
TR1BCEC0PY ESD ACCESSION LIST
TRI Call No. y£/y~2 y

ESD-TR-71-236 Copy No. / of

ESD RECORD COPY
RETURN i

—-SCIENTIFIC & TECHNICAL INhOit.VIATION DIVISION

cys. (Tftlidbl!dfe»i210

THE AIR FORCE JOVIAL COMPILER VALIDATION SYSTEM (JCVS)

F. Engel, Jr.

AUGUST 1971

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford. Massachusetts

Approved for public release;
distribution unlimited.

Project 8510
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-71-C-0002

(WT^

When U.S. Government drawings, specifications,

or other data are used for any purpose other than

a definitely related government procurement

operation, the government thereby incurs no re-

sponsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy |

ESD-TR-71-236 MTR-2091

THE AIR FORCE JOVIAL COMPILER VALIDATION SYSTEM (JCVS)

F. Engel, Jr.

AUGUST 1971

Prepared lor

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project 8510
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-71-C-0002

FOREWORD

This report has been prepared by The MITRE Corporation under
Project 8510 of Contract F19(628)-71-C-0002. The contract is sponsored
by the Electronic Systems Division, Air Force Systems Command, L. G.
Hanscom Field, Bedford, Massachusetts.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

ROBERT F. JENSEN, Colonel, USAF
Director of ADPE Selection
Deputy for Command and Management Systems

11

ABSTRACT

The Air Force JOVIAL Compiler Validation System (JCVS) was
developed to assist in the validation of performance of proposed
JOVIAL language processors. This report discusses the JCVS in the
context of its use by the Air Force Directorate of ADPE Selection.
It provides a certification of the audit test modules, and makes
recommendations for improvements to the JOVIAL audit capability.
It is recommended that the audit programs be used independently of
the JCV System.

m

ACKNOWLEDGMENTS

The investigations and computer experimentation which served as
the basis for this report were carried out with the assistance of
Miss Tobyanne Paster, D73. Mr. Richard Robinson of RADC ISIS assisted
in making the runs on the GE-635 computer at RADC, and has cooperated
in exchanging results of subsequent experiences with JCVS.
Lt. Col. V. Godbey and Lt. R. Forney of MCS Software Technical Group
also participated in this effort. While acknowledging their valuable
assistance, the author accepts full responsibility for the statements
and conclusions reported herein.

IV

TABLE OF CONTENTS

LIST OF TABLES

SECTION I INTRODUCTION

SECTION II

SECTION III

SECTION IV

SECTION V

APPENDIX I

APPENDIX II

REFERENCES

THE JCVS COMPONENTS
THE POPULATION FILE
THE POPULATION FILE MAINTENANCE PROGRAM
THE SELECTOR PROGRAM
THE SOURCE PROGRAM MAINTENANCE PROGRAM
THE POPULATION FILE INITIATING PROGRAM
THE REPORT WRITER PROGRAM

THE JCVS POPULATION FILE
PASS/FAIL REPORTER
DECLARATIONS
PROCEDURAL STATEMENTS
PROCESSING DECLARATIONS

VALIDATION OF THE JCVS TEST MODULES

SUMMARY AND RECOMMENDATIONS

MODIFICATIONS TO THE JCVS TEST MODULES

RESULTS OF THE JCVS TEST MODULE VALIDATION

Pa^e

vi

1

2
2
3
4
4
4
5

6
6

10
11
12

13

18

19

23

37

LIST OF TABLES

Table Number Page

I GE-635 Job Control Cards for JOVIAL Compile
and Execute Run 15

II JCVS Test Module Corrections 20
III JCVS Test Module Validation Summary 24

vi

SECTION I

INTRODUCTION

The Air Force procedure for the competitive procurement of
general purpose automatic data processing equipment requires the
validation of the performance claims made for each proposed ADP system
in order to establish the responsiveness to the systems requirements
of the Request for Proposal. Among these requirements, there fre-
quently occurs the need for a JOVIAL language processor which must
conform to the AFM 100-24 JOVIAL (J3) Language Specifications. W
The Air force JOVIAL Compiler Validation System (JCVS) (2) was developed
under contract to assist in the task of validation of the performance
of proposed JOVIAL language processors. This report briefly discusses
the JCVS in the context of its possiole use by the Air Force Direc-
torate of ADPE Selection, MCS, summarizes the experience acquired in
working with the JCVS, critiques the audit test modules, and makes
recommendations for improvements to the JOVIAL audit capability.

