TVOANVIN INALSAS MOUNIM °UHEN dSI'T

O ‘uew[[elS

DM % ‘U0

LISP Machine o
- Window
System
anual

Richard M. Stallman
David Moon
Daniel Weinreb .

M.IT. Artificial Intelligence Laboratory

Lisp Machine Window System Manual

Edition 1.1, System Version 95

August 1983

Richard Stallman
Danicl Weinreb
David Moon

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory’s artificial intelligence research is provided in
part by the Advanced Rescarch Projects Agency of the Department of Defense under Office of
Naval Rescarch Contract number N00014-80-C-0505.

Window System Manual i Summary Table of Contents

Summary Table of Contents

D B 71 o 3
2. Visibility and Exposure of Windows. i i i i it e e e 10
1 ot T+ 31
4, Sizesand Positions s e e e e e e e e e e e e e e e 43
TR {1 e 49
6. Output of TEXt . o v v i v vt e v e i e e e e e e e e e e e e e e e 66
7R 2 -3 83
8. Drawing GraphiCs i i i i i it it i e e e e e e e e 93
O, BlNKEIS .« & v v v v v v ettt e e e e e e e e ettt 103
10, The MOUSE . &« v v v vttt i et e et et ot e ettt e 112
11. Margins, Borders,and Labels i i i i 129
12, Frames & v v v ottt et e 141
13. Miscellaneous Feattires v v v v v i i b et et e st e e e e e e e e e 157
14. Choice Facilities. & v v v v i it i e e e e e e e e e e e e e e e e e e 173
15, Typeout WIndows. . . . v v v v vt v i ittt e ettt it e e e 212
16. Text Scroll WIndows. . . & & v v v v i v i e e e et et et ettt e e e .. 219
17. General Scroll Windows. o o 0 v v i it et i e e e e e e e 228
ConceptIndex. i i i i it i i it e e e e e e e e 240
OperationIndex. i i i it i it i e e e e e e e e 242
KeywordIndex v v v v v i i s e e et e e e e e e e e e 249
FlavorandResource Index. v vt v v v i i i e e e et e e e e e e e 254
VariableIndex. it i ittt e e e e e e e e e e e e 256
FunctionIndex e e e e e et ettt e et 259

8-AUG-83

Table of Contents ii andow System Manual

Table of Cont'ents

) 1 . 3
Ll Windows o o o e e e e e e e e e e e e e e 3
1.2 Capabiliticsof Windows. oo i e e e e 4
1.3 HigherLevel Window Facilities. 6
14 WindowsasFlavorInstances i i i ittt i e e e e e e e e e 6
15 UsingaWindow o0 ot it e e e e e e e e e e e e 8
1.6 Creation of Windows i ittt i e e e e e e e e e e 9

2. Visibility and Exposureof Windows 10
2.1 Hierarchyof Windows i it i e 10
22 Screens. . .. 0o e 13
2 PIXelS. . . . e e e e e e e e e e e e e e e e e e 14
24 Bit-Save AITaYS. . & v i it i e 15
2.5 Screen Arraysand Exposure. o e e e e e e e e e e 17
26 Ability toOutput L L e e e e e e e e e e e e e e e e e 21
27 WindowLockingo e e 23
28 Temporary Windows ¢ v i it i it it s e e e e e e e e e e e 24
29 TheScreenManager i i i i ittt e ittt et e e e e e e 26

2.9.1 Control of Partial Visibility. e e e e e e e e e e e e 2
2.9.2 Priority among WindowsforExposure e e e e e 28
29.3 Delaying Screen Management i it i i e e e e e e e e e e e e 30

3o Selection . . . e e e e e e e e e e e e e e k) |
3.1 HowPrograms Select Windows o v i i ittt e s et e e e e e e e e 32
32 Teams of WINAOWS o v i it it e e e e e et e e e e e e e e e e e M

321 TheSystemMenu Select Option v i i i i it et e et e e 35
3.2.2 Selection with Terminaland SystemCommands v v v v v v v .. 36
3.3 Selection Substitutes Lt e e e e e e e e e e e e 37
3.3.1 Non-Hierarchical Selection Substitutes v v v v v v v vttt et e e s e ns 39
34 TheStatusof aWindow. i it i it it it e s vt e e e e e 39
35 Windowsand Processes. . . v v v v v i i i e e e e e e e e e e e e e e e 40

4. Sizesand Positions e e e e e e e e 43
4.1 InitOptions for Sizesand Positions 43
4.2 Flavor Operations for Sizesand Positions v... 45
43 LowLevel EdgesFunctions. i i i it ittt et et e 47

SInput. e e e e e e e e e e e e e 49
51 InputBuffers. e e e e e e e e e e e e 50
S2Blips.......... e e e e e e e e e e e e e e e e 52
5.3 Stream Input Operations & . v v v it e e e e e e e e e 52
54 I/OBuffers. e e e e e e 56

541 I/0OBuffersand Type Ahead it ittt it e e 58
542 1/0 BuffersasInputBuffers S8
5.5 Intercepted Characters e e e e e e e e e 59
5.5.1 Synchronously Intercepted Characters v v v v i v vt e et e e e e 60

8-AUG-83

Window System Manual iii Table of Contents

5.5.2 Asynchronously Intercepted Characterso v v v v v oo v e 61
5.5.3 Global AsynchronousCharacters.« v v v v v v v o v v v s o v ... 63
5.6 Polling The Keyboard Explicitlyo 65
6. Output of TEXt . « . v v v v v v i e e e e s e e e e 66
6.1 How A CharacterIsPrinted. ¢ ¢ v o v v v v vttt v s e e oo e 68
6.2 StreamOutput Operations« v v v v v v et e 68
6.3 OUtput EXCEPUONS . . .« v v v v v v v v vt e v e e e e s 70
6.3.1 Output Hold and End of Page Exceptions« v oo v v vt v v v It
632 **MORE* EXCEpPtiONS . . & v v v v v v v v v v v ot e e oo s s s e 71
6.3.3 Endof LineExceptions« v v v v v v i it 73
6.4 Cursor MOHOM & « v v v v v v e i e et ot e et a e e e e 74
6.5 Erasing. T e e e e e e e e e e e e e e 75
6.6 Inserting and Deleting Lines and Characters.« v oo oo v 76
6.7 Anticipating the Effectof Qutput.o v v vt i e i
6.8 Explicit (Non-Cursor)Output. o o v v v v v v v v v v v e o m oo o s e 9
6.9 Window Parameters AffectingOutput.« v v v v i oo e 80
T.FOntS. & v v v v et e h e e e e s e e e e e e 83
70 Specifying FOonts . . . v v v v vt v vt e e e e e 83
7.1.1 Font Specifiers. e e e e et e e e e e e 85
72 Attributesof FONtS v v v v v v v e e e e e e e e Te... 87
73 Formatof FOnts v oo v v v v v v i v e e e s v s e e e e 89
74 ColorFonts vt e et e e e e e e e 92
8 DrawingGraphics« v v v v v i i e s 93
81 AIUFUNCHONS . v+ v v v v v v v v v v o v v s e e n e s e e 93
8.2 Flavor Operations for Graphics. . . « v v v v v v v v v v v v v v v i v o e v 94
8.3 Low-Level Graphics Using Subprimitives.« v v v v v v v v o 98
8.3.1 Subprimitives forDrawing. oo e 101
O, BHNKEIS . » & v v v o o v v e e s b e o s e e e e e 103
9.1 Blinker Functionsand Operations. « .« v v v v v v v v v o v v v o v 104
92 BHnKerFlavors. . . v v v v v v v o v v v o o s s v s vt et a e e e 107
10. THEMOUSE « & v v v e v v v v e e o s o s o m s o s s s s e o o 112
10.1 Encoding Mouse ClicksasCharacters v v v v v v v v v v o v ns 113
10.2 OwnershipoftheMouse. o v o v v v v vt ot o n i oo e v e s 114
10.2.1 Grabbingthe Mouse v v v v v v v vt v i a e e 115.
1022 Usurpingthe MOUSE v v v v v v v vt v v it e e nt e v e e 118
10.3 How Windows Handlethe Mouse « v v v v v v v vt v o v s o s o 119
104 Mouse BHNKEIS . . . v v v v v v v o h e e e s et o a e s 121
10.4.1 Reusable Mouse Blinker Types. . . . v« v v v v v v v v i v v m v v v e 123
105 Mouse Scrolling. . .+ v v v v vt i e e e e e e e e e 123
10.5.1 Scrolling Protocol e e e e e e e e e e 124
1052 Scroll BarS . o v v v v v v e e e et e e e e e e e e e e e e s 125
1053 MarginScrolling . . . v v v v v v v v e e e e e e s 126
10.6 MoUSEPArameterS. « « v « v « o v s v s s s s o s 0 o n s et e e e 128

8-AUG-83

Table of Contents iv Window System Manual

11. Margins, Borders,and Labels. o i i i it i e e e e e e 129
L] Borders . & o v v i e e e e e e e e e e e e e e e e e e 130
B 5 T 132
113 Margin Regions v v v vt it e et e et e e e e e e e e e e e e e 134

11.3.1 MarginRegion Example v v i it e s e e e e e e e 136
114 DefiningMargin Item Flavors v v v v v v i e e et e e e e e e 138

L) 1< 141

12.1 Constraint Frames. . . . v . v v v v v i e e e et e e e e e e 142
1211 Constraint Frame Flavors. v v v i v i i it e i e e e e e vt e e e e e 142
12.1.2 Examples of Specifications of Panesand Constraints. 143
12.1.3 Specifying Panesand Constraints ¢ v v v v v v v i e e e . 146
12.1.4 Constraint Frame Operations v i v v v it it e e et e et oo e s 153

122 Pane-Frame Interaction i i i i it it e e e e e e e e . 154
1221 TheSelectedPane. o it i i e e e e e e 155

13. Miscellaneous Features. v i it i i it i e e e e e e e e e e 157
131 Notifications. . . v v v v o vttt et e e et e e et et e e e e e e 157
132 Lisp LiSteners . o v v v v v vt e i e 159
133 Editor Windows v o i i it it e et e e e e e e e e e e e e e e e e 160
13.4 Window Flavors forOtherPrograms. v v v v v vt v i ittt et e e e 162
135 TheWhoLine. o it it i it it i i i ittt et ettt e e e enn 163
136 TheColorScreen . . . v v v v v v i i i e e e e e e e et e ettt it e e 165
1361 ColorMap Functions. i i it i it e i i e s e i e e e e 165
13.6.2 OperatingonPixels. et e e e et e e e e 166
137 TheSystemMenu it it i it i it it ettt ettt nnennnas 167
13.8 Window Resources. v v v v i i i it i i s e e e e e e e e e e e 168
139 TheColdLoad Stream. v i v it it e et e e e ettt s e e s e en e 170

13.10 The Window-Based Debugger v v i i it it ettt e e et e e 171

14, Choice Facilities & v v v vt it e et e e e e e e e e e e e e e 173

JA1 Menus. . . . o e 173
1411 Menultems. & . o v o v v i et e e e e e e e e e e e e e 174
14.1.2 Easy MenuInterface e e e e et 177
J413 Geometry. o i i i e e e e e e e et e e e e 178
1414 OrdinaryMenus e et e e e e e 181
1415 CommandMenus. e e e e e e e e e e e e e e 184
141.6 DynamicItem List Menus. i i v i vttt i e s e e e e e e e 185
1417 Multiple Menus. . .. v v it it et i e e e e e e e e e e e e e e e e 187

142 MultipleChoice Facility.« . 0 i i i i ittt e e e e e e, 190
142.1 FunctionalInterface, i i i i i e e e e e e 191
1422 Flavorsand Operations v v v v v v vt vt e e e e e e e 192

14.3 Choose-Variable-ValuesFacility i ittt e it n e e 194
14.3.1 Specifyingthe Variables. i i i it i it e e e e 194
14.3.2 Predefined Variable Types. v v v v v it e e e et e e e e e e e e e 195
1433 Functional Interface. v v i i i i i i s e e e e e e e e e e e 196
14.3.4 Defining YourOwn Variable Type i i i i ittt e v e nn 199
14.3.5 Making YourOwn Window. i i ittt e e e e 200

8-AUG-83

Window System Manual v Table of Contents

1436 UserOption Facility e 204
14.4 Mouse-Sensitive Type Out. v o v it v i i i e e 207
145 MarginChoie8S . =+« v v v vt v v v e b e e e e 210

15. Typeout Windows. v v v v it i e et s s s e e e e 212
15.1 Activationand Deactivation ¢t v s v e b b st s s 213
15.2 Supecriorsof Typeout Windows v v o v v v v i v h i v v 214
15.3 Delaying Redisplay After Typeout. oo 215

16. Text Scroll WIndowS. . & & v v v v v e e e e s o o b s o m st e e 219
16.1 SpecifyingtheltemList. v v e oL 219

162 BellsandWhistles. oo v i i e e e 221
163 Ttem Generators. . + « v v v v v v v o o o o o o v o v s s e m e s e e 222
16.4 Mouse Sensitive Text Scroll Windows v v v ¢« ¢ v v o v v v v v o v v 225

17. General Scroll Windows. . v v v v v v v v v v e e vt o o s st o s e e e 228

17.1 Specifyingltemsand Entries. 0 oo 229

17.2 UsingaScroll Window« o v v v v it i i i e e e 232
17.3 Insertingand DeletingItems. v v v v v v v v v i v e i 234
17.4 Automatically Updatingltems. P 234
17.5 Representationof Items .-,« v vttt i e 237
17.6 Mouse Sensitive Scroll Windows. . . . v .« v v ¢t v i v e h i e e e s 238
ConceptIndex. . o v v v v v vt it e e e e e e e s 240

Operation Index. e e e e e e e e e e 242

KeywordIndex oo v i 249

FlavorandResourceIndex. ¢« ¢t v i i b it v s v bt e e 254-

VariableIndex. . : ¢ e e e s e e e e e e 256

FunctionIndex v ¢ v v v i v v e v vt e e e e e e e e e e e e 259

8-AUG-83

Window Systcm Manual 1 (nil)

Preface

The Lisp Machine window system manual is intended to explain how you, as a programmer,
can use the set of facilities in the Lisp Machine known collectively as the window system.
Specifically, this document explains how to create windows, and what operations can be
performed on them. It also explains how you can customize the windows you produce, by mixing
together existing flavors to produce a window with the combination of functionality that your
program requires and adding daemons to various operations.

It is assumed that you have a working familiarity with Zetalisp as documented in the Lisp
Machine manual. It is also assumed that you have some experience with the user interface of the
Lisp Machine, including the ways of manipulating windows, such as the Edit Screen, Split
Screen, and Create commands from the system menu. To use the predefined flavors and
methods, you need not be familiar with how methods are defined and combined, but you should
understand what message passing is, how it is used on the Lisp Machine, what a flavor is, what
a "mixin" flavor is, and how to define a new flavor by mixing existing flavors. To use the
information provided here on where to add daemons, you must be thoroughly familiar with
programming with flavors, and must be willing to refer to the window system source code as the
final authority for all questions.

Any comments, suggestions, or criticisms will be welcomed. Please send Arpa network mail
to BUG-LMMAN@MIT-MC.

Those not on the Arpanet may send U.S. snail to
Richard M. Stallman
545 Technology Square, Room 914
Cambridge, Mass. 02139

SRCKL.WINID>WINDOC.TEXT.1S 8-AUG-83

(nil) 2 W_indow System Manual

Note from Richard Stallman

The Lisp Machine is a product of the efforts of many people too numerous to list here and
of the former unique cooperative environment of the M.LT. Artificial Intclligence Laboratory. I
believe that the commercialization of computer software hinders the further development of
systems such as described herein. [consider proprietary software morally objectionable and plan
to dedicate my career to promoting the sharing and free exchange of software.

Starting in December 1983 I plan to work on the development of GNU, a complete Unix-
compatible software system for standard hardware architectures, to be shared freely with everyone
just like EMACS. This will enable people to use computers without agrecing to the idea of
proprictary software. This project has inspired a growing movement of enthusiastic supporters. If
you would like to join it, write to me at the address on the previous page. Help get
programmers sharing again! Contributions of part-time programming help will be very welcome,
as will funding from philanthropists to support full-time workers, and donations or loans of
computers.

The current implementation of the window system is based on flavors, and was designed and
implemented primarily by Howard Cannon and Mike McMahon during 1980. It replaced an
earlier version implemented by me, which was based on Smalltalk-like classes. The newer version
is generally an improvement, but as Howard Cannon steadfastly refused to discuss the design with
me | must decline responsibility for such counterintuitive aspects as the definition of exposure.

About a third of this manual is based on earlier documents written by Dave Moon and
Danicl Weinreb. Sarah Smith of LMI helped to correct the manual, and Chris Schneider and
Steve Strassman provided useful suggestions.

SRC:KKL.WIND>WINDOLTEXT.S1 8-AUG-83

Window System Manual 3 Concepts

1. Concepts

The term window system refers to a large body of software used to manage communications
between programs in the Lisp Machine and the user, via the Lisp Machine console. The console
consists of a keyboard, a mouse, and one or more screens. All Lisp Machines have at least one
high-resolution black-and-white screen, and some machines also have a color screen. The window
system can handle any number of scrcens of various kinds.

The window system controls the keyboard, encoding the shifting keys, interpreting special
commands such as the Terminal and System keys, and directing input to the right place. The
window system also controls the mouse, tracking it on the screen, interpreting clicks on the
buttons, and routing its effects to the right places. The most important part of the window.
system is its control of the screens, which it subdivides into windows so that many programs can
coexist and even run simultancously without getting in each other’s way, sharing the screen space
according to a set of established rules,

1.1 Windows

When you use the Lisp Machine, you can run many programs at once. You can have a Lisp
listener, an editor, a mail reader, and a network connection program, or several of each, all
running at the same time, and you can switch from one to the other conveniently. Interactive
programs get input from the keyboard and the mouse, and send output to a screen. Since there
is only one keyboard, it can only talk to one program at a time. However, each screen can be
divided into regions, and one program can use one region while another uses another region.
Furthermore, this division into regions can control which program the mouse talks to; if the
mouse cursor position is in a region associated with a certain program, then mouse clicks are
directed to that program, which is then allowed to decide what the clicks mean. Allocating access
to screen space and input devices is the most important function of the window system.

The regions into which the screen is divided are known as windows. In your use of the Lisp
Machine, you have encountered windows many times. Sometimes there is only one window
visible on the screen; for example, when you cold-boot a Lisp Machine, it initially has only one
window showing, and it is the size of the entire screen. If you start using the system menu’s
Create, Edit Screen, or Split Screen options. you can make windows in various places of
various sizes and flavors. Usually windows have a border around them (a thin black rectangle
around the edges of the window), and they also frequently have a label in the lower-left hand
corner or on top. This is to help the user sce where all the windows are, what parts of the
screen they are taking up, and what kind of windows they are,

The next several sections begin to explain the detailed concepts of how windows work and
what their internal state is. You should probably read over these quickly the first time, without
worrying about all the details. You really don’t have to understand all of the complexity to make
simple use of the window system; it just helps if you know what sort of thing is going on.

SRCKL.WIND>WINDO1.TEXT.51 8-AUG-83

Capabilities of Windows 4 Window System Manual

1.2 Capabilities of Windows

A window may or may not be exposed, which means that output can be donc on it (section
2.5, page 17). At any time at most one window can be selected, which means that input can be
done through it (chapter 3, page 31). These two conditions constitute the window's status.

Another kind of state information that every window has is its edges: its size and its position
(see chapter 4, page 43). You can specify these numerically, ask for the user to tell you (using
the mouse), ask for a window to be ncar some point or some other window, and so on.

Windows can function as streams by accepting all the operations that streams accept. If you
do input opcrations on windows, they read from the keyboard; if you do output opcrations on
windows, they type out characters on the screen. The value of terminal-io (see section 21.5.9 of
the Lisp Machine manual) is normally a window, and so input/output functions on the Lisp
Machine do their I70 to windows by default,

A window whose flavor incorporates tvistream-mixin supports all the standard input stream
operations and may be passed as the input stream to functions such as read and readline (see
chapter 5, page 49). Each such window has an input buffer holding characters that have been
typed at the window but not read yet. You can force keyboard input into a window’s input
buffer; frequently two processes communicate by one process’s forcing keyboard input into an
input buffer from which another process is reading characters (see page 53).

Any window handles the standard output stream operations and can be passed as the output
stream to functions such as print and format (see chapter 6, page 66). You can output characters
at a cursor position, move the cursor around, selectively clear parts of the window, insert and
delete lines and characters, and so on, by means of standard and not-so-standard stream -
operations. Output of text on windows provides additional features; for example, characters can
be drawn in any of a large set of fonts (type faces), and you can switch from one to another
within a single window (see chapter 7, page 83). Windows can definc their own actions for
exceptional conditions that affect output, such as reaching the right or bottom edge of the
window, or printing more that a window-full without pausing (see section 6.3, page 70).

In addition to characters from fonts, you can also display graphics (pictures) on windows (see

hantar @ N Tha i
chapter 8, page 93). There are operations to draw lnes, circles, triangles, rectangles, arbitrary

polygons, circle sectors, and cubic splines.

Each window can have any number of blinkers (see chapter 9, page 103). Most windows have
one blinker that follows the window’s cursor position; this blinker normally appears as a blinking
rectangle. But blinkers nced not follow the cursor and necd not actually blink (some do and
some don’t). For example, the editor shows you what character the mouse is pointing at; this
blinker looks like a hollow rectangle. The arrow that. follows the mouse is a blinker, too.
Blinkers are used to add visible ornaments to a window, or temporary modifications to a window’s
normal display. Blinkers are flavor instances with their own standard operations.

Windows are the standard interface to the mouse (sce chapter 10, page 112). Both mouse
motion and mouse clicks are normally handled by messages sent to the window over which the
mouse is positioned.

SRC:KL.WIND>WINDOLTEXT.51 8-AUG-83

Window System Manual 5 Capabilitics of Windows

A window’s area of the screen is divided into two parts. Around the edges of the window are
the four margins; while the margins can have zero size, usually there is a margin on each edge
of the window, holding a border and sometimes other things, such as a label. The rest of the
window is called the inside; regular character output and graphics drawing all occur on the inside
part of the window. The margins and inside of the window are managed scparately so that
mixins to add things to the margins can be independent of the program that draws in the
window’s inside. See chapter 11, page 129.

For greater flexibility in subdividing a window into multiple areas of different uses, you can
create inferior windows or panes within the window. The main window is then called a frame.
Each pane can be of a different flavor suitable to its own purpose; thus Peek uses a frame which
has a menu and a scrolling window as its two panes. See section 2.1, page 10, for information
on the hicrarchy of windows, and chapter 12, page 141, for a description of frames.

The asynchronously intercepted characters (such as Control-Abort) which take effect
instantaneously when typed are handled by the selected window. Each window can specify its
own. See section 5.5.2, page 61.

A window can have an associated process. For example, when you type Control-Abort, the
process aborted is the one associated with the selected window. Exactly how processes and
windows relate depends on the flavor of the window, and, as usual, there are several operations
to manipulate the connections. See section 3.5, page 40.

Notifications are a facility for displaying messages from events taking place asynchronously and
not related to the program you are running (errors in background processes, qsends from other
users, file servers planning to go down, etc.). Notifications work through operations on the
selected window, so each window can decide how to display a notification. See section 13.1, page
157.

Screens are represented by flavor objects also; these are not windows, but share some of the
operations and instance variables of windows (see section 2.2, page 13). Windows and screens
collectively are called sheets. Each screen object usually corresponds to a particular piece of
display hardware. Screens can be either black-and-white or color. Color screens have more than
one bit for each pixel, and most operations on windows do somecthing reasonable on color screens.
But the extra bits give you extra flexibility, and so there are some more powerful things you can
do to manipulate colors. Color screens also have a color map which specifies which values of the
pixels display which colors. See section 13.6, page 1685.

The who line at the bottom of the screen shows the user something about the state of the
Lisp Machine. The window system software implements the who line as a separate screen even
though it appears on the same TV monitor as the main screen and its windows. This is why you
cannot move the mouse into the who line area, or make windows on the main screen hide the
who line. See section 13.5, page 163 for more information on the who line and how it is
interfaced and implemented.

SRCKL.WIND>WINDOL.TEXT.51 8-AUG-83

Higher Level Window Facilities 6 Window System Manual

1.3 Higher Level Window Facilities

The higher level window facilities are window flavors that combine the basic capabilities of
windows appropriately to provide directly usable techniques for particular common applications.
These facilities include menus and other choice windows, typcout windows, and scrolling windows.

Menus allow the user to choose one or several of a fixed sct of items. The system menu that
you get from double-click-right is an example of onec. Sec section 14.1, page 173. Multiple choice
windows allow the user to specify an answer to each of a set of similar multiple-choice questions
(sce section 14.2, page 190). The editor command Meta-X Kill or Save Buffers shows an
example of one.

Choose-variable-values windows allow the user to view and modify the values of a set of
variables, each variable printed and rcad according to its own range of possible values. One
variable might allow only numbers, while another variable’s value might be restricted to a list of
pathnames. Sce section 14.3, page 194.

Typeout windows allow windows such as scroll windows and editor windows, which normally
present displays reflecting permanent data bases, to print output in response to individual
commands. The typeout window is an inferior of the other window, and exposes itself when
output is done on it. :

Scrolling windows allow the programmer to define a display which the user can then scroll
through. The scrolling window facility provides for scrolling, redisplay, and interaction with the
mouse, requiring the programmer only to specify the entire contents to be scrolled through.
There are two types of scrolling windows, fext scroll windows (chapter 16, page 219) and general
scroll windows (chapter 17, page 228), the former being less powerful but simpler. Note that
there is a standard interface protocol for the mouse to request scrolling (sce section 10.5.1, page
124). You need not use one of the standard scrolling window facilities to make a window that
can scroll if you are willing to implement the scrolling yourself. For example, editor windows
and menus can also scroll.

1.4 Windows as Flavor Instances

In the Lisp world, each window is a flavor instance, an instance of some flavor of window.
There arec many different window flavors available; some of them are described in this manual.
All of them contain the component tv:minimum-window. :

tv:minimum-window Flavor
The flavor on which all window flavors are built. Any window flavors you define should
include this component. This flavor itself is made of the components tv:essential-
window, tv:essential-activate, tviessential-expose, tv:essential-set-edges and
tv:essential-mouse. tv:minimum-window has no methods of its own; all are inherited
from those components. So you will at times (in the debugger) run across methods of
those component flavors. You will also run-across methods of tvisheet, a component of
tviessential-window. However, there is no need for you as a programmer to pay
attention to the distinctions among thesc flavors, and in this manual all the operations,
instance variables and init options of tv:minimum-window are documented as being "of

SRC:KL.WIND>WINDOLTEXT.S1 8-AUG-83

Window System Manual 7 Windows as Flavor Instances

windows" rather than of any specific flavor.

tv:window Flavor
This flavor of window has several mixins that provide much generally useful functionality,
including the ability to select the window, graphics operations, labels and borders.
(defflavor tv:window ()
(tv:stream-mixin tv:borders-mixin tv:label-mixin
tv:select-mixin tv:delay-notification-mixin
tv:graphics-mixin tv:minimum-window))

The operations of these mixins are specifically identified in this manual. Use the mixins,
or use the flavor tviwindow, if you want the operations to be available.

It is often necessary to mix flavors to get the desired window behavior. When doing this, you
must pay attention to the correct ordering of flavor components. The earlier components will
override later ones. For example, if you want to make a window that will print out notifications
on itself by mixing in tv:notification-mixin, you must put it in front of tv:window:

(defflavor my-window () (tv:notification-mixin tv:window))
If you put them in the other order, as in

(defflavor my-window () (tv:window tv:notification-mixin))
you get something equivalent to tviwindow. The tv:notification-mixin’s effect is completely lost.
The whole point of tv:notification-mixin is that it should override some methods of tv:window
(inherited from tv:delay-notification-mixin), and in fact it defines the same operations in a
different way. It follows that if tv:notification-mixin comes last, it will be overridden instead.

It is almost always correct to put mixins first in the ordering so that they will override
whatever they are added to. One exception occurs with flavors of margin item; there, the
ordering is used to control the spatial position of the margin items.

Screens are also represented by flavor instances, which share some of the characteristics of
windows because they share the component flavor tvisheet. Screens are described fully in section
2.2, page 13.

tv:shest ‘ Flavor

‘ tv:sheet is a flavor that windows and screens share. It is also what provides the structure
required by the microcode display primitives. Operations defined by this flavor are
documented as being "of windows and screens” in this manual.

Much of thé contents of this manual is devoted to describing the instance variables and
operations of various flavors of window. They are grouped below by functionality.

There is a vague convention sometimes followed for naming flavors of windows. Here the
word frobboz is used to stand for any feature, attribute, or class of windows that would appear in
a flavor name (c.g. peek, lisp-listener, or delayed-redisplay-label). Naming conventions are
different for instantiable flavors (which are complete and can support instances of themselves) and
mixin flavors (which are incomplete and only supply one particular aspect of behavior).

JSfrobboz An instantiable flavor whose most distinguishing characteristic is that it is a
JSfrobboz. frobboz is preferred to frobboz-window except when it is necessary to
make a distinction. ‘

SRCKL.WIND>WINDOLTEXT.51 8-AUG-83

Using a Window 8 Window System Manual

frobboz-mixin A flavor which provides the frobboz feature when mixed into other flavors, but is
not instantiable. Such mixins often have no components, just :required-flavors.

basic-frobboz This form of name is used instcad of frobboz-mixin when the flavor is regarded
as altering the "cssential character” of the window. It does not work to mix two
"basic" flavors together unless they are designed to work together. In certain cases
a basic-frobboz may contain tv:minimum-window as a component, and may even
be instantiable, but usually it is a mixin that must be mixed with tv:minimum-
window and other things in order to work.

essential- frobboz

essential - frobboz-mixin
A name like this is generally used for a component of frobboz-mixin, containing
the hecart of the frobboz facility but not its bells and whistles or its specific

interface.

1.5 Using a Window

Many programs never nced to create any new windows. Often it suffices to use the standard
input, output and graphics operations on an existing window, such as a Lisp listener which is the
value of terminal-io when your program is called. For example, here is a graphics demo that
will draw a pattern of xored circles on any window which has tv:graphics-mixin (such as a Lisp
listener).

(defun green-hornet (&optional (window terminal-io)
: (separation 40))
(hacks:with-real-time
(send window ':clear-screen)
(send window ':home-down)
(multiple-value-bind (iw ih)
(send window ’:inside-size)
(let ((center-x1 (- (truncate iw 2)
(truncate separation 2)))
dw 21
Wy
(truncate separation 2)))
(center-y (truncate ih 2)))
(do ((i (- (min center-y center-x1) 10.)
(1- 1))) '
((<= i 5))
(send window ’:draw-circle
(if (bit-test 20 i) center-x1 center-x2)
center-y '
i))))

(send window ':tyi)

t))

Such programs should try to stick to the most widely-implemented operations. - The ideal is to
usc only the standard stream operations documented in section 21.5 of the Lisp Machine manual;

PPN YN R 2]

’ v
{center=x2 ¥

1+ +*
fwruncase

SRC:KL.WINID>WINDOLTEXT.51 8-AUG-83

Window System Manual 9 ' Creation of Windows

then your program will run even with strcams that are not windows. With graphics programs
such as green-hornet you arc forced to usc some windows-only operations, but it is sull best to
“stick to the operations provided by the flavor tv:window.

1.6 Creation of Windows

When you want to create a flashy and sophisticated user interface, especially involving mouse-
sensitivity or automatic updating, it is time to consider creating your own windows (and your own
window flavors, perhaps).

To create a window, usc the functions make-instance or instantiate-flavor. (Old programs
usually use tv:make-window, which is now cquivalent to make-instance but was different in" the

past).

make-1instance flavor-name &rest init-options
Creates, initializes, and returns a new instance of the specified flavor. The init-options
argument contains alternating keywords and values; the keywords must be init options
accepted by the flavor you are using. The init options accepted by various window flavors
are described in this manual.

Example:
(make-instance 'tv:lisp-listener
' :borders 4
*:font-map (1ist fonts:bigfnt)
‘:vsp 6
':edges-from ':mouse
':expose-p t)
creates an exposed Lisp listener with big characters and lots of vertical space between
lines.

For more information on this function and on instantiate-flavor, see section 20.7 of the
Lisp Machine manual.

tv:sheot-area Variable
The area in which windows are by default created.

:name name Init option for windows
Every window has a name, which is used primarily for printing the window as a Lisp
object, but also serves as a default for the window's label. If you do not specify a name,
the defau't is constructed from the flavor name and a counter (cach flavor has its own) to

make the name unique.

tv:name Instance variable of windows
The name of the window.

SRCKL.WIND>WINDOLTEXT.51 8-AUG-83

Visibility and Exposure of Windows 10 Window System Manual

2. Visibility and Exposure of Windows

The most important picce of information about a window is whether it is actually visible on
the screen. A related but different picce of information is whether the window is exposed.
Understanding these basic concepts, the subjects of this chapter, is vital to any usc of the window
system.

Using the system menu Create option you can make two windows that partially overlap. (If
you have never done so, you should try it.) The window system is forced to make a choice here:
only onc of those two windows can be the rightful owner of that piece of the screen. Of these
two windows, only onc can be (fully) visible at a time; the other one has to be not fully visible,
but cither partially visible or not visible at all. Only the fully visible window has an area of the
screcn to use.

If you play around with this, you will see that it looks as if the two windows were two
overlapping pieces of paper on a desk, one of which must be on top of the other. Create two
Lisp listencrs using the Create command of the system menu so that they partially overlap, and
then single-click-left on the one that is on the bottom. It will come to the top. Now single-click-
left on the other one; it will come back up to the top. The one on top is fully visible, and the
other one is not.

2.1 Hierarchy of Windows

Scveral Lisp Machine system programs and application programs present the user with a
window that is split up into several sections, which are usually called "window panes" or "panes".
For cxample, the inspector has six panes in its default configuration: the one you type forms into
at the top, the menu, the history list, and the three inspection panes below the first three. The
window debugger and ZMail also use claborate windows with panes. Just as windows on a screen
can subdivide the screen, a window’s panes subdivide the scrcen space of the window. With
programs such as the cditor, inspector and ZMail, it may not be obvious that the windows you
see are panes in another window because that window occupies the full screen. If you go into
Edit Screen and reshape one of these, you will see clearly how there is a window with

subwindows.

In fact, the panes in an inspector are related to the inspector’s main window just as that
window is related to the screcn. Windows are arranged in a hierarchy, each window having a
supcrior and a list of infcriors. Usually the top of the hierarchy is a screen. In the example
above, the inspector window is an inferior of the scrcen, and the panes of the window are
inferiors of the inspector window. The screen itself has no superior (if you were to ask for its
- superior, you would get nil).

A window’s superior, its supcrior’s superior, and so on, are collectively called its ancestors.
A window’s inferiors and their inferiors, and so on, are called its descendants.

The position of a window is remembered in terms of its relative position with respect to its
supcrior. To figure out where a window is on the screen, we add this relative position to the
absolute position of the superior (which is computed the same way, recursively; the recursion

SRCKL.WIND>WINDOLTEXT.51 8-AUG-83

Window System Manual 11 Hicrarchy of Windows

terminates when we finally get to a screen). The important thing about this is that when a
superior window is moved, all its inferiors are moved the same amount; they keep their relative
position within the superior the same. You can see this if you play with the Move Window
command in Edit Screen.

Normally Edit Screen edits the arrangement of the windows on a screen, but it can also edit
the arrangement of inferiors (panes) of a window in the same fashion. If you click right on Edit
Screen, you get a menu containing all the superiors of the window you pointed at, up to the
screen. You can then edit the inferiors of whichever one you choose.

So, what Edit Screen really does is to manipulate a set of inferiors of some specific superior,
which may or may not be a screen. The set of inferiors that you are manipulating is called the
active inferiors set; each inferior in this set is said to be active. The active inferiors are all
fighting it out for a chance to be visible on their superior. If no two active inferiors overlap,
there is no problem; they can all be visible. However, whenever two overlap, only onc of them
can be on top. Edit Screen lets you change which active inferiors get to be on top. There is
also a part of the window system -called the screen manager whose basic job is to keep this
competition straight. For example, it notices that a window that used to be covering up part of a
second window has been reshaped, and so the second window is no longer covered and can be
made visible. Inactive windows are never visible until they become active: when a window is
inactive, it is out of the picture altogether. The screen manager will be discussed at length later
(section 2.9, page 26).

Each superior keeps track of all of its active inferiors as a list in the instance variable
tviinferiors, and each inferior window keeps track of its superior, in the instance variable
tv:superior. Superior windows do nof keep track of their inactive inferiors; this is a purposeful
design decision, in order to allow unused windows to be reclaimed by the garbage collector. So,
when a window is deactivated, the window system doesn’t touch it until it is activated again.

:activate - Operation on windows
Makes the window active in its superior.

:deactivate Operation on windows
Makes the window cease to be active in its superior.

ractivate-p rornil _ Init option for windows
If this option is specified non-nil, the window is activated after it is created. The default
is to leave it deactivated.

kil Operation on windows
Killing a window deactivates it but also makes a positive effort to get rid of other entities
such as processes or net connections that may be associated with the window. If a
window has thesc things, it may not be satisfactory to just allow the window to be
garbage collected; thercfore, the kill operation is provided. A command for the user to
get rid of windows should use :kill rather than :deactivate.

SRCKL.WIND>WINDOI.TEXT.51 8-AUG-83

Hierarchy of Windows 12 Window System Manual

:active-p Operation on windows and screens
t if this window is active in its superior. A screen is always considered active.

:inferiors Operation on windows and screens
Returns this window or screen’s list of inferiors.

:superior Operation on windows and screens
Returns this window or screen’s superior. For a screen, it is nil.

:set-superior new-superior - , Operation on windows
Makes this window an inferior of new-superior.

:superior superior Init option for windows
’ Makes the new window an inferior of superior. If this is not specified, the default is
tv:mouse-sheet, which is initially the main black-and-white screen.

tv:inferiors Instance variable of windows and screens
A list of the active inferiors.

tv:superior Instance variable of windows and screens
In a window, the value is the window’s superior. In a screen, the value is nil.

tv:sheet-superior window-or-screen
tv:sheet-inferiors window-or-screen
Accessor defsubsts for the corresponding instance variables.

tv:sheet-me-or-my-kid-p sheet me
t if sheet is an indirect inferior, zero or more levels down, of the sheet me.

tv:map-over-exposed-sheets function
Calls function on every exposed sheet, starting with the screens, their inferiors, and so on

down.

tv:map-over-exposed-sheet finction sheet
Calls function on every exposed inferior of sheet, to all levels, including sheet itself.

K22 2B

tv:map-over-sheets function
Calls function on every active sheet, starting with the screens, their inferiors, and so on

down.

tv:map-over-sheet finction sheet
Calls function on every active inferior of sheet, to all levels, including sheet itself.

SRCKAL.WIND>WINDOLTEXT.51 8-AUG-83

Window System Manual 13 Screens

2.2 Screens

The topmost nodes of the window hierarchy are actually screens rather than windows, a
screen being an instance of the flavor tv:screen.

tv:screen Flavor
Screens are also flavor instances, whose flavors incorporate tviscreen. Screens are not
windows, but they have much in common with windows, because both incorporate the
flavor tv:sheet (page 7).

Usually cach screen object represents an individual piece of display hardware. However, the
main black-and-white physical screen that all Lisp Machines have is logically divided into two
screens, with different screen objects. These are tvimain-screen and tv:who-line-screen.
Because these are separate screens, windows on the main screen cannot be extended onto the who
line, and the mouse cannot move onto the who line, etc.

Screcns are the objects that know how to parse font specifiers (user-level names for fonts) into
font objects that can be used for display. See page 85. Also, each screen can specify a font for
each of the standard font purposes (:default, :label, :menu, etc.). See page 86.

tv:sheet-goet-screen sheer
Returns the screen that sheet is an indirect inferior of (sheet itself, if it is a screen).

tv:main-screen A Variable
The screen object that represents the Lisp Machine black-and-white display, except for the
who line area. This is default superior for windows created with tv:make-window.

tv:who-11ne-screen Variable
The screen object that represents the who line area. FEach field of the who line is a

separate window on this screen.

tv:default-screen Variable
This is the screen that is "normally used”. It is initialized to be the main screen. Certain
functions that create a window without reference to the mouse use it as a default for the
superior of the window, and window resources with a superior as parameter often create
one window initially, with the default screen as the superior.

color:color-screen Variable
This is the color screen for the 4-bit-pixel color display that some Lisp Machines have.
The screen object is always present, but is exposed only when the machine actually has a
color screen. See section 13.6, page 165.

"tv:all-the-scrsens Variable
A list of all screen objects. With this list, you can begin a trec walk to cover all active
windows.

SRCAL.WIND>WINDOL.TEXT.51 8-AUG-83

Pixels 14 Window System Manual

tv:set-tv-speed &optional (speed 60.5) (wasted-lines 0)
Sets the scanning rate of the main screcn, in vertical sweeps per second, to speed. speed
is usually a flonum.

The vertical size of the screen is inversely proportional to the number of vertical scans per
second, because the display rate in horizontal scan lines per second is fixed.

A nonzero value of wasted-lines directs the system to refrain from using that many
horizontal scan lines at the bottom of the screen. If you are using MIT software on a
machine built by Symbolics, you may necd to do this, since the scrcens are typically
misaligned so that the who line is obscured by the screen’s cabinet. A value of 20 to 30
generally does the trick.

2.3 Pixels

A screen displays an array of pixels. Each pixel is a little dot of some brightness and color;
a screcn displays a big array of thesc dots to form a picture. Everything you sce on the screen,
including borders, graphics, characters, and blinkers, is made up out of pixels.

Each physical screen has a display mcmory which stores the values of all the pixels. On
regular black-and-white screens, each pixel has one of only two values, lit up or not lit up, so .
the pixel is represented in memory by one bit. Usually 0 is used for the background of a
window and the characters or lines on it are made of I's, so 1 can be considered "on" and 0
"off". On color screens, pixels have more than one bit. The usual sort of color screen has four
bits per pixel. 0 is still often used as the background value and assigned the color black. There
is no convention for the use of other pixel values.

Black and white screens have a hardware flag that controls the visual appearance of 1 and 0
pixels. In "black-on-white" mode, 1 is dark and O is bright, so windows appear with dark text
on a white background. This mode is the default. In "white-on-black” mode, 1 is bright and 0
is dark. Users can switch between these modes with Terminal C.

An individual window can specify 1 for background and 0 for text; this is independent of
white-on-black mode (which applies to the whole screcn) and is requested with the :reverse-
video-p init option or the .set-reverse-video-p operation (scc page 81). These work by
controlling the alu functions used for drawing and crasing characters; see section 8.1, page 93.
Programs which use the window’s recommended alu functions for their drawing and erasing will
automatically display in reverse-videco when this is specified. The who line mouse documentation
window is an example of a window which uscs reverse-video.

tv:black-on-white &optional (screentv:default-screen)
Make screen display onec-bits as black, with zero-bits as white. (This is the default mode.)

Note that this works by ‘sctting a bit in the display hardware:; as a result, if done on the
main screen, it applies to the who line as well.

SRCKI.WIND>WINDOLTEXT.S51 , 8-AUG-83

Window System Manual 15 _ Bit-Save Arrays

tv:white-on-black &optional (screentv.default-screen)
Make screen display one-bits as white,” with zero-bits as black.

tv:complement-bow-mode &optional (screen tv.default-screen)
Toggle whether screen displays one-bits as white or as black. This is what Terminal C

does.

tv:bits-per-pixel Instance variable of tv:screen
1 for a black-and-white screen, larger numbers for other kinds (4 for the standard color
screen). '

tv:buffer Instance variable of tv:screen

The address of the screen memory, as a fixnum.

tv:buffer-halfword-array Instance variable of tv:screen
An art-16b array containing the screcn memory.

tv:control-address | Instance variable of tv:screen
The address of the screen’s control register which contains, among other things, the flag
controlling black-on-white mode.

2.4 Bit-Save Arrays

The pixel values that make up a window’s screen image are called its contents. When a
window is fully visible, its contents are displayed on a screen so that they can be seen. When the
window is not fully visible, its contents are lost unless there is a place to save them. Such a
place is called a bit-save array.

A bit-save array is an array of bits of sufficient size to hold a copy of the window’s contents.
If a window has a bit save array, its contents are copied into the array when the window ceases
to be fully visible. If the window becomes fully visible again, the contents are copied from the
bit-save array back onto the screen. In the mean time, programs can use tvisheet-force-access
to do output into the bit-save array while the window is not visible (see page 23), and the
window’s inferiors, if any, can be exposed and do output (see section 2.5, page 17).

When a window with a bit-save array is partially visible, the visible parts can be displayed
correctly by copying them from the bit-save array. This is the behavior you observe if you make
a small Lisp listencr window with Create and have a full-screen window such as the initial Lisp
listener or a Zmacs frame partially visible around it. It happens because the Lisp listener or
Zmacs frame has a bit-save array.

If a window does not have a bit-save array, then there is no place to put its contents when it
is not visible, so they are lost. When the window becomes visible again, it will try to redraw its
contents; that is, to regenerate the contents from some state information in the window. This is
done by the :refresh operation documented below. Some windows can do this; for example,
editor windows can regencrate their contents based on the editor buffers they are displaying.
Other windows, such as Lisp listencrs, do not remember what was displayed on them and cannot
regencrate their previous contents. Such windows just leave their contents blank, except for the
margins (scc chapter 11, page 129), which all windows can regenerate.

SRCKL.WIND>WINDOLTEXT.51 8-AUG-83

Bit-Save Arrays 16 Window System Manual

The advantage of having a bit-save array is that losing and regaining visibility does not require
the contents to be regenerated; this is desirable since regeneration may be computationally
expensive, or even impossible. The disadvantage is that the bit-save array can be large and
swapping it in can be slow.

When a frame is in use, giving the frame a bit-save array enables the contents of the frame
and all the panes to be preserved if the frame ceases to be fully visible. Bit-save arrays for the
panes would come into play only if panes were shuffled or substituted within the frame; in most
applications, this happens never or rarely, and is accompanied by a thorough redisplay. So
normally the frame gets a bit-save array and the pancs do not.

tv:bit-array Instance variable of windows
This instance variable of all windows holds the window’s bit array, or nil if it has none.

tv:sheet-bit-array window
Accessor defsubst for the corresponding instance variable.

:bit-array Operation on windows

Returns the window’s bit array, or nil if it has none,
:save-bits : Operation on windows
Returns non-nil if this window saves its bits when not exposed.

:set-save-bits flag Operation on windows
Tells this window to start or stop saving its bits when not exposed. flag is t to start or nil
to stop.

:save-bits flag Init option for windows

flag may be t, nil or :delayed. :delayed causes the window to acquire a bit-save array
the first time it is deexposed, but not before.

:refresh &optional (fype ':complete-redisplay) Operation on windows
Restore the saved contents of the window or regenerate the contents, according to the
value of fype (and to whether the window has a bit-save array).

Here are the possible values of fype:

:complete-redisplay
This- is the default. The window’s present bit image is completely
discarded and regenerated from scratch. The margins are redrawn by
invoking :refresh-margins. The default definition of :refresh just leaves
the inside blank except for refreshing any exposed inferiors.

If the window has no bit-save array, type is ignored and the actions for
:complete-redisplay are always used.

:use-old-bits The complete contents are restored from the bit-save array. This is
specified by the system when a window is exposed.

:size-changed
This keyword is specified when the window’s size has been changed. The

SRCKL.WINID»WINDOL TEXT.S1 8-AUG-83

Window System Manual 17 Screcn Arrays and Exposure

contents are restored from the bit-save array, and then the margins are
refreshed with :refresh-margins.

:margins-only This keyword is specified when the inside portion of the window is
completely undisturbed, and only the margins need to be refreshed. The
system treats it just like :size-changed.

Window flavors ought when possible to provide :after daemons for :refresh, to complete
the job of redrawing the window, which the system itself cannot know how to do. When
these daemons run, the instance variable tv:restored-bits-p will be non-nil if the window
contents were restored from a bit-save array. If this is so, there is no nced for the :after
daemons to do anything, except perhaps if the window’s inside size has changed.

tv:restored-bits-p Instance variable of windows
In :after daemons of :refresh (and therefore also of :expose), this is t if the contents
were restored from a bit-save array. If it is nil, the inside of the window was left blank
and must be regenerated to whatever extent that is possible.

2.5 Screen Arrays and Exposure

This section discusses the concepts of screen arrays and of exposed windows. These have to
do with how the system decides where to put a window’s contents (its pixels), how the notion of
visibility on the screen is extended into a hierarchy of windows, and how programs can control
which windows are visible. Do not feel it is your fault if this seems complicated; you do not
need to understand it fully on your first reading of the manual.

Each window or screen can have a screen-array, which is where output drawn on the window
should go. Drawing characters or graphics is done by changing elements of the window’s screen
array. The screen array is stored in the instance variable tviscreen-array. The variable can also
be nil, to say that the window does not have a screen array at the present time.

A screen normally has a screen array that is displaced to the special memory that the screen’s
hardware displays from. A window that is visible has a screen array; it is an indirect array that
points into the area of the superior’s screen-array where the inferior gets displayed on the
superior. For example, consider a visible window whose superior is a screen and whose upper-
left-hand corner is at location (100,100) in the screen. The window’s screen-array would be an
indirect array whose (0,0) element is the same as the (100,100) element of the screen. If you were
to set a pixel in the window’s screen-array, the corresponding pixel in the screen (found by
adding 100 to each coordinate) would be set to that value.

A visible window more than one level down from the screen has a screen array that indirects
more than once. The window’s screen-array points into the middle of its superior’s screen array,
which points into the middle of the superior’s superior’s scrcen array, and so on until the screen
is reached. When typeout is done on the window, it will appear on the screen, offset by the
combined offsets of all the ancestors, so that it will appear in the correct absolute position on the
screen.

SRC:KL.WIND>WINDOLTEXT.51 _ 8-AUG-83

Screen Arrays and Exposure 18 Window System Manual

Sometimes a window is unable to have a screen array that points to its superior’s screen array.
For now, let’s not ask why this might happen, but consider instead what to do about the screen
array when this does happen. There arc two alternatives. If the window has a bit-save array,
then the bit-save array is used as the screen array. If there is no bit-save array, there can be no
screen array either. The window’s tviscreen-array variable becomes nil, and there is nowhere for
output on this window to go.

For a window w with a bit-save array, w’s inferiors are not affected by where w’s screen
array points. w always has a screen array, and its inferiors’ screen arrays can point to that.

But if w has no bit-save array, it may have nil instead of a screcn array, and in that case it
is impossible for w’s inferiors to have screen arrays pointing into w’s screen array. So they in
turn must usc their bit-save arrays, if any, as screen arrays, or not have screen arrays. The effect
propagates down the hierarchy.

So we see one possible reason why a window may be unable to have a screcn array that
points into its superior’s: if the superior doesn’t have a screen array at all. There is one other
reason: the superior may deny permission for this window to point its screen array into the
superior. The superior has an instance variable tviexposed-inferiors which record all the inferiors
permitted to do this. (Only active inferiors are allowed.) This permission can be granted or
revoked at any time, and is called exposability. Each window can be made exposable or not
exposable using the :expose and :deexpose operations. So, if a window’s superior does not have
a screen array, or if the window is not exposable, then the window must scrounge up a screen
array itself if it can. ‘

A window is said to be exposed if it has a screen array that points into its superior’s screen
array. Note that a window must be exposable in order to be exposed, but the converse is not
true. An exposable window is exposed as well if and only if its superior has a screen array.

An exposed window is not necessarily visible. A window is visible if ‘its screen array points,
through some number of levels of indirection, into the middle of the screen’s screen array. An
exposed window’s screen array points into the middle of something, but that may be a bit-save
array in a deexposed ancestor some number of levels up. A window that is exposed but not
visible must have some ancestors that are not exposed, and at least one of them must not be
exposable cither. This diagram of a window w8 and its ancestors shows the pattern of exposed
and deexposed windows and how it comes about.

§ <-- Wl <-- w2 <-- W3 <-- w4 <-- wh <-- wb <-- w7 <-- w8

exposable not! exposable again...

o wh has a bit-save array
exposed... deexposed... exposed...
visible... invisible,.. ~...still invisible...

Output is allowed on a window whencver the window is exposed. Usually exposed windows
are visible and the output can be seen on the screen. But output to an exposed window with a
deexposed ancestor is also permitted. Then the output goes into the middle of that ancestor’s bit-
save array rather than onto the screen. Such output cannot actually be scen. But if the
unexposable ancestor that must exist is made exposable, the bit-save array will be copicd onto the
screen and the output already done will be seen.)

SRC:KL.WIND>WINDOLTEXT.51 8-AUG-83

Window System Manual 19 Screen Arrays and Exposure

Output is not normally allowed on a deexposcd window, even if the window has a screen
array which is its bit-save array. However, in this case, you can usc tvisheet-force-access to
override the prohibition and output onto the bit-save array. Use of :permit as the window’s
deexposed typeout action (see page 21) allows all output on such windows to proceed and draw in
the bit-save array. A deexposed window with no bit-save array cannot have output done on it in
any fashion since it has no contents.

The :expose operation makes a window exposable. If at that time its superior has a screen
array, the window will become exposed as well. Or, if the superior later acquires a screen array,
the window will become exposed then. This can happen if the superior itself is exposed, or if the
superior is given a bit-save array with the :set-save-bits operation.

The :deexpose operation always makes the window unexposable and therefore not exposed.

It is possible for a screen to be deexposed. In particular, if a Lisp Machine does not have a
color. display physically attached to it, there is still a "color screen” Lisp object in the Lisp world,
but it is dcexposed (and so are any immediate inferiors it may have). This is so saved Lisp
environments can be moved easily between machines with different hardware configurations. The
screen object is left deexposed so that programs will not try to output to it. The screen is
exposed whenever the Lisp Machine system is booted on a machine that actually has a color
screen; then all its exposable inferiors become exposed too. For screens, there is no distinction
between exposed and exposable, since there is no superior to have a say in the matter.

In order to maintain the model that windows are like pieces of paper on a desk, it is
important that no two windows that both occupy some piece of screen space be cxposed at the
same time. To make sure that this is true, whenever a window becomes exposed, the system
deexposes any of its exposed siblings that it overlaps. (Note: this is not true for temporary
windows; see page 24.)

:9xpose Operation on windows and screens
&optional inhibit-blinkers bits-action new-lefi new-top
Makes the window exposable, and exposed if possible. This is a very useful operation to
attach daemons to, but remember that this operation may be performed on a window that
is already exposable. The dacmons must not make the assumption that the window is just
becoming exposable. If the window is not a direct inferior of the screen, it may not be
becoming exposed either.

If the window is not active in its superior, it is first activated.

The arguments to the :expose operation are supplied by the system and usually of
interest only to the system’s methods. User invocations of this operation should usually
supply no arguments.

If the window actually becomes visible, the window’s blinkers normally appear with their

deselected visibilities. If inhibit-blinkers is non-nil, the blinkers are not acted on. If the
window is being exposed in order to select it, this is used to save time.

SRCKL.WIND>WINDOLTEXT.51 8-AUG-83

Screen Arrays and Exposure 20 Window Systcm Manual

If the window actually becomes visible, birts-action controls how it is put back on the
screen. It can be :noop, :restore or :clean. If it is :noop, the window’s scrcen area is
not touched. This is used only in very unusual cases. If it is :clean, the window is sent
a :refresh message with argument :complete-redisplay, which should make the window
redraw itsclf from scratch if it can. If bits-action is :restore, the window is sent a
rrefresh message with argument :use-old-bits, which should make the window copy its
bit-save array onto the screen. nil as the bifs-action is equivalent to :restore for windows
with bit-save arrays and to :clean for windows without them.

new-lefi and new-top are the offscts within the superior at which to expose the window.
They default to the window’s current offsets. These arguments are for usc by the :set-
edges operation; you should not pass them.

A window cannot be made exposable unless its full size fits within the superior.

~:deeexpose Operation on windows and screens
~ &optional save-bits-p screen-bits-action remove-from-superior
. Makes the window not exposed and not exposable. This is a useful operation to add
daemons to.

The arguments to the :deexpose operation are supplied by the system, and are usually of
interest only to the system’s methods.

save-bits-p defaults to :default. It can also be :force or nil. :default means the bits are
saved if the window has a bit-save array. :force gives the window a bit-save array if it
doesn’t already have one, so that the bits are always saved. nil does not save the bits.

screen-bits-action controls what to do to the bits on the screen. It may be :noop to do
nothing to them, or :clean to erase the area occupied by the window.

If remove-from-superior is nil, the window remains exposable. You should always use t
(which is the default) for this argument. The window system uses nil as part of
implementing deexposure of an exposable window whose superior loses its screen array.
Use of nil at any other time would lead to incorrect results.

:expose-p r-or-nil Init option for windows
If this option is specified non-nil, the window is made exposable after it is crcated. The
default is to leave it deexposed. If the value of the option is not t, it is used as the first
argument to the :expose operation (the inhibit-blinkers argument).

:exposable-p Operation on windows and screens
t if the window is exposable.

:exposed-p Operation on windows and screens
t if the window is exposed.

SRCKL.WIND>WINDOL.TEXT.51 8-AUG-83

Window System Manual 21 ' Ability to Output

:exposed-inferiors Operation on windows and screens
Returns a list of all exposable inferiors of this window or screen. '

tv:with-sheet-deexposed (sheer) &body body Special form
Exccutes the body with sheet deexposed. If sheet had been exposed, it is rcexposed when
body exits. Operations that change things about the window often make use of this to
reduce the complicated case of an exposed window to the simpler case of a deexposed

one.

:screen-array _ Operation on windows and screens
Returns the window or screen’s screen array, or nil.

tv:exposed-p ' Instance variable of windows and screens
t if the window is exposed.

tv:exposed-inferiors Instance variable of windows and screens
A list of all exposable inferiors of this window or screen.

tv:screen-array ' Instance variable of windows and screens
The screen array, or nil if there is none.

tv:sheet-exposed-p window-orscreen
tv:sheet-exposed-inferiors window-or-screen
tv:sheet-screen-array window-or-screen

Accessor defsubsts for the corresponding instance variables.

2.6 Ability to Output

Whether a window is exposed usually controls whether output can be done on it. In a
deexposed window a flag called the oufput hold flag is normally 1. This causes an output hold
exception if an attempt is made to output to the window. The normal result of an output hold
exception is that the process doing output waits until the output hold flag is clear. The process
wait state during this wait is "Output Hold".

The output hold flag is also set in a window that has exposed inferiors, because output on
the window would overwrite the inferiors.

tv:sheet-output-hold-flag window
1 to indicate an output hold exception, or 0 to permit output on the window. This is

setf'able.

When a process attempts to type out on a window which is deexposed and has its output
hold flag set, what happens depends on the window’s deexposed typeout action. The deexposed
typeout action can be any of certain keyword symbols, or it can be a list. After the specified
action is taken, if the output hold flag. is still set, the process will wait for it to clear. The
interesting thing is that the action may affect the value of the output hold flag.

SRCKLWIND>WINDOLTEXT.S1 3-AUG-83

Ability to Output 2 Window System Manual

tv:deexposed-typeout-action Instance variable of windows
The window’s deexposed typeout action.

:deexposed-typeout-action Operation on windows
:set-deexposed-typeout-action action Operation on windows
Get or set the window’s deexposed typeout action.

:deexposed-typeout-action action Init option for windows

Initializes a window’s deexposed typeout action to action.

tv:sheet-deexposed-typeout-action window

Accessor defsubst for the instance variable.

Here are the possible values of deexposed typeout action:

:normal

:.expose

permit

:notify

error

This, the default, means "no action”. Therefore, the process will always have to

wait for the output hold flag to clear.

The action is to send the window an :expose message. This may expose the
window (if the superior has a screen-array), and if it does expose the window
then the output hold flag will probably be cleared, allowing typcout to proceed
immediately. If the superior is the screen, the :expose option provides a very
different user interface from the :normal option.

This means to permit typeout even though the window is not exposed, as long as
the window has a screen array; ie. it may type out on its own bit-save array
even though it is not exposed. The next time the window is exposed, the updated
contents will be retrieved from the bit-save array.

The action for :permit is to turn off the output hold flag if the window has a
screen array. This mode has the disadvantage that output can appear on the
window without anything being visible to the user, who might never see what is
going on and might miss something interesting.

It is possible to request that output in this mode to partially visible windows be
transferred to the screen periodically. See page 28.

This means that the user should be notified when there is an attempt to do output
on the window. The action taken is to send the :notice message to the window
with the argument :output (sce page 158). The default response to this is to
notify the user that the window wants to type out and to put the window on a
list for Terminal 0 S to select it. Supdup and Telnet windows have :notify
deexposed typeout action by default.

The action is to signal an error.

a list, (operation arguments...)

The action is to send the window a message with operation and arguments.

Functions such as ed, whose purpose is to sclect a window for the user, should not return
immediately. If ed returned immediately, then when called in a Lisp listener with its deexposed
typeout action sct to :expose, the printing of the value returned by ed would immediately switch

SRCKL.WIND>WINDOLTEXT.SI 8-AUG-83

Window System Manual 23 Window Locking

back to the Lisp listener, which defcats the purpose of ed. To avoid this behavior, ed calls
tv:await-window-exposure.

tv:await-window-exposure
Wait until terminal-io is exposed (more precisely, until its :await-exposure opcration

returns).

:await-exposure | Operation on windows
Does not return until the window is exposed. (Some window flavors implement it
differently). '

tv:sheet-force-access (window) body Special form

tv:sheet-force-access allows you to do typeout on a window that has a screen array
even if its output hold flag is set. It works by turning off the output hold flag
temporarily around the exccution of the body. This is useful for drawing on a window
while it is not visible. For example, changing the menu items of a menu redraws the
menu contents immediately even if the menu is not visible; this is because when the
menu does become visible it looks better to the user for it to become visible in one
instant with the correct contents.

If the window is exposed, tvisheet-force-access goes ahead and outputs to it. If the
window is not exposed but has a bit-save array, the output goes there.

If the window is not exposed and has not bit-save array tv:sheet-force-access doesn’t
do anything at all; it just returns without evaluating its body.

Here is an example: when a text scroll window is given a new item generator, which
completely changes the text that it should display, it redisplays the window in its bit-save
array if necessary. dont-prepare-flag is t because the clear -screen and redisplay -
operations take care of preparing the sheet.
(defmethod (tv:text-scroll-window :set-item-generator)
(new-item-generator)
(setq item-generator new-item-generator)
(tv:sheet-force-access (self)
(send self ’:clear-screen)
(send self ’:redisplay 0 .
(tv:sheet-number-of-inside-1ines))))

2.7 Window Locking

Each window or screen has a lock which is used to prevent two processes from operating on
the window at once in a way that might cause inconsistent results. Outputting on the window,
activating or deactivating the window, exposing or deexposing the window, and changing the
~ window’s shape all lock the window. This is done with process-lock, via tv:ilock-sheet. Note
that the window’s inferiors must be locked too.

Another form of locking is called "temp-locking". A window is temp-locked when a
temporary window (see page 24) is exposed on top of it. All the operations which lock the

SRCKL.WIND>WINDOLTEXT.51 3-AUG-83

Temporary Windows 24 Window System Manual

window will have to wait if the window is temp-locked just as they would if the window were
locked in the ordinary manner; however, the lock is not considercd owncd by a process but
rather by the temporary windows that overlap the window. It will stay locked until the temporary
windows arc all decxposed. The :mouse-select operation and some other things know how to
deexpose temporary windows when necessary to cause a window to become unlocked.

tv:lock-sheet (window-or-screen) &rest body... Special form
Executes body with window-or-screen locked by this process. Calls to tv:lock-sheet are
found in wrappers for opecrations such as :expose, so you need not call it yourself, but
you should be aware that it is being done.

tv:lock Instance variable of windows and screens
The lock. It is nil for an unlocked window, a process that has locked the window, or a
list of covering temporary windows if this window is "temp-locked”.

tv:lock-count Instance variable of windows and screens
The number of times the lock is locked. This counts the number of recursive lockings for
the same process, for example.

tv:sheet-lock window-or-screen
Returns the contents of window-or-screen’s lock. This is a defsubst and can be setfd. It
is usually unmodular to use this.

tv:sheet-can-get-lock window-or-screen &optional (lock-id current-process)
Returns t if this window or screen could right now be locked by lock-id; essentially, if it
is free or already locked that way (but in fact it is more complicated than this.)

Note that if you call this function with inhibit-scheduling-flag nil, you are likely to be
susceptible to a timing error.

tv:sheet-clear-locks
Unlocks the locks of all active windows. For use in an emergency.

[
0

o

Normally, when a window is exposed in an area of the screen where there are already some
other exposed windows, the windows that used to be there are deexposed automatically by the
window system. This is because the window system normally doesn’t leave two windows both
exposed if they overlap. (In the absence of temporary windows, which we are about to introduce,
the system never allows two overlapping windows to both be exposed.)

But sometimes there are windows that only get put -up on the screen for a very short time.
The most obvious examples of such windows are the momentary menus that only appear for long
cnough for you to seclect an item. It would be unfortunate if every time a momentary menu
appeared, the windows under it had to be deexposed. The ones without bit-save arrays would
have their screen image destroyed, forcing them to regenerate it or to reappear cmpty. The ones
with bit-save arrays would not be damaged in this way, but they would have to be deexposed,
and deexposure is a relatively expensive operation.

SRCKL.WIND>WINDOILTEXT.S1 8-AUG-83

Window System Manual 25 Temporary Windows

This problem is solved for momentary menus by making them temporary windows. Temporary
windows work differently from other windows in the following way: when a temporary window is
exposed, it saves away the pixels that it covers up. [t restores these pixels when it is deexposed.
These pixcls may come from several different windows. This way it doesn’t mess up the area of
the screen that it uses, even if it covers up some windows that don’t have bit-save arrays.

Also, a temporary window, unlike a normal window, does not deexpose the windows that it
covers up. This way the covered windows need not try to save their bits away in their bit-save
arrays (if they have them) nor ever have to try to regenerate their contents (if they don’t). They
never notice that the temporary window was (temporarily) there. .

tv:temporary-window-mixin Flavor
This mixin makes a window a temporary window.

:temporary-bit-array Operation on windows
Non-nil if the window is a temporary window.

There would be some problems if temporary windows were this simple. Suppose there is a
normal window, and a temporary window appears over it; some of the contents of the normal
window are saved in an array inside the temporary window. Now, if the normal window were
moved somewhere else, and possibly became deexposed or overlapped by other windows, and
then the temporary window were deexposed, the temporary window would dump back its saved
bits where the normal window used to be. This would clobber some other window.

Furthermore, even though normal window is still exposed, output on it must not be
permitted, since that could overwrite the temporary window.

Because of problems like these, when a temporary window gets exposed on top of some other
windows, all the windows that it covers up (fully or partially) become temp-locked. While a
window is temp-locked, any attempt to type out on it will wait until it is no longer temp-locked.
Furthermore, any attempt to decxpose, deactivate, move, or reposition a temp-locked window will
wait until the window is no longer temp-locked. The temp-locking is undone when the temporary
window is deexposed.

Because of temp-locking, you should never write a program that will put a temporary window
up on the screen for a "long" time. There should be some action by the user, such as moving
the mouse, which will make the temporary window deexpose itself. It is best if any attempt by
the user to get the system to do something makes the temporary window go away. While the
temporary window is in place, it blocks many important window system operations over its area
of the screen. The windows it covers cannot be manipulated, and programs that try to manipulate
them will end up waiting until the temporary window goes away.

It works fine to have two or more temporary windows exposed at a time. If you expose
temporary window a and then expose temporary window b, and they don’t overlap each other,
they can be deexposed in either order, and any windows that both of them cover up will be
temp-locked until both of them are deexposed. If b covers up a, then g will be temp-locked just
like any other window, and so it will not be possible to deexpose a until b has been deexposed.

SRCKL.WIND>WINDOLTEXT.51 8-AUG-83

The Screen Manager 26 Window System Manual

2.9 The Screen Manager

Sometimes not all of the screen is in use by fully visible windows. This does not happen in
elementary use of the Lisp Machine, since the initial windows in the system are all full-screen-
sized, but if you create a small Lisp listener with system menu Create the rest of the screen will
be unclaimed by any fully visible window. The part of the window system responsible for dealing
with unclaimed parts of the screen is called the screen manager.

The screen manager fills such unclaimed arcas by looking for deexposed windows which fall
entirely or partly within them. Only active immediate inferiors of the screen are considered, and
in a specific priority order described in section 2.9.2, page 28.

A window that falls entirely within unclaimed areas can be made visible without decxposing
any other windows. This is called autoexposure. Since the window is a direct inferior of the
screen, exposing it always makes it visible. The screecn manager gocs on considering the
‘remaining decxposcd windows, but with less screen area unclaimed.

A window that overlaps the unclaimed areas but also overlaps a visible window cannot simply
be exposed. So it becomes partially visible, which means simply that the screen manager copies
the appropriate parts of the window’s contents onto the unclaimed areas. The window is not
treated as visible or exposed in any other sensc. This gives the visual impression of overlapping
picces of paper on a desk top; the decxposed window is partially covered up by the visible
windows, but you can still seec those parts that aren’t covered. The contents are copied from the
window’s bit-save array. Windows without bit-save arrays are by default ineligible for partial
visibility, so other windows later in the order will get a chance for the same screen area;
however, it is possible to arrange for windows without bit-save arrays to be partially visible
(though the displayed contents may not be accurate).

Windows whose size and position are such that they do not fit within the bounds of the
superior cannot be exposed, and the screcn manager does not try to autoexpose such windows.
However, they can be partially visible like any other windows.

The screen manager has one other job. At the same time that it does autoexposure, it can
also sclect a window if there isn’t any selected window at the time. This is called awfoselection.
A window is a candidate for autoselection if it is an exposed inferior of the screen and its
:name-for-selection is non-nil (see page 35). For more information, see chapter 3, page 31.

The screen manager does not only manage the inferiors of screens; it.can manage the
inferiors of windows as well. The system invokes the screen manager on a sheet’s inferiors by
sending the sheet a :screen-manage message. This happens for all visible sheets regardless of
flavor,

:screen-manage Operation on windows and screens
The default definition of this operation is to do autoexposure and display of partially
visible windows among the active inferiors of this window or screen, as described above.

SRCKL.WIND>WINDOLTEXT.51 8-AUG-83

Window System Manual 27 . The Screen Manager

tv:no-screen-managing-mixin Flavor
Prevents the screen manager from dealing with the inferiors of a window by redefining the
:screen-manage operation to do nothing,

When a frame is used by a single program, the program usually expects to have sole
control over exposurc of panes. Then this mixin can be used to tell the screen manager
not to interfere. Constraint frames do not normally need to use this mixin because they
avoid problems while changing configurations by deactivating any panes that do not belong
in the configuration. Zmacs frames do use this mixin so that the screen manager will not
autoexpose various editor windows that belong to the frame.

:screen-manage-autoexpose-inferiors Operation on windows and screens
Performs autocxposure of the active inferiors of this window or screen. Used by the
default definition of :screen-manage.

2.9.1 Control of Partial Visibility

:screen-manage-deexposed-visibility Operation on windows
Should return non-nil if parts of this window ought to be displayed when the window is
partially visible. The default definition returns non-nil if the window has a bit-save array.

tv:show-partially-visible-mixin ' Flavor
If a window has this flavor mixed in, then the screen manager will attempt to show it to
the user when it is partially visible even if it doesn’t have a bit-save array. Since there
are no saved contents to display, the screen manager must give the window a screen array
temporarily, send it a :refresh message so it will draw itself on the screen array, and
then display whatever is found there. Often this means that you will see the label and
borders of the window, but not the inside,

tv:gray-deexposed-right-mixin Flavor
tv:gray-deexposed-wrong-mixin Flavor
Make any visible parts of the window appear gray if the window is not fully visible.
tv.gray-deexposed -wrong-mixin is faster, but does not work for windows that have
inferiors. You would use these mixins in windows without bit-save arrays, as a cheaper
alternative to tv:show-partially-visible-mixin, to provide something better than blankness
when the window ought to be partially visible.

The precise kind of gray is controlled by the instance variable tv:gray-array, which comes
with operations :gray-array and :set-gray-array and init option :gray-array. The value
must be a two-dimensional array of bits that will be replicated by bitblt; its width must
be a multiple of 32. Useful values for tv:gray-array include tv:75%-gray, tv:50%-gray,
tv:33%-gray, tv:25%-gray, and tv:12%-gray.

tv:initially-invisible-mixin Flavor ‘
Causes a window not to appear through screcn management, even partially, until it has
first been explicitly exposed. This is used in some window flavors (such as editor
windows, Supdup windows, and others) of which instances are present in the saved
system environment cven without the user’s ever having requested them. These windows

SRC:KLWIND>WINDOLTEXT.51 3-AUG-83

The Screen Manager 28 Window System Manual

can be active, and available for System keys to select, but will not become partly visible
if some other window is made smaller.

