

Information in this document is subject to change without notice and does not
represent a commitment on the part of Mindset Corporation. The software
described in this document is furnished under a license agreement or non
disclosure agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy Mindset GW-BASIC
on magnetic tape, disk, or any other medium for any purpose other than the
purchaser's personal use.

(c) Microsoft Corporation 1979, 1983, 1984
(c) Mindset Corporation 1983, 1984

Microsoft is a registered trademark of Microsoft Corporation. Microsoft
GW-BASIC Interpreter is a trademark of Microsoft Corporation.

All rights reserved.
Printed in U.S.A
100213-001
A Tec-Ed manual.

Contents

Section 1
I ntrod uction

Graphics
Sound and Music
Input Peripherals Support
Device-I ndependent Input/Output
Event Trapping

ON ... GOSUB Statement Type
RETURN Statement

Keyword Entry Using the Alt Key

Section 2
General Information About GW-BASIC

Syntax Notation
Line Format
Error Messages
Modes of Operation
Default Disk Drive
Active and Visual (Display) Pages
Character Set
Constants

String Constants
Numeric Constants
Single/Double Precision Form for Numeric Constants

Variables
Variable Names and Declaration Characters
Array Variables
Memory Space Requirements

Type Conversion

1-1
1-2
1-2
1-2
1-3
1-5
1-6
1-7

2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-5
2-5
2-5
2-6
2-7
2-7
2-8
2-8
2-9

iii

iv GW-BASIC Reference Manual

Expressions and Operators
Arithmetic Operators

2-11
2-11
2-12
2-13
2-13
2-14

Integer Division and Modulus Arithmetic
Division By Zero and Overflow
Relational Operators
Logical Operators
Functional Operators
String Operators

MS-DOS 2.0 File System
Hierarchical File System
Directory Paths
File-Naming Conventions
Character Device Support

Assembly Language Subroutines
Memory Allocation
The CALL Statement
The CALLS Statement
The USR Function

Section 3
Programming Animation

-2-16
2-16
2-17
2-17
2-18
2-19
2-19
2-21
2-21
2-22
2-26
2-26

Animation Features 3-1
Programmable Motion and Priority 3-1
Multiple Object Views 3-2
Animation Event Statements 3-2
Animation Event Functions 3-3
Animation EVent Control Statements 3-4
Object Activation Statements 3-5

Overview of Animation Programming 3-5
Sample Animation Program Description 3-6

Initializing the System 3-7
Dimensioning the Object Arrays 3-7
Generating the Views for Each Object 3-8
Storing the Object Views in Arrays 3-8
Defining the Views Comprising an Object 3-9
Setting Up the Event Traps 3-9
Enabling the Event Traps 3-9
Defining Object Parameters and Activating the Object 3-10
Incuding the Background Program 3-10
Using ARR IVAL Subroutines 3-11
Using CLIP Subroutines 3-121,
Using COLLISION Subroutines 3-12

Contents

Section 4
Starting GW-BASIC

Starting GW-BASIC Without MS-DOS
GW-BASIC Operating Environment Without MS-DOS

Starting GW-BASIC with MS-DOS
BASIC Command Line Syntax
Command Line Options
File Options
Option Switches
BASIC Command Examples

Redirection of Standard Input and .Standard Output
Rules for Redirecting Input and Output
Example of I/O Redirection
Returning to MS-DOS from GW-BASIC

Section 5
Editing Basic Programs

Line Editing
Edit Command
Full Screen Editor

Writing Programs
Editing Programs
Control Functions and Editor Keys
BASIC Editor Function Keys
Logical Line Definition with INPUT
Editing Lines Containing Variables

Section 6
GW-BASIC Commands, Statements, Functions,
and Variables

ABS Function
ACTIVATE/DEACTIVATE Statements
ARRIVAL Function
ARRIVAL Statement
ASC Function
ATN Function
AUTO Command
BEEP Statement
BLOAD Statement
BSAVE Statement
CALL Statement
CALLS Statement
CDBL Function
CHAI N Statement
CHOIR Statement
CH R$ Function

v

4-1
4-2
4-2
4-3
4-3
4-4
4-4
4-6
4-7
4-7
4-7
4-8

5-1
5-2
5-2
5-2
5-3
5-4
5-4
5-6
5-6

6-3
6-4
6-5
6-8

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-22
6-23

VI

CI NT Function
CI RCLE Statement
CLEAR Statement
CLIP Function
CLI P Statement
CLOSE Statement
CLS Statement
COLLISION Function
COLLISION Statement
COLOR Statement (Text)
COLOR Statement (Graphics)
COM Statement
COMMON Statement
CONT Command
COS Function
CSNG Function
CSRLlN Variable
CVI, CVS, and CVD Functions
DATA Statement
DATE$ Statement
DATE$ Variable
DEF FN Statement
DEFINT/SNG/DBL/STR Statements
DEF OBJ ECT Statement
DEF SEG Statement
DEF USR Statement
DELETE Command
01 M OBJ ECT Statement
DIM Statement
o RAW Statement
EDIT Command
END Statement
ENVI RON Statement
ENVI RON$ Function
EOF Function
ERASE Statement
ERDEV and ERDEV$ Variables
ERR and ERL Variables
ERROR Statement
EXP Function
FIELD Statement
FI LES Statement
FIX Function
FOR ... NEXT Statement
FRE Function
GET Statement (Files)
GET Statement (Graphics)
GOSUB ... RETURN Statements

l.:iW-tiA::iIl,; Heterence Manual

6-24
6-25
6-27
6-28
6-30
6-31
6-32
6-33
6-36
6-37
6-39
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
6-51
6-52
6-53
6-54
6-55
6-56
6-57
6-58
6-59
6-62
6-63
6-64
6-66
6-68
6-69
6-70
6-71
6-72
6-74
6-75
6-78
6-80
6-81
6-84
6-85
6-86
6-88

Contents

GOTO Statement
H EX$ Function
IF ... THEN[... ELSE]!IF ... GOTO Statements
IN KEY$ Function
INP Function
I N PUT Statement
I N PUT # Statement
IN PUT$ Function
I NSTR Function
I NT Function
10CTL Statement
10CTL$ Function
KEY Statement
KEY (n) Statement
KI LL Statement
LEFT$ Function
LEN Function
LET Statement
LI N E Statement
LI N E I N PUT Statements
LI N E IN PUT# Statement
LIST Command
LLiST Command
LOAD Command
LOC Function
LOCATE Statement
LOF Function
LOG Function
LPOS Function
LPRINT and LPRINT USING Statements
LSET and RSET Statements
MERGE Command
M I D$ Statement
MID$ Function
MKDIR Statement
MKI$, MKS$, and MKD$ Functions
NAM E Statement
NEW Command
OBJ ECT Function
OBJ ECT Statement
OCT$ Function
ON ARRIVAL Statement
ON CLI P Statement
ON COLLISION Statement
ON COM Statement
ON ERROR GOTO Statement
ON ... GOSUB and ON ... GOTO Statements
ON KEY Statement

vii

6-90
6-91
6-92
6-94
6-95
6-96
6-98
6-99

6-100
6-101
6-102
6-103
6-104
6-107
6-109
6-111
6-112
6-113
6-114
6-117
6-118
6-119
6-121
6-122
6-123
6-124
6-126
6-127
6-128
6-129
6-130
6-131
6-132
6-133
6-134
6-135
6-136
6-137
6-138
6-139
6-142
6-143
6-145
6-147
6-150
6-152
6-153
6-154

viii GW-BASIC Reference Manual

ON PLAY Statement 6-156
ON STRIG Statement 6-157
ON TIMER, TIMER ON, TIMER OFF, TIMER STOP Statements 6-159
OPEN Statement 6-160
OPEN COM Statement 6-162
OPTION BASE Statement 6-164
OUT Statement 6-165
PAINT Statement 6-166
PALETIE Statement 6-169
PALETIE USING Statement 6-171
PEEK Function 6-173
PLAY Statement 6-174
PLAY Function 6-178
PMAP Function 6-179
POINT Function 6-180
POKE Statement 6-181
POS Function 6-182
PRESET Statement 6-183
PR I NT Statement 6-184
PRINT USING Statement 6-187
PRINT# and PRINT#USING Statements 6-192
PSET Statement 6-194
PUT Statement (Files) 6-196
PUT Statement (Graphics) 6-197
RANDOMIZE Statement 6-199
READ Statement 6-201
REM Statement 6-203
RENUM Command 6-204
RESET Command 6-205
RESTORE Statement 6-206
RESUME Statement 6-207
RETURN Statement 6-208
RIGHT$ Function 6-209
RMDIR Statement 6-210
RND Function 6-211
RUN Command 6-212
SAVE Command 6-213
SCREEN Statement 6-214
SCREEN Function 6-216
SCN Function 6-217
SHELL Statement 6-218
SI N Function 6-221
SOUND Statement 6-222
SPACE$ Function 6-223
SPC Function 6-224
SQR Function 6-225
STICK Function 6-226
STOP Statement 6-228

Contents

STOP/START OBJECT Statements
STR$ Function
STRIG Statement/Function
STRI NG$ Function
SWAP Statement
SYSTE M Command
TAB Function
TAN Function
TI M E$ Statement
TI M E$ Variable
TIMER Variable
TRON/TROFF Statements/Commands
USR Function
VAL Function
VARPTR Function
VARPTR$ Function
VI EW Statement
VIEW PRINT Statement
WAIT Statement
WH I LE .. WE N D Statements
WI DTH Statement
WI N DOW Statement
WRITE Statement
WRITE# Statement

Appendix A
Error Codes And Error Messages

GW-BASIC Error Messages
Disk Error Messages

Appendix B
Derived Mathematical Functions

AppendixC
ASCII Character Codes

Extended Codes

Appendix D
GW-BASIC Reserved Words

Index

ix

6-229
6-230
6-231
6-233
6-234
6-235
6-236
6-237
6-238
6-239
6-240
6-241
6-242
6-243
6-244
6-245
6-247
6-248
6-249
6-250
6-251
6-253
6-255
6-256

A-1
A-5

C-3

Figures and Tables

Figure 2-1 : Disk file organization 2-17
Figure 2-2: Stack layout when CALL statement is activated 2-23
Figure 2-3: Stack layout during execution of a CALL

statement 2-23

Table 2-1: GW-BASIC Relational Operators Truth Table 2-14

Table 3-1: Sample Program Array Names 3-7

Figure 4-1: GW-BASIC start-up screen 4-2

Table 5-1 : GW-BASIC Control Functions 5-4

Table 6-1: Default Palette Colors 6-37
Table 6-2: Graphics Color Palettes 6-39
Table 6-3: Default Color Palette Definition 6-169
Table 6-4: Screen Modes 6-214

xi

Section 1

Introduction

Welcome to GW-BASIC. This manual describes GW-BASIC as
implemented for the Mindset Personal Computer. This version of
GW-BASIC includes powerful statements to support advanced graphics
operations, including animation.

This reference manual is not intended to be used as instructional text.
Readers unfamiliar with BASIC programming are encouraged to obtain
one of the many introductory textbooks which describes programming
techniques for BASIC.

You should read the Mindset Personal Computer Operation Guide before
using GW-BASIC. The Operation Guide explains how to power up the
system and how to insert cartridges, such as the one containing the
GW-BASIC interpreter.

This section of the GW-BASIC Reference Manual describes the special
features that are part of GW-BASIC. These features include graphics,
sound and music, peripherals support, device-independent 1/0, event
trapping, and the use of the Alt key to enter commands.

Graphics

GW-BASIC enables users to create programs for graphics operation
which can use color, draw various figures, and perform animation. The
statements and functions that are used for graphics include:

ACTIVATE
ARRIVAL
CIRCLE
CLIP

COLLISION
COLOR
DEACTIVATE
DEF OBJECT

1-1

1-2

DIM OBJECT
DRAW
GET and PUT
LINE
OBJECT
ON ARRIVAL
ON CLIP
ON COLLISION
PAINT

GW-BASIC Reference Manual

PALETTE
PALETTE USING
POINT
PRESET
PSET
SCREEN
START OBJECT
STOP OBJECT

These statements and functions are described in Section 6, "GW-BASIC
Commands, Statements, Functions, and Variables".

Sound and Music

The BEEP, PLAY, and SOUND statements enable use of the Mindset
Personal Computer sound capability. These statements are described
in Section 6, "GW-BASIC Commands, Statements, Functions, and
Variables" .

The BEEP statement operates through the internal beeper of the Mindset
Personal Computer while the PLAY and SOUND statements use its
external sound channel.

Input Peripherals Support

In addition to the keyboard, GW-BASIC supports a mouse and one or
two joysticks as input peripherals. The statements and functions that
support these input peripherals are described individually in Section 6.
They include STICK and STRIG.

Device-Independent tnput/Output

GW-BASIC provides device-independent input/output that works with
the MS-DOS operating system.

Introduction 1-3

The following statements, commands, and functions support device
independent I/O (see individual descriptions in Section 6, "GW-BASIC
Commands, Statements, Functions, and Variables"):

BLOAD
BSAVE
CHAIN
CLOSE
ENVIRON
ENVIRON$
EOF
ERDEV
ERDEV$
FILES
GET
INPUT
INPUT$
10CTL
10CTL$
KILL
LINE
LIST
LLiST

Event Trapping

LOAD
LOC
LOF
LPOS
LPRINT
MERGE
NAME
OPEN
OPEN COM
POS
PRINT
PRINT USING
PUT
RESET
RUN
SAVE
SHELL
WIDTH
WRITE

Event trapping allows a program to transfer control to a specific program
line when a certain event occurs. Control is transferred as if a GOSUB
statement had been executed to the trap routine, starting at the
specified line number. The trap routine, after servicing the event,
executes a RETURN statement that causes the program to resume
execution at the place where it was when the event trap occurred.

The events that can be trapped are receipt of characters from a
communications port (ON COM), selected key activation (ON KEY),
joystick trigger or mouse switch activation (ON STRIG), timer operation
(ON TIMER), background music operation (ON PLAY), and animation
operation (ON ARRIVAL, ON CLIP, and ON COLLISION).

This section gives an overview of event trapping. For more details on
individual statements, see Sections 3 and 6.

1-4 GW-BASIC Reference Manual

Event trapping is controlled by the following types of statements:

<event specifier> ON to turn on trapping
<event specifier> OFF to turn off trapping
<event specifier> STOP to temporarily turn off trapping

where <event specifier> is one of the following:

COM (n)

KEY (n)

where n is the number of the communications chan
nel. The COM channels are numbered 1 through 4.

Typically, the COM trap routine will read an entire
message from the COM port before returning. The
COM trap should not be used for single-character
messages, because at high baud rates the overhead
of trapping and reading for each character may allow
the interrupt buffer for COM to overflow.

where n is a trappable key number. GW-BASIC sup
ports 20 trappable keys (numbered 1 through 20),
where numbers 1 through 10 are the softkeys F1
through F10; 11 through 14 are the cursor direction
keys (as follows: 11 up, 12 left, 13 right, 14 down); and
15 through 20 are user-defined trappable keys (see
Section 6, "GW-BASIC Commands, Statements,
Functions, and Variables", for details). KEY (0) refers
to the entire set of trappable keys.

Note that KEY (n) ON is not the same statement as
KEY ON. KEY(n) ON sets an event trap for the
specified key. KEY ON displays the values of all the
function keys on the twenty-fifth line of the screen (see
Section 6, "GW-BASIC Commands, Statements,
Functions, and Variables").

When GW-BASIC is in direct mode (in other words,
during input), function keys maintain their standard
meanings.

When a key is trapped, that occurrence of the key is
destroyed. Therefore, you cannot subsequently use
the INPUT or INKEY$ statements to find out which key
caused the trap. If you wish to assign different func
tions to particular keys, you must set up a different
subroutine for each key, rather than assigning the
various functions within a single subroutine.

Introduction

PLAY (n)

STRIG (n)

TIMER (n)

ARRIVAL (n)

CLIP (n)

COLLISION
(n[,m])

1-5

where n is the number of music notes in the Back
ground Music Queue. The event trap occurs
whenever the PLAY statement causes the number of
notes in the queue for voice 1 to go below n.

where n relates to the number of the joystick trigger.
The range for n is 0 to 6. STRIG is also used to record
the input from the button(s) on a mouse.

For discussion of the STRIG function, see Section 6.

where n is the number of seconds between event
traps.

For a discussion of the TIMER function, see Section 6.

where n is the number of the object being tracked to
its destination. Section 6 describes both this state
ment and the ARRIVAL function.

where n is the number of the object being checked to
see if it has reached the viewport boundary. Section 6
describes the CLIP statement and the corresponding
CLIP function.

where n, m are the number of objects being checked
for a possible collision. See Section 6 for a descrip
tion of this statement and the COLLISION function.

ON ... GOSUB Statement Type
The ON ... GOSUB type of statement sets up a line number for the
specified event trap. The format is:

ON <event specifier> GOSUB <line number>

A <line number> of 0 disables trapping for that event.

When trapping for a type of event is ON and a non-zero line number is
specified in the ON ... GOSUB statement, every time GW-BASIC starts a
new statement it will check to see if the specified event has occurred (for
example, the joystick button has been pressed or a COM character has
been received). When trapping for a type of event is OFF, no trapping
takes place, and the event is not remembered even if it occurs.

When a type of event is stopped «event specifier> STOP), no trapping
takes place. However, the occurrence of an event is remembered so that
an immediate trap will take place when an <event specifier> ON
statement is executed.

1-6 GW-BASIC Reference Manual

When a trap is made for a particular event, the trap automatically causes
a STOP on that event, so recursive traps can never occur. A return from
the trap routine automatically executes an ON statement unless an
explicit OFF has been performed inside the trap routine.

Note that after an error trap takes place, all trapping is automatically
disabled. You must explicitly re-enable trapping within the program
before another trap can occur. In addition, event trapping will never
occur when GW-BASIC is not executing a program.

RETURN Statement
When an event trap is in effect, a GOSUB statement will be executed as
soon as the specified event occurs. For example, the statement:

ON KEY(5) GOSUB 1000

specifies that the program is to go to line 1000 as soon as function key
F5 is pressed. A RETURN statement executed at the end of this
subroutine will return program control to the statement following the one
at which the trap occurred. When the RETURN statement is executed,
its corresponding GOSUB return address is cancelled.

GW-BASIC also features the RETURN <line number> enhancement,
which lets control return to a place in the program that is not necessarily
the next statement after the occurrence of the event trap.

If not used with care, however, this capability may cause problems.
Assume, for example, that your program contains:

10 ON KEY(5) GOSUB 1000
20 FOR I =1T010
30 PRINT I
40 NEXT I
50 REM NEXT PROGRAM LI NE

200 REM PROGRAM RESUMES HERE

1000 'FIRST LINE OF SUBROUTINE

1050 RETURN 200

If key F5 is pressed while the FOR/NEXT loop is executing, the
subroutine will be performed, but program control will return to line 200
instead of completing the FOR/NEXT loop. The original GOSUB entry

Introduction 1-7

will be cancelled by the RETURN statement, and any other GOSUB,
WHILE, or FOR (for example, an ON STRIG statement) active at the time
of the trap will remain active. However, the current FOR context will also
remain active, and a "FOR without NEXT" error may result.

Keyword Entry Using the Alt Key

GW-BASIC enables the entry of many BASIC keywords by using only
two keystrokes. A GW-BASIC keyword is entered by holding the Alt key
down while pressing one of the alphabetic keys (A-Z). The following list
describes the standard definitions for each key when used with the Alt
key:

A- AUTO
B - BSAVE
C - COLOR
D - DELETE
E - ELSE
F - FOR
G - GOTO
H - HEX$
I-INPUT
J - (no key word)
K- KEY
L - LOCATE
M - (no key word)

N - NEXT
0- OPEN
P - PRINT
Q - (no key word)
R-RUN
S - SCREEN
T-THEN
U - USING
V-VAL
W-WIDTH
X-XOR
Y - (no key word)
Z - (no key word)

Section 2

General Information
About GW-BASIC

This section describes the important elements of BASIC programs
including syntax, characters, constants, variables, operators, and
expressions. It also explains the two modes of GW-BASIC, the default
disk drive, and the display pages for GW-BASIC output.

Syntax Notation

When commands are discussed in this document, the following notation
will be followed:

[] Square brackets indicate that the enclosed entry is optional.

< > Angle brackets indicate user-entered data. For example, enter
the name of your file when <filename> is shown in the format.

BOLD Bold lettering indicates text you must enter.

{} Braces indicate that the user has a choice between two or more
entries. At least one of the entries enclosed in braces must be
chosen unless the entries are also enclosed in square brackets.

Within braces vertical bars separate choices. At least one of the
entries separated by bars must be chosen unless the entries are
also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as many times
as needed or desired.

CAPS Capital letters indicate portions of statements or commands that
must be entered exactly as shown.

2-1

2-2 GW-BASIC Reference Manual

All other punctuation, such as commas, colons, slash marks, and equal
signs, must be entered exactly as shown.

Line Format

GW-BASIC program lines have the following format:

<nnnnn BASIC statement>[:<BASIC statement> ...] <RETURN>

More than one GW-BASIC statement may be placed on a line, but each
must be separated from the previous statement by a colon.

A GW-BASIC program line always begins with a line number and ends
with a carriage return. Line numbers indicate the order in which the
program lines are stored in memory. Line numbers are also used as
references in branching and editing. Line numbers must be in the range
a to 65529. A line may contain a maximum of 255 characters including
the line number.

You can extend a logical line over more than one physical line by
pressing the CTRL and RETURN keys simultaneously. CTRL-RETURN
lets you continue typing a logical line on the next physical line without
entering a carriage return.

A period (.) may be used in EDIT, LIST, AUTO, and DELETE commands
to refer to the current line.

Error Messages

If an error causes program execution to terminate, an error message is
printed. For a complete list of GW-BASIC error codes and error
messages, see Appendix A.

Modes of Operation

GW-BASIC may be used in either of two modes: direct mode or indirect
mode.

In direct mode, statements and commands are not preceded by line
numbers. They are executed as they are entered. Results of arithmetic
and logical operations may be displayed immediately and stored for

General Information 2-3

later use, but the instructions themselves are lost after execution. Direct
mode is useful for debugging and for using GW-BASIC as a calculator
for quick computations that do not require a complete program.

Indirect mode is used for entering programs. Program lines are pre
ceded by line numbers and may be stored in memory. The program
stored in memory is executed by entering the RUN command.

Default Disk Drive

When a filespec is given (in commands or statements such as FILES,
OPEN, KILL), the default disk drive is the one that was the default in
MS-DOS before GW-BASIC was invoked.

Active and Visual (Display) Pages

Every command that reads from or writes to the screen is actually
reading from or writing to the active page. The visual, or display, page is
the active page that is shown on the screen.

The size of these pages is set by the SCREEN statement (see Section 6).

Character Set

The GW-BASIC character set consists of alphabetic characters,
numeric characters, and special characters.

The alphabetic characters in GW-BASIC are the uppercase and lower
case letters of the alphabet.

The GW-BASIC numeric characters are the digits 0 through 9.

The following special characters and keys are recognized by
GW-BASIC.

Character

+

Action

Blank
Equal sign or assignment symbol
Plus sign
Minus sign

2-4

Character

* /
1\

(
)

0/0

$

/I

&
?
<
>
\

@

Key

BACKSPACE

ESC

TAB

GW-BASIC Reference Manual

Action

Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number (or pound) sign
Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon
Double quotation marks
Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At sign
Underscore

Action

Deletes last character typed «backspace> appears
as left arrow on the keyboard).

Erases the line containing the cursor from the screen
and performs a carriage return. It does not delete
existing program lines from memory.

Moves print position to next tab stop. Tab stops are set
every eight columns.

CTRL-RETURN Moves to next physical line.

RETURN Terminates input of a line.

General Information

Constants

Constants are the values GW-BASIC uses during execution. There are
two types of constants: string and numeric.

String Constants
A string constant is a sequence of up to 255 alphanumeric characters
enclosed in double quotation marks.

Examples:

"HELLO"
"$25,000.00"
"Number of Employees"

String constants which appear in a DATA statement do not have to be
enclosed in double quotation marks unless they contain commas,
colons, or significant leading or trailing spaces.

Example:

DATA This is string1, This is string2

This example shows two strings separated by a comma within a DATA
statement.

Numeric Constants
Numeric constants are positive or negative numbers. They are stored
with 7 digits of precision and printed with up to 6 digits of precision.
GW-BASIC numeric constants cannot contain commas. There are six
types of numeric constants:

1. Integer constants

2. Fixed-point
constants

Whole numbers between - 32768 and
32767. Integer constants do not contain
decimal points.

Positive or negative real number constants
are numbers that contain decimal points.

2-5

2-6

3. Floating-point
constants

4. Hex constants

5. Octal constants

GW-BASIC Reference Manual

Positive or negative numbers represented by
constants in exponential form (similar to sci
entific notation). A floating-point constant
consists of an optionally signed integer or
fixed-point number (the mantissa) followed
by the letter E and an optionally signed
integer (the exponent). The allowable
range for floating-point constants is 10-38

to 10+38 .

Examples:

235.988E - 7 = .0000235988
2359E6 = 2359000000

(Double precision floating-point constants
are denoted by the letter D instead of E.)

Hexadecimal numbers, denoted by the pre
fix &H.

Examples:

&H76
&H32F

Octal numbers, denoted by the prefix &0
or &.

Examples:

&0347
&1234

Single/Double Precision Form for Numeric Constants
Numeric constants may be either single precision or double precision
numbers. Single precision numeric constants are stored with 7 digits of
precision, and printed with up to 6 digits of precision. Double precision
numeric constants are stored with 16 digits of precision and printed with
up to 16 digits.

A single precision constant is any numeric constant that has one of the
following characteristics:

• Seven or fewer digits.
• Exponential form using E.
• A trailing exclamation point (!).

General Information

Examples:

46.8
-1.09E-06
3489.0
22.5!

A double precision constant is any numeric constant that has one of
these characteristics:

• Eight or more digits.
• Exponential form using O.
• A trailing number sign (#).

Examples:

345692811
-1.094320 - 06
3489.0#
7654321.1234

Variables

2-7

Variables are names used to represent values used in a GW-BASIC
program. The value of a variable may be assigned explicitly by the
programmer, or it may be assigned as the result of calculations in the
program. Before a variable is assigned a value, its value is assumed to
be zero (or null for a string variable).

Variable Names and Declaration Characters
GW-BASIC variable names may be any length. Up to 40 characters are
significant. Variable names can contain letters, numbers, and the
decimal point. However, the first character must be a letter. Special type
declaration characters, described in this section, are also allowed.

A variable name may not be a reserved word; however, embedded
reserved words are allowed. Reserved words include all GW-BASIC
commands, statements, function names, and operator names. The
complete list of reserved words is in Appendix O. If a variable begins
with FN, it is assumed to be a call to a user-defined function.

Variables may represent either a numeric value or a string. String
variable names can be written with a dollar sign ($) as the last character;
for example: A$ = "SALES REPORT". The dollar sign is a variable type
declaration character; that is, it "declares" that the variable will represent
a string.

2-8 GW-BASIC Reference Manual

Numeric variable names may declare integer, single precision, or double
precision values. The type declaration characters for these variable
names are as follows:

% Integer variable
! Single precision variable
Double precision variable

The default type for a numeric variable name is single precision.

Examples of GW-BASIC variable names:

PI#
MINIMUM!
LlMIT%
N$
ABC

Declares a double precision value.
Declares a single precision value.
Declares an integer value.
Declares a string value.
Represents a single precision value.

Variable types may also be declared by including the GW-BASIC
statements DEFINT, DEFSTR, DEFSNG, and DEFDBL in a program.
These statements are described in detail in Section 6.

Array Variables
An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable that is
subscripted with an integer or an integer expression. An array variable
name has as many subscripts as there are dimensions in the array. For
example, V(10) would reference a value in a one-dimensional array,
T(1,4) would reference a value in a two-dimensional array, and so on.
The maximum number of dimensions for an array is 255. The maximum
number of elements per dimension is 32,767.

Memory Space Requirements
The following list gives only the number of bytes occupied by the values
represented by the variable names.

Variables Type Bytes

Integer 2
Single precision 4
Double precision 8

General Information

Arrays Type

Integer
Single precision
Double precision

Type Conversion

Bytes

2 per element
4 per element
8 per element

2·9

When necessary, GW·BASIC will convert a numeric constant from one
type to another. The following rules and examples apply to type
conversions.

1. If a numeric constant of one type is set equal to a numeric variable of a
different type, the number will be stored as the type declared in the
variable name. (If a string variable is set equal to a numeric value or
vice versa, a "Type mismatch" error occurs.)

Example:

10 A%=23.42
20 PRINTA%

will yield

23

2. During expression evaluation, all of the operands in an arithmetic or
relational operation are converted to the same degree of precision,
that of the most precise operand. Also, the result of an arithmetic
operation is returned to this degree of precision.

Examples:

10 D#=6#/7
20 PRINT D#

will yield

;8571428571428571

2-10 GW-BASIC Reference Manual

The arithmetic was performed in double precision and the result was
returned in D# as a double precision value.

10 D=6#/7
20 PRINT D

will yield

.857143

The arithmetic was performed in double precision, and the result was
returned to D (single precision variable), rounded, and printed as a
single precision value.

3. Logical operators (see "Logical Operators" later in this section)
convert their operands to integers and return an integer result.
Operands must be in the range - 32768 to 32767 or an "Overflow"
error occurs.

4. When a floating-point value is converted to an integer, the fractional
portion is. rounded.

Example:

10 C%=55.88
20 PRINTC%

will yield

56

5. If a double precision variable is assigned a single precision value,
only the first seven digits (rounded) of the converted number will be
valid. This is because only seven digits of accuracy were supplied
with the single precision value. The absolute value of the difference
between the printed double precision number and the original single
precision value will be less than 6.3E - 8 times the original single
precision value.

Example:

10A=2.04
20B#=A
30 PRINT A;B#

will yield

2.042.039999961853027

General Information 2-11

Expressions and Operators

An expression may be a string or numeric constant, a variable, or a
combination of constants and variables with operators. An expression
always produces a single value.

Operators perform mathematical or logical operations on values.
GW-BASIC operators may be divided into four categories:

• Arithmetic
• Relational
• Logical
• Functional

Each category is described in the following subsections.

Arithmetic Operators
The arithmetic operators, in order of evaluation, are:

Operator

1\

\

MOD

+ -,

Operation

Exponentiation

Negation

Multiplication, Floating
point division

Integer division

Modulus arithmetic

Addition, Subtraction

Sample
Expression

12\6=2
12\7 = 1

10.4 MOD 4=2

x+y
X-y

You can change the order of evaluation by using parentheses. Opera
tions within parentheses are performed first. Inside parentheses, the
usual order of evaluation is maintained.

The following list gives some sample algebraic expressions and their
GW-BASIC counterparts.

2-12 GW-BASIC Reference Manual

Algebraic Expression BASIC Expression

X+2Y X+Y*2

Y X-- 'X-y/z Z

XY
Z X*Y/Z

X+Y
-Z (X+ Y)/Z

(X2)Y (XI\2)l\y

XyZ X 1\ (Y 1\ Z)

X (-Y) X*(- Y)

Two consecutive operators must be separated by parentheses.

Integer Division and Modulus Arithmetic
In addition to the six standard operators (addition, subVaction, multi
plication, division, negation, and exponentiation), GW-BASIC supports
integer division and modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are
rounded to integers before the division is performed, and the quotient is
truncated to an integer. The operands must be in the range - 32768 to
32767.

Examples:

10\4=2
25.68\6.99 = 3

Modulus arithmetic is denoted by the operator MOD. Modulus arith
metic yields the integer value that is the remainder of an integer division.

Examples:

10.4 MOD 4 = 2 (10/4 = 2 with the remainder 2)
25.68 MOD 6.99 = 5 (26/7 = 3 with the remainder 5)

General Information 2-13

Division By Zero and Overflow
If division by zero is encountered during the evaluation of an expression,

, a "Division by zero" error message is displayed. Machine infinity (the
. largest number that can be represented in floating-point format) with the

sign of the numerator is supplied as the result of the division, and
execution continues.

If the evaluation of an exponentiation operator results in zero being
raised to a negative power, the "Division by zero" error message is
displayed, positive machine infinity is supplied as the result of the
exponentiation, and execution continues.

If overflow occurs, GW-BASIC displays an "Overflow" error message,
supplies machine infinity with the algebraically correct sign as the result,
and continues execution.

Relational Operators
Relational operators are used to compare two values. The result of the
comparison is either "true" (-1) or "false" (0). This result may then be
used to make a decision regarding program flow. (See the discussion of
IF statements in Section 6.)

The relational operators are:

Operator Relation Tested Example

Equal to X=y

<> Not equal to X<>y

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X<=y

>= Greater than or equal to x>=y

\ (The equal sign is also used to assign a value to a variable. See the LET
. statement in Section 6.)

2-14 GW-BASIC Reference Manual

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For example, the
expression:

X+ Y«T -1) /Z

is true if the value of X plus Y is Jess than the value of T minus 1 divided
by Z.

More examples:

IF SIN(X)<O GOTO 1000
IF I MOD J <>0 THEN K= K+1

Logical Operators
Logical operators perform tests on multiple relations, bit manipulation, or
Boolean operations. The logical operator performs bit-by-bit calculation
and returns a result which is either "true" (not zero) or "false" (zero).

In an expression, logical operations are performed after arithmetic and
relational operations. The outcome of a logical operation is determined
as shown in Table 2-1. The operators are listed in order of precedence.

Table 2-1: GW-BASIC Relational Operators Truth Table

NOT

AND

OR

XOR

X NOT X
1 0
o 1

x Y XANDY
1 1 1
100
o 1 0
000

x Y XORY
1 1 1
1 0 1
o 1 1
000

x Y XXORY
1 1 0
1 0 1
o 1 1
000

General Information 2-15

EQV
XV XEQVV
1 1 1
1 a a
a 1 a
a a 1

IMP
XV XIMPV
1 1 1
1 a a
a 1 1
a a 1

Just as the relational operators can be used to make decisions
regarding program flow, logical operators can connect two or more
relations and return a true or false value to be used in a decision (see IF
statements in Section 6).

Examples:

IF 0<200 AND F<4 THEN 80
IF 1>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to 16-bit, signed,
two's complement integers in the range - 32768 to 32767. (If the
operands are not in this range, an error results.) If both operands are
supplied as a or -1, logical operators return a or -1. The given
operation is performed on these integers bit by bit; in other words, each
bit of the result is determined by the corresponding bits in the two
operands.

Thus, it is possible to use logical operators to test bytes for a particular
bit pattern. For instance, the AND operator may be used to "mask" all
but one of the bits of a status byte at a machine I/O port. The OR
operator may be used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the logical
operators work.

63AND16=16

15AND14 = 14

-1 AND 8 = 8

63 = binary 111111 and 16 = binary 10000, so
63AND16=16.

15 = binary 1111 and 14 = binary 1110, so 15
AND 14 = 14 (binary 1110).

-1 = binary 1111111111111111 and 8 = binary
1000, so - 1 AND 8 = 8.

2-16 GW-BASIC Reference Manual

4 OR 2 = 6 4 = binary 100 and 2 = binary 10, so 4 OR 2 = 6
(binary 110).

10 OR 10 = 10 10 = binary 1010, so 1010 OR 1010 = 1010
(decimal 1 0).

-1 OR - 2 = -1 -1 = binary 1111111111111111 and - 2 =
binary 1111111111111110, so - 1 OR - 2 = - 1 .
The bit complement of sixteen zeros is sixteen
ones, which is the two's complement representa
tion of -1.

NOT X = - (X + 1) The two's complement of any integer is the bit
complement plus one.

Functional Operators
When a function is used in an expression, it calls a predetermined
operation that is to be performed on an operand. GW-BASIC has
"intrinsic" functions that reside in the system, such as SQR (square root)
or SIN (sine). All GW-BASIC intrinsic functions are described in
Section 6.

GW-BASIC also allows "user-defined" functions that are written by the
programmer. See "DEF FN Statement", Section 6.

String Operators
Strings may be concatenated by using the plus sign (+). For example:

10 A$ = "FILE" : B$ = "NAME"
20 PRINT A$ + B$
30 PRINT "NEW "+A$ + B$

will yield

FILENAME
NEW FILENAME

Strings may be compared using the same relational operators that are
used with numbers:

= <> < > <= >=

String comparisons are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes are
the same, the strings are equal. If the ASCII codes differ, the lower code
number precedes the higher. If during string comparison the end of one
string is reached, the shorter string is said to be smaller. Leading and
trailing blanks are significant.

General Information

Examples:

'f\A"<'f\B"
"FILENAME" = "FILENAME"
"X&">"X#"
"CL" >"CL"
"kg">"KG"
"SMYTH" < "SMYTHE"
B$<"9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values or to
alphabetize strings. All string constants used in comparison
expressions must be enclosed in quotation marks.

MS-DOS 2.0 File System

2-17

GW-BASIC includes commands which provide access to the file
management functions of MS-DOS. The following subsections describe
this capability. These functions are available only if you are using
GW-BASIC together with MS-DOS. If you use GW-BASIC without
MS-DOS, these functions will give a syntax error.

Hierarchical File System
People naturally tend to think in hierarchical terms (for example,
organization charts and family trees). It would be nice to allow users to
organize their files on disk in a similar manner.

Consider this situation. In a particular business, both sales and
accounting share a computer with a large disk, and the individual
employees use it for preparation of reports and maintaining accounting
information. One would naturally view the organization of files on the
disk in this fashion:

<disk>

~~
SALES ACCOUNTING

/~ /\
[*] - JOHN MARY STEVE SUE

/1 I~ I ~ ~
REPORT other REPORT other other REPORT REPORT

files files files

Figure 2-1: Disk file organization

2-18 GW-BASIG Heterence Manual

Directory Paths
With GW-BASIC the user can organize a disk in such a manner that files
not part of the current task do not interfere with that task.

MS-DOS 2.0 enables a directory to contain both files and subdirectories
and to introduce the notion of the "current" directory.

To specify a filename, the user could use one of two methods: either
specify a path from the root directory to the file, or specify a path from
the current directory to the file.

A "Directory Path" is a series of directory names separated by '\' and
ending with a filename. A path that starts at the root begins with a '\'.

There is a special directory entry in each directory, denoted by' .. ' that is
the parent of the directory. The root directory's parent is itself.

Using a directory structure like the hierarchy above, and assuming that
the current directory is at point [*] (directory JOHN), to reference the
REPORT under JOHN, use any of the following paths:

REPORT
\SALES\JOHN\REPORT
.. \JOHN\REPORT

To refer to the REPORT under MARY, use either of the following paths:

.. \MARY\REPORT
\SALES\MARY\REPORT

To refer to the REPORT under SUE, use either of the following paths:

.. \ .. \ACCOUNTING\SUE\REPORT
\ACCOUNTING\SUE\REPORT

There is no restriction on the depth of a tree (the length of the longest
path from root to leaf), except in the number of allocation units available.
The root directory will have a fixed number of entries, from 112 for floppy
diskettes to many more for a large hard disk. For non-root directories,
there is no limit to the number of files per directory except in the number
of allocation units available.

Disks formatted with versions of MS-DOS earlier than version 2.0 will
appear to MS-DOS 2.0 as having only a root directory containing files
but no subdirectories.

General Information 2-19

File-Naming Conventions
Filenames follow MS-DOS naming conventions. All filenames may begin
with a drive specification such as A: or B:. If no drive is specified, the
current drive is assumed. If no period (.) appears in the filename and the
filename is less than nine characters long, the default extension .BAS is
appended to filenames used in the LOAD, SAVE, MERGE and RUN
<filename> commands.

Examples:

RUN "NEWFILE.EXE"
RUN ''A:NEWFILE.EXE''
SAVE "NEWFILE" (file is saved with a .BAS extension)

Several statements such as OPEN, KILL, FILES, MKDIR, CHOIR, and
RMDIR allow a "directory path" to be given in addition to the standard
filename and extension (See "Directory Paths" above).

<pathname> is used to denote when a directory path is legal in a
statement.

A <pathname> may be complex as shown in "Directory Paths" above, or
may simply be a filename (or <filespec».

A <pathname> may not exceed 128 characters. Pathnames longer
than 128 characters will cause a "Bad filename" error.

Note that <filespec> still refers to [device:] <filename> and may not
contain directory names.

When the optional drive specification <d:> is included in a pathname, it
must be first. If <d:> is omitted, the currently logged disk is assumed.

Example:

B:\SALES\JOHN\REPORT is legal, while:

\SALES\JOHN\B:REPORT is not.

Specifying a pathname where only a filespec is legal, or placing a drive
specification elsewhere than at the beginning of the pathname will result
in a "Bad filename" error.

Character Device Support
The general nature of the GW-BASIC file I/O system allows the user to
take advantage of user-installed devices (see the MS-DOS 2.0 Device
Drivers Manual for information on character devices).

2-20 GW-BASIC Reference Manual

Initially, character device drivers for LPT1, LPT2, and LPT3 are installed
but may be replaced by the user. A line printer device may be opened
with the statement:

OPEN "LPT1:" FOR OUTPUT AS #<filenumber>

or with the more general (preferred) statement:

OPEN "\DEV\LPT1" FOR OUTPUT AS #<filenumber>

If a user writes and installs a device called FOO, then the OPEN
statement would appear as:

OPEN "\DEV\FOO" FOR (mode) AS #<filenumber>

The following rules apply to device drivers:

1. For user-installed devices, the second form of OPEN must be used
(except LPT1:, LPT2:, and LPT3:).

The reason is that BASIC knows about certain predefined devices
(KYBD:, SCRN:, and so on) by the fact that the device name ends with
a colon (':'). Only LPT1:, LPT2:, and LPT3: of the pre-defined devices
may be replaced and new ones added.

Such devices are OPENed and used in the same manner as disk files,
except that characters are not buffered by BASIC as they are for disk
files.

2. By default, the record length is set to 1 unless explicitly set to some
other value by the LEN = <Irecl> option in the OPEN statement.

When the LEN = <Ireel> option is used, BASIC will buffer that many
characters before sending them to the driver.

3. BASIC sends only a <CR>(carriage return = &HOD) as the end-of
line indicator. If the device requires a <LF> (line feed = &HOA), the
driver must provide it.

4. When writing device drivers, remember that BASIC will want to read
and write control information.

Writing and reading of device control data is handled by the BASIC
IOCTL statement and IOCTL$(f) function. (See "IOCTL statement" in
Section 6 for the format of IOCTL control data strings.)

General Information 2-21

5. Necessary control functions that your device driver must provide are:

a. Set a maximum line width as requested by the BASIC OPEN
statement.

b. Return the current maximum line width when BASIC asks for it.

c. To close a sequential input file open to a device driver, have the
input devices return an "End of File" indicator to BASIC (used by
the EOF(f) statement). If BASIC attempts to read past the end of the
device input stream, the driver should return a CTRL-Z. BASIC uses
this code to give the "Input past end" error.

For more information, see the discussions in Section 6 about the IOCTL
statement, the IOCTL$ function, and the device error variables EROEV
and EROEV$.

Assembly Language Subroutines

You may call assembly language subroutines from your GW-BASIC
program with the USR function or the CALL or CALLS statement. The
USR function enables you to call an assembly language subroutine to
return a value in the same way you call GW-BASIC intrinsic functions.
However, for most machine language programs, you should use the
CALL or CALLS statement. These statements produce more readable
source code and can pass multiple arguments. In addition, the CALL
statement is compatible with more languages than is the USR function.

Memory Allocation
Memory space must be set aside for an assembly language subroutine
before the subroutine can be loaded. To set aside memory space, use
the 1M: switch during start-up. The 1M: switch sets the highest memory
location to be used by GW-BASIC.

In addition to the GW-BASIC code area, GW-BASIC uses up to 64K of
memory beginning at its data segment (OS).

If more stack space is needed when an assembly language subroutine
I is called, you can save the GW-BASIC stack and set up a new stack for

use by the assembly language subroutine. The GW-BASIC stack must
be restored, however, before you return from the subroutine.

2-22 GW-BASIC Reference Manual

The assembly language subroutine can be loaded into memory in one of
two ways. First, you may use the DEBUG facility provided with your
MS-DOS operating system. Also, you may read your linked output file
(EXE) with random input and poke it into memory.

When loading a subroutine, observe these guidelines:

• Make sure the subroutines do not contain any long references.

• Skip over the first 512 bytes of the linker's output file (.EXE), and then
read in the rest of the file.

The CALL Statement
The CALL statement is the recommended way of interfacing machine
language subroutines with GW-BASIC. Do not use the USR function
unless you are running previously written subroutines that already
contain USR functions.

The syntax of the CALL statement is:

CALL <variable name> [«argument list»]

where <variable name> contains the segment offset that is the starting
point in memory of the subroutine being called.

<argument list> contains the variables or constants, separated by
commas, to be passed to the subroutine.

Invoking the CALL statement causes the following events to occur:

• For each argument in the argument list, the two-byte offset of the
argument's location within the data segment (OS) is pushed onto the
stack.

• The GW-BASIC return address code segment (CS) and offset (IP) are
pushed onto the stack.

• Control is transferred to the subroutine with a long call to the
segment address given in the last DEF SEG statement and the offset
given in <variable name>.

Figure 2-2 illustrates the state of the stack at the time the CALL
statement is executed. Figure 2-3 illustrates the condition of the stack
during execution of the called subroutine.

General Information 2-23

high argument a
addresses SP+4+(2*n)

Each argument is a 2-byte
pointer into memory

c argument n - 1
s 0 SP+6
t u argument n
a n SP+4
c t return segment address
k e SP+2

r return offset address

I
I SP-stack pointer

I I (SP register contents)
I low :

addresses I
Figure 2-2: Stack layout when CALL statement is activated

After the CALL statement has been activated, the subroutine has
control. Arguments may be referenced by moving the stack pointer (SP)
to the base pointer (BP) and adding a positive offset to BP.

high argument a
addresses argument 1

c
s 0

t u argument n
a n
c t argument n
k e return segment address

return offset

local variables
(data pushed on
stack)

This space may be used
during procedure
execution

low I

addresses: .
I'

Stack pointer
-(SP register
initial contents)

Stack pointer
may change
during procedure
execution

Figure 2-3: Stack layout during execution of a CALL statement

2-24 GW-BASIC Reference Manual

Observe the following rules when coding a subroutine:

1. The called routine must preserve segment registers OS, ES, SS, and
BP. If interrupts are disabled in the routine, they must be re-enabled
before exiting. The stack must be cleaned up when the called routine
exits.

2. The called routine must know the number and length of the arguments
passed. The following assembly language routine shows an easy way
to refer to arguments:

PUSH BP
MOV BP,SP
ADD BP, (2* number of arguments) + 4

Then:

argument 0 is at BP
argument 1 is at BP-2
argument n is at BP-2* n

(number of arguments = n + 1)

3. Variables may be allocated either in the code segment (CS relative) or
on the stack. Be careful not to modify the return segment and offset
stored on the stack.

4. The called subroutine must perform a RET <I> statement (where
<I> is two times the number of arguments in the argument list). The
purpose of the RET <I> statement is to adjust the stack to the start of
the calling sequence.

5. Values are returned to GW-BASIC by including in the argument list the
name of the variable that will receive the result.

6. If the argument is a string, the argument's offset points to three bytes
which, as a unit, are called the "string descriptor". Byte 0 of the string
descriptor contains the length of the string (0 to 255 characters).
Bytes 1 and 2 are, respectively, the lower and upper 8 bits of the string
starting address in the string space.