The compiler validation process or audit function has two
purposes: the first is to establish that each language feature of
the Air Force standard programming language is accepted by the JOVIAL
processor under examination; the second is to establish that the
execution of each language feature produces the prescribed results.
The JCVS accomplishes this audit function by presenting to the JOVIAL
processor a set of one or more JOVIAL source programs and their
required input data (if any), which together contain statements
invoking each of the required standard JOVIAL features. Such programs
are referred to as "Audit Programs." Upon successful compilation
and execution of the audit programs, it is established that a processor
does conform to the standard for those features tested. While it is
impossible for the audit programs to check for the correct implemen-
tation of all possible combinations of standard features due to the
large number of tests that would be required, it is expected that a
sufficiently representative sample will be included to establish
reasonable confidence in the capability of the observed system.

SECTION II

THE JCVS COMPONENTS

The heart of the Air Force JCVS is the Population File. It
contains all of the JOVIAL source statements comprising the tests of
the standard features and the auxiliary procedures for reporting the
results of execution of the tests. In addition to the Population
File, the JCVS consists of a Population File Maintenance program, a
Selector program, a Source Program Maintenance program, and a con-
version program for character set transformation. These auxiliary
programs are written in ANS COBOL and provide the means for automating
the manipulation of the constituent elements of the JOVIAL audit
programs.

THE POPULATION FILE

The Population File (Pop File) is the data base for the JCVS.
It contains approximately 9000 cards of JOVIAL source statements
and commentary which are subdivided into test modules of, at most, 50
cards each. Each test module contains all of the JOVIAL statements
necessary to effect the test of a given feature including all item
declarations, procedure declarations, etc. The test module is
completely self-contained, with the exception of the output procedures,
which are invoked to record the results of the test. The report
writing or output procedures are contained in a separate module,
providing a uniform reporting mechanism. Thus , each test module
as it exists in the Pop File may be compiled and executed independ-
ently of every other test module.

The test modules may also be compiled and executed together as
a single JOVIAL program by combining the individual modules in any
desired sequence. Through the use of appropriate conventions in
assigning names to variables, labels, procedures, etc., duplication
of names has been avoided. The characteristics of the J3 language
are such that no rearrangement or sorting of the JOVIAL statements
of the test modules is necessary.*

*In this regard the J3 language differs significantly from both
FORTRAN and COBOL. In FORTRAN specification statements must precede
all executable statements, and in COBOL appropriate statements must
appear in the ENVIRONMENT, DATA and PROCEDURE divisions of the program
in that order (cf MTR-19539The Air Force COBOL Compiler Validation
System (CCVS))#

The physical arrangement of the Pop File consists of 4000
characters, fixed length records, each containing the characters fron
fifty 80-character cards. The first card of each record is a header
card which identifies the module and may also designate a dependence
upon other specific modules. The header card is in the form of a
JOVIAL comment line and is considered to be a part of the JOVIAL
test module. If more than 50 cards are required for a test, there
is provision on the header card to specify that the module is to
be appended to the preceding module as a continuation of it. Finally,
the header card may designate that the module is to be present in
every audit program, whether or not its selection has been requested.
Characters 73-76 of every card contain the module identification num-
ber, and characters 78-80 contain the card sequence number within
the module, which must be in the range of 1 to 50 inclusive. The
77th character of the header card designates which of the foregoing
functions is intended for that module. On all other cards, this
character designates JOVIAL source statements. The module identifi-
cation number, the card sequence number and the function character
provide the key basis for the functional manipulations performed
upon the Pop File by the other components of the JCV System.

The first record of the Pop File has the module identification
number 001, and fulfills additional unique functions. The first five
cards of that record may be used to convey to the user for informa-
tional purposes only data concerning the source of the particular
Pop File and the hardware environment in which it may operate. The
content of these cards is ignored by the JCVS. Succeeding cards in
the first record are designated environmental software cards, and
may be operating system control cards, JOVIAL processor control cards,
etc. , which are to be placed before and/or after every audit program
when it is selected from the Pop File. By offsetting these environ-
mental software cards by one character, the JCVS is able to handle
operating system control cards which require special characters in
Column 1.

