 3.14 shows the Devices directory within the Object
Manager. This shows one Section Object of particular interest to device driver
writers—the PhysicalMemory Section Object. This Section Object can be used
from a device driver to map device memory into an application space. This
allows device memory to be accessed directly from a custom application,
although this should be set up from the device driver.

Figure 3.14. Physical Memory Section Object.

Section Objects are used within the Memory Manager to describe anything
that can be “mapped” into memory. Perhaps the best example of this is for
memory-mapped files, each of which has exactly one Section Object (although
there are potentially many open references to that one file, with one file object
for each open reference). This mechanism is essential to ensuring that no mat-
ter how many mapped instances of a file exist in the system, there is only one
copy of the data.

Memory-Manager Tuning

There are a number of instances when it may be necessary to tune the perfor-
mance of the Windows NT Memory Manager in order to increase the available
pool of resources for a particular device driver. Figure 3.15 shows a view of the
Registry keys that control the behavior of the Memory Manager.
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Figure 3.15. Memory Manager Registry control keys.

From Figure 3.15, the Registry key values of interest are as follows:

® DisablePagingExecutive. This value disables the paging of the operating
system and device drivers. A value of zero indicates that paging is enabled,
while any non-zero value disables paging. When paging is disabled, the
code portion of all drivers in the system are locked into memory.

® IoPageLockLimit. This REG_DWORD value ranges from a minimum of 512KB
to a value approximately 7MB less than the total physical memory on the
system. It is used to restrict the amount of memory that can be locked by
a Kernel mode driver on behalf of a User mode process. Drivers that
transfer large blocks of data in multi-threaded programs find it useful to
increase this value; otherwise, certain operations will fail due to the quota
being exceeded.

® NonPagedPoolSize. This value establishes the total available non-paged
memory size. A value of zero indicates that the “default™ value, which is
computed based upon the available physical memory, should be used. A
larger value indicates the size that should be used. Note that the maxi-
mum acceptable value is a function of the available physical memory and
the version of Windows NT. For NT V4. SP3 on an X86 platform, the
version dependent limit is 128 MB.

¢ systemPages. This value establishes the number of PTEs reserved by the
operating system for describing system memory. The default value is a
function of the version and platform, but for a typical system it is 10,000.
The maximum value also varies as a function of the version and the plat-
form, but it is less than 50,000. Each PTE allows Windows NT to
describe one PAGE_SIZE unit of memory (4KB on X86, 8KB on Alpha).
Increasing this value is typically necessary when a device has a large
amount of memory and the driver must access that memory.
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These are only the Memory Manager-related values that are typically of inter-
est to Kernel mode device driver developers. Chapter 4, “The Registry,”
describes the Registry in more detail.

Drivers and VM

While an understanding of Virtual Memory is useful to gain an appreciation of
the operating system, it is also important when developing Kernel mode device
drivers because device driver writers routinely must manipulate virtual, physi-
cal, and logical addresses.

For example, as you will see in more detail in Chapter 14, “Dispatch Entry
Points,” the I/O Manager can pass one of three types of addresses containing
input from a User mode application:

e The virtual address of the User mode application’s buffer
¢ The virtual address of a system buffer

¢ The physical description of the user’s buffer as a Memory Descriptor List
(MDL)

The issue of context will come up again in Chapter 12, “Driver Structure,” but
for the purposes of discussing virtual memory, knowing the context of a partic-
ular operation is critical to being able to handle virtual addresses correctly.
This is because for the VM system, context defines which page tables to use
when translating the address.

Thus, the virtual address of the User mode application’s buffer must be trans-
lated by using the same set of page tables that were used by the application
when building that buffer. Otherwise, the virtual-to-physical address transla-
tion might point to the right physical memory, but often will not.

It comes as some surprise to new Kernel mode driver developers that
when they are in an “arbitrary” context, using a user virtual address may
resolve to the correct physical memory. Indeed, frequently this problem
may go undetected in the developer’s testing environment because the
only use of the system is to debug the driver. Hence, often the “arbitrary”
context is the last application that ran—the test program! In such a case,
the bug often shows up the first time it is tested by a third party that is
using the system for other tasks as well as for testing the driver.

The advantage of using a virtual address for a system buffer is that addresses
in the system address space are identical, regardless of the actual context. This
is because all contexts share the system space mappings, as described earlier in



88  Part I: Windows NT Architecture

this chapter. Unfortunately, the I/O Manager accomplishes this by allocating a
buffer from the non-paged pool and copying data into it. Although this is
acceptable for small blocks of data, it can become unbearably slow for larger

blocks of data.

The third alternative is for the I/O Manager to pass a description of the physi-
cal pages that make up the user’s buffer. Of course, as discussed earlier, a virtu-
al address is not required to point to a valid physical address. Thus, in the
process of building the description of the physical pages, the Memory Manager
(at the request of the I/O Manager) must ensure that the virtual-to-physical
address mapping is valid and remains valid. The process of ensuring that the
virtual-to-physical address mapping is valid is known as probing. The process
of ensuring that a valid virtual-to-physical mapping remains valid is known as
locking. Hence, the Memory Manager routine that performs this task is
MmProbeAndLockPages (). The prototype for this function is shown in Figure 16.3
(in Chapter 16, “Programmed I/O Data Transfers.”)

Memory Descriptor Lists

The Memory Manager uses the Memory Descriptor List (MDL) structure for
describing a set of physical pages that make up the user application’s virtual
buffer. Once a device driver has an MDL describing a user buffer, that MDL
can be used to create a mapping in the system virtual address space or it can be
used to obtain logical addresses that can be given to the device for performing
Direct Memory Access (DMA.) DMA is described in more detail in Chapter
17, “DMA Data Transfers.”

Building a system virtual address mapping is straightforward for the Memory
Manager once it has a set of physical page addresses because it can simply find
a range of unused PTEs in the system virtual address space, and then fix those
PTEs to point to the appropriate physical pages. This is important because if a
Kernel mode device driver tries to use the physical address directly, the CPU
will perform a virtual-to-physical translation on that physical address. Of
course, it is extremely unlikely that this translation will result in a correct oper-
ation.

Frequently, Kernel mode device drivers allow the /O Manager to interact with
the Memory Manager when creating the MDLs for a user buffer. Those same
drivers then use the MDL as a parameter to pass into the Memory Manager,
either to obtain a system virtual address using MmGetSystemAddressForMdl(), or
by translating the physical addresses within the MDL into logical addresses for
use in programming the device using IoMapTransfer(). The prototype for
MmGetSystemAddressForMdl() is shown in Figure 16.1 (in Chapter 16.) The pro-
totype for IoMapTransfer() is shown in Figure 17.7 (in Chapter 17.) i
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It is also possible for Kernel mode device drivers to build MDLs directly from
user virtual addresses. Although this is unusual for Kernel mode device drivers,
it can prove to be useful under certain limited circumstances. Chapter 16 dis-
cusses handling user buffers directly in more detail. Drivers that do manipulate
user virtual addresses directly must be certain to handle invalid memory refer-
ences. For example, the Memory Manager routine MmProbeAndLockPages () raises
an exception when a user memory reference is invalid.

Structured Exception Handling

One very important technique for handling certain types of memory access
problems is Structured Exception Handling (SEH). This technique is a feature
of the operating system that is supported by the standard Microsoft C/C++
compiler. Although it can be used for general error handling, the interest here
is to ensure that user addresses are valid.

Using Microsoft C, SEH is accomplished by using the keywords __try and
__except. Microsoft’s build environment for Kernel mode drivers (discussed in
greater detail in Chapter 18) defines the keywords try and except in terms of
the actual compiler primitives. This is done using the arguments -Dtry=__ try
and -Dexcept=__except when compiling standard C programs.

C++ code compiled using Microsoft’s build environment must use the native
__try and __except versions of these keywords because C++ defines its own
exception-handling mechanism using the try keyword. This C++ exception-
handling mechanism is incompatible with the exception-handling mechanism
supported by the Microkernel for Kernel mode device drivers.

The Structured Exception Handling model described here should not be
confused with the termination handling that is also available. A termina-
tion handler is a segment of code that will always be executed once a
particular region has been entered, regardless of the way control is trans-
ferred out of the code region. For example, this is often used to ensure
proper cleanup of resources such as locks or allocated memory. A termi-
nation handler also uses the __try clause to introduce it, but uses a

_ finally fo represent the termination code. The __try/__except mecha-
nism is independent of the __try/__finally mechanism. The two may be
both be used within your code.

Example 3.1, which follows shortly, demonstrates how to use SEH when
accessing an address in the user portion of the address space. A few important
notes about SEH on NT:
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e The _ except clause is executed only if the expression evaluates to TRUE.

® The routine GetExceptionInformation can only be called within the
__except expression. This can be used to retrieve extended information
about what caused the exception.

¢ The routine GetExceptionCode can be used within the __except expression
or within the __except clause in order to retrieve the basic information
about what caused the exception.

¢ Not all exceptions can be handled. For example, an illegal instruction
exception cannot be trapped with an exception handler.

e If an exception does not occur, the code within the exception-handling
clause is not called.

Your own driver can generate exceptions using the Executive subsystem routine
ExRaiseStatus().

Example 3.1. Using Structured Exception Handling

1
// We'll be reading data from the user mode address. We should make certain it
/] is valid.
1
BOOLEAN OsrProbeForRead (PVOID Buffer, VLONG Length)
{
ULONG index;
UCHAR dummyArg;
PUCHAR effectiveAddress;

/!
// Probe the input buffer by reading a byte from each page in the range -
// that's enough.

try {
for (index = ADDRESS_AND_SIZE_TO_SPAN_PAGES(Buffer, Length);
index;
index--) {

effectiveAddress = (PUCHAR) Buffer;
effectiveAddress += ((index-1) * PAGE_SIZE);

dummyArg = *effectiveAddress;
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} except (EXCEPTION_EXECUTE_HANDLER) {
DbgPrint("Exception is Ox%x\n", GetExceptionCode());
return FALSE;

}

1
/! If we make it to here, the input buffer is valid.
1

return TRUE;

When an exception occurs, the Microkernel analyzes the registered exception
handlers until it either finds an exception handler willing to handle the excep-
tion or it runs out of exception handlers. An unhandled exception in Kernel
mode causes the system to halt.

Example 3.1 demonstrates an unconditional exception handler, because the
macro EXCEPTION_EXECUTE_HANDLER is defined as TRUE. Thus, the exception han-
dler will always be invoked if there is an exception. If any exception occurs
while referencing the memory, in this case it will unconditionally trap into the
exception handler. Sometimes, you might only want to handle exceptions that
occur because of memory errors, in which case you should provide a function
that can be used to examine the cause of the exception and determine whether
it should be handled or not (see Example 3.2).

Example 3.2. A Selective Exception Handling Expression
ULONG BackgroundExceptionFilter( ULONG Code, PEXCEPTION_POINTERS pointers)

{
PEXCEPTION_RECORD ExceptionRecord;
PCONTEXT Context;
ExceptionRecord = pointers->ExceptionRecord;
Context = pointers->ContextRecord;
return EXCEPTION_EXECUTE_HANDLER;
}

Example 3.3 demonstrates a code fragment, showing how to use this expres-
sion. If an exception occurs while calling the function within the _ try block,
the Microkernel will call the routine BackgroundExceptionFilter to determine if
the exception handler should be invoked. In Example 3.3, it is invoked. An
error is printed and processing continues because the exception has been

handled.
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Example 3.3. Using the Exception Handling Expression
runAgain = FALSE;

_try {

runAgain = (*backgroundTask->BackgroundTaskProc)
(backgroundTask->Context);

} __except ( BackgroundExceptionFilter(GetExceptionCode(),
GetExceptionInformation()) ) {

DbgPrint (("Unexpected exception when calling routine\n"));

}

Perhaps the most challenging part about using SEH is debugging the sys-
tem when something goes wrong. In such a case, it can be useful to use
an exception filter routine, similar to the one in Example 3.2, and utilize
a hard-coded breakpoint. By doing this, the debugger is invoked before
the stack has been unwound, making it easier to debug what has actually
happened.



Chapter 4
The Registry

This chapter will review:

¢ Viewing and Modifying the Registry. This section examines the tools used
to navigate and edit Registry entries. Coverage includes the following
utilities: regedt32.exe, regedit.exe, regdmp.exe, and regini.exe.

¢ Registry Organization. This section explains the hierarchy, values, and
data types typically found within the Registry. Coverage of the
UNICODE_STRING string structure and wide-character null-terminated strings
is also included.

¢ Registry Keys of Interest to Device Driver Developers. This section covers
the HARDWARE, SOFTWARE, and SYSTEM Registry subkeys that are more relevant
to the working environment of device driver writers. Coverage of control
sets is also included for further clarification.

This chapter discusses the Windows NT Registry, emphasizing those parts of
the Registry that are of interest to Kernel mode device driver developers. Note
that this chapter merely introduces the Registry and points out some of the
particular keys of interest. The actual Registry entries needed to install and
start a driver in Windows NT are described in Chapter 20, “Installing and
Starting Drivers.”