Warning: If the argument is a string literal in the program, the string
descriptor will point to program text, which can alter or destroy your
program. To avoid unpredictable results, add + "" to the string literal
in the program. For example, use:

20 A$ = "BASIC" + ,,,,

General Information

This addition forces the string literal to be copied into the string
space. Then the string may be modified without affecting the
program.

2-25

7. The contents of a string may be altered by user routines, but the
descriptor must not be changed. Do not write past the end-of-string.
GW-BASIC cannot correctly manipulate strings if their lengths are
modified by external routines.

S. Data areas needed by the routine must be allocated either in the code
segment of the user routine or on the stack. It is not possible to
declare a separate data area in the user assembler routine.

Example of a CALL statement:

100 DEF SEG = &HSOOO
110 FOO=&H7FA
120 CALL FOO(A,B$,C)

Line 100 sets the segment to SOOO Hex. FOO is set to &H7FA by line 110
so the call to FOOwili execute the subroutine at location SOOO:7FA Hex
(absolute address S07FA Hex).

The following sequence in assembly language demonstrates access to
the arguments passed. The returned result is stored in the variable 'C'.

PUSH
MOV
ADD
MOV
MOV
MOV

MOV
MOV
MOVS
POP
RET

BP
BP,SP
BP,(4+2*3)
BX,[BP-2]
CL,[BX]
DX,1 [BX]

SI,[BP]
DI,[BP-4]
WORD
BP
6

;Set up pointer to arguments.

;Get address of B$ descriptor.
;Get length of B$ in CL.
;Get address of B$ text in DX.

;Get address of 'A' in SI.
;Get pointer to 'C' in DI.
;Store variable 'A' in 'C'.

;Restore stack, return.

2-26 GW-BASIC Reference Manual

Important: The called program must know the variable type for the
numeric arguments passed. In the previous example, the instruction
MOVS WORD, copies only two bytes. This is fine if variables A and C
are integers. You would have to copy four bytes if the variables were
numbers in floating-point format.

The CALLS Statement
The CALLS statement should be used to access subroutines that were
written using MS-FORTRAN calling conventions. CALLS works just like
CALL; however, with CALLS, the arguments are passed as segmented
addresses, rather than as unsegmented addresses.

Because MS-FORTRAN routines need to know the segment value for
each argument passed, the segment is first pushed and then the offset
is pushed. For each argument, four bytes are pushed rather than two, as
in the CALL statement. Therefore, if your assembler routine uses the
CALLS statement, n in the RET <n> statement is four times the number
of arguments.

The USR Function
Although using the CALL statement is the recommended way of calling
assembly language subroutines, the USR function is also available for
this purpose. This availability ensures compatibility with older programs
that contain USR functions.

USR[<digit>][(<argument»]

<digit> is from 0 to 9. <digit> specifies which USR routine is being
called. If <digit> is omitted, USRO is assumed.

<argument> is any numeric or string expression. Arguments are
discussed in detail in the following paragraphs.

In the GW-BASIC Interpreter, a DEF SEG statement must be executed
prior to a USR function call to assure that the code segment points to the
subroutine being called. The segment address given in the DEF SEG
statement determines the starting segment of the subroutine.

For each USR function, a corresponding DEF USR statement must be
executed to define the USR function call offset. This offset and the
currently active DEF SEG address determine the starting address of the
subroutine.

General Information 2-27

When the USR function call is made, register AL contains a value that
specifies the type of argument given. The value in AL may be one of the
following:

Value in AL

2
3
4

Type of Argument

Two-byte integer (two's complement)
String
Floating-point number

If the argument is a number, the BX register pair points to the Floating
Point Accumulator (FAC) where the argument is stored.

If the argument is a string, the OX register pair points to three bytes
which, as a unit, are called the "string descriptor". Byte 0 of the string
descriptor contains the length of the string (0 to 255 characters). Bytes 1
and 2 are, respectively, the lower and upper 8 bits of the string starting
address in the GW-BASIC data segment.

Warning: If the argument is a string literal in the program, the string
descriptor will point to program text, which can alter or destroy the
program.

Usually, the value returned by a USR function has the same type (integer,
string, or floating-point) as the argument that was passed to it.

Example of a USR function:

110 OEF USRO = &H8000 :Assumes user gave 1M :32767
120 X=5
130 Y = USRO(X)
140 PRINT Y

The type (numeric or string) of the variable receiving the function call
must be consistent with that of the argument passed.

Section 3

Programming Animation

This section explains the basic techniques for using the GW-BASIC
animation statements and functions. A sample program included in this
section illustrates the use of the animation statements and functions
described later in Section 6, "GW-BASIC Commands, Statements,
Functions, and Variables."

Before introducing the sample program, this section briefly describes
some of the important animation features of GW-BASIC for the Mindset
Personal Computer. Then the section divides the sample program into
modules. Each module contains a description followed by a listing
of the program statements in the module. A complete listing of the
sample program appears at the end of the section.

Animation Features

GW-BASIC simplifies the task of programming animation by performing
many routine tasks automatically. For example, as an object moves
across the screen, GW-BASIC saves the background patterns as they
are obscured by the object in the foreground. As the background is
uncovered behind the object, GW-BASIC replaces the original back
ground patterns.

Animation features of GW-BASIC include programmable motion and
viewing priority, multiple views of an object, statements that control
animation events, functions that control animation events, event control
statements, and statements that activate the animation object.

Programmable Motion and Priority
GW-BASIC for the Mindset Personal Computer uses an OBJECT state
ment to define the motion for an object. This statement determines the
initial location for an object, the destination for the object, and the speed

3-1

3-2 GW-BASIC Reference Manual

at which the object moves to its destination. (For information on other
animation parameters in this statement, see the OBJECT statement in
Section 6.)

The number of each object determines its viewing priority. When two
objects overlap, the object with the higher number is drawn on top of the
other object.

Multiple Object Views
An animation object in GW-BASIC can include up to eight different views
of the object. As the object proceeds across the screen, GW-BASIC
changes the view as often as specified in an OBJECT statement for that
object.

To define an object, the application program can first draw each view of
the object on the screen and then store the view in its own array, using
the graphics version of the GET statement. You can use the BSAVE
statement to save object arrays on disk and recall them later with a
BLOAD statement. You can use this technique to increase the effective
size of an animation program by creating and saving objects in a
separate program. You may also use any image generated external to
GW-BASIC, provided the format corresponds to an array produced by
the GET statement.

The DIM OBJECT statement simplifies the sizing of arrays for object
views. It enables you to specify the rectangle containing the view rather
than requiring you to calculate the number of words required for the
array. The SCREEN statement must establish the screen mode before
the DIM OBJECT statement can accurately calculate the number of
words required to contain the array.

After the object views are stored in arrays, the DEF OBJECT statement
logically links the arrays together to define an object. The object views
appear in the order listed in the DEF OBJECT statement. An array may
be used more than once in the definition for a single object. An array
may also be used in the definition of more than one object.

Animation Event Statements
Perhaps the most powerful feature of GW-BASIC animation is the ability
to set an object in motion and then continue with other unrelated
statements while the object moves across the screen. GW-BASIC for the
Mindset Personal Computer includes ON ARRIVAL, ON CLIP, and ON
COLLISION statements. These call subroutines to handle events that
occur as a result of object motion.

Programming Animation 3-3

The ON ARRIVAL statement calls a subroutine when one or more objects
reach their destinations. This subroutine then redirects the objects,
changes their definition, or performs any other desired processing.

The ON CLIP statement calls a subroutine when one or more specified
objects reach the boundary of the screen (or the current window). The
ON COLLISION statement calls a subroutine when two or more spec
ified objects collide.

Animation Event Functions
In addition to the animation event statements ON ARRIVAL, ON CLIP,
and ON COLLISION, GW-BASIC for the Mindset Personal Computer
includes ARRIVAL, CLIP, and COLLISION functions. These functions
determine whether the corresponding events have occurred since the
last time they were checked.

There are three forms of the ARRIVAL function (and three forms of the
CLIP and COLLISION functions as well): ARRIVAL(-1), ARRIVAL(O),
and ARRIVAL(<object number».

The first form of the ARR IVAL function, ARRIVAL(-1), returns -1 if one
or more objects have reached their destinations; it returns 0 otherwise.

This form of the function also latches the arrival status for the objects
which have arrived, providing a "snapshot" of the arrival status. This
snapshot enables the subroutines handling all arrived objects to be
executed without being confused by arrival events occurring after the
ARRIVAL(-1) function is executed.

The second form of the ARRIVAL function, ARRIVAL(O), is used after the
ARRIVAL(-1) function has latched the arrival status. It returns the
number of the lowest-numbered object which has arrived.

After the ARRIVAL(O) function returns the number of an object, it clears
the arrival status for that object. As a result, the next ARRIVAL(O)
function can return the number of the next object which had arrived
when the ARRIVAL(-1) function was executed. The ARRIVAL(O) func
tion returns 0 if there are no more objects which arrived when the
ARRIVAL(-1) function was last executed.

The ARRIVAL(<object number» form of the ARRIVAL function tests for
the arrival of a specific object. This function returns the object number if
the specified object has arrived; it returns 0 otherwise.

3-4 GW-BASIC Reference Manual

Consider the following example of the ARRIVAL function, where objects
15 and 2 are the only objects on the screen that have arrived at their
assigned destinations. In this example, you might define a subroutine
to:

1. Call the ARRIVAL(-1) function to check for arrivals and to latch the
arrival status of any objects that have arrived. Here, the ARRIVAL(-1)
function returns - 1 , indicating that some objects have arrived at their
destinations.

2. Call the ARRIVAL(O) function to determine the number of the lowest
numbered object which has arrived. The ARRIVAL(O) function returns
a value of 2 and clears the arrival status of object 2.

3. Execute a routine to handle the arrival of object 2.

4. Call the ARR IVAL(O) function to determine the number of the next
arrived object. The ARRIVAL(O) function returns a value of 15 and
clears the arrival status of object 15. (Alternately, you could use the
ARRIVAL(15) form of the function to determine only if object 15 had
arrived.)

5. Execute a routine to handle the arrival of object 15.

6. Call the ARR IVAL(O) function to determine the number of the next
arrived object. The ARRIVAL(O) function returns a value of 0, because
the arrival status of all objects has been cleared.

7. Return to the main program.

Animation Event Control Statements
Nine statements control the operation of the event-related statements.
These control statements enable, disable, or temporarily suspend the
testing for animation events. The arrival statements and functions can
illustrate how animation control statements work.

The ARRIVAL ON statement enables the operation of the ON ARRIVAL
statement and the ARRIVAL function. GW-BASIC does not test for object
arrivals until the ARRIVAL ON statement is executed.

The ARRIVAL OFF statement disables the operation of the ON ARRIVAL
statement and the ARRIVAL function.

The ARRIVAL STOP statement temporarily suspends the operation of the
ON ARRIVAL statement. Object arrivals that occur while ARRIVAL STOP
is in effect are remembered, but no action is taken until the ARRIVAL ON
statement is executed.

Programming Animation 3-5

Suppose one or more arrivals took place while ARRIVAL STOP was in
effect. After the ARRIVAL ON statement is executed, the ON ARRIVAL
statement operates as if any remembered arrivals had just taken place,
Also, the ARRIVAL function will then return a value other than 0 for the
remembered arrivals,

To prevent recursive arrival traps from occurring, GW-BASIC performs an
implicit ARRIVAL STOP when the ON ARRIVAL statement calls a sub
routine, When the subroutines for all arrived objects have been ex
ecuted, GW-BASIC performs an implicit ARRIVAL ON, If you wish, you
can include an explicit ARRIVAL OFF statement in the arrival-handling
subroutine to override the implicit ARRIVAL ON performed by
GW-BASIC,

Object Activation Statements
After an object is defined with a DEF OBJECT statement and the object's
origin, destination, and speed are defined with an OBJECT statement,
the ACTIVATE statement causes the object to appear at its origin and
travel toward its destination,

The complement of the ACTIVATE statement is the DEACTIVATE state
ment. DEACTIVATE removes one or more objects from the screen and
prevents them from being involved in arrivals, clips, or collisions.

Overview of Animation Programming

The following steps describe one of several ways to cause an object to
move,

1, Select the graphics display mode desired for animation, This step
must occur before using the DIM OBJECT statement.

2, Dimension the arrays which are to hold the object data,

3, Clear the screen and draw the views for each object on the screen,

4, Store the views in the arrays dimensioned in Step 2,

5. Clear the screen again, if necessary.

6, Define the group of views which comprise each object.

7, Set up the ON ARRIVAL, ON CLIP, and ON COLLISION event traps
(unless you plan to use animation event functions instead),

3-6 GW-BASIC Reference Manual

8. Define the procedures for each event trap.

9. Enable the event traps at the appropriate points in the program.

10. Define the object parameters such as origin, destination, and speed.

11. Activate the desired objects to begin animation.

The following subsections describe each of these steps and include the
appropriate sections of the sample animation program.

Sample Animation Program Description

The sample program uses five objects to demonstrate the animation
statements and functions. When the program begins operation, two
faces begin moving from their initial positions at the left side of the
screen. As the faces travel across the screen, they open and close their
mouths.

Each face follows a predefined path from the left side of the screen to the
right. At the right side of the screen, the faces are replaced with words
enclosed in a circle. These words then travel back to the positions
where the faces first appeared and the cycle begins again. The
program continues until any key is pressed.

The first face travels from left to right across the middle of the screen.
When it arrives at the right side of the screen, the word "DONE" replaces
the face and travels back to the left side of the screen. This procedure
demonstrates the use of the DIM OBJECT, DEF OBJECT, ON ARRIVAL,
ARRIVAL ON, OBJECT, ACTIVATE, and DEACTIVATE animation
statements.

The second face follows a zigzag path which intersects the path of the
first face. When the second face reaches the right side of the screen, the
word "CLIP" replaces the face and travels back to the left side of the
screen. In addition to the statements used with the first face, this
procedure demonstrates the use of the ON CLIP and CLIP ON state
ments and the OBJECT function.

When the faces collide, they stop moving and the word "HIT" enclosed
within a circle overlays the point of collision between the two objects.
After a brief pause, the HIT circle disappears and the objects continue

Programming Animation 3-7

moving across the screen. This procedure demonstrates the use of the
ON COLLISION and COLLISION ON statements and how an object
overlays other objects with numerically lower object numbers.

In the sample program, note that comments are used liberally to
describe its operation. Although using frequent comments is a com
mendable programming practice, it is inadvisable to use this many in a
real program because each comment reduces the amount of memory
available for the program and its objects.

Initializing the System
Initialize the system by clearing the screen with the CLS statement and
then by selecting one of the graphics modes with the screen statement.

10' * * * * * * * * SAMPLE ANIMATION PROGRAM * * * * *
20 '

30' * * * * * INITIALIZE SYSTEM * * * * *
40 '
50 CLS
60 SCREEN 2
65 KEY OFF 'Erase function key display
70 '

Dimensioning the Object Arrays
Use the DIM or DIM OBJECT statements to dimension the arrays which
hold the data for each view of an object. DIM requires the use of a
formula to determine the number of elements required in each array.
DIM OBJECT is easier to use because it takes the horizontal and vertical
dimensions of the object and computes the number of required array
elements.

The sample program uses six views which appear in five objects. Table
3-1 lists the array names used in this program. The array names indicate
the object views which the arrays will contain.

ARRAY NAME

COLLlDED%
AGAPE%
OPENED%
CLOSED%
ARRIVED%
CLiPPED%

Table 3-1: Sample Program Array Names

VIEW

Circle containing the word "HIT".
Face showing a mouth opened wide.
Face showing a slightly opened mouth.
Face showing a closed mouth.
Circle containing the word "DONE".
Circle containing the word "CLIP".

3-8 GW-BASIC Reference Manual

80' * * * * * DIMENSION OBJECT ARRAYS * * * * *
90 '
100
110
120
130
140
150
160

DIM OBJECT COLLlDED%(41, 19)
DIM OBJECT AGAPE%(41 ,19)
DIM OBJECT OPENED%(41, 19)
DIM OBJECT CLOSED%(41, 19)
DIM OBJECT ARRIVED%(41, 19)
DIM OBJECT CLiPPED%(41, 19) ,

, View for object 6
, View 1 for objects 2 and 3
, View 2 for objects 2 and 3
, View 3 for objects 2 and 3
, View for object 5
, View for object 4

Generating the Views for Each Object
Use graphics statements and print statements to generate the views for
each object so they can be stored and linked to create objects. This
section of the program generates the six views listed in Table 3-1.

170 '
180 ' * * * * * DRAW OBJECTS * * * * *
190 PRINT:PRINT:PRINTPRINT" CLIP
200 ' Spaces for line 190: s
210 CIRCLE(22,9),20,,-.7,-5.75
220 CIRCLE (22,3),2
230 CIRCLE (76,9),20" - .3, - 5.9
240 CIRCLE (83.4),2
250 CIRCLE (134,9),20" - .05, - 6.2
260 CIRCLE (141,5),2
270 CIRCLE (22,27),20
280 CIRCLE (76,27),20
290 CIRCLE (134,27),20
300 '

HIT DONE" : LOCATE 13,9,0
sss ssss
, Face with mouth agape
, Eye for face with mouth agape
, Opened mouth face
, Eye for opened mouth face
, Closed mouth face
, Eye for closed mouth face
, Circle to hold 'CLIP' word
, Circle to hold 'HIT' word
, Circle to hold 'DONE' word

Storing the Object Views in Arrays
Use the graphics GET statement to store the generated object views in
the arrays you dimensioned with the DIM or DIM OBJECT statements
earlier. The syntax of the graphics GET statement is very similar to that
of the LINE statement. Substituting the LINE statement with the B option
can be used to draw a visible box around a view to verify that the speci
fied dimensions capture the expected portion of the screen.

310 '
320 '

* * * * * STORE OBJECT VIEWS IN ARRAYS * * * * *
330 GET (2,0) - (42, 18),AGAPE%
340 GET (56,0) - (96, 18),OPENED%
350 GET (114,0) - (154, 18),CLOSED%
360 GET (2,19)-(42,36),CLlPPED%
370 GET (56,19) - (96,36),COLLlDED%
380 GET (114,19) - (154,36),ARRIVED%
390 '

, Store agape face
, Store opened face
, Store closed face
, Store CLIP circle
, Store HIT circle
, Store DONE circle

Programming Animation 3-9

Defining the Views Comprising an Object
The DEF OBJECT statement defines the object views that are part of an
object. The OBJECT statement, described later, includes a parameter
which determines how long each view is visible before the next view
appears. The object views appear in the order they are listed in each
DEF OBJECT statement.

400 I * * * * * DEFINE VIEWS FOR EACH OBJECT * * * * *
410 I

420 DEF OBJECT 6 AS COLLlDED% I 1 view
430 DEF OBJECT 2 AS CLOSED%,OPENED%,AGAPE%,OPENED% I 4 views
440 DEF OBJECT 3 AS CLOSED%,OPENED%,AGAPE%,OPENED% '4 views
450 DEF OBJECT 4 AS CLiPPED% I 1 view
460 DEF OBJECT 5 AS ARRIVED% I 1 view
470 I

Setting Up the Event Traps
There are three event trap statements associated with animation: ON
ARRIVAL, ON CLIP, and ON COLLISION. Each event trap statement
defines the line number of the subroutine which handles that event. You
can have up to 17 arrival event traps, 17 clip event traps, and 17 collision
event traps in effect concurrently.

480 I

490 I

* * * * * SET UP ANIMATION EVENT TRAPS * * * * *
500 ON ARRIVAL (2) GOSUB 10000
510 ON ARRIVAL (3) GOSUB 11000
520 ON ARRIVAL (4) GOSUB 12000
530 ON ARRIVAL (5) GOSUB 13000
540 ON CLIP (3) GOSUB 14000
550 ON COLLISION GOSUB 15000
560 I

Enabling the Event Traps

I Subroutine for object 2 arrival
I Subroutine for object 3 arrival
I Subroutine for object 4 arrival
I Subroutine for object 5 arrival
I Subroutine for object 3 clip
I Subroutine for object collisions

Animation event detection is turned on with the ARRIVAL ON, CLIP ON,
and COLLISION ON statements. To turn off the event detection, use the
ARRIVAL OFF, CLIP OFF, and COLLISION OFF statements.

570 I

580 I

* * * * * ENABLE EVENT TRAPPING * * * * *
590 ARRIVAL ON
600 CLIP ON
610 COLLISION ON

I Enable arrival event trapping
I Enable clip event trapping
I Enable collision event trapping

3-10 GW-BASIC Reference Manual

Defining Object Parameters and Activating the Object
The OBJECT statement specifies the attributes of an object. For each
object, this statement defines the initial position, the final position, the
length of time which each view is visible, the initial view, and the speed at
which the object travels to its final position.

The OBJECT statement also includes offset and transparency param
eters. The offset parameter determines which point in the object is
placed at the location specified by the position parameters. An offset of
(0,0) causes the OBJECT position parameter to refer to the center of the
rectangle containing the object. The offset for an object which looks like
an arrow could be set to represent the point on the arrow.

In the example program, object 3 moves in a zigzag path. Unlike object
2 which has a single destination at the right side of the screen, object 3
receives a new destination, (X3,Y3), each time it moves 100 logical units
toward the right. A direction flag, DIRFLAG, indicates whether the object
should go up or down to its next destination. After object 3 goes up, the
program toggles the direction flag to indicate that the object should go
down to its next destination.

In addition to the object view itself, GW-BASIC stores the background
contained in the rectangle defined by the GET statement. A value of a
for the transparency parameter in the OBJECT statement causes the
background in the rectangle to be transparent. A value of 1 causes the
background to be displayed.

The ACTIVATE statement causes an object to appear at its initial position
and causes it to move toward its final position. If the speed parameter in
the OBJECT statement is 0, the object will remain stationary.

630 I * * * * * SET OBJECTS 2 AND 3 IN MOTION * * * * *
640 I

650 OBJECT 2, 1 = 20,2 = 100,3 = 609,4 = 100,5 =.4,10 = 50 I Go left to right
660 X2 = 75: Y2 = 20 I Initial destination
670 DIRFLAG = -1 I Set direction flag
680 OBJECT 3,1 = 20,2 = 180,3 = X2,4 = Y2,5 = .2,10 = 120 I Move up to peak
690 ACTIVATE 2,3 I Make 2 and 3 move
700 I

Including the Background Program
The background program provides a way for the user to end the main
program. The background program runs at the same time that
GW-BASIC performs the animation defined by the OBJECT statement.
This program simply waits for the user to press a key to terminate
program operation.

Programming Animation 3-11

710 I * * * WAIT FOR USER TO PRESS A KEY TO END PROGRAM * * *
720 I

730 I Cursor is at line 13, column 9
740 PRINT "Press any key to terminate program."
750 A$ = INKEY$: IF A$ = "" THEN 750 I Test for input key
760 DEACTIVATE 'Remove objects from screen
770 END
9990 I

9999 I

Using ARRIVAL Subroutines
This subsection illustrates the sample subroutines called by the ON
ARRIVAL statements described earlier.

The OBJECT 2 ARRIVAL SUBROUTINE assumes control when object 2
reaches its final position, at the right side of the screen. The subroutine
replaces object 2 with object 5 (the circle containing the word DONE)
and sends object 5 back to the original position for object 2.

The OBJECT 3 ARRIVAL SUBROUTINE assumes control when object 3
reaches its final position, which is 60 units above or below the horizontal
line traversed by object 2. This subroutine causes object 3 to follow a
zigzag path from left to right.

The OBJECT 4 ARRIVAL SUBROUTINE assumes control when object 4
reaches its final position, which is the same as the initial position of
object 3. This subroutine replaces object 4 with object 3 and restarts
object 3 on its original zigzag path from left to right across the screen.

The OBJECT 5 ARRIVAL SUBROUTINE assumes control when object 5
reaches its final position, which is the same as the initial position of
object 2. This subroutine replaces object 5 with object 2 and restarts
object 2 on its straight path from left to right across the screen.

10000 I * * * * * OBJECT 2 ARRIVAL SUBROUTINE * * * * *
10020 I

10030 DEACTIVATE 2 I Vanish object 2
10040 OBJECT 5,1 = 609,2 = 100,3 =20,4 = 100,9 = 1,10= 100' Set up object 5
10050 ACTIVATE 5 I Make object 5 move
10060 RETURN
10070 I

11000 I * * * * *OBJECT 3 ARRIVAL SUBROUTINE * * * * *
11010 I

11020 X3 = OBJECT(3,1) + 100 I Move object 3 right 100 units
11030 I Go up if direction flag is positive; go down otherwise
11040 IF DIRFLAG > 0 THEN Y3 = 20 ELSE Y3 = 180
11050 OBJECT 3,3 = X3,4 = Y3 I Set up next move for 3

continued on next page

3-12 GW-BASIC Reference Manual

11060 DIRFLAG = DIRFLAG * (-1)
11070 RETURN

I Toggle direction flag

11080 I

12000 I

12010 I

* * * * * OBJECT 4 ARRIVAL SUBROUTINE * * * * *
12020 DEACTIVATE 4
12030 X3 = 75:Y3 = 20
12040 OBJECT 3,1 = 20,2 = 180,3 = X3,4 = Y3
12050 ACTIVATE 3
12060 RETURN
12070 I

I Vanish object 4
I Reset destination
I Set up object 3
I Send 3 on its way

13000 I

13010 I

13020 I

* * * * * OBJECT 5 ARRIVAL SUBROUTINE * * * * *
13030 DEACTIVATE5
13040 OBJECT 2,1 = 20,2 = 1 00,3 = 609,4 = 100
13050 ACTIVATE 2
13060 RETURN
13070 I

Using CLIP Subroutines

I Vanish object 5
I Set up object 2
I Send 2 on its way

This subsection illustrates a sample subroutine which is called by the
ON CLIP statement in line 540. The OBJECT 3 CLIP SUBROUTINE
assumes control when object 3 reaches the right boundary of the
screen. The subroutine replaces object 3 with object 4 (the circle
containing the word CLIP) and sends object 4 back to the original
position for object 3.

14000 I

14010 I

* * * * * OBJECT 3 CLIP SUBROUTINE * * * * *
14020 DEACTIVATE 3
14030 X4 = OBJECT(3,1)
14040 Y4 = OBJECT(3,2)
14050 I Set new initial location for object 4

I Vanish object 3
I Initial X for 4 = last X for 3
I Initial Y for 4 = last Y for 3

14060 OBJECT 4,1 =X4,2=Y4,3=20,4= 180,5= 1,10= 170
14070 ACTIVATE 4 I Send 4 on its way to home of 3
14080 RETURN
14090 I

Using COLLISION Subroutines
This subsection illustrates a sample subroutine which is called by the
ON COLLISION statement in line 550. The OBJECT COLLISION
SUBROUTINE assumes control when any two objects collide. The
subroutine stops the objects and overlays the point of collision between
the two objects with object 6 (the circle containing the word HIT). After
moving one unit to the right very slowly (effectively a pause), this sub
routine erases object 6 and restarts the objects on their predefined
paths.

Programming Animation

15000 / * * * * * OBJECT COLLISION SUBROUTINE * * * * *
15010 /
16000 STOP OBJECT / Freeze objects
16010 A = COLLISION(O) / Get lowest object which collided
16020 B = COLLISION(A) / Find who it collided with
16030 / Calculate average x and y positions of collided objects
16030 XC = (OBJECT(A, 1) + OBJECT(B, 1))/2
16040 YC = (OBJECT(A,2) + OBJECT(B,2))/2
16050 / Place object 6 at average position calculated above
16060 OBJECT 6,1 = XC,2 = YC,3 = XC + 1,4 = YC, 1 0 = 2,9 = 1 / Move slowly
16070 COLLISION OFF: ACTIVATE 6 / Make it visible
16080 START OBJECT 6 / Start it moving
16090 WHILE (((ARRIVAL(-1))*ARRIVAL(6)) = 0): WEND / Wait for it to arrive
16100 DEACTIVATE 6 :COLLISION ON / Make it disappear
16110 START OBJECT / Restart the other objects
16120 RETURN

The complete program listing is shown below.

10 /
20 /
30 /
40 /
50 CLS

* * * * * * SAMPLE ANIMATION PROGRAM * * * * * *

* * * * * INITIALIZE SYSTEM * * * * *

60 SCREEN 2
65 KEY OFF 'Erase function key display
70 /
80 /
90 /

* * * * * DIMENSION OBJECT ARRAYS * * * * *

100 DIM OBJECT COLLlDED%(41, 19)
110 DIM OBJECT AGAPE%(41, 19)

/ View for object 6
/ View 1 for objects 2 and 3
/ View 2 for objects 2 and 3
/ View 3 for objects 2 and 3
/ View for object 4

120 DIMOBJECTOPENED%(41,19)
130 DIMOBJECTCLOSED%(41,19)
140 DIM OBJECT ARRIVED%(41 ,19)
150 DIM OBJECT CLiPPED%(41, 19) / View for object 5
160 /
170 /
180 /

* * * * * DRAW OBJECTS * * * * *

190 PRINT:PRINT:PRINT:PRINT" CLIP
200 / Spaces for line 190: s

HIT
sss ssss

210 CIRCLE (22,9),20" -.7, - 5.75
220 CIRCLE (22,3),2
230 CIRCLE (76,9),20" - .3, - 5.9
240 CIRCLE (83,4),2
250 CIRCLE (134,9),20" - .05, - 6.2
260 CIRCLE (141,5),2
270 CIRCLE (22,27),20
280 CIRCLE (76,27),20
290 CIRCLE (134,27),20
300 /

/ Face with mouth agape
/ Eye for face with mouth agape
/ Opened mouth face
/ Eye for opened mouth face
/ Closed mouth face
/ Eye for closed mouth face
/ Circle to hold 'CLlP' word
/ Circle to hold 'HIT' word
/ Circle to hold 'DONE' word

continued on next page

v-I" \:nY-O/"\i:)lv ntm::rtlillitl IVICl"UClI

310 I

320 I

* * * * * STORE OBJECT VIEWS IN ARRAYS * * * * *
330 GET (2,0) - (42, 18),AGAPE%
340 GET (56,0) - (96, 18),OPENED%
350 GET (114,0) - (154, 18),CLOSED%
360 GET (2,19) - (42,36),CLlPPED%
370 GET (56,19) - (96,36),COLLlDED%
380 GET (114,19) - (154,36),ARRIVED%

I Store agape face
I Store opened face
I Store closed face
I Store CLIP circle
I Store HIT circle
I Store DONE circle

390 I

400 I

410 I

* * * * * DEFINE VIEWS FOR EACH OBJECT * * * * *
420 DEF OBJECT 6 AS COLLlDED% I 1 view
430 DEF OBJECT 2 AS CLOSED%,OPENED%,AGAPE%,OPENED% '4 views
440 DEF OBJECT 3 AS CLOSED%,OPENED%,AGAPE%,OPENED% I 4 views
450 DEF OBJECT 4 AS CLiPPED% '1 view
460 DEF OBJECT 5 AS ARRIVED% I 1 view
470 I

480 I

490 I

* * * * * SET UP ANIMATION EVENT TRAPS * * * * *
500 ON ARRIVAL (2) GOSUB 10000
510 ON ARRIVAL (3) GOSUB 11000
520 ON ARRIVAL (4) GOSUB 12000
530 ON ARRIVAL (5) GOSUB 13000
540 ON CLIP (3) GOSUB 14000
550 ON COLLISION GOSUB 15000

I Subroutine for object 2 arrival
I Subroutine for object 3 arrival
I Subroutine for object 4 arrival
I Subroutine for object 5 arrival
I Subroutine for object 3 clip
I Subroutine for object collisions

560 I

570 I

580 I
* * * * * ENABLE EVENT TRAPPI NG * * * * *

590 ARRIVAL ON
600 CLiPON
610 COLLISION ON

I Enable arrival event trapping
I Enable clip event trapping
I Enable collision event trapping

620 I

630 I

640 I

* * * * * SETOBJECTS2AND31N MOTION * * * * *
650 OBJECT 2, 1 = 20,2 = 100,3 = 609,4 = 100,5 = .4,10 = 50 I Go left to right
660 X2 = 75: Y2 = 20 I Initial destination
670 DIRFLAG = -1 I Set direction flag
680 OBJECT 3, 1 = 20,2 = 180,3 = X2,4 = Y2,5 = .2,10 = 120 I Move up to peak
690 ACTIVATE 2,3 I Make 2 and 3 move
700 I

710 I

720 I

* * WAIT FOR USER TO PRESS A KEY TO END PROGRAM * *
730 I Cursor is at line 13, column 9
740 PRINT "Press any key to terminate program."
750 A$ = INKEY$: IF A$ = "" THEN 750 I Test for input key
760 DEACTIVATE I Remove objects from screen
770 END
9990 I

9999 I

Programming Animation 3-15

10000 I

10020 I

* * * * * OBJECT 2 ARRIVAL SUBROUTINE * * * * *
10030 DEACTIVATE 2 I Vanish object 2
10040 OBJECT 5,1 = 609,2 = 100,3 = 20,4 = 100,9 = 1,10 = 100 I Set up object 5
10050 ACTIVATE 5 I Make object 5 move
10060 RETURN
10070 I

11000 I

11010 I

* * * * * OBJECT 3 ARRIVAL SUBROUTINE * * * * *
11020 X3 = OBJECT(3,1) + 100 I Move object 3 right 100 units
11030 I Go up if direction flag is positive; go down otherwise
11040 IF DIRFLAG > 0 THEN Y3 = 20 ELSE Y3 = 180
11 050 OBJECT 3,3 = X3,4 = Y3 I Set up next move for 3
11060 DIRFLAG = DIRFLAG * (-1) I Toggle direction flag
11070 RETURN
11080 I

12000 I

12010 I

* * * * * OBJECT 4 ARRIVAL SUBROUTINE * * * * *
12020 DEACTIVATE 4
12030 X3 = 75:Y3 = 20
12040 OBJECT 3,1 = 20,2 = 180,3 = X3,4 = Y3
12050 ACTIVATE 3
12060 RETURN
12070 I

I Vanish object 4
I Reset destination
I Set up object 3
I Send 3 on its way

13000 I

13010 I

13020 I

* * * * * OBJECT 5 ARRIVAL SUBROUTINE * * * * *
13030 DEACTIVATE 5
13040 OBJECT 2,1 = 20,2 = 100,3 = 609,4 = 100
13050 ACTIVATE 2
13060 RETURN

I Vanish object 5
I Set up object 2
I Send 2 on its way

13070 I

14000 I

14010 I

* * * * * OBJECT 3 CLIP SUBROUTINE * * * * *
14020 DEACTIVATE 3
14030 X4 = OBJECT(3,1)
14040 Y4 = OBJECT(3,2)
14050 I Set new initial location for object 4

I Vanish object 3
I Initial X for 4 = last X for 3
I Initial Y for 4 = last Y for 3

14060 OBJECT 4,1 =X4,2 = Y4,3 = 20,4 = 180,5= 1,10= 170
14070 ACTIVATE 4 I Send 4 on its way to home of 3
14080 RETURN
14090 I

15000 I

15010 I

* * * * * OBJECT COLLISION SUBROUTINE * * * * *
16000 STOP OBJECT I Freeze objects
16010 A = COLLISION(O) I Get lowest object which collided
16020 B = COLLISION(A) I Find who it collided with
16030 I Calculate average x and y positions of collided objects
16030 XC = (OBJECT(A, 1) + OBJECT(B, 1))/2
16040 YC = (OBJECT(A,2) + OBJECT(B,2))/2
16050 I Place object 6 at average position calculated above

continued on next page

3-16 GW-BASIC Reference Manual

16060 OBJECT 6,1 = XC,2 = YC,3 = XC + 1,4 = YC, 10 = 2,9 = 1 ' Move slowly
16070 COLLISION OFF: ACTIVATE 6 ' Make it visible
16080 START OBJECT 6 ' Start it moving
16090 WHILE (((ARRIVAL(-1))*ARRIVAL(6)) = 0): WEND I Wait for it to arrive
16100 DEACTIVATE 6 :COLLISION ON ' Make it disappear
16110 START OBJECT ' Restart the other objects
16120 RETURN

Section 4

Starting GW-BASIC

This section explains installing GW-BASIC, starting GW-BASIC, redirect
ing standard input and output, and exiting from GW-BASIC,

GW-BASIC is available on either a ROM cartridge or a diskette, This
section describes the procedures for getting started with either the
cartridge or the diskette version of GW-BASIC,

The Mindset GW-BASIC cartridge can work with or without MS-DOS,
MS-DOS is not required to use BASIC files stored in NVRAM cartridges,
but it is required to use disk files,

The MS-DOS diskette for the Mindset Personal Computer includes a
program which links the GW-BASIC cartridge to MS-DOS when you
enter the BASIC command line described in this section under "Starting
GW-BASIC with MS-DOS",

Starting GW-BASIC Without MS-DOS

If you are using the cartridge version of GW-BASIC, you may run
GW-BASIC without MS-DOS,

Read the Mindset Personal Computer System Operation Guide if you are
unfamiliar with operating the Mindset configuration screen and using
cartridges,

To use the GW-BASIC cartridge without MS-DOS, enter the Mindset
configuration screen and make Cart 1 the first load priority, Next, place
the Mindset GW-BASIC cartridge in port 1 and press the ALT-RESET
keys to start GW-BASIC,

4-1

4-2 GW-BASIC Reference Manual

If you are using a RAM cartridge to store BASIC programs and data, you
must insert the RAM cartridge in port 2 before pressing the ALT-RESET
keys.

When you press the ALT-RESET keys, the screen shown in Figure 4-1
appears.

GW-BASIC 2.0
(C) Copyright Microsoft 1983,1984
(C) Copyright Mindset 1983,1984
Version V1.0
60138 Bytes free

1 LIST 2RUN 3LOAD 4SAVE 5CONT 6 'LPT1 7TRON 8TROFF9KEY OSCREEN

Figure 4-1: GW-BASIC start-up screen

The number of free bytes of memory displayed on this screen varies
depending on the amount of memory installed in your system.

GW-BASIC Operating Environment Without MS-DOS
When using GW-BASIC without MS-DOS, you cannot specify any
command switches or use BASIC statements that require MS-DOS such
as CHDIR, SHELL, or SYSTEM. Using these statements will result in an
error message.

When using GW-BASIC without MS-DOS, these parameters are in effect.
The maximum number of open files for a RAM cartridge is six. The
maximum record size for files on RAM cartridges is 128 bytes. The
transmit buffer for each RS-232-C module is 256 bytes long and the
receive buffer is 128 bytes long.

Starting GW-BASIC With MS-DOS

You may run GW-BASIC with MS-DOS using either the cartridge or
diskette version of GW-BASIC.

Starting GW-BASIC 4-3

To use the GW-BASIC cartridge with MS-DOS, enter the Mindset System
configuration screen and make Disk the first load priority. Next, place
the Mindset MS-DOS diskette in the left disk drive and place the Mindset
GW-BASIC cartridge in cartridge port 1. Then press the ALT-RESET keys
to load MS-DOS.

To start the diskette version of GW-BASIC, you must first load MS-DOS.
Refer to the Introductory Guide to MS-OOS or the MS-OOS Reference
Manual for instructions on how to load MS-DOS. After you load
MS-DOS, place the GW-BASIC diskette in the default drive.

The procedures for running GW-BASIC from either a cartridge or a
diskette are now the same. Both versions use the same command line
options as explained below.

There are eight options you can specify when GW-BASIC is started from
MS-DOS. These options, explained below, include device names, file
names, and option switches. An option switch always begins with a
forward slash (I) character.

You do not have to include any options to run most BASIC programs.

BASIC Command Line Syntax
The format of a GW-BASIC command line is:

BASIC [[<stdin] [>stdout II
[<filename>]
[/C:<buffer size>]
[/F:<number of files>]
[II]
[/M:[<highest memory location>] [, <maximum block size> II
[IS: <Irecl>]

Command Line Options
Command line options refer to the parameters you can specify to
configure GW-BASIC to meet the requirements of a particular applica
tion program.

<stdin

BASIC input is redirected to come from the file specified by stdin. When
present, this syntax must appear before any switches.

>stdout

BASIC output is redirected to the file specified by stdout. When present,
this syntax must appear before any switches.

4-4 GW-BASIC Reference Manual

File Options
To specify the filename of a BASIC program file, include this option:

filename

If <filename> is present, GW-BASIC proceeds as if a RUN <filename>
command were given after GW-BASIC initialization is complete. If no
extension is included with the filename, GW-BASIC uses .BAS as the
extension.

This file specification enables you to run BASIC programs in batch by
putting this form of the command line in a file with a . BAT extension.
Programs run in this manner must exit with the SYSTEM statement
(discussed later in this section) to allow the next command from the
batch file to be executed.

Option Switches
You can use these option switches with the BASIC command.

IF: <number of files>

File number switch. This switch is ignored unless the II switch,
described below, is also specified on the command line.

If the IF and the II switches are present, then the maximum number of
files that may be open simultaneously during the execution of a BASIC
program is set to <number of files>. Each file requires 62 bytes for the
File Control Block (FCB), plus 128 bytes for the data buffer. The data
buffer size may be altered with the IS: option switch, described below. If
the IF: option is omitted, the number of files is set to 3.

The number of open files that MS-DOS supports depends upon the
value of the FILES = parameter in the CONFIG.SYS file. For GW-BASIC,
the parameter should be FILES = 10. Keep in mind that the first three are
taken by stdin, stdout, stderr, stdaux, and stdprn. One additional file is
needed by BASIC for LOAD, SAVE, CHAIN, NAME, and MERGE. This
leaves six for BASIC file 1/0; thus IF:6 is the maximum supported by
MS-DOS when FILES = 10 appears in the CONFIG.SYS file.

Attempting to OPEN a file after all the file handles have been exhausted
will result in a "Too many files" error.

IS: <Irecl>

Record size switch. This switch is ignored unless the II switch,
described below, is also specified on the command line.

Starting GW-BASIC

If this switch and the II switch are present, the maximum record size
allowed for use with random files is set to <Ireel>.

4-5

Note: The record size option to the OPEN statement cannot exceed this
value. If the IS: option is omitted, the record size defaults to 128 bytes.

IC: <buffer size>

Communications switch. If present, this switch controls RS-232-C
communications. If RS-232-C modules are present, IC:O disables
RS-232-C support. Any subsequent 1/0 attempts will result in a "Device
unavailable" error.

Specifying IC:<n> allocates space for communications buffers.
GW-BASIC allocates <n> bytes for the receive buffer and 128 bytes
for the transmit buffer for each RS-232-C module present. If the IC:
option is omitted, GW-BASIC allocates 256 bytes for the receive buffer
and 128 bytes for the transmit buffer of each module present.
GW-BASIC ignores the IC: switch when RS-232-C modules are not
present.

II

Static file space allocation switch. GW-BASIC is able dynamically to
allocate space required to support file operations. For this reason,
GW-BASIC does not support the IS and IF switches.

However, certain applications have been written in such a manner that
some BASIC internal data structures must be static. To provide com
patibility with these BASIC programs, GW-BASIC will statically allocate
space required for file operations based on the IS and IF switches when
the II switch is specified.

1M: [<highest memory location> 1 [,<maximum block size> 1

Memory location switch. When present, this switch sets the highest
memory location that will be used by BASIC. BASIC will attempt to
allocate 64K of memory for the data and stack segments. If machine
language subroutines are to be used with BASIC programs, use the 1M:
switch to set the highest location that BASIC can use. When omitted or
0, BASIC attempts to allocate all the memory it can, up to a maximum of
65536 bytes.

If you intend to load code or data above the highest location that BASIC
can use, enter the optional parameter <maximum block size> to
preserve space for them. This parameter is necessary if you intend to
use the SHELL statement. Failure to use this parameter will result in
COMMAND being loaded on top of your routines when a SHELL
statement is executed.

4-6 GW-BASIC Reference Manual

<maximum block size> must be in paragraphs (byte multiples of 16).
When omitted, &H1000 (4096) is assumed. This default size allocates
65536 bytes (65536 = 4096 x 16) for BASIC's data and stack segments.
If you wanted 65536 bytes for BASIC and 512 bytes for machine
language subroutines, then enter IM:,&H1010 (4096 paragraphs for
BASIC plus 16 paragraphs for your routines).

The 1M option can also be used to shrink the BASIC block to free more
memory for SHELling other programs. IM:,2048 says: 'f'\lIocate and use
32768 bytes maximum for data and stack". IM:32000,2048 allocates
32768 bytes maximum; BASIC will use only the lower 32000, leaving 768
bytes of extra memory.

Note that <number of files>, <Ireel>, <buffer size>, <highest memory
location>, and <maximum block size> are numbers that may be
decimal, octal (preceded by &0), or hexadecimal (preceded by &H).

BASIC Command Examples
A>BASIC PAYROLL

Uses 64K of memory and 3 files to load and execute PAYROLL. BAS.

A>BASIC INVENT/F:6/1

Uses 64K of memory and 6 files to load and execute INVENT.BAS.

A>BASIC IC:O/M:32768

Disables RS-232-C support and uses only 32K of data memory. The 32K
above that is free for the user.

A>BASIC II/F:4/S:512

Uses 4 files and allows a maximum record length of 512 bytes.

A>BASIC TTY/C:512

Uses 64K of memory and 3 files, allocates 512 bytes to RS-232-C
receive buffers and 128 bytes to transmit buffers, and loads and
executes TTY. BAS.

Starting GW-BASIC 4-7

Redirection of Standard Input and Standard Output

GW-BASIC can be redirected to read from standard input and write to
standard output by providing the input and output filenames on the
command line:

BASIC program_name [<input_file] [[>] >output_file]

Rules for Redirecting Input and Output
1. When redirected, all INPUT, LINE INPUT, INPUT$, and INKEY$

statements will read from input_file, instead of from the keyboard.

2. All PRINT statements will write to outpuLfile instead of to the screen.

3. Error messages go to standard output.

4. File input from "KYBD:" still reads from the keyboard.

5. File output to "SCRN:" still directs output to the screen.

6. BASIC will continue to trap keys from the keyboard when the ON KEY
(n) statement is used.

7. The printer echo key will not cause LPT1: echoing if standard output
has been redirected.

8. Typing CTRL-BRK will cause GW-BASIC to close any open files, issue
the message "Break in line <line number>" to standard output, exit
GW-BASIC, and return to MS-DOS.

9. When input is redirected, BASIC will continue to read from the new
input source until a CTRL-Z is detected. This condition may be tested
with the EOF function. If the file is not terminated by a CTRL-Z, or if a
BASIC file input statement tries to read past end-of-file, then any open
files are closed, the message "Read past end" is written to standard
output, and BASIC returns to MS-DOS.

Example of I/O Redirection
BASIC MYPROG >DATAOUT

Data read by INPUT and LINE INPUT will continue to come from the
keyboard. Data output by PRINT will go into the file DATA OUT.

BASIC MYPROG <DATAIN

4-8 GW-BASIC Reference Manual

Data read by INPUT and LINE INPUT will come from DATA.IN. Data
output by PRINT will continue to go to the screen.

