
ESD-TR-66-113

ESD RECORD COPY
\<ti :'•

SCIENTIFIC & TE'' '^ DIVISION
(ESTI1 Bl'»WOt»»G \i\\

MTR - 197

ESD ACCESSION 'LISToiume n
ESTI Call No. AL 5 5953

Copy No. ./__ - -JL CT»

A METHOD FOR THE EVALUATION OF SOFTWARE

VOLUME n

Procedural Language Compilers — Particularly COBOL and FORTRAN

APRIL 1967

A. E. Budd

Prepared for

EDP EQUIPMENT OFFICE
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Distribution of this document is unlimited.

Project 8510

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

This document may be reproduced to satisfy official
needs of U.S. Government agencies. No other repro-
duction authorized except with permission of Hq.
Electronic Systems Division, ATTN: ESTI.

When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in
any way supplied the said drawings, specifications,
or other data is not to be regarded by implication
or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

ABSTRACT

This report contains procedural language compiler features considered
important for comparative analysis. These features are identified in a form
expressly for inclusion in the Three Step Method for Software Evaluation
(Volume 1 of this series) under Category ONE: Procedural Language Com-
pilers — Particularly COBOL and FORTRAN.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

S. P. STEFFE5 M

I Colonel, USAF
V Chief, EDP Equipment Office

in

TABLE OF CONTENTS

SECTION ONE

SECTION TWO

SECTION THREE

Pa£e

INTRODUCTION 1

MATRIX OF FEATURES 4

I. SOURCE LANGUAGE ORIENTED FEATURES 5

II. LOGIC AND CONTROL OF INPUT/OUTPUT
DEVICES 7

III. COMPILER FEATURES 9

IV. PROGRAMMER ERROR DIAGNOSTICS 12

V. HARD-COPY OUTPUT AND FACILITY
DOCUMENTATION 14

VI. MANUAL AND AUTOMATIC OPERATIONS 16

VII. FACILITY ADMINISTRATION 18

DESCRIPTION OF PROCEDURAL LANGUAGE COMPILER
FEATURES 19

I. SOURCE LANGUAGE ORIENTED FEATURES 19

II. LOGIC AND CONTROL OF INPUT/OUTPUT
DEVICES 22

III. COMPILER FEATURES 25

IV. PROGRAMMER ERROR DIAGNOSTICS 31

V. HARD-COPY OUTPUT AND FACILITY
DOCUMENTATION 34

VI. MANUAL AND AUTOMATIC OPERATIONS 36

VII. FACILITY ADMINISTRATION 38

\

TABLE OF CONTENTS (CONCLUDED)

SECTION FOUR

SECTION FIVE

QUESTIONNAIRE

I. INTRODUCTION

II. FUNCTIONAL DIVISIONS

COMPILER BENCHMARK PROGRAMS

I. INTRODUCTION

II. GENERAL REQUIREMENTS

III. TEST PROGRAM FEATURES

Page

41

41

41

52

52

52

53

vi

SECTION ONE

INTRODUCTION

This report contains the important features of procedural lan-
guage compilers, particularly COBOL and FORTRAN. The compiler fea-
tures identified are those which have been known to vary significantly
from vendor to vendor, and are easily determined by appropriate ques-
tioning or actual demonstration. These features are a composite from
which the evaluator, in conjunction with the user, may select provid-
ing they are consistent with the system requirements. The evaluator
would first select those features which are of significant importance
to the user. This list would be part of the basic system requirements
of the evaluation team in which one vendor's answer or result for one
feature would form one entry. This would provide a convenient method
of comparing the features of one vendor as well as comparing the ven-
dor's response to any one feature.

The evaluator must work with the user to determine his specific
needs. For instance, the user may require emphasis on compilation
since the major activity is to develop experimental programs which
wilx be executed only a few times and discarded. On the other hand,
his needs may require a very efficient object code from the compiler
because once the program has been checked out it will be executed many
times per day for several years with only slight modifications. Which-
ever the case may be, these needs must be determined through the user
so that the resulting system selection will meet his specific require-
ments.

Any evaluation must begin with a precise identification of the
user requirements. Failure to determine user requirements with suffi-
cient precision can lead to identification of a grossly unsuitable
system as the optimal one. Two types of user requirements mu'st be
identified. First, features of possible systems must be examined to
determine their utility to the user; in the initial stages of the
evaluation process this utility need not take the form of a precise
weight but need only be determined sufficiently to select the subset
of possible features to be analyzed during the evaluation process.
Once the proper group of features has been selected, a standard of
quality must be set for each one. This requires that a minimum level
of performance regarding each feature be established. Obviously,
instances will occur in which the presence or absence of the feature

is the only matter of concern, but in the case of certain features
particularly amenable to quantitative measurement a minimum perform-
ance level together with some valuation on above minimum performance
must be established.

The features are presented in three sections. The first of
these, SECTION TWO, contains summary titles of each feature in the
matrix form required for the three step procedure described in Volume
I of this series. The next section, SECTION THREE, contains a descrip-
tion of what is meant by each summary titled feature, which measures
of software capability are affected by this feature and, where neces-
sary, further explanation indicating what aspects are especially u»eful
to an EDP installation or specific application. The last section,
SECTION FOUR, contains a questionnaire which may be used by evaluator
personnel to determine what important features are prevalent relative
to vendor's COBOL or FORTRAN compilers.

It should be remembered that these features and questions are a
composite and therefore, only those features or questions deemed impor-
tant relative to the specific application or installation under con-
sideration should be selected.

Each section is presented in the following seven groups:

I. Source Language Oriented Features - those relating
primarily to characteristics.

II. Logic and Control of Input/Output Devices - features
referring specifically to the control of input/output
devices and associated program logic (buffer control,
device assignment, etc.).

III. Compiler Features - features of the processor (i.e. the
implementation of the language) rather than the lan-
guage itself.

IV. Programmer Error Diagnostics - features relating to the
facilities for error detection.

V. Hard-Copy Output and Facility Documentation - character-
istics relating to the nature and frequency of documents
produced by the compiler system (listings, error reports,
etc.) as well as to available documentation about the
processor and the language.

VI. Manual and Automatic Operations - compiler and object
system characteristics pertaining to running the compiler,
updating to produce new compiler versions, etc.

VII. Facility Administration - matters pertaining to the
administration of a facility using the software package
in question as well as those not conveniently included
under any other category.

SECTION TWO

MATRIX OF FEATURES

The COBOL language is oriented toward business data-processing
problems which involve manipulation of files of data. Business pro-
blems are represented by a relatively small amount of algebraic and
logical processing. Instead, considerable emphasis is placed on
manipulation of large files of basically similar records. The alge-
braic compilers used in scientific calculation (FORTRAN, ALGOL, etc.)
require emphasis on the procedures involved in a complex mathematical
problem using numerical approximation, complicated logical structures,
etc. In fact, in FORTRAN, all calculations at the highest level are
performed on floating point numbers or integers each requiring a full
word in word organized machines. Any data packing must be performed
at the machine language level. On the other hand, in COBOL the source
language level provides the means to structure data items in records
and working storage in a very flexible way. Furthermore, there are
rewards in program running time for the programmer who carefully con-
siders different methods of structuring the items in the DATA DIVISION
and WORKING STORAGE. To do this he should know the word lengths and
other unique features of this particular computer hardware, but he
implements his knowledge at the source language level rather than at
the machiie language level. These differences require that features
of COBOL will exhibit emphasis mainly in the description and manipula-
tions of (1) data items, and (2) input-output record handling.

Each feature designated as important for comparative compiler
analysis has been identified and placed in this section with the for-
mat appropriate for inclusion in the three step procedure described
in ESD-TR-66-113, Volume I. Features which reference COBOL are ones
which are applicable only to COBOL; similarly, FORTRAN referenced
features apply only to FORTRAN. Those having no language reference
apply to COBOL, FORTRAN and other procedural language compilers.

The character "X" has been used to show which measures of soft-
ware capability are affected by the features. It is apparent that
any one feature may, in some esoteric way, affect each and every mea-
sure of software capability; however, an "X" has been placed under
those measures which significantly affect the feature in question.
The user-evaluator team must determine what measures are of particular
importance to them, in addition to deciding whether each measure will
be affected favorably or unfavorably (and to what degree) according
to the system.requirements. This will establish ground rules such
that proposals may be evaluated relative to preestablished specifica-
tions appropriately adjusted to reflect characteristics of the appli-
cation.

ONINIVHI
"

MOixviNawnDoa

30N3aN3d3(INI X X X X

N0IIN3AH3XNI

30NVNZINIVW

AiisNvnnwis

Ainiaixaii HIMO^O X

aovaois AHVCINOOSS

AW0N0D3 iDnacrad X X

Noixvznun o/i X X

Nonnoaxa X

NOIlVlIdWOD X X

inosoaHO X X

ONIWWTODOHCI X X X X X X

<

CO

cu
o
d

CO X> CO CO CU
cu 0) d cu < U

CO w ;H •H U o U CU
U a H / W u 4J i-l •H 3 o CM
o£ M / I •i-l 3 4-1 4J 4J C4-I

!=> 8
Si

.-I o i—1 a" CO CO •H

%
1—1

5 fa
/ s 3

cr1 cj £
4-1

3
CU fa

4-1

c
Q

a o
CO / s r!|

CO
fa a

CD
E -a

CU
1-1 3°

•«». / ta CO <D I-I CO •H
j fa u <u cu A

i-l CO > X!

1
w

o / Q u bo CO a XI •i-l cu

/ I to
M

CO
3 H M

|
H

a
CO

3
CT

X)
3

z / 5a H 60 <U 3 4J w M
Cd / w 3 J3 4J 0) XI co
O / M <# CO 4J CO N H 4-1 JJ

/ . « J O 4) •H CO CO \^. o 3
/ ^ O a, u-> fa CO 4J •3 <j 2 CU

/ S3 cu CO vo CO 3 CM e
w M CJ a) cr> r-l X) Q CO H CO s /. *s 1*5 o Q H 00 i-i CO N 4-1 OS cu 4J «5 5! 3 CO s O X) CO O (4 CO /5

/ Si
o H

OS
8 <u O

CO
3
a

d
o

•H

o
•H
4J

CU
4J
CO

1
s
o

fa
<

3
4J
CO

4J
CO

/ o
/ ^
/ J

s O
fa 3 3 o 3 4J

•H
•i-l
XJ o

<u 53 co <
a)
fa E^

<!
(Li OS w C

<0
H

0)
X>
W

XI < H <3 14-1

o i i |

/ d 1
O g •J 0)

4J
r-l

1 1 i i CO 2 z z
/ •*£ 2 Q & a) CO CO 4-1 <E 2

J
/ Q* 55 o o 3 r-l J hJ J •J CJ PS CM

1 & W <! CO M cr •i-l o O o o cu fcH fcH fa
/ Q >J 3 cu CO pa PQ pq CQ M-l Cd cd CC
/ U M H o •a > o 5 O O <4-l O o o

/ a fa
5

o
m o H

CO < <! u u U CJ w fa fa fa

/ fa u u < « o .-3 w fa o X M ^ w

iNawa^inba^

fa

CJ

s

ONINIVHX

noiiviNaNnooa

3DN3aN3d3dNI X

NOIlN3AaaiNI

30NVN3XNIVW

AiiaNvnnwis

AXI1I31X333 HXM02D
|

3DVH0XS AHVCINOD3S

AWONOD3 xanao^d X

Noixvznixn o/i i
i

1
NOIXnD3X3

1I0IXV3IJK03

xnoxoaHo

ONIWWVHOOHd X

co
(U
o a
01
l-l
cu c

CO w >-i y-i 0
w OS H M-H •l-l s <: M ••-I CO

CO K l-l
M

Q •r4
>

<: b S3 4-1 0

g o •H u
CO P-. g OH

< / •H
•J fa U i-l 4-1 1
§ o / H

TJ
c
01

1
1

w
W

/ « ^N
/ W TD
/ M 01

c
CO

6
01

4-1

1

CJ / PS 3
/ O G

CO
4-1

a
4-1

/ >• •H a. CO

/ d u ?*,

/o
z 1 a u CJ

CO
.a

u
c
01

/ < CJ H z a D

/8 M
H

oS
O J w CO cr

01

/ l"J 0*

UH

BS

o a fa

/ l-J 1
o OS < i 1

/ 9 Q
Z
<

O tn
CO i z 1

/ Q 3 H H
/ w M J " OS OS

/ «
OH O 1—1 O O s PQ En fa

/ as o O
/ p* cj U . •

•J S3

XNawaraint)3H

z UJ
CJ -J
H^ H
H d.