Recall that if a deexposed window has its deexposed typcout action sct to :permit, output on
the window can procced but goes to the bit-save array rather than to the screen. If the window is
partially visible, such output could modify the visible parts of the window. You can requcst that
the screen manager check periodically for such output and copy the changed contents to the
screen.

tv:screen-manage-update-permitted-windows Variable
Controls whether the screen manager looks for partially-visible windows with decxposed
typeout actions of :permit and updates the visible portion of their contents on thc screen.
If the value is nil, which it is initially, the screen manager does not do this. Otherwise
the value should be the interval between screen updates, in 60ths of a second.

2.9.2 Priority among Windows for Exposure

Suppose there is a section of the screen in which there are no exposed windows, and more
than one active, deexposed window could be exposed to fill this area, but the two could not both
be exposed (because they overlap). Which one gets to be exposed? Here’s another issue: when
the screen manager wants to display picces of partially-visible windows, there may be more than
one deexposed window that could be displayed in a given area of the screen. How does screen
manager decide which window to display?

It decides on the basis of a priority ordering. All of the active inferiors of a window are
thaintained in a specific order, from highest to lowest priority. When there is a section of the
screen on which more than one active inferior might be displayed, the inferior that is earliest in
the ordering, and so has the highest priority, is the one that gets displayed. This ordering is like
the relative heights of pieces of pzper on a desk; the highest piece of paper at any point on the
desk is the one that you see, and all the rest are covered up.

:order-inferiors Operation on windows and screens
Sorts the tv:inferiors list of active inferiors of this window or screcn into the proper order
for considering them for autoexposure or partiai visibiiity.

The default definition of :order-inferiors uses a complicated algorithm which is designed to
put the most recently exposed windows first, but also allows the programmer to specify priorities
explicitly. If you do not need to know the details, you can safely skip the rest of this subsection.

The algorithm involves a value assigned to each window called its priority, which may be a
" fixnum or nil. The general idea is that windows with higher numerical priority values have higher
priority to appear on the screen. The default value for the priority is nil, which is considered less
than any numeric value.

SRCKL.WIND>WINDOLTEXT.51 8-AUG-83

Window System Manual 29 The Screen Manager

tv:priority - , Instance variable of windows
The window’s priority value, a number or nil.

:priority Operation on windows
:set-priority new-priority Operation on windows
Get or set the window’s priority value.

spriority priority , Init option for windows
Initializes the window’s priority value. -

The standard ordering of inferiors puts all exposable inferiors first, followed by the
unexposable inferiors in order of decreasing priority. Each group of unexposable inferiors with the
same priority is order by how recently they were exposable; the longer an inferior has gone
without being exposable, the farther back it moves.

This is done by computing the current ordering based on the past ordering (as remembered
by the old value of tviinferiors). When the window system does anything which should change
the ordering, such as making a window exposable or not exposable, it invokes the :order-
inferiors operation to update the recorded ordering. '

The ordering is updated by moving the exposable windows to the front and sorting the
unexposable ones by priority. The sort is stable; that is, unexposable windows with the same
priority value keep their previous ordering. Since most of the time numerical priorities are not
used anyway (the priorities of most windows are nil), the ordering generally changes only as a
result of exposure and deexposure of windows. When a window becomes exposable it gets pulled
up to the front of the ordering; then when other windows become exposable instead, this window
sinks back down. Thus, t.he ordering ends up showing simply how recently each window was
exposable.

There is also an operation called burying a window, which deexposes the window and puts it
at the end of its priority grouping in the ordering. A program typically buries its window when it
thinks that the user is not interested in that window and would prefer to see some other windows.
The Bury command in Edit Screen is a way for the user to bury a window.

:bury Operation on windows
Buries the window. See also tvideselect-and-maybe-bury-window, a convenient
interface to this operation (page 33).

Negative priorities have a special meaning. If the value of a window’s priority is -1, then the
window will not ever be visible at all even if it is only partially covered; however, it will still get
autoexposed: If the value of priority is -2 or less, then the window will not even be autoexposed,
and so it will simply never be seen unless sent an explicit :expose message.

SRCKL.WIND>WINDOLTEXT.S1 : 8-AUG-83

The Screen Manager 30 | Window System Manual

2.9.3 Delaying Screen Management

The scrcen manager can potentially interfere with the actions of a program that explicitly
decxposes windows. Suppose you send a :deexpose message to an exposed window. The screen
manager will run, and will probably autoexpose that very window, canceling the effect of the
:deexpose. That window certainly does not overlap any still-visible windows, and it is as
recently-exposed as a window can get, so it will be the first candidate for autoexposure.

Explicit deexposure is usually done at the beginning of a sequence of window rcarrangements.
For example, moving an exposed window is done by deexposing it, changing its position (which
is easy when it is deexposed) and reexposing it. We want the screen manager to run when the
whole scquence is complete; it should not consider the transient intermediate states. Even if the
scrcen manager did not directly interfere with the program’s deliberate actions, it would waste
time and confusc the user by displaying partially visible windows in temporarily-unclaimed screen
areas for which the program is already preparing a new use. (This is a general phenomenon.
Management is a uscful auxiliary function, but managers have a tendency to interfere with work
they don’t understand if there is no way to shut them off.)

We shut the screen manager off with the special form tv:delaying-screen-management.
While its body is being executed, events that would normally bring about screcn management are
recorded on a queue instead. When the tv:delaying-screen-management form is exited
(whether normally or by throwing), the screen manager looks at the queuc and does all necessary
screen management in one blow.

Sometimes it happens that screen management cannot be done when the tv:delaying-screen-
management form is exited, because relevant windows are locked by other processes. Then the
entries are left on the queue. They are handled at some later time when the necessary locks are
free by a background process called Screen Manager Background. So the necessary screcn
management always does eventually get done.

When tv:delaying-screen-management forms are nested, only the outermost one will do
any screen management when it is exited.

tv:delaying-screen-management body... Special form
The body forms are evaiuated sequentiaily with screen management delayed. The vaiue of
the last form is returned.

tv:without-screen-management body... Special form
The body forms are evaluated segentially with screen management delayed. Moreover, if
the body completes normally, the queue entrics put on by its execution are removed from
the queue, on the assumption that the body has itself done all appropriate screen
redisplay. If the body terminates abnormally with a throw, the queued entries remain on
the queue and are processed by the screen manager eventually.

SRCKL.WIND>WINDOLTEXT.51 8-AUG-83

Window System Manual 31 Sclection

3. Selection

At any time, keyboard input is directed to at most one window, designated by programs or
by the system in response to user commands. This window is called the selected window. A
process trying to do input through another window will normally wait until the window is selected
(however, the window’s deexposed typein action can change this; sec below).

tv:selected-window Variable
The value of this variable 1s the selected window. You should not set this vanable
yourself, but use the defined interfaces described below.

A window’s cursor blinker normally blinks only when the window is selected. This is how the
user can tell which window is selected. (You can control what happens to each blinker when its
window becomes sclected; sce page 103.)

The user can change the sclected window using the Terminal and System keys or the system
menu. Also, clicking the mouse on a window usually selects that window if it is meaningful to

do so.

The simplest, and paradigmatic, case of window selection happens if you have several
independent windows on the screen, such as Lisp listeners. One of them displays a blinking
cursor, and input echoes there. The processes in the others remain in a keyboard input wait, as
you can see if one of the windows on the screen is a Peek. The mouse, or the Terminal O
command, can be used to select a different window. »

The selected window needs to handle certain operations that windows in general do not need
to handle. The flavor tviselect-mixin defines these operations, and should be used in flavors of
windows that are going to be selected. (A window can be useful without being selectable. For
example, menus cannot be selected.) The flavor tviwindow includes tv:select-mixin.

If two processes try to read from the same window (or windows sharing an input buffer), it is
unpredictable which one will get the input. If you are designing an application where this might
happen, you must make sure than you will not have two processes actually active and reading
input from the same source at the same time. In most applications there will be only one process
that ever reads input from any one window or input buffer. In these applications you should use
tv:process-mixin in the window flavor to tell the window which process is associated with it (see
page 40).

The selected window controls the actions performed by the system at the instant a character is
typed on the keyboard. Due to typed-ahead commands that switch windows (such as Control-Z
in the editor), therc is no way to know for certain which window will eventually read a character
being typed at a given moment, so letting the selected window decide asynchronous processing for
the character is the best that can be done. Asynchronous processing options include asynchronous
intercepted characters (see section 5.5.2, page 61) and case conversion of control characters (see
page 59).

SRCKL.WIND>SELECT.TEXT.21 8-AUG-83

How Programs Sclect Windows 32 Window System Manual

Asynchronous intercepted characters such as Control-Abort which act on a process ask the
sclected window which process to operatc on, with the :process operation (sce page 42). The
who line usually does the same thing to find the process whose run state should be displayed. If
you use tv:process-mixin, :process returns the process associated with the window; otherwise, a
default definition of :process is inherited from tv:select-mixin and returns whichever process last
read input from the window (or from any other window sharing the same input buffer). This is
fine for the who line, but can lead to weird results in Control-Abort. So you should use
tviprocess-mixin whenever it makes sense.

If a process tries to do input from a window whose input buffer is empty and not sclected, it
cannot get any input and must wait. (The input buffer is selected if this window, or any other
window sharing the samec input buffer, is the sclected window). The wait cnds when input
appears in the buffer, or when the buffer becomes selected and there is keyboard input available.
If the window is not even exposed, a notification may happen in addition. This is controlled by
‘the window’s deexposed typein action, which may be cither :normal or :notify. :notify means that
input from the window when it is deexposed should notify the user (sce page 157) with a message
like "Process X wants typein”, and make the window “interesting” so that Terminal 0 S can
select it.

:deexposed-typein-action action Init option for windows
Initializes the “"deexposed typein action” (see page 32) of the window to action. It
defaults to :normal.

:deexposed-typein-action Operation on windows
Returns the "deexposed typein action” (sce page 32) of the window.

:set-deexposed-typein-action action Operation on windows
Sets the "deexposed typein action” (see page 32) of the window to action.

3.1 How Programs Select Windows

Programs change the selected window using the :select operation.

sct &optional (remember-previcus %) Operation on windows

)
Makes this window (or its selection substitute, if any) the sclected window. Unless
remember-previous is nil, the previous selected window is entered on the list of
previously selected windows for the Terminal and System keys to use.
Many application window flavors define dacmons for this operation. Note, however, that
the daemons will be run whenever this operation is invoked, even if the window is
already selected.

tv:select-mixin Flavor

No window can actually be selected unless its flavor includes this mixin. tv:select-mixin
is part of tviwindow but not part of tv:minimum-window.

Windows whose flavors do not contain this mixin may be sent :select messages only if
they have designated other windows as sclection substitutes (sce below). The ultimate
substitute which is finally sclected must have tv:select-mixin.

SRCKL.WIND>SELECT. TEXT.21 8-AUG:83

Window System Manual 33 _ How Programs Sclect Windows

:selected-p Operdlion on windows
Returns t if this window is the selected window.

:mouse-select args Operation on windows
Selects a window, for a mouse click or for asynchronous keyboard input such as the
Terminal command.

While mostly the same as sending :select to the window’s alias for selected windows (see
section 3.2.2, page 36), this operation also causes all type-ahead input to remain with the
window that used to be selected (see page 59).

Note that the :select and :mouse-select operations should not be invoked in the mouse
process. This means that if you want to use them in a :mouse-click or :mouse-buttons
or :handle-mouse mecthod, you must do

(process-run-function "Select" window-to-select ' :mouse-select)

:deselect &optional (restore-selected 1) Operation on windows
This operation is invoked by the window system when a window ceases to be selected.
This can be because the window is no longer visible, or because some other window is
being selected.

Many application window flavors defined daemons for the :deselect operation,

restore-selected controls what will be done with this window in the tv:previously-
selected-windows array used by the Terminal S and System commands, and whether to
select automatically some other window found in that array. The possible values are

:dont-save Do not put the window being deselected into the list anywhere, and do
not select any other window,

nil or :beginning
Put the window being desclected at the front of the list, but do not select
any other window.

:end Put the window being deselected at the end of the list, but do not select
any other window.

first Put the window being deselected at the front of the list, after selecting the
window that used to be at the front of the list. This is like what
Terminal S does.

lastort Put the window being deselected at the end of the list, and select the
- window at the front of the list. This is the default.

tv:deselect-and-maybe-bury-window window deselect-mode
Deselects window, selecting the previously selected window. If that causes window to
become deexposed, window is buried. deselect-mode is passed to the :deselect operation,
where it controls where to put the window in the list of previously selected windows used
by the Terminal and System commands.

SRCKL.WIND>SELECT.TEXT.21 8-AUG-83

Teams of Windows 34 Window System Manual

tv:window-call (window [exit-operation exit-args...]) body... Special form

tv:window-mouse-call (window [exil-operation exit-args...]) body... Special form
Exccute body with window sclected. tv:window-call uscs the :select operation to do this,
while tv:window-mouse-call uses the :mouse-select operation; that is how they differ.
On exit, they resclect the window that had been sclected before, and send window a
message with opcration exir-operation and arguments exit-arguments. exit-operation is often
:deactivate. It can also bc omitted; then nothing is done to window cxcept for
desclecting it because some other window is sclected.

These constructs are no longer as useful as they once were. For controlling sclection
among windows of a team, sclection substitutes (see section 3.3, page 37) should be used
now instead.

3.2 Teams of Windows

The simple paradigm of selection is based on windows that arc independent competitors for
the user’s input, such as a pair of Lisp listeners. Another frequent situation is a to have a group
of windows that act as a team. Usually the windows consist of a single frame and its panes, and
usually they are managed by a single process, but ncither of these is necessarily so. Often the
windows of a team share an input buffer to make it easier for onc process to read input from all
of the windows at once (see section 5.1, page 50); this is an important technique which you
should definitely read about if you are designing a team of windows.

The simple paradigm extends cleanly to teams if we imagine that the user regards each team
as a unit of selection. In this extended paradigm, the user selects among entirc teams as if they
were single windows. '

~ Teams are not actual Lisp objects, merely concepts understood by the user and programmer.
The window system cannot have a selected team; some window of the team must be selected.
Each team’s program chooses a window of the team as the team’s selection representative. The
selected window should then be the selection-representative of the user's chosen team. The
selected window can change when the user chooses a new team, or when the uscr’s chosen team
picks a new representative. '

To implement this, the programmer of the team first picks one window of the team to be the
"leader". This is not the same as the sclection representative; that can change from moment to
moment, but the leader must be fixed. When the team is a frame and its panes, it is natural to
make the frame be the leader. Standard mixins arc provided to make this easy to do. These
mixins and the techniques of using them are described below, and in the following sections.

The sclection representative is implemented as the leader’s selection substitute (see scction 3.3,
page 37. Then the team can be sclected with the :select operation on its leader window.,

Even when the team allows the user some notion of sclecting among the windows of the
team—such as, when a Zmacs frame in two-window mode allows the uscr to mouse either of the
editor windows to select it— this is implemented most cleanly by starting from the model of a
team which does all selection under program control, and defining the appropriate mouse clicks as
commands which tell the team’s program to change its sclection representative.

SRCKL.WIND>SELECT. TEXT.21 §-AUG-83

Window Systcm Manual 35 Teams of Windows

Usually you will want to have only a single item appear for the team in the system menu
Select option’s menu. If the tcam consists of a frame which is the leader and its panes, this can
be done with tviinferiors-not-in-select-menu-mixin in the frame’s flavor. More complicated
behavior is also possible; for cxample, Zmacs frames in two-window mode allow ecach cditor
window to have its own entry in the Select menu.

Also, Terminal and System commands should resclect the team by sclecting its current
sclection representative. This is done by making them record and reselect the team’s leader. If
the team consists of a frame which is the leader and its panes, this can be done with tv:alias-
for-inferiors-mixin in the frame’s flavor. (In case you are curious, Zmacs frames follow this
pattern exactly. The frame is the alias for any editor windows inside it.)

The following subsections describe the details of how these things are done.

3.2.1 The System Menu Select Option

When the Select option in the system menu is used, it gets the list of altcrnatives to offer by
sending each screen a :selectable-windows message. This operation is normally defined to
recurse down the window hierarchy and ask each window whether it wants to be included. Each
window is sent a :name-for-selection message. The value should be either nil (omit this
window) or a string, which is the string to display in the menu of windows.

:selectable-windows Operation on windows
Returns an alist of strings versus windows, which will become part of the alist that will be
displayed in the system menu Select option’s menu. The alist returned should describe
this window and its inferiors, or whichever of them ought to appear in that menu.

The normal definition includes this window using its :name-for-selection as the car of -
the alist element, or omits this window if its :name-for-selection is nil. It then appends
the :selectable-windows values obtained from the window’s inferiors.

tv:inferiors-not-in-select-menu-mixin Flavor
This mixin redefines :selectable-windows to ignore the window’s inferiors. They are not
asked whether they should be included. This is an easy way to make a team of a frame
and its panes have only one entry, the entry for the frame.

:name-for-selection Operation on windows
This operation is supposed to return a string to display in the system menu Select
option’s menu of windows for this window. It may also return nil, meaning do not list
this window in the menu.

The default definition uses the window’s label string if any, or clse its name. Many
applications redefine the operation. tv:not-externally-selectable-mixin redefines it to
return nil. -

If you want more complicated behavior from a team than simply having a single entry,
you can get it by redcfining this operation on the flavors of various windows in the team.

SRCKL.WIND>SELECT. TEXT.21 , 8-AUG-83

Teams of Windows 36 andow System Manual

This operation also affects autoselection, done by the screen manager. A window can be
autosclected only if its :name-for-selection is non-nil.

3.2.2 Selection with Terminal and System Commands

tv:previously-selected-windows Variable
This variable’s value is an art-g-list array whose contents are all the active windows, not
including the sclected window, which the Terminal and System key commands for
window selection should know about. The windows of a team arc generally all
represented by a single member of the team, which we can call the "lcader". Typically
the "leader" is a frame which contains the rest of the tcam as panes, but this is not
required. '

The Terminal S command can be thought of as acting on a combined list that contains the
selected window followed by the previously selected windows. So, Terminal n S rotates the first
n elements of this list, so that the selected window becomes the first previously-sclected window,
and the nth previously selected window becomes the selected window. The System key also uses
this data base to find a window of the appropriate flavor to select, or to rotate through all the
windows of that flavor.

Windows are put on tv:previously-selected-windows and taken off of it automatically when
they are sclected, desclected, activated or deactivated. Attention is required from the applications
programmer only to identify teams of windows that should be treated as a unit. The system uses
the :alias-for-selected-windows operation to inquire about this.

:alias-for-selected-windows Operation on windows
Should return the window to represent this one in tv:previously-selected-windows.
When this window gets desclected, its alias is what will be recorded in that array. In the
simple paradigmatic case of independent Lisp listeners, the alias of each Lisp listener is
itself. For a window in a team, this should rcturn the team’s "leader” window.

The default definition of this operation is to return the superior’s :alias-for-inferiors if
that is non-nil, otherwise to return this window itself.

:alias-for-inferiors v Operation on windows
Should return a window to serve as the alias for all inferiors to all levels of this window,
if that is desired. Otherwise it should return nil.

The default definition returns this window’s superior’s :alias-for-inferiors. Thus, if an
ancestor of this window says it wants to be an alias for all of its descendants, we pass on
its request, but otherwise we allow the descendants to decide for themselves.

tv:alias-for-inferiors-mixin Flavor
This mixin makes a window be an alias for all of its inferiors. Thus, the window and all
of its inferiors form a team considcred as a unit by the Terminal and System commands,
and this window is the "leader”.

SRCKL.WINID>SELECT. TEXT.21 8-AUG-83

Window System Manual 37 Seclection Substitutes

If two windows in a hierarchy, one above the other, both have tv:alias-for-inferiors-mixin,
then the higher one "wins". Put another way, windows are grouped into the largest possible
teams, and there are no subtcams within teams.

Note also that no record is kept of which window in a team was actually sclected most
recently. tv:previously-selected-windows records only the alias or team lcader window, and this
is the window that will receive the :select message if a Terminal command is given to switch
back to that team. The way to make surc that the proper window within the team is selected is
to use selection substitutes, as described in the following section.

tv:not-externally-selectable-mixin Flavor
This mixin makes a window (and its descendants) have the window’s superior as an alias,
and keeps the window out of the Select menu.

Using this mixin, you can control more closely which windows are distinguished by the
Select menu and by Terminal commands: instead of making the top of the team’s
hierarchy be an alias for all of its descendants, specifically chosen descendants are given
this mixin so that they are not distinguished, and any other descendants remain
distinguished.

An older name for this mixin, which still works, is tv:dont-select-with-mouse-mixin.

3.3 Selection Substitutes

Every window has the ability to designate a "selection substitute”. If a window has a
substitute, requests to select or desclect the original window will be passed along to the substitute.
The substitute may have a substitute of its own, and so on. A window’s selection substitute is
remembered in the instance variable tv:selection-substitute, whose value is another window or
nil.

tv:selection-substitute Instance variable of windows
The window’s selection substitute, or nil.

The main use of selection substitutes is for controlling selection within a team of windows.
The team has one window designated as the leader: all user requests to select the team come as
:select messages to the team leader as a result of arrangements described in the previous section.
As a result, the team’s program can choose a selected window within the team by making it the
leader’s selection substitute.

The :alias-for-selected -windows of the substitute window should be the same as that of the
window it substitutes for, to avoid paradoxical results from the Terminal command. With a
hierarchical team of windows, this is usually arranged by using tv:alias-for-inferiors-mixin in the
top window of the team. The substitute window should not appear in the system menu Select
menu, for if it did, its entry and the cntry for the window it substitutes for would be functional
duplicates. tv:inferiors-not-in-select-menu-mixin in the top window of the team serves to
prevent the duplicate entry.

SRCAL.WIND>SELECI.TEXT 21 8-AUG-83

Sclection Substitutes 38 Window Systcm Manual

These operations on windows are provided for working with selection substitutes:

:selection-substitute Operation on windows
Returns this window’s sclection substitute, or nil if the window docs not currently have
one.

:ultimate-selection-substitute Operation on windows

Returns this window's substitute’s substitute... and so on until a window is reached that
has no substitute. If this window has no substitute, it itself is returned.

:self-or-substitute-selected-p Operation on windows
t if this window, or its substitute, or its substitute’s substitute, etc., is selected.

:set-selection-substitute substitute Operation on windows
Sets this window’s selection substitute to substitute (another window or nil). If it was
previously the case that this window or its substitute was sclected, then the window’s new
substitute (or the window itself) will be selected afterward. Thus, the valuc of :self-or-
substitute-selected-p on this window is not changed by this operation.

Note that when the team’s program. uses :set-selection-substitute on the team’s leader
window to change the sclected pane within the team, it does not matter whether the tcam is
currently selected. The "right” results will happen if the team is deselected and reselected at any
time.

To switch the selected pane temporarily, use

tv:with-selection-substitute (window for-window) body... Special form .
Executes body with window as the substitute for for-window. On exit, it sets for-window
back to whatever it used to be, and deexposes or deactivates window if appropriate.

Also useful is

tv:preserve-substitute-status window body.. Special form
Executes body, then selects window if window or its substitute had been sclected to begin

wrretle
Willl.

:remove-selection-substitute Operation on windows
window-to-remove suggested-substitute

Makes sure that window-to-remove is not this window’s substitute, suggesting suggested-
substitute (possibly nil) as a substitute instcad. The standard implementation of this
opcration simply sets the substitute to suggested-substitute if the substitute was window-fo-
remove. This operation is used and documented so that particular windows can define
their own ways of calculating the new value for the substitute, perhaps ignoring suggested-
substitute.

When a typeout window is deactivated, this operation is uscd to make sure that it ceases
to be another window’s substitute. ’

SRCKLWIND>SELECT.TEXT.21 8-AUG-83

Window Systcxﬁ Manual 39 ‘ The Status of a Window

3.3.1 Non-Hierarchical Selection Substitutes

Some programs wish to "replace” onc window with another temporarily. For example, the
functions supdup and telnet can bchave this way. giving the appearance of temporarily changing
the Lisp listener or other window in which they are called into a Supdup or Telnet window.
They do this by creating a suitable Supdup or Telnet window and making it the substitute for the
original window. In this case, the substitute window will have the same edges and the same
superior as the original window. It is not an inferior of the original window. It is not required
that the "replacement” window be the same size as the original, either.

Non-inferior sclection substitutes arc usually established and deestablished by using tv:with-
selection-substitute in a straightforward manner. The only thing that requires special attention is
to make sure that the original window is the :alias-for-selected-windows of the substitute. In
the case of supdup this is desirable to complete the illusion that the Lisp listener has “magically"
changed temporarily into a Supdup window. Since the substitute window is not a descendant of
the original one, it must have some other way to find the original window (such as an instance
variable for the specific purpose) and a specially defined :alias-for-selected-windows method to
return the original window.

3.4 The Status of a Window

A window’s status is a keyword that encodes whether the window is selected, whether it is
exposed, and whether it is active.

:status Operation on windows
Returns one of these symbols:
:selected . Means this is the selected window.
:exposed Means this is exposed but not selected. It may not be visible.

:exposed-in-superior
Means this window is exposable but its superior has no screen array.

:deexposed Means this window is active in its superior but not exposable.
deactivated Means this window is not even active.

:set-status suatus ‘ Operation on windows
Restores the window’s status to status, by selecting or deselecting, exposing or deexposing,

and activating or deactivating, as necessary. sfafus must be one of the possible values of
the :status operation.

The :status and :set-status operations are useful for selecting a window temporarily and
then restoring everything as it was. :set-status is corrcct for this because it may be
necessary to deexpose the window or deactivate it in addition to desclecting it.

SRCKL.WIND>SELECT. TEXT.21 8-AUG-83

Windows and Processes 40 Window System Manual

3.5 Windows and Processes

A sclf-contained interactive system that has its own window(s) usually has its own process to
drive the windows. Peck, Zmacs, ZMail and the inspector all do this when invoked through the
System key. Usually each window you crcate has its own process; there is a Peck process for
each Peek window, so different Peck windows run completely independently.

Whether a window is managed by a dedicated process or by various processes is not a crucial
decision. The program that reads commands from the window and draws on the window can
always be run in onc dedicated process, or in different processes at different times (though if you
run it in two processes at once, you had better be careful to keep them from confusing each
other). The mechanisms of selection and exposure that control whether input and output are
possible on a window at a given time work automatically on any process(cs) that try to do the
input or output. So when there is a dedicated process for a window, often the only connection
between them is that the dedicated process is running a program that has a pointer to that
window (typically the value of terminal-io in the process is that window).

For example, the inspector you get with System | has a dedicated process, whereas the one
you get by calling inspect runs in the process that inspect is called in. Yet these two windows
have the same flavor, and the same function, tviinspect-command-loop, does the main work.
The only differences are in deciding when to deexpose the window, what to do when that
happens, when it can be reused, what to do if the user types End, and other things related
directly to the difference in the two user interfaces for entering and exiting.

The inspector makes an instructive example for comparing these two ways of managing a
window. The function inspect allocates a window out of a resource of reusable windows of the
right flavor (see defresource, section 5.12 of the Lisp Machine manual). It sends the window
some messages to initialize it for this particular session of use; this is how it tells the window
about the object that is the argument to inspect. Then it selects the window manually using
tv:window-call (seec page 34) and calls the inspector program. When the user types End, the
program rcturns, tviwindow-call resclects the old window and deactivates the inspect window,
and inspect returns, inspect uses an unwind-protect so that aborting outside of inspect for any
reason brings back the old window.

Typing System 1 finds or creates an an inspect window of ihe same flavor. When no init
options are specified, this flavor’s default init plist specifies the crcation of a process, which is
initialized to call the inspector program. If the user types End and the inspector command loop
returns, the top-level function in the dedicated process buries the inspector window and loops
back to the beginning. That's all that is necessary to make System | work. The resource that
inspect uses explicitly specifies an init option when it constructs a window, so that no process is
- made.

tv:process-mixin Flavor
Provides an instance variable tv:process which can remembers a process associated with
the window. A window that will sometimes be used with a dedicated process should have

this mixin.

SRC:KL.WINIDSELECT. TEXT .21 8-AUG-83

Window System Manual 41 Windows and Processes

The most valuable service that this flavor provides is an easy way to create and initialize a
process for cach window that is created, and inform the process which window it was
created for. Once this is done, for the most part the desired results follow without special
effort.

Sclecting the window or making it visible will give the process a run reason. The window
itself is used as the run reason. Also, this will reset the process if it is flushed (waiting
with false as its wait function).

The :kill operation on the window will invoke the :kill operation on the process.

Use of tv:process-mixin guarantees that the :process operation will return the explicitly
specified process, regardless of which process has most recently read from the window.

tv:process Instance variable of tv:process-mixin
The process associated with the window, or nil.

iprocess process-or-description Init option for tv:process-mixin
Specifies the process for this window. The argument can be a process, or it can be a list,
which is used as a description for crcating a process. The list looks like
(initial-function make-process-options)
When the process starts up, it will call initial-function with the window as its sole
argument. Usually the initial function should bind terminal-io to the argument.

If this option is omitted or nil, the window starts out without a process.

:process Operation on tv:process-mixin

:set-process process Operation on tv:process-mixin
Gets or sets the process associated with this window. nil is a legal value, which means -
that the window has no process associated with it, even though it has the ability to have
one,

:processes Operation on windows
Returns a list of processes dedicated to this window. :append method combination is
used, so that all the processes mentioned by any of the methods are put into the final
answer. These are the processes that the :kill operation will kill.

The default is to return nil. tv:process-mixin contributes a suitable method.

These process-related operations are defined on tv:select-mixin so that they are always supported
by the sclected window. Since windows lacking tv:process-mixin do not explicitly remember a
process, a heuristic is used 1o come up with a process to operate on: it is the last process to
have read input from this window’s input buffer. (Think about the fact that the input buffer may
be shared with other windows.)

tviprocess-mixin is always put before tv:select-mixin in the components of a window flavor,
so this mcthod will be overridden.

SRC:KL.WIND>SELECT. TEXT.21 : 8-AUG-83

Windows and Processes 42 W_indow System Manual

:process Operation on tv:select-mixin
Gets a process somehow associated with this window, heuristically if necessary.

:set-process process Operation on tv:select-mixin
Records process in the place where the last process to read input from this window would
normally be recorded.

:arrest Operation on tv:select-mixin
:un-arrest Operation on tv:select-mixin
Arrests or unarrests the process returned by the :process operation. The arrest reason
used or revoked is not specified (it defaults).

:call Operation on tv:select-mixin
Selects an idle Lisp listener window (possibly this window, if it is an idle Lisp listcner).
If the window sclected is not this one, arrest this window’s process with arrest reason
.call. This arrest reason is removed automatically by sclecting this window again.

tv:reset-on-output-hold-mixin Flavor
Causcs any process that tries to draw on this window when it has an output hold to be
reset when it does so (see the :reset operation on processes, scction 26.4.3 of the Lisp
Machine manual). :

tv:truncating-pop-up-text-window-with-reset ' Flavor
A temporary window that truncates lines and also resets processes that try to output on it
when it has output hold. This flavor is what Terminal F uses.

SRC:KL.WINID>SELECT. TEXT.21 8-AUG-83

Window System Manual 43 Sizes and Positions

4. Sizes and Positions

This chapter is about examining and setting the sizes and positions of windows. There are
many diffcrent operations that let you express things in different forms that are convenient in
varying applications. Usually, sizes arc in units of pixcls. However, sometimes we refer to widths
in units of characters and hcights in units of lines. The number of horizontal pixels in one
character is called the character-width, and the number of vertical pixcls in one line is called the
line-height; these two quantitics are explained on page 67.

A window has two parts: the inside and the margins. The margins include borders, labels,
and other things; the inside is used for drawing characters and graphics. Some of the operations
below deal with the outside size (including the margins) and some deal with the inside size.

Since a window’s size and position are usually established when the window is created, we -
will begin by discussing the init-options that let you specify the size and position of a new
window. To make things as convenient as possible, there are many ways to express what you
want. The idea is that you specify various things, and the window figures out whatever you leave
unspecified. For example, you can specify the right-hand cdge and the width, and the position of
the left-hand edge will automatically be figured out. If you underspecify some parameters,
defaults are used. Each edge defaults to being the same as the corresponding inside edge of the
superior window; so, for example, if you specify the position of the left edge, but don’t specify
the width or the position of the right edge, then the right edge will line up with the inside right
edge of the superior. If you specify the width but neither edge position, the left edge will line
up with the inside left edge of the superior; the same goes for the height and the top edge.

In order for a window to be exposed, its position and size must be such that it fits within the
inside of the superior window. If a window is not exposed, then there are no constraints on its
~ position and size; it may overlap its superior’s margins, or even be outside the superior window
altogether.

All positions are specified in pixels and are relative to the outside of the superior window,

4.1 Init Options for Sizes and Positions

:left lefi-edge o ’ Init option for windows
:X left-edge Init option for windows
stop flop-edge . Init option for windows
1y lop-edge . Init option for windows
:position (lefi-edge top-edge) Init option for windows
:right right-edge Init option for windows
:bottom bottom-edge Init option for windows
swidth outside-width Init option for windows
theight outside-height Init option for windows
:s1ze (outside-width outside-heighi) Init option for windows
:inside-width inside-width Init option for windows
:inside-height inside-height Init option for windows
:inside-size (inside-widih inside-heighi) Init option for windows

SRCKL.WIND>EDGES.TEXT.14 ' 8-AUG-83

Init Options for Sizes and Positions 4 Window System Manual

:edges (lefl-edge top-edge right-edge bottom-edge) Init option for windows
These options set various position and size paramcters. The size and position of the
window arc computed from the parameters provided by these and other options, and the
set of defaults described above. Note that all edge parameters are relative to the outside
of the superior window.

:character-width spec Init option for windows
This is another way of specifying the width. spec is either a number of characters or a
character string. The inside width of the window is made to be wide cnough to display
those characters, or that many characters, in font zero.

:character-height spec Init option for windows
This is another way of specifying the height. spec is cither a number of lines or a
character string containing a certain number of lines separated by carriage returns. The
inside height of the window is made to be that many lines.

:integral-p tornil Init option for windows
The default is nil. If this is specified as t, the inside dimensions of the window are made
to be an integral number of characters wide and lines high, by making the bottom margin
larger if necessary. ‘

:edges-from source Init option for windows
Specifies that the window is to take its edges (position and size) from source, which can
be one of:

alist The elements of the list should be the four edges, left, top, right and
bottom, all relative to this window’s superior.

astring The inside-size of the window is made large enough to display the string,
in font zero.

a list (lefi-edge top-edge right-edge bottom-edge)
Those edges, relative to the superior, are used, exactly as if you had used
the :edges init-option (see above).

:mouse The user is asked to point the mouse to where the top-left and bottom-
right corners of the window should go. (This is what happens when you
use the Create command in the system menu, for example.)

a window That window’s edges are copied.
:minimum-width n-pixels Init option for windows
:minimum-height n-pixels Init option for windows

In combination with the :edges-from :mouse init option, these options specify the
minimum size of the rectangle accepted from the ‘user. If the user tries to specify a size
smaller than one or both of these minima, he will be beeped at and prompted to start
over again with a new top-left corner.

The group of operations below is used to examine or change the size or position of a window.
Many operations that change the window’s size or position take an argument called option. The
reason that this argument cxists is that certain new sizes or positions arc not valid. One reason
that a size may not be valid is that it may be so small that there is no room for the margins; for

SRCKL.WIND>EDGES. TEXT.14 8-AUG-83

Window System Manual 45 Flavor Operations for Sizes and Positions

example, if the new width is smaller than the sum of the sizes of the left and right margins, then
the new width is not valid. A new setting of the edges is also invalid if the window is exposed
and the new edges are not enclosed inside its superior. In all of the operations that take the
option argument, opfion may be cither nil or :verify. nil means that you really want to set the
edges, and if the new cdges are not valid, an error should be signalled. :verify means that you
only want to check whether the new edges are valid or not, and you don’t really want to change
the cdges. If the edges are valid, the operation with :verify returns t; otherwise it returns two
values: nil and a string explaining what is wrong with the edges. (Note that it is valid to set the
edges of a deexposed inferior window in such a way that the inferior is not enclosed inside the
superior; you just can’t expose it until the situation is remedied. This makes it more convenient
to change the edges of a window and all of its inferiors sequentially; you don’t have to be carcful
about what order you do it in.)

4.2 Flavor Operations for Sizes and Positions

:size Operation on windows
Returns two values, the outside width and outside height.

:height Operation on windows
:width ' Operation on windows
Return the window’s height or its width.

:set-size new-width new-height &optional option Operation on windows
Sets the outside width and outside height of the window to new-height and new-width,
without changing the position of the upper-left corner.

tinside-size ' 'Operation on windows
Returns two values, the inside width and the inside height.

:inside-height | Operation on windows
:inside-width ’ Operation on windows
Return the inside height of the window or the inside width.

:set-inside-size Operation on windows
new-inside-width new-inside-height &optional option
Set the inside width and inside height of the window to new-inside-height and new-inside-
width, without changing the position of the upper-left corner. The margin sizes are
recomputed according to their contents, which in simple cases means they will stay the
same.

:position Operation on windows
Returns two values the x and y positions of the upper-left corner of the window, in
pixels, relative to the superior window.

SRCAL.WIND>EDGES.TEXT.14 8-AUG-83

Flavor Operations for Sizes and Positions 46 Window System Manual

:set-position new-x newy &optional option Operation on windows
Sets the x and y position of the upper-left corner of the window, in pixcls, relative to the
superior window.

;edges Operation on windows
Returns four values, the left, top, right, and bottom edges, in pixels, relative to the
supcrior window.

:set-edges Operation on windows
new-left new-top new-right new-bottom &optional option
Sets the cdges of the window to new-lefi, new-top, new-right, and new-bottom, in pixels,
relative to the superior window.

:inside-edges Operation on windows
Returns four values, the left, top, right, and bottom inside edges, in pixels, rclative to
the top-left corner of this window. This can be useful for clipping. Note that this
operation is not analogous to the :edges operation, which returns the outside edges
relative to the superior window.

:center-around x y Operation on windows
Without changing the size of the window, positions the window so that its center is as
close to the point (x,y) as is possible without hanging off an edge. The coordinates are in
pixels relative to the superior window.

:expose-near node &optional (warp-mouse-p 1) Operation on windows
If the window is not exposed, changes its position according to mode and exposes it (with
the :expose operation; see page 19). If it is already exposed, does nothing.

mode should be a list; it may be any of the following:

(:point x y) Position the window so that its center is as at the point (x,y), in pixels,
relative to the superior window, or as close as possible without hanging
off an edge of the superior.

(:mouse) This is like the :point mode above, but the x and y come from the
current mouse position instead of the caller. This is like what pop-up
windows do. In addition, if warp-mouse-p is non-nil, the mouse is warped
(see page 112) to the center of the window. (The mouse moves only if
the window is near an edge of its superior; otherwise the mouse is already
at the center of the window.)

(:rectangle lefi top right bottom)
The four arguments specify a rectangle, in pixels, relative to the superior
window. The window is positioned somewhere next to but not
overlapping the rectangle. In addition, if warp-mouse-p is non-nil, the
mouse is warped (see page 112) to the center of the window.

(:window window-1 window-2 window-3 ...) :
Position the window somewhere next to but not overlapping the rectangle
that is the bounding box of all the window-ns. You must provide at least
one window. Usually you only give one, and this means that the window

SRCAL.WINID>EDGES. TEXT.14 8-AUG-83

Window System Manual 47 Low Icvel Edges Functions

is positioned touching one edge of that window. In addition, if warp-
mouse-p is non-nil, the mouse is warped (sce page 112) to the center of
the window.

:change-of-size-or-margins &rest options Operation on windows
This is the primitive operation for changing a window’s size or the size of its margins.
All the other operations to do so end up calling this one, after all error checking has
been done.

This operation should not be called by users; to change the size, use :set-size or another
higher-level operation, and the margin sizes should be managed by the flavors that are
responsible for computing how big they should be (tv:borders-mixin, etc.).

However, this operation is a good place to add :after daemons to recompute other data
structure or change the size of inferiors according to the window’s new size. In the :after
dacmon, the window’s size and margins will already be altered to their new values.

4.3 Low Level Edges Functions

tv:x-offset | : Instance variable of windows
tv:y-offset Instance variable of windows
The position of the window’s outside left (or top) edge relative to the window’s superior.

tv:width Instance variable of windows
tv:height Instance variable of windows
The total width or height of the window.

Recall that a sheet is either a window or a screen.

tv:sheet-width window

tv:sheet-haight window

tv:sheet-x-offset window

tv:sheet-y-offset window
Return the value of the corresponding instance variable of window. These are accessor
defsubsts created by the :outside-accessible-instance-variables option of defflavor.
They can therefore be setf’d, but doing so is usually unwise.

tv:sheet-inside-width &optional (window self)
tv:sheet-inside-height &optional (windowself)
Return the inside width or height of the window.

When used without an argument, these defsubsts refer directly to the instance variables,
and therefore must be called from methods or functions which use (declare (:self-flavor

o))

SRCKL.WIND>EDGES. TEXT.14 8-AUG-83

Low Lcvel Edges Functions . 48 Window System Manual

tv:sheet-number-of-inside-11nes &optional (window self)
Returns the number of lines (of height equal to tv:line-height) that fit in the inside
height of the window.

When used without an argument, these defsubsts refer directly to the instance variables,
and therefore must be called from methods or functions which use (declare (:self-flavor

).

tv:sheet-calculate-offsets window superior
Returns the x and y positions of window’s upper left corner in superior as two values.
window must be an indirect inferior of superior, zero or more levels down. If window and
superior are the same window, the values are zero.

tv:sheet-overlaps-p sheet left top width height

tv:sheet-overlaps-edges-p sheet left top right borrom
t if sheet overlaps the specified rectangle. The edges specified are relative to sheet’s
superior.

tv:sheet-overlaps-sheet-p sheet-a sheet-b
t if the two sheets overlap. This is a geometrical test, and it does not matter where in
the hierarchy the two sheets are.

tv:sheet-within-p sheet left top right bottom
t if sheet is contained within the specified rectangle, given relative to sheet’s superior.

tv:sheet-within-sheet-p sheet outersheet
t if sheet is within outer-sheet’s area. This is a geometrical test, and it does not matter
where in the hierarchy the two sheets are. '

tv:sheet-bounds-within-sheet-p left top width height outer-sheet
t if the specified rectangle is within outer-sheet. The cdges are specified relative to outer
sheet’s superior.

tv:sheet-contains-sheet-point-p sheer top-sheet x y

abaae

PV I | PRUSPRUNE. JPL SRR U ORI N 2% S PR
1 1I Sneei COitains ui€ poilit \X,)/) il op=dricct.

SRCKL.WINIDEDGES TEXT.14 8-AUG-83

Window System Manual 49 Input

S. Input

Windows can be given the ability to function as input strcams (sec section 21.5 of the Lisp
Machine manual). This is implemented by the mixin tv:stream-mixin, which is a component of
tv:iwindow. (Originally, both input and output stream operations were defined on this mixin, but
now the output operations arc available on all windows since a window is fairly useless if you
don’t draw on it.) Input characters normally come from the terminal keyboard, but can also come
from mouse clicks, or anything clse you may decide to program to generate input.

tv:stream-mixin Flavor
This mixin defines the standard input stream operations for doing input from the
keyboard, as well as some nonstandard input operations defined in the following sections. .

Keyboard input is done through windows so that selection of windows can control which
process can read input at a given time. In fact, this is why the concept of selection exists: by
making cach process that does its output to a window also use that window to rcad input, and by
making a single "selected" window the only window on which input operations can proceed, we
enable the user to decide which process to direct his input to by selecting the corresponding
window.

Reading characters from a window normally returns a fixnum that represents a character in
the Lisp Machine character set, possibly with extra bits that correspond to the Control, Meta,
Super, and Hyper keys. Character constants in code are written with the #\ or #/ construct and
are described in the Lisp Machine manual in section 21.1 of the Lisp Machine manual.

Programs decode keyboard characters with Idb and dpb using the following byte fields:

%%kbd-char A name for the byte field that contains the basic character. This is the low eight
bits, and the contents are a character that can go in a string.

%%kbd-control
A name for the byte ficld that contains the Control bit.

%%kbd-meta A name for the byte ficld that contains the Meta bit.
%%kbd-super A name for the byte field that contains the Super bit.
%%kbd-hyper A name for the byte field that contains the Hyper bit.

%%kbd -control-meta
A name for the four-bit byte ficld that contains the Hyper, Super, Meta and
Control bits, in that order from most significant to least.

%%kbd-mouse
A name for the byte field that is 1 if this is a "mouse” character, a character that
reports a click of a mouse button rather than a pressing of a keyboard key. (See
page 113.) Note that mouse characters may contain Control bits, etc.

%%kbd -mouse-button ,
A name for the byte field that, in a mouse character, records the number of the
button that was clicked. The left button is 0, the middle is 1, and the right is 2.

SRC:(L.WINI))INPUT.TEXT.24 8-AUG-83

Input Buffers S0 Window System Manual

%9%kbd -mouse-n-clicks
A name for the byte field that, in a mouse character, rccords the number of
times whichever button was clicked, minus 1. It is 0 for a single click, 1 for a
double click, etc.

Though keyboard input characters are currently fixnums, it is possible that a new, spccial data
type for characters will cxist in the future. The #\ construct will produce a character object
rather than a fixnum, and the elements of a string will be character objects rather han fixnums.
Characters will behave just like fixnums in arithmetic and = but will not be eq to fixnums. The
‘tyi and related stream opcrations will continue to return fixnums; new operations will be defined
which return character objects instead. It will still be possible to use Idb and dpb with thesc byte
field names on fixnums and character objects indiscriminately.

Note that reading characters from a window does not echo the characters; it does not type
‘them out. If you want cchoing, you can echo the characters yoursclf, or call the higher-level
functions such as tyi, read, and readline; these functions accept a window as their stream
argument and will echo the characters they read. This is in accord with the general Lisp Machine
input stream conventions.

The console hardware actually sends codes to the Lisp Machine whenever a key is depressed
or lifted; thus, the Lisp Machine knows at all times which keys are depressed and which are not.
You can use the tv:key-state function to ask whether a key is down or up. Also, you can
arrange for reading from a window to read the raw hardware codes exactly as they are sent, by
putting a non-nil value of the :raw property on the property list of the input buffer; however,
the format of the raw codes is complicated and dependent on the hardware implementation. Itis
not documented here.

tv:kbd-last-activity-time ' Variable
The value returned by the function time when the last input character was typed.

5.1 Input Buffers

Every window that generates input or from which input is read must have an input buffer that
hoids characters thai are iyped by the user beforc any program reads the characters. When you
type a character, it enters the selected window’s buffer. (This is not precisely true, but it's a
good first mental model. See section 5.4, page 56.) Reading input from a window, with the :tyi
operation for example, takes objects out of the window’s input buffer. tvistream-mixin gives the
window an input buffer, but some other flavors (such as command menus) provide an input
buffer without tvistream-mixin. The input buffer lives in an instance variable of the window,

called tviio-buffer.

Input buffers are examples of I/O buffers, which are a general facility provided by the
window system. You can explicitly manipulate input buffers in order to get certain advanced
functionality, by using the :io-buffer init-option and the :io-buffer and :set-io-bufter operations.
Another thing you can do is put properties on the I/0 buffer’s property list; this lets you request
various special features. 170 buffers are explained on section 5.4, page 56.

SRC:KL.WINDYINPUT.TEXT.24 §-AUG-83

Window System Manual 51 _ Input Buffers

A window can be thought of as generating input when the keyboard is used while the window
is selected. This is the way that ordinary characters normally get into the input buffer. But input
can be gencerated at any place in the program by means of the :force-kbd-input operation. For
example, mouse clicks arc often handled by forcing input which is read by the window’s
command-interpreting process (see page 113). Then we say that the mouse click also generates
input.

All the input, no matter how generated, ends up mixed together in the same input buffer, in
chronological order. All the input operations take input from the buffer in that order.

Normally each window that can generate input has its own input buffer. If a process is
managing morc than one window that can generate input, a program to look for input from all
the windows at once would be cumbersome. So it is not done this way. Instead, all the windows
are made to share a single input buffer. Then all input gencrated by all of the windows goes into
that buffer, from which the input can be read through any one of the windows. The program
simply reads input from one of the windows—always the same one, if the programmer
prefers—and gets all the input intended for it. All the keyboard input directed at it, and all
mouse clicks on its windows, get merged into a single chronological input stream.

The input buffer does not record which window was "responsible” for generating input read
from a shared input buffer. For mouse clicks the program may need to know which window the
mouse was clicked on in order to obey the command properly. The standard way to pass this
information is to use a list as the input character and make the window clicked on one of the
clements of the list. '

The window(s) used for input operations must have tvistream-mixin. The other windows
need only be able to put input into the right input buffer. It is often easiest to use tv:stream-
mixin for them as well, and generate the input with :force-kbd-input. However, it is sufficient
for such windows to support the :io-buffer operation by returning the correct shared input buffer,
and put the input they generate into that buffer in any way that works, such as with the function
tviio-buffer-put, or by invoking :force-kbd-input on another window known to have tv:stream-
mixin and to share the same input buffer.

If a frame includes a pane that is handled by its own process (such as a Zmacs frame), that
pane should not share the input buffer used by the rest of the panes. In general, there should be
one input buffer for each process you are using, and that input buffer should be shared by the
windows which go with that process.

In general, the way to make windows share an input buffer is to create one using tv:make-
default-io-buffer and then specify it for the :io-buffer init keyword when each pane is created.
There are also frame flavors that automatically make the panes share an input buffer.

tv:io-buffer o) Instance variable of tv:stream-mixin
The window’s input buffer.

SRCKL.WIND>INPUT.TEXT.24 8-AUG-83

Blips 52 Window System Manual

:1o-buffer spec Init option for tv:stream-mixin
Initializes the input buffer of the window. spec may be an 1/0 buffer, a number or a
list. If it is a number, an 1/0 buffer is made with that size, no input function, and the
default output function. If it is a list, it is interpreted as

(size input-function output-function)
but if the output-function is nil or omitted, tv:kbd-default-output-function is used.

:io-buffer Operation on tv:stream-mixin
:set-1o-buffer io-buffer Operation on tv:stream-mixin
Return or set the window’s input buffer.

5.2 Blips

Input nced not be made of characters; lists are often used as well for program-generated
input, especially for representing mouse clicks in different kinds of mouse-sensitive areas.
"Characters” which are lists are called blips. The car of the list is by convention a symbol which
identifies the kind of blip. Look for "blip types” in the concept index to find the places in this
manual that define various kinds of blips.

Caution: when using blips, you should keep in mind that the blips may be discarded if the
process has called any function that does not know what to do with them. The debugger and
break are such functions, so this can happen at any time. Blips either should describe mouse
actions, which can safely be ignored if they happen when they are not meaningful, or should
notify the process to check other data structures. A blip should not be used to indicate a request
or response from another process, since this information must not be lost. Instead, put the data
on a separate queue and have the process check the queue after every command. A blip that
executes as a no-op command will serve to wake the process up if it is waiting for input when
the data goes on the queue.

There is a technique you can use to cause blips to be handled even in the middle of calls to
read, the debugger, and other programs that do not look for blips. It is to give your window
flavor an :around method for :any-tyi. This :around method can look at the value being
returned; if it is one of certain types of blips, you can handle it and then loop around, calling
the original :any-tyi handler again without returning to the caller. If it is anything else, you just
return it. '

5.3 Stream Input Operations

:any-tyi &optional eofaction Operation on tv:stream-mixin
Reads and rcturns the next character of input from the window, waiting if there is none.
The character comes from the window’s input buffer if it contains any characters;
otherwise, it comes from the keyboard. eofaction is ignored since “cnd-of-file” is not
meaningful for windows; this argument exists only because it is part of the input stream
protocol. :

SRCKL.WINID>INPUT.TEXT.24 8-AUG-83

Window System Manual 53 Strecam Input Opcrations

:ty1 &optional eofaction Operation on tv:stream-mixin
Like :any-tyi but throws away any blips (“characters” which arc lists) that it reccives. It
kecps on reading until it finds an actual character, and returns that. Discarded blips will
never be seen as input.

:any-tyi-no-hang &optional eof-action Operation on tv:stream-mixin
Like :any-tyi if input is alrcady present in the buffer, but returns nil right away if the
buffer is empty. This is used by programs that continuously do somecthing until a key is
typed, then look at the key and decide what to do next.

:tyi-no-hang &optional eof-action Operation on tv:stream-mixin
Like :any-tyi but throws away any blips (“characters” which are lists) that it receives. It
keeps on reading until it finds an actual character or the buffer empty; then it returns the
character or nil. Discarded blips will never be seen as input.

:mouse-or-kbd-tyi Operation on tv:stream-mixin

:mouse-or-kbd-tyi-no-hang Operation on tv:stream-mixin
These are like the :tyi and :tyi-no-hang operations, except that blips of a certain kind
are not discarded and do count as input. These are blips whose car is the symbol
:mouse-button. In this case, the first value returned is the third element (caddr) of the
blip, and the second value returned is the whole blip. By convention, the third element
of such a blip is a character whose %%kbd-mouse bit is 1, which identifies the button
that the user clicked (see page 113). All other blips are discarded, as they are by :tyi and
ityi-no-hang. The first value is always a fixnum.

:Tist-tyi . Operation on tv:stream-mixin
This is the "opposite™ of :tyi. It returns only blips and discards real characters. -

suntyi character Operation on tv:stream-mixin
Put character back into the window’s input buffer so that it will be the next character °
returned by :tyi. Note that character must be exactly the last character that was read, and
that it is illegal to do two :untyi’s in a row. This is used by parsers that look ahead one
character, such as read.

:force-kbd-1nput input Operation on tv.stream-mixin
input is inserted into the window’s input buffer, to be read by the :tyi or other input
operation in its turn. input may be a character or a list (a blip). It may also be a string;
then all the characters of the string are forced as input, one by one.

This is the standard way that blips are put into the input stream (see section 5.2, page
52).

:Tisten Operation on tv:stream-mixin
Returns t if there are any characters available to :tyi, or nil if there are not. For
example, the editor uses this to defer redisplay until it has caught up with all of the
characters that have been typed in.

SRCKL.WIND>INPUT.TEXT.24 , 8-AUG-83

Stream Input Opecrations : 54 Window System Manual

:wait-for-input-with-timeout timeout Operation on tv:stream-mixin
Waits until either input is available or timeout 60ths of a second have clapsed.

:clear-input Operation on tv:stream-mixin
Clears this window’s input buffer. This flushes all the characters that have been typed at
this window, but have not yet been read.

:playback Operation on tv:stream-mixin
Returns an array describing the last n characters rcad from this window, for some value
of n (which is the size of the array). The array elements are used in a circular fashion,
the last one being followed by the first one, and array leader element 1 contains the
index of the last slot stored into (the one containing the last character rcad). The editor
command Help L uses this operation.

:rubout-handler options function &rest args Operation on tv:stream -mixin
Applics function to args inside an environment where inputting from this window will
echo the characters typed and provide for simple input editing. This is documented in
more detail in the Lisp Machine manual.

options is an assq list of keyword symbols and arguments to them. The options acceptable
to windows are: '

:full-rubout flag -
If the user rubs out all of the characters that he has typed in, normally
the rubout-handler just waits for more characters. If the :full-rubout
option is supplied, the rubout handler returns to the caller in this
situation. Two values are returned, nil and flag.

sinitial-input string
Treat the characters in string as typeahead before reading anything from
the keyboard.

:pass-through chl ch2...
Treat the characters chl, ch2, etc. as ordinary characters even 'if they
would normally be special commands to the rubout-handler.

prompt function
function is a function to be called before reading any characters; typically
it will display a prompt. The arguments to finction are the window and a
flag. When the rubout-handler is first entered the flag is nil, but if it is
necessary to prompt again, for instance if the user cleared the screen,
function is called with the character the user typed (e.g. # \clear-screen)
as its flag argument.

function can also be a string; then it is simply printed as the prompt.

:reprompt finction
The same as :prompt except. that the function is not called the first time
through. If both :prompt and :reprompt arc used, the :prompt is used
the first time and the :reprompt is used on reprinting.

SRCKAL.WIND>INPUT.TEXT.24 8-AUG-83

Window System Manual 55 Stream Input Opecrations

:save-rubout-handler-buffer Operation on tv:stream-mixin
Returns a description of the rubout handler buffer's contents, and clears it out. Two
values are returned: a string and a fixnum (which is the current cursor index in the
string). This is used on entry to the function break so that typing the Break key
interfaces properly with rubout handling.

:restore-rubout-handler-buffer swring index Operation on tv:stream-mixin
Loads the rubout handler buffer contents from string and sets the cursor position to index.
The arguments are usually two values obtained from :save-rubout-handler-buffer.

:refresh-rubout-handler Operation on tv:stream-mixin
&optional discard-last-character)
Requests the rubout handler to reprint its buffer and reprompt. If discard-last-character is
non-nil, the last character in the buffer is discarded first. This is used by :restore-
rubout-handler -buffer.

If you are reading input using the rubout handler, but want to process certain characters
immediately (perhaps the character Help) and not leave them as part of the ordinary
input, use this operation with argument t.

tv:preemptable-read-any-tyi-mixin Flavor
This flavor defines the :preemptable-read operation.

:preemptable-read Operation on tv:preemptable -read -any-tyi-mixin
options function &rest arguments

You may have noticed that in the inspector and in the Window Error Handler, if you
start typing in a Lisp expression, and then while in the middle of typing it you use the
mouse to select an object by pointing at it, the program sees the object you moused. If
nothing special were done, though, the blip sent by the mouse process would get put at
the end of the input buffer and would not be seen because of the characters that you
have typed. This mixin is what is used to solve the problem.

The :preemptable-read operation takes the same arguments as the normal :rubout-
handler operation, and does the same thing if the mouse is not used. (In fact, it has
nothing to do with the read function, despite the name.) The difference is that if any blip
is sent to the window, the operation returns the blip as the first value and the symbol
‘mouse-char as the second value. (It does this even if the blip did not come from the
mouse; most blips do.) The characters that were in the rubout-handler buffer when the
blip arrived will come back the next time a :preemptable-read operation is used, so the
user can keep typing his expression in.

These obsolete functions are still used in some old code:

kbd-ty1
Performs :tyi on terminal-io.

SRCKL.WIND>INPUT.TEXT.24 8-AUG-83

170 Buffers 56 Window System Manual

kbd-tyi-no-hang
Performs :tyi-no-hang on terminal-io.

kbd-char-available
Performs :listen on terminal-io.

5.4 1/0 Buffers

An 1/0 buffer is an array of fixed size used as a ring buffer. Typically, characters are put
into the buffer by one process and removed by another in FIFO order. The process that is
removing characters can wait if the buffer is empty, and a process putting in characters can wait
if the buffer is full (or it could throw away the characters). Each window with tvistream-mixin
has an input buffer which is an 17O buffer, and there is also one global I/0 buffer for the
keyboard itself,

Note that the things stored in an 1/O buffer can be any Lisp objects. They do not have to
be characters, in any sense. But in practice 17O buffers are in fact used for storing characters
(which may be lists), so that is how this section is written.

An 170 buffer has these slots in its leader.

tviio-buffer-size
The number of slots in the input buffer.

tv:iio-buffer-input-pointer
The index at which the next character inserted should be stored.

tviio-buffer-output-pointer
The index at which the next available character is present.

If the input and output pointers are equal, the buffer is empty. If the output
pointer points at the slot after the input pointer, the buffer is considered full (in
fact, one slot is still empty. It cannot be used).

tv:io—buffer-output -function
Aallad whan charantare ara rnmn\mr‘ or nll It is caned Wit_h 'I_'he

n
t\ 1uu\.uuu LU oC Caulh with <aaracitis are Iremey

buffer and the character as arguments. Its value should be a translated version of
the character (this is usually the same as the argument). It can also return a non-
nil second character, which says that the character should be discarded. In this
case, tviio-buffer-get will remove the following character, or wait for one.

In window input buffers this is usually a function that checks for and handles
synchronous interception.

tv:io-buffer-input-function
A function to be called when characters are inserted, or nil. The window system
does not actually use this feature. The calling conventions are the same as for the
output function.

tviio-buffer-state :
This may be set to t, nil, :input or :output to control what can be done with the
buffer. Characters can be put in if this is nil or :input, and can be removed if

SRCKL.WIND>YINPUT.TEXT.24 8-AUG-33

Window System Manual 57 , [70 Buffers

this is nil or :output.

tviio-buffer-plist
A property list containing various properties.

tviio-buffer-last-input-process
The last process that put a character in this 170 buffer.

tviio-buffer-last-output-process
The last process that removed a character from this [/Q buffer.

tviio-buffer-record .
An array that records the last n characters read from this I/0 buffer, for some
fixed n. This array too is a ring buffer, but nothing is ever "removed” from it;
after it is full, it contains the last n things stored into it. The accessor tv-io-
buffer-record-pointer gets the index of the last slot stored into.

tv:io-buffer-empty-p io-buffer
tv:io-buffer-full-p io-buffer
Non-nil if the buffer is empty, or full.

tv:make-io-buffer size input-function output-function plist state
Creates and returns an [/0 buffer, initializing some of the slots from its arguments and
the others in a default or reasonable fashion. The buffer is initially empty.

tv:io-buffer-put buffer character &optional no-hang-p
Inserts character into buffer, waiting if it is full unless no-hang-p. This function also waits
if the buffer’s state does not permit input. It returns t if the character was inserted.

tv:io-buffer-get buffer &optional no-hang-p
Removes the next character from buffer. If the buffer is empty, normally we wait for a
character to appear, but if no-hang-p is non-nil we return nil immediately. This function
also waits if the buffer’s state does not permit output. The character removed is put in
buffer’s io-buffer-record array.

tv:io-buffer-unget buffer character
Inserts character into buffer as the next character to be removed rather than as the last
one to be removed. This is used for undoing tviio-buffer-get, and it is an error if
character docs not match the last character removed. character is removed from the io-
buffer-record array, by backing up its pointer, just to avoid duplication when character
is read a second time. :

This function should not be used more than once between input operations.
tv:io-buffer-push buffer character

Inserts character into buffer as the next character to be removed; that is, in a LIFO
manner. This is as opposed to tv:io-buffer-put which inserts a character at the end.

SRCKL.WIND>INPUT.TEXT.24 8-AUG-83

170 Buffers 58 Window System Manual

tv:io-buffer-clear buffer
Makes buffer empty.

tv:process-typeahead buffer function
Uses function as a filter for the characters in buffer. function is called once for each
character, with the character as its sole argument. If function returns non-nil, that value
is stored back in the buffer instead of the original character. [f function returns nil, the
character is deleted from the input buffer.

5.4.1 1/0 Buffers and Type Ahead

We have said (sce section 5.1, page 50) that keyboard input gocs into the sclected window’s
input buffer. This is not precisely true. Program-generated input made with :force-kbd-input
does go directly into the window’s input buffer, but keyboard input actually goes into another I/0
buffer called the keyboard input buffer. (There is only one of these in the system.) The characters
move from the keyboard input buffer to the selected window’s input buffer whenever a program
tries to rcad input from that buffer and it is empty. The keyboard input is not assigned to a
selected window until the instant the program is ready to read it.

Asynchronous window-switching commands, such as Terminal S, and mouse clicks that select
a window, actually copy the contents of the keyboard input buffer into the buffer of the window
that is being deselected. If you type some commands to the editor, and then type System L
before the editor has read its commands, those commands will still go to the editor, not to the
Lisp listener you have selected.

By contrast, synchronous window-switching such as is done by the functions ed, supdup and
inspect, and by "exit" commands in various programs, do not do this,” since any further typed-
ahead input should go to the program being switched to.

5.4.2 170 Buffers as Input Buffers

tv:make-default-io-buffer
Creates and returns an 170 buffer of the sort used for window input buffers, with all slots
suitably initialized. The output function used is tv:kbd-default-output-function.

tv:kbd-default-output-function buffer char
This is the default value for a window input buffer’s output function. It checks the
character against the value of tv:kbd-intercepted-characters and also checks tv:kbd-tyi-
hook. ‘

tv:kbd-1o-buffer-get buffer &optional no-hang-p (whostate "Keyboard") .
Removes a character from buffer, or possibly from the keyboard input buffer. . The
keyboard input buffer can be read from only if buffer is the input buffer of the selected
window, and it is used only if buffer is empty. When a character is read from the
keyboard input buffer, buffer’s output function is executed, as if the character had been
put into buffer and then read from there.

SRCKL.WINIDINPUTTEXT 24 8-AUG-83

Window System Manual 59 Intercepted Characters

whostate is passed as the first argument to process-wait if this function has to wait.

tv:kbd-wait-for-input-with-timeout buffer timeout &optional (whostate "Keyboard")
Waits until cither tvikbd-io-buffer-get would not hang on buffer or timeout clapses.
timeout is in 60ths of a sccond. whostate appears in the who line while we wait.

tv:kbd-wait-for-input-or-deexposure buffer window &optional (whostate "Keyboard")
Waits until either tvikbd-io-buffer-get would not hang on buffer or window is not
exposed. whostate appears in the who line while we wait.

tv:kbd-snarf-input buffer &optional not-from-hardware
Transfer any characters that tvikbd-io-buffer-get could now get from buffer right into
buffer. This is what asynchronous selection commands use to make sure that type-ahead
for the window being deselected remains with that window.

tv:kbd-char-typed-p
Non-nil if input is available in the sclected window. This can be used in programs that
loop with interrupts disabled, to tell when the user types a key.

The window éystcm defines the meaning of certain properties on the tviio-buffer-plist of a '
window input buffer. These are

rraw Non-nil to inhibit translation of characters from hardware codes to the Lisp
Machine character set. The effect of this is hardware dependent.

:asynchronous-characters
An alist which controls which characters are intercepted asynchronously when this

window is selected.

:dont-upcase-control-characters _
Non-nil prevents the Control (etc) keys from causing special treatment of
alphabetic case. Normally, typing Control-Shift-A produces the character
#\Control-/a with a lower case "a", while Control-A produces # \Control-A;
and the same for Meta, Super and Hyper. If this property is non-nil, the two
inputs are interchanged in meaning, so that Shift produces an upper case
character with or without Control.

5.5 Intercepted Characters

There are several characters that are specially intercepted by the window system. Some are
intercepted when a process tries to read them, and some are intercepted as soon as they are
typed. The first kind are called synchronously intercepted characters and the sccond are called
asynchronously intercepted characters. The latter come in two Kkinds: global asynchronous
characters such as Terminal and System which are always available (see section 5.5.3, page 63),
and others defined by the sclected window, normally including Control-Abort and so on (see
section 5.5.2, page 61). '

SRCAL.WIND>INPUT. TEXT.24 : 8-AUG-§3

Intercepted Characters 60 Window System Manual

55.1 Synchronously Intercepted Characters

Synchronous interception is performed by the io-buffer-output-function of the window input
buffer (scc page 56). By default, this function is tv:kbd -default-output-function, which uscs the
variable tv:kbd-intercepted-characters to decide which characters to intercept and how to handle
them. A program can change its sct of synchronously intercepted characters simply by binding
this variable before reading input. Its default value specifies the characters Abort, Meta-Abort,
Break, and Meta-Break.

tv:kbd-intercepted-characters Variable
The value is an alist specifying the characters to be intercepted synchronously (that is,
when read by the program). Since the variable is looked at by a subroutine of the :tyi
operation itself, what matters is current binding at the time the :tyi is done.

Each element of this list should look like
(character function) .
Then function will be called if character is read, with character as argument.

function should return two values. The second should be non-nil to say that the character
has been handled by the function and should not be returned to the calling program as
ordinary input. If the second value is nil, the first value should be a translated character
to use as input instead of the character typed. (This can be and usually is the same
character that was typed.) The first value is ignored if the second is non-nil. In practice,
function usually returns its argument and t.

function should begin by setting inhibit-scheduling-flag to nil.

It is reasonable to add new entries to the top level value of this variable, and also for
programs to bind the variable. It is probably unwise to remove the standard entries in the
top level value.

tv:kbd-standard-1intercepted-characters Variable
This is the that which is the initial value of tv:kbd-intercepted-characters.

tv:kbd-intercept-abort char &rest ignore
tv:kbd-intercept-abort-all. char &rest ignore

These functions implement the standard meanings of the Abort and Control-Abort keys.
They are suitable for use in tv:kbd-intercepted-characters. The first signals the
sys:abort condition; the second resets the current process.

If terminal-io handles the :inhibit-output-for-abort-p operation and it returns non-nil,
the string "[Abort]" will not be printed.

tv:kbd-intercept-break char &rest ignore

tv:kbd-intercept-error-break char &rest ignore
These functions implement the standard meanings of the Break and Control-Break keys.
They are suitable for use in tv:kbd-intercepted-characters. The first calls break; the
second invokes the debugger.

SRC:CL.WINDXINPUT.TEXT.24 8-AUG-83

Window System Manual 61 Intercepted Characters

Furthermore, if the variable tv:ikbd-tyi-hook is non-nil, then it is considered to be a user
function that can intercept the character at this point; see page 61.

By convention, programs are all expected to use the Abort key as a command to abort things
in some appropriate scnse for that program. If you don’t do anything spccial, Abort will be
intercepted automatically. But some programs may want to do something specific when the user
types Abort. The system default action can be replaced by binding the variable tv:kbd-
intercepted-characters so that Abort goes to your own intercept routine instead of tv:kbd-
intercept-abort, or so that Abort is read as an input character from the stream like any other
and then is handled by your program,

tv:kbd-tyi-hook Variable)
The default io-buffer-output-function (tv:kbd-default-output-function), before it does
anything else, secs whether the value of tvikbd-tyi-hook is non-nil; if so, it assumes that
the value is a function of onc argument, and it applics the function to the character that
was typed. If the function returns a non-nil value, then the character will not be returned
to callers of :tyi or other input operations; otherwise, the character is processed normally.

The idea is that you can write a function that intercepts anything passing through an
input buffer that uses the default io-buffer-output-function. Your function gets passed
the character, and returns nil if it doesn’t want to handle it, or t if it has taken care of
the character.

5.5.2 Asynchronously Intercepted Characters

Each window that has tvistream-mixin can define a set of characters to be intercepted
asynchronously when that window is selected. The interception is done through a different
mechanism from that used for synchronous interception, but the same handling functions such as
tv:kbd-intercept-abort can ultimately be used. By default, a window requests asynchronous
interception of the four characters Control-Abort, Control-Meta-Abort, Control-Break, and
Control-Meta-Break. The default meanings of these keys are given in Operating the Lisp
Machine. You can change the set of such asynchronous keys on a per-window basis.

Since the interception is done by the keyboard process, the characters cannot straightforwardly
be specified by a variable for the program to bind. So each window has a list of them (which is
actually stored as the :asynchronous-characters property on the input buffer’s property list).

:asynchronoué-characters alist Init option for tv:stream-mixin
alist specifies the characters to be intercepted asynchronously while this window is selected,
and what they should do.

Each element consists of a character, a function to call, and optionally some extra
arguments to be passed to it. When the function is called, its arguments will be the
character, the selected window, and any specified additional arguments from the alist
element. ‘

If the init option is not specified, the default comes from the value of tv:kbd-standard-
asynchronous-characters, the initial value of which is

SRCKL.WIND>INPUT.TEXT.24 8-AUG-83

Intercepted Characters 62 Window System Manual

((#\c-abort tv:kbd-asynchronous-intercept-character
(:name "Abort" :priority 50.) '
tv:kbd-intercept-abort)

(#\c-m-abort tv:kbd-asynchronous-intercept-character
(:name "Abort A11" :priority 50.)
tv:kbd-intercept-abort-all)

(#\c-break tv:kbd-asynchronous-intercept-character
(:name "Break" :priority 40.)
tv:kbd-intercept-break)

(#\c-m-break tv:kbd-asynchronous-intercept-character
(:name "Error Break" :priority 40.)
tv:kbd-intercept-error-break))

How these work is explained below.

:asynchronous-character-p character Operation on tv:stream-mixin
Returns non-nil if this window defines character for asynchronous interception.

:handle-asynchronous-character character Operation on tv:stream-mixin
Invokes the handler a defined for asynchronous interception of character. This runs the
handler function in your current process. But since handler functions typically do
process-run-function, it usually doesn’t matter.