BASIC MYPROG <MYINPUTDAT >MYOUTPUTDAT

Data read by INPUT and LINE INPUT will now come from the file
MYINPUTDAT and data output by PRINT will go into MYOUTPUTDAT

BASIC MYPROG <\SALES\JOHN\TRANSDAT
> > \SALES\SALES. DAT

Data read by INPUT and LINE INPUT will now come from the file
\SALES\JOHN\ TRANS. DAT Data output by PRI NT will be appended to
the file \SALES\SALES.DAT

Returning to MS-DOS from GW-BASIC
To exit from GW-BASIC, enter the command:

SYSTEM

This command closes all files and returns to MS-DOS if MS-DOS is
available.

Section 5

Editing BASIC
Programs

GW-BASIC provides three ways to enter and edit text: you can use the
line editing capabilities, issue an EDIT command to place you in edit
mode, or use the full screen editor.

Line Editing

If the cursor is currently on a line, you can make the following changes.
If you are entering a line in response to an INPUT statement, you can
use only the first two items in this list:

• Delete an incorrect character from the line that is being typed. The
BACK SPACE key moves the cursor back one space and deletes a
character. The DEL key erases the character under the cursor. Use
the cursor movement keys to reach the character to be deleted.

• Delete the entire line that is being typed by pressing the ESC key. A
carriage return is executed automatically after the line is deleted.

• Correct program lines for a program that is currently in memory by
retyping the line, using the same line number. GW-BASIC will
automatically replace the old line with the new one.

• Delete the entire program currently residing in memory by entering
the NEW command. NEW is usually used to clear memory prior to
entering a new program. See Section 6 for more information about the
NEW command.

5-1

5-2 GW-BASIC Reference Manual

Edit Command

The EDIT command places the cursor on a specified line so that
changes can be made to the line. See Section 6 for a de$cription of the
EDIT command.

Full Screen Editor

The full screen editor gives you immediate visual feedback, so that
program text is entered in a "what you see is what you get" manner. You
can enter program lines, then edit an entire screen before recording the
changes. This time-saving capability is made possible by special keys
for cursor movement, character insertion and deletion, and line or
screen erasure. Specific functions and key assignments are discussed
in the following sections.

With the full screen editor, you can move quickly around the screen,
making corrections where necessary. The changes are entered by
placing the cursor on the first line changed and pressing RETURN at the
beginning of each line.

Writing Programs
You are using the full screen editor any time between the GW-BASIC
"Ok" prompt and the execution of a RUN command. Every line of text
that is entered is processed by the editor. Every line of text that begins
with a number is considered a program statement.

It is possible to extend a logical line over more than one physical line by
using the CTRL-RETURN sequence to produce a linefeed. A linefeed
causes subsequent text to start on the next line, without a carriage
return. A carriage return signals the end of the logical line; when a
carriage return is entered, the entire logical line is passed to GW-BASIC.

Program statements are processed by the editor in one of the following
ways:

• A new line is added to the program. Addition of a line occurs if the line
number is valid (0 through 65529) and at least one non-blank
character follows the line number .

• An existing line is replaced. Replacement of a line occurs if the line
number matches that of an existing line in the program. The existing
line is replaced with the text of the new line.

Editing BASIC Programs 5-3

• An existing line is deleted. Deletion of a line occurs if the line number
matches that of an existing line and the new line contains only the line
number.

• The statements are passed to the command scanner for interpretation
(that is, the line that has been entered contains no errors and is
processed normally).

• An error is produced. If an attempt is made to delete a non- existent
line, an "Undefined line" error message is displayed. If program
memory is exhausted, and a line is added to the program, an "Out of
memory" error is displayed and the line is not added.

More than one statement may be placed on a line. If this is done, the
statements must be separated by a colon (:). The colon need not be
surrounded by spaces.

The maximum number of characters allowed in a logical program line,
including the line number, is 250.

Editing Programs
Use the LIST command to display an entire program or range of lines on
the screen so that the lines can be edited with the full screen editor. Text
can then be modified by moving the cursor to the place where the
change is needed and then performing one of the following operations:

• Typing over existing characters
• Deleting characters to the right of the cursor
• Deleting characters to the left of the cursor
• Inserting characters
• Appending characters to the end of the logical line

These actions are performed by special keys assigned to the various full
screen editor functions (see the next section, "Control Functions and
Editor Keys").

Changes to a line are recorded when the RETURN key is pressed while
the cursor is anywhere on that line. The RETURN key enters all changes
for that logical line, no matter how many physical lines are part of the
logical line and no matter where the cursor is located within the logical
line.

As lines are being re-entered to record changes, the cursor may
occasionally be positioned on a line that contains a message issued by
GW-BASIC, such as "Ok". When this happens, the line is automatically
erased. (GW-BASIC recognizes its own messages because they are
terminated by FF Hex to distinguish them from user text.) This is
provided as a courtesy to the programmer. If GW-BASIC did not erase

5-4 GW-BASIC Reference Manual

the line and the RETURN key was pressed, the message would be
passed to GW-BASIC as a direct mode statement and a syntax error
would result.

Control Functions and Editor Keys
Table 5-1 lists the hexadecimal codes for the GW-BASIC control charac
ters and summarizes their functions. The control-key sequence normally
assigned to each function is also listed. These sequences conform as
closely as possible to ASCII standard conversions.

Table 5-1: GW-BASIC Control Functions

Hex Decimal
Code Code Key Function

02 02 B Move cursor to start of previous word
05 05 E Truncate line (clear text to end of logical line)
06 06 F Move cursor to start of next word
OB 11 K Move cursor to home position
OC 12 L Clear screen
OE 14 N Move to end of line
12 18 R Toggle insert/typeover mode
1C 28 \ Cursor right
10 29 1 Cursor left
1E 30 /\ Cursor up
1F 31 Cursor down (underscore)
7F 32 DEL Delete character at cursor

Enter the ASCII control function by pressing the key listed while holding
down the CTRL key.

The CHR$ function may be used to perform these control functions. For
example, printing CHR$(30) moves the cursor up one line.

BASIC Editor Function Keys
The following keys and key sequences perform the indicated editor
functions.

Previous word-CTRL- moves the cursor left to the previous word. A
word is made up of the characters A-Z, a-z, or 0-9 and is delimited by a
space.

Truncate-CTRL-END deletes characters from the cursor position to the
end of the logical line.

Next word-CTRL-~ moves the cursor right to the next word. A word is
made up of the characters A-Z, a-z, or 0-9, and is delimited by a space.

Editing BASIC Programs 5-5

Linefeed-CTRL-RETURN moves the cursor to the next line but does not
insert a carriage return, so that the logical line can be continued.

The linefeed occupies one space on a line, always to the right of the last
character typed on a physical line. If there is no room on the physical
line, the linefeed is wrapped. The linefeed can be deleted, but it cannot
be typed over.

Cursor home-The HOME key moves the cursor to the upper left corner
of the screen. The screen is not blanked.

Clear window-CTRL-HOME moves the cursor to home position and
clears the entire window, regardless of where the cursor is positioned
when the key is pressed.

Carriage return-The RETURN key places a carriage return at the
current cursor position. A carriage return ends the logical line and
sends it to GW-BASIC.

Append-The END key moves the cursor to the end of the line, without
deleting the characters passed over. All characters typed from the new
position until the RETURN key is pressed are appended to the logical
line.

Insert-The INS key is a toggle switch for insert mode. When insert
mode is on, characters are inserted at the current cursor position.
Characters to the right of the cursor move right as new ones are
inserted. Line wrap is observed.

When insert mode is off, typed characters will overstrike existing
characters on the line.

Clear logical line-Pressing the ESC key anywhere in the line causes the
entire logical line to be erased.

~ -The ~ moves the cursor one position to the right. Line wrap is
observed .

.... -The key moves the cursor one position to the left. Line wrap is
observed .

• - The. key moves the cursor up one physical line in the current
column.

T-The T key moves the cursor down one physical line in the current
column.

5-6 GW-BASIC Reference Manual

Logical Line Definition with INPUT
Normally, a logical line consists of all the characters on each of the
physical lines that make up the logical line. During execution of an
INPUT or LINE INPUT statement, however, this definition is modified
slightly to allow for forms input. When either of these statements is
executed, the logical line is restricted to characters actually typed or
passed over by the cursor.

The insert and delete modes move only characters that are within that
logical line. Delete mode decrements the size of the line.

Insert mode increments the logical line except when the characters
moved will write over non-blank charaoters that are on the same physical
line, but not part of the logical line. In this case, the non-blank
characters not part of the logical line are preserved and the characters
at the end of the logical line are thrown out. This preserves labels that
existed prior to the INPUT statement.

Editing Lines Containing Variables
When a syntax error is encountered during program execution,
GW-BASIC enters edit mode at the line where the error occurred. You
can correct the error, enter the change, and re-execute the program.
If the corrected line contains variables, however, the values of these
variables will be lost when the line is re-entered. If you wish to examine
the contents of the variables before making the syntax correction, pres
sing the BREAK key or moving the cursor will return to direct mode
without destroying any of the variables. Then the variables can be
printed before the line is edited and the program re-executed.

Section 6

GW-BASIC Commands,
Statements, Functions,
and Variables

This section describes the GW-BASIC commands, statements, func
tions, and variables in alphabetical order. Briefly, these elements can be
defined as:

Command: An instruction that returns control to the user after the
instruction has been performed. For example, LIST and
MERGE are commands.

Statement: An instruction that is entered as part of a program source
line. For example, LET and LINE are statements.

Function: A function converts a value into some other value accord
ing to a fixed formula. The functions described in this
section are built-in functions, or "intrinsic" to GW-BASIC.
These functions may be called from any program without
further definition.

Arguments to functions are always enclosed in paren
theses. In the syntax given for the functions in this section,
the arguments have been abbreviated as follows:

Argument

XandY
I and J
X$and Y$
n

Meaning

Represent numeric expressions
Represent integer expressions
Represent string expressions
Represents an integer value

If a floating-point value is supplied where an integer is
required, GW-BASIC rounds the fractional portion and
uses the resulting integer.

See Appendix B for information about mathematic func
tions that are not intrinsic to GW-BASIC.

6-1

6-2

Variable:

GW-BASIC Refe.rence Manual

The variables described in this section are "system vari
ables". The names of these system variables are reserved
words just as are the names of statements, commands,
and functions. GW-BASIC stores information in these
variables for use in a BASIC program. An example of a
system variable is the TIME$ string variable which always
contains the time from the system's time-of-day clock.

Each description in this section is formatted as follows:

The first line indicates the name of the instruction or function.

PURPOSE:
Tells what the instruction or function is used for.

SYNTAX:
Shows the correct syntax for the instruction or function. See the
introduction to this manual for syntax notation.

When the term "filespec" is used as an option in the syntax, it refers to a
combination of device name, filename, and extension in the correct
format for the operating system.

NOTES:
Describe in detail how the instruction or function is used.

EXAMPLES:
Shows sample programs or program segments that demonstrate the
use of the instruction or function.

Commands, Statements, Functions, and Variables

ABS FUNCTION

PURPOSE:
Returns the absolute value of the expression X.

SYNTAX:
Y = ABS(X)

EXAMPLE:
The function:

PRINT ABS(7*(-5))

will yield:

35

6-3

6-4

ACTIVATE/DEACTIVATE STATEMENTS

PURPOSE:

GW-BASIC Reference Manual

ACTIVATE starts the motion of one or more objects. DEACTIVATE stops
the motion of one or more objects and removes them from the screen.

SYNTAX:
ACTIVATE [<object number 1 >[, <object number 2> ...]]
DEACTIVATE [<object number 1 >[, <object number 2> ...]]

<object number 1> and <object number 2> are the numbers of the
objects being set into motion by the ACTIVATE statement or being
stopped and removed from the screen by the DEACTIVATE statement.

NOTES:
The objects specified in an ACTIVATE statement must be previously
defined with a DEF OBJECT statement.

If no object numbers are specified, ACTIVATE sets all objects into motion
and DEACTIVATE stops and removes all objects from the screen.

See also the START OBJECT and STOP OBJECT statements in this
section.

EXAMPLES:
The statement:

10 ACTIVATE 7,2,5

sets objects 7, 2, and 5 into motion. The statement:

20 DEACTIVATE

stops the motion of all objects on the screen and removes them from
view.

Commands, Statements, Functions, and Variables

ARRIVAL FUNCTION

PURPOSE:
Returns the arrival status of an object.

SYNTAX:
X = ARRIVAL(-1)
X = ARRIVAL(O)
X = ARRIVAL(<object number»

<object number> is the number of a specific object to be tested for
possible arrival at its destination.

NOTES:

6-5

The ARRIVAL function enables a program to test for the arrival of an
object at its destination. The operation of the ARRIVAL function is similar
to that of the CLIP and COLLISION functions.

The ARRIVAL function always returns 0 if the ARRIVAL ON statement has
not been executed.

When an object arrives at the destination set for it in an OBJECT
statement, GW-BASIC sets an internal arrival flag for that object. The
ARRIVAL function tests the arrival flag of one or more objects depending
on which form of the function is used.

The ARRIVAL(-1) form of the ARRIVAL function latches the current state
of the arrival flags for all objects which have arrived since the last time
the arrival flags were latched. If any of the arrival flags for active objects
are set, then the ARRIVAL(-1) function returns -1, makes a copy of the
affected arrival flags, and clears the arrival flags so that they can be set
again. If no object has arrived at its destination since the last time the
arrival status was latched, the ARRIVAL(-1) function returns O.

After using the ARRIVAL(-1) function, the ARRIVAL(O) function can be
used to return the lowest numeric object which has the copy of its arrival
flag set. After returning this number, GW-BASIC clears the copy of the
arrival flag. The ARRIVAL(O) form of the ARRIVAL function returns 0 if the
copies of all arrival flags set by the ARRIVAL(-1) function have been
cleared by a corresponding number of ARRIVAL(O) functions.

The third form of the ARRIVAL function, ARRIVAL «object number», is
also used after using the ARRIVAL(-1) function to make copies of all
currently set arrival flags. This form of the function returns the object
number if the copy of that object's arrival flag is set (it also clears the
copy of the flag). Otherwise, the ARRIVAL «object number» function
returns a value of O.

6-6 GW-BASIC Reference Manual

The ON ARRIVAL statement automatically latches the arrival flags and
makes copies for testing with the ARRIVAL(O) and ARRIVAL(<object
number» functions before performing a GOSUB. Thus, the
ARRIVAL(-1) function is not required before testing the copies of the
arrival flags within such a subroutine.

EXAMPLES:
The following program uses line 100 to latch the arrival flags for all
objects. Line 110 obtains the number of the lowest numbered object
which has arrived at its destination. Line 120 checks the copies of the
arrival flags to see if any are still set. Line 130 selects the subroutine
corresponding to the object number returned in line 110.

If both objects 1 and 2 have arrived since the last time their flags were
latched, then line 110 places a value of 1 in X and clears the copy of the
arrival flag for object 1. After executing the subroutine at line 1000 and
returning to line 110, the ARRIVAL(O) function places a value of 2 in X
because the arrival flag for object 1 has been cleared. Line 130 then
transfers control to the subroutine at line 2000.

100 IF ARRIVAL(-1) = 0 THEN 150
110 X = ARRIVAL(O)
120 IF X = 0 THEN 150
130 ON X GOSUB 1000,2000
140 GOTO 110
150 'Remainder of main program

990 END
1000 'Subroutine for arrival of object 1

1990 RETURN
2000 'Subroutine for arrival of object 2

2990 RETURN

Commands, Statements, Functions, and Variables 6-7

Alternately, the ON ARRIVAL statement could be used to accomplish the
same results as follows (see the ARRIVAL statement for more
information):

100 ON ARRIVAL(1) GOSUB 1000
110 ON ARRIVAL(2) GOSUB 2000
120 ARRIVAL ON
130 'Remainder of main program

990 END
1000 'Subroutine for arrival of object 1

1990 RETURN
2000 'Subroutine for arrival of object 2

2990 RETURN

6-8

ARRIVAL STATEMENT

PURPOSE:

GW-BASIC Reference Manllal

The ARRIVAL ON statement enables arrival testing. An arrival occurs
when an object arrives at the destination specified in an OBJECT
statement.

The ARRIVAL OFF statement disables arrival testing.

The ARRIVAL STOP statement suspends arrival testing until the next
ARRIVAL ON statement is executed.

SYNTAX:
ARRIVAL ON
ARRIVAL OFF
ARRIVAL STOP

NOTES:
The ARRIVAL ON statement enables arrival testing by an ON ARRIVAL
statement (see "ON ARRIVAL Statement" later in this section) as well as
polling of the arrival status using the ARRIVAL function. While the
ARRIVAL ON statement is in effect, and if a non-zero line number has
been specified in the ON ARRIVAL statement, GW-BASIC checks after
the execution of every statement to see if any of the specified arrival
events has occurred.

The ARRIVAL OFF statement disables arrival testing by an ON ARRIVAL
statement. An arrival event that occurs after an ARRIVAL OFF statement
has been executed is not discovered.

The ARRIVAL STOP statement suspends arrival testing. An arrival event
that occurs after the execution of this statement is remembered and
trapped after the next ARRIVAL ON statement is executed.

EXAMPLES:
The statement:

10 ARRIVAL ON

enables arrival testing as specified in one or more ON ARRIVAL
statements. The statement:

20 ARRIVAL OFF

Commands, Statements, Functions, and Variables 6-9

disables arrival testing. The statement:

30 ARRIVAL STOP

suspends arrival testing. Arrival events which occur after this ARRIVAL
STOP statement are trapped after the next ARRIVAL ON statement is
executed.

6-10

ASC FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns a numeric value that is the ASCII code for the first character of
the string X$. (See Appendix C, 'ASCII Character Codes", for ASCII
codes.)

SYNTAX:
Y = ASC(X$)

NOTES:
If X$ is null, an "Illegal function call" error is returned.

EXAMPLE:
The function:

10 X$ = "TEST"
20 PRINT ASC(X$)

will yield:

84

See "CHR$ function" later in this section for details on ASCII-to-string
conversion.

Commands, Statements, Functions, and Variables

ATN FUNCTION

PURPOSE:
Returns the arctangent of X, where X is in radians. The result is in the
range - pi/2 to pi/2 radians.

SYNTAX:
Y = ATN(X)

NOTES:

6-11

The expression X may be any numeric type, but the evaluation of ATN is
always performed in single precision.

EXAMPLE:
The function:

10 INPUT X
20 PRINT ATN(X)

will yield:

73
1.249046

6-12

AUTO COMMAND

PURPOSE:

GW-BASIC Reference Manual

Generates line numbers automatically during program entry.

SYNTAX:
AUTO [<line number>[, <increment> II

NOTES:
AUTO begins numbering at <line number> and increments each
subsequent line number by <increment>. The default for both values is
10. If <line number> is followed by a comma but <increment> is not
specified, the last increment specified in an AUTO command is
assumed.

If AUTO generates a line number that is already being used, an asterisk
is printed after the number to warn the user that any input will replace the
existing line. However, typing a carriage return immediately after the
asterisk will save the existing line and generate the next line number.

If the cursor is moved to another line on the screen, numbering will
resume there.

Automatic line numbering is terminated by pressing the BREAK key.

EXAMPLE:
AUTO 100,50

generates line numbers 100,150,200

AUTO

generates line numbers 10,20,30,40

Commands, Statements, Functions, and Variables 6-13

BEEP STATEMENT

PURPOSE:
Sounds the speaker at 800 Hz for 1/4 second,

SYNTAX:
BEEP

NOTES:
The BEEP statement sounds the ASCII bell code, This statement has the
same effect as PRINT CHR$(7).

EXAMPLE:
20 IF X < 20 THEN BEEP

This example executes a beep when X is less than 20,

6-14

BLOAD STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Loads a specified memory image file into memory from disk or RAM
cartridge.

SYNTAX:
BLOAD <filespec> [, <offset> 1

The device designation portion of the filespec is optional. The filename
may be from 1 to 8 characters long.

<offset> is a numeric expression returning an unsigned integer in the
range 0 to 65535. This integer is the offset address at which loading is to
start in the segment declared by the last DEF SEG statement.

NOTES:
The BLOAD statement allows a program or a block of data that has been
saved as a memory image file to be loaded anywhere in memory. A
memory image file is a byte-for-byte copy of what was originally in
memory. See "BSAVE Statement" in this section for information about
saving memory image files.

If the offset is omitted, the segment address and offset contained in the
file (that is, the address specified by the BSAVE statement when the file
was created) are used. Therefore,. the file is loaded into the same
location from which it was saved.

If offset is specified, the segment address used is the one given in the
most recently executed DEF SEG statement. If no DEF SEG statement
has been given, the GW-BASIC data segment will be used as the default
(because it is the default for DEF SEG).

BLOAD can be used with VARPTR to initialize an array (such as a view of
an animated object) with data from disk.

Caution: BLOAD does not perform an address range check. It is
therefore possible to load a file anywhere in memory. The user must be
careful not to load over the operating system.

EXAMPLE:
10 'Load subroutine at 600:FOOO
20 DEF SEG = &H600 'Set segment to 600 Hex
30 BLOAD"PROG1",&HFOOO 'Load PROG1

This example sets the segment address at 600 Hex and loads PROG1 at
FOOO.

Commands, Statements, Functions, and Variables

BSAVE STATEMENT

PURPOSE:
Saves the contents of the specified area of memory as a disk or RAM
cartridge file.

SYNTAX:
BSAVE <filespec>, <offset>, <length>

6-15

The device designation portion of the filespec is optional. The filename
may be from 1 to 8 characters long.

<offset> is a numeric expression returning an unsigned integer in the
range 0 to 65535. BSAVE begins storing the file contents at the offset
address in the segment declared by the last DEF SEG statement.

<length> is a numeric expression returning an unsigned integer in the
range 1 to 65535. This integer is the length in bytes of the memory
image file to be saved.

NOTES:
The BSAVE statement enables data or programs to be saved as memory
image files on disk. A memory image file is a byte-far-byte copy of what
is in memory.

The <filespec>, <offset>, and <length> are required in the syntax.

If the offset is omitted, a "Syntax error" is issued and the save is aborted.
A DEF SEG statement must be executed before BSAVE. The last known
DEF SEG address will be used for the save.

If length is omitted, a "Syntax error" is issued and the save is aborted.

BSAVE can be used with VARPTR to write an array (such as a view of an
animated object) to disk. See the description of the GET statement,
which includes a formula for calculating the required array size for
graphic objects.

EXAMPLE:
10 'Save PROG1
20 DEF SEG = &H6000
30 BSAVE"PROG1",&HFOOO,256

This example saves 256 bytes, starting at 6000: FOOO in the file PROG1.

6-16

CALL STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Calls an external assembly language subroutine or a compiled routine
written in another high-level language.

SYNTAX:
CALL <variable name>[«argument list»]

<variable name> contains an address that is the starting point in
memory of the subroutine. <variable name> may not be an array
variable name.

<argument list> contains the arguments passed to the external sub
routine. <argument list> may contain only variables.

NOTES:
The CALL statement transfers program flow to an external subroutine.
(See also "USR function" later in this section.) CALL passes unseg
mented addresses.

The CALL statement generates the same calling sequence used by the
Microsoft BASIC compiler (see 'I\ssembly Language Subroutines" in
Section 2).

EXAMPLE:
110 MYROUT = &H 0000
120 CALL MYROUT(I,J,K)

Commands, Statements, Functions, and Variables

CALLS STATEMENT

PURPOSE:

6-17

Calls an external assembly language subroutine or a compiled routine
written in another high-level language.

SYNTAX:
CALLS <variable name>[«argument list»]

NOTES:
The CALLS statement works just like CALL, except that the segmented
addresses of all arguments are passed. (CALL passes unsegmented
addresses.) Because all FORTRAN parameters are call-by-reference
segmented addresses, CALLS should be used when accessing routines
written with FORTRAN calling conventions.

To locate the routine being called, CALLS uses the segment address
defined by the most recently executed DEF SEG statement.

6-18

COBl FUNCTION

PURPOSE:
Converts X to a double precision number.

SYNTAX:
Y = CDBL(X)

NOTES:

GW-BASIC Reference Manual

X can be either an integer or a single precision number.

EXAMPLE:
10 A=454.67
20 PRINT A; CDBL (A)

will yield:

454.67454.6700134277344

Commands, Statements, Functions, and Variables.

CHAIN STATEMENT

PURPOSE:
Calls a program and pass variables to it from the current program.

SYNTAX:
CHAIN [MERGE]<filespec>[,[<line number exp>]
[,ALL][,DELETE <range>]]

See the examples below for descriptions of the syntax options.

NOTES:
<filespec> is the file specification of the program called.

The COMMON statement may be used to pass variables (see
"COMMON Statement" later in this section).

6-19

<line number exp> is a line number or an expression that evaluates to a
line number in the called program. It is the starting point for execution of
the called program. If <line number exp> is omitted, execution begins
at the first line. <line number exp> is not affected by a RENUM
command.

Before running the CHAINed program, CHAIN performs a RESTORE to
reset the pointer to DATA statements. READ, therefore, does not
continue where it left off in the new program.

With the ALL option,every variable in the current program is passed to
the called program. If the ALL option is omitted, the current program
must contain a COMMON statement to list the variables that are passed.

If the ALL option is used and <line number exp> is not, a comma must
hold the place of <line number expr>.

For example,

CHAIN "NEXTPROG""ALL

is correct;

CHAIN "NEXTPROG",ALL

is incorrect. In the latter case, GW-BASIC assumes that ALL is a variable
name and evaluates it as a line number expression.

continued on next page

6-20 GW-BASIC Reference Manual

The MERGE option allows a subroutine to be brought into the GW-BASIC
program as an overlay. That is, the current program and the called
program are merged (see "MERGE Command" later in this section). The
called program must be an ASCII file if it is to be merged.

After an overlay is used, it is usually desirable to delete it so that a new
overlay may be brought in. To do this, use the DELETE option.

The line numbers in <range> are affected by the RENUM command.

The CHAIN statement with the MERGE option leaves the files open and
preserves the current OPTION BASE setting. A CHAINed program may
have an OPTION BASE statement if no arrays are passed.

If the MERGE option is omitted, CHAIN does not preserve variable types
or user-defined functions for use by the CHAINed program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN statements containing
shared variables must be restated in the CHAINed program.

When using the MERGE option, user-defined functions should be
placed before any CHAIN MERGE statements in the program. Other
wise, the user-defined functions will be undefined after the merge is
complete.

EXAMPLES:
Example 1:

10 REM THIS PROGRAM DEMONSTRATES CHAINING USING COM
MON TO PASS VARIABLES.
20 REM SAVE THIS MODULE ON DISK AS "PROG1" USING THE A
OPTION.
30 DIM A$(2),B$(2)
40 COMMON AO,BO
50 A$(1) = "VARIABLES IN COMMON MUST BE ASSIGNED"
60 A$(2) = "VALUES BEFORE CHAINING."
70 B$(1)= "": B$(2) = ""
80 CHAIN "PROG2"
90 PRINT: PRINT B$(1): PRINT: PRINT B$(2): PRINT
100 END

Commands, Statements, Functions, and Variables

Example 2:

10 REM THE STATEMENT "DIM A$(2),B$(2)" MAY ONLY BE
EXECUTED ONCE,
20 REM HENCE, IT DOES NOT APPEAR IN THIS MODULE,

6-21

30 REM SAVE THIS MODULE ON THE DISK AS "PROG2" USING THE
AOPTION,
40 COMMON AO,BO
50 PRINT: PRINT A$(1);A$(2)
60 B$(1) = "NOTE HOW THE OPTION OF SPECIFYING A STARTING
LINE NUMBER"
70 B$(2) = "WHEN CHAINING AVOIDS THE DIMENSION STATEMENT
IN 'PROG1',"
80 CHAIN "PROG1",90
90END

Example 3:

10 REM THIS PROGRAM DEMONSTRATES CHAINING USING THE
MERGE, ALL, AND DELETE OPTIONS,
20 REM SAVE THIS MODULE ON THE DISK AS "MAINPRG",
30 A$= "MAINPRG"
40 CHAIN MERGE "OVRLAY1",1010,ALL
50END

1000 REM SAVE THIS MODULE ON THE DISK AS "OVRLAY1" USING
THEA OPTION,
1010 PRINT A$; " HAS CHAINED TO OVRLAY1,"
1020 A$ = "OVRLAY1"
1030 B$ = "OVRLAY2"
1040 CHAIN MERGE "OVRLAY2",1010,ALL, DELETE 1000-1050
1050 END

1000 REM SAVE THIS MODULE ON THE DISK AS "OVRLAY2" USING
THE A OPTION,
1010 PRINT A$;" HAS CHAINED TO ";B$;","
1020 END

6-22

CHOIR STATEMENT

PURPOSE:
To change the current MS-OOS directory.

SYNTAX:
CHOIR <pathname>

GW-BASIC Reference Manual

<pathname> is a string expression not exceeding 128 characters
identifying the new directory which is to be the current directory.

NOTES:
CHOIR works exactly like the DOS command CHOIR.

EXAMPLES:
The following CHOIR statements make SALES the current directory on
drive A, and INVENTORY the current directory on drive B:

CHOIR "SALES" 'SALES is now the current directory on drive A:

CHOIR "B:INVENTORY" , INVENTORY is now the current directory on
drive B:

Subsequent usage of [A:) <filespec> will refer to files in the directory
SALES. Usage of B:<filespec> will refer to files in the directory
B:\INVENTORY.

Now that the current directory is SALES, MKOIR can be used to create
subdirectories JOHN and MARY.

MKOIR "JOHN" 'Create subdirectory \SALES\JOHN
MKOIR "MARY" 'Create subdirectory \SALES\MARY

An alternate method to create the JOHN directory under the SALES
directory is as follows:

MKOIR ',\SALES\JOHN"

Then use CHOIR to make JOHN the current directory:

CHOIR "JOHN"

or:

CHOIR ',\SALES\JOHN"

Commands, Statements, Functions, and Variables

CHR$ FUNCTION

PURPOSE:

6-23

Returns a string corresponding to the ASCII character number entered
as an argument. (ASCII codes are listed in Appendix C, '1\SCII
Character COdes".)

SYNTAX:
X$ = CHR$(I)

NOTES:
CHR$ is commonly used to send a special character. For instance, the
BELL character (CHR$(7)) could be sent as a preface to an error
message; also, a form feed (CHR$(12)) could be sent to clear the screen
and return the cursor to the home position.

EXAMPLE:
The function:

PRINT CHR$(66)

will yield:

B

See '1\SC function" earlier in this section for details on ASCII-to-numeric
conversion.

6-24

CINT FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Converts X to an integer by rounding the fractional portion.

SYNTAX:
Y = CINT(X)

NOTES:
If X is not in the range - 32768 to 32767, an "Overflow" error occurs.

See the CDBL and CSNG functions in this section for details on
converting numbers to the double precision and single precision data
types, respectively. See also the FIX and INT functions, both of which
return integers.

EXAMPLE:
The function:

PRINT CINT(45.67)

will yield:

46

\

Commands, Statements, Functions, and Variables

CIRCLE STATEMENT

PURPOSE:
Draws an ellipse with the center and radius specified.

SYNTAX:
CIRCLE «xcenter>, <ycenter», <radius>
[, <color>[, <start>, <end>[, <aspect>][,CFJ]]

<xcenter> is the x coordinate for the center of the circle.

<ycenter> is the y coordinate for the center of the circle.

<radius> is the radius of the circle in pixels.

6-25

<color> is the numeric symbol for the color desired (see "COLOR
Statement" later in this section). The default color is the foreground color.

<start> and <end> are the start and end angles in radians with the
range - 21T to 21T. These angles allow the user to specify where an
ellipse will begin and end. If the start or end angle is negative, the
ellipse will be connected to the center point with a line, and the angles
will be treated as if they were positive. Note that this is different from
adding 2 1T. The start angle may be less than the end angle.

<aspect> is the aspect ratio; that is, the ratio of the x radius to the y
radius. When default ratios are specified for the corresponding screen
mode, a circle is drawn. The default aspect ratios are 5/6 for 320 x 200
resolution screen mode and 5/12 for 640 x 200 resolution screen mode.
These default aspect ratios produce circles on display screens with a
standard aspect ratio of 4/3.

If the aspect ratio is less than one, the radius given is the x radius. If it is
greater than one, the y radius is given.

The CF option will cause the ellipse to be filled, just as the BF option
causes the box to be filled in the LINE statement. (See the LINE
statement later in this section.)

NOTES:
The last point referenced after a circle is drawn is the center of the circle.

Clipping occurs when a circle includes points outside the screen or
viewport limits. These points do not appear.

continued on next page

6-26 GW-BASIC Reference Manual

Coordinates can be shown in one of two ways: as absolutes, as in the
syntax shown above; or relatively, using the STEP option to reference a
point relative to the most recent point used. The syntax of the STEP
option replaces «xcenter>, <ycenter» with:

STEP «xoffset>, <yoffset»

For example, if the most recent point referenced was (0,0), STEP (10,5)
would reference a point at offset 1 0 from x and offset 5 from y.

EXAMPLE:
Assume that the last point plotted was 100,50. Then:

CIRCLE (200,200),50

and:

CIRCLE STEP (100,150),50

will both draw a circle at 200,200 with radius 50. The first example uses
absolute notation; the second uses relative notation.

Commands, Statements, Functions, and Variables

CLEAR STATEMENT

PURPOSE:

6-27

Sets all numeric variables to zero and all string variables to null, and
closes all open files; also, optionally, sets the end of memory and the
amount of stack space. The CLEAR statement also cancels the defini
tion of all animation objects visible on the screen.

SYNTAX:
CLEAR [, [<expression1 > H, <expression2>]]

NOTES:
The CLEAR statement performs the following actions:

• Closes all files.
• Clears all COMMON variables.
• Resets numeric variables and arrays to zero.
• Resets the stack and string space.
• Resets all string variables and arrays to null.
• Releases all disk buffers.
• Resets all DEF FN and DEF/SNG/DBUSTR statements.

<expression1> is a memory location that, if specified, sets the highest
location available for use by GW-BASIC.

<expression2> sets aside stack space for GW-BASIC. The default is
768 bytes or one-eighth of the available memory, whichever is smaller.

GW-BASIC allocates string space dynamically. An "Out of string space"
error occurs only if there is no free memory left for GW-BASIC to use.

The CLEAR statement also affects visible objects defined with the DEF
OBJECT statement. Any object which has been located on the screen
with an OBJECT statement and made visible with an ACTIVATE state
ment is stopped and removed from the screen by the CLEAR statement.
In other words, the CLEAR statement performs an implicit DEACTIVATE
statement.

EXAMPLES:
CLEAR
CLEAR ,32768
CLEAR ,,2000
CLEAR ,32768,2000

6-28

CLIP FUNCTION

PURPOSE:
Returns the clipping status of an object.

SYNTAX:
X = CLlP(-1)
X = CLlP(O)
X = CLlP«object number»

GW-BASIC Reference Manual

<object number> is the number of a specific object to be tested for
possible clipping at the boundary of the current window.

NOTES:
The CLIP function enables a program to test for the clipping of an object
at the boundary of the current window. The operation of the CLIP
function is similar to that of the ARRIVAL and COLLISION functions.

The CLIP function always returns 0 if the CLIP ON statement has not
been executed.

When an object exceeds the boundary of the current window,
GW-BASIC sets an internal clip flag for that object. The CLIP function
tests the clip flag of one or more objects depending on which form of the
function is used.

The CLlP(-1) form of the CLIP function latches the current state of the
clip flags for all objects which have been clipped since the last time the
clip flags were latched. If any of the clip flags for active objects are set,
then the CLlP(-1) function returns -1, makes a copy of the affected clip
flags, and clears the clip flags so that they can be set again. If no object
has exceeded the boundary of the current window since the last time the
clip status was latched, the CLlP(-1) function returns O.

After using the CLlP(-1) function, the CLlP(O) function can be used to
return the lowest numeric object which has the copy of its clip flag set.
After returning this number, GW-BASIC clears the copy of the clip flag.
The CLlP(O) form of the CLIP function returns 0 if the copies of all clip
flags set by the CLlP(-1) function have been cleared by a correspond
ing number of CLlP(O) functions.

The third form of the CLIP function, CLlP(<object number», is also
used after using the CLlP(-1) function to make copies of all currently
set clip flags. This form of the function returns the object number if the
copy of that object's clip flag is set (it also clears the copy of the flag).
Otherwise, the CLIP «object number» function returns a value of O.

Commands, Statements, Functions, and Variables 6-29

The ON CLIP statement automatically latches the clip flags and makes
copies for testing with the CLlP(O) and CLlP(<object number» func
tions before performing a GOSUB. Thus, the CLlP(-1) function is not
required before testing the copies of the CLIP flags within such a
subroutine.

Also see the CLIP statement for more information on testing for the
clipping of objects.

EXAMPLES:
The following program uses line 100 to latch the clip flags for all objects.
Line 110 sets a FOR-NEXT loop to test the copies of the clip flags of all
16 possible objects. Line 120 tests the copy of the clip flag for object K.
Line 130 causes the program to test the next object's clip flag if the clip
flag for object K was not set since the last time line 100 was executed.
Line 140 transfers control to the subroutine associated with object K.
The K in line 140 could be replaced with N because they will both
contain the same number. Line 160 terminates the FOR-NEXT loop.

100IFCLlP(-1) = OTHEN170
11OFORK = 1 T016
120 N = CLlP(K)
130 IF N = 0 THEN 160
140 ON K GOSUB 1000,2000
150 GOSUB 3000
160 NEXT K
170 'Remainder of main program

990 END
1000 'Subroutine for clipping of object 1

1990 RETURN
2000 'Subroutine for clipping of object 2

2990 RETURN
3000 'Subroutine for clipping of all objects

3990 RETURN

6-30

CLIP STATEMENT

PURPOSE:

GW-BASIC Reference Manual

The CLIP ON statement enables clip testing. Clipping occurs when an
object exceeds the boundary of the current window.

The CLIP OFF statement disables clipping testing.

The CLIP STOP statement suspends clipping testing until the next CLIP
ON statement is executed.

SYNTAX:
CLiPON
CLIP OFF
CLIP STOP

NOTES:
The CLIP ON statement enables clip testing by an ON CLIP statement
(see "ON CLIP Statement" later in this section) as well as polling of the
clipping status using the CLIP function. While the CLIP ON statement is
in effect, and if a non-zero line number has been specified in the ON
CLIP statement, GW-BASIC checks after the execution of every state
ment to see if any of the specified clipping events has occurred.

The CLIP OFF statement disables the testing for clipping by an ON CLIP
statement. Clipping that occurs after a CLIP OFF statement has been
executed is not discovered.

The CLIP STOP statement suspends clip testing. Clipping that occurs
after this statement is remembered and trapped after the next CLIP ON
statement is executed.

EXAMPLES:
The statement:

10 CLIP ON

enables clip testing as specified in one or more ON CLIP statements.
The statement:

20 CLIP OFF

disables clip testing. The statement:

30 CLIP STOP

suspends clip testing. Clipping events that occur after this CLIP STOP
statement are trapped after the next CLIP ON statement is executed.

Commands, Statements, Functions, and Variables

CLOSE STATEMENT

PURPOSE:

6-31

Concludes 110 to a file. The CLOSE statement complements the OPEN
statement.

SYNTAX:
CLOSE [[#]<file number>[,[#]<file number> ...]]

NOTES:
<file number> is the number under which the file was opened. A
CLOSE with no arguments closes all open files.

The association between a particular file and file number terminates
upon execution of a CLOSE statement. The file may then be reopened
using the same or a different file number; likewise, that file number may
now be reused to open any file.

A CLOSE for a sequential output file writes the final buffer of output.

The f;ND statement and the NEW command also close all disk files
automatically. (STOP does not close disk files.)

EXAMPLES:
CLOSE #1,#2
CLOSE 1,2

6-32

CLS STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Erases the contents of the entire current screen.

SYNTAX:
CLS

NOTES:
The screen may also be cleared with the control sequence CTRL-L.

The function key display on line 25 remains visible if it is on the screen
before execution of the CLS statement.

EXAMPLE:
10 CLS 'Clears the screen

Commands, Statements, Functions, and Variables

COLLISION FUNCTION

PURPOSE:
Returns object collision status.

SYNTAX:
X = COLLISION(-1)
X = COLLISION(O)
X = COLLISION«object number»
X = COLLISION(<object number 1>, <object number 2»

6-33

<object number> is the number of a specific object to be tested for a
possible collision with another object.

NOTES:
The COLLISION function enables a program to test for the collision of
one object with another. The operation of the COLLISION function is
similar to that of the ARRIVAL and CLIP functions.

When an object collides with another, GW-BASIC sets an internal
collision flag for that object. The COLLISION function tests the collision
flag of one or more objects depending on which form of the function is
used.

The COLLISION(-1) form of the COLLISION function latches the current
state of the collision flags for all objects which have collided since the
last time the collision flags were latched. If any of the collision flags for
active objects are set, then the COLLISION(-1) function returns -1,
makes a copy of the affected collision flags, and clears the collision
flags so that they can be set again. If no object has collided since the
last time the collision status was latched, the COLLISION(-1) function
returns O.

After using the COLLISION(-1) function, the COLLISION(O) function
can be used to return the lowest numeric object which has the copy of its
collision flag set. After returning this number, GW-BASIC clears the copy
of the collision flag. The COLLISION(O) form of the COLLISION function
returns 0 if the copies of all COLLISION flags set by the COLLISION(-1)
function have been cleared by a corresponding number of
COLLISION(O) functions.

After using the COLLISION (-1) function to make copies of all currently
set COLLISION flags, the third form of the COLLISION function,
COLLISION «object number» can be used. This form of the function
returns the value of the lowest-numbered object which collided with
<object number> (it also clears the flag for this collision pair). This form
of the function returns 0 if no object collided with <object number>.

continued on next page

6-34 GW-BASIC Reference Manual

The fourth form of the COLLISION function, COLLISION(<object
number>, <object number», is also used after using the
COLLISION(-1) function to make copies of all currently set COLLISION
flags. This form of the function returns the second object number if the
copy of that object pair's COLLISION flag is set (it also clears the copy of
the flag). Otherwise, the COLLISION(<object number>, <object
number» function returns a value of O.

If the COLLISION ON statement is in effect, the ON COLLISION
statement automatically latches the collision flags and makes copies for
testing with the COLLISION(O) and COLLISION(<object number»
functions. In this case, the COLLISION(-1) function is not required
before testing the copies of the COLLISION flags.

See the COLLISION statement for more information on testing for object
collisions.

EXAMPLES:
The following program uses line 100 to latch the COLLISION flags for all
objects and to transfer control to the subroutine at line 1000. Line 1000
sets N equal to the number of the lowest-numbered object involved in a
collision since the last time the collision status was latched. Line 1000
also clears the copy of the collision flag for object N. Line 1010 returns
control to the main program if the copies of the collision flags for all
objects are cleared. Line 1040 prints the numbers of the objects which
have collided. After line 1030 returns the program to line 1000, the
subroutine prints the number of the next object which has collided.

100 ON COLLISION GOSUB 1000
110 'Remainder of main program

990 END
1000 N = COLLISION(O)
1010 IF N = 0 THEN RETURN
1020 M = COLLISION(N)
1030 IF M = 0 THEN 1000
1040 PRINT "Objects" N "and" M "have collided"
1050 GOTO 1020

If objects 2 and 15 and objects 10 and 5 have collided since the last time
the collision status was latched, this program would print the following
messages:

Objects 2 and 15 have collided
Objects 5 and10 have collided

Commands, Statements, Functions, and Variables 6-35

The statement:

10 X = COLLISION(3)

sets X to the number of the lowest-numbered object which collided with
object number 3. This example sets X to zero if no collisions with object
3 have occurred. The statement:

20 X = COLLISION(O)

sets X to the number of the lowest-numbered object involved in a
collision since the COLLISION function was last executed. If no colli
sions have occurred, X is set to O. The statement:

30 X = COLLISION(-1)

latches the current collision information. This statement sets X to -1 if at
least one collision has occurred. Otherwise this statement sets X to O.
The statement:

40 X = COLLISION(3,4)

sets X to 4 if a collision between objects 3 and 4 has occurred and sets X
to 0 if no collision has occurred.

6-36

COLLISION STATEMENT

PURPOSE:

GW-BASIC Reference Manual

The COLLISION ON statement enables object collision testing.

The COLLISION OFF statement disables the testing for object collisions.

The COLLISION STOP statement suspends the testing for object
collisions.

SYNTAX:
COLLISION ON
COLLISION OFF
COLLISION STOP

NOTES:
The COLLISION ON statement enables collision testing by an ON
COLLISION statement (see "ON COLLISION Statement" later in this
section) as well as polling of the collision status using the COLLISION
function .. While the COLLISION ON statement is in effect, and if a non
zero line number has been specified in the ON COLLISION statement,
GW-BASIC checks after the execution of every statement to see if any
specified collisions have occurred.

The COLLISION OFF statement disables the testing for collisions.
Collisions which occur after a COLLISION OFF statement is executed
are not discovered.

The COLLISION STOP statement suspends the testing for collisions.
Collisions are remembered and trapped after the next COLLISION ON
statement is executed.

EXAMPLES:
The statement:

10 COLLISION ON

enables collision testing. The statement:

20 COLLISION OFF

disables collision testing. The statement:

30 COLLISION STOP

suspends collision testing. Collision events which occur after a
COLLISION STOP statement are trapped after the next
COLLISION ON statement is executed.

Commands, Statements, Functions, and Variables

COLOR STATEMENT (Text)

PURPOSE:
Selects from the color palette the colors for the foreground text,
background, and screen border.

SYNTAX:
COLOR [<foreground>][.[<background>][, <border>]]

6-37

<foreground> is the color for text. <background> is the color for the
background behind the text. <border> is the color of the border at the
edge of the display area.

NOTES:
The numbers used to specify the <foreground>, <background>, and
<border> colors refer to locations in the color palette of the Mindset
Personal Computer. A given color index value may not always produce
the same color because the colors in the palette can be reassigned
using the PALETTE and PALETTE USING statements. Table 6-1
describes the default colors in the color palette.

Table 6-1: Default Palette Colors

Value Color Value Color

0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 Off White 15 White

The value of the <foreground> parameter for the text mode must be in
the range 0 to 31. Adding 16 to the color values causes characters to
blink.

The range of the <background> parameter must be in the range 0 to 7.
The range of the <border> parameter must be in the range 0 to 15.

You can specify a maximum of two different colors for text mode.

continued on next page

6-38 GW-BASIC Reference Manual

EXAMPLE:
The statement:

10COLOR 0,10,10

selects black characters on a light green background and border
(provided that the color palette has not been altered by either the
PALETTE or PALETTE USING statements).

Commands, Statements, Functions, and Variables

COLOR STAJEMENT (Graphics)

PURPOSE:

6-39

Selects one of 15 colors from the palette as the background color and
, one of two color groups as the foreground colors. See the PALETTE

statement later in this section for a discussion of the colors in the palette.

SYNTAX:
COLOR [<background> H,[<color group>]]

<background> is the color index for the background. <color group>
selects one of two foreground color groups.

Table 6-2 describes the default colors for each color group associated
with the color values you select in graphic output statements such as
CIRCLE, LINE; and DRAW.

NOTES:

Table 6-2: Graphics Color Palettes

Color Value Color Group 0 Color Group 1

1
2
3

Green
Red
Brown

Cyan
Magenta
White

The value for the <background> parameter may range from 0 to 15.
This value specifies an index into the palette to obtain the background
color. The background color is also the color produced by using a color
value of 0 in graphics statements. If the <background> parameter is
omitted, the COLOR statement assumes the previous value for the
background color.

