RISC/os (UMIPS)
Programmer’s Guide
Volume |
Order Number 3207DOC

Bl

The power of RISC is in the system.

RISC/os (UMIPS)
Programmer’s Guide
Volume |
Order Number 3207DOC

March 1989

Your comments on our products and publications are wel-
come. A postage-paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 84-00062A/02-00298

© 1988 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

MIPS Computer Systems, Inc.
930 Arques Ave.
Sunnyvale, CA 94086

Customer Service Telephone Numbers:

California: (800) 992-MIPS
All other states: (800) 443-MIPS
International: 415) 330-7966

Mfg. Past Number 84-00062/02-00298

Table of Contehts

Preface

Chapter 1: Programming in a UMIPS
System Environment: An Overview

UNIX System Tools and Where You Can
Read About Them

Three Programming Environments
Summary

Chapter 2: Programming Basics

Introduction |
Choosing a Programming Language
The UMIPS/Language Interface
Analysis/Debugging

Program Organizing Utilities

Chapter 3: Application Programming

Introduction _
Application Programming
Language Selection

Advanced Programming Tools
Programming Support Tools
Project Control Tools

liber, A Library System

TABLE OF CONTENTS

11
13
1-5

t 22

2-8
2-34
2-53

31
32
34
39
3-15
3-23
325

Table of Contents

Chapter 4: C Language

Introduction

Lexical Conventions
Storage Class and Type
Operator Conversions
Expressions and Operators
Declarations

Statements

External Definitions
Scope Rules

Compiler Control Lines
Types Revisited

Constant Expressions
Portability Considerations
Syntax Summary

Chapter 5: lint

Introduction
Usage
lint Message Types

Chapter 6: make

Introduction

Basic Features

Description Files and Substitutions
Recursive Makefiles

Source Code Control System Filenames:

the Tilde
Command Usage
Suggestions and Warnings

iv. PROGRAMMER’S GUIDE

4-1
4-2
4-5

" 4-8

4-10
4-19
4-33
4-37

. 4-40

442
4-45
4-48
4-49
4-50

5-1

5-4

6-1
62
6-5
6-8

6-12
6-15
6-18

Internal Rules

Chapter 7: Source Code Control
System (SCCS)

Introduction

SCCS For Beginners

Delta Numbering

SCCS Command Conventions
SCCS Commands

SCCS Files

Chapter 8: An Introduction to RCS

Abstract

Functions of RCS

Getting Started with RCS
Automatic Identification

How to Combine MAKE and RCS
Additional Informaion on RCS

Chapter 9: awk

The awk Programming Language
Using awk

Input and Output

Patterns |

Actions

Special Features

TABLE OF CONTENTS

- Table of Contents

6-19

71
72
7-6
7-8
7-10
728

82
84

88
89
8-10

9-1
9-12
9-13
9-21
9-26
9-31

v

Table of Contents

Chapter 10: lex

An Overview of lex Programming
Writing lex Programs

Running lex under the UNIX System

Chapter 11: yacc

Introduction

Basic Specifications

Parser Operation

' Ambiguity and Conflicts
Precedence

Error Handling

The yacc Environment

Hints for Preparing Specifications
Advanced Topics

Examples

Chapter 12: curses/terminfo

Introduction

‘Overview

Working with curses Routines
Working with terminfo Routines

Working with the terminfo Database

curses Program Examples

Chapter 13: File and Record Locking

Introduction
Terminology

vi PROGRAMMER’S GUIDE

10-1
.10-3

110-14

111

11-3

119
11-13
11-17
11-20
11-23
11-24
11-27
11-32

12-1
12-2
12-6
12-38
12-43
12-51

131
13-2

e

- Table of Contents

File Protection 133
Selecting Advisory or Mandatory Locking 13-12
Chapter 14: Shared Libraries

~ Introduction 14-1
Using a Shared Library 14-2
Building a Shared Library 14-11
Summary 14-32
Chapter 15: Interprocess Communication
Introduction 15-1
Messages 152
Semaphores 15-27
Shared Memory 15-32
Chapter 16: Interprocess Communication

Tutorial

Abstract 161
Goals 162
Processes 163
Pipes 16-4
Socketpairs 168
Domains and Protocols 16-10
Datagrams in the UNIX Domain 16-12
Datagrams in the Internet Domain 16-15
Connections 16-19
Reads, Writes, Recvs, etc. 16-30
Choices 16-32
What to do Next

1633

TABLE OF CONTENTS vii

‘Table of Contents

Acknowledgements
References

Chapter 17: Advanced IPC Tutorial

Introduction

Introduction

Network Library Routines
Client/Server Model
Advanced Topics

Chapter 18: External Data Representation
Protocol Specification

- Introduction .
XDR Library Primitives

XDR Stream Implementation
XDR Standard

Advanced Topics

Synopsis of XDR Routines

Chapter 19: Remote Procedure Call
Programming Guide

Introduction

Layers of RPC

" Higher Layers of RPC
Lower Layers of RPC
Other RPC Features
Synopsis of RPC Routines

Glossary
Index

vii PROGRAMMER’S GUIDE

16-34

16-35

17-1
17-1
17-13
17-19
17-27

18-1
18-6

18-19
18-21
18-26
18-31

19-1
19-2
194
19-10
19-16
19-37

Purpose

This guide is designed to give you information about programming in a RISC/os
(UMIPS) system environment. It does not attempt to teach you how to write pro-
grams. Rather, it is intended to supplement texts on programming languages by con-
centrating on the other elements that are part of getting programs into operation.

Audience and Prerequisite Knowledge

As the title suggests, we are addressing programmers, especially those who have not
worked extensively with the RISC/os (UMIPS) system. No special level of program-
ming involvement is assumed. We hope the book will be useful to people who write
only an occasional program as well as those who work on or manage large application
development projects.

Programmers in the expert class, or those engaged in developing system software, may
find this guide lacks the depth of information they need. For them we recommend
the Programmer’s Reference Manual.

Knowledge of terminal use, of a RISC/os (UMIPS) system editor, and of the
RISC/os (UMIPS) system directory/file structure is assumed. If you feel shaky about
your mastery of these basic tools, you might want to look over the User’s Guide
before tackling this one.

Organization
The material is organized into nineteen chapters, as follows:
® Chapter 1 — Overview

Identifies the special features of the RISC/os (UMIPS) system that make up
the programming environment: the concept of building blocks, pipes, special
files, shell programming, etc. As a framework for the material that follows,
three different levels of programming in a RISC/os (UMIPS) system are
defined: single-user, applications, and systems programming.

® Chapter 2 — Programming Basics
Describes the most fundamental utilities needed to get programs running.
® Chapter 3 — Application Programming

Enlarges on many of the topics covered in the previous chapter with particular
emphasis on how things change as the project grows bigger. Describes tools
for keeping programming projects organized.

® Chapters 4 through 19 — Support Tools, Descriptions, and Tutorials

Includes detailed information about the use of many of the RISC/os (UMIPS)
system tools.

At the end of the text is a glossary and an index.

PREFACE ix

Purpose

The C Connection

The RISC/os (UMIPS) system supports many programming languages, and C com-
pilers are available on many different operating systems. Nevertheless, the relation-
ship between the RISC/os (UMIPS) operating system and C has always been and
remains very close. Most of the code in the RISC/os (UMIPS) operating system is C,
and over the years many organizations using the RISC/os (UMIPS) system have come
to use C for an increasing portion of their application code.. Thus, while this guide is
intended to be useful to you no matter what language(s) you are using, you will find
that, unless there is a specific language-dependent point to be made, the examples
assume you are programming in C.

Notation Conventions

‘Whenever the text includes examples of output from the computér and/or commands
entered by you, we follow the standard notation scheme that is common throughout
RISC/os (UMIPS) system documentation:

® Commands that you type in from your terminal are shown in bold type.

® Text that is printed on your terminal by the computer is shown in constant
width type. Constant width type is also used for code samples because it
allows the most accurate representation of spacing. Spacing is often a matter
of coding style, but is sometimes critical. In cases where the line on the com-
puter screen is longer than can be shown in this document, the backslant ("\")
is used at the end of the line to indicate that the next line is actually still a part
of the current line.

B Comments added to a display to show that part of the display has been omitted
are shown in italic type and are indented to separate them from the text that
represents computer output or input. Comments that explain the input or out-
put are shown in the same type font as the rest of the display.

Italics are also used to show substitutable values, such as, filename, when the
format of a command is shown.

® There is an implied RETURN at the end of each command and menu response
lxenter. Where you may be expected to enter only a RETURN (as in the
case where you are accepting a menu default), the symbol <CR> is used.

® In cases where you are expected to enter a control character, it is shown as,
for example, CTRL-D. This means that you press the d key on your keyboard
while holding down the CTRL key.

® The dollar sign, $, and pound sign, #, symbols are the standard default prompt
signs for an ordinary user and root respectively. $ means you are logged in as
an ordinary user. # means you are logged in as root.

B When the # prompt is used in an example, it means the command illustrated
may be used only by root.

x PROGRAMMER’S GUIDE

Purpose

Command References

When commands are mentioned in a section of the text for the first time, a reference
to the manual section where the command is formally described is included in

parentheses: command(section). The numbered sections are located in the following
manuals: '

Section (1) User’s Reference Manual
Sections (1M), (7) System Administrator’s Reference Manual
Sections (2), (3), (4), (5) Programmer’s Reference Manual

Information in the Examples

While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system may produce slightly different
output. Some displays depend on a particular machine configuration that may differ
from yours. Changes between releases of the RISC/os (UMIPS) system software may
cause small differences in what appears on your terminal.

Where complete code samples are shown, we have tried to make sure they compile
and work as represented. Where code fragments are shown, while we can’t say that
they have been compiled, we have attempted to maintain the same standards of cod-
ing accuracy for them.

PREFACE xi

Chapter 1: Programming in a UNIX System
Environment: An Overview

UNIX System Tools and Where You Can
Read About Them

Tools Covered and Not Covered in this Guide
The Shell as a Prototyping Tool

Three Programming Environments
Single-User Programmer
Application Programming
Systems Programmers

Summary

TABLE OF CONTENTS

1-1
1-1
1-1

13
13

1-4

15

UMIPS System Tools and Where You Can
Read About Them |

The term "UMIPS system tools” can stand some clarification. In the narrowest
sense, it means an existing piece of software used as a component in a new task. In a
broader context, the term is often used to refer to elements of the UMIPS system that
might also be called features, utilities, programs, filters, commands, languages, func-
tions, and so on. It gets confusing because any of the things that might be called by
one or more of these names can be, and often are, used in the narrow way as part of
the solution to a programming problem.

Tools Covered and Not Covered in this Guide

The Programmer’s Guide is about tools used in the process of creating programs
in a UMIPS system environment, so let’s take a minute to talk about which tools we
mean, which ones are not going to be covered in this book, and where you might find
information about those not covered here. Actually, the subject of things not covered
in this guide might be even more important to you than the things that are. We
couldn’t possibly cover everything you ever need to know about UMIPS system tools
in this one volume.

Tools not covered in this text:

® the login procedure

8 UMIPS system editors and how to use them

® how the file system is organized and how you move around in it

® shell programming

Information about these subjects can be found in the User’s Guide and a number
of commercially available texts.

Tools covered here can be classified as follows:

® utilities for getting programs running

utilities for organizing software development projects
specialized languages
debugging and analysis tools

compiled language components that are not part of the language syntax, for
example, standard libraries, systems calls, and functions

The Shell as a Prototyping Tool

Any time you log in to a UMIPS system machine you are using the shell. The
shell is the interactive command interpreter that stands between you and the UMIPS
system kernel, but that’s only part of the story. Because of its ability to start
processes, direct the flow of control, field interrupts and redirect input and output it
is a full-fledged programming language. Programs that use these capabilities are
known as shell procedures or shell scripts.