:add-asynchronous-character Operation on tv:stream-mixin
character handler-function &rest additional-args
Define character for asynchronous interception in this window, to be handled by handler-
function and the additional-args. This adds an element
(character handler-function . additional-args)
to the alist on the input buffer's property list.

:remove-asynchronous-character character Operation on tv:stream-mixin
Removes character's element from the alist, so that it is no longer intercepted
asynchronously in this process.

Asynchronous interception is done by the Keyboard process, and the handler function runs in
that process. Therefore, it must obey some strict conventions. It must not do any 170, or wait
for anything; it should not run for very long; it should not get an error. It is usually easicst to
create another process and do the real work there, using process-run-function.

tv:kbd-asynchronous-intercept-character character window process-options subhandler
additional-subhandler-args
This function is provided as a convenient way to sct up the handling of an asynchronously
intercepted character. It enables you to interface to the same functions uscd for
synchronous interception. It is used with at least two additional arguments: the process
namc and options for process-run-function, and the function to call in the new process.
Thus, '
(#\c-break tv:kbd-asynchronous-intercept-character
(:name "Break" :priority 40.)
tv:kbd-intercept-break)
arranges to create a process named "Break" with priority 40, and call tvikbd-intercept-

SRCKL.WIND>INPUT.TEXT.24 8-AUG-83

Window System Manual 63) Intercepted Characters

break in that process.

subhandler, which is tv:kbd-intercept-break in this example, is passed as arguments
character, window, and the additional-subhandler-args if any.

5.5.3 Global Asynchronous Characters

The Terminal and System keys are also intercepted asynchronously, but since their functions
do not usually relate to the sclected window, they are not controlled by the selected window’s
alist of asynchronous characters. These are called global asynchronous characters.

tv:kbd-global-intercepted-characters Variable
This is an alist whose value controls the characters intercepted regardless of the selected
window. Its elements look and work just like thosc of the alist specified in the
:asynchronous-characters init option for a window.

The initial value is
((#terminal tv:kbd-esc)
(#\system tv:kbd-sys))

Terminal and System are defined to call functions that read another character and dispatch
on it. The meaning of the second character is controlled by an alist so you can define new
Terminal and System commands.

tv:*escape-keys®* Variable
The value of this variable is an alist, each entry of which describes a subcommand of the
Terminal key. (Escape is the old name for the Terminal key.) Rather than modifying
the list yourself, use tv:add-escape-key or tviremove-escape-key (below). Entries on
the list are of the form: _
(char function documentation optionl option2 ...)

char is the character that should be typed after Terminal to get the new command. The
character gets upper-cased before it is searched for in this list, so don’t use lower case
characters. function may either be a list to be evaluated, or a symbol, which is the name
of a function to be applied to one argument. This is either the numeric argument
specified by the user (as in Terminal 0 S), or nil if the user gave no argument,

documentation should be a string giving documentation, or a form that gets evaluated and
returns either a string or nil. The string will be printed by Terminal Help, except that nil
means to omit this character from the Terminal Help display.

Normally function is evaluated or applied in a new process created for the purpose, but if
you give the :keyboard-process option it will run in the keyboard process. This option
exists because certain of the built-in commands must work this way. If you add your
own, you should not use this option, since you do not want to interfere with the
operation of the keyboard process. The cost of creating a new process is quite low.

If the :typeahead option is specified, then everything typed before the Terminal key will
be shoved into the sclected 1/0 buffer, i.e. it will be treated as typcahead to the currently
sclected window. Usc this option with commands that change the selected window, to

SRCKL.WIND>INPUT.TEXT.24 8-AUG-83

Intercepted Characters 64 Window System Manual

cnsure that the user’s typed input goes where he expected it to when he typed it.

Here is a sample element:
(#\clear-screen
(tv:kbd-screen-redisplay)
"Clear and redisplay all windows.")

tv:add-escape-key char function documentation &rest options
Adds an element to tv:*escape-keys*, and puts it in the right place alphabetically.

tv:remove-escape-key char
Removes any element for char from tv:*escape-keys®.

tv:*system-keys* Variable

The value of this variable is an alist, each entry of which describes a subcommand of the
System key. Use the functions tviadd-system-key and tv:remove-system-key (bclow)

" to modify the list rather than doing it yoursclf. Entries are of the form:

) (char find documentation create)
char is the character that should be typed after System to get the new command. The
character gets upper-cased before it is searched for in this list, so don’t usc lower case
characters. documentation should be a string to be printed by System Help.

If find is an instance of a flavor, then it should be a window, and the System command
will select that particular window. However, normally find is the name of a flavor. If it
is, the System command first searches the previously-selected-windows list for a window
of that flavor, and selects one if it finds one. Otherwise, if the currently sclected window
is of that flavor, it beeps. Otherwise, it looks at create to figure out what to do. find can -
also be a list; then it is evaluated and the value should be a window or a flavor name to
be used as described above.

If create is nil, it beeps. If create is t, a new window of flavor find is created by calling
make-instance with no options, and is selected. If create is some other symbol, it is the
name of the flavor of window to be created. (This can be different from the flavor to
look for, which might be a mixin that is component of scveral different flavors all of
which are suitable to select when this key is typed.) Oiherwise, cregie is a form @© be
evaluated to create a window. The System command runs in a newly-created process and
so the form is evaluated in its own process, not the keyboard process.

If the character typed after the System key is typed with the Control shift, existing
windows are ignored and a new window is created according to create.

Here is a sample element: .
(#/E zwei:zmacs-frame "Editor" t)

tv:add-system-key char find documentation &optional (createt)
Adds an element to tv:*system-keys*, and puts it in the right alphabetical position.

SRC:KI.WINDINPUT.TEXT.24 8-AUG-83

Window System Manual 65 _ Polling The Keyboard Explicitly

tv:remove-system-key char
Removes any element for char from tv:*system-keys®*.

tv:find-window-of-flavor flavor-name
Returns a previously sclected window of flavor flavor-name. Windows are found in
tv:previously-selected-windows (page 36) and checked with typep.

tv:select-or-create-window-of-flavor flavor-name
Selects a previously selected window of flavor flavor-name, or, if none exists, creates a
new one and selects it.

5.6 Polling The Keyboard Explicitly

Another way of using the keyboard, different from reading a stream of input characters from
a window, is to trcat it as a "random access” device and look at the instantancous state of
particular keys. Spacewar does this.

tv:key-state keyr-name :
Returns t if the keyboard key named key-name is currently depressed, nil if it is not.

key-name may be the symbolic name of a shift key, from the table below, or the
character code of a non-shift key, which is the character you get when you type that key
without any shifts: a lower-case letter, a digit, or a special character. Shift keys that
come in pairs have three symbolic names; one for the lefi-hand key, one for the right-
hand key, and one for both, which is considered to be depressed if either member of the
pair is. The shift key names are:

:shift :left-shift :right-shift
:greek :left-greek :right-greek
:top :left-top :right-top
:control :left-control :right-control
:meta :left-meta :right-meta
:super :left-super :right-super
thyper :left-hyper :right-hyper
:caps-lock :alt-lock :mode-lock
:repeat

SRCKL.WINDYINPUT.TEXT.24 8-AUG-83

Output of Text 66 Window System Manual

6. Output of Text

All windows can function as output streams, displaying the output as if on the screen of an
ordinary display terminal. The flavor tv:minimum-window implements the operations of the Lisp
Machine output strcam protocol (see section 21.5 of the Lisp Machine manual), as well as many
additional output opcrations such as :insert-line. Every window has a current cursor position; its
main use is to say where to put characters that are drawn. The way a window handles the
operations asking it to type out is by drawing that character at the cursor position, and moving
the cursor position forward past the just-drawn character.

Cursor position arguments to stream opcrations are always expressed in "inside" coordinates
(sce page 129); that is, coordinates relative to the top-left corncr of the inside part of the
window, so the margins don’t count in cursor positioning. The cursor position always stays in the
inside portion of the window—never in the margins. The point (0,0) is at the top-left corner of
the window: increasing x coordinates are further to the right and increasing y coordinates are
further towards the bottom. (Note that y increases in the down direction, not the up direction!)

tv:cursor-x Instance variable of windows
tv:cursor-y Instance variable of windows
The window’s current cursor position. Note that these variables use "outside" coordinates,
unlike the arguments to stream operations.

The x cursor position is the position of the left edge of the character box of the next
character output. (The leftmost nonzero pixels of the character may be either left or right of the
edge of the character box, according to the lefi-kern of the character; sec page 88).

The y cursor position is the position of the top of the vertical extent for the line being
output. If only a single font is in use, the top of the character box is at this vertical position.

In fact, characters are positioned so that their baselines come out on the baseline of the line.
This way, characters of different fonts juxtaposed in one line come out with baselines aligned
rather than with their top edges aligned. The position of the character’s baseline is a property of
its font. The window’s baseline is computed from the set of fonts in use, to provide enough
space above the baseline for any of the fonts (see page 85).

When a character is drawn, it is combined with the existing contents of the pixels of the
window according to an alu function. The different alu functions are described in section 8.1,
page 93. When characters are drawn, the value of the window’s char-aluf is the alu function
used. Normally, the char-aluf says that the bits of the character should be bit-wise logically ored
with the cxisting contents of the window (tv:alu-ior). This means that if you type a character,
~ then set the cursor position back to where it was and type out a second character, the two
characters will both appear, ored together one on top of the other. This is called overstriking.
Erasure is also done using an alu function which the window can specify, called the erase-aluf.
Normally this is an alu function which ands the old pixel value with the complement of the area
erased (tv:alu-andca).

SRCKL.WIND>OUTPUT.TEXT.26 8-AUG-83

Window Systcm Manual 67 Output of Text

tv:char-aluf Instance variable of windows
tv:erase-aluf Instance variable of windows
The window’s char-aluf and erase-aluf.

Reverse-video windows work by interchanging the normal values of the char-aluf and erase-
aluf, so that erasing an area sets it to onc while drawing a character clears the character’s pixels
to zero.

Every window has a font map. A font map is an array of fonts in which characters on the
window can be typed. At any time, onec of these is the window's current font; the opcrations
that type out characters always type in the current font. Details of fonts and the font map appear
below (see chapter 7, page 83). For now, we describe fonts only enough to explain the character-
width and line-height of the window; these two units are uscd by many of the operations
documented in this section. The character-width is the char-width attribute—the width of a
"typical” character—of the first font in the font map. The line-hcight is the sum of the vsp of the
window and the maximum of the char-heights of all the fonts. The vsp is an aitribute of the
window that controls how much vertical spacing there is between successive lines of text. That is,
each line is as tall as the tallest font is, and you can add vertical spacing between lines by
controlling the vsp- of the window. Operations for controlling the vsp are documented on page 80. -
There is no instance variable holding the vsp, but the system can recompute it from the line-
height and the font map.

tv:char-width Instance variable of windows
tv:1ine-height Instance variable of windows
The character-width and line-height of the window. The line height is actually used for
outputting a # \return character. The character width is not used at all for ordinary
output, since each font determines its own widths. Both are used for interpreting cursor
positions expressed in characters or lines.

Every window has a current font, which the operations use to figure out what font to type in.
If you are not interested in fonts, you can ignore this and something reasonable will happen. In
some fonts, all characters have the same width; these are called fixed-width fonts. The default
font is an example. In other fonts, each character has its own width: these are called variable-
width fonts. With variable-width fonts, it is not fully meaningful to express horizontal positions in
numbers of characters, since different characters have different widths. Some of the functions
below do use numbers of characters to designate widths; there are warnings along with each such
use explaining that the results may not be meaningful if the current font has variable width.

tv:sheet-cursor-x. window

tv:sheet-cursor-y window

tv:sheet-char-aluf window

tv:sheet-erase-aluf window

tv:shest-char-width window

tv:sheet-11ne-height window
Accessor defsubsts for the corresponding instance variables. It may be reasonable to setf
the first four of them. .

SRCKL.WIND>OUTPUT.TEXT.26 3-AUG-83

How A Character Is Printed 68 Window System Manual

6.1 How A Character Is Printed

Typing out a character does more than just drawing the character on the screen. The cursor
position is moved to the right place; non-printing characters arc dealt with reasonably; if there is
an attempt to move off the right or bottom cdges of the screen, the typcout wraps around
appropriately; more breaks are caused at the right time if more processing is enabled. Here is the
complete explanation of what typing out a character does. You may want to remind yoursclf how
the Lisp Machine character set works; see section 21.1 of the Lisp Machine manual. You don’t
have to worry much about the details here, but in case you ever necd to know, here they are. If
you aren’t interested, skip ahead to the definitions of the operations.

First, any output exceptions that are present are dealt with, and made to go away. See
section 6.3, page 70, for an explanation of this.

When all exceptions have been dealt with, the character finally gets typed out. If it is a
printing character, it is typed in the current font at the cursor position and the cursor position is
moved to the right by the width of the character. If it is one of the format effcctors # \return,
#\tab, and #\backspace, it is handled in a special way to be described in a moment. All
other special characters have their names typed out in tiny letters surrounded by a lozenge, and
the cursor position is moved right by the width of the lozenge. If an undefined character code is
typed out, it is treated like a special character; its code number is displayed in a lozenge.

#\tab moves the cursor position to the right to the next tab stop, moving at least one
character-width. Tab stops are equally spaced across the window. The distance between tab stops
is tab-nchars times the character-width of the window. (ab-nchars defaults to 8 but can be
changed (sec page 81).

Normally #\return moves the cursor position to the inside left edge of the window and
down by one line-height, and clears the line (see page 75). It also deals with more processing
and the end-of-page condition as described above. However, if the window’s cr-not-newline-flag is
on, the # \return character is not regarded as a format effector and is displayed as "return” in a
lozenge, like other special characters.

If the character being typed out is a # \backspace, the result depends on the value of the
window’s backspace-not-overprinting-flag. 1f the flag is 0, as is the defauit, the cursor position is
moved left by one character-width (or to the inside left edge, whichever is closer). If the flag is
1, # \backspaces are treated like all other special characters.

6.2 Stream Output Operations
:tyo ch &optional font S Operation on windows

Type ch on the window,- as described above. Basically, type the character ch in font or
the current font at the cursor position, and advance the cursor position.

SRCKL.WIND>OUTPUT. TEXT.26 8-AUG-83

Window System Manual 69 Stream Output Operations

:string-out siring &optional (start 0) (end nil) Operation on windows
Type string on the window, starting at thc character sfart and ending with the character
end. If end is nil, continue to the end of the string; if neither optional argument is
given, the entire string is typed. This behaves exactly as if each character in the string
(or the specified substring) were printed with the :tyo operation, but it is much faster.

:fat-string-out swring &optional (start 0) (end nil) Operation on windows
Type the fat string string on the window. This is like :string-out except that the %%ch-
font ficld of each character is used as the font to draw that character in. The window’s
current font is not used.

:1ine-out swring &optional (start 0) (end nil) Operation on windows)
Do the same thing as :string-out, and then advance to the next line (like typing a
#\return character). The main reason that this operation exists is so that the stream-
copy-until-eof function (see section 21.4 of the Lisp Machine manual) can, under some
conditions, move whole lines from one stream to another; this is more cfficient than
moving characters singly. The behavior of this operation is not affected by the :cr-not-
newline-flag init-option (see page 81).

:string-out-centered string left right y-pos Operation on windows
Output string (or the portion from start to end), centered between x positions left and
right, at y position y-pos (which defaults to the current cursor position). The cursor is
left at the end of the string. If the string is multiple lines, the entire rectangular shape it
occupies is centered as a unit. To center lines individually, output each line individually
with this operation.

:fresh-1ine Operation on windows
Get the cursor position to the beginning of a blank line. Do this in one of two ways. If
the cursor is already at the beginning of a line (that is, at the inside left edge of the
window), clear the line to make sure it is blank and leave the cursor where it was.
Otherwise, advance the cursor to the next line and clear the line just as if a #\return
had been output. The behavior of this operation is not affected by the :cr-not-newline-
flag init-option (see page 81).

:beep &optional beep-type Operation on windows
Attempt to attract the user’s attention, by either making a sound with the keyboard or
flashing the screen into and out of inverse video or both.

If beep’s value is nil, both are done. If the value is :beep, only the sound is made. If
it is :flash, only flashing the screen is done.

No standard meanings have been assigned to beep-type yet.
beep &optional beep-type (stream standard-output)

Beeps by sending a :beep message to stream, passing beep-type as an argument. If the
stream does not handle the :beep operation, a sound is made on the keyboard instead.

SRCKL.WIND>OQUTPUT.TEXT.26 8-AUG-83

Output Exceptions 70 Window System Manual

:display-lozenged-string suring Operation on windows
Output string in a lozenge. This is how special characters are echoed.

tv:sheet-11ne-out sheet string start end set-xpos set-ypos dwidth
This is a complicated primitive whose interface is arranged to do exactly what the editor
needs for buffer display, to make the editor as fast as possible.

It outputs part of string on sheet like the :fat-string-out operation, but stops if it reaches
the right margin (outputting a right margin character if any output remains, if the window
calls for that).

If set-xpos and set-ypos are non-nil, the cursor is moved there and a :clear-eol is done,
before output starts. If one of these arguments is nil, that dimension of cursor position is
not changed. If both are nil, the cursor is not moved and nothing is cleared.

If awidth is non-nil, it should be a positive number. Output actually starts at index (1-

. Start) in the string, and at x position dwidth less that the cursor position (as found or as
set by set-xpos). However, if a :clear-eol is done, it starts at ser-xpos. Non-nil dwidth
is to be used if the previous character of the string is in an italic font, and is already
present on the screen before the output now being done. It causes that character to be
output again, presumably overprinting itself, in case a corner of it was erased accidentally
because it protrudes to the right of its allocated space.

Returns two values, the final index in the string and the final x cursor position. The
window’s cursor is not guaranteed to be moved there; it is undefined on exit from this
function. But the value will be correct.

6.3 Output Exceptions

Before doing output to a window, various exceptional conditions are checked for. If an
exceptional condition is discovered, a standard operation is invoked to handle it. Redefining or
adding daemons to these operations can change the handling of exceptions. For example, output
with the cursor too close to the right margin causes an end of line exception; the handling of this
exception is what moves the cursor to the next line, or truncates the line, or whatever the
window’s flavor arranges for.

The exceptions are actually indicated by flags, bits, set in the window. The operation to
handle the exception should do nothing if it is invoked when the corresponding flag is not set,
and should not return with the flag still set (or an error will be signaled). The end-of-page and
more flags are set and cleared automatically by moving the cursor; as long as things are done
properly, they will be set if and only if the cursor is in the right place for them. So the
exception handler need only make sure to move the cursor to a good place. The output hold
exception handler usually just waits for or brings about a situation in which the reason for the
output hold is gone (usually because the window has been exposed).

SRCKL.WIND>OUTPUT. TEXT.26 8-AUG-83

Window System Manual 71 i Output Exceptions

:handle-exceptions Operation on windows _
Performs the exception processing described by all the rest of this scction. Exceptions are
processed in this order:

Output Hold, End-of-Page, **MORE=#*, and End-of-Line.

6.3.1 Output Hold and End of Page Exceptions

First, if the window’s output hold flag is set, an output hold exception happens. The
operation :output-hold-exception is invoked to handle it.

tv:sheet-output—ho'ld-f'lag window
Returns the output hold flag of window, which is 1 if there is a hold and 0 if not. This

is a setfable accessor defsubst.

:output-hold-exception Operation on windows
This operation should not return until the output hold is gone. It may wait for the
output hold flag to be cleared, or try to cause it to be cleared. The default handler acts
based according to the window’s deexposed typeout action (see page 21).

Next, if the end-of-page flag is- set (normally the case if the y-position of the cursor is less
than one line-height above the inside bottom edge of the wmdow) the :end-of-page- exceptuon
operation is invoked.

tv:sheet-end-page-flag window
Returns the end-of-page flag of window, which is 1 if the next output operation should
wrap and 0 otherwise. This is a setf’able accessor defsubst.

:end-of-page-exception Operation on windows
This operation is invoked to handle the end-of-page exception when present. It should do
nothing if invoked when the flag is zero.

The default definition is simply to move the cursor to the top line, clear that line, and
set the vertical position for the next »*MORE# if more-processing is enabled.

6.3.2 *MORE** Exceptions

Next, if the window’s more flag is set, a more exception happens. The more flag gets set
when the cursor is moved to a new line (e.g. when a #\return is typed) and the cursor position
is thus made to be below the more vpos of the window. (If tv:more-processing-global-enable
is nil, this exception is suppressed and the more flag is turned off.) The :more-exception
operation is invoked to handle the exception. .

tv:sheet-more-flag window

Returns the more flag, which is 1 if the next output operation should do a **MORE»»,
and 0 otherwise. ThlS is a setfable accessor defsubst.

SRCAL.WIND>OUTPUT.TEXT.26 8-AUG-83

Output Exceptions 72 Window System Manual

tv:more-vpos Instance variable of windows
The vertical position at which the next «+*MORE*» should happen in output on the
window.

:more-vpos Operation on windows

Returns the window’s tv:more-vpos.

tv:sheet-more-vpos window
Accessor defsubst for the preceding instance variable.

tv:more-processing-global-enable Variable
#**MORE ** processing does not happen if this variable is nil during the output operation
in which the *»MORE** would have happened.

:more-exception Operation on windows
The :more-exception handler in the tv:minimum-window flavor does a :clear-eol
operation, types out **MOREs», reads a character using the :more-tyi operation, restores
the cursor position to where it originally was when the :more-exception was detected,
does another :clear-eol to wipe out the **MORE»=, and rescts the more vpos. The
character read in is ignored.

This operation works by calling a subroutine, tv:sheet-more-handler, if the more flag is
set. It should do nothing if the flag is zero. It is safe to redefine it to call that function
with diffcrent arguments, or to do other things as well. It is very risky to write a new
definition from scratch, as tvisheet-more-handler is tricky.

tv:sheet-more-handler &optional (operation’:tyi) (more-string"+**MORE#**")
Implements the standard handling of more exceptions, described above, using operation to
read the input and more-string as the output to be printed and then erased.

Note that the more flag is set only when the cursor moves to the next line, because a
#\return is typed out, after a :line-out, or by the :end-of-line-exception handler described
below. It is not set when the cursor position of the window is explicitly set (e.g. with :set-
cursorpos); in fact, explicitly setting the cursor position clears the more flag. The idea is that
when iypeoui is being sireamed out scqucniially to the window, more-cxceptions happen at the
right times to give the user a pause in which to read the text that is being typed, but when
cursor positioning is being used the system cannot guess what order the user is reading things in
and when (if ever) is the right time to stop. In this case it is up to the application program to

provide any necessary pauses.

, The algorithm for setting the more vpos is too complicated to go into here in all its detail,

and you don’t need to know exactly how it works, anyway. It is careful never to overwrite
something before you have had a chance to read it, and it trics to do a **MORE#*+ only if a lot
of output is happening. But if output starts happcning near the bottom of the window, there is
no way to tell whether it will just be a littic output or a lot of output. If there’s just a little, you
would not want to be bothered by a #*MORE#*+. So it doesn’t do one immediately. This may
make it nccecssary to causc a **MORE=» break somewhere other than at the bottom of the
window. But as more output happens, the position of successive **MORE=*#s is migrated and
eventually it ends up at the bottom.

SRCKL.WINIDD>OUTPUT.TEXT.26 8-AUG-83

Window Systcm Manual 73 Output Exceptions

tv:autoexposing-more-mixin Flavor
If you mix in this flavor, when a :more-exception happens, the window will be exposed
(an :expose message will be sent to it). This is intended to be used in conjunction with
having a deexposed typeout action of :permit (see page 22), so that a process can type
out on a deexposed window and then have the window expose itsclf when a *+MORE#
break happens.

6.3.3 End of Line Exceptions

Finally, if the cursor is at or ncar the end of the line so that there is no room to output the
next character, an end-of-line cxception happens. The :end-of-line-exception operation is
invoked to handle it. A flag is not used to trigger this exception since the condition depends on
the width of the character to be output.)

:end-of-1ine-exception Operation on windows
This operation is defined by default to advance the cursor to the next line, just as typing
a #\return character does normally (see below). Doing so may, in turn, cause an :end-
of-page-exception or a :more-exception to happen. Furthermore, if the right margin
character flag is on (see page 81), then before going to the next line, an exclamation
point in font zero is typed at the cursor position. When this flag is on, end-of-line
exceptions are caused a little bit earlier, to make room for the exclamation point.

:tyo-right-margin-character Operation on windows
If a right-margin character is to be printed, this operation is invoked to print it. It can
simply :tyo the character.

The way the cursor position goes to the next line when it reaches the right edge of the
window is called ‘horizontal wraparound or continuation. You can make windows that truncate -
lines instead of wrapping them around by using tv:line-truncating-mixin.

tv:line-truncating-mixin Flavor
This mixin gives a window the ability to truncate lines at the right margin instead of
continuing output onto the next line as usual (see continuation, page 73). Truncation is
performed if the window’s truncate-line-out flag is set. When the cursor position is near
the right-hand cdge of the window and there is an attempt to type out a character, the
character simply will not be typed out.

:truncate-1ine-out-flag flag Init option for tv:iine-truncating—mixin
Initializes the truncate-line-out flag of the window to flag. One means truncate and zero
means do not.

tv:sheet-truncate-1ine-out-flag window
Returns the truncate-line-out flag of the window, which is zero or one. One means
truncate and zero means do not: however, the flag matters only if tv:line-truncating-
mixin is in use. This is a defsubst which may be setf'd.

SRCKL.WIND>OUTPUT.TEXT.26 _ R-AUG-83

Cursor Motion ' 74 W_indow System Manual

tv:truncating-window ' Flavor
This flavor is built on tv:window with tv:line-truncating-mixin mixed in. If you
instantiate a window of this flavor, it will be like regular windows of flavor tv:window
except that lines will be truncated instead of wrapping around.

6.4 Cursor Motion

The window’s cursor position is where the upper left corner of the next output character will
appear, with a vertical offset if nccessary to match up the baselines of various fonts (sce page 87).
Recall that cursor position arguments and values of stream opcrations are relative to the inside
upper left corner of the window.

:read-cursorpos &optional (units ":pixel) Operation on windows
Return two values: the x and y coordinates of the cursor position. These coordinates are
in pixels by decfault, but if units is :character, the coordinates are given in character-
widths and line-heights. (Note that character-widths don’t mean much when you are using
variable-width fonts.)

:increment-cursorpos x y &optional (units ":pixel) Operation on windows
Advances the cursor position the specified amount in each coordinate. The units may be
specified as with :read-cursorpos. This operation is considered to be sequential motion
of the cursor through a variable amount of space, rather than instantancous jumping of
the cursor. What this means is that exceptions happen, just as if output were bcing done.
So the cursor wraps around at the margins (or does whatever this window does for :end-
of-line-exception and :end-of-page-exception), and **MORE** processing happens at
the appropriate place.

The following few operations do cursor motion rather than advancing the cursor. The end-of-
page, more and end-of-line exception flags will be set if the cursor is moved to a position where
they ought to be on, and can be cleared if they were previously on and the cursor is moved to a
place where they ought to be off. Exception handling does not take place.

:set-cursorpos x y &optional (units ":pixel) Operation on windows
Moves the cursor position to the specified coordinates. The units may be specified as with
:read-cursorpos. If the coordinates are outside the window, move the cursor position to
the nearest place to the specified coordinates that is in the window.

:home-cursor Operation on windows
Moves the cursor to the upper left corner of the window.

:home-down : Operation on windows
Moves the cursor to the lower left corner of the window.

:forward-char &optional char Operation on windows
Moves the cursor forward one character position, or the width of char in the current font
if char is specificd. Exceptions are processed, so this is like outputting a space which has
the appropriate width.

SRC:KL.WIND>OUTPUT.TEXT.26 8-AUG-83

Window System Manual 75 Erasing

:backward-char &optional char ' Operation on windows
Moves the cursor backward one character position, or the width of char in the current
font if char is specified. Exceptions are processed, but there is no reverse-wraparound. At
the left margin, the cursor does not move.

:size-in-characters Operation on windows
Returns two values, the dimensions of the window, in units of character-widths and line-
heights. (Note that character-widths don’t mean much when you are using variable-width
fonts.)

:set-size-in-characters Operation on windows
width-spec height-spec &optional option
Scts the inside size of the window, according to the two specifications, without changmg
the position of the upper-left corner. width-spec and height-spec are interpreted the same
way as arguments to the :character-width and :character-height init-options,
respectively. option is passed along to :set-edges (page 46).

6.5 Erasing

All the erasing operations operate on the window pixels by drawing the area to be erased
using the window’s erase-aluf as the alu function (see page 67). This is by default tv:alu-andca,
which clears the screen bits of the screen area drawn.

:clear-char &optional char Operation on windows
Erases the character at the current cursor position. When using variable-width fonts, you
tell it the character code of the character you are erasing, so .that it will know how wide
the character is (it assumes the character is in the current font). If you don’t pass the
char argument, it simply erases a character-width, which is fine for fixed-width fonts.

:clear-string string &optional start end Operation on windows
Erases enough space, starting at the cursor, to contain string (or the portion of string
from start to end), printed in the current font. The entire height of the linc is erased, so
it does not matter whether the text on the screen is string or somcthing else. string
determines only how far to crase. If a fixed-width font is in use, this is equivalent to
doing :clear-char once for each character in string. This operation becomes desirable
because of variable-width fonts.

:clear-eo0l ’ Operation on windows
Erases from the current cursor position to the end of the current line; that is, erases a
rectangle horizontally from the cursor position to the inside right edge of the window, and
vertically from the cursor position to one line-height below the cursor position.

:clear-gof Operation on windows
Erascs from the current cursor position to the bottom of the window. In more detail, ﬁrst
does a :clear-eol, and then clears all of the window past the current line,

SRCKL.WIND>QUTPUT.TEXT.26 8-AUG-83

Inserting and Deleting Lines and Characters 76 Window System Manual

:clear-screen Operation on windows
Erases the whole window and moves the cursor position to the upper left corner of the
window.

:clear-between-cursorposes start-x start-y end-x endy Operation on windows

Erases an arca starting at cursor position start-x and start-y, wrapping around if nccessary
at the end of the line or the page, until end-x and end-y are reached.

Though the arguments are expressed as cursor positions, the cursor position of the
window is not changed.

6.6 Inserting and Deleting Lines and Characters

Inserting a character means printing it at the cursor but pushing the rest of the text on the
line toward the right margin. Similarly, deleting a character means pulling the following text on
the line back toward the left so that the position occupicd by the character is closed up. Inserting
and deleting lines work the same way vertically, moving the lines below the cursor down or up.

The operations that take ‘a numeric argument specifying the amount of space to insert or
delete also take an argument specifying the unit (either :pixel or :character) in which the space
has been mcasured. The unit argument’s meaning is the same as in the :read-cursorpos
operation (page 74) but the default is :character rather than :pixel.

:delete-char &optional (n 1) (unit “character) Operation on windows
Without an argument, deletes the character at the current cursor position. Otherwise,
deletes n characters (or n pixels if unit is :pixel), starting at the cursor position. Move
the display of the part of the current line that is to the right of the deleted section
leftwards to close the resultant gap. (If unit is :character, this assumes all characters are
one character-width wide, and so will not do anything useful with variable-width fonts.)

:delete-string string &optional (start 0) (end nil) Operation on windows
This is for deleting specific strings in the current font. It is one of the things to use when
dealing with variable-width fonts. '

If string is a string, excise a region exactly as wide as that string, or a substring specified
by start and end, and moves the display of the part of the current line that is to the
right of the excised region leftwards to close the gap.

If string is a number, it is considered to be a character code. The single character is
treated like a string containing that character.

:delete-11ne &optional (n 1) (unit ‘character) ' Operation on windows
Without an argument, dcletes the line that the cursor is on. Otherwise deletes n lines, or
n rows of pixels if unir is :pixel, starting with the one the cursor is on. Moves the
display below the dcleted section up to close the resulting gap.

SRC:KL.WIND>OUTPUT.TEXT.26 8-AUG-83

Window System Manual 77 _ Anticipating the Effect of Output

:insert-char &optional (n 1) (unit “character) Operation on windows
Opens up a space the width of n characters (or n pixels if unit is :pixel) in the current
line at the current cursor position. Shifts the characters to the right of the cursor further
to the right to make room. Characters pushed past the right-hand edge of the window are
lost. (If unit is :character, this assumecs all characters are one character-width wide, and
so will not do anything useful with variable-width fonts.)

sinsert-string Operation on windows
string &optional (start 0) (end nil) (type-too 1)
Inserts a string at the current cursor position, moving the rest of the line to the right to
make room for it.

The string to insert is specified by string; a substring thereof may be specified with start
and end, as with :string-out.

string may also be a number, in which case the character with that code is inserted.

If type-too is specified as nil, the string is not actually printed. The space opened up is
big enough for the string, but is left blank.

:insert-1ine &optional (r 1) (unit ‘*character) Operation on windows
Takes the line containing the cursor and all the lines below it, and moves them down one
line. The line containing the cursor is moved in its entirety, not broken, no matter where
the cursor is on the line. ‘A blank line is created at the cursor. If an argument » is
given, opens up n blank lines, or n rows of pixels if unit is :pixel. Lines pushed off the
bottom of the window are lost.

6.7 Anticipating the Eﬂ’ect of Output

The following operations do not output, but provide information about what would happen to
the cursor and the screen if output were done.

:character-width char &optional (font tv.current-font) Operation on windows
Returns the width of the character char, in pixels. The current font is used if font is not
specified. If char is a Backspace, :character-width can return a negative number. For
Tab, the number returned depends on the current cursor position. If char is Return, the
result is defined to be zero.

:compute-motion Operation on windows
string &optional (start 0) (end nil) (x tvicursor-x) (y tv:cursor-y)
(cr-at-end-p nil) (stop-x Q) stop-y bottom-limit right-limit font line-height
tab-width :
This is used to figure out where the cursor would end up if you were to output string
using :string-out. It does the right thing if you give it just the string as an argument.
start and end can be uscd to specify a substring as with :string-out. x and y can be used
to start your imaginary cursor at some point other than the present position of the real
cursor. If you specify crat-end-p as t, it pretends to do a :line-out instead of a :string-
out. stop-x and stop-y define the size of the imaginary window in which the string is

SRCKL.WIND>OUTPUT.TEXT.26 8-AUG-83

Anticipating the Effcct of Output 18 Window System Manual

being printed; the printing stops if the cursor becomes simultancously 2 both of them.
These default to the lower left-hand corner of the window. (This corner is reached before
the right-hand one, since output goes from lcft to right on each line.)

bottom-limit and right-limit are vertical and horizontal positions at which to wrap around;
they default to the inside height and width of the window. They differ from the stop-x
and stop-y in that thesc act independently when the cursor reaches cither one, and they
cause the cursor position to change rather than returning to the caller.

The computation normally uses font, or the window’s current font if font is nil. However,
if string is of type art-fat-string, cach character’s %%ch-font ficld is uscd as an index in
the window’s font map to find the font for that character, and fonr is ignored except
possibly for defaulting the tab-width.

For vertical spacing, line-height is used. The default for line-height is font’s line height if
Jont is non-nil, elsc the window’s line-height.

tab-width specifies the distance between tab stops, in pixels. If it is omitted, the default is
(tv:isheet-tab-width self)y if no font is specified, or (* (tv:sheet-tab-nchars self)
(tv:font-char-width fonr)) if a font is specified.

Four values are returned:

final-x
final-y The positions at which output stopped.
final-index The index in string at which output stopped, or nil if it reached the end

of the string, or ¢ if the string itself was processed but not the implicit
Return which was supposed to follow the string.

maximum-x The largest x position value reached during processing.

All coordinates for this operation are cursor positions, relative to the window’s inside
edges. However, if you specify all the arguments you can usc any origin of coordinate
system you like, as long as you interpret the values in the same coordinate system.

:string-length ' Operation on windows
string &optional (start 0) (end nil) stop-x (font current-font) (start-x Q)
tab-width

This is very much like :compute-motion, but works in only one dimension. It tells you
how far the cursor would move if string were to be displayed in the current font starting
at the left margin, or at star-x if that is specificd. start and end work as with :string-
out to specify a substring of string. If stop-x is not specified or nil, the window is
assumed to have infinite width; otherwise the simulated display will stop when a position
stop-x pixels from the left edge is reached.

The computation normally uses font, or the window’s current font if font is nil. However,
if string is of type art-fat-string, each character’s %%ch-font field is used as an index in
the window’s font map to find the font for that character, and fon is ignored except
possibly for defaulting the tab-width.

SRCKL.WIND>OUTPUT.TEXT.26 8-AUG-83

Window System Manual 79 Explicit (Non-Cursor) Output

tab-width specifies the distance between tab stops, in pixels. If it is omitted, the default is
(tv:sheet-tab-width self) if no font is specified, or (* (tvisheet-tab-nchars self)
(tv:font-char-width font)) if a font is specified.

:string-length returns three values:
final-x Where the imaginary cursor ended up.

final-index The index of the next character in the string (the length of the string if
the whole string was processed, or the index of the character which would
have moved the cursor past stop-x),

maximum-x The maximum x coordinate reached by the cursor (this is the same as the
first value unless there are Return or Backspace characters in the string).

6.8 Explicit (Non-Cursor) Output

A window includes some state information which changes as output is done. These include
the cursor position, the current font, alu function, and exception flags. The presence of this
information makes the window behave coherently as a stream, so that the output from one -
operation follows that of the previous operation. But sometimes this is not desirable. The
“explicit" output operations use a window only for its position and size, with all additional
information passed by the caller explicitly. This way, multiple streams of output to the same
window can exist, which do not interfere with each other by trying to use a single cursor.

The x and y position arguments used by these operations are relative to the outside edges of
the window. - This is different from the stream and higher-level operations. It is because these
operations are frequently used for drawing parts of the margins, such as labels and margin
regions.

:string-out-explicit - Operation on windows
string start-x start-y x-limit y-limit font alu &optional (start 0) end
multi-line-line-height
Outputs string (or the portion from start to end) onto the window starting at start-x and
start-y, neither using nor moving the window’s cursor position. If x-limit or y-limit is
non-zil, output stops if it reaches that position.

Output is done in font using alu function alu. The window’s current font and alu
function are not used or set. If there are Return characters -in the output, and multi-line-
line-height is nil, they are printed as "Return” in a lozenge. If muwlti-line-line-height is a
number, that number is used as the line height, ignoring the window’s line height, and
the horizontal output position moves to start-x rather than the left margin for the next
line of output. :

Note that the arguments of tv:sheet-string-out-explicit are in a different order. The
argument order of this operation was cleaned up.

The operation returns three values: the final x position, the final y position, and the final
index in the string. You can use these to do multiple operations in consecutive places on
the screen.

SRCAL.WIND>OUTPUT.TEXT.26 8-AUG-83

Window Paramcters Affecting Output 80 Window System Manual

:string-out-centered-explicit Operation on windows
string &optional left y-pos right y-limit font alu (start 0) end
mullti-line-line- height
Outputs string (or the portion from start to end) centered between x positions left and
right, at'y position y-pos. If y-limit is reached, output stops. left and right default to the
inside edges of the window.

Output is done in fonr and alu, which default to the ones current for the window, and
lines are scparated by multi-line-line-height (which defaults to the window’s line height).

:string-out-x-y-centered-explicit Operation on windows
string &optional left top right bottom font alu start end
multi-line-line-height
Displays string (or the portion from start to end) with the rectangle it occupics centered
both horizontally and vertically. Horizontally it is centered between left and right, and
vertically between fop and bottom. The defaults for these arguments are the inside edges
of the window.

Output is done in font and alu, which default to the ones current for the window, and
lines are separated by multi-line-line-height (which defaults to the window’s line height).

6.9 Window Parameters Affecting Output

The following operations and initialization options initialize, get, and set various window
attributes which are relevant to the typing out of characters. (See also the operations to
manipulate the current font, on page 84.)

:more-p t-ornil ' Init option for windows
Initializes whether the window should have more processing. It defaults to t.

:more-p Operation on windows
Returns t if more processing (see page 71) is enabled; otherwise, return nil.

:set-more-p morep Operaiion oi windows
If more-p is nil, turns off more processing (see page 71); otherwise turns it on.

:VSp n-pixels Init option for windows
Initializes the window’s vsp. It defaults to 2.

1vsp , ' Operation on windows
Returns the value of vsp for this window (see page 67).

:set-vsp new-vsp ' Operation on windows
Sets the value of vsp for this window (sce page 67) to new-vsp.

SRCKIL.WIND>OUTPUT.TEXT.26 8-AUG-83

Window System Manual 81 Window Parameters Affecting Output

:reverse-video-p Operation on windows
Returns nil normally or t if the window displays in whitc on black rather than black on
white. This is scparate from the whole screen’s inverse vidco mode, which is what
Terminal C sets.

:set-reverse-video-p fornil Operation on windows
Enables or disables reverse-video display. Changing this mode inverts all of the bits in
the window.

:reverse-video-p tornil Init option for windows

Initializes the use of reverse-video display.

:right-margin-character-flag x Init option for windows
If x is 1, the window should print an exclamation point in the right margin when :end-
of-line-exception happens; if x is 0, it should not. The default is 0. See page 73.

tv:isheet-right-margin-character-flag &optional (window self)
Returns the flag which controls printing of characters at the right margin on wrap-around
on window. This is a setf’able accessor macro.

:backspace-not-overprinting-flag x Init option for windows
If x is 0, output of # \backspace will move the cursor position backward; if it is 1, it
will display “overstrike” in a lozenge (that is, #\backspace will be just like other
special characters). The default is 0. See page 68.

tv:sheet-backspace-not-overprinting-flag &optional (window self)
Returns the flag which controls how Backspace prints on window. This is a setfable
accessor macro.

:cr-not-newline-flag x Init option for windows
If x is 0, output of #\return will move the cursor position to the beginning of the next
line and clear that line; if it is 1, it will display "return" in a lozenge (that is, # \return
will be just like other special characters). The default is 0. This flag does not affect the
behavior of the :line-out nor the :fresh-line operations.

tv:sheet-cr-not-newline-flag &optional (windowself)
Returns the flag which controls how Return prints on window. This is a setfable accessor

macro.

:tab-nchars n Init option for windows
n is the separation of tab stops on this window, in units of the window’s char-width.
This controls how the # \tab character prints. n defaults to 8.

tv:sheet-tab-nchars &optional (window self)
Returns the distance between tab stops, measured in units of window’s char-width.

SRCLL.WIND>OQUTPUT.TEXT.26 8-AUG-83

Window Parameters Affecting Output 32 Window System Manual

tv:sheet-tab-width &optional (windowself)
Returns the distance between tab stops, measured in pixels.

SRCALWIND>OUTPUT.TEXT.26 §-AUG-83

Window System Manual 83 ' Fonts

7. Fonts

Having used the Lisp Machine for a while, you have probably noticed that characters can be
typed out in any of a number of different typefaces. Some text is printed in characters that are
small or large, boldface or italic, or in different styles altogether. Each such type face is called a
Jont. A font is conceptually an array, indexed by character code, of picturecs showing how each
character should be drawn on the screen.

A font is represented inside the Lisp Machine as a Lisp object. Fach font has a name. The
name of a font is a symbol, usually in the fonts package, and the symbol is bound to the font.
A typical font name is tr8. In the initial Lisp cnvironment, the symbol fonts:tr8 is bound to a
font object whosc printed representation is something like

#
The initial Lisp environment includes many fonts. Usually there are more fonts stored in QFASL
files in file computers. New fonts can be created, saved in QFASL files, and loaded into the
Lisp environment; they can also simply be created inside the environment,

Drawing of characters in fonts is done by microcode and is very fast. The internal format of
fonts is arranged to make this drawing as fast as possible. This format is described later, but you
almost certainly do not need to worry about it.

7.1 Specifying Fonts

You can control which font is used when output is done to a window. Every window has a
Jont map and a current font. The font map is conceptually an array of fonts; with a small non-
negative number, the font map associates a font. The current font of a window is always one of
the fonts in the window’s font map. Whenever output is done to a window, the characters are
printed in the current font. You can change the font map and the current font of a window at
any time with the appropriate operations.

The reason why the window has a font map rather than merely a current font is that it is
necessary to know all the fonts that will be used before doing any output in order to know how
to position the output properly (so that output in different fonts on the same line will look right).

In addition, certain output operations can accept fat strings (arrays of type art-fat-string)
which contain 16-bit characters, and regard the top 8 bits of cach character as a font number to
look up in the font map. These include :compute-motion, :string-length and :fat-string-out.

:font-map A Operation on windows
Returns the font map of the window. The object returned is the array that is actually
being -used to represent the font map inside the window. The clements are actual font
objects. ')

You should not alter anything about this array, since the window depends on it in order
to function correctly. To change the font map, use the :set-font-map operation.

SRC:KL.WIND>FONTS.TEXT.17 | 8-AUG-83

Spccifying Fonts 84 Window System Manual

:set-font-map newmap Operation on windows
Sets the font map to contain the fonts given in new-map. Recturns the array of fonts that
actually represents the font map inside the window (don’t mess with this array!). new-map
may be an array of font spccifiers, in which case this array is installed as the new intcrnal
array of the window, and the font specificrs are replaced by fonts. Font specifiers are
described in the following section; a font or the name of a font may be used.

new-map may also be a list of font specificrs, in which case the array is created from the
list in the style of filarray, with the last clement of the list filling in the remaining
clements of the array if any (the array is made at least 26. clements long, or long enough
to hold all the elements of the list).

If new-map is nil, all the elements of the map are set to the default font of the screen.

The current font is set to zero (the first font in the list or array). The linc height and
baseline of the window are adjusted appropriately (see below).

The specified font specifiers are remembered so that the :change-of-default-font
operation can cause the map to be recomputed from them. This is in case one of the
specifiers is a purpose keyword.

tv:font-map new-map Init option for windows
This option lets you initialize the font map. new-map is interpreted the same way it is
interpreted by the :set-font-map operation.

tv:font-map Instance variable of windows
The window’s font map.

scurrent-font Operation on windows
Returns the current font, as a font object.

:set-current-font new-font Operation on windows
Sets the current font of the window. new-font may be a number, in which case that
clement of the font map becomes the current font. It may also be a font specifier, in
which case the font that the specifier describes is used, unless that font is not in the font
map, in which case an error is signalled. Only fonts already in the font map may be
selected.

tv:current-font o Instance variable of windows
The window’s current font.

:baseline : Operation on windows
Returns the maximum baseline of all the fonts in the font map. The bases of all
characters will be aligned so as to be this many pixels below the y cursor position, which
is top of the line on which the characters are printed. In other words, when a character
is drawn, it will be drawn below the cursor position, by an amount equal to the
difference betwcen this number and the bascline of the font of the character.

SRCKL.WINID>FONTS.TEXT.17 8-AUG-83

Window System Manual 85 Specifying Fonts

tv:baseline Instance variable of windows
The position of the bascline of a text line, in pixels from the top of the line’s vertical
extent (its cursor position).

tv:sheet-font-map window
tv:sheet-baseline window
tv:sheet-current-font window
Accessor defsubsts for the corresponding instance variables.

You can use the List Fonts command in Zmacs to get a list of all of the fonts that are
currently loaded into the Lisp environment. Here is a list of some of the useful fonts:
fontsicptfont This is the default font, used for almost everything.

fonts:medfnt This is the default font in menus. It it a fixed-width font with characters
somewhat larger than those of cptfont.

fonts:medfnb This is a bold version of medfnt. When you usc Split Screen, for example, the
Do It and Abort items are in this font.

fonts:hl12i This is a variable-width italic font. It is useful for italic items in menus; ZMail
uscs it for this in several menus.

fonts:tr10i This is a very small italic font. It is the one used by the inspector to say "More
above" and "More below".

fonts:hl10 This is a very small font used for non-selected items in Choose Variable Values
windows.

fonts:hitOb - This is a bold version of hl10, used for selected items in Choose Varlable Values
windows.

7.1.1 Font Specifiers

Different kinds of screen require different kinds of fonts. The two kinds of screens currently
supported are black-and-white screens with one bit per pixel, and color screens with four bits per
pixel. Color screens with eight bits per pixel will certainly be supported in the near future, and
other kinds of screen may appear. However, it is nice to be able to write programs that will -
work no matter what screen their window is created on. The problem is that if your program
specifies which fonts to use by actually naming specific fonts, then the program will only work if
the window that you are using is on the same kind of screen as the fonts you are using were
designed for.

To solve this problem, a program does not have to specify the actual font to be used.
Instead, it specifies a certain symbol that stands for a whole collection of fonts. All of these fonts
are the same except that they work on different kinds of screens. The symbol that you use is the
- name of the member of the collection that works on the black-and-white screen. In other words,
when you want to specify a font, always use the name of a black-and-white font rather than a
font itself. Every screen knows how to understand these symbols and find an appropriate font to
use. This symbol is called a font specifier, because it describes a font rather than actually being a
font.

SRCKL.WIND>FONTS. TEXT.17 3-AUG-83

Specifying Fonts 86 Window System Manual

A font object may be supplied as a font specifier. This does not mean to use the font as
specified; it mecans to usc the font’s name as a font specifier. Thus, if you supply the font object
for the black-and-white font cptfont for a window on a color screen, the symbol fonts:cptfont is
used as a font specifier, resulting in the color version of cptfont actually being used.

The functions that understand font specifiers have some cleverness in order to make life easier
for you. If you pass in the name of a font that is not loaded into the Lisp environment, an
attempt will be made to load it from the file server, using the name of the font as the name of
the file, leaving the version and type unspecified, using the load function. The filename used is
SYS: FONTS; fontname QFASL. Also, the color screen knows how to create color versions of
fonts on the fly if they do not alrcady exist. Either of these things may make your program run
slowly the first time you run it, and so, if you care, you can load the file yourself and create a
color version of the font yourself (sce page 167).

Since different uscrs like to use different fonts, we provide a facility called font purposes.
Wherever a font specifier is used, the program can specify a purpose keyword instead. This
means, "use whatever font the user likes to use for this particular purpose”. The window
remembers when a purpose was specified instead of a particular font, so that if the user changes
the standard font for that purpose, all the cxisting windows that were told to use that purpose
will change font. The user specifics a standard font for a purpose with tv:set-default-font,
tv:set-standard-font or tviset-screen-standard-font. Each screen has its own alist mapping
font purposes to font names, but normally they are all aitered in parallel. Defined purpose
keywords include

default This is the font name for ordinary output. It is also called the default font.
:menu This is the font name for use in most menu items.

:menu-standout
This is the font name for menu items that are supposed to stand out. It is
normally an italic font.

Jlabel This is the font name used by default for labels.

:margin-choice
This is the default font name for margin choice boxes (see page 210).

It is up to each program to decide when any of these purpose keywords is appropriate.

:parse-font-specifier font-specifier Operation on tv:screen
Parses a font specifier in the proper way for this window, according to the screen the

window is on. The value is a font object.

:parse-font-name font-specifier Operation on tv:screen
Parses a font specifier in the proper way for this window, according to the screen the
window is on. The value is a font name: a symbol which, evaluated repeatedly,
ultimately produces a font.

SRCKL.WINID>FONTS. TEXT.17 8-AUG-83

Window System Manual 87 Attributes of Fonts

tv:font-evaluate font-name
Returns the font that font-name is the name of; this is done by evaluating font-name

repeatedly until the result is not a symbol.

tv:set-standard-font purpose font-specifier
Sets the standard font for purpose purpose on each screen based on font-specifier. font-
specifier is turned into a font by each screen individually, and that font becomes the new
standard font for purpose on that screen. All windows on the screen that were set up to
use the standard font for this purpose will switch to using the newly specified font.

tv:set-default-font font-specifier
Sets the standard font for purpose :default.

tv:set-screen-standard-font screen purpose font-specifier
Sets the standard font for purpose on screen only.

:change-of-default-font old-font new-font Operation on windows
Informs the window that the meaning of some standard font-name symbols has changed.
If the window uses any of them, it may need to recompute various things; for example,
if that font is used in the label, the window’s inside sizc may be changed; if it is used in
the window’s font map, the line height may be changed. Either one means the number
of lines may change, and this may require adjustment of other data. This can be done by
an :after daemon on this operation. -

In addition, the operation must be passed along to all inferiors and potential inferiors.

7.2 Attributes of Fonts

Fonts, and characters in fonts, have several interesting attributes. One attribute of each font
is its character height. This is a non-negative fixnum used to figure out how tall to make the
lines in a window. We have mentioned earlier that each window has a certain line height. The
line height is computed by examining each font in the font map, and finding the one with the
largest character height. This largest character height is added to the vsp specified for the window
(see page 67), and the sum is the line height of the window. The line height, therefore, is
recomputed every time the font map is changed or the vsp is set. It works this way so that there
will always be enough room on any line for the largest character of the largest font to be
displayed, and still leave the specified vertical spacing between lines. One effect of this is that if
you have a window that has two fonts, one large and one small, and you do output in only the
small font, the lines will still be spaced far enough apart that characters from the large font will
fit. This is because the window system can't predict when you might, in the middle of a line,
suddenly switch to the large font.

Another attribute of a font is its baseline. The baseline is a non-negative fixnum that is the
number of raster lines between the top of each character and the base of the character. (The
"base” is usually the lowest point in the character, except for letters that descend below the
bascline such as lower case "p” and "g".) This number is stored so that when you are using
several different fonts side-by-side, they will be aligned at their bases rather than at their tops or
bottoms. So when you output a character at a certain cursor position, the window system first

SRCKL.WIND>FONTS. TEXT.17 8-AUG-83

Attributes of Fonts 88 Window Systcm Manual

cxamines the baseline of the current font, then draws the character in a position adjusted
vertically to make the bases of all the characters line up.

There is another attribute called the character width. This can be an attribute either of the
font as a whole, or of each character scparately. If there is a character width for the whole font,
it is as if each character had that character width scparately. The character width is the amount
by which the cursor position should be moved to the right when a character is output on the
window. This can be different for different characters if the font is a variable-width font, in
which a "W" might be much wider than an "i". Notc that the character width does not
necessarily have anything to do with the actual width of the bits of the character (although it
usually does); it is just defined to be the amount by which the cursor should be moved.

There is another attribute that is an attribute of each character scparately; it is called the left
kern. Usually it is zero, but it can also be a positive or ncgative fixnum. When the window
‘system draws a character at a given cursor position, and the left kern is non-zero, then the
character is drawn to the left of the cursor position by the amount of the left kern, instead of
being drawn exactly at the cursor position. In other words, the cursor position is adjusted to the
left by the amount of the left kern of a character when that character is drawn, but only
temporarily; the left kern affects only where the single character is drawn and does not have any
cumulative effect on the cursor position.

A font that does not have separate character widths for each character and does not have any
non-zero left kerns is called a fixed-width font. The characters are all the same width and so they
line up in columns, as in typewritten text. Other fonts are called variable-width because different
characters have different widths and things do not line up in columns. Fixed-width fonts are
typically used for programs, where columnar indentation is used, while variable-width fonts are
typically used for English text, because they tend to be easier to read and to take less space on -
the screen.

Each font also has attributes called the blinker width and blinker height. These are two non-
negative fixnums that tell the window system a nice-looking width and height to make a
rectangular blinker for characters in this font. These attributes are completely independent of
everything clse and are used only for making blinkers. Using a fixed width blinker for a variable-
width font is not the nicest-looking thing to do; instead, the editor actually re-adjusts its blinker
width as a function of what character it is on top of, making a wide blinker for wide characters
and a narrow blinker for narrow characters. But if you don’t want to go to this trouble, or don’t
necessarily know just which character the blinker is on top of, you can just use the font’s blinker
width as the width of your blinker. For a fixed-width font there’s no problem. -

There is also an array for each font called the char-exists table. It is an art-1b array with a
1 for each character that actually exists in the font, and a 0 for other characters. This table is
not used by the character-drawing software; it is just for- informational purposes. Characters that
do not exist have pictures with no bits "on" in them, just like the "space” character. Most fonts
implement most of the printing characters in the character set, but some are missing some
characters.

SRCKL.WIND>FONTS. TEXT.17 8-AUG-83

Window System Manual 89 _ Format of Fonts

7.3 Format of Fonts

This section explains the internal format in which fonts are represented. Most users do not
need to know anything about this format; you can skip this section without loss of continuity.

Fonts are represented as arrays. The body of the array holds the bits of the characters, and
the array leader holds the attributes of the font and characters as well as information about the
format of the body of the array. Note that there is only one big array holding all the characters,
rather than a separate array for each character. The format in which the bits are stored is
specially designed to maximize the speed of character drawing and to minimize the size of the
data structure, and so it is not as simple you might expect.

FED operates on fonts by converting them into a different type of object containing the same
data. This new object is called a font descriptor; it is simpler and easicr to work with. See the
files SYS: 101; FNTDEF LISP for the format of font descriptors, and SYS: 101; FNTCNV
LISP for functions to operate on them, and to convert between font descriptors and fonts.

The font format works slightly differently depending on whether the font contains any
characters that are wider than thirty-two bits. If there are any such characters, then the font is
considered to be "wide", and a single character may be made up of scveral subcharacters to be
drawn side by side. A wide font stores subcharacters instead of characters as such, and has a
table indicating which subcharacters belong to each character of the character set. For the time
being, we will discuss only narrow fonts in which there is no need to distinguish characters from
subcharacters because each character is made of a single subcharacter.

Each character in a font has an array of bits stored for it. The dimensions of this array are
called the raster width and raster height. The raster width and raster height are the same for
every character of a font; they are propertics of the font as a whole, not of each character
separately. Consecutive rows are stored in the array; the number of rows per character is the
raster height, and the number of bits per row is the raster width. An integral number of rows
are stored in each word of the array; if there are any bits left over, those bits are unused. Thus
no row is ever split over a word boundary. Rows are stored right-adjusted, from right to left.
When there are more rows than will fit into a word, the next word is used; remaining bits at the
left of the first word are ignored, and the next row is stored right-adjusted in the next word, and
so on. An integral number of words is used for each character.

For example, consider a font in which the widest character is seven bits wide and the tallest
character is six bits tall. The raster width of the font is seven and the raster height is six. Each
row of a character is seven bits, and so four of them fit into a thirty-two bit word, with four bits
wasted. The remaining two rows require a second word, the rest of which will be unused because
the number of words per character must be an integer. So this font will have four rows per
word, and two words per character. To find the bits for character three of the font, you multiply
the character number, three, by the number of words per character, two, and find that the bits
for character three start in word six. The rightmost scven bits of word six are the first row of the
character, the next seven bits are the second row, and so on. The rightmost seven bits of the
seventh word are the fifth row, and the next seven bits of the seventh word are the sixth and last
row, :

SRCKL.WIND>FONTS.TEXT.17 8-AUG-83

Format of Fonts 90 Window System Manual

Note that we have been talking about "words" of the array. The character-drawing microcode
docs not actually care what type the array is; it only looks at machinc words as a whole, unlike
most of the array-referencing in the Lisp Machine. In a Lisp-object-holding array such as an art-
q array, the lefimost eight bits are not under control of the user, and so these kinds of arrays are
not suitable for fonts. In general, you nced to be able to control the contents of cvery bit in the
array, and so usually fonts are art-1b arrays. This means you need to know the internal storage
layout of bits within an art-1b array in order to fully understand the font format, so here it is:
the zeroth clement of an art-1b array is the rightmost bit of the zeroth word, and successive
elements are stored from right to left in that word. The thirty-third element is the rightmost bit
in the next word, and so on.

Now, if therc are any characters in the font that are wider than 32 bits, then even a single
row of the font will not fit into a word. Such characters are divided into subcharacters no more
than 32 bits wide, and the character is drawn by drawing all its subcharacters, one by one, side
by side. The character drawing microcode can only handle ordinary narrow characters, and it is
invoked once for each subcharacter in order to draw a wide character. In order to make this
work, the wide font stores subcharacters in the same way a narrow font stores its characters.

In addition, the wide font has a font indexing table which gives the first subcharacter number
for each character code. (In a narrow font, the font indexing table is nil.) The character W would
be drawn by finding the value at index 127 (the code for W) in the font indexing table, and the
value at index 130. Suppose that these are 171 and 173. Then W is made up of subcharacters
171 and 172. Either of these subcharacters’ bits can be found in the same way that the bits for
character code 171 or 172 would be found in a narrow font.

The array leader of a font is a structure defined by defstruct. Here are the names of the
accessors for the elements of the array leader of a font.

tv:font-name jfont
The name of the font. This is a symbol whose value is the font and which serves to
name the font. The print-name of this symbol appears in the printed represcntation of
the font.

tv:font-char-height font
The character height of the font; a non-negative fixnum.

tv:font-char-width font
The character width .of the characters of the font; a non-negative fixnum. If the tv:font-
char-width-table of this font is non-nil, then this element is ignored except that it is
used to compute the distance between horizontal tab stops; it is typically the width of a

" ”

lower-case "m".

tv:font-baseline font
The baseline of this font; a non-negative fixnum.

SRC:KL.WINIDFONTS. TEXT.17 8-AUG-83

Window System Manual 91 Format of Fonts

tv:font-char-width-table fons
If this is nil then all the characters of the font have the same width, and that width is
given by the tv:font-char-width of the font. Otherwise, this is an art-q array of non-
negative fixnums, one for each logical character of the font, giving the character width for
that character. The array must be an art-q array for the sake of the sys:%string -
translate function.

tv:font-left-kern-table font
If this is nil then all characters of the font have zero left kern. Otherwise, this is an
array of fixnums, one for each logical character of the font, giving the left kern for that
character,

tv:font-blinker-width font
The blinker width of the font.

tv:font-blinker-height font
The blinker height of the font.

tv:font-chars-exist-table font _
This is an art-1b array with one element for each logical character of the file. The
clement is 1 if the character exists and 0 if the character does not exist.

tv:font-raster-height font
The raster height of the font; a positive fixnum.

tv:font-raster-width font
The raster width of the font; a positive fixnum.

tv:font-rasters-per-word fons
The number of rows of a character stored in each word of the font; a positive fixnum.

tv:font-words-per-char font
The number of words stored for each character or subcharacter; a positive fixnum.

tv:font-indexing-table fons
If this is nil, then no characters of this font are wider than thirty-two bits. Otherwise,
this is the font indexing table of the font, an array indexed by character code, containing
the number of the first subcharacter for that character code. There is an extra array
element at an index one greater than the largest character code; it says where the
subcharacters of the largest character code stop.

SRCKL.WIND>FONTS. TEXT.17 : 8-AUG-83

Color Fonts 92 \\{indow System Manual

7.4 Color Fonts

We mentioned earlicr that you nced to use different fonts to draw on different kinds of
screen. To draw on a color screen, you must use a color font. If you just pass in a font
specifier when you specify an element of a font map, then a color version of that font will be
created if there isn’t one already, and it will be used as the font.

A color font is almost the same as a regular black-and-white font except that for each pixel
there are many bits. For example, for a four-bit color display (the only type presently supported),
there are four bits for cach pixel. While nothing prevents each pixel of a font from having any
value it wants, usually each pixel is either zero or one other specific valuc; that is, color fonts do
not usually have multicolored characters in them, or two characters of different color.

Color fonts can be created from black-and-white fonts by the following function:

color:make-color-font bw-font &optional (color17) (suffix"")

Creates and returns a new font. bw-font should be an cxisting black-and-white font. The
new font has all the same attributes as bw-font, and each character has the same attributes
as the corresponding character in bw-font. For each zero-valued pixel in bw-font, the
pixel in the new font is zero as well. For each one-valued pixel in bw-font, the pixel in
the new font has value color. The name of the new font is formed by appending
"color-", the print-name of the name of bw~font, and suffix together to form a string, and
then interning that string in the fonts package.

When a font specifier is examined and the window system dccides to make a color version of
the font, it calls color:make-color-font with only one argument, letting the others default. So,
for example, if a color version of fonts:foo-font is automatically crcated, its name will be
fonts:color-foo-font, and its pixels will have the value 17 wherever those in the original font
have the value one. However, you can call color:make-color-font to make many color versions
of the same black-and-white font, each in a different color.

Something to keep in mind when using color fonts is that when characters of a color font are
drawn, onto a color window, and the char-aluf of the window is tv:alu-ior (as it normally is),

then the bits of the pixels of the character will be bit-wise "or"’ed with the existing bits in the
pixels of the window, If the existing bits (that is, the hackground against which the character is
being drawn) are all zero, ‘there’s no problem. But if they are not, the resulting values of the
pixels will be some color determined by a bit-wise "or” of two color values, which is unlikely to
yield meaningful results. Unless this is actually what you want, you should make sure that the

background is made of zeroes before drawing characters onto a color window.

SRCKI.WINIDFONTS.TEXT.17 8-AUG-83

Window System Manual 93 Drawing Graphics

8. Drawing Grziphics

A window can be used to draw graphics (pictures). There is a set of operations for drawing
lincs, circles, sectors, polygons, cubic splines, and so on, implemented by the flavor tv:graphics-
mixin. The tv:graphics-mixin flavor is a component of the tv:window flavor, and so the
operations documented below will work on windows of flavor (or flavors built on) tv:window.

tv:graphics-mixin Flavor
Defines the standard window graphics operations.

There are also some operations in this section that are in tv:stream-mixin (page 49) rather
than tv:graphics-mixin, because they are likely to be useful to any window that can draw
characters, but such windows might not want the full functionality of tv:graphics-mixin. These
operations are :draw-rectangle, and the :bitblt operation and its relatives. (If you are building
on tv:window anyway, this doesn’t affect you, since tv:window includes both of these mixins.)

The cursor position is not used by graphics operations; the operations explicitly specify all
relevant coordinates. All coordinates are in terms of the inside size of the window, just like
coordinates for typing characters; the margins don’t count. Remember that the point (0,0) is in
the upper left; increasing y coordinates are lower on the screen, not higher. Coordinates are
always fixnums,

As with typing out text, before any graphics are typed the process must wait until it has the
ability to output (see section 2.6, page 21). The "output hold flag" must be off and the window
must not be temp-locked. The other exception conditions of typing out are not relevant to
graphics.

All graphics functions clip to the inside portion of the window. This means that when you
specify positions for graphic items, they need not be inside the window; they can be anywhere.
Only the portion of the graphic that is inside the inside part of the window will actually be
drawn. Any attempt to write outside the inside part of the window simply won’t happen.

8.1 Alu Functions

Most graphics operations take an alu argument, which controls how the bits of the graphic
object being drawn are combined with the bits already present in the window. In most cases this
argument is optional and defaults to the window’s char-aluf (see page 66), the same alu function
as is used to draw characters, which is normally inclusive-or. The following variables have the
most useful alu functions as their values:

tv:alu-ior . Variable
Inclusive-or alu function. Bits in the object being drawn are turned on and other bits are
left alone. This is the char-aluf of miost windows. If you draw several things with this
alu function, they will write on top of each other, just as if you had used a pen on

paper.

SRCKL.WIND>GRAFIX.TEXT.24 8-AUG-83

Flavor Operations for Graphics 94 Window System Manual

tv:alu-andca Variable
And-with-complement alu function. Bits in the object being drawn are turned off and
other bits are left alone. This is the erase-aluf of most windows. It is uscful for crasing
arcas of the window or for erasing particular characters or graphics.

tv:alu-xor Variable

Exclusive-or alu function. Bits in the object being drawn are complemented and other bits
are left alone. Many graphics programs use this. The graphics operations take quite a bit
of care to do "the right thing" when an exclusive-or alu function is used, drawing each
point exactly once and including or excluding boundary points so that adjacent objects fit
together nicely. The useful thing about exclusive-or is that if you draw the same thing
twice with this alu function, the window’s contents are lcft just as they were when you
started; so this is good for drawing objects if you want to erase them aftcrwards.

‘tv:alu-seta Variable
Alu function to copy the input bits into the output bits, ignoring the old values of the
output bits. This is not uscful with the drawing opcrations, because the exact size and
shape of the affected region depend on the implementation details of the microcode. The
seta function is uscful with the bitblt operations, where it causes the source rcctangle to
be transferred to the destination rectangle with no dependency on the previous contents of
the destination.

tv:alu-and Variable
"And" alu function. ‘Like tv:alu-seta, this is not useful with the drawing operations, but
can be useful with the bitblt operations. 1 bits in the input leave the corresponding
output bit alone, and 0 bits in the input clear the corresponding output bit.

8.2 Flavor Operations for Graphics

:point x y ' Operation on tv:graphics - mixin
Returns the numerical value of the picture element at the specificd coordinates. The result
is 0 or 1 on a black-and-white TV. Clipping is performed; if the coordinates are outside
the window, the result will be 0.

:draw-point x y &optional alu value Operation on tv:graphics-mixin
Draws value into the picture element at the specified coordinates, combining it with the
previous contents according to the specified alu function (value is the first argument to the
operation, and the previous contents is the sccond argument.) value should be Oorlona
black-and-white TV. Clipping is performed; that is, this operation will have no effect if
the coordinates are outside the window. value defaults to -1, which is a pixel with all bits
1

:bitb1t] Operation on tv:stream-mixin
alu width height from-array from-x from-y lo-x lo-y
Copics a rectangle of bits from from-array onto the window. The rectangle has dimensions
width by height, and its upper left corner has coordinates (from-x.from-y). It is
transferred onto the window so that its upper left corner will have coordinates (fo-x,10-y).
The bits of the transferred rectangle are combined with the bits on the display according

SRCKL.WINID>GRAFIX.TEXT.24 8-AUG-83

Window System Manual 95 . Flavor Operations for Graphics

to the Boolean function specified by alu. As in the bitblt function, if from-array is too
small it is automatically replicated.

Sce the discussion of the bitblt function (section 8.7 of the Lisp Machine manual) for
complete details. Note that fo-array is constrained as described there. Sce also the
tv:make-sheet-bit-array function below (page 102).

:bitbit-from-sheet Operation on tv:stream-mixin
alu width height from-x from-y to-array to-x to-y
Copies a rectangle of bits from the window to fo-array. All the other arguments have the
same significance as in :bitblt.

See the discussion of the bitblt function (section 8.7 of the Lisp Machine manual)” for
complete details. Note that fo-array is constrained as described there. Sec also the
tv:make-sheet-bit-array function below (page 102).

:bitb1t-within-shest Operation on tv:stream-mixin
alu width height from-x from-y to-x to-y

Copies a rectangle of bits from the window to some other place in the window. All the
other arguments have the same significance as in :bitblt. Note that width or height may
be negative, in which case the coordinates to be copied extend to lower values from the
specified starting values, and copying is done in reverse order. The order bits are copied
makes no difference when copying between different arrays but is important when copying
between overlapping portions of one array.

:draw-char font char x y &optional alu Operation on tv:graphics-mixin
Displays the character with code char from font font on the window with its upper left
corner at coordinates (x,y). This lets you draw characters in any font (not just the ones
in the font map), and it lets you put them at any position without affecting the cursor
position of the window.

:draw-11ne Operation on tv:graphics-mixin
xI yl x2 y2 &optional alu (draw-end-point t)
Draws a line on the window with endpoints (xZy/) and (x2y2). If draw-end-point is
specified as nil, does not draw the last endpoint (that is, stops drawing just before that
point instead of at it). This is useful with alu function tv:alu-xor when multiple
connected lines are in use, since drawing an endpoint once each for two lines would
cancel out.

:draw-1ines alu x0 y0 xI yl .. xn yn Operation on tv.graphics-mixin
Draws n lines on the screen, the first with endpoints (x0,0) and (x/,yI), the second with
endpoints (x/,y!) and (x2y2), and so on. The points between lines are drawn exactly
once and the last endpoint, at (xn,yn), is not drawn.

:draw-dashed-11ne Operation on tv:graphics-mixin
x0 y0 xI yl alu dash-spacing space-literally-p offset dash-length
Draws a line divided into dashes. The first five arguments are the same as those of the
:draw-line operation,

SRCKL.WIND>GRAFIX.TEXT.24 8-AUG-83

Flavor Operations for Graphics 9 Window System Manual

The argument dash-spacing specifies the period of repetition of the dashes; it is the length
of a dash plus the length of a space between dashes. Its default value is 20. dash-length
is the length of the actual dash; it defaults to half the spacing.

If space-literally-p is nil, the spacing between dashes is adjusted so that the dashes fit
evenly into the length of line to be drawn. If it is non-nil, the spacing is uscd cxactly as
specified, even though that might put the end point in the middle of a space between
dashes.

A nonzero offset is used if you want a space between the starting point and the beginning
of the first dash. The value is the amount of space desired, in pixels. The same space
will be provided at the end point, if space-literally-p is nil. offset defaults to zero.