The palette of the Mindset Personal Computer may be reprogrammed
with different colors with the PALETTE and PALETTE USING statements.
If the color palette has not been reprogrammed, the colors will be those
shown in Table 6-1 under the description of the COLOR statement for text
mode.

continued on next page

6-40 GW-BASIC Reference Manual

The value of the <color group> parameter is either even or odd. Even
values for this parameter select color group ° and odd values select
color group 1.

The number of colors available depends on the current screen mode.
Modes 2,3, and 7 can use only colors ° and 1 from the selected
graphics palette. Modes 1, 5, and 6 can use colors 0, 1,2, and 3. Mode
4 can specify any of the 16 colors from the palette.

EXAMPLE:
The program:

10 SCREEN 5
20 COLOR 10,1

places the system in screen mode 5 for 640 by 200 resolution, selects
light green for the background and selects palette 1 so that color values
0,1,2, and 3 represent light green, cyan, magenta, and white,
respectively.

Commands, Statements, Functions, and Variables 6-41

COM STATEMENT

PURPOSE:
Enables or disables event trapping of communications activity on the
specified channel.

SYNTAX:
COM(n) ON
COM(n) OFF
COM(n) STOP

(n) is the number of the communications channel. The range for (n)
is 1 to 3.

NOTES:
The COM(n) ON statement enables communications event trapping by
an ON COM statement (see "ON COM Statement" later in this section).
While trapping is enabled, if a non-zero line number is specified in the
ON COM statement, GW-BASIC checks between every statement to see
if activity has occurred on the communications channel. If it has, the ON
COM statement is executed.

COM(n) OFF disables communications event trapping. If an event takes
place, it is not remembered.

COM(n) STOP disables communications event trapping. However, if an
event occurs, it is remembered and ON COM will be executed as soon
as trapping is enabled.

EXAMPLE:
10 COM(1) ON

Enables error trapping of communications activity on channel 1.

6-42

COMMON STATEMENT

PURPOSE:
Passes variables to a CHAINed program.

SYNTAX:
COMMON <list of variables>

NOTES:

GW-BASIC Reference Manual

The COMMON statement is used in conjunction with the CHAIN
statement. COMMON statements may appear anywhere in a program,
though they should normally appear at the beginning.

The same variable cannot appear in more than one COMMON state
ment. Array variables are specified by appending "0" to the variable
name. If all variables are to be passed, use CHAIN with the ALL option
and omit the COMMON statement.

Some versions of BASIC allow the number of dimensions in the array to
be included in the COMMON statement. GW-BASIC will accept that
syntax, but will ignore the numeric expression itself. For example, in
GW-BASIC the following statements are both valid and are considered
equivalent:

COMMON AO
COMMON A(3)

The number in parentheses is the number of dimensions in the array, not
the dimensions themselves. For example, the variable A(3) in this
example might correspond to a DIM statement of DIM A(5,8,4).

EXAMPLE:
100 COMMON A,B,C,DO,G$
110 CHAIN "PROG3",10

Commands, Statements, Functions, and Variables

CONT COMMAND

PURPOSE:

6-43

Continues program execution after a CTRL-C has been typed or a STOP
or END statement has been executed.

SYNTAX:
CO NT

NOTES:
Execution resumes at the point where the break occurred. If the break
occurred after a prompt from an INPUT statement, execution continues
with the reprinting of the prompt ("7" or prompt string).

CONT is usually used in conjunction with STOP for debugging. When
execution is stopped, intermediate values may be examined and
changed using direct mode statements. Execution may be resumed with
CONT or a direct mode GOTO, which resumes execution at a specified
line number. CONT may be used to continue execution after an error
has occurred.

CONT is invalid if the program has been edited during the break.

EXAMPLE:
See "STOP Statement" later in this section.

6-44

COS FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns the cosine of X, where X is in radians.

SYNTAX:
y = COS(X)

NOTES:
The calculation of COS(X) is performed in single precision.

EXAMPLE:
The function:

10 X= 2*COS(.4)
20 PRINTX

will yield:

1.842122

Commands, Statements, Functions, and Variables

CSNG FUNCTION

PURPOSE:
Converts X to a single precision floating-point number.

SYNTAX:
Y = CSNG(X)

NOTES:

6-45

See the CINT and CDBL functions earlier in this section for information
about converting numbers to the integer and double precision data
types, respectively.

EXAMPLE:
The function:

10 A# = 975.3421#
20 PRINT A#; CSNG(A#)

will yield:

975.3421 975.3421

CSRLIN VAR IABLE

PURPOSE:

GW-BASIC Reference Manual

Stores the current line position of the cursor in a numeric variable.

NOTES:
To return the current column position of the cursor, use the POS function.

EXAMPLE:
10 Y = CSRLlN 'Record current line.
20 X = POS(O) 'Record current column.
30 LOCATE 24,1 :PRINT "HELLO"
'Print HELLO on last line.
40 LOCATE Y, X 'Restore position to old line and column.

Commands, Statements, Functions, and Variables

eVI, evs, and eve FUNCTIONS

PURPOSE:
Converts string values to numeric values.

SYNTAX:
Y = CVI«2-byte string»
Y = CVS«4-byte string»
Y = CVD(<8-byte string»

NOTES:

6-47

Numeric values that are read in from a random disk file must be
converted from strings back into numbers. CVI converts a 2-byte string
to an integer. CVS converts a 4-byte string to a single precision number.
CVD converts an 8-byte string to a double precision number.

See also "MKI$, MKS$, and MKD$ Functions" later in this section.

EXAMPLE:

70 FIELD #1,4 AS N$, 12 AS B$, ...
80 GET #1
90 Y = CVS(N$)

6-48

DATA STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Stores the numeric and string constants that are accessed by the
program's READ statement(s).

SYNTAX:
DATA <list of constants>

NOTES:
DATA statements are nonexecutable and may be placed anywhere in the
program. A DATA statement may contain as many constants (separated
by commas) as will fit on a logical line. Any number of DATA statements
may be used in a program.

READ statements access DATA statements in order (by line number).
The data contained therein may be thought of as one continuous list of
items, regardless of how many items are on a line or where the lines are
placed in the program.

<list of constants> may contain either numeric or string constants.
Numeric constants may be in any format; that is, fixed-point, floating
point, or integer constants. (No numeric expressions are allowed in the
list.) String constants in DATA statements must be surrounded by double
quotation marks only if they contain commas, colons, or significant
leading or trailing spaces. Otherwise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must
agree with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the
RESTORE statement.

EXAMPLE:
See "READ Statement" later in this section.

Commands, Statements, Functions, and Variables

DATE$ STATEMENT

PURPOSE:

6-49

Sets the current date. This statement complements the DATE$ variable,
which retrieves the current date.

SYNTAX:
DATE$ = <string expression>

<string expression> returns a string in one of the following forms:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

EXAMPLE:
10 DATE$ = "11-08-1983"

The current date is set at November 8,1983.

6-50

DATE$ VARIABLE

PURPOSE:

GW-BASIC Reference Manual

Retrieves the current date. (To set the date, use the DATE$ statement,
described previously.)

NOTES:
The DATE$ variable contains a ten-character string in the form mm-dd
yyyy, where mm is the month (01 through 12), dd is the day (01 through
31), and yyyy is the year (1980 through 2099).

EXAMPLE:
10 PRINT DATE$

This statement prints the date, calculated from the date set with the
DATE$ statement.

Commands, Statements, Functions, and Variables

DEF FN STATEMENT

PURPOSE:
Defines and names a function written by the user.

SYNTAX:
DEF FN<name>[(<parameter list»] = <function definition>

NOTES:

6-51

<name> must be a legal variable name. This name, preceded by FN,
becomes the name of the function.

<parameter list> consists of those variable names in the function
definition that are to be replaced when the function is called. The items
in the list are separated by commas.

The variables in the parameter list represent, on a one-to-one basis, the
argument variables or values that will be given in the function call.

<function definition> is an expression that performs the operation of the
function. It is limited to one logical line. Variable names that appear in
this expression serve only to define the function; they do not affect
program variables that have the same name. A variable name used in a
function definition mayor may not appear in the parameter list. If it does,
the value of the parameter is supplied when the function is called. Other
wise, the current value of the variable is used.

The DEF FN statement may define either numeric or string functions. If a
type is specified in the function name, the value of the expression is
forced to that type before it is returned to the calling statement. If a type
is specified in the function name and the argument type does not match,
a 'Type mismatch" error occurs.

A DEF FN statement must be encountered before the function it defines
may be called. If a function is called before it has been defined, an
"Undefined user function" error occurs. DEF FN is illegal in the direct
mode.

EXAMPLE:

410 DEF FNAB(X,Y) =X1\31Y 1\2
420 T = FNAB(I,J)

Line 410 defines the function FNAB. The function is called in line 420.

6-52

DEFINT/SNG/DBUSTR STATEMENTS

PURPOSE:

GW-BASIC Reference Manual

Declares variable types as integer, single precision, double precision, or
string.

SYNTAX:
DEF<type> <range(s) of letters>

where <type> is INT, SNG, DBl, or STR.

NOTES:
Any variable names beginning with the letter(s) specified in <range(s)
of letters> will be considered the type of variable specified in the
<type> portion of the statement. However, a type declaration character
always takes precedence over a DEFtype statement. (See "Variable
Names and Declaration Characters" in Section 2.)

If no type declaration statements are encountered, GW-BASIC assumes
that all variables without declaration characters are single precision
variables.

EXAMPLES:
In the statement:

10 DEFDBl l-P

all variables beginning with the letters l, M, N, 0, and P will be double
precision variables. In the statement:

10 DEFSTR A

all variables beginning with the letter A will be string variables. In the
statement:

10 DEFINT I-N,W-Z

all variables beginning with the letters I, J, K, l, M, N, W, X, Y, and Z will
be integer variables.

Commands, Statements, Functions, and Variables

DEF OBJECT STATEMENT

PURPOSE:

6-53

Defines an animation object as a group of arrays where each array
contains a view of the object. The sequence of the arrays determines
the order in which the views of that object appear.

SYNTAX:
DEF OBJECT <object number>[AS<array 1>[,<array 2> ...]]

<object number> specifies the number for the object being defined.

<array 1>, <array 2> ... contain successive views of the object being
defined.

NOTES:
Up to 8 views can be specified for an object. GW-BASIC displays the
views in the order of their definition.

The <object number> of an object defines its priority. Objects are
drawn in the order of their object numbers, with the lowest-numbered
object drawn first. Object numbers must be in the range 1-16.

The DEF OBJECT statement sets all attributes for the specified object to
their default values (see the description of the OBJECT statement later in
this section). This statement returns an error if the specified object is
already defined. An object can be undefined by using the DEF OBJECT
statement without including any array names.

The DEF OBJECT statement automatically creates a working array for
storing the screen image which is overlaid by the object. The size of this
array is equal to that of the largest object view in the group defined by
DEF OBJECT. The user cannot aceess this array, but should be aware of
the additional memory that it requires.

EXAMPLES:
The statement:

10 DEF OBJECT 3 AS MAN1,MAN2,MAN3

defines the MAN1, MAN2, and MAN3 arrays as the different views of
object 3. The statement also sets up an array to preserve the screen
image overlaid by object 3. The statement:

10 DEF OBJECT 3

cancels the definition of object 3 as an animated object. Arrays MAN1,
MAN2, and MAN3 remain unaltered by this statement.

6-54

DEF SEG STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Assigns the current segment address that will be referenced by a
subsequent BLOAO, BSAVE, CALL, CALLS, or POKE statement or by a
USR or PEEK function.

SYNTAX:
OEF SEG [= <address>]

where <address> is a numeric expression returning an unsigned
integer in the range a to 65535.

NOTES:
The address specified is saved for use as the segment required by
BLOAO, BSAVE, CALL, CALLS, POKE, USR, and PEEK.

Entry of any value outside the <address> range a through 65535 will
result in an "Illegal function call" error, and the previous value will be
retained. -

If the <address> option is omitted, the segment to be used is set to the
GW-BASIC data segment (OS). This data segment value is the initial
default value.

If the <address> option is given, it should be based on a 16-byte
boundary. GW-BASIC does not check the validity of the specified
address.

Note that OEF and SEG must be separated by a space. Otherwise,
GW-BASIC will interpret the statement OEFSEG = 100 to mean "assign
the value 100 to the variable OEFSEG".

EXAMPLE:
10 OEF SEG = &HB800 'Set segment to B800 Hex
20 OEF SEG 'Restore segment to GW-BASIC data segment

Commands, Statements, Functions, and Variables

DEF USR STATEMENT

PURPOSE:
Specifies the starting address of an assembly language subroutine.

SYNTAX:
DEF USR[<digit> 1 = <integer expression>

NOTES:

6-55

<digit> may be any digit from 0 to 9. The digit corresponds to the
number of the USR routine whose address is being specified. If <digit>
is omitted, DEF USRO is assumed.

The value of <integer expression> is the starting address of the USR
routine.

Any number of DEF USR statements may appear in a program to
redefine subroutine starting addresses, thus allowing access to as many
subroutines as necessary.

EXAMPLE:

200 DEF USRO = 24000
210 X= USRO(Y /\2/2.89)

6-56

DELETE COMMAND

PURPOSE:
Deletes program lines.

SYNTAX:

GW-BASIC Reference Manual

DELETE [<line number>][- <line number>]

NOTES:
GW-BASIC always returns to the command level after a DELETE is
executed. If <line number> does not exist, an "Illegal function call"
error occurs.

EXAMPLES:
The command:

DELETE 40

deletes line 40 only. The command:

DELETE 40 -100

deletes lines 40 through 100, inclusive. The command:

DELETE -40

deletes all lines up to and including line 40. The command:

DELETE 40-

deletes all lines from 40 to the end of the program.

(

Commands, Statements, Functions, and Variables

DIM OBJECT STATEMENT

PURPOSE:
Dimensions an array large enough to contain the display data for a
graphic object.

SYNTAX:
DIM OBJECT <array name>«x size>,<y size»

6-57

<array name> is the name of the numeric array to contain the display
data for the object. <x size> and <y size> are the horizontal and
vertical object dimensions, respectively. The object dimensions are
specified in logical units defined by the current window.

NOTES:
The DIM OBJECT statement produces a single-dimensioned array to
contain a view of an object of the specified size based on the screen
mode at the time the statement was executed.

Each array produced by the DIM OBJECT statement is large enough to
contain the required header information (as with the arrays used in the
GET# and PUT# statements) and one copy of the object view. The DIM
OBJECT statement automatically determines the number of elements in
the array according to the array type (integer or floating-point array).

EXAMPLE:
The statement:

10 DIM OBJECT MAN(1O,20)

creates an array named MAN which can contain an object 20 logical
units high and 10 logical units wide. Unless the DEFINT statement has
defined M as an integer, the MAN array defaults to the floating-point
type.

6-58

DIM STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Specifies the maximum values for array variable subscripts and allo
cates storage accordingly.

SYNTAX:
DIM <list of subscripted variables>

NOTES:
If an array variable name is used without a 01 M statement, the maximum
value of the array's subscript(s) is assumed to be 10. If a subscript
greater than the specified maximum is used, a "Subscript out of range"
error occurs. The minimum value for a subscript is always 0, unless
otherwise specified with the OPTION BASE statement (described later
in this section).

The DIM statement sets all the elements of the specified arrays to an
initial value of zero.

In theory, the maximum number of dimensions allowed in a DIM
statement is 255. In reality, however, that number is impossible, because
the statement and variable names and punctuation also count as
spaces on the line, and the line itself has a limit of 255 characters. The
number of dimensions is further limited by the amount of available
memory.

EXAMPLE:
10 DIM A(20)
20 FOR I = 0 TO 20
30 READ A(I)
40 NEXT I

Commands, Statements, Functions, and Variables 6-59

DRAW STATEMENT

PURPOSE:
Draws a line as indicated by the subcommands described below.

SYNTAX:
DRAW <string expression>

<string expression> contains one or more of the subcommands
described below.

NOTES:
The DRAW statement contains 17 subcommands. These subcommands
combine many of the capabilities of the other GW-BASIC graphics
statements into an "object definition language" called Graphics Macro
Language (GML). An object definition language is a language that
defines a complete set of characteristics of a particular object. In this
case, the characteristics are motion (up, down, left, right), color, angle,
and scale factor.

Each of the following GML commands begins movement from the
"current graphics position". This position is usually the coordinate of the
last graphics point plotted with another GML command, the LINE
statement, or the PSET statement. The current position defaults to the
center of the screen when a program is run.

The following GML commands move one unit if no argument is supplied.

Command

U [<n>]
D [<n>]
L [<n>]
R [<n>]
E [<n>]
F [<n>]
G [<n>]
H [<n>]
M <x,y>

Explanation

Move up (scale factor * n) pOints
Move down
Move left
Move right
Move diagonally up and right
Move diagonally down and right
Move diagonally down and left
Move diagonally up and left
Move absolute or relative. If x is preceded by a
plus (+) or minus (-) sign, x and yare added
to the current graphics position and connected
with the current position by a line. Otherwise, a
line is drawn to point x,y from the current cursor
position.

continued on next page

6-60 GW-BASIC Reference Manual

The following prefix commands may precede any of the above move
ment commands:

Command

B

N

A <n>

TA<n>

C<n>

S<n>

X <string expression>

P <paint color>,
<border color>

Explanation

Move but do not plot points.

Move but return to original position when done.

Set angle n. n may range from 0 to 3, where 0
is 0°, 1 is 90°, 2 is 180°, and 3 is 270°. Figures
rotated 90° or 270° are scaled so they will
appear the same size as with a or 180° on a
screen with the standard aspect ratio of 4/3.

Set turn angle n. <n> may range from - 360°
to 360°. If <n> is positive, rotation is counter
clockwise. If <n> is negative, rotation is
clockwise.

Set color attribute n. n may range from a to 3 in
screen modes 1, 5, and 6; a to 1 in modes 2, 3
and 7; and a to 15 in mode 4.

Set scale factor. n may range from 1 to 255.
The scale factor, multiplied by the distances
given with U, D, L, R, or relative M commands,
gives the actual distance traveled.

Execute substring. This powerful command
allows you to execute a second substring from
a string, much like a GOSUB statement. You
can have one string execute another, which
executes a third, and so on.

Set object color to <paint color> and the
border color to <border color>. <paint
color> and <border color> may range from a
to 3 in screen modes 1, 5, and 6; a to 1 in
modes 2, 3 and 7; and a to 15 in mode 4.

"Tile" painting is not supported in DRAW.

Numeric arguments can be constants like "123" or" = <variable>",
where <variable> is the name of a variable.

Commands, Statements, Functions, and Variables

EXAMPLES:
10 U$ = "U30;" : D$ = "D30;" : L$ = "L40;" R$ = "R40;"
20 BOX$ = U$ + R$ + D$ + L$
30 DRAW "XBOX$;"

6-61

40 REM DRAW "XU$;XR$;XD$;XL$;" would have drawn the same box

1 0 FOR D = 0 TO 360 'Draw some spokes
20 DRAW "TA=D;NU50"
30 NEXT D

10 DRAW "U50R50D50L50" 'Draw a box
20 DRAW "BE10" 'Move up and right into box
30 DRAW "P1 ,3" 'Paint interior

6-62

EDIT COMMAND

PURPOSE:
Enters edit mode at the specified line.

SYNTAX:
EDIT <line number>

NOTES:

GW-BASIC Reference Manual

In edit mode, it is possible to edit portions of a line without retyping the
entire line. Upon entering edit mode, GW-BASIC types the number of
the line to be edited and waits for you to use the editor to make any
necessary changes.

Commands; Statements, Functions, and Variables

END STATEMENT

PURPOSE:

6-63

Terminates program execution, closes all files, and returns to command
level.

SYNTAX:
END

NOTES:
END statements may be placed anywhere in the program to terminate
execution. An END statement at the end of a program is optional.
GW-BASIC always returns to command level after an END is executed.

Unlike the STOP statement, END does not cause a "Break in line nnnnn"
message to be printed.

EXAMPLE:
520 IF K>1000 THEN END ELSE GOTO 20

6-64

ENVIRON STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Modifies parameters in BASIC's environment string table. Parameter
modification may be to change the "PATH" parameter for a Child
process (see the "ENVIRON$" function and the "SHELL" statement in
this section; also see "The MS-DOS 2.0 Utilities - PATH command" in the
Mindset MS-DOS Manual). This statement can also be used to pass
parameters to a Child process by inventing a new environment
parameter.

SYNTAX:
ENVIRON <parm>

<parm> is a valid string expression containing the new environment
string parameter.

NOTES:
The following rules apply to the ENVIRON statement:

1. <parm> must be in the form <parm _id> = <text> where:

a. <parm_id> is the name of the parameter, such as "PATH".

b. <parm_id> must be separated from <text> by an equal sign or a
blank, such as "PATH =" or "PATH ". ENVIRON takes everything
left of the first blank or equal sign as the <parm id>. The first
character after <parm_id> which is not an equal sign or a blank is
taken as <text>.

c. <text> is the new parameter text. If <text> is a null string, or
consists only of ";" (a single semicolon, such as "PATH = ;"), the
parameter (including <parm_id> =) is removed from the environ
ment string table and the table is compressed.

2. If <parm_id> does not exist, then <parm> is added to the end of
the environment string table.

3. If <parm id> already exists, it is deleted, the environment string
table is compressed, and new <parm> is added to the end of the
table.

EXAMPLES:
Unless changed by the MS-DOS command PATH, the BASIC environ
ment string table is empty. The following statement will create a default
"PATH" to the root directory on Disk A:

PATH =A:\

Commands, Statements, Functions, and Variables 6-65

A new parameter may be added as follows:

ENVIRON "CAT = DOG"

The environment string table now contains:

PATH = A:\;CAT = DOG

The PATH may be changed to a new value by the following statement:

ENVIRON "PATH = A:\SALES;A:\ACCOUNTI NG"

The environment string table now contains:

CAT = DOG;PATH = A:\SALES;A:\ACCOUNTING

The PATH parameter may be appended to the environment string table
by using the ENVIRON$ function with the ENVIRON statement:

ENVIRON "PATH =" + ENVIRON$("PATH") + ";B:\DOG"

The environment path parameters are now:

CAT = DOG;PATH = A:\SALES;A:\ACCOUNTING;B:\DOG

Finally, the parameter CAT may be deleted this way:

ENVIRON CAT =;

The environment string table now contains:

PATH =A:\SALES;A:\ACCOUNTING;B:\DOG

6-66

ENVIRON$ FUNCTION

PURPOSE:

GW-BASICReference Manual

Retrieves the specified environment string from BASIC's environment
string table.

SYNTAX:
X$ = ENVIRON$ «parm»

or:

X$ = ENVIRON$ «nth parm»

<parm> is a valid string expression containing the parameter to
search for.

<nth parm> is an integer expression returning a value in the range
1 to 255.

NOTES:
The following rules apply to the ENVIRON$ function:

1. If a string argument is used, ENVIRON$ returns a string containing the
text following <parm> = from the environment string table.

2. If <parm> = is not found, or if no text follows <parm> = , then a null
string is returned.

3. If a numeric argument is used, ENVIRON$ returns a string containing
the <nth parm> from the environment string table, including the
<parm> = text.

4. If there is no <nth parm>, a null string is returned.

EXAMPLES:
Unless changed by the DOS command PATH, the initial BASIC environ
ment string is empty (see "The ENVIRON Statement" earlier in this
section). The ENVIRON statement example would cause the environ
ment string table to contain:

PATH = A:\SALES;A:\ACCOUNTING;B:\DOG

Commands, Statements, Functions, and Variables 6-67

In this case, the statement:

PRINT ENVIRON$("PATH")

prints the string:

A:\SALES;A:\ACCOUNTING;B:\DOG

Also, the statement:

PRINT ENVIRON$(1)

prints the string:

PATH =A:\SALES;A:\ACCOUNTING;B:\DOG

The following program saves the BASIC environment string table in an
array so it may be modified for a Child process. After the execution of
the Child process is complete, the environment is restored.

10 DIM ENVTBL$(10) :Assume no more than 10 parms
20 N.PARMS = 1 'init number of parms
30 WHILE LEN(ENVIRON$(N.PARMS)) > 0
40 ENVTBL$(N.PARMS) = ENVIRON$(N.PARMS)
50 N.PARMS = N.PARMS + 1
60 WEND
70 N.PARMS = N.PARMS-1 'adjust to correct number
80 'Now store new environment
90 ENVIRON "MYCHILD.PARM1 = SORT BY NAME"
100 ENVIRON "MYCHILD.PARM2 = LIST BY NAME"

1000 SHELL "MYCHILD" 'Runs "MYCHILD.EXE"
1010 FOR 1= 1 TO N.PARMS
1020 ENVIRON ENVTBL$(I) 'Restore parms
1030 NEXT I

6-68

EOF FUNCTION

PURPOSE:
Tests for the end-of-file condition.

SYNTAX:
X = EOF(<file number»

NOTES:

GW-BASIC Reference" Manual

Returns -1 (true) if the end of a sequential file has been reached. To
avoid "Input past end" errors, use EOF to test for end-of-file while
inputting.

EXAMPLE:
10 OPEN "1",1, "DATA"
20 C=O
30 IF EOF(1) THEN 100
40INPUT#1,M(C)
50 C=C+1:GOTO 30

Commands, Statements, Functions, and Variables

ERASE STATEMENT

PURPOSE:
Eliminates arrays from memory.

SYNTAX:
ERASE <list of array variables>

NOTES:

6-69

After an array is erased, either a new DIM statement must be used to
re-create the array, or the previously allocated array space in memory
may be used for other purposes. If an attempt is made to revise the
dimension of an array without first erasing it, a "Duplicate definition"
error occurs.

Make sure that you do not erase any arrays which are part of a current
DEF OBJECT statement.

EXAMPLE:

450 ERASE A,B
460 DIM B(99)

6-70

ERDEVand ERDEV$ VARIABLES

PURPOSE:

GW-BASIC Reference Manual

When a device error routine is entered, the variable ERDEV contains the
error code of the device error. Similarly, if the device causing the error is
a character device, the variable ERDEV$ contains the name of the
device.

The handler for interrupt X'24' sets ERDEV (and ERDEV$ if the device
causing the error is a character device).

ERDEV will contain the INT 24 error code in the lower 8 bits, and the
upper 8 bits will contain the "word attribute bits" (b15-b13) from the
device header block.

If the error was on a character device, ERDEV$ will contain the 8-byte
character device name. If the error was not on a character device,
ERDEV$ will contain the two-character block device name (A:, B:, C:,
etc.).

NOTES:
These variables are read-only variables which you cannot alter with a
BASIC assignment statement.

EXAMPLE:
User-installed device driver "MYLPT2" caused a "Printer out of Paper"
error via INT 24.

ERDEV contains the error number 9 in the lower 8 bits and the device
header word attributes in the upper 8 bits.

ERDEV$ contains "MYLPT2"

\

Commands, Statements, Functions, and Variables

ERR andERL VARIABLES

PURPOSE:

6-71

When an error-handling routine is entered, the variable ERR contains the
error code for the error, and the variable ERL contains the line number of
the line in which the error was detected. The ERR and ERL variables are
usually used in IF. .. THEN statements to direct program flow in the error
handling routine.

If the statement that caused the error was a direct mode statement, ERL
will contain 65535. To test whether an error occurred in a direct
statement, use IF 65535 = ERL THEN Otherwise, use:

IF ERR = <error code> THEN ...

IF ERL= <line number> THEN ...

If the line number is not on the right side of the relational operator, it
cannot be renumbered with RENUM. Because ERL and ERR are
reserved variables, neither may appear to the left of the equal sign in a
LET (assignment) statement. GW-BASIC error codes are listed in
Appendix A, "Error Codes and Error Messages".

NOTES:
These variables are read-only variables that you cannot alter with a
BASIC assignment statement.

6-72

ERROR STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Simulates the occurrence of a BASIC error, or enables the user to define
error codes.

SYNTAX:
ERROR <integer expression>

NOTES:
ERROR can be used as a statement (part of a program source line) or as
a command (in direct mode).

The value of <integer expression> must be greater than 0 and less than
255. If the value of <integer expression> equals an error code already
in use by BASIC (see Appendix A), the ERROR statement will simulate
the occurrence of that error and the corresponding error message will be
printed. (See Example 1.)

To define your own error code, use a value that is greater than any used
by GW-BASIC error codes. (It is preferable to use the highest available
values, so compatibility may be maintained when more error codes are
added to GW-BASIC.) This user-defined error code may then be
conveniently handled in an error-handling routine. (See Example 2.)

If an ERROR statement specifies a code for which no error message has
been defined, GW-BASIC responds with the "Unprintable error" error
message. Execution of an ERROR statement for which there is no error
handling routine causes an error message to be printed and execution
to halt.

EXAMPLES:
The following example:

10 S=10
20T=5
30 ERROR S+ T
40END

will yield:

String too long in line 30

Or, in direct mode:

Ok
ERROR 15
String too long
Ok

Commands, Statements, Functions, and Variables

The following example illustrates a user-defined error code:

110 ON ERROR GOTO 400
120 INPUT 'WHAT IS YOUR BET";B
130 IF B>5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120

6-73

EXP FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns e (base of natural logarithms) to the power of X. X must be
< = 88.02969.

SYNTAX:
Y = EXP(X)

NOTES:
If X is greater than 88.02969, the "Overflow" error message is displayed,
machine infinity with the appropriate sign is supplied as the result, and
execution continues.

EXAMPLE:
The function:

10X=5
20 PRINT EXP(X-1)

will yield:

54.59815

Commands, Statements, Functions, and Variables

FIELD STATEMENT

PURPOSE:
Allocates space for variables in a random file buffer.

SYNTAX:
FIELD [#]<file number>,<field width> AS <string variable> ...

NOTES:

6-75

Before a GET statement or a PUT statement can be executed, a FIELD
statement must be executed to format the random file buffer.

<file number> is the number under which the file was opened.
<field width> is the number of characters to be allocated to
<string variable>.

The total number of bytes allocated in a FIELD statement must not
exceed the record length that was specified when the file was opened.
Otherwise, a "Field overflow" error occurs. (The default record length is
128 bytes.)

Any number of FIELD statements may be executed for the same file. All
FIELD statements that have been executed will remain in effect at the
same time.

Note: Do not use a fielded variable name in an INPUT or LET statement.
After a variable name is fielded, it points to the correct place in the
random file buffer. If a subsequent INPUT or LET statement with that
variable name is executed, the variable's pointer is moved from the
random file buffer to string space.

EXAMPLES:
I n Example 1, the statement:

FIELD 1,20 AS N$,10 AS 10$,40 AS ADD$

allocates the first 20 positions (bytes) in the random file buffer to the
string variable N$, the next 10 positions to 10$, and the next 40 positions
to ADD$. FIELD does not place any data in the random file buffer. (See
also the descriptions of the GET, LSET, and RSET statements, elsewhere
in this section.)

continued on next page

6-76 GW-BASIC Reference Manual

In Example 2, the following statements:

10 OPEN "R",#1,':A:PHONELST",35
15 FIELD #1,2 AS RECNBR$,33 AS DUMMY$
20 FIELD #1,25 AS NAME$,10 AS PHONENBR$
25 GET #1
30 TOTAL = CVI(RECNBR$)
35 FOR I = 2 TO TOTAL
40 GET #1, I
45 PRINT NAME$, PHONENBR$
50 NEXT I

illustrate a multiply defined FIELD statement. In statement 15, the 35-
byte field is defined for the first record to keep track of the number of
records in the file. For the next loop of statements (35-50), statement 20
defines the field for individual names and phone numbers.

In Example 3, the following statements:

10 FOR LOOP% = 0 TO 7
20 FIELD #1,(LOOP%*16) AS OFFSET$,16 AS
A$(LOOP%)
30 NEXT LOOP%

show the construction of a FI ELD statement using an array of elements
of equal size. The result is equivalent to the single declaration:

FIELD #1,16 AS A$(0),16 AS A$(1), ... ,16 AS A$(6),16 AS A$(7)

In Example 4, the following statements:

10 DIM SIZE% (4): REM ARRAY OF FIELD SIZES
20 FOR LOOP% = 0 TO 4:READ SIZE%
(LOOP%): NEXT LOOP%
30 DATA 9,10,12,21,41

120 DIM A$(4): REM ARRAY OF FIELDED VARIABLES
130 OFFSET% = 0
140 FOR LOOP% = 0 TO 4
150 FIELD #1,OFFSET% AS OFFSET$,SIZE%(LOOP%)
AS A$(LOOP%)
160 OFFSET% = OFFSET% + SIZE%(LOOP%)
170 NEXT LOOP%

Commands, Statements, Functions, and Variables 6-77

create a field in the same manner as Example 3. However, the element
size varies with each element. The equivalent declaration is:

FIELD #1 ,SIZE%(O) AS A$(O),SIZE%(1) AS A$(1), ...
SIZE%(4) AS A$(4)

6-78

FILES STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Prints the names of files residing on the specified disk or RAM
cartridge.

SYNTAX:
FILES [<filespec>]

<filespec> includes a filename and an optional device designation.

NOTES:
If <filespec> is omitted, all the files on the currently selected drive will
be listed. <filespec> is a string formula which may contain question
marks (?) or asterisks (*) used as wild cards. A question mark will
match any single character in the filename or extension. An asterisk
will match one or more characters starting at that position. The
asterisk is a shorthand notation for a series of question marks.

FILES also allows a pathname in place of <filespec>. The directory
for the specified path is displayed. If an explicit path is not given, the
current directory is assumed. Sub-directory names are displayed with
"<DIR>" following the directory name.

If you start GW-BASIC directly from the cartridge, rather than from
MS-DOS, the FILES statement operates only with RAM cartridge
directories and pathnames are not valid.

RAM cartridges, like disks, must be formatted before data can
be stored on them. Previously formatted RAM cartridges can be
formatted to delete all data on the cartridge.

A special <filespec> is used with the FILES statement to format RAM
cartridges. The following statement formats a RAM cartridge in
cartridge port 1 :

FILES "CART1 :/FORMAT"

Use the <filespec> string "CART2:/FORMAT" to format a RAM
cartridge in cartridge port 2. This special <filespec> can also be
used with the KILL and NAME statements to format a RAM cartridge.

EXAMPLES:
FILES

shows all files on currently logged disk.

Commands, Statements, Functions, and Variables

FILES "*.BAS"

shows all files with extension .BAS.

FILES "B:*. *" or FILES "B:"

shows all files on drive B.

FILES "TEST?BAS"

shows all five-letter files whose names start with "TEST" and end with
the .BAS extension.

FILES "CART1:*.*"

shows all files on the RAM cartridge in cartridge port 1.

FILES ',\SALES"

displays the directory entry SALES. If SALES is a valid directory, this
statement displays the list of files and subdirectories in SALES.

FILES "\SALES\MARY\"

displays all files in MARY's directory.

6-79

6-80

FIX FUNCTION

PURPOSE:
Returns the truncated integer part of X.

SYNTAX:
Y = FIX(X)

NOTES:

GW-BASIC Reference Manual

FIX(X) is equivalent to SGN(X)* INT(ABS(X)). The difference between
FIX and INT is that FIX does not return the next lower number for
negative X.

EXAMPLES:
The function:

PRINT FIX(58.75)

will yield:

58

The function:

PRINT FIX(- 58.75)

will yield:

-58

Comrr.ands, Statements, Functions, and Variables

FOR ... NEXT STATEMENT

PURPOSE:
Enables a series of instructions to be performed in a loop a given
number of times.

SYNTAX:
FOR <variable> = X TO Y [STEP Z]

NEXT [<variable>][, <variable> ...]

X, Y, and Z are numeric expressions.

NOTES:

6-81

<variable> is used as a counter. The first numeric expression (X) is the
initial value of the counter. The second numeric expression (Y) is the
final value of the counter.

FOR ... NEXT Loops

The program lines following the FOR statement are executed until the
NEXT statement is encountered. Then the counter is adjusted by the
amount (Z) specified by STEP. A check is performed to see if the value
of the counter is now greater than the final value (Y). If it is not greater,
GW-BASIC loops back to the statement after the FOR statement and the
process is repeated. If the value of the counter is greater, execution
continues with the statement following the NEXT statement.

If STEP is not specified, the increment is assumed to be one. If STEP is
negative, the final value of the counter is set to be less than the initial
value. The counter is decreased at each pass through the loop. The
loop is executed until the counter is less than the final value.

The counter must be an integer or single precision numeric variable.
Using a double precision numeric constant results in a "Type mismatch"
error.

The body of the loop is skipped if the initial value of the loop times the
sign of the STEP exceeds the final value times the sign of the STEP.

continued on next page

6-82 GW-BASIC Reference Manual

Nested Loops

FOR ... NEXT loops may be nested; that is, a FOR ... NEXT loop may be
placed within the context of another FOR ... NEXT loop. When loops are
nested, each loop must have a unique variable name as its counter. The
NEXT statement for the inside loop must appear before the NEXT
statement for the outside loop. If nested loops have the same end point,
a single NEXT statement may be used for all of them.

The variable(s) in the NEXT statement may be omitted, in which case the
NEXT statement will match the most recent FOR statement. If a NEXT
statement is encountered before its corresponding FOR statement, a
"NEXT without FOR" error message is issued and execution is
terminated.

EXAMPLES:
In Example 1:

10 K=10
20 FOR I = 1 TO K STEP 2
30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT

will yield:

120
330
540
750
960

In Example 2:

10 J=O
20 FOR I = 1 TO J
30 PRINT I
40 NEXT I

the loop does not execute because the initial value of the loop exceeds
the final value.

Commands, Statements, Functions, and Variables

In Example 3:

101=5
20 FOR I = 1 TO I + 5
30 PRINT I;
40 NEXT

will yield:

12345678910

The loop executes ten times. The final value for the loop variable is
always set before the initial value is set.

6-83

6-84

FRE FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns the number of free bytes. With a numeric argument, FRE returns
the number of bytes in memory that are not being used by GW-BASIC.
Arguments to FRE are dummy arguments.

SYNTAX:
X = FRE(O)
X = FRE("")

NOTES:
FRE('''') forces a garbage collection before returning the number of free
bytes. Garbage collection may take as long as 1 to 1-112 minutes.

GW-BASIC does not initiate garbage collection until all free memory has
been used up. Therefore, using FRE("") periodically results in shorter
delays for each garbage collection.

EXAMPLE:
PRINT FRE(O)

prints the number of bytes free for BASIC statements.

Commands, Statements, Functions, and Variables

GET STATEMENT (FILES)

PURPOSE:
Reads a record from a random disk file into a random buffer.

SYNTAX:
GET [#]<file number>[,<record number>]

NOTES:

6-85

<file number> is the number under which the file was OPENed. If
<record number> is omitted, the next record (after the last GET) is read
into the buffer. 'The largest possible record number is 16,777,215. The
smallest possible record number is 1.

The GET and PUT statements allow fixed-length input and output for
GW-BASIC communications (COM) files. However, because of the low
performance associated with telephone line communications, GET and
PUT statements are not recommended for telephone communication.

After a GET statement has been executed, INPUT# and LINE INPUT #
may be executed to read characters from the random file buffer.

EXAMPLE:
GET #1,75

will place record number 75 from the file OPENed as #1 into the random
buffer.

6-86 GW-BASIC Reference Manual

GET STATEMENT (GRAPHICS)

PURPOSE:
Used with the PUT statement to transfer graphic images (objects) to and
from the screen and to retrieve graphic images for animation.

SYNTAX:
GET (X1, Y1) - (X2, Y2), <array name>

(X1 ,Y1) - (X2,Y2) is a rectangle which contains the object on the display
screen. The rectangle is defined the same way as the rectangle drawn
by the LINE statement using the ,B option.

<array name> is the name assigned to the array that will hold the
image. The array can be any type except a string array. The array
dimension must be large enough to hold the entire image. Unless the
array is type integer, however, the contents of the array after a GET will
be meaningless when interpreted directly.

NOTES:
The GET statement transfers the screen image bounded by the
rectangle described by the specified points into the array. Later, a
corresponding PUT statement can transfer the image stored in the array
back onto the screen. Additionally, these objects can be used for
animation.

The number of words required for an array depends on the number of
bits per pixel in the current screen mode and on the size of the rectangle
containing the image. If you use the DIM OBJECT statement described
previously in this section to create an array for an object, the array will be
sized properly for the GET statement. Otherwise, use these formulas to
calculate the number of words required for an object array:

Modes 2, 3, and 7:
Modes 1, 5, and 6:
Mode 4:

INT((X + 15)/16) * Y + 2
INT((X * 2 + 15)/16) * Y + 2
INT((X * 4 + 15)/16) * Y + 2

In these formulas, X is the number of horizontal pixels and Y is the
number of vertical pixels in the rectangle defined by the coordinates
(X1 ,Y1) - (X2,Y2). The additional two words in the formulas hold the X
and Y dimensions of the rectangle containing the object.

The actual value used in the DIM statement for an array depends on the
type of the array. Integer arrays hold 1 word per element, single
precision arrays hold 2 words per element, and double precision arrays
hold 4 words per element.

Commands, Statements, Functions, and Variables 6-87

EXAMPLE:
10 DIM FIGURE1 (44)
20 GET (10,10) - (30,30), FIGURE1

will record the image contained in the rectangle bounded by diagonal
corners (10,10) and (30,30) and store it in the array named FIGURE1.
(Note that each dimension of this rectangle is 21 pixels, not 20.) To
determine the dimension required for the FIGURE1 array, this example
assumes that the screen mode is 3 and that the array type is integer.

6-88

GOSUB ... RETURN STATEMENTS

PURPOSE:
Branches to and returns from a subroutine.

SYNTAX:
GOSUB <line number>

RETURN [<line number>]

NOTES:

GW-BASIC Reference Manual

<line number> in the GOSUB statement is the first line of the
subroutine.

A subroutine may be called any number of times in a program. A
subroutine also may be called from within another subroutine. Such
nesting of subroutines is limited only by available memory.

Simple RETURN statement(s) in a subroutine cause GW-BASIC to
branch back to the statement following the most recent GOSUB state
ment. If logic dictates a return at different points in the subroutine, a
subroutine may contain more than one RETURN statement.

The <line number> option may be included in the RETURN statement
to return to a specific line number from the subroutine. Use this type of
return with care, however, because any other GOSUBs, WHILEs, or
FORs that were active at the time of the GOSUB will remain active, and
errors such as "FOR without NEXT" may result.

Subroutines may appear anywhere in the program; however, each
subroutine should be readily distinguishable from the main program. To
prevent inadvertent entry into the subroutine, precede it with a STOP,
END, or GOTO statement that directs program control around the
subroutine.

EXAMPLE:
The statements:

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30END
40 PRINT "SUBROUTINE";
50 PRINT" IN";
60 PRINT" PROGRESS"
70 RETURN

Commands, Statements, Functions, and Variables

will yield:

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

6-89

6-90

GOTO STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Branches unconditionally out of the normal program sequence to a
specified line number.

SYNTAX:
GOTO <line number>

NOTES:
If <line number> is an executable statement, that statement and those
following are executed. If <line number> is a nonexecutable statement,
execution proceeds at the first executable statement encountered after
<line number>.

EXAMPLE:
10 READ R
20 PRINT "R = ";R,
30 A=3.14*R/\2
40 PRINT 'f\REA = ";A
50 GOTO 10
60 DATA 5,7,12

will yield:

R=5
R = 7
R = 12
Out of data in 10

AREA = 78.5
AREA = 153.86
AREA = 452.16

Commands, Statements, Functions, and Variables

HEX$ FUNCTION

PURPOSE:
Returns a string that represents the hexadecimal value of the decimal
argument.

SYNTAX:
Y$ = HEX$(X)

NOTES:
X is rounded to an integer before HEX$(X) is evaluated.

EXAMPLE:
The function:

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X "DECIMAL IS "A$" HEXADECIMAL"

will yield:

? 32
32 DECIMAL IS 20 HEXADECIMAL

For details on octal conversion, see the OCT$ function, later in this
section.

6-91

6-92 GW-BASIC Reference Manual

IF ... THEN[... ELSE]/IF ... GOTO STATEMENTS

PURPOSE:
Makes a decision regarding program flow based on the result returned
by an expression.

SYNTAX 1:
IF <expression> THEN { <statement(s»I<line number>}
[ELSE {<statement(s»I<line number>}]

SYNTAX 2:
IF <expression> GOTO <line number>
[ELSE { <statement(s»I<line number>}]

NOTES:
If the result of <expression> is not zero, the THEN or GOTO clause is
executed. THEN may be followed by either a line number for branching
or one or more statements to be executed. GOTO is always followed by
a line number.

If the result of <expression> is zero, the THEN or GOTO clause is
ignored and the ELSE clause, if present, is executed. Execution
continues with the next executable statement.

A comma is allowed before THEN.

Nested IF Statements

IF. .. THEN ... ELSE statements may be nested. Nesting is limited only by
the length of the line. For example:

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not contain the same number
of ELSE and THEN clauses, each ELSE is matched with the closest
unmatched THEN. For example:

IFA=B THEN IF B=C THEN PRINT ''A = C"
ELSE PRINT ''A<>C''

will not print ''A<>C'' when A<>B.

If an IF. .. THEN statement is followed by a line number in direct mode, an
"Undefined line" error results, unless a statement with the specified line
number had previously been entered in indirect mode.

Commands, Statements, Functions, and Variables 6-93

Floating-Point Computations

When using IF to test equality for a value that is the result of a floating
point computation, remember that the internal representation of the
value may not be exact. Therefore, the test should be against the range
over which the accuracy of the value may vary. For example, to test a
computed variable A against the value 1.0, use:

IF ABS (A -1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0 with a relative error of less than
1.0E-6.

EXAMPLES:
In Example 1:

200 IF I THEN GET #1, I

this statement GETs record number I from file number 1 if I is not zero.

In Example 2:

100 IF(I<20)*(I>10) THEN DB = 1979 -1 : GOTO 300
110 PRINT "OUT OF RANGE"

a test determines if I is greater than 10 and less than 20. If I is within this
range, DB is calculated and execution branches to line 300. If I is not
within this range, execution continues with line 110.

In Example 3:

210 IF 10FLAG THEN PRINT A$ ELSE LPRINT A$

this statement causes printed output to go either to the screen or the line
printer, depending on the value of the variable 10FLAG. If 10FLAG is
zero, output goes to the line printer; otherwise, output goes to the
screen.

6-94

INKEY$ FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns a string containing a character read from the keyboard.

SYNTAX:
X$ = INKEY$

NOTES:
The INKEY$ function does not echo characters to the screen. All
characters are passed through to the program except for the BREAK
key, CTRL-BREAK, and CTRL-C, which terminate the program.

The INKEY$ function returns the next ch@.racterfrom the keyboard buffer.
The string returned by INKEY$ is 0,1, or 2 characters long. A null string
is returned if there are no characters waiting to be read from the
keyboard buffer.

INKEY$ returns a string containing a single character for keys with ASCII
character codes (see Appendix C for a list of the ASCII character
codes). A two-character string is returned for keys with extended codes.
The first character is code 000, and the second character is the
extended code for that key. (See Appendix C for a list of extended
character codes.)

