7, mips

RISC/os (UMIPS)
Programmer’s Reference Manual
Volume Il (BSD)
Order Number 3203DOC
b IIIIIII“II

The power of RISC is in the system.

I

RISC/os (UMIPS)
Programmer’s Reference Manual
Volume Il (BSD)

Order Number 3203DOC

March 1989

Your comments on our products and publications are wel-
come. A postage-paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 02-00133-002/84-00136-002

© 1988, 1989 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

MIPS Computer Systems, Inc.
930 Arques Ave,
Sunnyvale, CA 94086

California:
All other states:
International:

Customer Service Telephone Numbers:

(800)
(800)
(415)

992-MIPS
443-MIPS
330-7966

Mfg. Part Number 02-00133-002/84-00136-002

TABLE OF CONTENTS

2. System Calls

accept(2) . . v v e 0w e e e e e e e e e accept a connection on a socket
ACCESS(2) vt e e e e e e e e e e e e e e e e e e determine accessibility of file
ACCH(Z) . e turn accounting on or off
adjtime(2) correct the time to allow synchronization of the system clock
bind2) e e e e e e e e e e e e e e e e bind a name to a socket
103937 change data segment size
cachectl(2) + v ¢ v v v v v v i i e e . . mark pages cacheable or uncacheable
cacheflush(2) e e e e e e e e e e e flush contents of instruction and,or data cache
chdir(2) v v vt e e e e e e e e e e e e e e change current working directory
chown(2) e e e e e e e e e e e e e change owner and group of a file
CloSe(2) v v e delete a descriptor
connect(2) . . . v v e e e e e .. e e e e e e initiate a connection on a socket
creat(Z) . . v e v e e e e e e e R e <+ ¢ e« « ... createanew file
dup(2) .. .00 e . e e e e e e e e « «« « .+ . duplicate a descriptor
EXECVE(2) v o v o et execute a file
eXit(2) . . e e e e e e e e e e e e e e e e e « « .+ .+ ... terminate a process
fentl(2) ..o oo e e e e e e e e e e e e e e e e e e file control
fixade(2) .« . ¢ 000 e e e e e fix address exceptions (unaligned references)
flock(2) « v v v v ii i i e apply or remove an advisory lock on an open file
fork(2) e create a new process
fp_sigintr(2) e+« .i... generatea SIGFPE signal on floating-point interrupts
fsync(2) .+ v v v v e e e e e e e e synchronize a file’s in-core state with that on disk
getdirentries(2) gets directory entries in a filesystem independent format
getdomainname(2) * o o e o e .« .« .. getsset name of current domain
getdtablesize(2) . ¢ ¢ v v v v vt h e e e e e e e e e e get descriptor table size
2] e U 72 get group identity
getgroups(2) . v v v e e e e e e e e e e e e e e e e e e e get group access list
gethostid(2) . « ¢« v v v v v v v v v e e get,set unique identifier of current host
gethostname(2) « ¢ & v v v vt h e e e e e e e e e e get,set name of current host
getitimer(2) o .00 e . + « « « . . get,setvalue of interval timer
getpagesize(2) . v . v b e v et e v e e e e e e e e e e e get system page size
getpeername(2) . . 4 .0 e 0w e e e e e e e e e get name of connected peer
getpgrp(2) v v v e e e e e e e e e e e e e e e e e e e get process group
getpid(2) L i e get process identification
getpriority(2) . . v v v e e e e e e e e e e get,set program scheduling priority
getrlimit(2) « « . control maximum system resource consumption
getrusage(2) e e e e e e e e e get information about resource utilization
getsockname(2) e e e e e e « e e e e e+« ... getsocket name
getsockopt(2) e e e e e e e e e get and set options on sockets
gettimeofday(2) ¢ o v i i it e e e e e e e get,set date and time
getudd(2) « . v v v e get user identity
hweonf(2) oo v oo . . get or set hardware configuration information
ntro(2) .+« v v v e e e e e e e e e introduction to system calls and error numbers
joctl(2) oL e ioctl
kill2) ... 00 e e e e e e e e e e e e e e e send signal to a process
Kllpg(2) ¢ v v o e e e e e e e e e e e e e e e e e e send signal to a process group
o3 o1 1 (7 get or set kernel options
Hnk(2) 0 v vt e e e e e e e e e e e e e e e e e e e . make a hard link to a file
lsten(2) « v o v v i e e e e e e e e e e e e e e listen for connections on a socket
Iseek(2) v v v i e e e e e e e e e e e e e e e e e . . move read,write pointer
mipsfpu(2) 000 oo e oo enabling and dissabling the floating-point unit
mkdir(2) e e e e e e e e e e e e e e e e e e e . make a directory file
mknod(2)ol e e e e e e e e e e e e make a special file

MIPS Computer Systems, Inc. February 1989 Page iii

Table of Contents RISC/os Programmer’s Reference Table of Contents

MMAap(2Z) + + « « + e 4 4 i e e e e e e e« maporunmap pages of memory

mount(2) . . 4 v v e e e e e e e e e e e e aie e e e mount file system
nfssve(2) e e e e et et s s e e s e oo .. async_daemon NFS daemons
open(2) a..... ... opena filefor reading or writing, or create a new file
pipe(2) s 4 e e s 4w e e e s s+« .. . createan interprocess communication channel
Profil(2) . v execution time profile
Prace(2) « « v« 4 4 4 e e s e e e e e 4 e e e s e e s e e s Dprocesstrace
quota(2) © e e e e e e e s e e e e e e s e e« manipulatedisk quotas
quotactl(2) 6t e e e s e e e e e ae e e e w e s ... manipulate disk quotas
2T) read input

readlink(2) . « v ¢« v v e 4 e e v et e e e e+ readvalue of a symbolic link
1eboot(Z) .« v ¢« « e 4 v 4 v e v 4 e aa s rebootsystem or halt processor
1ecV(2) « 4 e e e 4 e e W et e e e aw s e s s .. . receiveamessage from a socket

rename(2) .. e e e e e e e e e e e e e e + «« « .+« .. changethe name of a file
mdir(2) ¢ . . e e e i e e e et e s e e e e . s o . . remove adirectory file
select(2) c e e e e e e et e e synchronousI,O multiplexing
send(2) « .+ 4 v e 4t e e e 4 s s e e e o s oo . sendamessage from a socket
setgroups(2) c e .ee e s n d ba e ew s b e « « « « . .. setgroup access list
setpgrp(2) s e se s e e et s we s e sh wa e e e e set process group

setquota(2) . . « .+ ¢ e e e s . .+ enabledisable quotas on a file system
setregid(2) 6t 4 s e e g s e s w e e e s setrealand effective group ID
setrewid(2) .+ . 4 ¢« e 4 4 4 e e e e v e setrealand effective user ID’s

shutdown(2). « « .+« .., shutdown part of a full-duplex connection
sighlock(2) v v v v e block signals
sigpause(2) © « « s« e .. atomically release blocked signals and wait for interrupt
sigreturn(2) .« 4 4 4 e 4 4 e e 4 e e e e e e e e e ..o . returnfrom signal
sigsetmask(2) T R .« « « « . setcurrent signal mask

sigstack(2)+ .. e setand,orgetsignal stack context
SIgVEC(2) « + v e v e e e e 4 e e s e e e e e s e ee software signal facilities
socket(2) v ... create an endpoint for communication
socketpair(2) . + .« <+ o v« s+ e« .« createa pair of connected sockets

.

stat(2) . . e e e e e e e e e e P e e w e a e e e s « « « .+ . getfile status
Statfs(2) + v« 4 e e et e e e e e e e e e e s e e e e .. . getfile system statistics
swapon(2) ... « + + .+ addaswap device for interleaved paging,swapping
symlink (2) ot e h e ee s 6« e« v e e e+ s+ ..., makesymbolic link to a file

SYNC(2Z) . « ¢ « 4 e ¢ e e e 4 s e s s s e e a e e e s e s« updatesuper-block
syscall(2) « ¢ v v s 4 e s e e e e e e e e e e e e s .. indirect system call
truncate(2) . . . ¢« v o e 4 4 s e . o truncate afile to a specified length
umask(2) . .t e e 4 e i e e e e e e e e e e e . s« setfile creation mode mask
uname(2) .+ . . 4 v s e e 4 e e e e s e o s o e s s . . getgeneral system information

unlink(2Z) s e s 4 e 4 e e s e e e e s s ... s remove directory entry
unmount(2) e i e e e et e ... removeafile system
utimes(2) . . .0 e e e e . e s b eeeia v a e e ae Eas a e s set file times
vfork(2) 4« e s s e s e s+ . . . Spawn new process in a virtual memory efficient way
vhangup(2)« virtualy “hangup” the current control terminal
Wait(2Z) v v 4 4 e e e e v e e e e s e s v e s e o« ... wait for process to terminate
WIEE(2) v v v vt e . . write output

3. Library Sui)routines

Page iv

ADOTt(3) + + 4 e e e e e e e e e e e e e e e e e generatea fault

abort(3f) A (S s i BN
abs(3) © e e s e s s e se s e s e e e s .. . Iinteger absolute value
access(3f) . . . ¢ .t i i e i e e e e e e e e ... determine accessibility of a file
alarm@B3c) v 0 4o . t o+ o « o« « s+« schedule signal after specified time

February 1989 MIPS Computer Systems, Inc.

Table of Contents

RISC/os Programmer’s Reference Table of Contents

alarm(3f) . . L L execute
asinh(3m) . . . o e inverse
T ¢ () program verification
1 0) convert ASCII to numbers
bstring(3) . . . o i e e e e e e e e e e e e e e bit and byte string operations
byteorder(3n) convert values between host and network byte order
chdir(Bf) & v v i e change
chmod(3f) . ¢ o v i e change
16 o491 1{(C) DES encryption
ctime(3) . . v e e e e e e e e e e e e e e e e convert date and time to ASCII
CLYPE(3) v v e e e e e e e e e e e e e e T e e e character classification macros
curses(3X) . v e v v e e e e e e e e screen functions with “optimal” cursor motion
dbm(3X) . e data base subroutines
directory(3) v v v e directory operations
disassembler(3X) . .« . vttt e e e e e e e e e e e e e e e e e e e disassemble
dr(3n) ... oo oo e e hbrary routines for external data representatlon
€cVE(3) i i e output conversion
emulate_branch(3) ¢ . i i e i e e e MIPS branch emulation
2 1 [last locations in program
end(3) B first locations in program
1= 1< K) runtime procedure table
= {5 1) 1 error
ethers(30) .« v v v vt h i v e e e e e e e Ethernet address mappmg operations
etime(3f) .« . . o e return
examples(3) . . . i i e e e e e e e e e e e e e e e e library of sample programs
€XeCl(3) . i execute a file
exit(3) . . . e v e e e . terminate a process after flushing any pending output
exp(3m) exponential,
fClose(38) v v v e close or flush a stream
fdate(3f) & v v o e return
ferror(3s) & ¢ v e e e e e e e e e e e e e e e e e . . . stream status inquiries
floorGm) 00000 e e e e e e e e e e e e e e e e absolute
flush(Bf) & vt o e flush
fopen(3s) . . .t i i e open a stream
fork(3f) o000 e create
fpclass(3) . v . i e e e e e e e e e e e e e classes of IEEE floating-point values
077 (<) floating-point control registers
153 1<) floating-point interrupt analysis
fread(3s) & v v v et et e e e e e e e e e e e e e e e buffered binary input,output
frexp(3) ¢ vt v e e e e e e e e e e e e e e e e e split into mantissa and exponent
fseek(3f) & v v v i e reposition
fseek(3S) ¢ v v v e reposition a stream
L P21 ¢ (<) return
o1 o] (.1 1) get
gEtC(38) v v v e e e e e e e e e e e e e e e e e e get character or word from stream
getewd(3f) L o e get
getdisk(3) . . ¢ v f o it e e e e e e e e e get disk description by its name
getenv(3) . . .t i i e e e e e e e e e e e e manipulate environmental variables
e =31 1 (7) T get
getfsent(3) . . . b i i i e get file
geterent(3) . . bt i e get group file entry
gethostbyname(3n) . ¢« ¢ v o b bt et e e e e e e e e e e e e get network
getlog(3f) . . i e get
getlogin(3) i e get login name
getmntent(3) & . v . 4 bt e get file system
getnetent(3n) . 4 .ttt e et e e e e e e e e e e e e e e e e e e e get network

MIPS Computer Systems, Inc.

February 1989 Page v

Table of Contents RISC/os Programmer’s Reference Table of Contents

getnetgrent(3n) 4 . e e e e e e e e e s e . . . get network group entry

getopt(3) ¢ v e get option letter from argv
getpass(3) . v e v e e e e e e e e e e T read a password
getpld(3f) 4+ v v e soe e .. get
getprotoent(3n) e get
gEtPW(3C) v v e e e e e e e e e e e e e e e e e e e get name from uid
getpwent(3) . . .t e get password
getrpcent(3n) 0. e e .. e e e e e e e e e + « .+« . getRPCentry
getrpeport(3r) . v v i e get RPC port number
EEES(3S) vt e get a string from a stream
getservent(3n) i e e e s e e me e e e s e s e e e e e e e e e get
getttyent(3) P e s s e e ee e e e e e e s . . getttys file entry
getuid(3f) 000 e e e e e e e e e P e e e e e e . . get
getusershell(3) v v o v v o0 . e e e e s s e e+« . getlegal user shells
getwd(@ "4 « « « s« « o . getcurrent working directory pathname
hypot(3m) & ¢ v v e Euclidean
idate(3f) 000 0. e e e e e e e e e e e e e e e e return
S =<1 (<) P e e e e copysign,
inet(3n) .. e e e e e e e e e e e e e e e "e'e o e.a s b n e e s s a e e Internet
initgroups(3) P e s e e e a e e e e e e initialize group access list
nsque3) v v v e e e e e e e e e e e e e e e e insert,remove element from a queue
INtro(3) « v v . e e e e e i e e e e e e e e e e introduction to C library functions
intro(3f) e introduction
OGmM) .o e e e e e e e e e e e o e e s e d e e e s e e s e e e bessel
kill(3f) (s
ldahread(3x) ® 4 s & s o s 6 s s s s s a s s s s e e ne e s read
1dclose(3X) o v v v i e .« . . . close
Idfhread(3X) « ¢ ¢« ¢ v e et e e e e e e e e e e e b o o s e s s s e e+ .. read
ldgetaux(3x) . . . o t e s s e e s s aase e s s e s e e e s retrieve
Idgetname(3X) ¢ o . v v e « « « . retrieve
“1dgetpd(3x) et s e e s e s e e s e s e e e e e e e e e e e retrieve
Idlread(3X) « ¢ v v b e manipulate
ldIseek(3x) s e s m s e s e s s e s e e s e s e e seek
Idohseek(3X) « v v v v e seek
Idopen(3X) . « 4 ¢ 44 v .o .. e e e e e e e e e e e e + « .+ .. oOpen
ldrseek(3x) s s as e s e s s s e e s v s e e s s s 0 5 0w s . . . seek
ldshread(3x) .+ 0 o 0 e 0 o0 . s s s s s e s s e b e a s e s s e read
ldsseek(3x) e e s e e ae e e e e e e b e e s s s e e e e e e seek
Idtbread(3X) « + v ¢ vt e e e e e e e e e 2 2 4 s 5 4 s s s s s s e s read
1dtbseek(3X) ¢ v v v b e e e e e e e e e e e e e e e C e e e e s e e e seek
3 T) . . . return
lgamma(3m) . . v v e e e e e e e e e e e e e e e e e P log
Hb2648(3X) v ¢ ¢ o 4 e e e e e e e e subroutines for the HP 2648 graphics terminal
libraries(3) « ¢ o v b e e e e e e e e e e e e e e e e overview of VADS libraries
link(3f) B e e e e e e ih e e e se e e e . . make
07T (<) 3 + « .. return
lockf3) ta s s ee s e e n see e s s advisory record locking on files
malloc(3) “.s 2 s 2 2 5 o2 s e s ot v o 6.0 s 6 s o s 0 s e s memory allocator
math(3m) . . . ¢ . o000 .. P G introduction
13053111 (<) memory operations
mktemp(3) . ¢ .t h e e e e e e e e e e e e e e e . . . make a unique file name
momitor(3) .t e e e e e e e e e e e e e e e e e e . . . prepare execution profile
mount(3r) . . e 4 e e e e e e e e e e e keep track of remotely mounted filesystems
MP(BX) & v o ot e e et e e e e e e e e e . multiple precision integer arithmetic
Ndbm(3) .t e data base subroutines
MCE(3C) v v o o ot et e e e e e e e e e e e e e e e e e set program priority
February 1989 MIPS Computer Systems, Inc.

Page vi

Table of Contents RISClos Programmer’s Reference Table of Contents

nlist(3x) G h e ... get
ns(3n) e Xerox NS(tm)
pause(3c) e stop until signal
115w 1) (<) . system error messages
perror(3f) e get
19 1S3 >'4) e e e e e e e e e graphics interface
popen(3) € 4 o o s 8 s s s e e s ae s initiate I,0 to,from a process
printf(3s) . .4 . v e e e e e e e e e e e e e e e e formatted output conversion
psignal(3) e . system signal messages
publiclibB) 000 « « « . . public domain packages written in Ada
PUtC(BE) v i e . . write
putc(3s) . . v e v e e e e e e e e e e e e put character or word on a stream
puts(3s) e e e e e e e e e e e e e e e e e e e put a string on a stream
01103 w1 (<) 1 quicker sort
gsort(3f) C ot e ... quick
rand(3C) . v e s e s e e e e e e e e e e e e « « .« ... random number generator
rand(3f) e random
random(3) . . . 0 e 0 e e e e e e e e e e e e better random number generator
ranhash(3x) e e eeTe s e s e e e e e e s e e e s e e e e e e e . . access
remdB3)+ ...+ routines for returning a stream to a remote command
regex(3) C e regular expression handler
resolver(3) e resolver routines
0> (o) remote execution protocol
TeXEC(3) v v v e e e e e e e e e e e e e e e e e return stream to a remote command
rnusers(3r) « « e« e e+ e« returninformation about users on remote machines
rpc(3n) 6« o s e e 4 e e e e e e e .. library routines for remote procedure calls
rquota(3r) e e e e e e e e e e e e e e e implement quotas on remote machines
wall3r) .. e e e e e e e e e . « « . . write to specified remote machines
scandir(3) . 4 v e scan a directory
scanf(3s) e e e e e e e e e e e e e e e e e e e formatted input conversion
setbuf(3s) + 4 v e v i e e e e e e e e e e e e e assign buffering to a stream
SEMP(3) v v e non-local goto
SEtHIA(3) v h b b e set user and group ID
siginterrupt(3) e e e e e e e e allow signals to interrupt system calls
signal(3¢) © o o o s s s s e e s e s e simplified software signal facilities
signal(3f) e . change
sin(3m) e s o s o s s 6 s s s s s e s s as O 6 & s s s s e trigonometric
SInh(3m) ¢ v v o o e e e e e e e e e e e e e e e e &« « « e« e+« .. hyperbolic
3 (1<) 53 suspend
sleep(3) s e s e s o o s s e e e e e e suspend execution for interval
SQI(BM) v e cube
standard(3) . . . h et e e e e e e e e e e e e e e e e e e VADS standard library
stat(3f) 0. . e e e e e e e e e et e e e e e e e e e e e . get
staux(3) c t 4 s o s e e e e © o s e o s 4 s 4 v s s a s e s e s e routines
10 1T) . . . routines
StAIO(3S) v v e e e e e e e e e e e e e e e e standard buffered input,output package
stfd3) T routines
stfe(3) T routines
stio(3) e routines
stprint(3) e e e e e e e e e e e e e e e e e . routines to print the symbol table
string(3) e b s s e e s s s s e e s s e s e s s e s e e e ae e string operations
stty(3c) e e e e s e stty,
swab(3) e e e e e e e e e e e e e et e e e e e e e e e e e e e swap bytes
SYSIO(3) ¢ v e e e et e e e e e e e e e e b e e e e e e e e control system log
system(3) e issue a shell command
system(3f) 000 oo oo . e e e e e e e execute

MIPS Computer Systems, Inc. February 1989 Page vii

Table of Contents RISC/os Programmer’s Reference Table of Contents -

Page viii

termcap(3x) e e e e e e e e e e e e e e e e terminal independent
MEBC) v 6 v e get date and time
tmes(3C) v v v e get process times
timezone(3) e supply timezone string
ttyname(3) . . vt v e e e e e e e e e e e e e e e . . find name of a terminal
valarm(3) . . . v e e e e e e e e . « « .+ .+ ... schedule signal after specified time
unaligned(3)00 0oL + « « . . gather statistics on unaligned references
UnZEtC(3S) v v v e v e e e e e e e e e e e e e push character back into input stream
unlink(3f) e remove
usleep(3) e e e e e « « e« e+« .+ ... suspend execution for interval
utime(3¢) . 4 v e e v e e e e . . . set file times
valloc(3€) v ¢ o v e e e e e e e e e e e e e ee e e e aligned memory allocator
varargs(3) . o v v v e e e e e e 0 e e e e e e e e e e e variable argument list
verdixlib(3) e e e e e e e e e e e e e e MIPS-supported Ada library packages
viimit(3¢) . . ¢ v o0 e e oo e . . . control maximum system resource consumption
vtimes(3¢) 0.0 0. o .. « « « « . getinformation about resource utilization
ypelnt(Gn) oo ool e e e e e e e yellow pages client interface
yppasswd(3r) e e e e e e e e . . update user password in yellow pages

- 5. Miscellaneous

ACCH(S) v e © execution accounting file
cshre(5) « v v v v v oo e e e e e e e . . . startup file for csh command
printcap(5) o e o0 e e . <« <« printer capability database
termcap(5) 0 o PO « « « « « « . . terminal capability data base

February 1989 MIPS Computer Systems, Inc.

PERMUTED INDEX

gmtime, asctime, timezone, tzset
crypt, setkey, encrypt
ether_hostton, ether_line
absolute value hypot, cabs
inet_lnaof, inet_netof
emulate_branch
emulate_branch

packages verdixlib

nfssvc, async_daemon
standard

conversion ns_addr, ns_ntoa
and fabs, floor, ceil, rint
accept

ranhashinit, ranhash, ranlookup
interleaved swapon

files lockf

valloc

system calls siginterrupt
lock on an open file flock
output a.out

setbuf, setbuffer, setlinebuf
signals and wait for sigpause
i9, j1, jn, y0, y1, yn
srandom, initstate, setstate
bind

bcopy, bemp, bzero, ffs
sigblock

fread, fwrite

directory -chdir

brk, sbrk

chdir

chmod

file chown

signal

rename

toupper, tolower, toascii
values fp_class

values fp_class

Idclose, ldaclose

fclose, fflush

ioctl

consumption getrlimit, setrlimit
consumption vlimit

openlog, closelog, setlogmask
atof, atoi, atol

htonl, htons, ntohl, ntohs
drem, finite, logb, scalb
synchronization of the adjtime
fork

creat

fork

sockets socketpair
communication socket
communication channel pipe
cbrt, sqrt

store, delete, firstkey, nextkey
dbm_error, dbm_clearerr
close

file access

file access

access

seekdir, rewinddir, closedir
and print the disassembler
dup, dup2

system setquota
floating-point unit mipsfpu
erf, erfc

system

exec, execve, exect, environ
execve

specified time alarm

MIPS Computer Systems, Inc.

: convert date and time to ASCII

: DES encryption

: Ethernet address mapping . . .
: Euclidean distance, complex ., .

: Internet inet_makeaddr,

: MIPS branch emulation

: MIPS branch emulation
: MIPS-supported Ada library .
: NFS daemons ..
: VADS standard library . « . . .

: Xerox NS(tm) address
: absolute value, floor, ceiling, .
: accept a connection on a socket

: access routine for the symbol

: add a swap device for
: advisory record locking on

: aligned memory allocator . . .

: allow signals to interrupt . .

: apply or remove an advisory . .
: assembler and link editor

: assign buffering to a stream . .
: atomically release blocked . . .

: bessel functions

s e & e

: better random number generator;
: bind a name to a socket
: bit and byte string operations .

: block signals

: buffered binary input,output . .
: change current working
: change data segment size . . .

: change default directory
: change mode of a file

: change owner and group ofa
: change the action for a signal

: change the name of a file

: character classification macros

: classes of IEEE floating-point

: close a common object file .

: classes of IEEE floating-point .

: close or flush a stream
: control device

: control maximum system resource
: control maximum system resource
: control system log syslog, . . .

: convert ASCII to numbers e e e e

: convert values between host and
: copysign, remainder, copysign,

: correct the time to allow
: create a copy of this process
: create a new file

: Create a NEW Process . « + . .
: create a pair of connected . . .
: create an endpoint for

: create an interprocess
: cube root, square root .
: data base subroutines fetch,

: delete a descriptor
: determine accessibility of a
: determine accessibility of a .

data base subroutines

: determine accessibility of file

: directory operations telldir,

: disassemble a MIPS instruction

: duplicate a descriptor

: enable,disable quotas on a file

: enabling and dissabling the
: error functions
: execute a UNIX command

: execute a file execlp, execvp, .

: execute a file
: execute a subroutine after a

February 1989

.........

ctime(3)
crypt(3)
ethers(3n)
hypot(3m)
inet(3n)
emulate_branch(3)
emulate_branch(3)
verdixlib(3)
nfssvc(2)
standard(3)
ns(3n)
floor(3m)
accept(2)
ranhash(3x)
swapon(2)
Jock£(3)
valloc(3c)
siginterrupt(3)
flock(2)
a.out(4)
setbuf(3s)
sigpause(2)
jO(3m)
random(3)
bind(2)
bstring(3)
sigblock(2)
fread(3s)
chdir(2)
brk(2)
chdir(3f)
chmod(3f)
chown(2)
signal(3f)
rename(2)
ctype(3)
fp_class(3)
fp_class(3)
ldclose(3x)
fclose(3s)
ioctl(2)
getrlimit(2)
vlimit(3c)
syslog(3)
atof(3)
byteorder(3n)
ieee(3m)
adjtime(2)
fork(3f)
creat(2)
fork(2)
socketpair(2)
socket(2)
pipe(2)
sqrt(3m)
dbm(3x)
ndbm(3)
close(2)
access(3f)
access(3f)
access(2)
directory(3)
disassembler(3x)
dup(2)
setquota(2)
mipsfpu(2)
erf(3m)
system (3£)
execl(3)
execve(2)
alarm(3f)

Page ix

Permuted Index

acct

profil

expml, log, logl0, loglp, pow
fentl

ttyname, isatty, ttyslot
ttynam, isatty

eprol, _ftext, fdata, _fbss
eprol, _ftext, fdata, _fbss
(unaligned references) fixade
registers fpc

registers fpc

analysis fpi

analysis fpi

and,or data-cache -cacheflush
flush

scanf, fscanf, sscanf

printf, fprintf, sprintf
print_unaligned_summary
print_unaligned_summary
floating-point fp_sigintr

~ abort

setprotoent, endprotoent
setservent, endservent
getrpcbyname, getrpcbynumber
getrpeport

unit getc, fgetc

gets, fgets

getsockopt, setsockopt

getc, getchar, fgetc, getw
pathname getwd

time, ftime

getdtablesize

name getdiskbyname

‘ nlist
getfstype, setfsent, endfsent
stat, Istat, fstat

stat, fstat

addmntent, endmntent, hasmntopt
statfs

uname

getgroups

getgrnam, setgrent, endgrent
getgid, getegid

utilization getrusage
utilization vtimes
setusershell, endusershell
getlogin

getpw

getpeername

sethostent, endhostent
setnetent, endnetent
setnetgrent, endnetgrent, innetgr
getopt

configuration information hwconf
kopt

setpwent, endpwent, setpwfile
directory getcwd

getpgrp

getpid

getpid, getppid

times

getsockname

perror, gerror, ierrno
getpagesize

getttynam, setttyent, endttyent
getuid, geteuid

caller getuid, getgid

getlog

variables getenv

filesystem getdirentries
gettimeofday, settimeofday
getdomainname, setdomainname
gethostname, sethostname
getpriority, setpriority

current gethostid, sethostid
getitimer, setitimer

Page x

RISC/os Programmer’s Reference

: execution accounting file
! execution time profile
: exponential, logarithm, power
: file control . . 4 .. .
: find name of a terminal

: find name of a terminal port . . .
: first locations in program

: first locations in program
: fix address exceptions .«
: floating-point control

: floating-point control

: floating-point interrupt . .
: floating-point interrupt
: flush contents of instruction . .
: flush output to alogical unit . .
: formatted input conversion

: formatted output conversion . .
: gather statistics on unaligned .
: gather statistics on unaligned .
: generate a SIGFPE signal on .
cgenerateafault
: get getprotobyname,
: get getservbyname, . . . 4 4 .
: get RPC entry getrpcent, . . .

: get RPC port number . « o » + « + &

: get a character from a logical

: get a string from a stream . . .
: get and set options on sockets

: get character or word from .
: get current working directory .
: get date and time . . ,

: get descriptor table size «

: get disk description by its

: get entries from name list

: get file getfsspec, getfsfile, . .
rgetfilestatus o v o 0 0 .0 0 e
: get file status
: get file system setmntent, . . .
: get file system statistics
: get general system information

: get group access list PR
get group file entry getgrgid, .
: get group identity
: get information about resource
: get information about resource
: get legal user shells

: get login name

get name from uid
: get name of connected peer

: get network gethostent,

: get network getnetbyname,

: get network group entry . .
: get option letter from argv .
: get or set hardware « . + . .
: get or set kernel options
: get password getpwnam,
: get pathname of current working
: get process group
: get process id

: get process identification . .
: get process times
: get socket name 4, . . .
' get system error messages

: get system page size . . .
: get ttys file entry getttyent,
rgetuseridentity ., . . o . ..
: get user or.group ID of the . .
: get user’s login name
: get value of environment . . .
: gets directory entriesina . .
: get,set date and time
: get,set name of current domain

: get,set name of current host . .
: get,set program scheduling . .
: get,set unique identifier of . . .
1 get,set value of interval timer

s e o s @

s ® s w. 3 ® o =

LI

« e » om0 s o

* e v e
s s s & ° »

e e o s &

February 1989

® s s o 8 o o ° p &

Permuted Index

® o o ° » s ® s s 8 s
e e ® & & = ®
« s 3 s s @
. s s = e
e s o s » =
« s s 8 & s

« s ° e e 5 s o
.

acct(5)
profil(2)
exp(3m)
fentl(2)
ttyname(3)
ttynam(3f)
end(3)
end(3)
fixade(2)
fpe(3)
fpc(3)

1pi(3)

pi(3)
cacheflush(2)
flush(3f)
scanf(3s)
printf(3s)
unaligned(3)
unaligned(3)
fp_sigintr(2)
abort(3)
getprotoent(3n)

- getservent(3n)

getrpcent(3n)
getrpcport(3r)
getc(3f)
gets(3s)
getsockopt(2)
getc(3s)
getwd(3)
time(3c)
getdtablesize(2)
getdisk(3)
nlist(3x)
getfsent(3)
stat(2)

stat(3f)
getmntent(3)
statfs(2)
uname(2)
getgroups(2)
getgrent(3)
getgid(2)
getrusage(2)
vtimes(3c)
getusershell(3)
getlogin(3)
getpw(3c)
getpeername(2) |
gethostbyname(3n)
getnetent(3n)
getnetgrent(3n)
getopt(3)
hwconf(2)
kopt(2)
getpwent(3)
getcwd(3£)
getpgrp(2)
getpid(3f)
getpid(2)
times(3c)
getsockname(2)
perror(3f)
getpagesize(2)
getttyent(3)
getuid(2)
getuid(3£)
getlog(3f)
getenv(3f)
getdirentries(2)
gettimeofday(2)
getdomainname(2)
gethostname(2)
getpriority(2)
gethostid(2)
getitimer(2)

MIPS Computer Systems, Inc.

(

(,

Permuted Index

space, closepl

sinh, cosh, tanh
machines rquota
syscall

initgroups

popen, pclose

socket connect

queue insque, remque
abs
intro
intro

functions

functions

library functions math

and error numbers intro
asinh, acosh, atanh

system

filesystems mount

end, etext, edata

end, etext, edata

examples

data representation xdr
procedure calls rpc

socket listen

lgamma

mkdir

link

link

mknod

mktemp

symlink

quota

quotactl

getenv, setenv, unsetenv

of a ldlread, ldlinit, 1dlitem
mmap, munmap
uncacheable cachectl

free, realloc, calloc, alloca
memchr, memcmp, memcpy, memset
mount

Iseek

arithmetic

setjmp, longjmp

reading ldopen, ldaopen
writing, or create a new open
fopen, freopen, fdopen

ecvt, fevt, gevt

VADS libraries

monitor, monstartup, moncontrol
printcap

ptrace

assert

in Ada publiclib

stream ungetc

puts, fputs

putc, putchar, fputc, putw
qsort

gsort

rand, srand

rand, irand, srand

getpass

entry of a common ldtbread
header of a ldshread, ldnshread
read, readv

member of an archive ldahread
common object file ldfhread
readlink

reboot

recv, recvfrom, recvmsg
re_comp, re_exec

rex

unlink

rmdir

unmount

unlink

unit fseek, ftell

fseek, ftell, rewind

res_init, dn_comp, dn_expand

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

: graphics interface
: hyperbolic functions
: implement quotas on remote
: indirect system call
: initialize group access list
: initiate I,0 to,from a process
: initiate a connection ona .
: insert,remove element froma
: integer absolute value
: introduction to C library
: introduction to FORTRAN library . .
: introduction to mathematical

: introduction to system calls .
: inverse hyperbolic functions
: issue a shell command
: keep track of remotely mounted
: last locations in program
: last locations in program
: library of sample programs . .
: library routines for external

: library routines for remote 0 .. .

: listen for connections on a
: log gamma function . .
: make a directory file
: make a hard link to a file
: make a link to an existing file
: make a special file
: make aunique file name . . .

: make symboliclinktoafile00

: manipulate disk quotas
: manipulate disk quotas
: manipulate environmental

manipulate line number entries

! map or unmap pages of MemMOry .+ + « « ¢ o s o . s
: mark pages cacheable or

: memory allocator malloc, « « « & v o 0 o v v o .

: memory- operations memccpy,
: mount file system
: move read,write pointer
: multiple precision integer
: non-local goto
: open a common object file for
: open a file for reading or
. open a stream
: output conversion
: overview of VADS librarie
: prepare execution profile

: printer capability database
. processtrace . . . o .

: program verification
: public domain packages written
: push character back into input

: put a string on a stream

e o o s s e e & 0 8 s o @

:put characterorwordona « 4 ¢ ¢ ¢ o 0 0 b0

tquicksort
: quicker sort
: random number generator
: random number generator
: read a password
: read an indexed symbol table .
: read an indexednamed section . . . 4 o . .
: read input
: read the archive header of a
: read the file header of a
: read value of a symbolic link
: reboot system or halt processor . . .

e e s .

.
.
.
.
.
.
.
« o o s e 8 ® s e ®

: receive a message from asocket . . . 0 0 . 0 ..

: regular expression handler e
: remote execution protocol
:remove a directory entry . « . o o . 0 0 o o . .

: remove a directory file e e

: remove a file system ..
: remove directory entry
: reposition a file on a logical
: reposition a stream
: resolver routines res_send,

February 1989

Permuted Index

plot(3x)
sinh(3m)
rquota(3r)
syscall(2)
initgroups(3)
popen(3)
connect(2)
insque(3)
abs(3)
intro(3)
intro(3£)
math(3m)
intro(2)
asinh(3m)
system(3)
mount(3r)
end(3)
end(3)
examples(3)
xdr(3n)
rpe(3n)
listen(2)
lgamma(3m)
mkdir(2)
link(2)
link(3f) -
mknod(2)
mktemp(3)
symlink(2)
quota(2)
quotactl(2)
getenv(3)
ldlread(3x)
mmap(2)
cachectl(2)
malloc(3)
memory(3)
mount(2)
Iseek(2)
mp(3x)
setjmp(3)
ldopen(3x)
open(2)
fopen(3s)
ecvt(3)
libraries(3)
monitor(3)
printcap(5)
ptrace(2)
assert(3)
publiclib(3)
ungetc(3s)
puts(3s)
putc(3s)
gsort(3f)
gsort(3)
rand(3c)
rand(3f)
getpass(3)
ldtbread(3x)
ldshread(3x)
read(2)
ldahread(3x)
ldfhread(3x)
readlink(2)
reboot(2)
recv(2)
regex(3)
rex(3r)
unlink(3£)
rmdir(2)
unmount(2)
unlink(2)
fseek(3f)
fseek(3s)
resolver(3)

Page xi

Permuted Index

given an index ldgetaux

given a procedure ldgetpd

file ldgetname

getarg, iargc

ASCII string fdate

numerical form idate, itime
etime, dtime

sigreturn

on remote rnusers, rusers

len

- command rexec

time, ctime, Itime, gmtime

loc

to a rcmd, rresvport, ruserok
read write interface to the stio
compilation unit symbol stcu
high-level interface to stfe

per file descriptor section stfd
interfaces to auxiliaries staux
table stprint
_procedure_string_table
—procedure_string_table
scandir, alphasort

time alarm

time walarm

“optimal” cursor motion curses
of a common ldsseek, ldnsseek
a section of a ldlseek, ldnlseek
section of a ldrseek, ldnrseek
header of a common ldohseek
common object file ldtbseek
send, sendto, sendmsg

kill

kill

killpg

(defunct) stty, gtty

context sigstack

sigsetmask, sigmask

umask

utime.

utimes

setgroups

setpgrp

nice

setregid

ID’s setreuid

setruid, setgid, setegid, setrgid
connection shutdown
facilities signal

sigvec

memory efficient way vfork
exponent frexp, ldexp, modf
package stdio

cshre

pause

ferror, feof, clearerr, fileno
strpbrk, strspn, strespn, strtok
graphics terminal 1ib2648
timezone

interval sleep

sleep

usleep

swab

state with that on disk fsync
select

perror, sys_errlist, sys_nerr
psignal, sys_siglist

termcap

tgetflag, tgetstr, tgoto, tputs
abort

_exit

flushing any pending output - exit
cos, tan, asin, acos, atan, atan2
length truncate, ftruncate
acct

sync

Page xii

RISC/os Programmer’s Reference

: retrieve an auxiliary entry, s e e
: retrieve procedure descriptor 0 00 . .
: retrieve symbol name for object . . .,
:return command line arguments 0 0 .
:return date and timeinan . .+ . . ¢ . e e e
ireturn date O tiMeIn w4 ¢ v 0« b e e o6 s e e ow s
: return elapsed execution time s e v e e .
rreturn from signal 0 0 e e w0 e e e e
: return information about USers .+ » « 4+ 5 0 .. o o
: return length of Fortran string« « « . . .

creturn stream toaremote .« o 4 o 0 0 s 0 e e e o6 e
s return system time . . o e e e e e e
: return the address of an object " e % s s s s 4 aoa
: routines for returningastream v o s s 0 g E s

: routines that provide abinary . . . o . ¢ 4 o 0.

: routines that provide a

@ e 9 o e & 8 8 s s o & & §

:routines that providea « o v v v 4 0 0 0000
: Toutines that provide accessto « « o 4 o o 4 o . " e

: routines to print the symbol

routines that provide scalar . . + « . . . e e e e

:runtime proceduretable . « . ¢ ¢ ¢ 0 v 0. 04 .

:runtime procedure table o 0 0
1scan a directory « v e o 0 v e 4 e 0 e oa e c e e s
: schedule signal after speclﬁed

: schedule signal after specified «
vscreen functions With o v« o % ¢ ¢ v s ¢ 0 & o« .

: seek to an indexednamed section
: seek to line number entries of
; seek to relocation entries of a

: seek to the optional file e e
: seek to the' symbol table ofa TP
: send a message from asocket . . o o o 0 s 4. s
:send asignal to A Process . .+ . v . e v 00 .0 e
:send signal toa process o+ 4 v o b 0 0 0. s e e

: send signal to a process group . .« . 4 4 ¢ 0 . o o o

: set and get terminal state

: set and,or get signal stack P

: set current signal mask

: set file creation mode mask .+ « + . o . . s N
rsetfiletimes o o & o o o o o o 2 0 6 s o 4 o » .
csetfiletimes o+ o o o o 4 0 o P
rset group access list o ¢« o 0 0 4 0 0 e e 0 s PR
: Set process group s .« s » o . -

: set program priority .. I
: set real and effective group ID e e e e e e e

: set user and group ID seteuid,
: shut down part of a full-duplex
: simplified software signal . .
: software signal facilities . . .
: spawn new process in a virtual
: split into mantissa and R
:-standard buffered input,output
: startup file for csh command
:stop until signal
: stream status inquiries . . .

set real and effective user

« o o o s ° =
e = s e ® e

e s s s ° ® s

: string operations strrchr, o+ ¢ 4 6 4 v 0 b 0. e

subroutines for the HP 2648 . . « + « o ¢ o ¢« o 4 &

vsupply timezone String « o + o o 0 0 . s0 0 0 o
:suspend executionforan “«ose
: suspend execution for interval

:swapbytes
: synchronize a file’s in-core .
: synchronous 1,0 multiplexing

: system error messages

suspend execution for interval

.

. . .

® ° s 8 s o s s 0 0o o
. ° °

. . °

.

s s e s o o

: system signal messages . . 4 e e . 0 0 e . e

: terminal capability database + « + 0 4 0 4 . 0 . .
: terminal independent tgetnum,
: terminate Fortran program . « +. « « . e e ae e s

: terminate a process o

:terminate a process after . . o ¢ o 0 0 0 0 e o0 e e
: trigonometric functions sin, + . ¢« o 0 0 0 .o s
:truncate a fileto a specified = 000 o 0.
: turn accounting on or off v o s e b s s e s
:update super-block © + v 0 0 e e e o000l

February 1989

Permuted Index

ldgetaux(3x)
ldgetpd(3x)
ldgetname(3x)
getarg(3f)
fdate(3f)
idate(3f)
etime(3f)
sigreturn(2)
rnusers(3r)
len(3£)
rexec(3)
time(3£)
loc(31)
rcmd(3)
stio(3)
stcu(3)
stfe(3)
stfd(3)
staux(3)
stprint(3)
end(3)
end(3)
scandir(3)
alarm(3c)
ualarm(3)
curses(3x)
ldsseek(3x)
ldlseek(3x)
ldrseek(3x)
ldohseek (3x)
ldtbseek(3x)
send(2)
kill(3f)
kill(2)
killpg(2)
stty(3c)
sigstack(2)
sigsetmask(2)
umask(2)
utime(3c)
utimes(2)
setgroups(2)
setpgrp(2)
nice(3¢)
setregid(2)
setrenid(2)
setuid(3)
shutdown(2)
signal(3c)
sigvec(2)
viork(2)
frexp(3)
stdio(3s)
cshre(5)
pause(3c)
ferror(3s)
string(3)
1ib2648(3x)
timezone(3)
sleep(3f)
sleep(3)
usleep(3)
swab(3)
fsync(2)
select(2)
perror(3)
psignal(3)
termcap(5)
termcap(3x)
abort(3f)
exit(2)
exit(3)
sin(3m)
truncate(2)
acct(2)
sync(2)

MIPS Computer Systems, Inc.

Permuted Index

pages yppasswd

varargs

current control terminal vhangup
terminatesystem(3f) can not wait
wait, wait3

logical unit putc, fputc

write, writev

machines rwall

yperr_string, ypprot_err
super-user(returns

1ib2648 : subroutines for the HP
tzset : convert date and time to
: return date and time in an
atof, atoi, atol : convert

- public domain packages written in
verdixlib : MIPS-supported
intro : introduction to

crypt, setkey, encrypt :
ether_hostton, ether_line :
absolute value hypot, cabs :
intro : introduction to

abort : terminate

len : return length of

1ib2648 : subroutines for the

: set real and effective group
setrgid : set user and group
getgid : get user or group

: set real and effective user
fp_class : classes of

fp_class : classes of

select : synchronous

popen, pclose : initiate
inet_Inaof, inet_netof :
emulate_branch :
emulate_branch :

disassembler : disassemble a
read write interface to the
packages verdixlib :

in can not be longer than
nfssvc, async_daemon :
ns_addr, ns_ntoa : Xerox
getrpcbynumber : get
getrpcport : get

fp_sigintr : generate a

system : execute a

VADS libraries : overview of
libraries

standard :

routines ns_addr, ns_ntoa :

abs : integer

: Euclidean distance, complex
and fabs, floor, ceil, rint :
socket

accept :

of a file

of a file

of file

getgroups : get group
initgroups : initialize group
setgroups : set group
ranhashinit, ranhash, ranlookup :
stfd : routines that provide
access : determine

access : determine

access : determine

acct : execution

acct : turn

functions sin, cos, tan, asin,
functions asinh,

signal : change the
paging,swapping swapon :

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

": variable argument list

: update user password in yellow

: virtually “hangup” the
: wait for a process to s e e e e e
: wait for process to terminate . . . 4 0 4 0 0 s s e
: write a character to a fortran

twriteoutput . . . v 0 0 4
: write to specified remote
: yellow pages client interface
:1 if it was not invoked by the
2648 graphics terminal
ASCII gmtime, asctime, timezone, .« « « + « o + « &
ASCH string fdate ¢ v v v v v 0 0 o ¢ 0 o s o o o
ASCIItonumbers . « o ¢ ¢« o v o o« o
Ada publiclib : « . . . 00 e e s e
Ada library packages
Clibraryfunctions . . « « ¢ v ¢ o ¢ s o o o v o 0 s
DESencryptxon...
Ethernet address mapping « « + o + &

Euclidean distance, compleX « ¢ ¢ o ¢ o o o o 0 o o
FORTRAN library functions .« .. e e e e
Fortran program « « « « ¢ o o o o o s o o s 0 s o o
Fortran string .+ .+ « . . s s e s s s e s s e s .

HP 2648 graphics terminal + & « ¢ ¢ 0 0 b e 0 0 ..
ID setregid I A T I T TS

ID setruid, setgid, setegid, .« « o « + ¢ v o ¢ o o o o
ID of the caller getuid, c e o v e
ID’s setreuid .+ « ¢ v 0 0 ¢ o 0 o
IEEE floating-point values . . e e e
IEEE floating-point values . « « & o o o s o o o o &
1,0 multiplexing .

1,0 to,from a process .o

Internet inet_makeaddr, . . .

MIPS branch emulation "+ ¢ « « « o o+ & « & &
MIPS branch emulation .
MIPS instruction and print the . .
MIPS symbol table abinary
MIPS-supported Ada library

NCARGS:50 characters, as defined . « « « o & & o &
NFS daemons . . .

NS(tm) address conversion e e e e e e
RPC entry getrpcbyname, ¢ ¢ ¢ « o o o o
RPC port number
SIGFPE signal on floating-point . . .
UNIX command .
VADS libraries « ¢ v v ¢ v o ¢ 0 s o s 0 0 s o
VADS libraries : overview of VADS .
VADS standard library + « v v ¢« 4 ¢ v 0 0 e 0 o0
Xerox NS(tm) address conversion
abort : generate a fault
abort : terminate Fortran program
abs : integer absolute value
absolute value e v e e
absolute value hypot, cabs . .
absolute value, floor, ceiling, .« « + ¢ ¢ ¢« ¢ o o+ &
accept : accept a connection on a
accept a connection on a socket « e
access : determine accessibility . .
access : determine accessibility
access : determine accessibility
access list
access list
access list
access routine for the symbol
access to per file descriptor
accessibility of afile
accessibility of a file
accessibility of ile
accounting file .
accounting on or off
acct : execution accounting file
acct : turn accountingonoroff
acos, atan, atan2 : trigonometric s e
acosh, atanh : inverse hyperbolic
action for a signal
add a swap device for interleaved

.
.
.
.
.
.
.
.
e o e 2 s s e =

February 1989

Permuted Index

yppasswd(3r)
varargs(3)
vhangup(2)
wait(3f)
wait(2)
putc(3f)
write(2)
rwall(3r)
ypelnt(3n)
initgroups(3)
1ib2648(3x)
ctime(3)
fdate(3f)

- atof(3)

publiclib(3)
verdixlib(3)
intro(3)
crypt(3)
ethers(3n)
hypot(3m)
intro(3f)
abort(3f)
len(3f)
1ib2648(3x)
setregid(2)
setuid(3)
getuid(3f)
setreuid(2)
fp_class(3)
fp_class(3)

. select(2)

popen(3)
inet(3n) -
emulate_branch(3)
emulate_branch(3)
disassembler(3x)
stio(3)
verdixlib (3)
wait(3f)
nfssve(2)
ns(3n)
getrpeent(3n)
getrpeport(3r)
fp_sigintr(2)
system(3f)
libraries(3)
libraries(3)
standard(3)
ns(3n)
abort(3)
abort(3f)
abs(3)

abs(3)
hypot(3m)
floor(3m)
accept(2)
accept(2)
access(3f)
access(3f)
access(2)
getgroups(2)
initgroups(3)
setgroups(2)
ranhash(3x)
stfd(3)
access(3f)
access(3f)
access(2)
acct(5)
acct(2)
acct(5)
acct(2)
sin(3m)
asinh(3m)
signal(3f)
swapon(2)

Page xiii

Permuted Index

get file getmntent, setmntent,
ns_addr, ns_ntoa : Xerox NS(tm)
references) fixade : fix
ether_line : Ethernet

loc : return the

allow synchronization of the
flock : apply or remove an
lockf :

after a specified time

specified time

valloc :

malloc, free, realloc, calloc,
realloc, calloc, alloca : memory
valloc : aligned memory

calls siginterrupt :

adjtime : correct the time to.

scandir,

fpi : floating-point interrupt

fpi : floating-point interrupt

: flush contents of instruction
sigstack : set

output

on an open file flock :

archive header of a member of an
archive file ldahread : read the
varargs : variable

iargc ; return command line
getopt : get option letter from
: multiple precision integer
ctime, localtime, gmtime,
trigonometric sin, cos, tan,
hyperbolic functions

a.out :

setbuf, setbuffer, setlinebuf :
nfssve,

sin, cos, tan, asin, acos,

sin, cos, tan, asin, acos, atan,
functions asinh, acosh,

to numbers

numbers atof,

atof, atoi,

signals and wait for sigpause :
that provide scalar interfaces to
ldgetaux : retrieve an

: terminal capability data
delete, firstkey, nextkey : data
dbm_error, dbm_clearerr : data
provide a high-level interface to
string operations bcopy,

byte string operations

i0, j1, jn, y0, y1, yn :

srandom, initstate, setstate :
fread, fwrite : buffered

stio ; routines that provide a

bind :

bcopy, bemp, bzero, ffs ;
sigblock :

sigpause : atomically release
emulate_branch : MIPS
emulate_branch : MIPS

size

fread, fwrite :

stdio : standard

setbuffer, setlinebuf : assign
values between host and network
bcopy, bemp, bzero, ffs : bit and
swab : swap

operations bcopy, bemp,
complex absolute value hypot,
of instruction and,or data
cachectl : mark pages

or uncacheable

instruction and,or data cache
syscall : indirect system

Page xiv

RISC/os Programmer’s Reference

.asin, acos, atan, atan2 : e e e e e

" assembler and link editor output

February 1989

addmntent, endmntent, hasmntopt ;
address conversion routines . « .+ « 0 0 4 .4 o 0 o
address exceptions (unaligned
address mapping operations

address of an object
adjtime : correct the time to
advisory lock on an openfile
advisory record locking on files
alarm : execute a subroutine . . . v 44 o0

alarm : schedule signal after
aligned memory allocator . . + .+ « « . «
alloca : memory allocator .
allocator malloc, free, . .
allocator Cae e s e
allow signals to interrupt system
allow synchronization of the C s e e s s e e
alphasort : scan a directory
analysis . .
analysis
and,or data cache cacheflush . . .
and,or get signal stack context . .
a.out : assembler and link editor .
apply or remove an advisory lock
archive file ldahread : read the

archive header of a member of an
argument list
arguments getarg, ., + o o o . o .
ARV e e e e e e s
arithmetic
asctime, timezone, tzset :

............
.............

® o s a o s 8 o s s o o o & & @

asinh, acosh, atanh : inverse

assign buffering toastream . .+ ¢« 4 s 0 0 00 .o
async_daemon ; NFS daemons . e
atan, atan2 : trigonometric
atan? : trigonometric functions 0 0 0 . . W
atanh : inverse hyperbolic
atof, atoi, atol : convert ASCII
atoi, atol : convert ASCIIto
atol : convert ASCII to numbers . . .
atomically release blocked
auxiliaries staux : routines
auxiliary entry, given an index . . « . o .
base termcap
base subroutines fetch, store,

base subroutines dbm_nextkey,
basic functions needed that
bemp, bzero, ffs : bit and byte

bcopy, bemp, bzero, ffs : bit and .
bessel functions .
better random number generator; .

.
assert : program verification e e e e e e e e e e
.
.

binary input,output
binary read write interface to
bind : bind a name to asocket . . . o .
bind a name to a socket
bit and byte string operations
block signals
blocked signals and wait for
branch emulation .
branch emulation

LY

brk, sbrk : change data segment .
buffered binary input,output . .
buffered input,output package .o
buffering to a stream setbuf,
byte order ntohs : convert
byte string operations
bytes
bzero, ffs : bit and byte string
cabs : Euclidean distance,
cache :flush contents
cacheable or uncacheable
cachectl ; mark pages cacheable

cacheflush : flush contents of . .
call

......... » o o o s s e . 0 o & & & o @

s e ® e
.
e o o s o

Permuted Index

getmntent(3)
ns(3n)
fixade(2)
ethers(3n)
loc(3£)
adjtime(2)
flock(2)
lock£(3)
alarm (3f)
alarm(3c)
valloc(3c)
malloc(3)
malloc(3)
valloc(3c)
siginterrupt(3)
adjtime(2)
scandir(3)
pi(3)

fpi(3)
cacheflush(2)
sigstack(2)
a.out(4)
flock(2)
Idahread(3x)
1dahread(3x)
varargs(3)
getarg(3f)
getopt(3)
mp(3x)
ctime(3)
sin(3m)
asinh(3m)
a.out(4)
assert(3)
setbuf(3s)
nfssve(2)
sin(3m)
sin(3m)
asinh(3m)
atof(3)
atof(3)
atof(3)
sigpause(2)
staux(3)
ldgetaux(3x)
termcap(5)
dbm(3x)
ndbm(3)
stfe(3)
bstring(3)
bstring(3)
jO(3m)
random(3)
fread(3s)
stio(3)
bind(2)
bind(2)
bstring(3)
sigblock(2)
sigpause(2)
emulate_branch(3)
emulate_branch(3)
brk(2)
fread(3s)
stdio(3s)
setbuf(3s)
byteorder(3n)
bstring(3)
swab(3)
bstring(3)
hypot(3m)
cacheflush(2)
cachectl(2)
cachectl(2)
cacheflush(2)
syscall(2)

MIPS Computer Systems, Inc.