< g
a o
j u
<
S3 UJ

< w r i
Pi CO
< z
E* <
fa
o K-l
CO S3
OS s o 5 fa w

u
Q o
O QS
EC OH

H
W 2

W fa g
W O
H
CO >

0- w o w ! 1 2 UJ
rr f-
—H <C

DNINIVHI

noiiviNawnooa

30N3dN3d3(INI

N0IIN3Ay3XNI

3DNVH3INIVW

AXISNVXllTHIS X X X X

Ainiaix3i3 HiMoyo X

3DVHOXS AHVCIN0D3S

AWON003 iDnaoad X X X X

Noixvznixn o/i X X X X X X X X 1

NOIXnD3X3 X X X X X X

HOIXVlIdWOD

XnO>D3H0

ONiwwvaoo^d X X

co
CO

c
01 o

i—i •M

CO w JH •H 4-1

u s
3 1 H

•M

59

fa
O

H

CO

01
i-H 4-J

o
00 c

o
M

co
u
o

o
M

i o •H fa 00 •1-1 ;>•. u co

CO fa
<

4-1
O

fa CO 3
M

c
•H

o
•H C

iM
4-1

u
w

cu c
,_} r 1 O M M u > CO c •H "O

i 00 ^^ o 01 •H u 01 cu 4-1 cu
c M y 4-1 ?> 01 c M o 3 •0

•H 01 c M CO o M •H O CO

55 / w 4-1 CM fa M tu •H 3 > fa Q
/ fa w •H O co 01 4-1 U CU .-1
/ ou)-l o ?s CJ cfl c a O
/ M 3 60 ^**. 4J 0) •M 4-1 o ""-•-. CO

/ >* hJ > c M •M u > 9 u o M ^.

/ i o w 60 •H u •H at a. "^^ CO
fa Q c M CM o > Q e •o i—i 00 3

f-T- H •1-1 01 o •H CU o cu C
,1 J^J Z H •a CM ^ a O CJ 4-1 c •H <

/CJ) ;z> n2 o ;=> CO CM 60 fa N—. CO 0 ;>-,
/< CJ H U fa 01 3 c o M c > r~< e CO

/ 8 OJ H fa pq •1-1 CM ^. o •H CO fa CC cu
H o Q P H o M CM 4-1 01 fa i- C

/ i r? z o CO CO 01 O CO CJ •H 3 0 1 -H

<; <1 *-« 3 3 CM c M C t 1 < H CO c 4-1

/ l-J fa fa ^ H O O 4-1 o O co o c H k 3
o U 3 CU 01 3 •H CM U •M •!- co CM fa O

/ 3
M fa c B pq 4J oo •U C 4-1 T) O M

fp a'
•3

o z
O H

co
4J

CO
4J 01

CO
N

CO

c
CO
4-1

u c
•M n e

01
4-1

4-
3

/ i / H
< _l i-H i-H r-i •M o c M l- 3 CO O 0 CO

u 3 3 43 i-H •M CO 4-1)• 01 .c ••- 1

M .J E g 3 •M 4-1 > CO C o fa M ^C O

/ 8 b
PQ

-r-< •r4 o 4J fa T3 01 s ^N. CU 01 c ^~
T: M CO CO Q 3 o < fa c M fa X M

/ s d o l-l
/ fa o u

-< m <_> a w fa o sc M *-> X

xN3W3ainb3^i

o
H <

< >
hi

u s <
fa
o
cc

fa
O fa
Q
O

w
X
fa
w
CO

tu
fa s

c5
W
H fa

CJ

w
o

u

5 w
u
§ fa

w Z
o
>•
a
O
a w
t-

ONINIVHI
1

noiiviNawnDoa

3DN3CIN3d3(INI

N0IIN3AH3INI

3DNVN3INIVW

AiiaNvnnwis

AIIIIHIXSli HXMOHO

aovaois AHVCINODSS

ARONOD3 lonaoHd

Noixvznun o/i X X

Noiinosxs X X X

MOIIVUdWOD

MO)D3H0 X

DNIWWVHOOtfd

CO
M
06
P
CO <

hJ i
w
z
w
o

u
Ed <
B
fa
O
CO

fa
o

>*
H
M
•J
1—1

<c
CJ

/I

P a

as

a
CJ
H
H
OS
<
CM

l

g
s
M
cm

CJ

H
as
o

as
O

<a
z
<C

o «
o
CJ

II
.

LO
GI
C
A
N
D

C
O
N
T
R
O
L

OF

*
^
\
^
^

I
N
P
U
T
/
O
U
T
P
U
T

D
E
V
I
C
E
S

(C
ON
TI
NU
ED
)

C
O
B
O
L

-
Nu

mb
er

of

I/

O
A
r
e
a
s

Su

pp
li

ed

-
fo
r

R
E
S
E
R
V
E

„

C
O
B
O
L

-
A
c
t
i
o
n

T
a
k
e
n
 W
h
e
n

Bu
ff
er

Ho
ld
s

M
 *

Se
ve

ra
l

Re
co
rd
s

CO
0)
CJ

•H
>
01 a
o
H

CD
CO
01
CJ
cj

<
£
O

C

CM
O

^
•H
i-l
•H
4J
P

z

CO
co
01
CJ
CJ

<
e
o

•u
C

c2
c
o
c
o

•1-1
4-1
o
01

i-H
0)

CO

-a
u
o
u
Ol

Pi

i

s o
CJ

6

CO
4-1

p1

4-1
co
Ol
H

H
O

H-l

01
00
CO
u
o
4J
CO

co
CO
0)
CJ
CJ
<
g
o

•a
c
s

1

hJ

§
o
CJ

Oi*

IN3W3HinbaH

S

OS

U

DNINIVHI

noiiviNHwnooa X!

30N3UN3d3G*NI X

N0IIN3AH3INI

3DNVN3INIVW

AIISNVnflHIS

Aim 91X313 HIMOHD X

30VH0IS AtfVdNODSS

AW0N0D3 IDfldOHd X X X X

Noiivznun o/i

NOIinD3X3 X X

MOIIVIIdWOO X

inO>ID3HD X X

DNIWWVHOOtfd
X X X X

co CO
y-i E

co u •• U-l cd
Ed 3 9 H

1-1
O u

60
c
o

S3

3 i M
'O
u

01
co

O
H

•H
4-1

b 9 •u cd c PH D.

$
u •r-l M o i-i •H
CO fa > 60 H •1-1 T-I o l-l

•< o C 4-1 i-l u CJ
hJ -fa u H •i-l ?-. u < 4-1 CO

1 o / CO CM x; U c 01 c 01

/ 1 CJ 4-1 C 3 60 l-l o Q
w ai 4-1 c ai 01 M-l U O u

/ e
60
cd

cd
P-I

•H
o

•H
o o

XI
3 3^ 4-1

B
J3
o

cu 1
f-l

O 3 fa •H u CO c co cd l-l •r-l

/ . c2 60 .—i CM 60 O 01 u cd fa
/ i*" fa c w c <4-l 4-1 c C -r- o 60 > 01 / i 3 > 60 w o 0 •H 4-1 a O i-l CO "O

fa •3
•H • 01 p C cc 0) l-i <-< c

/. *? !r£ 3 CO 01 ""I £ C 4-> l-l Pi CC ?s Cd
<5 60 01 s J2 o 3 c a) U M

/^ u> fa |—I c 0) Q •H o cj DS a 4-1 4-1 -r- cd T3

/ •< u H 1 •H 60 H B CD o 6 it l-l

/8 M Pi JZ cd c 14-1 4-1 l-l 6 fa CC ja o
H O 8 u 3 •1-1 4-1 o 0 O 0 a c •H u

/ 5 <
fa CJ 4-1

cd
60
a CO

o
;•> c

4-1 CO cd
4-1 .2(5 >J cu

/ ^ fa fa p-i 3 M 60 o 0 01 cd 4-1 CJ
o 0) C c •H t-i a Q cd o •r-l •a

/ N? I ""^- 1—1 r-< 4-1 •H 01 4-1 3 B o c 4-1 I-I

/ 3 £ a l-l CO 01 01 i-l •1-1 co T3 cc c •H C cd cd
«4 M •H u i J3 CJ u <u u o 4-1 0 B T3

/ 3 w ^1 CJ 1*1 cd cd •H Cd CJ 6 S •H S o c
/ Q h-l 01 3 U CO CM a. O 0 g T3 C 4J cd
/ w M H-l Cv, O cd •H <4-l 01 u u o O 01

2 co
3 4-1

/ 8 s
o CO CO fa Q w CO PH PH CJ -J: CO

/ OJ o
/ fa CJ cj <c « u Q w fa CJ PC M <-> X

ihrawaninbra

7'. w
o •J
H H
H fa
< 5
hJ U
<
s

<
U p
Oi C5
< Z

3 3 fa o -i
CO I
os ^>
O Q
fa M

CJ
a O
o b3
33 fa
H
U s w
fa g
ij o
H
CO >-

fa
U O
UJ C5
2 Ld
rr H
— <d

ONINIVHX 1

i

z

nonviN3wnDoa

3DN3(IN3d3(INI X X

N0I1N3AH3IN1

3DNVN3INIVW X

AiisNvnnwis

Aim 91X313 H1M0HD
1

aov^ois AHVCMODSS X X X

AW0N0D3 IDnaOHd X X X X
o
M

^J
1—<

NQiivznun o/i <
HH

PH

u
Noiinosxa

1 1
X X X <

t5 o
•

<
MOIIVlIdWOD X

w
<

—1 o
z

inO)133HD X X fa
O

^
DNIWWTOOOHd X X X BtH

O a w
co i-H Q o
01 o O OS
00 ^3 X 04
c 01 E H
CO OO ?> 01 H

-C co CO CO o 5c . •
CO w >H

u 01
c

I-l
O co i-H

c
o K

3 M 3 s •H
4J

00 CO

a a
4-1
CO

a
0

CO
J3 ?N

uJ c
3 s l-J

/ '*•*' o •H P co •rH O •rH O •-H
CO >•

3 / o i—i 4-1 4-1 o 01 CO -H oo CO i-H c
o 3 / w 14-1 CO CO os Q. CO 4-1 c M a o H n w / 3 u o ^ 01 CO •i-4 <u to i -

£ < / 23 1 01 o CO TJ H CJ CJ > > CO •o Cfi !.'!
/ H 1 > 0) i-H 01 c CJ -H u C co 0) EC H H EIH Oj / M o 60 rH oo CO CO 01 < ** OJ o r-H «n 2 o / 2J 1 rt < C 01 c CO CO o TD •rH

/ o u u CO CO 0£ •H 0) "H C 01 a.

/ " o o 0) ^ 4-1 CO .e 4-> JZ O C4-4 M s
2 m 4-1 oo U C X u ?^ a u O 01 o

CO CO 01 u 1 m o •o o o / to 00 M c B co CO VH 00 •H

/ K. u c 4-1 O o 00 OH M O C CO 09

/ d 2 •H o 4-1 •r4 0) 01 h O U CM •rH C C
M CO 4J E CO 01 CO 01 T> O 0

R CO c CO -rH H i-(4J J3 CO C o •rH
33 3 JZ o 4-1 H H E co •H •H 4-1 01 P CO

/ »—I 3 CO •rH O P co 3 E m o D o CO CO

/S5 -J
r tM 4-1 00 01 M 4J •rH o* « 01 01

/ <- o
(11 CO c •H C 00 4-1 CO y-i -a •H B M

/ R OS erf i-H CJ o 4-1 -H o o o C c M CO a
/ **

<
o w ,0 o •l(c c u co c « -C O 52 X / 1 [u •J co I-H 4-1 o c a, o c CJ 01

erf 1—1 H i—l CO U 3 u o « OJ c 01 ,Q
/ " PH

0-i «sj 4-1 04 oo a> c •rH OJ H o c P / o 53 M C 0) C J3 o 4J •!- •rH •H co
/ " o (11 CJ 01 M E •i-l 4J •1-1 CO 4J 00 4J 4J

/ a £ 5 u i-H
•rH

•1-1

E
B CO CO

3 M
c o

•rH
4-1

CO •rH ^"1
c

•rH
CO
CJ

P
o

c
o

/ •=) a < a. co i-H T3 0 ^> B u i-l -H ^ c M B
/ """ . B B Ou M O S c <u •H C CJ p ^ a

/ i 2
•J o H

H
o
O £ E

M
cfl M

ffi PH
S u a.