EXAMPLE:
This routine uses a FOR-NEXT loop to limit the amount of time allowed to
answer a prompt:

1000 'TIMED INPUT SUBROUTINE
1010 RESPONSE$ = ""
1020 FOR 1%=1 TOTIMELlMIT%
1030 A$ = INKEY$: IF LEN(A$}=O THEN 1060
1040 IF ASC(A$} = 13 THEN TIMEOUT% = 0: RETURN
1050 RESPONSE$ = RESPONSE$ + A$
1060 NEXT 1%
1070TIMEOUT%=1: RETURN

Commands, Statements, Functions, and Variables

INP FUNCTION

PURPOSE:
Returns the byte read from port I. I must be in the range 0 to 65535.

SYNTAX:
X = INP(I)

NOTES:
INP is the complementary function to the OUT statement.

EXAMPLE:
100 A= INP(54321)

In 80186 assembly language, this function is equivalent to:

MOV DX,54321
IN AL,DX

6-95

6-96

INPUT STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Allows input from the keyboard during program execution.

SYNTAX:
INPUT[;] [<"prompt string">{;I,}]<list of variables>

NOTES:
When an INPUT statement is encountered, program execution pauses
and a question mark is printed to indicate that the program is waiting for
data. If <"prompt string"> is included, the string is printed before the
question mark. The required data is then entered at the keyboard.

To suppress the question mark, a comma may be used instead of a
semicolon after the prompt string. For example, the statement INPUT
"ENTER BIRTHDATE",B$ will print the prompt with no question mark.

If INPUT is immediately followed by a semicolon, then the carriage return
typed by the user to input data does not echo a carriage return/linefeed
sequence.

The data entered in response to the statement is assigned to the variable
name(s) given in <variable list>. The number of data items supplied
must be the same as the number of variables in the list. Data items are
separated by commas.

The variable names in the list may be numeric or string variable names
(including subscripted variables). The type of each data item that is
input must agree with the type specified by the variable name. (Strings
input to an INPUT statement need not be surrounded by quotation
marks.)

Responding to INPUT with too many or too few items or with the wrong
type of value (numeric instead of string, and so on) causes the message
"?Redo from start" to be printed. No assignment of input values is made
until an acceptable response is given.

EXAMPLES:
The statement:

10lNPUTX
20 PRINTX "SQUARED IS" X!\2
30 END

will yield:

? 5 (The 5 was typed in by the user in response to the question mark.)
5 SQUARED IS 25

Commands, Statements, Functions, and Variables

The statement:

10PI=3.14
20 INPUT "WHAT IS THE RADIUS";R
30A=PI*R/\2
40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
60 GOTO 20

will yield:

WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.9464

WHAT IS THE RADIUS?

6-97

6-98

INPUT# STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Reads data items from a sequential device or file and assigns them to
program variables.

SYNTAX:
INPUT#<file number>,<variable list>

NOTES:
<file number> is the number used when the file was OPENed for input.
<variable list> contains the variable names that will be assigned to the
items in the file. (The variable type must match the type specified by the
variable name.) With INPUT #, no question mark is printed, as with
INPUT.

The data items in the file should appear just as they would if data were
being typed in response to an INPUT statement. With numeric values,
GW-BASIC ignores leading spaces, carriage returns, and linefeeds. The
first character encountered that is not a space, carriage return, or
linefeed is assumed to be the start of a number. The number terminates
on a space, carriage return, linefeed, or comma.

If GW-BASIC is scanning the sequential data file for a string item, it will
also ignore leading spaces, carriage returns, and linefeeds. The first
character encountered that is not a space, carriage return, or linefeed is
assumed to be the start of a string item.

If this first character is a quotation mark ("), the string item will consist of
all characters read between the first quotation mark and the second.
Thus, a quoted string may not contain a quotation mark as a character.
If the first character of the string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma, carriage return, or
linefeed (or after 255 characters have been read).

If end-of-file is reached when a numeric or string item is being INPUT,
the item is terminated.

EXAMPLE:
INPUT#2,A,B,C

Commands, Statements, Functions, and Variables

INPUT$ FUNCTION

PURPOSE:
Returns a string of I characters, read from file number J. If the file
number is not specified, the characters will be read from the screen.

SYNTAX:
X$ = INPUT$(I[,[#]J])

NOTES:
If the keyboard is used for input, no characters will be echoed on the
screen. All control characters are passed through except CTRL-C,
which is used to interrupt the execution of the I NPUT$ function.

EXAMPLES:
Example 1:

6-99

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN HEXADECIMAL
100PEN"I",1,"DATA"
20 IF EOF(1) THEN 50
30 PRINT HEX$(ASC(INPUT$(1,#1)));
40 GOTO 20
50 PRINT
60END

Example 2:

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110X$=INPUT$(1)
120 IF X$= "P" THEN 500
130 IF X$ = "S" THEN 700 ELSE 100

6-100

INSTR FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Searches for the first occurrence of string Y$ in X$, and returns the
position at which the match is found. Optional offset I sets the position
for starting the search.

SYNTAX:
J = INSTR([I,]X$,Y$)

NOTES:
I must be in the range 1 to 255. If I is greater than the number of
characters in X$ (LEI\i(X$)), or if X$ is null or Y$ cannot be found, INSTR
returns O. If Y$ is null, INSTR returns I or 1. X$ and Y$ may be string
variables, string expressions, or string literals.

EXAMPLE:
The function:

10 X$ = ':A.8CDE8"
20 Y$= "8"
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)

will yield:

26

Commands, Statements, Functions, and Variables

INT FUNCTION

PURPOSE:
Returns the largest integer < = X.

SYNTAX:
Y = INT(X)

EXAMPLES:
The function:

PRINT INT(99.89)

will yield:

99

The function:

PRINT INT(-12.11)

will yield:

-13

6-101

See the CINT and FIX functions, earlier in this section, which also return
integer values.

6-102

IOCTL STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Enables a BASIC program to send a control data string to a user
supplied character device driver any time after the driver has been
OPENed.

SYNTAX:
IOCTL [#]<file number>, <string>

<file number> is the file number open to the device driver.

<string> is a valid string expression containing the control data as
interpreted by the user-supplied driver.

NOTES:
IOCTL commands are generally 2 to 3 characters, optionally followed
by an alphanumeric argument. An IOCTL command string may be up
to 255 bytes long, with commands within the string separated by
semicolons (';'). An example of an IOCTL command string is:
"OO;SW132;GW" .

EXAMPLES:
If a user had installed a device driver to replace LPT1, and that driver
was able to set page length (the number of lines to print on a page
before issuing a form feed character), then an IOCTL command to set or
change the page length might have the form:

PLn

Where n is the new page length.

An IOCTL statement to open the new LPT1 driver and set the page
length would then be:

OPEN "LPT1:" FOR OUTPUT AS #1
IOCTL #1, "PL66"

This statement opens LPT1 with an initial page length of 66 lines. The
statement:

OPEN ',\OEV\LPT1" FOR OUTPUT AS #1
IOCTL #1, "PL56"

would also open LPT1, but with an initial page length of 56 lines.

Of course, other user-definable IOCTL commands are possible, but the
user must supply the device driver to interpret the commands.

Commands, Statements, Functions, and Variables

IOCTL$ FUNCTION

PURPOSE:

6-103

Enables a BASIC program to read a control data string from a character
device driver that is OPEN.

SYNTAX:
X$ = IOCTL$([#]<file number»

<file number> is the file number open to the device.

NOTES:
The IOCTL$ function is generally used to get acknowledgement that an
IOCTL statement succeeded or failed. It is also used to get device
information after an IOCTL command is issued using the IOCTL
statement.

EXAMPLE:
OPEN ',\OEV\FOO" AS #1
IOCTL #1, "RAW" 'Tell device that data is "raw"
IF IOCTL$(1) = "0" THEN CLOSE 1

In this example, if character driver 'FOO' returns false from the raw data
mode IOCTL request, the program closes the file because raw data is
required by the program. This example assumes that a device driver
FOO, programmed to accept the required control strings, has been
installed.

6-104

KEY STATEMENT

PURPQSE:

GW-BASIC Reference Manual

Assigns softkey values to function keys and display the values.

SYNTAX:
KEY n,X$
KEY n,CHR$«shift>)+CHR$«scan code»
KEY LIST
KEY ON
KEY OFF

n is the number of the key definition, as follows:

n Key n Key

1 F1 11 Cursor up
2 F2 12 Cursor left
3 F3 13 Cursor right
4 F4 14 Cursor down
5 F5 15 User-defined
6 F6 16 User-defined
7 F7 17 User-defined
8 F8 18 User-defined
9 F9 19 User-defined

10 F10 20 User-defined

X$ is the text assigned to the specified key.

NOTES:
The KEY statement allows function keys to be designated for special
"softkey" functions. Each of the ten function keys may be assigned a
15-byte string which, when that key is pressed, will be input to
GW-BASIC.

Initially, the soft keys are assigned the following values (the names of
keys are boxed):

Key Value Key Value

F1 LlSTI SPACE BAR I F6 ,"LPT1 :" I RETURN I

F2 RUN I RETURN I F7 TRON I RETURN I

F3 LOAD" F8 TROFFI RETURN I

F4 SAVE" F9 KEY I SPACE BAR I
F5 CONT I RETURN I F10 SCREEN 0,0,0, I RETURN I

After soft keys have been designated, they can be displayed with the
KEY ON and KEY LIST statements.

Commands, Statements, Functions, and Variables 6-105

KEY ON causes the softkey values to be displayed on the twentycfifth
line of the screen. When the screen width is 80, ten soft keys are .
displayed. When the screen width is 40 cha.racters, the first five of the.
ten softkeys are displayed; pressing CTRL-T causes the second five
softkeys to be displayed. In either screen width, onlY the first 6
characters of each key are displayed. ON is the default state for the
soft key display.

KEY OFF erases the soft key display from the twenty-fifth line, making
that line available for program use. It does hot disable the function keys.

KEY LIST displays all ten soft key values on the screen,with all 15
characters of each key displayed.

If the function key number is not in the range 1-20, an "Illegal function
call" error is produced, and the previous key string expression is
retained.

Assigning a null string (string of length 0) to a softkey disables the
function key as a s oft key.

When a soft key is assigned, the INKEY$ function returns one character
of the softkey string per invocation.

GW-BASIC processes softkeys in the following order:

1. The line printer echo key is processed first. Defining the Print Screen
key as a user-defined key trap will not prevent characters from being
echoed to the line printer if depressed.

2. Function keys and the cursor direction keys are examined next.
Defining a function key or cursor direction key as a user-defined key
trap will have no effect, because they are considered pre-defined.

3. Finally, the user-defined keys are examined.

4. Any key that is trapped is not passed on. That is, the key is not read
by GW-BASIC.

Key trapping applies to any key, including CTRL-C, CTRL-BREAK, or
BREAK. This feature makes it possible to prevent BASIC Application
users from accidentally halting a program with CTRL-BREAK.

continued on next page

6-106 GW-BASIC Reference Manual

EXAMPLES:
50 KEY ON 'Displays the softkey on 25th line
60 KEY OFF' Erases softkey display
70 KEY 1, "MENU" + CHR$(13) , Assigns the string
"MENU" followed by a carriage return to softkey 1.
80 KEY 1, "" 'Disables soft key 1

Assignments like these might be used to speed data entry.

The following routine initializes the first five softkeys:

10 KEY OFF 'Turns off key display during initialization
20 DATA KEY1,KEY2,KEY3,KEY4,KEY5
30 FOR I = 1 TO 5
40 READ SOFTKEYS$(I)
50 KEY I,SOFTKEY$(I)
60 NEXT I
70 KEY ON 'Displays new softkeys

Commands, Statements, Functions, and Variables

KEY(n) STATEMENT

PURPOSE:

6-107

Enables or disables event trapping of softkey or cursor direction key
activity for the specified function key.

SYNTAX:
KEY(n) ON
KEY(n) OFF
KEY(n) STOP

(n) is the number of a function key or cursor direction key. (See "KEY
Statement" for information on assigning softkey values to function
keys.) The cursor direction keys are numbered sequentially after the
function keys in the following order: up, left, right, down.

NOTES:
Note that the KEY statement assigns softkey and cursor direction values
to function keys and displays the values. Do not confuse KEY ON and
KEY OFF, which display and erase these values, with the event-trapping
statements described here.

The KEY(n) ON statement enables softkey or cursor direction key event
trapping by an ON KEY statement (see "ON KEY Statement" for more
information). While trapping is enabled, if a non-zero line number is
specified in the ON KEY statement, GW-BASIC checks between every
statement to see if a soft key or cursor direction key has been used. If it
has, the ON KEY statement is executed.

KEY(n) OFF disables the event trap. If an event takes place, it is not
remembered.

KEY(n) STOP disables the event trap, but if an event occurs, it is
remembered and an ON KEY statement will be executed as soon as
trapping is enabled.

continued on next page

6-108 GW-BASIC Reference Manual

EXAMPLE:
10 KEY 4, "SCREEN 0,0" , assigns softkey 4
20 KEY(4) ON 'enables event trapping

70 ON KEY(4) GOSUB 200

(key 4 pressed)

200 'Subroutine for screen

Commands, Statements, Functions, and Variables

KILL STATEMENT

PURPOSE:
Deletes a file from disk or a RAM cartridge.

SYNTAX:
KILL <filespec>

NOTES:

6-109

KILL is used for all types of disk files: program files, random data files,
and sequential data files. The filespec may contain question marks (?)
or asterisks (*) used as wild cards. A question mark will match any
single character in the filename or extension. An asterisk will match one
or more characters starting at the position of the asterisk.

KILL also allows a path name in place of <filespec>. KILL checks to see
if the file is open; and, if so, will give a "File already open" error.

KILL, like OPEN, cannot distinguish a file in another directory from a file
you may have open. It is possible to get an unexpected "File already
open" error under these circumstances. (See "OPEN Statement" later in
this section.)

KILL can delete disk files only if GW-BASIC was started from MS-DOS.
Otherwise KILL can delete only BASIC files contained on RAM
cartridges.

KILL may be used to format a cartridge by using <filespec> of the form
"CARTn:!FORMAT" where n = 1 or 2. (See the FILES statement for more
information on formatting RAM cartridges.)

Warning: Be extremely careful when using wild cards with this
command.

EXAMPLES:
200 KILL "DATA1?.DAT"

Deletes all files whose six-letter names begin with DATA1 and have the
extension ,OAT.

The position taken by the question mark can contain any valid filename
character.

210 KILL "DATA1.*"

deletes all files named DATA1, regardless of the file extension.

continued on next page

6-110 GW-BASIC Reference Manual

130 KILL "CART2:ABC.123"

deletes the file ABC.123 from the RAM cartridge in cartridge port 2.

Commands, Statements, Functions, and Variables

LEFT$ FUNCTION

PURPOSE:
Returns a string comprising the leftmost I characters of X$.

SYNTAX:
Y$ = LEFT$(X$,I)

NOTES:
I must be in the range a to 255. If I is greater than the number of
characters in X$ (LEN(X$)), the entire string (X$) will be returned.
If I = 0, the null string (length zero) is returned.

EXAMPLE:
The function:

10 A$ = "BASIC"
20 B$ = LEFT$(A$,3)
30 PRINT B$

will yield:

BAS

Also, see the MID$ and RIGHT$ functions elsewhere in this section.

6-111

6-112

LEN FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns the number of characters in X$. Nonprinting characters and
blanks are also counted.

SYNTAX:
Y = LEN(X$)

EXAMPLE:
The function:

10 X$ = "PORTLAND, OREGON"
20 PRINT LEN(X$)

will yield:

16

Commands, Statements, Functions, and Variables

LET STATEMENT

PURPOSE:
Assigns the value of an expression to a variable.

SYNTAX:
[LET]<variable> = <expression>

NOTES:

6-113

Notice that the word LET is optional; in other words, the equal sign is
sufficient for assigning an expression to a variable name.

EXAMPLES:
110 LET D =12
120 LET E = 12/\ 2
130 LET F = 12/\4
140 LET SUM = D+E+F

or:

110D=12
120 E = 12/\2
130 F=12/\4
140 SUM=D+E+F

6-114

LINE STATEMENT

PURPOSE:
Draws a line or box on the screen.

SYNTAX:

GW-BASIC Reference Manual

LINE [(X1, Y1)] - (X2, Y2) [,[<color>][, B[F]][, <style>]]

(X1 ,Y1) is the coordinate for the starting point of the line.

(X2,Y2) is the ending point for the line.

<color> is the number of the color in which the line should be drawn.
(See "COLOR Statement" earlier in this section for more information.) If
the ,B or ,BF option is used, the box is drawn in this color.

,B draws a box in the foreground, with the pOints (X1 ,Y1) and (X2,Y2) as
opposite corners.

,BF draws a filled box in the foreground.

<style> is a 16-bit integer mask used when placing pixels on the
screen.

NOTES:
When out-of-range coordinates are given, line clipping occurs. Points
plotted outside the screen or viewport limits do not appear.

The <style> argument provides dashed lines. Each time LINE stores a
point on the screen, it will use the current circulating bit in <style>. If
that bit is 0, storage does not occur. If the bit is a 1, then a normal
storage occurs. After each point, the next bit position in <style> is
selected.

Since a a bit in <style> does not clear out the old contents, the user
may wish to draw a background line before a 'styled' line to force a
known background.

<style> operates only for normal lines and boxes; it has no effect on
filled boxes.

The coordinate form STEP (xoffset,yoffset) can be used in place of an
absolute coordinate. For example, assume that the most recent point
referenced was (0,0). The statement LINE STEP (10,5) would specify a
point at offset 10 from X and offset 5 from y.

Commands, Statements, Functions, and Variables 6-115

If the STEP option is used for the second coordinate on a LINE
statement, it is relative to the first coordinate in the statement. The only
other way to establish a new "most recent point" is to initialize the screen
with the CLS and SCREEN statements.

EXAMPLES:
The following examples assume a screen 320 pixels wide by 200 pixels
high. The statement:

10 LINE - (X2,Y2)

draws a line from the last point to X2,Y2 in the foreground color. This is
the simplest form of the LI NE statement. The statement:

20 LINE (0,0) - (319,199)

draws a diagonal line across the screen (downward, from left to right).
The statement:

30 LINE (0,100) - (319,100)

draws a line from left to right across the screen. The statement:

40 LINE (10,10) - (20,20),2

draws a line in color 2. The statements:

10 CLS
20 LINE - (RND*319,RND*199),RND*4
30GOT020

draw lines forever, using random attributes. The statements:

10 FOR X=O to 319
20 LINE (X,O) - (X,199),X AND 1
30 NEXT

draw an alternating line-on, line-off pattern. The statement:

10 LINE (0,0) - (100,100)"B

draws a box in the foreground (note that the color is not included). The
statement:

20 LINE STEP (0,0) - STEP (200,200),2,BF

continued on next page

6-116 GW-BASIC Reference Manual

draws a filled box in the foreground in color 2. Coordinates are given as
offsets. The statement:

10 LINE (0,0) - (160,100),3,,&HFFOO

draws a dashed line from the upper left corner of the screen to the
center.

Commands, Statements, Functions, and Variables

LINE INPUT STATEMENT

PURPOSE:
Reads the input of an entire line (up to 254 characters) from the
keyboard to a string variable, without the use of delimiters.

SYNTAX:
LINE INPUT[;][<"prompt string">;] <string variable>

NOTES:

6-117

< "prompt string"> is a string literal that is printed on the screen before
input is accepted. A question mark is not printed unless it is part of
< "prompt string">. All input from the end of < "prompt string"> to the
carriage return is assigned to <string variable>. If a linefeed/carriage
return sequence (in this order only) is encountered, both characters are
echoed; however, the carriage return is ignored, the linefeed is put into
<string variable>, and data input continues.

If LINE INPUT is immediately followed by a semicolon, then the carriage
return typed by the user to end the input line does not echo a carriage
return/linefeed sequence on the screen.

A LINE INPUT statement may be aborted by typing CTRL-C. In that
case, GW-BASIC will return to command level. Typing CONT resumes
execution at the LINE INPUT.

EXAMPLE:
See "LINE INPUT# Statement".

6-118

LINE INPUT# STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Reads an entire line (up to 254 characters), without delimiters, from a
sequential disk data file to a string variable.

SYNTAX:
LINE INPUT <file number>,<string variable>

NOTES:
<file number> is the number under which the file was OPENed.
<string variable> is the variable name to which the line will be assigned.

LINE INPUT# reads all characters in the sequential file up to a carriage
return. (If a linefeed/carriage return sequence is encountered, it is
preserved in the same way as in the LINE INPUT statement.) It then skips
over the carriage return/linefeed sequence. The next LINE INPUT #
reads all characters up to the next carriage return.

LINE INPUT# is especially useful if each line of a data file has been
broken into fields, or if a GW-BASIC program saved in ASCII format is
being read as data by another program. (See "SAVE Command" later in
this section for more information.)

EXAMPLE:
The routine:

10 OPEN "0",1, "LIST"
20 LINE INPUT "CUSTOMER INFORMATION? ";C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN "1",1, "LIST"
60 LINE INPUT #1, C$
70 PRINTC$
80 CLOSE 1

will yield:

CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS

Commands, Statements, Functions, and Variables

LIST COMMAND

PURPOSE:
Lists all or part of the program currently in memory on the screen.

SYNTAX 1:
LIST [<line number> 1

SYNTAX 2:
LIST [<line number>][- [<line number> llL <device> 1

<line number> is in the range a to 65529.

6-119

<device> is a string expression returning a device designation, such as
"LPT1".

NOTES:
GW-BASIC always returns to command level after a LIST is executed.

Syntax 1

If <line number> is omitted, the program is listed beginning at the
lowest line number. (Listing is terminated either when the end of the
program is reached or by typing CTRL-C.) If <line number> is included,
only the specified line will be listed.

Syntax 2

This syntax allows the following options:

1. If the first <line number> is followed by a hyphen and a second <line
number> is not specified, the first line number and all higher
numbered lines are listed.

2. If only the second <line number> (preceded by a hyphen) is
specified, all lines from the beginning of the program through that line
are listed.

3. If both <line number(s» are specified, the entire range is listed.

4. If the <device> is omitted, the listing is shown on the screen.

continued on next page

6-120 GW-BASIC Reference Manual

EXAMPLES:
The following statements illustrate Syntax 1:

LIST

lists the program currently in memory.

LIST 500

lists line 500.

The following statements illustrate Syntax 2:

LIST 150-

lists all lines from 150 to the end.

LIST -1000

lists all lines from the lowest number through 1000.

LIST 150 -1000

lists lines 150 through 1000, inclusive.

LIST 150-1000,"LPT1"

lists lines 150 through 1000 on the line printer.

!
\

Commands, Statements, Functions, and Variables

LUST COMMAND

PURPOSE:
Lists all or part of the program currently in memory at the line printer.

SYNTAX:
LLiST [<line number>[- [<line number> III

NOTES:
LLiST assumes a 132-character-wide printer.

6-121

GW-BASIC always returns to command level after an LLiST command is
executed.

The options for LLiST are the same as for LIST, except that the
<device> is always LPT1:. Therefore, a <device> specification is
illegal in the LLiST command.

EXAMPLE:
See the examples for "LIST Statement" .

6-122

LOAD COMMAND

PURPOSE:

GW-BASIC Reference Manual

Loads a file from disk or RAM cartridge into memory.

SYNTAX:
LOAD <filespec>[,R]

NOTES:
The <filespec> must include the filename that was used when the file
was saved. If an extension is not specified, MS-DOS supplies .BAS as
the extension.

The device specifications for cartridge port 1 and cartridge port 2 are
CART1: and CART2:, respectively.

The R option automatically runs the program after it has been loaded.

LOAD closes all open files and deletes all variables and program lines
currently residing in memory before loading the designated program.
However, if the R option is used with LOAD, the program is RUN after it is
LOADed, and all open data files are kept open. Thus, LOAD with the R
option may be used to chain several programs (or segments of the same
program). Information may be passed between the programs using their
disk data files.

EXAMPLES:
The statement:

LOAD "STRTRK",R

loads and runs the program STRTRK. The statement:

LOAD "B:MYPROG"

loads the program MYPROG from the disk in drive B, but does not run
the program. The statement:

LOAD "CART1 :TEST"

loads the program TEST from the RAM cartridge in cartridge port 1.

Commands, Statements, Functions, and Variables

LOC FUNCTION

PURPOSE:

6-123

With random disk files, LOC returns the actual record position within the
file number of the last record read or written.

With sequential files, LOC returns the current byte position in the file,
divided by 128.

When a file is opened for APPEND or OUTPUT, LOC returns the length of
the file divided by 128.

SYNTAX:
X = LOC(<file number»

where <file number> is the number under which the file was OPENed.

NOTES:
When a file is opened for sequential input, GW-BASIC reads the first
sector of the file; consequently, LOC will return a 1 even before any input
from the file occurs.

For a communications file, LOC(X) is used to determine if there are any
characters in the input queue waiting to be read. If there are more than
255 characters in the queue, LOC(X) returns 255. Because strings are
limited to 255 characters, this practical limit alleviates the need to test for
string size before reading data into the string.

EXAMPLE:
200 IF LOC(1»50 THEN STOP

6-124

LOCATE STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Moves the cursor to the specified position. Optional parameters turn the
blinking cursor on and off and define the vertical start and stop lines.

SYNTAX:
LOCATE [<row>][.[<col>][,[<cursor>][.[<start> l[,<stop> llll

<row> is a line number on the screen. <row> should be a numeric
expression returning an unsigned integer from 1 to 25. While the system
is displaying the soft key values on the 25th line, 24 is the maximum value
for <row>.

<col> is the column number on the screen. It should be a numeric
expression returning an unsigned integer. The range will vary according
to the number of columns per line (1 to 40 or 1 to 80).

<cursor> is a Boolean value indicating whether the cursor should be
visible «cursor> = 1) or invisible «cursor> = 0).

<start> is the cursor starting line on the screen. It should be a numeric
expression returning an unsigned integer.

<stop> is the cursor stop line (vertical) on the screen. It should be a
numeric expression returning an unsigned integer.

NOTES:
Any value outside the specified ranges will result in an "Illegal function
call" error. In this case, previous values are retained.

Any parameter may be omitted from the statement. If a parameter is
omitted, the previous value is assumed.

Note that the <start> and <stop> lines are the raster lines that are lit on
the screen. A wider range between the start and stop lines will produce
a taller cursor, such as one that occupies an entire character block.

If the <start> line is given but the <stop> line is omitted, <stop>
assumes the same value as <start>.

Commands, Statements, Functions, and Variables

EXAMPLES:
The statement:

10 LOCATE 1,1

moves cursor to the upper left corner of the screen. The statement:

20 LOCATE" 1

makes the cursor visible; its position remains unchanged. The·
statement:

30 LOCATE ",7

6-125

leaves the position and cursor visibility unchanged. The cursor is set to
display at the bottom of the character starting and ending on raster line
7. The statement:

40 LOCATE 5,1,1,0,7

moves the cursor to line 5, column 1, and turns the cursor on. The cursor
will cover the entire character ceil, starting at scan line 0 and ending on
scan line 7.

6-126

LOF FUNCTION

PURPOSE:
Returns the length of the file in bytes.

SYNTAX:
X = LOF(<file number>)

GW-BASIC Reference Manual

<file number> is the number under which the file was OPENed.

EXAMPLE:
In the following example:

110 IF REC*RECSIZ>LOF(1) THEN PRINT "INVALID ENTRY"

the variables REC and RECSIZ contain the record number and record
length, respectively. The calculation determines whether the specified
record is beyond the end-of-file.

Commands, Statements, Functions, and Variables

LOG FUNCTION

PURPOSE:
Returns the natural logarithm of X. X must be greater than zero.

SYNTAX:
Y = LOG(X)

EXAMPLE:
The function:

PRINT LOG(45/7)

will yield:

1.860752

6-127

6-128

LPOS FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns the current position of the line printer's print head within the line
printer buffer.

SYNTAX:
X = LPOS(I)

where I is the number assigned to the line printer.

NOTES:
LPOS does not necessarily give the physical position of the print head.

EXAMPLE:
100 IF LPOS(X»60 THEN LPRINT CHR$(13)

Commands, Statements, Functions, and Variables

LPRINT AND LPRINT USING STATEMENTS

PURPOSE:
Prints data at the line printer.

SYNTAX:
LPRINT [<list of expressions> 1

LPRINT USING <string exp>;<list of expressions>

NOTES:

6-129

Same as PRINT and PRINT USING, except that the output goes to the
line printer.

LPRINT assumes a 132-character-wide printer.

EXAMPLES:
See PRINT and PRINT USING later in this section.

6-130

LSET AND RSET STATEMENTS

PURPOSE:

GW-BASIC Reference Manual

Moves data from memory to a random file buffer (in preparation for a
PUT statement) and left-justifies or right-justifies the data in the buffer.

SYNTAX:
LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

NOTES:
If <string expression> requires fewer bytes than were fielded to
<string variable>, LSET left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to pad the extra positions.) If
the string is too long for the field, characters are dropped from the right.

Numeric values must be converted to strings before they are LSET or
RSET. See the MKI$ and MKS$ functions later in this section.

EXAMPLES:
150 LSET A$ = MKS$(AMT)
160 LSET D$ = DESC$

Note: LSET or RSET may also be used with a nonfielded string variable
to left-justify or right-justify a string in a given field. For example, the
program lines:

110 A$ = SPACE$(20)
120 RSET A$= N$

right-justify the string N$ in a 20-character field. This can be very handy
for formatting printed output.

Commands, Statements, Functions, and Variables

MERGE COMMAND

PURPOSE:
Merges a specified disk file into the program currently in memory.

SYNTAX:
MERGE <filespec>

NOTES:

6-131

The <filespec> must include the filename used when the file was
saved. The file must have been saved in ASCII format. If it was not, a
"Bad file mode" error occurs.

If any lines in the disk file have the same line numbers as lines in the
program in memory, the lines from the file on disk will replace the
corresponding lines in memory. (The MERGE process may be thought
of as "inserting" the program lines on disk into the program in memory.)

GW-BASIC always returns to command level after executing a MERGE
command.

EXAMPLE:
The command:

MERGE "NUMBRS"

inserts, by sequential line number, all lines in the program NUMBRS into
the program currently in memory.

6-132

MID$ STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Replaces a portion of one string with another string.

SYNTAX:
MID$«string exp1>,I[,J]) = <string exp2>

where I and J are integer expressions and <string exp1> and
<string exp2> are string expressions.

NOTES:
The characters in <string exp1 >, beginning at position I, are replaced
by the characters in <string exp2>.

The optional J refers to the number of characters from <string exp2>
that will be used in the replacement. If J is omitted, all of <string exp2>
is used. However, whether J is omitted or included, the replacement of
characters never goes beyond the original length of <string exp1 >.

MID$ is also a function that returns a substring of a given string.

EXAMPLE:
The routine:

10 A$ = "KANSAS CITY, MO"
20 MID$(A$,14}= "KS"
30 PRINT A$

will yield:

KANSAS CITY, KS

Commands, Statements, Functions, and Variables

MID$ FUNCTION

PURPOSE:
Returns a string J characters long from X$, beginning with the Ith
character.

SYNTAX:
Y$ = MIO$(X$,I[,J])

NOTES:

6-133

I and J must be in the range 1 to 255. If J is omitted or if there are fewer
than J characters to the right of the Ith character, all rightmost charac
ters beginning with the Ith character are returned. If I is greater than the
number of characters in X$ (LEN(X$)), MIO$ returns a null string.

Also see the LEFT$ and RIGHT$ functions elsewhere in this section.

EXAMPLE:
The function:

10 A$ = ''GOO~ "
20 B$ = "MORNING EVENING AFTERNOON"
30 PRINT A$;MI0$(B$,9,7)

will yield:

GOOD EVENING

6-134

MKDIR STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Creates a new directory in the MS-DOS file system.

SYNTAX:
MKDIR <pathname>

<pathname> is a string expression, not exceeding 128 characters,
identifying the new directory to be created.

NOTES:
MKDIR works exactly like the DOS command MKDIR.

Possible errors:

"Bad file name"
"Path/File Access error"

EXAMPLES:
The following statements will create the subdirectories SALES and
ACCOUNTING.

MKDIR "SALES" , Create subdirectory SALES in root of current drive
MKDIR 'f\CCOUNTING" 'Create subdirectory ACCOUNTING in root of
current drive
MKDIR "B:INVENTORY" 'Create subdirectory INVENTORY in root on
drive B

The following statement is also valid:

MKDIR ''\SALES''

Commands, Statements, Functions, and Variables

MKI$, MKS$, and MKD$ FUNCTIONS

PURPOSE:
Converts numeric values to string values.

SYNTAX:
X$ = MKI$«integer expression»
X$ = MKS$(<single precision expression»
X$ = MKD$«double precision expression»

NOTES:

6-135

Any numeric value placed in a random file buffer with an LSET or RSET
statement must be converted to a string. MKI$ converts an integer to a
2-byte string. MKS$ converts a single precision number to a 4-byte
string. MKD$ converts a double precision number to an 8-byte string.

See also "CVI, CVS, and CVD Functions" earlier in this section.

EXAMPLE:
90 AMT = (K + T)
100 FIELD #1,8 AS D$,20 AS N$
110 LSET D$ = MKS$(AMT)
120 LSET N$ = A$
130 PUT #1

6-136

NAME STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Changes the name of a disk or a RAM cartridge file.

SYNTAX:
NAME <old filename> AS <new filename>

NOTES:
<old filename> must exist and <new filename> must not exist;
otherwise, an error will result. Also, <old filename> must be closed
before rename. The same open file check is used as in OPEN and KILL,
described elsewhere in this section.

A file may not be renamed with a new drive designation. If a new drive
designation is attempted, a "Rename across disks" error will be gener
ated. After a NAME Statement, the file exists on the same disk, in the
same area of disk space, with the new name.

Pathnames are not allowed. That is, only files in the current directory may
be renamed. Giving a path will result in a "Bad filename" error.

NAME may be used to format a cartridge by a new filename of the form
"CARTn:/FORMAT", where n = 1 or 2. (See the FILES statement for more
information on formatting RAM cartridges.)

EXAMPLE:
In the example:

NAME ''ACCTS'' AS "LEDGER"

the file that was formerly named ACCTS will now be named LEDGER.

Commands, Statements, Functions, and Variables

NEW COMMAND

PURPOSE:
Deletes the program currently in memory, clears all variables and
cancels the definitions of all animation objects.

SYNTAX:
NEW

NOTES:

6-137

NEW is entered in direct mode to clear memory before entering a new
program. GW-BASIC always returns to command level after a NEW is
executed.

NEW closes all files and turns tracing off.

EXAMPLE:
NEW

6-138

OBJECT FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns the current value of a specific attribute for a given object.

SYNTAX:
X = OBJECT «object number>, <attribute number»

<object number> is the number of the object, and <attribute number>
is the number of the attribute which the OBJECT function returns for that
object.

NOTES:
See the description of the DEF OBJECT statement for information on
object numbers, and of the OBJECT statement for information on
attributes.

The OBJECT function returns parameter values used by the OBJECT
statement. In some cases, GW-BASIC rounds the parameter values
given in the OBJECT statement to the nearest usable value. For
example, specifying a pixel location of1.3 in an OBJECT statement
results in an actual location of 1. The OBJECT function would then return
a value of 1 for the attribute parameter.

EXAMPLE:
The function:

10 X = OBJECT (1,5)

sets variable X equal to the value of attribute 5, the period of view
attribute, for object number 1.

Commands, Statements, Functions, and Variables

OBJECT STATEMENT

PURPOSE:
Specifies one or more attributes of the specified object.

SYNTAX:

6-139

OBJECT <object number>,<attribute number> = <value> [,<attribute
number> = <value>, ... J

<object number> is the number of the object as specified in a previous
DEF OBJECT statement. <attribute number> is the number of an
attribute being set. <value> is the new value for the attribute.

NOTES:
The attributes for an object are as follows:

Attribute number Attributes

1 Current X position
2 Current Y position
3 Terminal X position
4 Terminal Y position
5 Period of view
6 X offset
7 Yoffset
8 Current view
9 Transparency

10 Speed

Default

o
o
o
o
o (infinite)
o
o
1
o (transparent)
o

The values of all attributes (except transparency) can be integer or real
numbers. GW-BASIC converts the values to the closest usable value.
For example, specifying a pixel location of 1.3 rounds to a pixel location
of 1 internally. The OBJECT function returns the rounded values.

The position attributes are given in terms of logical units which define the
resolution of the current window. When the current window includes the
entire screen and the resolution is 320 X 200 then a horizontal logical unit
is 1/320 of the screen width and a vertical logical unit is 1/200 of the
screen height.

The current X and Y position attributes select the location for the object
within the current window. If the speed attribute is greater than zero, the
current X and Y position attributes select the origin for the object and the
terminal X and Y position attributes select the destination for the object.

continued on next page

6-140 GW-BASIC Reference Manual

The period of view attribute is given in seconds; GW-BASIC converts this
value internally to the nearest 1/60th second. This attribute determines
how long GW-BASIC displays each view of the object before switching
to the next view. GW-BASIC displays the views in the order they are
listed in the DEF OBJECT statement. Setting the period of view to a
causes GW-BASIC to display continuously the view selected by the
current view attribute rather than switching views.

The X and Y offset values specify the point of the location indicated by
the current X and Y position attributes. The X and Y offset attributes are
relative to the center of the rectangle formed by the <x size> and
<y size> attributes of the DIM OBJECT statement. The offset is the
distance from location (0,0) at the center of the rectangle to the reference
point of the object.

For example, the reference point for an arrow would be at the tip of the
arrowhead. If the arrow pointed down and right and was 10 logical units
in length and height, then the X and Y offsets should be 5 and 5 units,
respectively, to place the tip of the arrowhead at the location specified
by the current X and Y position attributes.

The current view is the number of one of the arrays in the array list
included with the DEF OBJECT statement. The first array in the list is
view number 1, the second array is view number 2, and so on. If the
period of view attribute is zero, the current view is the only view shown.
Otherwise, the current view is the first view shown before the other views
are shown in sequence. After displaying the last view, the cycle begins
again with the first view.

The transparency parameter refers to the background within the
rectangle containing an object. The default value of a causes the
background to be transparent. In other words, only those pixels in the
rectangle which have a non-zero value will be displayed. Setting the
transparency parameter to 1 causes the background in the rectangle to
be displayed.

The speed attribute is a real value given in logical units per second. The
default speed of a causes the object to be stationary. Setting the speed
attribute to a value greater than a causes the object to move from the
current X and Y position to the terminal X and Y position at the specified
number of logical units per second.

See also the OBJECT function and the DIM OBJECT, DEF OBJECT,
START/STOP OBJECT, ARRIVAL, CLIP, and COLLISION statements
described elsewhere in this section.

Commands, Statements, Functions, and Variables 6-141

EXAMPLE:
The statement:

10 OBJECT 1,1 =30,2=20,3=50,4=40,10=5

places object number 1 at coordinates (30,20) in the current window,
specifies the destination for the object at (50,40), and sets the speed to
5 logical units per second. The ACTIVATE 1 statement will then cause
the object to move from (30,20) to (50,40) at a speed of 5 logical units
per second.

6-142

OCT$ FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns a string that represents the octal value of the decimal argument.
X is rounded to an integer before OCT$(X) is evaluated.

SYNTAX:
Y$ = OCT$(X)

EXAMPLE:
The function:

PRINT OCT$(24)

will yield:

30

For details on hexadecimal conversion, see the HEX$ function earlier in
this section.

Commands, Statements, Functions, and Variables

ON ARRIVAL STATEMENT

PURPOSE:

6-143

Specifies the first line number of a subroutine to be performed when an
object arrives at the destination indicated in an OBJECT statement.

SYNTAX:
ON ARRIVAL [«object number»] GOSUB <line number>

<object number> is the number of an object being monitored for arrival.

<line number> is the number of the first line of a subroutine to be
performed when the specified arrival event occurs.

NOTES:
A <line number> of 0 disables the arrival event testing specified in the
ON ARRIVAL statement.

Multiple ON ARRIVAL statements can be active simultaneously to trap
the arrivals of different objects.

When the ON ARRIVAL statement does not include an object number,
the subroutine is executed when any object arrives at its destination.

When the ON ARRIVAL statement includes an object number, the
subroutine is executed when the specified object arrives at its
destination.

Subroutines specified in ON ARRIVAL statements are invoked in the
same order as the ON ARRIVAL statements were executed.

One use of the ON ARRIVAL statement is to automatically latch the
arrival status of the objects on the screen. When any object specified in
an ON ARRIVAL statement arrives at its destination, GW-BASIC makes a
copy of the internal arrival flags of all objects which have reached their
destination since the last time the status was latched. In this respect,
ON ARRIVAL is the same as the ARRIVAL(-1) function. (See the
ARRIVAL function in this section.)

Because the ON ARRIVAL «object number» form of the ON ARRIVAL
statement executes its associated subroutine only when the specified
object reaches its destination, it is usually unnecessary to use the
ARRIVAL (0) function within the subroutine. However, you can use the
ARRIVAL(O) function to test whether other objects have arrived at their
destination.

continued on next page

6-144 GW-BASIC Reference Manual

The ON ARRIVAL statement will be executed only if an ARRIVAL ON
statement has been executed (see ':A.RRIVAL Statement") to enable
the testing of arrival events. If ARRIVAL ON is in effect, and if the
<line number> in the ON ARRIVAL statement is not zero, GW-BASIC
checks after the execution of every statement to see if the specified
arrival event has occurred. If it has, GW-BASIC performs a GOSUB to
the specified line.

If an ARRIVAL OFF statement has been executed, the arrival event is not
discovered and the GOSUB is not performed (see ':A.RRIVAL
Statement").

If an ARRIVAL STOP statement has been executed and an object
specified in an ON ARRIVAL statement reaches its destination, the
GOSUB is not performed immediately, but will be performed as soon as
an ARRIVAL ON statement is executed (see ':A.RRIVAL Statement").

When the ON ARRIVAL subroutine is executed, an automatic ARRIVAL
STOP is performed until all outstanding arrival events have been
handled, so that recursive traps cannot take place. The RETURN from
the final trapping subroutine automatically performs an ARRIVAL ON
statement, unless the subroutine executes an explicit ARRIVAL OFF
statement.

The RETURN <line number> form of the RETURN statement may be
used to return to a specific line number from the ON ARRIVALsub
routine. Use this type of return with care, however, because any other
GOSUBs, WHILEs, or FORs active at the time of the trap remain active,
and errors such as "FOR without NEXT" may result.

EXAMPLES:
The statement:

10 ON ARRIVAL (2) GOSUB 200

executes the event-handling subroutine at line 200 when object 2 arrives
at its destination. The statement:

20 ON ARRIVAL GOSUB 300

executes the event-handling subroutine at line 300 whenever any object (
arrives at its destination.

Commands, Statements, Functions, and Variables

ON CLIP STATEMENT

PURPOSE:

6-145

Specifies the first line number of a subroutine to be performed when 9.n
object exceeds (is clipped at) the border of the current window.

SYNTAX:
ON CLIP [(<object number»] GOSUB <line number>

<object number> is the number of an object being monitored for
possible clipping.

<line number> is the number of the first line of a subroutine to be
performed when clipping occurs.

NOTES:
A <line number> of 0 disables the trapping of the clipping event
specified in the ON CLIP statement.

Multiple ON CLIP statements can be active simultaneously to trap the
clipping of different objects.

When the ON CLIP statement does not include an object number, the
subroutine is executed when any object exceeds the boundary of the
current window.

When the ON CLIP statement includes an object number, the subroutine
is executed when the specified object exceeds the boundary of the
current window.

ON CLIP subroutines are invoked in the same order as the ON CLIP
statements were executed.

One use of the ON CLIP statement is to latch the clipping status of the
objects on the screen. When any object specified in an ON CLIP
statement exceeds the boundary of the current viewport, GW-BASIC
makes a copy of the internal clip flags of all objects which have
exceeded the boundary of the current viewport since the last time the
status was latched. In this respect, ON CLIP is the same as the
CLlP(-1) function. (See the CLIP function in this section.)

Because the ON CLIP «object number» form of the ON CLIP
statement executes its associated subroutine only when the specified
object exceeds the current viewport, it is usually unnecessary to use the
CLlP(O) function within the subroutine. However, you can use the
CLlP(O) function to test whether other objects have been clipped.

continued on next page

6-146 GW-BASIC Reference Manual

The ON CLIP statement will only be executed if a CLIP ON statement
has been executed (see "CLIP Statement") to enable the testing of
clipping events. If CLIP ON is in effect, and if the <line number> in the
ON CLIP statement is not 0, GW-BASIC checks after the execution of
every statement to see if the specified clipping event has occurred. If it
has, GW-BASIC performs a GOSUB to the specified line.

If a CLIP OFF statement has been executed, the clipping event is not
discovered and the GOSUB is not performed (see "CLIP Statement").

If a CLIP STOP statement has been executed and an object specified in
an ON CLIP statement is clipped, the GOSUB is not performed
immediately, but will be performed as soon as a CLIP ON statement is
executed (see "CLIP Statement").

When the ON CLIP subroutine is performed, an automatic CLIP STOP is
performed until all outstanding clip events have been handled, so that
recursive traps cannot take place. The RETURN from the final trapping
subroutine automatically performs a CLIP ON statement unless the
subroutine executes an explicit CLIP OFF statement.

The RETURN <line number> form of the RETURN statement may be
used to return to a specific line number from the ON CLIP subroutine.
Use this type of return with care, however, because any other GOSUBs,
WHILEs, or FORs that were active at the time of the trap remain active,
and errors such as "FOR without NEXT" may result.

EXAMPLES:
The statement:

10 ON CLIP (2) GOSUB 200

executes the event-handling subroutine at line 200 whenever object 2
exceeds the boundary of the current window. The statement:

20 ON CLIP GOSUB 300

executes the event-handling subroutine at line 300 whenever any object
exceeds the boundary of the current window.

Commands, Statements, Functions, and Variables

ON COLLISION STATEMENT

PURPOSE:

6-147

To specify the first line number of a subroutine to be performed when an
object collides with another object.

SYNTAX:
ON COLLISION [(<object number 1 >[, <object number 2>])]
GOSUB <line number>

<object number 1 > and <object number 2> are the numbers of objects
being monitored for possible collisions.

<line number> is the number of the first line of a subroutine to be
performed when a collision occurs.

NOTES:
A <line number> of 0 disables the collision event testing specified in the
ON COLLISION statement.

Multiple ON COLLISION statements can be active simultaneously to
trap the collisions of different objects.

When the ON COLLISION statement does not include object numbers,
the subroutine is executed when any two objects collide.

When the ON COLLISION statement includes only the first object
number, the subroutine is executed when the specified object col~ides
with any other object.

ON COLLISION subroutines are invoked in the same order as the ON
COLLISION statements were executed.

A collision is detected only if two objects overlap when they are actually
being drawn on the screen. Fast-moving objects may move several
pixels at each update, and may actually cross paths without overlapping
on the screen.

A collision of two objects can cause more than one event to be trapped.
Multiple events can also occur if more than two objects collide "simul
taneously" (overlap during the same screen update).

One use of the ON COLLISION statement is to latch the collision status
of the objects on the screen. When an object specified in an ON
COLLISION statement collides with another object, GW-BASIC makes a
copy of the internal collision flags of all objects which have collided with

continued on next page

6-148 GW-BASIC Reference Manual

another object since the last time the status was latched. In this respect,
ON COLLISION is the same as the COLLISION(-1) function. (See the
COLLISION function in this section.)