The Registry is nothing more than a database of configuration and administra-
tive information about the operating system and related utilities. However,
because it has evolved to accumulate all the configuration information on
Windows NT, the organization of the information within the Registry has
become complex.

Although the Registry is described as if it were a single component, it is in fact
constructed by combining several independent components called hives into a
single, coherent namespace. For example, information about the hardware con-
figuration of the current system is recomputed as part of system initialization,
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and is modified as individual drivers and services load. Other parts of the
Registry, such as those used to maintain user-specific and system-specific con-
figuration data, are stored on disk and maintained in memory so they can be
quickly accessed as necessary.

Viewing and Modifying the Registry
Although Windows NT provides two separate utilities to examine and modify
the Registry, neither of these tools is presented to users via the standard Start
menus. Instead, these utilities must either be manually invoked or added to the
menus. regedt32.exe is the original utility built by Microsoft for examining and
modifying the Registry. This utility is tied tightly to the Windows NT platform
and understands certain data types that are unique to Windows NT.
regedit.exe is a separate utility that works with any system supporting the Win
32 Registry API—notably Windows 95, Windows 98, and Windows NT 4.0.
Figure 4.1 and Figure 4.2 illustrate the basic appearance of the regedit32 and
regedit utilities, respectively.

What is available within the Registry is restricted using the standard Windows
NT security mechanisms. Thus, each key within the Registry can be protected
much like files are protected within the file system. Kernel mode device drivers
typically need not worry about this security because Kernel mode access is nor-
mally granted as a matter of course.

e
1~ ControlSew001
88 ControlSetltz

Figure 4.1. regedt32.exe: Windows NT-specific Registry Editor.
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Figure 4.2. regedit.exe: Win32 Registry Editor for Windows 95/98 and Windows NT.

Although both the regedit.exe and regedt32.exe utilities perform similar func-
tions, their appearances are distinctive and each provides slightly different fea-
tures. For example, the two utilities frequently display Registry information in
slightly different forms. Figure 4.3 shows the information displayed by the
regedt32.exe utility for the HAL resources on a multiprocessor system.
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Figure 4.3. regedt32.exe’s presentation of HAL resources.

Note that by selecting one of the two entries at this level of the Registry (either

.raw Or .translated), the Registry Editor can display detailed information
about this information.

Compare the display in Figure 4.3 to the presentation of the same information
by the regedit.exe utility in Figure 4.4.
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Mﬁ HKEY_ CLASSES_RODT
NEE\.WRRCNLHEER 4 'D2 0000 00 0 09 00 60 9000 00 4G 00:06.00 0O 01 00,
HKEV_LOCAL_MACHINE

0200000001 00 00,000 00000000 00000 01 00L.

Figure 4.4. regedit.exe’s presentation of HAL resources.

Instead of providing a detailed display of the meaning of this Registry informa-
tion, regedit.exe presents this information as binary data without any interpre-
tation. Thus, it is useful to know that the regedt32.exe utility was constructed
with explicit knowledge of the detailed data structures that Windows NT
maintains about hardware resources, while the regedit.exe utility does not.

One benefit of using the regedit.exe utility is that it can search all parts of the
Registry for a particular textual value. Figure 4.5 shows the Find option within
regedit.exe.

1020010000 01,00 D0 0000.09 090 000000 00
02000000 01 60 00 0003 0000 00 0008000001 00..

o
-8 uwsusemnamwzsounm

00 sosuamn
&4 Systom Rsourosa
L!"tﬂ IDED

-2 HKEY. D\'NJmA

Figure 4.5. regedit.exe’s Find capability.



Chapter 4: The Registry 97

Although regedt32.exe has a search facility, it is restricted to searching for a
textual match, with respect to the name of keys within the Registry. A ke in
the Registry corresponds to a particular level, much like a directory within
Explorer. A key acts as a container of additional keys or values, where values
actually contain the data elements within the Registry. The actual organization
of the Registry is described in more detail later in this chapter in the section
“Registry Organization.”

Figure 4.6 shows the Find option used with regedt32.exe.
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Figure 4.6. regedt32.exe’s Find capability.

Again, note that the regedt32.exe utility’s Find option is restricted to searching
on the names of individual keys, rather than for textual strings anywhere with-
in the Registry—notably within the data portion of values. Thus, when search-
ing for a particular string anywhere in the Registry, the regedit.exe utility may
be better suited to the task.

For example, if you wish to find all values that contain data with the word
“Microsoft,” you cannot do this by using regedt32.exe, although you can do
so by using regedit.exe. You could find all the keys that have the word
“Microsoft” in their names, but this is often less useful.

In addition to these standard Windows NT utilities, the Windows NT DDK
also includes two additional command-line utilities: regdmp.exe and regini.exe.
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The regdmp.exe utility can be used to dump all or a portion of the Registry. For
example, to dump the HAL portion of the Registry displayed earlier in Figures
4.3 and 4.4, use the command (all one line):

regdmp "HKEY_LOCAL_MACHINE\Hardware\ResourceMap\Hardware Abstraction Layer\MPS
1.4 - APIC Platform"

This command displays quite a considerable amount of text information that
describes this Registry key, but this represents the same information observed
earlier using regedt32.exe and regedit.exe—again, using a different format for
the information.

The regini.exe utility can be useful when developing drivers because it allows
the developer to build a simple textual description of the Registry key and its
values rather than building a complete installation program. The Registry keys
necessary for driver installation are described in detail in Chapter 20. The
regini.exe utility takes a text file and builds Registry information based upon
the information within the Registry itself. The input of the regini.exe utility is
compatible with the output of the regdmp.exe utility.

Registry Organization

The Registry is organized into a series of different top-level keys. Each key rep-
resents a distinct type of information. In Windows NT, the standard top-level
keys are as follows:

® HKEY_CLASSES_R00T. This key indicates special handling for various file
extensions.

® HKEY_CURRENT_USER. This key indicates configuration information for the
current logged-on user.

® HKEY_CURRENT_CONFIG. This key indicates miscellaneous configuration state.

® HKEY_LOCAL_MACHINE. Of interest to device driver writers, this key indicates
system state.

» HKeY_uskRrs. This key provides local information on this machine about
users.

Note that individual Registry keys may in fact be links to other keys. While
reading the contents of the Registry, these links point to other parts of the
Registry. For example, the HKEY_CURRENT_USER key points to the correct entry in
the HKEY_USERS portion of the Registry. Thus, this linkage is normally transpar-
ent to programs and utilities reading the Registry, and it allows Windows NT
to construct a logical name space for the Registry, where the “correct” contents
are determined by the system as necessary.
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Indeed, we will discuss one of these links—the current control set—that is
important to the configuration state for device drivers later in the section “The
sysTeM Subkey and Control Sets.”

Subkeys, Values, and Data Types

Within the Registry, each key may contain additional keys that may also con-
tain values. A value has a name that is unique within the current key and has
associated data, as well as type information for interpreting the data itself.
Figure 4.7 shows a simple example of this hierarchical decomposition.
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Figure 4.7. Microsoft key within HKEY_LOCAL_MACHINE\SOFTWARE.

Figure 4.7 shows the Microsoft key. Selecting the key displays additional infor-
mation, as shown in Figure 4.8.

For our purposes, the windows NT key was selected because it also shows where
the current configuration data is maintained within the Registry. For this exam-
ple, the system used to capture these images was running CurrentBuildNumber
1381 (which indicates that this was an NT V4 system) and the csbversion
Service Pack 3.

In addition, each of these entries identifies the type of data. For both
currentBuildNumber and cSDversion, the REG_Sz indicates that this is a null-
terminated string (the “Z” indicates a null-terminated string because the wide
character value zero is the null character). The Registry supports a variety of
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different data types, but those of primary interest to device driver developers
are as follows:

® REG_NONE. No type
¢ REG_SZ. Null-terminated wide character string

® REG_EXPAND_SZ. Null-terminated wide character string, with environment
variable expansion

® REG_BINARY. Binary format data

® REG_DWORD. 32-bit value

® REG_DWORD_LITTLE_ENDIAN. Same as REG_DWORD

® REG_DWORD_BIG_ENDIAN. 32-bit value in big endian format
® REG_LINK. Link within the Registry

® REG_MULTI_SZ. Multiple null-terminated wide character strings; list ends
with an empty string

® REG_RESOURCE_LIST. Resource list
* REG_RESOURCE_REQUIREMENTS_LIST. Resource requirements list

® REG_FULL_RESOURCE_DESCRIPTOR. Description of device assigned resources
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Figure 4.8. Windows NT key within HKEY_LOCAL_MACHINE\SOFTWARE \Microsoft.
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Managing Wide Character Strings

Describing strings on Windows NT can be confusing because Windows NT
provides two different ways to represent strings. One is using the
UNICODE_STRING structure, which is declared for the DDK in ntdef.h as:
typedef struct _UNICODE_STRING {
USHORT Length;
USHORT Maximumlength;

PWSTR Buffer;
} UNICODE_STRING;

The other mechanism used to describe a string is to follow the convention that
it is terminated by a null character. The rich programming environment of the
Windows NT DDK utilizes both forms of strings, with some functions taking
wide character strings and others taking pointers to the UNICODE_STRING data
structure. Furthermore, the DDK documentation uses these terms interchange-
ably. We have found that new device driver developers often first experience
these two different mechanisms when they begin interacting with the Registry
itself.

One technique you can use when managing these strings is to maintain them
by using the UNICODE_STRING structure, but ensure that there is an additional
wide character at the end of the Buffer pointed to by the structure. In this case,
the Length field in the structure indicates the size in bytes of the string stored
within the Buffer, while the MaximumLength field will indicate a size of at least
two bytes more than the Length (because it requires two bytes to store a single
null wide character terminator).

Registry Keys of Interest to Device
Driver Developers

For device driver developers, there are only a few keys of general interest with-
in the Registry. These keys are located within the HKEY_LOCAL_MACHINE top-level
key (refer to Figure 4.1).

HARDWARE

The HARDWARE subkey describes the current hardware configuration, including
resources that have been reserved for use by a particular device by its device
driver. This key is entirely dynamic and is reconstructed each time the system
boots. Thus, if a device driver does not load, its device resources will not be
present in this portion of the Registry because they have not been reserved with
the operating system. The HARDWARE key is the first key available as the operat-
ing system initializes.
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Individual values stored within the HARDWARE subkey can describe complete sets
of configuration or resource information. For example, Figure 4.9 shows the
information displayed for an Ethernet card on a particular system. These
resources have been reserved by the device driver to ensure that other devices
on the system do not use the same resources.

n Layer
KeyboardParyPuinterPort.
|-G LOADED SERIALDRIVER RESOURCES

Figure 4.9. Resources in use by an Ethernet device.

An example of a utility that reads this information and displays it is the stan-
dard diagnostic program winmsd.exe. This program reads the Registry informa-
tion and displays the resource utilization list, as shown in Figure 4.10.

Figure 4.10. winnsd.exe reporting I/O port usage.
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Although these values are certainly of interest to device driver writers, they are
never directly created by the device driver. Instead, device driver writers rely
upon I/O Manager functions, such as IoAssignResources() or
IoReportResourceUsage () (described in Chapter 13, “Driver Entry”). These rou-
tines in turn create and record the necessary Registry information.

SOFTWARE

The soFTwARE subkey describes the configuration state and information for the
various software packages installed on the system. Figure 4.8 showed one piece
of information that can be useful to a device driver—the current version and
CSD (patch) applied to the system. Typically, device drivers do not store infor-
mation in this portion of the Registry because it is typically used by the various
services and applications installed on the system.

Comparing the classes subkey of soFTWARE side-by-side with the top-level
HKEY_CLASSES_ROOT reveals that they are identical (see Figure 4.11).
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Figure 4.11. HKEY_CLASSES_ROOT and HKEY_LOCAL_MACHINE\SOFTWARE\Classes.

Rather than being two identical copies of the same information, one is a link
to the other. For any application program or device driver that reads this infor-
mation, either path will point to exactly the same information.
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The SYSTEM Subkey and Control Sets

The sySTEM subkey contains all static configuration information, and is of par-
ticular interest to device drivers because it includes the static configuration
information about which drivers can be loaded on this system. Figure 4.12
shows the layout of the sysTem subkey.
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Figure 4.12. SYSTEM subkey.

The actual system startup information is maintained as a control set. Each con-
trol set describes the parameters to use when initializing the system, the drivers
and services to load, and other information essential to proper configuration of
the system as it is booted.

The Registry actually maintains as many as four such control sets. Figure 4.12
illustrated two control sets: ControlSetee1 and Controlset002. The key
CurrentControlSet is actually a link within the Registry to the control set used
when the system started.

The select key within the Registry indicates the interpretation of the four pos-
sible control set values and their mapping to the actual control sets. These val-
ues are as follows:

e pefault. This value is the “default” control set that should be booted
when the system is started.

o current. This value is the “current” or actual control set that was booted
when the system was started.

® Failed. This value is a control set that was overridden manually (during
boot loading).

® LastKnownGood. This value is the last control set that was in use when
someone successfully logged onto the system.