O
•U CO

A10

OH
M
H

P
CO 8

/ a- 6 o M
/ Oi u u

HJ 33 53 o PH <y Pi CO H p >

iNawa^inban

10

DNINIVHX

MOIXVINSWRDOa

aDNaaNadaaNi
X

N0IIN3AH3XNI

3DNVN3XNIVW

Aii3Nvnnwis

Aim 91X313 HXMOHO

30VH0IS AHVaN0D3S

AW0N0D3 iDnaoad X X

Nonvznixn o/i i

NOTin33X3

MOIXVTIdWOO X X X

inOXDSHO X X

ONIWWVHOO^d X X

co
w s

3
i
W
z
H o

1
o
CO

o

H
l-l

M

53
P-. <

/s
/ <

J
D
Q
w

ft<
ftl

' >l

ST. i
u
M
H

<
CM

1

g
w
M
PM

s

Z 1
H
a; o

o
a
z
<

o
o u

Q
W 5 z
M
H
Z o u

CO
w
erf i p
Pi
W
HJ
M

£
O

M
M
l-l

ca
c
o

•1-1
co
to
'.U
l-l
a.
X
01
.0
P

CO

4-1
C
01

i-l

>
•i-l
P
cr
w

.-i
i-H

CO
u
•H
4-1
cd
e
01

4J

1
Be

CO
4-1
6
co
4-1
co
a
O

c_>

H-l
o
c
o

•t-l
4J
CO
u

•l-l
CM
•i-l
•u
O
X

X

"a
01
co

CO
01
QO
ca
P
00
c
,3
l-(
01
>

• 01
4-1
CO
•H

01 1
01
4-1
a
M

CO
4J

a
4-1
P o

>4-l
o
c
o

•H
4-1
u
01

t-i
0)

CO

l-l
0)

cfl
u
00
o
l-l

PH

i>a

T3
01
e
i-i
o

M-l
l-l
01

ftl

c
o

•l-l
4-1
Cfl
N

•H
e

•I-I
4-1
a. o
01
00
cfl
p
00
c

4-J
01
00
l-l
cfl
H

3

c
o

•l-l
4-1
Cfl
N

•l-l
e

•i-l
4-J
a.
o
oo
a

•l-l
•u
p

i-H
CJ
X
w
y-i
O

01
ca
CO
w

PQ
<

iNawaamban

&
2 UJ
o ,-1
l-l M
H PH
< ;r
3 O
-4 u
<
g

<
U4 r.)
cd a
< Z
3 3 r*
o HH
CO is
a s
O Q
h W

CJ
Q o
O cd
I ft-
H
U
n • "

w
a. Z
uJ o
M
en >• ft
tu o
W CP S bti
rr F~ — <:

11

ONINIVHI

rionviN3wnDoa

aDNauNajaaNi

N0IIN3AH3INI X X

30NVN3INIVW

Aii3Nvnnwis

AIIII91X313 HXM0H3

30VH0IS AHVCIN0D3S

AW0N0D3 iDnao^d

Nonvznixn o/i

NOTMD3X3 X X X X

MOIIVIIdWDD X X X X X X

inOXDSHD X X X X X X X

DNIWHVdOOHd X

c c
o o
•H •l-l

CO

3
P

3

w 2
1
Cb
O
CO

H
M

M

Q
PL,
<

/ w

c
o

•H
4-1
to
c CO

l-l

4-1

cd
s

•1-1

01

CO

l-i
o
l-l

l-l

4-1
CJ
01

4-1
01
p

co
M
O
U c SI

§ / u

/ H
B
u

O
l-i

CO H W l-l
o

l-i
w

o
•l-l

4-1

CO

/ H 01)-i o 0) I-I I-I 01 4-1 01
H-1 b-i u / CO H w 4-1 l-l 0 I-I l-l CJ 3 3
2§ o / o CO co o 4-4 M o l-i CJ cr

/ 2 c 01 H CH 4-1 3 01 01

/ <-5 o oo T3 O 01 T3 l-i O X oS
Z
W / 3 •H CO 01 M « 01 01 c LO w

4-1 3 4-1 P M 4-1 o 01
/ p CO 00 CJ w T3 •H CM •H 0) 00 u

/ d
I-I c 01 c 3 < 4-1 > a (0

OS •i-l
e3 Q. a 3 cr CO •H i-i H

o a X CO O 01 c O in u H

3 p
z

H

o

a § 01
0)
c

M
00

In OS o
••-1

•H
CM

CO

01 £ M
/r~* w CJ o D o co co 4-1 •H CJ « 0
% H H)-i Ol u 4J X •- •o C4-I

OS 00 3 00 CH O CO 3 c w c 01

/ 5
/ ^
/ «J

/ ss

<
PM

1

c
•i-t

o
CO

C
•H Ol

CO

CO

T3
O

01
cw a

4-1
CJ

CO

C
?i CO CO CJ w CM M 0 > 01 6

OS

O 3 3 T3
01
4-1

3

6
H
3
O o

CM
Q

4-1
c

CO

c
O 0)

4J
01
P

•H
4-1

(0
P
Z <

o o CO 01 01 •H 01 u
& OS CO 01 CO l-l h r-l a 4-1 CD CO •H

CM u 4J M M 01 01 •H 5 U 3 l-l «M
/ '~>

3 o 01 o 0) J3 XI (X 4-1 01 01 o •H

/ w
/ 8 / oi

o
M
O

M •u H •C g s CO w C u •o

s >
M

W
c u

w
4J
O

3 z z o
CJ

u
co &S u

w 1
1 ^ u U <; PQ o P w fa O s H -i hi

IN3W3Hinb3H

0-,

a

12

DNINIVHX

noiiviNawnDoa

3DN3dN3<I3CINI

N0IXN3AH3XNI

3DNVN3XNIVW

Aii3Nvnnwis

Aim 91X313 HXMOtfO

3DVH0XS AHVCIN003S

AW0N033 iDnao^ii

Noixvzmxn o/i 1

Noixnoaxs j

MOIXVlIdWOD X!

XflOXDSHD X

ONIWWTOOOHd

CO w >< / w s 5 H
M c

i
to

B
b o w

o

>-l
M

%
PL,
< / a

/ w

••-I
4J
o
01 u
a
M

z w
/ H
/ H

O 1

o / Z
/ Prf O

U
W

/ 5H o a
/ S3 § ""' •U

c
Z, i 5 W CO 01

3
/o r> 2 a H cr
/ < CJ H M H 01

/ P M rt< £ co M / s H O £ O fn

/ 5 a:
•< b < z

U

/ ** a. PS
o 8S o

CH

1 iJ 1 Pi O

/ 3 g Q
Z

CM C
(0

/ 5 u <:
/ Q 3 "
/ w M HJ > V

/ 8 Pi 2 o
PQ

M £
/ OS o O / a. u u .J

XN3W3^inb3^

71 W
o •J
H M
H PH
< 5^
•^ o
-J (-.J
<
> UJ
EJ o <: w a 2 5 < Z

B <
U-.
O j
CO Si
04 7J
O 5
fn w

u
a Q
o BE
BB PH
H
W
IS • -

UJ
p. Z
uJ O
H
co >•

a
W a w V, 2 '^
rx- H
H <:

13

ONINIVHX
X X

nOIXVINSKHDOa X X X X X X

3DN3(IN3d3(INI

N0IXN3AH3INI

3DNVN3INIVW X X X X

AxisNvnnwis

Aini9IX313 HIMOtfO X

aovaoxs A^vaNooas

AW0N0D3 XDnaOHd

Noixvznixn o/i 1

NOIXnD3X3

MOIXVlIdWOO X

XflOXDSHD X X X X

ONIWWVHDOtfJ X

c/>
w
oS
p

•J

w
z
M
o

w
oS
<

fa
o
CO

fa
o

H
M
l-J

fa
<

/o
/ <

rJ

3
p
o
w

os

<

u
M
H
OS
<
fa

i

k
W
•J
M
fa

S

z 1
H
OS
O
fa
OS
o
a"
z
<
rJ o
PQ
o
CJ

V.

H
A
R
D
-
C
O
P
Y

O
U
T
P
U
T

A
N
D

^
^
-
^
^

F
A
C
I
L
I
T
Y

D
O
C
U
M
E
N
T
A
T
I
O
N

it
c

•H
rJ

1
y-i

O

X)
a)
XI
•r-l
>
o
I-I

fa
to
o

•H
4-1
to
o
C
00
cfl
•H
Q

to
c
o

•H
•U
(0

1-1
•rH
a.
B
o
u
01

pi

14-1
o

<u
4-1
CO

XI
a.
P
o

•H
4-1
CO
B o
4-1
P <

pq

X!
01

4-1
C

•r-l
U
fa
to

4-1
P
a.
4-1
P
o
fa
S

XI
c
CO

01
o
CO
I-I
H

u

DO
a

•r4
<J
(S
01
i-i
01

14-1
01

P3

4-1
c
0)
B
o>

4-1
CO
4J
t/)

X)
S3
cO

to
1-1
o

x>
B
?-.

to

0)
o
cO
I-I
H

Q

co
C
o

•1-1
4-1
CO
O

•H
y-i
••-I
X)
o

SB
M
01

r-l
•H
a
B o
u
I-I
o

<4-l

00
a

•r-l
4-1
a
3
O
o
u

<!

u

D
o
c
u
m
e
n
t
a
t
i
o
n

I
n
t
e
n
d
e
d

f
o
r

E
x
t
e
r
n
a
l

'
M
a
i
n
t
e
n
a
n
c
e

A
v
a
i
l
a
b
i
l
i
t
y

o
f

C
o
m
p
i
l
e
r

M
a
n
u
a
l
s

a
n
d

L
i
s
t
i
n
e
s

I-I
01

r-i
•H
fa
B
o
u
01

rC
4-1

4-1
O

to
60
a

•H
4-1
CO

•i-l
rJ

i-l

c
o
•H
4-1
CO
l-i
OJ
fa
O

l-i
01

1-1
•H
a
B
o
u
4-1
o

1-1
CO
3
C

s
CSJ

01
M
P

4-4
CJ
P
M
4-1
C/3

r-l
CO
g
l-i
01

4-1
C
M

I-I
01

r-l
•H
fa
B
o

CJ

4-1
O

r-l
CO
P
e

CO

1-1
ca
P
c

01
a
C
0)
r4
01

4-1
01

OS

CO

I-I
01

CO
U
00
o
u

fa

XN3W3ainb3a

•7- W
o i-l
H i—i

H fa
< V
r_j O
•J u
<c > w
fa n

<
w p
OS u
<C x;
3 <
H r-l
fa
o -1
w 3
OS HJ

o a
fa W

u
Q O
o OS
•x. fa
H
UJ ;3 u
fa 5
OJ o
H
C/l >•

a.
fa C
w t 3
S W
rv fa
r-i <

14

DNINIVHI X

1
nonviNswriDoa X X X

3DN3aN3d3(INH

N0I1N3AH3INI

30NVK3INIVW

AII3NVXinWIS

Aim 91X333 H1M0H0

30VH0IS AtfVdNODSS

AW0N0D3 iDnaoad

Nonvznixn o/i 1

NOIinD3X3

MOIIVlIdWOO

M00ID3H0 X X X X X X X X

ONiwwvaoo^d X

CO
cu

c/> u >H / '—^ o
w 02 H 1 Q C s < M / w cu
-3 s r-l / !=> l-l

^3 M / z oo e B cu
<s tu 53 / l-l c CO CO 4-1 1
M o / fn •l-l u)-i X> CU

3u en P-. / z XI 00 60 c OS
5i / Q CO o O CO X> co

hJ b « / o r—1 o l-l U r-l c e
2 o / ^-^ CO

3
hJ a, CM O

J3
CO co

CO

CO

l-l

CO

I-i
w / 2 a •a CD 4-1 g 03 cu oo oo O
z / o X c o O P>S CO U c o M
u / l-l CO M cu CO 01 < •r-l l-l I-i

o / Q H 3 "t"1 l-l -o a. hi
/ Z <C 00 c 0 rO o < u P i

/ >* < H c o CO O 4-1 cu l-l u T3 / i Z •r-l •r-l CO >4-l u cu 01
H U C 4-1 QJ QJ co 4-1 y-i c 4-1 4-1

/ <: ^q 3 £ •H CO £ JZ at CO cc D a M X c O

hJ ^ OH 5 (0 i—l 4J 4J a a Q C PQ C a r-l CU

/o 5 PG H U H •H C 4J C C Cu x 4-1

/ < U H :=> o H a- 4-1 4-1 ai c 14-1 T- <4-l T- £ 8 •H CU

/ !=> l-l aS o a g O O I-I a O 4- O 4. r-l Q
/ » H o l-i o cu E CC Ct |J <
/ 5 02 b

On H
cu c_> oc 00 <4-i a 00 C 00 c CU 4-1

<: c c <u 4- C C CS C 00 0- 4-1 O

/ " a, OS O l-l E y-i •rl •l-l l-i cc •H •- •M h- co a O
i O U ,J co o 4-1 4J 1 4. 4J 4-1 n c 4-1

1 rJ i 1 M t-i ca CO CO V. CO S- co i- o •<• co CO

/ 3 2 a Q U QO ca •i-i •r-l co •r-l V •r-l -r- 4J 4- 4-1 •H

z 02 < o 4J >J •J o x r-l a i-J a W Z CO -J
/ s 3 •< ^

u
OH

P < <c
l-l C
O cc <^ <! ^

c
< 0:

•H

rJ <
/ w H •J 4-1

/ 3 o
pq m

3
o i-H CNI n «* m vO r^ (X)

/ «S o o > / &< C3 u •
PS

iNawsrainbsd

z o
H
H
<C

r-J

> w
w

o
tfl

02
O

Q
O
32
H
W
S
PH
kij

CO

W u
2

15

ONINIVHX

(ioixvxN3wnDoa

3DN3(IN3d3(INI

N0IXN3AH3XNI X X X X X X X X

3DNVN3INIVW X X X

AiiaNvnnwis

AII1I9IX313 HXMOTO

33VH0XS AtfVdN033S

AWONOD3 xonacmd

Noiivzrnin o/i X 1

N0IXflD3X3 X

MOIXVlIdWOD X

XnOMDSHD X

DNIWWTODOHJ

co
CO

01
CO M C
01 O i-H •H

1-1 h 01 4-1
•r-l M c 3 CO

w w 5H tn w c c O P^

3 H
M O 6

o
•1-1

o
CO

PH B
01

01
X

P
CO g l-l / co

/ z / o
M

4-1
o

l-i

01

01
u

4-1
CO 00 0) CO

< PM 3 60 c PH CO >> C i-H c

¥ o ai O c c 3 H CO •H o o
CO PM i-H H o o UJ 01 H 4-1 CO •H

<
/ •$.