:draw-curve Operation on tv:graphics-mixin

x-array y-array &optional end alu closed-p
Draws a sequence of connected line segments. The x and y coordinates of the points at
the ends of the segments are in the arrays x-array and y-array. The points between line
segments arc drawn exactly once and the point at the end of the last line is not drawn at
all; this is especially useful when alu is tv:alu-xor. The number of line segments drawn
is 1 less than the length of the arrays, unless a nil is found in one of the arrays first in
which case the lines stop being drawn. If end is specified it is used in place of the actual
length of the arrays.

If closed-p is non-nil, the end point is connected back to the first point.

:draw-wide-curve Operation on tv:graphics-mixin
x-array y-array width &optional end alu closed-p
Like :draw-curve but width is how wide to make the lines.

:draw-rectangle width height x y &optional alu Operation on tv:stream-mixin
Draws a filled-in rectangle with dimensions width by height on the window with its upper
left corner at coordinates (x,).

:draw-triangle x/ yl x2 y2 x3 y3 &optional alu Operation on tv:graphics-mixin
Draws a filled-in triangie with its corners at {xi,yi}), {x2yZ}), and {(x3,p3).

:draw-circle Operation on tv:graphics-mixin
center-x center-y radius &optional alu
Draws the outline of a circle centered at the point center-x, center-y and of radius radius.

:draw-circular-arc Operation on tv:graphics-mixin
center-x center-y radius start-theta end-theta &optional alu
Draws part of the outline of a circle centered at the point center-x, centery and of radius
radius.

The part of the circle to be drawn is specified by start-theta and end-theta. These angles
arc in radians; an angle of zero is the positive x direction, and angles increase counter-
clockwise. The arc starts at stari-theta and goes through increasing angles, passing through
zero if necessary, to stop at end-theta.

SRCKL.WIND>GRAFIX.TEXT.24 8-AUG-83

Window System Manual 97 Flavor Operations for Graphics

:draw-filled-in-circle Operation on tv:graphics-mixin
center-x cenler-y radius &optional alu
Draws a filled-in circle specified by its center and radius.

:draw-filled-in-sector Operation on tv:graphics-mixin
cenler-x cenler-y radius theta-1 theta-2 &optional alu
Draws a "triangular” section of a filled-in circle, bounded by an arc of the circle and the
two radii at theta-1 and theta-2. 'These angles are in radians; an angle of zero is the
positive-X direction, and angles increase counter-clockwise.

:draw-regular-polygon Operation on tv:graphics-mixin
xI yl x2 y2 n &optional alu
Draws a filled-in, closed, convex, regular polygon of (abs) sides, where the line from
(xlyl) 1o (x2y2) is onc of the sides. If n is positive then the interior of the polygon is
on the right-hand side of the edge (that is, if you were walking from (xZy/) to (x2,y2),
you would sce the interior of the polygon on your right-hand side; this docs nof mean
"toward the right-hand edge of the window").

:draw-cubic-spline Operation on tv:graphics-mixin
px py z &optional curve-width alu cl ¢2 pl-prime-x pl-prime-y
pn-prime-x pn-prime-y

Draws a cubic spline curve that passes through a sequence of points. The arrays px and
py hold the x and y coordinates of the sequence of points; the number of points is
dctermined from the active length of px. Through each successive pair of points, a
parametric cubic curve is drawn with the :draw-curve operation, using z points for each
such curve. If curve-width is provided, the :draw-wide-curve operation is used instead,
with the given width. The cubics are computed so that they match in position and first
derivative at each of the points. At the end points, there are no derivatives to be
matched, so the caller must specify the boundary conditions. ¢/ is the boundary condition
for the starting point, and it defaults to :relaxed; c2 is the boundary condition for the
ending point, and it defaults to the value of c/. The possible values of boundary
conditions are:

‘relaxed Makes the derivative zero at this end.

:clamped Allows the caller to specify the derivative, The arguments p/-prime-x and
pl-prime-y specify the derivative at the starting point, and are only used if
cl is :clamped; likewise, pn-prime-x and pn-prime-y specify the derivative
at the ending point, and are only used if ¢2 is :clamped.

:cyclic Makes the derivative at the starting point and the ending point be equal.
If ¢l is :cyclic then ¢2 is ignored. To draw a closed curve through n
points, in addition to using :cyclic, you must pass in px and py with one
more than n entrics, since you must pass in the first point twice, once at
the beginning and once at the end.

:anticyclic Makes the derivative at the starting point be the negative of the derivative
at the ending point. If ¢/ is :anticyclic then ¢2 is ignored.

SRCKL.WIND>GRAFIX.TEXT.24 8-AUG-83

Low-Level Graphics Using Subprimitives 98 Window System Manual

tv:spline px py z &optional ¢cx cy ¢l c¢2 pl-prime-x pl-prime-y pn-prime-x pn-prime-y
This subroutine of the :draw-cubic-spline opcration is also useful in its own right. It
does the computation of the spline to be drawn, then converts it into a sequence of line
segments, returning arrays of x and y coordinates of endpoints of lines. :draw-cubic-
spline works by passing thesc arrays to the :draw-curve opcration.

The function returns three values, an array of x coordinates, an array of y coordinates,
and the number of active points in those arrays. (The arrays are not required to have fill
pointers.)

The arrays to be used can be éupplicd as the cx and cy arguments, or else new arrays
will be created. If arrays are supplied and too short, they will be made longer.

8.3 Low-Level Graphics Using Subprimitives

Drawing graphics on a window is usually done by sending messages to the window. However,
there is a certain overhead in sending each message. If your application requires speed, you can
go to some more trouble by writing your very own method to do graphics. It is a good idea not
to do this until you know that using existing messages will not work; it is casicr and less bug-
prone to use the existing messages than to write handlers for new ones.

To write a new method you must have a flavor to which to attach that method. In this case,
we want to add some graphics messages to existing kinds of windows. So, what we want here is
a mixin flavor. You will define a new mixin flavor for your application. You will add methods
to this flavor to do the things you need to do. Then, when you want to create an actual window
to use, you will create a window of a new flavor; this new flavor will include, as one of its
mixins, your new mixin. For a simple case, you might use the following flavor definitions:

(defflavor circus-mixin () ()
(:required-flavors tv:essential-window))
::This makes the instance variables of tv:essential-window accessible.

(defmethod (circus-mixin :draw-clown) (size weight happy-p)
)

(defmethod (circus-mixin :draw-tent)
(height &optional (number-of-rings 3))
2)

(defflavor circus-window () (circus-mixin tv:window))

Now you can instantiate windows of flavor circus-window, and they will support your new
messages.

Within the definition of a primitive output operation you will use the graphics subprimitives
such as sys:%draw-char rather than the high-level operations described in previous sections. To
avoid errors, you should usc these subprimitives only from within window methods that provide
the error checking that the subprimitives lack.

SRCKILL.WIND>GRAFIX.TEXT.24 8-AUG-83

Window System Manual 99 Low-Level Graphics Using Subprimitives

In addition, the subprimitives must be used only within the body of a tv:prepare-sheet
special form. An error is signaled if they arc used elsewhere.

tv:prepare-sheet body.. Special form
Exccutes body in an cnvironment in which it is safe to draw on the window. tv:prepare-
sheet waits until the window is not output-held or locked, and then opens all blinkers
that could be on top of the window so that they will not interfere with the output (see
page 103). It also turns off interrupts so that the window will remain unlocked and the
blinkers will remain open.

Because interrupts are turned off, you must be careful in writing the body. It should
exccute for no longer than you would mind being unable to do a Control-Abort. It also
must not wait for anything, since that would allow the blinkers to reappear and defeat the
whole purpose of preparing the sheet.

The microcode subprimitives gencrally use coordinates rclative to the outside cdges of the
window. This is unlike the high-level interfaces, which use cursor positions, in which the margins
of the window do not count. Also, subprimitives do little or no clipping or other testing for
coordinates that are out of bounds. The results of passing erroncous coordinates are
unpredictable; in principle, the machine might halt.

Another place you can use the subprimitives is inside the :blink operation of a blinker. This
operation is always invoked in a suitable cnvironment for calling them, including interrupts off.
Because blinkers are always drawn by xor’ing, it does not actually matter whether any other
blinkers are present.

These instance variables and macros are useful in writing output primitives:

(tv:sheet-inside-left)

(tvisheet-inside-right)
Return the positions of the inside left edge and the inside right edge, both
relative to the outside left edge. If your operation is intended to output on the
inside of the window, these may be uscful for clipping, and also for converting
cursor positions to low-level coordinates.

(tv:sheet-inside-top)

(tv:sheet-inside-bottom) :
Return the positions of the inside top edge and the inside bottom edge, both
relative to the outside top edge.

(tv:sheet-inside -width)
(tvisheet-inside -height)
Return the inside size of the window.

tv:width .
tv:height The total width and height of the window, including the margins.

tv:cursor-x

tvicursor-y The current cursor position, expressed in outside coordinates. That is to say, these
values are nof "cursor positions” in the usual sense of that term, but they do
describe the position of the cursor.

SRCKLWINDYGRAFIX. TEXT.24 8-AUG-83

Low-Level Graphics Using Subprimitives 100 Window System Manual

tviscreen-array
The array of bits that hold the contents of the window. Usually this is an indircct
array that points to part of the screen, although it may also point to the superior’s
bit-save array, as described in scction 2.5, page 17. You can usc ar-2-reverse
and as-2-reverse on this array, indexed by coordinates relative to the outside
edges, to cxamine and draw individual points. The dimensions of this array will
be the width and height.

tv:char-aluf

tv:erase-aluf These are the alu function codes (see section 8.1, page 93) that are supposed to
be used for normal drawing and erasing. :tyo, :string-out and so on all use
tv:char-aluf and all the standard crase operations use tverase-aluf. If your
operation is a kind of drawing or a kind of erasing, it may be correct for you to
use one of these two.

Usually tv:char-aluf is tv:alu-ior, which means to turn on (set to all ones) the
corresponding bits in the array. tv:erase-aluf is usually tv:alu-andca, which
means to turn off (set to zero) the relevant bits. However, they would be
different if the window were in reverse video mode. Reverse video mode is not a
highly-used feature, but by using these variables you can make your extensions
work correctly in reverse video mode, so it is cleaner to use them.

However, you may use any alu function. tv:alu-xor is often useful. tv:alu-seta
is usually not wise to use, since it will often result in the alteration of bits that
you did not expect to change, but which happen to fall in the same word as the
ones you were working on.

tv.current-font
This is the window’s current font. If you are drawing characters, it is usually

correct to use this font.

Here is an example from the tv:graphics-mixin flavor, changed by adding the tv: prefixes in
the places where you would need them if you were to write this outside the tv package.

(defmethod (graphics-mixin :draw-point)
(x y &optional (alu tv:char-aluf) (value -1))
(tv:prepare-sheet (self) _
(setq x (+ x (tv:sheet-inside-left))
y (+y (tv:sheet-inside-top)))
(if (not (or (< x (tv:sheet-inside-left))
(2 x (tv:sheet-inside-right))
(< y (tv:sheet-inside-top))
(2 y (tv:sheet-inside-bottom))))
(setf (ar-2-reverse tv:screen-array X y)
(boole alu value
(ar-2-reverse tv:screen-array x ¥y)))))

This method takes its arguments in inside coordinates, and so it first converts them to outside
coordinates. Then it compares them with the boundaries of the inside of the window, and does
nothing if they are outside those boundaries. This is how it docs clipping. Finally, if everything

SRCKL.WIND>GRAFIX.TEXT.24 8-AUG-83

Window System Manual 101 Low-Level Graphics Using Subprimitives

is OK, it reads out the current value of the point, combines it with the new value using the
specified alu function (which defaults to the char-aluf of the window), and stores it back into the
array.

8.3.1 Subprimitives for Drawing

In addition to using as-2-reverse yoursclf, you can use these subprimitives, mostly
microcoded. They are equivalent in principle to using as-2-reverse many times, but they are
much faster and have much less error checking.

Some of these primitives will accept a sheet or an array. In window-system applications the
argument is usually a sheet, but any suitable two-dimensional numeric array will do. (Suitable
usually means that the width, times the number of bits per clement, is a multiple of 32.) If an
array is used, there is no need to worry about tv:prepare-sheet. If you are doing the output on
a window, you should pass the window, not its scrcen array.

sys:%draw-rectangle width height x-bitpos y-bitpos alu-function sheet-or-array
Draws a rectangle of size width by height with its upper left corner at x-bitpos, y-bitpos.
Alu function alu-function is used, so you can draw, erase or complement the rectangle
with the same function. sheet-or-array is usually the sheet to be drawn on. There is no
clipping or error checking.)

tv:%draw-rectangle-clipped width height x-bitpos y-bitpos alu-function sheet
This is a little smarter, clipping to the edges of sheet. It does not work on arrays.

tv:draw-rectangle-inside-clipped width height x-bitpos y-bitpos alu-function sheet
This clips to the inside edges of sheet.

sys:%draw-1ine x0 y0 x y alu draw-end-point-p sheet-or-array
Draws a line from (x0,50) to (x,y), all relative to the outside edges of the sheet, or
indices in the array. The point at (x,y) is not drawn if draw-end-point-p is nil. No
clipping or error checking is done.

sys:¥%draw-triangle xI y! x2 y2 x3 y3 alu sheet-or-array
Draws a triangle with the specified corners. No clipping or error checking is done.

tv:draw-char font char x y alu sheet-or-array
Draws the character with code char in font with its upper left corner at position (x,y) in
outside coordinates. alu is used as the alu function, so you can either draw or erase.
There is no clipping or error checking.

sys:%draw-char font char x y alu sheet-or-array
This is the actual microcoded primitive. It does not take into account the indexing table
of a wide font, so when used on a wide font char is not the character code that the user
actually wants to output. It is best to use tv:draw-char.

SRCAL.WIND>GRAFIX. TEXT.24 8-AUG-83

Low-l.cvel Graphics Using Subprimitives 102 Wi.ndow System Manual

sys:%color-transform nl7 nl6 nlS nl4 ni3 nl2 nll nl0 n7 n6 n5 nd n3 n2 nl n0
width height array start-x slart-y

This function operates on a rectangular portion of an art-4b array. It examincs each
element of the array, and replaces the value of that clement with #0 if its previous value
was 0, nl if its previous value was 1, and so on. The upper-left hand corner of the array
is specificd by start-x and start-y, and its sizc is specified by width and height. array
must be an art-4b array and the specified rectangle must be within the bounds of the
array.

bitb1t alu width height from-array from-x from-y to-array lo-x lo-y
Copies or merges a rectangular portion of from-array to a congruent portion of fo-array.
from-x and from-y specify one corner of the rectangle in from-array, and to-x and fo-y
specify the corresponding point in fo-array. The opposite corner is found by adding width
and height to either of those two positions. The copying is done starting at the specified
corner and proceeding toward the opposite one.

The width of each array, times the number of bits per element in that array, must
be a multiple of 32.

When used in window system applications, one of the arrays will frequently be a
window’s screen array. Then the window must be prepared using tv:prepare-sheet.

The operation is not simply one of copying; the bits coming from from-array can be
merged with those of fo-array. This is controlled by the alu argument. Each pair of bits
is combined according to that argument to get the new bit to put in fo-array. If alu is
tv:alu-seta, the old bits in fo-array are ignored. If alu is tv:alu-ior, then the old bits
and the incoming bits are or’ed together. And so on. bitblt is careful never to change
bits in fo-array outside the specified rectangle, which is why it is safe to use tv:alu-seta,
whereas it is not safe to use it in the other subprimitives.

tv:make-sheet-bit-array window x y &rest make-array-options

This function creates a two-dimensional bit-array useful for bitblting to and from windows.
It makes an array whose first dimension is at least x but is rounded up so that bitbit’s
restriction regarding multiples of 32. is met, whose sccond dimension is y, and whose
type is the same type as that of the screen array of window (or the type it would be if
window had a screen array). make-array-options are passed along to make-array (see
section 8.2 of the Lisp Machine manual) when the array is created, so you can control
other paramcters such as the area.

SRCKL.WIND>GRAFIX.TEXT.24 8-AUG-83

Window System Manual 103 Blinkers

9. Blinkers

Each window can have any number of blinkers. The kind of blinker that you sce most often
is a blinking rectangle the same size as the characters you are typing; this blinker shows you the
cursor position of the window. In fact, a window can have any number of blinkers. They need
not follow the cursor (some do and some don’t); the ones that do are called following blinkers;
the others have their position set by explicit operations. '

Blinkers are instances of flavors, like windows, but they are different flavors, and support a
different sct of standard operations. The window system provides scveral kinds of blinkers, which
differ in the way they appear on the screen,

tv:blinker Flavor
All flavors of blinkers incorporate this one.

Blinkers need not actually blink; for example, the mouse arrow does not blink. A blinker’s
visibility may be any of the following:

:blink The blinker should blink on and off periodically. The rate at which it blinks is
called the half-period, and is a fixnum giving the number of sixthieths of a second
between when the blinker turns on and when it turns off.

:onort The blinker should be visible but not blink; it should just stay on.

:off or nil The blinker should be invisib.«g.

Usually only the blinkers of the selected window actually blink; this is to show you where
your type-in will go if you type on the keyboard. This is because the blinker’s visibility is
generally controlled based on another attribute, the deselected visibility, combined with whether
the window is selected. While the current visibility is frequently changed by hand by the program .
that is using the blinker, the deselected visibility is usually fixed and says something about how
the blinker is generally used. Here are its possible values and their meanings:

on Solid when deselected, blinking when selected. This is the most commonly used
value, and the default for the blinkers that show the cursor position of a window.

:off Off when deselected, blinking when selected.

:blink Blinking whether selected or not.

t Solid whether selected or not.

nil Off whether selected or not.

When the window is deselected, each blinker's visibility is initialized from its deselected
visibility. When the window is selected, visibilitics of :on or :off are changed to :blink. Blinkers
whose visibility is t or nil or :blink are not affected.

Blinkers arc used to add visible ornaments to a window; a blinker is visible to the user, but
while programs are examining and altering the contents of a window the blinkers all go away.
The way this works is that before characters arc output or graphics arc drawn, the blinker gets
turned off; it comes back later. This is called opening the blinker. tv:prepare-sheet (page 99) is

SRCKLL.WIND>BLINK.TEXT.21 v 8-AUG-83

Blinker Functions and Operations 104 Window System Manual

responsible for doing this. You can see this happening with the mouse blinker when you type at
a Lisp Machine. To make this work, blinkers are always drawn using exclusive ORing (sce
tv:alu-xor, page 94).

Every blinker is associated with a particular sheet (window or screen). The blinker is
displayed on this sheet, so that its image can appear only within the sheet. When characters are
output or graphics are drawn on a sheet, only the blinkers of that sheet and its ancestors are
opened (since blinkers of other sheets cannot possibly be occupying screen space that might
overlap this output or graphics). The mouse blinker is free to move all over whatever screen it is
on; it is therefore associated with the screen itself, and so must be opened whenever anything is
drawn on any window on the screen.

A blinker has a position which gives the location of the blinker’s upper left corner relative to
the blinker’s sheet. The blinker’s lower right corner is controlled by the blinker’s size together
with its position. The blinker position is constrained to be within the sheet’s area. This does not
force the blinker’s lower right corner to be within the sheet’s arca, but if it is not, the blinker’s
image will probably be truncated and the part outside the sheet will not appear.

:blinker-p tornil ‘ Init option for windows
:blinker-flavor flavor-name Init option for windows
:blinker-deselected-visibility visibility Init option for windows

These init options specify whether a cursor-following should be created for this window,
and what its flavor and visibility should be. The defaults are t, tvirectangular-blinker,
and :on.

Any other blinkers you want for a window must be created manually in an :init method
or elsewhere.

tv:blinker-1ist ' Instance variable of windows and screens
The list of all blinkers associated with this window or screen.

:blinker-11ist Operation on windows and screens
Returns the list of blinkers associated with this window or screen.

J.I.'I Py 14 el oas
v (A1 L} T

tvishes gr-11st
Accessor defsubst for the instance variable.

9.1 Blinker Functions and Operations

tv:make-blinker window &optional (flavor’tvirectangular-blinker) &rest options
Creates and returns a new blinker. The new blinker is associated with the given window,
and is of the given flavor. Other useful flavors-of blinker are documented below. The
options are initialization-options to the blinker flavor. All blinkers include the tv:blinker
flavor, and so init-options taken by tv:blinker will work for any flavor of blinker. Other
init-options may only work for particular flavors.

SRCKIL.WIND>BLINK.TEXT.21 8-AUG-83

Window System Manual 105 Blinker Functions and Operations

tv:x-pos _ Instance variable of tv:blinker
tv:y-pos Instance variable of tv:blinker
The current position of the blinker on its window, or nil if the blinker should follow the
window’s cursor.

:X-pos x Init option for tv:blinker
1y-pos y Init option for tv:blinker
Set the initial position of the blinker within the window. These init-options are irrelevant
for blinkers that follow the cursor. The initial position for non-following blinkers defaults
to the current cursor position. ‘

:read-cursorpos Operation on tv:blinker)
Returns two values: the x and y components of the position of the blinker within the
inside of the window.

:set-cursorpos x y Operation on tv:blinker
Sets the position of the blinker, relative to the inside of the window. If the blinker has
been a following blinker (that is, one which follows the window’s cursor) then it ceases to
be one, and from this point on moves only when :set-cursorpos is done.

:size Operation on tv:blinker
Returns the width and height of the blinker area occupied by the blinker, in pixels, as
two values. Each flavor of blinker implements this differently.

:set-size new-width new-height Operation on tv:blinker
Sets the size of the blinker’s displayed pattern. Not all blinker flavors actually do
anything, but they will all ailow the operation. For example, character blinkers have no
way to change their size because there is no mechanism for automatically scaling fonts.

:follow-p tornil : Init option for tv:blinker
Sets whether the blinker follows the cursor; if this option is non-nil, it does. By default,
this is nil, and so the blinker’s position gets set explicitly.

:set-follow-p new-foflow-p i Operation on tv:blinker _
Sets whether the blinker follows the cursor. If this is nil, the blinker stops following the
cursor and stays where it is until explicitly moved. Otherwise, the blinker starts following

the cursor.
tv:visib114 ty ' Instance variable of tv:blinker
The blinker’s current visibility.
tvisibility . Operation on tv:blinker
:set-visibility new-visibility Operation on tv:blinker

Get or set the visibility of the blinker. The specified visibility should be one of :on, nil,
:off, t, or :blink; their meanings are described above.

SRCKL.WIND>BLINK.TEXT.21 8-AUG-33

Blinker Functions and Operations 106 Window System Manual

:visibility visibility Init option for tv:blinker
Initializes the visibility.

tv:deselected-visibility | Instance variable of tv:blinker
The blinker’s desclected visibility.

:deselected-visibility symbol Init option for tv:blinker
Sets the initial deselected visibility. By default, it is :on.

:deselected-visibility Operation on tv:blinker

:set-deselected-visibility new-visibility Operation on tv:blinker

Examine or change the deselected visibility of the blinker.

tv:half-period Instance variable of tv:blinker
The time interval in 60ths of a second between successive blinks of the blinker. This is
relevant only if the visibility is :blink.

:half- period Operation on tv:blinker
:set-half-period new-half-period Operation on tv:blinker
Get or set the half-period of the blinker. The argument is in 60ths of a sccond.

:half-period halfperiod Init option for tv:blinker
Initialize the half-period. The default is 15.

tv:sheet Instance variable of tv:blinker
The window or screen this blinker moves on.

:sheet . Operation on tv:blinker
Gets the window or screen that the blinker moves on.

:set-sheet new-sheet ' Operation on tv:blinker
Sets to new-sheet the window or screen on which the blinker moves. If the old window is
an ancestor or descendant of new-sheet, adjusts the (relative) position of the blinker so
that it does not move. Otherwise, moves it to the point (0,0). ’

tv:time-until-blink Instance variable of tv:blinker
The time interval in 60ths until the next time this blinker should blink. For a blinking
blinker, this controls the next turning on or off.

A non-blinking blinker will not necessarily change its state at the spéciﬁcd time, but it
will be checked at that time and displayed if it is supposed to be visible but is not. This
is how blinkers reappear after being opened so that output can be done.

:defer-reappearance Operation on tv:blinker
This operation is invoked whenever a blinker is opened in order to prepare a sheet, if the
visibility is not :blink and if the blinker is scheduled to reappear in less than 25/60 sec.
By default, it is defined to dclay the blinker’s rcappearance until 1/2 sec after the present.

SRC:KL.WIND>BLINK.TEXT.21 8-AUG-83

Window System Manual 107 . Blinker Flavors

tv:phase ‘ Instance variable of tv:blinker
t when the blinker is present on the screen, nil when it is not.

:phase ' : Operation on tv:blinker
Returns t if the blinker is now displayed on the screen.

:bTink Operation on blinkers
Draws or erases the blinker. Since the blinker is always drawn by xor'ing, drawing it and
erasing it are usually exactly thc same. The method can examine the instance variable
tviphase to tell which one is happening, but usually there is no need to know. The
tblink operation may assume that the blinker's sheet is prepared for output. It is always
called with interrupts disabled.

tv:with-blinker-ready do-not-open body... Special form
This macro is useful in writing methods of blinkers that change the size, position, shape
or anything else that affects how the blinker appears. It executes body after preparing to
remove the blinker self from the screen. If do-not-open is nil, the blinker is actually
opened before body is executed. Otherwise, body may call tv:open-blinker if it wants the
blinker open. Interrupts are disabled by this macro in any case, so that if the blinker is
opened it remains open for the duration of body.

Once the blinker is opened, its instance variables may be set without special care.

tv:open-blinker blinker
Clears blinker off from the screen if it is currently drawn. This does not change blinker’s
visibility. Blinkers that are supposed to be visible but are not on the screen are put back
on the screen by the scheduler, every so often. Thus, a blinker can be relied on to stay
open only as long as interrupts are disabled.

tv:sheet-following-blinker window
Returns a blinker that follows window’s cursor, or nil if that window has no such blinker.

If there is more than one, it returns the first one it finds (it is pretty useless to have more
than one, anyway).

tv:turn-off-sheet-blinkers window
Sets the visibility of all blinkers on window to :off.
9.2 Blinker Flavors
All the flavors in this section depend on tv:blinker.

For other blinker flavors and related considerations for use of a blinker for mouse tracking,
sec the section on mouse blinkers, section 10.4, page 121.

SRC:AL.WIND>BLINK.TEXT.21 » : 8-AUG-83

Blinker Flavors 108 Window System Manual

tv:rectangular-blinker Flavor
This is one of the flavors of blinker provided for your use. A rectangular blinker is
displayed as a solid rectangle; this is the kind of blinker you sce in Lisp listeners and
editor windows. The width and height of the rectangle can be controlled.

:width n-pixels Init option for tv:rectangular-blinker
:height n-pixels Init option for tv:rectangular-blinker
Set the initial width and height of the blinker, in pixels. By default, they are set to the
font-blinker-height and font-blinker-width (see page 91) of the zeroth font of the
window associated with the blinker.

:set-size new-width new-height Operation on tv:rectangular-blinker
Sets the width and height of the blinker, in pixels.

:set-size-and-cursorpos Operation on tvirectangular-blinker
new-width new-height x y
Sets the width and height of the blinker, in pixels, and also its position, at once. This
avoids any chance that the blinker will appear on the screen with its old size and new
position, or vice versa.

tv:hollow-rectangular-blinker (tv:rectangular-blinker) Flavor
This flavor of blinker displays as a hollow rectangle; the editor uses such blinkers to show
you which character the mouse is pointing at. This flavor includes tv:rectangular-blinker,
and so all of tvirectangular-blinker’s init-options and operations work on this too.

tv:box-blinker (tvirectangular-blinker) Flavor
This flavor of blinker is like tv:hollow-rectangular-blinker except that it draws a box
two pixels thick, whereas the tv:hollow-rectangular-blinker draws a box one pixel thick.
This flavor includes tv:rectangular-blinker, and so all of tv:rectangular-blinker’s init-
options and operations work on this too.

tv:stay-inside-blinker-mixin Flavor
This mixin makes a rectangular blinker, or any modified version thereof, keep all of its
corners inside the blinker's sheet. Normally a blinker only makes sure that its position (its
upper left corner) is within the sheet. Trying to position this sort of biinker in a bad
place positions it against the edge of the shect, as near as possible to the requested place.

tv:ibeam-blinker . Flavor
This flavor of blinker displays as an I-beam (like a capital I). Its height is controllable.
The lines are two pixels wide, and the two horizontal lines are nine pixels wide.

sheight n-pixels Init option for tv:ibeam-blinker
Sets the initial height of the blinker. It defaults to the line-height (see page 67) of the
window.

SRC:KL.WIND>BLINK.TEXT.21 ' - 8-AUG-83

Window System Manual 109 Blinker Flavors

tv:character-blinker Flavor
This flavor of blinker draws itself as a character from a font. You can control which font
and which character within the font it uses,

:font font Init option for tv:character-blinker
Sets the font in which to find the character to display. This may be anything acceptable
to the :parse-font-specifier operation (sce page 86) of the window’s screen. You must
provide this.

:character ch Init option for tv:character-blinker
Sets the character of the font to display. You must provide this.

:character Operation on tv:character-blinker
Returns the character that this blinker is displaying as.

:set-character new-character &optional new-font Operation on tv:character-blinker
Sets the character to be displayed to new-character. Also, if new-font is provided, set the
font to new-font. new-font may be anything acceptable to the :parse-font- specufler
operation (sec page 86) of the window’s screen.

tv:character Instance variable of tv:.character-blinker
tv:font Instance variable of tv:character-blinker
The character being displayed, and the font it is displayed in.

tv:bitblt-blinker (tv:mouse-blinker-mixin) Flavor
A blinker that displays by copying a two-dimensional array of pixels onto the screen. The
array’s size must be at least the blinker’s size. As it happens, this flavor also includes the
ability to be the mouse blinker,

sarray array Init option for tv:bitblt-blinker
This option spcmﬁes the array of pixels to be used to display the blinker. Use make-
pixel-array to create the array. If you do not specify this option, you must specify both
the :height and :width options, which will be used to create an array.

:width n-pixels Init option for tv:bitblt-blinker
theight n-pixels Init option for tv:bitblt-blinker
Set the initial width and height of the blinker, in pixels.

:size Operation on tv:bitblt-blinker
Returns the width and height of the blinker. If this is less than the size of the blinker’s
array, then only part of the array, starting at the upper left corner, is used.

:set-size width height ' Operation on tv:bitblt-blinker

Sets the snze of the blinker, making a new array if the old one is not as big as the new
size. ,

SRCKL.WIND>BLINK.TEXT.21 , 8-AUG-83

Blinker Flavors 110 Window System Manual

:array : Operation on tv:bitblt-blinker
:set-array array ' Operation on tv:bitblt-blinker
Get or set the array of pixels to be used to display the blinker.

tv:array Instance variable of tv:bitblt-blinker
tv:height Instance variable of tv:bitblt-blinker
tv:width Instance variable of tv:bitblt-blinker

These instance variables hold the special information of bitblt blinkers.

tv:magnifying-blinker (tv:bitblt-blinker) Flavor
A kind of bitblt blinker which automatically displays a "magnificd” version of some of the
dots underneath it. A small squarc of screen pixels is magnificd by replacing each pixel
with an n by n square of identical pixels, where n is the blinker’s magnification factor.

The x-offset and y-offset which the blinker has by virtue of tv:mouse-blinker-mixin (see
page 122) help determine the center of magnification. The position of the magnifying
blinker is, as always, the position of its upper left corner. However, the cursor positions
plus the offsets give the point which the blinker is indicating (this is the place where the
mouse position would be, if this blinker were the mouse blinker). The magnification is
done so as to keep that point on the screen fixed.

:magnification factor Init option for tv.magnifying ~blinker
Specifies the magnification factor of the magnifying blinker. 3 is a good value to use.
The height and width of the blinker should be multiples of the magnification. So should

the offscts.
:magnification Operation on tv:magnifying -blinker
:set-magnification factor Operation on tv:magnifying -blinker

Get or set the magnification factor of the blinker.

tv:magnification Instance variable of tv.magnifying -blinker
The magnification factor of the blinker.

tv:reverse-character-blinker (tv:bitbit-blinker) Flavor
This flavor of blinker appears as a solid rectangle with a character removed from it. That
is, a solid rectangle and the character are both drawn, and xor with each other. This
flavor of blinker proved to be very confusing in the use for which it was originally
implemented, but there seems no point in deleting it entirely.

All the operations and init options of tv:character-blinker are provided, though this
flavor does not depend on that one.

The position of the blinker is at the upper left corner of the rectangle. The position of
the upper left corner of the character with respect to the rectangle is specified with the
init options :character-x-offset and :character-y-offset.

SRCKL.WINDBLINK. TEXT.21 8-AUG-83

Window System Manual 111 Blinker Flavors
:character-x-offset n-pixels Init option for tv:reverse-character-blinker
:character-y-offset n-pixels Init option for tv:reverse-character-blinker

Specify the offset of the character’s upper left corner to the right and down from the
blinker position (the rectangle’s upper left corner).

SRC:KL.WIND>BLINK.TEXT.21 8-AUG-83

The Mouse 112 Window System Manual

10. The Mouse

Programs and windows can use the mouse as an input device. The functions, variables, and
flavors described below allow you to use the mouse to do some simple things. To get advanced
mouse behavior in your own programs, like the way the cditor gets the mouse to put a box
around the character being pointed at, you have to define new methods for various window
operations described in this chapter. Alternatively, you can invoke the built-in choice facilitics,
such as menus and multiple-choice windows; these high-level facilities are described later.

At any time the mouse is considered to be indicating a certain position on the screen, called
the mouse cursor position. The mouse cursor is a conceptual entity which we think of as what
moves, inside the machine, when the user moves the mouse.

The mouse cursor position is indicated on the screcn by a blinker called the mouse blinker,
‘an actual Lisp object of the sort described in the chapter on blinkers. Differcnt blinkers can be
the mouse blinker at different times, since ecach window can decide what to use as the mouse
blinker when that window owns the mouse.

There can be more than one screen, but the mouse cursor position is limited to one screen,
called the mouse sheet (it does not have to be a screen, but it normally is). Mouse cursor
positions are usually represented relative to the outside of the mouse sheet, though in operations
on windows they are sometimes represented relative to the particular window. The Terminal 2
command can be used to set the mouse sheet to another screen if your Lisp Machine has more
than onc screen; there is also a system menu option for this.

tv:mouse-x : Variable
tv:mouse-y Variable
These variables give the position of the mouse, in pixels, measured from the outside
upper-left corner of the mouse sheet. They are maintained by the process handling the
mouse, normally the mouse process.

tv:mouse-set-sheet sheet
Makes sheer be the mouse sheet, the one on which the mouse cursor moves. Only
inferiors of the mouse sheet (to any number of levels) can own the mouse.

tv:mouse-sheet . Variable
The mouse sheet.

tv:mouse-set-sheet-then-call sheet function &rest args
Applics function to args with sheet as the mouse-sheet.

Usually the mouse cursor moves only if the user moves the mouse. However, the program
can move the mouse cursor, and change the logical position of the mouse, at any time. This is
called warping the mouse. For example, double-click-left in the editor warps the mouse to where
the cditor cursor is currently located. Since there is no fixed association between positions of
physical mouse on the table and spots on the screen, warping the mouse does not result in any
inconsistency.

SRCKL.WIND>MOUSE.TEXT.33 8-AUG-83

Window System Manual 113 Encoding Mouse Clicks as Characters

tv:mouse-warp x y ‘
Warps the mouse to be at positions x, y with respect to the mouse sheet.

Tracking the mouse means examining the hardware mouse interface, noting how the mouse is
moving, and adjusting the mouse cursor position and the mousec blinker accordingly. Mouse
tracking is done by microcode within a window, and by a process called the mouse process when
moving between windows. The mouse process also keeps track of which window owns the mouse
at any time. For example, when the mouse enters an editor window, the editor window becomes
the owner, and to indicate this, the blinker changes to a northeast arrow instead of a northwest
arrow; this is all done by the mouse process.

In general, the mouse process decides how to handle the mouse based on the flavor of the
window that owns the mouse. Some flavors handle the mouse themselves, running in the mouse
process, in order to be able to put little boxes and such around things, usually to indicate what
would happen if you were to click a button. The editor, the inspector, menus, and other system
facilities do this. The flavor of the window owning the mouse is also what usually controls the
effect of clicking the mouse buttons.

10.1 Encoding Mouse Clicks as Characters

Clicks on the mouse are sometimes encoded into characters. Such characters are normally
forced into input buffers of windows (see page 53), and so they are distinguished from regular
keyboard characters by having the %%kbd-mouse bit turned on. Encoding of clicks is done with
tv:mouse-button-encode (see page 116). See page 49 for full information the fields of such a
character.

Note that "mouse clicks" can also be done on the keyboard. See the variables tv:use-kbd-
buttons and tv:*mouse-incrementing-keystates*, in section 10.6, page 128.

~ These standard mixins handle mouse clicks by forcing keyboard input describing the click:

tv:kbd-mouse-buttons-mixin Flavor
Handles mouse clicks by encoding them as characters which are forced into the window’s
input buffer. In more detail: if it is a double-click on the right button, the system menu
is called forth. Otherwise, the encoded character representation of the click is forced into
the input buffer of the window. Furthermore, if it is a single-click on the left button, the
window is selected.

The state of the Control, Meta, Super and Hyper keys at the time of the click is
included in the character, in the %%kbd-control, etc., ficlds (see page 49).

tv:list-mouse-buttons-mixin : Flavor
This is just like tv:kbd-mouse-buttons-mixin except that a blip goes in the input buffer
rather than just an encoded click. The blip looks like:
(:mouse-button encoded-click window x y)
 This is more uscful than just the cncoded click: it tells you where the mouse was
(relative to the outside part of the window), and which window the mouse was over (this
is useful primarily if several windows are sharing the same input buffer).

SRCKI.WIND>MOUSE.TEXT.33 8-AUG-83

Ownership of the Mouse 114 Window System Manual

The state of the Control, Meta, Super and Hyper keys is included in the encoded click,
in the %%kbd-control, etc., fields.

The following subtle point may explain some difficulties you may have with the above flavors.
It is a tricky point, and you can ignore it if you don’t understand it. The characters (or blips)
created by the flavors above go straight into the window’s input buffer. Under some circumstances
they may bypass pending characters that have been typed ahead at the kcyboard. So if you type
something and then mouse-click at something in rapid succession while your program is busy, the
program may see the mouse-click before it sces the character from the keyboard. [This may be
fixed in the future.] See scction 5.4.1, page S8, for further discussion of these issues.

10.2 Ownership of the Mouse

Usually the mouse is handled according to the window that it is positioned over. We say that
this window owns the mouse. The window that owns the mouse is the onec that will receive the
‘handle-mouse, :mouse-moves and :mouse-click messages. So the usual case is that the
window under the mouse owns the mouse.

Since windows are arranged in a hicrarchy, generally a window, its superior, its superior’s
superior, and so on, are all under the mouse at the same time. So the window that owns the
mouse is really the lowest window in the hicrarchy (farthest in the hierarchy from the screen) that
is visible (it and all its ancestors are exposed). If you move the window to part of the screen
occupied by a partially-visible window, then one of its ancestors (often the screen itself) becomes
the owner. The screen handles single-clicking on the left button by selecting the window under it;
this is why you can select partially-visible windows with the mouse.

A greedy window can keep ownership of the mouse even if the mouse moves outside of it,
by setting tv:window-owning-mouse to that window. This should be done only when that
window has come by the mouse by legitimate means, inside a :handle-mouse operation on that
window or one of the other operations invoked by it. Inferiors of the greedy window can still
own thc mouse when it is over them. Greediness ends when tv:window-owning-mouse is set
back to nil (its normal state). Then the mouse goes back to being owned by whichever window is
under it. While a window is being greedy, mouse tracking continues to use the methods of the
owning window, but the way of determining the owning window is changed.

The mouse can also be grabbed, which means that some process has taken it away from all
windows. This state is represented by tv:window-owning-mouse being t. See section 10.2.1,
page 115. '

, Usurping the mouse is an even more drastic method of taking over control. It turns the
mouse process off, so you have to do the tracking yourself. See scction 10.2.2, page 118.

tv:window-owning-mouse Variable

If this is nil, the mouse is owned by the window under it. If this is t, the mouse is
grabbed. If this is a window, the mouse is owned by that window.

SRCKL.WIND>MOUSE.TEX'T.33 8-AUG-83

Window System Manual 115 Ownership of the Mouse

tv:window-owning-mouse
Returns the window that now owns the mouse, either because it is being greedy or

because the mouse is over it. If the mouse has been grabbed, the value is t.

tv:mouse-window Variable
The window that is currently handling the mouse. This is the window that tviwindow-
owning-mouse returned the last time the mouse process called it.

tv:mouse-wakeup
Informs the mouse process that the screen layout has changed. Anything which may
change which window is under any point where the mouse might be should call this

function.

tv:hysteretic-window-mixin Flavor
This mixin makes a window continue to own the mousc (by being greedy) for a small
distance beyond the edges of the window. This distance is called the hysteresis, and you
can specify it. This mixin is uscd by momentary menus, so that if you accidentally slip a
bit outside the menu, the menu won’t vanish; you have to get well away from it before
it vanishes, ’ '

thysteresis n-pixels Init option for tv:hysteretic-window-mixin
Sets the initial value of the hysteresis, in pixels. It defaults to 25. (decimal).

:hysteresis Operation on tv:hysteretic -window-mixin
:sat-hysteresis new-hysteresis Operation on tv:hysteretic -window-mixin
Examine or set the hysteresis of the window.

10.2.1 Grabbing the Mouse

Normally mouse clicks and motion are interpreted by a window that owns the mouse. Some
applications, such as Edit Screen, use the mouse for choosing a window to be operated on.
Then it is necessary to make sure that control of the mouse remains with the program that is
doing this (e.g. Edit Screen) rather than going to whatever window the user wants to choose.
This is done by grabbing the mouse.

When the mouse is grabbed, the mouse process gets told that no window owns the mouse,
and it changes the mouse blinker back to the default (a northeast arrow). The mouse process will
continue to track the mouse, and your process can now watch the position and the buttons by
using tv:mouse-x and tv:mouse-y, and the variables and functions described below.

tv:with-mouse-grabbed Special form
A tv:with-mouse-grabbed special form just has a body:
(tv:with-mouse-grabbed
Jorms. . .) :
The forms inside are evaluated with the mouse grabbed.

SRC:KIL.WIND>MOUSE.TEXT.33 , 8-AUG-83

Ownership of the Mouse 116 Window System Manual

tv:mouse-last-buttons : o Variable
This variable contains a mask describing the mousc buttons, as of the last time the
process handling the mouse looked at them. The numbers 1, 2, and 4 represent the left,
middle, and right buttons respectively, and the value of tv:mouse-last-buttons is the
sum of the numbers representing the buttons that were being held down.

tv:mouse-speed ' Variable
The speed the mouse has been moving recently, in units approximately like inches per
second.

tv:mouse-walt &optional (old-mouse-xtv:mouse-x) (old-mouse-ytv:mouse-y)
(old-mouse-buttons tv:mouse - last-buttons)

This function waits for any of the variables tv:mouse-x, tv:imouse-y, or tv:mouse-last-
buttons to become different from the values passcd as arguments. To avoid timing errors,
your program should cxamine the values of the variables, use them, and then pass in the
valucs that it cxamined as arguments to tv:mouse-wait when it is time to wait for the
mouse to move again. It is important to do things in this order, or else you might fail to
wake up if one of the variables changed while you were using the old values and before
you called tv:mouse-wait.

tv:mouse-button-encode bd i
When a mouse button has been pushed, and you want to interpret this push as a click,
call this function. It watches the mouse button and figures out whether a single-click or
double-click is happening. It returns nil if no button is pushed, or an encoded character
describing the click (see page 49).

You should call tv:mouse-button-encode only when a button has just been pushed; that
is, when you see some button down that was not down before. You have to pass in the
argument, bd, which is a bit mask saying which buttons were pressed down: which are
down now that were not down "before”. The form (logand (logxor old-buttons -1) few-
buttons) will compute this mask, where old-buttons is a mask of the buttons that were
down before and new-buttons is a mask of the ones that are down now.

tv:merge-shift-keys char
Modifics char by setting the bits corresponding to all the shift keys currently pressed down
on the keyboard. This is useful on the result returned by tv:mouse-button-encode, if
you wish to record the state of the shift keys in the description of a mouse click so that
the shift keys can alter the meaning of the click,

tv:who-Tine-mouse-grabbed-documentation Variable

When grabbing or usurping the mouse, you should explain what is going on in the
mouse-documentation line at the bottom of the screen. with-mouse-grabbed and with-
mouse-usurped bind this variable to nil, which makes the mouse-documentation line
blank. Inside the body of one of these special forms, you may setq this variable to a
string, which will be displayed in the mouse-documentation line. If your program has
"modes” which affect how the mousc acts, each part of the program should setq this
variable to its own documentation.

SRCKL.WIND>MOUSE.TEXT.33 8-AUG-83

Window System Manual 117 Ownership of the Mouse

tv:window-under-mouse &optional operation active-condition x y
Returns the window that is seen at the point where the mouse is (or at (x,y) in the
mouse sheet, if they are non-nil). This is the window that is partially visible at that
point. If operation is non-nil, only windows that handle that operation arc considered at
all. active-condition is another way of filtering among windows; it can be :active or
:exposed, to sclect among active or exposed windows.

This is used by the mouse process in deciding which window owns the mouse, and can
also be used by you when you have grabbed the mouse.

tv:mouse-specify-rectangle &optional left top right bottom (sheet mouse-sheet)
(minimum-width Q) (minimum-height 0) abortable)
Grabs the mouse and asks the user to specify a rectangle by clicking at two corners. This
is how the system menu Create option works. Four values are returned, the left, top,
right, and bottom of the rectangle, all relative to sheet.

left and top, if non-nil, are where to position the mouse initially when asking for the
upper left corner. If right and bottom are also non-nil, then when asking for the lower
right corner the mouse is positioned initially so as to make a rectangle of the same size as
the arguments specify. In other words, what matters about the argument right is how
much bigger it is than lef?.

minimum-width and minimum-height constrain the values that may be returned.

If abortable is non-nil, the user is permitted to abort by clicking the middle button. Then
the function returns nil.

It is often useful to call this function via tv:mouse-set-sheet-then-call (page 112).

tv:mouse-set-window-size window &optional (move-pt)
Grabs the mouse and asks the user for new edges for window, returns them, and (unless
inhibited) sets the edges of window to them as well. window’s edges are set unless move-p
is nil,

The values are the new edges, suitable for the :set-edges operation, or nil if the user
aborted. :

tv:mouse-set-window-position window &optional (move-pt)
Grabs the mouse and asks the user for a new position for window. The new position is
returned as two values, and window is moved to that position unless move-p is nil.

The values are-the new position of the upper left corner, suitable for the :set-position
operation, or nil if the user aborted.

SRCKL.WIND>MOUSE.TEXT.33 8-AUG-83

Ownership of the Mouse 118 Window System Manual

10.2.2 Usurping the Mouse

For high real-time performance, you can wusurp the mouse. Then the mouse process steps
aside and lets you do everything related to tracking the mouse until you return control of it. The
variables tv:mouse-x and tv:mouse-y are not updated while the mouse is usurped. The mouse
blinker disappears, and if you want any visual indication of the mouse to appecar, you have to do
it yourself,

tv:with-mouse-usurped Special form
A tv:with-mouse-usurped special form just has a body:
(tv:with-mouse-usurped
SJorms. ..)
The forms inside are c¢valuated with the mouse usurped.

tv:mouse-input &optional (wait-flagt)
Waits until something happens with the mouse, and then returns saying what happened.
. Four valucs are returned. The first two are delta-x and delta-y, which are the distance
that the mouse has moved since the last time tv:mouse-input was called. The sccond two
are buttons-newly-pushed and buttons-newly-raised, which are bit masks (using the bit
assignment used by tv:mouse-last-buttons; sec above) saying what buttons have changed
since the last time tv:mouse-input was called.

You may call this function only with the mouse usurped; otherwise you will get in the
way of the mouse process, which calls this function itself, and mouse tracking won’t work
correctly.

The variables tv:imouse-x and tv:imouse-y are not maintained by this function; you must -
do it yourself if you want to keep track of a cumulative mouse position. tv:mouse-last-
buttons is maintained.’

The buttons-newly-pushed value is suitable for being passed as an argument to tv:mouse-
buttons-encode, which can be used with the mousc usurped as well as with the mouse
grabbed.

If wait-flag is nii, then the function wiil not wait; it may return with aii zeroes, indicating
that nothing has changed.
tv:mouse-buttons

Returns the current state of the mouse buttons, in the format used by the tv:mouse-last-
buttons variable, by examining the hardware mouse registers.

SRCKL.WIND>MOUSE. TEXT.33 8-AUG-83

Window System Manual 119 _ How Windows Handle the Mouse

10.3 How Windows Handle the Mouse

The mouse is rarely grabbed or usurped. Normally it is owned by a window (or a screen).
Then, mouse handling works through various flavor operations on the owning window. There are
several opcrations, used at various points in mouse handling, to give you convenicnt hooks for

modifying a window’s behavior.

The outcrmost loop of mouse handling determines the owning window and then invokes its

‘handle-mouse method. When this method returns, the owning window is recalculated.

:handle-mouse Operation on windows

This operation is invoked by the mouse process to handle the mouse while it is on this
window. It should return only when the mouse moves out of the window, or if the

mouse is grabbed.

The default definition is to call tv:mouse-standard-blinker followed by tv:mouse-

default-handler.

tv:mouse-default-handler window scroll-bar-p

The guts of the :handle-mouse operation. :handle-mouse methods typically set up the
desired sort of mouse blinker and then call this function. window is the window the
mouse is being handled for, and scroll-bar-p is t to provide a scroll bar (see scction 10.5.2,
page 125), if the window implements one. Generally the :enable-scrolling-p operation is

used to compute the second argument.

A second argument of :in is used for handling the scroll bar itself. Values other than nil,

t and :in should be avoided.

This function invokes the :mouse-moves operation to inform the window about mouse
motion, and the :mouse-buttons operation to inform it about buttons going down. They

are the most convenient hooks to use for implementing simple new mouse behaviors.

:set-mouse-cursorpos x y Operation on windows
:set-mouse-position x y Operation on windows

Move the mouse instantaneously to the specified position. The effect is as if the user had
moved the mouse over to that spot, without the user actually touching it. For :set-
mouse-position, x and y are relative to the outside edges of the window. For :set-
mouse-cursorpos, they are relative to the inside edges (as in the :set-cursorpos

operation).

:mouse-moves x y Operation on windows

This operation is invoked in the mouse process every time the mouse moves cither into,
within or out of this window. x and" y are the current position of the mouse, relative to

the outside edges of this window.

:mouse-moves handlers should always call tv:mouse-set-blinker-cursorpos to make the
mouse blinker move. In addition, they frequently move other blinkers or turn them on

or off. This is how menus arrange to outlinc the item the mouse is over.

SRC:KL.WIND>MOUSE.TEXT.33 8-AUG-83

How Windows Handlc the Mouse 120 Window System Manual

tv:mouse-default-handler is what invokes this operation.

When this window ceases to own the mouse, for whatever reason, the :mouse-moves
method will always be called one final time, so that it can turn off extra blinkers, efc.

tv:mouse-set-blinker-cursorpos &rest ignore
Moves the current mouse blinker to the current mouse position. :mouse-moves methods

typically call this function.

:mouse-buttons mask x y Operation on windows
This operation is invoked in the mouse process when a button is pressed. mask is a mask
of the buttons pressed, and x and y arc the mouse position (in the mouse sheet).

By default, this calls tv:mouse-button-encode to check for double clicks, then brings up
the system menu for double-click-right; otherwise, it invokes the :mouse-click operation.

tv:mouse-default-handler is what invokes this operation.

:mouse-click mouse-char x y Operation on windows
This operation is where most handling of mouse clicks actually goes on. It is invoked in
the mouse process. mouse-char is a character code describing the button pressed and how
many times; such as, #\mouse-I-2. x and y are the position of the mouse at the
beginning of the click. It is preferable to use this position rather than the current one,
because the user positioned the mouse accurately before clicking and motion during the
click was probably accidental.

Any window selection desired should be done in another process, using process-run-
function or tvimouse-select. It is unrobust to do something so error-prone in the mouse
process.

:or method combination is used, so that all the mecthods are run until one of them
returns non-nil. So each mixin can define a way of handling the mouse under certain
circumstances, and it can decline to handle the click by returning nil. For example,
tv:imargin-choice-mixin defines a :mouse-click mcthod which handles the click if the
position is inside a margin choice box, and returns nii otherwise so thai ithe window’s
primary way of handling clicks can be run.

tv:kbd-mouse-buttons-mixin and tv:list-mouse-buttons-mixin work by defining
‘mouse-click methods.

:who-1ine-documentation-string Operation on windows
This operation should return a string describing what the mouse would do if clicked on
this window in its current position. For example, menus rcturn a string describing the
menu item that the mouse is over. If different buttons do different things, or if multiple
clicks are in use, the string should dcscribe all the possibilities.

SRC:KL.WIND>MOUSE.TEXT.33 8-AUG-83

Window System Manual 121 Mousc Blinkers

tv:mouse-select window
Sclects window, and safe to usc in the mouse process because it creates a temporary
process to do the work in that case. Used by :mouse-click methods.

tv:mouse-call-system-menu
Brings up the system menu, and designed to be safe to use in the mouse process. Used
by :mouse-click methods.

10.4 Mouse Blinkers

At any time one blinker is the mouse blinker, which follows the motion of the mouse. It is
not always the same blinker. Each window can set up the kind of mouse blinker it wants or
change the blinker, as long as that window owns the mouse.

The mouse blinker’s sheet is the mouse shect, not the window that owns the mousc and
wants this blinker to be used. This avoids problems with displaying the blinker at points near the
edge of the owning window which require parts of the blinker to be outside that window.

Note that mouse blinkers are not following blinkers; the mouse cursor position is independent
of the cursor position of the owning window and also independent of the cursor position of the
mouse sheet.

The recommended way to make a window flavor use a special form of mouse cursor is to
give the flavor a :mouse-standard-blinker method which alters the mouse blinker using
tv:imouse-set-blinker or tv:mouse-set-blinker-definition (see below).

Usually there is only one form of mouse blinker used for any given window. If you want the
mouse blinker’s appearance to vary while the mouse remains in the same window, a good -
technique is to have the :mouse-standard-blinker method know how to set up whichever blinker
appearance is right at the moment it is called, and then call tv:mouse-standard-blinker after
every event that might necessitate changing the blinker.

tv:mouse-blinker ' Variable
The blinker now following the mouse. It should not be changed by the user directly.

tv:mouse-set-blinker blinker &optional x-offSet y-offset
Makes blinker the new mouse blinker. If x-offset and y-offset are non-nil, blinker’s offsets
(see below) are also set. ’

blinker can be a defined blinker type instcad of a blinker. Then this function is
equivalent to tv:mouse-set-blinker-definition with only three arguments specified (page
123). '

This function is typically called from :mouse-standard-blinker methods.

SRCKAL.WIND>MOUSE.TEXT.33 : 8-AUG-83

Mouse Blinkers 122 W_indow System Manual

tv:mouse-standard-blinker &optional (window (tv:window-owning-mouse))
Sets the mouse blinker to the standard kind for window, by invoking the :mouse-
standard-blinker operation on it. This is called by the window system at appropriate
times.

:mouse-standard-blinker Operation on windows
This should use tv:mouse-set-blinker or tv:mouse-set-blinker-definition to sct up the
right kind of mouse blinker to use when the mouse is on this window. By dcfault, it is
defined to pass on the message to the superior window; finally, the screen handles the
operation by making the blinker an upward-left arrow.

tv:mouse-blinker-mixin Flavor
Not all blinkers can serve as mouse blinkers. This mixin makes a blinker suitable for use

as the mouse blinker.

A mouse blinker has two offsets which relate the blinker position to the mouse position.
Remember that the blinker position is where the upper left corner of the blinker is
displayed. The upper lcft corner is not always what you want to place at the precise spot
the mouse is pointing to. For example, if you are using a character blinker with the
character X, probably the center of the X rather than its corner should be "the spot".

:offsets Operation on tv:mouse -blinker-mixin
Returns the x and y offsets of the blinker as two values. The values give the position of
the mouse cursor relative to the blinker; that is, in order to locate the cursor within the
area of the blinker’s display, the offsets must be positive.

:set-offsets x y Operation on tv:mouse-blinker-mixin
Sets the offsets of the blinker.

tv:mouse-character-blinker Flavor
tv:mouse-rectangular-blinker ' Flavor
tv:mouse-hollow-rectangular-blinker Flavor
tv:mouse-box-blinker Flavor
tv:mouse-box-stay-inside-blinker - Flavor

These are versions of popular biinker fiavors described in section 9.2, page 107, which
can be used as the mouse blinker. tvimouse-box-stay-inside-blinker incorporates
tv:stay-inside - blinker-mixin.

The fiavors tv:bitblt-blinker and tv:magnifying-blinker are already suited to be mouse
blinkers.

SRC:KI.WIND>MOUSETEXT.33 8-AUG-83

Window System Manual 123 Mouse Scrolling

10.4.1 Reusable Mouse Blinker Types

Normally you do not create mouse blinkers yourself. Instead, each screcen keeps a list of
mouse blinkers of various sorts, and you rcuse one of them. This is done by means of mouse
blinker type keywords. A mouse blinker type keyword is given a meaning, which is a function for
creating a blinker. The first time someone wants a blinker of that type on a given screen, one is
created and remembered, and reused every time a blinker of that type is wanted. A blinker type
keyword serves a purpose similar to that of a resource.

Predefined type keywords include :character-blinker, :rectangle-blinker, :box-blinker and
:box-stay-inside-blinker.

You do not have to use this mechanism, but it saves creation of blinkers to do so.

tv:mouse-define-blinker-type type creation-function
Defines zype as a mousc blinker type, with creation-function as a function to create one.
The function will receive a screen as argument and should call make-blinker.

tv:mouse-get-blinker ype sheet
Returns a blinker of type fype whose sheet is sheet. The same blinker will be
automatically reused for different sheets on the same screen. In fact, the blinker’s sheet
will be the screen, not sheet.

tv:mouse-set-blinker-definition fype x-offset y-offset visibility operation &rest args
Sets the mouse blinker to be a blinker of type fype, and sets its offsets and visibility as
specified; then sends the blinker a message of operation and args if operation is non-nil.
operation is typically used to initialize other aspects of the blinker. For example, the
:set-character operation is useful with character blinkers.

This function can be used in the :mouse-standard-blinker method of a window to
specify a different appearance of the mouse blinker while the mouse is in that window.

tv:mouse-blinkers Instance variable of tviscreen
A list of mouse blinkers, examples of various reusable mouse blinker types, created so far
for this screen, ‘

10.5 Mouse Scrolling

Some windows have the ability to scroll. They display only a portion of a virtual window
which is (or may be) too big to be shown all at once. Scrolling means moving the actually-shown
portion up or down through the entire display.

SRC:KL.WIND>MOUSE.TEXT.33 8-AUG-83

Mouse Scrolling 124 Window Systcm Manual

10.5.1 Scrolling Protocol

There are scveral ways the mouse can be used to scroll a window. Each is implemented by a
mixin, They all communicate with the window using the same protocol. For the sake of this
protocol, the contents of the window are considered to be divided vertically into "lines". A
position for scrolling is expressed as the number of lines that are above the top of the window.
These do not have to be actual lines of text, though usually they are, but they must all have the
same height. Usually this common height is the window’s line-height, but that is not required.

:enable-scrolling-p Operation on scrolling windows
The various mouse-scrolling features use this operation to decide whether they should be
active at any given time. If this operation returns nil, the scrolling facilities do not react
to the mouse.

:scroll-position Operation on scrolling windows
Returns four values:
" top-line-num The line-number of the line currently at the top of the window.
" total-lines The total number of lines available to scroll through.
line-height The height (in pixels) of a line.
n-items The number of lines that the window has room for.
:scroll-to 10 &optional (ype ':absolute) Operation on scrolling windows
type is one of:
:absolute Places the line numbered to at the top of the window.

‘relative Adjusts the line displayed at the top of the window by f0 lines. If to is
positive, text moves upward on the screen.

Since o is not guaranteed to be legal, both types of scrolling must error check their

arguments.

:new-scroll-position Operation on windows
This operation is used by the program managing the window to tell the mouse scrolling
nnnnnnnnnn
be invoked whenever either the total number of lines to scroll through or the line number
at the top of the window is changed by anything except the mouse scrolling facilities.

Mouse scrolling facilities put dacmons on this operation in order to update their displays
when the situation changes.

SRCKI.WIND>MOUSE.TEXT.33 $-AUG-83

Window System Manual 125 | Mouse Scrolling

10.5.2 Scroll Bars

If you move the mouse to the left edge of an editor window from the inside, eventually the
mouse cursor changes to a thick up-and-down arrow. Simultancously, a thin vertical line appears
next to and outside of the left border of the window. This is called entering the scroll bar, and
the thin vertical line, which indicates the portion of the total text that is now on the screen, is
the scroll bar itself.

The vertical position of the top and bottom of the thin vertical line, as proportions of the
height of the window, are the same as the positions of the first and last lines of text on the
screen, as proportions of the total number of lines.

While the mouse is in the scroll bar, clicks have special meanings:
single left Moves this line (the one the mouse points at) to the top of the window.
single right Moves the line at the top of the window to where the mouse points.
double left Moves this line (the one the mouse points at) to the bottom of the window.
double right Moves the line at the top of the window to where the mouse points.

middle Scrolls so that the scroll bar moves to where the mouse is. The mouse vertical
position on the window thus controls where in the display -to scroll to; the top of
the window rcquests the beginning of the available display, and the bottom
requests the end.

tv:basic-scroll-bar Flavor
This mixin gives a window the ability to have a scroll bar. It defines three instance
variables:

tv:scroll-bar When the window provides margin space for a scroll bar, this is a list
describing the rectangle allocated. Otherwise, it is nil.

wv:scroll-bar-always-displayed
If this is non-nil, the bar will be displayed whenever margin space is
provided for it, even if the mouse is not there,

tv:scroll-bar-in This is non-nil when the mouse is actually in this window’s scroll bar,

:scroll-bar spec Init option for tv:basic-scroll-bar
Specifies whether to have a scroll bar, how big to make it, and where. spec can be nil
for no scroll bar, t for a default scroll bar, or a small positive number, which requests a
scroll bar of that width. The scroll bar occupies space in the margins of the window.

:set-scroll-bar spec - Operation on tv:basic-scroll-bar
Sets whether this window has a scroll bar, or how wide it is. spec is the same as in the
:scroll-bar init option. This can change the inside size of the window, since it can
change the amount of space needed in the margin.

SRCKIL.WIND>MOUSE.TEXT.33 8-AUG-83

Mousc Scrolling 126 Window System Manual

:enable-scrolling-p Operation on tv:basic-scroll-bar
This mixin defines this operation to return t when the window has a scroll bar. Sce page
124 for a description of this operation.

:scroll-bar-always-displayed t-ornil Init option for tv:basic-scroll-bar
Non-nil to say that the bar of the scroll bar should appear on the screen all the time, not
just when the mouse is "in" it.

:scroll-bar-always-displayed Operation on tv:basic-scroll-bar
:set-scroll-bar-always-displayed t-ornil Operation on tv:basic-scroll-bar
Get or set this flag in an existing window. Setting it updates the screen.
:scroll-more-above Operation on tv:basic-scroll-bar
:scroll-more-below Operation on tv:basic-scroll-bar

t if there is text to scroll up (down) to. The default definition uscs the :scroll-position
operation; some flavors redefine it for greater efficiency.

:mouse-buttons-scroll mouse-char x y Operation on tv:basic-scroll-bar
This operation is invoked when the mouse is clicked in the scroll bar. mouse-char is a
character with %%kbd-mouse set, identifying the button clicked and how many times. x
and y are the position at the time of the click, relative to this window’s outside edges.
The default dcfinition provides the standard scrolling commands; you can redefine it.

:scroll-relative from 1o Operation on tv:basic-scroll-bar
Scrolls the window to move what is now at the y-position from to the y-position fo. The
arguments can be numeric vertical cursor positions, or the symbols :top or :bottom. The
:scroll-position and :scroll-to operations are used to accomplish the scrolling.

10.5.3 Margin Scrolling

The scrolling mixins described here require that the window have tv:basic-scroll-bar as well,
because they make use of operations defined by that flavor. If you do not want to have a scroll
bar, you can specify nil for the :scroll-bar init option.

tv:flashy-scrolling-mixin : Flavor
This mixin provides the ability to scroll the window a line at a time by pushing the
mouse against the top or bottom edge. The mouse blinker changes to a thick up or down
arrow when it is in the right place to do this.

This sort of scrolling is provided in the editor and the inspector. This flavor does not
cause the text “more above" to appear, the way it does in the inspector; that is done by
tv:margin-scrolling ~mixin.

:flashy-scrolling-region spec Init option for tv:flashy-scrolling-mixin
spec specifies where in the window the regions should go in which the mouse can cause
scrolling. It looks like this:
((top-height top-left top-right)
(bottom-height bottom-left bottom-right))
Each region always abuts the top or bottom edge of the window, overlapping the

SRC:KL.WIND>MOUSE.TEXT.33 8-AUG-83

Window System Manual 127 Mouse Scrolling

window’s margin, but possibly extending into the inside of the window. Each height is a
number of pixcls in height for the specified region. Each left and right give the sides of
the region. left and right can be fixnums (positions relative to the window left edge),
flonums (fractions of the width of the window, with zero at the left), or :left for the left
edge or :right for the right edge.

tv:margin-scroll-mixin Flavor
This mixin (which requires tv:margin-region- mlxm as well) prov1dcs for mouse-sensitive
regions in the top and bottom margins which say "more below™ or “more above" if there
is something to scroll to. A mouse click on the region scrolls an entire windowfull.

:margin-scroll-regions region-list Init option for tv:margin-scroll-mixin
Each element of region-list describes what to do with one of the two scrolling regions. An
element looks like
(keyword at-end-message more-message font-specifier)

keyword is :top or :bottom, and says which region this element describes. at-end-message
is an expression evaluated to get the string to display in the region when there is no room
for more scrolling in that direction. If nil or omitted, it defaults to "Top" or "Bottom".
more-message is another expression which is supposed to evaluate to a string to print when -
there is room for more scrolling. "More above" and "More below" are the defaults.

Most commonly one just uses a string for the at-end-message and the more-message.
Jont-specifier specifies the font to use. It defaults to tr10i if it is nil or omitted.

tv:flashy-margin-scrolling-mixin Flavor -
This mixin provides both flashy scrolling and margin scrolling, with the flashy scrolling
areas overlying the margin scrolling regions. You don’t need anything clse except

tv:basic-scroll-bar.
Here are two ways of controlling when margin scrolling regions appear or disappear:

tv:margin-scroll-region-on-and-off-with-scroll-bar-mixin Flavor
This mixin, when combined with tv:margin-scroll-mixin, makes the margin scroll regions
disappear if the :scroll-bar init option or the :set-scroli-bar operation is used to make
the scroll bar disappear, and reappear if a scroll bar is created again.

tv:scroll-stuff-on-off-mixin Flavor
This mixin provides a scroll bar, flashy scrolling and margm scrolling, and makes them
appear or disappear according to the value returned by the :enable-scrolling-p operation.

:decide-if-scrolling-necessary _ Operation on tv:scroll-stuff-on - off-mixin
Makes the scroll bar and margin regions appear or disappear if appropriate, using the
:enable-scrolling-p to decide whether they should be present. The goal is to avoid
displaying scrolling featurcs, and using up screcn spacce for them, when there is no place
to scroll to.

SRCKL.WIND>MOUSE.TEXT.33 8-AUG-83

Mousc Parameters 128 W_indow System Manual

This operation is invoked automatically at certain times. It should be invoked also
whencver the number of lines to scroll through has been changed, but before doing any
associated redisplay (since the redisplay to be done may be different after this operation
finishes).

If the scroll bar and margin regions must be added or removed, then either the inside
size of the outside size of the window must change. The :adjustable-size-p operation is
used to decide which. If it returns non-nil, the inside size is preserved and the outside
size is changed; otherwise, the outside size is prescrved.

Changing the inside size may affect the window’s redisplay calculations, and for some
windows it may cause a redisplay within this operation. You may want to invoke it inside
of a tv:iwith-sheet-deexposed to avoid letting the user sce gratuitous double redisplays,
or to suppress the redisplay entirely if there is no bit-save-array.

If the outside size is to be changed, and if changing the number of displayable items
changes the height of the window, that should be done before invoking this operation.

:adjustable-size-p Operation on tv:scroll-stuff-on -off-mixin
This operation is used to decide how to adjust the window margin size. If it returns non-
nil, the inside size is preserved; otherwise, the outside size.

tv:scroll-stuff-on-off-mixin does not define this operation, but it requires users to define
it. :

10.6 Mouse Parameters

tv:use-kbd-buttons ' Variable
If this is non-nil, the Roman numeral keys I through III on the keyboard are treated as
mouse clicks when the Mode-Lock key is down. The default is t.

tv:mouse-bounce-time Variable
The delay in microseconds after a change in a mouse button status before the system
begins to look for another change. The default is 2000. microseconds.

tv:mouse-double-click-time Variable
The delay in microseconds after which the system gives up checking for an additional
mouse click, The default is .2 seconds.

tv:mouse-discard-clickahead
Clears out the microcode buffer in which the mouse-tracking microcode records mouse

clicks.

tv:*mouse-incrementing-keystates® Variable
This is a list of keys (valid arguments for tvikey-state). When the mouse is clicked, each
of these keys that is held down adds one to the "number of clicks”. The default value is
(:control :shift :hyper)
Thus, if you do a single click with the Control key down, it is treated as a double click.

SRCKL.WIND>MOUSLE.TEXT.33 8-AUG-83

Window System Manual 129 Margins, Borders, and Labels

11. Margins, Borders, and Labels

In previous sections, we have mentioned the distinction between the inside and outside parts
of the window. The part of the window that is not the inside part is called the margins. There
are four margins, one for each edge. The margins somctimes contain a border, which is a
rectangular box drawn around the outside of the window. Borders help the user see what part of
the screen is occupied by which window. The margins also sometimes contain a label, which is a
text string. Labels help the user see what a window is for.

A label can be inside the borders or outside the borders (usually it is inside). In gencral,
there can be lots of things in the margins; each one is called a margin item. Borders and labels
arc two kinds of margin items. In any flavor of window, one of the margin items is the
innermost; it is right next to the inside part of the window. Each successive margin item is
outside the previous one; the last one is just inside the edges of the window. Each margin item
is created by a flavor’s being mixed in. You can control which margin items your window has by
which flavors you mix in, and you can control their order by the order in which you mix in the
flavors. Margin item flavors closer to the front of the component flavor list are further toward the
outside of the margins. The tviwindow flavor has as components tv:borders-mixin and tv:label-
mixin, in that order, and so the label is inside the border. The scroll bar, in windows that have
one, is also a margin item (see section 10.5.2, page 125).

:margins ' Operation on windows .
Returns four values: the sizes of the left, top, right, and bottom margins, respectively.
Each value includes the contributions of borders, labels, and anything else, to that one
margin. For a window with no margins, all four values are zero.

:1eft-margin-size Operation on windows
:top-margin-size Operation on windows
:right-margin-size Operation on windows
:bottom-margin-size Operation on windows

Return the size of one of the margins.

tv:left-margin-size) Instance variable of windows
tv:top-margin-size Instance variable of windows
tv:right-margin-size Instance variable of windows
tv:bottom-margin-size Instance variable of windows

These hold the four values returned by the :margins operation. There are no operations
to set these variables or init options to initialize them, because the margin sizes are always
supposed to be computed from the labels, borders and other margin items as described
below.

tv:sheet-left-margin-size window

tv:sheet-top-margin-size window

tv:sheet-right-margin-size window

tv:sheet-bottom-margin-size window
Return the value of the corresponding instance variable of window. These are accessor
defsubsts created by the :outside-accessible-instance-variables option of defflavor.

SRCKL.WIND>MARGIN.TEXT.20 3-AUG-83

Borders , 130 Window System Manual

tv:sheet-1nside-left &optional (window self)

tv:sheet-1nside-top &optional (window self)

tv:sheet-inside-right &optional (window self)

tv:sheet-inside-bottom &optional (window self)
Return the positions of the inside edges, relative to the top left outside corner of the
window. If used with no argument, these defsubsts expand into direct references to
instance variables, and therefore may be used only within methods or (declare (:self-
flavor ...)) functions.