Chapter 4: The Registry 105

These values are set and modified as changes to the control set are made to
add or remove services, as well as when a boot fails because the control set is
invalid and has been replaced by the system. For example, when Windows NT
boots, it provides a mechanism for reverting to the “last known good” config-
uration. This means that the control set indicated by the LastknownGood value in
the Registry will be used to determine the control set to use.

A control set—such as currentControlset—is made up of four subkeys: control,
Enum, Hardware Profiles, and Services. Of these, Control and Services are of
interest to device driver developers.

Figure 4.13 illustrates the control subkey, which describes system startup and
tuning parameters that are used to control the precise manner in which
Windows NT will operate.
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Figure 4.13. Control set.

For example, the crashcontrol subkey describes what the system should do if a
system crash occurs—including creating a crash dump, rebooting, and so forth.
Some of the information, such as the bumpFile value, is used when the system
reboots to indicate where the crash dump should be copied because it is stored
in the paging file when the system crashes.

The GrouporderList and ServiceGrouporder subkeys control the order in which
device drivers load during system initialization. These keys are described in
greater detail in Chapter 20.

The session Manager subkey (this is not the same as the SessionManager subkey,
which is a different subkey but is in the same location and has a deceptively
similar name) contains configuration information used by the executive subsys-
tems during their own initialization. For example, as described in Chapter 3,
“Virtual Memory,” the Memory Manager uses the values in the Memory
Management subkey. This was shown in Figure 3.15.
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The services subkey describes the services, including device drivers, which can
be loaded by the system. This key is scanned three times during system initial-
ization just to determine the correct set of drivers and services to load as part
of starting up the Windows NT system. Chapter 20 describes this process in
greater detail.

The services subkey contains listings for device drivers; for other types of
Kernel mode drivers, such as file system drivers or file system recognizer dri-
vers; and for User mode services.

The Service Control Manager (services.exe) actually scans the services
subkey when it first initializes. It builds an in-memory database of the
information it finds in the services subkey. Chapter 20 describes the pro-
grammatic interface into the Service Control Manager in more detail.

Because it performs a scan of this subkey once when it starts, if the
Registry is changed externally, such as with regedt32.exe, the Service
Control Manager does not know about the changes to the Registry until
the next time it scans it—the next time the system starts up. Because the
Service Control Manager is normally used to start new services (such as
with the Control Panel applet or the net start command-line command),
if it scans its own list of services and doesn’t find the entry, it cannot load
it. Hence, the requirement that a system be rebooted after manually
changing the Registry.
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Dispatching and Scheduling

This chapter will review:

¢ Dispatching. Dispatching is the process of switching from one thread of
execution to another thread of execution. This section describes the basic
dispatching model on Windows NT.

¢ Scheduling. Scheduling is the process of determining which thread is to
execute next on a given processor. This section describes the basic sched-
uling model on Windows NT.

This chapter discusses the basics of scheduling on Windows NT. Note that this
chapter is not intended to be an exhaustive treatise on Windows NT schedul-
ing; it is designed to emphasize those portions of scheduling that are of interest
to device driver writers.

Scheduling is, in fact, often one of the most complex parts of any operating
system. In this regard, Windows NT is no exception. For example, the
Windows NT scheduling algorithm for multiprocessor systems has changed
throughout the lifetime of Windows NT to further tune its performance.
Sometimes achieving this optimal performance means that the default schedul-
ing rules are set aside. This chapter does not describe these details because they
are beyond the scope of interest for device driver writers and are subject to
change between versions of Windows NT.

Dispatching

Dispatching is the way the operating system switches between threads—the
units of execution on Windows NT. As such, dispatching is distinct from the
act of scheduling, which is the determination of the next thread to run on a
given CPU. Thus, we start by describing the process of dispatching (switching
between threads) in this section, and we discuss scheduling (choosing which
thread to run next) in the next section.
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Windows NT is organized around the concepts of processes and threads. All
threads are associated with a particular process, and each process encapsulates
shared resources, such as the VM page tables discussed in Chapter 3, “Virtual
Memory.” Thus, two threads within the same process have access to the same
resources, while two threads within different processes normally do not share
resources.

Threads between processes can share resources, but it requires explicit
programming so that each of the threads can locate the resource. For
example, two threads might open the same file and share the data con-
tents of that file. Normally, this is done by using a “well-known name”
for the shared resources, and this is allowed by several Win32 APIs that
are used for opening or creating resources.

An example of this is the event that can be shared between two or more
applications, or even between an application and a Kernel mode driver.
Such an event is normally created by using the createtvent() API avail-
able in Win32. By providing the optional name for the event, the event is
visible to all applications within the system. Indeed, a Kernel mode driver
can even access this event by using the standard DDK API call
IoCreateNotificationEvent(). There is one trick. Win32 API operations
create their events in a special directory within the Object Manager
namespace—the BaseNamedobjects directory. Thus, this name must be
explicitly used for the Kernel mode API, while it is not used for the
Win32 level APL

Threads are the units of execution within Windows NT. What this means is
that each “thread” consists of sufficient information for the OS to be aware of
the state of a particular thread at any point in time. In addition, the OS must
also have enough information to be able to safely change that thread’s state.
Typical states for threads are as follows:

e Wait. A thread in the wait state is blocked from running until some event
(or set of events) occurs.

* Ready. A thread in the ready state is eligible to run but must wait until
NT decides to schedule it.

¢ Running. A thread in the running state is presently active on some CPU
in the system.
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For example, when a device driver calls the function KewaitForsingleObject ()

to wait for an event to be signaled, the Microkernel places the current thread
into a wait state. This is accomplished by using a KWAIT_BLOCK member that is
present in the thread control block—the ETHREAD or KTHREAD structure, which are
normally used interchangeably. This is because the KTHREAD structure represents
the Microkernel state for the given thread, and is just the first part of the
ETHREAD structure, which represents the executive state for the given thread.

The ETHREAD structure keeps track of all threads, regardless of their state. If the
thread is waiting to run because it is ready, it will be tracked via the ready
queue, which is a kernel data structure used to track threads while they await
being scheduled.

When the thread is running, the kernel’s processor control block, the kPRrcB
(which is referenced from the PcR) identifies which thread is active at the time,
as well as two other threads—the next thread to run and the idle thread. The
idle thread runs whenever no other threads are ready to run in the system. In
such a case, the idle thread performs some CPU-specific operations waiting for
something to happen—frequently the idle thread will continue to run until a
device interrupts because some I/O operation has completed. This will eventu-
ally cause a thread to become ready to run.

When the kernel switches from one thread to another thread (a process
referred to as dispatching), it stores the current thread’s context, such as the
contents of various CPU registers. The kernel then loads the new context, such
as those CPU registers, of the next thread to run. This is done by the routine
KiswapThread(). This is why KiswapThread() is frequently seen on the stack of
threads not currently running. Figure 5.1 shows, with the aid of the kernel
debugger, a thread’s stack ending with KiswapThread().

Another routine that is called to perform dispatching is KiSwitchToThread().
This function dispatches to a particular thread. This technique is important for
optimizing client/server communications via the LPC subsystem. Specifically,
KiSwitchToThread() allows a thread to send a message and then switch control
to the recipient of that message (see Figure 5.2).

Because all threads call kiSwapThread() and KiSwitchToThread(), the return of
the threads implies that they have been rescheduled. The thread continues
running at the point where the dispatch—the call to KiswapThread() or
KiSwitchToThread()—occurred. Because the register state was restored, the OS
creates the illusion that multiple threads were running in parallel by using this
technique.
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Figure 5.1. Kernel debugger display of blocked thread.

Of course, because Windows NT supports symmetric multiprocessing as
described in Chapter 1, “Windows NT Operating System Overview,” it is actu-
ally possible for multiple threads to be running in parallel—one on each CPU.
However, the basic mechanism used in a multiprocessor (MP) system for dis-
patching is quite similar to the mechanism used in a uniprocessor (UP) system.
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Figure 5.2. Kernel debugger display of KiswitchToThread() call.

Scheduling

Although dispatching is the process by which the OS switches from one thread
to another, scheduling is the process by which the OS picks the next thread to
run. For example, if you look at the kernel processor control block (kPrcB) for
the Alpha platform as it appears in ntddk.h, you’ll note that it includes the field
NextThread which indicates the next thread to run:

typedef struct _KPRCB {

1
// Major and minor version numbers of the PCR.

11

USHORT MinorVersion;
USHORT MajorVersion;

1

// Start of the architecturally defined section of the PRCB. This section
// may be directly addressed by vendor/platform specific HAL code and will
/1 not change from version to version of NT.

/1
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struct _KTHREAD *CurrentThread;
struct _KTHREAD *NextThread;

struct _KTHREAD *IdleThread;

CCHAR Number;

CCHAR Reserved;

USHORT BuildType;

KAFFINITY SetMember;

struct _RESTART_BLOCK *RestartBlock;

I

// End of the architecturally defined section of the PRCB. This section

/] may be directly addressed by vendor/platform specific HAL code and will
/] not change from version to version of NT.

/1

} KPRCB, *PKPRCB, *RESTRICTED_POINTER PRKPRCB;

This architecture allows the kernel to be disconnected from the actual schedul-
ing algorithm, in keeping with the original design goal that the microkernel
avoid implementing operating system policy whenever possible. Thus, the exec-
utive subsystems can implement scheduling policy without requiring any
changes in the underlying dispatching scheme as implemented in the microker-
nel.

The code within the kernel that is responsible for dispatching control to a new
thread always runs at or above IRQL p1sPaTCH_LEVEL. This is necessary because
there are a number of intermediate states, such as when the registers for the
threads are being restored, where it is not safe to allow for arbitrary pre-
emption. Thus, we typically describe the dispatcher as running at IRQL
DISPATCH_LEVEL.

Other code within the system also runs at IRQL DISPATCH_LEVEL, and any such
code is similarly protected against pre-emption. All such code is restricted from
dispatching—and the results of performing a dispatching operation at IRQL
DISPATCH_LEVEL are unpredictable. Under some circumstances, the system will
crash; in other circumstances, performing a dispatching operation at IRQL
DISPATCH_LEVEL may interfere with the correct operation of arbitrary user
threads.

The effect of disabling dispatching when running at IRQL DISPATCH_LEVEL
can be seen in the following example. We recently beard from one unfor-
tunate driver writer who wanted to understand why his call to
KeWaitForSingleObject() returned STATUS_SUCCESS, even though the event
was never signaled. After some discussion, we learned that this call was
being made from a Deferred Procedure Call (DPC) in the context of the
system idle thread (DPCs are discussed in detail in Chapter 15,
“Interrupt Service Routines and DPCs™). The call to
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KeWaitForSingleobject() called the dispatch code. The dispatch code
determined that there were no threads to run, so it would explicitly
choose to run the system idle thread. The dispatcher thus returned
STATUS_SUCCESS, so ultimately KeWaitForSingleObject() also returned
STATUS_SUCCESS, even though the event was not signaled. All we could say
was “Yikes!”

The balance of this section covers the following topics:

* Thread Priorities. Although individual components within the executive
are allowed to augment the basic scheduling policy, the kernel provides a
default scheduling mechanism based on priorities.

¢ Pre-emption. To ensure that system resources are shared between all
threads on the system, the kernel restricts them to running for no longer
than some small period of time. When that time expires, another thread
is scheduled—a process referred to as pre-emption.

® The Impact of Scheduling on Drivers. Scheduling requires that Kernel
mode device drivers be constructed so that their shared data structures
are properly protected.

Thread Priorities

A priority is a numeric value that indicates the relative importance of a particu-
lar thread with respect to scheduling. As Figures 5.1 and 5.2 demonstrated,
there are actually two priority fields:

¢ priority. The value for this field is the current numeric value that will
actually be used for scheduling.

¢ BasePriority. The value for this field indicates the minimum value for
Priority. In other words, the OS can adjust the Priority of a given thread
arbitrarily, as long as it is equal to or greater than the BasePriority value
for that thread.

On Windows NT, numeric priority values range between 0 and 31, although
the value O is reserved by the operating system. Thus, no threads, except spe-
cially designated OS threads, may use this priority. This range is divided into
two categories: dynamic priorities and real-time priorities.

Dynamic priorities are values between 1 and 15. They are referred to as
“dynamic” because the operating system varies the priority of threads in this
range. Thus, for example, it is not possible for a thread in this range to “steal”
the CPU and cause starvation of other threads that are waiting to run.

Real-time priorities are values between 16 and 31. They are referred to as
“real-time” because the operating system does not vary the priority of threads
in this range. Real-time range threads can continue to control the CPU, as long
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as no other threads of equal or higher priority are scheduled. Thus, it is possi-
ble for a real-time thread to “steal” the CPU and cause starvation of other
threads that are waiting to run. Because of this, the right to use real-time prior-
ities is restricted to those users or processes having the necessary privilege.

The priority value determines whether the thread is “real-time” or
“dynamic,” not the BasePriority value. Indeed, it is quite possible for a
thread to have a BasePriority value in the “dynamic” range and a
Priority value in the “real-time” range. This is indicative that, the
Priority value has been modified by code outside the microkernel.