PROGRAMMING IN A UMIPS SYSTEM ENVIRONMENT 1-1

UMIPS System Tools

Much innovative use of the shell involves stringing together commands to be run
under the control of a shell script. The dozens and dozens of commands that can be
used in this way are documented in the User’s Reference Manual. Time spent with the
User’s Reference Manual can be rewarding. Look through it when you are trying to
find a command with just the right option to handle a knotty programming problem.
The more familiar you become with the commands described in the manual pages the
more you will be able to take full advantage of the UMIPS system environment.

It is not our purpose here to instruct you in shell programming. What we want to
stress here is the important part that shell procedures can play in developing proto-
types of full-scale applications. While understanding all the nuances of shell program-
ming can be a fairly complex task, getting a shell procedure up and running is far less
time-consuming than writing, compiling and debugging compiled code.

This ability to get a program into production quickly is what makes the shell a
valuable tool for program development. Shell programming allows you to "build on
the work of others" to the greatest possible degree, since it allows you to piece
together major components simply and efficiently. Many times even large applications
can be done using shell procedures. Even if the application is initially developed as a

prototype system for testing purposes rather than being put into production, many
months of work can be saved. : '

With a prototype for testing, the range of possible user errors can be
determined—something that is not always easy to plan out when an application is
being designed. The method of dealing with strange user input can be worked out
inexpensively, avoiding large re-coding problems.

A common occurrence in the UMIPS system environment is to find that an avail-
able UMIPS system tool can accomplish with a couple of lines of instructions what
might take a page and a half of compiled code. Shell procedures can intermix com-
piled modules and regular UMIPS system commands to let you take advantage of
work that has gone before.

1-2 PROGRAMMER'’S GUIDE

Three Programming Environments

We distinguish among three programming environments to emphasize that the
information needs and the way in which UMIPS system tools are used differ from one
environment to another. We do not intend to imply a hierarchy of skill or experi-
ence. Highly-skilled programmers with years of experience can be found in the
"single-user" category, and relative newcomers can be members of an application
development or systems programming team.

Single-User Programmer

Programmers in this environment are writing programs only to ease the perfor-
mance of their primary job. The resulting programs might well be added to the stock
of programs available to the community in which the programmer works. This is
similar to the atmosphere in which the UMIPS system thrived; someone develops a
useful tool and shares it with the rest of the organization. Single-user programmers
may not have externally imposed requirements, or co-authors, or project management
concerns. The programming task itself drives the coding very directly. One advan-
tage of a timesharing system such as UMIPS is that people with programming skills
can be set free to work on their own without having to go through formal project
approval channels and perhaps wait for months for a programming department to
solve their problems.

Single-user programmers need to know how to:
select an appropriate language

compile and run programs

use system libraries

analyze programs

debug programs

keep track of program versions

Most of the information to perform these functions at the single-user level can be
found in Chapter 2. ’

Application Programming

Programmers working in this environment are developing systems for the benefit
of other, non-programming users. Most large commercial computer applications still
involve a team of applications development programmers. They may be employees of
the end-user organization or they may work for a software development firm. Some
of the people working in this environment may be more in the project management
area than working programmers.

Information needs of people in this environment include all the topics in Chapter
2, plus additional information on:

| software control systems

8 file and record locking

PROGRAMMING IN A UMIPS SYSTEM ENVIRONMENT 1-3

Three Programming Environments

8 communication between processes
#@ shared memory

® advanced debugging techniques

These topics are discussed in Chapter 3.

Systems Programmers

These are programmers engaged in writing software tools that are part of, or
closely related to the operating system itself. The project may involve writing a new
device driver, a data base management system or an enhancement to the UMIPS sys-
tem kernel. In addition to knowing their way around the operating system source
code and how to make changes and enhancements to it, they need to be thoroughly
familiar with all the topics covered in Chapters 2 and 3.

1-4 PROGRAMMER’S GUIDE

Summary

In this overview chapter we have described the way that the UMIPS system
developed and the effect that has on the way programmers now work with it. We
have described what is and is not to be found in the other chapters of this guide to
help programmers. We have also suggested that in many cases programming prob-
lems may be easily solved by taking advantage of the UMIPS system interactive com-
mand interpreter known as the shell. Finally, we identified three programming
environments in the hope that it will help orient the reader to the organization of the
text in the remaining chapters.

PROGRAMMING IN A UMIPS SYSTEM ENVIRONMENT 1-5

Chapter 2: Progralmming Basics

Introduction 21
Choosing a Programming Language 22
Supported Languages in a UNIX System Environment 2-2

C Language 2-2
FORTRAN 23
Pascal 2-3
COBOL 23
PL/1 24
Assembly Language 24
Special Purpose Languages 2-4
awk 24

lex 2-5
yacc 2-5

M4 2-5

be and de 2-5
curses 2-5
Compiling and Link Editing 25
Compiling C Programs ‘ 2-6
Compiling FORTRAN Programs 2-6
Compiler Diagnostic Messages 2-6
Link Editing 2-6
The UMIPS/Language Interface 28
Why C Is Used to Illustrate the Interface ' 2-8
How Arguments Are Passed to a Program 2-8
System Calls and Subroutines 2-10
Categories of System Calls and Subroutines 2-11
Where the Manual Pages Can Be Found - 217
How System Calls and Subroutines Are Used in C Programs 2-18
Header Files and Libraries 2-22
Object File Libraries 2-23
Input/QOutput 2-23
Three Files You Always Have 2-24
Named Files 2-24
Low-level I/O and Why You Shouldn’t Use It 2-25
System Calls for Environment or Status Information 2-26
Processes o227
system(3S) 2-28
exec(2) 2-28

TABLE OF CONTENTS i

Table of Contents

fork(2)

Pipes
Error Handling
Signals and Interrupts

Analysis/Debugging

Sample Program
cflow

ctrace

cxref

lint utility

pixie utility
pixstats utility
prof

size

strip

Program Organizing Utilities

The make Command
The Archive
Use of SCCS by Single-User Programmers

PROGRAMMER’S GUIDE

2-28
2-30
2-31
2-32

234

2-34
2-37
2-40
2-44
2-48
2-48
2-50
2-51
2-52
2-52

2-53
2-53
2-54
2-60

Introduction

The information in this chapter is for anyone just learning to write programs to run in
a UNIX system environment. In Chapter 1 we identified one group of UNIX system
users as single-user programmers. People in that category, particularly those who are
not deeply interested in programming, may find this chapter (plus related reference
manuals) tells them as much as they need to know about coding and running pro-
grams on a UNIX system computer. :

Programmers whose interest does run deeper, who are part of an application develop-
ment project, or who are producing programs on one UNIX system computer that are
being ported to another, should view this chapter as a starter package.

PROGRAMMING BASICS 2-1

Choosing a Programming Language

How do you decide which programming language to use in a given situation? One
answer could be, "I always code in HAIRBOL, because that’s the language I know
best." Actually, in some circumstances that’s a legitimate answer. But assuming
more than one programming language is available to you, that different programming
languages have their strengths and weaknesses, and assuming that once you’ve learned
to use one programming language it becomes relatively easy to learn to use another,
you might approach the problem of language selection by asking yourself questions
like the following: ‘

® What is the nature of the task this program is to do?
Does the task call for the development of a complex algorithm, or is th1s a
simple procedure that has to be done on a lot of records?

® Does the programming task have many separate parts?
Can the program be subdivided into separately compilable functions, or is it
one module?

® How soon does the program have to be available?
Is it needed right now, or do I have enough time to work out the most efficient
process possible?

® What is the scope of its use?
Am I the only.person who will use this program, or is it going to be distributed
to the whole world?

B Is there a possibility the program will be ported to other systems?

B What is the life-expectancy of the program?
Is it going to be used just a few times, or will it still be going strong five years
from now?

Supported Languages in a UMIPS System Environment

This section and the section that follows, briefly describe some full scale program-
ming languages and special purpose languages available under UMIPS. The discus-
sion does not include all languages available under UMIPS, many of which must be
purchased separately. For information on other languages available, contact your
UMIPS service representative.

C Language :

C is intimately associated with the UNIX system since it was originally developed for
use in recoding the UNIX system kernel. If you need to use a lot of UNIX system
function calls for low-level /O, memory or device management, or inter-process com-
munication, C language is a logical first choice. Most programs, however, don’t
require such direct interfaces with the operating system so the decision to choose C
might better be based on one or more of the following characteristics:

® a variety of data types: character, integer, long integer, float, and double
m Jow level constructs (most of the UNIX system kernel is written in C)
m derived data types such as arrays, functions, pointers, structures and unions

® multi-dimensional arrays

2-2 PROGRAMMER’S GUIDE

Language Selection

m scaled pointers, and the ability to do pointer arithmetic
B Dbit-wise operators

® a variety of flow-of-control statements: if, if-else, switch, while, do-while, and
for

B a high degree of portability

C is a language that lends itself readily to structured programming. It is natural in C
to think in terms of functions. The next logical step is to view each function as a
separately compilable unit. This approach (coding a program in small pieces) eases
the job of making changes and/or improvements. If this begins to sound like the
UNIX system philosophy of building new programs from existing tools, it’s not just
coincidence. As you create functions for one program you will surely find that many
can be picked up, or quickly revised, for another program.

A difficulty with C is that it takes a fairly concentrated use of the language over a
period of several months to reach your full potential as a C programmer. If you are a
casual programmer, you might make life easier for yourself if you choose a’less
demanding language. ‘

FORTRAN

The oldest of the high-level programming languages, FORTRAN is still highly prized
for its variety of mathematical functions. If you are writing a program for statistical
analysis or other scientific applications, FORTRAN is a good choice. An original
design objective was to produce a language with good operating efficiency. This has
been achieved at the expense of some flexibility in the area of type definition and data
abstraction. There is, for example, only a single form of the iteration statement.
FORTRAN also requires using a somewhat rigid format for input of lines of source
code. This shortcoming may be overcome by using one of the UNIX system tools
designed to make FORTRAN more flexible.

Pascal

Originally designed as a teaching tool for block structured programming, Pascal has
gained quite a wide acceptance because of its straightforward style. Pascal is highly
structured and allows system level calls (characteristics it shares with C). Since the
intent of the developers, however, was to produce a language to teach people about
programming it is perhaps best suited to small projects. Among its inconveniences
are its lack of facilities for specifying initial values for variables and limited file pro-
cessing capability. Fortunately, MIPS’ Pascal provides numerous extensions to over-
come some of the limitations of standard Pascal. '

COBOL

Probably morevpr(‘)grammers are familiar with COBOL than with any other single pro-
gramming language. It is frequently used in business applications because its
strengths lie in the management of input/output and in defining record layouts.

It is somewhat cumbersome to use COBOL for complex algorithms, but it works well
in cases where many records have to be passed through a simple process; a payroll
withholding tax calculation, for example. It is a rather tedious language to work with
because each program requires a lengthy amount of text merely to describe record lay-
outs, processing environment and variables used in the code. The COBOL language
is wordy so the compilation process is often quite complex. Once written and put
into production, COBOL programs have a way of staying in use for years, and what
might be thought of by some as wordiness comes to be considered self-

PROGRAMMING BASICS 2-3

Language Selection

documentation. The investment in programmer time often makes them resistant to
change.

PL/I

PL/T is a general-purpose, high-level programming language that combines the best
features of several other languages such as FORTRAN, COBOL, and ALGOL.
MIPS’ PL/I conforms to ANSI standard X3.74-1981: a carefully designed subset (sub-
set G) of the language that is both more efficient and easier to learn. Refer to the
MIPS-PL/I Language Reference for details on the language.