11.1 Borders

tv:borders-mixin Flavor
The tv:borders-mixin margin item creates the borders around windows that you often see
when using the Lisp Machine. You can control the thickness of each of the four borders
separately, or of all of them together. You can also specify your own function to draw
. the borders, if you want somcthing more elaborate than simple lines.

The borders also include some whitespace left between the borders and the inside of the
window. The thickness of this white space is called the border margin width. The space
is there so that characters and graphics that are up against the edge of the inside of the
window, or the next-innermost margin item, do not "merge" with the border.

:borders argument Init option for tv:borders-mixin
This option initializes the parameters of the borders. argument may have any of the
following values:

nil There are no borders at all.

a symbol or a number - :
A specification (see below) that applies to each of the four borders.

a list (left top right bottom)
Specifications (see below) for each of the borders at the four edges of the

window.
ist {keyword! specl keyword2 spec2...)

Specifications (see below) for the borders at the edges selected by the
keywords, which may be among :left, :top, :right, :bottom.

Each specification for a particular border may be one of the following.' It specifies how
thick the border is and the function to draw it.
nil This edge should not have any border.

t The border at this edge should be drawn by the default function with the
default thickness.

a number The border at this edge should be drawn by the default function with the
specified thickness.

a symbol The border at this edge should be drawn by the specificd function with
the default thickness for that function.

SRCKL.WIND>MARGIN.TEXT.20 8-AUG-83

Window System Manual 131 . Borders

acons (function . thickness) .
The border at this edge should be drawn by the specified function with

the specified thickness.

The default (and currently only) border function is tv:draw-rectangular-border. Its
default width is 1.

To define your own border function, you should creatc a Lisp function that takes six
arguments: the window on which to draw the label, the "alu function" (see section 8.1,
page 93) with which to draw it, and the left, top, right, and bottom edges of the area
that the border should occupy. The returned value is ignored. The function runs inside a
tvisheet-force-access (see page 23). You should place a tvidefault-border-size
property on the name of the function, whose value is the default thickness of the border:
it will be used when a specification is a non-nil symbol.

Note that sctting border specifications to ask for a border width of zero is not the same
thing as giving nil as the argument to this option, because in the former case the space
for the border margin width (see the previous page) is allocated, whereas in the latter case
it is not.

:set-borders new-borders : | Operation on tv:borders-mixin
Redefines the borders. new-borders can be any of the things that can be used for the
:borders init option (see above).

:border-margin-width n-pixels Init option for tv:borders-mixin
Sets the width of the white space in the margins between the borders and the inside of
the window. The default is 1. If some edge does not have any border (the specification
for that border was nil) then that border won’t have any border margin either, regardless
of the value of this option; that is the difference between border specifications of 0 and

nil.
: bbrde r-margin-wi dth Operation on tv:borders-mixin
:set-border-margin-width new-width Operation on tv:borders-mixin

Return or set the value of the border margin width.

tv:border-margin-width Instance variable of tv:borders-mixin
The current border margin width.

tv:borders Instance variable of tv:borders-mixin
A description of the currently specified borders. It is nil for no borders. Otherwise its
format is complicated and internal in nature.

tv:full-screen-hack-mixin) Flavor
This mixin is included in many system flavors, such as Lisp listeners, Supdup, and Zmacs
frames. It offers the user the option of requesting that thesec windows have no borders
when they occupy the full screen.

SRCKL.WIND>MARGIN.TEXT.20 8-AUG-83

Labels 132 Window System Manual

tv:flush-full-screen-borders flush-p
With an argument of t, climinates the borders of all windows which arc full-screen-sized

and have tv:full-screen-hack-mixin.

With an argument of nil, reinstatcs the normal borders of all such windows.

11.2 Labels

tv:label-mixin Flavor
The tv:label-mixin margin item creates the labels in the corners of windows that you
often see when using the Lisp Machine. You can control the text of the label, the font
in which it is displayed, and whether it appears at the top of the window or the bottom.

:name Init option for windows
The value is the name of the window, which should be a symbol. All windows have
names; notc that this is an init option of tv:minimum-window. It is mentioned here
because the main use of the name is as the default string for the label, if there is a label
(sce below).

tname Operation on windows
Returns the name of the window, which is a symbol. See above.

:1abel specification Init option for tv:label-mixin
Sets the string displayed as the label, the font in which the label is displayed, and
whether the label is at the top or the bottom of the window. Anything you don’t specify
will default; by default, the string is the same as the name of the window, the font is
the screen’s standard font for the purpose :label (see page 86), and the label is at the
bottom of the window.

specification may be any of:

nil There is no label at all.

t The label is given all the default characteristics.
‘top The label is put at the top of the window.
:bottom The label is put at the bottom of the window.
a string The text displayed in the label is this string.
afont The label is displayed in the specified font.

a list (keyword! argl keyword2...)
The attributes corresponding to the keywords are set; the rest of the
attributes default. Some keywords take arguments and some do not. The
following keywords may be given: '

‘top The label is put at the top of the window.
:bottom The label is put at the bottom of the window.
:centered The label is printed horizontally centered, rather than

starting at the left edge.

SRCKL.WINID>MARGINTEXT.20 8-AUG-83

Window System Manual 133 Labels

:string sfring The text displayed in the label is string.

:font font-specifier
The label is displayed in the specified font. font-specifier
may be any font specifier (sce page 85).

:VSp vsp If the label is multiple lines, lines will be separated by vsp
rows of pixels.

:Tabel-size Operation on tv:label -mixin
Returns the width and height of the area occupied by the label.

:set-1abel specification Operation on tv:label-mixin
Changes some attributes of the label. specification can be anything accepted by the :label
init option. Any attribute that specification doesn’t mention retains its old value.

tv:label Instance variable of tv:label-mixin
The value of this variable describes the label of the window. It is either nil for no label
or a list of length eight, whose elements are

tv:label -left
tv:label-top
tv:label -right
tv:label -bottom :
The rectangle allocated to the label. All four edges are relative to the
window’s outside upper left corner.

tv:label-font The font to use for the label.
tv:label-string The string to display in the label.
tv:ilabel-vsp The separation between lines in the label.

tv:label-centered
Non-nil if the label text should be horizontally centered.

tv:top-label-mixin : Flavor
Causes the label to appear in the top margin of the window by default instead of at the
bottom. The mixin does not override an explicit specification of the label position.

tv:box-tabel-mixin Flavor
Makes the label appear to be in a box, by drawing a line just on the inside of the label.
This combines with the window’s borders, which surround the other three sides of the
label, to make a box. The extra line is present only if the label is turned on. Menus use
this mixin, so from any menu that has a label, such as the one you get from Split
Screen in the system menu, you can see what it looks like.

:1abel-box-p t-ornil Init option for tv:box-label-mixin
If this option is nil, the box around the label is inhibited.

SRCKL.WIND>MARGIN.TEXT.20 8-AUG-83

Margin Regions 134 Window System Manual

tv:centered-label-mixin - Flavor
Makes the label string appear by default horizontally centered in the width of the window.

tv:delayed-redisplay-label-mixin Flavor
This flavor adds the :delayed-set-label and :update-label operations to your window.
You send a :delayed-set-label message to change the label in such a way that it will not
actually be displayed until you send an :update-label message. This is espccially useful
for programs that suppress redisplay when there is typeahead; the user’s commands may
change the label several times, and you may want to suppress the redisplay of the changes
in the label until there isn’t any typeahead.

:delayed-set-1abel specification Operation on tv:delayed -redisplay -label -mixin
This is like the :set-label method, except that nothing actually happens until an :update-
label is done.

:update-label Operation on tv:delayed -redisplay -label-mixin

Actually docs the :set-label operation on the specification given by the most recent
:delayed-set-label operation.

tv:label-needs-updating Instance variable of tv.delayed -redisplay -label-mixin
Non-nil if a :delayed-set-label has been done but not displayed yet.

11.3 Margin Regions

» Margin regions are a general facility for allocating space in a window’s margin for specific
purposes. Each region can display text or graphics and can be mouse sensitive. Margin choices
(see page 210) are implemented using margin regions.

tv:margin-region-mixin Flavor
This mixin gives a window the ability to have margin regions.

tv:region-1ist Instance variable of tv:margin-region-mixin
A list of margin region descriptors. Each descriptor specifies one margin region and is a
list of this form:
(function margin size left top right bottom)
The list may be longer than seven. The meaning of the extra elements is up to you.
Here is what the seven standard clements mean. We list the names of the defSubsts
provided to access them.

tv:margin-region-function
A function to handle various operations on the margin region. It is called
with an operation name as the first argument, so it could be a flavor
instance, but no flavors are predefined for the purpose and usually the
function is a defselect. The margin region descriptor itself is always one
of the arguments, to identify the region being operated on.

tv:margin-region-margin
The name of the margin that this region lives in; either :left, :top, :right
or :bottom, . :

SRC:KLWINID>MARGIN.TEXT.20 8-AUG-83

Window System Manual 135 } Margin Regions

tv:margin-region-size
The thickness in pixels of the margin region, perpendicular to the edge it
is next to. (The other dimension is controlled by the size of the window,
possibly diminished by space already reserved for other margin items.)

tv:margin-region-left

tv:margin-region-top

tv:margin-region-right

tv:margin-region-bottom
The edges of the rectangle assigned to the margin region. If positive, they
are relative to the outside upper left corner of the window. If negatfve,
they are relative to the outside lower right corner.

You do not specify these; they are computed by the :redefine-margins
operation which divides up the margin space, and recorded here so that
the margin region can be displayed and found by the mouse.
The margin region descriptor may be longer than seven. Additional elements are not used
by tv:margin-region-mixin itself and therefore may be used by higher-level facilities to
record their own information with each margin region.

:set-region-1ist new-region-list Operation on tv:margin-region-mixin
Sets the list of margin regions. The new list should be a list of margin region descriptors
as described above, but only the first three clements of each descriptor need be filled in.
The rest will be set up automatically.

These are the operations that the fiunction of a margin region is expected to handle:

rrefresh descriptor
This operation should draw this region on the screen in the position specified by
the margin region descriptor.

‘mouse-enters-region descriptor
This operation is invoked whenever the mouse moves into this region.

‘mouse-leaves-region descriptor
This operation is invoked whenever the mouse moves out of this region.

‘mouse-moves x y descriptor ,
This operation is invoked when the mouse moves within a region. It is also
invoked, following the :mouse-enters-region operation, when the mouse moves
into a region. x and y are the new mouse position, relative to the outside of the
window.

:mouse-click x y descriptor mouse-char
This operation is invoked when the mouse is clicked on this region, except for
double click right. If the operation does nothing, the mouse click has no effect.
The argument mouse-char is like that of the :mouse-click window operation (page
120).

:who-line-documentation-string descriptor
This operation is invoked to get who line documentation to be used when the
mousc is in this rcgion. It should return a string describing the meaning of

SRCKL.WIND>MARGIN.TEXT.20 8-AUG-83

Margin Regions 136 Window System Manual

mouse clicks on the region.

tv:margin-region-area descriptor
Returns the four edges of the rectangle allocated to descriptor’s margin region, all relative
to the window’s outside upper left corner. This may only be used inside of methods of
the window whose margin region is being operated on.

11.3.1 Margin Region Example

This is a simplification of the function used to handle the margin regions made by tv:margin-
scroll-mixin. These regions display strings such as "More above" and respond to a mouse click
by scrolling a full page. The margin regions used have additional nonstandard elements beyond
the seventh:

tv:imargin-scroll-region-more-p
Non-nil if there is more text to scroll to past this edge.

tv:margin—scroll—region-empty—msg
The string to display when there is no more to scroll to past this edge.

tv:margin-scroll-region-more-msg
The string to display when there is more to scroll to.

tv:margin-scroll-region-msg-font
The font to display the strings in.

SRCKL.WIND>MARGIN.TEXT.20 ' 8-AUG-83

Window System Manual 137 . Margin Regions

(declare-flavor-instance-variables (tv:margin-scroll-mixin)
(defselect margin-scroll-region
(:refresh (region &optional old-valid
&aux more-p left top right bottom)
(multiple-value (left top right bottom)
(tv:margin-region-area region))
;» Is there anything more to scroll to past this edge?
(setq more-p
(send self
(if (eq (tv:margin-region-margin region) ':top)
*:scroll-more-above ":scroll-more-below)))
;» Redisplay string in the region unless already right.
(when (or (not old-valid)
(neq more-p (margin-scroll-region-more-p region}))
(setf (margin-scroll-region-more-p region) more-p)
(tv:sheet-force-access (self)
;; Erase the region. Sheet has just been prepared.
(tv:%draw-rectangle (- right left) (- bottom top)
Teft top tv:erase-aluf self)
;; Print the string.,
(send self ':string-out-centered-explicit
(if more-p (margin-scroll-region-more-msg region)
(margin-scroll-region-empty-msg region))
left top right nil
(margin-scroll-region-msg-font region) tv:char-aluf
0 nil nil))))

((:mouse-enters-region :mouse-leaves-region :mouse-moves)
(&rest ignore))
(:mouse-click (ignore ignore region ignore)
(if (margin-scroll-region-more-p region)
(Tet ((from (tv:margin-region-margin region)))
(send self ':scroll-relative
from (if (eq from ’:top) ':bottom *:top)))
(beep)))
(:who-Tine-documentation-string (ignore)
"Any button to scroll one page.")))

SRCKL.WIND>MARGIN.TEXT.20 3-AUG-83

Defining Margin Item Flavors 138 Window Systcm Manual

11.4 Defining Margin Item Flavors

Let us assume that you want to define a thing called a mumble that goes in a window’s
margins, the way labels and borders do. You create a flavor mumble-margin-mixin that
implements the feature.

This flavor should have certain instance variables, which will be used only by the methods of
mumble-margin-mixin so their precise format is up to you.

current-mumbles
Some sort of specification of what mumbles this window should have. It might
record text to display for the mumbles, a font to use, etc.

mumble-margin-area
Records the rectangle within the window where the mumbles should go.
Everything that deals with the location of the mumbles on the screen should act
based on the value of this variable.

It is recommended to usc a list of four values: the left, top, right and bottom
edges of the rectangle, all relative to the upper left outside corner of the window.

Some margin mixins have just a single variable whose value is a list containing both the
contents and the position of the margin item.

Example:
(defflavor mumble-margin-mixin
((current-mumbles nil) mumble-margin-area)
()
(:required-flavors tv:minimum-window)
(:inittable-instance-variables current-mumbles))

(defmethod (mumble-margin-mixin :before :init) (ignore)
(setq current-mumbles
(canonicalize-and-validate-mumble-spec
current-mumbles)))

Now you must at the minimum create methods for two standard operations for margin
computation and display, to interface mumble-margin-mixin to the rest of the system. These
operations are :compute-margins and :refresh-margins.

:compute-margins Im tm rm bm Operation on windows
:compute-margins is used by the system to find out how much space is needed in each
margin of the window by borders, labels, and anything else. Each flavor that implements
a kind of margin item must define a method for it. This operation uses :pass-on mecthod
combination, so that the valucs from one method become the arguments to the next.
These arguments are interpreted as the amount of space allocated so far in cach margin.
Each method increments one or more of them by the amount of space nceded by that
mixin.

SRCKL.WIND>MARGIN.TEXT.20 ' 8-AUG-83

Window System Manual 139 Decfining Margin Item Flavors

:refresh-margins Operation on windows
Redraws all the contents of the window’s margins. Each flavor of margin item must add a
dacmon method to this operation. The method may assume that its own margin arca is
completely erased to begin with.

For example:
(defmethod {mumble-margin-mixin :compute-margins)
(Im tm rm bm)
(let ({wid (mumble-margin-width current-mumbles)))
(setq mumble-margin-area
{(list Im tm (+ Im wid) (- tv:height bm)))
(values (+ Im wid) tm rm bm)))

Here we assume that the mumbles always go in the left margin. So it is always the left
margin’s width that is incremented, and the others are returned just as they were passed. We also
assume that mumble-margin-width is a function you have defined that computes the width of
space that the mumbles need.

In addition to.returning modified versions of its arguments, the method also sets up the value
of mumble-margin-area. This is the only place it is necessary to set that variable. By recording
the position of each margin item this way, we take into account how one margin item affects the
position of the others. For example, the mumbles might come inside the borders, and then the
im, tm, rm and bm values will alrcady contain the width of the borders. Then margin-
mumble-area will describe a rectangle that is within the borders.

Usually an additional mixin-specific operation is introduced into this method, as follows:
(defmethod (mumble-margin-mixin :compute-margins)
(Im tm rm bm)
(send self ':recalculate-mumble-margins 1m tm rm bm))

(defmethod (mumble-margin-mixin :recalculate-mumble-margins)
(Im tm rm bm)
(tet ((wid (mumble-margin-width current-mumbles)))
(setq mumble-margin-area
(Tist Im tm (+ Tm wid) (- tv:height bm)))
(values (+ Im wid) tm rm bm)))
This way, other mixins can be defined to modify where the mumbles go by rephcmg the
rrecalculate-mumble-margins method.

The one other thing you must do is provide a method for :refresh-margins, to draw the
mumbles in the rectangle recorded: You can assume that that rectangle is clear to start with.
(defmethod (mumble-margin-mixin :after :refresh-margins) ()
(tv:sheet-force-access (self)
(draw-mumbles current-mumbles mumble-margin-area)))

You may wish to provide the user with an opcration to change the window’s mumbles. This
operation should use the :redefine-margins operation.

SRCKL.WIND>MARGIN.TEXT.20 , 8-AUG-83

Defining Margin Item Flavors 140 Window System Manual

:redefine-margins ‘ Operation on windows
This opcration recomputes how much margin space is nceded for all of the margin items,
by invoking thc :compute-margins operation, and then actually changes the window
margin sizes if necessary.

If the margin sizes have changed, then the window is crased and :refresh-margins is
done; the instance variable tvirestored-bits-p (present in all windows) is left set to nil.
If the margin sizes have not changed, no output whatever is done, and tv:restored-bits-
p is left sct to t. All this is done using the :refresh operation.

Here is an example of how to use it:
(defmethod (mumble-margin-mixin :set-mumbles) (new-mumbles)
(setq current-mumbles
(canonicalize-and-validate-mumble-spec new-mumbles))
(send self ’:redefine-margins)
(when tv:restored-bits-p
(tv:sheet-force-access (self)
(erase-mumble-area mumble-margin-area)
(draw-mumbles current-mumbles mumble-margin-area))))

The explicit erasure and drawing of the mumbles is done in the case where the total sizes of
the margins have not changed (and therefore no screen updating has been done), in case the
contents of the mumbles have changed.

SRC:AKLWIND>MARGIN.TEXT.20 8-AUG-83

Window System Manual 141 Frames

12. Frames

A frame is a window that is divided into sub-windows, using the hierarchical structure of the
window system (discussed in section 2.1, page 10). The sub-windows are called panes. The panes
are the inferiors of the frame, and the frame is the superior of each panc. Several heavily-used
systems programs use frames. For example, inspcctor windows are frames. The default inspector
window has six panes: thc interaction pane on top, the history pane and command menu pane
below it, and three inspect panes below that. The window debugger and Zmacs also use frames.
In Zmacs, each new editor window is a pane of the Zmacs Frame. ZMail uses several dlﬁ‘erent
frames, even frames within other frames,

From these examples, you can sece some of the things that frames are good for. In general,
by using a frame as a user interface to an interactive subsystem, you gct a convenient way to put
many different things on the screen, each in its own place. Generally you can split up the frame
into areas in which you can display text or graphics, areas where you can put menus or other
mouse-sensitive input areas, and areas to interact with, in which keyboard input is echoed or
otherwise acknowledged.

It is usually best for a frame and its panes to be treated as a unit by the system menu Select
menu and by the Terminal and System keys. The mixins tv:inferiors-not-in-select-menu-
mixin (section 3.2.1, page 35) and tv:alias-for-inferiors-mixin (section 3.2.2, page 36),
respectively, in the frame’s flavor bring this about. Then selection of panes within the frame is
done by making the chosen pane the selection substitute of the frame (section 3.3, page 37). The
program managing the frame can maintain a "selected pane within the frame" this way, while
letting the user decide when to select the frame as a whole.

It is also common for all of the panes to use the same input buffer so that the program can
always do its input in the same fashion and collect keyboard and mouse input from all the panes.
See section 5.1, page 50.

It is also possible to have frames with less coupling between their panes. For example, the
frame you get from requesting a frame in the system menu Split Screen option does make its
panes share an input buffer, and allows them to be individually represented in the Select menu
and for Terminal and System commands. It also lets the panes be selected in their own right
and not as substitutes for the frame. This is done because typically each window in the split
screen frame is managed by its own process.

One kind of frame is the constraint frame, which adjusts the shapes of its panes automatically
as its own shape is changed. These frames are described first since they are a ready-to-use facility.
More basic frame flavors can be built upon to create frames which manage their panes’ exposure
and shapes in other ways. The editor, for example, does this.

tv:basic-frame Flavor
All frame flavors are built on this one. tv:frame-forwarding-mixin (sce page 154) mixed
with this provides a non-constraint frame to which vou necd only add code to decide
when to expose the panes and how big to make them.

SRCKL.WIND>FRAMES.TEXT.14 8-AUG-83

Constraint Frames 142 Window System Manual

tv.basic-frame is nearly the same as tv:minimum-window; it does nof have all the
mixins that go into the tv:iwindow flavor. In particular, it does not provide for borders or
a label, and it cannot be the selected window. It also has tv:delay-notification-mixin
(see page 157) as a component.

12.1 Constraint Frames

If you use Edit Screen to change the shape of an inspector or debugger window frame, the
shapes of the panes arc all changed so that the proportions come out looking as they are
supposed to. If you play around with Edit Screen cnough, you can even sec the menus reformat
themselves (changing their numbers of rows and columns) in order to keep all of their items
visible. The way all this works is that the positions and shapes of the panes, instead of being
explicitly specified in units of pixels, are specified symbolically. When the window changes shape,
the symbolic description is elaborated again in light of the new shape, and the panes are reshaped
appropriately.

This set of symbolic descriptions is called a set of constraints. When you make a constraint
frame, you specify the configuration of panes within the frame by creating list structure to
represent the layout. The format of this list structure is called the constraint language. It lets you
say things like "give this pane one third of the remaining room, then give that pane 17 pixels,
and then divide what remains between these two panes, evenly.” The constraint language is fairly
complex, and is described in full detail later. In general, a frame can have many different
configurations. Each configuration is described in the constraint language, and each specifies one
way of splitting up the frame. While the program is running, it can switch a frame from one
configuration to another.. Some panes may appear in more than one configuration, but other
panecs may be left out of one configuration, and may only be visible when the frame is switched -
to another configuration. For example, in ZMail, when you click on Profile, the frame changes
to a new configuration whose panes include a profile editor window and another frame, the
profile button frame.

12.1.1 Constraint Frame Flavors

The processing of consirainis is aciuaily impiemenied by a frame mixin caiied tvibasic-
constraint-frame.

The flavor of the frame itself might be any of several flavors. The simplest thing for it to be
is tv:constraint-frame. :

tv:constraint-frame Flavor
This flavor is the basic kind of constraint frame. The rest of this section describes its -
behavior in detail. This flavor, like tv:basic-frame, does not provide for borders, a
label, or for being selected.

SRCKLWIND>FRAMES.TEXT.14 8-AUG-83

Window System Manual 143 Constraint Frames

tv:bordered-constraint-frame 4 Flavor
This flavor is just tviconstraint-frame with tv:borders-mixin (sec page 130) mixed in at
the right place. It will have a border around the edge. By default (using the :default-
init-plist option of the flavor system), the :border-margin-width is zero, so the panes at
the edges of the frame are right next to the border itself,

Bordered constraint frames are used most often. Usually, each of the panes has borders, and
the frame does too. A rcason for this is that when two of the panes arc right next to each other,
which they usually are, their borders are side by side, and so look like a double-thick line. In
order to make the edges of the panes that are at the edge of the frame (rather than up against
another pane) look like they are the same thickness, the frame has a border itself.

A convenient way to make all the panes of a constraint frame use the same input buffer is to
use one of the following flavors:

tv:constraint-frame-with-shared-io-buffer Flavor
This is like tv:constraint-frame, but all the panes of the frame share the same input
buffer used by the frame itself. See section 5.1, page 50.

tv:bordered-constraint-frame-with-shared-io-buffer Flavor
This is just like tv:constraint-frame-with-shared-io-buffer except that it has
tv:borders-mixin mixed into it at the right place, so that the frame has a border around
it.

sio-buffer io-buffer Init option for tv.constraint-frame-with-shared -io-buffer
If this option is present, io-buffer is used as the input buffer for the frame and the panes.
Otherwise, a default input buffer is created. (See section 5.4, page 56 for a discussion of
170 buffers.)

12.1.2 Examples of Specifications of Panes and Constraints

The full description of how to use constraint frames, including the full constraint language, is
rather complicated. The complete specifications are given in the next section; this section gives
some common examples, in order to show the general idca of how the specifications work.

The following form creates a constraint frame with two panes, one on top of the other, each
of which takes up half of the frame.
(make-instance 'tv:constraint-frame
':panes
'({top-pane tv:window)
(bottom-pane tv:window))
*:constraints’
*((main . ((top-pane bottom-pane)
((top-pane 0.5))
: ((bottom-pane :even))))))
Two initialization options were given to the tv:constraint-frame flavor: the :panes option and
the :constraints option. The meaning of the :panes specification is: "This framc is made of the
following pancs. Call the first one top-pane; its flavor is tviwindow. Call the sccond one

SRCKL.WIND>FRAMES.TEXT.14 8-AUG-83

Constraint Frames 144 Window System Manual

bottom-pane; its flavor is tviwindow”. The mecaning of the :constraints specification is: "There
is just one configuration defined for this pane; call it main. In this configuration, the pancs that
appear are, in order from top to bottom, top-pane and bottom-pane. top-pane should use up
0.5 of the room. bottom-pane should use up all the rest of the room."”

This example demonstrates some more features:
(make-instance
"tv:bordered-constraint-frame
':panes
"((graphics-pane tv:window
:label nil :blinker-p nil)
(message-pane tv:window
:label "Message Pane" :blinker-p nil)
(interaction-pane tv:window))
':constraints
"((main . ((interaction-pane graphics-pane message-pane)
((message-pane 4 :1lines))
({graphics-pane 400))
((interaction-pane :even))))))
This frame has a border around the edges (because of the flavor of the frame itsclf), and it has
three panes. The panes are given some initialization options themselves. The topmost pane is
interaction-pane, graphics-pane is in the middle, and message-pane is on the bottom.
message-pane is four lines high, graphics-pane is 400 pixels high, and interaction-pane uses
up all remaining space.

Here is a window that has two possible configurations. In the first one, there are threc little
windows across the top of the frame and a big window beneath them; in the second one, the
same big window is at the top of the frame, and underneath it is a strip split between a menu
and another window.

SRC:K1.WIND>FRAMES. TEXT.14 8-AUG-83

Window System Manual 145 Constraint Frames

(make-instance
'tv:bordered-constraint-frame
':panes :
"{(huey tv:window)
(dewey tv:window)
(louie tv:window)
(main-pane tv:window)
(random-pane tv:window)
(menu tv:command-menu
:item-Tist ("Foo" "Bar" "Baz")))
*:constraints ‘
'((first-config . ((top-strip main-pane)
((top-strip :horizontal (.3)
(huey dewey Tlouie)
((huey :even)
(dewey :even)
(louie :even))))
((main-pane :even))))
(second-config . ((main-pane bottom-strip)
‘ ((bottom-strip :horizontal (.2)
(random-pane menu)
({menu :ask :pane-size))
((random-pane :even))))
((main-pane :even))))))
In this example, the frame has two different configurations. When the frame is first created, it is
in the first of the configurations listed, namely first-config. In this configuration, the top three-
tenths of the frame are split equally, horizontally, between three windows, and the rest of the
frame is occupicd.by main-pane. The frame can be switched to a new configuration using the .
:set-configuration message (see page 153). If we switch it to second-config, then main-frame
will appear on top of a strip one-fifth of the height of the window. This strip will contain a
menu on the right that is just wide enough to display the strings in the menu’s item list, and
another pane using up the rest of the strip. When the configuration of the window is switched,
main-pane must be reshaped. '

Another thing to notice is that the list of items in the menu was present in the :panes
option, rather than a form to be evaluated. If the list had been in a variable, it would have
been necessary to write the :panes option using backquote, like this:

':panes ’
*((huey tv:window)

(dewey tv:window)

(louie tv:window)

(main-pane tv:window)

(random-pane tv:window)

(menu tv:command-menu

:item-list ,the-list-of-items))
Menus and how to use them are explained later; see section 14.1, page 173.

SRCKL.WIND>FRAMES.TEXT.14 8-AUG-83

Constraint Frames 146 | Window System Manual

In this example, the window is divided into two windows, side by side.
(make-instance ' ' -
’tv:bordered-constraint-frame
':edges '(100 100 600 600)
’:panes
"((1eft tv:window)
(right tv:window))
':constraints
*((main . ((whole-thing)
((whole-thing :horizontal (:even)
(1eft right)
((1eft :even)
(right :even))))))))
This example also points out that constraint frames are windows too, and you can use init-options
acceptable to tv:minimum-window with them. In this case, we give the edges of the frame as a
whole, in absolute numbers. Remember that frames are not built out of tv:window; sce page
141.

In actual practice, panes are usually made out of more interesting flavors than tv:window.

12.1.3 Specifying Panes and Constraints

This section gives the complete rules for specifying the panes of a constraint frame, and for
the constraint language. It should help explain any of the above examples that were unclear, and
tell you all the things you can do with the constraint language.

When you create a constraint frame, you must supply two initialization options. The :panes
option specifies what panes you want the frame to have, and the :constraints option specifies the
set of constraints for each of the configurations that the window may assume. For the purposes of
these two options, windows are given internal names, which are Lisp symbols, used only by the
flavors and methods that deal with constraint frames. These names are not used as the actual
names of the windows (as in the :name message (see page 132).

:panes pane-descripiions liii option for tviconstraint-frame
This initialization option is required for all flavors of constraint frames. The argument,
pane-descriptions, is a list of pane descriptions. Every pane description looks like this:
(name flavor . options)

name is the internal name (a symbol). flavor is the flavor of which the pane should be an
instance. options is a list to be appended to the initialization plist for the pane when it is
created. When the fiame is first created, it will create all of its panes, using flavor and
options. The frame will add some of its own options to control the position and shape of
the window; you should not pass any such options in the options list.

SRCKI.WIND>FRAMES. TEXT.14 8-AUG-83

Window System Manual 147 _ Constraint Frames

:constraints configuration-description-list Init option for tv:constraint-frame
This initialization option is required for all flavors of constraint frames. The argument,
configuration-description-list, is a list of configuration descriptions. The format of
configuration descriptions is explained below.

Both init options work by initializing instance variables which are then looked at by the :init
methods of constraint frames. Instead of using the init options, you can set the instance variables
yourself in a :before :init method.

tv:panes Instance variable of tv:constraint-frame
tv:constraints Instance variable of tv:constraint-frame
The instance variables in which the constraint frame mechanism looks to find the lists of
panes and constraints.

A configuration-description-list is a list of configuration-descriptions. There is one
configuration-description in the list for each of the possible configurations that the frame can
assume. Each configuration is named by a symbol, called the configuration-name. A
configuration-description-list is an alist that associates the configuration-descriptions with the names.
It looks like this:

((configuration-name-1 . configuration-description-1I)
(configuration-name-2 . configuration-description-2)

.2)

Each configuration-description describes the layout of the panes in a single configuration. The
description has two parts. The first part specifies the order in which the windows appear, and the
second part specifies how the sizes are computed. Actually, in addition to windows, there can
also be dummies in the configuration-descriptor. A dummy is used either to hold empty space
that is not used by any window, or it can reserve a region of space to be divided up by another
configuration-description.

A configuration-description splits up one of the dimensions of a rectangular area into many
parts. Such an area is called a section. Which of the two dimensions is being split up is
determined by the stacking. If the stacking is :vertical then the section is being split up
vertically; that is, the parts are stacked on top of each other. If the stacking is :horizontal then
the section is being split up horizontally; that is, the parts are side-by-side. The stacking of the
top-level configuration-descriptions in the :constraints option is always :vertical, but there can be
more configuration-descriptions nested inside of them, and these can have either stacking.

Each part has a name, represented as a symbol. A part may hold either an actual pane, or
other things; in the latter case, it is called a dummy part. Dummy parts can be further
subdivided into more panes and dummies using another constraint-description, or their pixels can
be blank or filled with some pattern.

A configuration-description looks like this:
(ordering . description-groups)

ordering is a list of names of panes and of dummies, each represented by a symbol; the
order of this list is the order that the panes and dummics appear in the space being split up by
the configuration-description. For vertical stacking the list goes top to bottom. For horizontal

SRCKL.WIND>ERAMES.TEXT.14 §-AUG-83

Constraint Frames 148 Window System Manual

stacking the list goes left to right. A description-group is a list of descriptions. Each dcscription
describes cither cxactly one pane or one dummy. A configuration-description must have one
description for each element of the ordering list.

All of the descriptions in a description-group are processed together (“in parallel”); each of
the description-groups is processed in turn, starting with the first one. By grouping the
descriptions this way, you can control which constraints arc elaborated together and which are
claborated at different times; when two constraints are eclaborated at different times you can
control which one is claborated first. The reason that the ordering-list in the configuration-
description is separate from the description-groups is so that the order in which the panes and
dummies appear in the frame can be independent of the order in which their constraints are
elaborated.

Each description describcs one pane or one dummy. We'll get back to dummies later. A
description that describes a pane looks like this:
(pane-name . constraint)
pane-name is the name of the pane being described; constraint is the constraint that describes the
pane. We will return later to what descriptions of dummies look like. The constraint will be
elaborated, and will yield a size in pixels; this size will be used for the width or height being
computed. '

Finally we get to constraints themselves. The basic form of a constraint is as follows:
(key arg-1 arg-2 ...)
key may be a fixnum, a flonum, or one of various keyword symbols. Each type of constraint
may take arguments, whose meaning depends on which kind of constraint this argument is passed
to. .

While descriptions of panes do not have the same format as descriptions of dummies, the
same kind of constraints are used in both of them. So all the formats given below may be used
inside the descriptions of either panes or dummies.

Any constraint may, optionally, be preceded by a :limit clause. If a constraint has a :limit
clause, the constraint looks like:
(:Vimit limit-specification key arg-1 arg-2 ...)

The :limit clause lets you set a minimum and a maximum value that will be applied to the
size computed by the constraint. If the constraint returns a value smaller than the minimum, then
the minimum value will be used; if it returns a value larger than the maximum, then the
maximum value will be used. The limit-specification is normally a two-element list, whose
elements are fixnums giving the minimum and maximum values in pixels. If the list has a third
clement, it should be one of the symbols :lines or :characters, and it means that the fixnums
are in units of lines or characters, computed by multiplying by the line-height or char-width of
the panc (see page 67). If there is a fourth element, it should be the name of a pane, and that
pane’s linc-height or char-width. is used instead of that of the pane being constrained. (If this
constraint applics to a dummy instcad of a pane, and the third clement of the list is present,
then the fourth must be present as well, since dummics do not have their own line-height nor
char-width.)

SRCKL.WIND>FRAMES.TEXT.14 8-AUG-83

Window System Manual 149 _ Constraint Frames

The following Lisp objects may be used as values of key in a constraint. Note: the :funcall
and :eval constraints are rarcly used and you probably don’t need to worry about them. The
other kinds arc used frequently.,

JSixnum

Sflonum

.even

:ask

This lets you specify the absolute size. The value computed by the constraint is
simply this fixnum. Optionally, an argument may be given: it may be the
symbol :lines or the symbol :characters, meaning that the fixnum is in units of
lines or characters, and should be computed by multiplying by the line-height or
char-width of the window. If a second argument is also present, it should be the
name of a pane, and that pane’s linc-height or char-width is used instead of that
of the panc being constrained. (If this constraint applies to a dummy instead of a -
pane, and the first argument is given, then the second must be present as well
since dummies do not have their own line-height nor char-width.)

This lets you specify that a certain fraction of the remaining spacc should be
taken up by this window. Optionally, an argument may be given: it may be
llines or :characters, and it means to round down the sizc of the pane to the
nearest multiple of the pane’s line-height or char-width. A sccond argument may
be given; it is just like the second argument when key is a fixnum (see above).

The distinction between descriptors in the same group and descriptors in different
groups is important when you use this kind of constraint. If you have one
descriptor group with two descriptors, each of which requests .2 of the remaining
space, then both panes will get the same amount of space. However, if you have
the same two descriptors but put them in successive descriptor groups, then the
first one will get .2 of the remaining space, and then the second one will get .2 of
what remains after the first one was allocated; thus the second pane will be
smaller than the first. In other words, the amount of space remaining is
recomputed at the end of each descriptor group, but not at the end of each
descriptor.

This constraint has a special restriction: you can only use it for descriptors in the
last descriptor group of a configuration. Furthermore, if any of the descriptors in
that group use :even, then all of the descriptors in the group must use :even.
The meaning is that all of the panes in the last descriptor group evenly divide all
of the remaining space.

It is usually a good idea to use :even for at least one pane in every configuration,
so that the entire frame will be taken up by panes that all fit together and extend
to the borders of the frame. :even is careful to choose exactly the right number
of pixels to fill the frame completely, avoiding roundoff errors that might cause an
unsightly line of one or a few extra pixels somewhere.

Remember that just because the :evens must be in the last descriptor group does
not mean that the panes that they apply to must be at the bottom or right-hand
end of the frame! The ordering of the panes in the frame is controlled by the
ordering-list, not by the order in which the descriptors appear.

This constraint lets you ask the window how much space it would like to take up.
The format of a constraint using :ask is as follows:

SRCKL.WIND>FRAMES.TEXT.14 8-AUG-83

Constraint Frames 150 Window System Manual

:ask-window

:funcall

(:ask operation arg-1 arg-2 ...)

A message with operation operation and arguments composed of some extra
arguments passed by the constraint mechanism followed by arg-1, arg-2, etc. is
scnt to the pane; its answer says how much space the panc should take up. Note
that arg-I, etc., are not forms: they are the values of the arguments themselves
(i.c. they are not evaluated; if you want to compute them, you must build the
constraint language description at run-time. This is usually written using a
backquoted list).

The arguments that are actually sent along with the message are the same as the
arguments passed when you use the :funcall option except that the constraint-node
is not passed; see below.

Various different flavors of windows accept some messages suitable for use with
:ask. By convention, several kinds of windows, such as menus, accept a message
called :pane-size. For example, the :pane-size method for menus figures out
how much space in the dimension controlled by the :ask constraint is needed to
display all the items of the menu, given the amount of space available in the
other dimension. No arguments are specified in the constraint. Other useful
operations, handled by all windows, are :square-pane-size (also with no
additional arguments), which makes the window take up enough room to be
square including its borders, and :square-pane-inside-size, which makes the
window be square inside its borders.

This constraint is a variation on :ask. Its format is:

(:ask-window pane-name message-name arg-1 arg-2 ...)
It works like :ask except that the message is sent to the pane named pane-name
instcad of the panc being described. This is primarily used for dummies, when
the size of a dummy wants to be controlled by the needs of a pane inside it.

This constraint lets you supply a function to be called, which should compute the
amount of space to use. The format is:

(:funcall function arg-1 arg-2 ..)
The specified function is called. It is first passed six arguments from inside the
workings of constraint frames, and then the arg-1, arg-2, etc. values. The six
arguments are:

constraint-node This is an internal data structure. [Not yet documented; you
should not need to look at this anyway.)

remaining-width The amount of width remaining to be used up at the time this
description is elaborated, after all of the panes in previous
description groups and all of the earlier panes in this
description group are allocated.

remaining-height ~ Like remaining-width, but in the height direction.

total-width The amount of width remaining to be used up by all of the
parts of this description group. This is the amount of room
left after all of the panes in previous description groups have
been allocated but none of the pancs in this description group
have been allocated.

SRCKL.WIND>FRAMES. TEXT.14 8-AUG-83

Window System Manual 151 Constraint Frames

:eval

total-height Like total-width, but in the height direction.
stacking Either :vertical or :horizontal, depending on the current
stacking.

This is like :funcall, but instcad of providing a function and arguments, you
provide a form. The format is:
(:eval form)
The six special values that are passed as arguments when the :funcall constraint-
type is used can be accessed by form as the values of the following special
variables:
tv:**constraint-nodexs
tv:#*constraint-remaining-widths»
tv:*xconstraint-remaining-heights»
tv:sxconstraint-total-width»»
tv:#sconstraint-total-height+»
tv:s*xconstraint-stacking»+

This finishes the discussion of descriptions of panes. Descriptions of dummies are different;
they may be in any of several formats, identified by the following keywords:

:blank

This description is used if you want this part of the section to be filled up with
some constant pattern. The format of the description is:

{dummy-name :blank pattern . constraint)
The constraint is used to figure out the size of the part of the section, in the
usual way. pattern may be any of the following:

:white The part is filled with zeroes.

‘black The part is filled with the maximum value that the plxcls can hold
(if the pixels are one bit wide, as on a black-and-white TV, this -
value is 1).

an array The part is filled with the contents of the array, using the bitblt
function (see page 102).

a symbol The symbol should be the name of a function of six arguments.
The function is expected to fill up the rectangle that has been
allocated to this part of the section with some pattern. The
following values are passed to the function:

constraint-node This is an internal data structure. [Not yet
documented; you should not need to look at

this anyway.]

X-position

y-position

width

height These four arguments tell the function the
position and size of the rectangle that it should
fill.

screen-array This is a two-dimensional array into which the

function should write the pattern it wants to

SRCKL.WINIDEFRAMES. TEXT.14 8-AUG-83

Constraint Frames 152 Window System Manual

put into the window.

a list This is similar to the case in which pattern is a symbol, but it lets
you pass extra arguments. The first clement of the list is the
function to be called, and that function is passed all of the objects
in the rest of the list, after the six arguments enumerated above,

:horizontal or :vertical

:pane-size

This description is used if you want to subdivide the part into more panes and
dummies, using a configuration-description. If you use :vertical, it will be split
up with vertical stacking, and if you use :horizontal, it will be split up with
horizontal stacking. [Currently, you are required to usc the opposite kind of
stacking from the Kkind currently happening; that is, successive levels of
configuration-description must use alternating kinds of stacking. This restriction
may be lifted in the future.] The format is as follows:

(dummy-name :horizontal constraint . configuration-description)

or

(dummy-name :vertical constraint . configuration-description)
constraint, as usual, specifies the size of this part; it can be in any of the formats
given above. Note that in this format, constraint appears as an element of a list
rather than as the tail of a list, and so the printed representation of the list will
include a pair of parentheses around the constraint. configuration-description tells
how this part is subdivided into parts of its own. :

Operation on windows
remaining-width remaining-height total-width total-height stacking

This operation is invoked by constraints of the form (:ask :pane-size). It should return
the size in pixels to give the pane, in the current stacking direction. The meanings of the
arguments as they will be passed by the constraint manager are described above under the
:funcall constraint (see page 150).

:square-pane-size Operation on windows

remaining-width remaining-height total-width total-height stacking

:square-pane-inside-size Operation on windows

remaining-width remaining-height total-width total-height stacking

These operations are invoked by constraints of the form (iask :square-pane-size) and
(:ask :square-pane-inside-size). They return the size required to make the pane
square. For horizontal stacking, they returns a width equal to the specified height; for
vertical stacking, they returns a height equal to the available width.

The difference between the two operations is that :square-pane-size makes the outside
size of the window square, whereas :square-pane-inside-size makes the inside of the
window (not including the borders) square.

SRCLL.WIND>FRAMES. TEXT.14 8-AUG-83

Window System Manual 153 Constraint Frames

12.1.4 Constraint Frame Operations

:get-pane pane-name : Operation on tv:basic-constraint-frame
Returns the pane (the inferior window itsclf) that was named by the symbol pane-name in
the :panes specification of this frame.

:pane-name pane Operation on tv:basic -constraint-frame
Returns the symbol that was used to name pane in the :panes spccification of this frame.
If pane is not one of the panes, return. nil.

:create-pane name flavor &rest options Operation on tv:basic -constraint-frame
Creates and returns a window, to serve as a pane of this frame, made from flavor flavor
and init options options. name is the pane name to be used. By default, it is not used
here.

The panes of the frame are created from their specification using this operation, the
arguments being taken from the elements of the specification. It may be useful to
redefine this operation.

:send-pane Operation on tv:basic -constraint-frame
pane-name message &rest arguments
Sends the specified message with the specified arguments to the pane that was named by
the symbol pane-name in the :panes specification of this frame.

:send-all-panes message &rest arguments Operation on tv:basic -constraint-frame
Sends the specified message with the specified arguments to all of the panes of this frame,
including the non-exposed ones.

:send-all-exposed-panes Operation on tv:basic -constraint-frame
message &rest arguments
Sends the specified message with the specified arguments to all of the exposed panes of
this frame,

:configuration configuration-name Init option for tv:basic -constraint-frame
Makes the initial configuration of the frame be the one named by the symbol
configuration-name.

:configuration Operation on tv:basic-constraint-frame
Returns the symbol naming the current configuration of the frame.

:set-configuration configuration-name Operation on tv:basic -constraint-frame
Sets the configuration of the frame to the one named by the symbol configuration-name.

:get-configuration configuration-name Operation on tv:basic -constraint-frame
Returns the internal (“parsed") data structure that describes what is specified for
configuration configuration-name. This describes which windows are supposed to be
included, and the constraints for them.

SRCKL.WINID>FRAMES. TEXT.14 8-AUG-83

Pane-Frame Interaction 154 Window System Manual

:redefine-configuration Operation on tv:basic-constraint-frame
config-name new-config &optional (parsed-p t)
Redefines the meaning of configuration config-name according to new-config. 1f parsed-p is
t, new-config is expected to be in parsed form, such as the value rcturncd by the :get-
configuration opecration. If parsed-p is nil, new-config is treated as a configuration-
description such as you would use to define the configuration when initially specifying the
constraints of the frame (see page 147).

12.2 Pane-Frame Interaction

Several fundamental window operations actually ask the window’s superior what to do. This
has no effect for a top-level window but becomes important when the window’s superior is a
frame. The superior can decide whether the operations should actually go ahead as requested.
These operations are :expose, :deexpose, :bury, :select and :set-edges. Hcre is how they are
handled:

:expose, :deexpose, :bury, :select
These operations first send a message to the superior with operation :inferior-
expose, :inferior-deexpose, :inferior-bury or :inferior-select. The pane itself is
passed as the argument.

If the message sent to the superior returns non-nil, the operation is performed on
the pane as usual. Otherwise, it is skipped.

:set-edges An inferior-set-edges message is sent to the superior, its arguments being the
pane followed by the arguments of the :set-edges message. If the operation’s
first value is non-nil, the pane’s edges are changed as requested. Otherwise, the -
pane’s edges are not changed, and the remaining values from the :inferior-set-
edges operation are returned from the :set-edges.

Of course, the frame can change the pane’s edges in some other way and then
return nil.

tv:basic-frame defines only the :inferior-select operation to do anything nontrivial; it makes
the pane be the frame’s selection substitute and then sends a :select to the frame. The others
operations do nothing but return non-nil. Thus, there is minimal interaction between the frame
and its inferiors. tv:frame-forwarding-mixin defines :inferior-expose, :inferior-deexpose and

sinferior-bury so that the frame and panes are all exposed together.

tv:frame-forwarding-mixin Flavor
Defines :inferior-expose, :inferior-deexpose, and :inferior-bury methods for a frame
that normally cause :expose, :deexpose or :bury operations on panes to cxpose,
deexpose or bury the frame rather than the pane.

An :inferior-set-edges mcthod is also defined, for internal reasons only. Its purpose is
to avoid a user-visible change in bchavior rather than to provide one.

This flavor is part of tv:constraint-frame and the other standard instantiable flavors of
constraint frame.

SRCKLWINIDFRAMES TEXT. 14 8-AUG-83

Window System Manual 155 ‘ Pane-Frame Interaction

tv:basic-frame has an instance variable tvirecursion which is used to distinguish between
:expose, etc. operations sent by the frame’s code to its panes, and those sent by other programs.
When an outside program sends a :expose, :deexpose, or :bury message to one of the panes,
the :inferior-expose, etc. operation on the frame simply exposes, decxpose or buries the frame
itself, and does not allow the operation on the pane to procced. When the frame’s code itself
exposes a pane, it does so with tvirecursion temporarily non-nil so that when the :inferior-
expose is done it will return t and let the pane be exposed.

:pans-types-alist Operation on frames
This should return a menu item list to be used for the handling of the Create item in
the screen editor, when editing the panes of this frame. The value of the menu item
should be a flavor of window to create, or a list to be evaluated to return a flavor.

The menu item’s value (or the result of evaluating it) can also be t, which directs the
screen editor to read a flavor name from the user.

12.2.1 The Selected Pane

A frames is normally operated with one of its inferiors as a selection substitute. The selection
substitute of a frame is also called the "selected pane”, as this feature used to be available only
in frames. Unless you mix tv:select-mixin into your frame flavor, the frame itself cannot be the
selected window. Therefore, it is important to provide a selection substitute when the frame is
created. This can be done by doing -:set-selection-substitute in an :after :init method:

(defmethod (my-frame :after :init) (ignore)
(send self *:set-selection-substitute
(send self ’:get-pane 'interaction-pane}))

Explicitly selecting a pane with the :select operation actually works by setting the frame’s
selection substitute, by means of the forwarding mechanism described above.

In a constraint frame, or any other frame which has tv:frame-forwarding-mixin, you should
not attempt to select a pane which is not already exposed, because of the effects of forwarding on
the :expose operation.

:selected-pane pane-name Init option for tv:basic-constraint-frame
In a constraint frame, you can initialize the selected pane with this handy init option.
Instead of fishing out the pane, just give its name.

:select-pane inferior-window Operation on tv:basic-frame
This is another, older name for the :set-selection-substitute operation, before it was
generalized to apply to windows other than frames,

:selected-pane Operation on tv:basic -frame
This is another, older name for the :selection-substitute operation, before it was
generalized to apply to windows other than frames,

SRCKL.WIND>FRAMES.TEXT.14 8-AUG-83

Pane-Frame Interaction 156 Window System Manual

tv:interaction-pane
(tv:preemptable-read-any- tyi-mixin tv:notification -mixin
tv.autoexposing-more-mixin tv:window)
This flavor is often useful for a pane for rcading and cchoing multi-character commands
in a system which uscs a frame. This pane would typically be the selected pane,

Flavor

SRC:KI.WIND>FRAMES. TEXT. 14 8-AUG-83

Window System Manual : 157 Miscellancous Features

13. Miscellaneous Features

13.1 Notifications

Notifications are asynchronous messages that come from something other than the sclected
window. For example, when an interactive message from another user comes in (which was sent
with the gsend function), it is printed as a notification. You may have noticed that sometimes a
notification is printed out immediately, while sometimes all that happens is a message in the who
line. The selected window is responsible for deciding what to do with the notification.

tv:notify window-of-interest format-string &rest format-args

tv:careful-notify window-ofinterest careful-p format-string &rest format-args
Make a notification. jformat-string and format-args are passed to format to print the text
of the notification. Where this text is printed, and how, is under the control of the
selected window, as described below.

window-of-interest is a window that should be sclected if the user clicks the mouse on the
notification window (if the notification happens to use its own window). For example, a
notification about a message from another user will supply the Converse window as this
argument. This window can also be selected with the Terminal 0 S command.

tv:careful-notify is different in that if careful-p is non-nil and the notification cannot be
printed now because of windows being locked, it returns immediately. The value is non-
nil if the notification was printed successfully.

:print-notification time string window-of interest Operation on windows
The system invokes this operation on the selected window to ask it to make a notification.
time will be a time to mention in the notification. string is the text to print. window-of -
interest should be set up for the user to select in some convenient fashion, if possible.

tv:notification-mixin Flavor
This mixin causes a window to handle notifications which happen while it is selected by
printing them out on the window itself, if the window is big enough. Lisp listeners and
typeout windows of all sorts use this mixin,

:print-notification-on-self Operation on tv:notification-mixin -
time string window-of-interest
This operation does the actual work of printing a notification on the window itself, once it
has been decided definitely to do so. It is sometimes useful for window flavors
incorporating tv:notification-mixin to redefine this.

tv:delay-notification-mixin ' Flavor
tv:delay - notification-mixin implements the default way of handling notifications: to make
them wait. It is a component of tviwindow, and also of anything that contains tv:select-
mixin. tv:notification-mixin works by overriding it.

SRCKL.WIND>MISCTEXT.23 8-AUG-83

Notifications 158 Window System Manual

If a notification arrives while a window of this sort is selected, it is put on a list called
tv:pending-notifications. All that happens immediately is a beep. But the presence of a
non-nil value for this variable causes thc mouse documentation line to display a message
that there are notifications waiting, with blinking asterisks at each end of the line.

As soon as a window that can print the notifications is selected, they will be printed. For
example, sclecting a Lisp listener will do it. If you are in the editor, selecting the
typeout window by typing Break will do it. There is also a command, Terminal N,
which selects a window that just prints the notifications.

Alternatively, Terminal 2 N can be used to make the mouse documentation line go back
to its normal function. This works by transferring everything on tv:pending-notifications
onto another list, tv:deferred-notifications. These deferred notifications will still be
printed if you switch to a suitable window.

Another way a window can handle a notification is to ask some other window to do so. For
example, cditor windows (zwei:zzmacs-window-pane) ask the containing Zmacs frame to do the
job, and it in turn asks the echo area window to do it. This window displays the notification
itself if the notification fits.

tv:find-process-1in-error]
Returns a process that has got an error and is waiting, having made a notification, for a
window to be selected so the debugger can be run. If no such process is waiting, returns
nil. If there arc several such processes, the most recent one to make its notification is
returned. The window the process is waiting for selection of is returned as the second
value,

tv:choose-process-in-error
Similar to tv:find-process-in-error but asks the user about each candidate process.
When the user answers Y, that process is returned. If the user answers N to each
candidate, the value is nil. The window the process is waiting for selection of is returned
as the second value.

tv:print-notifications

b5 Y-y ol
L

Prinis on al

andard-output all the
:notice event Operation on windows
The :notice operation is used to report certain events so that flavors can redefine what to
do when they happen. The argument to :notice is an event name, a keyword.
Additional arguments are allowed but have no meaning for any of the events yet defined.
Here are the defined cvents:

tinput . : .

:output The window is being used for input (output) and is not exposed, and its
deexposed input (output) action is :notify. The default action is to make a
notification and wait.

iinput-wait The window is being used for input and the process is waiting because no
input is available now. The default action is to adjust the vertical position
at which the next **MORE»* will happen.

SRCKL.WIND>MISC.TEXT.23 8-AUG-83

Window System Manual 159 Lisp Listeners

:error The window is being used for the dcbugger and is not cxposed. The
default action is to make a notification and wait, or to get another
window if this one is too small.

The :notice operation uses :or mcthod combination: all the methods are run until one
returns non-nil. Aside from that, the value returned is not meaningful.

13.2 Lisp Listeners

tv:1isp-1istener Flavor
This flavor of window is used for the window initially selected when the system starts up,
and for windows created when you ask to create a "Lisp” window with any of the system

menu commands.

tv:initial-1isp-l1istener Variable
The Lisp listener window that is selected when you boot.

tv:idle-1isp-Tistener &optional screen.
Returns a Lisp listener which is waiting for input at top level, and is the full size of the
specified screen. The screen defaults to tv:default-screen (page 13).

tv:1lisp-interactor . Flavor
This flavor of window works just like a Lisp listener, but System L will not select this
kind of window, nor will tviidle-lisp-listener return one.

The mixin primarily responsible for making a Lisp listener behave the way it does is
tv:listener-mixin -internal.
a
tv:1istener-mixin-internal Flavor
This contains tv:iprocess-mixin, and arranges by default for the process to be initialized
to tun the Lisp top level read-eval-print loop si:lisp-top-levell.

:package . Operation on tv:listener-mixin-internal
:set-package package Operation on tv:listener-mixin-internal -
Get or set the package being used by the read-eval-print loop. These work by interfacing
with some complicated code in tv:lisp-top-levell. The value from :package can be nil.
When you set the package, either a package or a package name is acceptable.

tv:listener-mixin Flavor
This flavor inherits its entire definition from tv:listener-mixin-internal. The only
difference is that System L is defined to look for windows with this flavor, and not the
other.

SRCKI.WIND>MISC.TEXT.23 §-AUG-83

Editor Windows 160 Window System Manual

13.3 Editor Windows

zwel:zmacs-frame Flavor
This is the flavor of the window you get when you type System E. It has its own
process, and can select any Zmacs buffer. Generally none of the editor-specific operations
should be invoked on this window; that should be left up to the window’s own process,
Requests to this process, which generally ask the process to sclect a buffer, arc passed to
it as blips of the form
(:execute zwei:edit-thing spec)
where spec is anything valid as the argument to ed.

A Zmacs frame is useful for providing the user an opportunity to edit whatever he likes,
Sometimes it is useful for a program to offer the user specific text to edit for its own purposes.

zwei:standalone-editor-window Flavor

' This is a window with no panes that serves as an editor. It has a minibuffer and type-in
. window that pop up as its inferiors when they are needed. This window has no process
. of its own; use the :edit operation in any process to do cditing in the window.

zwei:standalone-editor-frame : Flavor
Another kind of standalone editor window, but this one is a frame with a permanently
visible mode line and typein-window or mini buffer, just as a Zmacs frame is,

scomtab comitab Init option for standalone editor windows
Specifies the comtab to use in editing in this frame. The default is zwei: *standalone-
comtab*,

redit Operation on standalone editor windows

Invokes the editor command loop on this window. The End command will return,

:interval-string Operation on editor windows
Returns a string giving the current text in the window.

:set-interval-string string
Sets the text in the window to string.

LTSRN I S
I WIinaows

:interval Operation on editor windows
Returns the interval which is being edited in the window. If the window is a Zmacs
frame, this is the sclected buffer. Standalone editor windows have their own nonshared

intervals which they cdit; many of the editor primitives that work on Zmacs buffers also
work on these intervals,

:set-interval interval ‘ Operation on editor windows
Sets the interval that this window is displaying and editing to interval. On a Zmacs
window, interval must bé a Zmacs buffer; then this will actually tell the window to select
the new buffer.

SRCKL.WIND>MISC.TEXT.23 8-AUG-83

Window System Manual 161 A . Editor Windows

zwei:pop-up-standalone-editor-frame ‘ Flavor
A temporary window form of zwei:standalone-editor-frame.

zwei:pop-up-standalone-editor-frame Resource
&optional (superior tv:mouse-sheet)
A resource of such windows, used by the following function.

zweli:pop-up-edstring string &optional (near-mode'(:mouse)) mode-line-list. min-width
min-height initial-message (comtab zwei: *standalone-comtab*)
Pops up an cditor window containing string and let the user edit it. When he types End,
returns a string giving whatever he left in the editor buffer. If he types Abort, the value
is nil.

near-mode specifies how to position the window before popping it up. It is passed to
tviexpose-window-near.

mode-line-list is a list to be used to drive the mode line.

min-width and min-height are minimums for the size of the window. The window is larger
than that if string requires more space to display.

initial-message, if non-nil, is displayed in the typein window immediately after the frame
pops up. '

comtab is the comtab to be used for editing.

zwei:editor-top-level Flavor
This is the flavor used by the Lisp (Edit) window which you can create with the system
menu Create option. It is a kind of Lisp listener in which both the input and the output
are recorded in an editor interval and can be edited. It is based on zwei:standalone-
editor-window.

zwe1:temporary-mode-1ine-window-with-borders-resource Resource
&optional (superior tv:mouse-sheet)
A resource of such windows, used by the following functions.

zwe1i:temporary-mode-1ine-window-with-borders Flavor
The temporary mode line window contains just a mode line and a mini buffer. It is a
way for a program to request a small piece of input while allowing the user to edit with
Zwei,

This is the flavor of window that you get in ZMail if you click right on Select in the
ZMail command menu and then click-on Find File in the Select menu.

zwei:typein-1ine-readline-near-window window Jormat-string &rest format-args
Pops up a temporary mode line window near window, displaying its mode line by passing
Jormat-string and format-args to format, and lets the user cdit. Return terminates editing.
The user’s input is returned as a string. window may be any window on the screen, Or
‘mouse, meaning pop up near the mouse.

SRCKL.WIND>MISC.TEXT.23 : 8-AUG-83

Window Flavors for Other Programs 162 Window System Manual

zwei:read-defaulted-pathname-near-window window prompt defaults special-type
Pops up a temporary mode linc window near window, displaying the string prompt as the
mode line, and lets the user edit text which (when the user types Return) is parsed into a
pathname using defaults and special-type. window may be any window on the screen, or
:mouse, meaning pop up near the mouse.

:call-mini-buffer-near-window
Operation on zwei:temporary -mode-line -window-with-borders
window function &rest args
Pops up this window ncar window, then uses function to read the input and returns the
value it returns. function should be an editor function which invokes the mini buffer
using zwei:edit-in-mini-buffer. The first argument to function is a strcam reading from
the text the user cdited. args are passed to finction as additional arguments,

13.4 Window Flavors for Other Programs

tv:peek-frame Flavor
This flavor of window is a self-contained Peck display with its own process to update it.

tv:inspect-frame Flavor
This flavor of window is a self-contained inspector with its own process to update it.

tv:inspect-frame-resource &optional (superior tv:mouse-sheet) Resource
A resource of inspector frames which are created in a slightly special way so that they do
not have their own processes, but instead are to be invoked in some other process by the
function inspect.

supdup:supdup Flavor
A sclf-contained Supdup window with its own pair of processes to transfer data to and
from the network. '

supdup:telnet Flavor
A self-contained Telnet window with its own pair of processes to transfer data to and

from the natwork
rom the network,

supdup :supdup-windows &optional (superior tv:mouse-sheet) Resource

supdup:telnet-windows &optional (superior tv:mouse-sheet) Resource
Resources of Supdup and Telnct windows, for use by the functions supdup and telnet
when operating in the mode of substituting for another window.

~ tv:pop-up-text-window . Flavor
A temporary window, otherwise like tv:window.

tv:pop-up-text-window &optional (superior tv:mouse-sheet) Resource
A resource of such windows.

SRCKL.WINID>MISC.TEXT23 §-AUG-83

Window System Manual 163 The Who Line

tv:truncating-pop-up-text-window Flavor
A temporary window which truncates lines of output, otherwise like tviwindow.

tv:truncating-pop-up-text-window-with-reset Flavor
Like tvipop-up-text-window but truncates lines and resets the associated process when
deexposed. This is the kind of window that Terminal F uscs to print its output, and it is
good for many similar applications.

tv:pop-up-finger-window &optional (superior tv:mouse-sheet) Resource
A resource of such windows.

13.5 The Who Line

The who line is the pair of lines at the bottom of the main Lisp Machine screen which
display the current status of the machine. The first of the two lines displays documentation what
mouse clicks would do at the present time, based on the actual position of the mouse. The
second line displays the time, your login name, the current process’s package and run state, and
file or net server information. The term "who line" is sometimes used to refer to this line alone.

The window system treats the who line as a separate screen, thus preventing windows on the
rest of the screen from being moved or reshaped to overlap the who line. The mouse
documentation line is displayed by a window of its own, and so is each field of the second line.

The documentation displayed by the mouse documentation line is obtained by sending the
window under the mouse a :who-line-documentation-string message (see page 120), or from
the variable tv:who-line-mouse-grabbed-documentation when the mouse is grabbed (see page
116).

tv:who-11ne-documentation tornil
Turns the who line display of mouse documentation on or off.

The package name and run state displayed in the who line describe only one process. They
normally describe the process associated with the selected window, which is a different process if
a new window is selected. However, the who line can be fixated on a particular process,
independent of the selected window.

tv:who-11ne-process ' Variable
The process to describe in the who line, or nil meaning to display the one associated with
the selected window. In the latter case, the :process operation on the window is used to
get the process to display.

tv:last-who-11ne-process ' Variable
The process most recently described in the who line, regardless of why that process was
chosen. May be nil if there was no process to describe (for example, if the who line was
supposed to describe the selected window but there was no selected window or the
window had no process). '

SRCKL.WIND>MISC.TEXT.23 _ 8-AUG-83

The Who Line 164 Window System Manual

The user can set tv:who-line-process using the Terminal W command (sce "Opcrating the
Lisp Machine"). '

tv:who-11ne-clobbered
Informs the who line that it must redisplay everything.

Recording open file streams for display:

tv:who-1ine-file-state-sheet
This who linc window displays the status of an open strecam or active nctwork server. It
can also display the idle time if there is no stream or server.

This window is also responsible for maintaining the lists of streams and servers that could
be displayed. New streams and servers are reported to it with operations described here.

:add-stream stream update-p Operation on tv:.who -line-file-sheet
Adds stream to the list of open streams rccorded by the file state sheet. If update-p is
non-nil, the who line field is updated immediately.

:delete-stream stream Operation on tv:who-line-file-sheet
Removes stream from the list of streams. for the who line.

:delete-all-streams Operation on tv:who-line-file-sheet
Clears out the list of strcams for the who line.

:opaen-streams Operation on tv:.who-line-file-sheet
Returns the list of streams recorded for the who line.

When the who line describes an open file, the name to display for it is obtained with the
:string - for-wholine pathname operation. See scction 22.6 of the Lisp Machine manual.

:add-server Operation on tv:who-line-file-sheet
conn conlact-name process function
Adds a entry to the list of active network servers recorded by the file state sheet. conn
should be the network connection of this server, confact-name the contact name it
responded to, process the process the server is running in.

:delete-server conn Operation on tv:who-line-file-sheet
Removes the entry for connection conn from the list of servers for the who linc. Note
that this happens automatically if the connection is broken or closed.

:delete-ail-servers Operation on tv:who -line-file-sheet
Clears out the list of scrvers for the who line.

tv:close-all-servers &optional (reason "Foo onyou")

Closes the connections of all network servers, giving reason (a string) as the reason in the
CLS packet.

SRCKL.WINID>MISC.TEXT.23 8-AUG-83

Window System Manual 165 The Color Screen

tv:describe-servers
Prints descriptions of all active nctwork servers.

13.6 The Color Screen

The usual color screen on a Lisp Machine has 454. lines of 576. pixels each, and cach pixel
has four bits. This allows sixtcen different colors to be displayed at once. There are far more
than sixtcen possible colors. A color map controls the meaning of each of the sixtcen pixel values.
Each of the sixtcen color map slots specifies an eight-bit red intensity, an cight-bit green intensity,
and an cight-bit blue intensity. Thus there are about 16 million different colors that can appear,
but only sixteen can be displayed at once.

color:color-screen Variable
The screen object that represents the color screen. This object is always present whether
the machine has a color screen or not.

color:color-exists-p
t if this machine actually has a color screen.

13.6.1 Color Map Functions

color:write-color-map slot r g b &optional synchronize screen
Writes the color map contents for slof, a fixnum from 0 to 17, with the three intensities
r, g and b, all fixnums from 0 to 377 octal.

If synchronize is non-nil, the change is delayed until the vertical retrace time, so that it
will take effect between frames. screen is the screen to operate on, in case you have more
than one. It defaults to the normal color screen.

color:write-color-map-immediate slof r g b &optional screen
Like color:write-color-map, but faster. It performs no synchronization at all, and is
intended for use when you have already waited for vertical retrace.

color:blt-color-map array. &optional screen
Copies the contents of array, a 16 by 3 array, into the color map of screen (which
defaults to the normal color screen). This function always waits for vertical retrace to do
its work.’

color:read-color-map slor &optional screen
Returns three valucs, the red, green and blue intensitics from the color map from slot
slot. This does not actually read the hardware color map, as there is no way to do that.
Instead, color:write-color-map maintains a copy for this purpose.

SRC:KL.WIND>MISC.TEXT.23 8-AUG-83

The Color Screen 166 Window Systcm Manual

color:

color:

color:

color:

color:

13.6.2

fi11-color-map r g b &optional (start-slot1) screen

Writes multiple slots in the color map, starting with start-slot and ending with slot 17,
from r, g and b. Note that the default omits slot 0, which is normally left as black (all
three intensitics zero). This function always waits for vertical retrace to do its work.

random-color-map &optional (start1) synchronize screen

Sets the contents of the color map to sixteen randomly chosen colors. The slots modified
are start through 17, by default omitting slot 0. synchronize is the same as in
color:write-color-map.

spectrum-color-map
Sets the color map to a spectrum, leaving color 0 as black.

colorize &optional (delay4)
Sets the color map (except for slot 0) randomly over and over again, waiting delay 60ths

of a second in between.

colorate &optional (delay4) (steps1000.)

Repeatedly chooses two colors (numbers from 1 to 17) randomly and moves their color
map values gradually towards and through cach other, so that ultimately the two slots
exchange colors. A delay of delay 60ths of a second elapses between exchanges.

Operating on Pixels

One way to draw on the color screen is to store into its screen array with as-2-reverse. The
screen array of the color screen can be obtained with tv:sheet-screen-array, and it is an array

of type

color:

color:

color:

SRCKL

art-4b. You can also use these functions:

clear
Fills the whole color screen with color 0.

rectangle x y width height color &optional aluf screen

Sets the contents of a rectangle on the color screen to pixel value color. x and y are the
coordinates of the upper left corner, and width and height are the size.

aluf is an alu function to apply to each pixel, combining the specified color with the old -
pixel contents to get the new contents. The default is tv:alu-seta, which ignores the old
contents. This alu function is used only on the pixels of the rectangle, ‘which is different
from what is done by the drawing primitives for the black and white screen; this is why
tv:alu-seta does not produce incorrect results as it normally would.

color-draw-11ne x/ x2 yl y2 &optional (color17) aluf screen
Sets a line from (x7,y1) to (x2,y2) on the color screen to color color. aluf is used as in
color:rectangle.

WIND>MISC.TEXT.23 8-AUG-83

Window System Manual 167 ' ' The System Menu

color:color-draw-char font char x y &optional (colorQ) screen
Draws character char in font font at position (x,y) in color color. font is an ordinary
black-and-white font. '

Color fonts can also be created. A color font is composed of four-bit pixels just like the color
screen. Using a color font, characters can be drawn with the normal character drawing primitives.
When this is done, each bit of the color font pixel is combined with the corresponding bit of the
screen pixel using the alu function. The alu function operates bit by bit just as it docs on black-
and-white screens, and is applied to many pixcls in the neighborhood of the character, so tv:alu-
seta should not be used.

color:make-color-font bw-font &optional bit-list name-suffix
Creates a color font from black-and-white font bw-font. bir-list is a list of four numbers,
zero or one, which specifies the bits of the pixels of the color font that correspond to
ones in the original font. Pixels that are zero in the original font remain all zero in the
color font. bit-list defaults to (1 1 1 1).

The name of the resulting font is color- followed by the name of the original font,
followed by the value of name-suffix. '

Windows can be created on the color screen in the ordinary manner by specifying
color:color-screen as the superior. When fonts are specified for such windows, if the font
specifier names a black-and-white font, a color version of it is found or created. This color font
is created with bit list (1 1 1 1). This is done by the :parse-font-specifier method of the color

screen.

13.7 The System Menu

This section describes how to interface with and customize the system menu which pops up
when you click twice on the right mouse button.

The system menu is an instance of flavor tv:dynamic-multicolumn-momentary-window-
hacking-menu (see page 187), which means that its menu items are grouped by columns, and
each column’s items come from the value of a corresponding variable which is examined each
time the menu is popped up in case more items have becn added. This is to enable you to add
items to thc menu and control where they go. The most common column to add to is the third
one, which lists various kinds of windows to select (somewhat like the System command), so a
special interface is provided for adding to it.

tv:add-to-system-menu-programs-column name form documentation &optional after
Adds an item named name to the third column of the system menu. form is what to
execute if the user clicks on the item, and documentation is the mouse documentation

string.

after is the name of an item to add after (a string), or t to add at the top, or nil to add
at the bottom.

SRCKL.WIND>MISC.TEXT.23 §-AUG-83

Window Resources 168 Window System Manual

tv:*system-menu-windows-column®* Variable
A menu item list which forms the first column of the system menu.

tv:*system-menu-this-window-column* Variable
A menu item list which forms the second column of the system menu. By convention this
is used for things that operate on the window that the mouse was pointing at when the
system menu was brought up. They are implemented with ;window-op menu items.

The Select item in the system menu pops up a momentary menu with a list of windows that
the user might want to selcct. Not all the visible windows are included; usually a tcam of
windows belonging to a single program is represented by a single cntry since sclection among the
tecam is controlled by the program rather than the user. See section 3.2.1, page 35, for full
details.

The Create item in the system menu pops up a menu for the user to choose a flavor of
window to create.

tv:default-window-types-item-1ist Variable
A menu item list that is used by the system menu Create option, and by Create in the

screen editor when operating on a screen.