Establishing Thread BasePriority Values

For either dynamic or real-time priorities, the BasePriority is established when
the thread is first created and may be programmatically adjusted via such calls
as KeSetBasePriorityThread() (see Figure 5.3). Typically, the BasePriority value
is established by the subsystem to which the thread is bound. For example,
Win32 combines two values: The priority of the process (the value of which is
not used as part of scheduling) and the relative priority of the thread, as speci-
fied to the Win32 API call createThread(). Other subsystems presumably make
similar decisions about their respective threads.

LONG
KeSetBasePriorityThread (IN PKTHREAD Thread
IN LONG Increment);

Thread: A pointer to a thread object for which the base priority is to be
set. '

Increment: A priority increment to apply to this thread’s base priority.

Figure 5.3. KeSetBasePriorityThread() function prototype.

Adjusting Priority Values for Dynamic Threads
For dynamic threads, the Priority starts out equal to the BasePriority, but
may be adjusted by the operating system. This is based upon the particular
scheduling requirements of the various executive components—again, relieving
the microkernel of the burden of implementing anything other than the basic \
scheduling algorithm. Examples of events that impact the current priority are ‘
as follows: |
|
|
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e I/O completion. When a device driver completes an I/O request, it indi-
cates an optional priority boost given to the thread’s current priority. (See
Figure 13.2, 1oCompleteRequest().)

e KesSetEvent(). When a device driver sets an event, it indicates (as shown
in Figure 5.4) an optional priority boost given to the thread’s current
priority.

¢ Quantum exhaustion. When a thread has run for its complete time slice,
or quantum. In this case, the OS decreases the current priority back
toward the base priority. Quantum exhaustion is discussed later in this
chapter.

e Not running. When a thread has not run for a period of time, the OS
provides it with a priority boost to ensure it has a chance to run. This
prevents CPU starvation.

There are other reasons the OS also adjusts the Priority value of a given
thread, but the first two are those most directly applicable to Kernel mode
device driver writers, and allow Kernel mode drivers to participate in the
scheduling algorithm for threads.

LONG

KeSetEvent (IN PRKEVENT Event,
IN KPRIORITY Increment,
IN BOOLEAN Wait);

Event: A pointer to an event object to be changed to signaled state.
Increment: A priority increment to apply to any waiting threads.

Wait: TRUE if the call to KeSetEvent is to be followed immediately by a
call to KeWaitXxx.

Figure 5.4. KeSetEvent () function prototype.

Adjusting Priority Values for Real-Time Threads

For real-time threads, the OS never adjusts the Priority value, although it can
be changed programmatically, such as with the call kesetPriorityThread() (see
Figure 5.5). Because of this, and because the OS will not boost threads into the
real-time range, real-time threads must be used with caution because a thread
with a real-time Priority value runs, as long as it does not wait, until some
other thread of equal or greater Priority becomes ready to run.
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KPRIORITY
KeSetPriorityThread (IN PKTHREAD Thread,
IN KPRIORITY Priority);

Thread: A pointer to a thread object for which the current priority is to
be set.

Priority: A priority to set for this thread’s current priority.

Figure 5.5. KeSetPriorityThread() function prototype.

Viewing Threads by Priority Level and State

The OS maintains a sorted list of threads, based upon their priority level. One

thread is identified by using the kPRcB, and this is the thread that will run next.
In addition, other threads are maintained in the ready queue. Figure 5.6 shows
a listing of the currently ready threads, plus the currently running thread infor-
mation by using the kernel debugger.
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Figure 5.6. Kernel debugger display of running and ready threads.
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Figure 5.7 shows the pcr describing the current state of this processor. From

the PCR, you can see the value of CurrentThread (0x8058DBE®), NextThread (@x0),
and IdleThread (0x80145A80)—these values were extracted from the KPRCB via

the PCR.
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Figure 5.7. Kernel debugger display of PCR Information.
A NextThread value of zero indicates that no thread has yet been selected to
run, even though there are threads currently in the ready queue. The OS will
select a new thread to run once the currently running thread exhausts its quan-

tum (due to pre-emption—described in the next section) or blocks, waiting for
some event.

Pre-emption

As was mentioned in Chapter 1, Windows NT is a pre-emptive, multithreaded,
and multitasking operating system. It employs a traditional operating system
technique to provide this multitasking capability by associating a quantum
with each thread when it starts running. This quantum is the period of time
that this particular thread will execute.
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Periodically, a hardware clock generates an interrupt. Each time that interrupt
occurs, the OS updates its current time and determines what actions, if any, it
should take. One such action is to decrease the remaining quantum for the cur-
rently running thread. Once the current thread has been running for a time
period equal to or greater than its quantum, the microkernel invokes the sched-
uling algorithm to choose a new thread to run.

The precise value of the quantum for a given thread depends upon the particu-
lar version and type of Windows NT system. For example, on one Windows
NT v4 system, the quantum for all threads on a server system was 120 milli-
seconds. Threads running on the same hardware that used the Workstation
version of Windows NT had a 60-millisecond quantum if they were the fore-
ground thread, and only 20 milliseconds if they were a background thread.

When a thread finishes its quantum and a new thread is scheduled to run, the
thread has been pre-empted. A thread being pre-empted moves from the run-
ning state to the ready state. This is different from when a thread dispatches—
when a thread dispatches, it moves from the running state to the waiting state.

The other primary cause of thread pre-emption in Windows NT is that the cur-
rently running thread schedules a higher-priority thread to run. In this case, the
currently running thread transitions from the running state to the ready state,
and the higher-priority thread transitions from the ready state to the running
state.

When the OS pre-empts one thread so that another thread may run, the cur-
rently running thread transitions from the running state to the ready state. For
real-time threads, the OS does not adjust the priority value. For dynamic
threads, the OS adjusts the Priority value by decreasing it by PriorityDecrement
+1. Thus, even when PriorityDecrement is zero, the Priority field is decreased
by one—but never less than the thread’s BasePriority. Note that the value for
the PriorityDecrement field was listed in Figures 5.1 and 5.2 as part of the stan-
dard thread information. The DecrementCount field is used by the LPC subsys-
tem when using the KiSwitchToThread() call.

Once the new Priority value has been computed for the thread, it is placed in
the ready queue. Figure 5.8 shows this process for a thread “A” that has run to
the end of its quantum.

The priority value for thread “A” is decreased by at least one (assuming
Priority > BasePriority), and it is then inserted at the tail of the priority queue
associated with its new priority. As depicted in Figure 5.8, thread “B” will be
the next thread to run.

Figure 5.9 shows the case for quantum exhaustion with real-time threads.
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Thread B Thread C Thread D

Figure 5.8. Ready queue after dynamic priority thread “A” exhausts its time quantum.

Thread A Thread B Thread C Thread D

Figure 5.9. Ready queue after real-time priority thread “X” exhausts its time quantum.
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In this case, the Priority value of the thread does not change. In the example,
the next thread to run will be thread “Y.” Because the Priority value of real-
time threads does not decay, and because the Microkernel will not boost the
Priority value of dynamic threads into the real-time range, such threads must
be used with care because they can steal the CPU so that it is not available for
lower-priority threads.

The Impact of Scheduling on Drivers

With respect to the impact of scheduling, writing a Kernel mode device driver
is akin to writing a multithreaded Win32 application program. As noted in
Chapter 3, the system address space is shared between all threads in the sys-
tem. Because of this, Kernel mode device drivers must assume that their code
will be utilized by many different system threads. Even in a uniprocessor envi-
ronment, it may be possible for a thread running through the driver’s code to
be pre-empted. Thus, it is the responsibility of the driver writer to ensure cor-
rect serialization of threads with respect to one another.



Chapter 6

Interrupt Request Levels
and DPCs

This chapter will review:

e Understanding Interrupt Request Levels (IRQLs). Understanding IRQLs
is key to understanding how Windows NT works. This section defines
IRQLs and explains the basics of how they are used.

¢ How IRQLs Are Used. This section delves into more detail on how
Windows NT uses each of the individual IRQL levels, from IRQL
PASSIVE_LEVEL through IRQL HIGH_LEVEL.

¢ Deferred Procedure Calls (DPCs). This section describes DPCs in detail,
including how DPCs are invoked by the Windows NT operating system,
key DPC characteristics, and the details of how DPCs work on multi-
processor systems.

® The DpcForlsr. This section describes the specific instance of the DPC
implemented by the /O Manager for interrupt completion.

Windows NT synchronizes Kernel mode activity by using a set of Interrupt
Request Levels (IRQLs). This chapter describes in detail how IRQLs are used
by Windows NT to achieve synchronization within the operating system. Once
you thoroughly understand IRQLs, you will become familiar with the process-
ing that occurs at each IRQL. This includes processing Deferred Procedure
Calls (DPCs), which are used to perform callback processing of non-time-
critical operations within the operating system.
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Understanding Interrupt Request
Levels (IRQLs)

In Windows NT, higher-priority activities or events interrupt those activities

or events running at lower priorities. Consider, for example, how the device
Interrupt Service Routines (ISRs) are managed. If the serial port device’s ISR
(typically a relatively low-priority device in the system) is running, and a clock
interrupt occurs on the same processor, the serial port device’s ISR will stop
executing and the clock’s ISR will be started. When the clock’s ISR is complet-
ed, control is transferred back to the serial port device’s ISR at the point where
it was previously interrupted.

The relative priority of an activity within the Windows NT operating system is
defined by its Interrupt Request Level (IRQL). The current processor’s IRQL
indicates the relative priority of the activity currently taking place on that CPU.
IRQL values are assigned to both software and hardware activities, with soft-
ware IRQLs being lower than hardware IRQLs. If an event occurs on a given
processor that has a higher IRQL than the processor’s current IRQL, the
higher-priority event will interrupt the lower-priority event. If an event with an
IRQL lower than the processor’s current IRQL occurs on that CPU, processing
of that event waits until all other events at higher IRQLs have been processed.
Thus, the processor’s current IRQL functions as an interrupt mask, deferring
(masking) those activities requested at the same or lower IRQLs than the
processor’s current IRQL.

Because Windows NT executes on a broad range of system architectures, some
of which differ widely in terms of their hardware priority support, NT uses

a set of mnemonics to define IRQL values. Table 6.1 shows the standard
Windows NT IRQL names, how they are used, and the numeric value assigned
on x86 systems.

Table 6.1. Windows NT IRQL names.

Numeric value on x86
Architecture Systems

IRQL Mnemonic {for reference) Example of Usage
HIGH_LEVEL 31 NMI, machine check
POWER_LEVEL 30 Power failure handling
SYNCH_LEVEL 30 Synchronization level
IPI_LEVEL 29 Inter-processor interrupt

CLOCK2_LEVEL 28 Clock handling
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Numeric value on x86
Architecture Systems

IRQL Mnemonic (for reference) Example of Usage
PROFILE_LEVEL 27 Profile timer
12-27 Device IRQs on some x86
systems
DISPATCH_LEVEL 2 Dispatcher and DPCs
APC_LEVEL 1 Kernel APC handling; Paging
PASSIVE_LEVEL 0 Ordinary thread execution in

both Kernel and User modes

The lower-level IRQLs (IRQLs PASSIVE_LEVEL through DISPATCH_LEVEL) are used
internally for synchronization of the operating system software. These IRQLs
are modeled as software interrupts. IRQLs above DISPATCH_LEVEL, whether they
have a specific mnemonic or not, reflect hardware-interrupt priorities. Thus,
these hardware IRQLs are often referred to as Device IRQLs (or DIRQLS).

The specific values assigned to the IRQL mnemonics vary from system to sys-
tem. The relationship between the software IRQLSs, and the fact that the soft-
ware IRQLs are lower priorities than the hardware IRQLs, remains constant,
however. Thus, IRQL PASSIVE_LEVEL is always the lowest IRQL in the system,
APC_LEVEL is always higher than PASSIVE_LEVEL, and DISPATCH_LEVEL is always
higher than apc_LEVEL. All these IRQLs are always lower than the lowest
DIRQL.

Unlike the software IRQLs, the values assigned to and the relationship among
the hardware IRQLs can change, depending on the system’s hardware imple-
mentation. For example, as Table 6.1 illustrates, on x86 architecture systems,
IRQL PROFILE_LEVEL is lower than IRQL 1pP1_LEVEL, which is in turn lower than
TIRQL power_LEVEL. On MIPS systems, however, IRQL power_LEVEL and IRQL
"IPI_LEVEL are the same value, and both are lower than IRQL PROFILE_LEVEL.

IRQLs Are Not Scheduling Priorities

A very important point to understand is that IRQLs are not the same as
Windows NT process-scheduling priorities. In fact, all User mode thread execu-
tion takes place at IRQL PAsSIVE_LEVEL. Scheduling priorities are artifacts of
the Windows NT Dispatcher, which uses them to determine which thread to
next make active.

IRQLs, on the other hand, are best thought of as interrupt priorities used by
the operating system. An interrupt at any IRQL above passIve_LEVEL will inter-
rupt even the highest-priority User mode thread in the system. This is because,
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as stated previously, all user threads run at IRQL pPAsSIVE_LEVEL when they are
running in User mode.