Assembly Language

The closest approach to machine language, assembly language is specific to the partic-
ular computer on which your program is to run. High-level languages are translated
into the assembly language for a specific processor as one step of the compilation.
The most common need to work in assembly language arises when you want to do
some task that is not within the scope of a high-level language. Since assembly
language is machine-specific, programs written in it are not portable.

Special Purpose Languages

In addition to the above formal programming -languages, the UNIX system environ-
ment frequently offers one or more of the special purpose languages listed below.

Since UNIX system utilities and commands are packaged in functional groupings, it is
NOTE| possible that not all the facilities mentioned will be available on all systems.

awk

awk (its name is an acronym constructed from the initials of its developers) scans an
input file for lines that match pattern(s) described in a specification file. On finding a
line that matches a pattern, awk performs actions also described in the specification.
It is not uncommon that an awk program can be written in a couple of lines to do
functions that would take a couple of pages to describe in a programming language
like FORTRAN or C. For example, consider a case where you have a set of records
that consist of a key field and a second field that represents a quantity. You have
sorted the records by the key field, and you now want to add the quantities for
records with duplicate keys and output a file in which no keys are duplicated. The
pseudo-code for such a program might look like this:

Read the first record into a hold area;

Read additional records until EOF;

{

If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;
If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;

}

At EOF, write out the last record from the hold area.

2-4 PROGRAMMER'’S GUIDE

Language Selection

An awk program to accomplish this task would look like this:

[qty[$1] += $2 }
END { for (key in gty) print key, qtylkeyl]}

This illustrates only one characteristic of awk; its ability to work with associative
arrays. With awk, the input file does not have to be sorted, which is a requirement of
the pseudo-program.

lex

lex is a lexical analyzer that can be added to C or FORTRAN programs. A lexical
analyzer is interested in the vocabulary of a language rather than its grammar, which
is a system of rules deﬁning the structure of a language. lex can produce C language
subroutines that recogmze regular expressions specified by the user, take some action
when a regular expression is recognized and pass the output stream on to the next
program.

yace

yacc (Yet Another Compiler Compiler) is a tool for describing an input language to a
computer program. yacc produces a C language subroutine that parses an input
stream according to rules laid down in a specification file. The yacc specification file
establishes a set of grammar rules together with actions to be taken when tokens in
the input match the rules. lex may be used with yacc to control the input process and
pass tokens to the parser that applies the grammar rules.

M4

M4 is a macro processor that can be used as a preprocessor for assembly language,
and C programs. It is described in Section (1) of the Programmer's Reference Manual.

be and dc

bc enables you to use a computer terminal as you would a programmable calculator.
You can edit a file of mathematical computations and call be to execute them. The
be program uses de. You can use dc directly, if you want, but it takes a little getting
used to since it works with reverse Polish notation. That means you enter numbers
into a stack followed by the operator. bc and dc are described in Sectlon (1) of the
User’s Reference Manual.

curses

Actually a library of C functions, curses is included in this list because the set of
functions just about amounts to a sub-language for dealing with terminal screens. If
you are writing programs that include interactive user screens, you will want to
become familiar with this group of functions.

In addition to all the foregoing, don’t overlook the possibility of using shell pro-
cedures.

Compiling and Link Editing
The command used for compiling depends on the language used;
m for C programs, cc both compiles and link edits

m for COBOL programs, cobol both compiles and link edits

PROGRAMMING BASICS 2-5

Languége Selection

® for FORTRAN programs, 77 both compiles and link edits
m for Pascal programs, pec both compiles and link edits

® for PL/I programs, PL/I both compiles and link edits.

Compiling C Programs

To use the C compilation system you must have your source code in a file with a
filename that ends in the characters .c, as in mycode.c. The command to invoke the
compiler is: '

cc mycode.c

If the compilation is successful the process proceeds through the link edit stage and
the result will be an executable file by the name of a.out.

Several options to the cc command are available to control its operation. For a com-
plete list of these options, see the Languages Programmer’s Guide or the ce(1) manual
page in the User’s Reference Manual.

For more information on compiling C and Fortran Programs, and programs written in
other languages available under UMIPS, refer to the Languages Programmer’s Guide.

Compiling FORTRAN Programs

The 77 command invokes the FORTRAN compilation system. The operation of the
command is similar to that of the cc command, except the source code file(s) must
have a .f suffix. The f77 command compiles your source code and calls in the link
editor to produce an executable file whose name is a.out.

For more information on the command line options available with FORTRAN, see
the Languages Programmer’s Guide and the £77(1) manual page in the User’s Reference
Manual.

Compiler Diagnostic Messages

The C compiler generates error messages for statements that don’t compile. The
messages are generally quite understandable, but in common with most language com-
pilers they sometimes point several statements beyond where the actual error
occurred. For example, if you inadvertently put an extra ; at the end of an if state-
ment, a subsequent else will be flagged as a syntax error. In the case where a block
of several statements follows the if, the line number of the syntax error caused by the
else will start you looking for the error well past where it is. Unbalanced curly
braces, { }, are another common source of syntax errors.

Link Editing

The 1d command invokes the link editor directly. The typical user, however, seldom
invokes 1d directly. A more common practice is to use a language compilation con-
trol command (such as cc) that invokes Id. The link editor combines several object
files into one, performs relocation, resolves external symbols, incorporates startup
routines, and supports symbol table information used by dbx. You may, of course,
start with a single object file rather than several. The resulting executable module is
left in a file named a.out.

Any file named on the Id command line that is not an object file (typically, a name
ending in o) is assumed to be an archive library or a file of link editor directives. The
Id command has numerous options. They are described in the Larnguages
Programmer’s Guide and the 1d(1) manual page in the User’s Reference Manual.

2-6 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

When a program is run in a computer it depends on the operating system for a variety
of services. Some of the services such as bringing the program into main memory
and starting the execution are completely transparent to the program. They are, in
effect, arranged for in advance by the link editor when it marks an object module as
executable. As a programmer you seldom need to be concerned about such matters.

Other services, however, such as input/output, file. management, storage allocation do
require work on the part of the programmer. These connections between a program
and the UNIX operating system are what is meant by the term UNIX system/language
interface. The topics included in this section are:

B How arguments are passed to a program
System calls and subroutines

Header files and libraries

Input/Output

Processes

Error Handling, Signals, and Inteirupts

Why C Is Used to lllustrate the Interface

Throughout this section C programs are used to illustrate the interface between the
UNIX system and programming languages because C programs make more use of the
interface mechanisms than other high-level languages. What is really being covered in
this section then is the UNIX system/C Language interface. The way that other
languages deal with these topics is described in the user’s guides for those languages.

How Arguments Are Passed to a Program

Information or control data can be passed to a C program as arguments on the com-
mand line. When the program is run as a command, arguments on the command line
are made available to the function main in two parameters, an argument count and an
array of pointers to character strings. (Every C program is required to have an entry
module by the name of main.) Since the argument count is always given, the program
does not have to know in advance how many arguments to expect. The character
strings pointed at by elements of the array of pointers contain the argument informa-
tion.

The arguments are presented to the program traditionally as arge and argv, although
any names you choose will work. arge is an integer that gives the count of the
number of arguments. Since the command itself is considered to be the first argu-
ment, argv[0], the count is always at least one. argv is an array of pointers to charac-
ter strings (arrays of characters terminated by the null character \0).

If you plan to pass runtime parameters to your program, you need to include code to
deal with the information. Two possible uses of runtime parameters are:

® as control data. Use the information to set internal flags that control the
operation of the program.

PROGRAMMING BASICS 2-7

The UMIPS/Language Interface

m to provide a variable filename to the program.

Figures 2-1 and 2-2 show program fragments that illustrate these uses.

#include <stdio.h>

main(argc, argv)
int argc;
char *argvl[];
{
void exit();
int oflag = FALSE;

int pflag = FALSE; /* Function Flags */
int rflag = FALSE;
int ch;
while ((ch = getopt(argc,argv, "opr")) != EOF)

{
/* For options present, set flag to TRUE */ _
/* If no options present, print error message */

switch (ch)

{,

case 'o’:
oflag
break;

case 'p’
pflag,
break;

case 'xr’:
rflag
break;

default:
(void) fprintf (stderr,
"Usage: %s [-opr]l\n", argv[0]);
exit(2);

I
[

]
i

1;

)

Figure 2-1: Using Command Line Arguments to Set Flags

2-8 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

#include <stdio.h>

main(argc, argv)
int argce;
char *argvl[];
{
FILE *fopen(), *fin;
void perror(), exit();

if (argc > 1)
{
if ((fin = fopen(argv([l], "r")) == NULL)
{
/* First string (%s) is program name */
/* (argv[0]) , *x/

/* Second string (%s) is name of file */
/* that could not be opened (argv[1l]) */
(void) fprintf (stderr,

"%s: cannot open %s: ",
argv([0], argv[1]);
perror(™);
exit(2);

}

Figure 2-2: Using argv[n] Pointers to Pass a Filename

The shell, which makes arguments available to your program, considers an argument
to be any non-blank characters separated by blanks or tabs. Characters enclosed in
double quotes ("abc def") are passed to the program as one argument even if blanks
or tabs are among the characters. It goes without saying that you are responsible for
error checking and otherwise making sure the argument received is what your pro-
gram expects it to be.

A third argument is also present, in addition to arge and argv. The third argument,
known as envp, is an array of pointers to environment variables. You can find more
information on envp in the Programmer’s Reference Manual under exec(2) and
environ(5).

System Calls and Subroutines

System calls are requests from a program for an action to be performed by the UNIX
system kernel. Subroutines are precoded modules used to supplement the functional-
ity of a programming language.

PROGRAMMING BASICS 2-9

The UMIPS/Language Interface

Both system calls and subroutines look like functions such as those you might code
for the individual parts of your program. There are, however, differences between
them:

B At link edit time, the code for subroutines is copied into the object file for
your program; the code invoked by a system call remains in the kernel.

B At execution time, subroutine code is executed as if it was code you had writ-
ten yourself; a system function call is executed by switching from your process
area to the kernel.

This means that while subroutines make your executable object file larger, runtime
overhead for context switching may be less and execution may be faster.

Categories of System Calls and Subroutines
System calls divide fairly neatly into the following categories:

m file access

® file and directory manipulation
® process control
]

environment control and status informatioh

You can generally tell the category of a subroutine by the section of the Programmer’s -

Reference Manual in which you find its manual page. However, the first part of Sec-
tion 3 (3C and 3S) covers such a variety of subroutines it might be helpful to classify
them further. :

® The subroutines of sub-class 3S constitute the UNIX system/C Language stan-
dard 1/0, an efficient I/O buffering scheme for C.

® The subroutines of sub-class 3C do a variety of tasks. They have in common
the fact that their object code is stored in libc.a. They can be divided into the
following categories: '

O string manipulation

O character conversion

O character classification

O environment management

0 memory management
Figure 2-3 lists the functions that compose the standard I/O subfoutines. Frequently,
one manual page describes several related functions. In Figure 2-3 the left hand

column contains the name that appears at the top of the manual page; the other
names in the same row are related functions described on the same manual page.

2-10 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

Function Name(s) Purpose
fclose fllush close or flush a stream
ferror feof clearerr fileno | stream status inquiries
fopen freopen fdopen open a stream
fread fwrite binary input/output
fseek rewind ftell reposition a file pointer in a stream
getc getchar fgetc getw | get a character or word from a stream
gets fgets get a string from a stream
popen pclose begin or end a pipe to/from a process
printf fprintf sprintf ‘.print formatted éutput
putc putchar fputc pﬁtw put a character or word on a stream
puts fputs put a string on a stream
scanf fscanf sscanf convert formatted input
setbuf setvbuf assign buffering to a stream
%system issue a command through the shell
tmpfile create a temporary file
tmpnam tempnam create a name for a temporary file
ungetc push character back into input stream
vprintf viprintf vsprintf print formatted output of a varargs argument list

For all functions: #include <stdio.h>
The functions are described in the Programmer’s Reference Manual, Section 3.