JZ PH •H •M i-l u 01 CO a «
HJ b CJ CO 4-1 4-1 X c <4H M •o o O

s o r-l 4J CO CO CO O CO O. u <
•H u c C c 3 P

u / ° CO 01 •1-1 ••-1 OJ 0> i-H 4-1 CO U
s > •i—i p e o 4-1 O 4H l-i •H o
w CO J3 i-i u •1-1 c u o o > 4-1

M a O 0) <u > •1-1 4J CO UH CO
p H H 0) s e C M

/ >*
1

u a o 00 c o a>

/ ^
M o E H u c O •r-l D.
0 CM 01 O o I-l •H •H 4-1 O

2 H
P
<

^-i 4-1 y-i **»-. o 01 4J 4-1 CO
,1 Si (0 CO M H-l i-H CO CO CJ U

/o p OJ 01 ^ co o •u)H •1-1 O

/< u H QO 60 CO C M CO CO a 3 G y-i

/§ M m Q CO CO o O 4-1 c P 60 3
H o CO CO i-l •1-1 CH I-l o •H G T3

a: UJ CO CO o 4J o u M 14-1 H cu
/ <! < 0) 01 M Q- c a. O C O h

/ '-' PL, nrt a X M o O 01 CO 14-1 O u •i-i

o W •H K — u P
/ ij 1 I-l u H 4-1 l-i CO M CT

/ 3 g Q o o 01 o m 01 o 6 § O 01

7, 4-1 u C 4J S)-i 4J co 3 4J PH

/ P TTI < ^ CO CO •i-l CO H P CO M i CO

/ Q H4 •^ M u ,C M O i-i u 60 •H U 01

/ w M ,j 01 01 u 0) •4-1 •H <u O a 01 S

/ 8 PH s O
pq l—I

p.
o

a.
o £ o

c
M

CO

PH
a
o

H
PH

•H a
o

•i-l
H

/ as o O >
/ h U U

<fl pq u a w tH a PC H •^ X

XN3W3Hinb3H

'•&

:•: W
O J
I-I I-H

H PL,

< jg
P o
-i o
<
S w

CO
<

W 3 2 Q
< z
a <
H J
P*
O -i
CO ss
Od r^
o Q
fa W

y
Q 5
C5 oi
as 0-,
H
W
s • •

UJ
u- g
uJ O
H
CO >-

0-
tu O
UJ O
2 w
rx4 FH
r-l <

16

DNINIVHI

noiiviNawnDoa
i

30N3(IN3d3(INI

N0IIN3AH31NI X X

30NVN3INIVW

Aii3Nvnnwis

Aim 91X313 HIWOSD

3DVH0IS AHVCIN0D3S

AN0N0D3 innaodd

Noiivznun o/i 1

Nonrrax3 j X X

MOIIVlIdWOD X X

inOXD3HD

DNIWWTOOOtfd X

co u >> / c
w cd H
£ < M

CO B M •!-•

0
CO

5
>
O
H

ex.
c
CD

XI
C

1

W
IS

O 0 / <-•<
/ Q / w
/ O 3
/ H Z

i-i
0

4-1

c

CO

a
X>
a)

3
/ H M 0 01 •»

w / <£ H u c-H 01

/ ^ £ Z •r-l 1—1

/ ^
O O u a •I-l
H CJ 0 B a.

h-^ P w 4-1 0 S ,1 ^ < •l-l 0 0

/ §

CO

Q Z
Z O

c
14-1 CO

O C

u
M-l C

H O <; M 0 0 0

/ ^
/ ^
/ &!

PL)

H u
0

J^ 1-1
4-1 4J
•H D

•H

•u 0
1 O p W

Z CM
01
>

rH O
•H

•H O
.-I

fP a' a ° •1-1
4-1

J3 01
CO 4J

•i-l 01
r-O 4J

/ Q
<: U

i-l 3
•i-l CJ

•.-1 3
X CJ

/ w / i M
frl
T,

0 M
>

01

w
co 0.

< K

0) 0
r-l X
fa K

/ OS O O
/ &4 0 u

i-J X Z

IN3W3^mb3H

Pn

u

17

DNINIVHI

rioixvxMawnDoa

3DN3(IN3d3(INII

N0IXN3AH3XNI

3DNVN3INIVW X X X X X

Aii3Nvnnwis

AiniHIX313 HXMOSO X X

aovaoxs AWCINOD3S X X

AWON033 xonaoyj X X

Noixvznixn o/i

N0IXfLD3X3 X

MOIXVIIdWOD X X X X

XnOMD3HD XI

DNIWWVHOO^d X

M

01
4-1

01 P
i—1 c
•H •l-l

h l-l D. 2
CO w >4 CD 01 E ^>

%
H
M

CO

c
I—1
•l-l

O
c_l

co
4-1

l-l

C3 g l-J
M 4-1 M

o
•I-l

a.
e)-i

C
CD

U-l 4-1
CD

<:
3 o 53 o

PQ
u 4-1

cfl c
o u o

M-l
E
01 01 •o

P-I h 4-1 o 4-1 CO Ol c
< U o C •H c T3 Cfl P -u CO

/ z O T3 CD co •H Ol s 4-1 o E
/ o <u c C E l-l .c l-l 0 CO CD O C

I H CD 60 CD 01 4-1 •i-l >-l N—' u O

/ H T) > •l-l i-l > •H P M-l CO)-i C_)

SS
01 co a S a* l-l Q. O

/ p2 CO C ?^ 01 E o> 01 w CD CO 4-1 M-l o>
/ M P O ,0 o M oo co Prf 4-J i-l •H O T3

w / en •H CO 01 c •H CD C O

/ >* M C 4J TJ u <U P i-l C Ol w CL, 60 O c u

/ d
z O CO CD CD o QO P o a C E CO S o
M •H 4J E i-l C T3 •H OJ o o l-l •l-l 4-1 .-^. 2 ra C U •l-l CO 2 O 4J > •H c_> o ' 4J CJ

,1 3 5 M 01 o a CD 2 cfl o 4-1 4-1 CO CO CD /s
/ •<
/ 3 / o

£3 Zyf <; ai E U-l E P l-i u m y-i CO u N t-

u f-l > 3 hi o a4
01 •o P (X l-l O CD •i-l £>

OS S cj 01 c_> •H c M 60 fa p E >4-l •-I O
C-| o M o a. C •I-l cfl •i-l M bl TJ CO <4-l •H

rtf [K M CD Q CH .c -C •u <4-l •H CD l-l P 4J C

/ <2
PL,

hJ i-l 01 0 o o c C CD 4-1 CD 60 PQ » 1-1

/ l~l a! l-l •H TJ u CD £ cfl o u C O. O

o u a c c >> H 4-1 u c 0 CO l-i • U-l CD

/ >J
/ 2

<! g CC §
4-1 CO cd U Oi X) O l-l

s Q fc o •l-l i-l <4-l e E 01 cc P

<:
U 6 CD i-l Cfl o >*-l P 1-4 l-i 00 4-< 0 01 4-1

/ § / w
C 4-1 •H P O a u CD CO u ,n CD U . CD ••- C ,fi CO CD •H M-l ai u 01 u l-l P

o
H e e •l-l CO P N 01 c l-l M 0> •i-| QJ 60 l-l

/ i Pi M > CO -H
CO H s 4-1

CO
C •i-l

CO
CO •I-l 01 3 >

< S<5 CD 4J
Q CO

/ 0^ © o
/ PH C_> u < PQ o « w FK o K M >-> X

XN3W3tfinb3tf

a,

u

18

SECTION THREE

DESCRIPTIONS OF PROCEDURAL LANGUAGE COMPILER FEATURES

I. SOURCE LANGUAGE ORIENTED FEATURES

A. Source Language Dump and Trace Requests

This refers to the capability of inserting dump and control
flow trace requests at the source language level. Can the programmer
insert these types of requests without modifying his program, and can
they be specified at the source language level? Can this routine be
turned on and off externally from the console or by a single operating
system command? Are outputs printed in source language? If not, how
are the source statements and symbols referenced to the output?
Appropriate use of this feature decreases program checkout time since
the makeup of checkout runs and multiple branch test runs is signifi-
cantly simplified. Some compilers may become more complex with this
capability which may affect compilation time.

B. Adequate I/O Source Language Facilities

The capability of the source language statements or facili-
ties to provide access to all types of input/output equipment avail-
able for the machine is a most desirable feature and in some cases an
absolute necessity. Can the programmer use all types of input/output
equipment available for the proposed machine? Can the hardware con-
figuration be changed easily for the program at object running time? Is
there a source language statement or suitable subroutine access
through the source language for each different type of I/O device?
Is there sufficient flexibility to access each available device within
a single type? Is the structure of the compiler sufficiently flexible
to provide for quick addition of future new I/O devices or types of
devices? This would decrease programming and checkout time since the
programmer would not be required to produce the machine language
instructions and associated checkout each time the individual I/O
units were first used in a program. It would also enhance I/O utili-
zation.

C. Available Languages Other Than Required

Other language systems which are available at essentially
no increased cost may prove useful for some future requirement. Past
experience has shown that installations very often find their require-
ments change including a need for new areas of application. What

19

languages are available on the proposed configuration? Is each oper-
ative now or at installation delivery? Is each well documented?
Additional languages would contribute to growth flexibility.

D. COBOL - Edition 1965

What is the degree of compatibility to which this language
meets the requirements and recommendations laid down by the CODASYL
Executive Committee in the report titled "COBOL, Edition 1965, Depart-
ment of Defense"? What features of this possible standard have not
been included in the proposed compiler? Compliance in this area will
provide for decreased programming time as well as contribute measurably
to the degree of machine independence.

E. COBOL - Additional Features

Describe any features this compiler has which provide in-
creased capability or flexibility which are not contained in COBOL,
Edition 1965. Evaluation is performed on how well each feature con-
tributes to decreasing programming time and increasing machine inde-
pendence .

F. COBOL - I/O Record Size

Particular software or hardware features of some computing
systems m;ry limit the variability in data record sizes. The flexi-
bility available for varying the size of input/output records is a
primary concern. Describe the options available in the SIZE clause
relative to Format 1 and Format 2 as stated in the COBOL, Edition
1965, document. This feature will tend to increase the efficiency
of I/O utilization as well as to produce a more efficient object pro-
gram.

G. COBOL - Repeated Data

Some computer applications utilize the ability to generate
tables of repeated data more than others. The OCCURS clause provides
a method of generating repeated data and supplies information for
implementing of subscripts and indices. Describe the options avail-
able in the OCCURS clause relative to Format 1 and Format 2 as stated
in the COBOL, Edition 1965, document. This feature will tend to
reduce programming time.

H. Effects of Non-Standard Implementation

It may occur that certain compilers will have features
which are described as standard but whose implementation is measurably
different than intended by that report. Any significant differences

20

relative to this implementation must be assessed and compared relative
to this procedural language. Describe the effects of each non-standard
implementation scheme used. How does each scheme affect compilation
time and execution time? Techniques could be conceived which tend to
decrease these times and others which tend to increase them. Care must
be taken to assess which situation prevails and to what degree.

X. FORTRAN - ASA FORTRAN Standard Features

List and describe all features of the vendor's proposed
language which are equivalent to some feature of the ASA FORTRAN (pro-
posed) standard. List and describe all features included in ASA FORTRAN
(proposed) but not included in the vendor's proposed language. Appro-
priate use of each feature will tend to decrease programming time as
well as contribute to machine independence.

J. FORTRAN - Features Not Equivalent to ASA

List and describe all features of your language which have
no equivalent in the proposed ASA FORTRAN standard. Each should be
described relative to any increased capability or flexibility offered.
Evaluation is performed on how well each feature contributes to de-
creasing programming time and increasing machine independence.

K. FORTRAN - DO Statement Indexing Differences

How do the restrictions on statement sequencing differ from
those described in the proposed ASA FORTRAN standard? Some FORTRAN
systems rearrange statements appearing in the range of a DO so that
those statements not dependent on the DO index are removed from the
range of the DO and placed before it. This is a highly desirable fea-
ture since the statements removed will be executed only once instead
of once for every iteration. However, the algorithms used to perform
this rewriting must be sufficiently sophisticated to allow for the fact
that dependence on the index value may occur at several levels. Appro-
priate inclusion of this feature tends to produce an economical object
program.

L. FORTRAN - DO Subscripts and Limit Differences

How do the restrictions on subscript expressions and on
expressions used as the limits of a DO differ from the proposed ASA
FORTRAN standard? Flexibility with respect to this feature will
decrease programming time and increase machine independence.

21

M. FORTRAN - FREQUENCY Statement Provision

Is the FREQUENCY statement accepted by the proposed compiler?
If so, describe the effects of the FREQUENCY statement. Its purpose
is to enable the compiler to produce more efficient coding of con-
ditional statements by specifying the expected relative frequencies of
proceeding along each branch. Programs could be compiled with and
again without FREQUENCY statements. Comparing the resulting object
programs would provide an appropriate test of this facility.