In general, the screen editor can operate on the inferiors of any window. Then, the
pane-types-alist operation on that window is used to get the item list for possible
flavors to create; see page 155. On a screen, the operation returns the value of this
variable.

13.8 Window Resources

A resource is a pool of interchangeable objects that are available to be used temporarily and
then returned to the pool (see section 512 of the Lisp Machine manual. Read that before you
continue here). :

Resources whose objects arc windows are often useful. For example, there is a resource of
windows of the right flavor to serve as "the system menu"; when vou invoke "the" system menun,

a window is allocated from the resource, and it is returned to the resource’s pool when it is
deactivated.

Normally one defines a resource with defresource. If the objects in the resource are
windows, it is better to use instead a different function, tvidefwindow-resource. Allocating
windows from resources, and rcturning them, is just like working with any other resources, and is
~ documented in the Lisp Machine manual.

All the names described in this manual as resources are defined in this way.

SRC:KL.WIND>MISC. TEXT:23 8-AUG-83

Window System Manual 169 Window Resources

tv:defwindow-resource name parameters &rest options Special form
Defines a resource of windows, named name. parameters are parameters on which the
object can depend. Following the parameters specified is one additional paramcter that is
always defined: the window’s supcrior. When you allocate a window from the resource,
this paramcter defaults to tv:mouse-sheet.

options is a list of alternating keywords and values. Neither the keywords nor the values
are cvaluated at the time that tvidefwindow-resource is exccuted, but sometimes the
value becomes part of an expression that will be exccuted later (when a window is
allocated from the resource).

The allowed keywords are

sinitial-copies The value is the number of windows to create in the resource when the
resource is defined. The default is one. The initial copics are made
inferiors of tvidefault-screen. Creating an initial copy is just a way of
saving time the first time a window needs to be allocaited from the
resource.

:constructor Sce the definition of defresource. If it is not specified, tv:defwindow-
resource provides a default, which calls make-instance with arguments
taken from the :make-window option.

:make-window
The value should be a list of a flavor name followed by keyword
arguments. This list will be consed into a make-window form to get the
constructor for the resource.

reusable-when :
The value should be :deexposed, :deactivated. If this keyword is not
specified, then windows of the resource can be allocated to requesters if
they "have been explicitly returned to the pool and are not locked.
:deexposed means that any window that is not exposed is considered to
have been returned to the pool. :deactivated mcans that any window that
is not active is considered to have been returned to the pool.

tv:window-resource-1ist Variable
A list of the names of all window resources defined with tv:defwindow-resource.

SRCKL.WIND>MISC.TEXT.23 : 8-AUG-83

The Cold Load Stream 170 ‘ Window System Manual

Example: the system menu is created thus:

;Resource of system menus
(defwindow~-resource system-menu ()
:make-window :
(dynamic-multicolumn-momentary-window-hacking-menu
:column-spec-list
"(("Windows" *system-menu-windows-column»
:font fonts:h1121)
("This window" *system-menu-this-window-column»
:font fonts:h1121)
("Programs" =*system-menu-programs-column#
:font fonts:h112i))
:save-bits t)
:reusable-when :deexposed)

13.9 The Cold Load Stream

User programs that make use of the screen organization and standardization facilities provided
by the window system are frequently in a somcwhat difficult position. If that interface to the
window system does not work, there seems to be no way at all to find out what is going on.
Similarly, debugging code associated with switching between windows can be difficult since there
may be no place to print debugging output at the time such code is executing.

One way to debug such problems is to use the cold load stream. This is the stream used in
constructing the initial Lisp Machine environment, before the window system itself has been
loaded. It has the advantage_ that it does not attempt to interface with the rest of the window
system, or vice versa, It will never decxpose any windows or lock any locks. It types out one
character at a time, by calling the microcode directly, and has very simple-minded ideas about
end of line exceptions and more breaks. '

tv:cold-1oad-stream Variable
The cold load stream is the value of this variable.

When the cold load stream is "waiting” for type-in, it does not actually wait; in fact, it loops
until a character appears, with scheduling turned off, blinking its own special blinker by hand.
The who line is not updated. Also, the chaosnet processcs do not get to run. If the machine
stays in this state too long, all chaosnet connections will be lost.

Whenever the system gcts an error in the keyboard process, the scheduler or the mouse
process, the debugger uses the cold-load-stream rather than terminal-io. You also have the
option of requesting this if there is an error in a process whose terminal-io is a window that is
not exposcd and cannot be exposed because of locked windows. (You will be queried, using the
cold load stream, to choose between this and a couple of other possibilities.)

When you exit from the dcbugger after it was using the cold load stream for one of these
reasons, it will ask you whether to "restore the screen”. Normally you should say Yes; then the
screen contents will go back to what they were before the debugger was entered.

SRCKL.WINIM>MISC TEXT.23 8-AUG-83

Window System Manual 171 The Window-Based Debugger

It is often prefcrable to use the cold load strcam for debugging window problems even when
the normal altcrnatives are available. This is because the operation of the debugger using a
window for I/0 may interfere with the window phenomena being debugged. Use of the cold
load stream will avoid these problems. You can request use of the cold load stream by setting
debug-io to the value of tv:cold-load-stream before you run your test. Once this has been
done, not only errors but breakon and Meta-Break as well will use the cold load stream. To
turn off use of the cold load stream for all debugger invocations, set debug-io back to nil.

You can also force trace output into the cold load stream by setting trace-output. Note that
you must not set trace-output to nil when done; you must save its original value and set it back
to that.

When the cold load stream is used because you have set one of the stream variables to it;
you do not get the chance to restore the screen. It is not so easy to define how to do that
"right” in this casc; if it were done after each exit from the debugger, you would not get to see
the history of multiple entries to the debugger.

The program can invoke a break loop using the cold load stream by calling tv:kbd-use-
cold-load-stream. Type Resume to continue. Note that when the break is ecntered, the
package you are typing into is typed out, because the package in the who-line is not going to be
correct for this break loop.

You the user can request such a break loop by typing Terminal Call or by clicking on
Emergency Break item in the system menu. You can get your program into the debugger using
the cold load stream, without having made advance preparation, by getting a break loop in this
fashion, setting debug-io to the cold load stream, exiting, and typing Meta-Break.

Also, it is often useful to get a cold load stream break loop and call eh on various processes
or stack groups.

13.10 The Window-Based Debugger

The window-based debugger is an alternative to the usual debugger; it performs the same
functions but displays graphically rather than using sequential stream I/0. You invoke the
window-based debugger by typing Control-Meta-W while in the usual debugger. You can switch
back and forth between the two debuggers any number of times while handling a single error.

The debugger window is divided into six panes. At the bottom is a Lisp-listener-like window,
which ordinarily provides a read-eval-print loop similar to the regular keyboard debugger. More
commands are available by using the mouse in the other windows as described below.

At the top is a display of the disassembled or ground code for the currently selected stack
frame, depending on whether or not it is compiled. It has a scroll-bar, but is otherwise not
sensitive to the mouse.

Next are the args and locals windows, side by side, displaying the names and values of the
arguments to the current stack frame and its local variables; they are grayed out if there are
none. They also have scroll bars. Clicking the mouse on the name of an argument will print the
name and the valuc in the Lisp window. Clicking on just the value will print it in the Lisp

SRCKL.WIND>MISC.TEXT.23 8-AUG-83

The Window-Basced Debugger 172 Window System Manual

window. The mouse will highlight any relevant quantity that you are pointing to.

Next is the stack window, which displays in a pscudo-list format the functions and arguments
on the stack. Clicking on a function or argument or sublists of them will causec them to be
printed in the Lisp window as in the argument or local windows. Also, clicking the mouse to the
left of a line containing a particular stack frame will make the dcbugger select that frame,
changing what the above three windows show.

Below this, and above the Lisp window, is the command menu for the debugger window.
The available commands are:

What error Reprints the error message for the current error, in the Lisp window.

Exit Window EH
Exits the debugger window, rcturning to the regular debugger.

Abort Program
Like Abort in the regular debugger.

Arglist Asks for the name of a function, which can be typed on the keyboard, or
moused if it is on the screen. Picking an actor or a closure will ask for the
message name to that actor and print the arguments to its method for that
message. Picking a line of a stack frame from the stack window will try to align
the printout of the arguments with what valuc was supplied in that posmon in
that frame.

Edit Reads a name of a function in the same fashion as the Arglist command and
invokes the editor on that function.

Retry Attempts to restart the current frame, like the Control-Meta-R command in the -
regular debugger.

Return a Value
Asks for the name of a value (which can be selected with the mouse) and returns
it from the current frame, like Control-R in the regular debugger.

Proceed Procecds from the error. Clicking left on Proceed is like typing Resume in the
regular debugger. Clicking right on Proceed gects you a menu of available
proceed types, from which you can seiect one. This is equivaient to using one of
the available Super commands in the regular debugger. If proceeding asks for an
object to return, you can specify it with keyboard input or by pointing to a value
with the mouse.

Setarg Select an argument or local with the mouse and type or mouse a new value to be
substituted in.

Search Like the Control-S command, except that.the mouse can be used.

Throw Like Control-T in the regular debugger, it asks for a tag and a value and throws
there. The mouse can be used to specify the tag and value.

T

NIL Ordinarily just supply those symbols as arguments or values for othcr commands

These can also be uscd to answer ycs-or-no questions,

SRCKL.WIND>MISC.TEXT.23 8-AUG-83

Window System Manual 173 Choice Facilities

14. Choice Facilities

The window system contains several facilities to allow the user to make choices. These all
work by displaying some arrangement of choices in a window. By pointing to one with the
mouse the user can select it. The details (how the choices arc specified, what the user intcraction
looks like, and what happens when a choice is selected) vary widely, which is why there are
several scparate facilities.

Each choice facility is implemented as a family of window flavors, providing several variations
on the basic facility. For those who don’t want to create their own window, each facility provides
an casy-to-use function interface that temporarily pops up a window of the appropriate flavor.
The function interfaces will be described first in each section. Following the function interfaces
there is documentation on how to create and use a window which has the facility.

This document does not cover how to modify these facilitics to provide your own specialized
versions, except in the simplest ways. That is certainly a reasonable thing to want to do. In
order to do it you will need to read some of the code that implements the facility in question,
for instance to learn about window instance variables and about internal operations that you might
want to redefine or put daemons on.

Some portions of these facilities execute in the process that calls them, while other portions
execute in the mouse process. All Lisp evaluation with which the user is concerned takes place in
the user’s process when using the facilities described in this document, with a very few exceptions
which are noted when they occur. Thus the user may freely usc side-effects (both special variables
and *throw) and need not worry that an error in his program will interfere with mouse tracking.

14.1 Menus

A menu is an array of choices, each identified by a word or short phrase. You can select
one of the choices by moving the mouse near it, which causes it to be highlighted (a box appears
around it), and then clicking any mouse button.

What happens when you select one of the choices depends on the particular type of menu.
Typically the choices in a menu might be commands to some program or choices for what a
command should operate upon.

The system automatically chooses the arrangement of the choices and the size and shape of
the window. Naturally there arc ways for the user to control this if necessary.

To see an example of a menu, click the right-hand mouse button twice, causing the system
menu to appear.

SRCKI.WIND>CHOICE.TEXT.93 8-AUG-83

Menus 174 Window System Manual

14.1.1 Menu Items

A menu has a list of items; cach item represents one of the choices offered. An item tetls
the menu what to display and what to do if the user selects (clicks on) it. "What to do" specifies
both what value to return and a possible side effect.

Response to sclection of an item is implemented by the :execute operation, which is always
sent in the user proccss (rather than the mouse process). Thus side effects occur in the
appropriatc process. The returned value comes back to the user from tv:menu-choose, :choose,
or :execute depending on how the menu is used. This will be explained in detail later.

An item can take any of the following forms:

a string or a symbol
The string or symbol is both what is displayed and what is returned. There are

no side-effects.

acons {(name . atom)
name (a symbol or a string) is what to display, and afom is what to return. There

are no side-effects.

a list (name value)
name is a string or a symbol to display, and value is any arbitrary object to
return. There are no side-cffects.

a list (name type arg optionl argl option2 arg2...)
This is the most general form. name is a string or a symbol to display. fype is a
keyword symbol specifying what to do, and arg is an argument to it. The options
are keyword symbols specifying additional features desired, and the args following -
them are arguments to those options.

If nil is supplied as a menu item, it is ignored completely. It takes up no space in the menu.

A list of items is sometimes called an "item alist” since most forms of menu item look like
alist elements mapping strings into what to do about them.

The possible values of fype in the most general form of menu item are:

wvalue arg is what to return. There are no side-effects.
eval arg is a form to be evaluated. Its value is returned.
:funcall arg is a function of no arguments to be called. The value it returns is returned.

:no-select This item cannot be selected. Moving the mouse near it will not cause it to be
highlighted. This is uscful for putting comments, headings, and blank spaces into
menus. arg is ignored, but must be present to make the item be the form that
has a type keyword in it.

kbd arg is sent to the sclected window via the :force-kbd-input operation. Typically
it is either a character code, which is to be treated as if it were typed in from the
keyboard, or a list (a blip), which is a command to the program (scc scction 5.2,
page 52). Use of :kbd produces an effect like the effect of using a command
menu (see scction 14.1.5, page 184).

SRCKL.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 175 i Menus

‘menu arg is a new menu to choose from; it is sent a :choose message and the result is
returned. Normally arg would be a pop-up menu. If arg is a symbol it gets
evaluated.

:menu-choose
arg is a list (label . menu-items). The car and cdr are passed as arguments to
tv:menu-choose, popping up another menu, and the result of choosing from that
menu is returned. menu-items is another list of menu items.

:buttons arg is a list of three menu items. The item actually chosen (i.e. the item to be
executed) is one of these three, depending on which mouse button was clicked.
The order in the list is (left middle right). The thrce menu items in the list will
be used only for exccution, not for display, so it does not matter what they have
as the string to be displayed (it can be nil), and there is no point in giving them
font or :documentation keywords. These should go in the main menu item, the
one that contains the :buttons.

‘window-op arg is a function of one argument. The argument is a list of three clements: the
window the mouse was in before this menu was popped-up and the x and y
coordinates of the mouse at that time. This item type is handled by the
:execute-window-0p menu operation, which the flavor tv:menu does not
implement. The flavor tviwindow-hacking-menu-mixin provides a method to
implement it.)

The menu item modifier keywords are:

font This keyword is followed by a font or a symbol that is the name of a font. The
item is displayed in that font instead of the menu’s default font.

:documentation
This keyword is followed by a string, which briefly describes this menu item.
When the mouse is pointing at this item, so that it is highlighted, the
documentation string will be displayed in the documentation line at the bottom of
the screen.

:bindings This keyword is followed by a list of bindings to be made, suitable for passing to
the function progw (sce section 3.1 of the Lisp Machine manual). These bindings
are made before evaluating, funcalling, sending a message to a window, etc. If
‘buttons is used with :bindings, the :bindings must appear inside the menu item
within the :buttons to have an effect on the final result.

Here are some examples of menu item lists:

Three items, that display as FOO, BAR and LOSE, and return the symbols foo, bar and
lose when chosen.
(foo bar Tose)

Another way of specifying the same thing, using more general syntax:
(("FOO" :value foo)
("BAR" :value bar)
("LOSE" :value lose))

SRCAL.WIND>CHOICE.TEXT.93 8-AUG-83

Menus 176 Window System Manual

Putting FOO in italics and adding documentation for the who line:
(("FOO" :value foo :font fonts:tri2i
:documentation "Choose to FOO")
("BAR" :value bar
:documentation "Request a BAR")
("LOSE" :value lose
:documentation "Don’t win."))

Some other type keywords are used here. The value of the :choose opecration will be a
keyword such as :read or :write, the value returned by the function read, or whatever the
buffer-op-menu returns.

(("File" :buttons
({(ni1 :value :read)
(nil1 :value :write)
(nil :menu-choose
("File Operation"”
;; Item list of menu obtained for click-right on File.
("Read"” :value ;read
;documentation "Read a file")
("Write" :value ;write
;documentation "Write a file")
("Rename" :value ;rename .
;documentation "Rename a file")
("Delete" :value ;delete
;documentation "Delete a file"))))

:documentation :

"L: Read file. M: Write file. R: Menu.")
;; The following makes a blank line in a one-column menu.
("" :no-select nil)

:: We assume that buffer-op-menu is a variable whose value is a menu.
("Buffer” :menu buffer-op-menu

:documentation "Operate on this buffer™)
("Read" :buttons

((n11 :evai (read))

(nil :eval (read) .
:bindings ((base 10.)))

nit)

;documentation -

"L: Read sexp. M: Read sexp, base ten."))

Here we show the use of :bindings. This expression creates a menu item which contains a
host taken from the local variable host. When the menu item is chosen, the function hack-host
will be called with the appropriate host as the value of the special variable host-to-hack.

*(("Hack This Host" :funcall hack-host
:bindings ((host-to-hack ’,host))
:documentation "Do some hacks to this host."))

SRCKAL.WIND>CHOICETEXT.93 8-AUG-83

Window System Manual 177 Menus

tvimenu-sxecute-mixin : Flavor
This flavor defines the :execute operation to process a menu item according to the rules
described above. '

texecute item Operation on tv:menu -execute-mixin
Processes item, computing and returning the “value to return” according to the rules
described above. Everything about the meaning of menu items, except as far as it affects
displaying the menu, is determined by what the execute operation does, so by redefining
this operation you can implement new types of menu items. The overall format must be
as described, however, because displaying the menu checks for the type :no-select and
for the :font and :documentation modifier keywords.

:execute-no-side-effects irem Operation on tv:menu-execute -mixin
Processes item, computing and returning the "value to return”, provided that this can be
done without side effects. If computing the value to return might possibly have side
cffects (such as for item types :eval, :funcall, kbd, :‘window-op, :menu and :menu-
choose), the value is not computed and nil is returned.

This operation is typically used to find the item in a given‘ item list that would return a .
particular value if selected.

tv:menu-item-string item &optional item-default-font menu .
Returns the string to display for ifem. The font to use is returned as the second value; it
defaults to item-default-font if not specified by the item. item-default-font itself defaults to
the current font of the menu as a window.

menu is the menu that item is for; it is used for interpreting font specifications in item
itself,

If you are not interested in the font, you can omit the last two arguments.

tv:window-hacking-menu-mixin Flavor
Provides for the :window-op item type by implementing the :execute-window-op
operation. This involves remembering the mouse position and the window under the
mouse at the time the menu is exposed. -

14.1.2 Easy Menu Interface

tvimenu-choose item-list &optional label near-mode default-item superior
Pops up a menu and allows the user to make a choice with the mouse. When the choice
is made, the menu disappears and the chosen item is executed. The value of that item is
returned as the first value of tvimenu-choose, and the item itself is returned as the
second value.

If the user moves the mouse out of the menu and far away, the menu disappears and
tv:menu-choose returns nil. '

SRC:KL.WIND>CHOICE.TEXT.93 , 8-AUG-83

Menus 178 Window System Manual

item-list is a list of items as described above.

label is a string to be displayed at the top of the menu, or nil (the default) to specify the
absence of a label.

near-mode is where to put the mecnu. It defaults to the list (:mouse) and must be an
acceptable argument to tv:expose-window-near.

default-item is the item over which the mouse should be positioned initially. This allows
the user to select that item without moving the mouse. If defaulr-item is nil or
unspecified, the mouse is initially positioned in the center of the menu. :

superior is the shect of which the menu should be an inferior. The default is tv:mouse-
sheet, which is usually a screen.

Example:
(tv:menu-choose '(("Read" :value foo) ("Write" :value bar))
"Direction")

will return foo or bar (or nil if the user moves the mouse out of the menu).

tv:mouse-y-or-n-p siring ,
Asks the user to answer Yes by clicking on a small window or No by moving the mouse
out of it. The window is a menu which displays a single item, string.

The value is t if the user clicks on the menu, or nil if he moves the mouse out of it.

14.1.3 Geometry

The way a menu is displayed is described by six parameters that are collectively called its
geometry. Each of these parameters may be specified as a constraint, or may be allowed to
default based on the item list and the parameters that are constrained.

There are two styles of arranging the choices in the mepu. They can be in an array of rows -
and columns, or they can be "filled", that is, each line has as many choices as will fit with a
reasonable amount of white space in between. In columnar format, each line has the same
number of choices: the same as the number of columns. This is not true in filled format. Filled
format is specified by giving zero as the number of columns.

The geometry is represented as a list of six elements, one for each parameter.

columns The number of columns, or 0 for filled format.
rows The number 6f TOWS.

inside width The inside-width of the window, jn pixels,
inside height The inside-hcighi of the window, in pixels.

maximum width The maximum width of the window, in pixels. This parameter is mecaningful
only as a constraint, since the way the menu is displayed is sufficiently

SRCKIL.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 179 Menus

described by its actual width. If the maximum width is constrained, the
system will prefer to choose a tall skinny shape rather than exceed it.

maximum height ~ The maximum height of the window, in pixels. This parameter is meaningful
only as a constraint, since the way the menu is displayed is sufficiently
described by its actual height. If the maximum height is constrained, the
system will prefer to choose a short fat shape rather than exceed it.

For the first four parameters, one must distinguish between the current value and the imposed
constraint. The constraint values may be nil, meaning "do not constrain this parameter”. The
current values cannot be nil.

The last two parameters exist only as constraints, and may be nil.

The actual display of a menu is based on four parameters: the number of rows, the number
of columns (or whether to use fill mode), the height and the width. Some of these may be
specified by constraints; others may be specified on a one-time basis when the menu is displayed;
the rest are chosen based on the ones already known, and on the item list.

The default geometry constraints are all nil, meaning that the system can choose the size and
shape freely, based on the specified item list. The default shape is an upright golden rectangle,
using columnar format with as many columns as fit in the width. Most small menus will have
only one column. :

If both the height and with are specified (either precisely or indirectly) in such a way that not
all the items can fit, the menu will have a scroll bar and the user will have to scroll to see all
the items.

When the item list of a menu is changed, the display of the menu is recomputed based. on
the new item list and the geometry.

The following init-plist options to a menu will initialize the geometry:

:geometry list Init option for tv:menu
Sets the complete geometry to list, a list of six elements. Example:

(make-instance 'tv:menu ’':geometry (0 nil 300 nil nil 500))
makes a filled menu that is 300 pixels wide; when its item list is specified or changed it
will become as tall as necessary to display all the items as long as that does not exceed
500 pixels. Beyond that point, it will be 500 pixels high and will require the user to
scroll.

:rOWS n-rows) Init option for tv:menu
Sets the number of rows.

:columns n-columns Init option for tv:menu
Sets the number of columns.

SRCKL.WIND>CHOICE. TEXT.93 8-AUG-83

Menus 180 Window System Manual

f111-p tornil Init option for tv:menu
Specifies whether to use filled format.

:default-font font Init option for tv:menu
Sets the default font, the font in which items which do not specify a font are displayed.
If this is not specified, it defaults to the standard font for the purpose :menu on the
screen the menu is on (see page 86).

The following operations manipulate the geometry of a menu:

:geometry Operation on tv.menu
Returns a list of six things, the menu’s geometry. These are the constraints, with nil in
unspecified positions; contrast :current-geometry.

icurrent-geometry Operation on tv:menu
Returns a list of six things, which are the geometry corresponding to the actual current
. state of the menu.

The first four elements are actually sufficient to describe the current state. These are
never nil. :

The last two elements returned are the constraint values for the maximum width and
height, since there are no current values to return. These may be nil.

Contrast this with :geometry,

:set-geometry ' Operation on tv:menu
&optional columns rows inside-width inside-height max-width max-height
Sets the geometry (the constraints) from the arguments. The menu may change its shape
and redisplay as a resuit.

Note that this takes six arguments rather than a list of six things as you might expect.
This is because you frequently want to omit most of the arguments.

An explicit argument of nil means to make that aspect of the geometry unconstrained. An

omitted argument or an argument of t means to leave that aspect of the geometry the way
it is (if unconstrained, it remains so). '

f111-p Operation on tv:menu
:set-fi11-p t-ornil Operation on tv:basic-menu
Get or set the menu’s fill mode, t if it displays in filled format rather than columnar
format. These are special cases of the :geometry/:set-geometry operations.

:set-default-font fomt Operation on tv:menu

Sets the default font, the font in which items that do not specify a font arc displayed.
This recomputes the current display based on the constraints,

SRCKL.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 181) Menus

:set-edges left top right bottom &optional option Operation on tv:menu
This operation, in addition to setting the current position and size of the menu, also
makes the spccified size be a permanent constraint for the menu unless option is
‘temporary. In that case, the menu is redisplayed with the specified edges for now, but
if it is redisplayed again for any reason, the permanent constraints (or lack of them)
otherwise specified will re-emerge.

tv:menu-compute-geometry draw-p &optional inside-width inside-height
Computes the current display parameters from the constraints and the item list and default
font. inside-width and inside-height serve as constraints for this time only, overriding any
permanent constraints for those parameters.

If draw-p is non-nil, the menu is actually redrawn.
This function is a subroutine of various menu methods, and self must be the menu.

:minimum-width Operation on tv:menu
This returns the minimum width for the menu, as required to display its label. This is
used in deciding how to display the menu.

Other menu flavors can redefine this operation to force the menu to be wide enough for
some purpose.

14.1.4 Ordinary Menus

These are the basic and mixin flavors for the ordinary kinds of menus. They cannot be
instantiated themselves but are useful to know about. Other kinds of menus are discussed in later
sections.)

tv:basic-menu | : Flavor
Everything else is built on this. All the operations documented here as being defined on
tv:imenu are really defined by this flavor.

tv:i te'm— 1' 'Ist Instance variable of tv:basic-menu
The item list of_ the menu.

tv:last-item Instance variable of tv:basic-menu
The last item actually selected with a mouse click in this menu, or nil if none has been
selected yet. Used for positioning the mouse when a momentary menu pops up.

tv:icurrent-item , Instance variable of tv:basic-menu
The item which the mouse is pointing. at, or nil.

tv:chosen-1tem Instance variable of tv:basic-menu
Set each time an item is selected, to that item. Waiting for an item to be selected is
done by setting this variable to nil and waiting for it to become non-nil.

SRCKLL.WIND>CHOICE.TEXT.93 8-AUG-83

Menus 182 Window System Manual

tv:geometry Instance variable of tv:basic-menu
The geometry (constraints) of the menu, a list of length 6.

tv:basic-momentary-menu (tv:hysteretic-window-mixin tv:basic-menu) Flavor
This is a kind of menu, often referred to as a "pop up" menu, which is only
momentarily on the screen. A :choose operation on a menu of this flavor causes it to
position itself where the mouse is. When the user selects an item in the mcnu, or
alternatively moves the mouse far away from the menu, the menu disappears and
deactivates, the mouse warps back to where it was when the menu appeared, and the
:choose operation returns the chosen item or nil.

These are the interesting instantiable menu flavors:

tv:menu Flavor
(basic-menu borders-mixin top-box-label-mixin basic-scroll-bar
minimum-window)
This is tv:basic-menu with borders and a label on top. The default is for there to be no
label but you can specify one with the :label init-plist option or the :set-label operation.

tv:momentary-menu Flavor
This is tv:basic-momentary-menu mixed with the right other flavors. Momentary menus
were described at the beginning of this section.

tv:momentary-menu &optional (superior tv:mouse-sheet) Resource
A resource of momentary menus.

tv:temporary-menu (tvitemporary-window-mixin tv:menu) Flavor
This is a menu that is a temporary window; that is, it saves the bits of the windows
underneath it when it is exposed. It is not a momentary menu, and therefore it does not
expose or deexpose itself automatically. -

It is appropriate to use a temporary menu rather than a momentary menu when you want
to pop a menu up and make several choices from it before popping it back down, or if
you don’t want to allow the user the option of choosing nothing by moving the mouse
out of the window.

tv:momentary-window-hacking-menu Flavor
(tv:window -hacking-menu-mixin tv:momentary-menu)
A momentary menu with the window-hacking mixin. See page 177.

tv:momentary-menu &optional (superior tv:mouse-sheet) Resource
This is a resource of momentary menus. tv:menu-choose allocates a window from this
resource.

The following operations are useful on any flavor of menu. Also listed are init options which
are uscful with any flavor of menu. Operations and init options that specifically have to do with
the shape and arrangement of the menu are listed in the section on geometry (section 14.1.3, page
178).

SRCKL.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 183 Menus

:item-1ist T Operation on tv.menu
:set-1tem-1ist item-list Operation on tv:menu
Get or set the list of items (choices). Setting the item list recomputes the geometry and
redisplays the menu.

:item-11ist items Init option for tv:menu
The item list can be set when the menu is created.

:choose Operation on tv.menu
Exposes the menu if it is not alrcady exposcd, then waits for a sclection to be made with
the mouse. The sclection is :execute’d and the resulting value is returned. A momentary
menu will return nil from :choose if the mouse is moved far out of it, and in any case
will pop down before returning.

:execute item Operation on tv:menu
Given an item that was selected, performs the appropriate sidc-effects and returns the
appropriate value. For most kinds of menus, this operation is invoked automatically as
part of the :choose operation, but command menus (see below) require the user program
to invoke :execute explicitly if it is desired. '

:move-near-window window 4 Operation on tv.menu
Exposes the menu above or below window, giving it the same width.

:center-around x y : Operation on tv:menu

This operation is implemented by all windows, but menus handle it a little differently.
The window is positioned so that the last item chosen appears at the specified coordinates
(in the superior), if possible. If this would cause the menu to stick outside of its
superior, it is offset slightly to keep it inside. The actual coordinates of the center of the
appropriaté item are returned (you might want to put the mouse there). Momentary
menus use this to put the menu in such a place that the mouse will be mght over the last
item chosen.

:current-item Operation ontv:menu
Gets the item the mouse ‘is currently pointing at (nil if none) In most- cases if you are
using this operation you are doing something wrong.' s e

:chosen-item Operation ontv:menu’
:set-chosen-item irem . Operation on tv:menu
Get or set the item that has been chosen by the mouse and is being communicated back
to the controlling process. In most cases if you are using these operations you are doing
something wrong,

:last-item Operation on tv:menu
:set-last-item item ' - Operation on tv:menu
Get or sct the item that was chosen by the mouse the last time this menu was used.
When a momentary menu is exposed near the mouse by the :choase operation, it will
put the mouse over this item so that it easy to choose it again.

SRC:KL.WIND>CHOICE.TEXT.93 . 8&AUG-83

Menus 184 Window System Manual

scolumn-row-size Operation on tv:menu
Returns two values: the width of a column in bits and the height of a row in bits.

:item-cursorpos item Operation on tv:menu
Returns two values, like :read-cursorpos, giving the coordinates of the center of the
displayed representation of item. The result is nil if the item is scrolled off the display.

:1tem-rectangle irem Operation on tv:menu
Returns four values, the coordinates of the rectangle enclosing the displayed representation
of the specified item. The result is nil if the item is scrolled off the display. Note that
the returned coordinates arc inside coordinates and that they include a 1-pixel margin
around the item.

:menu-draw Operation on tv:menu
Draws the menu’s display. :menu-draw is invoked automatically by the system when
required, and should not be used in application programs. However, user-defined menu
. flavors may redefine the operation or add dacmons to it.

:mouse-buttons-on-1item butions-down-mask Operation on tv:menu
This operation is invoked by the mouse process when the mouse is clicked on an item. It
is completely responsible for whatever should be done in the mouse process at that time.
Its default definition is to record the chosen item and process the item type :buttons
when that is used.

The instance variable tv:current-item or the :current-item operation can be used to find
out which item the mouse is on.

The operations :scroll-position, :scroll-to and :scroll-bar-p are also defined for
communication with the scroll bar. See scction 10.5.1, page 124. ‘

14.1.5 Command Menus

tv:command-menu-mixin Flavor
The menus described so far are driven by the :choose operation; that is, the program
decides when it is time for the user to choose something in the menu. In some
applications it should be the user who decides when to choose something from a menu.
For example, in Peck, the user can select a new mode with the menu at any time, but

Peek cannot spend all its time waiting for the user to do this.

The command menu is designed for such applications. When an item in a command
menu is chosen, the menu puts a blip into its input buffer. The blip is a list

(:menu item button-mask menu) '
which can read as an input character with the :any-tyi operation on any other window
sharing the samc input buffer. item is the menu item that was clicked on, button-mask
says which mouse button was used (as in tv:mouse-last-buttons; sece page 116), and
menu is the menu that was clicked on, in case you are using more than one. '

SRCKI.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 185 _ Menus

Usually a command window is part of a team of windows managed by a single process
and sharing a single input buffer. Menu clicks generate input that is rcad in a single
stream together with mousc clicks on the other windows and keyboard input. For
example, Peek and the inspector both use command menus in this way. Once the
controlling process reads the blip, it can do (funcall menu :execute item) if it wishes the
item to be processed in the usual way for menu items.

tv:command-menu Flavor
This is tv:command-menu-mixin mixed with tv:menu to make it instantiable.

:1o-buffer Operation on tv.command-menu
:set-1o-buffer io-buffer Operation on tv.command-menu
These operations get or set the I/0 buffer in which a command-menu sends stores a blip
when an item is selected.

:fo-buffer io-buffer Init option for tv.command-menu
The input buffer to be used by a command menu is usually specified when it is created.

tv:io-buffer ' Instance variable of tv.command-menu
This is where the input buffer is recorded.

tv:command-menu-abort-on-deexpose-mixin) Flavor
When a command menu built on this flavor is deexposed, it automatically "clicks” on its
Abort item. In other words, the :deexpose method for this flavor searches the item list
for an item whose displayed representation is "ABORT" (case is not significant). If such
an item is found, a blip is sent to the input buffer claiming that that item was clicked on
with the Left button.

14.1.6 Dynamic Item List Menus

Dynamic item list menus dynamically recompute the item list at various times. Whenever the
program makes an explicit request to use the menu, the menu checks automatically to see whether
its item list has changed.

tv:abstract-dynamic-item-1ist-mixin Flavor
This mixin causes a menu to invoke the :update-item-list operation at various times.
This operation receives no arguments, and its value is ignored; it should update the item
list if appropriate.

This mixin does not define the :update-item-list operation, however. Each user of the
mixin must dcfine this operation to update the item list as he desires.

:update-item-1 ‘Is.t Operation on dynamic item list menus
Sent by the system, this operation should be defined by the user to do a :set-item-list if
the item list should change.

Note that this operation may be invoked in various processes, so your definition should
use only global variables (and data structure it can find from the menu itself).

SRC:KLL.WIND>CHOICE.TEXT.93 8-AUG-83

Menus 186 Window System Manual

tv:dynamic-item-11st-mixin Flavor
Provides for a form which is evaluated to get the menu’s item list, kept in the tvitem-
list-pointer instance variable. The :update-item~-list operation is defined to evaluate the
form and sect the item list to the form’s value.

tv:item-1ist-pointer Instance variable of tv.dynamic-item-list-mixin
This is the form cvaluated to recompute the current item list.

:item-1ist-pointer Operation on tv:dynamic-item-list-mixin
:set-item-1ist-pointer form Operation on tv:dynamic-item-list-mixin
Get or set the form.

:item-1ist-pointer form Init option for tv.dynamic-item-list-mixin
Initializes the form.

These are menu flavors that are just combinations of this with other flavors:

tv:dynamic-momentary-menu Flavor
A momentary menu with the dynamic item-list mixin.

tv:dynamic-momentary-window-hacking-menu Flavor
A momentary menu with both the dynamic item-list mixin and the window-hacking mixin.

tv:dynamic-temporary-menu Flavor
A temporary menu with the dynamic item-list mixin.

tv:dynamic-temporary-command-menu Flavor
A command menu with the temporary and dynamic item-list mixins.

tv:dynamic-temporary-abort-on-deexpose-command-menu Flavor
A command menu with the temporary, abort-on-deexpose, and dynamic item-list mixins.

tv:dynamic-multicolumn-mixin Flavor
This mixin, to be used with tv:abstract-dynamic-item-list-mixin, makes a menu of
several columms, in which each columi’s items arc independenily dynamically recomputed.
The system menu is such a menu,

The columns are specified by the instance variable tvicolumn-spec-list. The value is a
list; each clement specifies one column of the menu, and looks like this:
(heading item-list-form options. . .)

heading is a string to be displayed (as a :no-select item) at the top of the column. item-
list-form is a form to be evaluated to produce the list of items for the column. It should
have no side cffects and may be evaluated in any process. The options are modifier
keywords and values, such as arc found in menu items. These modifiers apply to the
column heading only. The most useful one is the :font keyword. For cxample, the
system menu uscs this column spec list:

SRC:KL.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 187 Menus

(("Windows" tv:*system-menu-windows-columns
:font fonts:h112i)
("This window" tv:*system-menu-this-window-column»
:font fonts:h112i)
("Programs" tv:*system-menu-programs-column#
:font fonts:h112i))
Each column’s item list form is a symbol, the name of a special variable.

tv:column-spec-1ist Instance variable of tv.dynamic-multicolumn-mixin
This instance variable holds the column spec list.

:column-spec-1ist Init option for tv:dynamic-multicolumn-mixin
Initializes the column spec list.

:column-spec-1ist Operation on tv.dynamic - multicolumn-mixin
:set-column-spec-1ist specs Operation on tv.dynamic -multicolumn-mixin
Get or set the column spec list.

tv:dynamic-multicolumn-momentary-menu Flavor
This is an instantiable, momentary mixture of tv:dynamic-multicolumn-mixin.

tv:dynamic-multicolumn-momentary-window-hacking-menu Flavor
Similar to the previous, but includes tv:window-hacking-menu-mixin. The system menu
is an instance of this flavor.

14.1.7 Multiple Menus

A multiple menu asks the user to select any combination of menu items rather than a single -
item. The menu has a "choice box" (usually named "Do it") at the bottom in addition to its
menu items. Clicking on a menu item selects it or unselects it; the selected items are displayed
in inverse video. Clicking on the "Do it" box specifies the set of items currently selected.

The :choose operation on a multiple menu returns as its first value a list of the values of the
items selected by the user.

tv:multiple-menu-choose item-list &optional label near-mode highlighted-items superior
Pops up a menu and allows the user to choose any subsct of the available items. The
user finalizes his choice by clicking on the "Do It" box at the bottom of the menu. At
this time, tv:multiple-menu-choose returns as its first value a list of the results of
executing all the chosen menu items. The second value of tv:multiple-menu-choose is t
in this case.

If the user moves the mouse out of the menu and far away, the menu disappears and
tv:menu-choose returns nil for both values. The sccond value enables the caller to
distinguish between a refusal to choose and choosing the empty set of items.

item-list is a list of menu items as described above. highlighted-items is a list of some of
the same items; these are the items to include, initially, in the set to be chosen. The
user can add items to the sct or remove items from the set.

SRCKL.WIND>CHOICE. TI:XT.93 : 8-AUG-83

Menus 188 Window System Manual

The elements of highlighted-items must be memgq in item-list for proper functioning.

label is a string to be displayed at the top of the menu, or nil (the default) to specify the
absence of a label.

near-mode is where to put the menu. It defaults to the list (:mouse) and must be an
acceptable argument to tv:expose-window-near.

superior is the sheet of which the menu should be an inferior. The default is tv:mouse-
sheet, which is usually a screen.

Example:
(tv:multiple-menu-choose ’(rice spinach water coke)
"Pick some foods" nil ’(water))
might return the list (rice spinach water) if the user clicked on the entries for rice and
spinach, and did not turn off water.

(1et ((items '(("Rice" :value rice)
("Spinach" :value spinach)
("Water" :value water)
("Coke" :value coke))))
(tv:multiple-menu-choose items "Pick some foods" ’(:mouse)
(1ist (assoc "Water" items))))
can return the same possible values, but has a prettier display.

tv:margin-multiple-menu-mixin Flavor
Gives a menu the ability to have multiple items selected in this manner.

tv:multiple-menu (tv:imargin-multiple-menu-mixin tv:menu ..) Flavor
A menu that behaves as described above. This is a combination of tv:multiple-margin-
menu-mixin with tv:menu.

tv:momentary-multiple-menu Flavor
(tv:margin-multiple-menu-mixin tv:momentary-menu ...)
A muitiple menu that is aiso momentary.

tv:momentary-multiple-menu &optional (superior tv:mouse-sheel) Resource
A resource of momentary multiple menus, used by tv:multiple-menu-choose.

radd-1tem item Operation on tv:margin-multiple -menu-mixin
Adds item to the item list of the multiple menu, initially unhighlighted. All the existing
jtems remain, and remain highlighted if they already were.

tset-item-11ist item-list Operation on tv:margin-multiple -menu-mixin
In addition to sctting the item list and redisplaying the menu, all the items start out
unhighlighted. . :

SRCAKL.WIND>CHOICE. TEXT.93 8-AUG-83

Window System Manual 189 Menus

:special-choices items Init option for tv:margin-multiple -menu-mixin
This init option is equivalent to the :menu-margin-choices init option (which is
provided by our component flavor tv:menu-margin-choice-mixin). It is provided for
historical compatibility. items is a list of menu items that specify the choice boxes desired
and what to do if they are clicked on.

tv:menu-highlighting-mixin Flavor
Provides for some of the menu items to be highlighted with inverse video. This is
typically used with menus of "modes”, where the modes currently in effect are
highlighted. The menu items corresponding to modes will typically be set up so that
when executed, they adjust the highlighting to reflect the enabling or disabling of a mode.

This flavor is used in tv:margin-multiple -menu-mixin.

tv:highlighted-items Instance variable of tv:menu-highlighting-mixin
The list of items currently highlighted.

thighlighted-items Operation on tv:menu-highlighting -mixin

:set-highlighted-items Iist Operation on tv:menu-highlighting -mixin

Get or set the list of highlighted items.

:highlighted-items items Init option for tv.menu-highlighting-mixin
When a menu with the menu-highlighting mixin is created, the list of items to be initially
highlighted may be specified. The default is nil.

:add-highlighted-item item Operation on tv:menu-highlighting -mixin
:remove-highlighted-item item Operation on tv:imenu-highlighting -mixin
Make item be highlighted, or make it stop being highlighted.

thighlighted-values Operation on tv:menu-highlighting -mixin
:set-highlighted-values /st Operation on tv:menu-highlighting-mixin
:add-highlighted-value value Operation on tv:menu-highlighting - mixin
:remove-highlighted-value value Operation on tv:menu-highlighting -mixin

These operations are similar to the preceding four, except that instead of referring to
items directly you refer to their values, ie. the result of executing them. For instance if
your item list is an association list, with elements (string . symbol), these operations use
symbol. This only works for menu items that can be executed without side-effects, not
for item types :eval, :funcall, etc.

tv:menu-margin-choice-mixin (tv:margin-choice-mixin) Flavor
This mixin gives a menu the ability to have choice boxes in the margin. It is used in
multiple menus.

Choice boxes appear in a single line in the bottom margin of the menu. Each one
consists of a name followed by a little square or box. Clicking on the box activates the
choice.

This flavor adapts tv:margin-choice-mixin (sce page 211) for use in menus.

SRCKL.WIND>CHOICE.TEXT.93 8-AUG-83

Muttiple Choice Facility 190 Window System Manual

:menu-margin-choices Operation on tv:menu-margin-choice-mixin
:set-menu-margin-choices items Operation on tv:menu -margin-choice-mixin
Get or set the list of choice box items. The items look and work just like menu items,
and clicking on onc has the same cffect. The difference is only in how and where they
display.

:menu-margin-choices items Init option for tv.menu-margin-choice-mixin
Initializes the list of choice box items. The default value is
(("Do I t"
:eval (values (funcall-self ’:highlighted-values)
t)))
which provides a single choice box and implements the values returned by :tv:multiple-
menu-choose.

tv:margin-choice-menu Flavor
An instantiable menu flavor that also allows margin choices.

!

tv:mementary-margin-choice-menu Flavor
A instantiable momentary menu flavor that also allows margin choices.

14.2 Multiple Choice Facility

The multiple choice facility provides a window containing a bunch of items, one per text line,
and several choices about each item. To see an example of its use, invoke the editor command
Meta-X Kili Or Save Buffers.

For each item, there can be several yes/no choices for the user to make. There is the same
set of choices for each item (though some items may omit some choices). For example, in Kill
Or Save Buffers, there is an item (a line) for each buffer, and each line offers choices "Save",
"Kill" and "Unmod"”. The choices of the same kind for different items form a column, with a
heading at the top saying what that choice is for. The leftmost column contains the text naming
each item. The remaining columns contain small boxes (called choice boxes). A "no" box has a
blank center, while a "yes" box contains an "X". Pointing the mouse at a choice box and

Tinly tho i "
clicking the left button turns it on or off. Each choice can be initialized by the program to "yes

or "no" as appropriate for a default.

There can be constraints among the choices for an item. For example, if you want the
choices to be mutually exclusive, you can set up constraints so that clicking one choice box to
"yes" will automatically set the other choice boxes on the same line to "no

A multiple choice window may have more lines of choices to offer than the window has lines.
In this case, the user can scroll, as the multiple choice window is a kind of text scroll window
(see chapter 16, page 219).

There arc several parameters associated with a multiple-choice window:

The item-name is a string, the column hcading for items. In the editor -example, it is
"Buffers".

SRC:KI.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 191 . Multiple Choice Facility

The item-list is a list of representations of items. Each element is a list, (item name choices).
item is any arbitrary object, such as an cditor buffer. name is a string which namecs that object;
it will be displayed on the left on the line of the display devoted to this item. choices is a list of
keywords representing the choices the user can make for this item. Each clement of choices is
cither a symbol, keyword, or a list, (keyword default). 1f default is present and non-nil, the
choice is initially "yes"; otherwise it is initially "no". This is how the editor initializes the "Save”
choice to be "yes" for a modified buffer.

The keyword-alist is a list defining all the choice keywords allowed. Each clement takes the
form (keyword name). keyword is a symbol, the same as in the choices ficld of an item-list
element. name is a string used to name that keyword. name is used as the column heading for
the associated column of choice boxes.

An element of keyword-alist can have up to four additional list elements, called implications.
These control what happens to other choices for the same item when this choice is sclected by the
user. Each implication can be nil, meaning no implication, a list of choice keywords, or t
meaning all other choices. The first implication is on-positive; it specifies what other choices are
also set to "yes" when the user sets this one to "yes". The second implication is on-negative; it
specifies what other choices are set to "no" when the user sets this one to "yes". The third and
fourth implications are off-positive and off negative; they take effect when the user sets this choice
to "no". The default implications are nil t nil nil, respectively. In other words the default is for
the choices to be mutually exclusive.

If a keyword-alist element does not contain implications, the default implications are rplacd’ed
into it.

Kill Or Save Buffers specifies the implications as
((:save "Save" nil (:not-modified) nil nil)
(:ki11 "Ki11" nil (:not-modified) nil nil)
(:not-modified "UnMod” nil (:save :kill) nil nil)
(:compile "QC-FILE" nil nil nil nil))
so that "Unmod" cannot be chosen together with either "Save" or "Kill".

The finishing-choices are the choices to go in the bottom margin. When the user clicks on
one of these he is done. The variable tv:default-finishing-choices contains a reasonable default
for this, providing Do It and Abort choices.

14.2.1 Functional Interface
This is the casy interface to the multiple choice facility:
tv:multiple-choose item-name item-list “keyword-alist &optional near-mode maxlines
Pops up a multiple-choice window and allows the user to make choices with the mouse.
The dimensions of the window are automatically chosen for the best presentation of the

specified choices. If there are too many choices, more than maxlines, scrolling of the
window is enabled.

SRC:KL.WIND>CHOICE.TEXT.93 8-AUG-83

Multiple Choice Facility 192 Window Systcm Manual

item-name, item-list, and keyword-alist are as described above. finishing-choices cannot be
specified and is always the default.

When the user clicks on one of the two finishing choices in the bottom margin (Do It and
Abort) the window disappears and tv:multiple-choose returns. If the user finishes by
choosing Abort the returned value is nil, and the sccond returned value is :abort. If the
user chooscs Do I, the returned value is a list with one clement for each item. Each
element is a list whose car is the item (that arbitrary object which the user passed in in
the item-list argument) and whose cdr is a list of the keywords for the "yes" choices
selected for that item,

near-mode tells the window where to pop up. It is a suitable argument for tv:iexpose-
window-near. The default is the list (:mouse). maxlines, which defaults to twenty, is
the maximum number of choices allowed before scrolling is used.

Here is an example:
(tv:multiple-choose "Word"
'((:eat "Eat" (:add :make-permanent))
(:drink "Drink" (:forget :make-permanent)))
"((:add "Add" nil nil nil (:make-permanent))
(:forget "Forget" nil (:make-permanent) nil nil)
(:make-permanent "Make Permanent" (:add) (:forget) nil nil)))
offers the possibilities of :add or :make-permanent for :eat and the possibilities of :forget or
:make-permanent for :drink. Presumably this would be done because :drink has already been
"added” and :eat has not been.

The implications say that making permanent is incompatible with forgetting when forgetting is
possible, and requires adding when adding is possible.

The value returned might be
((:eat :add :make-permanent)
(:drink))

In this example, the items are keywords (symbols), but that is not significant. The system

v lnnle ingida thome 3t it narao tham ith Aam and mate tham in tha ratirnsd uslna
neVEr 100KS INSIGC Wit 1 jUSt COmMparcs Uit wiln &4 and puls Uitin in Wi reurmcea vawd,

14.2.2 Flavors and Operations
These are the grubby details:

- tv:basic-multiple-choice . Flavor
(tv:displayed -items~text-scroll-window tv:margin-choice-mixin ...)

This is the basic flavor that makes a window implement the multiple-choice facility. Like

most basic mixins, it is not itsclf instantiable but it does commit any window that

incorporates it to being a multiple-choice rather than any different sort of window.

SRCKAL.WIND>CHOICETEXT.93 8-AUG-83

Window System Manual 193 Multiple Choice Facility

tv:item-name Instance variable of tv:basic-multiple-choice
The window’s item name.

tv:choice-types Instance variable of tv:basic-muitiple-choice
The window’s keyword alist.

tv:multiple-choice Flavor
(tv:basic-multiple-choice tv:itop-box-label-mixin tv:window)
This is a rcasonable window with the multiplc-choice facility in it. It has borders and a
label area on top which is uscd for the column headings.

tv:temporary-multipie-choice-window Flavor
(tv:temporary-window-mixin tv:multiple -choice)
This is a multiple-choice window which is equipped to pop up temporarily.

tv:temporary-multiple-choice-window Resource
&optional (superior tv:mouse-sheel)
This is a resource of temporary multiple-choice windows, used by the tv:multiple-choose
function. . '

The following operations are provided by multiple choice windows.

sitem-1ist item-list Init option for tv:basic-multiple-choice
Initializes the window’s item list to ifem-list.

:setup _ Operation on tv:multiple-choice
item-name keyword-alist finishing-choices item-list &optional maxlines
This operation sets up all the various parameters of the window. Usually it is used while
the window is deexposed. The window decides what size it should be and whether all the -
items will fit or scrolling is required, then draws the display into its bit-array. Thus when
the window is exposed the display will appear instantaneously.

maxlines is the maximum number of lines the window may have; if there are more items
than this only some of them will be displayed and scrolling will be enabled. maxlines
defaults to 20.

The finishing-choices are a list of choices for tvimargin-choice-mixin (see page -211).
When one of these finishing choices is clicked on, it should set the instance variable
tvichoice-value of self to either a symbol (for an abnormal exit) or a list for the
:choose operation to return.

tv:choice-value Instance variable of tv:basic-multiple -choice
When the mouse process sets this non-nil, the :choose operation returns.

:choose &optional near-mode : Operation on tv:multiple-choice
Moves the window to the place specified by near-mode, which defaults to the list
(:mouse), and exposes it. Then waits for the user to make a finishing choice and returns
the window to its original activate/cxpose status before the- :choose. This operation
returns the same value as the function tv:muitiple-choose.

SRCKL.WIND>CHOICE.TEXT.93 - 8-AUG-83

Choosc-Variable-Values Facility 194 Window System Manual

14.3 Choose-Variable-Values Facility

This facility presents the user with a display of a bunch of Lisp variables and their values.
The user may change the value of some of the variables. When the values arc to his liking he
may indicate that he is done.

The choose-variable-values window is a kind of text scroll window, so each line of the display
corresponds to one variable. The name of the variable, a colon, and the valuc of the variable are
displayed. Pointing the mouse at the value causes a box to appear around it. Clicking the left
mouse button at that point allows the value to be changed.

For an example of a choose-variable-values window, try the Frame option of the Split
Screen item in the system menu. ZMail profile mode is also a good example.

14.3.1 Specilying the Variables

When you use a choose-variable-values window, you must specify one or more variables with
a list of specifiers. You pass the list as an argument to tvichoose-variable-values.

Each variable has a #ype which controls what values it may take on, the way the value is
displayed and the way the user enters a new value. The type mechanism is extensible and is
described in detail later. The types fall into two categories, those with a small number of legal
values and those with a large or infinite number of legal values. The first kind of type displays
all the choices, with the one which is the current value of the variable in bold-face. Pointing at a
choice and clicking the mouse scts the variable to that value. Those types with a large number of
legal values display the current value. Pointing at the value and clicking the mouse allows a new
value to be entered from the keyboard. Rubbing out more characters than typed in restores the
original value instead of changing it.

The variables themselves can be either symbols, which are effectively examined and set as
special variables in the calling program’s process, or locatives, whose contents are examined and
set. The syntax for input and output is controlled by the binding of base, ibase, *nopoint,
prinlevel, prinlength, package, and readtable as usual.

Each line of the display is specified by an item, which can be one of the following:

astring The string is simply displayed. This is useful for putting headings and blank
separating lines into the display.

a symbol The symbol is a variable whose type is :sexp; that is, its value may be any Lisp
object. The name of the variable on the display is simply its print-name, and the
value is stored as the value of the symbol.

a list (variable name type args...)
This is the gencral form. variable is the variable whose value is being chosen. It
is cither a symbol or a locative. If name is supplied it can be a string, which is
displayed as the name of the variable, or it can be nil, mecaning that this line
should have no variable name, but only a value. name is optional; if it is
omitted it defaults to the print-name of variable, or to nil if variable is a locative.

PD>CHOICE TEXT.93 8-AUG-83

Window System Manual 195 Choose-Variable-Values Facilify

lype is an optional keyword giving the type of variable; if omitted it defaults to
'sexp. args are possible additional specifications dependent on fype.

It is possible to omit name and supply fype since one is always a string or nil and
the other is always a non-nil symbol.

For clarification of this, refer to the examples on page 198.

14.3.2 Predefined Variable Types

The following are the types of variables supported by default, along with any args that may
be put in the item after the fype keyword:

sexp

:any The value is any Lisp expression (sometimes called an S-expression), printed with
prin1, read with read.

:princ Same as :sexp except that the value is printed with princ rather than prin1.

:string The value is a string, printed with princ, read with readline.

:number The value is any type of number. It is printed with prin1 and read with read,
but only a number is accepted as input.

:number-or-nil
The value may be either a number or nil.

date The value is a universal date-time. It is printed with time:print-universal-time

and read with readline-trim and time:parse-universal-time.

:date-or-never
The value is either a universal date-time or nil. nil is printed as "never”, and a
numbe; is printed using time:print-universal-time. Input is read with readline-
trim; if the string is not "never" it is passed to time:parse-universal-time.

sinterval-or-never
The value is either nil or a number of seconds. It is printed with time:print-
interval-or-never and new values are read using time:read-interval-or-never.

character The value is a character code. It is printed as the character name (using the
~:@C format operator), and is read as a single keystroke.

:character-or-nil -
Like :character but nil is also allowed as the value. nil displays as "none” and
can be input via the Clear Input key.

:string -list The value is a list of strings, whose printed representation for input and output
consists of the strings separated by commas and spaces.

:;pathname

a list (:pathname defaults)
The value is a pathname (see chapter 22 of the Lisp Machine manual). It is
printed with princ and read with readline, fs:parse-pathname, and fs:merge-
pathname-defaults. If defaults is provided, it is a pathname or a defaults-alist to
pass to fs:merge-pathname-defaults. It can also be a symbol whose value

SRC:KL.WIND>CHOICE.TEXT.93 8-AUG-83

Choose-Variable-Values Facility 196 Window System Manual

should be used. If it is the same variable this item is sctting, then cach typed-in
value is merged with the previous setting.

:pathname-or-nil
Like :pathname but nil is also allowed as a value. It is rcad and printed as a
blank line.

:pathname-list
The value is a list of pathnames. In the printed representation they are scparated
by commas.

:choose values-list print-function
The value of the variable must be one of the elements of the list values-list.
Comparison is by equal rather than eq. All the choices are displayed, with the
current value in boldface. A new value is input by pointing to it with the mouse
and clicking. print-function is the function to print a value; it is optional and
defaults to princ.

:assoc values-list print-function
Like :choose but car of each element of values-list is what to display, while cdr
is the value that goes in the variable.

:menu-alist item-list
Like :choose, but instead of a list of values there is item-list, which is a list of
menu items (see section 14.1, page 173). The usual menu mechanisms for
specifying the string to display, the value to return, and the mouse documentation
work with this.

:boolean The value of the variable is either t or nil. The choices are displayed as yes and
no. '

:documentation doc type args...- ‘
This is not really a variable type, but goes in the place where a type would
normally be expected. The rcal type is fype; it and its args are optional as usual.
doc is a string which is displayed in the mouse documentation line when the
mouse is pointing at this item. The default if no documentation is supplied in
this way depends on the type, and generally is something like "Click left to input

"
2 new value from the keyboard

14.3.3 Functional Interface

tv:choose-variable-values variables &rest options
This is the easy-to-use function interface to the choosc-variable-values facility. It pops up
a window displaying the values of the specified variables and permits the user to alter
them. One or more choice boxes (as in the multiple-choice facility) appear in the bottom
margin of the window. When the user clicks on the Exit choice box the window
disappears and this function returns. The value returned is not meaningful; the result is
expressed in the values of the variables.

The system chooses the dimensions of the window, and enables scrolling if there are too
many variables to fit in the chosen height.

SRCKL.WIND>CHCICETEXT.93 8-AUG-83

Window System Manual 197 Choose-Variable-Values Facility

variables is a list whose elements can be special variables or the more gencral items
described above. See the examples below.

options is the usual list of alternating option keywords and argument values. The
following option keywords are allowed:

slabel The argument is a string that is the label to be displayed at the top of the
window. The default is "Choose Variable Values".

:function The function to be called if the user changes the value of a variable. The
default is nil (no function). The use of this function is described below
(page 197).

:near-mode Where to position the window. This is a suitable argument for
tviexpose-window-near. The default is the list (:mouse).

:width Specifies how wide to make the window. This can be a number of
characters, or a string (it is made just wide enough to display that string).
The default is to make it wide enough to display the current values of all
the variables, provided that isn’t too wide to fit in the superior.

:extra-width When :width is not specified, this specifics the amount of extra space to
leave after the current value of each variable of the kind that displays its
current value (rather than a menu of all possible values). This extra space
allows for changing . the value to something bigger. The extra space is
specified as either a number of characters or a character string. The
default is ten characters. If :width is specified, then :extra-width is
ignored.

:margin-choices
The argument is a list of specifications for choice boxes to appear in the
bottom margin. Each element can be a string, which is the label for the
box which means "done”, or a cons of a label string and a form to be
evaluated if that choice box is clicked upon. Since this form is evaluated
in the user process it can do such things as alter the values of variables or
*throw out. The default for :margin-choices is ("Exit").

:superior The argument is the window to which the pop-up choose-variable-values
window should be inferior. The default is the value of tvimouse- sheet
or the superior of w if near-mode is (:window w).

reverse-video-p
The argument is used to control whether the window displays white-on-
black or black-on-white. It is used as the argument of the :set-reverse-
video-p operation.

A choose-variable-values window optionally may have an associated function, which is called
whenever the user commands the window tc change the value of one of the variables.

This function can implement constraints among the variables. It is called with arguments
window, variable, old-value, and new-value. The function should return nil if just the original
variable needs to be redisplayed, or t if no redisplay is rcquired; in this casc it would usually
setq several of the variables, then perform a :refresh operation on the window,

SRC:KL.WIND>CHOICE.TEXT.93 §-AUG-83

Choose-Variable-Values Facility 198 Window System Manual

Here are some examples of how to call tvichoose-variable-values. The simplest sort of
thing you can do is:
(tv:choose-variable-values '(base ibase *nopoint)
":1abel "Number format parameters")
which displays the three variables’ names and values and lets the user change them. The same
examplc can be done with nicer formatting with:
(tv:choose-variable-values
"((base "Output Base" :number)
(ibase "Input Base" :number)
(*nopoint "Decimal Point"
:assoc (("Yes" . nil)
("No" . t))))
":Tabel "Number format parameters")
The entry for *nopoint would have been simply
. (*nopoint "No Decimal Point" :boolean)
except that we wanted to reverse the sense of t and nil. We might even have used
(*nopoint :boolean)
if we wanted to use the name of the variable as the label rather than spelling it out.

For a hokier example, consider a grocery store. Suppose we have variables *cuts-of-beef*,
cuts-of-pork, *cuts-of-lamb*, and *lettuce-types*, which contain lists of strings indicating
what is available, *squash-type*, which indicates whether we stock summer squash or winter
squash, and *milk-price*, which contains a floating-point number that is the current price of a
gallon of milk. Then the following expression would display the inventory and allow it to be
modified, using several different kinds of items:

(tv:choose-variable-values
'{"Meat Department"
(*cuts-of-beefs "Beef" :string-list)
(*cuts-of-pork* "Pork" :string-list)
(*cuts-of-lamb* "Lamb" :string-list)
nn
"Produce"
(*lettuce-types» "Lettuce" :string-Tlist)
{(»squash-t

ypes "Squash" :choose ["Summer" "Winter"))

—-_—se PSR RS R

nn
"Dairy"
(*milk-prices» "Milk"
:documentation .
"Click left to raise the price of milk"
:number)))
Note the use of strings to provide labels for the sections, and null strings to separate the sections
with blank lines. '

SRCKL.WIND>CHOICE.TEXT.93 8-AUG-83

Window Systcm Manual 199 . Choose-Variable-Valucs Facility

Defining Your Own Variable Type

14.3.4
:decode-variable-type ' Operation on tv:basic-choose-variable-values
kwd-and-args

The system uses this operation on a choose-variable-values window when it needs to
understand an item. kwd-and-args is a list whose car is the item’s type keyword and
whose remaining elements, if any, are the arguments to that keyword. Six values are
returned; these values are described below. The default method for :decode-variable-
type looks for two properties on the keyword’s property list:

tv:choose-variable -values-keyword
The value of this property is a list of the six values described bclow.
Unnecessary values of nil may be omitted at the end. .

tv:choose-variable - values-keyword -function
The value of this property is a function that is called with one argument,
kwd-and-args. The function must return the six values.

You may add a new variable type to the standard set by putting one of the above
properties on the keyword. You may define your own flavor of choose-variable-values
window and give it a :decode-variable-type method to make it not use the standard
variable types. This method must take care of implementing the :documentation
keyword, which can appear in an item where a variable type would normally appear.

The six magic values are:

print-function A function of two arguments, object and stream, to be used to print the value.

prin1 is acceptable.

read-function A function of one argument, the stream, to be used to read a new value. read is

choices

acceptable. If nil is specified, there is no read-function and instead new values are
specified by pointing at one choice from a list. If the read-function is a symbol, it
is called inside a rubout-handler, and over-rubout will automatically leave the
variable with its original value. If read-function is a list, its car is the function,
and it will be called directly rather than inside a rubout-handler.

A list of the choices to be printed, or nil if just the current value is to be
printed. The choices are printed using the print-function, just as the current value
is. :

print-translate If there are choices, and this function is supplied non-nil, it is given an clement

of the choice list and must return the value to be printed using the print-function.

value-translate If there are choices, and this function is supplied non-nil, it is given an element

of the choice list and must return the value to be stored in the variable.

documentation A string to display in the mouse decumentation line when the mouse is pointing

at this item. This string should tell the user that clicking the mouse will change
the value of this variable and give any special information (c.g. that the value
must be' a number). ’

SRCKL.WIND>CHOICE.TEXT.93 8-AUG-83

Choose-Variable-Values Facility 200 Window System Manual

Alternatively, this can be a symbol that is the name of a function. It will be
called with one argument, which is the current clement of choices or the current
value of the variable if choices is nil. It should return a documentation string or
nil if the default documentation is desired. 'This can be uscful when you want to
document the meaning of a particular choice, rathcr than simply saying that
clicking the mouse on this choice will select it. Note that the function should
return a constant string, rather than building one with format or other string
operations, because it will be called over and over as long as the mouse is
pointing at an item of this type. The function is called by the who-line updating
in the scheduler, not in the user process.

FFor example, :boolean is defined thus:
(defprop :boolean
(choose-variable-values-boolean-print nil (t nil))
choose-variable-values-keyword)
(defun choose-variable-values-boolean-print (value stream)
(funcall stream ’:string-out (if value "Yes" "No")))

The type :any is defined with
(defprop :any (prinl read) tv:choose-variable-values-keyword)

14.3.5 Making Your Own Window

The function tvichoose-variable-values may not be adecquate if you wish to keep the
window permancntly exposed or if you wish to alter its behavior. Then you must create a
window yourself. Here are the pertinent flavors.

tv:basic-choose-variable-values Flavor
(tv:mouse - sensitive-text -scroll-window -without-click)
This is the basic flavor which makes a window implement the choose-variable-values
facility. It is not instantiable.

tv:choose-variable-values-window" Flavor
(tv:basic-choose-variable-values tv:window ..)
This is a choose-variable-values window with a reasonable set of features, including
borders, a label at the top, stream I/0, the ability to be scrolled if there are too many
variables to fit in the window, and the ability to have choice boxes in the bottom margin.

tv:choose-variable-values-pane (tv.choose-variable-values-window) Flavor
A tv:ichoose-variable-values-window designed to be a pane of a constraint frame. It
redefines the :adjustable-size-p opcration to return nil always, on the assumption that
the window’s size has been specified by the frame and cannot be changed except by the
frame.

SRCKLWINIDCHOICE.TEXT.93 8-AUG-83

Window System Manual 201 Choose-Variable-Values Facility

tv:temporary-choose-variable-values-window Flavor
(tv:choose-variable-values-window tv:temporary -window-mixin)
A tv:choose-variable-values-window that is equipped to pop up temporarily.

tv:temporary-choose-variable-values-window Resource
&optional (superior tv:mouse-sheet)
This is a resource of such windows, from which tvichoose-variable-values gets a
window to use.

There are two main styles of use: to create a window giving all of the parameters in the init-
plist, or to create a window without specifying the parameters, and then use the :setup operation
(see below) to set the parameters before using the window. But in any case, you must specify the
list of variable-specifiers (sce scction 14.3.1, page 194) and the stack group to evaluate variables in
before you can use the window.

The following init options are available:

:variables specifier-list Init option for tv:basic-choose-variable-values
Initializes the list of variable-specifiers, telling the window which variables to display and .
how to read and print the values.

:function fen Init option for tv:basic-choose-variable-values
Initializes the associated function (see page 197), the function called when the window
changes the value of one of the variables it displays. The default is nil (no function).

tv:function Instance variable of tv:basic-choose-variable-values
The window’s associated function. .

:stack-group sg Init option for tv:basic-choose-variable-values
The stack group in which the variables whose values are to be chosen are bound. The
window needs to know this so that it can get the values while running in another process,
for instance the mouse process, in order to update the window display when it is
refreshed or scrolled. If you do not specify the stack group at this time, you must specify
it with the :setup operation, before you can use the window.

tv: stack-groub Instance variable of tv.basic-choose-variable-values
The stack group in which variables’ values should be evaluated. ‘

:name-font font Init option for tv:basic-choose-variable -values
The font in which names of variables are displayed. The default is the system default
font.

:value-font font Init option for tv:basic-choose-variable-values
The font in which values of variables are displayed. The default is the system default
font. ' :

SRCLAL.WIND>CHOICE. TEXT.93 8-AUG-83

Choose-Variable-Values Facility 202 Window System Manual

:string-font font Init option for tv:basic-choose-variable-values
The font in which items that are just strings (typically hecading lincs) are displayed. The
default is the system default font.

:unselected-choice-font font Init option for tv:basic-choose-variable-values
The font in which choices for a value, other than the current value, are displayed. The
default is a small distinctive font.

:selected-choice-font jons Init option for tv:basic-choose-variable-values
The font in which the current value of a variable is displayed, when there is a finite sct
of choices. This should be a bold-face version of the preceding font. The default is the
bold-face version of the default unselected-choice font.

:margin-choices choice-list Init option for tv.choose-variable-values-window
The default is a single choice box, labeled "Done”. See page 210 for the details of what
you can put here. Note that specifying nil for this option will suppress the margin-choices
entirely.

If no dimensions are specified in the init-plist, the width and height will be automatically
chosen according to the other init-plist paramcters. The height is dictated by the number of
variables to be displayed. Specifying a height in the init-plist, using any of the standard
dimension-specifying init-plist options, overrides the automatic choice of height.

Choose-variable-values windows provide these operations:

:setup Operation on tv:choose-variable -values-window
items label function margin-choices
Changes the list of items (variables), the window label, the constraint function, and the
choices in the bottom margin, and sets up the display. Also remembers the current stack-
group as the stack-group in which the variables are bound. If the window is not exposed
(more generally, if the :adjustable-size-p operation on the window returns non-nil), this
reshapes the window to a good size based on the specified items.

:set-variables Operation on tv:choose -variable -values-window

uc:m l,l.)l ucupuuum UUIH .)Cl Il!flglll
Sets the list of variable-specifiers which controls the variables dlsp]aycd in the wmdow
then redisplays the window.

Unless dont-set-height is supplied non-nil, the hecight of the window will be adjusted
according to the number of lines required. If more than 25. lines would be required, 25.
lines will be used and scrolling will be enabled. The :setup operation uses :set-variables
to do part of its work.

tadjustable-size-p Operation on tv:choose -variable-values-window
If this returns non-nil, :setup will reshape thc window. By default, this operation returns
non-nil when the window is ‘deexposed.

SRCKL.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 203 Choose-Variable-Values Facility

:appropriate-width Operation on tv.choose -variable -values-window
&optional extra-space
Returns the inside-width appropriate for this window to accommodate the current set of
variables and their current values. Use this operation after a :setup and before a
:expose, and usc the result to do a :set-inside-size. The returned width will not be
larger than the maximum that will fit inside the supcrior.

If extra-space is supplied, it specifics the amount of extra space to leave after the current
value of each variable that displays its current value (rather than a menu of all possible
values). This extra space allows for changing the value to something bigger. The extra
space is specified as ecither a number of characters or a character string. The default is to
leave no extra space.

:redisplay-variable variable Operation on tv:.choose-variable -values-window
Redisplays just the value of that variable.

In the simplest mode of operation, you call the tvichoose-variable-values function, which
takes care of creating the window and all necessary communication with it. When you make your
own choose-variable-values window, you need to handle the communication yourself, using the
information given below. An example of a situation in which this is necessary is when you have
a frame, some pancs of which are choose-variable-values windows.

A choose-variable-values window handles mouse clicks by putting blips (lists) in its input
buffer. These blips are generated by the mouse process and are supposed to be read in the
controlling process. There are two types of blip, both used for specific purposes, and your
program must be able to take the appropriate actions when it reads them. The easy way for you
to do this is to call the function tvichoose-variable-values-process-message, which is
provided just for this purpose.

:io-buffer io-buffer Init option for tv:choose-variable -values-window
The 170 buffer to be used for blips and for ordinary input from the window.

The following forms of list are inserted as blips into the input buffer:

(:variable -choice window item value line-no)
Indicates that the user clicked on the value of a variable, expressing the desire to
change it. The controlling process should read keyboard input as necessary and

set the variable. '

(:choice-box window box)
Indicates that the user clicked on one of the choice boxes in the bottom margin,
The controlling process may wish to deexposc the window if the box was the

"Done" box.

tv:choose-variable-valuas-process-message window blip
This function implements the proper response to the above blips. It should be called in
the process and stack-group in which the variables being chosen are bound. window
should be the choose-variable-vatues window and blip should be the object read as input.

SRCKL.WIND>CHOICETEXT.93 8-AUG-83

Choose-Variable-Values Facility 204 Window System Manual

This function returns nil except in the case where blip indicates a click on a "Done"
choice box.

If blip says that the user clicked on a variable, this function reads user input from the
window as necessary and sets the variable.

If blip is a :choice-box blip, the action depends on the box in it. If the sixth element
of box is nil, which is normally the case for the "Done" box, this function returns t.
Otherwise, the sixth element of box is evaluated, but this function returns nil.

