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ABSTRACT 

It is relatively easy to generate, by digital computer, 

large numbers of seemingly independent random numbers with a 

uniform distribution over a fixed range, say - y < X < *". 

Methods of generating gaussian, or normal, random numbers generally 

are based on either non-linear transformations on random numbers 

from a uniform population, or the summing of enough independent 

numbers from a uniform population for the central limit theorem 

to be applicable.  In the first case a time-consuming evaluation 

of a complicated function is involved.  The second method is also 

slow because a large number of uniform random variables must be 

generated and summed for each normal random variable obtained. 

This note discloses a method based on the central limit theorem, 

except that the summing of N uniform random variables gives N 

normal random variables.  The approach is to form an N dimensional 

vector whose components are uniform random variables, multiply the 

vector by a Hadamard matrix, and use the resulting components as 

normal random variables.  It can be shown that the resulting N 

components have a uniform density inside a N-dimensional hypercube 

aligned with diagonals along the coordinate axes.  However, the 

one dimensional marginal densities, the two dimensional marginal 

densities, indeed all the marginal densities tend toward the normal 

density as N gets large.  Furthermore the components are uncorre- 

lated and have equal variance, independent of N.  However, some 

of the fourth moments, which should be zero for independent 

in 



normal random variables, are not zero for our derived set 

(although these moments do approach zero as N becomes large). 

These moments can be made zero, however, by randomly changing, 

or not changing, the sign of each component. 

The method proposed is very fast because the principal 

step, Hadamard matrix multiplication, requires only N logo N 

additions to produce N components. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief, Lincoln Laboratory Office 
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A NEW METHOD OF GENERATING GAUSSIAN RANDOM 
VARIABLES BY COMPUTER 

Many scientific computations require the generation by a 

computer of a large number of seemingly random numbers with a 

multidimensional normal (gaussian) probability density function. 

However, although there are efficient algorithms available for 

generating uniformly distributed random numbers, the algorithms 

which generate normal random numbers are generally much slower. 

One typical algorithm begins by generating a moderate number of 

uniform random variables (say N) and forming the sum, which, for 

large N, is approximately normal, according to the central limit 

theorem.  This method is slow because many uniformly distributed 

random variables must be developed for each resulting normal 

random variable, and because many additions must be performed 

for each normal random variable, as well.  Another typical method, 

more attractive because it is less dependent on approximation, 

begins with a single uniform random variable and performs a non- 

linear transformation of the random variable to form a new random 

variable with a normal density.  Unfortunately, the non-linear 

function which must be evaluated is complicated and cannot be 

computed quickly on most digital computers. 

This note describes a variation of the central limit theorem 

approach, in which N uniform random variables (r.v.) are trans- 

formed into N approximately normal r.v. by a Hadamard transformation, 

T~.     The term "pseudorandom" is often used to describe the determin- 
istically generated, but seemingly random numbers. 



This operation takes j N log2 N additions and j N log2 N subtractions, 

which is to say, log? N additions or subtractions per normal r.v. 

obtained, and, of course, it is only necessary to generate one 

uniform r.v. for each normal r.v. obtained.  The plan of the 

paper is to first describe the ideal uniform and normal multivariate 

densities, second to describe the Hadamard transformation used, 

third to derive the properties of the transformed variables, and 

fourth, to consider the properties of the transformed variables 

after they have been subjected to random sign changes. 

I.   Properties of the Ideal Uniform and Normal Densities 

We define the ideal uniform r.v., X , as one whose probability 

density is 

( °     l*J »i 
For several such r.v.s X0,X-. , . . . ,XN_-i to be independent implies 

that the joint density is 

I 1 if all |Xn| < \ 
Pxx...x(X0»Xl»X2'"-'XN-l) = ) !   (2) 

0 if any |xj > j 

On an N dimensional space, the joint density is unity on the 

inside and zero on the outside of a hypercube centered on the 

origin with coordinate axes passing from the center of each face 

to the center of the opposite face. 



The expected value, E(X ) = X , is zero and, by integration, 

all the other moments can be found.  For the case of even order 

moments of X , n' 

?P=^r-^  (3) 
22P(2p+l) 

and for odd order moments 

Xp1 = 0 (4) 

Since the mean is zero, the concept of central moments is super- 

fluous.  For joint moments, we appeal to independence, which says 

that the moment of a product is the product of the moments. 

Therefore 

(xXxJ) = (x£)(x£)(x£) (5) 

and, of course, these joint moments are zero except when m, n, SL 

are  all even. 