Determining the IRQL

The current IRQL is tracked on a per-CPU basis. A Kernel mode routine can
determine the IRQL at which it is running by calling the function
KeGetCurrentIrgl(), the prototype for which is shown in Figure 6.1.

KIRQL
KeGetCurrentlrql();

Figure 6.1. KeGetCurrentIrql() function prototype.

KeGetCurrentIrql() returns the IRQL of the current CPU.

Most device driver routines are called by the I/O Manager at an architecturally
defined IRQL. That is, the driver writer knows the IRQL(s) at which a given
function will be called. Kernel mode routines may change the IRQL at which
they are executing by calling the functions KeRaiseIrql() and KeLowerIrql(), the
prototypes for which are shown in Figure 6.2 and Figure 6.3, respectively.

VOID
KeRaiselrgl(IN KIRQL Newlrql,
OUT PKIRQL OldIrql);

Newlrql: The value to which the current processor’s IRQL is to be
raised.

OldIrql: A pointer to a location into which is returned the IRQL at
which the current processor was running, before the IRQL was raised
to Newlrql.

Figure 6.2. KeRaiseIrql() function prototype.

VOID
KeLowerlrql(IN KIRQL Newlrqgl);

Newlrql:The value to which the current processor’s IRQL is to be
lowered.

Figure 6.3. KeLowerIrql() function prototype.
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Because IRQLs are a method of synchronization, most Kernel mode routines
(specifically, device drivers) must never lower their IRQL beyond that at which
they were called. Thus, drivers may call KeRaiseIrgl() to raise to a higher
IRQL, and then call KeLowerirql() to return back to the original IRQL at
which they were entered (from the I/O Manager, for example). However, a dri-
ver must never call KeLowerIrgl() to lower its IRQL to a level less than that at
which it was entered. Doing so can cause highly unpredictable system opera-
tion, which will likely end with a system crash.

How IRQLs Are Used

IRQLs are the chief method used for prioritizing operating system activities
within Windows NT. Raising the IRQL allows an operating system routine to
both control its re-entrancy and to ensure that it can continue its work without
pre-emption by certain other activities. The following sections describe how the
most common IRQLs are used within Windows NT.

TRQL PASSIVE_LEVEL

IRQL PAssIVE_LEVEL is the ordinary IRQL of execution in the operating system,
both in User mode and Kernel mode. A routine running at IRQL PASSIVE_LEVEL
is subject to interruption and pre-emption by almost anything else happening
in the system. Thus, threads running at IRQL PASSIVE_LEVEL are subject to pre-
emption by the Dispatcher at the end of their quantum. Pre-emption was dis-
cussed in Chapter S, “Dispatching and Scheduling.”

Most executive-level routines in Windows NT (that is, Kernel mode routines
other than the Microkernel and the HAL) strive to keep the IRQL as low as
possible. In most cases, this results in most routines running at IRQL
PASSIVE_LEVEL. This policy maximizes the opportunity for higher IRQL activi-
ties to take place.

IRQL APC_LEVEL

IRQL apc_LEVEL is used by Kernel mode routines to control re-entrancy when
processing Asynchronous Procedure Calls (APCs) in Kernel mode. APCs are
operating system function callbacks that are required to take place within a
particular process and thread context.

To fully understand how IRQL APc_LEVEL is used, take a look at an example of
how APCs are used within the kernel. When the /O Manager ultimately com-
pletes an I/O request for an application, it returns to the thread two longwords
that make up the I/O status. The /O status is returned in a location indicated
by the application as part of its call to an /O system service. In order for the
I/O Manager to return the I/O status to the application, it must execute in the
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context of the application’s process. That is, the application’s address space
must be mapped in the lower portion of kernel virtual address space (as dis-
cussed in Chapter 3, “Virtual Memory”).

Of course, I/O operations are typically asynchronous in Windows NT, and thus
may complete in an arbitrary thread context. The problem is, therefore, how
the I/O Manager will return to the context of the requesting thread, so that it
can complete the I/O request and return its I/O status information. The I/O
Manager does this by requesting a special kernel APC. Specifically, the APC
that is requested is the Special Kernel APC for I/O Completion, which is dis-
cussed in more detail in Chapter 10, “How I/O Requests Are Described,” and
in Chapter 14, “Dispatch Entry Points.” The I/O Manager requests this APC
and indicates the thread to which the APC is to be queued and a function to be
called when the APC is granted.

The APC is requested by generating a software interrupt at IRQL APC_LEVEL.

If the thread that is the target of the APC is currently executing on the current
processor, and the current IRQL is less than Apc_LEVEL, the Special Kernel APC
for I/O Completion will be serviced immediately. The IRQL is raised to IRQL
Apc_LEVEL and the Special Kernel APC for /O Completion routine is called.

If the target thread is currently executing on the current processor, but the
processor’s IRQL is IRQL Apc_LEVEL or higher, the request for an APC_LEVEL
interrupt is recorded and the APC is queued to the thread. The requested
APC_LEVEL interrupt will be recognized when the IRQL drops to below
APC_LEVEL. If at that time the currently executing thread is the target thread, the
APC will be dequeued from the thread and the Special Kernel APC for /O
Completion will be processed.

If the target thread is not executing on the current processor, the Microkernel
queues the APC to the thread, clears the APC_LEVEL interrupt on the current
processor, and returns. The Special Kernel APC for /O Completion will be
processed when the target thread is next scheduled and the system is running
at, or about to return to, an IRQL less than IRQL APC_LEVEL.

The point of this example is that when an APC is to be queued, it is queued to
a particular thread. If that thread is running on the current processor, and the
current processor’s IRQL is below APc_LEVEL, the Special Kernel APC for I/O
Completion is processed immediately. Thus, by manipulating the IRQL, the
currently executing kernel routine can block the delivery of APCs. Further,
because Kernel mode APC processing occurs at IRQL APC_LEVEL, the processing
of Kernel mode APCs is serialized.
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Although the entire foregoing discussion is correct, there are a number of
subtleties that affect the delivery of Kernel mode APCs that we have
glossed over. This is intentional. The point bere is not to document in
detail all of the undocumented behavior of Kernel mode APCs. Rather, it
is our intention to provide a real example of how IRQL APC_LEVEL is
used within the kernel.

IRQL DISPATCH_LEVEL

IRQL p1sPATCH_LEVEL is used within Windows NT for two different activities:
¢ Processing Deferred Procedure Calls (DPCs)
¢ Running the Dispatcher (NT’s scheduler)

DPC processing is discussed later in this chapter, in a section of its own.
Therefore, we limit our present discussion to the Dispatcher. The Dispatcher, as
described in Chapter 5, is Windows NT’s thread scheduler. It is responsible for
implementing the NT scheduling algorithm, which chooses what thread is exe-
cuted and implements pre-emption at quantum end.

The Windows NT Dispatcher receives requests to perform a reschedule opera-
tion at IRQL p1sPATCH_LEVEL. When the operating system decides to change the
thread that is running on the current processor, it can sometimes call the
Dispatcher directly. However, when the system is running at an IRQL higher
than DISPATCH_LEVEL, it requests a DISPATCH_LEVEL software interrupt. This
results in the Dispatcher running on the current processor the next time IRQL
DISPATCH_LEVEL is the highest-priority interrupt to be serviced by the system.

Consider, for example, the case of a thread running in User mode. Because it is
running in User mode, this thread is, of course, running at IRQL PASSIVE_LEVEL.
While the thread is running, the clock is periodically interrupting to indicate
the passage of time to the operating system. With each clock tick that passes,
the clock interrupt service routine decrements the remaining quantum of the
currently running thread. When the thread’s remaining quantum is decrement-
ed to zero, the clock interrupt service routine generates a DISPATCH_LEVEL inter-
rupt to request the Dispatcher to run and choose the next thread to run.
Because the clock’s interrupt service routine runs at an IRQL that is higher
than DISPATCH_LEVEL (it runs at IRQL cLOCK2_LEVEL on x86 processors), process-
ing of the request for the Dispatcher is deferred.

After generating the DISPATCH_LEVEL interrupt, the clock interrupt service rou-
tine finishes whatever other work it has to do and returns to the Microkernel.
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The Microkernel then recognizes the next highest-priority interrupt that is
pending. Each interrupt is serviced in turn. When there are no interrupts to ser-
vice above DISPATCH_LEVEL, the DISPATCH_LEVEL interrupt service routine is exe-
cuted. This interrupt service routine processes the DPC list (discussed later),
and invokes the Dispatcher to choose a new thread to run.

When the Dispatcher is invoked, it notices that the current thread’s quantum
has been decremented to zero. The Dispatcher then implements Windows NT’s
scheduling algorithm to determine the next thread to be scheduled. If a new
thread is chosen (the previously executing thread could be rescheduled), a con-
text switch occurs. If there are no APCs pending for the newly selected thread,
the thread’s code will be executed when the system returns back to IRQL
PASSIVE_LEVEL.

Other Kernel Routines Running at IRQL DISPATCH_LEVEL

IRQL DISPATCH_LEVEL is an important priority in Windows NT. Because the
Dispatcher runs at IRQL DISPATCH_LEVEL, any routine that runs at IRQL
DISPATCH_LEVEL or above is not subject to pre-emption. Thus, when a thread’s
quantum expires, if that thread is currently running at IRQL DISPATCH_LEVEL or
above, it will continue to run until it attempts to drop the current processor’s
IRQL below p1sPATCH_LEVEL. This should be obvious, because running at a
given IRQL blocks the recognition of other events requested at that IRQL

or at any lower IRQLs.

What may be less obvious is that when code is executing at IRQL
DISPATCH_LEVEL or above, it cannot wait for any Dispatcher Objects that are not
already signaled. Thus, for example, code running at IRQL DISPATCH_LEVEL or
above cannot wait for an event or mutex to be set. This is because the act of
yielding the processor requires (at least conceptually) the Dispatcher to run.
However, if a routine is running at or above DISPATCH_LEVEL, the DISPATCH_LEVEL
interrupt will be masked off and therefore not immediately recognized. The
result? A return directly back to the code that issued the wait operation!

Even less obvious may be the fact that code running at IRQL DISPATCH_LEVEL or
above may not take any page faults. This means that any such code must itself
be non-paged, and must touch only data structures that are non-paged. This is
essentially because code running at or above IRQL DISPATCH_LEVEL can’t wait
for a Dispatch Object to be signaled. Thus, even if a paging request was
processed, the thread with the page fault couldn’t be descheduled while the
needed page was read in from disk!

DIRQLs

As mentioned previously, the IRQLs higher in priority than IRQL
DISPATCH_LEVEL are called Device IRQLs (DIRQLs). These IRQLs are used for
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processing hardware interrupts from devices. When a device of a given IRQL
interrupts, the interrupt service routine for that device executes at the syn-hro-
nize IRQL that was specified when the device driver for that device connected
to the interrupt. Connecting to interrupts and specifying a synchronize IRQL is
described in detail in Chapter 13, “Driver Entry.”

A vitally important point about DIRQLs is that these IRQLs do not necessarily
preserve the relative priorities that may be implied by a given bus’s external
interrupt signaling method. For example, the HAL has complete discretion in
terms of how it maps IRQs (bus Interrupt ReQuest lines) to IRQLs. In some
HALs, such as the standard x86 architecture multiprocessor HAL, the IRQ
assigned to a device may have no relationship to the IRQL assigned to that
device (beyond ensuring that the device is mapped to an IRQL within the range
of Device IRQLs).

Because this can be such an important point for device driver writers in
certain systems, we’ll say it again: The relationship between two IRQs
assigned to two particular devices is not necessarily preserved when
IRQLs are assigned to those devices. Whether a device with a more
important IRQ is assigned a higher (that is, more important) IRQL is
totally up to the HAL. Indeed, in most standard x86 multiprocessor
HAL:S for systems that use APIC architectures, the relationship of IRQ
to IRQL is not preserved.

Suppose a system has two devices configured: Device A and Device B.
Because the driver writer considers Device A more important than Device
B, he assigned Device A to a more important (numerically lower) IRQ
than device B. On some systems, such as DOS or Win9x, this implies
that Device A can interrupt Device B. On Windows NT, the relationship
between the interrupt priorities of these two devices is up to the HAL.
Assigning them to particular IRQs indicates nothing beyond which line
each device asserts when it wants to request an interrupt.

IRQL HIGH_LEVEL

IRQL HiGH_LEVEL is always defined as the highest IRQL on a Windows NT sys-
tem. This IRQL is used for NMI (Non-Maskable Interrupt) and other inter-
rupts of very high priority. In the exceedingly rare case in which a device driver
needs to disable interrupts on a particular processor for a short period, the dri-
ver may raise its IRQL to HIGH_LEVEL. However, a device driver raising to IRQL
HIGH_LEVEL is considered a very drastic step, and it is almost never required in
Windows NT.
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Raising the IRQL to HIGH_LEVEL should be something that most drivers
in Windows NT never do. Disabling interrupts is a commonly used
method for achieving synchronization on other operating systems (such
as DOS or Win9x). However, on Windows NT, simply raising to IRQL
HIGH_LEVEL for synchronization purposes will not work on multiprocessor
systems. Kernel mode code performs serialization by using spin locks,
which are described in detail in Chapter 7, “Multiprocessor Issues.”