Because the ON COLLISION «object number» form of the ON
COLLISION statement executes its associated subroutine only when the
specified object collides with another object, it is usually unnecessary to
use the COLLISION(O) function within the subroutine. However, you can
use the COLLISION(O) function to test whether other objects have
collided.

The ON COLLISION statement will be executed only if a COLLISION ON
statement has been executed (see "COLLISION Statement" earlier in
this section) to enable collision testing. If COLLISION ON is in effect,
and if the <line number> in the ON COLLISION statement is not 0,
GW-BASIC checks after the execution of every statement to see if the
specified collision event has occurred. If it has, GW-BASIC performs a
GOSUB to the specified line.

If a COLLISION OFF statement has been executed, the collision event is
not discovered and the GOSUB'is not performed (see "COLLISION
Statement").

If a COLLISION STOP statement has been executed and a specified
collision occurs, the GOSUB is not performed immediately, but will be
performed as soon as a COLLISION ON statement is executed (see
"COLLISION Statement").

When an ON COLLISION subroutine is performed, an automatic COLLI
SION STOP is performed until all outstanding collision events have been
handled, so that recursive traps cannot take place. The RETURN from
the final trapping subroutine automatically performs a COLLISION ON
statement unless the subroutine executes an explicit COLLISION OFF
statement.

The RETURN <line number> form of the RETURN statement may be
used to return to a specific line number from the ON COLLISION
subroutine. Use this type of return with care, however, because any other
GOSUBs, WHILEs, or FORs that were active at the time of the trap
remain active, and errors such as "FOR without NEXT" may result.

Commands, Statements, Functions, and Variables 6-149

EXAMPLES:
The statement:

10 ON COLLISION (2,3) GOSUB 200

executes the collision event-handling subroutine at line 200 whenever
objects 2 and 3 collide. The statement:

20 ON COLLISION (2) GOSUB 300

executes the collision event-handling subroutine at line 300 whenever
object 2 collides with another object. The statement:

30 ON COLLISION GOSUB 400

executes the collision event-handling subroutine at line 400 whenever
any two objects collide.

6-150

ON COM STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Specifies the first line number of a subroutine to be performed when
activity occurs on a communications channel.

SYNTAX:
ON COM(n) GOSUB <line number>

<line number> is the number of the first line of a subroutine to be
performed when activity occurs on the specified communications
channel.

(n) is the number of the communications channel.

NOTES:
A <line number> value of zero disables the communications event trap.

The ON COM statement will only be executed if a COM(n) ON state
ment has been executed (see "COM Statement" earlier in this section)
to enable event trapping. If event trapping is enabled, and if the
<line number> in the ON COM statement is not zero, GW-BASIC
checks between statements to see if communications activity has
occurred on the specified channel. If communications activity has
occurred, a GOSUB will be performed to the specified line.

If a COM OFF statement has been executed for the communications
channel (see "COM Statement"), the GOSUB is not performed and the
event is not discovered.

If a COM STOP statement has been executed for the communications
channel (see "COM Statement"), the GOSUB is not performed, but will
be performed as soon as a COM ON statement is executed if activity has
occurred on the channel.

When an event trap occurs (in other words, when the GOSUB is
performed), an automatic COM STOP is executed so recursive traps
cannot take place. The RETURN from the trapping subroutine will
automatically perform a COM ON statement unless an explicit COM OFF
was performed inside the subroutine.

The RETURN <line number> form of the RETURN statement may be
used to return to a specific line number from the trapping subroutine.
Use this type of return with care, however, because any other GOSUBs,
WHILEs, or FORs that were active at the time of the trap will remain
active, and errors such as "FOR without NEXT" may result.

Commands, Statements, Functions, and Variables 6-151

Event trapping does not take place when GW-BASIC is not executing a
program. Also, event trapping is automatically disabled when an error
trap occurs.

EXAMPLE:
The statement:

10 ON COM(1) GOSUB 1000

will cause GW-BASIC to transfer control to line 1000 when the system
receives a character from the first RS-232-C module.

6-152

ON ERROR GOTO STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Enables error handling and specifies the first line of the error handling
routine.

SYNTAX:
ON ERROR GOTO <line number>

NOTES:
After error handling has been enabled, all errors detected, including
direct mode errors (for example, syntax errors), will cause a jump to the
specified error handling routine. If <line number> does not exist, an
"Undefined line" error results.

To disable error handling, execute an ON ERROR GOTO 0 statement.
Subsequent errors will print an error message and halt execution. An
ON ERROR GOTO 0 statement that appears in an error handling routine
causes GW-BASIC to stop and print the error message for the error that
caused the trap. All error handling routines should execute an ON
ERROR GOTO 0 if an error is encountered for which there is no recovery
action.

If an error occurs during execution of an error handling routine, that error
message is printed and execution terminates. Error trapping does not
occur within the error handling routine.

EXAMPLE:
10 ON ERROR GOTO 1000

(

Commands, Statements, Functions, and Variables

ON ... GOSUB AND ON ... GOTO STATEMENTS

PURPOSE:

6-153

Branches to one of several specified line numbers, depending on the
value returned when an expression is evaluated.

SYNTAX:
ON <expression> GOTO <list of line numbers>

ON <expression> GOSUB <list of line numbers>

NOTES:
The value of <expression> determines which line number in the list will
be used as the destination for branching. For example, if the value of
<expression> is 3, the third line number in the list will be the destination
of the branch. (If the value is a noninteger, the fractional portion is
rounded.)

In the ON ... GOSUB statement, each line number in the list must be the
first line number of a subroutine.

If the value of <expression> is zero or greater than the number of items
in the list (but less than or equal to 255), GW-BASIC continues with the
next executable statement. If the value of <expression> is negative or
greater than 255, an "Illegal function call" error occurs.

EXAMPLE:
100 ON L-1 GOTO 150,300,320,390

6-154

ON KEY STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Specifies the first line number of a subroutine to be performed when a
specified key is pressed.

SYNTAX:
ON KEY(n) GOSUB <line number>

(n) is the number of a function key, as defined by the KEY (n) statement.

<line number> is the number of the first line of a subroutine to be
performed when the specified function or cursor direction key is
pressed.

NOTES:
A <line number> of 0 disables the event trap.

The ON KEY statement will only be executed if a KEY(n) ON statement
has already been executed (see "KEY(n) Statement" earlier in this
section) to enable event trapping. If event trapping is enabled, and if the
<line number> in the ON KEY statement is not 0, GW-BASIC checks
between statements to see if the specified function or cursor direction
key has been pressed. If it has, a GOSUB will be performed to the
specified line.

If a KEY(n) OFF statement has been executed for the specified key, (see
"KEY(n) Statement"), the keystroke is not discovered and the GOSUB is
not performed.

If a KEY STOP statement has been executed for the specified key, (see
"KEY(n) Statement"), the GOSUB is not performed, but will be remem
bered and performed as soon as a KEY(n) ON statement is executed.

When the ON KEY subroutine is performed, an automatic KEY(n) STOP
is executed so that recursive traps cannot take place. The RETURN from
the trapping subroutine will automatically perform a KEY(n) ON state
ment unless an explicit KEY(n) OFF was performed inside the
subroutine.

The RETURN <line number> form of the RETURN statement may be
used to return to a specific line number from the trapping subroutine.
Use this type of return with care, however, because any other GOSUBs,
WHILEs, or FORs active at the time of the trap will remain active, and
errors such as "FOR without NEXT" may result.

Commands, Statements, Functions, and Variables 6-155

Event trapping does not take place when GW-BASIC is not executing a
program. Also, event trapping is automatically disabled when an error
trap occurs.

When a key is trapped, that occurrence of the key is destroyed.
Therefore, you cannot subsequently use the INPUT or INKEY$ state
ments to find out which key caused the trap. So if you wish to assign
different functions to particular keys, you must set up a different
subroutine for each key, rather than assigning the various functions
within a single subroutine.

EXAMPLE:
10 KEY 4, "SCREEN 0,0" 'assigns softkey 4
20 KEY(4) ON 'enables event trapping

70 ON KEY(4) GOSUB 200

(key 4 pressed)

200 'Subroutine for screen

6-156

ON PLAY STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Specifies the first line of a subroutine to be performed when the number
of notes in the background music queue goes below a specified value.
This statement enables continuous music during program execution.

SYNTAX:
ON PLAY(n) GOSUB <line number>

(n) is an integer expression. The play event subroutine is called
whenever the size of the background music queue decreases from n to
n-1.

<line number> is the statement line number of the play event trap
subroutine.

NOTES:
The following rules apply to event trapping on the background music
queue:

1. A play event trap is issued only when playing background music (in
other words, PLAY "MB ...). Play event traps are not issued when
running in Music Foreground (in other words, default case, or PLAY
"MF ...).

2. A play event trap is not issued if the background music queue is
already empty when a PLAY ON is executed.

3. Choose conservative values for (n). An ON PLAY(32) statement will
cause event traps so often that there will be little time to execute the
rest of your program.

The ON PLAY statement uses only voice 1 to test the number of notes in
the background music queue.

See also the PLAY statement for information on the PLAY ON, PLAY OFF,
and PLAY STOP statements.

EXAMPLE:
ON PLAY (5) GOSUB 900

executes the subroutine at line 900 whenever the background music
queue decreases from five notes to 4.

Commands, Statements, Functions, and Variables

ON STRIG STATEMENT

PURPOSE:

6-157

Specifies the first line number of a subroutine to be performed when the
joystick trigger or mouse switch is pressed.

SYNTAX:
ON STRIG(n) GOSUB <line number>

(n) is an even integer in the range a to 6 as follows:

n Joystick or Mouse Switch

a A right
2 A left
4 B right
6 B left

<line number> is the number of the first line of a subroutine to be
performed when the joystick trigger or mouse switch is pressed.

NOTES:
A <line number> of a disables the event trap.

The ON STRIG statement will only be executed if a STRIG ON statement
has already been executed (see "STRIG Statement/ Function" later in
this section) to enable event trapping. If event trapping is enabled, and
if the <line number> in the ON STRIG statement is not 0, GW-BASIC
checks between statements to see if the joystick trigger or mouse switch
has been pressed. If it has, a GOSUB will be performed to the specified
line.

If a STRIG OFF statement has been executed (see "STRIG Statement")
and a trigger or button is pressed, the event is not discovered and the
GOSUB is not performed.

If a STRIG STOP statement has been executed (see "STRIG State
menn, the GOSUB is not performed, but will be performed as soon as a
STRIG ON statement is executed.

When an event trap occurs (in other words, when the GOSUB is
performed), an automatic STRIG STOP is executed so that recursive
traps cannot take place. The RETURN from the trapping subroutine will
automatically perform a STRIG ON statement unless an explicit STRIG
OFF was performed inside the subroutine.

continued on next page

6-158 GW-BASIC Reference Manual

The RETURN <line number> form of the RETURN statement may be
used to return to a specific line number from the trapping subroutine.
Use this type of return with care, however, because any other GOSUBs,
WHILEs, or FORs active at the time of the trap will remain active, and
errors such as "FOR without NEXT" may result.

Event trapping does not take place when GW-BASIC is not executing a
program. Also, event trapping is automatically disabled when an error
trap occurs.

EXAMPLE:
The statement:

10 ON STRIG(O) GOSUB 1000

will cause GW-BASIC to transfer control to line 1000 when the system
detects that the button has been pressed on the first joystick.

Commands, Statements, Functions, and Variables

ON TIMER, TIMER ON, TIMER OFF, TIMER STOP STATEMENTS

PURPOSE:
Causes periodic event traps.

SYNTAX:
ON TIMER(n) GOSUB <line number>

6-159

(n) is a numeric expression in the range 1 through 86400 (1 second
through 24 hours). Values outside this range result in an "Illegal function
call" error.

<line number> is the statement line number of the TIMER event trap
subroutine.

TIMER ON
TIMER OFF
TIMER STOP

NOTES:

Enables TIMER event trapping.
Disables TIMER event trapping.
Suspends TIMER event trapping.

These statements provide an interval timer for applications programs.

The TIMER ON statement enables event trapping on the TIMER. After
TIMER ON is executed, GW-BASIC transfers control every (n) seconds
to the subroutine specified by the ON TIMER statement.

TIMER OFF disables TIMER event trapping and TIMER STOP suspends
TIMER event trapping. If the specified time elapses after a TIMER STOP
statement is executed, then GW-BASIC executes the ON TIMER sub
routine immediately after the next TIMER ON statement.

EXAMPLE:
Display the time of day on line 1 every minute.

10 ON TIMER(60) GOSUB 10000
20TIMER ON

10000 OLD ROW=CSRLlN 'Save current Row
10010 OLD-COL= POS(O) 'Save current Column
10020 LOCATE 1,1:PRINTTIME$;
10030 LOCATE OLD ROW,OLD-COL 'Restore Rowand Column
10040 RETURN -

6-160

OPEN STATEMENT

PURPOSE:
Allows I/O to a file or device.

SYNTAX:

GW-BASIC Reference Manual

OPEN <mode>,[#]<file number>,<filespec>[,<record length>]

OPEN <filespec>[FOR <mode>] AS [#]<file number>
[LEN = <record length>]

<mode> is a string expression whose first character is one of the
following:

Character Meaning

o Specifies sequential output mode.

Specifies sequential input mode.

R Specifies random input/output mode.

A Specifies sequential output mode and sets the file pointer
at the end of file and the record number as the last record
of the file. A PRINT # or WRITE# statement will then
extend (append) the file.

If <mode> is omitted, the default random access mode is assumed.

<file number> is an integer expression whose value is between 1 and
15. The number is then associated with the file for as long as it is OPEN
and is used to refer other disk I/O statements to the file.

<filespec> is a string expression containing a name that conforms to
the rules for disk filenames of the operating system.

OPEN also allows <pathname> in place of <filespec>. For example, if
MARY is your current directory, then:

OPEN uREPORT" ...
OPEN U\SALES\MARY\REPORT" ...
OPEN u .. \MARY\REPORT" ...
OPEN u .. \ .. \MARY\REPORT" ...

all refer to the same file.

(

Commands, Statements, Functions, and Variables 6-161

Because you can refer to the same file in a subdirectory by using
different paths, it is nearly impossible for BASIC to know from looking at
the path that the file is the same. For this reason, BASIC will not let you
OPEN the file for OUTPUT or APPEND if it is already OPEN, even if the
path is different.

<record length> is an integer expression that, if included, sets the
record length for random files. Do not use this option with sequential
files.

The <record length> cannot exceed the maximum set with IS: at start
up. If the <record length> option is not used, the default length is 128
bytes.

NOTES:
A disk file must be OPENed before any disk 1/0 operation can be
performed on that file. OPEN allocates a buffer for 1/0 to the file or
device and determines the mode of access that will be used with the
buffer.

A file can be OPENed for sequential input or random access on more
than one file number at a time. A file may be OPENed for output,
however, on only one file number at a time.

A RAM cartridge file can be OPENed for sequential access only.

EXAMPLES:
10 OPEN "1",2, "INVEN"

10 OPEN "MAILlNG.DAT" FOR APPEND AS 1

6-162

OPEN COM STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Opens and initializes a communications channel for input/output.

SYNTAX:
OPEN "COMn: [<speed>][,[<parity>][,[<data>][,[<stop>][,RS]
[,CS[m]][,DS[m]][,CD[m]][,BIN][,ASC][,LF]]]]" AS [#]<device
number>

COMn: is the name of the device to be opened. The value of n must be
1,2, or 3.

<speed> is the baud rate, in bits per second, of the device to be
opened. The value <speed> must be 110,300,600,1200,2400,4800,
or 9600.

<parity> designates the parity of the device to be opened. Valid entries
are: N (none), E (even), or 0 (odd).

<data> designates the number of bits per byte. Valid entries are 7 or 8.

<stop> designates the stop bit. The value of this parameter must be 1
or 2.

RS suppresses the RTS (Request To Send) line signal.

CS[m] controls the CTS (Clear To Send) line signal.

DS[m] controls the DSR (Data Set Ready) line signal.

CD[m] controls the CD (Carrier Detect) line signal.

LF specifies that a linefeed is to be sent after a carriage return. See
"NOTES" for further discussion of LF.

BIN opens the device in binary mode. BIN is selected by default unless
ASC is specified. See "NOTES" for further discussion of BIN.

ASC opens the device in ASCII mode. See "NOTES" for further
discussion of ASC.

<device number> is the number of the device to be opened.

NOTES:
The OPEN COM statement must be executed before a device can be
used for RS-232-C communication.

Commands, Statements, Functions, and Variables 6-163

Any syntax errors in the OPEN COM statement will result in a "Bad file
name" error. The incorrect parameter will not be shown.

A "Device timeout" error will occur if Data Set Ready (DSR) is not
detected.

The <speed>, <parity>, <data>, and <stop> options must be listed
in the order shown in the above syntax. The remaining options may be
listed in any order, but they must be listed after the <speed>, <parity>,
<data>, and <stop> options.

The m argument for the CS[m], DS[mJ, and CD[m] options specifies an
interval in milliseconds. After executing an OPEN COM statement,
GW-BASIC checks the specified line signal for this amount of time
before returning a "Device timeout" error. The value of m can range from
o to 65535. The status of these line signals is not checked if m is set to 0
or if m is omitted.

LF allows communication files to be printed on a serial line printer. When
LF is specified, a linefeed character (OAH) is automatically sent after
each carriage return character (OCH), including the carriage return sent
as a result of the width setting. Note that INPUT# and LINE INPUT#,
when used to read from a COM file that was opened with the LF option,
stop when they see a carriage return, ignoring the linefeed.

The LF option is superseded by the BIN option.

In the BIN mode, tabs are not expanded to spaces, a carriage return is
not forced at the end-of-line, and CTRL-Z is not interpreted as the end-of
file and CTRL-Z is not sent when the channel is closed.

In' ASC mode, tabs are expanded, carriage returns are forced at the end
of-line, CTRL-Z is treated as the end-of-file, XON/XOFF protocol is
supported (if enabled), and CTRL-Z is sent when the channel is closed.

EXAMPLE:
The statement:

10 OPEN "COM1:9600,N,8,1,BIN" AS 2

will open communications channel 1 at a speed of 9600 baud with no
parity bit, 8 data bits, and 1 stop bit. Input and output will be in the
binary mode. Other lines in the program may now access channel 1 as
device number 2.

6-164

OPTION BASE STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Declares the minimum value for array subscripts.

SYNTAX:
OPTION BASE n

n is 1 or O.

NOTES:
The default base is O. If the statement:

OPTION BASE 1

is executed, the lowest value an array subscript may have is 1.

The OPTION BASE statement must be coded before you define or use
any arrays.

A CHAINed program may have an OPTION BASE statement only if no
arrays are passed. The CHAINed program inherits the OPTION BASE
value of the CHAINing program.

EXAMPLE:
10 OPTION BASE 1

Commands, Statements, Functions, and Variables

OUT STATEMENT

PURPOSE:
Sends a byte to a machine output port.

SYNTAX:
OUTI,J

6-165

I is the port number. It must be an integer expression in the range a to
65535.

J is the data to be transmitted. It must be an integer expression in the
range a to 255.

EXAMPLE:
The BASIC statement:

100 OUT 12345,255

is equivalent to the 8086 assembly language routine:

MOV DX,12345
MOVAL,255
OUT DX,AL

6-166

PAINT STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Fills a graphics figure with the color specified.

SYNTAX:
PAINT «xstart>,<ystart»[,<paint color>[,<border color>]
[,<background>]]

<xstart> and <ystart> are the coordinates where painting is to begin.
Painting should always start on a non-border point.

<paint color> is the number of the color to be placed in the filled
area of the figure (see "COLOR Statement" earlier in this section). If the
<paint color> is not specified, the foreground color will be used.

<border color> identifies the border color of the figure to be filled.
When the border color is encountered, painting of the current line
and direction will stop. If the <border color> is not specified, the
<paint color> will be used.

<background> is used in paint tiling (see "NOTES").

NOTES:
Painting is complete when a line is painted without changing the color of
any pixel; in other words, the entire line is equal to the paint color.

The PAl NT command can be used to fill any figure, but painting jagged
edges or very complex figures may result in an "Out of Memory" error. If
this happens, the CLEAR statement must be given to increase the
amount of stack space available.

PAINT supports "tiling". Like LINE, PAINT looks at a "tiling" mask each
time a pOint is put down on the screen. If <paint color> is a string
formula, then "tiling" is performed as follows.

The tile mask is always 8 bits wide and may be from 1 to 64 bytes long.
Each byte in the tile string masks 8 bits along the X axis when putting
down points. Each byte of the tile string is rotated as required to align
along the Y axis such that tile_byte_mask = Y MOD tile_length.

Rotating each byte of the tile string is done so that the tile pattern is
replicated uniformly over the entire screen (as if the statement PAINT
(0,0) ... were used).

Commands, Statements, Functions, and Variables 6-167

Tiling effects change as a function of the screen mode. We will use
screen mode 1 as an example. Because there are 2 bits per pixel in
mode 1 (see the sample screen below), each byte of the tile pattern only
describes 4 pixels. In this case, every 2 bits of the tile byte describe one
of the four possible colors associated with each of the 4 pixels to be put
down.

x increases -->
Bit of tile byte

X,V 8 7 6 5 4 3 2
0,0 x x x x x x x x
0,1 x x x x x x x x
0,2 x x x x x x x x

Tile byte 1
Tile byte 2
Tile byte 3

0,63 x x x x x x x x Tile byte 64 (maximum allowed)

In modes with a resolution of 1 bit per pixel (modes 2,3, and 7) (see the
sample screen below), the screen can be painted with 'x's by the
following statement:

PAINT
(320,100),CHR$(&H81) + CHR$(&H42) + CHR$(&H24) + CHR$
(&H18) + CHR$(&H18) + CHR$(&H24) + CHR$(&H42) + CHR$(&H81)

This statement appears on the screen as:

x increases -->

X,V Bit of tile byte
0,0 x x CHR$(&H81) Tile byte 1
0,1 x x CHR$(&H42) Tile byte 2
0,2 x x CHR$(&H24) Tile byte 3
0,3 xx CHR$(&H18) Tile byte 4
0,4 xx CHR$(&H18) Tile byte 5
0,5 x x CHR$(&H24) Tile byte 6
0,6 x x CHR$(&H42) Tile byte 7
0,7 x x CHR$(&H81) Tile byte 8

<background> is a string formula returning one character. When
omitted, the default is CHR$(O).

When supplied, <background> specifies the "background tile" pattern
or color byte to skip when checking for boundary termination.

continued on next page

6-168 GW-BASIC Reference Manual

Occasionally, you may want to tile-paint over an already painted area that
is the same color as two consecutive lines in the tile pattern. Normally,
paint quits when it encounters two consecutive lines of the same color as
the point being set (the point is surrounded). It would not be possible to
draw alternating blue and red lines on a red background without the
<background>. Paint would stop as soon as the first red pixel was
drawn. Specifying red [CHR$(&HAA)] as the background_attribute
allows the red line to be drawn over the red background.

You cannot specify more than two consecutive bytes in the tile string that
match the <background>. Specifying more than two will result in an
"Illegal function call" error.

EXAMPLE:
The statement:

10 PAINT (5,15),2,0

paints the figure at coordinates 5,15 with color 2 and border color O.

Commands, Statements, Functions, and Variables

PALETTE STATEMENT

PURPOSE:
Changes one of the colors in the palette.

SYNTAX:
PALETTE [<palette number>, <color number> 1

6-169

<palette number> is the number of the color being replaced by the
color referred to by <color number>. The range for <palette number>
is 0 to 15 and the range for <color number> is -1 to 15.

NOTES:
The color palette is a table consisting of 16 integer (two-byte) values.
When you first power-up your Mindset Personal Computer, the system
uses default values for <palette number> and <color number>. The
system also uses the default values when you use the PALETTE
statement without specifying the palette number or color number. Table
6-3 describes the default color palette. See the PALETTE USING
statement for an explanation of the hexadecimal color values.

Table 6-3: Default Color Palette Definition

Palette Color Hex Palette Color Hex
Index Name Value Index Name Value

00 Black 0000 08 Dark gray 8092
01 Blue 11C8 09 Light blue 91D8
02 Green 2020 10 Light green A03B
03 Cyan 3160 11 Light cyan B1FA
04 Red 4004 12 Light red C007
05 Magenta 5144 13 Light magenta D1CE
06 Brown 6024 14 Yellow E037
07 Light gray 7124 15 White F1FF

GW-BASIC maintains two color palettes: a reference palette and a user's
palette. The availability of a reference palette enables a program to
rearrange palette colors in any order. The reference palette remains
constant, thus providing the default 16 colors listed in Table 6-3
(regardless of changes you make to your palette).

The <color number> index selects a color from the reference palette.
The <palette number> index selects a color in the user's palette to
be replaced with the color selected by the <color number> index.
GW-BASIC uses the colors in the user's palette for the screen display.

continued on next page

6-170 GW-BASIC Reference Manual

A value of -1 for the <color number> parameter indicates that the
existing color (at the <palette number> location in the user's palette) is
not to be modified. Negative numbers other than -1 are illegal for the
<color number> parameter.

EXAMPLE:
The statement:

PAtETIEO,2

changes color 0 in the user's palette to color 2 from the reference palette.

Commands, Statements, Functions, and Variables

PALETTE USING STATEMENT

PURPOSE:
Specifies new colors by assigning a set of array values to the user's
palette.

SYNTAX:
PALETTE USING <array name>«array index»

6-171

<array name> is the name of the array containing new information for
tre user's color palette. <array index> specifies the element in the
array to use as the first position in the user's palette.

NOTES:
The color palette is a table consisting of 16 integer (two-byte) values.
When you first power-up your Mindset Personal Computer, the system
uses default values for the color palette and color numbers. See Table
6-3 under the description of PALETTE for the default color palette
arrangement.

GW-BASIC maintains two color palettes: a reference palette and a user's
palette. The reference palette remains constant, thus providing the
default 16 colors listed in Table 6-3 (regardless of changes you make to
your palette).

The PALETTE USING statement transfers color values from the array to
the user's palette. The <array index> parameter determines which
element in the array becomes the first element in the user's palette.

The PALETTE USING statement continues transferring values from the
array to the user's palette until all 16 color values are filled. GW-BASIC
checks to make sure that the array contains enough elements to
completely fill the palette.

If a <color number> of -1 was assigned to a position with the PALETTE
statement, the color in that position will not be changed by a'subsequent
PALETTE USING statement. Also, a value of -1 in the array causes the
corresponding color in the user's palette to remain unchanged.

The colors in the palette are initially the same for operation with either an
RGB color monitor or a television. Use an array to rearrange the user's
palette using the colors from the reference palette. This array should
contain numbers in the range 0 to 15 in the upper 4 bits to specify the
RGB colors for the user's palette. The number of colors for an RGB
monitor is fixed at 16, but the user can specify up to 512 different colors
for operation with a television. The lower 9 bits in each palette definition

continued on next page

6-172 GW-BASIC Reference Manual

word select the color for operation with a television. A complete
application program should set the colors for both RGB monitors and
televisions to insure compatibility with all systems.

The diagram below shows the format for the 16-bit word that defines
each color in the user's palette. See Table 6-3 in the description of the
PALETTE statement for a list of the default hexadecimal color values.

Bit: 15141312111098 7 6 5 4 321 0
Color: IRGB BBBGGGRRR
Display: RGB Monitor Television

Three bits control each primary color for television operation. Each bit is
worth twice that of the next lower bit for a given color. For example, bit 0
sets the value of the red component to 1, bit 1 adds 2 to the red value,
and bit 2 adds 4. Therefore, the palette entry for the most intense red is
7. Similarly, the value for the most intense white requires all 9 bits to be
set for a value of 511.

EXAMPLE:
The statement:

10 PALETTE USING P (0)

causes these changes in the user palette:

Index Initial Palette Array P Updated Palette

00 &H4004 &H7124 &H7124
01 &HC007 &HC007 &HC007
02 &HA03B &H2020 &H2020
03 &H7124 &HFFFF &H7124
04 &H81 FA &H11C8 &H11C8
05 &HE037 &H5144 &H5144

15 &H3160 &D1CE &HD1CE

Note that &HFFFF (the fourth element of array P) is equal to -1 and
causes the corresponding element in the initial palette to remain
unchanged.

Commands, Statements, Functions, and Variables

PEEK FUNCTION

PURPOSE:
Returns the byte read from memory location (I).

SYNTAX:
X = PEEK(I)

NOTES:

6-173

The returned value is an integer in the range 0 to 255. I must be in the
range 0 to 65535. I is the offset from the current segment, which was
defined by the last DEF SEG statement. For the interpretation of a
negative value of I, see "VARPTR Function" later in this section.

PEEK is the complementary function of the POKE statement.

EXAMPLE:
A = PEEK(&H5AOO)

6-174

PLAY STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Plays music as specified by <string expression>.

The PLAY ON statement enables event trapping on the background
music queue. The PLAY OFF statement disables event trapping on the
background music queue. The PLAY STOP statement suspends event
trapping on this queue.

SYNTAX:
PLAY [<string1 >][, <string2>[, <string3>[, <string4>]]]
PLAY ON
PLAY OFF
PLAY STOP

<string1> is a string expression which controls voice 1. This expression
consists of one or more of the PLAY statement subcommands listed
under "NOTES".

<string2>, <string3>, and <string4>, control the other 3 voices which
may be used simultaneously with voice 1.

NOTES:
PLAY uses a concept similar to that in DRAW by embedding a Music
Macro Language into one statement. A set of subcommands, used as
part of the PLAY statement itself, specifies the particular action to be
taken.

The subcommands used for <string expression> are:

Subcommand

>

<

A-G [# I+,-j

Explanation

Increments one octave. This subcommand will not
increment above octave 6.

Decrements one octave. This subcommand will not
decrement below octave O.

Plays a note in the range A-G. The symbol # or +
after the note specifies sharp; the symbol - spec
ifies flat.

Commands, Statements, Functions, and Variables 6-175

Subcommand

L<n>

MF

MB

MN

ML

MS

N <n>

o <n>

P<n>

Explanation

Sets the length of each note. L 4 is a quarter note, L
1 is a whole note, and so on. n may be in the range
1 through 64.

The length may also follow the note when a change
of length only is desired for a particular note. In this
case, A 16 is equivalent to L 16 A.

Sets music (PLAY statement) and SOUND to run in
the foreground. That is, each subsequent note or
sound will not start until the previous note or sound
has finished. MF is the default setting.

Music (PLAY statement) and SOUND are set to run
in the background. That is, each note or sound is
placed in a buffer allowing the GW-BASIC program
to continue executing while the note or sound plays
in the background. The maximum number of notes
which may be played as background music queue
is 32 including the commands which control the
shape of the envelope for a voice.

Sets "music normal" so that each note will play 7/8
of the time determined by the length (L).

Sets "music legato" so that each note will play the
full period set by length (L).

Sets "music staccato" so that each note will play
3/4 of the time determined by the length (L).

Plays note n. n may range from a through 84
(because in the 7 possible octaves there are 84
notes). n = a means a rest.

Sets the current octave. n selects one of seven
octaves, numbered a through 6.

Specifies a pause value n, ranging from 1 through
64. This option corresponds to the length of each
note, set with L <n>.

continued on next page

6-176

Subcommand

T<n>

V<n>

OS <n>

X <string>

GW-BASIC Reference Manual

Explanation

Sets the "tempo", or the number of L 4's in one
second. The integer n may range from 32 through
255. The default is 120.

A period after a note causes the note to play 3/2
times the length determined by L multiplied by T
(tempo). Multiple periods may appear after a note.
The period is scaled accordingly; for example, A. is
3/2, A .. is 9/4, A ... is 27/8, and so on. Periods may
appear after a pause (P). In this case, the pause
length is scaled in the same way notes are scaled.

Specifies the volume level for a voice using a value
from 0 to 255. The loudest volume, 255, is the
default. If the OS<n> parameter is used to control
the envelope shape for each note, then the V<n>
parameter specifies the initial volume for that note in
the attack/decay cycle.

Defines the shape of the envelope for each note
played by the specified voice. The range of <n>
can be from 0 to 7. The default value of 0 specifies
that no attack/decay processing takes place. A
value of 7 specifies the maximum attack/decay
processing.

During the attack portion of the attack/decay cycle,
the voice begins playing each note at the volume
specified with the V<n> parameter. The volume
increases to 255 at a rate proportional to the value
of the OS<n> parameter.

After playing the note for the time specified by the
I<n> parameter, the volume of the note decays to 0
at a rate proportional to the value of the OS<n>
parameter.

Executes a substring.

The ON PLAY statement specifies a value and a subroutine line number.
The PLAY ON statement enables event trapping to cause GW-BASIC to
execute the subroutine whenever the number of notes in the background
music queue goes below the specified value. The ON PLAY statement
uses only voice 1 to test the number of notes in the background music
queue.

Commands, Statements, Functions, and Variables 6-177

PLAY OFF disables event trapping and PLAY STOP suspends event
trapping. If the number of notes in the background music queue goes
below the specified value after a PLAY STOP statement, the subroutine is
executed immediately after the next PLAY ON statement.

EXAMPLES:
PLAY "XA$;"

PLAY "X" + VARPTR$(A$)

6-178

PLAY FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns the number of notes currently in the background music queue.

SYNTAX:
I = PLAY(n)

<n> is a dummy argument and may be any value.

NOTES:
PLAY(n) will return a when in Music Foreground mode.

EXAMPLE:
The function:

1= PLAY(1)

places in I the number of notes currently in the background music
queue.

Commands, Statements, Functions, and Variables

PMAP FUNCTION

PURPOSE:

6-179

Maps logical (world) coordinates to physical coordinates or physical
coordinates to world coordinates.

SYNTAX:
X = PMAP (I,n)

The parameters for PMAP are as follows:

n

o
1
2
3

NOTES:

world coordinate X
world cOOidinate Y
physical coordinate X
physical coordinate Y

Returned Value

physical coordinate X
physical coordinate Y
world coordinate X
world coordinate Y

The WINDOW statement defines the world coordinates and the VIEW
statement defines the physical coordinates. PMAP provides a simple
method of translating coordinate specifications from one system to the
Gther.

EXAMPLE:
The statement:

10 X = PMAP (32,2)

translates the physical X coordinate of 32 to the corresponding world X
coordinate. The correspondence is determined by the WINDOW and
VIEW statements.

6-180

POINT FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Reads the color value of a pixel from the screen. If the specified point is
out of range, the value -1 is returned.

A second form of POINT returns the current graphics accumulator
values.

SYNTAX 1:
I = POINT «xcoordinate>, <ycoordinate»

<xcoordinate> and <ycoordinate> are the coordinates of the pixel to
be referred to.

SYNTAX 2:
I = POINT (n)

The parameter n returns a coordinate value as follows:

n Returned Value

o Current physical X coordinate.
1 Current physical Y coordinate.
2 Current world X coordinate if WINDOW is active. Otherwise,

returns the same value as if n = o.
3 Current world Y coordinate if WINDOW is active. Otherwise

return the same value as if n = 1.

EXAMPLES:
10 SCREEN 1
20 FOR C=OTO 3
30 PSET (10,10),C
40 IF POINT(10,10)<>C THEN PRINT "Broken!"
50 NEXT C

5 SCREEN 2
10 IF POINT(I,I)<>O THEN PRESET (1,1)
ELSE PSET (1,1)
'invert current state of a point
20 PSET (1,1),1- POINT(I,I) 'another way to invert a point

Commands, Statements, Functions, and Variables

POKE STATEMENT

PURPOSE:
Writes a byte into a memory location.

SYNTAX:
POKE I,J

I and J are integer expressions.

NOTES:

6-181

I and J are integer expressions. The expression I represents the address
of the memory location and J is the data byte. I must be in the range
- 32768 to 65535. I is the offset from the current segment, which was
set by the last DEF SEG statement. For the interpretation of the negative
values of I, see "VARPTR Function" later in this section.

The complementary function to POKE is PEEK. The argument to PEEK is
an address from which a byte is to be read.

Warning: Use POKE carefully. If it is used incorrectly, it can cause
GW-BASIC to crash.

EXAMPLE:
10 POKE &H5AOO,&HFF

6-182

POS FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns the current horizontal (column) position of the cursor.

SYNTAX:
I = POS(X)

NOTES:
The leftmost position is 1. X is a dummy argument. To return the current
line position of the cursor, use the CSRLlN function.

Also see "LPOS Function".

EXAMPLE:
IF POS(X»60 THEN BEEP

Commands, Statements, Functions, and Variables

PRESET STATEMENT

PURPOSE:

6-183

Draws a specified point on the screen. PRESET works exactly like PSET,
except that if the <color> is not specified, the background color is
selected.

SYNTAX:
PRESET «xcoordinate>, <ycoordinate»[, <color> 1

<xcoordinate> and <ycoordinate> specify the absolute location of the
pixel to be set.

<color> is the number assigned to the color to be used for the specified
point.

NOTES:
If an out-of-range coordinate is given, clipping occurs. Points plotted
outside the screen or viewport limits do not appear.

Coordinates can be shown as absolutes, as in the preceding syntax, or
the STEP option can be used to refer to a point relative to the most recent
point used. The syntax of the STEP option is:

STEP «xoffset>, <xoffset»

For example, if the most recent point referred to were (0,0), STEP (10,0)
would refer to a point offset 1 0 from X and 0 from Y.

EXAMPLE:
5 REM DRAW A LINE FROM (0,0) TO (100,100)
10 FOR I =0 TO 100
20 PRESET (1,1),1
30 NEXT

35 REM NOW ERASE THAT LINE
40 FO R I = 0 TO 100
50 PRESET STEP (-1, -1)
60 NEXT

This example draws a line from (0,0) to (100,100) and then erases that
line by overwriting it with the background color.

6-184 GW-BASIC Reference Manual

PRINT STATEMENT

PURPOSE:
Displays data on the screen.

SYNTAX:
PRINT [<list of expressions> 1

NOTES:
If <list of expressions> is omitted, a blank line is printed. If
<list of expressions> is included, the values of the expressions are
printed on the screen. The expressions in the list may be numeric and/or
string expressions. (Strings must be enclosed in quotation marks.)
Quotation marks cannot be used as part of the string because they are
used as string delimiters.

Print Positions

The position of each printed item is determined by the punctuation used
to separate the items in the list. GW-BASIC divides the line into print
zones of 14 spaces each. In the list of expressions, a comma causes the
next value to be printed at the beginning of the next zone. A semicolon
causes the next value to be printed immediately after the last value.
Typing one or more spaces between expressions has the same effect as
typing a semicolon.

If a comma or a semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line, spacing accordingly.
If the list of expressions terminates without a comma or a semicolon, a
carriage return is printed at the end of the line. If the printed line
exceeds the number of screen columns, GW-BASIC continues printing
on the next physical line.

Printed numbers are always followed by a space. Positive numbers are
preceded by a space. Negative numbers are preceded by a minus
sign. Single precision numbers that can be represented with 6 or fewer
digits in the unscaled format no less accurately than they can be
represented in the scaled format, are printed using the unscaled format.
For example, 1E-7 is printed as .0000001 and 1E-8 is printed as 1E-08.
Double precision numbers that can be represented with 16 or fewer
digits in the unscaled format no less accurately than they can be
represented in the scaled format, are printed using the unscaled format.
For example, 10-15 is printed as .0000000000000001 and 10-16 is
printed as 10-16.

Substitutes for PRINT

A question mark may be used in place of the word PRINT in a PRINT
statement.

Commands, Statements, Functions, and Variables 6-185

EXAMPLES:
In Example 1, the routine:

10X=5
20 PRINT X + 5,X - 5,X*(- 5),X /\5
30END

will yield:

10 o -25 3125

In this example, the commas in the PRINT statement cause each value
to be printed at the beginning of the next print zone.

In Example 2, the routine:

10 INPUT X
20 PRINT X "SQUARED IS" X!\2 ''AND'';
30 PRINTX "CUBED IS" X/\3
40 PRINT
50 GOTO 10

will yield:

?9
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of line 20 causes the PRINT
statements on lines 20 and 30 to be printed on the same line. Line 40
causes a blank line to be printed before the next prompt.

In Example 3, the routine:

10 FOR X=1 TO 5
20 J=J +5
30 K=K+10
40 ?J;K;
50 NEXT X

will yield:

5 10 10 20 15 30 20 40 25 50

continued on next page

6-186 GW-BASIC Reference Manual

In this example, the semicolons in the PRINT statement cause each
value to be printed immediately after the preceding value. (Each
number is followed by a space, and positive numbers are preceded by a
space.) In line 40, a question mark is used instead of the word PRINT.

Commands, Statements, Functions, and Variables 6-187

PRINT USING STATEMENT

PURPOSE:
Prints strings or numbers using a specified format.

SYNTAX:
PRINT USING <string exp>;<list of expressions>

NOTES:
<string exp> is a string literal (or variable) composed of special
formatting characters. These formatting characters (see below) deter
mine the field and the format of the printed strings or numbers.

<list of expressions> is composed of the string expressions or numeric
expressions to be printed, separated by a comma or a semicolon.

String Fields

When PRINT USING is used to print strings, one of three formatting
characters may be used to format the string field.

Character

\n spaces\

&

Numeric Fields

Meaning

Specifies that only the first character in the given string
is to be printed.

Specifies that 2 + n characters from the string are to be
printed. If the backslashes are typed with no spaces,
two characters will be printed; with one space, three
characters will be printed, and so on. If the string is
longer than the field, the extra characters are ignored. If
the field is longer than the string, the string will be left
justified in the field and padded with spaces on the
right.

Specifies a variable length string field. When the field is
specified with "&", the string is output without
modification.

When PRINT USING is used to print numbers, the following special
characters may be used to format the numeric field.

continued on next page

6-188

Character

+

**

GW-BASIC Reference Manual

Meaning

A number sign is used to represent each digit position.
Digit positions are always filled. If the number to be
printed has fewer digits than positions specified, the
number will be right-justified (preceded by spaces) in
the field.

A decimal point may be inserted at any position in the
field. If the format string specifies that a digit is to
precede the decimal point, the digit will always be
printed (as 0, if necessary). Numbers are rounded as
necessary. For example:

PRINT USING "##.##";.78
0.78

PRINT USING "###.##";987.654
987.65

PRINT USING "##.## ";10.2, 5.3, 66.789, .234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at the
end of the format string to separate the printed values
on the line.

A plus sign at the beginning or end of the format string
will cause the sign of the number (plus or minus) to be
printed before or after the number.

A minus sign at the end of the format field will cause
negative numbers to be printed with a trailing minus
sign. For example:

PRINT USING" + ##.## "; - 68.95,2.4,55.6, -.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "##.## - "; - 68.95,22.449, - 7.01
68.95 - 22.45 7.01-

A double asterisk at the beginning of the format string
causes leading spaces in the numeric field to be filled
with asterisks. The * * also specifies positions for
two more digits. For example:

PRINT USING "* *#.# ";12.39, -0.9,765.1
*12.4 * -0.9 765.1

Commands, Statements, Functions, and Variables 6-189

Character

$$

Meaning

A double dollar sign causes a dollar sign to be printed
to the immediate left of the formatted number. The $$
specifies two more digit positions, one of which is for the
dollar sign itself. The exponential format cannot be
used with the $$. Negative numbers cannot
be used unless the minus sign trails to the right.
For example:

PRINT USING "$$###.##"; 456.78
$456.78

* *$ The * *$ at the beginning of a format string combines
the effect of the above two symbols. Leading spaces
will be asterisk-filled and a dollar sign will be printed
before the number. * *$ specifies three more digit
positions, one of which is for the dollar sign.

/\/\/\/\

The exponential format cannot be used with * *$.
When negative numbers are printed, the minus sign will
appear immediately to the left of the dollar sign. For
example:

PRINT USING "* *$##.##";2.34
* * *$2.34

A comma placed immediately to the left of the decimal
point in a formatting string causes a comma to be
printed to the left of every third digit to the left of the
decimal point. A comma placed at the end of the format
string is printed as part of the string. A comma specifies
another digit position. The comma has no effect if used
with the exponential (/\ /\ /\ /\) format. For example:

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.##,";1234.5
1234.50,

Four carets may be placed after the digit-position
characters to specify exponential format. The four
carets allow space for E + xx to be printed. Any decimal
point position may be specified. The significant digits
are left-justified, and the exponent is adjusted.

continued on next page

6-190 GW-BASIC Reference Manual

Character Meaning

%

Unless a leading + or trailing + or - is specified, one
digit position will be used to the left of the decimal point
to print a space or a minus sign. For example:

PRINT USING "##.##/\ /\ /\ /\ ";234.56
2.35E+02

PRINT USING ".####/\ /\ /\ /\ - ";888888
.8889E+06

PRINT USING "+ .##/\ /\ /\ /\.";123
+ .12E+03

An underscore in the format string causes the next
character to be output as a literal character. For
example:

PRINT USING " !##.## !";12.34
!12.34! - -

The literal character itself may be an underscore by
placing" " (two underscores) in the format string.

If the number to be printed is larger than the specified
numeric field, a percent sign is printed in front of the
number. If rounding causes the number to exceed
the field, a percent sign will be printed in front of
the rounded number. For example:

PRINT USING "##.##";111.22
% 111.22

PRINT USING ".##";.999
%1.00

If the number of digits specified exceeds 24, an "Illegal
function call" error will result.

EXAMPLES:
In Example 1, the statement

10 A$ = "LOOK":B$ = "OUT"
30 PRINT USING "!";A$;B$
40 PRINT USING "\ \";A$;B$
50 PRINT USING "\ \";A$;B$;"!!"

Commands, Statements, Functions, and Variables

will yield:

LO
LOOKOUT
LOOK OUT !!

In Example 2, the statement

10 A$ = "LOOK":8$ = "OUT"
20 PRINT USING "!";A$;
30 PRINT USING "&";8$

will yield :

LOUT

6-191

6-192 GW-BASIC Reference Manual

PRINT # and PRINT # USING STATEMENTS

PURPOSE:
Writes data to a sequential file.

SYNTAX:
PRINT #<file number>,[USING <string exp>;]
<list of expressions>

NOTES:
<file number> is the number used when the file was OPENed for output.
<string exp> consists of formatting characters, as described under the
"PRINT USING Statement". The expressions in <list of expressions>
are the numeric and/or string expressions that will be written to the file.

PRINT # does not compress data. An image of the data is written to the
file, just as it would be displayed on the screen with a PRINT statement.
For this reason, be careful to delimit the data so it will be input correctly.

In the <list of expressions>, numeric expressions should be delimited
by semicolons. For example:

PRINT #1,A;B;C;X;Y;Z

(If commas are used as delimiters, any extra blanks inserted between
print fields will also be written to the file.)

String expressions must be separated by semicolons in the list. To
format the string expressions correctly in the file, use explicit delimiters
in the list of expressions.

For example, let A$ = "CAMERA" and B$ = "93604 -1". The statement:

PRINT #1,A$;B$

would write CAMERA93604 -1 to the file. Because there are no delim
iters, this string could not be input as two separate strings. To correct
the problem, insert explicit delimiters into the PRINT statement as
follows:

PRINT #1,A$;",";B$

The image now written to the file is:

CAMERA,93604 -1

which can be read back into two string variables.

Commands, Statements, Functions, and Variables 6-193

If the strings themselves contain commas, semicolons, significant
leading blanks, carriage returns, or linefeeds, write them to the file
surrounded by explicit quotation marks or the CHR$ equivalent, CHR$
(34).