It is worth taking note of the second moment, X = 1/12. 

The normal probability density of an r.v. Y , with zero mean, 

is given by 

P (Y ) }-    e"V2a (6) 



2 
where a is the variance. We shall be comparing several densities 

in this note and we shall force the variances to all be equal to 

1/12.  Therefore a2  = 1/12. 

The multivariate density of several such independent variables, 

0' 1'*""' N-l' 1S 

Pyyy..y(Y0»Yl»"*'YN-l) 

1     -(Y2
0+Y2

l+...+Yl_l)/2o2 

7^1^ e (7) 

The odd order one dimensional moments of Y are n 

7/^=0 (8) 

while the even order moments may be shown to be 

yZp m  l-3-5---(2p-l) m  l-3-5---(2p-l) ,Qv 

(l/a)2P          i2P 
() 

Again, by independence, the joint moments are equal to the product 

of the individual moments, so that the moment 

*Wtf  - 0£)0£)(Y*) (10) a b c    v aJv h' v c 

is zero unless m, n, I  are all even. 



The normal density is never zero, and is, in fact, radially 

symmetrical, i.e., P     (Yn,Y, , . . . ,YM_-, ) is only a function of 
yyy« »y u ±   w-i 

the distance of YQ,Y, ,... ,YN_-. from the origin in N-space.  This 

is also a true statement for any marginal density.  The same 

statement is not true for the multivariate uniform density, which 

takes on different probabilities in the directions of the vertices 

of the hypercube than along the direction of the faces of the cube. 

II.  The Hadamard Matrix 

By definition, a Hadamard matrix is an orthogonal matrix 

whose elements are all either +1 or -1.  Hadamard matrices do not 

exist for all dimensionalities; for example there is no 3 x 3 

Hadamard matrix.  It is relatively easy to construct an N X N 

Hadamard matrix, however, if N is a power of two.  We shall content 

ourselves with a particular Hadamard matrix for each power of 

two, for our purpose is not to investigate Hadamard matrices but 

to apply them.  Letting N = 2 , and numbering our dimensions in 

the binary system 

i = iQ + 2ix + 4i2 + ... + 2c'1±c_l 0 s i i N-l 

j = JQ + 2jx + 4j2 + ... + 2
c"1jc_1    0 < j < N-l 

the elements of our particular Hadamard matrix, H, are given by 

(11) 



h. . = (-l)l0J° (-1) * X (-l)^2 ... (-I)10*1"10"1  (12 
•*•» J 

) 

We shall show in an appendix that multiplication of an N component 

vector by H can be accomplished with N log2 N additions and 

subtractions. 

It is clear that h. . = h. . so that H is a symmetric matrix. 

Also, the zero  row and the zero  column are composed of +l's 

only.  The product of the elements in the i  row with the k  row 

give the elements of another row of the Hadamard matrix. 

h, . h. , - h. , (13) 

where I  is the row whose number is 

I  =   (iQ © kQ) + 2(ix 9 kx) + ... 

+ 2c'1(ic_1 © kc_L) (14) 

where © means   "exclusive or".    We shall say as  a shorthand, 

I = i © k 

in place of   (14).     By symmetry,   the product of columns   is also a 

column. 



A consequence of (13) is the orthogonality of the Hadamard 

matrix.  Strictly speaking the matrix 

7N H 

is not only its own transpose but its own inverse, and it is the 

matrix which we shall use in the transformation of uniform r.v. 

to normal r.v. 

We give as an example the 4x4 Hadamard matrix 

H 

1 

1 

1 

1 

1 

•1 

1 

•1 

1 

1 

•1 

•1 

1 

-1 

-1 

1J 

III. Hadamard Generation of Almost Normal r.v. 

We begin with a set of uniformly distributed r.v. assumed 

independent.  We form a new set of r.v. from the uniform set by 

the operation 

W  = m 7N 

N-l 
I 

n=0 
X n,m n m = 0,1,...,N-1 (15) 

and we shall be interested in the properties of the set of r.v. 

W .  For any single random variable, it is easy to see that PT7(Wm) wv nv 

is the density of a sum of independent r.v. with zero mean and 



equal variance.  It is known from the central limit theorem that 

such a sum approaches a gaussian r.v. in the limit of large N. 

The approximation is good in the region of W near zero, bad in 

the tails.  It is, of course, clear that 

|WJ * \ M (16) 

so that P (W ) is zero outside this range.  However, for large N, 

IT /S is many standard deviations from the mean, so that the 

difference can be tolerated.  Indeed, the approximation is the 

same as for the common method of generating normal r.v. except 

that we hope to use a larger value of N and so obtain a good 

approximation. 