II. LOGIC AND CONTROL OF INPUT/OUTPUT DEVICES

A. Simultaneous Reading/Writing of I/O Files

If the proposed hardware permits, can several input/output
files be read or written simultaneously using the proposed software?
Identify the numbers of files which may be read simultaneously using
the limits of the software system. Identify the number of files which
may be written simultaneously with the proposed software. List and
describe those input, compute and output combinations of simultaneity
available with this software package.

B. Simultaneous Buffering of I/O Files

This feature refers to the capability for simultaneous buffer-
ing of files. Identify to what degree input files and output files may
be buffered simultaneously. Are different buffer areas used for each
simultaneous data transfer?

C. Double Buffering of I/O Records

Is double buffering of input/output records provided? That
is, are there two or more distinct areas in storage for input or output
transfer? Can the system be reading from one and computing with a
second? Can it be writing from one and computing with the second.
Determination should be made as to the flexibility of this scheme.
This affects the I/O utilization software measure of capability.

D. Utilization of Priority Interrupt

If the proposed configuration includes a priority interrupt
system, does the proposed software system utilize this priority inter-
rupt for input/output processing? In other words, does the software
system take advantage of the hardware in the area of priority inter-
rupts? If not, what must the user do in order to implement this in
his own system? This feature will increase the degree of I/O utili-
zation and may also contribute to growth flexibility.

22

E. Options for I/O Device Servicing

Describe options available in the area of input/output device
servicing. Does the proposed compiler allow the user to directly
effect tape rewinding, end of file placement, setting up or clearing of
sections of drums or discs? Identify each option. Are these functions
performed automatically by the software system. If so, is there suf-
ficient flexibility left to perform the user requirements?

F. Advantages of I/O Device Servicing Options

What are the advantages and flexibilities (in terms of ease
of programming, economy in the object program, etc.) of the above
options? Identify the reasons for making the options available and
relate each to the advantages and flexibilities.

G. Restrictions on Computations and I/O Overlapping

What are the restrictions on overlapping computation with
input/output operations? Which of these restrictions are due to soft-
ware rather than hardware? Can computation be overlapped with reading?
Can computation be overlapped with writing? Can computation be over-
lapped with reading and writing simultaneously? This feature will
affect I/O utilization and simultaneity.

H. I/O Units Activated Concurrently

What combinations of input/output units may be concurrently
activated? What input/output units may not be activated concurrently?
Identify each input/output unit and its capability of being activated
concurrently with the proposed hardware configuration.

I. Repeated Tries on I/O Device Errors

On which input/output devices will attempts to read or write
be repeated if errors are detected? For example, redundancy calcula-
tions on certain magnetic tape units should be tried several times
before giving up. What is the basis for choosing the given number of
repeated tries on each device? Has it been shown that each device has
sufficient past history to warrant these repeated tries? Does the com-
piler provide suitable messages to both the computer operator and the
programmer in each case? Is the maintenance function aware of each
repeated try? Identify each detected error relative to the proposed
configuration in addition to describing the repeated procedure. This
feature will tend to optimize I/O utilization and to a lesser degree
will afford some savings in execution time.

23

J. Method of Supplying I/O Routines to Object Programs

How are the input/output subroutines supplied to the object
program? Are they organized by device, by the function they perform?
Identify the cases where each subroutine is provided to the object pro-
gram. This feature will tend to increase product economy and affect
the flexibility of I/O utilization.

K. I/O Subroutines Always Loaded

Which input/output subroutines are always loaded with the
object program? In some compiler systems input, or output (or both)
are loaded whether they are needed or not. If they are not needed
they will take up space and thereby reduce the product economy. If a
particular device is needed in the program under consideration, only
for reading input to this program, is the output routine also loaded?
On the other hand if the output routine is needed is the input routine
loaded automatically? This feature is useful for comparative analysis
since product economy is affected. Input and output routines are
characteristically large and in many cases are not needed in all their
flexibility. It would be desirable to have a minimum, in some cases,
input or output routine to provide transfer of a small number of param-
eters in an unsophisticated format in addition to the normal large com-
plex input/output routines.

L. COBOL - Number of I/O Areas Supplied for Reserve

How many input/output areas have been implemented under the
RESERVE option of the FILE-CONTROL statement, INPUT-OUTPUT Section of
the ENVIRONMENT DIVISION?

M. COBOL - Action Taken When Buffer Holds Several Records

When available buffer areas can hold more than one record,
what special action is taken by the system? Does the program make
suitable adjustments to take advantage of the increased storage space?
Program execution time will be saved and I/O utilization increased
when larger quantities of data are read from and/or written to files.

N. Utility of Random Access I/O Devices

What provisions have been implemented in this compiler to
provide the programmer with facilities to take advantage of these ran-
dom access devices? This feature will tend to decrease execution time
of file manipulating programs which previously were tape oriented.

24

0. COBOL - Record Selection on Random Accesses

Does the compiler allow the programmer to use the random
access device for file storage? If so, can any single record be
selected by a read or write verb? Is there sufficient flexibility to
allow the programmer to get any random record in the response time
afforded by the device?

P. COBOL - Random Access Storage for Test Data

If the proposed configuration includes a separate random
access device is this random access device used for test data storage
during debugging runs? To what extent?

III. COMPILER FEATURES

A. Special Patching Language Provided

Is there a special patching language provided? In some com-
pilers a facility has been made available which will allow the patches
to be inserted in a special language. Complexity in the compiler is
sometimes apparent with the addition of this type of language.
Decreased checkout time for both programmer and machine may result by
an appropriately designed patching language.

B. Source Language Level Patching

Can patches be made at the source language level? That is,
is there a provision within the compiler which will allow small patches
of source language level coding to be added? It is often convenient to
try a certain patch which the programmer may think will work. If it
doesn't or if he doesn't get the results that he wants he may then wish
to pull that patch out and try a different one. Does the compiler
system allow the programmer, once the patch is checked out, to auto-
matically incorporate this in the program resulting in easy documenta-
tion? This feature can measurably decrease checkout time for the
programmer.

C. Parameters in Design Point

The "Design Point" refers to the objectives, laid down by the
designers, of what trade-offs have been made among compilation time,
code efficiency, degree of diagnostic capability, size and capability
of computing equipment used, etc. It is a specification of the inten-
tions of the builders as to where emphasis is tailored to fit the local
requirements. To what extent is the design point parameterized? State

25

the parameters involved, their effect, and the method of changing them.
Identify each parameter and its limits relative to the possible objec-
tives during construction. Product economy and growth flexibility are
affected by this feature.

D. Disabling of Time Efficiency Trade-Offs

Is it easy to enable or disable the sections of the compiler
reflecting time efficiency trade-offs? Describe how this can be done.
Identify the flexibilities available for enabling and for disabling
each and any compiler section which contributes to time efficiency
trade-offs.

E. Efficiency of Object Code

A measure of efficiency could entail a comparison of code
produced by the compiler with that produced by experienced machine
language programmers. Efficiency would be measured in program opera-
ting time, amount of storage used and sophistication of the resulting
program. Describe the method by which the above efficiency figure was
estimated or calculated to involve all three possibilities. Does the
compiler make a special pass as the last pass to optimize the object
code produced?

F. Separation of Common Subfunctions

Are subfunctions common to more than one library routine
explicitly separated into subroutines? It may be that certain sub-
routines within subroutines are common amongst several different
library routines and thereby may be separated out in order to affect
product economy. Determine the degree to which this is done.

G. Procedure for Running Large Programs (segmentation)

What procedures are available for running programs too large
to fit in primary storage? Describe the segmentation scheme used and
assess its flexibility. Is there an upper bound on the size of the
program relative to the segmentation scheme? If large programs are
under consideration a segmentation scheme is indeed necessary and will
measurably decrease programming time and effort.

H. Common Data References for All Programs

Can all parts of the segmented programs above reference the
same data? That is, does each segment in a large program have access
to all of the data associated with the program? How is this imple-
mented?

26

I. Modification of Program Control Sequence Dynamically

Can the sequence of control flow between parts of segmented
programs be modified during program execution? A problem with seg-
mented programs is that any given segment requiring control transfers
to some other segment, finds it inefficient to loop back and forth.
These segments may not always be in' primary storage at the same time.
However, it is necessary that any segment have the capability of get-
ting to every other segment of the same program.

J. Automatic Library Search

Is there a procedure for automatically searching the library,
and including all subroutines from it that are needed by the object
program? If not, how are such subroutines to be included? If suffi-
cient flexibility is provided for automatic library search then meas-
urable decreases in programming time and effort may be realized.

K. Standard Record and File Description

Does the subroutine library contain standard record and file
description? That is, is the library file of routines organized by
using a standard method of identifying records or files within that
library? This will allow other installations to use this library and
therefore contribute to the machine independence of the compiler.

L. Compiler Table Sharing for Overflow

Are internal compiler tables arranged so that overflow from
one may be placed in the unused space reserved for another? For
example, say the compile*- requires three different types of accumula-
tive tables. For compilation of one type of program one of the tables
needs a large amount of space whereas the other two need next to none.
It is considered a judicious technique if one large area is reserved
for use of these three combined tables such that any one can expand to
the point where storage needed by all three combined will not exceed
the overall storage allocation.

M. Dynamic Allocation of Storage

Is storage allocation in the compiler performed dynamically?
That is, any tables or storage needed during the compilation process
may be assigned dynamically in conjunction with the operating system
such that primary storage is only used when needed. This feature will
tend to reduce compilation time since more efficient use of the stor-
age is made and thereby lessening requirements for segmenting or use
of secondary storage.

27

N. Implementation of Storage Allocation Changes

How is a change in compiler storage allocation implemented?
How difficult is it to make modifications to the allocation scheme or
technique used within the compiler? Flexibility in this feature will
tend to decrease time and effort in maintaining the compiler.

0. Hardware Configuration Changes at Programming Running Time

Can hardware configurations be changed easily for programs
at object time? Is it relatively simple to implement changes at this
time? Identify the limits of these changes in hardware configurations
relative to each hardware component. This would tend to increase
available execution time and decrease programming time in checkout;
since if a program does not use certain hardware components, which are
inactive for one reason or another at running time, a suitable con-
figuration change can be effected in the programming system and the
program allowed to run.

P. Combining Program Segments and Routines from other
Software Packages

It is often desirable to include programs written for other
purposes and possibly for other installations within this application.
What facilities are available for combining program segments and rou-
tines procuced for or by other software packages with those produced
for or by this compiler? Is any of the required interfacing automat-
ically performed? Assistance in combining and using these programs
tends to increase machine independence and decrease programming and
checkout time.

Q. Operation on Similar Machine Types

Can the output of a compilation run on more than one type
of machine (other configurations of the same machine, other machines
in the same series, machines of a different type through the use of an
emulator, etc.)? Identify the machines and the configurations on
which the output of this compiler may be executed. Flexibility pro-
vided by this feature will tend to enhance machine independence.

R. Utilization of Bit or Byte Accessing Facilities and
Other Sophistications

Does the object code produced by the compiler make use of
any bit or byte accessing facilities of the machine? Identify and
describe any advantages the object code takes from whatever sophisti-
cation the hardware instructions set may provide. Efficient use of

28

hardware instruction sophistication tends to produce an object code
which is economical in both execution time and storage required.

S. Packing Techniques for Conserving Storage

Describe the packing techniques used in the object code pro-
duced by the compiler to economize -the storage utilization. Many com-
pilers work strictly with full words and do not allow manipulation of
bits or characters other than the use of special subroutines. How
flexible is this compiler relative to packing bytes and bits into
words? Both primary and secondary storage space is saved by appro-
priate use of this feature.

T. Truncation or Rounding of Conversions

Are the results of input conversions (especially floating
point numbers) truncated or rounded from the true value? Can this be
controlled by the user? Does it require compiler modifications? To
what degree of precision are input conversions performed (e.g. BCD to
binary number conversions)?

U. Subroutine Names Considered as Global Symbols

Global symbols are those defined throughout the entire pro-
gram and do not change meaning from subroutine to subroutine. Sub-
routine linkage is the process of defining, during loading, the subset
of global symbols comprised of subroutine names. There are two basic
methods of handling such subroutine linkage: through a transfer vec-
tor (i.e. indirect) and by direct addressing. Are global symbol defi-
nitions implemented directly or indirectly? In the transfer vector
method all subroutine ct'lls are compiled as a call to a word before
the first instruction of the calling program. There is one of these
words for each subroutine called and the loader must modify only them.
The advantage of this method is program loading flexibility and
increased loading speed; however, transfer vectors occasionally account
for more than 10% of all memory used. In the direct reference scheme,
there are no transfer vector words and the loader must modify one word
in the program for each instance of a program call. This method
decreases memory requirements and execution time but may increase load-
ing time. The indirect method will provide flexibility to the program-
mer and, therefore, save him time. The direct method will conserve
execution time but combining programs or making modifications to pro-
grams will probably require machine language programming. The transfer
vector scheme is a commonly used technique and therefore contributes to
machine independence. The degree of each of these factors will depend
on the proposed compiler.