(

(

Permuted Index

: get user or group ID of the
malloc, free, realloc,

routines for remote procedure
allow signals to interrupt system
intro : introduction to system
termcap : terminal

printcap : printer

root

floor, ceiling, and fabs, floor,
rint : absolute value, floor,
chdir :

brk, sbrk :

chdir :

chmod :

chown :

signal :

rename :

an interprocess communication
ungetc : push

toupper, tolower, toascii :

getc, fgetc : get a

getc, getchar, fgetc, getw : get
putc, putchar, fputc, putw : put
unit putc, fputc : write a

can not be longer than NCARGS:50
directory

a file
values fp_class :
values fp_class :

tolower, toascii : character
inquiries ferror, feof,
ypprot_err : yellow pages
synchronization of the system

Idclose, ldaclose :

fclose, fflush :

telldir, seekdir, rewinddir,
system log syslog, openlog,
space,

cshrc : startup file for csh
returning a stream to a remote
rexec : return stream to a remote
system : issue a shell

system : execute a UNIX

getarg, iargc : return

Idclose, ldaclose : close a

: read the file header of a
number entries of a section of a
to the optional file header of a
entries of a section of a
indexednamed section header of a
to an indexednamed section of a
indexed symbol table entry of a

: seek to the symbol table of a
ldopen, ldaopen : open a

line number entries of a

socket : create an endpoint for
pipe : create an interprocess
stcu : routines that provide a
hypot, cabs : Euclidean distance,
hwconf : get or set hardware

on a socket

getpeername : get name of
socketpair : create a pair of

: shut down part of a full-duplex
accept : accept a

connect : initiate a

listen : listen for

: control maximum system resource
: control maximum system resource
data cache cacheflush : flush

: set and,or get signal stack

fentl : file

ioctl :

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

caller getuid, getgid
calloc, alloca : memory allocator
calls rpc :library
calls siginterrupt : . . ,

calls and error numbers Poe e e

capability data base
capability database .
cbrt, sqrt : cube root, square .
ceil, rint : absolute value,
ceiling, and fabs, floor, ceil,
change current working directory
change data segment size
change default directory . . .
change mode of a file
change owner and group of a file
change the action for a signal
change the name of a file
channel pipe : create
character back into input stream
character classification macros
character from a logical unit
character or word from stream
character or word on a stream
character to a fortran logical

¢« o

characters, as definedin

chdir : change current working
chdir : change default directory
chmod : change mode of a file
chown : change owner and group
classes of IEEE floating-point
classes of IEEE floating-point
classification macros toupper,
clearerr, fileno : stream status .
client interface yperr_string,
clock correct the time to allow
close : delete a descriptor -
close a common object file

close or flush a stream
closedir : directory operations
closelog, setlogmask : control
closepl : graphics interface
command
command ruserok : routines for
command
command
command PR
command line arguments . . .
common object file
common object file
common object file
common object file
common object file
common object file
common object file
common object file :read an
common object file ldtbseek
common object file for reading
common object file function .
communication
communication channel
compilation unit symbol table .
complex absolute value
configuration information
connect : initiate a connection
connected peer
connected sockets

e s s e o

Idfhread .
seek to line

to relocation
: read an
: seek

LR

connection on a socket . .
connection on a socket

connections on a socket
consumption getrlimit, setrlimit
consumption vlimit
contents of instruction and,or
context sigstack
control .
control device

» e o s @

February 1989

iseek . . .

connection shutdown

.
.
.
.
.
.
.
.
-
s ® 8 o ® s ° s » 8 s ® = e v s e e s > ®

* e 3 e
® ® ® s e e o * ® e o 8 s ® e 8 e 3 s s+ = s e & ©

« » e = =

e s s -»

.

« s o s s e

e » = ® s s & s 8 ® s ° e 3 s e @

e o s o * e s

e e a2 e = » o s e @

» 8 s ® s s e e ® ® s s s s s e e v e »

e 8 ®© 85 © 8 ® s s 8 @ 3 s ® ® e s ® s e s s s s w s e G- s s =

¢« & o u s 8 @ & ® ® w8 s e e ®w s w e ® w s-®

e & % ® & 8.3 8 ® & ® s e s s 8 B v 3 8 e-@ e &8 e v &

Permuted Index

getuid(3£)
malloc(3)
rpc(3n)
siginterrupt(3)
intro(2)
termcap(5)
printcap(5)
sqrt(3m)
floor(3m)
floor(3m)
chdir(2)
brk(2)
chdir(3f)
chmod(3f)
chown(2)
signal(3f)
rename(2)
pipe(2)
ungetc(3s)
ctype(3)
getc(3f)
getc(3s)
putc(3s)
putc(3£)
wait(3f)
chdir(2) -
chdir(3f)
chmod(3f)
chown(2)
fp_class(3)
fp_class(3)
ctype(3)
ferror(3s)
ypcint(3n)
adjtime(2)
close(2)
ldclose(3x)
fclose(3s)
directory(3)
syslog(3)
plot(3x)
cshre(5)
remd(3)
rexec(3)
system(3)
system(3f)
getarg(3f)
ldclose(3x)
1dfhread(3x)
ldiseek(3x)
ldohseek(3x)
Idrseek(3x)
Idshread(3x)
ldsseek(3x)
ldtbread(3x)
ldtbseek(3x)
ldopen(3x)
ldIread(3x)
socket(2)
pipe(2)
stcu(3)
hypot(3m)
hwconf(2)
connect(2)
getpeername(2)
socketpair(2)
shutdown(2)
accept(2)
connect(2)
listen(2)
getrlimit(2)
vlimit(3c)
cacheflush(2)
sigstack(2)
fentl(2)
ioctl(2)

Page xv

Permuted Index

getrlimit, setrlimit :
consumption vlimit :

fpc : floating-point

fpc : floating-point

openlog, closelog, setlogmask :
virtually “hangup” the current
ecvt, fovt, gevt © output

sprintf : formatted output
fscanf, sscanf ; formatted input
ns_ntoa : Xerox NS(tm) address
atof, atoi, atol :

asctime, timezone, tzset :

htonl, htons, ntohl, ntohs :
fork : create a

scalb : copysign, remainder,
drem, finite, logb, scalb ;
synchronization of the adjtime :
: trigonometric functions sin,
sinh,

fork :
creat :
a file for reading or writing, or
fork :
sockets socketpair :
communication socket :
communication channel . pipe :
umask : set file
encryption
cshre : startup file for
command
asctime, timezone, tzset :
system time time,
cbrt, sqrt :
: virtually “hangup” the
setdomainname : get,set name of
: get,set unique identifier of
sethostname : get,set name of
sigsetmask, sigmask : se
chdir : change
getcwd : get pathname of
pathname getwd : get
“optimal” cursor motion
screen functions with “optimal®
nfssvc, async_daemon : NFS
termcap : terminal capability
delete, firstkey, nextkey :
dbm_error, dbm_clearerr :
contents of instruction and,or
: library routines for external
brk, sbrk : change
printcap : printer capability
settimeofday : get,set
time, ftime : get
fdate : return
timezone, tzset : convert
idate, itime : return
dbm_nextkey, dbm_error,
base subroutines dbm_nextkey,
firstkey, nextkey : data base
dbm_clearerr : data base
chdir : change
than NCARGS:50 characters, as
gtty : set and get terminal state
close :
base. dbminit, fetch, store,
getdiskbyname : get disk
close : delete a
dup, dup2 : duplicate a
Idgetpd : retrieve procedure
descriptor given a procedure
that provide access to per file
getdtablesize : get
access :
access :
access :

Page xvi

RISC/os Programmer’s Reference

control maximum system resource
control maximum system resource
control registers
control registers

» e 0

control system log syslog, . . .

control terminal vhangup : .
conversion .
conversion printf, fprintf,
conversion scanf, . . .
conversion routines ns_addr,

convert ASCII to numbers . . .

convert date and time to ASCII
convert values between host and
copy of this process
copysign, drem, finite, logb,
copysign, remainder, copysign,
correct the time to allow

cos, tan, asin, acos, atan, atan?
cosh, tanh : hyperbolic functions

PR

creat : create anewfile

create a copy of this process
create anew file
create a new file open : open .
create a New process s . . . -

create a pair of connected

create an endpoint for

create an interprocess
creation mode mask

crypt, setkey, encrypt : DES

csh-.command . . . e e e

cshre : startup file for csh -
ctime, localtime, gmtime,
ctime, Itime, gmtime .return
cube root, square root -
current control terminal vhangup
current domain getdomainname,
current host sethostid . .
current host gethostname, . .
current signal mask
current working directory . . .
current working directory
current working directory
curses ; screen functions with

cursor motion Curses @ 4 . o 0 o

daemons ... s s 4w eo6 e
database . . ,
data base subroutines store,
data base subroutines -~ .

data cache cacheflush : flush ., .

data representation xdr
data segment size
database
date and time gettimeofday, .
date and time
date and time in an ASCII string
date and time to ASCII asctime,
date or time in numerical form
dbm_clearerr : data base
dbm_error, dbm_clearerr : data
dbminit, fetch, store, delete, .
dbm_nextkey, dbm_error,
default d:rectory e e r e n e
defined in can not be Ionger
(defunct) stty,
delete a deseriptor '« « 4 4 .
delete, firstkey, nextkey : data
description by its name
descriptor
descriptor e
descriptor given a procedure
deseriptor index procedure
descriptor section of the
descriptor table size
determine accessibility of a file
determine accessibility of a file

o e 8 o s o

° e 0w
®» o s s s 8 e & &

» e o s

determine accessibility of file . . .

February 1989

® e s B & s e a o o

s b o

Permuted Index

e s s s e s e e o = @

getrlimit(2)
vlimit(3c)
fpe(3)

fpe(3)
syslog(3)
vhangup(2)
ecvt(3)
printf(3s)
scanf(3s)
ns(3n)
atof(3)
ctime(3)
byteorder(3n)
fork(3f)
ieee(3m)
ieee(3m)
adjtime(2)
sin(3m)
sinh(3m)
creat(2)
fork(3f)
creat(2)
open(2)
fork(2)
socketpair(2)
socket(2)
pipe(2)
umask(2)
crypt(3)
cshre(5)
cshre(5)
ctime(3)
time(3f)
sqrt(3m)
vhangup(2)
getdomainname(2)
gethostid(2)
gethostname(2)
sigsetmask(2)
chdir(2)
getcwd(3f)
getwd(3)
curses(3x)
curses(3x)
nfssve(2)
termcap(5)
dbm(3x)
ndbm(3)
cacheflush(2)
xdr(3n)
brk(2)
printcap(5)
gettimeofday(2)
time(3c)
fdate(3f)
ctime(3)
idate(3f)
ndbm(3)
ndbm(3)

dbm (3x)
ndbm(3)
chdir(3f)
wait(3f)
stty(3c)
close(2)
dbm(3x)
getdisk(3)
close(2)
dup(2)
ldgetpd(3x)
Idgetpd(3x)
stfd(3)
getdtablesize(2)
access(3f)
access(3f)
access(2)

(

MIPS Computer Systems, Inc.

Permuted Index

ioctl : control

swapon : add a swap

chdir : change current working
chdir : change default

: get pathname of current working
scandir, alphasort : scan a
independent getdirentries : gets
unlink : remove

unlink : remove a

mkdir : make a

rmdir : remove a

seekdir, rewinddir, closedir :
getwd : get current working
and print the disassembler :
instruction and print the

file’s in-core state with that on
getdiskbyname : get

quota : manipulate

quotactl : manipulate

unit mipsfpu : enabling and
hypot, cabs : Euclidean
res_mkquery, res_send, res_init,
res_send, res_init, dn_comp,

: get,set name of current
publiclib : public

copysign, remainder, copysign,
time etime,

descriptor

dup,

dup, dup2 :

conversion

end, etext,

end, etext,

a.out : assémbler and link
setregid : set real and

setreuid : set real and

new process in a virtual memory
etime, dtime : return

insque, remque : insert,remove
emulation

emulation

emulate_branch : MIPS branch
emulate_branch : MIPS branch
system setquota :
floating-point unit mipsfpu :
crypt, setkey,

crypt, setkey, encrypt : DES
locations in program

locations in program

getfsfile, getfstype, setfsent,
getgrgid, getgrnam, setgrent,
gethostent, sethostent,
getmntent, setmntent, addmntent,
getnetbyname, setnetent,
getnetgrent, setnetgrent,
socket : create an
getprotobyname, setprotoent,
getpwuid, getpwnam, setpwent,
getservbyname, setservent,
getttyent, getttynam, setttyent,
getusershell, setusershell,

nlist : get

getdirentries : gets directory
Idlitem : manipulate line number
Idnlseek : seek to line number
Idnrseek : seek to relocation
endgrent : get group file
innetgr : get network group
getrpcbynumber : get RPC
endttyent : get ttys file

unlink : remove directory
unlink : remove a directory
ldgetaux : retrieve an auxiliary

: read an indexed symbol table
execvp, exec, execve, exect,
getenv : get value of

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

device . . 0 . h e e e e e e e e e e e e e e e
device for interleaved
directory
directory
directory getcwd
directory
directory entries in a filesystem
directory entry
directory entry
directory file
directory file
directory operations telldir,
directory pathname .
disassemble a MIPS instruction
disassembler : disassemble a MIPS
disk fsync:synchronizea .« « v v o o v v o o v o s
disk description by its name . e
disk quotas
disk quotas e e
dissabling the floating-point . « « « & o o v o v W .
distance, complex absolute value .+ « « « + o 4 4 .
dn_comp, dn_expand : resolver . .« 4 ¢ . o .o 0 ..
dn_expand : resolver routines . . .
domain setdomainname
domain packages writtenin Ada
drem, finite, logb, scalb :
dtime : return elapsed execution . . .
dup, dup?2 : duplicatea
dup2 : duplicate a descriptor
duplicate a descriptor
ecvt, fcvt, gevt : output
edata : last locations in program
edata : last locations in program
editor output
effective groupID
effective user ID’s
efficient way vfork : spawn
elapsed execution time . . .
element from a queue
emulate_branch : MIPS branch
emulate_branch : MIPS branch
emulation
emulation
enable,disable quotas on a file ..
enabling and dissablingthe ¢
encrypt : DES encryption c e e e
encryption
end, etext, edata : last . . .
end, etext, edata : last . . .
endfsent : get file getfsspec,
endgrent : get group file entry
endhostent : get network .
endmntent, hasmntopt : get file . . .
endnetent : get network
endnetgrent, innetgr : get
endpoint for communication
endprotoent : get
endpwent, setpwfile : get
endservent : get getservbyport, . .
endttyent : get ttys file entry e
endusershell : get legal user ..
entries from name list
entries in a filesystem .
entries of a common object file . .

entries of a section of a common
entries of a section of a common
entry getgrnam, setgrent,
entry setnetgrent, endnetgrent,

entry getrpcent, getrpcbyname,

entry getttynam, setttyent, . .
entry

entry
entry, given an index

.
entry of a common object file . .
environ : execute afile execlp, .+ « ¢« v v 4 40 0.
environment variables .

February 1989

Pgrmuted Index

chdir(2)
chdir(3f)
getcwd(3f)
scandir(3)
getdirentries(2)
unlink(2)

unlink (3£)
mkdir(2)
rmdir(2)
directory(3)
getwd(3)
disassembler(3x)
disassembler(3x)
fsync(2)
getdisk(3)
quota(2)
quotactl(2)
mipsfpu(2)
hypot(3m)
resolver(3)
resolver(3)
getdomainname(2)
publiclib(3)
ieee(3m)
etime(3f)

dup(2)

dup(2)

dup(2)

ecvt(3)

end(3)

end(3)

a.out(4)
setregid(2)
setreuid(2)
vfork(2)
etime(3f)
insque(3)
emulate_branch(3)
emulate_branch(3)
emulate_branch(3)
emulate_branch(3)
setquota(2)
mipsfpu(2)
crypt(3)

crypt(3)

end(3)

end(3)
getfsent(3)
getgrent(3)
gethostbyname(3n)
getmntent(3)
getnetent(3n)
getnetgrent(3n)
socket(2)
getprotoent(3n)
getpwent(3)
getservent(3n)
getttyent(3)
getusershell(3)
nlist(3x)
getdirentries(2)
ldIread(3x)
1dlseek(3x)
Idrseek(3x)
getgrent(3)
getnetgrent(3n)
getrpcent(3n)
getttyent(3)
unlink(2)

unlink (3f)
ldgetaux(3x)
ldtbread(3x)
execl(3)
getenv(3f)

Page xvii

Permuted Index

setenv, unsetenv : manipulate
first locations in program
first locations in program

erf,

erf, erfc :

sys_errlist, sys_nerr : system
gerror, ierrno : get system
introduction to system calls and
program end,

program end,

ethers, ether_ntoa,

ether_aton, ether_ntohost,
ether_ntohost, ether_hostton,
ether_ntohost, ethers,

. ethers, ether_ntoa, ether_aton,
" ether_ntohost, ether_hostton,
execution time

programs

fixade : fix address

execv, execle, execlp, execvp,
execvp, exec, execve, exect,
execve, exect, execl, execv,
exect, execl, execv, execle,
execlp, execvp, exec, execve,
system :

exec, execve, exect, environ :
execve :

specified time alarm :

acct :

sleep : suspend

sleep : suspend

" usleep : suspend

monstartup, moncontrol :-prepare
rex : remote

etime, dtime : return elapsed
profil :

exec, execve, exect, execl,

a execle, execlp, execvp, exec,
execl, execv, execle, execlp,
link : make a link to an

flushing any pending output
pow : exponential, logarithm,
exponential, logarithm, exp,
modf : split into mantissa and
expml, log, log10, loglp, pow :
re_comp, re_exec : regular
xdr : library routines for
absolute value, floor, ceiling,

: simplified software signal
sigvec : software signal

abort : generate a

program eprol, _ftext, _fdata,
program eprol, _ftext, _fdata,
stream

ecvt,

in program eprol, _ftext,

in program eprol, _ftext,

an ASCII string

fopen, freopen,

status inquiries ferror,

stream status inquiries

nextkey : data base dbminit,
fclose,

operations bcopy, bemp, bzero,
logical unit getc,

word from stream getc, getchar,
stream gets,

: determine accessibility of

: determine accessibility of a

: determine accessibility of a
acct : execution accounting
chmod : change mode of a

Page xviii

RISC/os Programmer’s Reference

environmental variables getenv,
eprol, _ftext, fdata, fbss: . . .
eprol, _ftext, fdata, fbss: . . .
erf, erfc : error functions
erfc : error functions
error functions e e e e

€Iror messages perror, .« « « o o

error Messages PeITor, .« « « «
error numbers intro :
etext, edata : last locationsin . .
etext, edata : last locations in . .
ether_aton, ether_ntohost, . . .
ether_hostton, ether_line: . . .
ether_line : Ethernet address . .
ether_ntoa, ether_aton,

ether_ntohost, ether_hostton, . . .
ethers, ether_ntoa, ether_aton, . . .

etime, dtime : return elapsed . .
examples : library of sample .
exceptions (unaligned references)

exec, execve, exect, environ : . .
execl, execv, execle, execlp, ..
execle, execlp, execvp, exec, . .
execlp, execvp, exec, execve, . .
exect, environ : execute a file . .
execute a UNIX command . . .
execute a file execlp, execvp, . .
executeafile o . . .
execute a subroutine aftera . . .
execution accounting file
execution for an interval
execution for interval e e e
execution for interval o v s
execution profile monitor, . . .
execution protocol o . .
execution tiMe « « o« o « o + « o
execution time profile
execv, execle, execlp, execvp, . .
execve : execute afile
execve, exect, environ : execute .
execvp, exec, execve, exect, . .
existing file . ’
_exit : terminate a process . . .
exit : terminate a process after .
exp, expm1, log, log10, loglp, .
expml, log, logl0, loglp, pow : .
exponent frexp, ldexp,
exponential, logarithm, power . .
expression handler
external data representation . . .
fabs, floor, ceil, rint : c e s e
facilities signal ¢ « o o ¢ o o
facilities
fault o ¢ o v 0 0 e v 0w e e
_fbss : first locationsin
_fbss : first locationsin
fclose, fflush : close or flush a .
fentl : file control . . . o . .
fevt, gevt : output conversion . .
_fdata, _fbss : first locations ..
_fdata, _fbss : first locations . .
fdate : return date and time in .
fdopen : open a stream
feof, clearerr, fileno : stream . .
ferror, feof, clearerr, fileno: . .
fetch, store, delete, firstkey, .
fflush : close or flush a stream .
ffs : bit and byte string
fgetc : get a character froma . .
fgetc, getw : get characteror . .
fgets : get a string froma

e s e s o s & & @8

file access " s e e e s e s e
file access
file access
file o ¢ o o ¢ o s 00 o0 o
file o o o o 0o v o o0 o0 s o

February 1989

Permuted Index

getenv(3)
end(3)
end(3)
erf(3m)
erf(3m)
erf(3m)
perror(3)
perror(3f)
intro(2)
end(3)
end(3)
ethers(3n)
ethers(3n)
ethers(3n)
ethers(3n)
ethers(3n)
ethers(3n)
etime(3f)
examples(3)
fixade(2)
execl(3)
execl(3)
exccl(3)
execl(3)
execl(3)
system (3f)
execl(3)
execve(2)
alarm (3f)
acct(5)
sleep(3f)
sleep(3)
usleep(3)
monitor(3)
rex(3r)
etime(3f)
profil(2)
execl(3)
execve(2)
execl(3)
execl(3)
link (3f)
exit(2)
exit(3)
exp(3m)
exp(3m)
frexp(3)
exp(3m)
regex(3)
xdr(3n)
floor(3m)
signal(3c)
sigvec(2)
abort(3)
end(3)
end(3)
fclose(3s)
fentl(2)
ecvt(3)
end(3)
end(3)
fdate(3f)
fopen(3s)
ferror(3s)
ferror(3s)
dbm(3x)
fclose(3s)
bstring(3)
getc(3f)
getc(3s)
gets(3s)
access(2)
access(3f)
access(3f)
acct(5)
chmod(3f)

MIPS Computer Systems, Inc.

Permuted Index

: change owner and group of a
creat : create a new

exect, environ : execute a

execve : execute a

an advisory lock on an open
setfsent, endfsent : get

header of a member of an archive
Idaclose : close a common object
file header of a common object

: retrieve symbol name for object
of a section of a common object
file header of a common object
of a section of a common object
section header of a common object
section of a common object
table entry of a common object
symbol table of a common object
link : make a hard link to a

link : make a link to an existing
mkdir : make a directory

mknod : make a special

or writing, or create a new
rename : change the name of a
rmdir : remove a directory
symlink : make symbolic link to a
fentl :

umask : set

that provide access to per
setgrent, endgrent : get group
setttyent, endttyent : get ttys
cshrc : startup

ldaopen : open a common object
create a new file open : open a
number entries of a common object
file ldfhread : read the

ldohseek : seek to the optional
mktemp : make a unique

fseek, ftell : reposition a

stat, Istat, fstat : get

stat, fstat : get

endmntent, hasmntopt : get

' mount : mount

: enable,disable quotas on a
unmount : remove a

statfs : get

utime : set

utimes : set

truncate, ftruncate : truncate a
ferror, feof, clearerr,

: advisory record locking on

disk fsync : synchronize a

: gets directory entries in a

: keep track of remotely mounted
ttyname, isatty, ttyslot :

ttynam, isatty :

remainder, copysign, drem,
dbminit, fetch, store, delete,
references) fixade :

(unaligned references)

fpc :

fpc :

fpi :

fpi :

: generate a SIGFPE signal on

: enabling and dissabling the
fp_class : classes of IEEE
fp_class : classes of IEEE
advisory lock on an open file
value, floor, ceiling, and fabs,
ceil, rint : absolute value,

unit

fclose, fflush : close or

and,or data cache cacheflush :
flush :

exit : terminate a process after
stream

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file

flock : apply or remove
getfsfile, getfstype, v . o o ...
Idahread : read the archive
ldclose, .
Idfhread : read the . .
ldgetname
seek to line number entries + 4 4« 4 4 . 0 .0 . .
: seek to the optional
seek torelocationentries .+ ¢ v 4 ¢ 4 4 0 o0 . ..
: read an indexednamed . .
: seek to an indexednamed 4 40 4 . .
: read an indexed symbol e e
file ldtbseek : seek to the
file oo
file « o0 v v v o0 o0 e
file
file .

------- LI L e S S R

file :open afileforreading
file
file
file
file control
file creation mode mask .. .
file descriptor section of the
file entry getgrgid, getgrnam,
file entry getttyent; getttynam, . . .
file for csh command .
file for reading ldopen, .
file for reading or writing, or .
file function : manipulate line

file header of a common object
file header of a common object
file name
file on a logical unit
filestatus .« 0 0 0 .
file status e
file system addmntent,
file system e e e
file system setquota
file system
file system statistics . .
file times .
file times o e e .
file to a specified length .
fileno : stream status inquiries .« « «

% e« s s & s s s s 0 e e 8 = 8 s s 0 @

-
.
.
.
.
.
.
.
.
.
»
® s s e s s & =

files lockf
file’s in-core state with thaton
filesystem independent format . . .
filesystems mount
find name of a terminal
find name of a terminal port . . .
finite, logb, scalb : copysign,
firstkey, nextkey : data base ..
fix address exceptions (unaligned
fixade : fix address exceptions . .
floating-point control registers « « « . . . o
floating-point control registers « + « « « ¢ s 4 4 o . .

floating-point interrupt analysis
floating-point interrupt analysis
floating-point interrupts .
floating-point unit mipsfpu
floating-point values . .
floating-point values . .
flock : apply or remove an
floor, ceil, rint : absolute

floor, ceiling, and fabs, floor,
flush : flush output to a logical
flush a stream
flush contents of instruction . .
flush output to a logical unit
flushing any pending output « « v « ¢« ¢ ¢ v 4 .o ..
fopen, freopen, fdopen : open a o .

® e s s s s e s s o s

February 1989

Permuted Index

chown(2)
creat(2)
execl(3)
execve(2)
flock(2)
getfsent(3)
ldahread(3x)
ldclose(3x)
ldfhread(3x)
Idgetname(3x)
IdIseek(3x)
Idohseek(3x)
ldrseek(3x)
ldshread(3x)
ldsseek(3x)
ldtbread(3x)
ldtbseek(3x)
link(2)
link(3f)
mkdir(2)
mknod(2)
open(2)
rename(2)
rmdir(2)
symlink(2)
fentl(2)
umask(2)
stfd(3)
getgrent(3)
getttyent(3)
cshre(5)
Idopen(3x)
open(2)
Idlread(3x)
Idfhread(3x)
ldohseek(3x)
mktemp(3)
fseek(3f)
stat(2)
stat(3f)
getmntent(3)
mount(2)
setquota(2)
unmount(2)
statfs(2)
utime(3c)
utimes(2)
truncate(2)
ferror(3s)
lockf(3)
fsync(2)
getdirentries(2)
mount(3r)
ttyname(3)
ttynam(3£)
ieee(3m)
dbm(3x)
fixade(2)
fixade(2)
fpe(3)
fpc(3)

1pi(3)

fpi(3)
fp_sigintr(2)
mipsfpu(2)
fp_class(3)
fp_class(3)
flock(2)
floor(3m)
floor(3m)
flush(3f)
fclose(3s)
cacheflush(2)
flush(3f)
exit(3)
fopen(3s)

Page xix

Permuted Index

_process

return date or time in numerical
in a filesystem independent
scanf, fscanf, sscanf :

printf, fprintf, sprintf :

fputc : write a character to a
registers

registers

floating-point values
floating-point values

analysis

analysis

output conversion printf,

- signal on floating-point
fortran logical unit putc,

word on a stream putc, putchar,
puts,

input,output

memory allocator malloc,
fopen,

mantissa and exponent
conversion scanf,

on a logical unit

a stream

‘stat, Istat,

stat,

in-core state with that on disk
logical unit fseek,

stream fseek,

locations in program eprol,
locations in program eprol,
time,

specified length truncate,
shutdown : shut down part of a
entries of a common object file
lgamma : log gamma

acosh, atanh : inverse hyperbolic
erf, erfc : error

intro : introduction to C library
: introduction to FORTRAN library
j0, j1, jn, y0, y1, yn : bessel

to mathematical library

acos, atan, atan2 : trigonometric
sinh, cosh, tanh : hyperbolic

a high-level interface to basic
motion curses : screen
input,output fread,

Igamma : log
print_unaligned_summary :
print_unaligned_summary :
ecvt, fevt,

uname : get

floating-point fp_sigintr :
abort :

rand, srand : random number
irand, srand : random number
setstate : better random number
messages perror,

line arguments

from a logical unit

character or word from stream
character or word from getc,
working directory

entries in a filesystem
description by its name

get,set name of current domain
table size

getgid,

variables

manipulate environmental
getuid,

getfstype, setfsent, endfsent :
endfsent : getfsent, getfsspec,
setfsent, endfsent : getfsent,
getfsent, getfsspec, getfsfile,

Page xx

RISC/os Programmer’s Reference

fork : create acopyofthis o ¢ v v v v o fork(3f)

‘fork : create a mew process 0« .. fork(2)

form idate, itime : e e e e e e e . « idate(3f) '
format : gets directory entries getdirentries(2) (
formatted input conversion . .« . . 4 0 4 4 00 0 .. scanf(3s)
formatted output conversion 4 0 40 0 w4 printf(3s)
fortran logical unit putc, . . « . v 4 0 v o 0004 putc(3£)

fpc : floating-point control e e e e fpe(3)

fpc : floating-point control e e e e e e fpc(3)

fp_class : classes of IEEE fp_class(3)
fp_class : classes of IEEE e e e e e e e e fp_class(3)

fpi : floating-point interrupt .+ .+ [pi(3)

fpi : floating-point interrupt .« 0 . . 0. . pi(3)

fprintf, sprintf : formatted o .. 000 * printf(3s)
fp_sigintr : generate a SIGFPE . . v o« fp_sigintr(2)
fputc : write a charactertoa « v v v 4 4 0 4 0 . . putc(3f)

fputc, putw : put character or . « + « « ¢ v o 4 4. putc(3s)

fputs : put astringon astream .+ ¢« + o 0 04 0 .o puts(3s)

fread, fwrite : buffered binary . “ 0 fread(3s)

free, realloc, calloc, alloca : e e ee e e e e e malloc(3)
freopen, fdopen : open astream 4 fopen(3s)
frexp, ldexp, modf : split into e e e e e e e frexp(3)
fscanf, sscanf : formatted input scanf(3s)
fseek, ftell : reposition afile v ee e fseek(3f)
fseek, ftell, rewind : reposition 0 0 0 . 4 fseek(3s)

fstat : get file status s e e w e e s . stat(2)

fstat : getfilestatus . o o v 0 4 v e e e e e b e . stat(3f)

fsync : synchronize afile’s . . . ¢ . . o « fsync(2)

ftell : reposition a fileona fseek(3f)

ftell, rewind : reposition a s e e e e s . . fseek(3s)
_ftext, _fdata, _fbss : first P e e e e e end(3)

_ftext, fdata, foss:first v o o+« end(3)

ftime : get date and time v e e e e e e e s o time(3c)
ftruncate : truncate afiletoa, « « o« o . . truncate(2)
full-duplex connection « «« + + s+ « o 4 s o o « «» » shutdown(2)
function manipulate line number ldlread(3x)
function e v e e e e e e e e s e e s . lgamma(3m)
functions asinh, et e e e e e e asinh(3m) (
functions B T T erf(3m) -
functions « « ¢ s ¢ 0 e s 0 e 00w . . . intro(3)
functions INtro o ¢ v o v 0 e e e e e 0 .00 . . intro(3f)
functions e e v e e e oo JO(Bm)
functions math : introduction e e math(3m)
functions sin, cos, tan, asin, . . . PR sin(3m)
functions 0. e nm e s e e e s sinh(3m)
functions needed that provide .« v & @ ¢ v v v o .. stfe(3)
functions with “optimal” cursor curses(3x)
fwrite : buffered binary . + « ¢ . 0 o 0 0 000 ... fread(3s)
gamma function « « + ¢ 4 e 4 4 ee 0 e e e 0 e e lgamma(3m)
gather statistics on unaligned unaligned(3)
gather statistics on unaligned + + « « » « unaligned(3)
govt @ output conversion .+« .« o . . e e e e e .. ecvt(3)

general system information « « e+ o« . uname(2)
generate a SIGFPE signalon . + ¢« « o « « & « « « . fp_sigintr(2)
generate afault 000 00 .« . abort(3)
generator .« « + s ¢ o o s s s s s o s o o oo o« rand(3c)
generator rand, e e s s e s e s . . rand(3f)
generator; srandom, initstate, . . . ¢ . . . random(3)
gerror, ierrno : get system error . .« . . perror(3f)
getarg, iargc : return command 0 0 0 . .o getarg(3f)

getc, fgetc : get a character “ e e oo e e e gete(3f)

getc, getchar, fgetc, getw : get v oo e e e w getc(3s)
getchar, fgetc, getw :get e e e oe e gete(3s)
getcwd : get pathname of current e e e e e e e« getcwd(3f)
getdirentries : gets directory « « o« o« o getdirentries(2)
getdiskbyname : getdisk e o o oo getdisk(3)
getdomainname, setdomainname : . « o + .+ . o . getdomainname(2)
getdtablesize : get descriptor v a b s e e e e getdtablesize(2)
getegid : get group identity et e u e getgid(2)
getenv : get value of environment C e e e e e getenv(3f)
getenv, setenv, unsetenv : e e s e r e s e e getenv(3)
geteuid : get user identity e e e e getuid(2) (
getfsent, getfsspec, getfsfile, e s e e e e oo« getfsent(3)
getfsfile, getfstype, setfsent, + « « o + o« o o + + « o « getfsent(3)
getfsspec, getfsfile, getfstype, « o o ¢ o ¢ ¢ ¢ v o o & getfsent(3)
getfstype, setfsent, endfsent: o ¢ o 0 0 . . . getfsent(3)

February 1989

Permuted Index

MIPS Computer Systems, Inc.

Permuted Index

the caller getuid,

identity

setgrent, endgrent : get group
endgrent : get group getgrent,
get group getgrent, getgrgid,

sethostent, gethostbyname,
gethostent, sethostent,
gethostbyname, gethostbyaddr,
unique identifier of current
get,set name of current host
value of interval timer

E getlogin : get login name

endmntent, hasmntopt : get file
setnetent, endnetent getnetent,
getnetent, getnetbyaddr,
getnetbyname, setnetent,
endnetgrent, innetgr : get

argv

size

connected peer

identification

identification getpid,

get,set program scheduling
getprotoent, getprotobynumber,
setprotoent, getprotoent,
getprotobyname, setprotoent,

setpwent, endpwent, setpwfile :
setpwfile : getpwent, getpwuid,
endpwent, setpwfile : getpwent,
maximum system resource
get RPC entry getrpcent,
getrpcent, getrpcbyname,
getrpcbynumber : get RPC entry

resource utilization

filesystem getdirentries :
stream

getservent, getservbyport,
setservent, getservent,
getservbyname, setservent,
gettimeofday, settimeofday :
getdomainname, setdomainname :
gethostname, sethostname :
getpriority, setpriority :
current gethostid, sethostid :
getitimer, setitimer :

set options on sockets

get,set date and time
endttyent : get ttys file entry
get ttys file entry getttyent,
identity

group ID of the caller
endusershell : get legal user
stream getc, getchar, fgetc,
directory pathname

: retrieve procedure descriptor
: retrieve an auxiliary entry,
time, ctime, Itime,

: convert ctime, localtime,
setjmp, longjmp : non-local
space, closepl :

: subroutines for the HP 2648
getpgrp : get process

killpg : send signal to a process
setpgrp : set process

setregid : set real and effective
setegid, setrgid : set user and
getuid, getgid : get user or
getgroups : get

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

getgid : get user or group ID of
getgid, getegid : get group .
getgrent, getgrgid, getgrnam,
getgrgid, getgrnam, setgrent,
getgrnam, setgrent, endgrent :
getgroups : get group access list . .
gethostbyaddr, gethostent,

gethostent, sethostent, .
gethostid, sethostid : get,set
gethostname, sethostname : .

getlog : get user’s login name

getitimer, setitimer : get,set . o o . . .

getmntent, setmntent, addmntent, .

getnetbyaddr, getnetbyname, . . .
getnetbyname, setnetent,

getnetent, getnetbyaddr, . .
getnetgrent, setnetgrent,
getopt : get option letter from
getpagesize : get system page
getpass : read a password
getpeername : get name of ..
getpgrp : get process group .
getpid : get process id
getpid, getppid : get process
getppid : get process
getpriority, setpriority : . .. o .
getprotobyname, setprotoent, . . .
getprotobynumber, getprotobyname,
getprotoent, getprotobynumber,
getpw : get name from uid
getpwent, getpwuid, getpwnam,

e e o o s ® = * o
.

getpwnam, setpwent, endpwent, . . .
getpwuid, getpwnam, setpwent, . . .
getrlimit, setrlimit : control
getrpcbyname, getrpcbynumber: . . .

getrpcbynumber : get RPC entry
getrpcent, getrpcbyname,
getrpeport : get RPC port number
getrusage : get information about
gets directory entries in a
gets, fgets : get a string froma .

getservbyname, setservent, . . .

getservbyport, getservbyname, ..
getservent, getservbyport, . .

get,set dateand time . .+ o 0 o . 4 0 .

get,set name of current domain
get,set name of current host .
get,set program scheduling
get,set unique identifier of .
get,set value of interval timer .
getsockname : get socket name
getsockopt, setsockopt : get and
gettimeofday, settimeofday : .
getttyent, getttynam, setttyent,
getttynam, setttyent, endttyent :
getuid, geteuid : get user
getuid, getgid : get user or
getusershell, setusershell,
getw : get character or word from
getwd : get current working
given a procedure descriptor . . ,
given an index ldgetaux . . .
gmtime : return system time
gmtime, asctime, timezone, tzset .
goto
graphics interface
graphics terminal 1ib2648
group
group
group
groupID . ..

e o s o e e

e e o o o o e s ¥ s e o s s

group ID setruid, setgid,

group ID of the caller
group access list

February 1989

L S I)

gethostbyname, gethostbyaddr,

.
.
.

« e e 0 s .
.
.

- Permuted Index

e« % o o o o e
e e s
.
.

s e o o e =
e o o

getuid (3f)
getgid(2)
getgrent(3)
getgrent(3)
getgrent(3)
getgroups(2)
gethostbyname(3n)
gethostbyname(3n)
gethostbyname(3n)
gethostid(2)
gethostname(2)
getitimer(2)
getlog(3f)
getlogin(3)
getmntent(3)
getnetent(3n)
getnetent(3n)
getnetent(3n)
getnetgrent(3n)
getopt(3)
getpagesize(2)
getpass(3)
getpeername(2)
getpgrp(2)
getpid(3£)
getpid(2)
getpid(2)
getpriority(2)
getprotoent(3n)
getprotoent(3n)
getprotoent(3n)
getpw(3c)
getpwent(3)
getpwent(3)
getpwent(3)
getrlimit(2)
getrpcent(3n)
getrpcent(3n)
getrpcent(3n)
getrpcport(3r)
getrusage(2)
getdirentries(2)
gets(3s)
getservent(3n)
getservent(3n)
getservent(3n)
gettimeofday(2)
getdomainname(2)
gethostname(2)
getpriority(2)
gethostid(2)
getitimer(2)
getsockname(2)
getsockopt(2)
gettimeofday(2)
getttyent(3)
getttyent(3)
getuid(2)
getuid(3£)
getusershell(3)
getc(3s)
getwd(3)
Idgetpd(3x)
ldgetaux(3x)
time(3f)
ctime(3)
setjmp(3)
plot(3x)
1ib2648(3x)
getpgrp(2)
killpg(2)
setpgrp(2)
setregid(2)
setuid(3)
getuid(3f)
getgroups(2)

Page xxi

Permuted .anex

initgroups : initialize

setgroups : set

innetgr : get network

setgrent, endgrent : get

getgid, getegid : get

chown : change owner and
(defunct) stty,

reboot : reboot system or
re_exec : regular expression
print_unaligned_summary : gather
print_unaligned_summary : gather
terminal vhangup : virtually

link : make a

information hwconf : get or set
setmntent, addmntent, endmntent,
Idfhread : read the file

: seek to the optional file

: read an indexednamed section
file ldahread : read the archive
stfe : routines that provide a
unique identifier of current

: get,set name of current

ntohs : convert values between
convert values between host and
values between host and htonl,
configuration information

asinh, acosh, atanh : inverse
sinh, cosh, tanh :

complex absolute value
arguments getarg,

getpid : get process

time in numerical form

getpid, getppid : get process
sethostid : get,set unique

getgid, getegid : get group
getuid, geteuid : get user
messages Pperror, gerror,
machines rquota :

fsync : synchronize a file’s
tgetstr, tgoto, tputs : terminal
directory entries in a filesystem
an auxiliary entry, given an

given a procedure descriptor
strncmp, strepy, strnepy, strlen,
common object ldtbread : read an
ldshread, ldnshread : read an
Idsseek, ldnsseek : seek to an
syscall :

inet_ntoa, inet_makeaddr,
inet_ntoa, inet_makeaddr,
inet_network, inet_ntoa,
inet_makeaddr, inet_lnaof,
inet_makeaddr, inet_addr,
inet_addr, inet_network,

get or set hardware configuration
‘uname : get general system
utilization getrusage : get
utilization vtimes : get

rnusers, rusers : return

access list

initgroups :

popen, pclose :

connect :

random number random, srandom,
setnetgrent, endnetgrent,

read, readv : read

scanf, fscanf, sscanf : formatted
ungetc : push character back into
fread, fwrite : buffered binary
stdio : standard buffered
clearerr, fileno : stream status
queue insque, remque :

element from a queue
disassembler : disassemble a MIPS
cacheflush : flush contents of
abs :

Page xxii

February 1989

RISC/os Programmer’s Reference

Permuted Index

groupaccess list v o ¢ o 0 0 h w0 0 e 0. e o 0
group access list e e e e e s e s e s
group entry endnetgrent, . . . ¢+ o . o e he e
group file entry getgrnam, ... + « ¢ 4 ¢ o s 4 o @ .
group identity e e e e e e e
groupofafile « o o v ¢ oo v e h e e e s e e
gtty : set and get terminal state 4 o 4 . 0w
halt processor .« . « . . . e e e e e e e e e
handler re_comp,+ . . . B
handle_unaligned_traps, .+ « « » + « o + « & ‘o

handle_unaligned_traps,
“hangup” the current control

hard link to a file f e e s s a et a s s s e e e

hardware configuration . « « « ¢ 4 ¢ 0 s 0 0 s e e

hasmntopt : get file system 4-e 4 .0 . .
header of a common objectfile . « . . ¢ ¢ o .

header of a common objectfile . + « o ¢ o ¢ o o o .
header of a common objectfile . . « . . o s o o .

header of a member of an archive .
high-level interface to basic
host sethostid : get,set . o « o « o « &
host gethostname, sethostname .
host and network byte order
htonl, htons, ntohl, ntohs : . . « . « . & ¢ & o &
htons, ntohl, ntohs : convert « . « . .
hwconf : get or set hardware
hyperbolic functions

hyperbolic functions « +'v v ¢ v ¢ v 0 0 0 s o .
hypot, cabs : Euclidean distance, '
iargc : return command line 0 .0 0. .
T e

s e 9o ¥ o 8 o o o e v o @ .0

idate, itime : return dateor o e e e

identification + « ¢ ¢ v 0 0 v b v 0 o w0 o6 . .
identifier of current hosto
identity » o+ o s v o 0 v 0 e 0 e s . s e s e
dentity o o v v b 0 0 v e e e e e e e e .
ierrno : get system €IrOr « « o o o . 4 s 0 e e
implement quotas on remote .« « + 4 .0 0 o s s
in-core state with that on disk . . « . « o . . &
independent tgetnum, tgetflag, - .
independent format :gets 0. . . s .
index ldgetaux : retrieve
index procedure descriptor « . . » + 4 ¢ 0 o o s

e s e & = &

index, strchr, rindex, strrchr, -« ¢ ¢ v v & o v v 0 0

indexed symbol table entry of a

indexednamed section of a common
indirect system call . & ¢ o ¢ o 0 0 ..
inet_addr, inet_network, . .+ + 4 . 4 . . PR
inet_lnaof, inet_netof : Internet
inet_makeaddr, inet_lnaof, . « « + « o &
inet_netof : Internet inet ntoa, .« o « « o o o &
inet_network, inet_ntoa, . v 4« o s o o
inet_ntoa, inet_makeaddr,
information hweconf: . . « 4 v ¢« ¢ ¢ ¢ o o o
information . . ; . . s s e s e s e e m e
information about resoOUrce .+ . 40 4 0 .0 o o s
information about resource « 0 oeon
information about users on remote
initgroups : initialize group .« + . 4 . . .
initialize group access list « o « « o . o . .
initiate I,0 to,from a process .« ¢ « & & o &
initiate a connection on a socket
initstate, setstate : better « o« ¢« ¢ o o o @ 0 o oo
innetgr : get network group entry . . . 0 o . s .
IPUEt o v o o v o o o o o s 0 o o s 0 s o o o s
input conversion et s M v s e
input stream « « ¢ o ¢ o 0 e 0 s 0 b0 e e “ e
input,output B e

indexednamed section headerofa « ¢ o &

input,output package « o ¢ ¢ o 4 o 50040 s e e

inquiries ferror, feof, .+ ¢ 4 ¢« s o b 0 o0 . 0 e
insert,remove element froma . 4 « « . 0 o ¢ ..
insque, remque : insert,remove . s » o s 0 o o o
instruction and print the results « « « o + & ¢« o .
instruction and,or datacache . « « « 4 ¢« ¢ o 4
integer absolute value . » . ¢« 0 ¢ 0 0 o o o .

initgroups(3)
setgroups(2)
getnetgrent(3n)
getgrent(3)
getgid(2)
chown(2)
stty(3¢)
reboot(2)
regex(3)
unaligned(3)
unaligned(3)
vhangup(2)
link(2)
hwconf(2)
getmntent(3)
1dfhread(3x)
ldohseek(3x)
ldshread(3x)
ldahread(3x)
stfe(3)
gethostid(2)
gethostname(2)
byteorder(3n)
byteorder(3n)
byteorder(3n)
hwconf(2) -
asinh(3m)
sinh(3m)
hypot(3m)
getarg(3f)
getpid(3f)
idate(3f)
getpid(2)
gethostid(2)
getgid(2)
getuid(2)
perror(3f)
rquota(3r)
fsync(2)
termcap(3x)
getdirentries(2)
ldgetaux(3x)
1dgetpd(3x)
string(3)
ldtbread(3x)
ldshread(3x)
Idsseek(3x)
syscall(2)
inet(3n)
inet(3n)
inet(3n)
inet(3n)
inet(3n)
inet(3n)
hwconf(2)
uname(2)
getrusage(2)
vtimes(3c)
rnusers(3r)
initgroups(3)
initgroups(3)
popen(3)
connect(2)
random(3)
getnetgrent(3n)
read(2)
scanf(3s)
ungetc(3s)
fread(3s)
stdio(3s)
ferror(3s)
insque(3)
insque(3)
disassembler(3x)
cacheflush(2)
abs(3)

MIPS Computer Systems, Inc.

Permuted Index

: multiple precision

space, closepl : graphics

a compilation unit symbol table
ypprot_err : yellow pages client
needed that provide a high-level
that provide a binary read write
: routines that provide scalar
swapon : add a swap device for
channel pipe : create an
blocked signals and wait for

fpi : floating-point

fpi : floating-point

siginterrupt : allow signals to

a SIGFPE signal on floating-point
sleep : suspend execution for
sleep : suspend execution for an
usleep : suspend execution for
setitimer : get,set value of
functions

library functions

calls and error numbers
functions intro :

functions intro :

library functions math :

error numbers intro :

asinh, acosh, atanh :

returns :1 if it was not

generator rand,

islower, isdigit, isxdigit,
isdigit, isxdigit, isalnum,
isprint, isgraph, iscntrl,
port ttynam,

terminal ttyname,
ispunct, isprint, isgraph,
isalpha, isupper, islower,
isspace, ispunct, isprint,
isalnum, isalpha, isupper,
isalnum, isspace, ispunct,
isxdigit, isalnum, isspace,
isdigit, isxdigit, isalnum,
system :

isxdigit, isalnum, isalpha,
isupper, islower, isdigit,
numerical form idate,
functions

functions jO,

0,1,

filesystems mount :

kopt : get or set

group

file ldclose,

header of a member of an archive
file for reading ldopen,

common object file

and exponent frexp,

of a common object file

entry, given an index

for object file

descriptor given a procedure

line number entries of ldlread,
entries of a ldlread, 1dlinit,
manipulate line number entries
number entries of a section of a
entries of a section of ldlseek,
entries of a section of ldrseek,
section header of a ldshread,
indexednamed section of ldsseek,
file header of a common object
object file for reading

relocation entries of a section
indexednamed section header of a
indexednamed section of a common

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

integer arithmetic + « + « v 4 4 o & e e e
interface . . 4 v e v e h e e e e e e e
interface routines that provide e e

interface yperr_string, « « « 4 4 v 4 4 4 x40 0w
interface to basic functions
interface to the MIPS symbol
interfaces to auxiliaries staux .
interleaved paging,swapping
interprocess communication
interrupt : atomically release
interrupt analysis
interrupt analysis
interrupt system calls
interrupts fp_sigintr : generate
interval
interval
nterval + . ¢ v 0 v e e e e e
interval timer getitimer,
intro : introduction to C library
intro : introduction to FORTRAN
intro : introduction to system
introduction to C library
introduction to FORTRAN library
introduction to mathematical .+
introduction to system calls and .
inverse hyperbolic functions . . .

invoked by the super-user(« « ¢« o« « v 4 4 4 4 .
ioctl : control device .

irand, srand : random number
isalnum, isspace, ispunct,
isalpha, isupper, islower,
isascii, toupper, tolower,
isatty : find name of a terminal
isatty, ttyslot : find name of a .
iscntrl, isascii, toupper, .
isdigit, isxdigit, isalnum, . .
isgraph, iscntrl, isascii, . . .
islower, isdigit, isxdigit, . . .

« s s o =
. . .
.
.
.

e e e s s e s 9 e 8 i s e

.
L L R T S Y]
.
s s s s s s s 0
.
.
.

s e s e s

s e s e & =2 s @
.
* e e« o @
e s s = = =

isprint, isgraph, iscntrl, . .
ispunct, isprint, isgraph,
isspace, ispunct, isprint, .
issue a shell command
isupper, islower, isdigit, .
isxdigit, isalnum, isspace,
itime : return date or time in
j0, j1, jn, y0, y1, yn : bessel
jl,jn,y0,yl,yn :bessel 000 ..
jn, y0, y1, yn : bessel functions
keep track of remotely mounted
kernel aptions ’
kill : send a signal to a process
kill : send signal to a process
killpg : send signal to a process . . .
kopt : get or set kernel options . . .
ldaclose : close a common object . .
ldahread : read the archive
Idaopen : open a common object .
ldclose, ldaclose : close a
Idexp, modf : split into mantissa
ldfhread : read the file header .
Idgetaux : retrieve an auxiliary
ldgetname : retrieve symbol name
ldgetpd : retrieve procedure
ldlinit, 1dlitem : manipulate
ldlitem : manipulate line number
Idiread, ldlinit, ldlitem : .
ldlseek, ldnlseek : seek to line s e e e
ldnlseek : seek to line number ‘e
ldnrseek : seek to relocation . .
ldnshread : read an indexednamed T
ldnsseek : seektoan . . .
Idohseek : seek to the optional
ldopen, ldaopen : open a common
ldrseek, ldnrseek : seek to
ldshread, ldnshread : read an
ldsseek, ldnsseek : seek to an

LY

-
.
e & o o s o

e« s o e 8 e o @

e % e s s e
.
.

e e o o s s s o »

e e & 85 s s 8 e e e s 8 o

February 1989

Permuted Index

mp(3x)
plot(3x)
stcu(3)
ypelnt(3n)
stfe(3)
stio(3)
staux(3)
swapon(2)
pipe(2)
sigpause(2)
£pi(3)

1pi(3)
siginterrupt(3)
fp_sigintr(2)
sleep(3)
sleep(3£)
usleep(3)
getitimer(2)
intro(3)
intro(3f)
intro(2)
intro(3)
intro(3f)
math(3m)
intro(2)
asinh(3m)
initgroups(3)
ioctl(2)
rand(3f)
ctype(3)
ctype(3)
ctype(3)
ttynam(3f)

" ttyname(3)

ctype(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)
system(3)
ctype(3)
ctype(3)
idate(3f)
jO(3m)
jO(3m)
j0(3m)
mount(3r)
kopt(2)
kill(3£)
kill(2)
killpg(2)
kopt(2)
ldclose(3x)
Idahread(3x)
ldopen(3x)
Idclose(3x)
frexp(3)
ldfhread(3x)
ldgetaux(3x)
ldgetname(3x)
ldgetpd (3x)
1dIread(3x)
ldlread(3x)
ldiread(3x)
ldIseek(3x)
Idlseek(3x)
ldrseek(3x)
ldshread(3x)
ldsseek(3x)
ldohseek(3x)
ldopen(3x)
ldrseek(3x)
ldshread(3x)
1dsseek(3x)

Page xxiii

Permuted Index

table entry of a common object
table of a common object file
setusershell, endusershell : get
string

! truncate a file to a specified
len : return

getopt : get option

2648 graphics terminal

VADS libraries : overview of VADS
libraries VADS

standard : VADS standard

intro : introduction to C

intro : introduction to FORTRAN
; introduction to mathematical
examples :

verdixlib : MIPS-supported Ada
data representation xdr :
procedure calls rpo ;

getarg, iarge : return command
1dlinit, ldlitem : manipulate

of a ldlseek, ldnlseek : seek to

: read value of a symbolic

file

a.out : assembler and

link : make a hard

symlink : make symbolic

link : make a

getgroups : get group access

: initialize group access

nlist : get entries from name
setgroups : set group access
varargs : variable argument
on a socket

socket listen :

object

timezone, tzset : ctime,

end, etext, edata : last

end, etext, edata : last

ftext, _fdata, _fbss : first
_ftext, _fdata, _fbss : first

: apply or remove an advisory
on files

lockf : advisory record
setlogmask : control system
lgamma :

exponential, exp, expml,
logarithm, exp, expmi, log,
exp, expm1, log, log10,
log10, loglp, pow : exponential,
copysign, drem, finite,

flush : flush output to a

ftell + reposition a file on a
fgete : get a character from a
: write a character to a fortran
getlog : get user’s

getlogin : get

to terminatesystem(3f) can not be
setjmp,

stat,

time time, ctime,

information about users on remote
: implement quotas on remote
rwall : write to specified remote
; character classification

alloca ;: memory allocator

quota :

quotactl :

getenv, setenv, unsetenv :

a ldlread, ldlinit, ldlitem :
frexp, ldexp, modf : split into
mmap, munmap :

ether_line : Ethernet address
uncacheable cachectl :

Page xxiv

RISC/os Programmer’s Reference

ldtbread : read an indexed symbol
seek to the symbol

ldtbseek :
legal user shells getusershell, -, . .
len : return length of Fortran ., . .

length truncate, ftruncate . .,

length of Fortran string . .
letter from argv . . .

lgamma : log gamma function

° a4 s & s o ®

Permuted Index

»
.
e s s o = s

1ib2648 : subroutines for the HP o e e
Lbraries o+ o o o o o o v o o o o & » . . .
libraries : overview ot VADS B I '
library s s e sy s s e e e e e e v e a e
library functions . . . , . s ar e ae s e a s
library functions « « « + & o0 0 o o 0 0w e .
library functions math + « & 4 ¢+ o s o o s o o o s o
library of sample programs . + v « o 4 0 4 b6 0 s
library packages .« « ¢ ¢ o 0 oy 0 s s e e e e e s
library routines for external « ¢ 4+ . .
library routines for remote . < . «

line arguments « o o ¢ 4« » o o .
line number entries of a common

line number entries of asection

link readlink .« 4
link : make a hard link to a ﬁle
link : make a link to an existing . .

link editor output .+ . .4 oW . .

linktoafile « o v v o o0 o s oo
linktoafile « o o ¢ o o 0 o v o »
link to an existing file e e e e
list . ., .