We have generated, however, N different r.v. from the same 

N uniform r.v. and we should not expect the W 's to be independent 

This leads us to investigate the multivariate density 

Pww...w(VWl'--->WN-l>-  But 

Pww...w(w0>Wl"">WN-l) " Pxx...x(X0'XP""XN-l)/ lDl 

where 

D = 

aw aw o o 
axo >   '• • » 

3XN-1 
• • 
• 
• 

• 
• 

SWN-1,.. • » 
sVi 

ax, ax* '0       U^N-1 

Pww...w(W0»Wl"-"WN-l) = Pxx...x(X0»Xl»'-"XN-l)      (17) 
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since the magnitude of the determinant of 777 H is unity.  Of 

course, in (17), P     (XQ,X-, ,. . . ,XN_-,) is to be evaluated at 

X 0 

Xi 

L X N-l 

TN H 

W 0 

W- 

L W N-l 

but this is only a change of coordinate system.  In fact, there- 

fore, the N-dimensional joint density P      is not normal but ' J J    ww...w 

uniform.  The density is one inside and zero outside a hypercube, 

This hypercube, however, is rotated.  Whereas for the variables 

X , the hypercube was situated with the coordinate axes passing 

through its faces, for the W 's we shall see that the coordinate 

axes pass through vertices of the hypercube.  In fact, the 

coordinates of some of the vertices of the hypercube surrounding 

Pxx...x(X0'Xl'-"»XN-l) are 

Xj = T hi,j 

for any i, and such a vertex becomes rotated into the position 

with coordinates 

W, 
jM      j = i 

0     j t  i 



which lies on the coordinate axis of the i  coordinate in W-space. 

The vertex at -X. rotates to the opposite position, thus proving 

that the coordinate axes of W-space pass through diagonals of the 

hypercube. 

N A hypercube in N-dimensions has 2 vertices.  There are, 

however, only N coordinate axes, so only 2N vertices can lie on 

the coordinate axes.  The remaining 2  - 2N vertices of the 

hypercube do not map onto the coordinate axes. At least some of 

the vertices are found in the "interior" of hyperquadrants, but 

not every hyperquadrant of the N-space can be lucky enough to have 

a vertex within it, for there are 2 hyperquadrants and at most 

N 2  - 2N vertices to go around.  Therefore, we learn that 

P    w^W0'Wl» * * * »^N-l) '*"S not on-'-y radially asymmetrical but is 

not symmetrical in each hyperquadrant of W-space.  This shows up 

when we compute the moments of P      .  However, the most important ww..,w ' 

moment of P     , namely W W , is zero, showing that the variables ww ...w'     -'inn*       '      ° 

W are at least uncorrelated. We shall now compute all the first m r 

and second moments of P „,   ,(Wn.Wi ,... ,WM -, ) . ww...wv U' l   7 N-i 

The first moments are all equal and are all zero, 

Wm = h    2 h„ m  X„ - i- S h m  x o o        (18) "7TT  ^  n     A  — -rrr      <^  II     A /N     n,m n  /N     n,m n n   ' n   ' 

10 



because X    =0.     The second moments  are n 

l    N-l    N-l 
WWT - ±      2 £h h,      XX (19) 

a b      N    m=0    n=0      m»a    n'b    ^u n 

but XX is zero unless m • n, in which case it is a   .  Thus (19) m n ' ' 

becomes 

   1  N-l ? 
W W, = i-   E   h .   au.   a (20) a b  N      m,(a©b) v  ' 

m=0 

By definition of a © b, it is zero if a = b, and the zero  column 

of a Hadamard matrix consists of N ones.  Therefore 

~T   2 
Wz = a (21) a v  y 

as expected.  But if a / b, a © b is not zero and since all the 

other columns of H contain as many -l's as l's, the sum 

n hm,(a©b) 

is zero, giving 

W W, = 0 (22) a b 

as stated above. 