Deferred Procedure Calls (DPCs)

In addition to its use for running the NT Dispatcher, IRQL DISPATCH_LEVEL is
also used for processing Deferred Procedure Calls (DPCs). DPCs are callbacks
to routines to be run at IRQL p1sPAaTCH_LEVEL. DPCs are typically requested
from higher IRQLs to allow more extended, non-time-critical, processing to
take place.

Let’s look at a couple of examples of when DPCs are used. Windows NT
device drivers perform very little processing within their interrupt service rou-
tines. Instead, when a device interrupts (at DIRQL) and its driver determines
that a significant amount of processing is required, the driver requests a DPC.
The DPC request results in a specified driver function being called back at
IRQL DISPATCH_LEVEL to perform the remainder of the required processing. By
performing this processing at IRQL DISPATCH_LEVEL, the driver takes less time at
DIRQL, and therefore decreases interrupt latency for all the other devices on
the system.

Another common use for DPCs is in timer routines. A driver may request to
have a particular function be called to notify it that a certain period of time
has elapsed (this is done using the KesetTimer () function, which is described in
Chapter 16, “Programmed I/O Data Transfers”). The clock interrupt service
routine keeps track of passing time, and when the specified time period has
elapsed, requests a DPC for the routine that the driver specified. Using DPCs
for timer notification allows the clock interrupt service routine to return quick-
ly, but still results in the specified timer routines being called without undue
delay.

DPC Objects

A DPC is described by a DPC Object. The definition of a DPC Object (Kppc)
appears in ntddk.h and is shown in Figure 6.4.
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DPC Object (KDPC)

Importance Number Type

DpcListEntry

DeferredRoutine

DeferredContext

SystemArgument1

SystemArgument2

Lock

Figure 6.4. DPC Object.

A DPC Object may be allocated by a driver from any nonpageable space (such
as nonpaged pool). DPC objects are initialized by using the function
KeInitializeDpc(), the prototype for which appears in Figure 6.5.

VOID

KelnitializeDpc(IN PKDPC Dpe,
IN PKDEFERRED_ROUTINE DeferredRoutine,
IN PVOID DeferredContext);

Dpec: Points to the DPC object to be initialized.

DeferredRoutine: A pointer to the function to which the deferred call
is to be made at IRQL DISPATCH_LEVEL.

DeferredContext: A value to be passed to the DeferredRoutine as a
parameter, along with a pointer to the DPC object and two additional
parameters.

Figure 6.5. KeInitializeDpc() function prototype.
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A request to execute a particular DPC routine is made by placing the DPC
Object that describes that DPC routine into the DPC Queue of a given CPU,
and then (typically) requesting an IRQL DISPATCH_LEVEL software interrupt.
There is one DPC Queue per processor. The CPU to which the DPC Object is
queued is typically the current processor on which the request is issued. How
the processor for a particular DPC is chosen is discussed later in this chapter,
in the section “DPC Object Characteristics.” A DPC object is queued by using
the KeInsertQueueDpc() function, as shown in Figure 6.6.

BOOLEAN

KelnsertQueueDpc(IN PKDPC Dpc,
IN PVOID SystemArgumentl,
IN PVOID SystermnArgument2);

Dpc: Points to the DPC object to be queued.

SystemArgument1: A value to be passed to the DeferredRoutine as a
parameter, along with a SystemArgument2, a pointer to the DPC
object, and the Deferred Context argument specified when the DPC
Object was initialized.

SystemArgument2: A value to be passed to the DeferredRoutine as a
parameter, along with SystemArgument1, a pointer to the DPC object,
and the DeferredContext argument specified when the DPC Object
was initialized.

Figure 6.6. KeInsertQueueDpc () function prototype.

Invoking and Servicing DPCs

Issuing a DISPATCH_LEVEL software interrupt results in the processor recognizing
the interrupt when it becomes the highest IRQL event pending on that proces-
sor. Thus, after calling KeInsertQueueDpc (), typically the next time the processor
is ready to return to an IRQL below DISPATCH_LEVEL, it will return instead to
IRQL p1sPATCH_LEVEL and attempt to process the contents of the DPC Queue.

Note

As noted earlier in the chapter, IRQL DISPATCH_LEVEL is used both for
dispatching and for processing the DPC Queue. In NT V4, when a
DISPATCH_LEVEL interrupt is processed, the entire DPC Queue is serviced
first, and then the Dispatcher is called to schedule the next thread to run.
This is reasonable because the processing done within a DPC routine
could change to alter the state of the thread scheduling database, for
example, by making a previously waiting thread runnable.
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The DPC Queue is serviced by the Microkernel. Each time the DPC Queue is
serviced, all entries on the DPC Queue for the current processor are processed.
One at a time, the Microkernel removes a DPC Object from the head of the
DPC Queue, and calls the DeferredRoutine indicated within the DPC Object.
The Microkernel passes as parameters to the DeferredRoutine a pointer to the
DPC Object, plus the contents of the DeferredContext, SystemArgument1, and
SystemArgument2 field of the DPC Object.

Because the DPC Queue is serviced at IRQL b1spATCH_LEVEL, DPC routines are
called at IRQL p1SPATCH_LEVEL. Because the DPC Queue is serviced whenever
IRQL p1sPATCH_LEVEL is the highest priority IRQL to be serviced (such as imme-
diately after an interrupt service routine has run and before returning to the
interrupted user thread), DPCs run in an arbitrary thread context. By arbitrary
thread context, we mean that the DPC executes in a process and thread that
may be entirely unrelated to the request that the DPC is processing. Execution
context is described in more detail in Chapter 11, “The Layered Driver
Model.”

The DPC routine completes its processing and returns by executing a return
statement. On return from a DPC routine, the Microkernel attempts to remove
another DPC Object from the DPC Queue and process it. When the DPC
Queue is empty, DPC processing is complete. The Microkernel proceeds to call
the Dispatcher.

Multiple DPC Invocations

A given DPC is described by a specific DPC Object. As a result, whenever
KeInsertQueueDpc() is called and detects that the DPC Object passed to it is
already on a DPC Queue, keInsertQueueDpc() simply returns (taking no action).
Thus, whenever a DPC Object is already on a DPC Queue, any subsequent
requests to queue that same DPC Object that occur prior to the DPC Object
being removed from the DPC Queue are ignored. This makes sense because the
DPC Object can physically be linked into only one DPC Queue list at one time.

The next obvious question might be: What happens when a request is made to
queue a DPC Object, but the system is already executing the DPC routine indi-
cated by that DPC Object {(on the current or a different processor)? The answer
to this question can be found by a careful reading of the previous section of
this chapter. When the Microkernel services the DPC Queue, it removes the
DPC Object at the head of the queue, and then calls the DPC routine indicated
by the DPC Object. Thus, when the DPC routine is called, the DPC Object has
been removed from the processor’s DPC Queue. Therefore, when a request is
made to queue a DPC Object and the system is executing within the DPC rou-
tine specified in that DPC Object, the DPC is queued as normal.
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DPCs on Multiprocessor Systems

Contrary to what has been stated in other publications, and as should be
evident from the preceding discussions, a single DPC routine may be actively
executing on multiple processors at the same time. There is absolutely no inter-
locking performed by the Microkernel to prevent this.

Consider the case of a device driver that has multiple requests outstanding on
its device at a time. The driver’s device interrupts on Processor 0, the driver’s
interrupt service routine executes, and subsequently requests a DPC to com-
plete interrupt processing. This is the standard way that drivers work in
Windows NT. When the interrupt service routine completes and the system is
ready to return to the user thread that was interrupted, Processor 0’s IRQL is
lowered from the DIRQL at which the ISR ran to IRQL DISPATCH_LEVEL. As a
result, the Microkernel services the DPC Queue, removing the driver’s DPC
Object and calling the indicated DPC routine. The driver’s DPC routine is now
executing on Processor 0.

Just after the driver’s DPC routine has been called, the device once again inter-
rupts. This time, however, for reasons known only to the hardware, the inter-
rupt is serviced on Processor 1. Again, the driver’s interrupt service routine
requests a DPC. And, again, when the interrupt service routine is complete, the
system (Processor 1) is ready to return to the interrupted user thread. During
this process, Processor 1’s IRQL is lowered to IRQL DISPATCH_LEVEL, and the
Microkernel services the DPC Queue. In so doing (and still running on
Processor 1), it removes the driver’s DPC Object and calls the driver’s DPC
routine. The driver’s DPC routine is now executing on Processor 1. Assuming
that the driver’s DPC routine has not yet completed running on Processor 0,
note that the same DPC routine is now running in parallel on both processors.

This example bighlights the importance of utilizing the proper set of mul-
tiprocessor synchronization mechanisms in drivers. Specifically, spin locks
must be used to serialize access to any data structures that must be
accessed atomically within the driver’s DPC if the driver’s design is such
that multiple DPCs can be in progress simultaneously. Spin locks are
described in detail in Chapter 7, “Multiprocessor Issues.”

DPC Object Characteristics

DPC Objects have two characteristics that influence the way they are
processed. These characteristics are the Importance and Numver fields, which can
be seen in Figure 6.4 and are discussed in greater detail in the sections that fol-
low.
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DPC Importance

Each DPC Object has an importance, which is stored in the DPC Object’s
Importance field. The values for importance are enumerated in ntddk.h as being
HighImportance, MediumImportance, and LowImportance. The importance of a DPC
Object affects where in the DPC Queue the DPC Object is placed when it is
queued, and whether or not an IRQL DISPATCH_LEVEL interrupt is issued when
the DPC Object is queued. KeInitializeDpc() initializes DPC Objects with
MediumImportance. The Importance of a DPC Object can be set by using the
function KesetImportanceDpc(), the prototype for which appears in Figure 6.7.

VOID
KeSetImportanceDpc(IN PKDPC Dype,
IN KDPC_IMPORTANCE Importance);
Dpc: Points to the DPC object in which the Importance field is to be set.
Importance: The importance value to set into the DPC Object.

Figure 6.7. KeSetImportanceDpc() function prototype.

DPC Objects with either MediumImportance or LowImportance are placed on the
end of the DPC Queue when they are queued. DPC Objects with
HighImportance are queued at the beginning of the DPC Queue.

The importance of a DPC Object also affects whether or not a DISPATCH_LEVEL
software interrupt is generated when the DPC Object is placed on the DPC
Queue. When a HighImportance or MediumImportance DPC Object is queued to
the current processor, a DISPATCH_LEVEL interrupt is always generated. The
DISPATCH_LEVEL interrupt is generated for LowImportance DPCs or for DPCs that
are specifically targeted to a processor other than the current processor, accord-
ing to a complex (and undocumented) scheduling algorithm.

Most device drivers should never need io set the importance of their DPC
Objects. In the rare case that the latency between requesting a DPC and
that DPC running is excessive, and the driver writer is not able to solve
this latency through other means, you can try setting the DPC Object to
HighImportance.Typically, however, device drivers on Windows NT do
not alter their DPC importance from the default of MediumImportance.

DPC Target Processor
In addition to an importance, each DPC Object has a target processor. This
target processor is stored in the Number field of the DPC Object. The target
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processor indicates whether or not a DPC is restricted to execute on a given
processor on the system, and, if so, on which processor. By defaul,
KeInitializeDpc() does not specify a target processor. Consequently, by
default, DPCs will run on the processor on which they were requested (that is,
the DPC will be invoked on the processor on which KeInsertQueuebpc() was
called).

A DPC may be restricted to executing on a specific processor using the
KeSetTargetProcessorDpc() function, the prototype for which is shown in
Figure 6.8.

VOID
KeSetTargetProcessorDpc(IN PKDPC Dpc,
IN CCHAR Number);

Dpc: Points to the DPC object for which the target processor is to be
set.

Number: The zero-based processor number on which the DPC is to be -
executed.

Figure 6.8. KeSetTargetProcessorDpc() function prototype.

Like DPC importance, a DPC’s target processor is almost never set by a
device driver. The default bebavior, which is for the DPC to execute on
the current processor, is the bebavior that is almost always desired.

When a specific target processor is set for a DPC Object, that DPC Object will
always be queued on the indicated processor’s DPC Queue. Thus, for example,
even though KelInsertQueuebpc() is called on Processor 0, a DPC Object with its
target processor set to Processor 1 will be inserted on the DPC Queue for
Processor 1.