THE POPULATION FILE MAINTENANCE PROGRAM

The Population File Maintenance Program (POPFM) provides a
mechanism for creating a new Pop File either from cards for the
individual modules, or by updating an old Pop File by means of dele-
tion, replacement or insertion of either individual cards or entire
modules on the basis of the module identification numbers and card
sequence numbers. A report of the functions performed is generated
by POPFM.-

THE SELECTOR PROGRAM

The JCVS Selector Program (SELECT) operates on the Pop File to
produce a single JOVIAL source program from one or more JOVIAL test
modules residing on the Pop File. The user designates, by means of
control cards, those modules which are to be selected. The selected
modules appear in order by module number as they exist on the Pop
File. The user may direct the selected modules to be written onto
magnetic tape or punched cards. An audit file is produced by SELECT
containing a record of the modules selected and additional messages
relating to suspected error conditions encountered.

THE SOURCE PROGRAM MAINTENANCE PROGRAM

The JCVS Source Program Maintenance Program (SOPMM) operates on
an existing JCVS Source Program File to update and generate a new
Source Program File. The SOPMM provides the user with the ability to
add information to the source program file, delete information from
the source program file, or replace information on the source program
file on a card image by card image basis, according to the module
identification number and the card sequence number. The user may
direct the new source program file either to magnetic tape or punched
cards. An audit file is produced optionally by SOPMM providing a
record of the diagnostic and trace messages as well as a source
program listing when desired.

THE POPULATION FILE INITIATING PROGRAM

The JCVS Pop File Initiating Program (INIPOP) operates to
initiate and, at the user's option, to re-number a Pop File either
from an existing Pop File or from a card file containing the test
modules. The module identification numbers only are re-sequenced as
directed by user supplied control cards. Certain cross-references
between modules are changed automatically when affected by the re-
numbering process. An audit report is created which contains
diagnostic messages, and an optional listing of JOVIAL source state-
ments on the new Pop File. A punched card deck of the Pop File may
be obtained as an optional output.

THE REPORT WRITER PROGRAM

The JCVS Report Writer Program (JCVSRP) operates on the Pop
File to produce a listing of the test modules on the Pop File or
a listing of all the test header cards on the Pop File, or both as
directed by user supplied control cards.

(2*)
The reader is referred to the JCVS User's Manual for a more

detailed description of the JCVS components and their use. In the
work with the JCVS Test Modules which was performed on both the
GE-635 at RADC and the IBM/360-50 at MITRE, it was found more con-
venient to manipulate the test module card decks manually, rather
than to use the JCVS programs enumerated above. The JCVS programs
require that control cards be prepared in addition to the JOVIAL
statement modifications, their use requires additional computer runs
to be made to generate the modified audit programs before they can
be processed by the JOVIAL compiler, and the reruns occasioned by
errors introduced in these peripheral activities lengthen the
apparent turn around time to process an audit program with the JOVIAL
compiler. However, the JCVS components have each been used at least
once, and they appear to function as described. It was found
necessary to introduce a few minor modifications to initialize print
records and repair clerical errors.

SECTION III

THE JCVS POPULATION FILE

The present set of JCVS Test Modules contained in the Population
File fall into four general categories:

1. The Pass/Fail Reporter and its verification tests
2. Tests of Declarations
3. Tests of Procedural Statements
4. Tests of Processing Declarations

Each of these categories of tests is discussed in this section
with respect to its operational characteristics, the thorouhgness
and rigor of test logic, and the completeness of coverage of the
AFM 100-24 JOVIAL features.

PASS/FAIL REPORTER

The Pass/Fail Reporter consists of three JOVIAL Procedures
contained in Test Module 9998. Their function is to print one line
identifying the test module and a second line indicating that the
test was successful or had failed. The Procedure OUTERR prints a
line by calling a FORTRAN subroutine in which the information to be
printed is the 40-character Hollerith argument. This FORTRAN sub-
routine is not provided, nor are any specifications for it given. It
is not obvious how a standard conforming FORTRAN program could be
made to manipulate successfully this Hollerith argument.

The procedure OUTERA is invoked at the beginning of execution
of each test to set up the test module identification line. The
4-character Hollerith argument of this procedure is the identifi-
cation number of the test, which is then combined with the invariant
part of the message by use of the JOVIAL OVERLAY feature. The
message is printed by invoking the procedure OUTERR.