*» e s o & & s 8 5 o &

list initEroups « « o v v o 0w 0 W,

St o o o v o 0 o o o o
T
BSt o v o 0 o o o 6 8 o s u o «
listen : listen for connections . .
listen for connectionsona . . .
loc : return the address of an . ,
localtime, gmtime, asctime, . , .
locations in program
locations in program . . .
locations in program eprol,
locations in program eprol,

« s e » e »

lock on an open file flock

lockf : advisory record locking
locking on files .+ o o 4 4 4 .
log syslog, openlog, closelog,
log gamma function

log, log10, loglp, pow : e e e e s
log10, loglp, pow : exponentxal s e u

loglp, pow : exponential,
logarithm, power expml, log, ..
logb, scalb : copysign,

logical unit e A s s s e e e e

logical unit fseek, . .
logical unit getc, . .
logical unit putc, fputc

login name “ s n s se s e s s

login name
longer than NCARGS:50 characters,
longjmp : non-local goto

e o 2 e @

Iseek : move read,write pointer . , . .

Istat, fstat : get file status
Itime, gmtime : return system

machines rusers :return

machines rquota . . .
machines

@ e e 9 s o @ 8 o a0 & @

macros toupper, tolower, toascii . .

malloc, free; realloc, calloc, e
manipulate disk quotas .+ . . & .
manipulate disk quotas
manipulate environmental . . ,
manipulate line number entries of

mantissa and exponent
map or unmap pages of memory
mapping operations

L R)

mark pages cacheableor

February 1989

e » o & a 8 8 ®

o 8 = e @

B
.
s s s e s s

e » ® e e e ° ° 2 & »

-
.2 » ® e @
.

e o ® @ » ® s s o ° s ° e 3 »

.
.

s e e o a
-
.

.
.
e ° » s e @

ldtbread(3x)
ldtbseek(3x)
getusershell(3)
len(3£)
truncate(2)
len(3f)
getopt(3)
lgamma(3m)
1ib2648(3x)
libraries(3)
libraries(3)
standard(3)
intro(3)
intro(3f)
math(3m)
examples(3)
verdixlib(3)
xdr(3m)
rpe(3n)
getarg(3f)
ldIread(3x)
ldlseek(3x)
readlink(2)
link(2)
link(3f)
a.out(4)
link(2)
symlink(2)
link (3£)
getgroups(2)
initgroups(3)
nlist(3x)
setgroups(2)
varargs(3)
listen(2)
listen(2)
loc(3f)
ctime(3)
end(3)

end(3)

end(3)

end(3)
flock(2)
lockf(3)
lock£(3)
syslog(3)
lgamma(3m) -
exp(3m)
exp§3m)
exp(3m)
exp(3m)
jeee(3m)
flush(3f)
fseek(3f)
getc(3f)
putc(3f)
getlog(3£)
getlogin(3)
wait(3f)
setjmp(3)
Iseek(2)
stat(2)
time(3£)
rnusers(3r)
rquota(3r)
rwall(3r)
ctype(3)
malloc(3)
quota(2)
quotactl(2)
getenv(3)
ldlread(3x)
frexp(3)
mmap(2)
ethers(3n)
cachectl(2)

MIPS Computer Systems, Inc,

(,

Permuted Index

sigmask : set current signal

umask : set file creation mode
mathematical library functions

math : introduction to

getrlimit, setrlimit : control
consumption vlimit : control

: read the archive header of a

memset : memory memory)

memory memory) memccpy,
memory) memccpy, memchr,
memory) memccpy, memchr, memcmp,
munmap : map or unmap pages of
memcpy, memset : memory

free, realloc, calloc, alloca :

valloc : aligned

! spawn new process in a virtual
memchr, memcmp, memcpy, memset ;
memccpy, memchr, memcmp, memcpy,
recvfrom, recvmsg : receive a

send, sendto, sendmsg : send a
sys_nerr : system error

gerror, ierrno : get system error
sys_siglist : system signal

the floating-point unit

of memory
set file creation
chmod : change
exponent frexp, ldexp,
profile monitor, monstartup,

umask :

. prepare execution profile-

execution profile monitor,
functions with “optimal® cursor
mounted filesystems

mount :

mount : keep track of remotely
Iseek :

arithmetic :

select : synchronous 1,0

memory mmap,
: get disk description by its
getlog : get user’s login
getlogin : get login
getsockname : get socket
mktemp : make a unique file
ldgetname : retrieve symbol
getpw : get

nlist : get entries from
rename : change the
ttyname, isatty, ttyslot find
ttynam, isatty : find
getpeername : get
setdomainname : get,set
sethostname : get,set

bind : bind a

interface to basic functions
sethostent, endhostent : get
setnetent, endnetent : get

: convert values between host and
endnetgrent, innetgr : get
fetch, store, delete, firstkey,
daemons

list

setjmp, longjmp :

address conversion routines
conversion routines ns_addr,
between host and htonl, htons,
host and htonl, htons, ntohl,
getrpcport : get RPC port

file ldlitem : manipulate line
ldlseek, ldnlseek : seek to line
rand, srand : random

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

mask sigsetmask,
mask o v v v i e e e e e e s e e e e e e e e e
math : introductionto v« 4 4 v e w4 e e .
mathematical library functions
maximum system resource

maximum system resource

member of an archivefile . « « v v v 0 v 4 000
memccpy, memchr, memcmp, MemcPy, « « « o « o »
memchr, memcmp, memcpy, memset : v e e e e

memcmp, memcpy, memset : memory .
memcpy, memset : memory
memory mmap, . . e e
memory) memccpy, memchr, memcmp, .
memory allocator malloc, .«
memory allocator .« . . 0 0 . v v e e e e e e e
memory efficient way vfork0 00

memory operations memccpy, o+ « « ¢ s 4 s 0 s . .
memset : MemOry Operations « + + o« « o + 4 4 0 0 s
message from a socket recv,00 0.0 ..
message from a socket e e e

messages perror,
messages psignal,

messages perror, sys_errlist, . . 4 4 0 0 4 0 0 0 0

« s e » L)

mipsfpu : enabling and dlssablmg ‘e
mkdir : make a directory file
mknod : make aspecialfile

mktemp : make a unique file name
mmap, munmap : map Or UNMap Pages .« « « « « « »

mode mask C e e e e e et s e e e e e e e
modeofafile ¢ ... s s e e e
modf : split into mantissaand 0.
moncontrol : prepare execution .« .« « + 4 . . 0 0 ..
monitor, monstartup, moncontrol :

monstartup, moncontrol : prepare
MOtiON CUISES : SCTEEN « » o o o o o s o o o s & o &
mount : keep track of remotely
mount : mount file system
mount file system
mounted filesystems . . .
move read,write pointer ..
multiple precision integer .+ .+ 4 s 4 0 e 4 0004 ..
multiplexing '
munmap : map or unmap pages of ..
getdiskbyname00 0.0 ..

name
DAME 4+ o « o o o o o o o o &« e e e e e e e e
name C e e s e e e e e e c e e e e .
NAME & o o o o o o o o s s o s o o o »
DAME + s o o o o s o o o o s s o s o s o o o o« .
name for object file.
name from uid e e
name list + v 4 4 0 0 4 0. .. c e e e e . e e s
nameof afile " e s e s . c e e e
name of a terminal e s s 5 s 0 s s e as s

nameofatermmalport
name of connected peer .+ « ¢ o ¢ . 4 0 0 4. .

e e s e s &

name of current domain = .+ .+ .+ e e e
name of current host + « « ¢« & ¢ ¢« 4 & & .. .
name to a socket

needed that provide a high-level
network gethostent, . « « ¢ ¢ ¢ v v v v 0400 .
network getnetbyname,
network byte order ntohl, ntohs s s s e e e e e
network group entry setnetgrent, . . .
nextkey : data base subroutines
nfssvc, async_daemon : NFS
nice : set program priority
nlist : get entries from name . . .
non-local goto
ns_addr, ns_ntoa : Xerox NS(tm) .
ns_ntoa : Xerox NS(tm) address .
ntohl, ntohs : convert values
ntohs ; convert values between
number
number entries of a common object
number entries of a section of a
number generator

® e s e o o s 8 e e e

February 1989

Permuted Index

sigsetmask(2)
umask(2)
math(3m)
math(3m)
getrlimit(2)
vlimit(3c)
ldahread(3x)
memory(3)
memory(3)
memory(3)
memory(3)
mmap(2)
memory(3)
malloc(3)
valloc(3c)
viork(2)
memory(3)
memory(3)
recv(2)
send(2)
perror(3)
perror(3f)
psignal(3)
mipsfpu(2)
mkdir(2)
mknod(2)
mktemp(3)
mmap(2)
umask(2)
chmod(3f)
frexp(3)
monitor(3)
monitor(3)
monitor(3)
curses(3x)
mount(3r)
mount(2)
mount(2)
mount(3r)
Iseek(2)
mp(3x)
select(2)
mmap(2)
getdisk(3)
getlog(3f)
getlogin(3)
getsockname(2)
mktemp(3)
ldgetname(3x)
getpw(3c)
nlist(3x)
rename(2)
ttyname(3)
ttynam (3f)
getpeername(2)

getdomainname(2)

gethostname(2)
bind(2)
stfe(3)

gethostbyname(3n)

getnetent(3n)
byteorder(3n)
getnetgrent(3n)
dbm(3x)
nfssve(2)
nice(3c)
nlist(3x)
setjmp(3)
ns(3n)

ns(3n)
byteorder(3n)
byteorder(3n)
getrpcport(3r)
Idlread(3x)
ldiseek(3x)
rand(3c)

Page xxv

Permuted Index

rand, irand, srand : random
setstate : better random

atoi, atol : convert ASCII to

to system calls and error

itime : return date or time in

loc : return the address of an
ldaclose : close a common

read the file header of a common
: retrieve symbol name for
entries of a section of a common
optional file header of a common
entries of a section of a common
section header of a common
indexednamed section of a common
symbol table entry of a common
to the symbol table of a common
ldopen, ldaopen : open a common
line number entries of a common
writing, or create a new file
reading ldopen, ldaopen :
writing, or create a new open :
fopen, freopen, fdopen :

or remove an advisory lock on an
seekdir, rewinddir, closedir :
control system log syslog,
bzero, ffs : bit and byte string
rewinddir, closedir : directory

: Ethernet address mapping
memcmp, memcpy, memset : memory
strspn, strespn, strtok : string
curses : screen functions with
getopt : get

object ldohseek : seek to the
kopt : get or set kernel
setsockopt : get and set

between host and network byte
a.out : assembler and link editor
after flushing any pending

write, writev : write

ecvt, fcvt, gevt :

fprintf, sprintf : formatted

flush : flush

VADS libraries :

chown : change

: standard buffered input,output

: MIPS-supported Ada library
publiclib : public domain
getpagesize : get system

: update user password in yellow
cachectl : mark

yperr_string, ypprot_err : yellow
mmap, munmap : map or unmap
add a swap device for interleaved
socketpair : create a

shutdown : shut down

getpass : read a

endpwent, setpwfile : get
yppasswd : update user

: get current working directory
directory getcwd : get

process popen,
: get name of connected

‘a process after flushing any

: routines that provide access to
system error messages

system error messages
communication channel

Iseek : move read,write

to,from a process

isatty : find name of a terminal
getrpeport : get RPC

exp, expml, log, logl0, loglp,

pow : exponential, logarithm,

: multiple

monitor, monstartup, moncontrol :

Page xxvi

RISC/os Programmer’s Reference

number generator

number generator; initstate, -

numbers atof, v e e e s
numbers intro ; introduction .
numerical form idate, . o . .
object ..
object file
object file
object file
object file
object file
object file
object file
object file

seek to line number
: seek to the
: seek to relocation

iseektoan
object file < read an indexed .
object file ldtbseek : seek . .
object file for reading
object file function manipulate
open : open a file for reading or
open a common object file for
open a file for reading or
open a stream
open file flock :apply
opendir, readdir, telldir, . . .
openlog, closelog, setlogmask :
operations bcopy, bcmp, ..
operations telldir, seekdir, . .
operations
operations
operations
“optimal” cursor motion . . .
option letter from argv
optional file header of a common
options ie e
options on sockets getsockopt,
order ntohs : convert values
output T
output : terminate a process
output
output conversion . . .« . .
output conversion printf, . .
output to a logical unit

* o e e o o 5 ®

memccpy, memchr,

s o o

owner and group of a file
package stdio
packages verdixlib
packages written in Ada
page size

pages yppasswd
pages cacheable or uncacheable
pages client interface
pages of memory

paging,swapping swapon: o .« . .

pair -of connected sockets
part of a full-duplex connection

password . . ¢ ¢ s s @ s oo
password getpwnam, setpwent,

password in yellow pages
pathname getwd e e e
pathname of current working
pause : stop until signal
pclose : initiate I,0 to,from a
peer getpeername . . .+ . o

pending output exit : terminate

per file descriptor section of

perror, gerror, ierrno : get . .
perror, sys_errlist, sys_nerr : .
pipe : create an interprocess
pointer .
popen, pclose : initiate ,O .
port ttynam,
port number .
pow : exponential, logarithm,
power expml, log, logl0, loglp,
precision integer arithmetic
prepare execution profile . . .

.
e s s » e s »
s e o s » .

.

February 1989

Idfhread : . . o 0 0.0 .
ldgetname e v e e e

read an indexednamed

L L)

ether_line

strrchr, strpbrk, .

® s e o 0o s o

overview of VADS libraries « « « «

" s o 2 o o @

.
.

o s o
.
.

s s e 8 8 o s s »
-
« o e o o & ® =
e © o o o s ® & ° @
.

.
e s o e

.
s o ® 8 8 s s ® =
s o s s &

e« ® o s s s ® e @ o =
« © o o & s e ® ° & 3 s u e

.
e o e o o

e % ® e o © e s ° e o

e s o & ® ° = s ® & s

e« s ®» 8 ® © ®© ® s © s ® s e ° © e ® e e s ° e o
s .

e s © e * s ® s e o s @

s e o =
.

« s s s s o

e e o s o o

e o e o o @

» s o 8 s » & o

s e o s s 8 s o

e o = o & »

e s © ®» © ° s ° = e

® s e s o

e o ® o 8 8 3 e o &

s s e o s a &

Permuted Index

.....

s o & e s 8 s s e s &

rand(3f)
random(3)
atof(3)
intro(2)
idate(3f)
loc(3f)
ldclose(3x)
ldfhread(3x)
ldgetname(3x)
ldlseek (3x)
ldohseek(3x)
ldrseek(3x)
ldshread(3x)
ldsseek(3x)
ldtbread(3x)

" 1dtbseek(3x)

ldopen(3x)
Idlread(3x)
open(2)
ldopen(3x)
open(2)
fopen(3s)
flock(2)
directory(3)
syslog(3)
bstring(3)
directory(3)
ethers(3n)
memory(3)
string(3)
curses(3x)
getopt(3)
ldohseek(3x)
kopt(2)
getsockopt(2)
byteorder(3n)
a.out(4)
exit(3)
write(2)
ecvt(3)
printf(3s)
flush(3f)
libraries(3)
chown(2)
stdio(3s)
verdixlib(3)

publiclib(3)

getpagesize(2)
yppasswd(3r)
cachect](2)
ypclnt(3n)
mmap(2)
swapon(2)
socketpair(2)
shutdown(2)
getpass(3)
getpwent(3)
yppasswd(3r)
getwd(3)
getcwd(3f)
pause(3c)
popen(3)
getpeername(2)
exit(3)

stfd(3)
perror(3f)
perror(3)
pipe(2)
Iseek(2)
popen(3)
ttynam(3f)
getrpcport(3r)
exp(3m)
exp(3m)
mp(3x)
monitor(3)

MIPS Computer Systems, Inc.

(

Permuted Index

a MIPS instruction and
stprint : routines to
database

printcap :

formatted output conversion
handle_unaligned_traps,
handle_unaligned_traps,

: get,set program scheduling
nice : set program

: library routines for remote
procedure ldgetpd : retrieve
procedure descriptor given a
_procedure_string_table : runtime
_procedure_string_table : runtime
proeedure _procedure_table_size,
procedure _procedure_table_size,
_procedure_table_size,
_procedure_table_size,
_procedure_table,
_procedure_table,

_exit : terminate a

fork : create a new

fork : create a copy of this

kill : send signal to a

kill : send a signal to a

pclose : initiate I,0 to,from a
pending exit : terminate a
getpgrp : get
send signal to a
setpgrp : set
getpid : get
getpid, getppid : get

efficient way vfork : spawn new
times : get

wait, wait3 ; wait for

can not be wait : wait for a
ptrace :

reboot : reboot system or halt

rpc

killpg :

moncontrol : prepare execution
profil : execution time

abort : terminate Fortran

etext, edata : last locations in
etext, edata : last locations in

_fbss : first locations in
_fbss : first locations in
nice : set

setpriority : get,set
assert :

examples : library of sample
rex : remote execution
interface stio : routines that
table stcu : routines that
basic stfe : routines that
descriptor stfd : routines that
staux : routines that

signal messages

Ada publiclib :

packages written in Ada
stream ungetc :

puts, fputs :

putc, putchar, fputc, putw :
to a fortran logical unit
character or word on a stream
character or word on a putc,
stream

stream putc, putchar, fputc,

: insert,remove element from a
gsort :
gsort :

quota : manipulate disk

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

February 1989

Permuted Index

print the results : disassemble disassembler(3x)
print thé symboltable . + v v v v v v vie w0 0. stprint(3)
printcap : printer capability 0 0. . . « printcap(5)
printer capability database e e e e e printcap(5)
printf, fprintf, sprintf : 0L o0 printf(3s)
print_unaligned_summary : gather » e unaligned(3)
print_unaligned_summary : gather . + + « « . unaligned(3)
priority Setpriority « « « v 4 v e 0 0 00 o4 s . . getpriority(2)
priority o e e e e e e n e e e e . nice(3c)
procedurecalls e « « « .« 1pc(3n)
procedure descriptor given a B T T 1dgetpd (3x)
procedure descriptor index . . + « .+ ldgetpd(3x)
procedure table e v o e e e end(3)
procedure table 0 0 0w 00w end(3) "
_procedure_string_table : runtlme o o b e s e e . . end(3)
_procedure_string_table : runtime . . .« end(3)
_procedure_table, e e e « v« . end(3)
_procedure_table,0 .. « « + .. end(3)
_procedure_table_size, . . + « s 0 0 4 . . « « .« .. end(3)
_procedure_table_size,+ v v .0 0. ... end?)
PrOCESS o o s o o o o & . B s 1(¢))]
process ch e e v e s e e e e s, fork(2)
process e e e e e e e e e e e e e . fork(3f)
process .« e e Kill(2)
PIOCESS o o s s o v o s o o o B +11[(33)
Process popen, .« « « + + o o e e « « .« . popen(3)
-process after flushing any e e e e e e exit(3)
PIOCESS GIOUP o & o o s o & o s o o o o o « . getpgrp(2)
PrOCESS GIOUP o o o o o o o o o o s o o & e killpg(2)
PrOCESS GIOUP o + o o o o o o & o o o & e . setpgrp(2)
processid .+ . o v s e . getpid(3f)
process identification e . getpid(2)
process in avirtual MemMoOry .« « + v ¢ ¢ 4 4 o0 s . . s viork(2)
Process times « o o v s o o o o0 s o s o s o+« o times(3c)
process to terminate v e e e wait(2)
process to termmatesystem(Sf) e e e o e 0w wait(3f)
PIOCESSIIACE o o « o o o o o o o s o o o s o s o.s ptrace(2)
PIOCESSOT o o o o o s o s o » & “ v o e e ae reboot(2)
profil : execution time profile e e e e e . profil(2)
profile monitor, monstartup, .+ . .« « monitor(3)
profile < . .. 0o e e e e e o o oo . profil(2)
program s e e e e e s e e e e s .« abort(3f)
program end, e e e e e e e e .+ end(3)
program end, « « 4 4 s s . 0. e e e e e e end(3)
program eprol, _ftext, fdata, end(3)
program eprol, _ftext, _fdata, e e e e e e s e end(3)
program priority e e e e e e e e nice(3c)
program scheduling priority . « + « « o« .« . . getpriority(2)
program verification . .« 4 4 4 . . . o o o+ o assert(3)
ProOgrams o « o o o » o o s s o s s o s o s s « » o examples(3)
Protocol v v v v e v e e e e e e e e e e e s . rex(3r)
provide abinaryread write « . « 4 v 4 4 0 4 4 . . stio(3)
provide a compilation unit symbol stcu(3)
provide a high-level interfaceto v o ..o stfe(3)
provide access toperfile A ()
provide scalar interfacesto « 0 0 0. . . .« staux(3)
psignal, sys_siglist : system « + s e s e« oo psignal(3)
ptrace : process trace e s s e s s e s o ptrace(2)
public domain packages wrlttenm + + « « o s+« publiclib(3)
publiclib : publicdomain . « « + « + « s .« . . . publiclib(3)
push character back intoinput « ungetc(3s)
put astringon astream « « + 4+ o o o s 0 s o o« puts(3s)
put character orword on astream .+ .+ « « + « . . . » putc(3s)
putc, fputc : write a character . . « v ¢ ¢ o o 0 . . . putc(3f)
putc, putchar, fputc, putw : put e e e e « « « « putc(3s)
putchar, fputc, putw : put + + + » putc(3s)
puts, fputs : put astringona .« . . .0 0 00 .o puts(3s)
putw : put character or word on a . . putc(3s)
gsort : quick sort 0. .. e s v e o v s« gsort(3f)
gsort : quicker sort 0 0 0 e 4. 0 0. « « gsort(3)
queue iNSQUE, TEMQUE « o o o « o s o s o o o o = » insque(3)
QUICK SOTt & v v o v 0 4 o s 0 0 0 0 v e e+« « « gsort(3f)
qQUIicker SOIt w v « s o 4 o 4 . . e e e e e e e gsort(3)
quota : manipulate dxsk quotas .« . s s e 4 v o . . o quota(2)
quotactl : manipulate disk quotas « s+ s e e« .. quotactl(2)
quotas T T T . . quota(2)

Page xxvii

Permuted Index

Page xxviii

RISC/os Programmer’s Reference

quotactl : manipulate disk
setquota : enable,disable

rquota : implement

number generator

generator

rand, srand :

rand, irand, srand :

initstate, setstate : better
setstate : better random number
routine for the ranhashinit,
access routine for the symbol
the symbol ranhashinit, ranhash,
routines for returning a stream
getpass :

entry of a common ldtbread :
header of ldshread, ldnshread :
read, readv :

member of an archive ldahread :
object file ldfhread :

readlink :

: routines that provide a binary
rewinddir, closedir : opendir,

: open a common object file for
new file open : open a file for
symbolic link

read,

Iseek : move

setregid : set

setreuid : set

allocator malloc, free,
processor

reboot :

recv, recvfrom, recvmsg :
expression handler

lockf : advisory

a message from a socket
message from a socket recv,

a socket recv, recvirom,
handler re_comp,

fix address exceptions (unaligned
: gather statistics on unaligned

: gather statistics on unaligned
fpc : floating-point control

fpc : floating-point control
re_comp, re_exec :

for sigpause : atomically

of a ldrseek, ldnrseek : seek to
finite, logb, scalb : copysign,
for returning a stream to a

rexec : return stream to a

rex :

return information about users on
rquota : implement quotas on
rwall : write to specified

rpc : library routines for

mount : keep track of

unlink :

rmdir :

unmount :

open file flock : apply or
unlink :

from a queue insque,

file

unit fseek, ftell :

fseek, ftell, rewind :

routines for external data
resolver res_mkquery, res_send,
dn_comp, dn_expand : resolver
res_init, dn_comp, dn_expand :
: control maximum system

vlimit : control maximum system
getrusage : get information about
vtimes : get information about
dn_expand : res_mkquery,

a MIPS instruction and print the

quotas
quotas on a file system
quotas on remote machines

rand, irand, srand : random . .
rand, srand : random number . .
random number generator
random number generator
random number generator; . . .
random, srandom, initstate,
ranhash, ranlookup : access ..
ranhashinit, ranhash, ranlookup :
ranlookup : access routine for

rcmd, rresvport, ruserok :

read a passwordl
read an indexed symbol table
read an indexednamed section
readinput . < v 0 0 s 0w . .
read, readv : read input
read the archive header of a

read the file header of a common
read value of a symbolic link

read write interface to the MIPS
readdir, telldir, seekdir, e
reading ldopen, ldaopen
reading or writing, or create a . .
readlink : read value of a
readv : read input .
read,write pointer
real and effective group ID
real and effective user ID’s
realloc, calloc, alloca : memory .
reboot : reboot system or halt . .
reboot system or halt processor .
receive a message from a socket
re_comp, re_exec : regular

record locking on files
recv, recvfrom, recvmsg : receive
recvirom, recvmsg : receivea . .
recvmsg : receive a message from
re_exec : regular expression
references) fixade: . . .
references .« . + o . .
references . .
registers
registers . e . ..
regular expression handler
release blocked signals and wait .
relocation entries of a section
remainder, copysign, drem,
remote command : routines ..
remote command
remote execution protocol
remote machines rusers: . . .

s 6 8 s o e

remote machines e s e e e s e

remote machines e s e s e e
remote procedure calls
remotely mounted filesystems . .
remove a directory entry
remove a directory file
remove a file system
remove an advisory lock on an
remove directory entry
remque : insert,remove element .
rename : change the name of a .
reposition a file on a logical . . .
reposition a stream e e e s
representation xdr : library
res_init, dn_comp, dn_expand : .
res_mkquery, res_send, res_init, .
resolver routines res_send,
resource consumption setrlimit
resource consumption
resource utilization o e
resource utilization
res_send, res_init, dn_comp,
results : disassemble

February 1989

Permuted Index

quotactl(2)
setquota(2)
rquota(3r)
rand(3f)
rand(3c)
rand(3c)
rand(3f)
random(3)
random(3)
ranhash(3x)
ranhash(3x)
ranhash(3x)
remd(3)
getpass(3)
ldtbread(3x)
ldshread(3x)
read(2)
read(2)
ldahread(3x)
ldfhread(3x)
readlink(2)
stio(3)
directory(3)
ldopen(3x)
open(2)
readlink(2)
read(2)
Iseek(2)
setregid(2)
setreuid(2)
malloc(3)
reboot(2)
reboot(2)
recv(2)
regex(3)
lock£(3)
recv(2)
recv(2)
recv(2)
regex(3)
fixade(2)
unaligned(3)
unaligned(3)
fpe(3)
pe(3)
regex(3)
sigpause(2)
ldrseek(3x)
ieee(3m)
remd(3)
rexec(3)
rex(3r)
rnusers(3r)
rquota(3r)
rwall(3r)
rpc(3n)
mount(3r)
unlink(3f)
rmdir(2)
unmount(2)
flock(2)
unlink(2)
insque(3)
rename(2)
fseek(3f)
fseek(3s)
xdr(3n)
resolver(3)
resolver(3)
resolver(3)
getrlimit(2)
vlimit(3c)
getrusage(2)
vtimes(3c)
resolver(3)
disassembler(3x)

MIPS Computer Systems, Inc.

Permuted Index

‘given an index ldgetaux :
given a procedure ldgetpd :
file ldgetname :

getarg, iargc :

string fdate :

form idate, itime :

etime, dtime :

sigreturn :

remote rnusers, rusers :
len :

rexec :

time, ctime, Itime, gmtime :
loc :

rresvport, ruserok : routines for
by the super-user(

fseek, ftell,

readdir, telldir, seekdir,

command
strncpy, strlen, index, strchr,
ceiling, and fabs, floor, ceil,

information about users on
cbrt, sqrt : cube root, square
cbrt, sqrt : cube

ranhash, ranlookup : access
Xerox NS(tm) address conversion
dn_comp, dn_expand : resolver
representation xdr : library
calls rpc : library

to a rcmd, rresvport, ruserok :
read write interface to stio :
compilation unit symbol stcu :
high-level interface to stfe :
per file descriptor stfd :
interfaces to staux :

table stprint :

procedure calls

remote machines

returning a stream to a rcmd,

_procedure_string_table :’

_procedure_string_table :

a stream to a rcmd, rresvport,
users on remote rnusers,
machines

examples : library of

brk,

staux : routines that provide
copysign, drem, finite, logb,
scandir, alphasort :

directory

input conversion

time alarm :

time ualarm :

setpriority : get,set program
cursor motion curses :
ldnshread : read an indexednamed
seek to line number entries of a
: seek to relocation entries of a
: seek to an indexednamed
access to per file descriptor

of a common ldsseek, ldnsseek :
section of a ldlseek, ldnlseek :
section of a ldrseek, ldnrseek :
of a common object ldohseek :
common object file ldtbseek :
opendir, readdir, telldir,

brk, sbrk : change data
multiplexing

send, sendto, sendmsg :

kil ¢

message from a socket

kill ¢

killpg :

socket send, sendto,

from a socket send,

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

retrieve an auxiliary entry,
retrieve procedure descriptor
retrieve symbol name for object
return command line arguments
return date and time in an ASCIT
return date or time in numerical
return elapsed execution time
return from signal
return information about users on
return length of Fortran string
return stream to a remote command
return system time . v v 4 4 4 e 4 e v e s s e e s
return the address of an object
returning a stream to a remote
returns :1 if it was not invoked
rewind : reposition a stream
rewinddir, closedir : directory
rex : remote execution protocol
rexec : return stream to aremote
rindex, strrchr, strpbrk, strspn,
rint : absolute value, floor,
rmdir : remove a directory file
rnusers, rusers : return
root LI T T
root, SqUAre 00t & v 4 4 v e e s e e e e e e s e
routine for the symbol table
routines ns_addr, nS_Ntoa: « 4 4 . 4 e 040 s ..
routines res_send, res_init, . . « . .
routines for external data 04 .00 .. .
routines for remote procedure
routines for returning a stream . . .
routines that provide a binary
routines that provide a
routines that provide a
routines that provide accessto
routines that provide scalar
routines to print the symbol . . .+ + o v . . 0 ..
rpc : library routines for remote .+« +
rquota : implement quOtas 0N+« « ¢ 4 4 4 . 0 . . s
rresvport, ruserok :routinesfor 0. . ..
runtime procedure table
runtime procedure table
ruserok : routines for returning
rusers : return information about
rwall : write to specified remote
sample programs
sbrk : change data segment size .
scalar interfaces to auxiliaries
scalb : copysign, remainder,
scan a directory
scandir, alphasort :scana o o v 00 0 0.
scanf, fscanf, sscanf : formatted
schedule signal after specified . . « . . v v v o . . .
schedule signal after specified
scheduling priority getpriority, . . .
screen functions with “optimal”
section header of a common object
section of a common object file
section of a common object file
section of a common object file
section of the that provide
seek to an indexednamed section
seck to line number entries ofa
seek to relocation entries of a
seek to the optional file header
seek to the symbol table of a
seekdir, rewinddir, closedir :
SEEMENt SIZE o + ¢ 4 4 4 0 v b e e e e e e e
select : synchronous 1,0
send a message from a socket
send a signal to A Process « ¢« 4 v 4 v e 0 4.0 ..
send, sendto, sendmsg : send a
send signal to a process
send signal to a process group
sendmsg : send a message froma .
sendto, sendmsg : send a message .

February 1989

Permuted Index

ldgetaux(3x)
ldgetpd(3x)
ldgetname(3x)
getarg(3£)
fdate(3f)
idate(3f)
etime(3f)
sigreturn(2)
rnusers(3r)
len(3f)
rexec(3)
time(3f)
loc(3f)
remd(3)
initgroups(3)
fseek(3s)
directory(3)
rex(3r)
rexec(3)
string(3)
floor(3m)
rmdir(2)
rnusers(3r)
sqrt(3m)
sqrt(3m)
ranhash(3x)
ns(3n)
resolver(3)
xdr(3n)
rpc(3n)
remd(3)
stio(3)
stcu(3)
stfe(3)
stfd(3)
staux(3)
stprint(3)
rpc(3n)
rquota(3r)
remd(3)
end(3)
end(3)
remd(3)
rnusers(3r)
rwall(3r)
examples(3)
brk(2)
staux(3)
ieee(3m)
scandir(3)
scandir(3)
scanf(3s)
alarm (3c)
valarm(3)
getpriority(2)
curses(3x)
Idshread(3x)
ldlseek(3x)
ldrseek(3x)
Idsseek(3x)
stfd(3)
ldsseek(3x)
ldlseek(3x)
ldrseek(3x)
ldohseek(3x)
ldtbseek(3x)
directory(3)
brk(2)

send(2)

Page xxix

Permuted Index

(defunct) stty, gtty :

context sigstack :

sigsetmask, sigmask :

umask :

utime :

utimes :

. setgroups :
information hwconf : get or
kopt : get or

getsockopt, setsockopt : get and
setpgrp -

nice :

setregid :

setreuid :

setgid, setegid, setrgid :

assign buffering to a stream
buffering to a stream setbuf,
current domain getdomainname,
setuid, seteuid, setruid, setgid,
environmental variables getenv,
setegid, setrgid : set setuid,
getfsspec, getfsfile, getfstype,
user setuid, seteuid, setruid,
getgrent, getgrgid, getgrnam,

gethostbyaddr, gethostent,
identifier of current gethostid,
current host gethostname,
interval timer getitimer,

crypt,

a stream setbuf, setbuffer,
syslog, openlog, closelog,
hasmntopt : get file getmntent,
getnetbyaddr, getnetbyname,

: get network group getnetgrent,

scheduling priority getpriority,
getprotobynumber, getprotobyname,
getpwent, getpwuid, getpwnam,
getpwnam, setpwent, endpwent,
on a file system

group ID

user ID’s

setruid, setgid, setegid,

system resource getrlimit,

: set user and setuid, seteuid,
getservbyport, getservbyname,
on sockets getsockopt,
random, srandom, initstate,
time gettimeofday,

file entry getttyent, getttynam,
setegid, setrgid : set user and
legal user shells getusershell,:
system : issue a

endusershell : get legal user
connection shutdown :
full-duplex connection

interrupt system calls
sigsetmask,

pause : stop until

signal : change the action for a
sigreturn : return from

signal

signal facilities

alarm : schedule

ualarm : schedule

signal : simplified software
sigvec : software

sigsetmask, sigmask : set current
psignal, sys_siglist : system
fp_sigintr : generate a SIGFPE
sigstack : set and,or get

kill : send

kill : send a

Page xxx

RISC/os Programmer’s Reference

February 1989

set and get terminal state
set and,or get signal stack
set current signal mask,
set file creation mode mask < « . . 0 0 0 0 o0 0. .
set file times
set file times
set group access list
set hardware configuration . . « . « ¢ ¢ 0 o 0 . 0
set kernel options
set options on sockets
set process group I
set program priority
set real and effective group ID . .
set real and effective user ID’s e e e e e e e e e
set user and group ID setruid, ¢ ¢ ¢« o & o .
setbuf, setbuffer, setlinebuf : '
setbuffer, setlinebuf :assign . . « . . . o 000 .0
setdomainname : get,set name of
setegid, setrgid : setuserand
setenv, unsetenv : manipulate

seteuid, setruid, setgid, .« . + « . o . o . o .
setfsent, endfsent : getfile« « . ¢ &

setgid, setegid, setrgid : set .
setgrent, endgrent : get group . .
setgroups : set group access list
sethostent, endhostent : get
sethostid : get,setunique « o v v ¢ o v 0 6 e s 0 e s
sethostname : get,setname of . 4 « ¢ « ¢ o » o & o &
setitimer : get,set value of . . ,
setjmp, longjmp : non-local goto .+ . ¢« . o 00 . .
setkey, encrypt : DES encryption
setlinebuf : assign buffering to .
setlogmask : control system log .
setmntent, addmntent, endmntent, « e s a0 8. s
setnetent, endnetent :get « « . o 4 0 0 0 0 0. .

® s & 8 s & » e e @

setnetgrent, endnetgrent, innetgr
setpgrp : set process group .« ¢ .+ + o o o o . e
setpriority : get,set program o . o ..
setprotoent, endprotoent : get PR
setpwent, endpwent, setpwfile: . . « ¢+ . 0 v 0 0 .
setpwfile : get password + » o 4 ¢ 0 0 0 s a0 e
setquota : enable,disable quotas « e e e a
setregid : set real and effective « o o o n
setreuid : set real and effective . .« . . 4 0 o 0 0.
setrgid : set user and groupID 0 .. .
setrlimit : control maximum . . « « ¢ ¢ 4 0 .0 4.
setruid, setgid, setegid, setrgid o .o o . .

setservent, endservent i get « . . s o . 0 o .
setsockopt : get and set options 4,

setstate : better random number Pe e e
settimeofday : get,set dateand 0 o 0 0 4 .
setttyent, endttyent : getttys « « o+ o 0 s 4 o 4 e e
setuid, seteuid, setruid, setgid, + + + o o o s o o
setusershell, endusershell : get T T
shellcommand .+ ¢« ¢ o ¢ s ¢ ¢ 0 o o 0 o s s o o«
shells setusershell, e s s e s e
shut down part of a full-duplex
shutdown : shut down part of a B
sigblock :block signals « ¢« ¢ ¢ ¢ ¢ o v 0 4 000 u e
siginterrupt ; allow signals to « « « 4 4 ¢ 0 4 0 0 .
sigmask : set current signal mask . . « . . . 0 4 .
SIgNAl 4 v 4 s e s e e e e e e e e e e e e e s e
signal . . v s b e e e e e e e e e e c e v e
374 T
signal : change the actionfora . . . ¢ ¢ o ¢« o ¢ o &
signal : simplified software e e e s e ne
signal after specified time . « » ¢« « ¢« & s o 4 o o o .

signal after specified time . . « + + « ¢ . .
signal facilities « + s o ¢ 4 0 0 6 0 0 0. .
signal facilities « « ¢« 4 0 0 0 0 o 0o .
signal mask
signal messages
signal on floating-point
signal stack context
signal to a process

signal to a process

Permuted Index

stty(3c)
sigstack(2)
sigsetmask(2)
umask(2)
utime(3c)
utimes(2)
setgroups(2)
hwconf(2)
kopt(2)
getsockopt(2)
setpgrp(2)
nice(3c)
setregid(2)
setreuid(2)
setuid(3)
setbuf(3s)
setbuf(3s)
getdomainname(2)
setuid(3)
getenv(3)
setuid(3)
getfsent(3)
setuid(3)
getgrent(3)
setgroups(2)
gethostbyname(3n)
gethostid(2)
gethostname(2)
getitimer(2)
setjmp(3)

crypt(3)
setbuf(3s)
syslog(3)
getmntent(3)
getnetent(3n)
getnetgrent(3n))
setpgrp(2)

getpriority(2))
getprotoent(3n)
getpwent(3)
getpwent(3)
setquota(2)
setregid(2)
setreuid(2)
setuid(3)
getrlimit(2)
setuid(3)
getservent(3n)
getsockopt(2)
random(3)
gettimeofday(2)
getttyent(3)
setuid(3)
getusershell(3)
system(3)
getusershell(3)
shutdown(2)
shutdown(2)
sigblock(2)
siginterrupt(3)
sigsetmask(2)
pause(3c)
signal(3f)
sigreturn(2)
signal(3f)
signal(3c)
alarm(3c)
valarm(3)
signal(3c)
sigvec(2)
sigsetmask(2) .
psignal(3) (
fp_sigintr(2) -
sigstack(2)

kill(2)

kill(3f)

MIPS Computer Systems, Inc.

Permuted Index

killpg : send

sigblock : block

: atomically release blocked
siginterrupt : allow

blocked signals and wait for

signal mask
stack context
facilities
facilities signal :
atan2 : trigonometric functions
functions
change data segment
: get descriptor table
getpagesize : get system page
interval
interval
: accept a connection on a
bind : bind a name to a
: initiate a connection on a
" : listen for connections on a
: receive a message from a
sendmsg : send a message from a
communication
getsockname : get
connected sockets
: get and set options on
: create a pair of connected
signal : sm]pllﬁed

sigvec :
gsort : quicker
gsort : quick
interface
memory efficient way vfork :
mknod : make a
: truncate a file to a
rwall : write to
alarm : schedule signal after
: execute a subroutine after a
ualarm : schedule signal after
frexp, ldexp, modf :
conversion printf, fprintf,
cbrt,
cube root,
rand,
rand, irand,
better random number random,
conversion scanf, fscanf,
sigstack : set and,or get signal

brk, sbrk :

accept

ftruncate

cbrt, sqrt :

package stdio :
standard : VADS
cshre @

status

statistics

statfs : get file system
print_unaligned_summary : gather
print_unaligned_summary : gather
stat, Istat, fstat : get file

stat, fstat : get file

feof, clearerr, fileno : stream
scalar interfaces to auxiliaries
compilation unit symbol table
input,output package

access to per file descriptor
high-level interface to basic
binary read write interface to
pause :

: data base dbminit, fetch,
symbol table

strcpy, strncpy, strlen, index,
strepy, strncpy, strlen, index,
strlen, index, strcat, strncat,
strcat, strncat, strcmp, strncmp,
rindex, strrchr, strpbrk, strspn,

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

signal to a process group .+ .« .+ o o . . o . killpg(2)
signals v 4 v e e e e e e e e e e e e e e e e sigblock(2)
signals and wait for interrupt e sigpause(2)
signals to interrupt system calls siginterrupt(3)
sigpause : atomically release + « ¢ ¢ 0 o 0 0 0 0 . sigpause(2)
sigreturn : return from signal sigreturn(2)
sigsetmask, sigmask : set current sigsetmask(2)
sigstack : set and,or get signal sigstack(2)
sigvec : software signal . . . v v . 0 0w e e 0w . sigvec(2)
simplified software signal + « « « v v o o 0 0. . . signal(3c)
sin, cos, tan, asin, acos, atan, « « + « « s + s + + o o sin(3m)
sinh, cosh tanh : hyperbohc e e e e e . sinh(3m)
SIZE « s e e w e u s . e s s e e e s s e e brk(2)

size getdtablesize . ¢ v 4 4 4 e @ 0 0w e e 000 getdtablesize(2) .
372 c e e e s e « + « « . getpagesize(2)
sleep : suspend execution foran 4 « «- sleep(3f)
sleep : suspend execution for + + « 4+ v « + o o« . . sleep(3)
socket s s e e e s s s e s e e e se e accept(2)
SOCKEL v v v v v v e et e e e e e e e e e e e bind(2)
socket connect .+ + 4 4 4 o s s s s e s . e« o« .+ connect(2)
socket listen e e e e s e e e oo listen(2)
socket recv, recvirom, recvmsg « + « « o+ o o o o+ o Tecv(2)
socket send, sendto, s 4 s e s s s s e s send(2)
socket : create an endpoint for . .+ . 4 . o 0 0 0. socket(2)
SOCKetName v« v v 4 0 0 0 s s e 0 e e e e e . getsockname(2)
socketpair : create apairof . « + ¢ ¢ socketpair(2)
sockets getsockopt, setsockopt v e e s e s s s . o getsockopt(2)
sockets socketpair c et e e e e socketpair(2)
software signal facilities e e e e e e e signal(3c)
software signal facilities + « ¢« « v o 0 o 000 . sigvec(2)
SOTt 4 o o o o o s o s o o o o s o o o s o v o o gsort(3)
sort e et s s e s s e e gsort(3f)
space, closepl : graphlcs e he e s e e e anes e plot(3x)
spawn new process in a virtual vfork(2)
specialfile v v v 0 v e e e e e e e e . mknod(2)
specified length truncate, « +« « o « « « « « « + . . truncate(2)
specified remote machines . . . « . . e e rwall(3r)
specified time v e e e e e e e .. alarm(3c)
specified time alarm « « « ¢« v o 0 0 0 0. .. « + » alarm(3f)
specified time . . . " s s s e s e e n e oas . ualarm(3)
split into mantissa and exponent e e e se s . . frexp(3)
sprintf : formatted output . + .« . . o .0 00 . « printf(3s)
sqrt : cube root, SqUAre rOOt -+« v 4 4 4 . e b 0 . o sqrt(3m)
SQUATETOOL o o v » o o o o o o s o o o o s s 4 0 sqrt(3m)
srand : random number gencrator rand(3c)
srand : random number generator . .« . ¢ 4 . . 4o . rand(3f)
srandom, initstate, setstate : s e e e e e random(3)
sscanf : formatted input &« « . o 0 0 e 0 e 00w scanf(3s)
stack context « 4 v o 4 4 v e e e e e e 0 e e . . sigstack(2)
standard : VADS standard library standard(3)
standard buffered input,output . . ¢ . 0 00 0. stdio(3s)
standard ibrary . « s o ¢ ¢ o o s 0 0 0 4.0 . . standard(3)
startup file for csh command cshre(5)
stat, fstat : get file status s e e s s s s e s e s stat(3f)

stat, Istat, fstat tgetfile « « +« v v v v v 4 o o . . . stat(2)

statfs : get file system e v s e e s e e s s o o o . statfs(2)
Statistics o 4 o 4 s e e e e e e e e e e e e . « . statfs(2)
statistics on unaligned ¢ ¢ o0 o000 .. unaligned(3)
statistics on unaligned unaligned(3)
status « o 0 s . s e e e e e e stat(2)
StAtUS 4 o 4 e e b e e e e e e e e e e e e e . . stat(3f)
status inquiries ferror, . . oo e e s e s . ferror(3s)
staux : routines that prov1de I . staux(3)
stcu : routines that provide a + « « & ¢ ¢+ o 0 0 . steu(3)

stdio : standard buffered . « .« v 4 0 0 0000 . stdio(3s)

stfd : routines that provide « + « ¢ ¢ ¢ 4 0 0 . . o stfd(3)
stfe : routines that provide a « « « « 4 o « « » « « » stfe(3)

stio : routines that provide a « « ¢« « ¢« ¢ ¢ .o 0 o . . stio(3)

stop until signal e e e e e pause(3c)
store, delete, firstkey, nextkey c e e e e e e e e dbm(3x)
stprint : routines to print the v e e s e s stprint(3)
strcat, strncat, strcmp, SNCMP, « « o o+ o o o o o string(3)
strchr, rindex, strrchr, strpbrk, +« « 4 4 4 0 0 0 0 . string(3)
strcmp, strncmp, strepy, strncpy, o . . . o .« . string(3)
strcpy, strncpy, strlen, index, .+ « « « « « ¢ o string(3)
strcspn, strtok : string strchr, e s s s s s o e oo string(3)
February 1989 Page xxxi

Permuted Index

Permuted Index

fclose, fflush : close or flush a
fopen, freopen, fdopen : open a
ftell, rewind : reposition a

getw : get character or word from
gets, fgets : get a string from a
putw : put character or word on a
puts, fputs : put a string on a

: assign buffering to a

: push character back into input
ferror, feof, clearerr, fileno :

: routines for returning a

rexec : return

return date and time in an ASCII
len : return length of Fortran
timezone : supply timezone

gets, fgets : get a

puts, fputs : put a

bemp, bzero, ffs : bit and byte
strspn, strcspn, strtok :

stremp, strncmp, strepy, strncpy,
strnepy, strlen, index, strcat,
index, strcat, strncat, strcmp,
strncat, strcmp, strnecmp, strepy,
index, strchr, rindex, strrchr,
strlen, index, strchr, rindex,
strchr, rindex, strrchr, strpbrk,
strpbrk, strspn, strespn,

state (defunct)

alarm : execute a

firstkey, nextkey : data base
dbm_clearerr : data base
graphics terminal 1ib2648 :

sync : update

:1 if it was not invoked by the
timezone :

sleep :

sleep :

usleep :

swab :

paging,swapping swapon : add a
interleaved paging,swapping
ldgetname : retrieve

: access routine for the

read write interface to the MIPS
stprint : routines to print the
ldtbread : read an indexed

that provide a compilation unit
file ldtbseek : seek to the
readlink : read value of a
symlink : make

file

: correct the time to allow
state with that on disk fsync :
select :

eITOr messages perror,
setlogmask : control system log
perror, sys_errlist,

messages psignal,

endmntent, hasmntopt : get file
mount : mount file

: enable,disable quotas on a file
unmount : remove a file

syscall : indirect

: allow signals to interrupt
intro : introduction to

to allow synchronization of the
perror, sys_errlist, sys_nerr :
perror, gerror, ierrno : get
uname : get general

closelog, setlogmask : control
reboot : reboot

Page xxxii

RISC/os Programmer’s Reference

February 1989

stream
stream
stream fseek,
stream getc, getchar, fgetc,
stream
stream putc, putchar, fputc,
stream . ..
stream setbuffer, sethnebuf C e e e e e s e o e e
stream ungetc
stream status inquiries
stream to a remote command
stream to a remote command
string fdate :
SIHNE o v v o ¢ e e e e e e e e e e e e e e e e
string . . . L T N T S R
string from a stream
string on a stream

string operations bcopy,

string operations strpbrk,

strlen, index, strchr, rindex, .
strncat, strcmp, strncmp, strepy, B

strncmp, strepy, strncpy, strlen, < o ¢ ¢ 0 o 0 . e . .
strnepy, strlen, index, strchr, + & v v 0 0 0 4 .

strpbrk, strspn, strespn, strtok . . . o . . 0 0 o .
strrchr, strpbrk, strspn, s e e e e e e s e e s e s
strspn, strespn, strtok :string ¢ . o 0 0 0 0 0 0 0 . e
strtok : string operations .+« « 4 . 0 0 0 . e . oo s
stty, gtty : set and get terminal 0 0 . ..
subroutine after a specified time . « « o « ¢ v o o . &
subroutines store, delete, o s e s s e s e
subroutines dbm_error, 0 . 0 s 0 e . . o0 e
subroutines for the HP2648 e e s e e s e e e
super-block L. . w0 0 s . 0 e e e e .
super-user(returns o « o o o+ . e e e e e e e
supply timezone string . . C e s e s s e e e
suspend execution foranmterval C et e e e e e e
suspend execution for interval . . .« . . 0 0 0. 00

suspend execution for interval o . 0 .0 . .
swab :swapbytes 0.0 . e e e e e e e
SWapbytes . ¢ o 4 o i b e e e e e e s e e e e e

swap device for interleaved cee e e
swapon : add a swap devicefor . . .+ . . 0 0 . . .
symbol name for object file .

symbol table ranhash, ranlookup B
symbol table provide abinary . « . ¢ ¢ 0 0 . o .
symbol table T v e e
symbol table entry of a common C e e e e e s .

symbol table interface routines . .
symbol table of a common object
symbolic link
symbolic link to a file
symlink : make symbolic link to a
sync : update super-block
synchronization of the system . .
synchronize a file’sin-core . ¢
synchronous I,0 multiplexing +
syscall : indirect system call
sys_errlist, sys_nerr : system e e e e e s e e e s
syslog, openlog, closelog, « « « ¢ ¢ v ¢ o v 0 4 o 4 .
sys_nerr : system error messages B
sys_siglist : system signal « o o 4 0 o 0 0 e 4 e .. e
system setmntent, addmntent,
system
system setquota . o o s 0 o s s 6 6 s e s R
system
system : execute a UNIX command
system : issue a shell command . . . ¢« . . ¢ . .
systemcall . & 0 0 0 00 ..
system calls siginterrupt .+ ¢ o ¢« v 4 .0 0 .00 . .
system calls and error numbers .

system clock :correctthetime
system €rror mesSageS o s s o o o o s o o s o 0 e s
System error MesSageS « « o o o o o o o o o o o o o
system information . ¢ . ¢ ¢ 0 0 o 0 e 0 e a0 o0 s
system log syslog, openlog, « « « ¢ ¢ ¢« ¢« ¢« ¢ o o o &
system or halt processor

o @ © ® o s o 8 8 o o 5 ® @ s e e o v o .

e e e o © o

Permuted - Index

fclose(3s)
fopen(3s)
fseek(3s)
getc(3s)
gets(3s)
putc(3s)
puts(3s)
setbuf(3s)
ungetc(3s)
ferror(3s)
rcmd(3)
rexec(3)
fdate(3f)
len(3f)
timezone(3)
gets(3s)
puts(3s)
bstring(3)
string(3)
string(3)
string(3)
string(3)
string(3)
string(3)
string(3)
string(3)
string(3)
stty(3c)
alarm(3f)
dbm(3x)
ndbm(3)
1ib2648(3x)
sync(2)
initgroups(3)
timezone(3)
sleep(3f)
sleep(3)
usleep(3)
swab(3)
swab(3)
swapon(2)
swapon(2)
ldgetname(3x)
ranhash(3x)
stio(3)
stprint(3)
ldtbread(3x)
steu(3)
ldtbseek(3x)
readlink(2)
symlink(2)
symlink(2)
sync(2)
adjtime(2)
fsync(2)
select(2)
syscall(2)
perror(3)
syslog(3)
perror(3)
psignal(3)
getmntent(3)
mount(2)
setquota(2)
unmount(2)
system (3f)
system(3)
syscall(2)
siginterrupt(3)
intro(2)
adjtime(2)
perror(3)
perror(3f)
uname(2)
syslog(3)
reboot(2)

MIPS Computer Systems, Inc.