29

V. Common Subexpressions Compiled Only Once

Are common subexpressions recognized so that code is com-
piled to compute them only once? Can the compiler recognize multiple
occurrences of the same expression and compile code which will compute
the expression only once and save the results that can be used in the
place of computing the expression again? Effort by the compiler
builder in this particular area will tend to produce economies in
operating time and storage used in the object program.

W. Mathematically Equivalent Subexpressions

Does recognition of common subexpressions extend to mathe-
matically equivalent subexpressions such as A*(B+C) and A*B+A*C? What
types of expressions will be recognized as equivalent?

X. Modification of Constants

Can a program be written entirely in compiler language which
will modify the value of a constant without causing a compilation,
loading, or execution diagnostic error report? The programmer working
only in compiler language should be protected against constants chang-
ing values. A way in which a constant value may be changed in some
FORTRAN systems is the following:

SUBROUTINE COMPUTE (A)
II

II

A = 10
M

II

II

END

If subroutine compute is now called with a constant argument, as in
CALL COMPUTE (5.5), the value of the constant will be changed. If A
was originally set by an input value to be constant throughout the
program, erroneous results may occur because of the change. This fea-
ture will tend to reduce programmer and machine checkout time.

Y. Intermediate Level Languages Used

What is the target language of the compiler? What are the
intermediate languages (if any)? Within some compilers the conversion
is made from input language to an intermediate language as one step,
and then intermediate language to object code in another step. This
intermediate language provides a method for programmers to attach

30

other programs written separately in the intermediate language to a
program written in the compiler language. This flexibility is often
highly desirable since otherwise both portions of the problem would
have to be done in the intermediate language. This feature will
decrease programming and checkout time, and contribute to machine
independence.

Z. Programmer Selection of Outputs

Can the programmer select and/or specify the outputs of a
compilation? What options are available to him as to output including
the original source language program, the intermediate language list-
ing, the listing of the final object coding of the program, etc.?
This feature will tend to decrease time spent in checkout for the
programmer.

AA. Target Language Optimization Performed

Describe whatever target language optimization is performed.
In particular, describe optimization in the following areas: elimina-
tion of duplicate constants, elimination of unnecessary store and/or
access commands, unnecessary saving of index registers, etc. Judicious
use of optimization techniques in this area will tend to produce an
object code which is efficient both in overall execution time and in
use of primary storage but may result in increased compilation time.

AB. Ease of Excluding Optimization

Since compilation time is often measurably increased by the
use of optimizing techniques, it is often desirable to inhibit any
optimizing done on the object code. Once the program is checked out,
one final compilation run may be performed using the optimizing rou-
tines to insure production of an object program with efficient code.
In case a compiler has routines that will perform optimization, this
feature would be used to assess the flexibility provided for control-
ling optimization routines. Flexibility provided for programmers by
this feature will tend to conserve compilation time.

IV. PROGRAMMER ERROR DIAGNOSTICS

A. Errors Causing Compilation Termination

Identify those source language errors which cause complete
termination of compilation. Some programming errors are peculiar to
the particular problem or application involved and as such are not
detectable by the compiler. Others although detectable by the

31

compiler may be of minor importance and as such do not require termina-
tion of the compilation process. It must be determined exactly what
errors will cause job termination or compilation termination. The
most desirable situation would be one in which the programming system
informs the operator or programmer (or both) that a major error has
been detected but continues executing the normal job stream. Operator
intervention, compilation time and execution time may each be affected
in varying degrees.

B. Undetected Source Language Errors

Those source language errors which will not be detected
either by the compiler or by any error checking program associated
must be identified. Any conceivable error made in a source language
program could be a contender in this list. Any undetected errors must
be found eventually by the programmer thereby increasing his checkout
time as well as compilation time. The concern here is to assess the
completeness of the detected errors while fully realizing that many
programming errors are detectable only by the programmer. Adequacy
in this area will tend to decrease programmer checkout time.

C. Errors Causing Unexpected Stops

Identify any source language errors which may cause the com-
puting system to halt or to delay with resulting lost facility time.
Concentration here is on those errors which are both undetected and
will cause unexpected stops. The cause may be software or hardware
and may be in the central processor or a peripheral input device. The
most desirable situation is one in which errors are detected and
relayed to the operator and/or programmer with halts or stops com-
pletely controllable by them. Operator intervention is decreased and
machine time utilization increased if very few or no such stops occur.

D. Other Source Program Errors

Identify those source program errors which are detected and
describe them relative to the compilation phase in which they are
detected. One extreme is the detection of all possible errors by the
compiler in one pass thereby extending compilation time for errors
which may rarely occur. That is, the compiler takes time to check
for each situation and compilation time is increased. The other
extreme is to have a bare minimum of errors detected, thereby extend-
ing programmer checkout time. The desire here is to meet a reason-
able balance relative to the specific application. This balance must
be determined by the user-evaluator team, and this feature would
assist them in determining what effects would exist on programmer
checkout time and compilation time.

32

E. Number of Errors Found Before Termination

Does the compiler attempt to find as many errors as possible
or does it terminate after only one is found? The number and types of
errors must be identified relative to each pass made by the compiler
on the source language program. Programmer checkout time is saved if
the programmer is provided as many appropriate diagnostics as possible
each time he attempts compilation. On the other hand, compilation
time is wasted if checks are made for a large number of errors when
the first one detected was a major error and the others are directly
affected by it.

F. Number of Passes Required for Errors

Does the compiler make one pass in which it finds all the
related errors or is there several passes made in which each pass
detects more complex and less obvious errors? What controls or param-
eters are available for selecting the number of passes? An excessive
number of passes would increase compilation time unnecessarily. How-
ever, insufficient flexibility in the compilation process and in the
diagnostic capability may result if only a single pass is performed.

G. Compiler Production After Error Detection

Will the compiler continue producing an object program after
an error is found? If so, under what conditions? Identify each rele-
vant error. This feature will affect compilation time in cases where
compilation termination is performed only after a portion of the object
program has been produced. Any processing which produces an object
program is essentially wasted in this case. Is there some way the
programmer can control the production of an object program?

H. Statement Identification for Errors

Does the diagnostic error report indicate the exact statement
causing the error? How specific is the error report within the state-
ment as to the nature of the error and its location in the statement?
Time may be saved during checkout if diagnostic error reports are iden-
tified relative to the position within the program in which the error
was found.

I. Detection of Excessive Source Language Symbols

What diagnostics are provided to indicate that the source
program symbol table limits of the compiler have been executed. Check-
out time may be saved for the programmer if this is detected during the
compilation process. Also, significant amounts of compilation time may
be saved by early detection (in the compilation process) of this con-
dition.

33

J. Errors Detected During Execution

List the diagnostics provided when errors are detected during
object program execution. Include a description of each as well as the
procedure for restarting. Are specific hardware components identified
for each appropriate diagnostic? Appropriate reporting of these errors
to the operator and/or to the programmer may effect savings in execu-
tion time in addition to decreasing programmer checkout time.

K. Modifications for Trace Requests

What program modifications are required in order to insert
requests for traces of program components, or periodic and sectional
dumps? Identify those diagnostics which assist the programmer in
inserting these types of requests accurately. A flexible scheme allow-
ing quick but effective modifications to the program will result in
decreased checkout time for the programmer and decreased execution time
by the facility.

L. Prescan for Frequent Error Detection

Does the proposed compiler employ a special prescan to detect
frequent errors? Is any error detection performed during initial read-
in of the source program deck? Considerable compilation time may be
saved by this special prescan providing the errors detected are those
which have a reasonably high probability of occurring. This prescan
process may be executed by the on-line or the off-line computer. At
any rate, programmer and machine checkout time will be saved by a
suitably designed prescan process.

V. HARD-COPY OUTPUT AND FACILITY DOCUMENTATION

A. Diagnostics Provided Off-Line

Are diagnostics indicating errors made by the object program
recorded off-line for programmer information? Is sufficient informa-
tion provided concerning each error so that the programmer may recon-
struct the program path? Measures of software capability affected by
this feature are programmer checkout time and documentation.

B. Automatic Update of Recompilations

Is there a procedure for modification of a previously com-
piled program without recompiling? Does this procedure provide for an
automatic update of the source program? This feature will decrease
compilation time as well as contribute to the documentation of the
specific program.

34

C. Trace and Dump Outputs Printed

Are dump and trace outputs printed in source language? Is
sufficient information provided in these printed outputs to allow the
programmer easy reference to the source language program? This fea-
ture will tend to decrease programmer checkout time and also contri-
bute to savings in time for effecting programming changes.

D. Trace Symbols and Statement Referencing

If dump and trace outputs are not printed in source language,
how are the source program symbols and statements referenced in the
dump and control flow trace outputs? What must the programmer do in
order to connect his program in source language with these dump and
flow trace outputs? Adequate provision of useful references will
decrease programmer checkout time.

E. Accounting for Compiler Modifications

Describe the method used to keep track of modifications to
the compiler. How can one identify the available features relative to
any one version? It is desirable to have features relative to any one
version identified explicitly which requires the use of a well-defined
scheme. Both growth flexibility and documentation are enhanced by an
app.opriate and adequate scheme.

F. Documentation Intended for External Maintenance

Is documentation of the compiler intended to permit outside
maintenance and modification? Is the documentation organized and cross
referenced such that maintenance and modification is relatively easy?
This will contribute to the measure of documentation.

G. Availability of Compiler Manuals and Listings

Which of the following documents are currently available:

(1) Listings of the Compiler.
(2) Manual of Compiler Operation.
(3) Manual of Compiler Internal Structure.
(4) Programmer's Reference Manual.
(5) Programmer Training Manual.

H. Outputs of Compilation and Loading

Which of the following listings are included in the output
of compilation and loading:

35

(1) Listing of the Source Program.
(2) Listing of the Object Program.
(3) Cross References to Symbols and Statements.
(4) A List of All Data Areas and Their Locations.
(5) List of all Buffer Areas and Their Locations.
(6) A Storage Map Including Routines Loaded.
(7) Lists of All Interprogram. References.
(8) A List of All Errors Detected

VI. MANUAL AND AUTOMATIC OPERATIONS

A. Operator Message for Unavailable I/O Files

Is the computer operator informed whenever the required input/
output files are not available? Is the message or messages given to the
operator directed to him quickly so that he may make the appropriate
files available? Efficient operator messages will decrease time spent
on operator intervention.

B. Operator Messages for Object Program Errors

Are object program errors printed on-line along with directions
to the operator for recovery or restart? Is the message relayed quickly
and efficiently? Does the particular diagnostic make clear whether this
requires complete job abortion or whether some simple procedure may be
performed by the operator in order to continue. Efficiency in this area
tends to reduce time spent on operator intervention.

C. Machine Error System Termination

Is the run terminated when a machine error occurs? Identify
those conditions for which termination occurs. What special indicators
are used to- inform the operator of the termination?

D. Operator Options for Termination

Does run termination in the event of machine error occur at
the discretion of the computer operator? If yes, is there sufficient
information given to the computer operator to allow him to make this
decision?

E. • Information for I/O Device Malfunction

What information is furnished to the operator in case of an
input/output device malfunction (e.g. magnetic tape)? Identify each
case with the associated information furnished. Sufficient and appro-
priate information given to the operator will enhance I/O utilization
as well as make operator intervention more efficient.

36

F. Failure Reports for Maintenance Personnel

Describe the procedures for providing maintenance personnel
with equipment failure reports. Are reports for these messages con-
tinually being generated so that output will include past history
reports? The point is to determine whether there is such a procedure
and, naturally, how good it is. This feature will decrease time
spent on maintenance.

G. Operator's Console Control of Trace Routines

Can the computer operator affect and control tracing routines
and/or dump routines from his console? Identify the commands he may
give. Describe the interaction with the programmer or with a specific
program. Flexibility for operator control will tend to reduce program
checkout time and operator intervention.

H. Programs for Updating Software System

Are programs available for updating the software system?
That is, identify programs used for producing a new version of the
system incorporating latest modifications. Describe how they interact
with the system. Can they be operated in conjunction with other nor-
mal jobs? What limits exist for operation in the job queue? System
maintenance is affected by this feature.

I. Minimum Configuration for Updating

What is the minimum hardware configuration required for this
updating process? How does the minimum configuration relate to the
proposed configuration? Maintenance is the main measure of software
capability affected by this feature.

J. Operator Communication Via Console Keys

Can the program communicate with the console operator via
the console keys and the on-line input/output equipment? In some
installations, it is expedient to provide communication between the
program and the console operator. To what degree can this be done?
Although some savings in execution time may be experienced with ade-
quate communication, the main saving is in decreased operator inter-
vention requirements.

K. Time Required for Operator Actions

How much time is required for operator actions for an aver-
age compilation (e.g. tape loading)? Identify the actions required

37

and estimate overall times or times for each. Can these actions be
done while another job is being run? To what limits? This feature
tends to increase usable compilation and execution time as well as
reduce operator intervention time.

L. Executive or Monitor Control Provision

Does the compiler operate within a separate monitor or executive
system? If one is to be used, see Volume III of this report on Opera-
ting, Monitor or Executive Systems. If not, describe the operator
functions incorporated within the compiler. Can the compiler be run
without a separate operating system? Operator intervention, compila-
tion time and execution are each affected by this feature. The pres-
ence of a well-designed set of operator functions tends to conserve all
three measures of software capability.