11 



It is not difficult to argue that all the odd order moments 

of P__,  „ are zero.  We focus now on fourth moments.  By definition ww...w J 

-i        N-l     N-l     N-l     N-l 
±j       S E E E 
N       i=0    j-0    k=0     1=0 

W W,W WA   = -IT       S E E E abed       XT2 

hi,ahj,bh
k>ch

t,d
XiXjXkX* ("> 

To evaluate the fourth moments we note that X.X.X,X. = 0 for 
i J k I 

most combinations of i,j,k,£ with the exceptions listed below: 

1. i=j , k=£, i^k for which X.X, = o = TTT 

2. i=k, j-A, i#  for which X?X? = a4 = T^- 

3. ±=l,   j=k, i^j  for which XTX? = a4 = ^ 

4. i=j=k=4       for which XT       = go 

These are all disjoint cases.  Therefore 

        -, ,    2/N-1 /N-l 

WcWd " 7 (IT) ^Q 
hi,a0bfkfo 

hk,c0d] 

L        x   2/N-1 /N-1 

x Vi 
x        x   2/N-I /N-l 

1       1      N_1 

+ #t(XV)     ^o hi,a0b6b9d (24) 

12 



Equation   (24)   looks  very complicated but  it may be straightforwardly 

evaluated  for any special case.     Thus,   for W    we have a=b=c=d and 

we  find 

W? - K (TT)     (N2-N)   + \  (X)     (N2-N)   + a      N/     iz Nz     iz 

7 (IT)2 (N2"N> + 7 <sb->N 

t"T4~ _    3 , 1 3   N   _  ,4       a  /01-v 
wa " T4T + N (Su"     T4T) " 3CT

    " TW (25) 

Similarly,   if we  let a=c,  b=d,   a^b we get 

"K = 7 (IT)2 (N2-N) + 7 <w>N 

—7—7" 11 A 
wawb = T4T + ITO = °   + T5N (26) 

These  results  approach  the gaussian  independent  results  3a   ,   a 

for  large N.     But consider  the curious  case of a,b,c,d all unequal 

but with a©b0c0d  =  0.     For  this 

WaWbWcWd = 3W <27> 

13 



An example of such a fourth moment is ^r^^o^3'     This 

moment also approaches the expected result for independent normal 

r.v. as N - °°.  However, it is somewhat disturbing that it is 

non-zero. We can, after all, convince ourselves that if a 

certain moment is within, say, 27o of the expected result for 

normal independent r.v. that this is somehow good enough.  But 

what can we say if the expected moment should be zero?  It is 

not clear how important this is, and indeed it probably depends 

on the application for which the r.v. are desired. 

Before considering the effect of a random sign change, it 

is well to summarize what we have shown so far. We have proposed 

a method by which uniformly distributed zero-mean random noise 

can be converted to approximately normal zero mean random noise. 

The one dimensional marginal densities are sums of N independent 

uniform r.v. and thus tend nicely toward normal for large N. 

The r.v. are also uncorrelated (in the sense that the expected 

value of a product is zero).  Furthermore, based on the moments 

we have computed, the difference between a given joint moment 

and the same joint moment for independent gaussian noise seems 

to go to zero as 1/N.  N can reasonably be made quite large since 

the amount of computation is proportional to log2 N per normal 

r.v. generated. 

14 



IV.  HADAMARD GENERATION OF MORE NEARLY INDEPENDENT RANDOM 
VARIABLES 

Let us now suppose that we have generated N random variables 

W   .     We have  seen that  some  of  the moments W W\W W,   ,  which m abed' 

would be zero for an independent gaussian set, are non-zero.  We 

can form a set of N new random variables from the W's by changing 

the sign of each W, or not changing it, at random.  That is, 

consider an easily obtained set of r.v., r , independent of each 

other and of W , with equal likelihood of being +1 or -1.  For 

these r.v. the moments are all either zero or one.  Even order 

moments are equal to 1, 

r   =1 m 

odd order moments are equal to zero, 

2p + 1   n r  K    = 0   , m 

and, by independence, the moment of the product of different rm's 

is the product of the moments.  Now consider the set of random 

variables 

V - r W   . (28) m   mm 

15 



We shall compute some of the moments of the joint density 

P    v^O* ^1'*'"'^N-l^ to sh°w that this density is nearly 

gaussian, for large N.  First consider the moments which 

violated the gaussian assumption for the W's.  The V V,V V, is 

equal to 

r rKr r,W W,W W,=   (r rKr r,)   (W W,W W,) abcdabcd     v a b c  d'    vabcd/ 

and unless a, b, c, d are equal at least in pairs, r r,r r, will 

be zero.  A similar argument will show that all joint moments of 

P     which would be zero for independent, zero mean gaussian 

noise are indeed zero.  However, all other moments will be 
2 

unaffected by the conversion of W to V .  Thus V  = a  , mm a ' 
V V,    =  0,   and a b 

VaV  " WaV  - *4 + T3N 

2 
(29) 