If blip is actually a character rather than a blip, it is ignored unless it is a Clear-screen,
in which casc the choose-variable-values window is refreshed. Therefore, it is rcasonable
to use this function with a loop like this:
(do ()
((tv:choose-variab]e-va]ues-process—message
c-v-v-window
(progn
(process-wait "Choose" c-v-v-window *:listen)
(send c-v-v-window ':any-tyi)))))

14.3.6 User Option Facility

There is a facility, based on the choose-variable-values facility, for keeping track of options to
a program of the sort that a user would specify once and keep in his init file. Special forms are
provided for defining options, and therc are functions for putting all the options into a choose-
values window so that the user can alter them, for writing the current state of the options into an .
init file, and for resetting all the options to their default initial values.

define-user-option-alist name constructor documentation Special form
Defines name a special variable whose value is a "user option alist", something which may
be used by the other functions below. This alist will keep track of all of the option
variables for a particular program.

(define-user-option-alist name constructor) specifies in addition the name of a
constructor macro to be defined, which provides a slightly different way of defining an
option variable from defvar-user-option. The form (constructor option default name type
args...) will dcfine an option in this user-option-alist. The arguments are the same as the
similarly-named arguments to defvar-user-option.

A third argument may be used to specify a documentation string for the variable name.
To specify a documentation string and no constructor, give nil for the constructor.

SRCLAL.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 205 _ Choose-Variable-Values Facility

defvar-user-option Special form
Defines an option and adds it to a user option list.
(defvar-user-option option default documentation
alist name type args...)

defines the special variable option to be an option in the alist, which must have been
previously defined with define-user-option-alist. The variable is declared and initialized
via (defvar option default documentation). The value of the form default is remembered
so that the variable can be resct back to it later.

type is the type of the variable for purposes of the choose-variable-values facility. It is
optional and defaults to :sexp. args, which are evaluated (at the time the definition is
done), are the arguments for the type keyword used.

name is the name of the variable to be displayed in the choose-variable-values window. If
it is omitted or nil, the default is (string-capitalize-words (get-pname option)); except
that when the first and last characters of the print-name are asterisks, they are removed.
E.g. the default name for sowq:*sunny-side-up* would be "Sunny Side Up".

Example:
(defvar-user-option preferred-radix 8
"Radix to use for files that don’t specify one.”
my-program-option-alist "Preferred radix"
:assoc "(("8" 8) ("10" 10.)))

defvar-site-user-option Special form
This is like defvar-user-option, except that instead of an initial value a site option
keyword is specified. Instead of a default value, you specify the name of a site option (a
keyword). . The actual default value is the value of that site option in the current site
table. Loading a new site table resets the option.

defvar-site-alist-user-option Special form
Defines a user option whose possible values are controlled by site options.
(defvar-site-alist-user-option option default documentation
alist name menu-alist)
defines oprion as a user option on alist, like defvarsite-user-option. The type for
tvichoose-variable-values is always :menu-alist, and the list of menu items to be used
is determined from the site table according to menu-alist.

menu-alist is a symbol whose value is a menu alist, a list of menu items. These items are
the alternatives offered to the user, as in the :menu-alist type of variable. However,
each menu item specifics a site option keyword, and that alternative is available to the
user only if that site option currently has a non-nil value,

The menu item can specify the controlling site keyword using the modifier keyword :site-
keyword, as in

("Foo" :value :foo :site-keyword :foo-present)
If this is not done, the menu item’s valuc-to-return is also the site keyword.

SRCKIL.WIND>CHOICE.TEXT.93 8-AUG-83

Choose-Variable-Values Facility 206 Window System Manual

default is the name of a site keyword whose value specifies the default. This site option’s
value is matched against each menu item, comparing it against the value of the modifier
keyword :default-site-keyword, or, if that is not present, against the menu item’s site
keyword name. The first match is the default alternative. Thus "Foo" will be the default
alternative if the default site option’s value is :foo-present.

If default is nil, then the first available menu alist item is also the default.

choose-user-options alistr &rest options
Displays the values of the option variables in alist to the user and allows them to be
altered. The options arc passed along to tvichoose-variable-values. Note that alist is an
actual alist, not a symbol whose value is an alist.

reset-user-options alist
Each of the option variables in alist is reset to its default initial value.

tv:restrict-user-option option restriction-type site-options... Macro
Specifies that the user option variable option is significant only if the site tables for your
site do (or, if they do not) contain one of the specificd site-options.

restriction-type is either :if or :unless. If it is :if, the option should be mentioned in the
choose-variable-values window only if one of the specified site options is present in the
currently loaded site table. :unless means that the option should be offered only if none
of the specificd site options is loaded.

Each option may have an :if restriction and an :unless restriction.

Elimination of options from an alist according to their restrictions is done by tv:prune-
user-option-alist, calling which is up to you.

restriction-type may also be :never. Then the option is never offered to the user to
change, but it will still be reset and written with the other options.

tv:prune-user-option-alist alist
Returns an alist containing only some of the elements of alist, lacking those that are
suppressed by restrictions, or that offer only a single alternative. (The latter is likely to
happen with a site-menu-alist user option if a given site allows only one of the possible
alternatives.)

write-user-options alist stream
For cach option variable in alist whose current value is not equal to its default initial
value, a form is printed to.stream that will set the variable to its current value. The form
uses login-setq so it is appropriate for putting into an init file.

SRCKI.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 207 Mouse-Sensitive Type Out

14.4 Mouse-Sensitive Type Out

The mouse-sensitive items facility is a feature somewhat related to the choice facilities
described above. It is similar in its appcarance to the user, but quite different in the way it is
interfaced to by a program. Mixing tv:basic-mouse-sensitive-items into a window flavor equips
the window with mouse-handling according to the paradigm described in this scction. Mouse-
sensitive items are something you use when defining your own window, rather than a complete,
stand-alone facility, and consequently do not have an "easy to use” functional interface.

For an cxample of mouse-sensitive items, try the C-X C-B (List Buffers) command in the
editor. ‘Try moving the mouse over the list of buffers and clicking the right-hand button.

The word "typecout” appears here and there in the mouse-sensitive items facility for historical
reasons. Often mouse-sensitive items are typed out on top of some other display, such as an
editor buffer. However, the mouse-sensitive-item facility has nothing to do with the typeout-
window facility. At this point it would be a fairly big incompatible change to fix this.

tv:basic-mouse-sensitive-items _ Flavor

Mixing this flavor into a window provides for areas of the screen which are sensitive to
the mouse. Moving the mouse into such an arca highlights the area by drawing a box
around it. At this point clicking the mouse performs a uscr-defined operation. This flavor
is called basic because it fixes the handling of the mouse by the window; it will not. work
to mix it with another flavor that expects to define some other kind of mouse handling.
However it is less basic than many basic flavors in that it does not do anything special
with the displayed image of the window.

A mouse-sensitive item has a fype, which is a keyword which controls what you can do to it,
an item, which is an arbitrary Lisp object associated with it, and a rectangular arca of the
window. Typically something is displayed in that area at the same time as a mouse-sensitive item
is created, using normal strecam output to the window. Unlike things such as menu items, these
mouse-sensitive items are not a permanent property of the window; they are just as ephemeral as
the displayed text and go away if you clear the window or if typeout wraps around and types
over them. Of course, if you don’t type out more items and text than fit in the window, and
never clear the window, then they will be permanent.

Associated with each type is a set of operations that are legal to perform on items of that
type. One of these operations is sclected as the default. The tviitem-type-alist instance variable
is an alist that defines these. This alist is composed of elements of the following form:

(type left-button-alternative ’

documentation

(string . alternative) ;A menu item
(string :value alternative) ;Another menu item
menu-item. . .) :More of them

documentation is the string to be displayed in the who line while the mouse is pointing at an item
of this type. The menu items may also have documentation strings in them. documentation may
also be a list of the form

(doc-function label-finction) ‘
where doc-function is a function that, when applied to a mouse-sensitive item, returns a
documentation string, and label-function is a similar function that returns a string to use as the

SRCKL.WIND>CHOICE.TEXT.93 8-AUG-83

Mouse-Sensitive Type Out 208 Window System Manual

menu label, to identify the item that the menu is going to apply to.

Here is part of the item type alist used in typcout windows of editor windows:
((zwei:directory zwei:directory-edit-1
"Left: Run DIRED on this directory. Right: menu of View, Edit."
("View" :value zwei:view-directory
:documentation "View this directory")
("Edit" :value zwei:directory-edit-1
:documentation
"Run DIRED on this directory."))
(zwei:file zwei:find-defaulted-file
"Left: Find file this file. Right: menu of Load, Find, Compare."
("Load" :value zwei:load-defaulted-file
:documentation "LOAD this file.")
("Find" :value zwei:find-defaulted-file
:documentation "Find file this file.")
("Compare" :value zwei:srccom-file
:documentation .
"Compare this file with the newest version."))
(zwei:flavor-name zwei:edit-definition-for-mouse
"Left: Edit definition. Right: menu of Describe, Edit." -
("Describe" :value zwei:describe-flavor-internal
:documentation "Describe this flavor.")
("Edit" :value zwei:edit-definition-for-mouse
:documentation "Edit definition.")))

When an item is clicked on with the mouse, a blip which is a list of the form
(:typeout-execute alternative item)
is placed in the window’s input buffer. item is the datum supplied when the item was
constructed, whose purpose is to identify which item was clicked on, and alternative is obtained
by looking up the type of the item in the window’s item-type-alist.

If the item is clicked on with the left mouse button, the lefi-button-alternative is used in the
‘typeout-execute blip. If the item is clicked on with the right button, the menu items are put
into a menu, and the user chooses one. The value returned by the :choose operation is used as
the alternative in the :typeout-execute blip. Clicking on an item of a type that is not one of the
alternatives in the item-type-alist just beeps. ‘

For the Load alternative on a file item in the editor, the blip might be
(:typeout-execute zwei:load-defaulted-file
#cfs:logical-pathname "SYS: SYS; QFCTNS LISP">)

:1tem-type-alist ' Operation on tv:basic -mouse-sensitive-items
:set-item-type-alist Operation on tv:basic -mouse-sensitive-items
new-item-type-alist .
Return or set the item type alist of the window.

SRCKL.WINID>CHOICE. TEXT.93 §-AUG-83

Window System Manual 209 Mouse-Scnsitive Type Out

:item-type-alist alist Init option for tv:basic-mouse-sensitive-items
Initializes the itcm type alist of the window.

tv:add-typsout-item-type Special form

The special form

(tv:add-typeout-item-type alist type name function

default-p documentation)

is used to declare information about a mousc-sensitive item type by adding an entry to an
alist kept in a special variable. This alist can then be put into the item-type alist of a
mouse-sensitive window, for instance using the :item-type-alist init-plist option. Nete
that each possible alternative for a particular mouse-sensitive item type is defined with a
scparate tv:add-typeout-item-type form; this allows each alternative to bc defined at the
place in the program where it is implemented, rather than collecting all the alternatives
into a separate table. It also allows new alternatives to be added in a modular fashion.

alist is the special variable containing the alist. You should defvar it to nil before
defining the first item type. Each program that uses mousc-sensitive items has its own
alist of item types, so that there is no conflict in the names of the types. type is the
keyword symbol for the type being defined. name is the string that names the operation
and alternative is the representation of the alternative (the object to be put in the second
element of the :typeout-execute blip). default-p is optional; if it is supplied and non-nil,
it means that this operation is the default performed when you click the left button on an
item of this type. documentation is optional but highly recommended; it is a string that
documents what function does. When the user points the mouse at an item of this type,
the documentation line at the bottom of the screen will give the documentation for the
default function (reachable by the left button) and a list of the functions in the menu
(reachable by the right button). If the user clicks right, calling for a menu, then the
documentation for whichever function in the menu he points the mouse at will be
displayed.

alist, type, and function are not evaluated. name, default-p, and documentation are
evaluated.

In the editor, alternative is interpreted (when a :typeout-execute blip is read) as a
function to be called, and the tv:add-typeout-item-type form is typically placed right
before the function definition of alternative.

These are the operations used to print items on a window.

:item fype item &rest format-args Operation on tv:basic -mouse-sensitive-items
A new item ifem of type fype is printed, ecither by calling format with format-args, or by
princ’ing item if format-args is nil.

The mouse-scnsitive area of the item is whatever space is used up by printing it, as
judged by the motion of the cursor.

The arguments item and #ype is not necessarily used in printing the item, but they are
used in handling a click on the item. fype is used to look up a function in the item type
alist, and item is placed directly into the :typeout-execute blip.

SRCKIL.WIND>CHOICE.TEXT.93 8-AUG-83

Margin Choices 210 Window System Manual

Example:

(send standard-output ':item 'zwei:file pathname)
in the editor, where standard-output is a window that supports mouse-scnsitive items,
will princ the value of pathname and make an item of type zweifile whose datum is

that pathname.
cprimitive-item Operation on tv:basic-mouse-sensitive-items
type item left top right botiom
:primitive-item-outside Operation on tv:basic -mouse -sensitive -items

type item left top right bottom
This operation is used to define a mouse-sensitive item without printing it. (Presumably
you print it yoursclf, either before or after.) The fype and item are used as in the :item
operation. The remaining arguments are coordinates that describe the four edges of the
mouse-sensitive rectangle.

In :primitive-item, the four coordinates are relative to the inside top left corner of the
window (that is, they are cursor positions such as :read-cursorpos would return). In
:primitive-item-outside, they are relative to the outside corner of the window (like values
of the instance variables tv:cursor-x and tvicursor-y).

citem-1ist 1ype list Operation on tv:basic - mouse-sensitive -items
Several items are printed, arranged neatly in columns, one for each element of list. An
element of /list can be either a string or a list (name . item). In the latter case, name
(typically a string) is printed with princ, and item is used as the datum for the item. If
the clement is an atom, that atom serves both to be princ’d and used as the datum. All
the items are of type type.

:mouse-sensitive-item x y Operation on tv:basic-mouse-sensitive-items
Returns a list describing the mouse-sensitive item found at cursor position x, y in the
window, or nil if there is none there.

The list looks like this:

(type item left top right bottom)
The fype and item are as specified in the :item operation and the coordinates are cursor
positions (that is, relative to the outside top left corner of the window).

14.5 Margin Choices

A window can be augmented with choice boxes (see page 190) in its bottom margin using the
flavor tv:margin-choice-mixin. These give the user a few labeled mouse-sensitive points that are
independent of anything else in the window.

Margin choices are not a complete, stand-alone choice facility and consequently do not have
an "easy to use" functional interface.

For an cxample of a window with margin choices (as well as choice boxes in its interior), try
the editor command Meta-X Kill or Save Buffers.

SRCKL.WIND>CHOICE.TEXT.93 8-AUG-83

Window System Manual 211 Margin Choices

tv:margin-choice-mixin Flavor
Puts choice boxes in the bottom margin, according to a list of choice-box descriptors
which can be specified with the :margin-choices init-plist option or the :set-margin-
choices operation. A choice-box descriptor is a list, (name state function xI x2). 1t is
legal to use a longer list as a choice-box descriptor and storc your own data in the
additional elements,

name is a string that labels the box. state is t if the box has an "X" in it, nil if it is
empty. x/ and x2 are used internally to remember where the choices boxes are; they are
always spread out evenly in the available width.

function is a function that is called in a separate process if the user clicks on the choice
box. It reccives three arguments: the choice-box descriptor for the choice box, the
"margin region” that contains the choice boxes, and the y-position of the mouse relative
to this window. You probably want to ignore the last two arguments. When function is
calied, self is bound to the window, so function may usc (declare {:self-flavor flavor)) to
access the window’s instance variables. The structure access functions tv:choice-box-
name and tv:choice-box-state may be of use inside fiunction (they are just more specific
names for car and cadr). If function changes the state of the choice box, it will need to
refresh the choice boxes by doing
(funcall (tv:margin-region-function region) ':refresh region)

where region is its second argument, which is why that argument is passed.

tv:margin-choice-mixin contains tv:margin-region-mixin as an included flavor; this
means approximately that tv:margin-region-mixin will appear in any combination right
after tv:margin-choice-mixin if it is not explicitly specified to appear somewhere else.
The position of tv:margin-region-mixin controls where the choice boxes appear in
relation to.the other margin items (borders, labels. etc). See chapter 11, page 129.

:margin-choices choices Init option for tv:margin-choice-mixin
choices is a list of choice-box descriptors, described above. A line of choice-boxes will
appear in the bottom margin of the window. If choices is nil, there will be no choice
boxes and no space for them in the bottom margin; however, the window will still be
capable of accepting the :set-margin-choices operation to create a line of choice boxes
later. '

:set-margin-choices choices Operation on tv:margin -choice-mixin
Changes the set of margin choices according to choices, which is nil to turn them off or a
list of choice-box descriptors, described above. If the choice boxes are turned on or off, -
the size of the window’s bottom margin will change accordingly. '

tv:margin-choices _ Instance variable of tv.margin-choice-mixin
A list of margin choices, or nil.

To get a menu with margin choices, it is best to use tv:menu-margin-choice-mixin (page
189), which goes to a little extra trouble to interface the margin choices to the menu.

SRCKIL.WIND>CHOICE.TEXT.93 8-AUG-83

Typcout Windows ' 212 Window System Manual

15. Typeout Windows

Typeout windows are a facility provided to make it casier for a program that normally displays
a single updating picture to print a stream of unrelated output from time to time,

For example, Zmacs windows normally present a continuously updated display of an editor
buffer. But some editor commands are designed to print output, such as a dircctory listing from
Control-X Control-D or a list of buffers from Control-X Control-B. This output cannot
conveniently be printed on the editor window itscif, since that window is set up to maintain its
standard display of an editor buffer and is no longer suitable for displaying anything else.
Instcad, the output is printed on a special kind of window called a typeout window, which exists
as an inferior of the editor window. Other programs that maintain updating displays, such as the
inspector and Peck, also use typeout windows for this purpose.

A typeout window is an inferior of another window such as the ecditor or Peck display
window, and "grows” over its superior as output is done on it. The output starts at the top of
the typeout window, which is also the top of its superior, and procecds downward. The typeout
window always keeps track of how far down output has proceeded, so that the superior window
can eventually find out how much of its permanent display has been clobbered by the typeout
window and thereforc needs to be redisplayed. A horizontal line or "window shade" appears just
below the point of lowest output, to enable the user to scparate the typecout from the remains of
the permanent display. If output to the typeout window proceeds far enough, it wraps around to
the top of the screen. Then the typeout window records that the entire superior has been
clobbered and no longer displays any horizontal line.

tv:basic-typeout-window Flavor
This is the basc flavor for all kinds of typeout windows. It is actually just a mixin, not

instantiable by itself.

tv:typeout-window Flavor
(tv:basic-typeout-window tv:notification-mixin tviwindow)
This is the flavor normally used for actual typeout windows.

tv:typeout-window-with-mouse-sensitive-1items Flavor
(iv:basic-mouse -sensitive-items iviiypeout-window)
This flavor of typeout window also provides the :item operation, for including mouse-
sensitive rectangles among the typeout. See page 207.

:bottom-reached Operation on tv:basic -typeout-window
Returns the greatest y-position clobbered by the typcout window. This is a cursor
position, relative to the typcout window. The horizontal line (typcout window border),
when cnabled, appears at this position, provided it is not zero or equal to the inside
bottom of the window.

The value is nil when the typeout window is not active.

SRCLL.WIND>TYPOUT. TEXT.17 8-AUG-83

Window System Manual 213 Activation and Deactivation

The typeout window has an instance variable tv:bottom-reached, but this method does
not simply return the value of the instance variable.

tv:*enable-typeout-window-borders* Variable
When this variable is non-nil, a horizontal line is used to indicate the bottom of the area
used by the typcout window. No line appears when the typcout window has used its
entire area (if it has wrapped around or done a :clear-screen). When this variable is nil,
the horizontal linc does not appear. The default value is t.

15.1 Activatioﬁ and Deactivation

A typeout window is deactivated when not in use. Any attempt to output to it automatically
activates and exposes it because its deexposed-typeout-action is (:expose-for-typeout).

:expose-for-typeout " Operation on tv:basic-typeout-window
Sent in order to prepare the typeout window to be typed out on. The typeout window
marks itself "exposed” while leaving the bits of its superior on the screen. It initializes
itself as "empty" and its bottom-reached as zero. It also finds a suitable ancestor and
makes itself that ancestor’s selection substitute. In normal use, this typically causes the
typeout window to become selected.

;active-p Operation on tv:basic -typeout-window
Returns non-nil if the typeout window is active, which is the case if and only if typeout
is currently visible in it. ' ' o

Exposing the typeout window automatically causes it to become the selection substitute of one
of its ancestors (see section 3.3, page 37). Just which ancestor is determined according to the
situation; it is the -nearest ancestor in the existing path of selection substitutes. This is the nearest -
ancestor that can be used for the purpose and actually make the typeout window be selected. It
is the typeout window’s direct superior only if that superior is selected. For example, if you type
Meta-X in Zmacs and then type Help, the help message will print on the main editor window’s
typeout window, but that editor window is not selected (the minibuffer is). So the typeout
window will substitute for the editor frame rather than for the nonselected editor window
immediately above it.

When the program wants to make the typeout go away and put back its standard display, it
must first deactivate the typeout window with the :deactivate opcration.

When the typeout window is deactivated, it sends a :remove-selection-substitute message to
whichever ancestor it had decided to substitute for. As a result, if the typeout window is still that
ancestor’s selection substitute, the substitute is set back to what it had been before the typeout
window was exposed. If the ancestor’s substitute has been changed since then, it is left alone.

The purpose of making the typeout window a selection substitute is primarily to make its
cursor blinker blink. A typcout window by default shares the input buffer of its superior, so
which of them is selected has no effect on reading keyboard input. A separate feature of typeout
windows turns the superior’s blinkers off complctely while the typeout is- exposed.

SRCKL.WIND>TYPOUT. TEXT.17 8-AUG-83

Superiors of Typeout Windows 214 Window System Manual

15.2 Superiors of Typeout Windows

To make a window possess an inferior typeout window, include the flavor tv:essential-
window-with-typeout-mixin in it. This causes a typcout window to be created and provides the
methods to handle communication with the typeout window.

tv:essential-window-with-typeout-mixin Flavor
This is the basic mixin that gives a window the ability to manage a typeout window as its
inferior.

tv:window-with- f.ypeout -mixin Flavor

(tv:no-screen-managing-mixin tv:essential-window-with -typeout- mixin)
This is what you typically use, rather than tviessential-window-with- -typeout-mixin,
because it prevents screen management of this window’s inferiors from getting in. the way
of the operation of the typeout window.

tv:typeout-window Instance variable of tv:essential-window-with -typeout-mixin
This window’s typeout window.

:typeout-window Operation on tv:essential ~window - with - typeout - mixin
Returns the value of the instance variable tv:typeout-window, which is the typeout
window associated with this window.

:typeout-window Init option for tv:essential-window-with -typeout-mixin
(flavor-name options...)
This init option specifies what kind of typeout window to create. The car of the value is
the name of flavor of typeout window to use, and the cdr is a list of alternating options
and values to pass to make-instance.

If the option is not specified, or is nil, no typeout window is actually created.

The tv:basic-typeout-window flavor provides for dacmons and wrappers that cause the
‘mouse-moves and :mouse-buttons messages to get passed either to the typeout window or to
its superior, depending on whether the typcout window has grown down to where the mouse is.

:turn-on-blinkers-for-typeout v
Operation on tv:essential -window-with -typeout-mixin

Sent to the superior of a typeout window when the mouse moves into an area that the
typeout window is not using, this opcration should make visible any blinkers that are
associated with the wuse of the mouse. The definition actually provided by the flavor
tviessential -window-with -typeout-mixin does nothmg, this operation exists so that you
can add dacmons to it.

sturn-off-blinkers-for-typeout
-Operation on tv:essential -window - with -typeout - mixin

Sent to the superior of a typeout window when the mouse moves into the area used by
the typcout window, this operation should turn off any blinkers that were turned on by

SRCALLWIND>TYPOUT.TEXT.17 8-AUG-83

Window System Manual 215 Delaying Redisplay After Typeout

turn-on-blinkers-for-typeout. The definition actually provided by the flavor
tviessential -window-with -typeout-mixin does nothing; this operation exists so that you
can add daemons to it. '

A typcout window does **MORE#= processing if and only if that is enabled for its superior.
The usual motivation for using a typeout window is that the superior is to be used for something
other than sequential output; therefore, **xMORE** processing is usually not desircd on the
superior. However, it is not desirable to simply disable **MORE *x processing for the superior
because this disables it for the typeout window as well and because the user could reenable it for
both windows with Terminal M.

:more-p Operation on tv:basic - typeout - window
:set-more-p new-more-p Operation on tv:basic -typeout-window
These operations are passed along to the superior, so that the user who types the
Terminal M command need not be aware of the distinction between the typeout window
and its superior.

tv:intrinsic-no-more-mixin Flavor
This mixin, intended for use in superiors of typeout windows, prevents *+*MORE##
processing unconditionally without saying that it is "disabled”. Programs and the user can
think they can enable and disable **MORE=** processing for the window using the the
‘more-p and :set-more-p operations, and the Terminal M command, but only the
typeout window is affected.

An alternative way to accomplish this is as follows:

(defmethod (my-disp]ay—window—with-typeout-window
:more-exception)

0 -
(setf (tv:sheet-more-flag) 0))

15.3 Delaying Redisplay After Typeout

The typeout window superior must know how to check before redisplaying to find out
whether part of its last display has been overwritten by the typeout window and therefore must be
redisplayed. To find out how much screen height the typeout window has used, use the ‘bottom-
reached operation on it. The typeout window must also be deactivated so that more typeout,
happening after the redisplay, will work properly.

Here is an example which is how general scroll windows do this:

SRCKL.WIND>FYPOUT. TEXT.17 8-AUG-83

Delaying Redisplay After Typeout 216 Window System Manual

(defmethod (tv:scroll-window-with-typeout-mixin
:before :redisplay)
(&rest ignore)
(when (funcall tv:typeout-window ’:active-p)
(let ((br (min tv:screen-lines
(1+ (truncate (send tv:typeout-window
':bottom-reached)
tv:line-height)))))
:; br is the number of lines of our display
;; that were clobbered by typeout.
(funcall tv:typeout-window ’:deactivate)
(dotimes (1 br)
;3 Mark lines as clobbered
(aset nil tv:screen-image 1 0)
(aset -1 tv:screen-image 1 1)
(aset -1 tv:screen-image 1 2))
;; Erase the clobbered area.
(send self ’':draw-rectangle
(tv:sheet-inside-width)
(+ br tv:line-height)
00
tv:alu-andca))))

The editor normally updates its display after each command. But after a command that prints
typeout, it is important not to update the permanent display right away, because that would make
the typeout disappear almost as soon as it appcared. The same consideration applies to other
programs that use typeout windows. '

The convention in this situation is that after a command that has produced typeout, redisplay
should be delayed until the user types another input character. If that character is a space, it is
discarded. Otherwise, it is interpreted as a command.

The way the program should decide whether to wait before redisplaying is to invoke the
iincomplete-p operation on typeout window. This reads a flag that is set whenever output is
done on the typeout window and can be cleared by the program’s command loop between
commands. Thus, the flag indicates whether the typeout window was used during the last
command.

Here is a sample piece of code that illustrates this technique:

SRCKLWINDYTYPOUT.TEXT.17 8-AUG-83

Window System Manual 217 Delaying Redisplay After Typeout

(let ((standard-output typeout window))
(do forever
;» Clear the flag.
(send standard-output ':make-complete)

;; Read and execute onc command.
(process-command (send standard-input ’':tyi))

(when (send standard-output ’:incomplete-p)
;; If this command printed some typeout,
;; delay redisplay by waiting for next input char.
(let ((ch (send standard-input ':tyi)))
(unless (eq ch #\sp)
;s Anything but Space, execute as a command,
;; Since Space is not untyi’d, it allows
;; immediate redisplay.
(send standard-input ':untyi ch))))

;; Here is where we redisplay after each command.
(unless (send standard-input ’':listen)
;» Normal redisplay must deactivate the typeout window;
;; see the previous example.
(redisplay-normal-display))))
Note that this command loop follows the editor’s practice of not redisplaying when there is input
available. As a result, when the character read is not a Space, the :untyi causes redisplay to be
prevented by the presence of input. Then the same character is read again at the top of the loop
and processed as a command. If this command too prints typeout, its typeout will add on to that
already on the typeout window. If this command does not print typeout, the old typeout will be
erased after it is done.

:incomplete-p . Operation on tv:basic -typeout-window
Returns the window’s incomplete-flag: t if the command loop should wait for the next
character before deactivating the typeout window.

tv:incomplete-p Instance variable of tv:basic-typeout-window
The window’s incomplete-flag: t if the command loop should wait for the next character
before deactivating the typeout window.

:make-complete ' Operation on tv:basic -typeout-window
Clears the incomplete-flag. The command loop can use this to clear the flag after
examining it

Certain functions such as fquery perform this opecration on the 170 stream to tell the
program not to wait before redisplaying, as it normally would do. The idea is that the
fquery question is not worth prescrving on the screcn once the user has answered it.

SRCKL.WIND>TYPOUT.TEXT.17 3-AUG-83

Delaying Redisplay After Typeout 218 Window System Manual

:make-incomplete Operation on tv:basic -typeout-window
Sets the incomplete-flag. All the standard output stream operations also do this.

SRCKI.WINDYTYPOUT.TEXT.17 8-AUG-83

Window System Manual 219 Text Scroll Windows

16. Text Scroll Windows

Text scroll windows provide a simple means of maintaining a display of a number of lines of
the same type with scrolling. For cxample, they arc used by the inspector to display the slots of
a structure. (Sce chapter 17, page 228 for a more general kind of scroll window.)

tv:text-scroll-window Flavor
This is the base flavor for all kinds of text scroll windows. It is not instantiable by itself.

A text scroll window updates its display based on a sequence of items. Each item gencrates
one line of display. An item can be any Lisp object, and how it displays is controlled by how
you define the :print-item operation. For example, you could define this opcration to do a
'string-out; then the items would have to be strings. By default, :print-item uses the function
prin1, so each item is a Lisp object to be printed.

:print-item item line-no index Operation on tv:text-scroll-window
Displays item, which should be the indexth item of those currently displayed, at the
current cursor position in the window, which should be on line number line-no of the
window.

This operation is the primitive used by all other text scroll window operations to do
output of items. As defined by tv:itext-scroll-window, it just does prin1 of item,
ignoring the other arguments. Other flavors built on tv:text-scroll-window are expected
to redefine this operation.

In any case, no item may print out as more than one line. This is enforced by truncating
output at the margin, .

16.1 Specifying the Item List

In simple use, you specify an array of items to be displayed, or a list of items (which is
converted into an array). Items are referred to sometimes by their indices in the array. A more
sophisticated technique is to specify an item generator, which is a function that simulates the
effect of a possibly very large array of items without requiring you to actually create the array.

tv:items Instance variable of tv:text-scroll-window -
The array whose elements are the items to be scrolled through. The index of an item in
this array is called the index of the item. This array contains the entire set of items to be
scrolled through, not just those that are on the screen at any time.

tv:top-item ~ Instance variable of tv:text-scroll-window
The index of the first item currently being displayed (on the first line of the window).
This is how ;he current scroll position is remembered.

SRCKL.WIND>TSCROILL.TEXT.37 8-AUG-83

Specifying the Item List 220 Window System Manual

The flavor tv:text-scroll-window provides these operations:

:items , Operation on tv:text-scroll -window
Returns the window’s array of items.

:set-1tems new-items Operation on tv:text-scroll-window
Sets a new array of items. new-ifems may be a suitable array (it should have a fill
pointer), or a list of items (an array is made from it), or a number of itcms (the array is
made that long, but initially empty).

The item-gencrator of the window is set to nil, turning off that feature, so that the array
of items will actually be used.

:top-item Operation on tv:text-scroll-window
:set-top-item new-rop-item Operation on tvitext-scroll-window
The top-item is the index of the item to be displayed on the first line of the window.

:number-of-items Operation on tv:text-scroll-window
Returns the number of items this window is currently scrolling through.

:number-of-item item : Operation on tv:text-scrolt-window
Returns the item number (index) of item. '

:item-of-number index : Operation on tv:text-scroll -window
' Returns the item at index index.

:last-1tem : Operation on tv:text-scroll-window
Returns the value of the last item to be scrolled through (that is, the one whose index is
one less than the number of items).

:put-item-in-window item Operation on tv:text-scroll -window
:put-last-item-in-window Operation on tv:text-scroll-window
Scroll the window so that the specified item, or the last item, appears on the screen. The
argument ifem is an item value, not an index.

:delete-1tem index _ Operation on tv:text-scroll-window
Modifies the list of displayable items, removing the item at index, and updates the screen
if that index is within the portion currently displayed.

sinsert-item index item Operation on tv:text-scroll -window
:append-item item o Operation on tv:text-scroll-window
Add a new item item to the list of items to be displayed, cither at index index (before
the item currently at that index) or at the end.

The following auxiliary operations are also defined.

SRCKLLWIND>TSCROL.TEXT.37 8-AUG-83

Window System Manual 221 Bells and Whistles

:redisplay start end Operation on tv:text-scroll-window
This is the internal function that causes a :print-item message to get sent for each line in
the range start to end, which are screen line indices. It should not be redefined, but
daemons may be placed on it to note changes in the screen layout.

:scroll-redisplay new-top delta Operation on tv:text-scroll-window
This is the internal scrolling function that causes partial redisplay with bitblting and then
sends a :redisplay message for the rest. new-rop is the new tv:itop-item, and delta the
number of lines actually to be scrolled. This operation should not be redefined, but
dacmons may be placed on it. .

The operations :scroll-bar-p, :scroll-position, :scroli-to, and :new-scroll-position are also
defined for interface with the scroll bar. Other scrolling commands can also use them.

16.2 Bells and Whistles

Function text scroll windows provide for you to change dynamically the function used to
display items. These windows have an instance variable which holds the function to be used. The
inspector uscs this feature so that each data type you can inspect can be handled in an
independent manner, with its own conventions for what an item means,

tv:function-text-scroll-window (tv:text-scroll-window) Flavor
An instantiable function text scroll window.

tv:print-function Instance variable of tv:function-text-scroli-window
This is the function to be called to display an item. See page 224 for an example of a
print function, taken from the inspector.

tv:print-function-arg Instance variable of tv:function-text-scroll-window
This is an additional argument to be passed to the print function. The print-function’s
complete list of arguments are the item itself, the value of tv:print-function-arg, the
window, and the item number.

:print-function fiunction Init option for tv:function-text-scroll-window -
iprint-function-arg arg 7 Init option for tv:function-text-scroll-window
Initialize the corresponding instance variable.

:print-function Operation on tv:function -text-scroll-window
:print-function-arg Operation on tv:function -text-scroll-window
:set-print-function function Operation on tv:function-text-scroll-window
:set-print-function-arg arg Operation on tv:function -text -scroll-window

Get or set the corresponding instance variable.

:setup list Operation on tv:function -text -scroll-window
list is a list of the form

SRCKL.WIND>TSCROL.TEXT.37 8-AUG-83

Item Generators 222 Window System Manual

(print-function print-function-arg

(item...)
top-item-number
label

item-generator)
As you can see, it specifies everything rclevant to telling the window what items to
display and how to display them. label is passed to the :set-label operation.

It is not useful to specify both a list of items and a non-nil ifem-generator, since the list
of items is not used if the item-generator is non-nil.

The display is updated by this operation.

Since a text scroll window updates a display according to a fixed pattern, it is often uscful for
it to have an inferior which is a typeout window, for the sake of occasional output that is not
part of the standard display (such as, the output for Help in the inspector).

tv:text-scroll-window-typeout-mixin (tv:window-with-typeout-mixin) Flavor
This can be added to a flavor containing tv:text-scroli-window and provides a typeout
window. It also arranges for proper interaction with the typcout window and partial
redisplay over the area it clobbers.

:flush-typeout Operation on tv:text-scroll-window-typeout-mixin
If the typeout window is active, this deexposes it, and makes sure that redisplay knows
that the lines have been clobbered.

tv:text-scroll-window-empty-gray-hack Flavor
This is a mixin that goes with tv:text-scroll-window. When windows of this type have
an empty array for tviitems, or an item generator that says the number of items is zero,
the interior of the window becomes gray.

This is used in some panes of the window-based debugger frame.

1L Y Yéarme £lan 4 we
100 1w yJ &

The item generator feature is how the inspector can scroll through the elements of a large
array without having to cons up another equally large array of items.

tv:item-generator Instance variable of tv:text-scroll-window
The item generator function, or nil if no item generator is in use. The item generator is
a function which simulates the effect of an array of items. It overrides any cxplicit array
of items; the value of tv:items will still be an array, but it will not affect the display.

:item-generator : Operation on tv:text-scroll-window
:set-item-generator new-item-generalor Operation on tvitext-scroll-window
Get or set the window’s item-generator. ’

SRCKL.WIND>TSCROL.TEXT.37 8-AUG-83

Window System Manual 223 ‘ Item Gencrators

The :set-items operation sets the item generator to nil, since if you want to use an explicit
list of items, you must not want the item gencrator to cause them to be ignored.

The item generator function should expect its first argument to be an item generator operation
keyword. These are the keywords defined:

:number-of -items
Returns the number of items to scroll through (the equivalent of the fill pointer in
an actual array of items).

:number-of-item item
Returns the index of the specified item. If an actual array were in use, this
would be the index in the array where item is found.

sitem-of -number index
Returns the item at index index. If an actual array were being used, this would

be the index’th element of the array.

linsert-item index item
Insert a new item item, before the one at index index. If an actual array were in
use, this would be done by moving the following elements down. The item
generator need support this only if you wish to use the :insert-item or :append-
item operation on the window.

:delete-item index :

Delete the item at index index. The following items move to lesser indices. The
item generator need support this only if you wish to use the :delete-item
operation on the window.

The inspector uses an item generator to display the elements of an array, so that it does not
have to create another array of items as big as the array being displayed. If / is the length of the
array’s leader, then item numbers 0 through /-1 correspond to the leader, and item number
1 + i corresponds to array element ; (multidimensional arrays being treated as one-dimensional).

The value of the item at item number » is just n. In other words, the virtual array of items
that the item generator simulates is an array of consecutive integers, independent of the data
being displayed. This may seem to be a weird way of doing things, but consider this: we do not
want the line for the / th element to print out as simply that element. We want it to contain the
number i as well. So the item value is simply / + i, and the :print-item operation is redefined
to "print" such a number by printing i followed by the ith array element.

Here is a simplified version of the item generator used by the inspector. Note that the array
whose elements are being displayed is found as (car print-function-arg), and (cadr print-
function-arg) is non-nil if the leader should be displayed. tv:print-function-arg is an instance
variable from the flavor tv:function-text-scroll-window; see page 221.

SRCKL.WIND>TSCROL.TEXT.37 8-AUG-83

Item Generators 224 Window System Manual

(defselect inspect-array-item-generator
(:number-of-items ()
(declare (:self-flavor tv:basic-inspect))
(+ (if (cadr tv:print-function-arg)
(or (array-leader-length (car tv:print-function-arg)) 0)
0) '
(array-length (car tv:print-function-arg))))
(:number-of-item (item)

item) :; The item’s number is the item!
(:item-of-number (number)
number)) ;; The number’s item is the number!

sinsert-item and :delete-item are not supported, since the inspector does not try to insert or
dclete items.

The inspector uses a tv:function-text-scroll-window (see page 221) so :print-object is
handled by calling a dynamically changeable prins-function. Here is a simplified version of the
print-function uscd by the inspector when displaying an array.

(defun inspect-array-printer
(item arg window
&aux (array (car arg))
(1eader-length-to-mention
(or (and (cadr arg) (array-leader-length array)) 0)))
;; arg is the value of tv:print-function-arg.
;; (car arg) is the array.
;; (cadr arg) is t to display the leader.
:: item is a number, as described above.
(cond ((< item leader-length-to-mention)
(format window "Leader ~D" item)
(format window ":~12T ")
(tv:print-item-concisely
(array-leader array item) window))
(t ,
(let ((item (- item leader-length-to-mention))
(rank (array-rank array))
indices) '
(or (= rank 1)
(setq indices
(array-indices-from-index array item)))
(format window "E1t ~D"
(if (= rank 1) item indices))
(format window ":~9T7 ")
(tv:print-item-concisely
(ar-1-force obj item) window)))))

SRCKL.WIND>TSCROL.TEXT.37 8-AUG-83

Window System Manual 225 Mouse Sensitive Text Scroll Windows

16.4 Mouse Sensitive Text Scroll Windows

tv:mouse-sensitive-text-scroll-window Flavor
Windows of this flavor allow the lines to contain mousc-sensitive items just like those of
tv:basic-mouse-sensitive-items (see page 207) though the implementation is different.

Note that the word "item" in "mouse-sensitive item" is completely unrclated in meaning
to the items of the text scroll window itself.

:item Operation on tv.mouse-sensitive-text-scroll-window
type item &rest format-args
All output to text scroll windows is done with the :print-item operation, which is
responsible for printing a single item. This operation can include mouse-sensitive items in
the output by using the :item operation, which is compatible with that of tv:basic-
mouse-sensitive-items (see page 209).

Note that the ifem argument here is the datum to identify the mouse-sensitive item, not
the text scroll window item being displayed on this line.

The :item-list and :primitive-item operations are not provided, since in this context they are
not really useful.

:iteml Operation on tv.mouse-sensitive-text-scroll-window
item type print-function &rest args
This is another way of outputting a mouse-scnsitive item. ifem and fype have the same
meanings as for the :item operation, but the output is done by calling print-function with
item, the window, and the elements of args as arguments.

The :item -operation used to do this, but it was changed for compatibility, and the old -
functionality renamed to :item1.

In a typical tv:basic-mouse-sensitive-items window, mouse-sensitive items are output on
specific occasions, and only because they are supposed to be present and mouse-sensitive at that
time. In a text scroll window, typically a single display is maintained at all times, but the parts
that should be sensitive to the mouse may need to depend on other things. For example, in the
inspector, normally the values of slots are sensitive, but when you are specifying a slot to store
into, the names of the slots are sensitive instead. ' .

tv:sensitive-1item-types Instance variable of tv:mouse-sensitive -text-scroll-window
The list of sensitive item types. A mousc sensitive item is sensitive to the mouse if its
type (as specified in the :item operation) is a member of this list.

t can also be used instead of a list; then all mouse sensitive items actually are sensitive. t
is the default value, so that this feature does not get in the way if you do nofsuse it.

SRCKL.WIND>TSCROL..TEXT.37 8-AUG-83

Mouse Sensitive Text Scroll Windows 226 W_indow System Manual

:sansitive-item-types © Operation on tv:mouse -sensitive -text-scroll-window
:set-sensitive-item-types Operation on tv:mouse-sensitive -text-scroll-window
new-item-types
Get or set the list of sensitive item types.

:sensitive-item-types Init option for tv:mouse -sensitive-text-scroll-window
item-types
Initializes the set of sensitive item types.

“The inspector’s print function shown in the previous section really docs its output using the
sitem1 operation so that the output becomes mouse-sensitive. Here is the real code for the cond-
clausc that handles leader clements:

((< item leader-length-to-mention)
(funcall window ’':iteml item ’leader-slot
#’(lambda (item window)
(format window "Leader ~D" item)))
(format window ":~12T ")
(funcall window ’:iteml (array-leader array item)
*:value #'tv:print-item-concisely))
leader-slot and :value are item types which the inspector makes mouse sensitive at various times.

When the mouse is clicked on a mouse sensitive item, a blip is placed in the window’s input
buffer. The blip looks like
(type item window mouse-character)
fype is the item type, such as leader-slot or :value, and item is the actual item value specified in
the :item or :item1 operation. window is the text scroll window itself. (This is how the inspector
can tell which inspect pane you click on.) mouse-character is a character whose %%kbd-mouse bit
is 1. It tells the program which button was clicked.

tv:line-area-text-scroll-mixin Flavor
This mixin, when added to tv:text-scroli-window, creates a "line area" ncar the left
edge where the mouse cursor changes to a rightward arrow and a click means something
different. The line area is an additional part of the left margin and docs not overlap the
space used for displaying the items.

You must also include the flavor tv:margin-region-mixin in the flavor combination you
instantiate.

A mouse click in the line arca puts a blip into the input buffer that looks like this:
(:1line-area item window button-mask)

button-mask is a mask of bits corresponding to mouse buttons; sec tv:mouse-last-

buttons, page 116, for how to interpret it.

:11ine-area-width number Init option for tv:line-area-text-scroll-mixin
Specifies the width of the line arca in pixels as number.

SRCKI.WIND>TSCROL.TEXT.37 8-AUG-83

Window System Manual 227 Mouse Sensitive Text Scroll Windows

:1ine-area-mouse-documentation Operation on tv:line-area-text-scroll-mixin
This operation should return a string to display in the mouse documentation line while the
cursor is in the line area.

tv:line-area-mouse-sensitive-text-scroll-mixin Flavor
This flavor should be used instead of tv:line-area-text-scroll-mixin if tv:mouse-
sensitive-text-scroll-window is in use.

tv:current-item-mixin Flavor
This flavor, when added to tv:line-area-text-scroll-mixin, identifies one of the items
with an arrow in the line-area. '

tv:currant-item Instance variable of tv:current-item-mixin
The item to be marked with an arrow, or nil if none. An arrow will mark this item if it
is on the screen, no matter where it scrolls to.

scurrent-item Operation on tv:current-item-mixin
:set-current-item item Operation on tv:current-item-mixin
Get or set the value of tv:current-item.

These flavors are part of the implementation of tv:mouse-sensitive -text-scroll-window.

tv:mouse-sensitive-text-scroll-window-without-click Flavor
This is a component of tv:mouse-sensitive-text-scroll-window that provides everything
but the :mouse-click method. Since this operation uses :or method-combination, it is not
possible to override a method once it is present.

tv:displayed-items-text-scroll-window Flavor
This flavor records additional information about the items that are actually displayed. It
provides an instance variable, tv:displayed-items, which is an array indexed by line
number. In this array, the :print-item operation can store any relevant information about
what was displayed on the line.

The meaning of elements of the array is not defined by this flavor. The :print-item
operation is responsible for storing whatever information is useful into the appropriate slot
of the array. However, this flavor does move elements of the array when scrolling is
done, and set them to nil when parts of the window are cleared, or when they are about
to be redisplayed.

This flavor is essentially a subroutine of tv:mouse-sensitive-text-scroll-window, which
uses each element of tv:displayed-items to hold information on the mouse-sensitive items
for the line.

tv:displayed-items Instance variable of tv:displayed -items-text-scroll-window
The array of information about lines on the screen.

Despite all this hair, no window yct devised is as mouse-sensitive as my mother.

SRC:KL.WIND>FSCROL.TEXT.37 8-AUG-83

General Scroll Windows 228 Window System Manual

17. General Scroll Windows

General scroll windows are used to put up a continuously-maintained display of items, each
of which can vary in sizc. They arc used by Peek. General scroll windows (from now on called
simply scroll windows) arc not a gencralization or a building block of text scroll windows, but
rather an indcpendent facility.

The scroll window’s display is made up of items. These items are not the same as items in
text scroll windows; the same term is used because they fit in a similar place in the scheme of
things.

An item in a scroll window always occupies an entire line or scveral entire lines. An item can
be composed of sub-items which are juxtaposed vertically, cach sub-item occupying and filling up
some number of lines. The sub-items can in turn be composed of more items. New sub-items
can be dynamically added or deleted at any level, and the display is updated automatically to
match by moving lines around on the screen.

Eventually this process of subdivision must come to an end, with Jowest-level items made up
of entries, which are juxtaposed in a horizontal sequence.

An entry displays a single string or quantity, updating its display if the value changes. The
entry must record how to obtain a value to display, how to tell when the value has changed since
the screen was updated, and how to output the new value. A single entry can wrap around at
the right margin just like ordinary output. Entries can be added to and removed from an item
dynamically.

In Peck’s Active Processes display, there is a single item that displays the entire set of -
processes. It is composed of sub-items, one for each process. If a new process appears, a new
sub-item is created to display it. The sub-item for a single process is a lowest-level item. Each of
the things displayed about a process—its name, its run state, its priority, its percentage use of the
cpu—is displayed by a single entry in that item.

The line of column headings at the top of the display is also a lowest-level item; its entries

rhcn]m/ constant qtrmoc

Every character displayed on a scroll window comes from an entry. The items serve only to
group entries, and to control the automatic insertion and deletion of entries.

Entries can be either fixed or variable width. A variable width entry takes up as much space
as is needed to print its data; this can change when the window is redisplayed. When that
happens, the remaining entrics in the item all have to move left or right. A fixed width entry
specifies an amount of horizontal space and always occupics that much space. As a result, it can
be redisplayed without redisplaying the rest of the item afterward. The cntries used in the Active
Processes display are all fixed-width so that they will line up in columns

Note: if the entry specifies a fixed width and the printing of its contents goes past that
width, the window redisplay algorithm will be confused.

SRCKL.WIND>TSCROL.TEXT.37 8-AUG-83

Window System Manual 229 _ Specifying Items and Entries

The data structure that represents an item is either a list or an array. If it is a list, its cdr is
a list of component itcms, and its car contains information on how to update the list (add or
remove component items). Then the item is displayed simply as the concatenation of its
components. If it is an array, then it is a lowcst-level single-line item, and the clements of the
array represent entries on the line. The array also has leader slots whose meanings are described
below.

17.1 Specifying Items and Entries

You do not generally create an array item or an entry yourself, They are made by calling the
function tviscroll-parse-item, which is given a descriptive data structure made out of lists.
Examples of its use are at the end of this section. ’

The arguments to tviscroll-parse-item are entry descriptors, each of which specifies how to
create one entry. The entries thus specified all go together into one item.

Here are the possible kinds of entry descriptors:

astring string

a list (:string string [width])
The entry is displayed by printing string. A string entry never varies, since it
always displays precisely the specified string, and-is always fixed width. The width
can be specified as a means of controlling the position of the following entry;
otherwisc, the actual width needed to print the string is the width of the item.

Example: either (:string "Foobar" 10.) or "Foobar " specifies an entry that
prints as Foobar followed by 4 spaces.

a list (:symeval symbol [width-or-nil] [format-string))
The entry is displayed by printing the value of symbol, by passing it to format
together with format-string. 1f format-string is omitted, the value is printed with
princ. This type of entry is automatically updated when the value of symbol
changes.

width-or-nil may be a number of pixels, to specify a fixed-width entry, or nil to
specify a variable-width entry.

Example:

(:symeval base nil " ~D, ")
specifies an entry that prints the value of base in decimal with a following period
and a space in front and in back. It is variable-width so the space it takes up is
three plus however many digits are necded to print the value of base.

a list (:function function list-of-args [width-or-nil) [format-string))
The value to display is obtained by applying function to list-of-args. If this value
has changed since the last time it was checked, it is displayed by passing it to
format together with format-string. 1If format-string is nil, the value is simply
princ’d. '

SRCKL.WIND>TSCROL.TEXT.37 » 8-AUG-83

Specifying Items and Entries 230 Window System Manual

width-or-nil may be a number of pixels, to specify a fixed-width entry, or nil to
specify a variable-width entry.

Example:
‘(:function si:process-quantum-remaining
(,process) 5. ("~4D//"))
is an expression that creates an entry descriptor which specifies an entry that will
call si:process-quantum-remaining on some process and print the result in
decimal, followed by a slash, in a field 5 characters wide.

an interpreted function (lambda ...)

an interpreted function (named-lambda ...)

a compiled function

: An entry descriptor which is cither a compiled function (a FEF) or a list starting
with lambda or named-lambda is considered a function. It is treated as an
abbreviation for (:function finction), which specifics no arguments, variable width,
and no format string (the value is printed with princ).

a list (:value index [width-or-nil] [format-string])
The value to be displayed is found at index in the window’s value-array.

Two other keywords can be used in an entry descriptor to make the entry mouse sensitive,
They can be used only in scroll windows which have tv:essential-scroll-mouse-mixin (see
section 17.6, page 238). To use these keywords, first you construct an entry descriptor to specify
how the enuy should print, according to the preceding table. Then you add one of these
keywords and a value to go with it at the front of the list. The mouse keyword gives the entry
mouse sensitivity but has no effect on how the entry appears on the screen.

‘mouse The keyword :mouse is used in an entry descriptor that looks like
‘ (:mouse mouse-data . another-entry-descriptor)
Such an entry descriptor is handled by creating an entry from another-entry-
descriptor, and then modifying it by recording mouse-data as the mouse sensitivity
of the entry. The resulting entry will print according to another-entry-descriptor
but will be mouse sensitive as well.

‘mouse-item The keyword :mouse is used in an entry descriptor that looks like
(:mouse-item mouse-data . another-entry-descriptor)
‘mouse-item is like :mouse except that the symbol tviitem is replaced throughout
mouse-data with item, the item this entry is going to become part of. mouse-data
better be a list.

There is no way to cause the entry itsclf to be inserted into its own mouse
sensitivity datum because this is not useful when scroll windows are used in the
intended manner.

tv:scroll-parse-item &rest keyword-args-and-entry-descriptors
Creates and returns an array item containing entries constructed according to keyword-args-
and-entry-descriptors.

SRCKL.WIND>ISCROL.TEXT.37 8-AUG-83

Window System Manual 231 Specifying Items and Entrics

keyword-args-and-entry-descriplors begins optionally with some alternating keywords and
values. They are followed by entry descriptors, onc for cach entry you want in the item.
The keywords and values at the beginning specify information that applies to the item as
a whole. Keywords and entry descriptors are distinguished by the fact that an entry
-descriptor is never a symbol.

The keywords defined are

‘mouse The value is stored as the mouse-sensitivity of the entire item. This is
meaningful only if the window flavor includes tv:essential-scroll-mouse-
mixin (see section 17.6, page 238).

'‘mouse-self The value is stored as the mouse-sensitivity of the entire item, but first
the symbol self is replaced whercver it appears by the item itself (the
array that this function is constructing). This is meaningful only if the
window flavor includes tv:essential-scroll-mouse-mixin (sec section 17.6,
page 238).

:leader This keyword requests extra slots to be allocated in the array leader of the
item array. It is either a number, the number of extra slots desired, or a
list, whose length is the number of extra slots and whose contents are
used to initialize them.

tv:scroll-interpret-entry entry-descriptor item :
Creates and returns an entry according to entry-descriptor for use in the array item item.
You do not normally call this function yourself; it is used as a subroutine of tv:scroll-

parse-item.

tv:scro'l1—string—1tem-w1th—embedded~new11nes string
Returns an item that will display the string string. This item is composed of one item for -

each line making up string.

Here is an example taken from Peek; it makes the item for a process (the value of process)
in Active Processes mode. The entries that use the process as a function work because the process
is a flavor object; the argument given to the process is a flavor operation. Note that tv:peek-
process-menu is a function in Peck which asks for a choice with a momentary menu.

(tv:scroll-parse-item
. The first entry is mouse-sensitive.
*(:mouse-item
(nil :eval (peek-process-menu ' ,process. ‘item 0)
:documentation
"Menu of useful things to do to this process.")
:string ,(process-name process) 30.)
*(:function ,#'peek-whostate ,(ncons process) 25.)
*(:function ,process (:priority) 5. ("~D."))
*(:function ,process (:quantum-remaining) 5. ("~4D//"))
more entries...)

SRCKI.WINDYTSCROL.TEXT.37 8-AUG-83

Using a Scroll Window 232 Window System Manual

17.2 Using a Scroll Window

tv:basic-scroll-window Flavor
All flavors of scroll window are built on this flavor, which provides all the facilities

specific to scroll windows. It is not instantiable by itself.

tv:scroll-window Flavor
(tv:flashy-scrolling-mixin tv:basic-scroll-window tv:borders-mixin
tv:basic-scroll-bar tv:window)
This is an instantiable scroll window flavor. It provides for a scroll bar and margin
scrolling, and for borders and labels.

In addition to being able to create a tree of items and entries, you must tell the scroll
window to display them. At the highest level, the entire display is grouped into a single item,
the root item. Switching modes in Peek works by switching to a new root item.

tv:display-item Instance variable of tv:basic-scroll-window
The root item of the window. The window’s dlsplay is preciscly whatever comes from this
item, and nothing more. Usually the root item contains some number of subitems which
do the real work.

:display-1item Operation on tv:basic-scroll-window
:set-display-item item Operation on tv:basic-scroll-window
Get or sct the root item of the window. - Setting the root item redisplays the window.

:display-item item Init option for tv:basic-scroll-window
Initializes the root item.

tv:truncation ’ Instance variable of tv:basic-scroll-window
If this is nil, entries can wrap around at the right margin. Otherwise, each item can
occupy only one line,

struncation Operation on tv:basic-scroll-window

:set-truncation ﬂag Operation on tv:basic-scroll-window
Get or sct the truinc flag. Seiiing ihe flag redispiays the window.

:truncation flag Init option for tv:basic-scroll-window

Initializes the truncation flag.

A scroll window has a value array whose elements may be used to hold arbitrary data to be
displayed by cntrics using the keyword :value. Such an entry specifics the index of a slot in the
value array whose contents arc the data to display. Putting appropriate data in the value array is
up to you. One technique is to have an automatically updating item whose update function stores
data into the value array, and have entries in the item look in those slots. There can be many
such items, all using the same valuc array slots. Sce section 17.4, page 234.

SRCKLL.WIND>TSCROL.TEXT.37 8-AUG-83

Window System Manual 233 Using a Scroll Window

tv:value-array ; Instance variable of tv:basic-scroll-window
The window’s value array.

:value-array Operation on tv:basic-scroll-window
Returns the window’s value array.

:value-array array-or-length Init option for tv:basic-scroll-window
Initializes the window’s value array, or specify how long to make it.

The :redisplay operation updates the display based on the current root item, automatically
reprinting the entries whose contents have changed. :redisplay will be done automatically by the
window system at certain times (such as when the window size is changed, or the screen is
refreshed), but if you want it to happen simply because some of the displayed data has changed,
you must send a :redisplay message yourself.

rredisplay-selected-items is another way to request display updating, which allows you to
control which items will be checked.

:redisplay &optional full-p force-p Operation on tv:basic -scroll-window
Redisplays the contents of the scroll window. If full-p is nil, the window assumes that its
screen bits contain the result of the last redisplay that was done, and only items and
entries whose contents are different from last time are actually output. If fill-p is non-nil,
everything that is supposed to be on the screen is redrawn. '

force-p non-nil means update the contents of the window even if it is not exposed.
Normally, this operation will wait if the window is not exposed.

:redisplay-selected-1items I[ist-of-items Operation on tv:basic -scroll-window
Redisplays the items in list-of-items, if they are present on the screen. Other items in the
current item hierarchy are not even considered for redisplay.

Since a scroll window shows a constantly updated display, it is often useful to have a typeout
window in it for occasional output that is not part of the display that is usually shown.

tv:scroll-window-with-typeout-mixin Flavor
This mixin should be used in addition to tv:window-with-typeout-mixin on any scroll
window that is to have a typeout window. It handles interfacing between typeout window
output and redisplay of the scroll window.

tv:scroll-window-with-typeout Flavor
A scroll window that has an inferior typeout window. See chapter 15, page 212.

SRCKL.WIND>FSCROL.TEXT.37 8-AUG-83

Inserting and Delcting Items 234 Window System Manual

17.3 Inserting and Deleting Items

Scroll windows provide operations for replacing, inserting and deleting items explicitly. Since
the items form a multilevel hierarchy, the position at which to replace, insert, or delete the item
must be specified as a list of numbers. For cxample, (1 3 0) as a position mcans item number 0
within item number 3 within item number 1 (within the root item, tv:display-item). nil as a
position refers to the root item itself.

:get-item position Operation on tv:basic-scroll-window
Returns the item at position.

:set-1tem position item Operation on tv:basic-scroll-window
Stores item into the hierarchy at position.

:insert-1item position item Operation on tv:basic - scroll-window
' Inserts item at position, before the item that was at position.

:delate-1tem position Operation on tv:basic-scroll-window
Deletes the item at position, so that the following item moves to that position.

These operations also update the window on the screen as necessary.

17.4 Automatically Updating Items

Just as an entry automatically updates the value it displays, sometimes one wants an item to
update automatically the list of items it contains. For example, the Active Processes display
contains one item that displays a list of all active processes. This item contains a list of '
component items, one item per process. Just before the displayed entries for each process are
updated if necessary, additional items should be created and inserted in the list if there are any
newly active processes, and items should be removed if processes have become inactive.

The first element of an item that is a list is used to store the data of a property list for the
item. Two properties are given standard meanings: '
:pre-process-function

The value of this property is a function to be called whenever it is time to display
this item. Its sole argument is the item itself. The function can modify the item.
The value it returns is ignored.

:function The value of this property is a function to update an individual component of this
item. This function is called each time any component item is about to be
displayed or otherwise thought about.

The arguments given to the function are the component item, the reverse of the
position of that item (a list of integers), and the location of the property list of
the containing item, the same property list on which this :function property
appears (this can be passed directly to get). To repeat, the second argument is
the reverse of the position as would be passed to the :get-item operation or
related operations. ‘This is because it is easier to implement that way without
consing.

SRCKL.WIND>TISCROL.TEXT.37 8-AUG-83

Window System Manual 235 . Automatically Updating Items

The function should return an updated component item, perhaps the same one as
it was passed, perhaps a new one.

Other properties can be used for any purpose. Some of the commonly used pre-process
functions use other properties for their internal state information and additional parameters.

tv:scroll-maintain-1ist init-fun item-fun &optional per-elt-fun stepper compact-p
pre-proc-fun
Returns an item which maintains a list of component items, one for cach element of a
driving list. The item updates automatically so that component items appear and disappear
as elements of the driving list do.

init-fun should be a function of no arguments that returns the current value of the driving
list. item-fun should be a function that, given an clement of the list, returns a component
item to use to display for that clement. ifem-fun is called each time a new element
appears in the driving list. The item created starts out with no component items. The
appropriate set of component items is created by adding them one by one in this way,
the first time the item is updated.

This item works because it is given a suitable pre-process function. The other arguments
to tv:scroll-maintain-list are also stored on the property list of the item created. In
particular, per-elt-fun becomes the :function property. (That is all per-elt-fun is used for.)

Normally the value from init-fun is a list, and the objects that the items are made from
are the elements of this list, but it is possible to extract the objects in other ways. If
stepper is not nil, it should be a function to step through a "kind of list". stepper is
called with one argument, a "kind of list", and returns three values:

the first element cxtracted from it
a "kind of list" of the remaining elements
non-nil to say there are no more elements
nil as the "kind of list" is always recognized as being empty, regardless of
the third value.
stepper is first called with the value returned by init-fun. The first value goes (if it is
new) to the item-fun; the second is fed back to stepper unless either it is nil or the third
value is non-nil.

A stepper function that could step through the properties in a property list might be:
(defun plist-stepper (plist-tail)
(values (car plist-tail) (cddr plist-tail)))

compact-p non-nil says to recopy the list each time an element is inserted or deleted, so
that the list remains compact and localized.

Here is how Peek, in Window Hierarchy mode, recursively creates a tree of automatically
updating items:

SRC:KL.WIND>TSCROL.TEXT.37 8-AUG-83

Automatically Updating Items 23 Window System Manual

;» Make an item to describe the entire window hierarchy.
(defun peek-window-hierarchy (ignore)
(tv:scroll-maintain-list.
;; The init-fun. When called, it returns a current list of screens.
#'(lambda () tv:all-the-screens)
;; The item-fun, which makes an item for a screen.
#'(lambda (screen)
(Tist ()
(tv:scroll-parse-item
(format nil "Screen ~A" screen))
(peek-window-inferiors screen 2)
(tv:scroll-parse-item "")))))
;3 No per-elt-fun is needed. Also, the default stepper works
;» because our "list” really is a list.

;; Make an item to describe window and its inferiors.
»» indent is an indentation to print with.
(defun peek-window-inferiors (window indent)
(declare (special window indent))
(tv:scroll-maintain-list
(closure '(window) #'(lambda () (tv:sheet-inferiors window)))
(closure ’(indent)
#’(lambda (sheet)
;> Make an item with two subitems
(list ()
;; One for this window,
(tv:scroll-parse-item
(format nil "~VX" indent)
*(:mouse
(nil1 :eval (peek-window-menu ’,sheet)
:documentation
"Menu of useful things to do to this window.")
:string ,(send sheet ’:name)))
;; and one with subitems for itg inferiors,
(peek-window-inferiors sheet (+ indent 4)))))))

SRCAL.WIND>TSCROL.TEXT.37 8-AUG-83

Window System Manual 237 Representation of [tems

And here is how it makes the item that displays a chaosnet conncction’s packets.
(tv:scroll-maintain-list
*(lambda () (chaos:read-pkts ',conn})
*(lambda (x)
(peek-chaos-packet-item x ,(+ indent 2)))
nil
#'(lambda (state)
(values state (chaos:pkt-link state)
(null (chaos:pkt-1link state)))))
Note that instead of a list of packets there is a chain, with cach packet pointing to the next one.
Therefore, an explicit stepper is required. chaos:pkt-link is the function which, given one packet,
returns the next one in the chain (or nil at the end).

tv:scroll-maintain-1ist-unordered ini-fun item-fun &optional per-elt-fun stepper
Returns an item which maintains an unordered list of component items, one for each
element of a driving list. The item updates automatically so that component items appear
and disappear as elements of the list do.

This function is very much like tv:scroll-maintain-list. The difference is that new
component items are always added at the front of the combined item, no matter where
they appear in the driving list. Changes in the order of that list have no effect at all.
This is why this function is called "unordered”.

tv:scroll-maintain-1ist-update-states elements window &optional item
Redisplays some of the component items of item, an item of the sort created by
tv:scroll-maintain-list or tv:scroll-maintain-list-unordered.

elements is a list that specifies which component items to update. If the clement of the
driving list from which a component item was made is memq of elements, then the
component item is updated.

17.5 Representation of Items

An item is either a list or an array. A list item contains other items, while an array item
contains entries.
List items have these accessor functions:

tv:scroll-item-component-items
Returns the list of component items of this item.

tv:scroll-item - plist _
Returns the contents of the property list of this item.
Array items have these accessor functions, which refer to array leader slots. (The array
elements themselves hold the entries in the item.)

tv:scroll-item-size
Returns the number of entries in the item.

SRCKL.WIND>TSCROL.TEXT.37 8-AUG-83

Mouse Sensitive Scroll Windows 238 ‘ Window System Manual

tv:scroll-item-mouse-items
Returns a list of mouse-sensitive areas of entries in this item.

tv:scroll-item -line - sensitivity
Returns what was specified for mouse sensitivity of the item as a whole (using the
:mouse or :mouse-self keyword in tv:scroll-parse-item).

tv:scroll-item-1eader-offset Variable
The number of standardly-defined slots in an item’s array leader. The slot with this
number and beyond can be used by applications for their own purposes.
Entries are also arrays. They have a lot of components, all managed internally, and users
should probably not access them directly. Peek never needs to do so.

17.6 Mouse Sensitive Scroll Windows

tv:essential-scroll-mouse-mixin Flavor
This mixin gives a scroll window the ability to make either items or entries mouse
sensitive.
tv:scroll-mouse-mixin ' Flavor

This mixin in addition defines the :execute operation to be the same. as on menus.

tv:iscroll-parse-item provides syntax, described above, for associating a mousc sensitivity to
any item or entry. The mousc sensitivity is a list whose purpose is to identify which mouse-
sensitive area was clicked on, and also specify what to do when that happens.

If the car of the mouse sensitivity is nil, then the mouse sensitivity is interpreted as a menu
item. When the sensitive area is clicked on, the menu item is executed by means of the :execute
operation—but this is done in the mouse process. Unfortunately, there is no way to avoid this,
since mouse clicks on scroll windows are expected to be able to happen "at any time", and no
other process has expressed its willingness to handle them with a :choose operation.

If the car of the mouse sensitivity is non-nil, a click is handled by putting a blip into the
scroll window’s input buffer. The blip has the form
(blip-type sensitivity window mouse-character)
sensitivity is the mouse sensitivity list. blip-type is the car of that list. window is the scroll window
itself, and mouse-character is a character such as # \mouse-I-1 which indicates which button was
clicked.

The reason that the blip-iype is extracted and put at the front is that programs that use scroll
windows may need to handle blips from many sources. By specifying the car of each mouse
sensitivity, the program can arrange to distinguish these blips from blips coming from menus,
typeout windows, etc. and process each one in the correct fashion.

Often a scroll window displays many similar items that describe different data objects. These
items will all have the same patterns of mouse scnsitivity. One way for the program to tell which
item the user clicked on is to sct up the mouse scnsitivity using the :mouse-self keyword (for an
item) or :mouse-item (for an entry). This inserts the item itself into the sensitivity in place of

SRCKL.WIND>TSCROL.TEXT.37 8-AUG-83

Window System Manual 239 Mouse Sensitive Scroll Windows

the symbol self or tviitem, respectively.