Permuted Index

getpagesize : get

setrlimit : control maximum
vlimit : control maximum
psignal, sys_siglist :

statfs : get file

ctime, Itime, gmtime : return

: runtime procedure

: runtime procedure

: access routine for the symbol
interface to the MIPS symbol

: routines to print the symbol
Idtbread : read an indexed symbol
provide a compilation unit symbol
Idtbseek : seek to the symbol
getdtablesize : get descriptor
trigonometric sin, cos,

sinh, cosh,

closedir : opendir, readdir,
data base

for the HP 2648 graphics
isatty, ttyslot : find name of a
“hangup” the current control

. termcap :

tgetflag, tgetstr, tgoto, tputs :
ttynam, isatty : find name of a
stty, gtty : set and get

wait, wait3 : wait for process to
abort :

—exit :

flushing any pending exit :
wait : wait for a process to
tgetstr, tgoto, tputs : terminal
terminal tgetent, tgetnum,
tgoto, tputs : terminal tgetent,
tgetent, tgetnum, tgetflag,
tgetnum, tgetflag, tgetstr,
return system time

: get,set value of interval
times : get process
utime : set file

utimes : set file

timezone : supply

and localtime, gmtime, asctime,
isascii, toupper, tolower,
popen, pclose : initiate I,0
iscntrl, isascii, toupper,
isgraph, iscntrl, isascii,
tgetflag, tgetstr, tgoto,

ptrace : process

filesystems mount : keep

tan, asin, acos, atan, atan2 :
length truncate, ftruncate :
file to a specified length
terminal port

name of a terminal

setttyent, endttyent : get

- ttyname, isatty,

acct :

ASCII gmtime, asctime, timezone,
specified time

getpw ; get name from

mask

fixade : fix address exceptions
: gather statistics on

: gather statistics on
information

: mark pages cacheable or
input stream

mktemp : make a

gethostid, sethostid : get,set
flush : flush output to a logical
: reposition a file on a logical

: get a character from a logical

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

SYStem page SIZ€ .« . v 4 4 v 4 e w4 e e s e s e
system resource consumption .« .«
system resource consumption
system signal messages
system statistics
system time time,
table _procedure_string table
table _procedure_string table
table ranhash, ranlookup
table a binary read write
table stprint ..
table entry of a common object . .
table interface :routines that . .
table of a common objectfile
tablesize
tan, asin, acos, atan, atan2 : . . .
tanh : hyperbolic functions
telldir, seekdir, rewinddir,

termcap : terminal capability
terminal 1ib2648 : subroutines . .+ 4 4 . 0
terminal ttyname, . .
terminal vhangup :virtually 0 0.0
terminal capability data base
terminal independent tgetnum,
terminal port
terminal state (defunct)

terminate o o v v v 4 e e 4 e e e e e e e e e
terminate Fortran program
terminate a process .+ . v v 4 4 4 v w4 e e e .. s
terminate a process after
terminatesystem(3f) can notbe
tgetent, tgetnum, tgetflag,
tgetflag, tgetstr, tgoto, tputs : e
tgetnum, tgetflag, tgetstr, . . o « v v v 0 0 v 0. .
tgetstr, tgoto, tputs : terminal . . .
tgoto, tputs : terminal tgetent, .
time, ctime, Jtime, gmtime :
time, ftime : get date and time .
timer getitimer, setitimer
times o o v o v 0004 o. .
times
times v e e
times : get process times
timezone : supply timezone string
timezone string
timezone, tzset : convert date
toascii : character iscntrl,

to,from a process
tolower, toascii : character
toupper, tolower, toascii : P T
tputs : terminal independent
trace « o o o o 4 o 0 0 0 0 o w4
track of remotely mounted
trigonometric functions cos, . .
truncate a file to a specified . . .
truncate, ftruncate : truncate a
ttynam, isatty : find name of a
ttyname, isatty, ttyslot : find

ttys file entry getttynam,
ttyslot : find name of a terminal
turn accountingonoroff
tzset : convert date and time to . .
ualarm : schedule signal after
umask : set file creation mode . . .
(unaligned references)
unaligned references
unaligned references e
uname : get general system ,
uncacheable cachectl
ungetc : push character back into
unique file name .
unique identifier of current host
mit ... e e .
unit fseek, ftell
unit getc, fgetc

............

February 1989

Permuted Index

getpagesize(2)
getrlimit(2)
vlimit(3c)
psignal(3)

end(3)
ranhash(3x)
stio(3)
stprint(3)
Idtbread(3x)
stcu(3)
ldtbseek(3x)
getdtablesize(2)
sin(3m)
sinh(3m)
directory(3)
termcap(5)
1ib2648(3x)
ttyname(3)
vhangup(2)
termcap(5)
termcap(3x)
ttynam(3£)
stty(3¢)
wait(2)
abort(3f)
exit(2)
exit(3)
wait(3f)
termcap(3x)
termcap(3x)
termcap(3x)
termcap(3x)
termcap(3x)
time(3f)
time(3c)
getitimer(2)
times(3c)
utime(3c)
utimes(2)
times(3c)
timezone(3)
timezone(3)
ctime(3)
ctype(3)
popen(3)
ctype(3)
ctype(3)
termcap(3x)
ptrace(2)
mount(3r)
sin(3m)
truncate(2)
truncate(2)
ttynam(3£)
ttyname(3)
getttyent(3)
ttyname(3)
acct(2)
ctime(3)
ualarm(3)
getpw(3c)
umask(2)
fixade(2)
unaligned(3)
unaligned(3)
uname(2)
cachectl(2)
ungetc(3s)
mktemp(3)
gethostid(2)
flush(3f)
fseek(3f)
getc(3f)

Page xxxiii

Permuted Index

and dissabling the floating-point
a character to a fortran logical
that provide a compilation

mmap, munmap : map or

environmental getenv, setenv,
pause : stop

sync :

pages yppasswd :

setreuid : set real and effective
setgid, setegid, setrgid : set
getuid, geteuid : get

getuid, getgid : get

yppasswd : update

endusershell : get legal

getlog : get

rusers : return information about
interval

: get information about resource
: get information about resource

abs : integer absolute

distance, complex absolute
floor, ceil, rint : absolute
readlink : read

getenv : get

getitimer, setitimer : get,set

: classes of IEEE floating-point
: classes of IEEE floating-point
htons, ntohl, ntohs : convert

varargs :
: manipulate environmental
getenv : get value of environment
library packages

assert : program

virtual memory efficient way

the current control terminal
vfork : spawn new process in a
control terminal vhangup :
resource consumption

resource utilization
terminatesystem(3f) can not be
terminatesystem(3f) can wait :
release blocked signals and

wait, wait3 :

terminate

terminate wait,

fgetc, getw : get character or
fputc, putw : put character or
chdir : change current

getcwd : get pathname of current
getwd : get current

logical unit putc, fputc :

that provide a binary read

write, writev :

machines rwall :

write,

open : open a file for reading or
: public domain packages
external data representation

i0, j1, jm,

30, j1, jn, y0,

: update user password in
yperr_string, ypprot_err :

jO: jls jn’ y0, y1,

yp_match, yp_first, yp_next,
ypelnt, yp_get_default_domain,
yp_bind, yp_unbind, yp_match,
yp-all, yp_order, yp_master,
yp_bind, yp_unbind, yp_match,

Page xxxiv

RISC/os Programmer’s Reference

unit mipsfpu : enabling
unit putc, fputc : write
unit symbol table interface
unlink : remove a directory entry
unlink : remove directory entry
unmap pages of memory
unmount : remove a file system
unsetenv : manipulate
until signal ,
update super-block
update user password in yellow
user ID’s
user and group ID setruid,
user identity
user or group ID of the caller
user password in yellow pages
user shells setusershell,
user’s login name
users on remote machines
usleep : suspend execution for
utilization getrusage
utilization vtimes
utime : set file times
utimes : set file times .
valloc : aligned memory allocator
value ¢ .
value hypot, cabs : Euclidean
value, floor, ceiling, and fabs,
value of a symbolic link
value of environment variables
value of interval timer

s e s

values fp_class o . .

values fp_class
values between host and network
varargs : variable argument list
variable argument list e e
variables setenv, unsetenv . .
variables
verdixlib : MIPS-supported Ada
verification . . . @ 4 0 0 . .
vfork : spawn new process in a
vhangup : virtually “hangup”
virtual memory efficient way .
virtually “hangup” the current .
vlimit : control maximum system
vtimes : get information about
wait : wait for a process to

wait for a processto < ¢ o 4 4 4 .

wait for interrupt : atomically
wait for process to terminate .
wait, wait3 ; wait for process to
wait3 : wait for processto . .
word from stream getc, getchar,
word on a stream putc, putchar,
working directory
working directory . .
working directory pathname
write a character to a fortran
write interface to the MIPS .
write output .+
write to specified remote .
write, writev : write output
writev : write output . . .
writing, or create a new file
written in Ada publiclib .
xdr : library routines for . .
y0, y1, yn : bessel functions

y1, yn : bessel functions

yellow pages yppasswd . . .
yellow pages client interface

yn : bessel functions
yp-all, yp_order, yp_master,
yp_bind, yp_unbind, yp_match,
ypcint, yp_get_default_domain,
yperr_string, ypprot_err : yellow
yp-first, yp_next, yp_all,

February 1989

Permuted Index

.
.
.
.
.
.
.
.
.
e e o o o ° * »

mipsfpu(2)
putc(3f)
stcu(3)
unlink (3f)
unlink(2)
mmap(2)
unmount(2)
getenv(3)
pause(3c)
sync(2)
yppasswd(3r)
setreuid(2)
setuid(3)
getuid(2)
getuid(3£)
yppasswd(3r)
getusershell(3)
getlog(3f)
rnusers(3r)
usleep(3)
getrusage(2)
vtimes(3c)
utime(3c)
utimes(2)
valloc(3c)
abs(3)
hypot(3m)
floor(3m)
readlink(2)
getenv(3f)
getitimer(2)
fp_class(3)
fp_class(3)
byteorder(3n)
varargs(3)
varargs(3)
getenv(3)
getenv(3f)
verdixlib(3)
assert(3)
viork(2)
vhangup(2)
viork(2)
vhangup(2)
vlimit(3c)
vtimes(3c)
wait(3f)
wait(3f)
sigpause(2)
wait(2)
wait(2)
wait(2)
getc(3s)
putc(3s)
chdir(2)
getcwd(3f)
getwd(3)
putc(3f)
stio(3)
write(2)
rwall(3r)
write(2)
write(2)
open(2)
publiclib(3)
xdr(3n)
jO(3m)
j0(3m)
yppasswd(3r)
ypelnt(3n)
jO(3m)
ypelnt(3n)
ypelnt(3n)
ypelnt(3n)
ypelnt(3n)
ypclnt(3n)

(

(

MIPS Computer Systems, Inc.

Permuted Index

RISC/os Programmer’s Reference

yp_unbind, yp_match, ypclnt,

yp_next, yp_all, yp_order,

yp_all, yp_bind, yp_unbind,
yp_unbind, yp_match, yp_first,

yp_first, yp_next, yp_all,
in yellow pages
yp_master, yperr_string,

yp_get_default_domain, yp_bind,

MIPS Computer Systems, Inc.

yp-get_default_domain, yp_bind,

yp_master, yperr_string,

yp_match, yp_first, yp_next,

yp_next, yp_all, yp_order,

yp-order, yp_master, yp_match,
yppasswd : update user password
ypprot_err : yellow pages client
yp_unbind, yp_match, yp_first,

February 1989

Permuted Index

. v+ ... ypclnt(3n)

v+ « « o ypclnt(3n)

....... ypclnt(3n)

« « « ypcint(3n)

.« « « .« . ypclnt(3n)

Page xxxv

ACCEPT (2-BSD) RISC/os Programmer’s Reference ACCEPT (2-BSD)

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;

struct sockaddr xaddr;

int xaddrlen;

DESCRIPTION

The argument s is a socket that has been created with socket(2), bound to an address with
bind(2), and is listening for connections after a listen(2). accept extracts the first connection
on the queue of pending connections, creates a new socket with the same properties of s and
allocates a new file descriptor, ns, for the socket. If no pending connections are present on
the queue, and the socket is not marked as non-blocking, accept blocks the caller until a con-
nection is present. If the socket is marked non-blocking and no pending connections are
present on the queue, accept returns an error as described below. The accepted socket, ns,
may not be used to accept more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is
determined by the domain in which the communication is occurring. The addrlen is a value-’
result parameter; it should initially contain the amount of space pointed to by addr; on return
it will contain the actual length (in bytes) of the address returned. This call is used with
connection-based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE

The call returns —1 on error. If it succeeds, it returns a non-negative integer that is a descrip-
tor for the accepted socket.

ERRORS
The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file, not a socket.
[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.
[EFAULT] The addr parameter is not in a writable part of the user address space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to
be accepted.

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2)

MIPS Computer Systems, Inc. February 8, 1989 Page 1

ACCESS (2-BSD) RISC/os Programmer’s Reference ACCESS (2-BSD)

NAME
access — determine accessibility of file

SYNOPSIS
#include <sys/file.h>

##define R_OK 4 /« test for read permission */

#define W_OK 2/« test for write permission %/

#define X_OK 1 /x test for execute (search) permission »/
#define F_ OK . 0 /+ test for presence of file +/

accessible = access(path, mode)
int accessible;
char xpath;
int mode;
DESCRIPTION
access checks the given file path for accessibility according to mode, which is an inclusive or

of the bits R_LOK, W_OK and X_OK. Specifying mode as F_OK (i.e., 0) tests whether the direc-
tories leading to the file can be searched and the file exists.

The real user ~s1ID and the group access list (including the real group -s1ID) are
used in verifying permission, so this call is useful to set-UID programs.
Notice that only access bits are checked. A directory may be indicated as writable by access,

- but an attempt to open it for writing will fail (although files may be created there); a file may
look executable, but execve will fail unless it is in proper format.

RETURN VALUE

If path cannot be found or if any of the desired access modes would not be granted, then a -1
value is returned; otherwise a 0 value is returned.

ERRORS
Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file

that is being executed.

[EACCES] Permission bits of the file mode do not permit the requested
access, or search permission is denied on a component of the path
prefix. The owner of a file has permission checked with respect to
the “owner” read, write, and execute mode bits, members of the
file’s group other than the owner have permission checked with
respect to the “group” mode bits, and all others have permissions
checked with respect to the “other” mode bits.

[EFAULT] path points outside the process’s allocated address space.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ACCESS (2-BSD) RISC/os Programmer’s Reference ACCESS (2-BSD)

[EIO] An I/0 error occurred while reading from or writing to the file sys-
tem.

SEE ALSO
chmod(2), stat(2)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

ACCT (2-BSD) RISC/os Programmer’s Reference | ACCT (2-BSD)

NAME
acct — turn accounting on or off
SYNOPSIS
acct(file)
char «file;
DESCRIPTION
The system is prepared to write a record in an accounting file for each process as it ter-
minates. This call, with a null-terminated string naming an existing file as argument, turns on

accounting; records for each terminating process are appended to file. An argument of 0
causes accounting to be turned off,

The accounting file format is given in acct(5).
This call is permitted only to the super-user.
NOTES

Accounting is automatically disabled when the file system the accounting file resides on runs
out of space; it is enabled when space once again becomes available.

RETURN VALUE

On error -1 is returned. The file must exist and the call may be exercised only by the super-
user. It is erroneous to try to turn on accounting when it is already on.

ERRORS
acct will fail if one of the following is true:
[EPERM] A The caller is not the super-user.
[ENOTDIR] ' A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.
[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix, or
the path name is not a regular file. :
[ELOOP] Too many symbolic links were encountered in translating the path-
name.
[EROFS] The named file resides on a read-only file system.
[EFAULT] file points outside the process’s allocated address space.
[E10] An I/O error occurred while reading from or writing to the file sys-
tem.
SEE ALSO
acct(5), sa(8)
WARNING

No accounting is produced for programs running when a crash occurs. In particular non-
terminating programs are never accounted for,

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ADJTIME (2-BSD) RISC/os Programmer’s Reference ADIJTIME (2-BSD)

NAME

adjtime — correct the time to allow synchronization of the system clock

SYNOPSIS

#include <sys/time.h>

adjtime(delta, olddelta)
struct timeval xdelta;
struct timeval xolddelta; -

DESCRIPTION

adjtime makes small adjustments to the system time, as returned by gettimeofday(2), advanc-
ing or retarding it by the time specified by the timeval delta. If delta is negative, the clock is
slowed down by incrementing it more slowly than normal until the correction is complete. If
delta is positive, a larger increment than normal is used. The skew used to perform the
correction is generally a fraction of one percent. Thus, the time is always a monotonically
increasing function. A time correction from an earlier call to adjtime may not be finished
when adjtime is called again. If olddelta is non-zero, then the structure pointed to will con-
tain, upon return, the number of microseconds still to be corrected from the earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local area
network. Such time servers would slow down the clocks of some machines and speed up the
clocks of others to bring them to the average network time.

The call adjtime(2) is restricted to the super-user.

RETURN VALUE

‘A return value of 0 indicates that the call succeeded. A return value of —1 indicates that an
error occurred, and in this case an error code is stored in the global variable errno.

ERRORS ‘
The following error codes may be set in errno:
[EFAULT] An argument points outside the process’s allocated address space.
[EPERM] The process’s effective user ID is not that of the super-user.

SEE ALSO

date(1), gettimeofday(2), timed(8), timedc(8),
TSP: The Time Synchronization Protocol for UNIX x4.3BSD, R. Gusella and S. Zatti

MIPS Computer Systems, Inc. February 5, 1989 Page 1

BIND (2-BSD) RISC/os Programmer’s Reference BIND (2-BSD)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

bind (s, name, namelen)
int s;

struct sockaddr xname;
int namelen;

DESCRIPTION
bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists
in a name space (address family) but has no name assigned. bind requests that name be
assigned to the socket.

NOTES

Binding a name in the UNIX domain creates a socket in the file system that must be deleted by
the caller when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information.
RETURN VALUE

If the bind is successful, a 0 value is returned. A return value of —1 indicates an error, which
is further specified in the global errno.

ERRORS
The bind call will fail if:
[EBADF] s is not a valid descriptor.
[ENOTSOCK] S is not a socket.
[EADDRNOTAVAIL] The specified address is not available from the local machine.
[EADDRINUSE] The specified address is already in use.
[EINVAL] The socket is already bound to an address.
[EACCES] The requested address is protected, and the current user has inade-
quate permission to access it.
[EFAULT] The name parameter is not in a valid part of the user address

space.

The following errors are specific to binding names in the UNIX domain.

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] - A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT)] A prefix component of the path name does not exist.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EI0] An I/O error occurred while making the directory entry or allocat-
ing the inode.

[EROFS] The name would reside on a read-only file system.

[EISDIR] A null pathname was specified.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

BIND (2-BSD) RISC/os Programmer’s Reference BIND (2-BSD)

SEE ALSO
connect(2), listen(2), socket(2), getsockname(2)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

BRK (2-BSD) RISC/os Programmer’s Reference BRK (2-BSD)

NAME

brk, sbrk — change data segment size

SYNOPSIS

#include <sys/types.h>
char sbrk(addr)
char saddr;

char xsbrk(incr)
int incr;

DESCRIPTION

brk sets the system’s idea of the lowest data segment location not used by the program (called
the break) to addr (rounded up to the next multiple of the system’s page size). Locations
greater than addr and below the stack pointer are not in the address space and will thus cause
a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program’s data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sbrk.-

The getrlimit(2) systein call méy be used to determine the maximum permissible size of the

data segment; it will not be possible to set the break beyond the rlim_max value returned from
a call to gerrlimit, e.g. “‘etext + rlp—rlim_max.” (see end(3) for the definition of etext).

RETURN VALUE

Zero is returned if the brk could be set; —1 if the program requests more memory than the sys-
tem limit. sbrk returns —1 if the break could not be set. '

ERRORibrk will fail and no additional memory will be allocated if one of the following are true:
[ENOMEM] The limit, as set by setrlimit(2), was exceeded.
[ENOMEM] - The maximum possible size of a data segment (compiled into the sys-
tem) was exceeded. '
[ENOMEM] Insufficient space existed in the swap area to support the expansion.
SEE ALSO

execve(2), getrlimit(2), malloc(3), end(3)

WARNING

Setting the break may fail due to a temporary lack of swap space. It is not possible to distin-
guish this from a failure caused by exceeding the maximum size of the data segment without
consulting getrlimit.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CACHECTL (2-BSD) RISC/os Programmer’s Reference CACHECTL (2-BSD)

NAME
cachectl — mark pages cacheable or uncacheable

SYNOPSIS
~ #include <mips/cachectl.h>

cachectl(addr, nbytes, op)
char xaddr; -
int nbytes, op;

DESCRIPTION
The cachectl system call allows a process to make ranges of its address space cacheable or
uncacheable. Initially, a process’s entire address space is cacheable.

op may be one of:
CACHEABLE Make the indicated pages cacheable
UNCACHEABLE Make the indicated pages uncacheable

The CACHEABLE and UNCACHEABLE op’s affect the address range indicated by addr and
nbytes. addr must be page aligned and nbyfes must be a multiple of the page size.

Changing a page from UNCACHEABLE state to CACHEABLE state will cause both the
instruction and data caches to be flushed if necessary to avoid stale cache information.

RETURN VALUE
cachetl returns 0 when no errors are detected. If errors are detected, cachectl returns -1 with
the error cause indicated in errno.

ERRORS
[EINVAL] op parameter is not one of CACHEABLE or UNCACHEABLE.
[EINVAL] addr is not page aligned, or nbyres is not multiple of pagesize.
[EFAULT] Some or all of the address range addr to (addr+nbytes-1) is not access-
able.
SEE ALSO
getpagesize(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CACHEFLUSH (2-BSD) RISC/os Programmer’s Reference CACHEFLUSH (2-BSD)

NAME
cacheflush — flush contents of instruction and/or data cache

SYNOPSIS
#include <mips/cachectl.h>

cacheflush(addr, nbytes, cache)
char xaddr;
int nbytes, cache;

DESCRIPTION
Flushes contents of indicated cache(s) for user addresses in the range addr to (addr+nbytes-1).
cache may be one of:

ICACHE Flush only the instruction cache

DCACHE Flush only the data cache

BCACHE Flush both instruction and data caches
RETURN VALUE ’

cacheflush returns 0 when no errors are detected. If errors are detected, cacheflush returns -1
with the error cause indicated in errno.

ERRORS
[EINVAL] cache parameter is not one of ICACHE, DCACHE, or BCACHE.
[EFAULT) Some or all of the address range addr to (addr+nbytes-1) is not access-

able.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CHDIR (2-BSD) RISC/os Programmer’s Reference CHDIR (2-BSD)

NAME
chdir - change current working directory
SYNOPSIS
chdir(path)
char spath;
DESCRIPTION
path is the pathname of a directory. chdir causes this directory to become the current working
directory, the starting point for path names not beginning with *“/”.

In order for a directory to become the current directory, a process must have execute (search)
access to the directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS

chdir will fail and the current working directory will be unchanged if one or more of the fol-
lowing are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named directory does not exist.

[ELOOP] Too many symbolic links were encountered in translating the path-

‘ name.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] path points outside the process’s allocated address space.

[EIO] An I/0 error occurred while reading from or writing to the file sys-
tem.

SEE ALSO
chroot(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CHMOD (2-BSD) RISC/os Programmer’s Reference CHMOD (2-BSD)

NAME
chmod - change mode of file

SYNOPSIS
chmod (path, mode)
char spath;
int mode;

fchmod(fd, mode)
int fd, mode;
DESCRIPTION)
The file whose name is given by path or referenced by the descriptor fd has its mode changed

to mode. Modes are constructed by or’ing together some combination of the following,
defined in <sys/inode.h>:

ISUID 04000 set user ID on execution

ISGID 02000 set group ID on execution

ISVTX 01000 ‘sticky bit’ (see below)

IREAD 00400 read by owner

IWRITE 00200 write by owner

IEXEC 00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode ISVTX (the ‘sticky
bit’) prevents the system from abandoning the swap-space image of the program-text portion
of the file when its last user terminates, Ability to set this bit on executable files is restricted
to the super-user.

If mode ISVTX (the ‘sticky bit’) is set on a directory, an unprivileged user may not delete or
rename files of other users in that directory. For more details of the properties of the sticky
bit, see sticky(8).

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits unless the
user is the super-user. This makes the system somewhat more secure by protecting set-user-id
(set-group-id) files from remaining set-user-id (set-group-id) if they are modified, at the expense
of a degree of compatibility.

RETURN VALUE o
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Chmod will fail and the file mode will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EPERM] The effective user ID does not match the owner of the file and the effective

MIPS Computer Systems, Inc. February 16, 1989 Page 1

CHMOD (2-BSD) RISC/os Programmer’s Reference -~ CHMOD (2-BSD)

user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT)] Path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.

Fchmod will fail if:

[EBADF] ~ The descriptor is not valid.

[EINVAL] Fd refers to a socket, not to a file,

[EROFS] The file resides on a read-only file system.

[EIO] An I/O error occurred while reading from or writing to the file system.
SEE ALSO

chmod(1), open(2), chown(2), stat(2), sticky(8)

Page 2 February 16, 1989 MIPS Computer Systems, Inc.

CHOWN (2-BSD) RISC/os Programmer’s Reference

CHOWN (2-BSD)

NAME
chown - change owner and group of a file
SYNOPSIS '
chown(path, owner, group)
char xpath;
int owner, group;
fchown(fd, owner, group)
int fd, owner, group;
DESCRIPTION
The file that is named by path or referenced by fd has its owner and group changed as
specified. Only the super-user may change the owner of the file, because if users were able to
give files away, they could defeat the file-space accounting procedures. The owner of the file
may change the group to a group of which he is a member. '
On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent
accidental creation of set-user-id and set-group-id programs.
fchown is particularly useful when used in conjunction with the file locking primitives (see
flock(2)).
One of the owner or group id’s may be left unchanged by specifying it as —1. -
If the final component of path is a symbolic link, the ownership and gfoup of the symbolic
link is changed, not the ownership and group of the file or directory to which it points.
RETURN VALUE
Zero is returned if the operation was successful; -1 is returned if an error occurs, with a more
specific error code being placed in the global variable errno.
ERRORS

chown will fail and the file will be unchanged if:

[ENOTDIR] A component of the path prefix is not a direcfory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EPERM] The effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file sys-

fchown will fail if:

tem.

[EBADF] fd does not refer to a valid descriptor.

[EINVAL] fd refers to a socket, not a file.

[EPERM] The effective user ID is not the super-user.
[EROFS] The named file resides on a read-only file system.

MIPS Computer Systems, Inc.

February 5, 1989 Page 1

CHOWN (2-BSD) RISC/os Programmer’s Reference CHOWN (2-BSD)

[EIO] An I/0 error occurred while reading from or writing to the file sys-
tem.

SEE ALSO
chown(8), chgrp(1), chmod(2), flock(2)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

CLOSE (2-BSD) RISC/os Programmer’s Reference CLOSE (2-BSD)

NAME

close — delete a descriptor

SYNOPSIS

close(d)
int d;

DESCRIPTION

The close call deletes a descriptor from the per-process object reference table. If this is the
last reference to the underlying object, then it will be deactivated. For example, on the last
close of a file the current seek pointer associated with the file is lost; on the last close of a
socket(2) associated naming information and queued data are discarded; on the last close of a
file holding an advisory lock the lock is released (see further flock(2)).

A close of all of a process’s descriptors is automatic on exif, but since there is a limit on the
number of active descriptors per process, close is necessary for programs that deal with many
descriptors.

When a process forks (see fork(2)), all descriptors for the new child process reference the
same objects as they did in the parent before the fork. If a new process is then to be run
using execve(2), the process would normally inherit these descriptors. Most of the descriptors
can be rearranged with dup2(2) or deleted with close before the execve is attempted, but if
some of these descriptors will still be needed if the execve fails, it is necessary to arrange for
them to.be closed if the execve succeeds. For this reason, the call fentl(d, F_SETFD, 1) is pro-

“vided, which arranges that a descriptor will be closed after a successful execve; the call

fentl(d, F_SETFD, 0) restores the default, which is to not close the descriptor.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and the global integer variable errno is set to indicate the error.

ERRORS

close will fail if:

[EBADF] d is not an active descriptor.

SEE ALSO

accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fentl(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CONNECT (2-BSD) RISC/os Programmer’s Reference CONNECT (2-BSD)

connect — initiate a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

. connect(s, name, namelen)
int s; ‘

struct sockaddr sname;

int namelen;

DESCRIPTION

The parameter s is a socket. If it is of type SOCK_DGRAM, then this call specifies the peer
with which the socket is to be associated; this address is that to which datagrams are to be
sent, and the only address from which datagrams are to be received. If the socket is of type
SOCK_STREAM, then this call attempts to make a connection to another socket. The other
socket is specified by name, which is an address in the communications space of the socket.
Fach communications space interprets the name parameter in its own way. Generally, stream
sockets may successfully connect only once; datagram sockets may use connect multiple times
to change their association. Datagram sockets may dissolve the association by connecting to
an invalid address, such as a null address. i

'RETURN VALUE

If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned, and a
more specific error code is stored in errno.

ERRORS

The call fails if:

[EBADF] s is not a valid descriptor.

[ENOTSOCK] s is a descriptor for a file, not a socket.

[EADDRNOTAVAIL] The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this
socket.

[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without establishing a connec-
tion.

[ECONNREFUSED)] The attempt to connect was forcefully rejected.

[ENETUNREA CH] The network isn’t reachable from this host,

[EADDRINUSE] The address is already in use.

[EFAULT] The name parameter specifies an area outside the process address
space.

[EINPROGRESS] The socket is non-blocking and the connection cannot be com-

pleted immediately. It is possible to select(2) for completion by
selecting the socket for writing.

[EALREADY] The socket is non-blocking and a previous connection attempt has
not yet been completed.

The following errors are specific to connecting names in the UNIX domain. These errors may
not apply in future versions of the UNIX IPC domain.

[ENOTDIR] A component of the path prefix is not a directory.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CONNECT (2-BSD)

[EINVAL]
[ENAMETOOLONG]

[ENOENT]
[EACCES]
[EACCES]
[ELOOP]

SEE ALSO

RISC/os Programmer’s Reference CONNECT (2-BSD)

The pathname contains a character with the high-order bit set.

A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

The named socket does not exist.
Search permission is denied for a component of the path prefix.
Write access to the named socket is denied.

Too many symbolic links were encountered in translating the path-
name.

accept(2), select(2), socket(2), getsockname(2)

Page 2

February 5, 1989 MIPS Computer Systems, Inc.

CREAT (2-BSD)

NAME
creat — create a new file

SYNOPSIS
creat(name, mode)
char sname;

DESCRIPTION

RISC/os Programmer’s Reference CREAT (2-BSD)

This interface is made obsolete by open(2).

creat creates a new file or prepares to rewrite an existing file called name, given as the address
of a null-terminated string. If the file did not exist, it is given mode mode, as modified by the
process’s mode mask (see umask(2)). Also see chmod(2) for the construction of the mode

argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned.

NOTES -

The mode given is arbitrary; it need not allow writing. This feature has been used in the past
by programs to construct a simple, exclusive locking mechanism. It is replaced by the
O_EXCL open mode, or flock(2) facility.

RETURN VALUE

The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative descrip-
tor that only permits writing.

ERRORS |

crear will fail and the file will not be created or truncated if one of the following occur:

[ENOTDIR]
[EINVAL]
[ENAMETOOLONG]

[ENOENT]
[ELOOP]

[EACCES]
[EACCES]

[EACCES]
[EISDIR]
[EMFILE]
[ENFILE]
[ENOSPC]

[ENOSPC]

[EDQUOT]

MIPS Computer Systems, Inc.

A component of the path prefix is not a directory.
The pathname contains a character with the high-order bit set.

A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

The named file does not exist.

Too many symbolic links were encountered in translating the path-
name.

Search permission is denied for a component of the path prefix.

The file does not exist and the directory in which it is to be created
is not writable.

The file exists, but it is unwritable.
The file is a directory.

There are already too many files open.
The system file table is full.

The directory in which the entry for the new file is being placed
cannot be extended because there is no space left on the file sys-
tem containing the directory.

There are no free inodes on the file system on which the file is
being created.

The directory in which the entry for the new file is being placed
cannot be extended because the user’s quota of disk blocks on the
file system containing the directory has been exhausted.

February 5, 1989 Page 1

CREAT (2-BSD)

[EDQUOT]

[EROFS]
[ENXIO]

[ETXTBSY]
[EIO]

[EFAULT]
[EOPNOTSUPP]
SEE ALSO

RISC/os Programmer’s Reference CREAT(2-BSD)

The user’s quota of inodes on the file system on which the file is
being created has been exhausted.

The named file resides on a read-only file system.

The file is a character special or block special file, and the associ-
ated device does not exist.

The file is a pure procedure (shared text) file that is being exe-
cuted.

An /O error occurred while making the directory entry or allocat-
ing the inode.

name points outside the process’s allocated address space.

The file was a socket (not currently implemented).

open(2), write(2), close(2), chmod(2), umask(2)

Page 2

February 5, 1989 MIPS Computer Systems, Inc.

DUP (2-BSD) RISC/os Programmer’s Reference - DUP(2-BSD)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newd = dup(oldd)
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

DESCRIPTION
dup duplicates an existing object descriptor. The argument oldd is a small non-negative
integer index in the per-process descriptor table. The value must be less than the size of the
table, which is returned by getdtablesize(2). The new descriptor returned by the call, newd, is
the lowest numbered descriptor that is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using oldd
and newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2),
write(2) and Iseek(2) calls all move a single pointer into the file, and append mode, non-
blocking I/0 and asynchronous I/O options are shared between the references. If a separate
pointer into the file is desired, a different object reference to the file must be obtained by issu-
ing an additional open(2) call. The close-on-exec flag on the new file descriptor is unset.

In the second form of the call, the value of newd desired is specified. If this descriptor is
already in use, the descriptor is first deallocated as if a close(2).call had been done first.

RETURN VALUE
The value —1 is returned if an error occurs in either call. The external variable errno indicates
the cause of the error. ‘

ERRORS
dup and dup? fail if:
[EBADF] oldd or newd is not a valid active descriptor
[EMFILE] Too many descriptors are active.

SEE ALSO

accept(2), open(2), close(2), fentl(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

MIPS Computer Systems, Inc. February 8, 1989 Page 1

EXECVE (2-BSD) RISC/os Programmer’s Reference EXECVE (2-BSD)

NAME

execve — execute a file

SYNOPSIS

execve(name, argv, envp)
char sname, sargv[], envp[l;

DESCRIPTION

execve transforms the calling process into a new process. The new process is constructed
from an ordinary file called the new process file. This file is either an executable object file, or
a file of data for an interpreter. An executable object file consists of an identifying header,
followed by pages of data representing the initial program (text) and initialized data pages.
Additional pages may be specified by the header to be initialized with zero data. See a.out(5).

An interpreter file begins with a line of the form “#! interpreter”. When an interpreter file is
execve ’d, the system execve’s the specified interpreter, giving it the name of the originally
exec’d file as an argument and shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This is
the mechanism whereby different process images become active.

The argument argv is a null-terminated array of character pointers to null-terminated character
strings. These strings constitute the argument list to be made available to the new process.
By convention, at least one argument must be present in this array, and the first element of
this array should be the name of the executed program (i.e., the last component of name).

The argument envp is also a null-terminated array of character pointers to null-terminated
strings. These strings pass information to the new process that is not directly an argument to
the command (see environ(7)).

Descriptors open in the calling process remain open in the new process, except for those for
which the close-on-exec flag is set (see close(2)). Descriptors that remain open are unaffected
by execve.

Ignored signals remain ignored across an execve, but signals that are caught are reset to their
default values. Blocked signals remain blocked regardless of changes to the signal action.
The signal stack is reset to be undefined (see sigvec(2) for more information).

Each process has real user and group IDs and an effective user and group IDs. The real ID
identifies the person using the system; the effective ID determines his access privileges. execve
changes the effective user and group ID to the owner of the executed file if the file has the
“set-user-ID”” or “set-group-ID”’ modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling process:

process ID see getpid (2)
parent process ID see getppid (2)
process group ID see getpgrp (2)
access groups see gergroups (2)
working directory see chdir (2)
root directory see chroot (2)
control terminal see 1ty (4)
resource usages see getrusage (2)
interval timers see getitimer (2)
resource limits see getrlimit (2)
file mode mask see umask (2)
signal mask see sigvec (2), sigmask (2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

EXECVE (2-BSD)

RISC/o0s Programmer’s Reference EXECVE (2-BSD)

When the executed program begins, it is called as follows:

main(argc, argv, envp)
int argc;
char s+argv, ssenvp;

where argc is the number of elements in argv (the “arg count”) and argv is the array of charac-
ter pointers to the arguments themselves.

envp is a pointer to an array of strings that constitute the environment of the process. A
pointer to this array is also stored in the global variable “environ”. Fach string consists of a
name, an ‘“=”, and a null-terminated value. The array of pointers is terminated by a null
pointer. The shell sh(1) passes an environment entry for each global shell variable defined
when the program is called. See environ(7) for some conventionally used names.

RETURN VALUE

If execve returns to the calling process an error has occurred; the return value will be -1 and
the global variable errno will contain an error code.

ERRORS
execve will fail and return to the calling process if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high—order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

[ENOENT] The new process file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the path-
name. :

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execute permission.

[ENOEXEC] The new process file has the appropriate access permission, but
has an invalid magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is
currently open for writing or reading by some process.

[ENOMEM] The new process requires more virtual memory than is allowed by
the imposed maximum (getrlimit(2)).

[E2BIG] The number of bytes in the new process’s argument list is larger
than the system-imposed limit. The limit in the system as released
is 20480 bytes (NCARGS) in <sys/param.h> .

[EFAULT] The new process file is not as long as indicated by the size values
in its header.

[EFAULT] path , argv , or envp point to an illegal address.

[EIO] An 1/0 error occurred while reading from the file system.

CAVEATS

Page 2

If a program is sefuid to a non-super-user, but is executed when the real uid is ‘‘root”, then
the program has some of the powers of a super-user as well.

February 5, 1989 MIPS Computer Systems, Inc.

EXECVE (2-BSD)

SEE ALSO

RISC/os Programmer’s Reference

exit(2), fork(2), execl(3), environ(7)

MIPS Computer Systems, Inc.

February 5, 1989

EXECVE (2-BSD)

Page 3

EXIT (2-BSD) RISC/os Programmer’s Reference EXIT (2-BSD)

NAME
_exit — terminate a process

SYNOPSIS
_exit(status)
int status;
DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed. This may entail delays, for
example, waiting for output to drain; a process in this state may not be killed, as it is already
dying.

If the parent process of the calling process is executing a wait or is interested in the SIGCHLD

signal, then it is notified of the calling process’s termination and the low-order eight bits of
status are made available to it; see wait(2).

The parent process ID of all of the calling process’s existing child processes are also set to 1.
This means that the initialization process (see intro(2)) inherits each of these processes as
well. Any stopped children are restarted with a hangup signal (SIGHUP).

Most C programs call the library routine exit(3), which performs cleanup actions in the stan-
dard I/0 library before calling _exit .

RETURN YALUE
This call never returns.

SEE ALSO
fork(2), sigvec(2), wait(2), exit(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FCNTL (2-BSD)

NAME

RISC/os Programmer’s Reference FCNTL (2-BSD)

fcntl — file control

SYNOPSIS

#include <fentl.h>

res = fentl(fd, cmd, arg)

int res;

int fd, cmd, arg;

DESCRIPTION

fentl performs a variety of functions on open descriptors. The argument fd is an open descrip-
tor to be operated on by cmd as follows:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL
F_GETLK

F_SETLK

F_SETLKW

F_GETOWN

F_SETOWN

Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to arg.
References the same object as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (i.e., both descriptors share the same file status flags).

The close-on-exec flag associated with the new descriptor is set to remain
open across execve(2) system calls.

Get the close-on-exec flag associated with the descriptor fd. If the low-order
bit is 0, the file will remain open across exec, otherwise the file will be closed
upon execution of exec.

Set the close-on-exec flag associated with fd to the low order bit of arg (0 or 1
as above).

Get descriptor status flags, see /usr/include/fentl.h for their definitions.
Set descriptor status flags, see /ust/include/fcntl.h for their definitions.

Get a description of the first lock which would block the lock specified in the
flock structure pointed to by arg. The information retrieved overwrites the
information in the flock structure. If no lock is found that would prevent this
lock from being created, then the structure is passed back unchanged except
for the lock type which will be set to F_UNLCK. '

Set or clear an advisory record lock according to the flock structure pointed
to by arg. F_SETLK is used to establish shared (F_RDLCK) and exclusive
(F_WRLCK) locks, or to remove either type of lock (F_UNLCK). If the
specified lock cannot be applied, fcntl will return with an error value of -1.

This cmd is the same as F_SETLK except that if a shared or exclusive lock is
blocked by other locks, the requesting process will sleep until the lock may be
applied.

Get the process ID or process group currently receiving SIGIO and SIGURG
signals; process groups are returned as negative values.

Set the process or process group to receive SIGIO and SIGURG signals; pro-
cess groups are specified by supplying arg as negative, otherwise arg is inter-
preted as a process ID.

The SIGIO facilities are enabled by setting the FASYNC flag with F_SETFL.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FCNTL (2-BSD) RISC/os Programmer’s Reference FCNTL (2-BSD)

NOTES

Page 2

Advisory locks allow cooperating processes to perform consistent operations on files, but do
not guarantee exclusive access (i.e., processes may still access files without using advisory
locks, possibly resulting in inconsistencies).

The record locking mechanism allows two types of locks: shared locks (F_RDLCK) and
exclusive locks (F_ZWRLCK). More than one process may hold a shared lock for a particular
segment of a file at any given time, but multiple exclusive, or both shared and exclusive, locks
may not exist simultaneously on any segment.

In order to claim a shared lock, the descriptor must have been opened with read access. The
descriptor on which an exclusive lock is being placed must have been opened with write
access.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type with a cmd of F_SETLK or F_SETLKW; the previous lock will be
released and the new lock applied (possibly after other processes have gained and released the
lock).

If the cmd is F_SETLKW and the requested lock cannot be claimed immediately (e.g.,
another process holds an exclusive lock that partially or completely overlaps the current
request) then the calling process will block until the lock may be acquired. Processes blocked
awaiting a lock may be awakened by signals.

Care should be taken to avoid deadlock situations in applications in which multiple processes
perform blocking locks on a set of common records.

The record that is to be locked or unlocked is described by the flock structure, which is
defined in <fcntl.h> as follows:

struct flock {

short 1type; /+* F_RDLCK, F_WRLCK, or F_UNLCK «/
short 1_whence; /% flag to choose starting offset +/

) long Lstart; /x relative offset, in bytes #/
long Llen; /% length, in bytes; 0 means lock to EOF %/
short 1_pid; /x returned with F_GETLK #/

¥
The flock structure describes the type (I_type), starting offset (I_whence), relative offset
(I_start), and size (I_len) of the segment of the file to be affected. L_whence must be set to 0,
1, or 2 to indicate that the relative offset will be measured from the start of the file, current
position, or end-of-file, respectively. The process id field (I_pid) is only used with the
F_GETLK cmd to return the description of a lock held by another process.

Locks may start and extend beyond the current end-of-file, but may not be negative relative to
the beginning of the file. A lock may be set to always extend to the end-of-file by setting I_len
to zero (0). If such a lock also has [_whence and I_start set to zero (0), the entire file will be
locked. Changing or unlocking a segment from the middle of a larger locked segment leaves
two smaller segments at either end. Locking a segment that is already locked by the calling
process causes the old lock type to be removed and the new lock type to take affect. All
locks associated with a file for a given process are removed when the file is closed or the pro-
cess terminates. Locks are not inherited by the child process in a fork(2) system call.

In order to maintain consistency in the network case, data must not be cached on client
machines. For this reason, file buffering for an NFS file is turned off when the first lock is
attempted on the file. Buffering will remain off as long as the file is open. Programs that do
I/0 buffering in the user address space, however, may have inconsistent results (the standard
I/0 package, for instance, is a common source of unexpected buffering).

February 5, 1989 MIPS Computer Systems, Inc.

FCNTL (2-BSD) RISC/os Programmer’s Reference FCNTL (2-BSD)

The advisory record locking capabilities of fentl are implemented throughout the network by
the network lock daemon; see lockd(8C). If the file server crashes and is rebooted, the lock
daemon will attempt to recover all locks that were associated with that server. If a lock can-
not be reclaimed, the process that held the lock will be issued a SIGLOST signal.

RETURN VALUE

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD A new descriptor.

F_GETFD Value of flag (only the low-order bit is defined).
F_GETFL Value of flags.

F_GETOWN Value of descriptor owner.

other Value other than -1.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

ERRORS
_ fentl will fail if one or more of the following are true:

EBADF fd is not a valid open descriptor.

[EMBMEILE c¢md is F_DUPFD and the maximum allowed number of descriptors are
currently open.

EINVAL cmd is F_DUPFD and arg is negative or greater than the maximum allowable
number (see getdtablesize(2)).

EFAULT cmd is F_GETLK, F_SETLK, or F_SETLKW and arg points to an invalid
address.

EINVAL cmd is F_GETLK, F_SETLK, or F_SETLKW and the data arg points to is
not valid. ' ‘

EBADF cmd is F_SETLK or F_SETLKW and the process does not have the appropri-

: ate read or write permissions on the file.

EAGAIN cmd is F_SETLK, the lock type (I_type) is F_RDLCK (shared lock), and the

segment of the file to be locked already has an exclusive lock held by another
process. This error will also be returned if the lock type is F_WRLCK
(exclusive lock) and another process already has the segment locked with
either a shared or exclusive lock.

cmd is F_SETLKW and a signal interrupted the process while it was waiting for
the lock to be granted.
ENOLCK cmd is F_SETLK or F_SETLKW and there are no more file lock entries
available.
SEE ALSO

BUGS

close(2), execve(2), getdtablesize(2), open(2V), sigvec(2), lockf(3), lockd(8C)

File locks obtained through the fcntl mechanism do not interact in any way with those
acquired via flock(2). They do, however, work correctly with the exclusive locks claimed by
lockf(3).

F_GETLK returns F_UNLCK if the requesting process holds the specified lock. Thus, there

is no way for a process to determine if it is still holding a specific lock after catching a
SIGLOST signal.

In a network environment, the value of /_pid returned by F_GETLK is next to useless.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

FIXADE (2-BSD) RISC/os Programmer’s Reference FIXADE (2-BSD)

NAME

fixade - fix address exceptions (unaligned references)

SYNOPSIS

fixade(x)
int x;

DESCRIPTION

This system call enables or disables kernel fix up of misaligned memory references. The MIPS
hardware traps load and store operations where the address is not a multiple of the number of
bytes loaded or stored. Usually this trap indicates incorrect program operation and so by
default the kernel converts this trap into a SIGBUS signal to the process, typically causing a
core dump for debugging.

Older programs developed on systems with lax alignment constraints sometimes make occa-
sional misaligned references in course of correct operation. The best way to port such pro-
grams to MIPS hardware is to correct the program by aligning the data. A SIGBUS handler
exists to assist the programmer in locating unaligned references. See unaligned(3).

Some applications, however, must deal with unaligned data. The MIPS architecture provides
special instructions, supported by builtin assembler macros, for loading and storing unaligned
data. These applications can use these instructions where appropriate. Non-assembler pro-
grams can access these instructions via calls, also described in unaligned (3). '

When it is inappropriate to modify the application to either align the data properly, or to use
special access methods for unaligned data, this system call, fixade, can be used as a method of
last resort. This system call directs the kernel to handle misaligned traps and emulate an
unaligned reference. The program no longer receives a SIGBUS signal. This emulation is
slow, and heavy use will significantly slow down program execution.

A non-zero argument enables and a zero argument disables the fix up.

If the program gets an address exception when making a reference outside its address space, it
will still get a SIGBUS signal even if this is enabled.

SEE ALSO

unaligned(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FLOCK (2-BSD) RISC/os Programmer’s Reference FLOCK (2-BSD)

NAME

flock — apply or remove an advisory lock on an open file

SYNOPSIS

#include <sys/file.h>

#define LOCK_SH 1 /+ shared lock =/

##define LOCK_EX 2 /% exclusive lock */

#define LOCK_NB 4 /% don’t block when locking */
8

#defineLOCK_UN

flock(fd, operation)
int fd, operation;

/+ unlock +/

DESCRIPTION

flock applies or removes an advisory lock on the file associated with the file descriptor fd. A

* lock is applied by specifying an operation parameter that is the inclusive or of LOCK_SH or

LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN. o

Advisory locks allow cooperating processes to perform consistent operations on files, but do
not guarantee consistency (i.e., processes may still access files without using advisory locks
possibly resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any
time multiple shared locks may be applied to a file, but at no time are multiple exclusive, or
both shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type; this results in the previous lock being released and the new lock applied
(possibly after other processes have gained and released the lock).

Requesting a lock on an object that is already locked normally causes the caller to be blocked
until the lock may be acquired. If LOCK_NB is included in operation, then this will not hap-
pen; instead the call will fail and the error EWOULDBLOCK will be returned.

NOTES

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or
fork(2) do not result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the
parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE

~ Zero is returned if the operation was successful; on an error a —1 is returned and an error
code is left in the global location errno.

ERRORS

The flock call fails if:
[EMWOULDBLOCK] The file is locked and the LOCK_NB option was specified.

[EBADF] The argument fd is an invalid descriptor.
[EINVAL] The argument fd refers to an object other than a file.
SEE ALSO

open(2), close(2), dup(2), execve(2), fork(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FORK (2-BSD) RISC/os Programmer’s Reference FORK (2-BSD)

NAME

fork — create a new process

SYNOPSIS

pid = fork()
int pid;
DESCRIPTION

fork causes creation of a_new process. The new process (child process) is an exact copy of
the calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent
process).

The child process has its own copy of the parent’s descriptors. These descriptors refer-
ence the same underlying objects, so that, for instance, file pointers in file objects are
shared between the child and the parent, so that an Iseek (2) on a descriptor in the child
process can affect a subsequent read or write by the parent. This descriptor copying is
also used by the shell to establish standard input and output for newly created processes
as well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit(2).

The child process does not receive real interval timer signals that were arranged by the
parent; however, both virtual and profiling interval timer signals will continue to arrive.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro-
cess ID of the child process to the parent process. Otherwise, a value of -1 is returned to the
parent process, no child process is created, and the global variable errno is set to indicate the

error.
ERRORS
fork will fail and no child process will be created if one or more of the following are true:
[EAGAIN] The system-imposed limit on the total number of processes under
execution would be exceeded. This limit is configuration-
dependent.
[EAGAIN] The system-imposed limit MAXUPRC (<sys/param.h>) on the

total number of processes under execution by a single user would
be exceeded.

[ENOMEM] There is insufficient swap space for the new process.

SEE ALSO

execve(2), wait(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FP_SIGINTR (2-BSD) RISC/os i’rogrammer’s Reference - FP_SIGINTR (2-BSD)

NAME

fp_sigintr — generate a SIGFPE signal on floating-point interrupts
SYNOPSIS

int fp_sigintr(x)

int x;
DESCRIPTION

The fp_sigtintr system call causes every other floating-point interrupt to generate a SIGFPE sig-
nal, If the argument is 1 the next floating-point interrupt will cause a signal with the following
one not causing a signal. If the argument is a 2 then the the next floating-point interrupt will
not cause a signal with the following one causing a signal. If the argument is a O then the this
feature is disabled and floating-point interrupts will not cause a signal.

This is intended for use by fpi(3) to analyze the causes of floating-point interrupts.

ALSO SEE

fpi(3)
R2010 Floating Point Coprocessor Architecture
R2360 Floating Point Board Product Description

MIPS Computer Systems, Inc. | February 5, 1989 Page 1

FSYNC (2-BSD) RISC/os Programmer’s Reference FSYNC (2-BSD)

NAME

fsync — synchronize a file’s in-core state with that on disk
SYNOPSIS

fsync(fd)

int fd;
DESCRIPTION

fsync causes all modified data and attributes of fd to be moved to a permanent storage device.
This normally results in all in-core modified copies of buffers for the associated file to be writ-
ten to a disk.

fsync should be used by programs that require a file to be in a known state, for example, in
building a simple transaction facility.

RETURN VALUE
A 0 value is returned on success. A -1 value indicates an error.
ERRORS
The fsync fails if:
[EBADF] Fd is not a valid descriptor.
[EINVAL] fd refers to a socket, not to a file.
[EIO] An 1/O error occurred while readi’ng from or writing to the file sys-
tem.
SEE ALSO

sync(2), sync(8), update(8)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETDIRENTRIES (2-BSD) RISC/os Programmer’s Reference GETDIRENTRIES (2-BSD)

NAME
getdirentries — gets directory entries in a filesystem independent format

SYNOPSIS
#include <sys/dir.h>

cc = getdirentries(fd, buf, nbytes, basep)
int cc, fd;

char sbuf;

int nbytes;

long sbasep;

DESCRIPTION
getdirentries attempts to put directory entries from the directory referenced by the file descrip-
tor fd into the buffer pointed to by buf, in a filesystem independent format. Up to nbyres of
data will be transferred. nbytes must be greater than or equal to the block size associated with
the file, see star(2). Sizes less than this may cause errors on certain filesystems.

The data in the buffer is a series of direct structures each containing the following entries:

unsigned long d_fileno;

unsigned short d_reclen;

unsigned short d_namlen;

char d_namé[MA XNAMELEN + 1]; / see below #/

The d_fileno entry is a number which is unique for each distinct file in the filesystem. Files
that are linked by hard links (see link(2)) have the same d_fileno. The d_reclen entry is the
length, in bytes, of the directory record. The d_name entry contains a null terminated file
name. The d_namlen entry specifies the length of the file name. Thus the actual size of
d_name may vary from 2 to MAXNAMELEN + 1.

The structures are not necessarily tightly packed. The d_reclen entry may be used as an offset
from the beginning of a direct structure to the next structure, if any.

Upon return, the actual number of bytes transferred is returned. The current position pointer
associated with fd is set to point to the next block of entries. The pointer is not necessarily
incremented by the number of bytes returned by gerdirentries. If the value returned is zero,
the end of the directory has been reached. The current position pointer may be set and
retrieved by Iseek(2). getdirentries writes the position of the block read into the location
pointed to by basep. It is not safe to set the current position pointer to any value other than a
value previously returned by Iseek(2) or a value previously returned in the location pointed to
by basep or zero.

RETURN VALUE .
If successful, the number of bytes actually transferred is returned. Otherwise, a —1 is returned
and the global variable errno is set to indicate the error.

ERRORS
getdirentries will fail if one or more of the following are true:

EBADF fd is not a valid file descriptor open for reading.

EFAULT FEither buf or basep point outside the allocated address space.

EIO An I/0 error occurred while reading from or writing to the file sys-
tem.

EINTR A read from a slow device was interrupted before any data arrived

by the delivery of a signal.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETDIRENTRIES (2-BSD) RISC/os Programmer’s Reference GETDIRENTRIES (2-BSD)

SEE ALSO
open(2V), Iseek(2)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

GETDOMAINNAME (2-BSD) RISC/os Programmer’s Reference GETDOMAINNAME (2-BSD)

NAME
getdomainname, setdomainname — get/set name of current domain

SYNOPSIS
getdomainname (name, namelen)
char sname;
int namelen;

setdomainname (name, namelen)
char xname;
int namelen;

DESCRIPTION
getdomainname returns the name of the domain for the current processor, as previously set by
setdomainname. The parameter namelen specifies the size of the name array. The returned
name is null-terminated unless insufficient space is provided.

setdomainname sets the domain of the host machine to be name, which has length namelen .
This call is restricted to the super-user and is normally used only when the system is
bootstrapped.