Figure 2-3: C Language Standard I/O Subroutines

Figure 2-4 lists string handling functions that are grouped under the heading
string(3C) in the Programmer’s Reference Manual.

PROGRAMMING BASICS 2-11

The UMIPS/Language Interface

String Operations

strcat(sl, s2)
strncat(s1, s2, n)
stremp(s1, s2)
strncmp(sl, s2, n)

strepy(s1, s2)

strnepy(sl, s2, n)

strdup(s)
strchr(s, ¢)
strrchr(s, c)
strlen(s)

strpbrk(s1, s2)

strspn(sl, s2)
strespn(sl, s2)

strtok(s1, s2)

append a copy of s2 to the end of sl.
append n characters from s2 to the end of sl.

compare two strings. Returns an integer less than, greater
than or equal to 0 to show that sl is lexicographically less
than, greater than or equal to s2.

compare n characters from the two strings. Results are other-
wise identical to strcmp. '

copy s2 to sl, stopping after the null character (\0) has been
copied.

. copy n characters from s2 to s1. s2 will be truncated if it is

longer than n, or padded with null characters if it is.shorter
than n.

returns a pointer to a new string that is a duplicate of the
string pointed to by s. ‘

returns a pointer to the first occurrence of character ¢ in
string s, or a NULL pointer if c is not in s.

returns a pointer to the last occurrence of character c in string
s, or a NULL pointer if c is not in s.

returns the number of characters in s up to the first null char-
acter.

returns a pointer to the first occurrence in sl of any character
from s2, or a NULL pointer if no character from s2 occurs in
s1.

returns the length of the initial segment of s1, which consists
entirely of characters from s2.

returns the length of the initial segment of s1, which consists
entirely of characters not from s2.

look for occurrences of s2 within s1.

For all functions: #include <string.h>
string.h provides extern definitions of the string functions.

Figure 2-4: String Operations

2-12 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

Figure 2-5 lists macros that classify ASCII character-coded integer values. These
macros are described under the heading ctype(3C) in Section 3 of the Programmer’s
Reference Manual.

Classify Characters

isalpha(c) is ¢ a letter

isupper(c) is ¢ an upper-case letter

islower(c) is ¢ a lower-case letter

isdigit(c) is ¢ a digit [0-9]

isxdigit(c) | isca hexadecimal digit [0-9], [A-F] or [a-f]

isalnum(c) is ¢ an alphanumeric (letter or digit)

isspace(c) is ¢ a space, tab, carriage return, new-line, vertical tab or
form-feed

ispunct(c) is ¢ a punctuation character (neither control nor
alphanumeric)

isprint(c) is ¢ a printing character, code 040 (space) through 0176 (tilde)

isgraph(c) same as isprint except false for 040 (space)

isentrl(c) is ¢ a control character (less than 040) or a delete character
(0177)

isascii(c) is ¢ an ASCII character (code less than 0200)

For all functions: #include <ctype.h>
Nonzero return == true; zero return == false

Figure 2-5: Classifying ASCII Character-Coded Integer Values

Figure 2-6 lists functions and macros that are used to convert characters, integers, or
strings from one representation to another.

PROGRAMMING BASICS 2-13

The UMIPS/Language Interface

Function Name(s)

Purpose

a64l 164a convert between
long integer and
base-64 ASCII
string
ecvt fevt gevt | convert floating-
: point number to
string
13tol Itol3 convert between
- 3-byte integer
and long integer
strtod atof convert string to
double-precision
number
strtol atol atoi | convert string to
integer
conv(3C): Translate Characters
toupper lower-case to upper-case
_toupper | macro version of toupper
tolower upper-case to lower-case
_tolower macro version of tolower
toascii turn off all bits that are not part of a standard ASCII

character; intended for compatibility with other sys-
tems

For all conv(3C) macros: #include <ctype.h>

Figure 2-6: Conversion Functions and Macros

Where the Manual Pages Can Be Found
System calls are listed alphabetically in Section 2 of the Programmer’s Reference
Manual. Subroutines are listed in Section 3. We have described above what is in the
first subsection of Section 3. The remaining subsections of Section 3 are:

3M—functions that make up the Math Library, libm

2-14 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

m 3X—various specialized functions
® 3F—the FORTRAN intrinsic function library, libF77
B 3N—Networking Support Utilities

How System Calls and Subroutines Are Used in C Programs

Information about the proper way to use system calls and subroutines is given on the
manual page, but you have to know what you are looking for before it begins to make
sense. To illustrate, a typical manual page (for gets(3S)) is shown in Figure 2-7. -

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#includg <stdio.h>

char xgets (s)
char xs;

char xfgets (s, n, stream)
char xs;

int n;

FILE xstream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into
the array pointed to by s, until a new-line character is read or an
end-of-file condition is encountered. The new-line character is
discarded and the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to
by s, until n-1 characters are read, or a new-line character is read
and transferred to s, or an end-of-file condition is encountered.
The string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS :
If end-of-file is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned.
If a read error occurs, such as trying to use these functions on a
file that has not been opened for reading, a NULL pointer is
returned. Otherwise s is returned.

Figure 2-7: Manual Page for gets(3S)

As you can see from the illustration, two related functions are described on this page:
gets and fgets. Each function gets a string from a stream in a slightly different way.
The DESCRIPTION section tells how each operates. '

PROGRAMMING BASICS 2-15

The UMIPS/Language Interface

It is the SYNOPSIS section, however, that contains the critical information about
how the function (or macro) is used in your program. Notice in Figure 2-7 that the
first line in the SYNOPSIS is

#include <stdio.h>

This means that to use gets or fgets you must bring the standard I/O header file into
your program (generally right at the top of the file). There is something in stdio.h
that is needed when you use the described functions. Figure 2-9 shows a version of
stdio.h. Check it to see if you can understand what gets or fgets uses.

The next thing shown in the SYNOPSIS section of a system call or subroutine manual
page that documents system calls or subroutines is the formal declaration of the func-
tion. The formal declaration tells you:

B the type of object returned by the function

In our example, both gets and fgets return a character pointer.

® the object or objects the function expects to receive when called

These are the things enclosed in the parentheses of the function. gets expects
a character pointer. (The DESCRIPTION section sheds light on what the
tokens of the formal declaration stand for.)

B how the function is gbing to treat those objects
The declaration
char *s;

" in gets means that the token s enclosed in the parentheses will be considered
to be a pointer to a character string. Bear in mind that in the C language,
when passed as an argument, the name of an array is converted to a pointer to
the beginning of the array.

We have chosen a simple example here in gets. If you want to test yourself on some-

thing a little more complex, try working out the meaning of the elements of the fgets
declaration.

While we’re on the subject of fgets, there is another piece of C esoterica that we’ll
explain. Notice that the third parameter in the fgets declaration is referred to as
stream. A stream, in this context, is a file with its associated buffering. It is

declared to be a pointer to a defined type FILE. Where is FILE defined? Right! In
stdio.h. '

To finish off this discussion of the way you use functions described in the
Programmer’s Reference Manual in your own code, in Figure 2-8 we show a program
fragment in which gets is used.

2-16 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

#include <stdio.h>

maing()
{
char sarray[80];
for(;;)
{
if (gets(sarray) != NULL)

/* Do something with the string */

)

Figuré 2-8: How gets Is Used in a Program

You might ask, "Where is gets reading from?" The answer is, "From the standard
input." That generally means from something being keyed in from the terminal where
the command was entered to get the program running, or output from another com-
mand that was piped to gets. How do we know that? The DESCRIPTION section
of the gets manual page says, "gets reads characters from the standard input...."
Where is the standard input defined? In stdio.h.

PROGRAMMING BASICS 2-17

The UMIPS/Language Interface

#ifndef
#define

#define
#define

typedef
int

_NFILE
_NFILE 20

BUFSIZ 1024
_SBFSIZ 8

struct {
cnt;

unsigned char *_ptr;
unsigned char *_base;

char
char

}'FILE;

_flag;
_file;

#define _IOFBF 0000
/* _IOLBF means that a file’s output
/* will be buffered line by line,

#define
#define
#define
#define
#define
#define
#define
#define

_IOREAD 0001
_IOWRT 0002

_IONBF 0004
_IOMYBUF 0010
_IOEOF 0020
_IOERR 0040
_IOLBF 0100
_IORW 0200

*/
*/

/* In addition to being flags, _IONBF, */

#ifndef
#define
#endif

#ifndef
#define
#endif

#define
#define
#define

#define
#define

#ifndef

/* _IOLBF and IOFBF are possible */
/* values for "type"™ in setvbuf. *x/
NULL
NULL 0
EQF
EOF (-1)
stdin (&_iob[0])
stdout (&_iob[1])
stderr (&_iob[2])
_bufend(p) _bufendtab[(p)->_file]
_bufsiz(p) (_bufend(p) — (p)—>_base)
lint
getc(p) (—(p)->_cnt < 0 ? _filbuf(p) : (int) 2

#define

#define

*(p)—>_ptrt++)
putc(x, p) (—(p)—>_cnt < 0 ?

_flsbuf((unsigned char) (x), (p))
(int) (*(p)—>_ptr++ = (unsigned char)

#define
#define
#define
#define
#define
#define

getchar() getc(stdin)

putchar(x) putc((x), stdout)
clearerr(p) ((void) ((p)—>_flag &=
feof(p) ((p)->_flag & _TIOEOF)
ferror(p) ((p)->_flag & _IOERR)
fileno(p) (p)->_file

2-18 PROGRAMMER’S GUIDE

(x)))

(_IOERR | _IOEOF)))

The UMIPS/Language Interface

#endif

extern FILE _iob[_NFILE];

extern FILE *fopen(), *fdopen(), *freopen(), *popen(), *tmpfile();

extern long ftell();

extern void rewind(), setbuf();

extern char *ctermid(), *cuserid(), *fgets(), *gets(), \
*tempnam(), *tmpnam();

extern unsigned char *_bufendtabl[];

#define L_ctermid 9

#define L_cuserid 9

#define P_tmpdir "/usr/tmp/"

#define I_tmpnam (sizeof(P_tmpdir) + 15)
#endif

Figure 2-9: A Version of stdio.h

Header Files and Libraries

In the earlier parts of this chapter there have been frequent references to stdio.h, and
a version of the file itself is shown in Figure 2-9. stdio.h is the most commonly used
header file in the UNIX system/C environment, but there are many others.

Header files carry definitions and declarations that are used by more than one func- -
tion. Header filenames traditionally have the suffix .h, and are brought into a pro-
gram at compile time by the C-preprocessor. The preprocessor does this because it
interprets the #include statement in your program as a directive; as indeed it is. All
keywords preceded by a pound sign (#) at the beginning of the line, are treated as
preprocessor directives. The two most commonly used directives are #include and
#define. We have already seen that the #include directive is used to call in (and pro-
cess) the contents of the named file. The #define directive is used to replace a name
with a token-string. For example,

##define _NFILE 20

sets to 20 the number of files a program can have open at one time. See cpp(1) for
the complete list.