The DpcForlsr

As discussed previously in this chapter, the most common use of DPCs is for
Interrupt Service Routine (ISR) completion. To make it easy for device drivers
to request DPCs for ISR completion from their ISRs, the /O Manager defines a
specific DPC that may be used for this purpose. This DPC is called the
DpcForlsr.
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The I/O Manager embeds a DPC Object in each Device Object that it creates.
This embedded DPC Object is initialized by a device driver, typically when the
driver is first loaded, by calling the function IoInitializeDpcRequest() (see
Figure 13.18 and the related description in Chapter 13).
ToInitializeDpcRequest() takes as input a pointer to the Device Object in
which the DPC Object is embedded, a pointer to a driver function to call, and
a context value to pass to that function. IoInitializeDpcRequest(), in turn, calls
KeInitializeDpc() to initialize the embedded DPC Object, passing the pointer
to the driver’s function as the DeferredRoutine parameter and the context
value as the DeferredContext parameter.

To request the DPC from its ISR, a driver simply calls IoRequestDpc() (see
Figure 13.2 and surrounding text), passing a pointer to a Device Object.
IoRequestDpc() in turn calls keInsertoueuebpc() for the DPC Object embedded
in the Device Object.

Because all device drivers have Device Objects, and all drivers that utilize inter-
rupts also utilize DPCs, using the /O Manager’s DpcForlsr mechanism is very
convenient. In fact, most device drivers in Windows NT never directly call
KeInitializeDpc() or KeInsertQueueDpc (), but call IoInitializeDpcRequest() and
IoRequestDpc() instead.






Chapter 7

Multiprocessor Issues

This chapter will review:

o The Problem with Shared Data. This section describes the problem with
sharing data between two simultaneously executing entities.

e Using Locks to Serialize Access to Shared Data. This section describes
how locks are used to serialize, and thus protect, access to shared data.

e Spin Locks. Spin locks are the tools provided by the NT operating system
to allow Kernel mode programmers to protect shared data. This section
describes the two types of spin locks available to driver writers on
Windows NT. It also describes how these locks are implemented on both
multiprocessor and uniprocessor systems.

¢ Spin Lock Issues. This section discusses a few implementation issues with
using spin locks efficiently.

Because Windows NT supports multiprocessing, all Kernel mode code must be
multiprocessor-safe. Multiprocessor safety involves maintaining cache coheren-
cy among processors, virtual memory issues, and even interrupt handling.
Fortunately, the Microkernel and the HAL handle most of these issues trans-
parently to the driver writer.

However, as discussed briefly in several prior chapters, driver writers must be
careful to properly synchronize access to shared data structures. Of course,
care in synchronizing access to shared data is required anytime a routine can
be re-entered. This is the case, even on a uniprocessor implementation of
Windows NT. However, adding multiprocessor support makes such synchro-
nization even more vital. This chapter describes the problems inherent in shar-
ing data structures in a multiprocessor environment. You will also become
familiar with the tools that Windows NT makes available to driver writers to




140 Part I: Windows NT Architecture

help solve those problems. The chapter concludes the discussion of multi-
processor issues with a description of enforcing atomic operation on uniproces-
sor systems.

The Problem with Shared Data

Anytime a data structure is shared among two threads of processing, there is
the potential for sharing problems if each thread does not have exclusive access
to the data being shared for the time period during which the data is being
modified. Consider, for example, two threads, each of which attempts to incre-
ment a reference count on a data structure (see Figure 7.1).

Thread Thread
#1 #2

Reference
Count

Figure 7.1. The need for synchronizing access to shared data structures.

Thread #1 reads the reference count, increments it, and writes it back to its
storage location in memory. Thread #2 does the same thing—it reads the refer-
ence count, increments it, and writes it back to memory. A problem occurs
either if Thread #1 is pre-empted between the time it reads the value and the
time it writes it back, or if Thread #1 and Thread #2 execute in parallel on
two different processors. The problem scenario is: ‘

1. Thread #1, executing on Processor 0, reads the reference count from the
data structure into a register. The value read for the reference count is
zero.

2. Thread #2, simultaneously executing on Processor 1, reads the reference
count from the data structure into a register. The value read for the refer-
ence count is also zero.

3. Thread #1 increments the value. The reference count value that Thread
#1 has in its internal register is now one.
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5.
6.

. Thread #2 increments the value. The reference count value that Thread

#2 has internally is now one.
Thread #1 writes the value back to storage. The reference count is one.

Thread #2 writes the value back to storage. The reference count is one.

This sequence of processing results in a reference count that is incorrect
because, with two threads actively referencing a data structure, the reference
count should obviously be two.

Using Locks to Serialize Access to
Shared Data

The solution to the problem of simultaneous access to shared data is to use a
lock to guard the reference count. Before the reference count can be modified,
the lock must be acquired. After the reference count has been modified, the
lock is released. Thus, using locks to properly implement the reference count
example described in the last section, the sequence of operations is as follows:

1.

® N & =

10.
11.

Thread #1, executing on Processor 0, attempts to acquire the lock that
guards the reference count. The lock is successfully acquired.

Thread #2, simultaneously executing on Processor 1, attempts to acquire
the lock that guards the reference count. The lock cannot be acquired
because it is already owned by Thread #1. Thread #2 therefore waits.

. Thread #1 reads the reference count from the data structure into a regis-

ter. The value read for the reference count is zero.

Thread #1 increments the value. The reference count value that Thread
#1 has in its internal register is now one.

Thread #1 writes the value back to storage. The reference count is one.
Thread #1 releases the lock guarding the reference count.
Thread #2 resumes executing.

Thread #2 reads the reference count from the data structure into a regis-
ter. The value read for the reference count is one.

Thread #2 increments the value. The reference count value that Thread
#2 has internally is now two.

Thread #2 writes the value back to storage. The reference count is two.

Thread #2 releases the lock guarding the reference count.
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This sequence of processing results in a reference count that is correct.

An appropriate Dispatcher Object, such as a mutex, can be used for synchro-
nization to guard the shared data structure. This works fine, as long as all the
threads that modify the data being shared execute only at IRQL PASSIVE_LEVEL
or IRQL Apc_LEVEL. Thus, using a mutex would be a perfect solution for syn-
chronizing access to data that is shared between two user threads because User-
mode threads always execute at IRQL PASSIVE_LEVEL.

However, using a Dispatcher Object such as a mutex would not be possible if
any thread that modifies the shared data is running at IRQL DISPATCH_LEVEL or
above. This is due to the fact that running at IRQL DISPATCH_LEVEL or higher
blocks recognition of the DISPTACH_LEVEL interrupt that is used to trigger the
Dispatcher. Thus, it is impossible for a thread running at IRQL DISPATCH_LEVEL
or above to yield control of the processor to wait, in case the Dispatcher
Object is not available. This was discussed in detail in Chapter 6, “Interrupt
Request Levels and DPCs.”

Spin Locks

Fortunately, there is a simple solution to sharing data when one or more of the
modifying threads may be running at IRQL DISPATCH_LEVEL or above. The solu-
tion is to use a spin lock.

Spin locks are standard Windows NT data structures, located in nonpageable
memory. Every spin lock has an IRQL implicitly associated with it. That IRQL
is at least IRQL DISPATCH_LEVEL, and it is the highest IRQL from which the lock
may ever be acquired. Spin locks may be used only by routines running in
Kernel mode because they imply a transition to an IRQL above PASSIVE_LEVEL.
Figure 7.2 illustrates the process of acquiring a spin lock on a multiprocessor
system.

As Figure 7.2 illustrates, the reason spin locks have their name is that if the
lock is not available, the thread that attempts to acquire the lock simply spins
(or “busy waits” as it is often called), repeatedly trying to acquire the lock
until the lock is free. Of course, because this spinning occurs at IRQL
DISPATCH_LEVEL or above, the processor on which the lock is being acquired is
not dispatchable. Thus, even when the currently executing thread’s quantum
expires, the thread will continue running.

When an attempt is made to acquire a spin lock, the routine called to acquire
the lock does not return to the caller until the lock has been acquired. In addi-
tion, there is no interface available to driver writers to enable the specification
of a timeout value. Finally, there is no interface available to check the state of a
spin lock before attempting to acquire it.
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Figure 7.2. Acquiring a spin lock on a multiprocessor system.

There are two kinds of spin locks: Executive Spin Locks and Interrupt Spin
Locks. Each of these spin locks is acquired in a different way, and is used for a
slightly different purpose. The following sections describe each of these spin
locks in detail.

Executive Spin Locks

Executive Spin Locks are the type of spin lock most frequently used in an NT
device driver. They are defined in ntddk.h as data structure type KSPIN_LOCK.
Executive Spin Locks operate at IRQL DISPATCH_LEVEL. Storage for an Executive
Spin Lock is allocated by the lock’s creator from nonpageable storage. For
device drivers, this means that spin locks are typically allocated from non-
paged pool. After space for the lock has been allocated, the lock is initialized
by using the function KeInitializeSpinLock(), the prototype for which is shown
in Figure 7.3.



144  Part I. Windows NT Architecture

VOID
KelnitializeSpinLock(IN PKSPIN_LOCK SpinLock);

SpinLock: A pointer to previously allocated storage for spin lock to be
initialized. This storage must be non-pageable.

Figure 7.3. KeInitializeSpinLock() function prototype.

Once a spin lock has been initialized, it may be acquired. Executive Spin Locks
may be acquired by callers running at less than or equal to IRQL
DISPATCH_LEVEL by calling KeAcquireSpinLock(), the prototype for which is
shown in Figure 7.4.

VOID
KeAcquireSpinLock(IN PKSPIN_LOCK SpinLock,
OUT PKIRQL OldIrql);

SpinLock: A pointer to previously initialized spin lock to be acquired.

OldIrql: A pointer to a location into which to return the IRQL at
which the processor was executing prior to the spin lock being
acquired.

Figure 7.4. KeAcquireSpinLock() function prototype.

When keAcquireSpinLock() is called on a multiprocessor system, the steps
shown earlier in Figure 7.2 are taken. The current IRQL at which the proces-
sor is running is first saved. Next, KeAcquireSpinLock() raises the IRQL on the
current processor to IRQL pIsPATCH_LEVEL. The function next tries to acquire
the indicated spin lock, repeatedly if necessary, until the attempt succeeds.
When the indicated spin lock has been acquired, keAcquireSpinLock() returns to
its caller.

Spin locks are mutual exclusion locks. This means that they may be acquired
by only one requestor at a time. Spin locks are not recursively acquirable. An
attempt to acquire a spin lock that is already held by the calling thread is a
fatal error and will result in the (Free Build of the) system hanging.
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Remember: After an Executive Spin Lock has been successfully acquired,
the caller is running at IRQL DISPATCH_LEVEL. Thus, for the entire time
that the spin lock is held, only actions that are legal at IRQL
DISPATCH_LEVEL (as discussed in the previous chapter) may be taken by
the driver.

Of course, if the caller knows that it is already running at IRQL
DISPATCH_LEVEL, returning the current IRQL and then attempting to raise it to
IRQL DISPATCH_LEVEL is a waste of time. This would be the case, for example,
when a driver is running within a DPC routine. Therefore, NT provides an
optimized version of KeAcquireSpinLock() for use when the caller is already run-
ning at DISPATCH_LEVEL. This function is called keAcquireSpinLockAtDpcLevel().
The prototype for this function is shown in Figure 7.5.

VOID
KeAcquireSpinLockAtDpcLevel(IN PKSPIN_LOCK SpinLock);

SpinLock: A pointer to previously initialized spin lock to be acquired.

Figure 7.5. KeAcquireSpinLockAtDpclevel() function prototype.

KeAcquireSpinLockAtDpcLevel () works exactly the same way as
KeAcquireSpinLock() except, as previously mentioned, it assumed the caller is
running at IRQL p1spaTcH_LEVEL. It therefore does not bother to raise the IRQL
of the current processor to IRQL DISPATCH_LEVEL and, because the pre-call
IRQL is assumed to be DISPATCH_LEVEL, it does not return the previous IRQL to
the caller.

It is very important to note that it is a very serious logic error to acquire an
Executive Spin Lock when running at an IRQL greater than IRQL
DISPATCH_LEVEL. This is because the IRQL of an Executive Spin Lock is IRQL
DISPATCH_LEVEL, which is the highest IRQL at which an Executive Spin Lock
can be acquired. Because Executive Spin Locks cannot be acquired from IRQLs
above DISPATCH_LEVEL, Executive Spin Locks can never be acquired from within
an interrupt service routine. Attempting to acquire an Executive Spin Lock
from an IRQL greater than DISPATCH_LEVEL results in a crash with the error
code IRQL_NOT_GREATER_OR_EQUAL.
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Executive Spin Locks that were acquired with KeAcquireSpinLock() must be
released using the function KeReleaseSpinLock(). Executive Spin Locks that
were acquired with the function KeAcquireSpinLockAtDpcLevel() must be
released using the function KeReleaseSpinLockFromDpcLevel(). The prototypes
for these two functions are shown in Figure 7.6 and Figure 7.7, respectively.

VOID
KeReleaseSpinLock(IN PKSPIN_LOCK SpinLock,
IN KIRQL Newlrgl);

SpinLock: A pointer to a spin lock to release.

Newlrql: IRQL to which to return after the spin lock has been
released.

Figure 7.6. KeReleaseSpinLock() function prototype.

VOID
KeReleaseSpinLockFromDpcLevel(IN PKSPIN_LOCK SpinLock);

SpinLock: A pointer to a spin lock to release.