The purpose of domains is to enable two distinct networks that may have host names in com-
mon to merge. Each network would be distinguished by having a different domain name. At
the current time, only the yellow pages service makes use of domains.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the cali fails, then a value of —1 is returned and
an error code is placed in the global location errno.

ERRORS
The following errors may be returned by these calls:

EFAULT The name parameter gave an invalid address.
EPERM The caller was not the super-user. This error only applies to set-
domainname.
WARNINGS

Domain names are limited to 255 characters.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETDTABLESIZE (2-BSD) RISC/os Programmer’s Reference GETDTABLESIZE (2-BSD)

NAME

getdtablesize — get descriptor table size
SYNOPSIS

nfds = getdtablesize()

int nfds;
DESCRIPTION

Each process has a fixed size descriptor table, which is guaranteed to have at least 20 slots.
The entries in the descriptor table are numbered with small integers starting at 0. The call
getdtablesize returns the size of this table.

SEE ALSO
close(2), dup(2), open(2), select(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETGID (2-BSD) RISC/os Programmer’s Reference GETGID (2-BSD)

NAME
getgid, getegid — get group identity
SYNOPSIS
#include <sys/types.h>
gid = getgid() .
gid_t gid;
egid = getegid()
gid_t egid;
DESCRIPTION
getgid returns the real group ID of the current process, getegid the effective group ID.
The real group ID is specified at login time.
The effective group ID is more transient, and determines additional access permission during-
execution of a “set-group-ID” process, and it is for such processes that gergid is most useful.

SEE ALSO
getuid(2), setregid(2), setgid(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETGROUPS (2-BSD) RISC/os Programmer’s Reference GETGROUPS (2-BSD)

NAME

getgroups — get group access list
SYNOPSIS

#include <sys/param.h>

ngroups = getgroups(gidsetlen, gidset)
int ngroups, gidsetlen, xgidset;

DESCRIPTION _
getgroups gets the current group access list of the user process and stores it in the array gidser.
The parameter gidsetlen indicates the number of entries that may be placed in gidset. get-
groups returns the actual number of groups returned in gidset. No more than NGROUPS, as
defined in <sys/param.h>, will ever be returned.

RETURN VALUE
A successful call returns the number of groups in the group set. A value of -1 indicates that
an error occurred, and the error code is stored in the global variable errno .

ERRORS
The possible errors for gefgroup are:

[EINVAL] The argument gidsetlen is smaller than the number of groups in the
group set.
[EFAULT] The argument gidset specifies an invalid address.
SEE ALSO
setgroups(2), initgroups(3X)
WARNING
The gidset array should be of type gid_t, but remains integer for compatibility with earlier sys-
tems.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETHOSTID (2-BSD) RISC/os Programmer’s Reference GETHOSTID (2-BSD)

NAME (
gethostid, sethostid — get/set unique identifier of current host -

SYNOPSIS
hostid = gethostid()
long hostid;
sethostid (hostid)
long hostid;
DESCRIPTION .
sethostid establishes a 32-bit identifier for the current processor that is intended to be unique

among all UNIX systems in existence. This is normally a DARPA Internet address for the local
machine. This call is allowed only to the super-user and is normally performed at boot time.

gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(1), gethostname(2)

ERRORS
32 bits for the identifier is too small.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETHOSTNAME (2-BSD) RISC/os Programmer’s Reference GETHOSTNAME (2-BSD)

NAME
gethostname, sethostname — get/set name of current host

SYNOPSIS
gethostname (name, namelen)
char xname;
int namelen;

sethostname (name, namelen)
.char *name;
int namelen;

DESCRIPTION
gethostname returns the standard host name for the current processor, as previously set by
sethostname . The parameter namelen specifies the size of the name array. The returned name
is null-terminated unless insufficient space is provided.

sethostname sets the name of the host machine to be name, which has length namelen. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and
an error code is placed in the global location ermo.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an invalid address.
[EPERM] The caller tried to set the hostname and was not the super-user.
[EINVAL] The size specified by I. namelen is longer than the maximum host name length.

SEE ALSO
gethostid(2)

BUGS
Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>) characters, currently
64.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETITIMER (2-BSD) RISC/os Programmer’s Reference GETITIMER (2-BSD)

NAME

getitimer, setitimer — get/set value of interval timer

SYNOPSIS

#include <sys/time.h>

#define ITIMER_REAL 0 /% real time intervals +/

#define ITTIMER_VIRTUAL 1 /% virtual time intervals =/
#define ITTIMER_PROF 2 /% user and system virtual time +/

getitimer(which, value)

int which;

struct itimerval xvalue;
setitimer(which, value, ovalue)
int which;

struct itimerval xvalue, xovalue;

DESCRIPTION

NOTES

The system provides each process with three interval timers, defined in <sys/fime.h>. The
getitimer call returns the current value for the timer specified in which in the structure at value.
The setitimer call sets a timer to the specified value (retumlng the previous value of the timer if
ovalue is nonzero).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /+ timer interval =/
struct timeval it_value; /% current value #/
¥
If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non-
zero, it specifies a value to be used in reloading ir_value when the timer expires. Setting
it_value to 0 disables a timer. - Setting it_interval to 0 causes a timer to be disabled after its
next expiration (assuming ir_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution
(on the VAX, 10 milliseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this
timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the pro-
cess is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run-
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling
the execution of interpreted programs. Each time the ITIMER_PRO timer expires, the SIG-
PROF signal is delivered. Because this signal may interrupt in-progress system calls, programs
using this timer must be prepared to restart interrupted system calls.

Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a
time value to zero, timerisset tests if a time value is non-zero, and timercmp compares two time
values (beware that >= and <= do not work with this macro).

RETURN VALUE

If the calis succeed, a value of O is returned. If an error occurs, the value —1 is returned, and
a more precise error code is placed in the global variable errno.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETITIMER (2-BSD) RISC/os Programmer’s Reference GETITIMER (2-BSD)

ERRORS

The possible errors are:

[EFAULT] The value parameter specified a bad address.

[EINVAL] A value parameter specified a time was too large to be handled.
SEE ALSO

sigvec(2), gettimeofday(2)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

GETPAGESIZE (2-BSD) " RISC/os Programmer’s Reference GETPAGESIZE (2-BSD)

NAME

getpagesize — get system page size
SYNOPSIS

pagesize = getpagesize()

int pagesize;
DESCRIPTION

getpagesize returns the number of bytes in a page. Page granularity is the granularity of many
of the memory management calls.

The page size is a system page size and may not be the same as the uhderlying hardware page
size.

SEE ALSO
sbrk(2), pagesize(1)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETPEERNAME (2-BSD) RISC/os Programmer’s Reference GETPEERNAME (2-BSD)

NAME

getpeername — get name of connected peer
SYNOPSIS

getpeername(s, name, namelen)

int s;

struct sockaddr sname;
int xnamelen;

DESCRIPTION
getpeername returns the name of the peer connected to socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con-

tains the actual size of the name returned (in bytes). The name is truncated if the buffer pro-
vided is too small.

DIAGNOSTICS
A 0 is returned if the call succeeds, —1 if it fails.
ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.
[ENOBUFS] Insufficient resources were available in the system to perform the
operation.
[EFAULT] The name parameter points to memory not in a valid part of the

process address space.

SEE ALSO
accept(2), bind(2), socket(2), getsockname(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETPGRP (2-BSD) RISC/os Programmer’s Reference GETPGRP (2-BSD)

NAME
getpgrp — get process group
SYNOPSIS
pgrp = getpgrp (pid)
int pgrp;
int pid;
DESCRIPTION ' -
The process group of the specified process is returned by geipgrp. If pid is zero, then the call
applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for
their input: processes that have the same process group as the terminal are foreground and
may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csh(1) to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in r1y(4) are used to get/set the
process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETPID (2-BSD) RISC/os Programmer’s Reference GETPID (2-BSD)

NAME

getpid, getppid — get process identification
SYNOPSIS

pid = getpid()

int pid;

- ppid = getppid(

int ppid;

DESCRIPTION

getpid returns the process ID of the current process. Most often it is used to generate
uniquely-named temporary files.

getpid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETPRIORITY (2-BSD) RISC/os Programmer’s Reference GETPRIORITY (2-BSD)

NAME
getpriority, setpriority — get/set program scheduling priority

SYNOPSIS
#include <sys/resource.h>
prio = getpriority (which, who)
int prio, which, who;
setpriority (which, who, prio)
int which, who, prio;

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and who
is obtained with the getpriority call and set with the setpriority call. which is one of
PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a pro-
cess identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID for
PRIO_USER). A zero value of who denotes the current process, process group, or user. prio

is a value in the range —20 to 20. The default priority is 0; lower priorities cause more favor-
able scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The setpriority call sets the priorities of all of the specified processes to
the specified value. Only the super-user may lower priorities.

RETURN VALUE
Since getpriority can legitimately return the value -1, it is necessary to clear the external vari-
able errno prior to the call, then check it afterward to determine if a —1 is an error or a legiti-
mate value. The setpriority call returns 0 if there is no error, or —1 if there is.

ERRORS ,
getpriority and setpriority may return one of the following errors:

[ESRCH] No process was located using the which and who values specified.

[EINVAL] which was not one of PRIO_PROCESS, PRIO_PGRP, or
PRIO_USER.,

In addition to the errors indicated above, setpriority may fail with one of the following errors

returned:

[EPERM] A process was located, but neither its effective nor real user ID
matched the effective user ID of the caller.

[EACCES] A non super-user attempted to lower a process priority.

SEE ALSO

nice(1), fork(2), renice(8)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETRLIMIT (2-BSD) RISC/os Programmer’s Reference GETRLIMIT (2-BSD)

NAME

getrlimit, setrlimit — control maximum system resource consumption

SYNOPSIS

#include <sys/time.h>
#include <sys/resource.h>

getrlimit(resource, rlp)
int resource;
struct rlimit *rlp;

setrlimit(resource, rlp)
int resource;
struct rlimit «rlp;

DESCRIPTION

Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT_CPU the maximum amount of cpu time (in seconds) to be used by each
process. -

RLIMIT_FSIZE the largest size, in bytes, of any single file that may be created.

RLIMIT_DATA the maximum size, in bytes, of the data segment for a process; this

defines how far a program may extend its break with the sbrk(2)
system call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; -
this defines how far a program’s stack segment may be extended.
- Stack extension is performed automatically by the system.

RLIMIT_CORE the largest size, in bytes, of a core file that may be created.

RLIMIT_RSS the maximum size, in bytes, to which a process’s resident set size
may grow. This imposes a limit on the amount of physical
memory to be given to a process; if memory is tight, the system
will prefer to take memory from processes that are exceeding their
declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process may receive a signal (for example, if the cpu time is exceeded), but it will be allowed
to continue execution until it reaches the hard limit (or modifies its resource limit). The rlimit
structure is used to specify the hard and soft limits on a resource,

struct rlimit {
int rlim_cur; /% current (soft) limit +/
int rlim_max; /% hard limit %/
¥
Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within
the range from O to rlim_max or (irreversibly) lower rlim_max.

An “infinite” value for a limit is defined as RLIM_INFINITY (Ox7fffffff).

Because this information is stored in the per-process information, this system call must be exe-
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus
a builtin command to csh(1).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETRLIMIT (2-BSD) © RISC/os Programmer’s Reference GETRLIMIT (2-BSD)

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a break call fails if the data space limit is reached. When the stack limit is
reached, the process receives a segmentation fault (SIGSEGV); if this signal is not caught by a
handler using the signal stack, this signal will kill the process.

A file 1/0 operation that would create a file that is too large will cause a signal SIGXFSZ to be
generated; this normally terminates the process, but may be caught. When the soft cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process.

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit.
A return value of -1 indicates that an error occurred, and an error code is stored in the global
location errno. '

ERRORS

The possible errors are:

{EFAULT] The address specified for rip is invalid.

[EPERM] The limit specified to setrlimit would have raised the maximum

limit value, and the caller is not the super-user.
SEE ALSO
~csh(1), quota(2), sigvec(2), sigstack(2)

WARNINGS

There should be limit and unlimit commands in sk (1) as well as in csh.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

GETRUSAGE (2-BSD)

NAME

RISC/os Programmer’s Reference

GETRUSAGE (2-BSD)

getrusage — get information about resource utilization

SYNOPSIS

#include <sys/time.h>
#include <sys/resource.h>

##define RUSAGE_SELF 0
#define RUSAGE_CHILDREN -1

/* calling process x/

/+ terminated child processes +/
getrusage (who, rusage)

int who;

struct rusage srusage;

mips_getrusage (who, rusage, rusage_size)
int who;

struct rusage xrusage;

int rusage_size;

DESCRIPTION

getrusage returns information describing the resources utilized by the current process, or all its
terminated child processes. mips_getrusage performs the same function as gefrusage but takes
a third argument which is the size of the rusage structure. - This interface will be used in the
future to return MIPS hardware specific resource use information as the rusage structure is
extended.

The who parameter is one of RUSAGE_SELF or RUSAGE_CHILDREN. The buffer to which

rusage points will be filled in with the following structure:

struct rusage {

struct timeval ru_utime;
struct timeval ru_stime;

/% user time used »/
/x system time used +/

nt ru_maxrss;

int ru_ixrss; /+ integral shared text memory size */
int ru_idrss; /x integral unshared data size +/
int ru_isrss; /x integral unshared stack size +/
int ru_minflt; /% page reclaims */

int ru_majflt; /% page faults +/

int ru_nswap; /x swaps /

int ru_inblock; /x block input operations %/

int ru_oublock; /+ block output operations /

int ru_msgsnd; /+ messages sent %/

int ru_msgrcv; /+ messages received +/

int ru_nsignals; /+ signals received +/

int Tu_nvcsw; /x voluntary context switches /
int ru_nivcsw; /% involuntary context switches «/

};

The fields are interpreted as follows:

MIPS Computer Systems, Inc.

ru_utime the total amount of time spent executing in user mode.

ru_stime the total amount of time spent in the system executing on behalf of the
process(es).

ru_maxrss the maximum resident set size utilized (in number of pages).

ru_ixrss an “integral” value indicating the amount of memory used by the text

segment that was also shared among other processes. This value is

February 5, 1989 Page 1

GETRUSAGE (2-BSD)

NOTES

ru_idrss

ru_isrss

ru_minflt

ru_majfit
ru_nswap
ru_inblock
ru_outblock

ru_msgsnd

" TU_mSgrcv’

ru_nsignals

ra_nvcsw

ru_nivesw

RISC/o0s Programmer’s Reference GETRUSAGE (2-BSD)

expressed in units of number of pages x seconds-of-execution and is cal-
culated by summing the number of shared memory pages in use each
time the internal system clock ticks and then averaging over 1 second
intervals.

an integral value of the amount of unshared memory residing in the data
segment of a process (expressed in units of number of pages x seconds-
of-execution). :

an integral value of the amount of unshared memory residing in the

~ stack segment of a process (expressed in units of number of pages

seconds-of-execution).

the number of page faults serviced without any 1/0 activity; here 1/O
activity is avoided by ‘‘reclaiming” a page frame from the list of pages
awaiting reallocation.

_ the number of page faults serviced that required 1/0 activity.

the number of times a process was ‘“‘swapped” out of main memory.
the number of times the file system had to perform input.

the number of times the file system had to perform output.

the number of IPC messages sent.

the number of IPC messages received.

the number of signals delivered.

the number of times a context switch resulted due to a process volun-
tarily giving up the processor before its time slice was completed (usually
to await availability of a resource).

the number of times a context switch resulted due to a higher priority
process becoming runnable or because the current process exceeded its
time slice.

The numbers ru_inblock and ru_outblock account only for real I/0; data supplied by the cach-
ing mechanism is charged only to the first process to read or write the data.

ERRORS
The possible errors for getrusage are:

[EINVAL] The who parameter is not a valid value.
[EFAULT] The address specified by the rusage parameter is not in a valid part of
the process address space.
SEE ALSO
gettimeofday(2), wait(2)
WARNING

Page 2

There is no way to obtain information about a child process that has not yet terminated.

February 5, 1989 MIPS Computer Systems, Inc.

GETSOCKNAME (2-BSD) RISC/os Programmer’s Reference GETSOCKNAME (2-BSD)

NAME
getsockname — get socket name
SYNOPSIS
getsockname(s, name, namelen)
int s;

struct sockaddr xname;
int snamelen;

DESCRIPTION

getsockname returns the current name for the specified socket. The namelen parameter should
be initialized to indicate the amount of space pointed to by name. On return it contains the
actual size of the name returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, —1 if it fails.
ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in the system to perform the opera-
tion.
[EFAULT] The name parameter points to memory not in a valid part of the process
address space. '
SEE ALSO
bind(2), socket(2)
WARNING

Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero
length name.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETSOCKOPT (2-BSD) RISC/os Programmer’s Reference GETSOCKOPT (2-BSD)

NAME
getsockopt, setsockopt — get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char xoptval;

int xoptlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char xoptval;

int optlen;

DESCRIPTION

getsockopt and setsockdpt manipulate opfions associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost “socket’ level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the “socket” level, level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the appropri-
ate protocol controlling the option is supplied. For example, to indicate that an option is to
be interpreted by the TCP protocol, level should be set to the protocol number of TCP; see
getprotoent (3N).

The parameters optval and opilen are used to access option values for setsockopt. For get-
sockopt they identify a buffer in which the value for the requested option(s) are to be
returned. For getsockopt, optlen is a value-result parameter, initially containing the size of the
buffer pointed to by optval, and modified on return to indicate the actual size of the value
returned. If no option value is to be supplied or returned, optval may be supplied as 0.

optmame and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains definitions for “socket”
level options, described below. Options at other protocol levels vary in format and name;
consult the appropriate entries in section (4P).

Most socket-level options take an int parameter for oprval. For setsockopt, the parameter
should non-zero to enable a boolean option, or zero if the option is to be disabled.
SO_LINGER uses a struct linger parameter, defined in <sys/socket.h>, which specifies the
desired state of the option and the linger interval (see below).

The following options are recognized at the socket level. Except as noted, each may be exam-
ined with getsockopt and set with setsockopt.

SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse
SO_KEEPALIVE toggle keep connections alive
SO_DONTROUTE toggle routing bypass for outgoing messages
SO_LINGER linger on close if data '

SO_BROADCAST
SO_OOBINLINE

toggle permission to transmit broadcast messages
toggle reception of out-of-band data in

SO_SNDBUF set buffer size for output .
SO_RCVBUF set buffer size for input

SO_TYPE get the type of the socket
SO_ERROR get and clear error on the

MIPS Computer Systems, Inc.

February 5, 1989

Page 1

GETSOCKOPT (2-BSD) RISC/os Programmer’s Reference GETSOCKOPT (2-BSD)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indi-
cates that the rules used in validating addresses supplied in a bind(2) call should allow reuse of
local addresses. SO_KEEPALIVE enables the periodic transmission of messages on a con-
nected socket. Should the connected party fail to respond to these messages, the connection
is considered broken and processes using the socket are notified via a SIGPIPE signal.
SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facili-
ties. Instead, messages are directed to the appropriate network interface according to the net-
work portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on socket and a
close(2) is performed. If the socket promises reliable delivery of data and SO_LINGER is set,
the system will block the process on the close attempt until it is able to transmit the data or
until it decides it is unable to deliver the information (a timeout period, termed the linger
interval, is specified in the setsockopt call when SO_LINGER is requested). If SO_LINGER is
disabled and a close is issued, the system will process the close in a manner that allows the
process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the socket.
Broadcast was a privileged operation in earlier versions of the system. With protocols that
support out-of-band data, the SO_OOBINLINE option requests that out-of-band data be placed
in the normal data input queue as received; it will then be accessible with recv or read calls
without the MSG_OOB flag. SO_SNDBUF and SO_RCVBUF are options to adjust the normal
buffer sizes allocated for output and input buffers, respectively. The buffer size may be
increased for high-volume connections, or may be decreased to limit the possible backlog of
incoming data. The system places an absolute limit on these values. Finally, SO_TYPE and
SO_ERROR are options used only with setsockopt. SO_TYPE returns the type of the socket,
such as SOCK_STREAM,; it is useful for servers that inherit sockets on startup. SO_ERROR
returns any pending error on the socket and clears the error status. It may be used to check
for asynchronous errors on connected datagram sockets or for other asynchronous errors.

RETURN VALUE

A 0 is returned if the call succeeds, —1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown at the level indicated.

[EFAULT)] The address poihted to by optval is not in a valid part of the process

address space. For getsockopt, this error may also be returned if optlen
is not in a valid part of the process address space.

SEE ALSO

ioctl(2), socket(2), getprotoent(3N)

WARNING

Page 2

Several of the socket options should be handled at lower levels of the system.

February 5, 1989 MIPS Computer Systems, Inc.

GETTIMEOFDAY (2-BSD) ' RISC/os Programmer’s Reference GETTIMEOFDAY (2-BSD)

NAME
gettimeofday, settimeofday — get/set date and time

SYNOPSIS
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval xtp;
struct timezone xtzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone xtzp;

DESCRIPTION
The system’s notion of the current Greenwich time and the current time zone is obtained with
the gettimeofday call, and set with the setfimeofday call. The time is expressed in seconds and
microseconds since midnight (0 hour), January 1, 1970. The resolution of the system clock is

hardware dependent, and the time may be updated continuously or in “ticks.” If tzp is zero,
the time zone information will not be returned or set.

The structures pointed to by #p and tzp are defined in <sys/time.h> as:
struct timeval {

long tv_sec; /+ seconds since Jan. 1, 1970 «/
long tv_usec; /% and microseconds /
5
struct timezone {
int -tz_minuteswest;/x of Greenwich «/
int tz_dsttime; /% type of dst correction to apply #/
¥

The fimezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies
locally during the appropriate part of the year.

Only the super-user may set the time of day or time zone.

RETURN
A O return value indicates that the call succeeded. A -1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.
[EPERM] A user other than the super-user attempted to set the time.
SEE ALSO

date(1), adjtime(2), ctime(3), timed(8)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETUID (2-BSD) RISC/os Programmer’s Reference GETUID (2-BSD)

NAME
getuid, geteuid — get user identity

SYNOPSIS
#include <sys/types.h>
uid = getuid()
uid_t wid;
euid = geteuid()
uid_t euid;
DESCRIPTION
getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives the process
additional permissions during execution of “set-user-ID”” mode processes, which use getuid to
determine the real-user-id of the process that invoked them. '

SEE ALSO
getgid(2), setreuid(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

HWCONF (2-BSD) ' RISC/os Programmer’s Reference HWCONF (2-BSD)

NAME
hwconf — get or set hardware configuration information

SYNOPSIS
#include <machine/hweconf.h>

hwconf(option, conf)
int option; -
struct hw_config xconf;

DESCRIPTION
The hwconf system call allows a user process to get or set hardware configuration information.
The specific contents of the hardware configuration structure is dependent upon the particular
release of the kernel and the hardware configuration, but typical contents include MIPS chip
types and revision numbers, MIPS board types and revision numbers and serial numbers, and
non-volatile RAM, NVRAM, environment variables names and values.

option indicates whether the hardware configuration information should be retrieved or
modified.

option may be one of:
HWCONF_GET Return the hardware configuration information

HWCONF_SET Set the specified NVRAM environment variable to the value indicated in
conf . To use this option, call hwconf with the HWCONF_GET option,
modify the value for the desired NVRAM variable, and then call iwconf
with the HWCONF_SET option. Must be super-user.

RETURN VALUE
hdwconf returns the a -1 on failure with errno set to the specific error.

ERRORS

[EINVAL] option is not one of HWCONF_GET or HWCONF_SET.

[EFAULT] conf is not accessable.

[EACCES] Attempt to modify NVRAM environment variable when not super-user.
SEE ALSO

hwconf(8)

“System Programmer’s Guide”
WARNING

MIPS memory board idprom information should be added.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

INTRO (2-BSD) RISC/os Programmer’s Reference INTRO (2-BSD)

NAME
intro — introduction to system calls and error numbers

SYNOPSIS
#include <sys/errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always —1; the individual descriptions specify the details. Note that a number of sys-
tem calls overload the meanings of these error numbers, and that the meanings must be inter-
preted according to the type and circumstances of the call.

As with normal arguments, all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable errno,
which is not cleared on successful calls. Thus errno should be tested only after an error has
occurred.

The following is a complete list of the errors and their names as given in <sys/errno.h>.
Unused. Typically this error indicates an attempt to modify a file in some way forbidden
except to its owner or super-user. It is also returned for attempts by ordinary users to do
things allowed only to the super-user. This error occurs when a file name is specified and the
file should exist but doesn’t, or when one of the directories in a path name does not exist.
The process or process group whose number was given does not exist, or any such process is
already dead. An asynchronous signal (such as interrupt or quit) that the user has elected to
catch occurred during a system call. If execution is resumed after processing the signal and
the system call is not restarted, it will appear as if the interrupted system call returned this
error condition. Some physical I/O error occurred during a read or write. This error may in
some cases occur on a call following the one to which it actually applies. I/O on a special file
refers to a subdevice that does not exist, or beyond the limits of the device. It may also occur
when, for example, an illegal tape drive unit number is selected or a disk pack is not loaded
on a drive. An argument list longer than 20480 bytes (or the current limit, NCARGS in
<sys/param.h>) is presented to execve. A request is made to execute a file that, although it
has the appropriate permissions, does not start with a valid magic number, (see a.out(5)).
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file
that is open only for writing (resp. reading). wait and the process has no living or unwaited-
for children. In a fork, the system’s process table is full or the user is not allowed to create
any more processes. During an execve or break, a program asks for more core or swap space
than the system is able to supply, or a process size limit would be exceeded. A lack of swap
space is normally a temporary condition; however, a lack of core is not a temporary condi-
tion; the maximum size of the text, data, and stack segments is a system parameter. Soft lim-
its may be increased to their corresponding hard limits. An attempt was made to access a file
in a way forbidden by the protection system. The system encountered a hardware fault in
attempting to access the arguments of a system call. A plain file was mentioned where a
block device was required, e.g., in mount. An attempt to mount a device that was already
mounted or an attempt was made to dismount a device on which there is an active file (open
file, current directory, mounted-on file, or active text segment). A request was made to an
exclusive access device that was already in use. An existing file was mentioned in an inap-
propriate context, e.g., link. A hard link to a file on another device was attempted. An
attempt was made to apply an inappropriate system call to a device, e.g., to read a write-only
device, or the device is not configured by the system. A non-directory was specified where a
directory is required, for example, in a path name or as an argument to chdir. An attempt to
write on a directory. Some invalid argument: dismounting a non-mounted device, mentioning
an unknown signal in signal, or some other argument inappropriate for the call. Also set by
math functions, (see math(3)). The system’s table of open files is full, and temporarily no

MIPS Computer Systems, Inc. February 5, 1989 Page 1

INTRO (2-BSD) RISC/os Programmer’s Reference INTRO (2-BSD)

Page 2

more opens can be accepted. As released, the limit on the number of open files per process
is 64. gerdtablesize(2) will obtain the current limit. Customary configuration limit on most
other UNIX systems is 20 per process. The file mentioned in an ioctl is not a terminal or one
of the devices to which this call applies. An attempt to execute a pure-procedure program
that is currently open for writing. Also an attempt to open for wntlng a pure—procedure pro-
gram that is being executed. The size of a file exceeded the maximum (about 2 bytes) A
write to an ordinary file, the creation of a directory or symbolic link, or the creation of a
directory entry failed because no more disk blocks are available on the file system, or the allo-
cation of an inode for a newly created file failed because no more inodes are available on the
file system. An lseek was issued to a socket or pipe. This error may also be issued for other
non-seekable devices. An attempt to modify a file or directory was made on a device
mounted read-only. An attempt to make more than 32767 hard links to a file. A write on a
pipe or socket for which there is no process to read the data. This condition normally gen-
erates a signal; the error is returned if the signal is caught or ignored. The argument of a func-
tion in the math package (3M) is out of the domain of the function. The value of a function
in the math package (3M) is unrepresentable within machine premsmn An operation that
would cause a process to block was attempted on an object in non blockmg mode (see
fentl(2)). An operation that takes a long time to complete (such as a connect(2)) was
attempted on a non-blocking object (see fcntl(2)). An operation was attempted on a non-
blocking object that already had an operation in progress. Self-explanatory. A required
address was omitted from an operation on a socket. A message sent on a socket was larger
than the internal message buffer or some other network limit. A protocol was specified that
does not support the semantics of the socket type requested. For example, you cannot use the
ARPA Internet UDP protocol with type SOCK_STREAM. A bad option or level was specified
in a getsockopt(2) or setsockopt(2) call. The protocol has not been configured into the system
or no implementation for it exists. The support for the socket type has not been configured
into the system or no implementation for it exists. For example, trying to accept a connection
on a datagram socket. The protocol family has not been configured into the system or no
implementation for it exists. An address incompatible with the requested protocol was used.
For example, you shouldn’t necessarily expect to be able to use NS addresses with ARPA
Internet protocols. Only one usage :of each address is normally permitted. Normally results
from an attempt to create a socket with an address not on this machine. A socket operation
encountered a dead network. A socket operation was attempted to an unreachable network.
The host you were connected to crashed and rebooted. A connection abort was caused inter-
nal to your host machine. A connection was forcibly closed by a peer. This normally results
from a loss of the connection on the remote socket due to a timeout or a reboot. An opera-
tion on a socket or pipe was not performed because the system lacked sufficient buffer space
or because a queue was full. A connect request was made on an already connected socket; or,
a sendto or sendmsg request on a connected socket specified a destination when already con-
nected. An request to send or receive data was disallowed because the socket is not con-
nected and (when sending on a datagram socket) no address was supplied. A request to send
data was disallowed because the socket had already been shut down with a previous shut-
down(2) call. A connect or send request failed because the connected party did not properly
respond after a period of time. (The timeout period is dependent on the communication pro-
tocol.) No connection could be made because the target machine actively refused it. This usu-
ally results from trying to connect to a service that is inactive on the foreign host. A path
name lookup involved more than 8 symbolic links. A component of a path name exceeded
255 (MAXNAMELEN) characters, or an entire path name exceeded 1023 (MAXPATHLEN-1)
characters. A socket operation failed because the destination host was down. A socket
operation was attempted to an unreachable host. A directory with entries other than “.” and
“..”” was supplied to a remove directory or rename call. A write to an ordinary file, the crea-
tion of a directory or symbolic link, or the creation of a directory entry failed because the

February 5, 1989 | MIPS Computer Systems, Inc.

INTRO (2-BSD) RISC/os Programmer’s Reference INTRO (2-BSD)

user’s quota of disk blocks was exhausted, or the allocation of an inode for a newly created
file failed because the user’s quota of inodes was exhausted. A client referenced an open file,
but the file has been deleted. An attempt was made to remotely mount a file system into a
path which already has a remotely mounted component.

DEFINITIONS

Process ID

Each active process in the system is uniquely identified by a positive integer called a process
ID. The range of this ID is from 0 to 30000.

Parent process ID A new process is created by a currently active process; (see fork(2)). The
parent process ID of a process is the process ID of its creator.

Process Group ID Each active process is a member of a process group that is identified by a
positive integer called the process group ID. This is the process ID of the group leader. This
grouping permits the signaling of related processes (see killpg(2)) and the job control mechan-
isms of csh(1).

Tty Group ID Each active process can be a member of a terminal group that is identified by a
positive integer called the tty group ID. This grouping is used to arbitrate between multiple
jobs contending for the same terminal; (see csh (1) and 1y (4)).

Real User ID and Real Group Each user on the system is identified by a positive integer
termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished from
others and used in implementing accounting facilities. The positive integer corresponding to
this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the equivalent
attributes of the process that created it.

Effective User Id, Effective Group Id, Access to system resources is governed by three values:
the effective user ID, the effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process’s real user ID and real
group ID respectively. Either may be modified through execution of a set-user-ID or set-
group-ID file (possibly by one its ancestors) (see execve(2)).

The group access list is an additional set of group ID’s used only in determining resource
accessibility. Access checks are performed as described below in “File Access Permissions”.

Super-user A process is recognized as a super-user process and is granted special privileges if
its effective user ID is 0.

Special Processes The processes with a process ID’s of 0, 1, and 2 are special. Process 0 is
the scheduler. Process 1 is the initialization process init, and is the ancestor of every other
process in the system. It is used to control the process structure. Process 2 is the paging dae-
mon.

Descriptor An integer assigned by the system when a file is referenced by open(2) or dup(2),
or when a socket is created by pipe(2), socket(2) or socketpair(2), which uniquely identifies an

MIPS Computer Systems, Inc. February 5, 1989 Page 3

INTRO (2-BSD) RISC/os Programmer’s Reference INTRO (2-BSD)

access path to that file or socket from a given process or any of its children.

File Name Names consisting of up to 255 (MAXNAMELEN) characters may be used to name
an ordinary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding 0 (null)
and the ASCII code for / (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use *, ?, [or] as part of file names becéuse of the special
meaning attached to these characters by the shell. :

Path Name A path name is a null-terminated character string starting with an optional slash
(/), followed by zero or more directory names separated by slashes, optionally followed by a
file name. The total length of a path name must be less than 1024 (MAXPATHLEN) charac-
ters.

If a path name begins with a slash, the path search begins at the root directory. Otherwise,
the search begins from the current working directory. A slash by itself names the root direc-
tory. A null pathname refers to the current directory.

Directory A directory is a special type of file that contains entries that are references to other
files. Directory entries are called links. By convention, a directory contains at least two links,
. and .., referred to as dot and dot-dot respectively. Dot refers to the directory itself and dot-
dot refers to its parent directory.

Root Directory and Current Working Directory Each process has associated with it a concept
of a root directory and a current working directory for the purpose of resolving path name
searches. A process’s root directory need not be the root directory of the root file system.

File Access Permissions Every file in the file system has a set of access permissions. These
permissions are used in determining whether a process may perform a requested operation on
the file (such as opening a file for writing). Access permissions are established at the time a
file is created. They may be changed at some later time through the chmod (2) call.

File access is broken down according to whether a file may be: read, written, or executed.
Directory files use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different classes of
users: the owner of the file, those users in the file’s group, anyone else. Every file has an
independent set of access permissions for each of these classes. When an access check is
made, the system decides if permission should be granted by checking the access information
applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:
The process’s effective user ID is that of the super-user.

The process’s effective user ID matches the user ID of the owner of the file and the owner per-
missions allow the access.

The process’s effective user ID does not match the user ID of the owner of the file, and either
the process’s effective group ID matches the group ID of the file, or the group ID of the file is
in the process’s group access list, and the group permissions allow the access.

Neither the effective user ID nor effective group ID and group access list of the process match
the corresponding user ID and group ID of the file, but the permissions for “other users” allow
access.

February 5, 1989 MIPS Computer Systems, Inc.

INTRO (2-BSD) RISC/os Programmer’s Reference INTRO (2-BSD)

Otherwise, permission is denied.

Sockets and Address Families A socket is an endpoint for communication between processes.
Each socket has queues for sending and receiving data.

Sockets are typed according to their communications properties. These properties include
whether messages sent and received at a socket require the name of the partner, whether com-
munication is reliable, the format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket(2) for
more information about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols.
Each protocol set supports addresses of a certain format. An Address Family is the set of
addresses for a specific group of protocols. Each socket has an address chosen from the
address family in which the socket was created.

SEE ALSO
intro(3), perror(3)

MIPS Computer Systems, Inc. February 5, 1989 Page5

IOCTL (2-BSD) RISC/os Programmer’s Reference IOCTL (2-BSD)

NAME
ioctl — control device

SYNOPSIS
#include <sys/ioctl.h>
ioctl(d, request, argp)
int d; .
unsigned long request;
char xargp;
DESCRIPTION
ioctl performs a variety of functions on open descriptors. In particular, many operating

characteristics of character special files (e.g. terminals) may be controlled with ioctl requests.
The writeups of various devices in section 4 discuss how ioctl applies to them.

An ioctl request has encoded in it whether the argument is an “in” parameter or ‘“‘out”
parameter, and the size of the argument argp in bytes. Macros and defines used in specifying
an ioctl request are located in the file <sys/ioctl.h>.
RETURN VALUE
If an error has occurred, a value of —1 is returned and errno is set to indicate the error.
ERRORS .
ioctl will fail if one or more of the following are true:

[EBADF] D is not a valid descriptor.
[ENOTTY] D is not associated with a character special device.
[ENOTTY] The specified request does not apply to the kind of object that the
descriptor d references.
[EINVAL] Regquest or argp is not valid.
SEE ALSO

execve(2), fentl(2), mt(4), tty(4), intro(4N), ad(4), arp(4), bk(4), de(4), dmc(4), ec(4), en(4),
ex(4), hy(4), ik(4), il(4), imp(4), inet(4F), ix(4), lo(4), mtio(4), np(4), pcl(4), ps(4), pty(4),
qe(4), rx(4), tb(4), un(4), uu(4), va(4), vp(4), vv(4) '

MIPS Computer Systems, Inc. February 5, 1989 Page 1

KILL (2-BSD) RISC/os Programmer’s Reference KILL (2-BSD)

NAME
kill - send signal to a process

SYNOPSIS
kill(pid, sig)
int pid, sig;

DESCRIPTION
kill sends the signal sig to a process, specified by the process number pid. sig may be one of
the signals specified in sigvec(2), or it may be 0, in which case error checking is performed but
no signal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user. A single exception is the signal SIGCONT, which may always be
sent to any descendant of the current process.

If the process-number is 0, the signal is sent to all processes in the sender’s process group;
this is a variant of killpg(2).

If the process number is —1 and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal. If the process number is -1
and the user is not the super-user, the signal is broadcast universally to all processes with the
same uid as the user except the process sending the signal. No error is returned if any process
could be signaled. '

For compatibility with System V, if the process number is negative but not -1, the signal is
sent to all processes whose process group ID is equal to the absolute value of the process
number. This is a variant of killpg(2).

Processes may send signals to themselves.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
kill will fail and no signal will be sent if any of the following occur:

[EINVAL) sig is not a valid signal number.
[ESRCH] No process can be found corresponding to that specified by pid.
[ESRCH] The process id was given as 0 but the sending process does not have a

process group.

[EPERM] The sending process is not the super-user and its effective user id does
not match the effective user-id of the receiving process. When signaling
a process group, this error was returned if any members of the group
could not be signaled.
SEE ALSO

getpid(2), getpgrp(2), killpg(2), sigvec(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

KILLPG (2-BSD) RISC/os Programmer’s Reference KILLPG (2-BSD)

NAME
killpg — send signal to a process group
SYNOPSIS
killpg (pgrp, sig)
int pgrp, sig;
DESCRIPTION
killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.
The sending process and members of the process group must have the same effective user ID,
or the sender must be the super-user. As a single special case the continue signal SIGCONT
may be sent to any process that is a descendant of the current process.
RETURN VALUE :

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and the global variable errno is set to indicate the error.

ERRORS :

killpg will fail and not signal will be sent if any of the following occur:

[EINVAL] Sig is not a valid signal number.

[ESRCH] No process can be found in the process group specified by pgrp.

[ESRCH] The process group was given as 0 but the sending process does not have
a process group.

[EPERM] The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending pro-
cess.

SEE ALSO

kill(2), getpgrp(2), sigvec(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

KOPT (2-BSD) RISC/os Programmer’s Reference KOPT (2-BSD)

NAME
kopt - get or set kernel options

SYNOPSIS
#include <mips/debug.h>

kopt(option, value, op)
char xoption;
int value, op;

DESCRIPTION
The kopt system call allows a user process to get or set kernel options. The specific set of
options is dependent upon the particular release of the kernel, but typical options control vir-
tual memory system parameters, debugging options, and device driver options.

option points to a null-terminated character string naming a kernel option. The current set of
kernel options is specified by the array kernargs in the kernel source file mips/kopt.c.

op may be one of:

KOPT_GET Return the specified option

KOPT_SET Set the specified option to value. Must be super-user.

KOPT_BIS Or the bits in value into the specified option. Must be super-user.

KOPT_BIC Clear the bits in value from the specified option. Must be super-user.
RETURN VALUE :

kopt returns the previous value of the specified option on success, or -1 on failure. Since -1 is
a legal value for many kernel options, errors must be disambiguated from successful returns of
-1 by the value of errno.

ERRORS
[EINVAL] option name is too long.
[EINVAL] option is not known kernel option.
[EINVAL] op is not one of KOPT_GET, KOPT_SET, KOPT_BIS, or KOPT_BIC.
[EFAULT] option is not accessable.
[EACCES] Attempt to modify kernel option when not super-user.
SEE ALSO
kopt(8)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

LINK (2-BSD)

NAME

RISC/os Programmer’s Reference LINK (2-BSD)

link — make a hard link to a file

SYNOPSIS
link(namel, name2)

char snamel, sname2;

DESCRIPTION

A hard link to namel is created; the link has the name name2. namel must exist.

With hard links, both namel and name2 must be in the same file system. Unless the caller is
the super-user, namel must not be a directory. Both the old and the new link share equal
access and rights to the underlying object.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS

[ENOTDIR]
[EINVAL]
[ENAMETOOLONG]

[ENOENT]
[EA CCES]
[EA CCES]

[ELOOP]

[ENOENT]
[BEXIST]
[EPERM]

[EXDEV]

[ENOSPC]

[EDQUOT]

[EIO]
[EROFS]

[EFAULT]

link will fail and no link will be created if one or more of the following are true:

A component of either path prefix is not a directory.
Either pathname contains a character with the high-order bit set.

A component of either pathname exceeded 255 characters, or entire
length of either path name exceeded 1023 characters. '

A component of either path prefix does not exist.
A component of either path prefix denies search permission.

The requested link requires writing in a directory with a mode that
denies write permission.

Too many symbolic links were encountered in translating one of the
pathnames.

The file named by namel does not exist.
The link named by name2 does exist.

The file named by namel is a directory and the effective user ID is not
super-user.

The link named by name2 and the file named by namel are on different
file systems.

The directory in which the entry for the new link is being placed cannot
be extended because there is no space left on the file system containing
the directory.

The directory in which the entry for the new link is being placed cannot
be extended because the user’s quota of disk blocks on the file system
containing the directory has been exhausted.

An 1/0O error occurred while reading from or writing to the file system to
make the directory entry.

The requested link requires writing in a directory on a read-only file sys-
tem.

One of the pathnames specified is outside the process’s allocated
address space.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

LINK (2-BSD) 'RISC/os Programmer’s Reference LINK (2-BSD)

SEE ALSO
symlink(2), unlink(2)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

LISTEN (2-BSD) : RISC/os Programmer’s Reference LISTEN (2-BSD)

NAME
listen — listen for connections on a socket

SYNOPSIS
listen(s, backlog)
int s, backlog;

DESCRIPTION

To accept connections, a socket is first created with socket(2), a willingness to accept incom-
ing connections and a queue limit for incoming connections are specified with listen(2), and
then the connections are accepted with accept(2). The listen call applies only to sockets of

type SOCK_STREAM or SOCK_SEQPA CKET.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client may receive an error
with an indication of ECONNREFUSED, or, if the underlying protocol supports retransmis-

sion, the request may be ignored so that retries may succeed.

RETURN VALUE
A 0 return value indicates success; —1 indicates an error.
ERRORS
The call fails if:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is not a socket.
[EOPNOTSUPP] The socket is not of a type that silpports the operation listen.
SEE ALSO '
accept(2), connect(2), socket(2)
WARNING

The backlog is currently limited (silently) to 5.

MIPS Computer Systems, Inc. February 5, 1989

Page 1

LSEEK (2-BSD) RISC/os Programmer’s Reference LSEEK (2-BSD)

NAME
Iseek — move read/write pointer

SYNOPSIS
#include <sys/file.h>

#define L_SET 0 /* set the seek pointer %/
#define L_INCR 1 /% increment the seek pointer %/
#tdefine. L_XTND 2 /x extend the file size */

pos = Iseek(d, offset, whence)

off_t pos;

int d;

off _t offset;

int whence;

DESCRIPTION :
The descriptor d refers to a file or device open for reading and/or writing. Iseek sets the file
pointer of d as follows:

If whence is L_SET, the pointer is set to offset bytes.
If whence is L_INCR, the pointer is set to its current location plus offser.
If whence is L_XTND, the pointer is set to the size of the file plus offser.

Upon successful completion, the resulting pointer location as measured in bytes from begin-
ning of the file is returned. Some devices are incapable of seeking. The value of the pointer
associated with such a device is undefined.

NOTES
Seeking far beyond the end of a file, then writing, creates a gap or “hole”, which occupies no
physical space and reads as zeros.

RETURN VALUE
Upon successful completion, the current file pointer value is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

ERRORS
Iseek will fail and the file pointer will remain unchanged if:
[EBADF] fildes is not an open file descriptor.
[EINVAL] fildes is associated with a pipe or a socket.
[EINVAL] whence is not a proper value.

SEE ALSO
dup(2), open(2)

WARNING

This document’s use of whence is incorrect English, but maintained for historical reasons.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

MIPSFPU (2-BSD) RISC/os Programmer’s Reference MIPSFPU (2-BSD)

NAME :

" mipsfpu — enabling and dissabling the floating-point unit

SYNOPSIS
int
mipsfpu(x)
int x;

DESCRIPTION
This system call is used to enable and disable the floating-point unit. An non-zero argument
enables and a zero argument disables the floating-point unit. When disabled the system emu-
lates all instructions in software. This can only be executed by the super-user.

ERRORS
mipsfpu fails when the following occurs:

-EPERM The caller is not the super-user.

WARNING .
If you disable a floating-point unit which produces imprecise exceptions (the R2360) just as a
program using the floating-point unit is handling a signal which is trying to retrieve the
floating-point instruction causing the signal based on the floating-point unit’s implementation
revision register that program will fail to get the floating-point instruction that caused the sig-
nal. This is because the implementation revision register changed between the time the
instruction causing the signal was executed and the time signal handler handled it.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

MKNOD (2-BSD)

NAME

RISC/os Programmer’s Reference MKNOD (2-BSD)

mknod — make a special file

SYNOPSIS

mknod(path, mode, dev)

char spath;
int mode, dev;

DESCRIPTION

mknod creates a new file whose name is path. The mode of the new file (including special file
bits) is initialized from mode. (The protection part of the mode is modified by the process’s
mode mask (see umask(2))). The first block pointer of the i-node is initialized from dev and
is used to specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent
specification of a character or block 1/0 device. If mode does not indicate a block special or
character special device, dev is ignored.

mknod may be invoked only by the super-user.

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS

mknod will fail and the file mode will be unchanged if:

[ENOTDIR]
[BEINVAL]
[ENAMETOOLONG]

[ENOENT]
[EACCES]
[ELOOP]
[EPERM]
[EPERM]
[EIO]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[EROFS]
[EEXIST]
[EFAULT]

A component of the path prefix is not a directory.
The pathname contains a character with the high-order bit set.

A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

A component of the path prefix does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.
The process’s effective user ID is not super-user.

The pathname contains a character with the high-order bit set.

An I/0 error occurred while making the directory entry or allocating the
inode.

The directory in which the entry for the new node is being placed can-
not be extended because there is no space left on the file system con-
taining the directory.

There are no free inodes on the file system on which the node is being
created.

The directory in which the entry for the new node is being placed can-
not be extended because the user’s quota of disk blocks on the file sys-
tem containing the directory has been exhausted.

The user’s quota of inodes on the file system on which the node is being
created has been exhausted.

The named file resides on a read-only file system.
The named file exists.

path points outside the process’s allocated address space.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

MKNOD (2-BSD) RISC/os Programmer’s Reference

SEE ALSO
chmod(2), stat(2), umask(2)

Page 2 February 5, 1989

MKNOD (2-BSD)

MIPS Computer Systems, Inc.

MMAP (2-BSD) RISC/os Programmer’s Reference MMAP (2-BSD)

NAME
mmap, munmap — map or unmap pages of memory

SYNOPSIS
#include <sys/mman.h>
#include <sys/types.h>

mmap(addr, len, prot, share, fd, off)
caddr_t addr;

int len, prot, share, fd;

off_t off;

munmap (addr, len)
caddr_t addr;
int len;

DESCRIPTION '
mmap maps pages of memory from the memory device associated with the file fd into the
address space of the calling process, one page at a time. Pages are mapped from the memory
device, beginning at off, and into the caller’s address space, beginning at addr, and continuing
for len bytes. fd is a file descriptor obtained by opening the device from which to map pages.
Only character-special devices are currently supported. »

share specifies whether modifications made to mapped-in copies of pages are to be kept
"private" or are to be "shared" with other references. Currently, it must be set to
MAP_SHARED.

The parameter prot specifies the read/write accessibility of the mapped pages. The addr and
len parameters, and the sum of the current position in fd and off parameters, must be multi-
ples of pagesize (found using the getpagesize(2) call). malloc(Z) returns a properly aligned
buffer if the request is for pagesize or larger bytes.

Currently, only 1 device may be mapped by a process. The file descriptor must be closed to
allow mapping of another device.

All pages are automatically unmapped when fd is closed. Specific pages can be unmapped
explicitly using munmap.

mmap can sometimes be used to install memory-mapped devices without writing a device
driver. However, this does not always work. In particular, devices that are mmap’ed into
user space and then accessed by user programs will see those accesses in user mode. If the
device contains registers that must be accessed in supervisor mode, mmap cannot be used to
drive it.

munmap unmaps previously mapped pages starting at addr and continuing for len bytes.
Unmapped pages refer, once again, to private pages within the caller’s address space.
Unmapped pages are initialized to zero.

RETURN VALUE
Each call returns 0 on success, —1 on failure.

ERRORS
Both calls fail when:
EINVAL The argument address or length is not a multiple of the page size as
returned by getpagesize(2), or the length is negative.
EINVAL The entire range of pages specified in the call is not part of data space.

In addition mmap fails when:

EINVAL The specified fd does not refer to a character special device which

MIPS Computer Systems, Inc. February 5, 1989 Page 1

MMAP (2-BSD)

EINVAL

EINVAL
EINVAL
SEE ALSO

RISC/os Programmer’s Reference MMAP (2-BSD)

supports mapping (e.g. a frame buffer). (

The specified fd is not open for reading and read access is requested, or
not open for writing when write access is requested.

The sharing mode was not specified as MAP_SHARED.
Another file mapped by mmap is open.

getpagesize(2), munmap(2), close(2), malloc(2)

Page 2

February 5, 1989 MIPS Computer Systems, Inc.

MKDIR (2-BSD)

NAME

RISC/os Programmer’s Reference MKDIR (2-BSD)

mkdir — make a directory file

SYNOPSIS
mkdir(path, mode)
char spath;
int mode;

DESCRIPTION

mkdir creates a new directory file with name path. The mode of the new file is initialized
from mode. (The protection part of the mode is modified by the process’s mode mask; see -

umask (2)).

The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID is
set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process’s file mode creation mask: all bits
set in the process’s file mode creation mask are cleared. See umask(2).

RETURN VALUE

A 0 return value indicates success. A -1 return value indicates an error, and an error code is

stored in errno.
ERRORS

mkdir will fail and no directory will be created if:

[ENOTDIR]
[EINVAL]
[ENAMETOOLONG]

[ENOENT]
[EACCES)]
[ELOOP]
[EPERM]
[EROFS]
[EEXIST]
[ENOSPC]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[EDQUOT]

A component of the path prefix is not a directory.

The pathname contains a character with the high-order bit set.

A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

A component of the path prefix does not exist,

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.
The path argument contains a byte with the high-order bit set.

The named file resides on a read-only file system.

The named file exists.

The directory in which the entry for the new directory is being placed
cannot be extended because there is no space left on the file system con-
taining the directory.

The new directory cannot be created because there there is no space left
on the file system that will contain the directory.

There are no free inodes on the file system on which the directory is
being created.

The directory in which the entry for the new directory is being placed
cannot be extended because the user’s quota of disk blocks on the file
system containing the directory has been exhausted.

The new directory cannot be created because the user’s quota of disk
blocks on the file system that will contain the directory has been
exhausted.

The user’s quota of inodes on the file system on which the directory is
being created has been exhausted.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

MKDIR (2-BSD) RISC/os Programmer’s Reference MKDIR (2-BSD)

[EIO] An I/O error occurred while making the directory entry or allocating the
inode.
[EIO] An I/O error occurred while reading from or writing to the file system.
[EFAULT] path points outside the process’s allocated address space.
SEE ALSO

chmod(2), stat(2), umask(2)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

MOUNT (2-BSD) RISC/os Programmer’s Reference MOUNT (2-BSD)

NAME
mount — mount file system

SYNOPSIS
#include <sys/mount.h>

mount(type, dir, flags, data)
int type;

char xdir;

int flags;

caddr_t data;

DESCRIPTION
mount attaches a file system to a directory. After a successful return, references to directory
dir will refer to the root directory on the newly mounted file system. dir is a pointer to a null-
terminated string containing a path name. dir must exist already, and must be a directory. Its
old contents are inaccessible while the file system is mounted.

mount may be invoked only by the super-user.

The flags argument determines whether the file system can be written on, and if set-uid execu-
tion is allowed. Physically write-protected and magnetic tape file systems must be mounted
read-only or errors will occur when access times are updated, whether or not any explicit write
is attempted.

type indicates the type of the filesystem. It must be one of the types defined in mount.h. data
is a pointer to a structure which contains the type specific arguments to mount. Below is a list
of the filesystem types supported and the type specific arguments to each:

MOUNT_UFS
struct ufs_args {
“char «fspec; /x Block special file to mount #/
b
MOUNT_NFS
#include <nfs/nfs.h>
#include <netinet/in.h>

struct nfs_args {
struct sockaddr_in saddr; /« file server address %/
fhandle_t «fh; /x File handle to be mounted */

int flags; /x flags +/

int wsize; /x write size in bytes #/

int rsize; /x read size in bytes #/

int timeo; /« initial timeout in .1 secs #/
int retrans; /« times to retry send /

b
RETURN VALUE
mount returns O if the action occurred, and -1 if fspec is inaccessible or not an appropriate
file, if name does not exist, if fspec is already mounted, if dir is in use, or if there are already
too many file systems mounted.
ERRORS
mount fails when one of the following occurs:

EPERM The caller is not the super-user.
ENOTBLK fspec is not a block device.
ENXIO The major device number of fspec is out of range (this indicates no dev-

ice driver exists for the associated hardware).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

MOUNT (2-BSD)

RISC/os Programmer’s Reference MOUNT (2-BSD)

EBUSY dir is not a directory, or another process currently holds a reference to
it.

EBUSY No space remains in the mount table.

EBUSY The super block for the file system had a bad magic number or an out
of range block size.

EBUSY Not enough memory was available to read the cylinder group informa-
tion for the file system. ‘

EIO An I/O error occurred while reading the super block or cylinder group
information.