In the pages of the Programmer’s Reference Manual there are about 45 different .h
files named. The format of the #include statement for all these shows the file name
enclosed in angle brackets (<>), as in

#include <stdio.h>

The angle brackets tell the C preprocessor to look in the standard places for the file.
In most systems the standard place is in the /usr/include directory. If you have some
definitions or external declarations that you want to make available in several files,
you can create a .h file with any editor, store it in a convenient directory and make it
the subject of a #include statement such as the following:

#include "../defs/rec.h"

PROGRAMMING BASICS 2-19

The UMIPS/Language Interface

It is necessary, in this case, to provide the relative pathname of the file and enclose it
in quotation marks (""). Fully-qualified pathnames (those that begin with /) can
create portability and organizational problems. An alternative to long or fully-
qualified pathnames is to use the -Idir preprocessor option when you compile the pro-
gram. This option directs the preprocessor to search for #include files whose names
are enclosed in ", first in the directory of the file being compiled, then in the direc-
tories named in the -I option(s), and finally in directories on the standard list. In
addition, all #include files whose names are enclosed in angle brackets (< >) are first
searched for in the list of directories named in the -I option and finally in the direc-
tories on the standard list. :

Object File Libraries

It is common practice in UNIX system computers to keep modules of compiled code
(object files) in archives; by convention, designated by a .a suffix. System calls from
Section 2, and the subroutines in Section 3, subsections 3C and 3S, of the
Programmer’s Reference Manual that are functions (as distinct from macros) are kept
in an archive file by the name of libc.a. libc.a is found in the directory /usr/lib.
Many systems also have a directory /usr/lib. Where both /lib and /usr/lib- occur,
/usr/lib is apt to be used to hold archives that are related to specific applications.

During the link edit phase of the compilation and link edit process, copies of some of
the object modules in an archive file are loaded with your executable code. By
default the ec command that invokes the C compilation system causes the link editor
to search libc.a. If you need to point the link editor to other libraries that are not
searched by default, you do it by naming them explicitly on the command line with
the -1 option. The format of the -1 option is -Ix where x is the library name, and can
be up to nine characters. For example, if your program includes functions from the
curses screen control package, the option

-lcurses

will cause the link editor to search for /lib/libcurses.a or for /usr/lib/libcurses.a and
use the first one it finds to resolve references in your program.

In cases where you want to direct the order in which archive libraries are searched,
you may use the -L dir option. Assuming the -L option appears on the command line
ahead of the -l option, it directs the link editor to search the named directory for
libx.a before looking in /lib and /usr/lib. This is particularly useful if you are testing
out a new version of a function that already exists in an archive in a standard direc-
tory. Its success is due to the fact that once having resolved a reference the link edi-
tor stops looking. That’s why the -L option, if used, should appear on the command
line ahead of any -1 specification.

Input /Output

We talked some about I/QO earlier in this chapter in connection with system calls and
subroutines. A whole set of subroutines constitutes the C language standard I/O
package, and there are several system calls that deal with the same area. In this sec-
tion we want to get into the subject in a little more detail and describe for you how to
deal with input and output concerns in your C programs. First off, let’s briefly define
what the subject of I/O encompasses. It has to do with

2-20 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

B creating and sometimes removing files
® opening and closing files used by your program
® transferring information from a file to your program (reading)

® transferring information from your program to a file (writing)

In this section we will describe some of the subroutines you might choose for transfer-
ring information, but the heaviest emphasis will be on dealing with files.

Three Files You Always Have

Programs are permitted to have several files open simultaneously. The number may
vary. from system to system; the most common maximum is 20. _NFILE in stdio.h
specifies the number of standard I/O FILEs a program is permitted to have open.

Any program automatically starts off with three files. If you will look again at Figure
2-9, about midway through you will see that stdio.h contains three #define directives
that equate stdin, stdout, and stderr to the address of _iob[0], _iob[1], and _iob[2],
respectively. The array _iob holds information dealing with the way standard I/O
handles streams. It is a representation of the open file table in the control block for
your program. The position in the array is a digit that is also known as the file
descriptor. The default in UNIX systems is to associate all three of these files with
your terminal. - : '

The real significance is that functions and macros that deal wiih stdin or stdout can
be used in your program with no further need to open or close files. For example,
gets, cited above, reads a string from stdin; puts writes a null-terminated string to
stdout. There are others that do the same (in slightly different ways: character at a
time, formatted, etc.). You can specify that output be directed to stderr by using a
function such as fprintf. fprintf works the same as printf except that it delivers its
formatted output to a named stream, such as stderr. You can use the shell’s redirec-
tion feature on the command line to read from or write into a named file. If you want
to separate error messages from ordinary output being sent to stdout and thence pos-
sibly piped by the shell to a succeeding program, you can do it by using one function
to handle the ordinary output and a variation of the same function that names the
stream, to handle error messages.

Named Files

Any files other than stdin, stdout, and stderr that are to be used by your program
must be explicitly connected by you before the file can be read from or written to.
This can be done using the standard library routine fopen. fopen takes a pathname
(which is the name by which the file is known to the UNIX file system), asks the sys-
tem to keep track of the connection, and returns a pointer that you then use in func-
tions that do the reads and writes.

A structure is defined in stdio.h with a type of FILE. In your program you need to
have a declaration such as

FILE *fin;

The declaration says that fin is a pointer to a FILE. You can then assign the name of
a particular file to the pointer with a statement in your program like this:

"_.n

fin = fopen("filename", "r");

where filename is the pathname to open. The "r" means that the file is to be opened
for reading. This argument is known as the mode. As you might suspect, there are
modes for reading, writing, and both reading and writing. Actually, the file open

PROGRAMMING BASICS 2-21

The UMIPS/Language Interface

function is often included in an if statement such as:

if ((fin = fopen("file", "r")) == NULL)
(void)fprintf(stderr,"$s: Can’t open input file %s\n", \
argv[0],"file");

that takes advantage of the fact that fopen returns a NULL pointer if it can’t open the
file.

Once the file has been successfully opened, the pointer fin is used in functions (or
macros) to refer to the file. For example:

int ¢;
c = getc(fin);

brings in a character at a time from the file into an integer variable called ¢. The vari-
able ¢ is declared as an integer even though we are reading characters because the
function gete() returns an integer. Getting a character is often incorporated into
some flow-of-control mechanism such as:

while ((c = getc(fin)) != EOF)

that reads through the file until EOF is returned. EOF, NULL, and the macro getc
are all defined in stdio.h. getc and others that make up the standard I/O package
keep advancing a pointer through the buffer associated with the file; the UNIX system
and the standard 1/O subroutines are responsible for seeing that the buffer is refilled
(or written to the output file if you are producing output) when the pointer reaches
the end of the buffer. All these mechanics are mercifully invisible to the program and
the programmer.

The function fclose is used to break the connection between the pointer in your pro-
gram and the pathname. The pointer may then be associated with another file by
another call to fopen. This re-use of a file descriptor for a different stream may be
necessary if your program has many files to open. For output files it is good to issue
an fclose call because the call makes sure that all output has been sent from the out-
put buffer before disconnecting the file. The system call exit closes all open files for
you. It also gets you completely out of your process, however, so it is safe to use
only when you are sure you are completely finished.

L.ow-level I/0 and Why You Shouldn’t Use It

The term low-level 1/0 is used to refer to the process of using system calls from Sec-
tion 2 of the Programmer’s Reference Manual rather than the functions and subrou-
tines of the standard 1I/0 package. We are going to postpone until Chapter 3 any dis-
cussion of when this might be advantageous. If you find as you go through the infor-
mation in this chapter that it is a good fit with the objectives you have as a program-
mer, it is a safe assumption that you can work with C language programs in the UNIX
system for a good many years without ever having a real need to use system calls to
handle your I/O and file accessing problems. The reason low-level I/O is perilous is
because it is more system-dependent. Your programs are less portable and probably
no more efficient.

2-22 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

System Calls for Environment or Status Information

Under some circumstances you might want to be able to monitor or control the
environment in your computer. There are system calls that can be used for this pur-
pose. Some of them are shown in Figure 2-10.

Function Name(s) Purpose
chdir change working directory
chmod change access permission of a file
chown | change owner and group of a file
getpid getpgrp getppid get process IDs
getuid geteuid getgid get user IDs
ioctl control device
link unlink add or remove a directory entry
mount umount mount or unmount a file system
nice : change priority of a process
stat fstat get file status
time get time
ulimit get and set user limits
uname get name of current UNIX system

Figure 2-10: Environment and Status System Calls

As you can see, many of the functions shown in Figure 2-10 have equivalent UNIX
system shell commands. Shell commands can easily be incorporated into shell scripts
to accomplish the monitoring and control tasks you may need to do. The functions
are available, however, and may be used in C programs as part of the UNIX
system/C Language interface. They are documented in Section 2 of the Programmers’
Reference Manual.

PROGRAMMING BASICS 2-23

The UMIPS/Language Interface

Processes

Whenever you execute a command in the UNIX system you are initiating a process
that is numbered and tracked by the operating system. A flexible feature of the
UNIX system is that processes can be generated by other processes. This happens
more than you might ever be aware of. For example, when you log in to your system
you are running a process, very probably the shell. If you then use an editor such as
vi, take the option of invoking the shell from vi, and execute the ps command, you
will see a display something like that in Figure 2-11 (which shows the results of a ps -f
command): '

UID PID PPID C STIME TTY TIME COMMAND
abc 24210 1 0 06:13:14 tty29 0:05 —sh

abc 24631 24210 O 06:59:07 tty29 0:13 vi c2.uli
abc 28441 28358 80 09:17:22 tty29 0:01 ps —-f

abc 28358 24631 2 09:15:14 tty29 0:01 sh -i

Figure 2-11: Process Status

As you can see, user abc (who went through the steps described above) now ‘has four-
processes active. It is an interesting exercise to trace the chain that is shown in the
Process ID (PID) and Parent Process ID (PPID) columns. The shell that was started
when user abc logged on is Process 24210; its parent is the initialization process (Pro-
cess ID 1). Process 24210 is the parent of Process 24631, and so on.

The four processes in the example above are all UNIX system shell level commands,
but you can spawn new processes from your own program. (Actually, when you issue
the command from your terminal to execute a program you are asking the shell to
start another process, the process being your executable object module with all the
functions and subroutines that were made a part of it by the link editor.)

You might think, "Well, it’s one thing to switch from one program to another when
I’m at my terminal working interactively with the computer; but why would a program
want to run other programs, and if one does, why wouldn’t I just put everything
together into one big executable module?"

Overlooking the case where your program is itself an interactive application with
diverse choices for the user, your program may need to run one or more other pro-
grams based on conditions it encounters in its own processing. (If it’s the end of the
month, go do a trial balance, for example.) The usual reasons why it might not be
practical to create one monster executable are:

® The load module may get too big to fit in the maximum process size for your
system.

® You may not have control over the object code of all the other modules you
want to include.

Suffice it to say, there are legitimate reasons why this creation of new processes might
need to be done. There are three ways to do it:

B system(3S)—request the shell to execute a command

2-24 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

® exec(2)—stop this process and start another

B fork(2)—start an additional copy of this process

system(3S)
The formal declaration of the system function looks like this:

#include <stdio.h>

int system(string)
char sstring;

The function asks the shell to treat the string as a command line. The string can
therefore be the name and arguments of any executable program or UNIX system
shell command. If the exact arguments vary from one execution to the next, you may
want to use sprintf to format the string before issuing the system command. When
the command has finished running, system returns the shell exit status to your pro-
gram. Execution of your program waits for the completion of the command initiated
by system and then picks up again at the next executable statement.

exec(2)

exec is the name of a family of functions that includes execy, execle, execve, execlp,
and execvp. They all have the function of transforming the calling process into a new
process. The reason for the variety is to provide different ways ‘of pulling together
and presenting the arguments of the function. An example of one version (execl)
might be:

execl("/bin/prog2", "prog", progargl, progarg2, (char %)0);
For execl the argument list is

/bin/prog2 path name of the new process file
prog the name the new process gets in its argv[0]

progargl, arguments to prog2 as char «’s
progarg2

(char)0 a null char pointer to mark the end of the arguments

Check the manual page in the Programmer’s Reference Manual for the rest of the
details. The key point of the exec family is that there is no return from a successful
execution: the calling process is finished, the new process overlays the old. The new
process also takes over the Process ID and other attributes of the old process. If the
call to exec is unsuccessful, control is returned to your program with a return value of
-1. You can check errno (see below) to learn why it failed. '

fork(2)

The fork system call creates a new process that is an exact copy of the calling pro-
cess. The new process is known as the child process; the caller is known as the
parent process. The one major difference between the two processes is that the child
gets its own unique process ID. When the fork process has completed successfully, it
returns a 0 to the child process and the child’s process ID to the parent. If the idea
of having two identical processes seems a little funny, consider this:

PROGRAMMING BASICS 2-25

The UMIPS/Language Interface

m Because the return value is different between the child process and the parent,
the program can contain the logic to determine different paths.

m The child process could say, "Okay, I'm the child. I’'m supposed to issue an
exec for an entirely different program.”