For example, let A$= "CAMERA, AUTOMATIC" and B$=" 93604-1".
The statement:

PRINT #1,A$;B$

would write the following image to the file:

CAMERA, AUTOMATIC 93604-1

And the statement:

INPUT #1,A$,B$

would input "CAMERA" to A$ and ':AUTOMATIC 93604-1" to B$. To
separate these strings properly in the file, write double quotation marks
to the file image using CHR$(34). The statement:

PRINT #1,CHR$(34);A$;CHR$(34);CHR$(34);B$
;CHR$(34)

writes the following image to the file:

"CAMERA, AUTOMATIC"" 93604-1"

Finally, the statement:

INPUT #1,A$,B$

would input "CAMERA, AUTOMATIC" to A$ and" 93604 -1" to B$.

The PRINT statement may also be used with the USING option to control
the format of the file. For example:

PRINT #1,USING"$$###.##,";J;K;L

See also "WRITE # Statement" later in this section.

6-194

PSET STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Draws a point on the screen at the specified point in the specified color.

SYNTAX:
PSET «xcoordinate>, <ycoordinate»[, <color> 1

<xcoordinate> and <ycoordinate> are absolute coordinates which
specify the point on the screen to be colored.

<color> is the number of the color to be used.

NOTES:
When GW-BASIC scans coordinate values, it allows them to extend
beyond the edge of the screen. However, values outside the integer
range - 32768 to 32767 will cause an "Overflow" error.

The coordinate (0,0) is always the upper left corner of the screen.
Therefore, the bottom left corner of the screen is 0,199 in screen modes 1
through 5 and 0,399 in screen modes 6 and 7.

PSET allows the <color> to be left off the command line. If <color> is
omitted, the default is the foreground color.

Coordinates can be shown as offsets by using the STEP option to refer to
a point relative to the most recent point used. The syntax of the STEP
option is:

STEP (<xoffset>, <yoffset>)

<xoffset> and <yoffset> are relative coordinates which specify the
point on the screen to be colored.

For example, if the most recent point specified were (0,0), PSET STEP
(10,0) would refer to a point at offset 10 from X and offset 0 from Y

EXAMPLE:
5 REM DRAW A SERIES OF POINTS FROM (0,0) TO (100,100)
10 FOR I =0 TO 100
20 PSET (1,1)
30 NEXT

35 REM NOW ERASE THOSE POINTS
40 FOR I =0 TO 100
50 PSET STEP (-1 , -1),0
60 NEXT

Commands, Statements, Functions, and Variables 6-195

This example draws a series of points from (0,0) to (100,100) and then
erases them by overwriting it with the background color.

6-196 '

PUT STATEMENT (FILES)

PURPOSE:

GW-BASIC Reference Manual

Writes a record from a random buffer to a random access file.

SYNTAX:
PUT [#]<file number>[, <record number>]

NOTES:
<file number> is the number under which the file was OPENed. If
<record number> is omitted, the record will assume the next available
record number (after the last PUT). The largest possible record number
is 16,777,215. The smallest record number is 1.

The GET and PUT statements allow fixed-length input and output for
GW-BASIC COM files. However, because of the low performance
associated with telephone line communications, you should normally not
use GET and PUT for telephone communication.

Note: PRINT #, PRINT # USING, and WRITE # may be used to put
characters in the random file buffer before executing a PUT statement.

In the case of WRITE #, GW-BASIC pads the buffer with spaces up to
the carriage return. Any attempt to read or write past the end of the
buffer causes a "Field overflow" error.

Commands, Statements, Functions, and Variables

PUT STATEMENT (GRAPHICS)

PURPOSE:

6-197

Used with the GET statement to transfer graphic images to and from the
screen.

SYNTAX:
PUT (X1 ,Y1),<array name>[,<action verb> 1

(X1 ,Y1) specifies the point where a stored image is to be displayed on
the screen. The specified point is the coordinate of the top left corner of
the image. If the image to be transferred is too large to fit on the screen,
an "Illegal function call" error will result.

<array name> is the name of the array in which the object image was
stored with a graphics GET statement.

<action verb> is one of the following: PSET, PRESET, AND, OR, or XOR.

PSET transfers the data onto the screen verbatim.

PRESET is the same as PSET, except that all pOints in the image are
inverted.

AND is used to transfer points from the array only where points already
exist from another image on the screen.

OR is used to superimpose the image onto an existing image.

XOR causes the points on the screen to be inverted where a point exists
in the array image. This behavior is exactly like that of the cursor. When
an image is PUT against a complex background twice, the background
is restored unchanged. Thus, a user can move an object around the
screen without obliterating the background.

The default <action verb> is XOR.

NOTES:
The graphics version of the PUT statement is the complement of the
graphics GET statement. It enables a program to transfer an object to
the screen from an object array.

<action verb> enables the program to specify the interaction between
the stored image and images already present on the screen. The
<action verb> has different effects in different screen modes. The color
changes caused by PRESET, AND, OR, and XOR depend on the
number of bits per pixel in each mode.

continued on next page

6-198 GW-BASIC Reference Manual

EXAMPLE:
The statement:

10 PUT (10,10),FIGURE1, OR

places the object stored in the FIGURE1 array on the screen. The
statement places the upper left corner of the rectangle containing the
object at screen location (10,10). The <action verb>, OR, causes the
image to be superimposed over any images which are already on the
screen.

Commands, Statements, Functions, and Variables

RANDOMIZE STATEMENT

PURPOSE:
Reseeds the random number generator.

SYNTAX:
RANDOMIZE [<expression> 1

NOTES:

6-199

If <expression> is omitted, GW-BASIC suspends program execution
and asks for a value by printing:

Random Number Seed (- 32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded, the RND function
returns the same sequence of random numbers each time the program
is run. To change the sequence of random numbers every time the
program is run, place a RANDOMIZE statement at the beginning of the
program and change the argument with each run.

Use the statement RANDOMIZE TIMER to get a new random seed
without user input.

EXAMPLES:
The routine:

10 RANDOMIZE
20 FOR I = 1 TO 5
30 PRINT RND;
40 NEXT I

RUN

will yield:

Random number seed (- 32768 to 32767)? 6
.4417627 .1085309 .182628 .9246312

Ok
RUN
Random number seed (- 32768 to 32767)? 7

.84815 .279994 .496364 .4990483
Ok
RUN
Random number seed (- 32768 to 32767)? 6

.4417627 .1085309 .182628 .9246312

.2432385

.9731121

.2432385
Ok continued on next page

6-200 GW-BASIG Referenqe Manual

Note that the numbers your program produces may not be the same as
the ones shown here.

Commands, Statements, Functions, and Variables

READ STATEMENT

PURPOSE:
Reads values from a DATA statement and assigns them to variables.
(See "DATA Statement" earlier in this section for more information.)

SYNTAX:
READ <list of variables>

NOTES:

6-201

A READ statement must always be used in conjunction with a DATA
statement. READ statements assign variables to DATA statement values
on a one-to-one basis. READ statement variables may be numeric or
string variables, and the values read must agree with the variable types
specified. If they do not agree, a "Syntax error" will result.

The READ statement can act upon DATA statements in one of two ways:
either a single READ statement may access one or more DATA state
ments (they will be accessed in order), or several READ statements may
access the same DATA statement. If the number of variables in <list of
variab'les> exceeds the number of elements in the DATA statement(s),
an "Out of data" error message is printed. If the number of variables
specified is fewer than the number of elements in the DATA statement(s),
subsequent READ statements will begin reading data at the first unread
element. If there are no subse_quent READ statements, the extra data is
ignored.

To reread DATA statements from the start, use the RESTORE statement
(see "RESTORE Statement" later in this section).

EXAMPLES:
In Example 1:

80 FOR I = 1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

this program segment READs the values from the DATA statements into
the array A. After execution, the value of A(1) will be 3.08, and so on.

continued on next page

6-202

In Example 2, the routine:

10 PRINT "CITY", "STATE", "ZIP"
20 READ C$,S$,Z

GW-BASIC Reference Manual

30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z

reads string and numeric data from the DATA statement in line 30 and
yields:

CITY STATE ZIP
DENVER, COLORADO 80211

Commands, Statements, Functions, and Variables

REM STATEMENT

PURPOSE:
Allows explanatory remarks to be inserted in a program.

SYNTAX:
REM [<remark>]

NOTES:
REM statements are not executed but are output exactly as entered
when the program is listed.

6-203

A GOTO or GOSUB statement may branch into REM statements.
Execution will continue with the first executable statement after the REM
statement.

Remarks may be added to the end of a line by preceding the remark with
a single quotation mark (') instead of :REM.

Do not use REM in a DATA statement, because it would be considered
legal data.

EXAMPLES:

or:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I =1 TO 20
140 SUM = SUM + V(I)

120 FOR I =1 TO 20 'CALCULATE AVERAGE VELOCITY
130 SUM = SUM + V(I)
140 NEXT I

6-204

RENUM COMMAND

PURPOSE:
Renumbers program lines.

SYNTAX:

GW-BASIC Reference Manual

RENUM [[<new number>][. [<old number>][, <increment> III

NOTES:
<new number> is the first line number to be used in the new sequence.
The default is 10. <old number> is the line in the current program where
renumbering is to begin. The default is the first line of the program.
<increment> is the increment to be used in the new sequence. The
default is 10.

RENUM also changes all line number references following GOTO,
GOSUB, THEN, ON ... GOTO, ON ... GOSUB, and ERL test statements to
reflect the new line numbers. If a nonexistent line number appears after
one of these statements, the error message "Undefined line number
xxxxx in yyyyy" is printed. The incorrect line number reference (xxxxx) is
not changed by RENUM, but line number yyyyy may be changed.

RENUM cannot be used to change the order of program lines (for
example, RENUM 15,30 when the program has three lines numbered 10,
20, and 30) or to create line numbers greater than 65529. An "Illegal
function call" error will result.

EXAMPLES:
RENUM

Renumbers the entire program. The first new line number will be 10.
Lines will be numbered in increments of 10.

RENUM 300, ,50

Renumbers the entire program. The first new line number will be 300.
Lines will be numbered in increments of 50.

RENUM 1000,900,20

Renumbers the lines from 900 up, starting with line number 1000 and
proceeding in increments of 20.

Commands, Statements, Functions, and Variables 6-205

RESET COMMAND

PURPOSE:
Closes all files on all drives and RAM cartridges.

SYNTAX:
RESET

NOTES:
RESET closes all open files on all drives and RAM cartridges and writes
the directory track to every disk with open files.

All files must be closed before a disk is removed from its drive.

EXAMPLE:
RESET

6-206

RESTORE STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Allows DATA statements to be reread from a specified line.

SYNTAX:
RESTORE [<line number>]

NOTES:
After a RESTORE statement is executed, the next READ statement
accesses the first item in the first DATA statement in the program. If
<line number> is specified, the next READ statement accesses the first
item in the specified DATA statement.

EXAMPLE:
10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79
50 PRINT A;B;C;D;E;F;
RUN

produces the following output:

576879576879

Commands, Statements, Functions, and Variables

RESUME STATEMENT

PURPOSE:
Continues program execution after an error recovery procedure has
been performed.

SYNTAX:
RESUME [0]

RESUME NEXT

RESUME <line number>

NOTES:
Anyone of the syntax forms shown above may be used, depending
upon where execution is to resume:

Syntax Explanation

6-207

RESUME [0] Execution resumes at the statement that
caused the error.

RESUME NEXT Execution resumes at the statement immedi
ately following the one that caused the error.

RESUME <line number> Execution resumes at <line number>.

A RESUME statement that is not in an error handling routine causes a
"RESUME without error" message to be printed.

EXAMPLE:
10 ON ERROR GOTO 900

900 IF (ERR = 230) AND (ERL = 90) THEN PRINT "TRY
AGAIN":RESUME 80

6-208 GW-BASIC Reference Manual

RETURN STATEMENT

See "GOSUB ... RETURN Statements".

Commands, Statements, Functions, and Variables

RIGHT$ FUNCTION

PURPOSE:
Returns the rightmost I characters of string X$.

SYNTAX:
Y$ = RIGHT$(X$,I)

NOTES:

6-209

If I is greater than or equal to the number of characters in X$ (LEN(X$)),
then RIGHT$(X$,I) returns X$. If I = 0, the null string (length zero) is
returned.

Also see the LEFT$ and MID$ functions described earlier in this section.

EXAMPLE:
The function:

10 A$= "DISK BASIC"
20 PRINT RIGHT$(A$,5)

will yield:

BASIC

6-210

RMDIR STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Removes a directory from the MS-DOS file system.

SYNTAX:
RMDIR <pathname>

<pathname> is a string expression not exceeding 128 characters
identifying the subdirectory to be removed from its parent directory.

NOTES:
RMDIR works exactly like the MS-DOS command RMDIR.

EXAMPLES:
Assume that the current directory is \SALES\JOHN:

RMDIR ',\ACCOUNTING" , Delete subdirectory ACCOUNTING
from the SALES\JOHN directory

or:

RMDIR " .. \..\INVENTORY"

Possible Errors:

"Bad file name"
"Path/File Access error" - usually indicating that the directory is not
specified properly.

The subdirectory to be deleted must be empty of all files except '.' and
' .. '; otherwise, a "Path not found" error is given.

Commands, Statements, Functions, and Variables

RND FUNCTION

PURPOSE:
Returns a random number between 0 and 1.

SYNTAX:
Y = RND[(X)]

NOTES:

6-211

The same sequence of random numbers is generated each time the
program is run unless the random number generator is reseeded (see
"RANDOMIZE Statement" earlier in this section).

X <0 always restarts the same sequence for any given X. X> 0 or X
omitted generates the next random number in the sequence. X = 0
repeats the last number generated.

EXAMPLE:
The function:

10 FOR 1=1 TO 5
20 PRINT INT(RND*100);
30 NEXT

could yield:

243031515

6-212

RUN COMMAND

PURPOSE:

GW-BASIC Reference Manual

Executes the program currently in memory (see Syntax 1). Also loads a
file from disk into memory and runs the file (see Syntax 2).

SYNTAX 1:
RUN [<line number>]

SYNTAX 2:
RUN <filespec>[,R]

NOTES:
Execution of the RUN command automatically cancels the definitions of
all animation objects.

For Syntax 1, if <line number> is specified, execution begins on that
line. Otherwise, execution begins at the lowest line number. GW-BASIC
always returns to command level after a RUN statement is executed.

For Syntax 2, the <filespec> must include the filename used when the
file was saved. (GW-BASIC appends a default filename extension of
.BAS if one was not supplied in the SAVE command.)

This version of RUN closes all open files and deletes the current
contents of memory before loading the designated program. However,
with the "R" option, all data files remain open.

EXAMPLES:
RUN

RUN "NEWFIL",R

Commands, Statements, Functions, and Variables

SAVE COMMAND

PURPOSE:
Saves a program file onto a disk or RAM cartridge.

SYNTAX:
SAVE <filespec>[{,A I,P}]

NOTES:

6-213

<filespec> is a quoted string that conforms to your operating system's
requirements for filenames. GW-BASIC appends a default filename
extension of .BAS if one is not supplied in the SAVE command. If a
filename already exists, the existing file will be written over.

The A option saves the file in ASCII format. If the A option is not
specified, GW-BASIC saves the file in a compressed binary format.
ASCII format takes more space on the disk, but some disk access
requires that files be in ASCII format. For instance, the MERGE com
mand (described earlier in this section) requires an ASCII format file,
and some operating system commands such as LIST may also require
an ASCII format file.

The P option protects the file by saving it in an encoded binary format.
When a protected file is later RUN (or LOADed), any attempt to list or edit
it will fail.

EXAMPLES:
The statement:

SAVE "COM2",A

saves the program COM2 in ASCII format. The statement:

SAVE "PROG",P

saves the program PROG as a protected file which cannot be listed or
altered.

6-214 GW-BASIC Reference Manual

SCREEN STATEMENT

PURPOSE:
Selects text mode or one of the 7 graphics modes, enables or disables
color operation, selects the active page for screen operations, and
selects the page to be displayed on the screen.

SYNTAX:
SCREEN [<mode> 1 [,[<burst>][,[<active page>][, <visible
page> III

<mode> is one of the 8 screen modes listed in Tabl.e 6-4.

<burst> enables or disables color operation.

<active page> selects the active page for text output operations.

<visible page> selects the page to be displayed on the screen.

NOTES:
The Mindset Personal Computer supports 8 screen modes. <mode> is
a numeric expression which evaluates to an integer in the range 1 to 8.
The characteristics of each screen mode are shown in Table 6-4.

Table 6-4: Screen Modes

Screen Graphics Number Screen Vertical
Mode Resolution of Colors Buffering Interlacing

0 Text 2 single/double no
1 320 x 200 4 single/double no
2 640 x 200 2 single/double no
3 320 x 200 2 single/double no
4 320 x 200 16 single no
5 640 x 200 4 single no
6 320 x 400 4 single yes
7 640 x 400 2 single yes

When the SCREEN statement changes the screen mode, it erases the
screen. If the user changes SCREEN values of parameters other than
mode, the screen is not erased.

<burst> is an expression which evaluates to a Boolean value. A false
value disables color operation, a true value enables color operation.

Commands, Statements, Functions, and Variables 6-215

<active page> is an expression which evaluates to the number of the
page (0 or 1) which is to receive text from PRINT and PRINT USING
statements. <visible page> is an expression determining which page
(0 or 1) is to be displayed on the screen.

EXAMPLES:
The statement:

10 SCREEN 0,0

selects black and white text mode. The statement:

10 SCREEN ",1

selects page 1 for display on the screen. The statement:

10 SCREEN 4,1

selects graphics mode 4 for 16-color operation with a resolution of
320 x 200.

6-216

SCREEN FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Reads a character or its color from a specified screen location.

SYNTAX:
Y = SCREEN«row>,<column>[,X])

<row> is a valid numeric expression returning an unsigned integer in
the range 1 to 24 (1 to 25 if KEY OFF has been executed).

<column> is a valid numeric expression returning an unsigned integer
in the range 1 to 40 or 1 to 80, depending upon the screen width.

X is a valid numeric expression returning a Boolean result.

NOTES:
The ordinate of the character at the specified coordinates is stored in the
numeric variable. If the optional parameter X is given and is non-zero, .
the color attribute for the character is returned instead.

EXAMPLES:
In the function:

100 X = SCREEN (10,10)

if the character at (10,10) is A, the statement returns 65. The function:

100X = SCREEN (1,1,1)

returns the color attribute of the character in the upper left corner of the
screen.

Commands, Statements, Functions, and Variables

SGN FUNCTION

PURPOSE:
Indicates the value of X, relative to zero:

If X>O, SGN(X) returns 1.
If X = 0, SGN(X) returns 0.
If X<O, SGN(X) returns -1.

SYNTAX:
Y = SGN(X)

EXAMPLE:
The function:

ON SGN(X) + 2 GOTO 100,200,300

branches to 100 if X is negative, 200 if X is 0, and 300 if X is positive.

6-217

6-218

SHELL STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Loads and executes another program (.EXE or .COM). When the
program finishes, control returns to the BASIC program at the statement
following the SHELL statement. A program executed under control of
BASIC is referred to as a "Child process".

Child processes (or "children") are executed when SHELL loads and
runs a copy of COMMAND with the "/C "switch. By using COMMAND
in this way, parameters are correctly parsed into the default FCBs, and
built-in MS-DOS commands such as DIR, PATH, and SORT may be
executed.

SYNTAX:
SHELL [<command string> 1

<command string> is a valid string expression containing the name of a
program to run and (optionally) command arguments for that program.

NOTES:
The following rules apply to the SHELL statement:

1. The program name in <command string> may have any filename
extension. If the file has no extension, COMMAND first looks for a file
of that name with a .COM extension, then for an .EXE file, and, finally,
for a . BAT file. If none is found, SHELL issues a "File not found" error.

2. Any text separated from the program name by at least one blank will
be processed by COMMAND as one or more program parameters.

3. SHELL works just like the XENIX command 'SH'. That is, BASIC
remains in memory while the Child process is running. When the child
finishes, BASIC continues.

4. You cannot SHELL to another copy of BASIC. When the user attempts
to run BASIC as a Child process, BASIC recognizes the situation
before initialization and returns to the Parent copy of BASIC after
issuing the message: "You cannot run BASIC as a child of BASIC".
This restriction is provided as an implementation option for cases
where it is necessary to protect the integrity of the BASIC Parent
program.

5. SHELL with no <command string> will give you a new COMMAND
shell. You may now do anything that COMMAND allows. When you
are ready to return to BASIC, enter the DOS command EXIT.

6. SHELL is not recommended when running animation programs.

Commands, Statements, Functions, and Variables 6-219

Child Processes

BASIC cannot totally protect itself from its children. When a SHELL
statement is executed, many things may already be going on. For
example, files may already be OPEN and devices may be in use. The
following guidelines will help to prevent Child processes from harming
the BASIC environment.

1. Hardware considerations:

In general, the state of all hardware should be preserved during a
SHELL command. However, BASIC users should refrain from using
certain devices within Child processes executed using the BASIC
SHELL command. Specific areas of concern are:

a. Screen Device - Child processes can sometimes modify screen
mode parameters, although useful information may be displayed
by a Child process. This problem is further complicated by Screen
Editor issues.

b. Interrupt Vectors - Save and restore interrupt vectors the child
intends to use. The Child process should perform this task.

c. Other hardware - Many devices are placed in a specific state by
BASIC. These devices may be used by the Child process without
the user being aware of any limitations and cause unpredictable
results.

2. File System considerations:

A child that alters any file open in the BASIC parent may cause
disastrous results.

3. Memory Management:

Unless BASIC is started with the 1M: switch, it will try to free any
memory it is not using before it passes control through the SHELL
statement to COMMAND.

With the 1M: switch, BASIC must assume that the user intends to load
something in the top of BASIC's Memory Block. This assumption
prevents BASIC from "compressing the workspace" before doing the
SHELL. Consequently, use of the 1M: switch may cause SHELL to fail
on an "Out of memory" error.

To avoid this problem, the user should load machine-language
subroutines before BASIC is run. Such loading can be accomplished

continued on next page

6-220 GW-BASIC Reference Manual

by placing "Pocket Code" at the end of machine- language sub
routines that allows them to exit to DOS and stay resident. For
example:

CSEG SEGMENT

;Machine language subroutine
RET

START::

CSEG

INT

ENDS
END

CODE

; Last instruction

27H ;Terminate, stay resident

START

Be sure to "load" these subroutines by running them before running
BASIC. The AUTOEXEC.BAT file is very useful for loading and running
these subroutines.

A child should NEVER "terminate and stay resident". Doing so may not
leave BASIC enough room to expand its workspace to the original size.
If BASIC cannot restore the workspace, all files are closed, the error
message "SHELL can't continue" is printed, and BASIC exits to
MS-DOS.

EXAMPLES:
SHELL 'get a new COMMAND
A>DIR {user types DIR to see files}
A>EXIT {user types EXIT to return to BASIC}

Control returns to BASIC.

The user writes some data to be sorted, invokes the SHELL sort to sort it,
then reads the sorted data to write a report:

10 OPEN "SORTINDAT" FOR OUTPUT AS #1

· 'Write data to be sorted

1000 CLOSE 1
1 01 0 SHELL "SORT <SORTINDAT >SORTOUT.DAT"
1020 OPEN "SORTOUT.DAT" FOR INPUT AS #1

· 'Process the sorted data

10 SHELL "DIR I SORT >FILES."
20 OPEN "FILES." FOR INPUT AS #1

· 'Examine, change, or delete file names

Commands, Statements, Functions, and Variables

SIN FUNCTION

PURPOSE:
Returns the sine of X, where X is in radians.

SYNTAX:
Y = SIN(X)

NOTES:
COS(X) = SIN(X+3.14159/2).

EXAMPLE:
The function:

PRINT SIN(1.5)

will yield:

.9974951

See also "COS Function" earlier in this section.

6-221

6-222

SOUND STATEMENT

PURPOSE:
Generates a sound through the speaker.

SYNTAX:

GW-BASIC Reference Manual

SOU N D <freq >, < duration> [, <vol u me > [, <voice>]]

<freq> is the desired frequency in hertz. <freq> must be a numeric
expression returning an unsigned integer in the range 37 to 32767.

<duration> is the duration in clock ticks. Clock ticks occur 18.2 times
per second. <duration> must be a numeric expression returning an
unsigned integer in the range 0 to 65535.

<volume> uses a value from 0 to 255 to set the volume for the note. The
default value of 255 produces the loudest sound.

<voice> selects one of four voices to play the note. The range of
<voice> is 0 to 3. Voice 0 is the default.

NOTES:
If the duration is zero, any SOUND statement currently running will be
turned off. If no SOUND statement is currently running, a SOUND
statement with a duration of zero will have no effect.

EXAMPLE:
30 SOUND RND* 1000+37,2

This statement produces random sounds from voice 0 at full volume.

Commands, Statements, Functions, and Variables

SPACES FUNCTION

PURPOSE:
Returns a string of spaces of length X.

SYNTAX:
Y$ = SPACE$(X)

NOTES:
The expression X is rounded to an integer and must be in the range
o to 255.

Also see "SPC Function" later in this section.

EXAMPLE:
The function:

1 0 FOR I = 1 TO 5
20 X$ = SPACE$(I)
30 PRINT X$;I
40 NEXT I

will yield:

2
3

4
5

6-223

6-224

SPC FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Skips spaces in a PRINT statement. I is the number of spaces to be
skipped.

SYNTAX:
PRINT ... SPC(I) .. .
LPRI NT. .. SPC(I) .. .

NOTES:
SPC may be used only with PRINT and LPRINT statements. I must be in
the range 0 to 255. A semicolon (;) is assumed to follow the string of
spaces printed by the SPC(I) command.

Also see "SPACE$ Function" earlier in this section.

EXAMPLE:
The function:

PRINT "OVER" SPC(15) "THERE"

will yield:

OVER THERE

Commands, Statements, Functions, and Variables

SQR FUNCTION

PURPOSE:
Returns the square root of X.

SYNTAX:
Y = SOR(X)

NOTES:
X must be > = O.

EXAMPLE:
The function:

10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SOR(X)
30 NEXT

will yield:

10 3.162278
15 3.872984
20 4.472136
25 5

6-225

6-226

STICK FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns the X and Y coordinates of the two joysticks.

SYNTAX:
X = STICK(I)

(I) is a numeric expression returning an unsigned integer in the range
Oto 7.

NOTES:
The values for I can be:

Value Explanation

o Returns the X direction switch position for joystick A. A value of 1
indicates right and -1 indicates left. Setting 1=0 also latches
the X and Y values for both joysticks and the mouse for the
STICK (I) functio.n when I = 1 to 7.

Returns the Y direction switch position of joystick A. A value of 1
indicates up and -1 indicates down.

2 Returns the X direction switch position of joystick 8. Indicator
values are the same as for joystick A.

3 Returns the Y direction switch position of joystick 8. Indicator
values are the same as for joystick A.

4 Returns the change in the X coordinate for mouse A since the
last STICK function call.

5 Returns the change in the Y coordinate for mouse A since the
last STICK function call.

6 Returns the change in the X coordinate for mouse 8 since the
last STICK function call.

7 Returns the change in the Y coordinate for mouse 8 since the
last STICK function call.

The coordinate data for a mouse is not scaled in any way; it represents
the number of pulses received from the mouse, The user must scale this
data to represent screen coordinates, and the scaling factor will vary
according to the size of each individual screen.

Commands, Statements, Functions, and Variables 6-227

Note: Executing the STRIG statement, or a trigger event when trigger
event trapping is enabled, resets any accumulated mouse data to O.

EXAMPLES:
The following routine:

10 CLS
20 LOCATE 1 ,1
30 PRINT "X = ";STICK(O)
40 PRINT "Y = ";STICK(1)
50 GOTO 20

creates an endless loop to display the values of the direction switch
positions for joystick A.

The following routine could be used to determine the current position of
a mouse in screen mode 2, where the screen has an aspect ratio of %:

10 XSCALE = 4:YSCALE = 3 'Set aspect ratio
20 XREMAINDER = 0: YREMAINDER = 0 'Clear remainder
values
30 LOCATE 1 ,1
40 X=O:Y=O

fl-ssume mouse is at upper left
'Set X and Y as upper left

200 Z = STICK(O) 'LATCH stick data
210 XREMAINDER = XREMAINDER + STICK(4) fl-dd change in
X to accumulated change
220 YREMAINDER = YREMAINDER + STICK(5) fl-dd change in
Y to accumulated change
230 X = X + XREMAINDER/XSCALE 'Scale, change, and update
X
240 Y = Y + YREMAINDERIYSCALE 'Scale, change, and update
Y
250 XREMAINDER=XREMAINDER MOD XSCALE 'Save any
excess X movement
260 YREMAINDER=YREMAINDER MOD YSCALE
excess Y movement

'Save any

6-228

STOP STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Terminates program execution and returns to command level.

SYNTAX:
STOP

NOTES:
STOP statements may be used anywhere in a program to terminate
execution. STOP is often used for debugging. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

The STOP statement does not close files.

GW-BASIC always returns to command level after a STOP is executed.
Execution is resumed by issuing a CaNT command.

EXAMPLE:
The function:

10 INPUT A,B,C
20 K=AI\2*5.3:L= B;\3/.26
30 STOP
40 M=C*K+100:PRINT M

will yield:

? 1,2,3
BREAK IN 30

PRINT L
30.76923
CaNT
115.9

Commands, Statements, Functions, and Variables

STOP/START OBJECT STATEMENTS

PURPOSE:

6-229

STOP OBJECT halts the motion and freezes the current view of one or
more objects on the screen. START OBJECT restarts one or more
objects which have been halted with a STOP OBJECT statement.

SYNTAX:
START OBJECT [<object number>[, <object number> ...]]
STOP OBJECT [<object number>[,<object number> ...]]

<object number> is the number of an object being halted by the STOP
OBJECT statement or being restarted by the START OBJECT statement.
<object number> must be in the range 1 to 16.

NOTES:
The STOP OBJECT statement freezes the specified object(s) on the
screen but does not erase them, as does the DEACTIVATE statement.
The START OBJECT statement unfreezes the specified object(s) after
they have been stopped by a STOP OBJECT statement.

If no object numbers are specified, STOP OBJECT freezes all objects
and START OBJECT restarts all objects.

EXAMPLES:
The statement:

10 STOP OBJECT 1,2,3,4,5

freezes objects numbered 1 through 5. The statement:

20 START OBJECT 1

unfreezes only object number 1.

6-230

STR$ FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns a string representation of the value of X.

SYNTAX:
Y$ = STR$(X)

NOTES:
Also see "VAL Function".

EXAMPLE:
5 REM ARITHMETIC FOR KIDS
1 0 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500

Commands, Statements, Functions, and Variables

STRIG STATEMENT/FUNCTION

PURPOSE:

6-231

The STRIG ON statement enables event trapping of joystick or mouse
switch activity.

The STRIG OFF statement disables event trapping of joystick or mouse
switch activity.

The STRIG STOP statement disables event trapping of joystick or mouse
switch activity; however, if the joystick or mouse switch is pressed, that
event will be remembered and will be trapped as soon as event trapping
is enabled.

The X = STRIG(I) function returns the status of a specified joystick trigger
or mouse switch.

SYNTAX:
STRIG ON
STRIG OFF
STRIG STOP
X = STRIG(I)

X is a numeric variable for storing the result of the function.

I is a numeric expression returning an unsigned integer in the range 0 to
7, designating which trigger is to be checked.

NOTES:
The STRIG ON statement enables joystick/mouse event trapping by an
ON STRIG statement (see "ON STRIG Statement" earlier in this section).
While trapping is enabled, if a non-zero line number is specified in the
ON STRIG statement, GW-BASIC checks between every statement to
see if the joystick trigger or mouse switch has been pressed.

The STRIG OFF statement disables event trapping. If an event occurs
(in other words, if the trigger or switch is pressed), it will not be
remembered.

The STRIG STOP statement disables event trapping; however if a trigger
or switch is pressed it will be remembered, and the event trap will take
place as soon as trapping is enabled.

continued on next page

6-232 GW-BASIC Reference Manual

In the STRIG(I) function, the values for (I) can be:

Value Explanation

o Returns -1 if joystick A right trigger was pressed since the last
STRIG(O) function call; returns 0 if not.

Returns -1 if joystick A right trigger is currently down, 0 if not.

2 Returns -1 if joystick A left trigger was pressed since the last
STRIG(2) function call, 0 if not.

3 Returns -1 if joystick A left trigger is currently down, 0 if not.

4 Returns - 1 if joystick B right trigger was pressed since the last
STRIG(O) function call, 0 if not.

5 Returns -1 if joystick B right trigger is currently down, 0 if not.

6 Returns -1 if joystick B left trigger was pressed since the last
STRIG(O) function call, 0 if not.

7 Returns -1 if joystick B left trigger is currently down, 0 if not.

When a trigger/switch event trap occurs, that occurrence of the event is
destroyed. Therefore, the X = STRIG(I) function will always return a false
value inside a subroutine unless the event has been repeated since the
trap occurred. Consequently, if you wish to perform different procedures
for various joysticks or switches, you must set up a different subroutine
for each joystick or switch, rather than including all the procedures in a
single subroutine.

EXAMPLE:
In the following routine:

10 IF STRIG(O) THEN BEEP
20 GOTO 10

an endless loop is created to beep whenever the trigger button on
joystick 0 is pressed.

Commands, Statements, Functions, and Variables

STRING$ FUNCTION

PURPOSE:

6-233

Returns a string of length I whose characters all have ASCII code J or
the first character of X$.

SYNTAX:
Y$ = STRING$(I,J)
Y$ = STRING$(I,X$)

EXAMPLE:
The function:

10 X$ =STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$

will yield:

----------MONTHLY REPORT----------

6-234

SWAP STATEMENT

PURPOSE:
Exchanges the values ot two variables.

SYNTAX:
SWAP <variable>, <variable>

NOTES:

GW-BASIC Reference Manual

Variables of any type (integer, single precision, double precision, or
string) may be swapped, but the two variables must be of the same type
or a "Type mismatch" error results.

If the second variable is not already defined when SWAP is executed, an
"Illegal function call" error will result.

EXAMPLE:
The routine:

10 A$ =" ONE": B$ =" ALL ": C$ = "FOR"
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$

will yield:

ONE FOR ALL
ALL FOR ONE

Commands, Statements, Functions, and Variables

SYSTEM COMMAND

PURPOSE:
Closes all open files, disables animation, and returns control to the
operating system.

SYNTAX:
SYSTEM

NOTES:

6-235

When a SYSTEM command is executed, a "warm start" is performed (in
other words, all open files are closed, and the operating system is
reloaded without deleting any existing programs or memory except
GW-BASIC itself).

This command is available only when GW-BASIC is started from
MS-DOS.

6-236

TAB FUNCTION

PURPOSE:
Moves the print position to I.

SYNTAX:
PRINT ... TAB(I) .. .
LPRINT ... TAB(I) .. .

NOTES:

GW-BASIC Reference Manual

If the current print position is already beyond space I, TAB goes to that
position on the next line.

Space 1 is the leftmost position, and the rightmost position is the width
minus one. I must be in the range 1 to 255.

TAB may only be used in PRINT and LPRINT statements.

EXAMPLE:
The function:

10 PRINT "NAME" TAB(25) 'J\MOUNT"
20 READ A$,B$

PRINT

30 PRINT A$ TAB(25) B$
40 DATA "G. T. JONES", "$25.00"

will yield:

NAME

G. T. JONES

AMOUNT

$25.00

Commands, Statements, Functions, and Variables 6-237

TAN FUNCTION

PURPOSE:
Returns the tangent of X. X should be given in radians.

SYNTAX:
Y = TAN(X)

NOTES:
If TAN overflows, the "Overflow" error message is displayed, machine
infinity with the appropriate sign is supplied as the result, and execution
continues.

EXAMPLE:
10 Y = Q*TAN(X)/2

6-238

TIME$ STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Sets the time. This statement complements the TIME$ variable, which
retrieves the time.

SYNTAX:
TIME$ = <string expression>

<string expression> returns a string in one of the following forms:

hh (sets the hour; minutes and seconds default to 00)

hh:mm (sets the hour and minutes; seconds default to 00)

hh:mm:ss (sets the hour, minutes, and seconds)

NOTES:
A 24-hour clock is used; 8:00 p.m., therefore, would be entered as
20:00:00.

EXAMPLE:
The statement:

10 TIME$ = "08:00:00"

sets the current time at 8:00 a.m.

Commands, Statements, Functions, and Variables

TIME$ VARIABLE

PURPOSE:

6-239

Retrieves the current time. (To set the time, use the TIME$ statement,
described earlier in this section.)

NOTES:
The TIME$ variable returns an eight-character string in the form
hh:mm:ss, where hh is the hour (00 through 23), mm is minutes (00
through 59), and ss is seconds (00 through 59). A 24-hour clock is used;
8:00 p.m., therefore, would be shown as 20:00:00.

The time is set by a BASIC program with the TIME$ statement or by the
operating system.

EXAMPLE:
At 1:00 a.m., the function:

10 PRINT TIME$

will yield:

01:00:00

6-240

TIMER VARIABLE

PURPOSE:

GW-BASIC Reference Manual

Returns a floating-point number representing the elapsed number of
seconds either since midnight or since a system reset.

NOTES:
TIMER is a read-only variable. It cannot be set by a BASIC program.

The TIMER variable can automatically provide a random seed for the
RANDOMIZE statement (see "RANDOMIZE Statement" earlier in this
section).

EXAMPLE:
The program:

10 T=TIMER
20 INPUT "Enter a character", A$
30 PRINT TIMER - T;"seconds."

prints the number of seconds from the start of program execution to the
pressing of the RETURN key after a character is entered.

Commands, Statements, Functions, and Variables

TRONITROFF STATEMENTS/COMMANDS

PURPOSE:
Traces the execution of program statements.

SYNTAX:
TRON

TROFF

NOTES:

6-241

As an aid in debugging, the TRON statement (executed in either direct
or indirect mode) enables a trace flag that prints each line number of the
program as it is executed. The numbers appear enclosed in square
brackets.

The trace flag is disabled with the TROFF statement (or when a NEW
command is executed).

EXAMPLE:
The routine:

TRON

10 K=10
20 FOR J=1 TO 2
30 L= K + 10
40 PRINT J;K;L
50 K=K+10
60 NEXT
70 END
RUN

will yield:

[10][20][30][40] 1 1020
[50][60][30][40] 22030
[50][60][70]

TROFF
RUN
1 1020
22030

6-242

USR FUNCTION

PURPOSE:
Calls an assembly language subroutine.

SYNTAX:
X = USR[<digit>][«argument»]

GW-BASIC Reference Manual

<digit> specifies which USR routine is being called. See the DEF USR
statement earlier in this section for rules governing <digit>. If <digit>
is omitted, USRO is assumed.

<argument> is the value passed to the subroutine. It may be any
numeric or string expression.

NOTES:
If a segment other than the default segment (data segment OS) is to be
used, a DEF SEG statement must be executed prior to a USR function
call. The address given in the DEF SEG statement determines the
segment address of the subroutine.

For each USR function, a corresponding DEF USR statement must be
executed to define the USR call offset. This offset and the currently
active OEF SEG segment address determine the starting address of the
subroutine.

EXAMPLE:
In the following use of the USR function:

100 DEF SEG = &H8000
110 DEF USRO = 0
120 X=5
130 Y = USRO(X)
140PRINTY

the type (numeric or string) of the variable receiving the function call
must be consistent with the argument passed.

Commands, Statements, Functions, and Variables

VAL FUNCTION

PURPOSE:

6-243

Returns the numerical value of string X$. The VAL function also strips
leading blanks, tabs, and linefeeds from the argument string. For
example, VAL(" - 3") returns - 3.

SYNTAX:
Y = VAL(X$)

EXAMPLE:
10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$)<90000 OR VAL(ZIP$»96699

THEN PRINT NAME$ TAB(25) "OUT OF STATE"
30 IF VAL(ZIP$» =90801 AND VAL(ZIP$)< =90815

THEN PRINT NAME$ TAB(25) "LONG BEACH"

See the STR$ function for details on numeric-to-string conversion.

6-244

VARPTR FUNCTION

PURPOSE:

GW-BASIC Reference Manual

Returns the address of the first byte of data identified with
<variable name>.

For sequential files, returns the starting address of the disk I/O buffer
assigned to <file number>. For random files, returns the address of the
FIELD buffer assigned to <file number>. (See Syntax 2.)

SYNTAX 1:
I = VARPTR(<variable name»

SYNTAX 2:
I = VARPTR(#<file number»

NOTES:
A value must be assigned to <variable name> before execution of
VARPTR. Otherwise an "Illegal function call" error results. A variable of
any type may be used (numeric, string, array). For string variables, the
address of the first byte of the string descriptor is returned (see
':Assembly Language Subroutines" in Section 2 for a discussion of the
string descriptor). The address returned will be an integer in the range
32767 to - 32768. If a negative address is returned, add it to 65536 to
obtain the actual address.

VARPTR is usually used to obtain the address of a variable or array so
that it may be passed to an assembly language subroutine. A function
call of the form VARPTR(A(O)) is usually specified when passing an array,
so that the lowest-addressed element of the array is returned.

Note: All simple variables should be assigned before calling VARPTR for
an array, because the addresses of the arrays change whenever a new
simple variable is assigned.

EXAMPLE:
100 X= USR(VARPTR(Y))

Commands, Statements, Functions, and Variables

VARPTR$ FUNCTION

PURPOSE:
Returns a character form of the memory address of the variable.

SYNTAX:
X$ = VARPTR$(<variable name»

<variable name> is the name of a variable in the program.

NOTES:
VARPTR$ is primarily used with the DRAW and PLAY statements.

6-245

A value must be assigned to <variable name> before execution of
VARPTR$. Otherwise, an "Illegal function call" error results. A variable of
any type (numeric, string, or array) may be used.

VARPTR$ returns a three-byte string in the form:

byte 0 = type
byte 1 = low byte of address
byte 2 = high byte of address

Note, however, that the individual parts of the string are not considered
characters.

The possible types are as follows:

Byte 0 Value

2
3
4
8

Variable Type

Integer
String
Single precision
Double precision

Note: Because array addresses change whenever a new variable is
assigned, always assign all simple variables before calling VARPTR$ for
an array element.

EXAMPLE:
The function:

10 PLAY "X" + VARPTR$(A$)

uses the subcommand X, plus the address of A$, as the string
expression in the PLAY statement.

continued on next page

6-246

This statement is equivalent to:

10 PLAY "XA$;"

GW-BASIC Reference Manual

Commands, Statements, Functions, and Variables

VIEW STATEMENT

PURPOSE:

6-247

Segments the screen into separate viewports for graphics operations.

SYNTAX:
VIEW [[SCREEN][(X1 ,Y1) - (X2,Y2)[,[<fill>][,[<border>]]]]]

(X1 ,Y1) are the screen coordinates of the upper left corner of the
viewport and (X2,Y2) are the screen coordinates of the lower right
corner. The X and Y coordinates define the rectangle within the screen
that graphics will map into; they must be within the physical bounds of
the screen.

Initially, RUN or VIEW with no arguments defines the entire screen as the
viewport.

<fill> defines the color to fill the view area. If <fill> is omitted, the view
area is not filled.

The <border> attribute draws a line surrounding the viewport if space
for a border is available. If <border> is omitted, no border is drawn.

NOTES:
For the form VIEW (X1,Y1)-(X2,Y2): All points plotted are relative to the
viewport. That is, X1 and Y1 are added to the X and Y coordinates before
putting down the point on the screen.

For the form VIEW SCREEN (X1 ,Y1) - (X2,Y2): All coordinates are
absolute and may be inside or outside the screen limits; however, only
those coordinates within the VIEW limits will be plotted.

EXAMPLES:
The statement:

10 VIEW (10,10) - (200,100)

causes the point set down by the subsequent statement
(PSET(0,0),3) to appear at the physical screen location 10,10.

The statement:

10 VIEW SCREEN (10,10) - (200,100)

prevents the point set down by the subsequent statement
(PSET (0,0),3) from appearing, because 0,0 is outside the viewport.
However, PSET (10,10),3 is within the viewport, and causes the point to
appear in the upper left corner of the viewport.

6-248

VIEW PRINT STATEMENT

PURPOSE:

GW-BASIC Reference Manual

Sets the top and bottom boundaries of the text window.

SYNTAX:
VIEW PRINT [<top line> TO <bottom line>]

<top line> is the top boundary and <bottom line> is the bottom
boundary of the text window. The range of these parameters is from 1 to
25.

NOTES:
Statements and functions which operate within the text window include
CLS, LOCATE, and the SCREEN function. The Screen Editor will limit
functions such as scroll and cursor movement to the text window.

If no parameters are specified, VIEW PRINT will initialize the text window
to include the whole screen.

EXAMPLE:
The statement:

10 VIEW PRINT 3 to 13

sets the text window to include the 11 lines from line 3 to line 13.

Commands, Statements, Functions, and Variables

WAIT STATEMENT

PURPOSE:

6-249

Suspends program execution while monitoring the status of a machine
input port.

SYNTAX:
WAIT <port number>,I[,J]

I and J are integer expressions.

NOTES:
The WAIT statement causes program execution to be suspended until a
specified machine input port develops a specified bit pattern. The data
read at the port is exclusive OR'ed with the integer expression J, and
then ANO'ed with I. If the result is zero, GW-BASIC loops back and
reads the data at the port again. If the result is non-zero, program
execution continues with the next statement. If J is omitted, its value is
assumed to be zero.

Warning: It is possible to enter an infinite loop with the WAIT statement,
in which case it will be necessary to restart the machine manually. To
avoid this, WAIT must have the specified value at <port number> during
some point in the program execution.

EXAMPLE:
The statement:

100 WAIT 32,2

causes program execution to be suspended until port 32 receives a
binary value of 2.

6-250

WHILE ... WEND STATEMENTS

PURPOSE:

GW-BASIC Reference Manual

Executes a series of statements in a loop as long as a given condition is
true.

SYNTAX:
WHILE <expression>

[<loop statements> 1

WEND

NOTES:
If <expression> is not zero (in other words, if the expression is true),
<loop statements> are executed until the WEND statement is encoun
tered. GW-BASIC then returns to the WHILE statement and checks
<expression> again. If it is still true, the process is repeated. If it is not
true, execution resumes with the statement following the WEND
statement.

WHILE/WEND loops may be nested to any level. Each WEND will match
the most recent WHILE. An unmatched WHILE statement causes a
"WHILE without WEND" error, and an unmatched WEND statement
causes a "WEND without WHILE" error.

Note: Do not direct program flow into a WHILEIWEND loop without
entering through the WHILE statement.

EXAMPLE:
100 'BUBBLE SORT ARRAY A$
105 FLlPS= 1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLlPS=O
120 FOR 1=1 TO J-1
130 IF A$(I»A$(I + 1) THEN SWAP A$(I),A$(I + 1):FLlPS = 1
140 NEXT I
150 WEND

Commands, Statements, Functions, and Variables 6-251

WIDTH STATEMENT

PURPOSE:
Sets the printed line width in number of characters for the screen or line
printer.

SYNTAX 1:
WIDTH [LPRINT]<size>

SYNTAX 2:
WIDTH <file number>,<size>

SYNTAX 3:
WIDTH <device>,<size>

<size> is a numeric expression in the range a to 255. It specifies the
width of the printed line.