ENOTDIR A component of the path prefix in fspec or dir is not a directory.

EINVAL The path name of fspec or dir contains a character with the high-order
bit set.

ENAMETOOLONG The length of a component of the path name of fspec or dir exceeds 255
characters, or the length of the entire path name of fspec or dir exceeds
1023 characters.

ENOENT fspec or dir does not exist.

ENOTDIR The file named by dir is not a directory.

EACCES Search permission is denied for a component of the path prefix of fspec
or dir.

EFAULT fspec or dir points outside the process’s allocated address space.

ELOOP Too many symbolic links were encountered in translating the path name
of fspec or dir.

EIO An /0 error occurred while reading from or writing to the file system.

SEE ALSO
unmount(2), mount(8)
WARNING

Page 2

The error codes are in a state of disarray; too many errors appear to the caller as one value.

February 5, 1989 MIPS Computer Systems, Inc.

NFSSVC (2-BSD) RISC/os Programmer’s Reference NFSSVC (2-BSD)

NAME
nfssvc, async_daemon — NFS daemons

SYNOPSIS
nfssvc(sock)
int sock;

async_daemon()

DESCRIPTION
nfssvc starts an NFS daemon listening on socket sock. The socket must be AF_INET, and
SOCK_DGRAM (protocol UDP/IP). The system call will return only if the process is killed.

async_daemon implements the NFS daemon that handles asynchronous I/O for an NFS client.
The system call never returns.

WARNING :
These two system calls allow kernel processes to have user context.

SEE ALSO
mountd(8)

MIPS Computer Systems, Inc. February 8, 1989 Page 1

OPEN (2-BSD) RISC/os Programmer’s Reference OPEN (2-BSD)

NAME

open — open a file for reading or writing, or create a new file

SYNOPSIS

#include <sys/file.,h>

open(path, flags, mode)
char spath;
int flags, mode;’

DESCRIPTION

open opens the file path for reading and/or writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created if it
does not already exist (by specifying the O_CREAT flag), in which case the file is created with
mode mode as described in chmod(2) and modified by the process’ umask value (see
umask (2)).

path is the address of a string of ASCII characters representing a path name, terminated by a
null character. The flags specified are formed by or’ing the following values

O_RDONLY open for reading only O_WRONLY open for writing only

O_RDWR open for reading and writing O_NDELAY do not block on open
O_APPEND append on each write O_CREAT create file if it does mnot
O_TRUNC truncate size to 0 O_EXCL error if create and file exists

Opening a file with O_APPEND set causes each write on the file to be appended to the end. If
O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL is set
with O_CREAT, then if the file already exists, the open returns an error. This can be used to
implement a simple exclusive access locking mechanism. If O_EXCL is set and the last com-
ponent of the pathname is a symbolic link, the open will fail even if the symbolic link points

toa non-existent name. If the O_NDELAY

flag is specified and the open call would result in the process bemg blocked for some reason
(e.g. waiting for carrier on a dialup line), the open returns immediately. The first time the pro-
cess attempts to perform i/o on the open file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The
file pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system calls; see close(2).

The system imposes a limit on the number of file descriptors open simultaneously by one pro-
cess. getdtablesize(2) returns the current system limit.

ERRORS

The named file is opened unless one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

[ENOENT] O_CREAT is not set and the named file does not exist.

[ENOENT] A component of the path name that must exist does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] The required permissions (for reading and/or writing) are denied for the
named flag.

[EACCES] O_CREAT is specified, the file does not exist, and the directory in which

it is to be created does not permit writing.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

OPEN (2-BSD)

[ELOOP]
[EISDIR]

[EROFS]
[EMFILE]

[ENFILE]
[ENXIO]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[EIO]
[ETXTBSY]

[EFAULT]
[EEXIST]
[EOPNOTSUPP]

SEE ALSO
chmod(2), close(2), dup(2), getdtablesize(2), Iseek(2), read(2), write(2), umask(2)

Page 2

RISC/os Programmer’s Reference OPEN (2-BSD)

Too many symbolic links were encountered in translating the pathname.

The named file is a directory, and the arguments specify it is to be
opened for writting.

The named file resides on a read-only file system, and the file is to be
modified.

The system limit for open file descriptors per process has already been
reached.

The system file table is full.

The named file is a character special or block special file, and the dev-
ice associated with this special file does not exist.

O_CREAT is specified, the file does not exist, and the directory in which
the entry for the new file is being placed cannot be extended because
there is no space left on the file system containing the directory.

O_CREAT is specified, the file does not exist, and there are no free
inodes on the file system on which the file is being created.

O_CREAT is specified, the file does not exist, and the directory in which
the entry for the new fie is being placed.cannot be extended because the
user’s quota of disk blocks on the file system containing the directory
has been exhausted.

O_CREAT is specified, the file does not exist, and the user’s quota of
inodes on the file system on which the file is being created has been
exhausted.

An 1/0 error occurred while making the directory entry or allocating the
inode for O_CREAT.

The file is a pure procedure (shared text) file that is being executed and
the open call requests write access.

path points outside the process’s allocated address space.
O_CREAT and O_EXCL were specified and the file exists.

An attempt was made to open a socket (not currently implemented).

February 5, 1989 MIPS Computer Systems, Inc.

PIPE (2-BSD) RISC/os Programmer’s Reference : PIPE (2-BSD)
g

NAME
pipe - create an interprocess communication channel

SYNOPSIS
pipe (fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an /0 mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor fildes[1]
up to 4096 bytes of data are buffered before the writing process is suspended. A read using
the descriptor fildes[0] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in
the system.

A signal is generated if a write on a pipe w1th only one end is attempted.

RETURN VALUE
The function value zero is returned if the pipe was created; —1 if an error occurred.

ERRORS
The pipe call will fail if:

[EMFILE] Too many descriptors are active.
[ENFILE] The system file table is full.
[EFAULT] The fildes buffer is in an invalid area of the process’s address space.
SEE ALSO
sh(1), read(2), write(2), fork(2), socketpair(2)
WARNING
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock
will occur.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

PROFIL (2-BSD) RISC/os Programmer’s Reference PROFIL (2-BSD)

NAME
profil — execution time profile

SYNOPSIS
profil(buff, bufsiz, offset, scale)
char sbuff;
int bufsiz, offset, scale;

DESCRIPTION '
buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user’s program counter (pc) is examined each clock tick (10 milliseconds); offset is subtracted
from it, and the result multiplied by scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with 16 bits of fraction: 0x10000
gives a 1-1 mapping of pc’s to words in buff; 0x8000 maps each pair of instruction words
together.

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of
0. Profiling is turned off when an execve is executed, but remains on in child and parent both
after a fork. Profiling is turned off if an update in buff would cause a memory fault.

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof(1), setitimer(2), monitor(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

PTRACE (2-BSD) ‘ RISC/o0s Programmer’s Reference PTRACE (2-BSD)

NAME
ptrace — process trace

SYNOPSIS
#include <signal.h>
#include <sys/ptrace.h>

ptrace (request, pid, addr, data)
int request, pid, *addr, data,

DESCRIPTION
ptrace provides a means by which a process may control the execution of another process, and
examine and change its core image. Its primary use is for the implementation of breakpoint
debugging. There are four arguments whose interpretation depends on a request argument.
Generally, pid is the process ID of the traced process. A process being traced behaves nor-
mally until it encounters some signal whether internally generated like “illegal instruction” or
externally generated like “interrupt”. See sigvec(2) for the list. ‘

Upon encountering a signal the traced process enters a stopped state and its tracing process is
notified via wair(2). If the the traced process stops with a SIGTRAP the process may have
been stopped for a number of reasons. Two status words addressable as registers in the
traced process’s uarea qualify SIGTRAPs: TRAPCAUSE, which contains the cause of the trap,
and TRAPINFO, which contains extra information concerning the trap.

When the traced process is in the stopped state, its core image can be examined and modified
using ptrace. If desired, another ptrace request can then cause the traced process either to ter-
minate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

0 This request is the only one that may be used by a child process; it may declare that it is
to be traced by its parent. All other arguments are ignored. Peculiar results will ensue if
the parent does not expect to trace the child.

1,2 The word in the traced process’s address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-11), request 1 indicates I space, 2 D space. addr
must be 4-byte aligned. The traced process must be stopped. The input dara is ignored.

3 The word of the system’s per-process data area corresponding to addr is returned. addr is
a constant defined in sys/ptrace.h. This space contains the registers and other informa-
tion about the process; the constants correspond to fields in the user structure in the sys-
tem.

4,5 The given data is written at the word in the process’s address space corresponding to
addr, which must be 4-byte aligned. The old value at the address is returned. If I and D
space are separated, request 4 indicates I space, 5 D space. Attempts to write in pure
procedure fail if another process is executing the same file.

6 = The process’s system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer-
tain bits of the processor status word. The old value at the address is returned.

7 The data argument is taken as a signal number and the traced process’s execution contin-
ues at location addr as if it had incurred that signal. Normally the signal number will be
either 0 to indicate that the signal that caused the stop should be ignored, or that value
fetched out of the process’s image indicating which signal caused the stop. If addr is (int
x)1 then execution continues from where it stopped,

The traced process terminates.

Execution continues as in request 7; however, as soon as possible after execution of at

MIPS Computer Systems, Inc. February 5, 1989 | Page 1

PTRACE (2-BSD) RISC/os Programmer’s Reference PTRACE (2-BSD)

least one instruction, execution stops again. The signal number from the stop is
SIGTRAP. TRAPCAUSE will contain CAUSESINGLE. This is part of the mechanism for
implementing breakpoints.

As indicated, these calls (except for request O and 20) can be used only when the subject pro-
cess has stopped. The wair call is used to determine when a process stops; in such a case the
“termination” status returned by wait has the value 0177 to indicate stoppage rather than
genuine termination. If multiple processes are being traced, wait can be called multiple times
and will return the status for the next stopped or terminated child or traced process.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subse-
quent execve(2) calls. If a traced process calls execve, it will stop before executing the first
instruction of the new image showing signal SIGTRAP. In this case TRAPCAUSE will contain
CAUSEEXEC and TRAPINFO will not contain anything interesting. If a traced process execs
again, the same thing will happen.

If a traced process forks, both parent and child will be traced. Breakpoints from the parent
will not be copied into the child. At the time of the fork, the child will be stopped with a
SIGTRAP. The tracing process may then terminate the trace if desired. TRAPCAUSE will con-
tain CAUSEFORK and TRAPINFO will contain the pid of its parent.

RETURN VALUE

A 0 value is returned if the call succeeds. If the call fails then a —1 is returned and the global
variable errno is set to indicate the error.

ERRORS

[EINVAL] The request code is invalid.

[EINVAL] The specified process does not exist.
[EINVAL] The given signal number is invalid.
[EFAULT] The specified address is out of bounds.
[EPERM] The specified process cannot be traced.

SEE ALSO

BUGS

Page 2

wait(2), sigvec(2), adb(1)

pirace is unique and arcane; it should be replaced with a special file which can be opened and
read and written. The control functions could then be implemented with ioctl(2) calls on this
file. This would be simpler to understand and have much higher performance.

The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use
“illegal instruction” signals at a very high rate) could be efficiently debugged.

The error indication, -1, is a legitimate function value; errno, see intro(2), can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a com-
pletely controlled environment could be provided.

February 5, 1989 MIPS Computer Systems, Inc.

QUOTA (2-BSD)

NAME

RISC/os Programmer’s Reference QUOTA (2-BSD)

quota — manipulate disk quotas

SYNOPSIS

#include <sys/quota.h>

quota(cmd, uid, arg, addr)

int cmd, uid, arg;
caddr_t addr;

DESCRIPTION

N.B.: This call is not implemented in the current version of the system.

The quota call manipulates disk quotas for file systems which have had quotas enabled with
setquota(2). The cmd parameter indicates a command to be applied to the user ID uid. arg is
a command specific argument and addr is the address of an optional, command specific, data
structure which is copied in or out of the system. The interpretation of arg and addr is given
with each command below.

Q_SETDLIM

Q_GETDLIM

Q_SETDUSE

Q_SYNC

Q_SETUID

Q_SETWARN

Q_DOWARN

RETURN VALUE

Set disc quota limits and current usage for the user with ID uid. argis a
major-minor device indicating a particular file system. addr is a pointer
to a struct dgblk structure (defined in <sys/quota.h>). This call is res-
tricted to the super-user.

Get disc quota limits and current usage for the user with ID uid. The
remaining parameters are as for Q_SETDLIM.

Set disc usage limits for the user with ID uid. arg is a major-minor dev-
ice indicating a particular file system. addr is a pointer to a struct
dqusage structure (defined in <sys/quota.h>). This call is restricted to
the super-user.

Update the on-disc copy of quota usages. The uid, arg, and addr
parameters are ignored.

Change the calling process’s quota limits to those of the user with ID
uid. The arg and addr parameters are ignored. This call is restricted to
the super-user.

Alter the disc usage warning limits for the user with ID uid. arg is a
major-minor device indicating a particular file system. addr is a pointer
to a struct dqwarn structure (defined in <sys/quota.h>). This call is
restricted to the super-user.

Warn the user with user ID uid about excessive disc usage. This call
causes the system to check its current disc usage information and print a
message on the terminal of the caller for each file system on which the
user is over quota. If the arg parameter is specified as NODEV, all file
systems which have disc quotas will be checked. Otherwise, arg indi-
cates a specific major-minor device to be checked. This call is restricted
to the super-user.

A successful call returns 0 and, possibly, more information specific to the ¢md performed;
when an error occurs, the value —1 is returned and errno is set to indicate the reason.

ERRORS

A quota call will fail when one of the following occurs:

[EINVAL]
[ESRCH]

Cmd is invalid.

No disc quota is found for the indicated user.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

QUOTA (2-BSD)

RISC/os Programmer’s Reference QUOTA (2-BSD)

The call is priviledged and the caller was not the super-user.

The arg parameter is being interpreted as a major-minor device and it
indicates an unmounted file system.

An invalid addr is supplied; the associated structure could not be copied
in or out of the kernel.

The quota table is full.

setquota(2), quotaon(8), quotacheck(8)

There should be someway to integrate this call with the resource limit interface provided by
setrlimit (2) and getrlimit (2).

The Australian spelling of disk is used throughout the quota facilities in honor of the imple-

[EPERM]
[EINVAL]
[EFAULT]
[EUSERS]
SEE ALSO
BUGS
mentors.
Page 2

February 5, 1989 MIPS Computer Systems, Inc.

QUOTACTL (2-BSD) RISC/os Programmer’s Reference QUOTACTL (2-BSD)

NAME
quotactl — manipulate disk quotas

SYNOPSIS
#include <ufs/quota.h>

quotactl(cmd, special, uid, addr)
int cmd;
char sspecial;
int uid;
caddr_t addr;

DESCRIPTION
The quotactl call manipulates disk quotas. The cmd parameter indicates a command to be
applied to the user ID uid. special is a pointer to a null-terminated string containing the path
name of the block special device for the file system being manipulated. The block special
device must be mounted. addr is the address of an optional, command specific, data struc-

ture which is copied in or out of the system. The interpretation of addr is given with each
command below.

Q_QUOTAON Turn on quotas for a file system. addr is a pointer to a null terminated
string containing the path name of file containing the quotas for the file
system. The quota file must exist; it is normally created with the quota-
check(8) program. This call is restricted to the super-user.

Q_QUOTA OFF Turn off quotas for a file system. This call is restricted to the super-
user.
Q_GETQUOTA Get disk quota limits and current usage for user uid. addr is a pointer

to a struct dgblk structure (defined in <ufs/quota.h>). Only the super-
user may get the quotas of a user other than himself.

Q_SETQUOTA Set disk quota limits and current usage for user uid. addr is a pointer to
a struct dgblk structure (defined in <ufs/quota.h>). This call is res-
tricted to the super-user. ‘

Q_SETQLIM Set disk quota limits for user uid. addr is a pointer to a struct dgblk
structure (defined in <ufs/quota.h>). This call is restricted to the
_ super-user.
Q_SYNC Update the on-disk copy of quota usages. This call is restricted to the
: super-user.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS

A quotactl call will fail when one of the following occurs:

EINVAL cmd is invalid. '

EPERM The call is privileged and the caller was not the super-user.

EINVAL The special parameter is not a mounted file system or is a mounted file
system without quotas enabled.

ENOTBLK The special parameter is not a block device.

EFAULT An invalid addr is supplied; the associated structure could not be copied
in or out of the kernel.

EINVAL The addr parameter is being interpreted as the path of a quota file

MIPS Computer Systems, Inc. February 5, 1989 Page 1

QUOTACTL (2-BSD) RISC/os Programmer’s Reference QUOTACTL (2-BSD)

which exists but is either not a regular file or is not on the file system
pointed to by the special parameter.

EUSERS The quota table is full.

SEE ALSO
quotaon(8), quotacheck(8)

BUGS
There should be some way to integrate this call with the resource limit interface provided by
setrlimit(2) and getrlimit(2). Incompatible with Melbourne quotas.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

READ (2-BSD) RISC/os Programmer’s Reference READ (2-BSD)

NAME
read, readv — read input

SYNOPSIS
cc = read(d, buf, nbytes)
int cc, d;
char sbuf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovent)
int cc, d;
struct iovec xiov;
int iovent;
DESCRIPTION
read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by buf. readv performs the same action, but scatters the input data into the
iovent buffers specified by the members of the iov array: iov[0], iov[1], ..., iov[iovent —1].

For readv, the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov_len;
¥
Each iovec entry specifies the base address and length of an area in memory where data should
be placed. readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated
with d (see Iseek(2)). Upon return from read, the pointer is incremented by the number of
bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of
the pointer associated with such an object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and
placed in the buffer. The system guarantees to read the number of bytes requested if the
descriptor references a normal file that has that many bytes left before the end-of-file, but in
no other case.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and
the global variable errno is set to indicate the error.

ERRORS
read and readv will fail if one or more of the following are true:

[EBADF] D is not a valid file or socket descriptor open for reading.

[EFAULT] buf points outside the allocated address space.

[EIO] An 1/0 error occurred while reading from the file system.

[EINTR] A read from a slow device was interrupted before any data arrived by

the delivery of a signal.
[EINVAL] The pointer associated with d was negative.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

READ (2-BSD) RISC/os Programmer’s Reference READ (2-BSD)

[EWOULDBLOCK] The file was marked for non-blocking I/0, and no data were ready to be
read.

In addition, readv may return one of the following errors:

[EINVAL] iovent was less than or equal to 0, or greater than 16.
[EINVAL] One of the iov_len values in the iov array was negative.
[EINVAL] The -sum of the iov_len values in the iov array overflowed a 32-bit
integer.
[EFAULT] Part of the iov points outside the process’s allocated address space.
SEE ALSO

dup(2), fcntl(2), open(2), pipe(2), select(2), socket(2), socketpair(2)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

READLINK (2-BSD) RISC/os Programmer’s Reference READLINK (2-BSD)

NAME)
readlink — read value of a symbolic link
SYNOPSIS
cc = readlink(path, buf, bufsiz)
int cc;

char spath, sbuf;
int bufsiz;
DESCRIPTION .
readlink places the contents of the symbolic link name in the buffer buf, which has size bufsiz.
The contents of the link are not null terminated when returned.
RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a ~1 if an error
occurs, placing the error code in the global variable errno.
ERRORS
readlink will fail and the file mode will be unchanged if:
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] . A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

[ENOENT] The named file does not exist.
[EACCES] ‘ Search permission is denied for a component of the path prefix.
[ELOOP] Too 'many symbolic links were encountered in translating the pathname.
[EINVAL] The named file is not a symbolic link.
[EIO] An /O error occurred while reading from the file system.
[EFAULT] buf extends outside the process’s allocated address space.

SEE ALSO

stat(2), Istat(2), symlink(2)

MIPS Computer Systems, Inc. February 5, 1989 ‘ Page 1

REBOOT (2-BSD)

NAME

RISC/os Programmer’s Reference REBOOT (2-BSD)

reboot — reboot system or halt processor

SYNOPSIS

#include <sys/reboot.h>

reboot(howto)
int howto;

" DESCRIPTION

reboot reboots the system, and is invoked automatically in the event of unrecoverable system
failures. howto is a mask of options passed to the bootstrap program. The system call inter-
face permits only RB_HALT or RB_LAUTOBOOT to be passed to the reboot program; the other
flags are used in scripts stored on the console storage media, or used in manual bootstrap pro-
cedures. When none of these options (e.g. RB_LAUTOBOOT) is given, the system is rebooted
from file “vmunix” in the root file system of unit 0 of a disk chosen in a processor specific
way. An automatic consistency check of the disks is then normally performed.

The bits of howto are:

RB_HALT

RB_ASKNAME

RB_SINGLE

the processor is simply halted; no reboot takes place. RB_HALT should
be used with caution.

Interpreted by the bootstrap program ._itself, causing it to inquire as to
what file should be booted. Normally, the system is booted from the
file “xx(0,0)vmunix” without asking.

Normally, the reboot procedure involves an automatic disk consistency
check and then multi-user operations. RB_SINGLE prevents the con-
sistency check, rather simply booting the system with a single-user shell
on the console. RB_SINGLE is interpreted by the init(8) program in the
newly booted system. This switch is not available from the system call
interface.

Only the super-user may reboot a machine.

RETURN VALUES

If successful, this call never returns. Otherwise, a —1 is returned and an error is returned in
the global variable errno.

ERRORS
[EPERM]

SEE ALSO

The caller is not the super-user.

crash(8), halt(8), init(8), reboot(8)

BUGS

The notion of “console medium”, among other things, is specific to the VAX.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

RECV (2-BSD) RISC/os Programmer’s Reference RECV (2-BSD)

NAME
recv, recvirom, recvmsg — receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buf, len, flags)
int cc, s;

char sbuf;

int len, flags;

cc = recvirom(s, buf, len, flags, from, fromlen)
int cc, s;

char sbuf;

int len, flags;

struct sockaddr «from;

int sfromlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msg(];
int flags;
DESCRIPTION
recv, recvfrom, and recvmsg are used to receive messages from a socket.

The recv call is normally used only on a connected socket (see connect(2)), while recvfrom and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized 'to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in
cc. If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from (see socket(2)).

If no messages are available at the socket, the receive call waits for a message to arrive, unless
the socket is nonblocking (see ioctl(2)) in which case a cc of -1 is returned with the external
variable errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.
The flags argument to a recv call is formed by or’ing one or more of the values,

#define MSG_OOB 0x1 /« process out-of-band data »/
#define MSG_PEEK 0x2 /+ peek at incoming message */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parame-
ters. This structure has the following form, as defined in <sys/socket.h>:

struct msghdr {

caddr_t msg_name; /% optional address +/

int msg_namelen; /% size of address */

struct iovec xmsg_iov; /* scatter/gather array */

int msg_iovlen; /x # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received +/
int msg_accrightslen;

Y

MIPS Computer Systems, Inc. February 8, 1989 Page 1

RECV (2-BSD) RISC/os Programmer’s Reference RECV (2-BSD)

Here msg_name and msg_namelen specify the destination address if the socket is unconnected;
msg_name may be given as a null pointer if no names are desired or required. The msg_iov
and msg_iovlen describe the scatter gather locations, as described in read(2). A buffer to
receive any access rights sent along with the message is specified in msg_accrights, which has
length msg_accrightslen. Access rights are currently limited to file descriptors, which each
occupy the size of an int.

RETURN VALUE

These calls return the number of bytes received, or —1 if an error occurred.

ERRORS

The calls fail if:

[EBADF] The argument s is an invalid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would
block.

[EINTR] The receive was interrupted by delivery of a sighzﬂ before any data was

available for the receive.

[EFAULT] The data was specified to be received into a non-existent or protected
part of the process address space.

SEE ALSO

Page 2

fentl(2), read(2), send(2), select(2), getsockopt(2), socket(2)

February 8, 1989 MIPS Computer Systems, Inc.

RENAME (2-BSD) RISC/os Programmer’s Reference : RENAME (2-BSD)

NAME

rename — change the name of a file

SYNOPSIS

rename (from, to)
char s«from, xto;

DESCRIPTION

rename causes the link named from to be renamed as to. If ro exists, then it is first removed.
Both from and fo must be of the same type (that is, both dlrectones or both non-directories),
and must reside on the same file system.

rename guarantees that an instance of fo will always exist, even if the system should crash in
the middle of the operation.

If the final component of from is a symbolic link, the symbolic link is renamed, not the file or
directory to which it points.

CAVEAT

The system can deadlock 1f a loop in the file system graph is present. This loop takes the
form of an entry in directory “a”, say “a/foo”, being a hard link to directory “b”, and an
entry in directory “b”, say “b/bar”’, being a hard link to directory “a”. When such a loop
exists and two separate processes attempt to perform ‘“‘rename a/foo b/bar” and “rename
b/bar a/foo”, respectively, the system may deadlock attempting to lock both directories for
modification. Hard links to directories should be replaced by symbolic links by the system
administrator.

RETURN VALUE

A 0 value is returned if the operation succeeds, otherwise rename returns —1 and the global
variable errno indicates the reason for the failure.

ERRORS

rename will fail and neither of the argument files will be affected if any of the following are
true:

[EINVAL] Either pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of either pathname exceeded 255 characters, or the entire
length of either path name exceeded 1023 characters.

[ENOENT] A component of the from path does not exist, or a path prefix of to
does not exist.

[EACCES] A component of either path prefix denies search permission.

[EACCES] The requested link requires writing in a directory with a mode that
denies write permission.

[EPERM] The directory containing from is marked sticky, and neither the contain-
ing directory nor from are owned by the effective user ID.

[EPERM] The to file exists, the directory containing fo is marked sticky, and nei-

’ ther the containing directory nor fo are owned by the effective user ID.

[ELOOP] Too many symbolic links were encountered in translating either path-
name. .

[ENOTDIR] A component of either path prefix is not a directory.

[ENOTDIR] from is a directory, but to is not a directory.

[EISDIR] to is a directory, but from is not a directory.

[EXDEV] The link named by fo and the file named by from are on different logical

MIPS Computer Systems, Inc. February 5, 1989 Page 1

RENAME (2-BSD)

[ENOSPC]

[EDQUOT]

[EIO]

[EROFS]

[EFAULT]
[EINVAL]

[ENOTEMPTY]

SEE ALSO

Page 2

open(2)

RISC/os Programmer’s Reference RENAME (2-BSD)

devices (file systems). Note that this error code will not be returned if
the implementation permits cross-device links.

The directory in which the entry for the new name is being placed can-
not be extended because there is no space left on the file system con-
taining the directory.

The directory in which the entry for the new name is being placed can-
not be extended because the user’s quota of disk blocks on the file sys-
tem containing the directory has been exhausted.

An I/O error occurred while making or updating a directory entry.

The requested link requires writing in a directory on a read-only file sys-
tem.

path points outside the process’s allocated address space.

from is a parent directory of fo, or an attempt is made to rename “.” or

6
DR

to is a directory and is not empty.

February 5, 1989 MIPS Computer Systems, Inc.

RMDIR (2-BSD) RISC/os Programmer’s Reference RMDIR (2-BSD)

NAME (.
rmdir — remove a directory file

SYNOPSIS .
rmdir(path)
char xpath;

DESCRIPTION

rmdir removes a directory file whose name is given by path. The directory must not have any
entries other than “.” and *..”.

RETURN VALUE

A 0 is returned if the remove succeeds; otherwise a —1 is returned and an error code is stored
in the global location ermo .

ERRORS
The named file is removed unless one or more of the following are true:

[ENOTDIR] A component of the path is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

[ENOENT)] The named directory does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[ENOTEMPTY] The named directory contains files other than ““.” and “..” in it.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to be (
removed. '

[EPERM] The directory containing the directory to be removed is marked sticky,

and neither the containing directory nor the directory to be removed are
owned by the effective user ID.

[EBUSY] The directory to be removed is the mount point for a mounted file sys-
tem. »
[EIO] An 1/0 error occurred while deleting the directory entry or deallocating
the inode.
[EROFS] The directory entry to be removed resides on a read-only file system.
[EFAULT] path points outside the process’s allocated address space.
SEE ALSO

mkdir(2), unlink(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SELECT (2-BSD) RISC/os Programmer’s Reference SELECT (2-BSD)

NAME
select — synchronous I/0 multiplexing

SYNOPSIS
#include <sys/types.h>
#include <sys/time.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;

fd_set sreadfds, swritefds, xexceptfds;

struct timeval xtimeout;

FD_SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, &fdset)
FD_ZERO(&fdset)
int fd;

fd_set fdset;

DESCRIPTION

select examines the 1/0 descriptor sets whose addresses are passed in readfds, writefds, and
excepifds to see if some of their descriptors are ready for reading, are ready for writing, or
have an exceptional condition pending, respectively. The first nfds descriptors are checked in
each set; i.e. the descnptors from O through nfds-1.in the descnptor sets are examined. On
return, select replaces the given descriptor sets with subsets consisting of those descriptors that
are ready for the requested operation. The total number of ready descriptors in all the sets is
returned in nfound.

The descriptor sets are stored as bit fields in arrays of integers. The following macros are pro-
vided for manipulating such descriptor sets: " "FD_ZERO(&fdset)" initializes a descnptor set
fdset to the null set. FD_SET(fd, &fdset) includes a particular descriptor fd in fdser.
FD_CLR(fd, &fdset) removes fd from fdset. FD_ISSET(fd, &fdset) is nonzero if fd is a member
of fdset, zero otherwise. The behavior of these macros is undefined if a descriptor value is
less than zero or greater than or equal to FD_SETSIZE , which is normally at least equal to the
maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
complete. If fimeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as zero pointers if no descriptors are of
interest.

RETURN VALUE
select returns the number of ready descriptors that are contained in the descriptor sets, or —1
if an error occurred. If the time limit expires then select returns 0. If select returns with an
error, including one due to an interrupted call, the descriptor sets will be unmodified.

ERRORS
An error return from select indicates:

[EBADF] One of the descriptor sets specified an invalid descriptor.

[EINTR] A signal was delivered before the time limit expired and before any of
the selected events occurred.

[EINVAL] The specified time limit is invalid. One of its components is negative or
too large.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SELECT (2-BSD) RISC/os Programmer’s Reference SELECT (2-BSD)

SEE ALSO

BUGS

Page 2

accept(2), connect(2), read(2), write(2), recv(2), send(2), getdtablesize(2)

Although the provision of getdrablesize(2) was intended to allow user programs to be written
independent of the kernel limit on the number of open files, the dimension of a suff1c1ent1y
large bit field for select remains a problem. The default size FD_SETSIZE (currently 256) is
somewhat larger than the current kernel limit to the number of open files. However, in order
to accommodate programs which might potentially use a larger number of open files with
select, it is possible to increase this size within a program by providing a larger definition of
FD_SETSIZE before the inclusion of <sys/types.h>.

select should probably return the time remaining from the original timeout, if any, by modify-
mg the time value in place. This may be implemented in future versions of the system. Thus,
it is unwise to assume that the timeout value will be unmodified by the select call.

February 5, 1989 MIPS Computer Systems, Inc.

SEND (2-BSD) RISC/os Programmer’s Reference SEND (2-BSD)

NAME
send, sendto, sendmsg — send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = send(s, msg, len, flags)
int cc, s;

char xmsg;

int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;

char xmsg;

int len, flags;

struct sockaddr sto;

int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;
struct msghdr msg(];
int flags;
DESCRIPTION
send, sendto, and sendmsg are used to transmit a message to another socket. send may be
used only when the socket is in a connected state, while sendto and sendmsg may be used at
any time.
The address of the target is given by fo with tolen specifying its size. The length of the mes-

sage is given by len. If the message is too long to pass atomically through the underlying pro-
tocol, then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then
send normally blocks, unless the socket has been placed in non-blocking I/O mode. The
select(2) call may be used to determine when it is possible to send more data.

The flags parameter may include one or more of the following:

#define MSG_OOB 0x1 /+ process out-of-band data «/

#define MSG_DONTROUTE 0x4 /x bypass routing, use direct interface »/
The flag MSG_OOB is used to send ‘“‘out-of-band” data on sockets that support this notion
(e.g. SOCK_STREAM); the underlying protocol must also support ‘‘out-of-band” data.
MSG_DONTROUTE is usually used only by diagnostic or routing programs.

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or —1 if an error occurred.

ERRORS

[EBADF] An invalid descriptor was specified.

[ENOTSOCK] The argument s is not a socket.

[EFAULT] An invalid user space address was specified for a parameter.
[EMSGSIZE] The socket requires that message be sent atomically, and the size of the

message to be sent made this impossible.

MIPS Computer Systems, Inc. | February 5, 1989 Page 1

SEND (2-BSD) RISC/os Programmer’s Reference SEND (2-BSD)

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation would

block.

[ENOBUFS] The system was unable to allocate an internal buffer. The operation
may succeed when buffers become available.

[ENOBUFS] The output queue for a network interface was full. This generally indi-

cates that the interface has stopped sending, but may be caused by tran-
sient congestion.

SEE ALSO
fcntl(2), recv(2), select(2), getsockopt(2), socket(2), write(2)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

SETGROUPS (2-BSD) RISC/os Programmer’s Reference SETGROUPS (2-BSD)

NAME
setgroups — set group access list

SYNOPSIS
#include <sys/param.h>

setgroups(ngroups, gidset)
int ngroups, sgidset;
DESCRIPTION
setgroups sets the group access list of the current user process according to the array gidser.

The parameter ngroups indicates the number of entries in the array and must be no more than
NGROUPS, as defined in <sys/param.h>.

Only the super-user may set new groups.

RETURN VALUE
A 0 value is returned on success, —1 on error, with a error code stored in errno,

ERRORS

The setgroups call will fail if:

[EPERM] The caller is not the Super—user.

[EFAULT] The address specified for gidset is outside the process address space.
SEE ALSO

getgroups(2), initgroups(3X)

BUGS
The gidset array should be of type gid_t, but remains integer for compatibility with earlier sys-
tems.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SETPGRP (2-BSD) RISC/os Programmer’s Referehce SETPGRP (2-BSD)

NAME
setpgrp — set process group

SYNOPSIS
setpgrp (pid, pgrp)
int pid, pgrp;

DESCRIPTION : :
setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is zero,
then the call applies to the current process. : _

If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.

RETURN VALUE
setpgrp returns when the operation was successful. If the request failed, —1 is returned and the
global variable errno indicates the reason.

ERRORS
setpgrp will fail and the process group will not be altered if one of the following occur:

[ESRCH] The requested process does not exist.
[EPERM] The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.
SEE ALSO
getpgrp(2)

MIPS Computer Systems, Inc. February 5, 1989 ' Page 1

SETQUOTA (2-BSD) RISC/os Programmer’s Reference SETQUOQOTA (2-BSD)

NAME
setquota — enable/disable quotas on a file system

SYNOPSIS
setquota(special, file)
char sspecial, «file;

DESCRIPTION
Disc quotas are enabled or disabled with the setquora call. special indicates a block special
device on which a mounted file system exists. If file is nonzero, it specifies a file in that file
system from which to take the quotas. If file is 0, then quotas are disabled on the file system.
The quota file must exist; it is normally created with the quotacheck(8) program.

Only the super-user may turn quotas on or off.

SEE ALSO
quota(2), quotacheck(8), quotaon(8)

RETURN VALUE
A 0 return value indicates a successful call. A value of —1 is returned when an error occurs
and errno is set to indicate the reason for failure.

ERRORS

setquota will fail when one of the following occurs:

[EPERM] The caller is not the super-user.

[ENOENT] special does not exist. ‘

[ENOTBLK] special is not a block device.

[ENXIO] The major device number of special is out of range (this indicates no

device driver exists for the associated hardware).

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix in file is not a directory.

[EACCES] file resides on a file system different from special.

[EACCES] file is not a plain file.

[ENAMETOOLONG] The pathname was too long.

[EFAULT] special or file points outside the process’s allocated address space.

[EIO] An I/0 error occurred while reading from or writing to the file system.
BUGS

The error codes are in a state of disarray; too many errors appear to the caller as one value.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

- SETREGID (2-BSD) RISC/os Programmer’s Reference SETREGID (2-BSD)

NAME :
setregid — set real and effective group ID

SYNOPSIS
setregid(rgid, egid)
int rgid, egid;

DESCRIPTION : v
The real and effective group ID’s of the current process are set to the arguments. Unprivileged
users may change the real group ID to the effective group ID and vice-versa; only the super-
user may make other changes. '

Supplying a value of -1 for either the real or effective group ID forces the system to substitute
the current ID in place of the —1 parameter.

RETURN VALUE ‘
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS :
[EPERM] The current process is not the super-user and a change other than
changing the effective group-id to the real group-id was specified.
SEE ALSO

getgid(2), setreuid(2), setgid(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SETREUID (2-BSD) RISC/os Programmer’s Reference SETREUID (2-BSD)

NAME
setreuid — set real and effective user ID’s

SYNOPSIS
setreuid (ruid, euid)
int ruid, euid;

DESCRIPTION :
The real and effective user ID’s of the current process are set according to the arguments. If
ruid or euid is -1, the current uid is filled in by the system. Unprivileged users may change
the real user ID to the effective user ID and vice-versa; only the super-user may make other
changes.

RETURN VALUE _
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

ERRORS
[EPERM] The current process is not the super-user and a change other than
changing the effective user-id to the real user-id was specified.
SEE ALSO

getuid(2), setregid(2), setuid(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SHUTDOWN (2-BSD) RISC/os Programmer’s Reference SHUTDOWN (2-BSD)

NAME
shutdown - shut down part of a full-duplex connection
SYNOPSIS
shutdown (s, how)
int s, how;
DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket associated with
s to be shut down. If how is 0, then further receives will be disallowed. If how is 1, then
further sends will be disallowed. If how is 2, then further sends and receives will be disal-
lowed, . . '
DIAGNOSTICS
A 0 is returned if the call succeeds, —1 if it fails.
ERRORS
The call succeeds unless:
[EBADF] s is not a valid descriptor.
[ENOTSOCK] s is a file, not a socket.
[ENOTCONN] The specified socket is not connected.
SEE ALSO

connect(2), socket(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SIGBLOCK (2-BSD) RISC/os Programmer’s Reference SIGBLOCK (2-BSD)

NAME
sigblock - block signals

SYNOPSIS
#include <signal.h>

sigblock (mask);
int mask;

mask = sigmask(signum)

DESCRIPTION
sigblock causes the signals specified in mask to be added to the set of signals currently being
blocked from delivery. Signals are blocked if the corresponding bit in mask is a 1; the macro
sigmask is provided to construct the mask for a given signum.
It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently imposed
by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SIGPAUSE (2-BSD) RISC/os Programmer’s Reference _ SIGPAUSE (2-BSD)

NAME
sigpause — atomically release blocked signals and wait for interrupt

SYNOPSIS
sigpause (sigmask)
int sigmask;

DESCRIPTION
sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on
return the sét of masked signals is restored. sigmask is usually O to indicate that no signals are
now to be blocked. sigpause always terminates by being interrupted, returning -1 with errno
set to EINTR.

In normal usage, a signal is blocked using sighlock(2), to begin a critical section, variables
modified on the occurrence of the signal are examined to determine that there is no work to
be done, and the process pauses awaiting work by using sigpause with the mask returned by
sigblock .

SEE ALSO
sigblock(2), sigvec(2)

MIPS Computer Systems, Inc. | February 5, 1989 ‘ Page 1

SIGRETURNY(2-BSD) RISC/os Programmer’s Reference SIGRETURN (2-BSD)

NAME
sigreturn — return from signal

SYNOPSIS
#include <signal.h>

sigreturn(scp);
struct sigcontext «scp;

DESCRIPTION
sigreturn allows users to atomically unmask, switch stacks, and return from a signal context.
The processes signal mask and stack status are restored from the context. The system call
does not return; the users registers are restored from the context. Execution resumes at the
specified program counter (sc_pc) in the signal context structure. This system call is used by
the trampoline code, and longjmp(3) when returning from a signal to the previously executing
program.

NOTES
.This system call is not available in 4.2BSD, hence it should not be used if backward compati-
bility is needed.

RETURN VALUE

If successful, the system call does not return. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

ERRORS
sigreturn will fail and the process context will remain unchanged if the following occurs.
[EFAULT] scp points to memory that is not a valid part of the process address
space. .
SEE ALSO

sigvec(2), setjmp(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SIGSETMASK (2-BSD) RISC/os Programmer’s Reference SIGSETMASK (2-BSD)

NAME : ()
sigsetmask, sigmask — set current signal mask

SYNOPSIS
#include <signal.h>

sigsetmask (mask);
int mask;

mask = sigmask(signum)

DESCRIPTION »
sigsetmask sets the current signal mask (those signals that are blocked from delivery). Signals
are blocked if the corresponding bit in mask is a 1; the macro sigmask is provided to construct
the mask for a given signum.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigblock(2), sigpause(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SIGSTACK (2-BSD) 'RISC/os Programmer’s Reference SIGSTACK (2-BSD)

NAME
sigstack — set and/or get signal stack context

SYNOPSIS :
#include <signal.h>

struct sigstack {
caddr_t ss_sp;
"~ int ss_onstack;

s
sigstack(ss, 0ss);
struct sigstack #ss, x0ss;

DESCRIPTION

sigstack allows users to define an alternate stack on which signals are to be processed. If ssis
non-zero, it specifies a signal stack on which to deliver signals and tells the system if the pro-
cess is currently executing on that stack. When a signal’s action indicates its handler should
execute on the signal stack (specified with a sigvec(2) call), the system checks to see if the pro-
cess is currently executing on that stack. If the process is not currently executing on the signal
stack, the system arranges a switch to the signal stack for the duration of the signal handler’s
execution. If oss is non-zero, the current signal stack state is returned.

NOTES
Signal stacks are not ‘“grown” automatically, as is done for the normal stack. If the stack
overflows unpredictable results may occur.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
sigstack will fail and the signal stack context will remain unchanged if one of the following
occurs.
[EFAULT] Either ss or oss points to memory that is not a valid part of the process
address space.
SEE ALSO

sigvec(2), setjmp(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SIGVEC (2-BSD) RISC/os Programmer’s Reference SIGVEC (2-BSD)

NAME
sigvec — software signal facilities

SYNOPSIS
#include <signal.h>

struct sigvec {

int (xsv_handier) (;
int sv_mask;
int sv_flags;

¥

sigvec(sig, vec, ovec)

int sig;

struct sigvec xvec, xovec;

DESCRIPTION

The system defines a set of signals that may be delivered to a process. Signal delivery resem-
bles the occurrence of a hardware interrupt: the signal is blocked from further occurrence, the
current process context is saved, and a new one is built. A process may specify a handler to
which a signal is delivered, or specify that a signal is to be blocked or ignored. A process may
also specify that a default action is to be taken by the system when a signal occurs. Normally,
signal handlers execute on the current stack of the process. This may be changed, on a per-
handler basis, so that signals are taken on a special signal stack .

All signals have the same priority. Signal routines execute with the signal that caused their
invocation blocked, but other signals may yet occur. A global signal mask defines the set of
signals currently blocked from delivery to a process. The signal mask for a process is initial-
ized from that of its parent (normally 0). It may be changed with a sigblock(2) or sigset-
mask (2) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it is delivered to the
process. When a signal is delivered, the current state of the process is saved, a new signal
mask is calculated (as described below), and the signal handler is invoked. The call to the
handler is arranged so that if the signal handling routine returns normally the process will
resume execution in the context from before the signal’s delivery. If the process wishes to
resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the
process’ signal handler (or until a sighlock or sigsetmask call is made). This mask is formed by
taking the current signal mask, adding the signal to be delivered, and or’ing in the signal mask
associated with the handler to be invoked.

sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler routine
and mask to be used when delivering the specified signal. Further, if the SV_ONSTACK bit is
set in sv_flags, the system will deliver the signal to the process on a signal stack, specified with
sigstack (2). If ovec is non-zero, the previous handling information for the signal is returned to
the user.

The following is a list of all signals with names as in the include file <signal.h>:

SIGHUP 1 hangup

SIGINT 2 interrupt
SIGQUIT 3% quit

SIGILL 4+ illegal instruction
SIGTRAP 5% trace trap
SIGIOT 6« IOT instruction
SIGEMT 7« EMT instruction

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SIGVEC (2-BSD) RISC/os Programmer’s Reference SIGVEC(2-BSD)

NOTES

SIGFPE 8+ floating point exception

SIGKILL 9 kill (cannot be caught, blocked, or
SIGBUS 10« bus error

SIGSEGV 11+ segmentation violation

SIGSYS 12+ bad argument to system call
SIGPIPE 13 write on a pipe with no

SIGALRM 14 alarm clock
SIGTERM 15 software termination signal

SIGURG 16 urgent condition present on socket

SIGSTOP 17t stop (cannot be caught, blocked, or

SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19@ continue after stop (cannot be blocked)
SIGCHLD 20e child status has changed

SIGTTIN 211 background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23e i/o is possible on a descriptor

SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))

SIGPROF 27 profiling timer alarm (see setitimer(2))
SIGWINCH 28 window size change

SIGUSR1 30 user defined signal 1

SIGUSR2 31 user defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is made, or an
execve(2) is performed. The default action for a signal may be reinstated by setting sv_handler
to SIG_DFL; this default is termination (with a core image for starred signals) except for sig-
nals marked with ® or . Signals marked with ® are discarded if the action is SIG_DFL; sig-
nals marked with 1 cause the process to stop. If sv_khandler is SIG_IGN the signal is subse-
quently ignored, and pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, the call is normally restarted. The call
can be forced to terminate prematurely with an EINTR error return by setting the
SV_INTERRUPT bit in sv_flags. The affected system calls are read(2) or write(2) on a slow dev-
ice (such as a terminal; but not a file) and during a wait (2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, the signal stack, and
the restart/interrupt flags.

execve(2) resets all caught signals to default action and resets all signals to be caught on the
user stack. Ignored signals remain ignored; the signal mask remains the same; signals that
interrupt system calls continue to do so.

The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. This is
done silently by the system.

The SV_INTERRUPT flag is not available in 4.2BSD, hence it should not be used if backward
compatibility is needed.

RETURN VALUE

Page 2

A 0 value indicated that the call succeeded. A -1 return value indicates an error occurred
and errno set to indicated the reason.

February 5, 1989 MIPS Computer Systems, Inc.

SIGVEC (2-BSD) RISC/os Programmer’s Reference SIGVEC(2-BSD)

ERRORS .)
sigvec will fail and no new signal handler will be installed if one of the following occurs:
[EFAULT] Either vec or ovec points to memory that is not a valid part of the pro-
cess address space. :
[EINVAL] sig is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIG-
STOP.
[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is
ignored).
SEE ALSO

kill(1), ptrace(2), kill(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), sigvec(2),
setjmp(3), siginterrupt(3), tty(4), sigreturn(2), emulate_branch(3), fpc(3), cache_flush(2)
R2010 Floating Point Coprocessor Architecture Engineering Description

R2360 Floating Point Board Product Description

NOTES MIPS)
The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext scp;

Here sig is the signal number. MIPS hardware exceptions are mapped to specific signals as
defined by the table below, code is a parameter that is either a constant as given below or
zero. Scp is a pointer to the sigcontext structure (defined in <signal.h>), that is the context at
the time of the signal and is used to restore the context if the signal handler returns.

The following defines the mapping of MIPS hardware exceptions to signals and codes. All of
these symbols are defined in either <signal.h > or <mips/cpu.h>:

Hardware exception ' Signal Code

Integer overflow SIGFPE EXC_OV
Segmentation violation SIGSEGV ~ SEXC_SEGV
Dllegal Instruction SIGILL EXC_II
Coprocessor Unusable SIGILL SEXC_CPU

Data Bus Error SIGBUS EXC_DBE
Instruction Bus Error SIGBUS EXC_IBE

Read Address Error SIGBUS EXC_RADE
Write Address Error. SIGBUS EXC_WADE

User Breakpoint (used by debuggers) SIGTRAP. BRK_USERBP
Kernel Breakpoint (used by prom) SIGTRAP ~ BRK_KERNELBP
Taken Branch Delay Emulation SIGTRAP BRK_BD_TAKEN
Not Taken Branch Delay Emulation SIGTRAP BRK_BD_NOTTAKEN
User Single Step (used by debuggers) SIGTRAP BRK_SSTEPBP
Overflow Check SIGTRAP = BRK_OVERFLOW
Divide by Zero Check SIGTRAP BRK_DIVZERO
Range Error Check SIGTRAP BRK_RANGE

When a signal handler is reached, the program counter in the signal context structure (sc_pc)
points at the instruction that caused the exception as modified by the branch delay bit in the
cause register. The cause register at the time of the exception is also saved in the sigcontext
structure (sc_cause). If the instruction that caused the exception is at a valid user address it
can be retrieved with the following code sequence:

MIPS Computer Systems, Inc. February 5, 1989 Page 3

SIGVEC (2-BSD) RISC/os Programmer’s Reference SIGVEC (2-BSD)

Page 4

if(scp->sc_cause & CAUSE_BD){
branch_instruction = x(unsigned long #)(scp->sc_pc); v
exception_instruction = x(unsigned long *)(scp->sc_pc + 4);
}
else
exception_instruction = x(unsigned long *)(scp->sc_pc);

Where CAUSE_BD is defined in <mips/cpu.h>.

The signal handler may fix the cause of the exception and re-execute the instruction, emulate
the instruction and then step over it or perform some non-local goto such as a longjump() or
an exit().

If corrective action is performed in the signal handler and the instruction that caused the
exception would then execute without a further exception, the signal handler simply returns
and re-executes the instruction (even when the branch delay bit is set).

If execution is to continue after stepping over the instruction that caused the exception the
program counter must be advanced. If the branch delay bit is set the program counter is set
to the target of the branch else it is incremented by 4. This can be done with the following
code sequence:

if(scp->sc_cause & CAUSE_BD)
emulate_branch(scp, branch_instruction);
else
scp->sc_pc += 4;

emulate_branch() modifies the program counter value in the sigcontext structure to the target
of the branch instruction. See emulate_branch (3) for more details.

For SIGFPE’s generated by floating-point instructions (code == 0) the floating-point control and
status register at the time of the exception is also saved in the sigcontext structure (sc_fpc_csr).
This register has the information on which exceptions have occurred. When a signal handler
is entered the register contains the value at the time of the exception but with the exceptions
bits cleared. On a return from the signal handler the exception bits in the floating-point con-
trol and status register are also cleared so that another SIGFPE will not occur (all other bits are
restored from sc_fpc_csr).

If the floating-point unit is a R2360 (a floating-point board) and a SIGFPE is generated by the
floating-point unit (code == 0) and program counter does not point at the instruction that
caused the exception. In this case the instruction that caused the exception is in the floating-
point instruction exception register. The floating-point instruction exception register at the time
of the exception is also saved in the sigcontext structure (sc_fpc_eir). In this case the instruc-
tion that caused the exception can be retrieved with the following code sequence:

union fpc_irr fpc_irr;

fpc_irr.fi_word = get_fpc_irr();

if(sig == SIGFPE && code == 0 &&
fpc_irr.fi_struct.implementation == IMPLEMENTA TION_R2360)
exception_instruction = scp->sc_fpc_eir;

The union fpc_irr, and the constant IMPLEMENTATION_R2360 are defined in <mips/fpu.h>.
For the description of the routine get_fpc_irr() see fpc(3). All other floating-point implemen-
tations are handled in the normal manner with the instruction that caused the exception at the
program counter as modified by the branch delay bit.

February 5, 1989 MIPS Computer Systems, Inc.

SIGVEC (2-BSD) RISC/os Programmer’s Reference SIGVEC (2-BSD)

For SIGSEGV and SIGBUS errors the faulting virtual address is saved in sc_badvaddr in the sig-
nal context structure. '

The SIGTRAP’s caused by break instructions noted in the above table and all other yet to be
defined break instructions fill the code parameter with the first argument to the break instruc-
tion (bits 25-16 of the instruction).

MIPS Computer Systems, Inc. February 5, 1989 Page 5

SOCKET (2-BSD) RISC/os Programmer’s Reference SOCKET (2-BSD)

NAME
socket — create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

s = socket(domain, type, protocol)
" int s, domain, type, protocol;

DESCRIPTION
socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will
take place; this selects the protocol family which should be used. The protocol family gen-
erally is the same as the address family for the addresses supplied in later operations on the
socket. These families are defined in the include file <sys/socket.h>. The currently under-
stood formats are

PF_UNIX (UNIX internal protocols),

PF_INET (ARPA Internet protocols),

PF_NS (Xerox Network Systems protocols), and
PF_IMPLINK (IMP “host at IMP” link layer).

The socket has the indicated type, which specifies the semantics of communication. Currently
defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams.
An out-of-band data transmission mechanism may be supported. A SOCK_DGRAM socket
supports datagrams (connectionless, unreliable messages of a fixed (typically small) maximum
length). A SOCK_SEQPACKET socket may provide a sequenced, reliable, two-way
connection-based data transmission path for datagrams of fixed maximum length; a consumer
may be required to read an entire packet with each read system call. This facility is protocol
specific, and presently implemented only for PF_NS. SOCK_RAW sockets provide access to
internal network protocols and interfaces. The types SOCK_RAW, which is available only to
the super-user, and SOCK_RDM, which is planned, but not yet implemented, are not described
here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single
protocol exists to support a particular socket type within a given protocol family. However, it
is possible that many protocols may exist, in which case a particular protocol must be
specified in this manner. The protocol number to use is particular to the “communication:
domain” in which communication is to take place; see protocols(3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A connec-
tion to another socket is created with a connect(2) call. Once connected, data may be
transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls.
When a session has been completed a close(2) may be performed. Out-of-band data may also
be transmitted as described in send(2) and received as described in recv (2).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SOCKET (2-BSD) RISC/os Programmer’s Reference SOCKET (2-BSD)

The communications protocols used to implement a SOCK_STREAM insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, then the connection is considered
broken and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific
code in the global variable errno. The protocols optionally keep sockets ‘“warm” by forcing

* transmissions roughly every minute in the absence of other activity. An error is then indicated

if no response can be elicited on an otherwise idle connection for a extended period (e.g. 5
minutes). A SIGPIPE signal is raised if a on a broken stream; this causes naive processes, which
do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The
only difference is that read(2) calls will return only the amount of data requested, and any
remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named
in send(2) calls. Datagrams are generally received with recvfrom(2), which returns the next
datagram with its return address.

An fentl(2) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives. It may also enable non-blocking I/0 and asynchronous notification
of I/0 events via SIGIO. '

The operation of socketé is controlled by socket level options. These options are defined in
the file <sys/socket.h>. setsockopt(2) and getsockopt(2) are used to set and get options,
respectively.

RETURN VALUE

A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS

The socket call fails if:

[EPROTONOSUPPORT]
The protocol type or the specified protocol is not supported within this
domain.

[EMFILE] - The per-process descriptor table is full.

[ENFILE] The system file table is full.

[EACCESS] Permission to create a socket of the specified type and/or protocol is
denied.

[ENOBUFS] Insufficient buffer space is available. The socket cannot be created until

sufficient resources are freed.