®m The parent process could say, "My child is going to be execing a new process.
I’ll issue a wait until I get word that that process is finished."

To take this out of the storybook world where programs talk like people and into the
world of C programming (where people talk like programs), your code might include
statements like this: '

#include <errno.h?

int ch_stat, ch_pid, status;
char *progargl;

char *progarg2;

void exit();

extern int errno;

if ((ch_pid = fork()) < 0)

{

/* Could not fork...
check errno
*/

} .

else if (ch_pid == 0) /* child */

{
(void)execl("/bin/prog2","prog"”, progargl, progarg2, (char *)0);
exit(2); /* execl() failed */ ‘

]

else /* parent */

{
while ((status = wait(&ch_stat)) != ch_pid)
{

if (status < 0 && errno == ECHILD)
break;
errno = 0;
]
]

Figure 2-12: Example of fork

Because the child process ID is taken over by the new exec’d process, the parent
knows the ID. What this boils down to is a way of leaving one program to run
another, returning to the point in the first program where processing left off. This is
exactly what the system(3S) function does. As a matter of fact, system accomplishes
it through this same procedure of forking and execing, with a wait in the parent.

2-26 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

Keep in mind that the fragment of code above includes a minimum amount of check-
ing for error conditions. There is also potential confusion about open files and which
program is writing to a file. Leaving out the possibility of named files, the new pro-
cess created by the fork or exec has the three standard files that are automatically
opened: stdin, stdout, and stderr. If the parent has buffered output that should
appear before output from the child, the buffers must be flushed before the fork.
Also, if the parent and the child process both read input from a stream, whatever is
read by one process will be lost to the other. That is, once something has been
delivered from the input buffer to a process the pointer has moved on.

Pipes

The idea of using pipes, a connection between the output of one process and the
input of another, when working with commands executed by the shell is well esta-
blished in the UNIX system environment. For example, to learn the number of
archive files in your system you might enter a command like:

echo /lib/*.a /usr/lib/*.a | we -w

that first echoes all the files in /lib and /usr/lib that end in .a, then pipes the results
to the we command, which counts their number.

A feature of the UNIX system/C Language interface is the ability to establish pipe
connections between your process and a command to be executed by the shell, or
between two cooperating processes. The first uses the popen(3S) subroutine that is
part of the standard I/0O package; the second requires the system call pipe(2).

popen is similar in concept to the system subroutine in that it causes the shell to exe-
cute a command. The difference is that once having invoked popen from your pro-
gram, you have established an open line to a concurrently running process through a
stream. You can send characters or strings to this stream with standard I/O. subrou-
tines just as you would to stdout or to a named file. The connection remains open
until your program invokes the companion pclose subroutine. A common application
of this technique might be a pipe to a printer spooler. For example:

PROGRAMMING BASICS 2-27

The UMIPS/Language Interface

#include <stdio.h>

main()
{
FILE *pptr;
char *outstring;
if ((pptr = popen("lp","w")) != NULL)
{
for(;;)
{
/* Organize output */

(void) fprintf(pptr, "$s\n", outstring);

pclose(pptr);
}

}

Figure 2-13: Example of a popen pipe

Error Handling

Within your C programs you must determine the appropriate level of checking for
valid data and for acceptable return codes from functions and subroutines. If you use
any of the system calls described in Section 2 of the Programmer’s Reference Manual,
you have a way in which you can find out the probable cause of a bad return value.

UNIX system calls that are not able to complete successfully almost always return a
value of -1 to your program. (If you look through the system calls in Section 2, you
will see that there are a few calls for which no return value is defined, but they are the
exceptions.) In addition to the -1 that is returned to the program, the unsuccessful
system call places an integer in an externally declared variable, errno. You can deter-
mine the value in errno if your program contains the statement

#include <errno.h>
The value in errno is not cleared on successful calls, so your program should check it

only if the system call returned a -1. The errors are described in intro(2) of the
Programmer’s Reference Manual.

2-28 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

The subroutine perror(3C) can be used to print an error message (on stderr) based
on the value of errno.

Signals and Interrupts

Signals and interrupts are two words for the same thing. Both words refer to mes-
sages passed by the UNIX system to running processes. Generally, the effect is to
cause the process to stop running. Some signals are generated if the process attempts
to do something illegal; others can be initiated by a user against his or her own
processes, or by the super-user against any process.

There is a system call, kill, that you can include in your program to send signals to
other processes running under your user-id. The format for the kill call is:

kill(pid, sig)

where pid is the process number against which the call is directed, and sig is an
integer from 1 to 19 that shows the intent of the message. The name "kill" is some-
thing of an overstatement; not all the messages have a "drop dead" meaning. Some of
the available signals are shown in Figure 2-14 as they are defined in <sys/signal.h>.

PROGRAMMING BASICS 2-29

The UMIPS/Language Interface

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGABRT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGCLD
SIGPWR

/*#define SIGWIND
/*#define SIGPHONE

#define SIGPOLL 22

#define

NSIG

#define MAXSIG

23
32

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

hangup */

interrupt (rubout) */

quit (ASCII FS) */

illegal instruction (not reset when caught)*/
trace trap (not reset when caught) */

IOT instruction */

used by abort, replace SIGIOT in the future */
EMT instruction */

floating point exception */

kill (cannot be caught or ignored) */

bus error */

segmentation violation */

bad argument to system call */

write on a pipe with no one to read it */
alarm clock */

software termination signal from kill */

user defined signal 1 */

user defined signal 2 */
death of a child */
power—fail restart */

SIGWIND and SIGPHONE only used in UNIX/PC #/

20/* window change */
21/* handset, line status change */

/*

/*
/*
/*
/*
/'k

‘pollable event occurred */

The valid signal number is from 1 to NSIG-1 */
size of u_signal[], NSIG-1 <{= MAXSIG*/

MAXSIG is larger than we need now. */

In the future, we can add more signal */
number without changing user.h */

Figure 2-14: Signal Numbers Defined in /usr/include/sys/signal.h

The signal(2) system call is designed to let you code methods of dealing with incom-

ing signals.

You have a three-way choice. You can (a) accept whatever the default

action is for the signal, (b) have your program ignore the signal, or (c) write a func-
tion of your own to deal with it.

2-30 PROGRAMMER’S GUIDE

Analysis /Debugging

The UNIX system provides several commands designed to help you discover the
causes of problems in programs and to learn about potential problems.

Sample Program

To illustrate how these commands are used and the type of output they produce, we
have constructed a sample program that opens and reads an input file and performs
one to three subroutines according to options specified on the command line. This
program does not do anything you couldn’t do quite easily on your pocket calculator,
but it does serve to illustrate some points. The source code is shown in Figure 2-15.
The header file, recdef.h, is shown at the end of the source code.

The output produced by the various analysis and debugging tools illustrated in this
section may vary slightly from one installation to another. The Programmer’s Refer-
ence Manual is a good source of additional information about the contents of the
reports.

PROGRAMMING BASICS 2-31

Analysis/Debugging

/* Main module —- restate.c */

#include <stdio.h>
#include "recdef.h"

#define TRUE 1
#define FALSE O

main(argc, argv)
int argc;
char *argv([];

{

FILE *fopen(), *fin;
void exit();

int getopt():

int oflag = FALSE;

int pflag = FALSE;
int rflag = FALSE;
int ch;

struct rec first;
extern int opterr; o
extern float oppty(), pft(), rfe();

if (argc < 2)
{
(void) fprintf(stderr, "%s: Must specify \
option\n",argv[0]);
(void) fprintf(stderr, "Usage: %s —rpo\n", argv[0]);
exit(2); ' -
)

opterr = FALSE;
while ((ch = getopt(argc,argv,"opr")) != EOF)
{
switch(ch)
{
case 'o’:
oflag
break;
case 'p’:
pflag
break;
case 'r’:
rflag
break;
default:

TRUE;

TRUE;

TRUE;

(void) fprintf(stderr, "Usage: %s -rpo\n",argv[0]);

exit(2);
}
)
if ((fin = fopen("info","r")) == NULL)
{
(void) fprintf(stderr, "$%s: cannot open input file \
$s\n",argv[0] ,"info");

2-32 PROGRAMMER’S GUIDE

Analysis/Debugging

exit(2);
}

if (fscanf(fin, "$s%f%f3f3f%£%f",first.pname,sfirst.ppx,
sfirst.dp,&first.i, sfirst.c,&first.t,sfirst.spx) != 7)
{
(void) fprintf(stderr,"$s: cannot read first record \
from %s\n",
argv([0],"info");
exit(2);
) .

printf("Property: %s\n",first.pname);

if(oflagqg)
printf(" Opportunity Cost: $%#5.2f\n", oppty(&first));

if(pflag)
printf(" Anticipated Profit(loss): $%#7.2f\n", \
pft(s&first));

if(rflagqg))
printf(" Return on Funds Employed: %#3.2f%%\n", \
rfe(s&first));

-

/* End of Main Module —— restate.c */
/* Oppbrtunity Cost —— oppty.c */
#include "recdef.h"

float

oppty(ps)
struct rec *ps;
{
return(ps—>i/12 * ps—>t * ps->dp);
}
/* Profit —— pft.c */

#include "recdef.h"

float
pft(ps)
struct rec *ps;
{
return(ps—>spx — ps—>ppx + ps—>c);
)

/* Return on Funds Employed -- rfe.c */
#include "recdef.h"
float

rfe(ps)
struct rec *ps;

PROGRAMMING BASICS 2-33

Analysis /Debugging

{
return(1l00 * (ps—>spx — ps—»>c) / ps—’rspXx);
)

/* Header File —-— recdef.h */

struct rec { /* To hold input */
char pname[25];
float ppx;
float dp;
float 1i;
float c;
float t;
float spx;
} o

Figure 2-15: Source Code for Sample Program

cflow

cflow produces a chart of the external references in C, yacc, lex, and assembly
language files. Using the modules of our sample program, the command

cflow restate.c oppty.c pft.c rfe.c
produces the output shown in Figure 2-16. »

main: int(), <restate.c 115

fprintf: <>
exit: <
getopt: <>
fopen: <
fscanf: <>
printf: <
oppty: float(), <oppty.c 7>
pft: float(), <pft.c 7>

0 rfe: float(), <rfe.c 8>

=

R oo doul s Wi

Figure 2-16: cflow Output, No Options

2-34 PROGRAMMER’S GUIDE

Analysis /Debugging

The -r option looks at the caller:callee relationship from the other side. It produces

the output shown in Figure 2-17.