SRC:KL.WIND>TSCROL.TEXT.37 | $-AUG-83

Window System Manual

Concept Index

Concept Index

activewindow, . ¢« v ¢ ¢ 4 s e e e e e e e e s 11
alufunction . . « 4 4 « v v s s s e 0 66
ancestorsofawindow. o 0oL 10
AULOCKPOSUTE + & « + ¢ « + s o o o = o o o o & o 26
autoselection .« . 4 . 4 v 4 4w e e e e e e s e 26
baselite . v v v ¢ ¢ v v e e e e e e e e e e 87
DIt=SAVEAITAY. « « o o o v « « o s o o = = o o o 15
blackonwhite . . « . « ¢ ¢t 0 v e 0 e 0. 14
BHNKET v v v v ¢ ¢ 0 0 v s b e e e e e e e e 103
blinkerheight. « v & ¢ v o v o v o v 88
blinkerwidth e e e e e e e e 88
BHD. « v v v e e e e e e e e e e e e e e e 52
bliptypes . .« . « « . . . 160, 174, 184, 203, 208, 226, 238
‘bordermarginwidth 0. 130
DOTAErS « & ¢ ¢« v o v o 4 a e e e e e e e e s 130
burying . « v v oo e e e 29
char=alif . . « v 4 v v b e e e e e e e e s 66
char-existstable. e e e e e e s 88
characterheight « « ¢« « ¢ v v 0 o o o . 87
characterwidth + ¢« ¢ & ¢ ¢ o v v 4 o 67,88
ChOICEBOXES v ¢ v ¢ ¢ o v o o o o o o s o o o » 210
choose-variable-valueswindows « . . 194
clicks, mouse, encodingof 113
clipping.. e e e e e e e e 93
COIOTSCIEEM « ¢ o « o o « o « o s o o o o s o « 165
constraint frames cce 0 4 e e s e s o0 e 142
continuationoflines . . . « « « « . . e v ... 73
currentfont, e w e e e e e e . 67,83
deexposed typein action. e e e e e .3
deexposed typeoutaction0 0. .. . 21
delaying screenmanagement. . + .« 0 . . . 30
descendantsofawindow . . .« + « ¢« ¢« o . . . 10
encoding of mouseclicks e e e e 113
entries, inscroll windows e e e e e e 0228
exposablewindow 0 00 o000 e e 17
exposedwindow. e e e e 17
filledmenus . . « + v v s o s o o o v o o o o s 178
fixed-widthfont.« . ¢« . . o o .. 88
flavor . . .+ v« 4 s v e s e e e e e e e e 6
followingblinker ¢« v v oo . 103
fontformat. . . . « v ¢ v ¢ o v v o o 0 0 s . 89
fontindexingtable.« 0
fontmap. . . . & v v v v b b e e e e e e 67,83
fontpurposes. . « « o v o 04 o . s e e e e e 86
fontspecifier e e e s e e e e 85
forcing keyboardinput S0
frame. v o . e e e e e e e .41
fullyvisible. . . . v v v v b e e e e e e e 10

geometry (OTMENUS). &+ « v v+ ¢ & o s o o o o s 178
global asynchronous characters. . . . « + . « « « . . 63
grabbingthemouse« o v v 0 00 . 115
half-period ofablinker 103
hierarchyof windows « « v « & v ¢ o o « » 10
holdingoutput . . . « « v ¢ ¢ v ¢ v o 0 0o ... 21
horizontalwraparound + « « ¢« ¢« o ¢ . .. 3
iJobuffers. v v o v v v v e v e e 56
inferiorwindows 4 0 0 0 e 0 0.0 10
inputbuffero o0 v e e 50
inputbuffers,sharing 00 51
NSIdE. & v ¢ v o ¢ @ b e a e e e e e e e 129
itemgenerators. . « . + ¢ 4 o 0 s e 0o s e e 22
items,inscrollwindows 228
items, intextscrollwindows « 219
keyboardinput. . . .« + ¢« ¢ o v e et e e e e 49
label . & & v v it e e e e e e e e e e e 132
IeftRern. . ¢ v v v v ¢t o v v e s e e e e e e s 88
lineheight. . . « ¢« o 4 ¢ ¢« v v o 0 o v ¢ o 0 v« 67
marginchoices e e e e s e e e e . 210
marginitem 0 0 e s e e s e e e e 129
Marginregions . « « o « o« « o o o 0 s s .. 14
Margins. « o o o « o o o o o o o s o P V'
menu geometry. e e e e e s e e e 178 -
menuitems e e e e e e e e e e s 174
MENUS + « « « = » » e e e e e e e e e e e 173
MOUSE « « o o o o s « « o s o s s s o o » 2« 112
MOUSEPIOCESS o « o o + o « o » e e e e s e 113
multiple choicewindows e e ... 190
negativeprioritieS . « « .« v . 40 . b o. s v ..
notifications e e e s e .. 157
openingblinkers e e e e e . 103
outputhold T e s e s s s e e e 21
outputholdflag. e e e e e e e 21
outputofteXt v 4 0 v e e e e e e e 66
overlappingwindows ¢ . .0010
overstriking e e e e e s e e 66
owningthemouse., . . + « « « ¢ o « o ¢ s 113,114
PANE &+ & v ¢« o o 4 e b e e a e e e e e e s 10, 141
partiallyvisible ¢ o000 10, 26
pixel, S e e e s e e e e 14
positionofwindow I
PHOMLY « v v v v v v v v o o o o o v o v e s 28
DIOCESSES + v ¢ o o o o s s o o o & e e .. 40
masterheight . « e e e e e 89

8-AUG-83

Window System Manual 241 | Concept Index

rasterwidth8 Terminalkey e e e e e P %
: textscrollwindows00 0. 219
SCTEENAITAY v v o 4 o & o o o o o o « o s o o » 17 trackingthemouse « ¢ ¢« . ¢ 4 4 ... 113
screenmanagef. O &] truncationoflines O &
SCTEENS + v v & ¢ o o o & « o o o o o« o o o o » 213 typeoutwindows 0. e e e ... G202
scrollbar, 128
scrollwindows28 usurpingthemouse 118
sections, in constraint frames. 147
selectmenu .+ v v v v v . e e e e e e e e e 35 valuearray ofascrollwindow 232
selectedpane.00 155 variable-widthfont. 88
selectedwindow3 vertical spacing (VSP) 4 4 f v e e e e o . . 67
selection. 0 e e e 3 | visibility ofablinker103
selectionsubstitutes I 1 visible 000000 e L1017
sharing inputbuffers. 11 VSP 4 v e s e e e e e e s e e e e e s ... 67
sizeofwindow 00 s e e .. 43 ’
SOTting Prionity » o v v v 4 v e v e e e e e e e 28 warpingthemouse « v + v v v ¢ 4 0 v 4w e .. 112
stacking, in constraint frames. 147 whiteonblack14
superiorwindow ¢ v s e s 0. .. . 10 wholine enn. 163
Systemkey. Y X widefonts. v v 4 v v v b e e e .. 89
window P
teamsofwindowsM windowhierarchy. ol 10
temp-locking+ . ¢ 0 v b e 0 e e e e . 23 wraparound, horizontal73

temporarywindow, . . . « 4 4 s v o0 e 0. 00, 24

8-AUG-33

Operation Index

Window System Manual

Operation Index

© activate

(OnWIndowS) .« « « v 4 . . e e e n e e e e e 11
:active-p

(onwindowsandscreens)s « .« « & ¢ o o 0o v 12

(on tv:basic-typeout-window). 213
:add-asynchronous-character

(ontv:istream-mixin) 00 e 000 .. 62
:add~-highlighted~item

{on tvimenu-highlighting-mixin) 189
:add-highlighted-value

(on tvimenu-highlighting-mixin) 189
:add-item

(on tv:margin-multiple-menu-mixin) 188
:add-server

(ontv:iwho-line~file-sheet). 164
:add-stream

(ontviwho-line-file-sheet). « 164
:adjustable~size-p

(on tviscroll-stuff-on-off-mixin) 128

(on tvichoose-variable-values-window). 202
:alias-for-inferiors

(onwindows) . . « ¢ v v e v s e s e e 0 e 36
:alias-for-selected-windows

(onwindows) e s e e e e e e s 36
‘any-tyi

(ontvistream-mixin) . . ¢ . . e 0 0 e 000 e 52
:any-tyi-no-hang

(ontvistream-mixin) 0. e 00 e e e 53
:append-item

(ontvitext-scroll~window) 220
:appropriate-width

(on tv:choose=variable-values-window).. 203
:array '

(ontv:bitblt-blinker) 2 0o 0o 110
:arrest

(ontv:select-mixin) e e e e e e s 42
:asynchronous-character-p :

(ontvistream-mixin) . « ¢« » ¢ @ . 0 0. e .. 62
:await-exposure .

(onwindows) . . & 4 v e e s e e e e e e 23
:backward-char

(onwindows) o 00 e ... e el 15
:baseline

{onwindows) e h e e e e 84
‘beep

(onwindows) « . . . S
:bit-array

(onwindows) .« « v v ¢ v e v e e e s e e s e 16
:bitblt

(ontvistream-mixin) o0 000 e e e s 94
:bitbit-from-sheet

(ontvistream-mixin) . . « « . o 0 400 .. 95
:bitblt-within-sheet

{ontvistream-mixin) o 0 00 0. e e . 95

:blink

{onblinkers) . . . ¢ v v 0o v e e 0. e 107
:blinker-list

(onwindowsandscreens) . . . ¢ o ¢ 4 b oe e e s 104
:border-margin-width

(ontv:borders-mixin). . . « . . . 0 0 .00 . 131
:bottom-margin-size

(onwindows) . .+« v v o 0 e e e e e .. 129
:bottom-reached

(on tv:basic-typeout-window) . . . « 212
‘bury

(onwindows) « + « o v v v v e e e e e e e e 29
:call

(ontviselect-mixin) 0 0o e e e 42

:call-mini-buffer-near-window

{on zwei:temporary-mode-line-window-with-borders) 162

:center-around

(onwindows) « « « ¢ v v v e 0 e e e e e e 46
(ONEVIMENU) & v v ¢ v o o o v o o s o 0 0 s e 183
:change-of-default-font

(onwindows) . « « . ¢ ¢ 4 v v e e e s e e e 87
:change-of-size-or-margins

(onwindows) . . « + ¢ v 4 e v e e e e e e e 47
:character

(ontv:character-blinker) 109
:character-width

(onwindows) . . « ¢« & v s 0 e e e s e s e e 77
:choose

(ontv:multiple=choice) . « . « « « « + o 193
(ontvimenu) o . oo e e e e e . . 183
:chosen-item

(ONLVIINENU) . « @ v o o s o o o o o o R £
:clear-between-cursorposes

(onwindows) . « « + v 4 b 00 000 e e e .16
:clear-char

(onwindows) . . « « . ¢ ¢ o . e C e e e e e e 75
:clear-eof

(onwindows) e e e e e e s R 5
:clear-eol

(OnWIndOwS) + « ¢ v v 4 v v e e e e e 75
:clear-input

(ontvistream=mixin) « « « « ¢« o ¢ .0 0. -
:clear-screen

(onwindows) « . « & 4 v e e e e e e e s e e 76
:clear~string

(onwindows) + . . « . < . e e e e e e 75

:column-~-row-size

(ontvimenu) e e e e e e e e e 184

:column-spec-list

(on tv:dynamic-multicolumn-mixin). 187

:compute-margins

(onwindows) e e e e e s ... 138

:compute-motion

OnNWIndOWS) . + v v v v v e e e e e e e i

8-AUG-83

Window System Manual

:configuration

(ontv:basic-constraint-frame), 153
:create-pane

(on tv:basic-constraint-frame) 153
:current-font

(onwindows) 84
‘current-geometry

fontvimenu) 180
:current-item

(fontvimenu) 183

(ontv:current-item-mixin). 227
:dcactivate

(onwindows) 11
:decide-if-scrolling - necessary

(on tv:scroll-stuff-on-off-mixin) 127
:decode-variable-type

(on tv:basic-choose-variable-values). 199
:deeexpose

(onwindowsandscreens) 20
:deexposcd-typein-action

fonwindows), ... 32
:decxposcd-typeout-action

fonwindows), 22
:defer-reappearance

(ontviblinker). 106
:delayed-set~label

(on tv:delayed-redisplay-label-mixin) 134
:delete-all~servers

(ontv:who-line-file-sheet) 164
:delete~all-streams

(on tv:who-line-file-sheet), 164
:delete-char

(onwindows) 76
:delete-item

(on tv:text-scroll-window). 220

(ontv:basic-scroll-window) 234
:delete-line

fonwindows}), 76
:delete-server

(ontv:who-line-file=sheet) 164
-dn'mn-grea‘-n

(ontv:who-line-file-sheet) . . ., 164
:delete-string

(onwindows) e e e e e e e e e e 76
‘deselect

fonwindows), 33
‘deselected - visibility

{ontviblinker).00 ... 106
:display-item)

(on tv:basic-scroll-window) 232
:display-lozenged-string

(onwindows) T e e e e e e e e e e 70
:draw=-char

(ontvigraphics-mixin)95
:draw-circle

(ontv:graphics-mixin) e e e e e 9%

:draw-circular-arc

243

Operation Index

(ontv:graphics-mixin), 9%
:draw-cubic-spline

(ontvigraphics-mixin), 97
:draw-curve

(ontv:graphics-mixin) 9
:draw-dashed-line

(ontvigraphics-mixin), 95
:draw-filled ~in-circle

(ontv:graphics-mixin) 97
:draw-filled -in-sector

(ontvigraphics-mixin) 97
:draw-line

{ontvigraphics-mixin) 95
:draw~lines

(ontvigraphics-mixin) 95
:draw=-point

{ontv:graphics-mixin) 94
:draw-rectangle

(ontvistream-mixin). 9%
:draw-regular-polygon

(ontvigraphics-mixin) . . , ., 97
:draw~-triangle

(ontv:graphics-mixin) 96
:draw-wide-curve

(on tv:graphics-mixin) , e e e e e 96
:edges

(onwindows) 46
tedit _

(on standalone editor windows). 160
:enable-scrolling-p

(ontv:basic-scroll-bar), 126

(onscrolling windows) S)
:end ~of -line-exception

(onwindows).13
:end -of -page~exception

(onwindows) e e e e e e e e e e 71
‘execute

(on tv:menu-execute-mixin), 177

(ontvmenu) “ e h e e e 183
:execute-no-side-effects

(ontv:menu-execute-mixin), m
‘exposable-p

(onwindowsandscreens) A (]
:expose

(onwindowsandscreéns) 19
‘expose-for-typeout

(on tv:basic-typeout-window) 213
:expose-near

(onwindows) Ve e e e e e 46
:exposed-inferiors

(on windows and screens) . ., . . . e e e e 21

:exposed~p

(on windows andscreens) 20
:fat-string-out

(onwindows) . , e e e e e e e 69
Aill-p

fontvimenu), 180

8-AUG-83

Operation Index

:flush~typeout

244

{on tv:text-scroll-window-typeout-mixin). 222
:font-map

(onwindows) ¢ v 4 st e 83
:force~-kbd-input

(ontvistream-mixin) . . .+ ¢ o v 0 40w . . 53
:forward-char

fonwindows) e e e e 74
:fresh-line

fonwindows) v i . s v e e e e 69
:geometry

{(ontv:menu). e e e .o v . . 180
:get-configuration

(on tv:basic-constraint~frame). 153
:get-item

(ontv:basic-scroll-window) 234
‘get-pane

(on tv:basic-constraint-frame). 153
:half-period

(ontvblinker) . v . v . v v i v b e e e e . 106
:handle-asynchronous-character

(ontvistream-mixin) 4 4 4. 62
:handle-exceptions

(onwindows) . + v . v v 4 v b e e e e e .
:handle-mouse

fonwindows) 4 0w o0 ... 119
:height

(onwindows) 4 v i s e e e e e 45
:highlighted ~items

(on tv:imenu-highlighting-mixin) 189
:highlighted-values

(on tv:menu-highlighting-mixin) 189
:home-~cursor

(onwindows) . . v v 4 4 v b 0 e e e e 0 74
‘home-down
(ONWINdOWS) &+ « v v ¢ ¢ s o s s e s 0 0. .. 14
:hysteresis

(on tv:hysteretic-window-mixin) 115
‘incomplete-p

(on tv:basic-typeout-window)., 217
:increment-cursorpos

fonwindows) . . . v 4 . 0 i e s e e e . 14
:inferiors

(onwindowsandscreens). « « ¢ o o v o« ¢ o . o0 . 12
:insert-char

(onwindows) . . + & ¢ ¢ v 4t e e e e .. 77
:insert-item v
(ontv:text-scroll-window) - 220
(on tv:basic-scroll-window) 234
‘insert-line

(onwindows) . . « v ¢ v v v v e e e e 0w 1T
:insert~string

(onwindows) v . v v s b v v 0. TT
:inside-edges ’
fonwindows) v 4 i v 0 e e e s e e 46
:inside~height

(onwindows) e e e e e e . 45

Window System Manual

:inside-size

‘margins

(onwindows) e .45
:inside~-width

(onwindows) v 00000 e .45
:interval

(oncditorwindows) 160
:interval-string

(oneditorwindows) 0. .. 160
:io-buffer

(ontvistream-mixin)52
(ontvicommand-menu). 185
ritem

(on tv:mouse~-sensitive-text-scroll-window). 22§
(on tv:basic-mouse-sensitive-items) 209
:item-cursorpos

ontvimenu) . « + v v v v 4 v s 0 0. .. 184
:item-generator

{ontv:text-scroll-window). 222
ritem-list

fontvimenu) v 4 v e b e e e s s 183
(on tv:basic-mouse~-sensitive-items) 210
:item-list-pointer .

(on tvidynamic-item-list~mixin) 186
:item-of-number

(ontvitext-scroll-window). J . .. 220
:item-rectangle

ontvimenu) . . « v ¢ v o v 0 s s a0 s 184
ritem-type-alist

(on tv:basic-mouse-sensitive-items) 208
:iteml

(on tv:mouse-sensitive-text-scroll-window). 225
:items

(ontv:text-scroll-window). 220
:kill

(onwindows) « .+ « ¢ ¢ ¢ 0 b h s e e e e e e 11
:label-size

(ontvilabel-mixin). . « « « ¢ 4 0 . o0 . . 133
:last-item

(ontv:text-scroll-window). 220
ontvimenu) . . « &+ v v o « 6 4 s o 4 o. . 183
left-margin-size

(onwindows) . » « & v« v v e 4w s e a 129
:line-area~mouse-documentation

(on tv:line-area-text-scroll-mixin) 227
:line~-out

(onwindows) e e e e e e .69
list-tyi

{ontvistream-mixin) . . .+ 4 4 4 .0 b o s .53
:listen

(ontvstream-mixin) . + + « v v 4 0 0 0 0. .. o353
:magnification

(on tv:magnifying-blinker). 110
:make-complete

(on tv:basic-typeout-window) 217
:make~incomplete

(ontv:basic-typcout-window)} 218

8-AUG-33

Window System Manual

(onwindows) 129
:menu-draw

{ontvmenu) s 184
:menu-margin-choices

(on tv:menu-margin-choice-mixin) ce. 19
:minimum-width

(ontvimenu) 00w, 181
:more-exception

(onwindows) e .)
‘more-p

(onwindows) e e e e 80
(on tv:basic-typeout-window) 215
‘more-vpos

(onwindows) 12
:mouse-buttons

(onwindows) 120
:mouse-bultons-on-item

(ontv:menu) e et e e e e 184
:mousc-buttons-scroll

(ontvibasic-scroll-bar) 126
:mouse-click

fonwindows) 120
:mouse-moves

(onwindows) e e ... 119
:mouse-or-kbd-~tyi

(on tvistream-mixin) e e e s .53
:mouse~or-kbd-tyi-no-hang

(ontvistream-mixin)53
:mouse-select

(onwindows) e e33
:mouse-sensitive-item

(on tv:basic-mouse-sensitive-items) 210
:mouse-standard-blinker

(Onwindows) . + v v v v 4 v i v e e e 122
‘move-near-window

{ontvmenu) 183
‘name

(onwindows) . . . v v v o e v e e .. 132
:name- for-selection

(onwindows) 0. ... e W35
:new-scroll-position

(onwindows) 124
:notice

(onwindows) e ee. . 158
:number-of-item

(on tv:text-scroll-window), 220
:number-of-items

(on tv:text-scroll-window). 220
:offsets

(on tv:mouse-blinker-mixin). e 122
:open-streams

(ontv:who-line-file-sheet) . ., 164
:order-inferiors

(onwindows and screens) ol .28
:output-hold-cxception

(fonwindows) 4 e . e ... YA

:package

:redisplay-selected-items

Operation Index

(on tv:listener-mixin-internal) 159
:pane-name

(on tv:basic-constraint-frame)153
‘pane-size

{fonwindows) - . 182
:pane-types-alist

(onframes). . . v v v 4 v v vt e e e e e 155
:parse-font-name

(ontviscreen). . .« v . . . 4 v . 0. . . . 86
:parse-font-specifier

(ontviscreen). e e e e 86
:phase)
(ontv:blinker) RN . .107
:playback .
(ontvistream-mixin). 54
‘point

(ontv:graphics-mixin)94
‘position

(onwindows)45
:preemptable-read

(on tv:preemptable~read-any-tyi-mixin) 55
‘primitive-item

(on tv:basic-mouse-sensitive-items) 210
:primitive-item-outside

(on tv:basic-mouse-sensitive-items) 210
:print-function

(on tv:function-text-scroll-window) 21
:print-function-arg

(on tv:function-text-scroll-window) 221
:print-item

(ontvitext-scroll-window)219
:print-notification

(onwindows) 157
:print-notification-on-self

(on tv:notification-mixin) e L7
:priority

fonwindows).¢.¢....29
:process

(ontviselect-mixin)42
(ontviprocess~mixin)41
:processes

fonwindows).004
‘put-item-in-window

(ontvitext-scroll-window)220
:put-last-item-in-window

{ontv:itext-scroll-window)20
:read-cursorpos
onwindows) . . . « v v i v i i i e .. T4
(ontv:blinker), 08
:redefine-configuration

(on tv:basic-constraint-frame) ., . , W54
:redefine-margins

(onwindows). e e . W140
:redisplay

(ontvitext-scroll-window)22
(on tv:basic-scroll-window) G233

8-AUG-83

Operation Index

(on tv:basic-scroll-window)

:redisplay-variable

(on tvichoose-variable-values-window). 203

:refresh

(onwindows)
:refresh-margins

(onwindows)
:refresh-rubout-handler
{ontv:stream-mixin}
:remove-asynchronous-character

(ontvistream-mixin)

:remove-highlighted-item

(on tv:menu-highlighting-mixin) . . .

:remove-highlighted-value
(on tv:menu-highlighting-mixin) . .
:remove-selection-substitute

(onwindows)

- ;restore-rubout-handler-buffer
(ontv:stream-mixin)
:reverse-video-p
(onwirdows)
:right-margin-size

(onwindows) . . « v v v o 0 0w .

:rubout-handler

(ontvistream-mixin)
:save-bits

(onwindows) . . « v . ¢ 4. o.
:save-rubout~handler-buffer
(ontvistream-mixin}
:screen-array

{on windows and screens).
:screcn-manage

(on windows and screens).

:screen-manage-autoexpose-inferiors

(on windows and screens).
:screen-manage-deexposed - visibility
{onwindows) C e e e

:scroll-bar-always-displayed

(on tv:basic-scroll-bar)

:scroll-more-above

(on tv:basic-scroll-bar)
:scroll~-more-below

(on tv:basic-scroll-bar)
:scroll-position

(on scrolling windows).
:scroll-redisplay

(on tv:text-scroll-window)
:scroll-relative

(on tv:basic-scroll-bar)
:scroll-to

(onscrolling windows).,
:select

(onwindows)
:select-pane '
(ontv:basic-frame)
:selectable-windows

(onwindows)

A 1)
..... .22
O V.

B /2.

ce e e e 155

246

Window System Manual

:selected-p

(onwindows) K X

:selected-pane

(ontv:basic-frame).15

:selection-substitute

(onwindows) 0 e e 0. . .38

:self-or-substitute-selected~p

(onwindows)0 a0 ... W38

:send-all-exposed -panes

(on tvibasic-constraint-frame) 153

:send-all-panes

(ontv:basic-constraint-frame) 153

:send-pane

(on tv:basic-constraint-frame) 153
:sensitive-item-types

(on tv:mouse-sensitive-text-scroll-window). 226
:set-array

(ontv:bitblt-blinker) 110

:set-border-margin-width

(ontv:borders-mixin), e s 131

:set-borders

(ontv:borders-mixin). . .« « . v 13

:set-character

(ontv:character-blinker) 109

:set-chosen-item

ontvimenu) . + « ¢ v v v 0 b0 e 0. 183

:set-column-spec-list

(on tv:dynamic-multicolumn-mixin)., 187

:set~configuration

(on tv:basic-constraint-frame) 153

:set-current-font

Enwindows) . » « v v v v e b e e ... 84

:set-current-item

(ontv:current-item-mixin}) 227

set-cursorpos

(onwindows) . .+ . . . v v h v i h e e e .. T4
(ontv:blinker)., » v+ v v v v u . e e e 105

:set-deexposed-typein-action

(onwindows) P ¥

:set-deexposed~typeout-action

fonwindows) « + 0 v h e w22

:set-default-font

ONtV:menu) . « v o v v v e v e a 180

:set-deselected-visibility

(ontv:blinker). e e e e e 106

:set~-display-item

(ontv:basic-scroll-window) 232

:set-edges

(onwindows) e e e e P [
ONtVMEeNU) + v v v o v v v o v v 0 0 181

:set=fill-p

(ontv:basicemenu). 180

:set-follow-p

(ontviblinker). 108

:set-font-map

(onwindows) e e e .. B4

:set-geometry

8-AUG-83

Window System Manual

(ontvimenu) P ... 180
:set-half-period :
(ontv:blinker). 106
:set-highlighted-items

(on tv:menu-highlighting-mixin) 189
:set-highlighted-values

(on tvimenu-highlighting-mixin} 189
:set-hysteresis

(on tv:hysteretic-window-mixin) 115
:set~inside-size

(on windows) G e e e e e e e 45
:set-interval

(oneditorwindows). 160
:set-interval-string

(oneditorwindows)., 160
:set-io-buffer

(ontvistream-mixin) 7]
(ontvicommand-menu). 185
iset-item

(on tv:basic-scroll-window) 234
:set-item-generator

(on tv:itext-scroll-window). 222
:set-item-list

fontvimenu) v .4 0. .o .o .. 183

(on tv:margin-multiple-menu-mixin) 188
:set-item-list -pointer

(on tv:dynamic-item-list-mixin) 186
:set-item-type-alist)

(on tv:basic-mouse-sensitive-items) 208
:set-items

(on tv:text-scroll-window). ce . 220
:set-label

(ontvilabel-mixin), 0. .. 133
:set-last-item

(ONEVIMENU) v v v v v v v v 4 6 e a e e e e 183
:set-magnification

(on tv:magnifying-blinker). 110
:set-margin-choices

(on tv:margin-choice-mixin). 21
:set-menu-margin-choices

{on tvimenu-margin-coiCe-mixing « « + « o + « . 1%
iset-more-p :
fonwindows) v 4 0 0. .. .80
(on tv:basic-typeout-window) 215
iset-mouse - cursorpos

(onwindows) P i L
:set-mouse-position

(onwindows) « . .+ i v v v v v v e e 19
:set-offsets '

(on tv:mousc-blinker-mixin)., 122
:set-package

(on tv:listeper-mixin-internal) 159
‘set-position)
(onwindows) v 46
:set=print-function)

(on tv:function-text-scroll-window) 221
:set-print-function-arg

Opecration Index

(on tv:function-text-scroll-window)221

:set-priority

fonwindows) ¢

:set-process
(ontviselect-mixin) O ¥
{ontv:process-mixin) Y 3 |

:set-region-list

(on tv:margin-region-mixin)135

:set-reverse-video-p

(onwindows). 1 |

:set-save-bits

(onwindows)16

:set-scroll-bar

(ontv:basic-scroll-bar), _.125

:set~scroll-bar-always-displayed

(ontv:basic-scroll-bar). 126

:set-selection-substitute

onwindows) . + . . « & v v v e e e 4. 0. . .38

:set-sensitive-item-types

(on tv:mouse-sensitive-text-scroll-window) 226
:set-sheet

(ontv:blinker) J106
:set-size

onwindows) 00 i s .. W45
(on tv:irectangular-blinker) 108
(ontv:blinker) » + v v 0 v v v v v v e e w0 108
(on tv:bitblt-blinker). 109

:set-size-and -cursorpos

(on tvirectangular-blinker)108

:set-size-in-characters

fonwindows). v v v v vt e el TS

.set-status

fonwindows). . . v v v v v i s e . 9

:set-superior

(onwindows) . + . v v 444w e .. e 12

:set-top-item

(ontv:text-scroll-window)22

:sct-truncation

(on tv:basic-scroll-window)232

:set-variables

{on tv:choose-variabie-values-window) « . . « « . 202

:set-visibility

(ontv:blinker)"%..105

:set-vsp

onwindows). . . .« . . v e v v e 00 .. .80

:setup

(on tv:multiple~choice)193
(on tv:function-text-scroll-window} W21
(on tv:choose-variable-values-window)202

:sheet

(ontv:blinker) C e e e e e e e e e . 106

Size

(onwindows) . . + v v ¢« 4 v 0 s e e s 45
(ontv:blinker) - 1
(ontv:bitblt-blinker), 109

:size~-in-characters

fonwindows) . v + « v v v b v e e e e e W T8

8-AUG-83

Operation Index

:square-pane-inside-size

(onwindows) . « v ¢ « 4 o 0 4w e e .. 21582
‘square-pane-size _
(onwindows) 152

‘status
(onwindows).................39
:string-length

(onwindows) <. .- e e e e e e 78
:string-out

(onwindows) . « « & v 4 0 e e e e e e e s 69
:string-out-centered
{onwindows) . . . ¢ v 0 e s e e e e e s 69

:string-out -centered -explicit
(onwindows).................80
:string-out-explicit
(onwindows) ¢ 4 0000 .
:string-out-x-y-centered-explicit
(onwindows).................80
:superior

(onwindowsand screens). . . .+ 4 o o oo . . . 12
:temporary-bit-array

..... 79

(onwindows) e e e e e 25
:top-item
(on tv:text-scroll-window) e e e e 220

‘top-margin-size

(onwindows).................129
‘truncation
(on tv:basic-scroll-window) 232
turn-off-blinkers-for-typeout
(on tv:essential-window-with-typeout-mixin) 214
:turn-on-blinkers-for-typeout

. 214

(on tv:essential -window-with-typeout-mixin) . . .

248 Window System Manual
ity
(ontvistream-mixin) 0. .. .53
‘tyi-no-hang
(ontvistream=mixin) « « « « & o v 4 4 00 w0 . . 53
‘tyo
(onwindows) . « .« « v . 4 e e68
‘tyo-right-margin-character
(OnWINdOWS) « + + « v v s v b e e e T3
‘typeout-window
{on tv:essential-window-with-typeout-mixin). . . . 214
:ultimate-selection-substitute
(onwindows) e e e e e e e e e 38
:un-arrest
(ontviselect-mixin) o42
‘untyi
(ontvistream-mixin) « . « . v v e e 00 0. .53
:update-item-list
(on dynamicitem listmenus) 185
:update-label
(on tv:delayed-redisplay-label-mixin) 134
:value-array
(on tv:basic-scroll-window) 233
wvisibility
(ontvblinker), » . v v v 4 v oo e e ... 105
vsp
(onwindows) . . « « . ¢ . 00 a0 .. .80
:wait-for-input-with-timeout
(ontvistream-mixin) . . « « ¢« v o 0 . 0o .54
:who-line-documentation -string
(onwindows) « + « + 4 4 e 0 e e e e e 120

:width

(onwindows) . « « ¢ v« s s e e s e e s e s

8-AUG-83

Keyword Index

Keyword Index

Window System Manual
:absolute
(for tv:mouse-set-blinker-definition) 124
:activate-p
(fforwindows) 1
:any
(for choose variable values). 195
:array
(for tv:bitblt-blinker). 109
:ask
(forconstraint frames). 149
:ask-window
(for constraint frames). 150
:assoc
(for choose variable values) 196
:asynchronous-characters
(fortvistream-mixin) . .« . . v . 00 0. .. . 61
(forinputbufferplisty 59
:backspace-not-overprinting-flag
(forwindows) i 81
:beginning -
(for:deselect). e e e e e e 33
:bindings
(formenuitemtype) + « « v 4 ¢ v v @ w40 .. 175
:black
(for constraintframes). 151
:blank
(forconstraintframes). « 151
:blink
(forblinkervisibility) 103
:blinker-deselected-visibility
(forwindows) . . . v . o v . i 0 e . 104
:blinker-flavor
(forwindows) v v v v v v v v v v v 104
:blinker-p
(forwindows) . « « . v v v v v v 0w o 104
:boolean
(for choose variable values). 196
‘border-margin-width
(fortv:borders-mixin). . « « 4 v « ¢« 4 o 4 . . . 131
‘borders
(fortviborders-mixin). 130
:bottom
(forwindows) ¢ v v v . 43
(forlabels). « o v v v v v v v e 132
(forborders) v v 130
:buttons
(formenuitemtype) 175
:centered
(forlabels). T 132
:character
(for tv:character-blinker) 109
(for choose variable values)., 195
:character-height
(forwindows) e e e e e e e e 44

:character-or-nil

(for choose variablevalues) 195
:character-width
(forwindows). . . . « v v v v v v v v v v . 4
:character-x-offset
(for tv.reverse~character-blinker). 11
:character-y-offset
(for tv:reverse~character-blinker). 111
:choice-box
(forbliptype)o ... 203
:choose
(forchoose variablevalues) 196
:clean
(forexpose). . « v v v v v v v v e e e 19
:column-spec-list
(for tv:dynamic-multicolumn-mixin) 187
:columns
(fortvimenu) 0.0, 19
:complcte-redisplay :
(for tvisheet-bit-armay) 16
:comtab
(for standalone editor windows). 160
:configuration
(for tv:basic-constraint-frame)+ 153
:constraints
(for tv:constraint-frame), 147
:cr-not-newline-flag
(forwindows). . . . v v v v v v v v v v v e 81
:date
(for choose variablevalues) 195
:date-or-never
(for choose variablevalues) . ., 195
:deactivated
(for tvipreserve-substitute-status). 39
:deexposed
(for tv:preserve-substitute-status). P)
:deexposed-typein-action
(forwindows). . . « v v v v v v v v h v .. 32
:deexposed-typeout-action
(forwindows). v e e W 22
:default)
(forfontpurpose} . o « v v o v 4 v 4 v b 4w .. 86
(for:deexpose). v .« v v v 0 v Lo n e e 20
:default-font
(fortvimenu). v v v v v e .. 180
:delayed
(forsave-bits). 0. ... 16
:delete-item
(foritem-generator). ¢ ¢ v v ¢ o . . . 23
:desclected - visibility
(fortv:blinker) ¢ v v e e 106
:display-item ’
(for tv:basic-scroll-window). e e s 232
:documentation

8-AUG-83

Keyword Index
(formenuitemtype). e e 175
(for choose variable values).« 196
:dont-save
(for tv:without-screen~management) 33
:dont-upcase-control-characters
(forinputbufferplist).+ 59
:edges
(forwindows) 0ot 4
:edges-from
(forwindows) . . v v v v v v v v v b e e e 44
:end
(for tv:without-screen-management) 33
serror
(for deexposed typeoutaction), 2
(formotice) » « & & v v vt e e e e e e . 159
seval
(for menu item type). e e e e e e e 174
(forconstraintframes) 151
‘even
(forconstraintframes) v o0 ... 149
:execute
(forbliptype). e e e e e 160
:expose
(for deexposed typeoutaction),
:expose~p
(forwindows) 20
:exposed
(for tv:preserve-substitute-status) 39
:exposed-in-superior
(for tvipreserve-substitute-status) 39
rextra-width
(for tv.choose-variable-values) 197
Aill-p
(fortvmenu) st s e e e e s e 180
first
(for tv:without-screen-management) 33
:flashy-scrolling-region
(for tv:flashy-scrolling-mixin). . . + « o « 126
:follow-p
(fortviblinker). e e e e 105
:font
(fortv:character-blinker). . . « « « & v v v o« 109
(formenuitemtype). . « v o v v v v v 0 ... 178
(forlabels) v v v v v o v v v v v u as 133
tv:font~map
(forwindows) . . . ¢ ¢ ¢ v v v v ¢ 0 v 0 v o s 84
:force
(for:deexpose) . . . + v v v v v tii 0 44 s 20
:full-rubout
(for :rubout-handler). e e e 54
:funcall
(formenuitemtype).« ¢ 174
(forconstraint frames) 150
:function
(for tvichoose-variable-values) 197

250

Window System Manual
(for tv:basic-choose-variable-values) 201
(forscrollitems)+ « v v v v v v v 4 .. 234
(forscroll windowentries), 229
:geometry
(fortvimenu) & v v v 4t e e 179
‘half-period
(fortvblinker) v ..o 0., 106
‘height
(forwindows) v v v v v v v v v v . 43
(for tvirectangular-blinker) 108
(fortviibeam=-blinker) 108
(for tv:bitblt-blinker) 109
:highlighted -items
(for tv:menu-highlighting-mixin) 189
:horizontal
(for constraint frames) e e e e e e 152
:hysteresis
(for tv:hysteretic-window-mixin) 115
Aif
(for tv:restrict-user-option) . « .+ . + « « . 4 . . 206
:initial-input
(for:rubout-handler) 54
‘input
(for:notice), e e e e s . 158
:input-wait
(for:notice).- e e e e ... 158
:insert-item
(foritem-generator) . . . v « &+ & ¢ 4 4 o 4 4. 223
:inside-height
(forwindows)43
:inside-size
(forwindows) e e i e e e e 43
:inside-width
(forwindows) « o & v ¢ 4 ¢ ¢ ¢ o o o o o s o s .43
:integral-p
(forwindows) c e e e e e 4
‘interval-or-never
(for choose variablevalues). « . « « + v o & « & . 195
:io-buffer
(fortvistream-mixin) 0 0 .. 52

(for tv:constraint-frame-with-shared-io-buffer). . .

(fortv:command-menu). 185
(for tv:choose-variable-values-window) 203 -
litem-list

(fortvmenu) + . v v o v ¢ o ¢ o s o o o « » o 183

(for tv:basic-multiple-choice) . . . « + « « « . .

:item-list-pointer

(for tv:dynamic-item-list-mixin) 186

:item-of-number
(foritem=generator) . . « « « « 4 « ¢ 0 o 4 o . 223

:item-type-alist

(for tv:basic-mouse-sensitive~items). 209
kbd

(formenuitemtype) . . . « v . 4 4000 . 174
:label)

(fortvilabel-mixin).+ ¢« v v v v v v . 132

(for tv:choose-variable-values) 197

8-AUG-83

Window System Manual
(for fontpurpose) . « v « ¢ ¢ v v v« 00w e s 86
:label-box-p
(for tv:box-label-mixin). 133
Jlast
(for:ideselect). . . . o v v ¢ v v v 0 v v 0o . 33
‘leader
(for tv:scroll-parse-item) 231
Jdeft
(forwindows) ¢ v v v v v o o s e .. 43
(forborders) . » « v v 4 4 v 0 e v e e s 130
“limit
(for constraint frames) 148
:line-area
(forbliptype). « + v ¢ ¢ v v ¢ v o v e e e 226
:line-area-width
(for tv:line-area-text-scroll-mixin) 226
:magnification
(for tv:magnifying-blinker). 110
:margin~choice
(for fontpurpose) . « « « v v o v v 4 b w0 e s 86
:margin-choices
(for tvimargin-choice-mixin). 211
(for tvichoose-variable-values-window) 202
(for tv:choose-variable-values) 197
:margin-scroll-regions
(for tv:margin-scroll-mixin) 127
:margins-only
(for tvisheet-bit-armay) o0 . 17
‘menu
(formenuitemtype) . « « v v « v ¢ 4 o0 o .. 175
(for fontpurpose) . . « « o o o o ¢ o ¢ 0 o = o & 86
(forbliptype). = + « & v v v v v e e e e 184
:menu-alist
* (for choose variablevalues) 196
:menu-choose
(formenuitemtype) . « o « v & v o 0 o . s . 175
:menu-margin-choices
(for tv:menu-margin-choice-mixin) 190
:menu-standout
(for fontpurpose) . . « . . . e e e e e e e 86
:minimum-height
(forwindows) . . + « « o ¢ v o s+ e e e e 44
:minimum-width
(forwindows) « « ¢« v v o v s o ¢ 0 0 s s 0 04 44
:more-p ’
(forwindows) . « .« . « « . .« .« . e e e e s 80
mouse
(for tviscroll-parse=item) « . ¢ o 231
(forscroll windowentries). &~ . + .« + ¢ 230
(forexpose=near). . . + o« v o « s s s v+ 0 0 s 46
(forzedges-from) . . . « v « v ¢ v v v 0 v 0. . 44
:mouse-button
(forBiptype). « « v v v v v o v v 0 s s s s 113
mouse-click
(for margin region functions). 135
:mouse-enters-region
(for margin region functions), . « + « « 135

251

Keyword Index
‘mouse-item
(forscroli windowentries) 230
:mousc-leaves-region
(for margin region functions) 135
‘mouse-moves
(for margin region functions) 135
:mouse-self
(for tv:scroll-parse-item) 231
:name
(forwindows). . . « « v v v v v 0 v v v v e 9,132
:name-font
(for tv:basic-choose-variable-values) 201
:near-mode
(for tv.choose-variable-values). 197
no-select
(formenuitemtype) . « + « « « v ¢ 0 v 00 .. 174
:noop
(fOr:eXpose). + « v v v 4 o o o s v o s v 0 o 19
(for:deexpose). . « « v v v v v v v v e e e e 20
:normal
(for deexposed typeoutaction) 22
(for deexposed typeinaction) 32
:notify
(for deexposed typeoutaction) . + « « v v v o 0 . . 22
(for deexposed typeinaction) . . . « « . . 4 . . 32
:number
(for choose variablevalues) 195
:number-of-item
(foritem=-generator). . + « « « « v + & s + « » 223
:number-of-items
(foritem-generator) . . . + v v ¢ & + ¢ o+ o . . 223
:number-or-nil
(for choose variable values) 195
roff
(for blinker visibility)+ 103
:on
(for blinker visibility) e e s 103
:output
(formnotice) + .« + v o v 0 ... e e e e 158
:panes .
(for tv:constraint-frame)}« 146
:pass-through
(for:rubout-handler) 54
:pathname
(for choose variablevalues) 195
:pathname-list
(for choose variable values) 196
:pathname-or-nil
(for choose variablevalues) 196
:permit
(for deexposed typeout action) R
:point
(for :expose-near) e e e e e e e 46
:position
(forwindows). . . . » « + . . e e e e 43
:pre-process-function
(forscrollitems). o « v o v ¢ o s o ¢ v v 0 0 s 234

8-AUG-83

Keyword Index
:princ
(for choose variable values) « . .. 195
:print-function
(for tv:function-text-scroll-window) 21
:print-function-arg
(for tv:function-text-scroll-window) 221
:priority
(forwindows) « « v v v ¢ ¢ v & v v o 0 o o o s 29
:process
(fortviprocess—mixin) « « .« o .o ..o . 41
:prompt
(for:rubout-handler).« 54
raw
(forinputbufferplist). « « ¢ ¢« o v o . 59
:refresh
(for margin region functions). 135
:relative
- (for tvimouse-set-blinker-definition). 124
:reprompt
(for :rubout-handler). 54
:restore,
(for:expose) . « « v o o o o o & e e e e e 19
:reverse-video-p
(forwindows) . . + v v v v v o v v o v 0 0 o 81
(for tvichoose-variable-values) 197
:right
(forwindows) . . + ¢ v ¢ 4 v ¢ v v e v 0 v 43
(forborders) . « « v v o v ¢ v 0 v e 0 e e 130
:right-margin-character-flag
(forwindows) . « + ¢ ¢ v v v v 0 0 0 0 0 00 81
TOWS '
(fortvmenu) « e e e s e e e e 179
:save-bits
(forwindows) . . « v v v v v . . e 16
:scroll-bar i
(fortv:basic-scroll=bar) « « 125
:scroll-bar-always-displayed
(for tv:basic-scroll-bar} « 126
:selected
(for tv:preserve-substitute-status) 39
:selected~choice-font
(for tv:basic-choose-variable-values). 202
:selected-pane
(for tv:basic-constraint-frame) 155
:sensitive-item-types
(for tv:mouse-sensitive-text-scroll-window) 226
:sexp
(for choose variablevalues) . . . « + « « « « . . . 195
'size
(forwindows) . . . v v v v v v o o 0 s s v oo 43
:size-changed
(for tv:sheet-bit-array) e e e e 16
:special-choices
(for tv:margin-multiple-menu-mixin) 189
:stack-group
(for tv:basic-choose~-variable-values). 201
:string

Window System Manual

(for choose variable values). 195
(forscroll window entries). 229
(forlabels). . . v v v v v v e v v v e e e 132

:string-font

(for tv:basic-choose-variable-values) 202
:string-list

(for choose variable values). 195
:superior .

(forwindows) . . . & & & v v 0 o s e v o o 0 o 12

(for tvichoose-variable-values) 197
:symeval

(forscroll windowentries). 229
:tab-nchars
(forwindows) . « « + v v v ¢« v 0 v o v v v e 81
:top
(forwindows) . . v « v v ¢ o v o v v 0 v v v o 43
(forlabels). ¢ v v v v v v v v v 132
(forborders) o « v v v ¢ v o o ¢ v v 0 v e o 130
‘truncate-line-out-flag

(for tv:line-truncating-mixin)« . . 73
‘truncation _

(for tv:basic-scroll-window) 232
‘typeout-execute

(forbliptype) .« v & v ¢ v v v v 0 v e e e e 208
‘typeout-window

(for tv:essential-window-with-typeout-mixin). . . . 214
:unless

(for tv:restrict-user-option) . . . « « + . ¢ . . . 206
:unselected-choice~font

(for tv:basic-choose-variable-values) 202
:use-old-bits

(for tv:sheet-bit-array) e e e e e 16
:value

(formenuitemtype) + « + « ¢ v ¢ 0 o o 0. . 174

(forscroll windowentries). . . . + « « ¢ ¢+ . 230
:value-array

(for tv:basic-scroll-window) R X X
:value-font

(for tv:basic-choose-variable-values) 201
:variable-choice

(forbliptype) « . .. e e e e e e s 203
:variables

(for tv:basic-choose-variable-values) 201
:vertical

(forconstraint frames) ¢ 152
:visibility)

(for tv:blinker) e e e e e e e e e 106

vsp

(forwindows) « + o v v v v e v v h et e e s 80
(forlabels).« . . . o e e e e s 133

:white
(for constraint frames). 151
:who-line-documentation-string
(for margin region functions) v . . 135
:width
(forwindows) P Y £
(for tvirectangular-blinker) 108

8-AUG-83

Window System Manual

{for tvichoose-variable-values) 197

(for tv:bitblt-blinker) 109
:window

(forzexpose=near). . . . v v v v v v v v 0. . 46

:window-op

(formenuitemtype) 175
X

253

Keyword Index

(forwindows). 43
X-pos

(fortviblinker) 105

Yy

(forwindows). v ..., 43
'y-pos

................. 105

(for tv:blinker)

8-AUG-83

Flavor and Resource Index 254 Window System Manual

Flavor and Resource Index

tv:abstract-dynamic-item-list-mixin 185

tv:alias-for-inferiors-mixin e e ... 36 tvigraphics-mixin. 0 00000 .93

tv:autoexposing-more-mixin o0 73 tv:gray-deexposed-right-mixin <. .. 27
tvigray-decxposed-wrong-mixin27

tv:basic-choose-variable-values 200

tv:basic=frame 4 0 0 s s v e e e e . 141 tv:hollow-rectangular-blinker. 108
tv:basic-cmenu . . . 0 0 4 e e e e 0. ce. . 181 tv:hysteretic-window-mixin 115
tv:basic-momentary-menu e . 2182
tv:basic-mouse-sensitive-items 207 tv:ibeam-blinker e e e e e e e e 108
tv:basic-multiple-choice e e e e e e 192 tviinferiors-not-in-select-menu-mixin35
tv:basic-scroll-bar. P V0 tviinitially-invisible=mixin27
tv:basic-scroll-window 232 tviinspect=frame 4 4 . 0 0 0 o0 0. .. 162
tv:basic-typeout-window 212 tviinspect-frame=resource . . « ¢« « « + 0 . s . s 162
tv:bitblt-blinker. + « « « « v 0 4 . s o0 0. . 109 tv:interaction-pane . ., e e e e .. 156
tvblinker o0 e e e ... 103 tv:intrinsic-no-more-mixin. 215
tv:bordered-constraint=frame 143
tv:bordered-constraint-frame -with-shared~io~-buffer . 143 tv:kbd-mouse-buttons-mixin. 113
tviborders-mixin . . . - 4 4 v s e v 00 o. .+ 130
tv:box-blinker e e e e e e 108 tvilabel=-mixin . .« v . v v e e h e e e e e ... 132
tv:box-label-mixin 00 0. 133 tv:line-area-mouse-sensitive~text-scroll-mixin . . . 227
' tv:line-area-text-scroll-mixin. ., 226
tvicentered-label-mixin 14 tv:line-truncating-mixin« .+ .0 0. .. W73
tvicharacter-blinkero o 109 tvilisp-interactor . « « .« « « 4 e 0 000 ... o 159
tvichoose-variable-values-pane 200 tvilisp-listener . . . « v o . 4 e e e 0w ... 159
tvichoose-variable-values-window 200 tv:list-mouse-buttons-mixin 113
tvieommand=menu . « .« + 4 4o« o e o0 s e .. s 185 tvilistener-mixin 0 0 0 e o b0 .. . 159
tvicommand-menu-abort-on-deexpose-mixin , . . . 185 tv:listener-mixin-internal 159
tvicommand-menu-mixin., ¢ . . 0 184
tv:constraint~frame 142 tv:magnifying-blinker 110 -
tv:constraint-frame-with-shared-io-buffer. 143 tvimargin-choice-menu« + 4 ¢ o 190
tvicurrent-item-miXin . . « . . . e . s e . . . 227 tv:margin-choice-mixin 211
tv:margin~multiple-menu-mixin 188
tv:delay-notification-mixin 157 tv:margin-region=mixin 0 .0 134
tvidelayed-redisplay-label-mixin. 134 tv:margin-scroll-mixin e e e 127
tv:displayed-items~text-scroll-window 227 tv:margin-scroll-region - on-and-off-with-scroll-bar-mixin 127
tv:dynamic-item-list-mixin 186 tvmenu. O .22
tvidynamic-momentary-menu. v e 186 tv:menu-execute=mixin o ¢ 0 .0 o 0.« 177
tv:dynamic-momentary-window-hacking-menu . . . 186 tv:menu-highlighting-mixin 18
tv:dynamic-multicolumn-mixin 186 tv:menu-margin-choice-mixin 189
tv:dynamic-multicolumn-momentary-menu 187 tvminimum-window . « o v e e e ... b6

tv:dynamic-multicolumn-momentary -window-hacking-menu 187 tv:momentary-margin-choice-ment 190
tv:dynamic-temporary-abort-on-deexpose-command-menu 186 tvimomentary-menu ¢ . . . o 0o . 182

tv:dynamic-temporary-command-men. 186 tv:momentary-multiple-menu. 188
tvidynamic-temporary-menu . . . » . . « 186 tv:momentary-window-hacking-menu ., 182
tv:mouse-blinker-mixin 122

zweiteditor=top-=level.« o oo 0. 161 tv:mouse-box-blinker . . « 122
tviessential-scroll-mouse-mixin 238 tv:mouse-box-stay-inside-blinker. 122
tv:essential-window-with~typeout-mixin 214 tv:mouse-character-blinker. 12
) tv:mousc-hollow-rectangular-blinker. 12

tv:flashy-margin-scrolling-mixin, 127 tv:mouse-rectangular-blinker 122
tv:flashy-scrolling=mixin . . . + » + » « « 126 tv:mouse-sensitive-text-scroll-window 225
tv:frame-forwarding-mixin 154 tv:mouse~sensitive-text-scroll-window-without-click . 227
tv:full-screen-hack-mixin 131 tv:multiple=choice 193
tv:function-text-scroll-window221 tvmultiple-menu. . . . 0 . e e e e e e e 188

8-AUG-83

Window System Manual 255 Flavor and Resource Index

supdupitelnet 162
tvino-screcn-managing-mixin, ., e e W2 supdup:telnet-windows 162
tvinot-externally-sclectable-mixin37
tv:notification-mixin, , . ., 157 supdup:telnet e e e e e e e e e 162

supdup:telnet-windows 162
tvipeek-frame 162 tv:lemporary-choose-variable-values-window. 201
tv:pop-up-finger-window 163 tvitemporary-menu. 182
zwci:pop-up-standalone-editor-frame 161 zwei:temporary -mode-line-window-with-borders . . .161
tvipop-up-text-window e .. 162 zwci:temporary -mode-line -window - with-borders-resource 161
tviprecemptable-read-any~tyi-mixin55 tv:temporary-multiple-choice-window 193
tVIProCess—mixXin . . . v v v v v v s b b e ... s 40 tvitemporary-window-mixin 25

: tvitext-scroll-window., 219

tvirectangular-blinker 108 tv:text-scroll-window-empty-gray-hack222
tvireset-on-output-hold-mixin 42 tvitext-scroll-window-typeout-mixin 222
tv.reverse-character-blinker. 110 tv:itop~label-mixin 133

tv:truncating-pop-up-text-window 163
tviscreen e e e e e e e e e e 13 tvitruncating=pop-up-text-window-with-reset . . 42,163
tviscroll-mouse-mixin. e e e e 238 tv:truncating-window B 2
tv:scroll-stuff-on-off~mixin 127 tvitypeout-window ., e el Q212
tviscroll-window 232 tv:typeout - window-with-mouse-sensitive- 1lems L 212
tv:scroll-window-with- typeout X X
tviscroll-window-with-typeout-mixin 233 tvwindow)
tviselect-mixin, 00l el 32 tv.window-hacking-menu-mixin e v
tvisheet., L L0 e s e i T tv:window-with-typeout-mixin. e e e . 214
tvishow-partially-visible-mixin27 :
zweiistandalone-editor-frame, 160 zweiizmacs-frame e e e e e .. J160
zweiistandalone-editor-window 160 zweiteditor-top-level 161
tvistay-inside-blinker-mixin 108 zwei:pop-up-standalone-editor-frame161
tvistream-mixin0 00 0. 00 ... W49 zwei:standalone-editor-frame , 160
supdup:supdup. e e e e e e . 162 zweiistandalone-editor-window. L160
supdup:supdup-windows. 162 zweiitemporary -mode-line-window-with-borders . . .161
supdupisupdup. . v v 4 4 0w . e 162 zweitemporary -mode-line-window-with-borders-resource 161
supdup:supdup-windows. 162 zweizmacs-frame 0 0w . e 160

8-AUG-83

Window System Manual

Variable Index

Variable Index

GAHKDA=ChAL « & « v ¢ o s @ s e e s e e s 49
GOEbAd~control « .+« 4 4 4 4 e e e e e e e s 49
%%Kkbd-control=meta « « + « v o oo o s ow e oo 49
BRKbd-hyper . . . v e s e e e e e e e 49
THKbA=MEtZ . « o« v o o & s 0 e s e e e e 49
BHRDA~MOUSE « o o « + o o o o s o s o s s o = 49
%%kbd-mouse-button . . .+ < ¢ . 4 0 e o e .. . 49
%%kbd-mouse-n=clicks+ ¢ o o0 49
%I%KbA=SUPEr. « « « ¢ ¢ v e e e e e e e 49
tv:**constraint-node*® o o 0 00w e 0 151
tv:**constraint-remaining-height**. 151
tv:**constraint-remaining-width** 151
tv:**constraint-stacking®*. o0 o . . 151
tv:**constraint-total-height** « . .« 151
tv:**constraint-total-width**+ . 151
tv:*enable-typeout-window-borders*. 213
wi*escape-keys* o e e e e e e e e e 63
tv:*mouse-incrementing-keystates®*. 128
tvi*system-Keys®* e o v 0 e e e e e 64
tv:*system-menu-this-window-oolumn‘ 168
tv:"system-menu-windows-column’ 168
tVI2BBIAY & o o o o n s e a e e s e e 27
tvi25%=gray . . o o 0 . o» e e e e e e e e 27

tv:33%-gray.....'.............27

tViS0%=8TAY .« « ¢ o b e 0 e s e e e n e m e e 27
75%=EEAY + o o o b v e e e e e a . 27
tviall-the=SCTeenS « o o o o o o o ¢ 5 o o o = o+ o 13
tvialu=and e e e e e e e e 94
tvialu-andca . . o . h e e e s e e e s e e e 94
tvealu=ior + v+ ¢ s 0 s e s e e e e e e s e X)
tvialu-seta . + o o 0 0 . . . e e e s e e s 94
tvialu=XOT o v o ¢ ¢ ¢ o s o s 2 o o o ¢ 0 o 0. 94
tvicold-load-stream ¢ o 4 s 00 e e e e 170
coloricolor-screen .+ . « + ¢ 0 - oo ICERIREE 13, 165
tvidefault=sCreen . « « o + « o o s 0 o 4.0 e 13
tv:default-window-types-item-list 168
tviinitial-lisp-listener - o 159
tv:kbd-global-intercepted-characters 63
tv:kbd-intercepted-characters o« . . o . - 60
tv:kbd-last-activity-time« . . ¢ o . o . 50
tv:kbd-standard-intercepted-characters 60
tvkbd-tyi=hook 4 v 0w e e v e e e e 61

tv:last-who-line-process.. . + « « « « « + o o . . 163
tVMAIN=SCICEN « « v « & o s « o « 2 o s s s o s s 13
tv:morc-processing-global-enable 72
tv:mouse-blinker 4 4 0 e e e e e s 121
tv:mousc-bounce-time 0 00 e e e 128
tv:mouse-double-click-time« . . o . 128
tv:mouse-last=buttons+« o 4 o e 0 0 . e 116
tvimouse=Sheet. « v o o ¢ ¢ o v e a0 s 0w e e 112
tvmouse=speed 0 . 0 e e e e e e e 116
tvmouse-windoW. . « « 4« s 0 s 4 e s oa s e 115
EVIINOUSE™X « o o « o o o o o s o s & o o s » = 112
TVIMOUSE=Y « « & o o o o » o o o s o s o o & = 112
tv:previously-selected-windows 36
tv:screen-manage-update-permitted-windows 28
tviscroll-item-leader-offset. . . . + « « ¢« o o 238
tviselected-window e e e e e e e e e i1
tvisheet=ared. « » ¢ o+ « s o s o 8w @ s s e 0 9
tv:array

(of tv:bitblt-blinker) . . . « . v o o 0 v oo .. 110
tv:baseline

(of windows) . .« . « . .« . e e e e e e e e 85
tv:bit-array

(of windows) . . « ¢ v o 0 v e e e e s e s e e 16
tv:bits-per-pixel

(oftviscreen) . o v v 0 0 o o a s O .
tv:blinker-list

(of windowsandscreens). « « + o« ¢+ + 4 o . o 104
tv:border-margin-width

(oftv:borders-mixin) . . « « 4 4 o o .. - el 131
tv:borders

(oftv:borders-mixin) . « . « v v o 0 0 000 e e 131
tv:bottom-margin-size

OfWindows) . + v v v v v e a0 e e e e 129
tv:buffer

(oftviscreen) e e e e e e e .. .15
tv:buffer-halfword-array)
(oftviscreen) . + + « . . G h e e s e e .15
tv:char-aluf

(of windows) « « v ¢ v o v e e s e e s . .67
tv:char-width

(ofwindows) . . « o v ¢ v o u e i 00 a e s . 67
tv:character

(of tvicharacter-blinker). . . « + + + ¢ ¢ v v ok 109
tv:choice-types

(of tv:basic-multiple-choice). . + « + + . o o . . 193
tv:choice-value

(of tv:basic-multiple-choice). . « « + + « o+« 193
tv:chosen-item

(oftv:basic-menu) » + « ¢ 4 0 0o 0w w e 181
tv:column-spec-list

8-AUG-83

Window System Manual

(of tv:dynamic-multicolumn-mixin} , 187
tv:constraints

(of tviconstraint-frame) 147
tv:control-address

oftviscreen) + . v . .. u 15
tv:current-font

fofwindows) 84
tvicurrent-item

(oftvicurrent-item-mixin)., 27
(oftv:basic-menu) e e e e e e 181
tv:cursor-x

(ofwindows) 66
tv:cursor-y

fofwindows) 66
tv:deexposed-typeout-action

(ofwindows) 22
tv:desclected - visibility

(oftvblinkery 106
tv:display-item

(of tv:basic-scroll-window) 232
tv:displayed~items

(of tv:displayed-items-text-scroll-window) 227
tvierase-aluf .

(of windows) e e e e e e e e e e e 67
tv.exposed-inferiors

(of windowsandscreens). 21
tv:exposed-p

(of windowsandscreens)., 21
tv:font

(of tvicharacter-blinker). e e e e e 109
tv:font-map '

(ofwindows) e e 84
tv:function

(of tv:basic-choose-variable-values) 201
tv:geometry

(oftvbasiccmenu) 182
tv:half-period

(oftviblinker) 106
tv:height

fofwindows) 47
{of tybithlt-blinker) , , ., , . . ., e e e e 110
tv:highlighted-items

(of tv:menu-highlighting-mixin) 189
tviincomplete-p

(of tv:basic-typeout-window). 217
tv:inferiors ’ '

(of windowsandscreens), 12
tviio-buffer

(oftvistream-mixin), 51
(oftv.command-menu) . . . , 185
tv:item-generator

(of tv:text-scroll-window) e v e e e, 22
tv:item~list

(oftv:basic-menu), ., . e e 181
tviitem-list-pointer

(of tv:dynamic-item-list-mixin) 186
tviitem-name

Variable Index

(of tv:basic-multiple~choice) 193
tviitems

(of tv:text-scroll-window)., 219
tv:label

(oftvilabel-mixin}, 133
tv:label-needs-updating

(of tv:dclayed-redisplay-label-mixin) 134
tv:last-item

(oftv:basic-menu). L L. L, L. L. 181
tv:left-margin-size

ofwindows),........ 129
tv:line~height

ofwindows) 67
tv:lock

(of windowsandscreens), 24
tv:lock-count

(of windowsandscreens) 4
tv:magnification

(of tv:magnifying-blinker). 110
tv:margin-choices

(of tv:margin~choice-mixin). . , 211
tv:more-vpos '
(ofwindows) e e e e s 72
tv:mouse-blinkers

(ftvsereen) . o . . . oL e 123
tviname :

(ofwindows) e v . 9
tv:panes

(of tviconstraint-frame). 147
tv:phase

(of tv:blinker). e e e e e . 107
tv:print- function ’

(of tv:function-text-scroll-window). 21
tv:print-function-arg

(of tv:function-text-scroll-window). 21
tv:priority .

(ofwindows)
tv:process

(of tviprocess=mixin). . « v o\ b ... W 41
tv:region-list

(of tv:margin-region~mixin). . . ., 134
tv:restored-bits~p .

(ofwindows) ., e e e e L1
tv:right-margin-size -

fofwindows) 129
tv:screen-array

(of windowsandscreens) 21
tv:selection-substitute

fofwindows) v ., 37

tvisensitive-item ~types
(of tv:mouse-sensitive~text-scroll-window).225

‘tv:sheet

(oftviblinker). 106
tvistack -group .

(of tv:basic-choose-variable-values) 201
tv:superior :

(of windowsandscreens) 12

8-AUG-83

Variable Index

tv:time-until-blink

(oftviblinker), . 106
tv:top-item .

(of tv:text-scroll-window) e e 219
tv:top-margin-size

(ofwindows). 129
tv:truncation

(of tv:basic-scroll-window). 232
tv:typeout-window

(of tv:essential-window-with-typeout-mixin) 214
tv:value-array

(of tv:basic-scroll-window). 233
tv:visibility

Window System Manual

(oftviblinker) 105
tviwidth

(ofwindows) 47

(of tv:bitblt-blinker) 110
tv:x-offset

{ofwindows) 47
tvix-pos

(oftvblinker) 105
tv:y-offset

(ofwindows) v v ... 47
tviy-pos

(oftvblinker) 105

8-AUG-83

Window System Manual

Function Index

Function Index

sys:%color-transform e e e 102
sys:%draw-char, 1)
sys:%draw-line. 00000 101
sys:%draw-rectangle. 0. 101
tv:%draw-rectangle-clipped. 101
sys:%draw-triangle 101
tviadd-escape-keyo 0o 64
tviadd-system-keyo 00 0oL 64
tv:add-to-system-menu~programs-column 167
tviadd-typeout-item-type ¢ 0. . . . 209
tv:await-window=-exposure 023
1 69
bitblt. e e e e e e e e e 102
tv:black-on-white o 000 14
color:blt-color-map. e e e e e e e 165
tvieareful=notify 00w e e e 157
tvichoose-process=in=efror . . . « + « « + « . . . 158
choose-USer-optigns. « « « v « & « s & & o & o . 206
tv:choose-variable=values 19
tv:choose-variable-values-process-message 203
color:clear. . v v v v e 4 s u s e e e e s .. . 166
tviclose-all=servers . . . « « v+ v 4 . 0. . . . 164
coloricolor-draw=-char 167
color:color-draw=line+ . v . .. 166
color:color=exists=P . « « « » 4 o 4 4 40 0. . 165
color:blt-color-map.« « .« 165
coloriclear. 0 0w w s e e 166
color:color-draw=char . . . « « « + = v+« o . . 167
color:color-draw-line 166
color:color=exists=p . « + + + 4 o s 40 0 s o« . . 165
coloricolorate. » . v . v 4 s e e s e s .o . . 166
color:colorize. e e e s e e e s e . . 166

color:fill-color-map. «
color:make-color-font.

coloriread-color-map . . + « v« ¢ 0 0 e ..
colorirectangle .+ ¢ v v 0 0 0w e d e e e e e
color:spectrum=color-map . . « « « o « « 4 . 4 o
coloriwrite-color-map. . . « « . « « ¢ o0 o .
color:write-color-map-immediate . . .
color:colorate.,
color:colorize.
tvicomplement-bow-mode

define-user-option-alist
defvar-site-alist-user-option . .
defvar-site-user-option
defvar-user-option0 o0
tv:defwindow-resource.
tv:delaying-screecn-management.
tvidescribe-servers

166

. . 92,167

166
165
166
166
165
165
166

.15

tv:deselect-and-maybe-bury-window PP
tvidraw=char« 4 v 4 e e e e e e e e e s 101
tv:draw-rectangle-inside-clipped 101
color:fill=color-map 0o .. 166
tv:find-process-in-error. 158
tv:find-window-of-flavor 65
tv:flush-full-screen-borders 132
tvifont-baseline 0t b ... 90
tv:font-blinker-height e W9
tv:font-blinker-width. W9
tv:font-char-height. 90
tv:font-char-width, e .. %
tv:font-char-width-table e e e e .91
tv:font-chars-exist-table91

tvifont-evaluate v . 0 v e e 0 .o . . 87

tv:font~indexing-table e e e e .9
tv:font-left-kern-table 91
t:font-name s e e e e e e e . 90
tv:font~raster-height SO |
tv:font-raster-width o9
tv:font-rasters-per-word R) |
tv:font-words-per=char s v . s . .. 291

tvidle-lisp~listener. 0 o 0. .. . W159
tvio-buffer~clear58
tviio-buffer-empty-p. o 0. .. . 57
tviio=buffer-full-p.95

tviio-buffer-get 1
tviio-buffer-input-function 56
tviio-buffer-input-pointer. 56

tviio-buffer-last-input-process. . . » . . « + . . . 57
tviio-buffer-last-output-process « 57
tviio-buffer-output-function.
tviio-buffer-output-pointer 5%
tviio-buffer-plist. ¢« o000
tvio-buffer-push57
tvio-buffer-put. 0000
tviio-buffer-record.00 .. L 5T
tv:io-buffer-record-pointer . .
tviio-buffer-size.
tviio-buffer-state ¢ oo s .. .56
tviio-buffer-unget0

tv:kbd-asynchronous-intercept-character. 62
kbd-char-available. 0.
tv:kbd-char-typed-p. . . .
tv:kbd~-default-output-function.
tv:kbd-intercept-abort60
tv:kbd-intercept-abort-all.
tv:kbd-intercept-break
tv:kbd-intercept-crror-break.
tv:kbd-io-buffer-get.
tvikbd-snarf-input00 .

8-ALIG-83

Function Index

kbd-tyi
kbd-tyi-no-hang

tv:kbd-wait-for-input-or-deexposure. . .

tv:kbd-wait-for-input-with-timeout .
tv:key-state

tv:label-bottom
tv:label-centered
tvilabel-font
tvilabel-left
tvilabel-right.
tv:label-string
tv:label-top
tv:ilabel-vsp
tvilock-sheet.

tv:make-blinker.
color:make-color-font
tv:make~default-io~buffer
make-instance .
tvimake-io-buffer.
tv:make-sheet-bit-array
tv:make-window
tv:map-over-exposed-sheet.
tv:map-over-exposed~-sheets
tv:map-over-sheet.
tv:map-over-sheets
tv:margin-region-area
tv:margin-region-bottom . .
tv:margin-region-function
tvimargin-region=left
tv:margin-region-margin

tv:margin-region-right.

tv.margin-region-size¢
tv:margin-region-top
tvimenu-choose. . + + & « 4 4 4
tv:menu-compute~geometry.

tv:menu-item-string.

tv:merge-shift-keys
tv:mouse-button-encode
tvimouse-buttons
tv:mouse-call-system-menu. . .
tv:mouse-default-~handler.
tvimouse-define-blinker-type
tv:mouse-discard-clickahead

tv:mouse-get-blinker

tvmouse-input
tv:mouse-select . '
tv:mouse-set-blinker.
tv:mousc-set-blinker-cursorpos . . .
tv:mouse-set-blinker-definition
tv:mousc-set-sheet . . .
tv:mouse-set-sheet-then-call
tv:mouse-set-window-position. . . .

tv:mouse-set-window-size

tv:mouse-specify-rectangle
tv:mousc-standard-blinker

* 0 e e s

Window System Manual

tvimouse-wait >, .
tv.mouse-wakeup.
tVIMOUSE=WAIP . = 4 + v « o & s o + s o s o & &
IVIMOUSE=Y=0I=N=P. v & v 4 ¢ ¢ o o ¢ s o o &
tv:multiple~choose
tv:multiple-menu-choose . .

tviopen-blinker
zweipop-up-edstring
tviprepare=sheet 4 4 4 0 40w e 0w
tv:preserve-substitute-status .
tv:print-notifications
tv:process-typeahead
tviprune-user-option-alist

color:random-color-map. . .
coloriread-color-map 4 0.0 ...
zweiread-defaulled-pathname -near-window
colorirectangle 4 i v e e e ..
tviremove-escape-key.

tviremove-system=Ke¥. . « . v 4 4 v 0 e 40 4 . .

reset-user-options
tvirestrict-user-option.

tviscroll-interpret-entry . .« « . 4 4 0 00 v . .
tviscroll-item-component-items.
tviscroll-item-line-sensitivity . . .
tv:scroll-item-mouse-items. . . .
tviscroll-item-plist 0000 ..
tviscroll-item-size . . . 4 ¢ 44 0 h e e 0. .
tv:scroll-maintain-list . .
tv:scroll-maintain-list-unordered
tviscroll-maintain-list-update-states
tv:scroll-parse-item. . . .
tv:scroll-string-item-with-embedded-newlines. . . .
tv:select-or-create-window-of-flavor

tviset-default-font

tviset-screen-standard-font.
tv:set-standard-font.
tviset-tv-speed.
tv:sheet-backspace~not-overprinting-flag
tv:sheet-baseline
tvisheet-bit-armay. . o v ¢ v o 0 0 0 4 b0 ..
tv:sheet-blinker-list. i
tv:sheet-bottom-margin-size + . « « .« . .

e e s 0 &2 s s s s

tv:shect-bounds-within-sheet-p.
tvisheet-calculate-offsets. . . . « « v ¢« ¢« v ¢ ¢ . .

tvisheet-can-get-lock
tvisheet~char-aluf,
tvisheet=char-width.
tvisheet-clear-locks.

tv:sheet-contains-sheet-point-p. + « . « . .
tvisheet~cr-not-newline-flag

tv:shect-current-font .

L O L I I Y

. 115

113
178
191
187

157

107

162

.87
.14
.81
.85
.16
104
129

8-ALUG-83

Window System Manual

tvisheet=cursor=x. . . . v v v oL .. e e ... 67
tvisheet-cursor=y. . . « . v o e .67
tv:sheet-deexposed-typeout-action.22
tvisheet-end-page-flag7
tvisheet~erase~aluf67
tv:sheet-exposed-inferiors 21
tv:sheet-exposed-p21
tvisheet-following-blinker 107
tvisheet-font-map, 85
tv:sheet-force-access o e .23
tvisheet-get-screen e e .13
tvisheet=height. 47
tvisheet-inferiors12
tvisheet-inside-bottom. 130
tvisheet-inside~height, . P ¥
tvisheet-inside-left 130
tv:sheet-inside-right. 130
tvisheet-inside-top 130
tvisheet-inside-width 47
tv:sheet-left-margin-size. 129
tvisheet-line-height. 67
tvisheet-lime-out /1]
tvisheet-lock, - . .24
tvisheet-me-or-my-kid-p 12
tvisheet-more-flag e e e e 71
tvishect-more-handler. e e 72
tviSheet-more=vpos . « v « v ¢ v ¢ v v 0 0 v . . T2
tvisheet~-number-of-inside-tines. 48
tv:isheet-output-hold-flag 2,71
tvisheet-overlaps-edges-p48
tvisheet=overlaps=p . + « v v v 0 0 v h e .. . 48
tvishect~overlaps-sheet-p48
tvisheet-right-margin-character-flag81
tvisheet-right-margin-size 129
tvisheet=screen-array« « v v 0. .. . W2
tvisheet=superior . . « 0000w 0. 12
tvisheet-tab-nchars81
tvisheet~tab-width8
tvisheet-top-margin-size. 129

261

tv:sheet-truncate-line-out-flag.

tvisheet-width.
tvisheet-within-p . . .

tvisheet-within-sheet-p. . .

tvisheet-x-offset. e

tvisheet-y-offset,

color:spectrum-color-map . .

tv:spline
sys:%color-transform

sys:%draw-char
sys:%draw=line .,
sys:%draw~-rectangle
sys:%draw-triangle

tv:turn-off-sheet-blinkers

zweiitypein-line-readline-near-window

tv:who-line-documentation . .

tv:who-line-file-state-sheet
tv:window-call
tv:window-mouse-call
tv:window-owning-mouse .

tv:window-under-mouse
tv:with-blinker-ready.

tv:with-mouse-grabbed . .
tv:with-mouse-usurped . .
tv:with-selection-substitute

.

tv:with-sheet-deexposed . .

tv:without-screen-management
color:write-color-map

color:write-color-map-immediate.. .

write-user-options . . .

zweipop-up-edstring.,
zweiread-defaulted-pathname-near-window . . ., .
zweiitypein-line-readline-near-window

LR

Function Index

115
117
e e u107
..... 115
118
.21
.165
. .165

.161
.162
.161

8-AUG-83

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	001
	002
	003_01
	004
	005
	006
	007
	008
	009
	010_02
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031_03
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043_04
	044
	045
	046
	047
	048
	049_05
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066_06
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083_07
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093_08
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103_09
	104
	105
	106
	107
	108
	109
	110
	111
	112_10
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129_11
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141_12
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157_13
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173_14
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212_15
	213
	214
	215
	216
	217
	218
	219_16
	220
	221
	222
	223
	224
	225
	226
	227
	228_17
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	240_ConceptIdx
	241
	242_OperationIdx
	243
	244
	245
	246
	247
	248
	249_KeywordIdx
	250
	251
	252
	253
	254_FlavorIdx
	255
	256_VariableIdx
	257
	258
	259_FunctionIdx
	260
	261