M. Availability of Compile. Load and Execute Options

If no separate monitor or executive system is provided, what
provisions are available within this compiler for selecting one or any
combination of the following processes: compile, load, execute? Is
there a special test-execute available? This feature will tend to
decrease operator intervention time as well as increase the available
execution and compilation time.

N. Flexibility of Compile, Load and Execute Options

Can the compiler or loader be called upon by an object pro-
gram dynamically? What degree of flexibility does the programmer have
in selection of any of the following processes: compilation, load,
execute, test-execute, test data generation. Programming time tends
to decrease with flexibilities in this area.

VII. FACILITY ADMINISTRATION

A. Same Compiler Version Used for Both Timing and
Documentation

Is the compiler version, used for benchmark or similar types
of computing system timing, the same version and modification described
under all other features? This feature tends to decrease programmer
checkout•time and effort in maintaining a system.

B. Maintenance Performed by Vendor or User

Will the vendor maintain this compiler or will it be an
additional function to the user? Will the user be getting a special

38

version of a compiler which is maintained by the vendor? If so, will
the user be required to maintain all those portions of the compiler
which differ from the basic one maintained by the vendor?

C. Stability of Compiler Design

Is the compilers design relatively stable? That is, is this
compiler still in the stage where system programmers are developing
better techniques to perform certain functions within the compiler or
has this process been performed in the past resulting in a presently
stable compiler? This feature will tend to reduce effort expended in
maintenance.

D. Unusual Techniques of Implementation

Does the compiler employ any unusual techniques? Was it
implemented in an unusual manner? Identify each unusual technique
used or unusual implementation manner as to the effect it has on com-
pilation time, execution time, complexity of the compiler, size of
the compiler, compiler maintenance, etc.

E. Size of Machine Language Version

How large is the machine language version of the compiler?
Siz.' should be assessed in terms of percentage of available primary
working storage used during an average compilation. If the compiler
uses a very large percentage of available primary storage, then the
compiler must compile smaller pieces of any given program and there-
fore take considerable more time to produce the required object code.

F. Use of Standard Modules Within Compiler

How much of the compiler consists of standard off the shelf
modules? Is the compiler constructed in a modular fashion such that
present and future requirements may be specified by appropriate selec-
tion of these modules? This feature will tend to make system program
maintenance easier, and allow for growth flexibility,

G. Minimum Configuration Required for Compiler

What is the minimum hardware configuration required to run
this compiler? If the configuration is different than the one pro-
posed, describe the effects on the user-programmers, on program com-
pilation time relative to this difference.

H. Performance Improvements from Larger Configurations

Describe how the use of a larger hardware configuration
improves compiler and object prograui performance. If the user, in the

39

future, finds a need for a larger configuration, it would be desirable
if the compiler could make use of the increased hardware.

I. Average Speed of Compiler (statements/minute)

What is the average speed of the compiler in statements per
minute? This is a direct method of determining comparable compilation
speeds.

J. Object Program Storage Space

How much object program storage space does the compiler allo-
cate for fixed overhead, buffer areas, monitor system tables, etc.?
Large amounts of space allocated by the compiler for these items will
tend to reduce the efficiency of the object program and may affect
secondary storage.

K. Command Structure Utilization

How much of the target computer's command structure is utilized
by the code output from the compiler? List any modes or commands not
used. Also, give reasons in the case of unused modes or commands. The
concern here is to assess the degree to which the compiler uses the
advantages and sophistication in the hardware instruction code.

40

SECTION FOUR

QUESTIONNAIRE

I. INTRODUCTION

The following questionnaire is intended as an aid to the evalu-
ation of compilers. Those questions preceded by the word "COBOL" are
to be answered only if COBOL is the principal software package pro-
posed; similarly, questions preceded by the word "FORTRAN" are to be
answered only if FORTRAN is the principal software package proposed.
All other questions are always to be answered. It should be under-
stood that all questions are assumed to refer to the principal soft-
ware package and its compiler.

While many of the following questions are phrased in a manner
implying a "yes" or "no" answer, this is not intended as a restriction
on the respondents. Further explanation is encouraged whenever it
leads to a clearer picture of the item in question; however, respon-
dents are urged to remember that excessive detail can also hinder
understanding. It is expected that most questions can be answered
in a few hundred words or less.

Respondents should indicate appropriate references along with
each answer and submit a copy of the referenced documents. In the.
event that no documentation for a given item exists, the name, title,
and location of the individual or group responsible for the given
area should be submitted.

II. FUNCTIONAL DIVISIONS

The questions are presented in seven sections:

A. SOURCE LANGUAGE ORIENTED FEATURES - questions relating
primarily to characteristics of the language rather than the com-
piler.

(COBOL) What features of COBOL, Edition 1965, have
not been included in the proposed compiler?

(COBOL) Describe any features this compiler has which
provide increased capability or flexibility not included
in the COBOL, Edition 1965 report.

41

3. (FORTRAN) List and describe all features of your lan-
guage which are equivalent to some feature of the pro-
posed ASA FORTRAN standard.

4. (FORTRAN) List and describe all features of your lan-
guage which have no equivalent in the proposed ASA
FORTRAN standard.

5. (FORTRAN) List and describe all features included in
the proposed ASA FORTRAN standard but not included in
your language.

6. Describe any non-standard implementation techniques.
What effect do these have on the compilation speed and
on the standards of the language?

7. Are source language facilities adequate to access all
types of input/output equipment available for the
machine?

8. Can dump and control flow trace requests be inserted
at the source language level?

9. What languages are available on the proposed configura-
tion?

10. What flexibility is available for varying the sizes of
input/output records and of table sizes?

11. (FORTRAN) How do the restrictions on statement sequencing
differ from those described in the proposed ASA FORTRAN
standard?

12. (FORTRAN) Is the FREQUENCY statement accepted by the
proposed compiler? If so, describe the effects of the
FREQUENCY statement.

13. (FORTRAN) How do the rules for determining the defini-
tion of DO indices in the proposed compiler differ from
those in the proposed ASA FORTRAN standard? How do the
restrictions on subscript expressions and on expressions
used as the limits of a DO differ from the proposed ASA
FORTRAN standard?

B. LOGIC AND CONTROL OF INPUT/OUTPUT DEVICES - language and com-
piler features referring specifically to the control of input/output
devices and associated program logic (i.e. buffer control, device
assignment, etc.).

42

1. What are the restrictions on overlapping computation
with input/output operations? Which of these restric-
tions are due to software rather than hardware?

2. What combinations of input/output units may be concur-
rently activated?

3. If the proposed hardware permits simultaneous input/
output operations, can several input/output files be
read or written simultaneously using the proposed soft-
ware?

4. Can they be buffered simultaneously?

5. If the proposed configuration includes a priority
interrupt system, does the proposed software system
utilize this priority interrupt system for input/output
processing?

6. Describe any options available in the area of input/
output device servicing.

7. What are the advantages (in terms of ease of program-
ming, economies in the object program, etc.) of the
above options?

8. On which input/output devices will attempts to read or
write be repeated if errors are detected?

9. How many attempts will be made on each device?

10. What is the basis for choosing the given number in each
case?

11. How are the input/output subroutines supplied to the
object program organized (by device, function, etc.)?

12. Which input/output subroutines are always loaded with
the object program? Why?

13. If a particular device is needed (in the program under
consideration) only for input, is the output routine
also loaded? Why?

14. (COBOL) How many input/output areas have been imple-
mented under the RESERVE option of the FILE-CONTROL
statement?

43

15. (COBOL) When available buffer areas can hold more than
one record, what special action is taken by the system?

16. If the proposed configuration includes a disc or drum,
can the system simulate several sequential input/output
devices (i.e. magnetic tapes) on a relatively random
access device such as a disc?

17. (COBOL) Does the system use a random access device for
sequential files defined in the DATA DIVISION? If so,
can any single record be selected by a read or write
verb?

18. (COBOL) If the proposed configuration includes a ran-
dom access device (other than primary magnetic core
storage) , can this random access device be used for
test data storage during debugging runs?

C. COMPILER FEATURES - features of the compiler (i.e. the
implementation of the language) rather than the language itself.

1. Can patches be made at the source language level?

2. Is there a special patching language?

3. State the design point of the compiler and the major
features which illustrate it.

(Note: The "design point" refers to the objectives,
laid down by the designers, of what trade-offs have
been made among compilation time, code efficiency,
degree of diagnostic capability, size and capability
of computing equipment used, etc. It is a specifi-
cation of the intentions of the builders as to where
emphasis is tailored to fit the local requirements.)

4. To what extent is the design point parameterized?
State the parameters involved, their effect, and the
method of changing them.

5. Is it easy to enable or disable the sections of the
compiler reflecting time efficiency trade-offs? How
can this be done?

6. How efficient is the object code produced by the com-
• piler?

(Note: A measure of efficiency could entail a compari-
son of code produced by the compiler with that produced
by experienced machine language programmers.)

44

7. Describe the method by which the above efficiency
figure was estimated.

8. Are subfunctions common to more than one library rou-
tine explicitly separated into subroutines?

9. What procedures are available for running programs too
large to fit in primary storage?

10. Can all parts of such programs reference the same data?

11. Can the sequence of control flow between parts of such
programs be modified during program execution?

12. Is there a procedure for automatically searching a
library and including all subroutines from it that are
needed by the object program? If not, how are such
subroutines to be included?

13. Does the subroutine library contain standard record
and file descriptions?

14. Are internal compiler tables arranged so that overflow
from one may be placed in the unused space reserved
for another?

15. Is storage allocation in the compiler performed dynam-
ically?

16. How is a change in compiler storage allocation imple-
mented?

17. Can hardware configurations be changed easily for a
program at object time? To what extent?

18. What facilities are available for combining program
segments and routines produced by other software pack-
ages with those produced by the compiler? Is the
required interfacing automatically performed?

19. Can the output of a compilation run on more than one
type of machine (other configurations of the same
machine, other machines in the same series, machines
of a different type through the use of an emulator,
etc.)? What machines?

20. Does the object code produced by the compiler make use
of any bit or byte accessing facilities of the machine?
Which ones?

45

21. Describe any packing techniques used in the object code
produced by the compiler to economize the storage
utilization.

22. To what degree of precision are input conversions (e.g.
BCD to binary number conversions) performed?

23. Are the results of input conversions (especially to
floating point representation) truncated or rounded
from the true value?

24. Are global symbol definitions implemented directly or
indirectly (transfer vector)?

25. Are subroutine names considered to be ordinary global
symbols?

26. Are common subexpressions recognized so that code is
compiled to compute them only once?

27. If so, over what range?

28. Does recognition of the above type extend to mathemati-
cally equivalent subexpressions such as A*(B+C) and
A*B+A*C ?

29. Can a program be written entirely in compiler language
which will modify the value of a constant without caus-
ing a compilation, loading, or execution diagnostic
error report?

30. What is the target language of the compiler? What are
the intermediate languages (if any)?

31. Can the programmer select and/or specify the outputs of
a compilation?

32. Describe target language optimization performed. In
particular, describe optimization in the following
areas: elimination of duplicate constants, elimination
of unnecessary store and access commands, elimination
of the execution of unnecessary sub-formula evaluation
in Boolean statements.

D. PROGRAMMER ERROR DIAGNOSTICS - questions intended to clarify
a description of the facilities for error detection and reporting.

46

1. Which source language errors cause complete termination
of compilation?

2. Which source language errors will not be detected by
the compiler or by any error checking program?

3. Which source language errors can cause an unexpected
halt at any point?

4. What other source program errors are detected and when
are they detected?

5. Does the compiler attempt to find as many errors as
possible or does it terminate after only one is found?

6. If it attempts to find many errors, does this happen
in a single pass or may more be required?

7. Will the compiler continue producing an object program
after an error is found? If so, under what conditions?

(Note: For a user whose primary workload emphasizes
the development of relatively small programs it is
desirable that object code production be continued in
order to facilitate detection of additional errors;
however, if extremely large programs are being devel-
oped, object program production should be halted at
the initial instance of an error to avoid wasting large
amounts of machine time.)

8. Does the diagnostic error report indicate the exact
statement causing the error? How specific is the error
report within the statement as to the nature of the
error and its location in the statement?

9. What diagnostics are provided to indicate that the
limits of the compiler have been exceeded (e.g. too
many source program symbols)?

10. List the diagnostics provided when errors are detected
during object program execution. Include a description
of each as well as the procedure for restarting.

11. Can dump and control flow trace requests be inserted
without program modification?

12. Does the proposed compiler employ a special prescan to
detect frequent errors?

47

13. Are frequent errors detected during the first pass of
the compiler?

14. Is any error detection performed during initial read-in
of the source program deck (possibly on a peripheral
computer)?

E. HARD-COPY OUTPUT AND FACILITY DOCUMENTATION - questions
designed to clarify the nature and frequency of documents produced by
the compiler system (listings, error reports, etc.) as well as ques-
tions to determine what documentation about the compiler and the lan-
guage is available.

1. Are diagnostics indicating errors made by the object
program recorded off-line for programmer information?

2. If there is a procedure for modification of a previously
compiled program without recompiling, does this proce-
dure provide for an automatic update of the source
program?