1 exit: <>

2 main : <>
3 fopen: <>
4 main : 2
5 fprintf: <>
6 main : 2
7 fscanf: <>
8 main : 2
9 getopt: <
10 main : 2

11 main: int(), <restate.c.11>
12 oppty: float(), <oppty.c 7>

13- main : 2

14 pft: float(), <pft.c 7>

15 main : 2

16 printf: <>

17 main : 2

18 rfe: float(), <rfe.c 8>.
19 main : 2 -

Figure 2-17: cflow Output, Using -r Option

The -ix option causes external and static data symbols to be included. Our sample
program has only one such symbol, opterr. The output is shown in Figure 2-18.

main: int(), <{restate.c 11>

1

2 fprintf: <>
3 exit: <>

4 opterr: <>
5 getopt: <>
6 fopen: <>

7 fscanf: <>
8 printf: <
9

1

oppty: float(), <oppty.c 7>

0 pft: float(), <pft.c 7>
11 rfe: float(), <rfe.c 8>

Figure 2-18: cflow Output, Using -ix Option

PROGRAMMING BASICS 2-35

Analysis /Debugging

Combining the -r and the -ix options produces the output shown in Figure 2-19.

1 exit: <

2 main : <>
3 fopen: <>
4 main : 2
5 fprintf: <>
6 main : 2
7 fscanf: <>
8 main : 2
9 getopt: <>
10 main : 2

11 main: int(), <restate.c 11>
12 oppty: float(), <oppty.c 7>

13 main : 2

14 opterr: <>

15 main : 2

16 pft: float(), - <pft.c 7>
17 main : 2 :

18 printf: <>

19 main : 2

20 rfe: float(), <rfe.c 8>
21 main : 2

Figure 2-19: eflow Output, Using -r and -ix Options

ctrace

ctrace lets you follow the execution of a C program statement by statement. ctrace
takes a .c file as input and inserts statements in the source code to print out variables
as each program statement is executed. You must direct the output of this process to
a temporary .c file. The temporary file is then used as input to ce. When the result-
ing a.out file is executed it produces output that can tell you a lot about what is going
on in your program.

Options give you the ability to limit the number of times through loops. You can also
include functions in your source file that turn the trace off and on so you can limit the
output to portions of the program that are of particular interest.

ctrace accepts only one source code file as input. To use our sample program to illus-
trate, it is necessary to execute the following four commands:

ctrace restate.c > ct.main.c
ctrace oppty.c > ct.op.c
ctrace pft.c > ct.p.c

ctrace rfe.c > ct.r.c

The names of the output files are completely arbitrary. Use any names that are con-
venient for you. The names must end in .c, since the files are used as input to the C
compilation system.

cc -0 ct.run ct.main.c ct.op.c ct.p.c ct.r.c

Now the command

2-36 PROGRAMMER’S GUIDE

Analysis /Debugging

ct.run -opr

produces the output shown in Figure 2-20. The command above will cause the output
to be directed to your terminal (stdout). It is probably a good idea to direct it to a
file or to a printer so you can refer to it.

PROGRAMMING BASICS 2-37

Analysis /Debugging

8 main(argc, argv)

23 if (argc < 2)
/* argc == 2 */

30 opterr = FALSE;

/* FALSE == 0 */
/* opterr == 0 */
31 while ((ch = getopt(argc,argv,”opr")) != EOF)

/* argc == 2 */ _
/* argv == 15729316 */
/* ch == 111 or ‘o’ or "t" */

32 {
33 switch(ch)
/* ch == 111 or ‘o’ or "t" */

35 case 'o’:
36 oflag = TRUE;

/* TRUE == 1 or "h" */

/* oflag == 1 or "h" */
37 break;
48 }
31 while ((ch = getopt(argc,argv,”opxr")) != EOF)

/* argc == 2 */)
/* argv == 15729316 */
/* ch == 112 or 'p’ */

32 {
33 switch(ch)
/* ch == 112 or ’'p’ */

38 case 'p’:
39 pflag = TRUE;

/* TRUE == 1 or "h" */

/* pflag == 1 or "h" */
40 break;
48 }
31 while ((ch = getopt(argc,argv,”opr")) != EOF)

/* argec == 2*/
/* argv == 15729316 */
/* ch == 114 or 'x’ */

32 {
33 switch(ch)
/* ch == 114 or 'r’ */

41 case 'r’:
42 rflag = TRUE;

/* TRUE == 1 or "h" */

/* rflag == 1 or "h" */
43 . break;
48 }
31 while ((ch = getopt(argc,argv,”opxr")) != EOF)

/* argc == 2 */
/* argv == 15729316 */
/* ch == -1 %/
49 if ((fin = fopen("info","r")) == NULL)
/* fin == 140200 */
54 if (fscanf(fin, "$s%f%f%f%£%£f%f",first.pname,sfirst.ppx,
&first.dp,sfirst.i, sfirst.c,&first.t,sfirst.spx) = 7)
/* fin == 140200 */

2-38 PROGRAMMER’S GUIDE

Analysis/Debugging

/% first.pname == 15729528 */
61 printf("Property: %s0,first.pname);
/* first.pname == 15729528 or "Linden Place" */ \

Property: Linden_Place

63 if(oflag)
/* oflag == 1 or "h" */

64 - printf(" Opportunity Cost: $%#5.2f0,o0oppty(&first));
5 oppty(ps) : ‘
8 return(ps—>i/12 * ps—->t * ps—>dp);

/* ps—>i == 1069044203 */

/* ps—>t == 1076494336 */

/* ps—>dp == 1088765312 */ Opportunity Cost: \
$4476.87

66 if(pflag) :
/* pflag == 1 or "h" */
67 printf(" Anticipated Profit(loss): $%#7.2f0, \
pft(sfirst));

(5]

pft(ps)
return(ps—>spx — ps—?ppx + ps—>c);
/* ps—>spx == 1091649040 */
/* ps—>ppx == 1091178464 */
/* ©5-rc == 1087409536 */ Anticipated Profit(loss): \
$85950,00

(o]

69 if(rflagqg)
/* rflag == 1 or "h" */
70 printf(" Return on Funds Employed: %#3.2f%%0, \
rfe(sfirst));
6 rfe(ps)
9 return(100 * (ps—>spx — ps—>c) / ps—>spXx);
/* ps—>spx == 1091649040 */
/* ps—>c == 1087409536 */ Return on Funds Employed: \
94.00%

/* return */

Figure 2-20: ctrace Output

Using a program that runs successfully is not the optimal way to demonstrate ctrace.
It would be more helpful to have an error in the operation that could be detected by
ctrace. It would seem that this utility might be most useful in cases where the pro-
gram runs to completion, but the output is not as expected.

PROGRAMMING BASICS 2-39

Analysis /Debugging

cxref

cxref analyzes a group of C source code files and builds a cross-reference table of the
automatic, static, and global symbols in each file.

The command
$cxref -¢ -0 cx.op restate.c oppty.c bft.c rfe.c

produces the output shown in Figure 2-21 in a file named, in this case, cx.op. The -¢

option causes the reports for the four .c files to be combined in one cross-reference
file.

restate.c:

oppty.c:

pft.c:

rfe.c:

SYMBOL FILE FUNCTION LINE -

BUFSIZ /usr/include/stdio.h - *9

EOF /usr/include/stdio.h - 49 *50
restate.c - 31

FALSE restate.c - *6 15 16 17 30

FILE /usr/include/stdio.h - *29 73 74
restate.c main 12

L ctermid /usr/include/stdio.h - *80

L_cuserid /usr/include/stdio.h - *81

L_tmpnam /usr/include/stdio.h - *83

NULL /usr/include/stdio.h - 46 *47
restate.c - 49

P_tmpdir /usr/include/stdio.h - *82

TRUE restate.c -= *5 36 39 42

_IOEOF /usr/include/stdio.h - *41

_IOERR /usr/include/stdio.h - *x42

_IOFBF /usr/include/stdio.h - *36

_IOLBF /usr/include/stdio.h - *43

_IOMYBUF /usr/include/stdio.h - *40

_IONBF /usr/include/stdio.h - *39

_IOREAD /usr/include/stdio.h - *37

_IORW /usr/include/stdio.h —— *44

_IOWRT /usr/include/stdio.h - *38

_NFILE /usr/include/stdio.h - 2 *3 73

_SBFSIZ /usr/include/stdio.h - *16

Figure 2-21: cxref Output, Using -¢ Option (sheet 1 of 4)

2-40 PROGRAMMER'’S GUIDE

SYMBOL

_base
_bufend()

_bufendtab
_bufsiz()

_cnt

_file

_flag
iob

_ptr
argc

argv

C

ch
clearerr()

ctermid()
cuserid()

dp

exit()
fdopen()
feof()
ferror()
fgets()
fileno()

fin
first

Figure 2-21: cxref Output, Using -¢ Option (sheet 2 of 4)

FILE

/usr/include/stdio.

/usr/include/stdio.
/usr/include/stdio.

/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.

restate.c

/usr/include/stdio.

restate.c
restate.c
restate.c
restate.c
./recdef.h
pft.c
restate.c
rfe.c
restate.c

/usr/include/stdio.
/usr/include/stdio.

/usr/include/stdio.

./recdef.h

oppty.c
restate.c

restate.c

/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.

/usr/include/stdio.

restate.c
restate.c

==

=2 -2~ =g =

=3

Analysis /Debugging

FUNCTION LINE

main
main

*26

*57
*78

*58

*20

*28

*27

*73

25 26 45 51 57
*21

8

*9 23 31

8 o

*10 25 26 31 45 51 57
*6

8

55

9

- *18 31 33

*67

*77

*77

*4

8

55

*13 27 46 52 58
*74

*68

*69

*71

*70

*12 49 54
*19 54 55 61 64 67 70

PROGRAMMING BASICS

2-41

Analysis/Debugging

SYMBOL
fopen()
fprintf
freopen()

fscanf
ftell()

getc()
getchar()
getopt()

gets()

lint
main()

oflag
oppty()

opterr
P

pdpll
pflag
pft()
pname
popen()

pPpx

Figure 2-21: cxref Output, Using -c¢ Option (sheet 3 of 4)

FILE

/usr/include/stdio.

restate.c
restate.c

/usr/include/stdio.

restate.c

/usr/include/stdio.
/usr/include/stdio.

/usr/include/stdio.

restate.c

/usr/include/stdio.

./recdef.h

oppty.c
restate.c

/usr/include/stdio.

restate.c
restate.c

oppty.c
restate.c
restate.c

/usr/include/stdio.

/usr/include/stdio.
restate.c

pft.c
restate.c
./recdef.h
restate.c

‘/uSr/include/stdio.

./recdef.h
pft.c
restate.c

FUNCTION LINE

pft
main

*74
12 49
25 26 45 51 57

*74
54

*75

*61

*65

*14 31

*77
*5
8
55
60

*8
*15 36 63

*5

*21 64

*20 30

*57 *58 *61 62 *62
63 64 67 *67 68
*68 69 *69 70 *70
11

*16 39 66

*5
*21 67
*2

54 61

*74
*3

54

2-42 PROGRAMMER’S GUIDE

SYMBOL

printf
ps

putc()
putchar()

rec

reWind()
rfe()
rflag
setbuf ()

Spx

stderr

stdin
stdout

tempnam()
tmpfile()
tmpnam(.)

u37o
u3b
u3b5
vax
X

FILE

restate.c
oppty.c
oppty.c
pft.c
pft.c
rfe.c
rfe.c

/usr/include/stdio.

/usr/include/stdio.

./recdef.h

oppty.c
pft.c

restate.c

rfe.c

/usr/include/stdio.

restate.c
rfe.c
restate.c

/usr/include/stdio.

./recdef.h
pft.c
restate.c
rfe.c

/usr/include/stdio.

restate.c

/usr/include/stdio.
/usr/include/stdio.

./recdef.h

oppty.c
restate.c

/usr/include/stdio.
/usr/include/stdio.

/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.