„ 4      IT 4      0 4        a Va    = wa    = 3a    - TM 

We next consider  the 6       order moments 

V V,V V ,V Vf = r r, r r ,r rc    W W. W W,W W. abcdef        abcdef      abcdef 

16 



Discarding the trivially zero moments, we have for the other 

V V,V V ,V V. - -^ LSDSLE h.  h. , h.   h„ , a b c d e f   N2  .  k Zm  n  i,a j ,b ^c t,d 

h   h  _ X.X.X, X.X X m,e n,f  i j k £ m n 

We must again consider moments X.X.X, X.X X  , most of which are 
ljKj&mn' 

zero.  The exceptions are listed below with the equal subscripts 

grouped and the ungrouped subscripts unequal.  Thus 

Disjoint Cases Moment 

i j k l  m n 2^- 

i j k I m n 

i j k m I n 

i j k n I m 

i j I m k n 

i j I n k m 

i k l n j n 

i k I n j m 

j k I m i n 

j k I n i m 

k I m n i j 

j I m n i k 

j k m n i I 

i k m n j I 

i I m n j k 

i .i m n i I 

1 
1&5 

17 



Disjoint Cases Moment 

i j k I m n 

i j k m n I 

i j k n m I 

i k j I m n 

i k j m I n 

i k j n I m 

i I j k m n 

i t j m n k 

i I j n m k 

i m j k I n 

i m j I k n 

i m j n k I 

i n j k I m 
i n j I k m 

i n j m k I 

1 
T728 

This table allows us to compute all the 6  order moments 

for special cases.  For example, if we were to compute V  , we 

would have as part of the computation a sum 

N-l 1   i    h y6 _  1  1 
I? i=0 i' (a ® a © a 6 a ® a 9 a) xi  " 448 ^2" 

and fifteen sums similar to 

18 



1 N-l N-l —j y 

m .fi 

1 rN2:N-> 
96U (-^r) 

and fifteen sums similar to 

N-l N-l N-l 

^ .f0 
hi, (a 9 a) £  \, (a © a) ^ hm, (a 0 a)X*x£x£ 

k^i m^i 
rn^k 

1   N(N-l) (N-2) 
" T728     Ni 

Gathering all the terms together, we get, for the 6  moment 

~T         15  ,N(N-l)(N-2) N    15 /N(N-l), .  1  ,N, 
Va " 1728 ( ^3     > + 960 (^^)  448 ^ 

_6 . _ .._ 1 __j 1 

7 V  = 15a + terms in ± and -^ (30) 

—4"—7 
Evaluating V V,  we set, for example, a = c = d = e, b = f, 

a ^ b.  Therefore, the sum 

19 



x    N-l 

? i=0 h±' (a^Oa©a0aOb)X^=i(I) 

is the same as before, but many of the other thirty sums are 

zero, leaving only the cases 

ij-tnkm ikjn-Cm 

ik-tmjn i-tjnmk 

j   k I n       i m and i m      j   n      k I 

j £ m n i k 

j k m n i I 

i j  m n       k I 

We quickly count 

V 
4 V 

2  = vrLr  (   N(N-l)(N-2)v   + _6_   (N(N-1). ,     1     ,N v va    vb        T728   <•\T3 
;       960   ^    M3   "+ 458   C3} ~    179H     ^ *" 

(31) 

V 4 V,2  = 3CT
6
  + terms   in ^ and -^ a       b N jjZ 

Similarly for V 2V, 2V 2 we obtain ' a    b    c 

2„ 2„ 2 1      ,  N(N-1)(N-2K 3     /N(N-1K 1    /N  N 

(32) 

WV = 1728   ^   ' N3 >  + 9t0" ^F^ + ^ V 

VaVVc2 = <** + terms  in ft and ^ 

20 



These results also approach the expected results for 
ft   ft      ft 

normal r.v. with an error like 1/N, i.e., 15a , 3a , and a . 

At this point, we comment that the behavior, for large N, 

of any moment is a matter of combinatorial analysis.  For example, 

the moment 

Va
2p = l-3-5---(2p-l)-a2p + terms in jjj , etc.   (33) 

can be derived by a counting process.  For more complicated 

moments, the analysis is so complicated that we have not under- 

taken it. 

We previously described the N dimensional distribution of 

the W's in terms of a hypercube which we argued was asymmetically 

N distributed among the 2 hyperquadrants in N space. We cannot 

make a simple statement about P      (Vn, V-.,...V„-.) because 

it is not uniformly distributed, but rather has some density 

which is a continuous function of spacial coordinates.  However, 

it is clearly symmetrically distributed in the hyperquadrants, 

by construction. 