3. Are dump and trace outputs printed in source language?

A. If not, how are the source program symbols and state-
ments referenced in the dump and control flow trace
outputs?

5. Describe the method used to keep track of modifications
to the compiler.

6. Is documentation of the compiler intended to permit
outside maintenance and modification?

7. Which of the following documents are currently available?

a) Listings of the Compiler.

b) Manual of Compiler Operation.

c) Manual of Compiler Internal Structure.

d) Programmer's Reference Manual.

e) Programmer Training Manual.

8. Which of the following are included in the output of
compilation and loading?

a) A Listing of the Source Program.

b) A Listing of the Object Program.

48

c) Cross-References to Symbols and Statements in the
Object Program.

d) A List of All Data Areas and Their Locations.

e) A List of All Buffer Areas and Their Locations.

f) A Storage Map Indicating Routines Loaded and Their
Locations.

|ij) Lists of All Inter-Program References.

1) (FORTRAN) Lists of Variables Appearing in COMMON,
DIMENSION and EQUIVALENCE Statements.

.) A List of All Errors Detected.

F. MANUA, AND AUTOMATIC OPERATIONS -primarily compiler and
object system characteristics pertaining to running the compiler,
updating to produce new compiler versions, etc.

1. Are object program errors printed on-line along with
directions to the operator for recovery or restart?

2. Is run termination in the event of machine error at the
discretion of the computer operator?

3. [s the run terminated when a machine error occurs?

4. ts the computer operator informed whenever the required
Lnput/output files are not available?

5. iJhat information is furnished in the case of input/out-
put device (e.g. tape) malfunction?

6. describe the procedures for providing maintenance per-
sonnel with equipment failure reports.

7.]an dump and control flow trace routines be controlled
from the operator's console?

8. Are programs available for updating the software system
[producing a new version of the system incorporating
Latest vendor modifications)?

9. 'Jhat is the minimum configuration required for this
ipdating process and how long does it take?

10.]an the program communicate with the console operator
via the console keys and the on-line input/output
equipment?

49

••

11. How much time is required for operator actions for an
average compilation (e.g. tape loading)?

12. Does the compiler operate within a monitor or executive
system?

13. If so, describe the major'functions of the interface.

14. What provisions are available for selecting one or any
combination of the following processes: compile, load,
execute? Can the sequence be selected in advance?

G. FACILITY ADMINISTRATION - questions pertaining to the admin-
istration of a facility using the given software package as well as
those questions not conveniently included under some other category.

1. Is the compiler version used for timing the same ver-
sion and modification described under all other fea-
tures?

2. Who constructed the compiler? When?

3. Who maintains it?

4. Is compiler's design relatively stable?

(Note: Frequent modifications in the design of a com-
piler tend to produce the situation of its being poorly
checked out, whereas failure to modify compiler design
over lengthy periods of time frequently results in
performance substantially inferior to that possible
with the current state-of-the-art.)

5. Does the compiler employ any unusual techniques? Was
it implemented in an unusual manner?

6. How large is the machine-language version of the com-
piler?

7. How much of the compiler consists of standard off-the-
shelf modules?

8. What is the minimum configuration required to run the
compiler?

9. Describe how the use of a larger configuration improves
compiler and object program performance.

50

10. In its present state, how many man-months of effort
does the compiler represent?

11. What further effort is anticipated toward improving
compiler performance?

12. What is the average speed of the compiler (statements
per minute)?

13. What is the average line-to-line expansion ratio between
target language and source language?

14. How much object program storage space does the compiler
allocate for fixed overhead, buffer areas, monitor
system code, etc.?

15. How much of the target computer's command structure is
utilized by the code output from the compiler? List
any modes/commands not used.

51

SECTION FIVE

COMPILER BENCHMARK PROGRAMS

I. INTRODUCTION

Data for comparative analysis has often been provided for
evaluation groups doing equipment selection by using an actual pro-
gramming problem typical of the application being considered. This
problem may be specified in one of several ways. One way is to
write a program in a language which is as independent as possible
of any particular computing machine. This language, however, should
be one for which compilers already exist. Another way is to describe
the problem in a specification and ask the vendor to program it him-
self (in a language of his choosing) but run it with data generated
by the evaluation team. These methods work adequately when the sys-
tem functions to be performed by the equipment are well defined or
previously specified and the procurement is sufficiently large to
warrant the vendor's investment. These types of programs are some-
times called "application oriented" benchmarks.

Another type of benchmark is one which is oriented toward
an entirt category of data processing problems and can be termed
"standard" since it depends on no single or particular system speci-
fication. Any number of problems exist which could be used as a test
program.

II. GENERAL REQUIREMENTS

The following criteria summarize the essential benchmark
selection requirements and may be used selectively within those
limits or boundaries set by the particular problem under considera-
tion.

A. Functional Performance

A program must perform some useful function containing
realistic source language statements.

B. Unbiased

Each vendor should receive identical material.

52

C. Running Times

Compilation and execution times should be such that the
program may be run in a small-to-medium speed computing system;
however, expansion requiring only minimal reprogramming should
enable the use of these programs for large system selections also.

D. Program and Data Size

The size of the program plus the associated data should
be such that it does not exclude computing systems of small-to-
medium storage capacities.

E. Reprogramming

Major reprogramming of the benchmark should not be required
by the vendor.

F. Monitor Time

Overhead time of monitor or executive system functions
should be a small percentage of the total.

G. Documentation

Program documentation must be complete including explana-
tions of designer's intentions, listings of both the program and the
data, flow charts, etc.

III. TEST PROGRAM FEA'/JRES

. A benchmark must test some subset of the features listed
below. Previous sections have identified those features which may
be determined best by the analytical approach. It should be noted
that any feature tested with a benchmark may also be determined
by using an appropriate questionnaire. The following features are
those for which benchmark testing appears the most reasonable
method:

r)J

A. Compilation Time Without Debugging Aids

Three cases must be considered when measuring compilation
time. The first (compile only) occurs when execution does not immedi-
ately follow compilation (as in batch compiling to eliminate reloading
of the compiler for each job); here compile time is the total time
required to translate the source program-(located on the system input
unit) to an object program stored either on the system output unit or
on some intermediate backup output unit. In the second case (compile-
and-go) compilation time is the total time required to translate the
source program into an object program stored in the computer and ready
to be executed with the test data mounted. The third case (compile-
and-load) is similar to the second except that no test data is needed.
This option is used when the programmer requires a memory dump of the
initial object program core allocation as well as the program compila-
tion output. The system input unit and system output unit mentioned
should be those normally used for job input and output. In multi-
processing and multiprogramming systems which overlap parts of compi-
lation with other jobs, the compilation time statistics must include:
(1) total real-time for job, (2) for each facility or component in the
system the percentage of the total time during which it was unavailable
to other jobs.

B. Execution Time Without Debugging Aids

Two execution times can be distinguished corresponding to
the first two compile times above which may or may not include loading
(the third case, compile and load, produces the same output for future
execution purposes as does the compile only). The execution time is
the time elapsed from the beginning (or end) of loading to the termi-
nation of the job, including r.he time required by any associated data
channels to complete the transmission of data to and from the selected
I/O units. Since use of debugging aids may substantially affect execu-
tion timing, this factor should be measured with and without them.
This totals four different timings. Multiprogramming and multiproces-
sing considerations mentioned in the discussion of compilation time
apply equally to execution timing.

C. Primary Storage Utilization by Compiler Without
Debugging Aids

, A memory map produced as part of the normal compilation out-
put will provide appropriate information to calculate the percentage
of primary storage used by the compiler. Generally, it is best to
have the compiler occupy the smallest amount of storage possible.

54

D. Utilization of Peripheral Equipment by Compiler
Without Debugging Aids

It is important to determine what specific equipments are
used by the compiler. These may be observed visually during the bench-
mark demonstration. Relative ranking will depend on the specific user
requirement.

E. Compilation Time With Debugging Aids

F. Primary Storage Utilization by Compiler With
Debugging Aids

This point will differ from C. above in that the debugging
programs may use portions of core. Again, the smaller percentage of
storage used by the compiler, including the debugging programs, the
better.

G. Utilization of Peripheral Equipment by Compiler
With Debugging Aids

The differences between this feature and D. above lie with
the implementation of the debugging programs. Peripheral equipment
may be used differently or more extensively when compiling with these
debugging programs. It is generally most desirable to utilize all
available peripheral equipment. This feature will be visually observed,

H. Execution Time With Debugging Aids

I. Subroutine Linkage

There are two basic methods of handling subroutine linkage;
through a transfer vector (indirect) and by direct addressing. In the
transfer vector method all subroutine calls are compiled as a call to
a word before the first instruction of the calling program. There is
one of these words for each subroutine called and the loader must
modify only those words. The advantage of this method is in increased
loading speed; however, transfer vectors take up large amounts of stor-
age if many subroutines are used. In the direct reference scheme there
are no transfer vector words and the loader must modify one word in the
program for each instance of a subroutine call. This method decreases
memory requirements and execution time but may substantially increase
loading time.

COBOL - What instruction set is generated whenever
a PERFORM verb is used? Does the amount
prohibit the utility for single statements

55

or short subroutines? Can the PERFORM
verb be used with the INCLUDE verb (for
library subroutines) without excessive
code or undue compilations? Does the
compiler recognize the existence of
several PERFORM verbs on the same sub-
routine, thereby producing only one sub-
routine copy to avoid repetition? Is
this linkage set up during compilation
or during program loading?

FORTRAN - Global symbols are those defined through-
out the entire program as opposed to
local symbols, which are defined only in
the subroutine within which they appear.
Subroutine linkage is the process of
defining, during loading, the subset of
global symbols comprised of subroutine
names.

J. Edited Output Listing

This listing will contain the memory map, locations of
defined variables, listing of input-output subroutines used and library
routines used. In some cases the listing provides a means of visually
matching source language statements and resulting machine language cod-
ing. Generally, these features tend to ease the programmer's task by
reducing program checkout time.

K. Cross-Referenced Symbol Listing

This listing might include each symbolic data element and the
sequence number of every procedure statement which uses it. Also,
branch points might be similarly tagged. Checkout at the source lan-
guage level is made easier by this listing providing the debugging
aids associated emphasize source language debugging. This type of
listing is more often used by a COBOL compiler than by an algebraic
compiler. At any rate this listing is valuable for reducing checkout
time and is a desirable feature for this reason.

L. Existence of COMMON and EQUIVALENCE Statements (FORTRAN only)

M.' Data for Trial Execution (COBOL only)

Are facilities available for generating and/or operating on
trial files or other data to provide for compile-and-go runs. This
allows a savings in checkout time over making up two separate runs.

56

N. Effects of FREQUENCY Statement (FORTRAN only)

To test this, two separate runs must be made - (1) without
the FREQUENCY statement, and (2) with it. The comparison can then
be made to see whether the compiler recognizes the statement and
makes a corresponding change within the object program.

57

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA • R&D
(Security claeellleatlan ol till*, body ol abetrect and Indexing annotation muml be entered when the overell report i« elaeellled)

1 ORIGINATING ACTIVITY fCorporafa lurhor;

The MITRE Corporation
Bedford, Massachusetts

la REPORT SECURITY C L ASSI Fl c A TION

Unclassified
26 GROUP

3 REPORT TITLE

A METHOD FOR THE EVALUATION OF SOFTWARE, VOLUME H
Procedural Language Compilers - Particularly COBOL and FORTRAN

4 DESCRIPTIVE NOTES (Type ol report and Incluelve detee)

N/A
5 AUTHORfS; (Laet name. Ilret name. Initial)

Budd, Arthur E.

6 REPORT DATE

 April 1967
la. TOTAL NO. OF PASES

65
7b. NO. OF REFS

0
8< CONTRACT OR GRANT NO.

AF 19(628)-5165

b. PROJECT NO.

8510

d

9a. ORIGINATOR'S REPORT NUMBERfSJ

ESD-TR-66-113

9b. OTHER REPORT NOfSJ (Any other number, that may be aeeigned
thie report)

MTR-197
10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

II. SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY EDP Equipment

Office, Electronic Systems Division,
L. G. Hanscom Field, Bedford, Massachusetts

13 ABSTRACT

This report contains procedural language compiler features considered
important for comparative analysis. These features are identified in a form
expressly for inclusion in the Three Step Method for Software Evaluation
(Volume 1 of this series) under Category ONE: Procedural Language
Compilers — Particularly COBOL and FORTRAN.

DD .MS, 1473 UNCLASSIFIED
Security Classification

UNCLASSIFIED
Security Classification

14
KEY WORDS

LINK A

ROLE (IT

LINK B LINK C

ELECTRONIC DATA PROCESSING

Evaluation
Selection
Software
COBOL
FORTRAN
Procedural Language Compilers

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee. Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. 1 ties in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.
5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Entei last name, first name, middle initial.
If military, show rank end branch of service. The name of
the principal <.;.ithor is an absolute minimum requirement

6. REPORT DATH: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i»e., enter the
number of pages containing information.
76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.
8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.
96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

1L SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing (or) the research and development Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S). (C), or (U).

There is no limitation en the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

GPO 886-551 UNCLASSIFIED
Security Classification