=

=S B N -2 - N -

Analysis/Debugging

FUNCTION LINE

main 61 64 67 70
- 5

oppty *6 8

- 5

pft *6 8

rfe *7 9

- *62

- *66
—— *1

main 19

- *76

main *21 70,'
—_ *6
main *17 42 69

- *76
P *g

main 55

- *55

- 25 26 45 51 57
- *53

- *54

J— *7

main 55
- *77

- *74

- 8 19
- 8 19
- 8 19

- *62 63 64 66 *66

Figure 2-21: cxref Output, Using -¢ Option (sheet 4 of 4)

PROGRAMMING BASICS 2-43

Analysis /Debugging

lint

lint looks for features in a C program that are apt to cause execution errors, that are
wasteful of resources, or that create problems of portability.

The command
lint restate.c oppty.c pft.c rfe.c
produces the output shown in Figure 2-22.

restate.c:

restate.c

(71) warning: main() returns random value to invocation environment

oppty.c:
pft.c:
rfe.c:

function returns value which‘is always ignored
printf '

Figure 2-22: lint Output

lint has options that will produce additional information. Check the User’s Reference
Manual. The error messages give you the line numbers of some items you may want
to review.

pixie, pixstats, and prof

The pixie(1), pixstats(1) and prof(1) utilities can be used to examine characteristics of
programs. These utilities are introduced here and described in detail in the Language
Programmer’s Guide.

The pixie Utility

pixie reads an executable program, partltlons it into basic blocks, and writes an
equivalent program containing additional code that counts the execution of each basic
block. (A basic block is a region of the program that can be entered only at the
beginning and exited only at the end). pixie also generates a ﬁle containing the
address of each of the basic blocks. For example:

$ cc -0 wC wec.c
$ 1ls we*

wcC wC.cC

In this example, we generate an executable wc(1) from
the source code and then run pixie on it:

$ pixie wc

2-44 PROGRAMMER'’S GUIDE

Analysis/Debugging

pixie registers: r31, r30, and r22.

0ld code = 15008 bytes, new code = 45036 bytes (3.0x)
$ 1s wc*

wc wc.Addrs wc.c wc.pixie

@

The pixstats Utility

pixstats(1) and prof(1) can analyze the files produced by pixie and produce a listing
of profiling data. pixstats analyzes a program’s execution characteristics. First use
pixie to "translate and instrument” the executable object module for the program, as
was done above to create we.pixie. Next, execute the translation on an appropriate
input. This produces a .Counts file:

$ we.pixie wec.c
126 319 2180 we.c

Here we use wc.pixie as if it was the standard wc program,
getting a wordcount of wc.c and also creating the .Counts file:

$ 1ls wc*
wc we.Addrs wc.Counts wc.c wc.pixie

Now, use pixstats to generate a detailed report on opcode frequencies, interlocks, a
mini-profile, and more:

$ pixstats wc
pixstats wc:
42450 (1.008) cycles (0.0034s @ 12.5MHz)
42094 (1.000) instructions ‘
12399 (0.295) basic blocks
187 (0.004) calls
6134 (0.146) loads
2925 (0.069) stores
9059 (0.215) loadst+stores
9059 (0.215) data bus use
2661 (0.063) partial word references
10885 (0.259) branches
5094 (0.121) nops
0 (0.000) load interlock cycles
356 (0.008) multiply/divide interlock cycles \
(12/35 cycles)
(0.000) flops (0 mflop/s @ 12.5MHz)
(0.000) floating point data interlock cycles
(0.000) floating point add unit interlock cycles
(0.000) floating point multiply unit \
interlock cycles
(0.000) floating point divide unit interlock cycles
0 (0.000) other floating point interlock cycles
0 (0.000) 1 cycle interlocks (2 cycle stalls —— \
not counted in total)
0 (0.000) overlapped floating point cycles
88 (0.002) interlock cycles due to basic block boundary

o O O O

(=}

0.326 load nops per load

PROGRAMMING BASICS 2-45

Analysis /Debugging

0.323 stores per memory reference
0.294 partial word references per reference

3.4 instructions per basic block

3.9 instructions per branch

0.273 backward branches per branch
0.277 branch nops per branch
227 cycles per call

225 instructions per call

Additional information in the listing includes:

Register saves/restore

Instruction concentration

opcode distribution
Register usage

The prof Utility

prof produces a report on the amount of execution time spent in various portions of
your program and the number of times each function is called. For example:

$ prof wc

Profile listing generated Fri Jul 22 16:20:22 1988 with:

prof wc

—plrocedures] using basic—block counts;

cycles executed in each

*
* sorted in descending order by the number of
*
*

procedure; unexecuted procedures are excluded

* ¥ ¥ X

42094

cycles %cycles

33923
2286
1365
1161
1128

713
347
240
162
96
83
66

2-46

cycles

cum % cycles bytes

/call /line

23
455
43
282
713
87
48
162
24
42

80.59. 80.59 33923
5.43 86.02
3.24 89.26
2,76 92.02
2.68 94.70
1.69 96.39
0.82 97.22
0.57 97.79
0.38 98.17
0.23 98.40
0.20 98.60
0.16 98.76

PROGRAMMER’S GUIDE

66

16
12

5
29
18
20
24
19
11
18
23
16

procedure (file)

main (wc.c)

fclose (flsbuf.c)
memcpy (memcpy.s)
_flsbuf (flsbuf.c)
_doprnt (doprnt.c)
_cleanup (flsbuf.c)
fread (fread.c)
_filbuf (filbuf.c)
malloc (malloc.c)
printf (printf.c)
_findbuf (flsbuf.c)
wcp (wc.c)

Analysis /Debugging

65 0.15 98.91 65 18 _endopen (fopen.c)
64 0.15 99.06 22 27 fflush (flsbuf.c)
47 0.11 99.17 47 33 _xflsbuf (flsbuf.c)
46 0.11 99.28 46 12 morecore (malloc.c)
39 0.09 99.38 39 20 _findiop (findiop.c)
33 0.08 99.45 11 7 sbrk (sbrk.s)
30 0.07 99.52 30 24 wrtchk (flsbuf.c)
30 0.07 99.60 15 12 isatty (isatty.c)
30 0.07 99.67 6 16 read (read.s)
24 0.06 99.72 6 16 close (close.s)
23 0.05 99.78 23 5 strlen (strlen.s)
18 0.04 99.82 18 11 free (malloc.c)
16 0.04 99.86 16 5 __start (../crtltext.s)
13 0.03 99.89 13 26 -fopen (fopen.c)
12 0.03 99.92 6 16 ioctl (ioctl.s)
7 0.02 99.94 7 10 exit (cuexit.c)
6 0.01 99.95 6 16 open (open.s)
6 0.01 99.96 6 16 getpagesize (getpagesize.s)
6 0.01 99.98 6 16 write (write.s)
4 0.01 99.99 ? 12 findbucket (malloc.c)
3 0.00 100.00 ? 6 _dwmultu (dwmultu.s)
2 0.00 100.00 2 8 exit (exit.s)

The remainder of the listing contains:

* -—-pJrocedures] using invocation counts; *

* -—h[eavy] using basic-block counts; *

For further information on these and other options to the prof command, refer to
prof(1).

size

size produces information on the number of bytes occupied by the three sections
(text, data, and bss) of a common object file when the program is brought into main
memory to be run. Here are the results of one invocation of the size command with
our object file as an argument.

11832 + 3872 + 2240 = 17944

Don’t confuse this number with the number of characters in the object file that
appears when you do an Is -1 command. That figure includes the symbol table and
other header information that is not used at run time.

strip

strip removes the symbol and line number information from a common object file.
When you issue this command the number of characters shown by the Is -1 command
approaches the figure shown by the size command, but still includes some header
information that is not counted as part of the .text, .data, or .bss section. After the
strip command has been executed, it is no longer possible to use the file with the dbx
command.

PROGRAMMING BASICS 2-47

Program Organizing Utilities

The following three utilities are helpful in keeping your programming work organized
effectively.

The make Command

When you have a program that is made up of more than one module of code you
begin to run into problems of keeping track of which modules are up to date and
which need to be recompiled when changes are made in another module. The make
command is used to ensure that dependencies between modules are recorded so that
changes in one module results in the re-compilation of dependent programs. Even
control of a program as simple as the one shown in Figure 2-15 is made easier through
the use of make.

The make utility requires a description file that you create with an editor. The

description file (also referred to by its default name: makefile) contains the informa-
tion used by make to keep a target file current. The target file is typically an execut-
- able program. A description file contains three types of information:

dependency information tells the make utility the relationship between the modules
that comprise the target program.

executable commands needed to generate the target program. make uses the
dependency information to determine which executable
commands should be passed to the shell for execution.

macro definitions provide a shorthand notation within the description file to
make maintenance easier. Macro definitions can be over-
ridden by information from the command line when the
make command is entered.

The make command works by checking the "last changed" time of the modules named
in the description file. When make finds a component that has been changed more
recently than modules that depend on it, the specified commands (usually compila-
tions) are passed to the shell for execution.

The make command takes three kinds of arguments: options, macro definitions, and
target filenames. If no description filename is given as an option on the command
line, make searches the current directory for a file named makefile or Makefile. Fig-
ure 2-23 shows a makefile for our sample program.

2-48 PROGRAMMER’S GUIDE

Program Organizing Utilities

OBJECTS = restate.o oppty.o pft.o rfe.o
all: restate
restate: $(OBJECTS)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJECTS) -o restate

$(OBJECTS): ./recdef.h

clean: .
rm —f $(OBJECTS)

clobber: clean
rm —f restate

Figure 2-23: make Description File

The following things are worth noticing in this description file:

m It identifies the target, restate, as being dependent on the four object modules.
Each of the object modules in turn is defined as being dependent on the header
file, recdef.h, and by default, on'its corresponding source file.

B A macro, OBJECTS, is defined as a convenient shorthand for referring to all
of the component modules.

Whenever testing or debugging results in a change to one of the components of
restate, for example, a command such as the following should be entered:

$ make CFLAGS=-g restate

This has been a very brief overview of the make utility. There is more on make in
Chapter 3, and a detailed description can be found in the chapter make.

The Archive

The most common use of an archive file, although not the only one, is to hold object
modules that make up a library. The library can be named on the link editor com-
mand line (or with a link editor option on the cc command line). This causes the link
editor to search the symbol table of the archive file when attempting to resolve refer-
ences. :

The ar command is used to create an archive file, to manipulate its contents and to
maintain its symbol table. The structure of the ar command is a little different from
the normal UNIX system arrangement of command line options. When you enter the
ar command you include a one-character key from the set drqtpmx that defines the
type of action you intend. The key may be combined with one or more additional
characters from the set vuaibcls that modify the way the requested operation is per-
formed. The makeup of the command line is

ar -key [posname] afile [name]...

where posname is the name of a member of the archive and may be used with some
optional key characters to make sure that the files in your archive are in a particular
order. The afile argument is the name of your archive file. By convention, the suffix
.a is used to indicate the named file is an archive file. (libc.a, for example, is the

PROGRAMMING BASICS 2-49

Program Organizing Utilities

archive file that contains many of the object files of the standard C subroutines.) One
or more names may be furnished. These identify files that are subjected to the action
specified in the key.

We can make an archive file to contain the modules used in our sample program,
restate. The command to do this is

$ ar -rv rste.a restate.o oppty.o pft.o rfe.o
If these are the only .o files in the current directory, you can use shell metacharacters
as follows:

$ ar -rv rste.a *.0

Either command will produce this feedback:

— restate.o

- oppty.o

- pft.o

- rfe.o

ar: creating rste.a

Qo o o

The nm command is used to get a variety of information from the symbol table of
common object files, The object files can be, but don’t have to be, in an archive file.
Figure 2-24 shows the output of this command when executed with the -f (for full)
option on the archive we just created. The object files were compiled with t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>