SEE ALSO

Page 2

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), read(2),
recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2)

“An Introductory 4.3BSD Interprocess Communication Tutorial.” (reprinted in UNIX
Programmer’s Supplementary Documents Volume 1, PS1:7) “An Advanced 4.3BSD Interpro-
cess Communication Tutorial.” (reprinted in UNIX Programmer’s Supplementary Documents
Volume 1, PS1:8)

February 5, 1989 MIPS Computer Systems, Inc.

SOCKETPAIR (2-BSD) RISC/os Programmer’s Reference SOCKETPAIR (2-BSD)

NAME
socketpair — create a pair of connected sockets

SYNOPSIS
##include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];
DESCRIPTION
The socketpair call creates an unnamed pair of connected sockets in the specified domain d,

of the specified fype, and using the optionally specified protocol. The descriptors used in
referencing the new sockets are returned in sv[0] and sv[1]. The two sockets are indistinguish-

able.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:
[EMFILE] Too many descriptors are in use by this process.
[EAFNOSUPPORT] The specified address family is not supported on this machine.
[EPROTONOSUPPORT] The specified protocol is not supported on this machine.
[EOPNOTSUPP] The specified protocol does not support creation of socket pairs.
[EFAULT] The address sv does not specify a valid part of the process address

space.
SEE ALSO

read(2), write(2), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

MIPS Computer Systems, Inc. February 8, 1989 Page 1

STAT (2-BSD) RISC/o0s Programmer’s Reference ~ STAT(2BSD)

NAME
stat, Istat, fstat — get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

stat(path, buf)
char «path;
struct stat xbuf;

Istat(path, buf)
char spath;
struct stat xbuf;

fstat(fd, buf)
int fd;
struct stat xbuf;
DESCRIPTION
stat obtains information about the file path. Read, write or execute permission of the named

file is not required, but all directories listed in the path name leading to the file must be reach-
able.

Istat is like stat except in the case where the named file is a symbolic link, in which case Istat
returns information about the link, while stat returns information about the file the link refer-
ences.

fstat obtains the same information about an open file referenced by the argument descriptor,
such as would be obtained by an open call.

buf is a pointer to a stat structure into which information is placed concerning the file. The
contents of the structure pointed to by buf '

struct stat {

dev_t st_dev; /% device inode resides on +/
ino_t st_ino; /x this inode’s number */
u_short st_mode; /x protection +/
short st_nlink; /+ number or hard links to the file +/
short st_uid; / user-id of owner %/
short st_gid; /% group-id of owner */
dev_t st_rdev; /% the device type, for inode that is device +/
off_t st_size; /% total size of file «/
time_t st_atime; /x file last access time +/
int st_sparel;
time_t st_mtime; /x file last modify time %/
int st_spare2;
time_t st_ctime; /« file last status change time #/
int st_spare3;
long st_blksize; /+ optimal blocksize for file system i/o ops */
long st_blocks; /x actual number of blocks allocated +/
long st_spared[2];
¥
st_atime Time when file data was last read or modified. Changed by the follow-

ing system calls: mknod(2), utimes(2), read(2), and write(2). For rea-
sons of efficiency, st_atime is not set when a directory is searched,
although this would be more logical.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

STAT (2-BSD)

st_mtime

st_ctime

RISC/os Programmer’s Reference STAT (2-BSD)

Time when data was last modified. It is not set by changes of owner,
group, link count, or mode. Changed by the following system calls:
mknod(2), utimes(2), write(2).

Time when file status was last changed. It is set both both by writing
and changing the inode. Changed by the following system calls:
chmod (2) chown(2), link (2), mknod (2), rename(2), unlink(2), utimes(2),
write(2). . .

The status information word st_mode has bits:
#define S_IFMT 0170000 /x type of file »/
#define S_IFDIR 0040000 /% directory */
#define S_IFCHR 0020000 /% character special */
#define S_IFBLK 0060000 /% block special */
#define S_IFREG 0100000 /+ regular */
#define S_IFLNK 0200000 /* symbolic link +/
#define S_IFSOCK 0140000 /% socket +/

#define S_ISUID 0004000 /% set user id on execution %/

#define S_ISGID 0002000 /% set group id on execution »/

#define S_ISVTX 0001000 /% save swapped text even after use »/

#define S_IREAD 0000400 /% read permission, owner */

#define S_LIWRITE 0000200 /+ write permission, owner /

#define S_TEXEC 0000100 /x execute/search permission, owner +/

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
stat and Istat will fail if one or more of the following are true:

[ENOTDIR]
[EINVAL]
[ENAMETOOLONG]

[ENOENT]
[EACCES]
[ELOOP]
[EFAULT]
[EIO]

A component of the path prefix is not a directory.
The pathname contains a character with the high-order bit set.

A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.
buf or name points to an invalid address.

An I/O error occurred while reading from or writing to the file system.

fstat will fail if one or both of the following are true:

[EBADF]
[EFAULT]
[BIO]

CAVEAT
The fields in the stat structure currently marked st_sparel, st_spare2, and st_spare3 are present
in preparation for inode time stamps expanding to 64 bits. This, however, can break certain
programs that depend on the time stamps being contiguous (in calls to utimes(2)).

Page 2

fildes is not a valid open file descriptor.

buf points to an invalid address.

An I/O error occurred while reading from or writing to the file system.

February 5, 1989 MIPS Computer Systems, Inc.

STAT (2-BSD) RISC/os Programmer’s Reference STAT (2-BSD)

SEE ALSO
chmod(2), chown(2), utimes(2)

BUGS

Applying fstat to a socket (and thus to a pipe) returns a zero’d buffer, except for the blocksize
field, and a unique device and inode number.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

STATFS (2-BSD) RISC/os Programmer’s Reference STATFS (2-BSD)

NAME
statfs — get file system statistics

SYNOPSIS
#include <sys/vfs.h>

statfs(path, buf)
char xpath;
‘struct statfs sbuf;

fstatfs(fd, buf)

int fd;

struct statfs xbuf;
DESCRIPTION

statfs returns information about a mounted file system. parh is the path name of any file
within the mounted filesystem. buf is a pointer to a statfs structure defined as follows:

typedef struct {
long val[2];
} fsid_t;
_struct statfs {
long f_type; /% type of info, zero for now «/
long f_bsize; /+ fundamental file system block size %/
long f_blocks; /x total blocks in file system */
long f_bfree; /x free blocks +/
long f_bavail; /« free blocks available to non-superuser /
long f_files; /% total file nodes in file system +/
long f_ffree; /+ free file nodes in fs +/
fsid_t f_fsid; /x file system id +/
long f_spare[7]; /x spare for later +/
b
Fields that are undefined for a particular file system are set to —1. fstatfs returns the same
information about an open file referenced by descriptor fd.
RETURN VALUE :
Upon successful completion, a value of 0 is returned. Otherwise, —1 is returned and the glo-
bal variable errno is set to indicate the error.
ERRORS
statfs fails if one or more of the following are true:

ENOTDIR A component of the path prefix of park is not a directory.
EINVAL path contains a character with the high-order bit set.

ENAMETOOLONG The length of a component of path exceeds 255 characters, or the length
of path exceeds 1023 characters.

ENOENT The file referred to by path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.
ELOOP Too many symbolic links were encountered in translating path .
EFAULT buf or path points to an invalid address.

EIO An I/0 error occurred while reading from or writing to the file system.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

STATFS (2-BSD) RISC/os Programmer’s Reference STATFS (2-BSD)

fstatfs fails if one or both of the following are true:

EBADF fd is not a valid open file descriptor.
EFAULT buf points to an invalid address.
EIO

An I/O error occurred while reading from or writing to the file system.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

SWAPON (2-BSD) RISC/os Programmer’s Reference SWAPON (2-BSD)

NAME
swapon — add a swap device for interleaved paging/swapping
SYNOPSIS
swapon (special)
char xspecial;
DESCRIPTION
swapon makes the block device special available to the system for allocation for paging and
swapping. The names of potenfially available devices are known to the system and defined at
system configuration time. The size of the swap area on special is calculated at the time the
device is first made available for swapping.
RETURN VALUE .
If an error has occurred, a value of —1 is returned and errno is set to indicate the error.
ERRORS
swapon succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

[ENOENT] The named device does not exist,

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The caller is not the super-user.

[ENOTBLK] special is not a block device.

[EBUSY] The device specified by special has already been made available for
swapping

[EINVAL] The device configured by special was not configured into the system as a
swap device.

[ENXIO] The major device number of special is out of range (this indicates no

‘ device driver exists for the associated hardware).
[EIO] An 1/0 error occurred while opening the swap device.
[EFAULT] special points outside the process’s allocated address space.
SEE ALSO

swapon(8), config(8)

BUGS
There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SYMLINK (2-BSD)

NAME

RISC/os Programmer’s Reference _ SYMLINK (2-BSD)

symlink — make symbolic link to a file

SYNOPSIS

symlink(namel, name2)
char snamel, sname2;

DESCRIPTION

A symbolic link name?2 is created to namel (name2 is the name of the file created, namel is
the string uséd in creating the symbolic link). Either name may be an arbitrary path name; the
files need not be on the same file system.

RETURN VALUE

Upon successful completion, a zero value is returned. If an error occurs, the error code is
stored in errno and a -1 value is returned.

ERRORS

The symbolic link is made unless on or more of the following are true:

[ENOTDIR]
[EINVAL]
[ENAMETOOLONG]

[EROFS]

[ENOSPC]
[ENOSPC]
[ENOSPC]

[EDQUOT]

[EDQUOT]

[EDQUOT]
[EI0]

[EFAULT]

A component of the name2 prefix is not a directory.
Either namel or name2 contains a character with the high-order bit set.

A component of either pathname exceeded 255 characters, or the entire
length of either path name exceeded 1023 characters.

The named file does not exist,

A component of the name2 path prefix denies search permission.

Too many symbolic links were encountered in translating the pathname.
name? already exists.

An I/O error occurred while making the directory entry for name2, or
allocating the inode for name2, or writing out the link contents of
name2.

The file name2 would reside on a read-only file system.

The directory in which the entry for the new symbolic link is being
placed cannot be extended because there is no space left on the file sys-
tem containing the directory.

The new symbolic link cannot be created because there there is no
space left on the file system that will contain the symbolic link.

There are no free inodes on the file system on which the symbolic link is
being created.

The directory in which the entry for the new symbolic link is being
placed cannot be extended because the user’s quota of disk blocks on
the file system containing the directory has been exhausted.

The new symbolic link cannot be created because the user’s quota of
disk blocks on the file system that will contain the symbolic link has
been exhausted.

The user’s quota of inodes on the file system on which the symbolic link
is being created has been exhausted.

An T/O error occurred while making the directory entry or allocating the
inode.

namel or name2 points outside the process’s allocated address space.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

SYMLINK (2-BSD") RISC/os Programmer’s Reference SYMLINK (2-BSD)

SEE ALSO
link(2), In(1), unlink(2)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

SYNC (2-BSD) _ RISC/os Programmer’s Reference SYNC (2-BSD)

NAME

sync — update super-block
SYNOPSIS

sync()
DESCRIPTION

sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block 1/0.

sync should be used by programs that examine a file system, for example fsck, df, etc. sync is
mandatory before a boot.

SEE ALSO
fsync(2), sync(8), update(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

MIPS Computer Systems, Inc. February 5, 1989 ’ Page 1

SYSCALL (2-BSD) RISC/os Programmer’s Reference SYSCALL (2-BSD)

NAME
syscall — indirect system call

SYNOPSIS
#include <syscall.h>

syscallmumber, arg, ...) (VAX-11)

DESCRIPTION ‘
syscall performs the system call whose assembly language interface has the specified number,
register arguments r0 and rI and further arguments arg. Symbolic constants for system calls
can be found in the header file <syscall.h>.

The r0 value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, syscall returns -1 and sets the external variable errno (see intro(2)).

BUGS
There is no way to simulate system calls such as pipe(2), which return values in register rl.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

TRUNCATE (2-BSD) RISC/os Programmer’s Reference TRUNCATE (2-BSD)

NAME :
truncate, ftruncate — truncate a file to a specified length

SYNOPSIS
truncate (path, length)
char xpath;
off_t length;
ftruncate (fd, length)
int fd;
off_t length;
DESCRIPTION
truncate causes the file named by parh or referenced by fd to be truncated to at most length
bytes in size. If the file previously was larger than this size, the extra data is lost. With frrun-
~ cate, the file must be open for writing.
RETURN VALUES '

A value of 0 is returned if the call succeeds. If the call fails a ~1 is returned, and the global
variable errno specifies the error. :

ERRORS
truncate succeeds unless: r. TP 20 [ENOTDIR] A component of the path prefix is not a direc-
tory. '
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

[ENOENT] The named file does not exist.
[EACCES] - Search permission is denied for a component of the path prefix.
[EACCES] The named file is not writable by the user.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EISDIR] The named file is a directory.
[EROFS] The named file resides on a read-only file system.
[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.
[EIO] "~ An I/O error occurred updating the inode.
[EFAULT)] Path points outside the process’s allocated address space.
ftruncate succeeds unless: |
[EBADF] The fd is not a valid descriptor.
[EINVAL] The fd references a socket, not a file.
[EINVAL] 'The fd is not open for writing.
SEE ALSO
open(2)

BUGS
These calls should be generalized to allow ranges of bytes in a file to be discarded.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

UMASK (2-BSD) RISC/os Programmer’s Reference ' UMASK (2-BSD)

NAME
umask — set file creation mode mask

SYNOPSIS
oumask = umask(numask)
int oumask, numask;

DESCRIPTION
umask sets the process’s file mode creation mask to numask and returns the previous value of
the mask. The low-order 9 bits of humask are used whenever a file is created, clearing
corresponding bits in the file mode (see chmod(2)). This clearing allows each user to restrict
the default access to his files.
‘The value is initially 022 (write access for owner onmly). The mask is inherited by child
processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO S
chmod(2), mknod(2), open(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

UNAME (2-BSD) RISC/os Programmer’s Reference UNAME (2-BSD)

NAME
uname — get general system information

SYNOPSIS
#include <sys/utsname.h>

int uname (un)
struct utsname xun;

DESCRIPTION ‘)
uname stores information identifying the current operating system and machine into the struc-
ture pointed to by the argument.

The utsname structure is defined in the include file <sys/utsname.h>. It consists of 13 fields,
7 of which are defined and the rest of which are reserved for future use. The currently
defined fields (with available values) are:

sysname The network identification name (same as the hostname).

nodename The network identification name (same as the hostname and the above
sysname field).

release The operating system release name.

version The MIPS system version number.

machine The hardware type. _

m_type (MIPS-specific) The MIPS hardware type.

base_rel (M1IPs-specific) The base release for the system.

The valid values for these fields are defined in the utsname.h include file.

RETURN VALUE

If successful, uname will return a non-negative value; otherwise, it will return -1 and errno will
indicate the error.

SEE ALSO
hwconf(2), gethostname(2).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

UNLINK (2-BSD) RISC/os Programmer’s Reference UNLINK (2-BSD)

NAME
unlink - remove directory entry

SYNOPSIS
unlink(path)
char spath;

DESCRIPTION
unlink removes the entry for the file path from its directory. If this entry was the last link to
the file, and no process has the file open, then all resources associated with the file are
reclaimed. If, however, the file was open in any process; the actual resource reclamation is
delayed until it is closed, even though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
The unlink succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EA CCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to be
removed.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The named file is a directory and the effective user ID of the process is
not the super-user.

[EPERM] The directory containing the file is marked sticky, and neither the con-
taining directory nor the file to be removed are owned by the effective
user ID.

[EBUSY] The entry to be unlinked is the mount point for a mounted file system.

[EIO] An I/0 error occurred while deleting the directory entry or deallocating
the inode.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path points outside the process’s allocated address space.

SEE ALSO

close(2), link(2), rmdir(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

UNMOUNT (2-BSD) RISC/os Programmer’s Reference UNMOUNT (2-BSD)

NAME
unmount — remove a file system
SYNOPSIS
unmount (name)
char sname;
DESCRIPTION
unmount announces to the system that the directory name is no longer to refer to the root of a
mounted file system. The directory name reverts to its ordinary interpretation.
RETURN VALUE '
unmount returns 0 if the action occurred; -1 if if the directory is inaccessible or does not have
a mounted file system, or if there are active files in the mounted file system.
ERRORS
unmount may fail with one of the following errors:

EPERM The caller is not the super-user.

ENOTDIR A component of the path prefix of name is not a directory.
EINVAL name is not the root of a mounted file system.

EBUSY A process is holding a reference to a file located on the file system.
EINVAL The pa’th’ name contains a character with the high-order bit set.

ENAMETOOLONG The length of a component of the path name exceeds 255 characters, or
the length of the entire path name exceeds 1023 characters.

ENOENT name does not exist.

EACCES Search permission is denied for a component of the path prefix.

EFAULT name points outside the process’s allocated address space.

ELOOP Too many symbolic links were encountered in translating the path name.

EIO An I/O error occurred while reading from or writing to the file system.
SEE ALSO

mount(2), mount(8), umount(8)

BUGS :
The error codes are in a state of disarray; too many errors appear to the caller as one value.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

UTIMES (2-BSD) RISC/os Programmer’s Reference UTIMES (2-BSD)

NAME
utimes — set file times

SYNOPSIS
#include <sys/time.h>

utimes (file, tvp)
char sfile;
struct timeval tvp[2]; .
DESCRIPTION
The utimes call uses the ‘““accessed” and “updated” times in that order from the fvp vector to
set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The “inode-changed” time of the
file is set to the current time.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
utime will fail if one or more of the following are true:

[ENOTDIR] - - . A component of the path prefix is not a directory.
[BINVAL] * - The pathname contains a character with the high-order bit set.

[ENAMETOQOLONG] A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

[ENOENT] The named file does not exist.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EPERM] The process is not super-user and not the owner of the file.
[EACCES] Search permission is denied for a component of the path prefix.
[EROFS] The file system containing the file is mounted read-only.
[EFAULT] file or tvp points outside the process’s allocated address space.
[EIO] An /O error occurred while reading or writing the affected inode.
SEE ALSO
stat(2)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

VFORK (2-BSD) RISC/os Programmer’s Reference VFORK (2-BSD)

NAME
vfork — spawn new process in a virtual memory efficient way

SYNOPSIS
pid = vfork()
int pid;

DESCRIPTION
vfork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur-
pose of fork(2) would have been to create a new system context for an execve. vfork differs
from fork in that the child borrows the parent’s memory and thread of control until a call to
execve(2) or an exit (exther by a call to exit(2) or abnormally) The parent process is suspended
while the child is using its resources.
vfork returns 0 in the child’s context and (later) the pid of the child in the parent’s context.
vfork can normally be used just like fork. It does not work, however, to return while running
in the childs context from the procedure that called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exir rather
than exit if you can’t execve, since exir will flush and close standard I/0 channels, and thereby
mess up the parent processes standard I/O data structures. (Even with fork it is wrong to call
exit since buffered data would then be flushed twice.)’

SEE ALSO ,
fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS
Same as for fork.

BUGS

This system call will be eliminated when proper system sharing mechanisms are implemented.
Users should not depend on the memory sharing semantics of vfork as it will, in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes that are children in the middle of a vfork
are never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input
attempts result in an end-of-file indication.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

VHANGUP (2-BSD) RISC/os Programmer’s Reference VHANGUP (2-BSD)

NAME
vhangup - virtually “hangup” the current control terminal

SYNOPSIS
vhangup()

DESCRIPTION
vhangup is used by the initialization process init(8) (among others) to arrange that users are
given ‘“‘clean’” terminals at login, by revoking access of the previous users’ processes to the
terminal. To effect this, vhangup searches the system tables for references to the control ter-
minal of the invoking process, revoking access permissions on each instance of the terminal
that it finds. Further attempts to access the terminal by the affected processes will yield i/o

errors (EBADF). Finally, a hangup signal (SIGHUP) is sent to the process group of the control
terminal. :

SEE ALSO
init (8)

BUGS -

Access to the control terminal via /dev/tty is still possible:

This call should be replaced by an automatic mechanism that takes place on process exit.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

WAIT

NAME

. SYNOP

DESCR

NOTES

(2-BSD) RISC/os Programmer’s Reference WAIT (2-BSD)

wait, wait3 — wait for process to terminate

SIS
#include <sys/wait.h>

pid = wait(status)

int pid;

union wait xstatus;

pid = wait(0)

int pid;

#include <sys/time.h>
#include <sys/resource.h>

pid = wait3(status, options, rusage)
int pid;

union wait sstatus;

int options;

struct rusage srusage;

pid = mips_wait3(status, options, rusage, rusage_size)
int pid;

union wait xstatus;

int options;

struct rusage xrusage;

int rusage_size;

IPTION

wait causes its caller to delay until a signal is received or one of its child processes terminates.
If any child has died since the last wait, return is immediate, returning the process id and exit
status of one of the terminated children. If there are no children, return is immediate with
the value -1 returned. ‘

On return from a successful wait call, status is nonzero, and the high byte of starus contains
the low byte of the argument to exit supplied by the child process; the low byte of status con-
tains the termination status of the process. A more precise definition of the status word is
given in <sys/wait.h>.

wait3 provides an alternate interface for programs that must not block when collecting the
status of child processes. Mips_wait3 performs the same function as wait3 but takes a fourth
argument which is the size of the rusage structure. This interface will be used in the future to
return MIPS hardware specific resource use information as the rusage structure is extended.

The status parameter is defined as above. The options parameter is used to indicate the call
should not block if there are no processes that wish to report status (WNOHANG), and/or that
children of the current process that are stopped due to a SIGTTIN, SIGTTOU, SIGTSTP, or
SIGSTOP signal should also have their status reported (WUNTRACED). If rusage is non-zero, a
summary of the resources used by the terminated process and all its children is returned (this
information is currently not available for stopped processes).

When the WNOHANG option is specified and no processes wish to report status, wait3 returns
a pid of 0. The WNOHANG and WUNTRACED options may be combined by or’ing the two
values.

See sigvec(2) for a list of termination statuses (signals); O status indicates normal termination.
A special status (0177) is returned for a stopped process that has not terminated and can be

MIPS Computer Systems, Inc. February 5, 1989 Page 1

(

WAIT (2-BSD) RISC/os Programmer’s Reference WAIT (2-BSD)

restarted; see ptrace(2). If the 0200 bit of the termination status is set, a core image of the
process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process (pro-
cess ID = 1) inherits the children.

wait and wajt3 are automatically restarted when a process receives a signal while awaiting ter-
mination of a child process.

RETURN VALUE

If wait returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and errno is set to indi-
cate the error.

wait3 returns -1 if there are no children not previously waited for; 0 is returned if WNOHANG
is specified and there are no stopped or exited children.

ERRORS
wait will fail and return immediately if one or more of the following are true:
[ECHILD] The calling process has no existing unwaited-for child processes.
[EFAULT] The status or rusage arguments point to an illegal address.
SEE ALSO
exit(2)
Page 2 February 5, 1989 MIPS Computer Systems, Inc.

WRITE (2-BSD) RISC/os Programmer’s Reference WRITE (2-BSD)

NAME
write, writev — write output

SYNOPSIS
cc = write(d, buf, nbytes)
int cc, d;
char sbuf;
int nbytes;
#include <sys/types.h>
#include <sys/uio.h>
cc = writev(d, iov, iovent)
int cc, d; '
struct iovec *iov;
int iovent;
DESCRIPTION
write attempts to write nbytes of data to the object referenced by the descriptor d from the
buffer pointed to by buf. writev performs the same action, but gathers the output data from
the iovent buffers specified by the members of the iov array: iov[0], iov[1], ..., iov[iovent - 1].
For writev, the iovec structure is defined as

struct iovec { _
caddr_t iov_base;
int iov_len;
¥ .
Each iovec entry specifies the base address and length of an area in memory from which data
should be written. writev will always write a complete area before proceeding to the next.

On objects capable of seeking, the write starts at a position given by the pointer associated
with d, see Iseek(2). Upon return from write, the pointer is incremented by the number of
bytes actually written.

Objects that are not capable of seeking always write from the current position. The value of
the pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who “captures” a writable set-user-id file
owned by the super-user.
When using non-blocking I/0O on objects such as sockets that are subject to flow control, wrire
and writev may write fewer bytes than requested; the return value must be noted, and the
remainder of the operation should be retried when possible.

RETURN VALUE
Upon successful completion the number of bytes actually written is returned. Otherwise a —1
is returned and the global variable errno is set to indicate the error.

ERRORS
write and writev will fail and the file pointer will remain unchanged if one or more of the fol-
lowing are true:
[EBADF] D is not a valid descriptor open for writing.

[EPIPE] An attempt is made to write to a pipe that is not open for reading by
any process.

[EPIPE] An attempt is made to write to a socket of type SOCK_STREAM that is
not connected to a peer socket.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

WRITE (2-BSD)

[EFBIG]
[EFAULT]

[EINVAL]
[ENOSPC]
[EDQUOT]

[BIO]
[EWOULDBLOCK]

RISC/os Programmer’s Reference WRITE (2-BSD)

An attempt was made to write a file that exceeds the process’s file size
limit or the maximum file size.

Part of iov or data to be written to the file points outside the process’s
allocated address space.

The pointer associated with d was negative.
There is no free space remaining on the file system containing the file.

The user’s quota of disk blocks on the file system containing the file has
been exhausted.

An 1/0 error occurred while reading from or writing to the file system.

The file was marked for non-blocking I/0, and no data could be written
immediately.

In addition, writev may return one of the following errors:

[EINVAL]
[EINVAL]
[BINVAL]

SEE ALSO

iovent was less than or equal to 0, or greater than 16.
One of the iov_len values in the iov array was negative.

The sum of the iov_len values in the iov array overflowed a 32-bit
integer. .

fentl(2), 1seek(2), open(2), pipe(2), select(2)

Page 2

February 5, 1989 MIPS Computer Systems, Inc,

ABORT (3-BSD) RISC/os Programmer’s Reference ABORT (3-BSD)

NAME
abort — generate a fault

DESCRIPTION
abort executes an instruction which is illegal in user mode. This causes a signal that normally
terminates the process with a core dump, which may be used for debugging.

SEE ALSO
adb(1), sigvec(2), exit(2)
DIAGNOSTICS
Usually ““Illegal instruction — core dumped” from the shell.

ERRORS
The abort() function does not flush standard I/0 buffers. Use fflush (3S).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ABORT (3F) RISC/os Programmer’s Reference ABORT (3F)

NAME (
abort — terminate Fortran program -

SYNOPSIS
call abort ()
DESCRIPTION .
abort terminates the program that calls it, closing all open files truncated to the current posi-
tion of the file pointer. The abort usually results in a core cump.
DIAGNOSTICS
When invoked, abort prints "Fortran abort routine called" on the standard error output. The
shell prints the message "abort - core dumped" if a core dump results.
SEE ALSO
abort(3C)
sh(1) in the User’s Reference Manual.

MIPS Computer Systems, Inc. February 13, 1989 Page 1

ABS(3-BSD) RISC/os Programmer’s Reference ‘ ABS (3-BSD)

NAME
abs - integer absolute value

SYNOPSIS
abs(i)
int i;
DESCRIPTION
abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M) for fabs

ERRORS
Applying the abs function to the most negative integer generates a result which is the most
negative integer. That is,

abs(0x80000000)
returns 0x80000000 as a result.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ACCESS (3F-BSD) RISC/os Programmer’s Reference ACCESS (3F-BSD)

NAME

access — determine accessibility of a file
SYNOPSIS

integer function access (name, mode)

characterx(x) name, mode
DESCRIPTION

access checks the given file, name, for accessibility with respect to the caller according to
mode. mode may include in any order and in any combination one or more of:

r test for read permission

w test for write permission
X test for execute permission
(blank) test for existence ‘

An error code is returned if either argument is illegal, or if the file cannot be accessed in all of
the specified modes. 0 is returned if the specified access would be successful.

FILES
/usr/lib/1ibU77.a

SEE ALSO
access(2), perror(3F)

ERRORS : .
" Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ALARM (3C-BSD) RISC/os Programmer’s Reference ALARM (3C-BSD)

NAME
alarm — schedule signal after specified time

SYNOPSIS
alarm(seconds)
unsigned seconds;

DESCRIPTION
"This interface is made obsolete by setitimer(2).

>I alarm causes signal SIGALRM, see sigvec(2), to be sent to the invoking process in a
number of seconds given by the argument. Unless caught or ignored, the signal terminates the
process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is O,
any alarm request is canceled. Because of scheduling delays, resumption of execution of when
the signal is caught may be delayed an arbitrary amount. The longest specifiable delay time is
2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
sigpause(2), sigvec(2), signal(3C), sleep(3), ualarm(3), usleep(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ALARM (3F) RISC/os Programmer’s Reference - ALARM(3F)

NAME
alarm - execute a subroutine after a specified time

SYNOPSIS
integer function alarm (time, proc)
integer time
external proc
DESCRIPTION
This routine arranges for subroutine proc to be called after time seconds. If time is “0”, the
~ alarm is turned off and no routine will be called. The returned value will be the time remain-
ing on the last alarm.

FILES .
/usr/lib/1ibU77.a
SEE ALSO :
alarm(3C), sleep(3F), signal(3F)
BUGS

Alarm and sleep interact. If sleep is called after alarm, the alarm process will never be called.
SIGALRM will occur at the lesser of the remaining alarm time or the sleep time.

MIPS Computer Systems, Inc. February 13, 1989 Page 1

ASINH (3M) RISC/o0s Programmer’s Reference - ASINH(3M)

NAME

asinh, acosh, atanh - inverse hyperbolic functions
SYNOPSIS

#include <math.h>

double asinh(x)
double x;

double acosh(x)
double x;

double atanh(x)
double x;

DESCRIPTION '
These functions compute the designated inverse hyperbolic functions for real arguments.

ERROR (due to Roundoff etc.)
These functions inherit much of their error from loglp described in exp(3M).

DIAGNOSTICS -
Acosh returns the default quiet NaN if the argument is less than 1.

Atanh returns the default quiet NaN if the argument has absolute value bigger than or equal to
1. '

SEE ALSO
math(3M), exp(3M)

AUTHOR
W. Kahan, Kwok—Choi Ng

MIPS Computer Systems, Inc. February 13, 1989 Page 1

ASSERT (3-BSD) RISC/os Programmer’s Reference ASSERT (3-BSD)

NAME
assert — program verification

SYNOPSIS
#include <assert.h>

assert(expression)

DESCRIPTION
assert is a macro that indicates expression is expected to be true at this point in the program.
It causes an exif(2) with a diagnostic comment on the standard output when expression is false
(0). Compiling with the cc(1) option ~DNDEBUG effectively deletes assert from the program.
DIAGNOSTICS

‘Assertion failed: file f line n.’ f is the source file and n the source line number of the assert
statement.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ATOF (3-BSD) RISC/os Programmer’s Reference ATOF (3-BSD)

NAME
atof, atoi, atol — convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char «nptr;

atoi(nptr)
char xnptr;
long atol(nptr)
char inptr;
DESCRIPTION

These functions convert a string pointed to by nptr to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.

atof recognizes an optional string of spaces, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional ‘e’ or ‘E’ followed by an optionally
signed integer. o
atoi and atol recognize an optional string of spaces, then an optional sign, then a string of
digits.

SEE ALSO
scanf(3S)

ERRORS
There are no provisions for overflow.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

BSTRING (3-BSD) RISC/os Programmer’s Reference BSTRING (3-BSD)

NAME
bcopy, bemp, bzero, ffs — bit and byte string operations
SYNOPSIS
beopy(sre, dst, length)
char ssrc, sdst;
int length;
bemp(b1, b2, length)
char b1, xb2;
int length;
bzero (b, length)
char b
int length;
ffs (i)
int i;
DESCRIPTION v
The functions bcopy, bcmp, and bzero operate on variable length strings of bytes. They do
not check for null bytes as the routines in string (3) do.
bcopy copies length bytes from string src to the string dst.

bcmp compares byte string b1 against byte string b2, returning zero if they -are ideﬁﬁc_al, non-
zero otherwise. Both strings are assumed to be length bytes long.

bzero places length 0 bytes in the string bl.

ffs find the first bit set in the argument passed it and returns the index of that bit. Bits are
numbered starting at 1. A return value of 0 indicates the value passed is zero.

ERRORS
The bcapy routine take parameters backwards from strcpy .

MIPS Computer Systems, Inc. February 5, 1989 Page 1

BYTEORDER (3N-BSD) RISC/os Programmer’s Reference BYTEORDER (3N-BSD)

NAME
htonl, htons, ntohl, ntohs — convert values between host and network byte order
SYNOPSIS

#include <sys/types.h>
#include <netinet/in.h>

netlong = htonl(hostlong);
u_long netlong, hostlong;

netshort = htons(hostshort);
u_short netshort, hostshort;

hostlong = ntohl(netlong);
u_long hostlong, netlong;

hostshort = ntohs(netshort);
u_short hostshort, netshort;
DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order host byte order.

On machines such as the SUN these routines are defined as null macros in the include file
<netinet/in.h>.

These routines are most often used in conjunction with- Internet addresses and ports as
returned by gethostbyname (3N) and getservent (3N).
SEE ALSO o

gethostbyname(3N), getservent(3N)

ERRORS
The VAX handles bytes backwards from most everyone else in the world. This is not
expected to be fixed in the near future.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CHDIR (3F) ‘ RISC/os Programmer’s Reference CHDIR (3F)

NAME
chdir — change default directory

SYNOPSIS
integer function chdir (dirname)
characterx(x) dirname
DESCRIPTION
The default directory for creating and locating files will be changed to dirname. Zero is
returned if successful; an error code otherwise.

FILES
/usr/lib/1ibU77.a

. SEE ALSO
chdir(2), cd(1), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Use of this function may cause inquire by unit to fail.

MIPS Computer Systems, Inc. February 13, 1989 Page 1

CHMOD (3F) RISC/os Programmer’s Reference CHMOD (3F)

NAME
chmod - change mode of a file

SYNOPSIS
integer function chmod (name, mode)
characterx(x) name, mode

DESCRIPTION
This function changes the filesystem mode of file name.. Mode can be any specification recog-
nized by chmod(1). Name must be a single pathname.

The normal returned value is 0. Any other value will be a system error number.

FILES
/usr/lib/libU77.a
/bin/chmod exec’ed to change the mode.

SEE ALSO
chmod(1)

~ BUGS '
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

MIPS Computer Systems, Inc. February 13, 1989 Page 1

CRYPT (3-BSD) RISC/os Programmer’s Reference CRYPT (3-BSD)

NAME
crypt, setkey, encrypt — DES encryption

SYNOPSIS
char xcrypt(key, salt)
char +key, xsalt;

setkey(key)
char skey;

encrypt(block, edflag)
char sblock;

cc ... -lerypt

DESCRIPTION
NOTE: By default, setkey is not available, and encrypt ignores the value of edflag (it is always
treated as 0). Standard versions of these routines are available in the crypt library
(/usr/lib/liberypt.a), which is available in the USA version of UMIPS-BSD.

crypt is the password encryption routine. It is based on the NBS Data Encryption Standard,
with variations intended (among other things) to frustrate use of hardware implementations of
the DES for key search.

The first argument to crypt is normally a user’s typed password. The second is a 2-character
string chosen from the set [a-zA-Z0-9./]. The salt string is used to perturb the DES algorithm

" in one of 4096 different ways, after which the password is used as the key to encrypt repeat-
edly a constant string. The returned value points to the encrypted password, in the same
alphabet as the salt. The first two characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The argument
of setkey is a character array of length 64 containing only the characters with numerical value 0
and 1. If this string is divided into groups of 8, the low-order bit in each group is ignored,
leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 containing 0’s and
1’s. The argument array is modified in place to a similar array representing the bits of the
argument after having been subjected to the DES algorithm using the key set by serkey. If
edflag is 0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO ’
passwd(1), passwd(5), login(1), getpass(3)

ERRORS
The return value points to static data whose content is overwritten by each call.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CTIME (3-BSD) RISC/os Programmer’s Reference CTIME (3-BSD)

NAME

ctime, localtime, gmtime, asctime, timezone, tzset — convert date and time to ASCII

SYNOPSIS

void tzset()

char sctime (clock)
time_t xclock;

#include <time.h>

char xasctime(tm)
struct tm xtm;

struct tm slocaltime (clock)
time_t xclock;

struct tm xgmtime(clock)
time_t xclock;

char stimezone(zone, dst)

DESCRIPTION

tzset uses the value of the environment variable TZ to set up the time conversion information
used by localtime.

If TZ. does not appear in the environment, the TZDEFAULT file (as defined in tzfile.h) is used
by localtime. If this file fails for any reason, the GMT offset as provided by the kernel is used.
In this case, DST is ignored, resulting in the time being incorrect by some amount if DST is
currently in effect. If this fails for any reason, GMT is used.

If TZ appears in the environment but is value is a null string. Greenwich Mean Time is used;
if TZ appears and begins with a slash, it is used as the absolute pathname of the tzfile(5)-
format file from which to read the time conversion information; if TZ appears and begins with
a character other than a slash, it’s used as a pathname relative to the system time conversion
information directory, defined as TZDIR in the include file tzfile.h. If this file fails for any rea-
son, GMT is used.

Programs that always wish to use local wall clock time should explicitly remove the environ-
mental variable TZ with unsetenv (3).

ctime converts a longer integer, pointed to by clock, such as returned by time(3c) into ASCII
and returns a pointer to a 26-character string in the following form. All the fields have con-
stant width.

Sun Sep 16 01:03:52 1973\n\0

localtime and gmtime return pointers to structures containing the broken-down time. localtime
corrects for the time zone and possible daylight savings time; gmtime converts directly to
GMT, which is the time UNIT uses. asctime converts a broken-down time to ASCII and
returns a pointer to a 26-character string. '

The structure declaration from the include file is:

struct tm {
int tm_sec; /% 0-59 seconds x/
int tm_min; /% 0-59 minutes %/

int tm_hour; /x0-23 hour /

int tm_mday; /131 day of month +/

int tm_mon; /«0-11 month %/

int tm_year; /+0- year — 1900 /

int tm_wday; /+0-6 day of week (Sunday = 0) %/

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CTIME (3-BSD) RISC/os Programmer’s Reference CTIME (3-BSD)

int tm_yday; /x 0-365 day of year %/
int tm_isdst; /x flag: daylight savings time in effect +/
char «tm_zone; /« abbreviation of timezone name »/
long tm_gmtoff; /x offset from GMT in seconds +/
¥
tm_isdst is non-zero if a time zone adjustment such as Daylight Savings time is in effect.

tm_gmtoff is the offset (in seconds) of the time represented from GMT, with positive values
indicating East of Greenwich. ’

fimezone remains for compatiability reasons only; it’s impossible to reliably map timezone’s
arguments zone, a "mintutes west of GMT " value and dsf, a "daylight saving time in effect”
flag) to a time zone abbreviation.

If the environmental string TZNAME exists, timezone returns its value, unless it consists of two
comma separated strings, in which case the second string is returned if dst is non-zero, else
the first string. If TZNAME doesn’t exist, zone is checked for equality with a built-in table of
values, in which case fimezone returns the time zone or daylight time zone abbreviation associ-
ated with that value. If the requested zone does not appear in the table, the difference from
GMT is returned; e.g., in Afganistan, timezone(-(60x4+30), 0) is appropriate because it is 4:30
ahead of GMT, and the return string GMT+430 is returned. Programs that in the past used the
timezone function should return the zone name as set by localtime to assure correctness.

FILES
/etc/zoneinfo time zone information directory
/etc/zoneinfo/localtime local time zone file

SEE ALSO ‘
gettimeofday(2), getenv(3), time(3c), tzfile(5), environ(7)

NOTE '
The return values point to static data whose content is overwritten by each call. The tm_zone
field of a returned struct tm points to a static array of characters, which will also be overwrit-
ten at the next call (and by calls to tzser).

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

CTYPE (3-BSD) RISC/os Programmer’s Reference CTYPE (3-BSD)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl,
isascii, toupper, tolower, toascii — character classification macros

SYNOPSIS
#include <ctype.h>

isalpha(c)

DESCRIPTION
These macros classify ASCII coded integer values by table lookup. Fach is a predicate return-
ing nonzero for true, zero for false. isascii and toascii are defined on all integer values; the
rest are defined only where isascii is true and on the single non- ASCII value EOF (see

stdio (3S)).
isalpha c is a letter
isupper c is an upper case letter
islower ¢ is a lower case letter
isdigit c is a digit
isxdigit c is a hex digit’
isalnum ¢ is an alphanumeric character
isspace c is a space, tab, carriage return, newline, vertical tab, or formfeéd
ispunct ¢ is a punctuation character (neither control nor alphanumeric)
isprint ¢ is a printing character, code 040(8) (space) through 0176 (tilde)
isgraph ¢ is a printing character, similar to isprint except false for space.
iscntrl ¢ is a delete character (0177) or ordinary control character (less than
040).
isascii ¢ is an A SCII character, code less than 0200
tolower c is converted to lower case. Return value is undefined if not isupper(c).
toupper ¢ is converted to upper case. Return value is undefined if not islower(c).
toascii ¢ is converted to be a valid ascii character.
SEE ALSO
ascii(7)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CURSES (3X-BSD) RISC/os Programmer’s Reference CURSES (3X-BSD)

NAME

curses — screen functions with “optimal” cursor motion
SYNOPSIS

cc [flags] files =lcurses =—ltermcap [libraries |
DESCRIPTION

These routines give the user a method of updating screens with reasonable optimization. They
keep an image of the current screen, and the user sets up an image of a new one. -‘Then the
refresh() tells the routines to make the current screen look like the new one. In order to ini-
tialize the routines, the routine initscr() must be called before any of the other routines that
deal with windows and screens are used. The routine endwin() should be called before exiting.

SEE ALSO
Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold,
ioctl(2), getenv(3), tty(4), termcap(5)

longname(termbuf,name)

move(y,Xx)

mvcur(lasty,lastx,newy,newx)
newwin(lines,cols,begin_y,begin_x)

AUTHOR
Ken Arnold

FUNCTIONS
addch(ch) add a character to stdscr

. addstr(str) add a string to stdscr
~ box(win,vert,hor) draw a box around a window

cbreak() set cbreak mode .
clear() clear stdscr
clearok(scr,boolf) set clear flag for scr
clrtobot() clear to bottom on stdscr
clrtoeol() clear to end of line on stdscr
delch() delete a character
deleteln() delete a line
delwin(win) delete win
echo() set echo mode
endwin() end window modes
erase() erase stdscr
flusok(win,boolf) set flush-on-refresh flag for win
getch() get a char through stdscr
getcap(name) get terminal capability name
getstr(str) get a string through srdscr
gettmode() get tty modes
getyx(win,y,x) get (y,x) co-ordinates
inch() get char at current (y,x) co-ordinates
initscr() initialize screens
insch(c) insert a char
insertln() insert a line
leaveok(win,boolf) set leave flag for win

get long name from termbuf
move to (y,x) on stdscr
actually move cursor

create a new window

nl() set newline mapping
nocbreak() ; unset cbreak mode
noecho() unset echo mode
nonl() unset newline mapping
noraw() unset raw mode

overlay(winl,win2)

MIPS Computer Systems, Inc.

overlay winl on win2

February 5, 1989 | Page 1 .

CURSES (3X-BSD) RISC/os Programmer’s Reference CURSES (3X-BSD)

overwrite(winl,win2) overwrite winl on top of win2

printw(fmt,argl,arg2,...) printf on stdscr

raw() set raw mode

refresh() make current screen look like stdscr

resetty() reset tty flags to stored value

savetty() stored current tty flags

scanw(fmt,argl,arg2,...) scanf through stdscr

scroll(win) scroll win one line

scrollok(win,boolf) set scroll flag

setterm(name) set term variables for name

standend() end standout mode

standout() start standout mode

subwin(win,lines, cols,begin_y,begin_x) create a subwindow

touchline(win,y,sx,ex) mark line y sx through sy as changed

touchoverlap(win1,win2) mark overlap of winl on win2 as changed

touchwin(win) “change” all of win

unctrl(ch) printable version of ch

waddch(win,ch) add char to win

waddstr(win,str) add string to win

wclear(win) clear win

wclrtobot(win) clear to boftom of win

welrtoeol(win) . clear to end of line on win

wdelch(win,c) delete char from win

wdeleteln(win) delete line from win

werase(win) erase win

wgetch(win) get a char through win

wgetstr(win,str) get a string through win

winch(win) get char at current (y,x) in win

winsch(win,c) insert char into win

winsertln(win) insert line into win

wmove(win,y,x) set current (y,X) co-ordinates on win

wprintw(win,fmt,argl,arg?2,...) printf on win

wrefresh(win) make screen look like win

wscanw(win,fmt,argl,arg2,...) scanf through win

wstandend(win) end standout mode on win

wstandout(win) start standout mode on win
ERRORS

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

DISASSEMBLER (3X) RISC/os Programmer’s Reference DISASSEMBLER (3X)

NAME

disassembler — disassemble a MIPS instruction and print the results

SYNOPSIS

int disassembler (iadr, regstyle, get_symname, get_regvalue, get_bytes, print_header)
unsigned iadr;

int regstyle;

char . (sget_symname)();

int (xget_regvalue)();

long - (sget_bytes)();

void (xprint_header)();
DESCRIPTION

Disassembler disassembles and prints a MIPS machine instruction on stdout.

Iadr is the instruction address to be disassembled. Regstyle specifies how registers are named

in the disassembly; if the value is 0, compiler names are used; otherwise, hardware names are
used.

The next four arguments are function pointers, most of which give the caller some flexibility in
the appearance of the disassembly. The only function that MUST be provided is ger_bytes. All
other functions are optional. Ger_bytes is called with no arguments and returns the next
byte(s) to disassemble.

Get_symname is passed an address, which is the target of a jal instruction. If NULL is returned
or if ger symname is NULL, the disassembler prints the address; otherwise, the string name is
printed as returned from ger_symname. If get_regvalue is not NULL, it is passed a register
number and returns the current contents of the specified register. Disassembler prints this
information along with the instruction disassembly. If print_header is not NULL, it is passed
the instruction address iadr and the current instruction to be disassembled, which is the return
value from ger_bytes. Print_header can use these parameters to print any desired information
before the actual instruction disassembly is printed.

If get_bytes is NULL, the disassembler returns -1 and errno is set to EINVAL; otherwise, the
number of bytes that were disassembled is returned. If the disassembled word is a jump or
branch instruction, the instruction in the delay slot is also disassembled.

The program must be loaded with the object file access routine library libmld.a.

SEE ALSO

ldfen(4).

MIPS Computer Systems, Inc. February 13, 1989 Page 1

DBM (3X-BSD) RISC/os Programmer’s Reference DBM (3X-BSD)

NAME
dbminit, fetch, store, delete, firstkey, nextkey — data base subroutines

SYNOPSIS
#include <dbm.h>

typedef struct {
char xdptr;
int dsize;

} datum;

dbminit(file)

char xfile;

datum fetch (key)
datum key;

store(key, content)
datum key, content;

delete (key)
datum key;

datum firstkey()

datum nextkey(key)
datum key; .

dbrhcloseO

DESCRIPTION :
Note: the dbm library has been superceded by ndbm(3), and is now implemented using
ndbm. These functions maintain key/content pairs in a data base. The functions will handle
very large (a billion blocks) databases and will access a keyed item in one or two file system
accesses. The functions are obtained with the loader option =ldbm.

keys and contents are described by the darum typedef. A datum specifies a string of dsize
bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed.
The data base is stored in two files. One file is a directory containing a bit map and has ‘.dir’
as its suffix. The second file contains all data and has ‘.pag’ as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the
files file.dir and file.pag must exist. (An empty database is created by creating zero-length
‘.dir’ and ‘.pag’ files.)

Once open, the data stored under a key is accessed by ferch and data is placed under a key by
store. A key (and its associated contents) is deleted by delete. A linear pass through all keys
in a database may be made, in an (apparently) random order, by use of firstkey and nextkey .
Firstkey will return the first key in the database. With any key nextkey will return the next key
in the database. This code will traverse the data base:

for (key = firstkey(); key.dptr != NULL; key = nextkey(key))
The routine dbmeclose closes the current database.

DIAGNOSTICS
All functions that return an int indicate errors with negative values. A zero return indicates
ok. Routines that return a datum indicate errors with a null (0) dptr.

SEE ALSO
ndbm(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

DBM (3X-BSD) RISC/os Programmer’s Reference DBM (3X-BSD)

ERRORS
The ‘.pag’ file will contain holes so that its apparent size is about four times its actual content.
Older UNIX systems may create real file blocks for these holes when touched. These files
cannot be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed by subse-
quent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently
1024 bytes). Moreover all key/content pairs that hash together must fit on a single block.
store will return an error in the event that a disk block fills with inseparable data.

delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firstkey and nextkey depends on a hashing function; not on
anything interesting.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

DIRECTORY (3-BSD) RISC/os Programmer’s Reference DIRECTORY (3-BSD)

NAME
opendir, readdir, telldir, seekdir, rewinddir, closedir — directory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

DIR xopendir(filename)
char xfilename;

struct direct xreaddir(dirp)
DIR xdirp;

long telldir(dirp)
DIR xdirp;

seekdir(dirp, loc)
DIR sdirp;
long loc;

rewinddir(dirp)
DIR xdirp;

closedir(dirp)
DIR *dirp;
DESCRIPTION
opendir opens the directory named by filename and associates a directory stream with it. open-
dir returns a pointer to be used to identify the directory stream in subsequent operations. The

pointer NULL is returned if filename cannot be accessed, or if it cannot malloc(3) enough
memory to hold the whole thing.

readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end
of the directory or detecting an invalid seekdir operation.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream. The new posi-
tion reverts to the one associated with the directory stream when the telldir operation was per-
formed. Values returned by telldir are good only for the lifetime of the DIR pointer from
which they are derived. If the directory is closed and then reopened, the telldir value may be
invalidated due to undetected directory compaction. It is safe to use a previous felldir value
immediately after a call to opendir and before any calls to readdir.

rewinddir resets the position of the named directory stream to the beginning of the directory.

closedir closes the named directory stream and frees the structure associated with the DIR
pointer.

Sample code which searchs a directory for entry “name” is:

len = strlen(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))
if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
closedir(dirp);
return FOUND;

¥
closedir(dirp);
return NOT_FOUND;

MIPS Computer Systems, Inc. February 5, 1989 Page 1

DIRECTORY (3-BSD) RISC/os Programmer’s Reference

SEE ALSO
open(2), close(2), read(2), Iseek(2), dir(5)

Page 2 February 5, 1989

DIRECTORY (3-BSD)

MIPS Computer Systems, Inc.

ECVT (3-BSD) RISC/os Programmer’s Reference ECVT (3-BSD)

NAME
ecvt, fcvt, gevt — output conversion

SYNOPSIS
char xecvt(value, ndigit, decpt, sign)
double value;
int ndigit, +decpt, ssign;

char sfcvt(value, ndigit, decpt, sign)
double value;
int ndigit, xdecpt, ssign;

char xgcvt(value, ndigit, buf)
double value;
char «buf;

DESCRIPTION
ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer
thereto. The position of the decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned digits). If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

fevt is identical to ecvr, except that the correct digit has been rounded for Fortran F-format
output of the number of digits specified by ndigits. . -

gevt converts the value to a null-terminated ASCII string in buf and returns a pointer to buf. It
attempts to produce ndigit significant digits in Fortran F format if possible, otherwise E for-
mat, ready for printing. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

ERRORS
The return values point to static data whose content is overwritten by each call.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

EMULATE_BRANCH (3-BSD) RISC/os Programmer’s Reference EMULATE_BRANCH (3-BSD)

NAME
emulate_branch — MIPS branch emulation

SYNOPSIS
#include <signal.h>

emulate_branch(scp, branch_instruction)
struct sigcontext xscp;
unsigned long branch_instruction;

execute_branch(branch_instruction)
unsigned long branch_instruction;

DESCRIPTION
emulate_branch is passed a signal context structure and a branch instruction. It emulates the
branch based on the register values in the signal context structure. It modifies the value of the
program counter in the signal context structure (sc_pc) to the target of the braneh instruction.
The program counter must initially be pointing at the branch and the register values must be
those-at the time of the branch. If the branch is not taken the program counter is advanced
to point to the instruction after the delay slot (sc_pc += 8).

In the case the branch instruction is a branch on coprocessor 2 or 3 instruction emulate_branch
calls execute_branch to execute the branch in data space to determine if it is taken or not.
can’t emulate or execute the branch currently.

RETURN VALUE
emulate_branch returns a 0 if the branch was emulated successfully. An non-zero value indi-
cates the value passed as a branch instruction was not a branch instruction.
execute_branch returns non-zero on taken branches and zero on non-taken branches.

ALSO SEE
sigvec(2), cache_flush(3) signal(2), sigset(2)
ERRORS
Since execute_branch in only intended to be used by emulate_branch it does not check it’s

parameter to see if in fact it is a branch instruction. It is really a stop gap in case a coproces-
~sor is added without the kernel fully supporting it (which is unlikely).

MIPS Computer Systems, Inc. February 5, 1989 ' Page 1

EMULATE_BRANCH (3) RISC/os Programmer’s Reference EMULATE_BRANCH (3)

NAME
emulate_branch — MIPS branch emulation

SYNOPSIS
#include <signal.h>

emulate_branch(scp, branch_instruction)
struct sigcontext xscp;
unsigned long branch_instruction;

DESCRIPTION
Emulate_branch is passed a signal context structure and a branch instruction. It emulates the
branch based on the register values in the signal context structure. It modifies the value of the
program counter in the signal context structure (sc_pc) to the target of the branch instruction.
The program counter must initially be pointing at the branch and the register values must be

those at the time of the branch. If the branch is not taken the program counter is advanced
to point to the instruction after the delay slot (sc_pc += 8).

In the case the branch instruction is a branch on coprocessor 2 or 3 instruction emulate_branch
can’t emulate or execute the branch currently.

RETURN VALUE
Emulate_branch returns a 0 if the branch was emulated successfully. An non-zero value indi-
cates the value passed as a branch instruction was not a branch instruction.

ALSO SEE
signal(2), sigset(2)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

END (3) RISC/os Programmer’s Reference END (3)

NAME
end, etext, edata — last locations in program
eprol, _ftext, _fdata, _fbss — first locations in program
_procedure_table, _procedure_table_size, _procedure_string_table — runtime procedure table

SYNOPSIS
#include <syms.h>
extern _END;
extern _ETEXT;
extern _EDATA;
extern eprol;
extern _FTEXT;
extern _FDATA;
extern _FBSS;
extern _PROCEDURE_TABLE;
extern _PROCEDURE_TABLE_SIZE;
extern _PROCEDURE_STRING_TABLE;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents except for
_PROCEDURE_TABLE and _PROCEDURE_STRING_TABLE. Except for eprol these are all
names of loader defined symbols. The address of _-ETEXT is the first address above the pro-
gram text, _EDATA is above the initialized data region, _END is above the uninitialized data
region, and eprol is the first instruction of the user’s program that follows the runtime startup
routine.