Programming Considerations 

The method proposed requires at least the following two or 

three steps: 

21 



1. Compute N uniform r.v. XQ, X,,..., XN_-,.  Suppose that each 

r.v. requires a time T to generate.  Then part 1 will require 

a time NT . 

2. Compute the "Hadamard transform" of the array of N numbers 

from part 1.  This can be done in-place (i.e., without any extra 

memory) with N log~N additions or subtractions.  Assuming that 

an addition and a subtraction take the same amount of time T , a' 

part 2 will require a time N(log0N)T .  If it is desired to z  a 

adjust the variance of the resulting W , we should add to this 

time an additional time N T , where T is the time for a multiply mm J 

(or a scale if that is acceptable). 

3. If the improved approximation to independent gaussian noise 

is desired, generate N additional random variables r. which can 

be used to randomly change or not change the sign of the r.v. 

W. generated in part 2.  This should take at most a time 

N(T + T ) assuming the r. can be generated as quickly as a u   a j 

uniform r.v. and sign changing can be accomplished as quickly 

as addition or subtraction. 

The total time, therefore, is like 

Ttotal = N(2Tu + loM2N> V 

but this is the time for generating N r.v. whereas the relevant 

22 



time would be the time per random variable.  This latter time 

is 

Tg = 2Tu + (log2N + 1) Ta   . 

If many r.v. are needed, as will usually be the case, they 

should be generated N at a time by a subroutine.  This sub- 

routine could, of course, supply them one at a time to a user 

program, recomputing a block of N when its supply was exhausted. 

Thus, unless fewer than N r.v. were required, the limitation on 

computing the r.v. N at a time should not be important. 

Conclusions 

Random variables with an almost normal distribution can be 

computed by first obtaining uniform random variables, using 

standard computer algorithms, and then performing a linear trans- 

formation on a set of N = 2 of the uniform random variables to 

obtain N random variables whose joint distribution is not 

gaussian but uniform in a hypercubic region.  Nevertheless, many 

of the marginal densities are nearly gaussian, in accord with 

the central limit theorem, and the r.v. are uncorrelated.  In 

the limit of large N, all the moments which have been determined 

seem to approach the moments expected for gaussian independent 

r.v.  However, some of the joint moments which would be zero for 
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independent gaussian r.v. are finite for the derived set.  By 

randomly changing or not changing the sign of the linearly trans• 

formed r.v., a new set of r.v. is obtained for which all the 

moments, including joint moments, show considerable similarity 

to the moments expected from the gaussian independent case, for 

large N.  The procedure has the advantage of being faster than 

other decent methods of generating gaussian r.v. on a digital 

computer, with relatively good accuracy. 
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APPENDIX 

NUMBER OF OPERATIONS IN HADAMARD MATRIX MULTIPLICATION 

If we consider the multiplication of an arbitrary vector by 

the matrix H, with elements h. . given by (12), an abvious 
if J 

proceedure is to partition the matrix into four quadrants, 

H = 
ifJ i»j 

li,j 

a. . = h. . 
ifJ     i,J 

^-f J    if J + j 

3-f J       1 + "jtJ 

ifj       1 + jy J + J 

0 £ i * | - 1 

0 * j * | - 1 

It  is  seen that  for 

ai,j   =   <-X> 
-oJo (-1) 

•Pi ...   (-1) ^-2^-2 
(-1) 

-lJc-l 

i-, • jc_i • 0 for the entire quadrant. Therefore a. . is 

N    . N actually anyXr Hadamard matrix.    Similarly 

i,J i,j i,j i,J 
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It follows that if the vector to be multiplied by H in a 

column vector [X.] we may form two shorter vectors with components 

Xi - Xi + Xi + f 0 * i * f - 1 

Xi - Xi " Xi + f 0 * i * f - 1 

N and we shall find that the first y components of the product are 

given by 

7 1 

E  a. .  X. 
1-0 1»J      i 

and the second •*• components are given by 

N-l 

E  a. . X. 
i-0  1»J   x 

each of which are •*- x •*- Hadamard matrix multiplications.  This 

reduction cost us N/2 additions and N/2 subtractions.  Of course 

a. . may be similarly partitioned and this may be done repeatedly. 
•*-» J 

N N Each reduction xosts and additional -j- additions and -j-  subtractions 

so that a total of Nc = N log2 N operations is required in all. 
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