Figure 7.7. KeReleaseSpinLockFromDpcLevel() furnction prototype.

Both of these functions release the indicated spin lock, and thus make it avail-
able for acquisition by another requestor. The only difference between the two
is that after releasing the spin lock, KeReleaseSpinLockFromDpcLevel () stays at
IRQL DISPATCH_LEVEL, whereas after releasing the spin lock,
KeReleaseSpinLock() returns to the IRQL indicated by Newlrgl on the function
call.

Notice that the names of the routines used to acquire a spin lock from
DISPATCH_LEVEL and to release it are not symmetrical. The function to
acquire the spin lock is KeAcquireSpinLockAtDpcLevel(); the function to
release a spin lock thereby acquired is KeReleaseSpinLockFromDpcLevel().
Also, notice that these calls refer to IRQL DISPATCH_LEVEL as “DPC
level.” This name is slang for the IRQL level at which DPCs run—
DISPATCH_LEVEL. Officially, however, there is not now, and never has
been since NT V3.1, an IRQL DPC_LEVEL defined in ntddk.h.
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Using Multiple Executive Spin Locks Simultaneously

In complex drivers, it is often necessary to acquire a second Executive Spin
Lock while already holding another Executive Spin Lock. Although the DDK
clearly states that driver writers should “avoid using nested spin locks” (section
16.2.5 of the Kernel-Mode Guide), this is often not possible. The problem the
DDK is trying to help avoid is the problem of deadlocks. The process illustrat-
ed in Table 7.1 shows one example of a deadlock.

Table 7.1. A “deadly embrace” deadlock.

Code Path on Code Path on
Processor #1 Processor #2
Attempt to acquire Attempt to acquire
spin lock FOO spin lock BAR
(successful) (successful)

Do some work Do some work
Acquire spin Acquire spin

lock BAR «Deadlock— lock FOO

In Table 7.1, the thread executing on Processor #1 calls KeAcquireSpinLock()
and successfully acquires the spin lock at location FOO. It does this presum-
ably because it needs to modify the data located in a shared data area protect-
ed by FOO. More or less simultaneously, the thread running on Processor #2
calls KeAcquireSpinLock() to acquire the spin lock at location BAR. Again, this
is assumed because this thread needs to modify the data protected by the BAR
spin lock. Next, the thread running on Processor #1 decides that it (also) needs
to modify the data protected by the BAR spin lock. Thus, it calls
KeAcquireSpinLock(), specifying spin lock BAR. Because spin lock BAR is cur-
rently held by the thread running on Processor #2, the thread on Processor #1
spins, waiting for the lock to become available. Finally, the thread running on
Processor #2 that is holding the BAR spin lock decides that it needs to modify
some data protected by the FOO spin lock. The Processor #2 thread then calls
KeAcquireSpinLock() in an attempt to acquire spin lock FOO. Of course,
because the thread running on Processor #1 is holding the FOO spin lock, the
thread running on Processor #2 spins, waiting for the FOO spin lock to
become free.

The result? The system is hopelessly deadlocked. This type of deadlock is
called a “deadly embrace.” When will this situation be resolved? Whenever the
user presses the reset button on the system!

This situation is all too common in the real world of developing device drivers.
Consider the device driver that needs to remove a request from one queue
while placing it on another. If each queue is guarded by a different spin lock
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and the locks are not managed correctly, the deadlock problem cited earlier is a
real possibility.

Fortunately, such problems are very easy to avoid. Whenever multiple locks are
used, a locking hierarchy must be defined. The locking hierarchy simply lists
all the locks in the system that could possibly be held simultaneously, and pre-
scribes the order in which these locks must be acquired whenever multiple
locks are required. A locking hierarchy is typically created by listing the locks
used in a system, from left to right, in order of frequency of their acquisition.
This list becomes the hierarchy. Whenever multiple locks must be held simulta-
neously, the locks are acquired in the order in which they appear in the list.
This process works with any number of locks.

For our FOO and BAR spin lock example, cited earlier, we could create a sim-
ple locking hierarchy that lists: FOO, BAR. This hierarchy means that “any
time we need to hold both Executive Spin Locks FOO and BAR, acquire FOO
first and then acquire BAR.” Note that if we need to acquire only BAR to
modify the data that it protects, we do not necessarily need to also acquire
FOO. We need to acquire both spin locks only when we need to simultaneous-
ly modify the data that both spin locks protect. And, when we need to hold
both spin locks, we must acquire them in the order specified in the hierarchy.

The order in which the locks are released is not important (as long as the
correct IRQL is preserved). You can’t cause a deadlock by releasing spin
locks in the wrong order.

The example illustrated in Table 7.2 shows the FOO and BAR example from
Table 7.1 corrected to properly implement the locking hierarchy previously
mentioned.

Table 7.2. Using two Executive Spin Locks—deadlock-free.

Code Path on Processor #1 Code Path on Processor #2
Attempt to acquire spin Attempt to acquire spin lock

lock FOO (successful) BAR (successful)

Do some work Do some work

Acquire spin lock BAR Release spin lock BAR

Do more work Attempt to acquire spin lock FOO

(spin, waiting)

Release spin lock BAR

Release spin lock FOO Succesfully acquire spin lock FOO
Attempt to acquire spin lock BAR
Do some other work
Release spin lock BAR
Release spin lock FOO
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In Table 7.2, the thread on Processor #1 acquires spin lock FOO, and the
thread on Processor #2 acquires spin lock BAR, just as it was before the lock-
ing hierarchy was introduced. When the thread on Processor #1 needs to
acquire BAR, it may simply acquire it because it has already acquired FOO,
and the locking hierarchy states that if both FOO and BAR are required, BAR
may not be acquired unless FOO is already held. Thus, when the thread on
Processor #2 decides that it needs to hold both FOO and BAR simultaneously,
it first releases BAR. This is because, according to our locking hierarchy, if
both FOO and BAR are needed, FOO must be acquired before BAR can be
acquired. With BAR released, the thread on Processor #2 is free to attempt to
acquire FOO (which eventually succeeds after a short wait), and then acquire
BAR.

The result? Processing is deadlock-free.

The only trick to using locking bierarchies is that the code that acquires
multiple spin locks must be aware of which spin locks it requires, and
which spin locks have already been acquired. This isn’t impossible, or
even extraordinarily difficult. It just requires some advance planning and
design on the part of the driver writer.

Debugging Executive Spin Locks

It is a little-known fact that the Checked Build of Windows NT (described in
Chapter 18, “Building and Debugging”) provides a few helpful assists for
debugging problems with Executive Spin Locks—at least on x86 architecture
systems. As with many internal features of Windows NT, these are not docu-
mented, so their behavior is subject to change without notice.

One helpful feature in the Checked Build checks to see whether a thread
attempts to acquire a spin lock that it already owns. If this occurs, the Checked
Build crashes with a STOP error. Kii386SpinonSpinLock will be found a few
locations down the kernel stack. The kernel virtual address of the spin lock is
the STOP code. If a debugger is hooked up when the crash occurs, a message
similar to the following is displayed:

*** Fatal System Error: OxF962F6A0 (0x00000000,0x00000000,0x00000000,0x00000000)
The error code (oxF962F6A0 from the preceding message) is the kernel virtual

address of the spin lock that has been attempted to be recursively acquired.
The current thread is the thread that attempted to recursively acquire the lock.

Similarly, the Checked Build includes a spin lock timeout. This timeout appears
to be rather short (less than a second). Therefore, it is possible to encounter
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this timeout on the rare occasion when you have a hotly contested spin lock on
a system with many processors, when one processor has to wait a long time for
the lock. If a debugger is not hooked up to the checked system when the time-
out occurs, the system crashes with a KMODE_EXCEPTION_NOT_HANDLED error. If a
debugger is attached when the timeout occurs, the message “Hard coded
breakpoint hit” is displayed. At the top of the kernel stack will be the function
SpinLockSpinningForTooLong. Simply resuming from the breakpoint (typing “G”
in WinDbg) will result in additional attempts to acquire the spin lock, with
corresponding time out.

Interrupt Spin Locks

Interrupt Spin Locks, which are sometimes referred to as ISR spin locks, are
the rarer of the two types of spin locks on Windows NT. Interrupt Spin Locks
operate at a DIRQL, specifically the Synchronizelrql that is specified when a
driver calls ToConnectInterrupt() (which is described in Chapter 13, “Driver
Entry”—refer to Figure 13.7 and the surrounding text). Interrupt Spin Locks
are always associated with a particular Interrupt Object, and are thus associat
ed with a particular interrupt service routine for a particular device. Interrupt
Spin Locks are typically stored within an Interrupt Object, although they may
be stored externally to the Interrupt Object and be pointed to by a field in the
Interrupt Object (again, see Chapter 13 for a complete explanation). Interrupt

Spin Locks are initialized by the /O Manager when IoConnectInterrupt() is
called.

The Interrupt Spin Lock for a particular interrupt service routine is always
acquired by the Microkernel prior to its calling the interrupt service routine.
The Microkernel releases the Interrupt Spin Lock after the interrupt service
routine returns.

Note that because the appropriate Interrupt Spin Lock is acquired and
released by the Microkernel around a driver’s interrupt service routine,
that interrupt service routine will always be running holding the spin
lock. This means that the ISR connected to a given vector by a given
Interrupt Object will never be running on two processors simultaneously!
This is described in much greater detail in Chapters 13 and 15.

Driver routines other than the interrupt service routine may acquire a particu-
lar Interrupt Spin Lock by calling KesynchronizeExecution(). This is the only
way that an Interrupt Spin Lock can be acquired by a driver (aside from
having the Microkernel automatically acquire the Interrupt Spin Lock prior to
calling the driver’s interrupt service routine). KeSynchronizeExecution() in par-
ticular, and Interrupt Spin Locks in general, are described in more detail in
Chapter 15, “Interrupt Service Routines and DPCs.”
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Spin Lock Implementations on Uniprocessor

Systems

The Windows NT operating system code is different on uniprocessor systems
than it is on multiprocessor systems. For example, because there is only one
processor on a uniprocessor system, spinning waiting for a spin lock to become
free is not useful (because there is no other processor on which a thread could
release the lock!).

Using spin locks, however, results in execution of the “locked” code sequence
at IRQL p1spATCH_LEVEL. This masks DISPATCH_LEVEL interrupts on the processor,
and thus disabled preemption on that processor. Consider, for example, the
case of inserting an entry into a doubly linked list. On a multiprocessor system,
you might worry about a DPC routine executing on this processor or another
processor attempting to, simultaneously update the same list. On a uniprocessor
system, you would still need to be assured that the thread inserting the entry
was not interrupted at IRQL DISPATCH_LEVEL or pre-empted (that is, desched-
uled) midway through its insertion. If another thread were to come along

and attempt to insert an entry into the same list, the list would obviously be
corrupted.

Thus, even on uniprocessor systems, drivers must protect atomic operations by
using locks. Where code may be running at IRQLSs greater than or equal to
IRQL DISPATCH_LEVEL, such atomic operations must be protected with spin
locks.

Figure 7.8 illustrates NT’s implementation of spin locks on uniprocessor systems.

Return Current
IRQL

Y

Raise IRQL to
Spin Lock’s
IRQL

Y
Return
Success

Figure 7.8. Acquiring a spin lock on a uniprocessor system.

KeAcquireSpinLock() is implemented on uniprocessor systems as, basically, a

call to keRaiseIrql(). Because raising the IRQL to IRQL DISPATCH_LEVEL or
above results in dispatching being disabled, a thread that runs at one of these
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IRQLSs will continue to run until it lowers its IRQL below IRQL
DISPATCH_LEVEL. Similarly, KeReleaseSpinLock() on uniprocessor systems simply
results in the IRQL being lowered, as in a call to KeLowerIrql(). The atomic
execution of the code between the calls to KeAcquireSpinLock () and
KeReleaseSpinLock() is maintained.

Spin Lock Issues

There are a number of issues that must be considered when using spin locks.
For example, the length of time a spin lock is held should be kept to the short-
est amount of time reasonably necessary. After all, other processors could be
spinning, waiting for the lock to become free.

On the other hand, it is likely to be a worse error to repeatedly acquire and
release the same spin lock. Acquiring and releasing a spin lock is almost sure to
be expensive on any system because an interlocked memory operation is
required.

Note

The DDK provides a recommended guideline of 25 microseconds as the
maximum amount of time a spin lock should be beld. This guideline is
just plain silly. The 25-microsecond value is actually a holdover from the
earliest days of NT. Consider the fact that the work that can be done in
25 microseconds on a 700MHz Alpha processor is certainly much differ-
ent from the work that can be done in 25 microseconds on a slow 486
processor! Why would elapsed time matter?

The only real guideline is to “be careful” to hold spin locks only as long
as they are actually needed. True, this doesn’t provide a handy numerical
guideline to follow. But it is the only true guideline. Similarly, balance the
cost of holding a spin lock with the cost of releasing and reacquiring the
same lock. In most cases, it is our experience that it is better to hold a
lock for a little longer than it is to drop and reacquire the lock repeatedly.
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