When execution begins, the program break coincides with _END, but it is reset by the routines
brk(2), malloc(3), standard input/output (stdio(3)), the profile (=p) option of cc(1), etc. The
current value of the program break is reliably returned by ‘sbrk(0)’, see brk(2).

The loader defined symbols _PROCEDURE_TABLE, _PROCEDURE_TABLE_SIZE and
_PROCEDURE_STRING_TABLE refer to the data structures of the runtime procedure table.
Since these are loader defined symbols the data structures are build by ld(1) only if they are
referenced. See the include file <sym.h> for the definition of the runtime procedure table
and see the include file <exception.h> for its uses.

SEE ALSO
brk(2), malloc(3)

- MIPS Computer Systems, Inc. February 13, 1989 Page 1

END (3-BSD) RISC/os Programmer’s Reference END (3-BSD)

NAME

end, etext, edata — last locations in program

eprol, _ftext, _fdata, _fbss — first locations in program

_procedure_table, _procedure_table_size, _procedure_string_table — runtime procedure table
SYNOPSIS

#include <syms.h>

extern _END;

extern _ETEXT;

extern _EDATA;

extern eprol;

extern _FTEXT;

extern _FDATA;

extern _FBSS;

extern _PROCEDURE_TABLE;
extern _PROCEDURE_TABLE_SIZE;
extern _PROCEDURE_STRING_TABLE;

DESCRIPTION

These names refer neither to routines nor to locations with interesting contents except for
_PROCEDURE_TABLE and _PROCEDURE_STRING_TABLE. Except for eprol these are all
names of loader defined symbols. The address of _ETEXT is the first address above the pro-
gram text, EDATA is above the initialized data region, _END is above the uninitialized data
region, and eprol is the first instruction of the user’s program that follows the runtime startup
routine.

When execution begins, the program break coincides with _END, but it is reset by the routines
brk(2), malloc(3), standard input/output (stdio(3)), the profile (=p) option of cc(1), etc. The
current value of the program break is reliably returned by ‘sbrk(0)’, see brk(2).

The loader defined symbols _PROCEDURE_TABLE, _PROCEDURE_TABLE_SIZE and
_PROCEDURE_STRING_TABLE refer to the data structures of the runtime procedure table.
Since these are loader defined symbols the data structures are build by /d(1) only if they are
referenced. See the include file <sym.h> for the definition of the runtime procedure table
and see the include file <exception.h> for its uses.

SEE ALSO

brk(2), malloc(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ETHERS (3N-BSD) RISC/os Programmer’s Reference . ETHERS (3N-BSD)

NAME
ethers, ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line — Ethernet address
mapping operations
SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
char x
ether_ntoa(e)
struct ether_addr xe;
struct ether_addr *
ether_aton(s)
char *s;
ether_ntohost(hostname, e)
char shostname;
struct ether_addr xe;
ether_hostton(hosﬁxa_me,)
char +hostname;
struct ether_addr xe;
ether_line(], e, hostname)
char ;
struct ether_addr xe;
char hostname;
DESCRIPTION
ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line
These routines are useful for mapping 48 bit Ethernet numbers to their A SCII representations
or their corresponding host names, and vice versa.
The function ether_ntoa converts a 48 bit Ethernet number pointed to by e to its standard
ASCII+1 representation; it returns a pointer to the ASCII string. The representation is of the form:
“x:x:x:x:x:x”’ where x is a hexadecimal number between 0 and ff. The function ether_aton con-
verts an ASCII string in the standard representation back to a 48 bit Ethernet number; the
function returns NULL if the string cannot be scanned successfully.
The function ether_ntohost maps an Ethernet number (pointed to by e) to its associated host-
name. The string pointed to by hostname must be long enough to hold the hostname and a
null character. The function returns zero upon success and non-zero upon failure. Inversely,
the function ether_hostton maps a hostname string to its corresponding Fthernet number; the
function modifies the Ethernet number pointed to by e. The function also returns zero upon
success and non-zero upon failure.
The function ether_line scans a line (pointed to by /) and sets the hostname and the Ethernet
number (pointed to by e). The string pointed to by kostname must be long enough to hold
the hostname and a null character. The function returns zero upon success and non-zero
upon failure. The format of the scanned line is described by ethers(5).
FILES

/etc/ethers (or the yellowpages’ maps ethers.byaddr and ethers.byname)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

(

ETHERS (3N-BSD) RISC/os Programmer’s Reference ETHERS (3N-BSD)

SEE ALSO
ethers(5)

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

ERF (3M) RISC/os Programmer’s Reference ERF(3M)

NAME
erf, erfc — error functions

SYNOPSIS
#include <math.h>
double erf(x)
double x;

double erfc(x)
double x;

DESCRIPTION
Erf (x) returns the error function of x; where erf (x) := (2/V/7) [g exp(-t?) dt.
Erfc (x) returns 1.0-erf ().
The entry for erfc is provided because of the extreme loss of relative accuracy if erf(x) is
called for large x and the result subtracted from 1. (e.g. for x = 10, 12 places are lost).

SEE ALSO
math(3M)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

ETIME (3F) RISC/os Programmer’s Reference ETIME (3F)

NAME
etime, dtime — return elapsed execution time

SYNOPSIS
function etime (tarray)
real tarray(2)

function dtime (tarray)
real tarray(2)

DESCRIPTION
These two routines return elapsed runtime in seconds for the calling process. Dtime returns
the elapsed time since the last call to dtime, or the start of execution on the first call.

The argument array returns user time in the first element and system time in the second ele-
ment. The function value is the sum of user and system time.

The resolution of all timing is 1/HZ sec. where HZ is currently 60.

FILES
/usr/lib/1ibU77.a

SEE ALSO
times(2)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

EXAMPLES (3)

NAME
examples — library of

SYNOPSIS
examples

DESCRIPTION

RISC/os Programmer’s Reference EXAMPLES (3)

sample programs

examples is a library containing sample programs to illustrate Ada language use and
demonstrate the capabilities of the language, including those provided by the packages in the
standard, verdixlib, and publiclib libraries.

Note: programs in the examples are neither supported nor warranted by MIPS.

The directory contains the program files listed below.

arguments.a

date

uses package COMMAND_LINE from vérdixlib to print program
arguments and environment variables.

uses package CALENDAR from standard to print current date and
time.

hanoi.a, termbody.a, termspec.a

hello

mortgage.a

queens.a
random.a

slideshow.a
sort_file
sort_integer.a

uc.p, uctran.a

FILES
lusr/vadsS/examples/x

SEE ALSO

demonstrates solution to "Towers of Hanoi" problem.

a typical first program, which uses package TEXT_IO from standard to
print the message "hello, world".

uses package MATH from verdixlib to calculate mortgage payments.

provides a solution of the "8 Queens" chess problem gerneralized for any
board with sides of 4-12 squares.

uses packages CALENDAR from standard to create pseudo-random
numbers. ‘

uses the package CURSES in publiclib and illustrates background tasks.
sorts lines in a file within specifies columns.

uses packages ORDERING form verdixlib to sort input of IO integer in
ascending and descending order. '

uses package CALENDAR from standa}d to maintain a calendar file;
these illustrate the translation of a program from Pascal to Ada. uc.p is
in Pascal, and uctran.a is a close translation of UC.PAS to Ada.

publiclib, standard, verdixlib

MIPS Computer Systems, Inc. February 16, 1989 Page 1

EXECL (3-BSD) RISC/os Programimer’s Reference EXECL (3-BSD)

NAME
execl, execv, execle, execlp, execvp, exec, execve, exect, environ — execute a file
SYNOPSIS
execl(name, arg0, argl, ..., argn, 0)
char sname, *arg0, xargl, ..., sargn;
execv(name, argv)
char iname, xargv[];
execle(name, arg0, argl, ..., argn, 0, envp)
char sname, sarg0, xargl, ..., xargn, *envp[];
exect(name, argv, envp)
char sname, xargv[], envp[];
extern char xxenviron;
DESCRIPTION

These routines provide various interfaces to the execve system call. Refer to execve(2) for a
description of their properties; only brief descriptions are provided here.

exec in all its forms overlays the calling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec; the calling
core image is lost. '

The name argument is a pointer to the name of the file to be executed. The pointers arg[0],
arg[1] ... address null-terminated strings. Conventionally arg[0] is the name of the file.

Two interfaces are available. exec! is useful when a known file with known arguments is being
called; the arguments to execl are the character strings constituting the file and the arguments;
the first argument is conventionally the same as the file name (or its last component). A 0
argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the argu-
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a 0 pointer.

The exect version is used when the executed file is to be manipulated with ptrace(2). The pro-
gram is forced to single step a single instruction giving the parent an opportunity to manipulate
its state. On the VAX-11 this is done by setting the trace bit in the process status longword.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char s+argv, senvp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

argv is directly usable in another execv because argv|[argc] is 0.

envp is a pointer to an array of strings that constitute the environment of the process. Each
string consists of a name, an “=", and a null-terminated value. The array of pointers is ter-
minated by a null pointer. The shell sk (1) passes an environment entry for each global shell
variable defined when the program is called. See environ(7) for some conventionally used
names. The C run-time start-off routine places a copy of envp in the global cell environ, which
is used by execv and execl to pass the environment to any subprograms executed by the current
program.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

EXECL (3-BSD) RISC/os Programmer’s Reference EXECL (3-BSD)

execlp and execvp are called with the same arguments as exec! and execv, but duplicate the
shell’s actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

FILES
/bin/sh shell, invoked if command file found by execlp or execvp

SEE ALSO
execve(2), fork(2), environ(7), csh(1)

DIAGNOSTICS ' -
If the file cannot be found, if it is not executable, if it does not start with a valid magic
number (see a.out(5)), if maximum memory is exceeded, or if the arguments require too much
space, a return constitutes the diagnostic; the return value is ~1. Even for the super-user, at
least one of the execute-permission bits must be set for a file to be executed.

ERRORS
If execvp is called to execute a file that turns out to be a shell command file, and if it is impos-
sible to execute the shell, the values of argv[0] and argv/—1] will be modified before return.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

EXIT (3-BSD) RISC/o0s Programmer’s Reference EXIT (3-BSD)

NAME
exit — terminate a process after flushing any pending output
SYNOPSIS
exit(status)
int status;
DESCRIPTION
exit terminates a process after calling the Standard I/O library function _cleanup to flush any
buffered output. exir never returns.
SEE ALSO
exit(2), intro(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

EXP (3M) RISC/os Programmer’s Reference EXP(3M)

NAME

exp, expml, log, logl0, loglp, pow — exponential, logarithm, power

SYNOPSIS

#include <math.h>

double exp(x) .
double x;

float fexp(float x)

. float x;

' double expm1(x)

double x;

float fexpm1 (float x)
float x;

double log(x)
double x;

float flog (float x)
float x;

double log10(x)
double x;.

float flog10(float x)
float x;

double loglp(x)
double x;

float floglp (float x)
float x;

double pow(x,y)
double x,y;

DESCRIPTION

Exp and fexp returns the exponential function of x for double and float data types respec-
tively.

Expm1 and fexpm1 returns exp(x)—1 accurately even for tiny x for double and float data types
respectively. '

Log and flog returns the natural logarithm of x for double and float data types respectively.

Logl0 and flogl0 returns the logarithm of x to base 10 for double and float data types respec-
tively. :

Loglp and floglp returns log(1+x) accurately even for tiny x for double and float data types
respectively. »

Pow(x,y) returns x”.

ERROR (due to Roundoff etc.)

exp(x), log(x), expml(x) and loglp(x) are accurate to within an ulp, and loglO(x) to within
about 2 ulps; an ulp is one Unit in the Last Place. The error in pow(x,y) is below about 2 ulps
when its magnitude is moderate, but increases as pow(x,y) approaches the over/underflow
thresholds until almost as many bits could be lost as are occupied by the floating—point
format’s exponent field; 11 bits for IEEE 754 Double. No such drastic loss has been exposed
by testing; the worst errors observed have been below 300 ulps for IEEE 754 Double.
Moderate values of pow are accurate enough that pow(integer,integer) is exact until it is bigger

MIPS Computer Systems, Inc. February 13, 1989 Page 1

EXP (3M) RISC/os Programmer’s Reference EXP(3M)

than 253 for IEEE 754 Double.

DIAGNOSTICS

NOTES

exp returns co when the correct value would overflow, or the smallest non-zero value when the
correct value would underflow.

Log and logl0 returns the default quiet NaN when x is less than zero indicating the invalid
operation. Log and logl0 returns -oco when x is zero.

Pow returns oo when x is 0 and y is non-positive. Pow returns NaN when x is negative and y
is not an integer indicating the invalid operation. When the correct value for pow would
overflow or underflow, pow returns +oo or O respectively.

Pow(x,0) returns x+0 = 1 for all x including x = 0, co , and NaN. Previous implementations of
pow may have defined x#+0 to be undefined in some or all of these cases. Here are reasons
for returning x++0 = 1 always:

(1) Any program that already tests whether x is zero (or infinite or NaN) before computing
x##0 cannot care whether 0«0 = 1 or not. Any program that depends upon 0«0 to be
invalid is dubious anyway since that expression’s meaning and, if invalid, its consequences
vary from one computer system to another.

(2) Some Algebra texts (e.g. Sigler’s) define x«0 = 1 for all x, including x = 0. This is compa-
tible with the convention that accepts a[0] as the value of polynomial
p(x) = a[0]sx++0 + a[1]sxs1 + a[2]sx+2 +...+ a[n]ixsn

at x = 0 rather than reject a[0]«0«+0 as invalid.

(3) Analysts will accept 0x+0 = 1 despite that xx«y can approach anything or nothing as x and y
approach 0 independently. The reason for setting 0«0 = 1 anyway is this:

If x(z) and y(z) are any functions analytic (expandable in power series) in z around z = 0
and if there x(0) = y(0) = 0, then x(z)xy(z) — 1 as z — 0.

(4) I 0s40 = 1, then cox0 = 1/0+0 = 1 too; and then NaN«0 = 1 too because x«0 = 1 for all
finite and infinite x, i.e., independently of x.

SEE ALSO

math(3M)

AUTHOR

Page 2

Kwok—Choi Ng, W. Kahan

February 13, 1989 MIPS Computer Systems, Inc.

FCLOSE (3S-BSD) RISC/os Programmer’s Reference FCLOSE (3S-BSD)

NAME

fclose, fflush — close or flush a stream
SYNOPSIS

#include <stdio.h>

fclose(stream)
FILE sstream;

fllush (stream)
FILE *stream;
DESCRIPTION

fclose causes any buffers for the named stream to be emptied, and the file to be closed.
Buffers allocated by the standard input/output system are freed.

felose is performed automatically upon calling exit(3).

fflush causes any buffered data for the named output siream to be written to that file. The
stream remains open.

SEE ALSO
close(2), fopen(3S), setbuf(3S)
DIAGNOSTICS

These routines return EOF if stream is not associated with an output file, or if buffered data
. cannot be transferred to that file.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FDATE (3F) RISC/os Programmer’s Reference FDATE (3F)

NAME
fdate — return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
characterx(x) string

characterx(x) function fdate()

DESCRIPTION

Fdate returns the current date and time as a 24 character string in the format described under
ctime(3). Neither ‘newline’ nor NULL will be included.

Fdate can be called either as a function or as a subroutine. If called as a function, the calling
routine must define its type and length. For example:

characters24 fdate
external fdate

write(x,x) fdate()

FILES
/usr/lib/1ibU77.a

SEE ALSO
ctime(3), time(3F), itime(3F), idate(3F), ltime(3F)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

FERROR (3$-BSD) RISC/os Programmer’s Reference FERROR (3S-BSD)

NAME
ferror, feof, clearerr, fileno — stream status inquiries

SYNOPSIS
#include <stdio.h>

feof(stream)
FILE sstream;

ferror(stream) '
FILE #stream

clearerr(stream)
. FILE xstream

fileno(stream)
FILE sstream;

DESCRIPTION

feof returns non-zero when end of file is read on the named input stream, otherwise zero.
Unless cleared by clearerr, the end-of-file indication lasts until the stream is closed.

ferror returns non-zero when an error has occurred reading or writing the named stream, oth-
erwise zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

clearerr resets the error and end-of-file indicators on the named stream.
fileno returns the integer file descriptor associated with the stream, see open(2).

Currently all of these functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S), open(2)

MIPS Computer Systems, Inc. February 5, 1989 ' Page 1

FLOOR (3M) RISC/os Programmer’s Reference FLOOR (3M)

NAME

fabs, floor, ceil, rint — absolute value, floor, ceiling, and round-to-nearest functions

SYNOPSIS

#include <math.h>

double floor(x)
double x;

float ffloor(float x)
float x;

double ceil(x)
double x;

float fceil(float x)
float x;

double trunc(x)
double x;

float ftrunc(float x)
float x;

double fabs(x)
double x;

double rint(x)
double x;

double fmod (x, y)
double x, y;

DESCRIPTION

NOTES

Floor and ffloor returns the largest integer no greater than x for double and float data types
respectively. '

Ceil and fceil returns the smallest integer no less than x for double and float data types respec-
tively.

Trunc and ftrunc returns the integer (represented as a floating-point number) of x with the
fractional bits truncated for double and float data types respectively.

Fabs returns the absolute value |x|.

Rint returns the integer (represented as a double precision number) nearest x in the direction
of the prevailing rounding mode.

Fmod returns the floating-point remainder of the division of x by y: zero if y is zero or if x/y
would overflow; otherwise the number f with the same sign as x, such that x = iy + f for some
integer i, and |f| < |y|.

In the default rounding mode, to nearest, rint(x) is the integer nearest x with the additional
stipulation that if [rint(x)-x}=1/2 then rint(x) is even. Other rounding modes can make rint act
like floor, or like ceil, or round towards zero.

Another way to obtain an integer near x is to declare (in C)

double x; int k; k = x;
The MIPS C compilers rounds x towards O to get the integer k. Also note that, if x is larger
than k can accommodate, the value of k and the presence or absence of an integer overflow
are hard to predict.

MIPS Computer Systems, Inc. February 13, 1989 Page 1

FLOOR (3M) RISC/os Programmer’s Reference

The routine fabs is in libc.a rather than libm.a.

SEE ALSO
abs(3), ieee(3M), math(3M)

Page 2 February 13, 1989

FLOOR (3M)

MIPS Computer Systems, Inc.

FLUSH (3F) RISC/os Programmer’s Reference FLUSH (3F)

NAME
flush — flush output to a logical unit

SYNOPSIS
subroutine flush (lunit)

DESCRIPTION :
Flush causes the contents of the buffer for logical unit lunit to be flushed to the associated file.
This is most useful for logical units 0 and 6 when they are both associated with the control ter-
minal.

FILES
/usr/lib/1ibI77 .a

SEE ALSO
fclose(3S)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

FORK (3F) RISC/os Programmer’s Reference FORK (3F)

NAME
fork - create a copy of this process
SYNOPSIS
integer function fork()
DESCRIPTION
~ Fork creates a copy of the calling process. The only distinction between the 2 processes is
that the value returned to one of them (referred to as the ‘parent’ process) will be the process
id of the copy. The copy is usually referred toc as the ‘child’ process. The value returned to
‘the ‘child’ process will be zero.
All logical units open for writing are flushed before the fork to avoid duplication of the con-
tents of I/O buffers in the external file(s).
If the returned value is negative, it indicates an error and will be the negation of the system
error code, See perror(3F).
A corresponding exec routine has not been provided because there is no satisfactory way to
retain open logical units across the exec. However, the usual function of fork/exec can be per-
formed using system (3F). '
FILES

/ us;/ lib/ libU77.a

SEE ALSO . .
fork(2), wait(3F), kill(3F), system(3F), perror(3F)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

FOPEN (3S-BSD) RISC/os Programmer’s Reference FOPEN (3S-BSD)

NAME

fopen, freopen, fdopen ~ open a stream
SYNOPSIS

#include <stdio.h>

FILE #fopen (filename, type)
char sfilename, itype;

FILE sfreopen(filename, type, stream)
char sfilename, stype;
FILE xstream;

FILE xfdopen(fildes, type)
char xtype;

DESCRIPTION

fopen opens the file named by filename and associates a stream with it. fopen returns a pointer
to be used to identify the stream in subsequent operations.

type is a character string having one of the following values:

"r" open for reading
"w" create for writing
"a" append: open for writing at end of file, or create for writing

In addition, each fype may be followed by a "+" to have the file opened for reading and writ-
ing. "rt+" positions the stream at the beginning of the file, "w+" creates or truncates it, and
"a+" positions it at the end. Both reads and writes may be used on read/write streams, with
the limitation that an fseek, rewind, or reading an end-of-file must be used between a read and
a write or vice-versa.

freopen substitutes the named file in place of the open stream. It returns the original value of
stream. The original stream is closed. :

freopen is typically used to attach the preopened constant names, stdin, stdout, stderr, to
specified files.

fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2).
The type of the stream must agree with the mode of the open file.

SEE ALSO
open(2), fclose(3)

DIAGNOSTICS
fopen and freopen return the pointer NULL if filename cannot be accessed, if too many files are
already open, or if other resources needed cannot be allocated.

ERRORS
fdopen is not portable to systems other than UNIX.

The read/write types do not exist on all systems. Those systems without read/write modes will
probably treat the type as if the "+" was not present. These are unreliable in any event.

In order to support the same number of open files as does the system, fopen must allocate
additional memory for data structures using calloc after 20 files have been opened. This con-
fuses some programs which use their own memory allocators. An undocumented routine,
f_prealloc, may be called to force immediate allocation of all internal memory except for
buffers.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FP_CLASS (3) RISC/os Programmer’s Reference FP_CLASS (3)

NAME
fp_class — classes of IEEE floating-point values

SYNOPSIS
#include <fp_class.h>
int fp_class_d(double x);

int fp_class_f(float x);

DESCRIPTION
These routines are used to determine the class of IEEE floating-point values. They return one
of the constants in the file <fp_class.h> and never cause an exception even for signaling
NaN’s. These routines are to implement the recommended function class(x) in the appendix
of the IEEE 754-1985 standard for binary floating-point arithmetic.

The constants in <fp_class.h > refer to the following classes of values:

Constant Class

FP_SNAN Signaling NaN (Not-a-Number)
FP_QNAN Quiet NaN (Not-a-Number)
FP_POS_INF +oo (positive infinity)
FP_NEG_INF -0o (negative infinity)

FP_POS_NORM positive normalized non-zero
FP_NEG_NORM negative normalized non-zero
FP_POS_DENORM positive denormalized
FP_NEG_DENORM negative denormalized
FP_POS_ZERO +0.0 (positive zero)
FP_NEG_ZERO -0.0 (negative zero)

ALSO SEE
ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

MIPS Computer Systems, Inc. February 13, 1989 Page 1

FP_CLASS (3-BSD) RISC/os Programmer’s Reference FP_CLASS (3-BSD)

NAME
fp_class — classes of IEEE floating-point values

SYNOPSIS

#include <fp_class.h>

int fp_class_d(double x);

int fp_class_f(float x);

DESCRIPTION

These routines are used to determine the class of IEEE floating-point values. They return one
of the constants in the file <fp_class.h> and never cause an exception even for signaling
NaN’s. These routines are to implement the recommended function class(x) in the appendix
of the IEEE 754-1985 standard for binary floating-point arithmetic.

The constants in <fp_class.h> refer to the following classes of values:

Constant

FP_SNAN
FP_QNAN
FP_POS_INF
FP_NEG_INF
FP_POS_NORM
FP_NEG_NORM
FP_POS_DENORM
FP_NEG_DENORM
FP_POS_ZERO
FP_NEG_ZERO

ALSO SEE

Class

Signaling NaN (Not-a-Number)
Quiet NaN (Not-a-Number)
+oo (positive infinity)

-0o (negative infinity)

positive normalized non-zero
negative normalized non-zero
positive denormalized

negative denormalized

+0.0 (positive zero)

-0.0 (negative zero)

ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

MIPS Computer Systems, Inc.

February 5, 1989 Page 1

FPC(3) RISC/os Programmer’s Reference FPC(3)

NAME

fpc - floating-point control registers

SYNOPSIS

#include <sys/fpu.h>
int get_fpc_csr()

int set_fpc_csr(csr)

int csr;

int get_fpc_irr(

int get_fpc_eir(

void set_fpc_led(value)
int value;

int swapRM(x)

int x;

int swapINX (x)
int x;

DESCRIPTION

These routines are to get and set the floating-point control registers of MIPS floating-point
units. All of these routines take and or return their values as 32 bit integers.

The file <sys/fpu.h> contains unions for each of the control registers. Each union contains a
structure that breaks out the bit fields into the logical parts for each control register. This file
also contains constants for fields of the control registers.

All implementations of MIPS floating-point have a control and status register and a implemen-
tation revsion register. The control and status register is returned by get_fpc_csr. The routine
set_fpc_csr sets the control and status register and returns the old value. The implementation
revsion register is read-only and is returned by the routine ger_fpc_irr.

The R2360 floating-point units (floating-point boards) have two addtitonal control registers.
The exception instruction register is a read-only register and is returned by the routine
get_fpc_eir. The other floating-point control register on the R2360 is the leds register. The low
8 bits corresponds to the leds where a one is off and a zero is on. The leds register is a write-
only register and is set with the routine set_fpc_leds.

The routine swapRN sets only the rounding mode and returns the old rounding mode. The
routine swapINX sets only the sticky inexact bit and returns the old one. The bits in the argu-
ments and return values to swapRN and swapINX are right justified.

ALSO SEE

R2010 Floating Point Coprocessor Architecture
R2360 Floating Point Board Product Description

MIPS Computer Systems, Inc. February 13, 1989 Page 1

FPC (3-BSD) RISC/os Programmer’s Reference FPC (3-BSD)

NAME
fpc — floating-point control registers

SYNOPSIS
#include <mips/fpu.h>
#include <sys/fpu.h>

int get_fpc_csr()

.int set_fpc_csr(csr)
int csr;

int get_fpc_irr()
int get_fpc_eir()

void set_fpc_led(value)
int value;

int swapRM(x)

int x;

int swapINX (x)

int x;
DESCRIPTION

These routines are to get and set the floating-point control registers of MIPS ﬂoéting—point
units. All of these routines take and or return their values as 32 bit integers.

The file <mips/fpu.h> <sys/fpu.h> contains unions for each of the control registers. Each
union contains a structure that breaks out the bit fields into the logical parts for each control
register. This file also contains constants for fields of the control registers.

All implementations of MIPS floating-point have a control and status register and a implemen-
tation revsion register. The control and status register is returned by ger_fpc_csr. The routine
set_fpc_csr sets the control and status register and returns the old value. The implementation
revsion register is read-only and is returned by the routine ger_fpc_irr.

The R2360 floating-point units (floating-point boards) have two addtitonal control registers.
The exception instruction register is a read-only register and is returned by the routine
get_fpc_eir. The other floating-point control register on the R2360 is the leds register. The low
8 bits corresponds to the leds where a one is off and a zero is on. The leds register is a write-
only register and is set with the routine ser_fpc_leds.

The routine swapRN sets only the rounding mode and returns the old rounding mode. The
routine swapINX sets only the sticky inexact bit and returns the old one. The bits in the argu-
ments and return values to swapRN and swapINX are right justified.

ALSO SEE
R2010 Floating Point Coprocessor Architecture
R2360 Floating Point Board Product Description

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FPI(3) RISC/os Programmer’s Reference FPI(3)

NAME
fpi — floating-point interrupt analysis

SYNOPSIS
#include <fpi.h>

void fpi()

void print_fpicounts()
int fpi_counts[];

char «fpi_list[];

DESCRIPTION
MIPS floating-point units generate floating-point interrupts for some classes of operations that
occur with low frequency. In these cases the system software then emulates the operation in
software. As a program takes floating-point interrupts its performance degrades since the
operations are emulated in software. The routines and counters described here are used to
analyze the causes of floating-point interrupts.

The routine fpi makes a sysmips(2) [MIPS_FPSIGINT] system call to causes floating-point inter-
rupts to generate a SIGFPE. It also sets up a special signal handler for SIGFPE’s. On a
floating-point interrupt that signal handler determines the precise cause of the interrupt and
increments the appropriate counter in fpi_counts[].

The routine print_fpicounts prints out the value of the counters and their description on stderr
as in the following example:)

source signaling NaN = 0

source quiet NaN = 10

source denormalized value = 23

move of zero = 83

negate of zero = 84

implemented only in software = 5

invalid operation = 96

divide by zero = 3837

destination overflow = 398

destination underflow = 489
The constants in the file <fpi.h> along the counters, fpi_counts[], and the descriptive strings,
fpi_list[], can also be used to format messages.

LIMITATIONS
Fpi can’t be used with programs that normally generate SIGFPE’s.

ALSO SEE
R2010 Floating Point Coprocessor Architecture
R2360 Floating Point Board Product Description
sysmips(2) [MIPS_FPSIGINTR].

MIPS Computer Systems, Inc. February 13, 1989 Page 1

FPI(3-BSD) RISC/os Programmer’s Reference FPI(3-BSD)

NAME
fpi — floating-point interrupt analysis

SYNOPSIS
#include <fpi.h>

void fpi()

void printfpi_counts()
int fpi_counts[];

char «fpi_list[];

DESCRIPTION
MIPS floating-point units generate floating-point interrupts for some classes of operations that
occur with low frequency. In these cases the system software then emulates the operation in
software. As a program takes floating-point interrupts its performance degrades since the
operations are emulated in software. The routines and counters described here are used to
analyze the causes of floating-point interrupts.

The routine fpi makes a fp_sigintr(2) sysmips(2) [MIPS_FPSIGINT] system call to causes
floating-point interrupts to generate a SIGFPE. It also sets up a special signal handler for
SIGFPE’s. On a floating-point interrupt that signal handler determines the precise cause of the
interrupt and increments the appropriate counter in fpi_counts(].-

The routine print_fpicounts prints out the value of the counters and their description on srderr
as in the following example:

source signaling NaN =0

source quiet NaN = 10

source denormalized value = 23

move of zero = 83

negate of zero = 84

implemented only in software = 5

invalid operation = 96

divide by zero = 3837

destination overflow = 398

destination underflow = 489
The constants in the file <fpi.h> along the counters, fpi_counts[], and the descriptive strings,
fpi_list[], can also be used to format messages.

LIMITATIONS
fpi can’t be used with programs that normally generate SIGFPE’s.

ALSO SEE
R2010 Floating Point Coprocessor Architecture
R2360 Floating Point Board Product Description
fp_sigintr(2). sysmips(2) [MIPS_FPSIGINTR].

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FREAD (3S-BSD) RISC/os Programmer’s Reference FREAD (3S-BSD)

NAME

fread, fwrite — buffered binary input/output
SYNOPSIS

#include <stdio.h>

fread(ptr, sizeof(s+ptr), nitems, stream) -
FILE sstream;
fwrite(ptr, sizeof(xptr), nitems, stream)
FILE xstream; -
DESCRIPTION
Jfread reads, into a block beginning at ptr, nitems of data of the type of ptr from the named
input stream . It returns the number of items actually read.

If stream is stdin and the standard output is line buffered, then any partial output line will be
flushed before any call to read(2) to satisfy the fread.

Jwrite appends at most nitems of data of the type of xpr beginning at ptr to the named output
stream . It returns the number of items actually written.
SEE ALSO
read(2), write(2), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S)
DIAGNOSTICS N _
J[read and fwrite.return 0 upon end of file or error.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FREXP (3-BSD) RISC/os Programmer’s Reference FREXP (3-BSD)

NAME

frexp, ldexp, modf — split into mantissa and exponent
SYNOPSIS

double frexp(value, eptr)

double value;

int xeptr;

double ldexp(value, exp)

double value;

double modf(value, iptr)
double value, xiptr;

DESCRIPTION

frexp returns the mantissa of a double value asa double quantity, x, of magnitude less than 1
and stores an integer n such that value = x « 2" indirectly through eptr.

ldexp returns the quantity value « 263D

modf returns the positive fractional part of value and stores the integer part indirectly through
iptr.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FSEEK (3F) RISC/os Progfammer’s Reference . FSEEK (3F)

NAME
fseek, ftell — reposition a file on a logical unit
SYNOPSIS

integer function fseek (lunit, offset, from)
integer offset, from

integer function ftell (lunit)

DESCRIPTION

lunit must refer to an open logical unit. offset is an offset in bytes relative to the position
specified by from. Valid values for from are:

0 meaning ‘beginning of the file’
1 meaning ‘the current position’
2 meaning ‘the end of the file’

The value returned by fseek will be 0 if successful, a system error code otherwise. (See
perror(3F)) :
Frell returns the current position of the file associated with the specified logical unit. The value
is an offset, in bytes, from the beginning of the file. If the value returned is negative, it indi-
cates an error and will be the negation of the system error code. (See perror(3F))

FILES
/usr/1ib/1ibU77.a

SEE ALSO
fseek(3S), perror(3F)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

FSEEK (3S-BSD) RISC/os Programmer’s Reference FSEEK (3S-BSD)

NAME
fseek, ftell, rewind — reposition a stream

SYNOPSIS
#include <stdio.h>

fseek(stream, offset, ptrname)
FILE xstream;
long offset;

long ftell(stream)
FILE =:stream;

rewind (stream)

DESCRIPTION

fseek sets the position of the next input or output operation on the stream. The new position

is at the signed distance offset bytes from the beginning, the current position, or the end of the
file, according as ptrname has the value 0, 1, or 2.

fseek undoes any effects of ungetc(3S).

fell returns the current value of the offset relative to the beginning of the file associated with
the named stream. It is measured in bytes on UNIX; on some other systems it is a magic
cookie, and the only foolproof way to obtain an offset for fseek.

rewind (stream) is functionally equivalent to fseek(stream, OL, 0), but it does not return a use-
ful return value.

SEE ALSO
Iseek(2), fopen(3S)

DIAGNOSTICS .
fseek returns —1 for improper seeks, otherwise zero.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETARG (3F) RISC/os Programmer’s Reference GETARG (3F) .

NAME
* getarg, iargc — return command line arguments

SYNOPSIS
subroutine getarg (k, arg)
characterx(x) arg

function iargc (

DESCRIPTION ,
A call to getarg will return the ki command line argument in character string arg. The Ok
argument is the command name.

Iargc returns the index of the last command line argument.

FILES
/usr/lib/1ibU77.a

SEE ALSO
getenv(3F), execve(2)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

GETC (3F) | RISC/os Programmer’s Reference GETC (3F)

NAME
getc, fgetc — get a character from a logical unit
SYNOPSIS '

integer function getc (char)
character char

integer function fgetc (lunit, char)
character char
DESCRIPTION

These routines return the next character from a file associated with a fortran logical unit,

bypassing normal fortran I/O. Getc reads from logical unit 5, normally connected to the con-
trol terminal input.

The value of each function is a system status code. Zero indicates no error occurred on the
read; -1 indicates end of file was detected. A positive value will be either a UNIX system
. error code or an f77 I/O error code. See perror(3F).

FILES
/usr/lib/1ibU77.a

SEE ALSO
getc(3S), intro(2), perror(3F)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

GETC (38-BSD) RISC/os Programmer’s Reference GETC (3S-BSD)

NAME
getc, getchar, fgetc, getw — get character or word from stream

SYNOPSIS
#include <stdio.h>

int getc(stream)
FILE sstream;

int getchar()

int fgetc(stream)

FILE #stream;

int getw(stream)

FILE xstream;

. DESCRIPTION

getc returns the next character from the named input stream.

getchar () is identical to gerc(stdin).

etc behaves like gerc, but is a genuine function, not a macro; it may be used to save object
8 1 g y]
text.

getw returns the next int (a 32-bit integer on a VAX-11) from the named input stream. It
returns the constant EOF upon end of file or error, but since that is a good integer value, feof
and ferror(3S) should be used to check the success of getw. getw assumes no special align-
ment in the file.

SEE ALSO
clearerr(3S), fopen(3S), putc(3S), gets(3S), scanf(3S), fread(3S), ungetc(3S)

DIAGNOSTICS :
These functions return the integer constant EOF at end of file, upon read error, or if an
attempt is made to read a file not opened by fopen. The end-of-file condition is remembered,
even on a terminal, and all subsequent attempts to read will return EOF until the condition is
cleared with clearerr (3S).

ERRORS

Because it is implemented as a macro, gefc treats a stream argument with side effects
incorrectly. In particular, ‘getc(«f++);” doesn’t work sensibly. ‘

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETCWD (3F) RISC/os Programmer’s Reference GETCWD (3F)

NAME
getcwd — get pathname of current working directory

SYNOPSIS
integer function getcwd (dirname)
characterx(x) dirname

DESCRIPTION ' »
The pathname of the default directory for creating and locating files will be returned in dir-
name. The value of the function will be zero if successful; an error code otherwise.

FILES
/usr/lib/1ibU77.a

SEE ALSO
chdir(3F), perror(3F)

" BUGS

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

MIPS Computer Systems, Inc. February 13, 1989 Page 1

GETDISKBYNAME (3-BSD) RISC/os Programmer’s Reference =~ GETDISKBYNAME (3-BSD)

NAME
getdiskbyname - get disk description by its name

SYNOPSIS
#include <disktab.h>

struct disktab
getdiskbyname (name)
char sname;

DESCRIPTION ‘
getdiskbyname takes a disk name (e.g. rm03) and returns a structure describing its geometry

information and the standard disk partition tables. All information obtained from the disk-
tab(5) file.

<disktab.h > has the following form:

/% +/

/% | Copyright Unpublished, MIPS Computer Systems, Inc. All Rights |/
/% |Reserved. This software contains proprietary and confidential | «/

/% | information of MIPS and its suppliers. Use, disclosure or |/

/% | reproduction is prohibited without the prior express written |/

/% | consent of MIPS. L | /

/% - . _

/« $SHeader: disktab.h,v 1.6 87/08/04 09:58:11 dce Exp $ #/

/% disktab.h 4.3 83/08/11 */

/x
x Disk description table, see disktab(5)
*/

#ifdef mips
#include <sys/types.h>
#include <mips/dvh.h>
#endif '

#ifndef NPARTAB

#define NUPART 8

#else

/%

* Number of user partitions is the total number of partitions minus

* the volume header, sector forwarding, and entire volume partitions.

+/

#define NUPART (NPARTAB - 3)

#endif

#defineDISKTAB "/etc/disktab"

struct disktab {
char «d_name; [/ drive name #/
char xd_type; /% drive type %/
int d_secsize; /% sector size in bytes */
int d_ntracks; /% # tracks/cylinder +/
int d_nsectors; /x # sectors/track +/
int d_ncylinders; /x # cylinders #/

MIPS Computer Systems, Inc. February 15, 1989 ’ ‘ Page 1

GETDISKBYNAME (3-BSD) RISC/os Programmer’s Reference ~ GETDISKBYNAME (3-BSD)

int d_rpm; /% revolutions/minute +/
int d_badsectforw; /% supports DEC bad144 std +/
int d_sectoffset; /% use sect rather than cyl offsets +/
struct partition {
int p_size; /x #sectors in partition +/
short p_bsize; /% block size in bytes +/

short - p_fsize; /x frag size in bytes #/
} d_partitions]NPARTAB];

¥

struct disktab sgetdiskbyname();
SEE ALSO

disktab(5)
ERRORS

This information should be obtained from the system for locally available disks (in particular,
the disk partition tables).

Page 2 February 15, 1989 MIPS Computer Systems, Inc.

GETENV (3-BSD) RISC/os Programmer’s Reference GETENV (3-BSD)

NAME
getenv, setenv, unsetenv — manipulate environmental variables

SYNOPSIS
char sgetenv(name)
char sname;

setenv(name, value, overwrite)
char sname, value;
int overwrite;

void unsetenv(name)
char sname;

DESCRIPTION
getenv searches the environment list (see environ(7)) for a string of the form name=value and
returns a pointer to the string value if such a string is present, and 0 (NULL) if it is not.

setenv searches the environment list as getenv does; if the string name is not found, a string of
the form name=value is added to the environment. If it is found, and overwrite is non-zero,
its value is changed to value. setenv returns 0 on success and -1 on failure, where failure is
caused by an inability to allocate space for the environment.

unsetenv removes all occurrences of the string name from the environment. There is no
library provision for completely removing the current environment. It is suggested that the fol-
lowing code be used to do so.

static char senvinit[1];
extern char wenviron;
environ = envinit;

All of these routines permit, but do not require, a trailing equals (‘=) sign on name or a
leading equals sign on value.

SEE ALSO
csh(1), sh(1), execve(2), environ(7)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETENV (3F) _ RISC/os Programmer’s Reference GETENV (3F)

NAME
getenv — get value of environment variables
SYNOPSIS

subroutine getenv (ename, evalue)
characterx(x) ename, evalue

DESCRIPTION _
Getenv searches the environment list (see environ(7)) for a string of the form ename=value
and returns value in evalue if such a string is present, otherwise fills evalue with blanks.

FILES
/usr/1ib/1ibU77.a

SEE ALSO
environ(7), execve(2)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

GETFSENT (3-BSD) RISC/os Programmer’s Reference GETFSENT (3-BSD)

NAME

getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent — get file system descriptor file entry

SYNOPSIS

#include <fstab.h>
struct fstab xgetfsent()

struct fstab sgetfsspec(spec)
char xspec; '

struct fstab sgetfsfile (file)
char sfile;

struct fstab sgetfstype (type)
char stype;

int setfsent()
int endfsent()

DESCRIPTION

FILES

getfsent, getfsspec, getfstype, and getfsfile each return a pointer to an object with the following
structure containing the broken-out fields of a line in the file system description file,
<fstab.h>. :

struct fstab {
char «fs_spec;
char «fs_file;
char «fs_type;
int fs_freq;
int fs_passno;

¥
The fields have meanings described in fstab(5).
getfsent reads the next line of the file, opening the file if necessary.
setfsent opens and rewinds the file.
endfsent closes the file.

getfsspec and geifsfile sequentially search from the beginning of the file until a matching special
file name or file system file name is found, or until EOF is encountered. geifsiype does like-
wise, matching on the file system type field.

/etc/fstab

SEE ALSO

fstab(5)

DIAGNOSTICS

Null pointer (0) returned on EOF or error.

ERRORS

All information is contained in a static area so it must be copied if it is to be saved.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

()

GETGRENT (3-BSD) RISC/os Programmer’s Reference GETGRENT (3-BSD)

NAME

getgrent, getgrgid, getgrnam, setgrent, endgrent — get group file entry

SYNOPSIS

#include <grp.h>

struct group sgetgrent()

struct group xgetgrgid(gid)

int gid;

struct group sgetgrnam(name)
char sname;

setgrent()
endgrent()

DESCRIPTION

FILES

getgrent, getgrgid and getgrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the group file.

/% */

/% | Copyright Unpublished, MIPS Computer Systems, Inc. All Rights |/
/x | Reserved. This software contains proprietary and confidential | +/

/% | information of MIPS and its suppliers. Use, disclosure or |/

/% | reproduction is prohibited without the prior express written | %/

/% | consent of MIPS. | +/

/% */

/x $Header: grp.h,v 1.2 86/06/02 15:03:20 dce Exp $ #/

/% grp.h 4.1 83/05/03 -

struct group { / see getgrent(3) +/
char sgr_name;
char sgr_passwd;
int gr_gid;
char xgr_mem;

};

struct group sgetgrent(), sgetgrgid(), *getgrnam();
The members of this structure are:

gr_name The name of the group.

gr_passwd The encrypted password of the group.

gr_gid The numerical group-ID.

gr_mem Null-terminated vector of pointers to the individual member
names.

getgrent simply reads the next line while gergrgid and getgrnam search until a matching gid or
name is found (or until EOF is encountered). Each routine picks up where the others leave
off so successive calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches.
endgrent may be called to close the group file when processing is complete.

/etc/group

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETGRENT (3-BSD) RISC/os Programmer’s Reference GETGRENT (3-BSD)

SEE ALSO

getlogin(3), getpwent(3), group(5)
DIAGNOSTICS

A null pointer (0) is returned on EOF or error.

ERRORS
All information is contained in a static area so it must be copied if it is to be saved.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

GETHOSTBYNAME (3N-BSD) RISC/os Programmer’s Reference GETHOSTBYNAME (3N-BSD)

NAME
gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent — get network host entry

SYNOPSIS
#include <netdb.h>

extern int h_errno;

struct hostent sgethostbyname (name)
char sname;

struct hostent sgethostbyaddr(addr, len, type)
char xaddr; int len, type;

struct hostent xgethostent()

sethostent(stayopen)
int stayopen;

endhostent()

DESCRIPTION
gethostbyname and gethostbyaddr each return a pointer to an object with the following struc-
ture. This structure contains either the information obtained from the name server,
named(8), or broken-out fields from a line in /etc/hosts. If the local name server is not run-
ning these routines do a lookup in /etc/hosts. .

struct hostent { o

char sh_name; /« official name of host /

char «h_aliases; /« alias list %/ _

int h_addrtype; /« host address type «/

int h_length; /* length of address +/

char sh_addr_list; /x list of addresses from name server +/
¥s
#defineh_addr h_addr_list[0] /+ address, for backward compatibility «/

The members of this structure are:

h_name Official name of the host.

h_aliases A zero terminated array of alternate names for the host.

h_addrtype The type of address being returned; currently always AF_INET.

h_length The length, in bytes, of the address.

h_addr_list A zero terminated array of network addresses for the host. Host
addresses are returned in network byte order.

h_addr The first address in h_addr_list; this is for backward compatiblity.

sethostent allows a request for the use of a connected socket using TCP for queries. If the
stayopen flag is non-zero, this sets the option to send all queries to the name server using TCP
and to retain the connection after each call to gethostbyname or gethostbyaddr.

endhostent closes the TCP connection.

DIAGNOSTICS
Error return status from gerhostbyname and gethostbyaddr is indicated by return of a null
pointer. The external integer h_errno may then be checked to see whether this is a temporary
failure or an invalid or unknown host.

h_errno can have the following values:
HOST_NOT_FOUND No such host is known.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETHOSTBYNAME (3N-BSD) RISC/0s Programmer’s Reference GETHOSTBYNAME (3N-BSD)

TRY_AGAIN This is usually a temporary error and means that the local
server did not receive a response from an authoritative server.
A retry at some later time may succeed.

NO_RECOVERY This is a non-recoverable error.

NO_ADDRESS The requested name is valid but does not have an IP address;
this is not a temporary error. This means another type of
request to the name server will result in an -answer.

FILES
/etc/hosts
SEE ALSO
hosts(5), resolver(3), named(8)
CAVEAT
gethostent is defined, and sethostent and endhostent are redefined, when libc is built fo use only
the routines to lookup in /etc/hosts and not the name server.
gethostent reads the next line of /etc/hosts, opening the file if necessary.

sethostent is redefined to open and rewind the file. If the srayopen argument is non-zero, the
hosts data base will not be closed after each call to gethosrbyname or gethostbyaddr endhos-
tent is redefined to close the file.

ERRORS

All information is contained in a static ared so it must be copied if it is to be saved. Only the
Internet address format is currently understood.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

GETLOG (3F) RISC/os Programmer’s Reference GETLOG (3F)

NAME
getlog — get user’s login name

SYNOPSIS
subroutine getlog (name)
characterx(x) name

characterx(x) function getlog()

DESCRIPTION

Getlog will return the user’s login name or all blanks if the process is running detached from a
terminal.

FILES
/usr/lib/1ibU77.a

SEE ALSO
getlogin(3)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

GETLOGIN (3-BSD) RISC/os Programmer’s Reference GETLOGIN (3-BSD)

NAME

getlogin — get login name
SYNOPSIS

char xgetlogin()
DESCRIPTION

getlogin returns a pointer to the login name as found in /efc/utmp. It may be used in conjunc-
tion with gefpwnam to locate the correct password file entry when the same userid is shared by
several login names.

If getlogin is called within a process that is not attached to a terminal, or if there is no entry in
/etc/utmp for the process’s terminal, getlogin returns a NULL pointer (0). A reasonable pro-
cedure for determining the login name is to first call getlogin and if it fails, to call
getpwuid (getuid()).

FILES
/etc/utmp

SEE ALSO
getpwent(3), utmp(5), ttyslot(3)

DIAGNOSTICS
Returns a NULL pointer (0) if name not found.

ERRORS) .
The return values point to static data whose content is overwritten by each call.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETMNTENT (3-BSD) RISC/os Programmer’s Reference GETMNTENT (3-BSD)

NAME

getmntent, setmntent, addmntent, endmntent, hasmntopt — get file system descriptor file entry

SYNOPSIS

#include <stdio.h>
#include <mntent.h>

FILE ssetmntent(filep, type)

char filep; ‘
char stype;

struct mntent xgetmntent(filep)
FILE #filep;

int addmntent(filep, mnt)
FILE sfilep;
struct mntent xmnt;

char shasmntopt(mnt, opt)
struct mntent xmnt;
char xopt;

int endmntent(filep)
FILE sfilep;

DESCRIPTION

FILES

These routines replace the getfsent routines for accessing the file system description file
/etc/fstab. They are also used to access the mounted file system description file /etc/mtab .

setmntent opens a file system description file and returns a file pointer which can then be used
with getmntent, addmntent, or endmntent. The type argument is the same as in fopen(3).
getmntent reads the next line from filep and returns a pointer to an object with the following
structure containing the broken-out fields of a line in the filesystem description file,
<mntent.h>. The fields have meanings described in fstab (5).

struct mntent {
char smnt_fsname; /« file system name */

char «mnt_dir; /x file system path prefix +/
char smnt_type; /+ 4.2, nfs, swap, or xx */
char «mnt_opts; /x ro, quota, etc. /

int mnt_freq; /* dump frequency, in days */

int mnt_passno; /+ pass number on parallel fsck «/
¥
addmntent adds the mntent structure mnt to the end of the open file filep. Note that filep has
to be opened for writing if this is to work. hasmntopt scans the mnt_opts field of the mntent

structure mnt for a substring that matches opt. It returns the address of the substring if a
match is found, O otherwise. Endmntent closes the file.

/etc/fstab
/etc/mtab

SEE ALSO

fstab(5), getfsent(3)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETMNTENT (3-BSD) RISC/os Programmer’s Reference GETMNTENT (3-BSD)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

ERRORS
The returned mntent structure points to static information that is overwritten in each call.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

GETNETENT (3N-BSD) RISC/os Programmer’s Reference GETNETENT (3N-BSD)

NAME

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent — get network entry

SYNOPSIS

#include <netdb.h>
struct netent xgetnetent()

struct netent xgetnetbyname (name)
char sname;

struct netent sgetnetbyaddr(net, type)
long net;

int type;

setnetent(stayopen)

int stayopen;

endnetent()

DESCRIPTION '

FILES

getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the follow-
ing structure containing the broken-out fields of a line in the network data base, /etc/networks.

struct netent {

char _name; /x official name of net */
char w1n_aliases; /« alias list +/
int n_addrtype; /% net number type +/
unsigned long n_net; /x net number %/
};
The members of this structure are:
n_name The official name of the network.
n_aliases A zero terminated list of alternate names for the network.
n_addrtype The type of the network number returned; currently only
AF_INET.
n_net The network number. Network numbers are returned in machine
byte order.

getnetent reads the next line of the file, opening the file if necessary.

setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not
be closed after each call to getnetbyname or getnetbyaddr.

Endnetent closes the file.

getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a match-
ing net name or net address and type is found, or until EOF is encountered. Network
numbers are supplied in host order.

/etc/networks

SEE ALSO

networks(5)

DIAGNOSTICS

Null pointer (0) returned on EOF or error.

MIPS Computer Systems, Inc. February 8, 1989 Page 1

GETNETENT (3N-BSD) RISC/os Programmer’s Reference GETNETENT (3N-BSD)

ERRORS
All information is contained in a static area so it must be copied if it is to be saved. Only
Internet network numbers are currently understood. Expecting network numbers to fit in no
more than 32 bits is probably naive.

Page 2 February 8, 1989 MIPS Computer Systems, Inc.

GETNETGRENT (3N-BSD) RISC/os Programmer’s Reference GETNETGRENT (3N-BSD)

NAME

getnetgrent, setnetgrent, endnetgrent, innetgr — get network group entry

SYNOPSIS

innetgr(netgroup, machine, user, domain)
char snetgroup, smachine, xuser, xdomain;

setnetgrent(netgroup)
char xnetgroup

endnetgrent()

getnetgrent(machinep, userp, domainp)
char xxmachinep, *+userp, ++xdomainp;

DESCRIPTION

FILES

inngetgr returns 1 or 0, depending on whether nergroup contains the machine,. user, domain
triple as a member. Any of the three strings machine, user, or domain can be NULL, in
which case it signifies a wild card.

getnetgrent returns the next member of a network group. After the call, machinep will contain
a pointer to a string containing the name of the machine part of the network group member,
and similarly for userp and domainp. If any of machinep, userp or domainp is returned as a
NULL pointer, it signifies a wild card. getnetgrent will malloc space for the name. This space
is released when a endnetgrent call is made. getnetgrent returns 1 if it succeeding in obtaining
another member of the network group, .0 if it has reached the end of the group.

setnetgrent establishes the network group from which getnergrent will obtain members, and also
restarts calls to getnergrent from the beginning of the list. If the previous setnergrent call was
to a different network group, a endnetgrent call is implied. endnetgrent frees the space allo-
cated during the getnergrent calls.

/etc/netgroup
/etc/yp/domain/netgroup
/etc/yp/domain/netgroup.byuser
/etc/yp/domain/netgroup.byhost

MIPS Computer Systems, Inc. February 5, 1989 Page 1

GETOPT (3-BSD) RISC/os Programmer’s Reference

NAME
getopt — get option letter from argv

SYNOPSIS
int getopt(argc, argv, optstring)
int argc;
char xxargv;
char xoptstring;

extern char xoptarg;
extern int optind;

DESCRIPTION

GETOPT (3-BSD)

getopt returns the next option letter in argy that matches a letter in optstring. optstring is a
string of recognized option letters; if a letter is followed by a colon, the option is expected to
have an argument that may or may not be separated from it by white space. optarg is set to

point to the start of the option argument on return from geropt.

getopt places in optind the argv index of the next argument to be processed. Because optind is
external, it is normally initialized to zero automatically before the first call to geropt.

When all options have been processed (i.e., up to the first non-option argument), getopt
returns EOF. The special option —= may be used to delimit the end of the options; EOF will

be returned, and == will be skipped.
DIAGNOSTICS

getopt prints an error message on stderr and returns a question mark (?) when it encounters an

option letter not included in optstring .
EXAMPLE

The following code fragment shows how one might process the arguments for a command that

can take the mutually exclusive options a and b, and the options f and o, both of which

require arguments:

main(argc, argv)

int argc;

char sxargv;

{ .
mt c;
extern int optind;
extern char soptarg;

while ((c = getopt(argc, argv, "abf:0:")) != EOF)

switch (c) {
case ‘a’:
if (bflg)
errflg++;
else
aflg++;
break;
case ‘b’:
if (aflg)
e