If <size> is 255, the line width is "infinite"; that is,
GW-BASIC never inserts a carriage return. However, the position of the
cursor or the print head, as given by the POS or LPOS function, returns
to zero after position 255.

<file number> is a numeric expression in the range 1 to 15. It
designates the number of the file that is open.

<device> is a string expression indicating the device that is to be used.

NOTES:
With Syntax 1, if LPRINT is included, the line width is set for the line
printer width. If the LPRINT option is omitted, the line width is set for the
screen display. The <size> value in this case must be 40 or 80.
GW-BASIC clears the screen when it changes the width from 40 to 80 or
from 80 to 40.

With Syntax 2, if the file is open to the line printer, the width is immedi
ately changed to the specified size. This feature allows the width to be
changed while the file is open.

With Syntax 3, a width assignment is stored but the current setting
is not changed. A subsequent OPEN <device> FOR OUTPUT AS
#<file number> will use the specified value for the width while the file is
open.

continued on next page

6-252 GW-BASIC Reference Manual

EXAMPLE:
10 PRINT 'I\BCDEFGHIJKLMNOPQRSTUVWXYZ"
RUN
ABCDEFGH IJ KLMNOPQRSTUVWXYZ
Ok
WIDTH 18
Ok
RUN
ABCDEFGH IJKLMNOPQR
STUVWXYZ
Ok

Commands, Statements, Functions, and Variables

WINDOW STATEMENT

PURPOSE:

6-253

WINDOW enables you to draw lines, graphs, or objects in a coordinate
system not bounded by the physical limits of the screen. Such drawing
is done by using arbitrary programmer-defined coordinates called
"world coordinates".

A world coordinate is any valid floating-point number pair. GW-BASIC
then converts world coordinate pairs into the appropriate physi.cal
coordinate pairs for subsequent display within the screen space. To
make this transformation from world space to the physical space of the
viewing surface (screen), the statement must indicate what portion of the
unbounded (floating point) world coordinate space contains the infor
mation to be displayed.

This rectangular region in world coordinate space is called a "window".

SYNTAX:
WINDOW [[SCREEN](Xi ,Yi) - (X2,Y2)]

WINDOW defines the "window" transformation from Xi ,Yi (upper left
X,Y coordinates) to X2,Y2 (lower right X,Y coordinates). The X and Y
coordinates may be any floating-point number and define the "world
coordinate space" that graphics will map into the physical coordinate
space defined by the VIEW statement.

Initially RUN or WI NDOW with no arguments disables "window"
transformation.

NOTES:
WINDOW inverts the Y coordinate on subsequent graphics statements.
This inversion enables the screen to be viewed in true cartesian
coordinates.

The WINDOW SCREEN variant does not invert the Y coordinate.

EXAMPLES:
The following program:

10 NEW
20 SCREEN 2

continued on next page

6-254

causes the screen to appear like this:

0,0

1 y increases

0,199

The following statement:

320,0

320,100

320,199

30WINDOW (-1, -1) - (1,1)

changes the screen so it appears like this:

-1,1

t y increases

+ y decreases

-1, -1

However, the variant:

0,1

0,0

0, -1

30 WINDOW SCREEN (-1, -1) - (1 ,1)

causes the screen to appear like this:

-1, -1 0, -1

t y decreases
0,0

+
y increases

-1,1 0,1

GW-BASIC Reference Manual

639,0

639,199

1 ,1

1, -1

1, -1

1 ,1

Commands, Statements, Functions, and Variables

WRITE STATEMENT

PURPOSE:
Displays data on the screen.

SYNTAX:
WRITE [<list of expressions> 1

NOTES:

6-255

If <list of expressions> is omitted, a blank line is displayed. If <list of
expressions> is included, the values of the expressions are shown on
the screen. The expressions in the list may be numeric and/or string
expressions. They must be separated by commas.

When the printed items are output, each item is separated from the last
by a comma. Printed strings are delimited by quotation marks. After the
last item in the list is printed, GW-BASIC inserts a carriage return/
linefeed.

WRITE outputs numeric values using the same format as the PRINT
statement.

EXAMPLE:
The routine:

10 A = 80:B = 90:C$ = "THAT'S ALL"
20 WRITE A,B,C$

will yield:

80, 90, "THAT'S ALL"

6-256

WRITE # STATEMENT

PURPOSE:
Writes data to a sequential file.

SYNTAX:

GW-BASIC Reference Manual

WRITE # <file number>,<list of expressions>

NOTES:
<file number> is the number under which the file was OPENed in "0"
mode (see "OPEN Statement" in this section).

<list of expressions> lists string or numeric expressions. They must be
separated by commas.

The difference between WRITE # and PRINT # is that WRITE # inserts
commas between the items as they are written to the file and delimits
strings with quotation marks. Therefore, it is not necessary for the user to
put explicit delimiters in the list. A carriage return/linefeed sequence is
inserted in the file after the last item in the list is written there.

EXAMPLE:
If A$ = "CAMERA" and B$ = "93604 -1", the statement:

WRITE #1,A$,B$

writes the following image to disk:

"CAMERA", "93604 -1"

A subsequent INPUT # statement, such as:

INPUT #1 ,A$,B$

would input "CAMERA" to A$ and "93604 -1" to B$.

Appendix A

Error Codes and Error
Messages

This appendix lists the error messages GW-BASIC displays if an error
causes program execution to halt.

The ON ERROR GOTO statement can be used to trap the errors before
GW-BASIC prints an error message. In this case, the ERR variable
contains the number of the error and ERL contains the number of the line
which caused the error.

GW-BASIC Error Messages

Number Message and Meaning

NEXT without FOR

A variable in a NEXT statement does not correspond to a
variable in any previously executed, unmatched FOR
statement.

2 Syntax error

A line is encountered that contains some incorrect sequence of
characters (such as an unmatched parenthesis, misspelled
command or statement, incorrect punctuation).

GW-BASIC automatically enters edit mode at the line that
caused the error.

3 RETURN without GOSUB

A RETURN statement is encountered for which there is no
previous, unmatched GOSUB statement.

A-1

A-2 GW-BASIC Reference Manual

Number Message and Meaning

4 Out of data

A READ statement is executed when there are no DATA
statements containing unread data remaining in the program.

5 Illegal function call

A parameter that is out of range is passed to a math or string
function. A function call error may also occur as the result of:

a. A negative or unreasonably large subscript.

b. A negative or zero argument with LOG.

c. A negative argument to SQR.

d. A negative mantissa with a noninteger exponent.

e. A call to a USR function for which the starting address has
not yet been given.

f. An improper argument to MID$, LEFT$, RIGHT$, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, STRING$, SPACE$, INSTR, or
ON ... GOTo.

g. A negative record number used with GET or PUT.

6 Overflow

The result of a calculation is too large to be represented in the
Microsoft GW-BASIC number format. If underflow occurs, the
result is zero and execution continues without an error.

7 Out of memory

A program is too large, or has too many FOR loops or GOSUBs
or variables, or contains expressions that are too complicated
for a file buffer to be allocated.

8 Undefined line

A nonexistent line is referenced in a GOTO, GOSUB,
IF .. THEN ... ELSE, or DELETE statement.

Error Codes and Error Messages A-3

Number Message and Meaning

9 Subscript out of range

An array element is referenced either with a subscript that is
outside the dimensions of the array or with the wrong number
of subscripts.

10 Duplicate definition

Two DIM statements are given for the same array; or, a DIM
statement is given for an array after the default dimension of 10
has been established for that a,rray.

11 Division by zero

A division by zero error is encountered in an expression; or, the
operation of exponentiation results in zero being raised to a
negative power. Machine infinity with the sign of the numerator
is supplied as the result of the division, or else positive
machine infinity is supplied as the result of the exponentiation.
In either case, execution continues.

12 Illegal direct

A statement that is illegal in direct mode is entered as a direct
mode command.

13 Type mismatch

A string variable name is assigned a numeric value or vice
versa; a function that expects a numeric argument is given a
string argument or vice versa.

14 Out of string space

String variables have caused BASIC to exceed the amount of
free memory remaining. GW-BASIC will allocate string space
dynamically until memory is exhausted.

15 String too long

An attempt is made to create a string more than 255 charac
ters long.

16 String formula too complex

A string expression is too long or too complex. The expression
should be broken into smaller expressions.

A-4 GW-BASIC Reference Manual

Number Message and Meaning

17 Can't continue

An attempt is made to continue a program that:

a. Has halted because of an error.

b. Has been modified during a break in execution.

c. Does not exist.

18 Undefined user function

A USR function is called before the function definition (DEF
statement) is given.

19 No RESUME

An error-handling routine is entered but contains no RESUME
statement.

20 RESUME without error

A RESUME statement is encountered before an error- handling
routine is entered.

21 Unprintable error

An error condition exists but no message is available to
describe it.

22 Missing operand

An expression contains an operator with no operand following
it.

23 Line buffer overflow

An attempt has been made to enter a line that has too many
characters.

24 Device timeout

The requested device is not available at this time.

25 Device fault

An incorrect device designation has been entered.

Error Codes and Error Messages A-5

Number Message and Meaning

26 FOR without NEXT

A FOR statement was encountered without a matching NEXT.

27 Out of paper

The printer device is out of paper.

28 Unprintable error

An error condition exists, but no message is available to
describe it.

29 WHILE without WEND

A WHILE statement does not have a matching WEND.

30 WEND without WHILE

A WEND statement was encountered without a matching
WHILE.

31-49 Unprintable error

An error condition exists, but no message is available to
describe it.

Disk Error Messages

Number Message and Meaning

50 Field overflow

A FIELD statement is attempting to allocate more bytes than
were specified for the record length of a random file.

51 Internal error

An internal malfunction has occurred in GW-BASIC. Report to
Mindset the conditions under which the message appeared.

A-6 GW-BASIC Reference Manual

Number Message and Meaning

52 Bad file number

A statement or command references a file with a file number
that either is not OPEN or is out of the range of file numbers
specified at initialization.

53 File not found

A LOAD, KILL, NAME, or OPEN statement/command refer
ences a file that does not exist on the current disk.

54 Bad file mode

An attempt is made to use PUT, GET, or LOF with a sequential
file; to LOAD a random file; or to execute an OPEN statement
with a file mode other than I, 0, or R.

55 File already open

An OPEN statement in sequential output mode is issued for a
file that is already open; or a KILL statement is given for a file
that is open.

56 Unprintable error

An error condition exists, but no message is available to
describe it.

57 Device I/O error

An I/O error occurred during a disk I/O operation. It is a fatal
error; in other words, the operating system cannot recover from
the error.

58 File already exists

The filename specified in a NAME statement is identical to a
filename already in use on the disk.

59-60 Unprintable error

An error condition exists, but no message is available to
describe it.

61 Disk full

All disk storage space is in use.

Error Codes and Error Messages A-7

Number Message and Meaning

62 Input past end

An INPUT statement is executed either after all the data in the
file has been INPUT, or for a null (empty) file. To avoid this error,
use the EOF function to detect the end-of-file.

63 Bad record number

In a PUT or GET statement, the record number is either greater
than the maximum allowed (32,767) or equal to zero.

64 Bad filename

An illegal form is used for the filename with a LOAD, SAVE,
KILL, or OPEN statement (for example, a filename with too
many characters).

65 Unprintable error

An error condition exists, but no message is available to
describe it.

66 Direct statement in file

A direct statement is encountered while LOADing an ASCII
format file. The LOAD is terminated.

67 Too many files

An attempt is made to create a new file (using SAVE or OPEN)
when all 255 directory entries are full.

68 Device unavailable

The device specified is not available at this time.

69 Communications buffer overflow

Not enough space has been reserved for communications I/O.

70 Disk write protected

The disk has a write-protect tab intact, or is a disk that cannot
be written to.

A-a GW-BASIC Reference Manual

Number Message and Meaning

71 Disk not ready

This error condition could be caused by a number of prob
lems. The most likely is that the disk is not inserted properly.

72 Disk media error

A hardware or disk problem occurred while the disk was being
written to or read from. For example, the disk may be
damaged or the disk drive may not be working properly.

74 Rename across disks

An attempt was made to rename a file to a new name that was
declared to be on a disk other than the disk specified for the
old name. The renaming operation is not performed.

75 Path/file access error

During an OPEN, MKDIR, CHDIR, or RMDIR operation,
MS-DOS was unable to make a correct path to filename con
nection. The operation is not completed.

76 Path not found

**

**

During an OPEN, MKDIR, CHDIR, or RMDIR operation,
MS-DOS was unable to find the path spee:ified. The operation
is not completed.

You cannot run BASIC as a Child of BASIC

No error number. During initialization, BASIC discovers that it
is being run as a Child process. BASIC is not run and control
returns to the Parent copy of BASIC.

Can't continue after SHELL

No error number. Upon returning from a Child process, the
SHELL statement discovers that there is not enough memory ('
for BASIC to continue. BASIC closes any open files and exits",
to MS-DOS.

AppendixB

Derived Mathematical
Functions

Functions that are not intrinsic to GW-BASIC may be calculated as
follows.

Function GW-BASIC Equivalent

SECANT SEC(X) = 1/COS(X)
COSECANT CSC(X) = 1/SIN(X)
COTANGENT COT(X) = 1 ITAN(X)
INVERSE SINE ARCSIN(X)=ATN(X/SOR(-X*X+ 1))
INVERSE COSINE ARCCOS(X) = - ATN

(X/SOR(- X*X + 1)) + 1.5708
INVERSE SECANT ARCSEC(X) =ATN(XlSOR(X*X -1))

+SGN(SGN(X) -1)* 1.5708
INVERSE COSECANT ARCCSC(X) = ATN(X/SOR(X *X -1))

+ (SGN(X) -1) * 1.5708
INVERSE COTANGENT ARCCOT(X) = ATN(X) + 1 .5708
HYPERBOLIC SINE SINH(X) = (EXP(X) - EXP(- X))/2
HYPERBOLIC COSINE COSH(X) = (EXP(X) + EXP(- X))/2
HYPERBOLIC TANGENT

TANH(X) = (EXP(X) - EXP(- X))/
(EXP(X) + EXP(- X))

HYPERBOLIC SECANT SECH(X) = 2/(EXP(X) + EXP(- X))
HYPERBOLIC
COSECANT CSCH(X) = 2/(EXP(X) - EXP(- X))
HYPERBOLIC
COTANGENT COTH(X) = (EXP(X) + EXP(- X))/

(EXP(X) - EXP(- X))
INVERSE HYPERBOLIC
SINE ARCSINH(X) = LOG(X+SOR(X*X+ 1))
INVERSE HYPERBOLIC
COSINE ARCCOSH(X) = LOG(X + SOR(X*X -1))
INVERSE HYPERBOLIC
TANGENT ARCTANH(X) = LOG((1 + X)/(1 - X))/2

B-1

B-2 GW-BASIC Reference Manual

Function GW-BASIC Equivalent

INVERSE HYPERBOLIC
SECANT ARCSECH(X) = LOG((SQR(- X*X + 1) + 1)/X)
INVERSE HYPERBOLIC
COSECANT ARCCSCH(X) = LOG((SGN(X)

*SQR(X*X + 1) + 1)/X)
INVERSE HYPERBOLIC
COTANGENT ARCCOTH(X) = LOG((X + 1)/(X -1))/2

Appendix C

ASCII Character Codes

Dec Hex CHR Dec Hex CHR

000 OOH NUL 030 1EH RS
001 01H SOH 031 1FH US
002 02H STX 032 20H SPACE
003 03H ETX 033 21H
004 04H EaT 034 22H II

005 05H ENQ 035 23H #
006 06H ACK 036 24H $
007 07H BEL 037 25H %
008 08H BS 038 26H &
009 09H HT 039 27H I

010 OAH LF 040 28H (
011 OBH VT 041 29H)
012 OCH FF 042 2AH *
013 ODH CR 043 2BH +
014 OEH SO 044 2CH
015 OFH SI 045 2DH
016 10H OLE 046 2EH
017 11 H DC1 047 2FH /
018 12H DC2 048 30H 0
019 13H DC3 049 31H 1
020 14H DC4 050 32H 2
021 15H NAK 051 33H 3
022 16H SYN 052 34H 4
023 17H ETB 053 35H 5
024 18H CAN 054 36H 6
025 19H EM 055 37H 7
026 1AH SUB 056 38H 8
027 1BH ESCAPE 057 39H 9
028 1CH FS 058 3AH
029 1DH GS 059 3BH

Dec = decimal, Hex = hexadecimal (H), CHR = character

C-1

C-2 GW-BASIC Reference Manual

Dec Hex CHR Dec Hex CHR

060 3CH < 094 5EH 1\

061 3DH 095 5FH
062 3EH > 096 60H I

063 3FH ? 097 61H a
064 40H @ 098 62H b
065 41H A 099 63H c
066 42H B 100 64H d
067 43H C 101 65H e
068 44H D 102 66H f
069 45H E 103 67H 9
070 46H F 104 68H h
071 47H G 105 69H i
072 48H H 106 6AH j
073 49H I 107 6BH k
074 4AH J 108 6CH I
075 4BH K 109 6DH m
076 4CH L 1:10 6EH n
077 4DH M 111 6FH 0
078 4EH N 112 70H P
079 4FH 0 113 71H q
080 50H P 114 72H r
081 51H Q 115 73H s
082 52H R 116 74H t
083 53H S 117 75H u
084 54H T 118 76H v
085 55H U 119 77H w
086 56H V 120 78H x
087 57H W 121 79H Y
088 58H X 122 7AH z
089 59H Y 123 7BH }
090 5AH Z 124 7CH I
091 5BH [125 7DH }
092 5CH \ 126 7EH 1\

093 5DH 1 127 7FH DEL

ASCII Character Codes C-3

Extended Codes

The INKEY$ variable returns a two-character string for keys with
extended (non-ASCII) codes. In this case, the first character is code
000 and the second code (the extended code) represents one of the
keys listed below:

Extended Code Key Extended Code Key

3 NUL 66 F8
character 67 F9

15 SHIFT-TAB 68 F10
16 ALT-Q 71 HOME
17 ALT-W 72 • 18 ALT-E 73 PG UP
19 ALT-R 75
20 ALT-T 77 ~
21 ALT-Y 79 END
22 ALT-U 80 • 23 ALT-I 81 PG ON
24 ALT-O 82 INS
25 ALT-P 83 DEL
30 ALT-A 84 SHIFT-F1
31 ALT-S 85 SHIFT-F2
32 ALT-D 86 SHIFT-F3
33 ALT-F 87 SHIFT-F4
34 ALT-G 88 SHIFT-F5
35 ALT-H 89 SHIFT-F6
36 ALT-J 90 SHIFT-F7
37 ALT-K 91 SHIFT-F8
38 ALT-L 92 SHIFT-F9
44 ALT-Z 93 SHIFT-F10
45 ALT-X 94 CTRL-F1
46 ALT-C 95 CTRL-F2
47 ALT-V 96 CTRL-F3
48 ALT-B 97 CTRL-F4
49 ALT-N 98 CTRL-F5
50 ALT-M 99 CTRL-F6
59 F1 100 CTRL-F7
60 F2 101 CTRL-F8
61 F3 102 CTRL-F9
62 F4 103 CTRL-F10
63 F5 104 ALT-F1
64 F6 105 ALT-F2
65 F7 105 ALT-F3

continued on next page

C-4 G-W BASIC Reference Ml

Extended Code Key Extended Code Key

106 ALT-F4 120 ALT-1
107 ALT-F5 121 ALT-2
108 ALT-F6 122 ALT-3
109 ALT-F7 123 ALT-4
110 ALT-F8 124 ALT-5
112 ALT-F9 125 ALT-6
113 ALT-F10 126 ALT-7
114 CTRL-PRT SC 127 ALT-8
115 CTRL-~ 128 ALT-9
116 CTRL-~ 129 ALT-O
117 CTRL-END 130 ALT--
118 CTRL-PG DN 131 ALT-=
119 CTRL-HOME 132 CTRL-PG UP

Note: The extended codes 59 through 68 are available only when the
corresponding function keys are not defined as soft keys.

AppendixD

GW-BASIC Reserved
Words

The following is a list of reserved words used in GW-BASIC.

ABS
ACTIVATE
AND
ASC
ARRIVAL
ATN
AUTO
BEEP
BLOAD
BSAVE
CALL
CDBL
CHAIN
CHDIR
CHR$
CINT
CIRCLE
CLEAR
CLIP
CLOSE
CLS
COLLISION
COLOR
COM
COMMON
CO NT
COS
CSNG
CVD
CVI
CVS
DATA

DATE$
DEACTIVATE
DEFDBL
DEFINT
DEFSNG
DEFSTR
DEFFN
DEF OBJECT
DEF USR
DELETE
DIM
DRAW
EDIT
ELSE
END
ENVIRON
ENVIRON$
EOF
ERASE
ERDEV
ERDEV$
ERL
ERR
ERROR
END
EXP
FIELD
FILES
FIX
FOR
FRE

D-1

0-2

GET
GOSUB
HEX$
IF
IMP
INKEY$
INP
INPUT
INPUT#
INPUT$
INSTR
INT
IOCTL
IOCTL$
KEY
KILL
LEFT$
LEN
LET
LINE
LIST
LLiST
LOAD
LOC
LOCATE
LOF
LOG
LPOS
LPRINT
LSET
MERGE
MID$
MKD$
MKDIR
MKI$
MKS$
MOD
NAME
NEW
NEXT
NOT
OBJECT
OCT$
ON
OPEN
OPEN COM
OPTION
OR

GW-BASIC Reference Manual

PAINT
PALETTE
PALETTE USING
PEEK
PEN
PLAY
PMAP
POINT
POKE
POS
PRESET
PRINT
PRINT USING
PRINT #
PRINT # USING
PSET
PUT
RANDOMIZE
READ
REM
RENUM
RESET
RESTORE
RESUME
RIGHT$
RMDIR
RND
RSET
RUN
SAVE
SCREEN
SGN
Sf:lELL
SIN
SOUND
SPACE
SPC
SQR
START
STICK
STOP
STR$
STRIG
STRING$
SWAP
SYSTEM
TAB
TAN

GW-BASIC Reserved Words

THEN
TIME$
TIMER
TO
TROFF
TRON
USING
USR
VAL
VARPTR

VARPTR$
VIEW
WAIT
WEND
WHILE
WIDTH
WINDOW
WRITE
WRITE#
XOR

D-3

Index

~key, 5-5
CTRL-~, 5-4

~ key, 5-5
CTRL-~, 5-4

• key, 5-5
.. key, 5-5

ABS function, 6-3
ACTIVATE/DEACTIVATE statements, 3-5, 6-4
Active page, 2-3, 6-214
Addition, 2-11
ALL option, 6-19, 6-42
AL T key for keyword entry, 1-7
AND logical operator, 2-14
Animation

Event control statement, 3-4
Event functions, 3-3
Event statements, 3-2
Features, 3-1
Programming, 3-1

Append (editor function), 5-5
Arctangent, 6-11
Arithmetic operators, 2-11
Array variables, 2-8, 6-42, 6-58
Arrays, 2-8

Eliminate from memory, 6-69
Reset to zero, 6-27
Subscripts, 6-58, 6-164

ARRIVAL
Event specifier, 1-5
Sample subroutine, 3-11

ARRIVAL function, 6-5, 6-28
Animation event function, 3-3

ARRIVAL statement, 6-8
ASC function, 6-10
ASCII

Bell code, 6-13
Character number, 6-23
Codes, 2-16,6-10
Format, 6-131, 6-213

Assembly language subroutines, 2-21, 6-242, 6-244
CALL statement, 6-16
CALLS statement, 6-17
DEF USR statement, 6-55

ATN function, 6-11
AUTO command, 2-2, 6-12

1-1

1-2

Background program, 3-10
BACK SPACE key, 2-4, 5-1
BASIC command line syntax, 4-3
BEEP statement, 1-2, 6-13
BLOAD statement, 6-14

Animation, 3-2
DEF SEG statement, 6-54

Block size, maximum, 4-5
Boolean operations, 2-14
BSA VE statement, 6-15

Animation, 3-2
DEF SEG statement, 6-54

Buffer size option for RS-232-C
(in command line), 4-5

CALL statement, 2-21,6-16
DEF SEG statement, 6-54

CALLS statement, 2-21, 2-26, 6-17
DEF SEG statement, 6-54

Carriage return, 2-2, 5-5
Infinite line width, 6-251
Input from keyboard, 6-96
Reading input of, 6-117

Carriage return (editor function), 5-5
CDBL function, 6-18, 6-45
CHAI N statement, 6-19, 6-45
Character device support, 2-19
Character set, 2-3
CHOIR statement, 6-22
Child process, 6-218
CHR$ function, 6-23
CINT function, 6-24, 6-45, 6-101
CIRCLE statement, 3-8, 6-25
Clearing a logical line, 5-5
CLEAR statement, 6-27
Clear window (editor function), 5-5
CLIP function, 6-5, 6-28

Animation event function, 3-3
Event specifier, 1-5
Sample subroutine, 3-12
CLIP statement, 6-30
CLOSE statement, 6-31
Closing files, 6-27, 6-63, 6-205, 6-212
CLS statement, 6-32
COLLISION

Event specifier, 1-5
Sample subroutine, 3-12

COLLISION function, 6-5, 6-28, 6-33
Animation event function, 3-3

COLLISION statement, 6-36
Color

Changes, 6-169
Default palette, 6-37

GW-BASIC Reference Manual

Index

Fill graphics figure, 6-166
Graphics palettes, 6-39
Palette definition, 6-169

COLOR statement (graphics), 6-39
COLOR statement (text), 6-37
COM statement, 6-41

Event specifier, 1-4
Command

Definition, 6-1
Line options, 4-3
Syntax notation, 2-1, 4-3

COMMON statement, 6-19, 6-42
Concatenation, 2-16
CONFIG.SYS file, 4-4
Constants, 2-5

Numeric, 2-5
String, 2-5

CONT command, 6-43, 6-117
Continuation of line, 2-2
Control key functions, 5-4

Editor keys, 5-4
COS function, 6-44
CSNG function, 6-45
CSRLlN variable, 6-46
CTRL-BRK, 4-7
CTRL-RETURN, 2-2, 2-4, 5-5
CTRL-Z, 4-7
Cursor home (editor function), 5-5
Cursor position keys, 5-4
CVD function, 6-47, 6-135
CVI function, 6-47, 6-135
CVS function, 6-47, 6-135

DATA statement, 6-48, 6-201, 6-206
DATE$ statement, 6-49
DATE$ variable, 6-50
Default disk drive, 2-3
DEFDBL statement, 2-8, 6-52
DEF FN statement, 2-16,6-51
DEFI NT statement, 2-8, 6-52
DEF OBJECT statement, 3-9, 6-53
DEF SEG statement, 2-26, 6-14, 6-54

CALLS statement, 6-17
DEFSNG statement, 2-8, 6-52
DEFSTR statement, 2-8, 6-52
DEF USR statement, 2-26, 6-55, 6-242
Delete

Character, 5-1
Files, 6-109
Mode, 5-6
Program in memory, 6-137

DELETE command, 2-2, 6-56
DEL key in editing, 5-1

1-3

1-4

Device-independent 1/0, 1-2
DIM OBJECT statement, 3-7, 6-57
Direct mode, 2-2, 6-92

Errors, 6-152
Directory

Changes, 6-22
Create, 6-134
Paths, 2-18
Remove, 6-210

Disk
Error messages, A-5
File organization, 2-17
Load priority, 4-3
Name change, 6-136

Display page, 2-3
Division, 2-11
Double precision, 2-6, 6-52

Array variables, 2-8
CDBL function, 6-18
CVD function, 6-47
MKD$ function, 6-135
Numeric variable name, 2-8
Print, 6-184
Type declaration, 6-52
VARPTR$ function, 6-245

DRAW statement, 6-59

EDIT command, 2-2, 5-2, 6-62
Editing programs, 5-1, 5-3
Edit mode, 5-1, 6-62

Writing programs, 5-2
Editor

Full screen, 5-2
Function keys, 5-4

Ellipse, drawing, 6-25
END key in editing, 5-5
END statement, 6-43, 6-63

Before subroutines, 6-88
ENVIRON$ function, 6-66
ENVIRON statement, 6-64
EOF function, 6-68
EQV logical operator, 2-15
ERASE statement, 6-69
ERDEV variable, 6-70
ERDEV$ variable, 6-70
ERL variable, 6-71
Error

Codes, 6-71, 6-72, A-1
Handling, 6-71, 6-152
Messages, 2-2, 6-72, A-1
RESUME statement, 6-207

ERROR statement, 6-72
ERR variable, 6-71

GW-BASIC Reference Manual

Index

ESC key, 2-4
Clearing logical line, 5-5

Evaluation of operators
Arithmetic, 2-11
Logical, 2-14

Event trapping, 1-3, 6-155
Animation, 3-9
COM statement, 6-41
STRIG ON statement, 6-231
TIMER statement, 6-159

EXP function, 6-74
Exponentiation, 2-11, 2-13

Double precision, 2-6
Single precision, 2-7

Expressions, 2-11

FIELD statement, 6-75
Filename options, 4-4
Files

Close, 6-27
Length in bytes, 6-126
Maximum supported, 4-4
Naming conventions, 2-19
Number of, 4-4
Open, 4-4
Protected, 6-213
Random. See Random files
Sequential. See Sequential files

Filespec (definition), 6-2
FILES statement, 6-78
Fixed-point constants, 2-5
FIX function, 6-24, 6-80, 6-101
Floating point, 6-45

Constants, 2-6
Formatting, 6-187
FOR ... NEXT statement, 6-81
FRE function, 6-84
Full screen editor, 5-1

Advantages, 5-2
Cursor position, 5-5

Functional operators, 2-16
Function (definition), 6-1, 6-51
Function key designation, 6-104
Functions of special keys, 2-4, 5-4

GET statement (files), 6-85
GET statement (graphics), 6-86, 6-197

Animation, 3-2
Storing object views, 3-7

GOSUB ... RETURN statement, 6-88, 6-208
Event trapping, 1-6

GOTO statement, 6-88, 6-90

1-5

1-6

Graphics, 1-1
Color figure, 6-166
Modes, 6-214

Graphics Macro Language (GML), 6-59

Hexadecimal numbers, 2-6, 6-91
Codes for control characters, 5-4

HEX$ function, 6-91
Hierarchical file system, 2-17

IF ... THEN ... ELSE statement, 6-92
IF ... THEN ... GOTO statement, 6-92
IF ... THEN statement, 6-71, 6-92
IMP logical operator, 2-15
Indirect mode, 2-2
Initialize system, 3-7
INKEY$ function, 6-94
INKEY$ statement

Event trapping, 1-4
INP function, 6-95
INPUT$ function, 6-99
Input peripherals support, 1-2
INPUT statement, 5-6, 6-96

Event trapping, 1-4
INPUT# statement, 6-98
Insert (editor function), 5-5
Insert mode, 5-5, 5-6
INS key, 5-5
INSTR function, 6-100
Integer

CVI function, 6-47
Division, 2-11
INT function, 6-101
MKI$ function, 6-135
Numeric constants, 2-5
Truncate, 6-80
Type declaration, 6-52
VARPTR$ function, 6-245

INT function, 6-24, 6-101
10CTL$ function, 6-103
10CTL statement, 6-102
1/0, redirection of, 4-7

OPEN statement, 6-160

KEY(n) statement, 6-107
KEY statement, 6-104

Event specifier, 1-4
Keyword entry using AL T key, 1-7
KILL statement, 6-109

LEFT$ function, 6-111
LEN function, 6-112
LET statement, 6-75, 6-113

GW-BASIC Reference Manual

\

\

Index

Line
Continuation, 2-2
Editing, 5-1
Format, 2-2
Length, 2-2, 5-3
Multiple statements, 2-2
Number generation, 6-12
Numbers, 2-2, 6-204
Printer, 5-121,6-128

Linefeed, 5-2, 6-96, 6-117
Writing statements, 6-255

Linefeed (editor function), 5-5
Linefeed key, 2-2
LINE INPUT statement, 5-6,6-117
LINE INPUT# statement, 6-118
LINE statement, 6-114
LIST command, 2-2, 5-3, 6-119
LLiST command, 6-121
LOAD command, 6-122
LOCATE statement, 6-124
LOC function, 6-123
LOF function, 6-126
LOG function, 6-127
Logical line, 2-2

Definition with INPUT, 5-6
Logical operators, 2-14
Loops, 6-81, 6-249
LPOS function, 6-128, 6-251
LPRINT statement, 6-129, 6-251
LPRINT USING statement, 6-129
LSET statement, 6-130

Mathematical functions, 8-1
Memory

Location switch, 4-5
Read byte from, 6-173
Space allocation, 2-21
Write byte to, 6-181

MERGE command, 6-20, 6-131
MID$ function, 6-133
MID$ statement, 6-132
MKD$ function, 6-135
MKDIR statement, 6-134
MKI$ function, 6-135
MKS$ function, 6-135
Modes of operation, 2-2
Modulus arithmetic, 2-11
Motion, programming, 3-1
Multiple object views, 3-2
Multiplication, 2-11
Music, 1-2,6-174
Music Macro Language (MML), 6-174

1-7

1-8

NAME statement, 6-136
Negation, 2-11
NEW command, 6-31, 6-137

Editing, 5-1
Next word (editor function), 5-4
NOT logical operator, 2-14
Numeric

Constants, 2-5
Formatting, 6-187
Variables, 2-7

Object activation statements, 3-5
OBJECT function, 6-138
OBJECT statement, 3-10, 6-139
Octal numbers, 2-6, 6-142
OCT$ function, 6-142
ON ARRIVAL statement, 3-9,6-143

Animation event statement, 3-3
ON CLIP statement, 3-9, 6-145

Animation event statement, 3-3
ON COLLISION statement, 3-9, 6-147

Animation event statement, 3-3
ON COM statement, 6-150
ON ERROR GOTO statement, 6-152
ON GOSUB statement, 6-153

Event trapping, 1-5
ON GOTO statement, 6-153
ON KEY statement, 6-154
ON PLAY statement, 6-156
ON STRIG statement, 6-157
ON TIMER statement, 6-159
OPEN COM statement, 6-162
OPEN statement, 6-160
Operating environment (MS-DOS), 4-2
Operators, 2-11

Functional, 2-16
Logical, 2-14
Relational, 2-13
String, 2-16

OPTION BASE statement, 6-20, 6-164
Option switches, 4-4
Order of evaluation

Arithmetic operators, 2-11
Logical operators, 2-14

OR logical operator, 2-14
OUT statement, 6-125
Overflow error, 2-13, 6-74, 6-237

PAINT statement, 6-166
Palette colors

Default, 6-37
Graphics, 6-39
Index, 6-169

GW-BASIC Reference Manual

Index

PALETTE statement, 6-169
PALETTE USING statement, 6-171
PEEK function, 6-173, 6-181

DEF SEG statement, 6-54
Peripherals support, 1-2
PLAY, event specifier, 1-5
PLAY function, 6-178
PLAY statement, 6-174
PMAP function, 6-179
Pocket Code, 6-220
POINT function, 6-180
POKE statement, 6-173, 6-181

DEF SEG statement, 6-54
POS function, 6-182, 6-251
Precedence

Arithmetic operators, 2-11
Logical operators, 2-14

Precision, 2-6
Double, 6-18
Single, 6-52

PRESET statement, 6-183
Previous word (editor function), 5-4
Printer

LLiST command, 6-121
Print head position, 6-128
Set width, 6-251

PRINT statement, 6-184
PRINT # statement, 6-192
PRINT USING statement, 6-187
PRINT # USING statement, 6-192
Programming animation, 3-1
Protected files, 6-213
PSET statement, 6-194
PUT statement (files), 6-75, 6-196
PUT statement (graphics), 6-196

RAM cartridges, 4-2 ,
Random files, 6-130, 6-135

Address, 6-244
Allocating variable space, 6-75
Buffer, 6-75, 6-85, 6-130
Data, 6-109
Deleting, 6-109
Disk, 6-85, 6-123
LOC function, 6-123
Read, 6-85

RANDOMIZE statement, 6-199, 6-212
Random numbers, 6-199, 6-212
READ statement, 6-201, 6-206
Redirection of 1/0, 4-7
Relational operators, 2-13
Renumbering, 6-71
Replace line, 5-1

1-9

1-10

Remarks, 6-203
REM statement, 6-203
RENUM command, 6-19, 6-71, 6-204
Reserved words, 0-1
RESET command, 6-205
RESTORE statement, 6-201, 6-206
RESUME statement, 6-207
RETURN, event trapping, 1-6
RETURN key, 2-4

Editing, 5-3, 5-5
RETURN statement, 6-88, 6-208
RIGHT$ function, 6-209
RMDIR statement, 6-210
RND function, 6-199, 6-211
RSET statement, 6-130
RUN command, 6-212
Runtime error messages, A-1

SAVE command, 6-122, 6-213
SCREEN function, 6-216
SCREEN statement, 6-214
Sequential files, 6-68, 6-160, 6-244

Address, 6-244
Current byte position, 6-123
Delete, 6-109
Read, 6-98, 6-118
Write to, 6-192, 6-256

Sequential input mode, 6-160
Sequential output mode, 6-160
SGN function, 6-217
SHELL statement, 6-218

Maximum block size, 4-5
SIN function, 6-221
Single precision, 2-6, 6-52

Array variables, 2-8
CSNG function, 6-45
CVS function, 6-47
MKD$ function, 6-135
Numeric variable names, 2-8
Print, 6-184
Type declaration, 6-52
VARPTR$ function, 6-245

Sound and music, 1-2, 6-175, 6-222
SOUND statement, 6-222
SPACE$ function, 6-223
SPC function, 6-224
Special characters, 3-4
Special keys, 2-6
Speed of object, 6-139
SQR function, 6-225
START OBJECT statement, 6-229
Start-up screen, 4-2
Statement, definition, 6-1

GW-BASIC Reference Manual

Index

Static file space allocation switch, 4-5
STICK function, 6-226
STOP OBJECT statement, 6-229
STOP statement, 6-43, 6-63, 6-88, 6-228
STR$ function, 6-230
STRIG, event specifier, 1-5
STRIG function, 6-231
STRIG statement, 6-231
String

Formatting, 6-181
Functions, 6-111, 6-133, 6-230

Converting to numeric, 6-41
Searching, 6-100

Space, 6-21, 6-84
Variables

Line input, 6-111, 6-245
Type declaration, 6-52

STRING$ function, 6-233
Subroutines, 6-16, 6-88, 6-153
Subtraction, 2-11
SWAP statement, 6-234
Syntax notation, 2-1
SYSTEM command, 6-235

TAB function, 6-236
TAN function, 6-231
Text mode, 6-214
Text window, 6-248
TIMER as event specifier, 1-5
TIMER variable, 6-159, 6-240
TIME$ statement, 6-238
TIME$ variable, 6-239
Transparency of object, 6-139
Truth table for logical operators, 2-14
TROFF statement/command, 6-241
TRON statement/command, 6-241
TRUNCATE editor function, 5-4
Type conversion, 2-9

USR function, 2-26, 6-242
DEF SEG statement, 6-54

VAL function, 6-243
Variables, 2-1

Array, 2-8, 6-42
Clear, 6-131
Definition, 6-2
Edited lines, 5-6
Numeric, 6-21
Passing with COMMON, 6-19, 6-21, 6-42
String, 6-52, 6-111

1-11

1-12

Variables in edited lines, 5-6
VARPTR function, 6-244
VARPTR$ function, 6-245
Viewing priority, 3-1
VIEW PRINT statement, 6-248
VIEW statement, 6-179, 6-247
Visual page, 2-3

WAIT statement, 6-249
Warning errors, A-1
WEND statement, 6-250
WHILE statement, 6-250
WIDTH statement, 6-251

LPRINT option, 6-251
WINDOW statement, 6-179, 6-253
World coordinates, 6-179, 6-253
WRITE statement, 6-255
WRITE# statement, 6-193, 6-256
Writing programs, 5-2

XOR logical operator, 2-14

GW-BASIC Reference Manual

MINDSET GW™-BASIC

Version 1. 01

Updat~

Please add these pages to the binder containing your GW-BASIC Reference
Hanua1. It's a good idea to review the changes and additions listed
here before you begin using GW-BASIC, even if you're unfamiliar with
GW-BASIC programming and may not understand all the terms and details
discussed.

Each item is listed by topic and, with a few exceptions, by page reference
to the GW-BASIC Reference t1anua1. You may wish to note some of these
changes and additions on the appropriate pages of your manuals.

System requirements

NVRAM cartridges

SHIFT-PRT SCN and
GW-BASIC

Sound and music
functions

1-2

Keyword entry with
ALT-M

1-7

For you to use this version of GW-BASIC, your
Mindset Personal Computer System must include
at least 256K bytes RAM. In addition, two
disk drives will allow you to take full advan
tage of the capabilities and ease of use of
this version of GW-BASIC.

NVRAM cartridges should not be used for file
creation or storage with this version of
GW-BASIC. Instead, you should use diskettes
for file storage. Future versions of Mindset
GW-BASIC will allow users to take full advan
tage of NVRAM cartridge capability.

If you press SHIFT-PRT SCN to copy the text
on your screen to a printer (see your Mindset
Operation Guide, page 3-3) while using
GW-BASIC, the last character in some lines
may not be printed.

All the sound and music functions and statements
in GW-BASIC, including BEEP (see page 6-13) and
CHR$(7) (the BELL character--see page 6-23),
produce sound only if your Mindset Personal
Computer is connected to an external amplifier
and speaker system through the AUDIO LEFT con
nector on the back of the System Unit.

Pressing ALT-M enters the keyword MOTOR.

GW-BASIC Update 2
Version 1.01

Animation and scrolling
of the screen

During animation, scrolling of the screen
should be avoided--it may result in
incorrect display of the background.

3-1

Starting the diskette
version of GW-BASIC

4-3

Static file space
allocation switch--/I

4-5

Control functions

5-4--5-5

Hex Decimal

To start the disfgtte version of GW-BASIC
after loading MS -DOS, you must place your
GW-BASIC diskette in the default drive of
your computer system.

GW-BASIC is configured so that the/I option
is always selected. This affects the amount
of memory allocated for file buffers and the
number of default files that may be opened.

Table 5-1: GW-BASIC Control Functions is in
correct. The following table lists the correct
codes, keys, and functions.

Code Code Key Function

03 03
05 05

07 07
08 08
09 09
OA 10
OB 11
OC 12
OD 13
OE 14
12 18
14 20
15 21
17 23
lA 26
lC 28
lD 29
IE 30
IF 31

C Break
E Truncate line (clear text to end of logical line on

screen and in memory)
G Beep
H Backspace, deleting characters passed over
I Tab (8 spaces)
J Linefeed
K Move cursor to home position
L Clear window
M Carriage return (enter current logical line)
N Append to end of line
R Toggle insert/typeover mode
T Display function key contents
U Clear logical line (on screen only)
W Delete word
Z Clear to end of window (on screen only)
\ Cursor right
] Cursor left
'" Cursor up

Cursor down (underscore)
7F 127 DEL Delete character at cursor--functions without the

CTRL key having to be pressed

OPEN and line printer
operation

6-160

Note also that the ESC key clears a logical line
on screer:t only.

You cannot send output to a line printer with
the statement OPEN "LPTn"--a "Bad file mode"
error message will result.

VIEW--fill and border
parameters

6-247

WIDTH and line
printer operation

6-251

GW-BASIC Update 3
Version 1. 01

When used with a fill parameter. the optional
border parame,ter will not result in the
drawing ofa\>order.

SYNTAX 2. WIDTH (file number>. (size>. will not
work with a line printer.

Information in this document is subject to change without notice and
does not represent a commitment on the part of Mindset Corporation.

Mindset is a trademark of Mindset Corporation.
Microsoft is a registered trademark of Microsoft Corporation. Microsoft
GW-BASIC Interpreter is a trademark of Microsoft Corporation.

Copyright ~ 1984. Mindset Corporation
All rights reserved.
Printed in U.S.A.

100463-001

Backing Up Your MINDSET GW™_BASIC Diskettes

Version 1. 01

Although your GW-BASIC package includes two complete program diskettes, it's
a good idea to make at least one backup copy of your own before you start
using GW-BASIC. To prevent unauthorized use, your original program disk
ettes are protected in such a way that you must use one of them, rather
than a copy, to load GW-BASIC into your computer. However, a backup copy
will come in handy if, for example, you lose one of your originals and
accidentally write over some of the files on the other.

Before you make your backup copy, you may also wish to add to at least one
of your original program diskettes some DOS files that will enable youito
boot up your computer system and run GW-BASIC using the same diskette-
that is, without first having to load MST~DOS separately.

Before you make a backup coPy--

Space has been reserved on your GW-BASIC program diskettes 'for MS-DOS
system and COMMAND.COM files. Added to a program diskette, these files
enable you to boot up your computer system, then run GW-BASIC using only
your GW-BASIC program diskette--that is, without first having to load
MS-DOS separately.

To add these files to a GW-BASIC program diskette, first load MS-DOS into
your system. Be sure that there's no write-protect tab on your GW-BASIC
diskette. With your MS-DOS diskette in drive A and your GW-BASIC diskette
in drive B, type SYS B: and press RETURN. (If you have only one disk
drive, see Appendix A in your MS-DOS Reference Manual.) When the message
"System transferred" appears, the system files have been added to your
GW-BASIC diskette.

Next, type COpy COMMAND.COM B: and press RETURN. When the message "1 File(s)
copied" appears, the COMMAND.COM file has been added to your GW-BASIC
diskette.

(See your MS-DOS Reference Manual for details on the SYS command and the
COMMAND.COM file.)

You may now use your GW-BASIC program diskette to boot up your system, then
run GW-BASIC. If your system is turned off, place the GW-BASIC diskette
in the default drive and turn on the system; if the system is already on,
place the GW-BASIC diskette in the default drive and press ALT-RESET. Next,
when prompted for an entry, type BASIC and press RETURN.

To make a backup coPy--

Using MS-DOS, first format a blank double-sided, double-density diskette.
Use the default options provided by the FORMAT command--that is, with

Backing Up GW-BASIC 2
Version 1.01

your MS-DOS diskette in drive A and your blank diskette in drive B, type
FORMAT B: and press RETURN. (If you have only one disk drive, see Appendix
A in your MS-DOS Reference Manual.)

Next, use the MS-DOS DISKCOPY command to copy your GW-BASIC program disk
ette onto your newly formatted diskette. Type DISKCOPY A: B: and press
RETURN, then follow the prompts that appear on your screen.

(See your Introductory Guide to MS-DOS or MS-DOS Reference Manual for
details on formatting and copying diskettes.)

It's a good idea to attach a write-protect tab to both your original
program diskettes and your backup copy. Put one of the originals and
the backup in a safe place, and use the other original each time you
want to load GW-BASIC.

If your working GW-BASIC program diskette becomes damaged--

If you accidentally write over any files on your working GW-BASIC program
diskette, use the MS-DOS DISKCOPY command to copy GW-BASIC back onto your
working diskette either from your other original or from your backup copy.

Information in this document is subject to change without notice and does
not represent a commitment on the part of Mindset Corporation.

Mindset is a trademark of Mindset Corporation.
Microsoft is a registered trademark of Microsoft Corporation. Microsoft
GW-BASIC Interpreter and MS-DOS are trademarks of Microsoft Corporation.

Copyright ~ 1984, Mindset Corporation.
All rights reserved.
Printed in U.S.A.

100463-001