At the conclusion of its execution, each test module invokes
the procedure OUTERB to set up and print the Pass/Fail message. The
argument of the procedure OUTERB is a 1-character Hollerith variable
which is assumed to have been set to the value "Y" if the test were
successful, and to "N" if the test failed. The EQ relational opera-
tor is used in an IF:clause to compare the argument with the Hollerith
literal constant 1H(Y). If the condition is true, the 40-character
Hollerith variable is assigned the value of the "test successful"
message, and OUTERR is invoked to print it. If the condition is not

true, then the variable is assigned the value of the "test failed"
message and the procedure OUTERR is invoked by the same statement.

The Pass/Fail Reporter provides a uniform reporting mechanism
for all tests, and localizes all output statements and interfaces
with FORTRAN in this one module. This particular embodiment offers
some disadvantages. The use of other than standard JOVIAL output
procedures makes the Audit Programs processor dependent, so that they
must be specifically adapted to each processor to be tested. The
FORTRAN interface with a Hollerith argument introduces a dependency
upon the processor under test. The Pass/Fail Reporter is complicated
by the use of nested procedures, i.e. procedures invoking other pro-
cedures; by the use of argument passing between procedures; by the
use of logic within the Reporter; and by the use of the OVERLAY
feature. Thus, the Pass/Fail Reporter is more sophisticated and com-
plex in terms of JOVIAL features employed than many of the tests
which use it to report their success or failure, and might itself be
a source of error, preventing the use of any of the audit programs.
The use of the OVERLAY feature might introduce processor dependencies
due to word boundaries in data which are to be written out. Finally,
the Pass/Fail Reporter provides no information on the test results
which can be used either to confirm the success or to assist in
diagnosing the failure of a test.

The function of the five test modules 0500-0520 is to validate
the Pass/Fail Reporter. As originally designed, these modules
attempted to verify the correct functioning of a processor for each
of the JOVIAL language features which are employed in the Reporter.
To do this independently of the Reporter itself, non-standard JOVIAL
output statements were employed to print the test results. These
statements had been subsequently replaced with calls to the Pass/
Fail Reporter procedures for printing, with the result that the
desired independent verification of these features has not been
achieved. A further defect in these tests is that the features
presumed to be tested are not tested under the same conditions of
use in the Pass/Fail Reporter. For example, the Pass/Fail Reporter
uses an IF:clause having a Hollerith:literal:relation list as its
boolean:formula, but in test module 0520 the IFrclause feature is
tested using only the boolean: constants 0 and 1 for the boolean:for-
mula. Certainly different machine code is required for the relational
comparison of literal formulas than for boolean:constants, and the
success of the test of the latter case does not imply that the pro-
cessor will treat the former correctly. Further, a sophisticated
optimizing processor might recognize the invariance of the boolean:
constants and generate code which would ignore completely the condi-
tional statement as employed in test module 0520, thus completely
invalidating the purpose of the test.

The following JOVIAL features are those presumed to be tested
by modules 0500-0520:

1. Hollerith Item Description
2. Preset Hollerith Item
3. Procedure Call using Hollerith Argument
4. Hollerith Assignment Statement
5. GOTO Statement
6. IF:clause, boolean:constant
7. Procedure Definition, with no Argument
8. Procedure Call, with no Argument

The Pass/Fail Reporter Module 9998 uses all of these features
except the last two items, and in addition, employs the OVERLAY
feature, the definition of a procedure having a Hollerith argument,
and the nesting of procedures with argument passing required. These
last features are not explicitly validated by test modules 0500-0520.

A few specific programming errors were noted in module 9998.
The global variables 0UT1, OUTA, OUTB were not defined. Since these
variables are referenced in almost every module, it is necessary
that their item:descriptions occur at the beginning of the audit
programs. The argument AA of the procedure OUTERR(AA) was not passed
to the output subroutine, so that the message to be printed was lost.
Finally, in the definition of the procedure OUTERA(CC), its argument
was illegally declared to OVERLAY another datum. Since at execution
time the dummy argument CC is replaced by any number of actual
arguments, each of which may be defined in a different calling pro-
gram unit, such use of OVERLAY is inconsistent.

In view of the difficulties enumerated above, MITRE provided
a new module 0198 to replace test module 9998 as the Pass/Fail
Reporter. This module is listed in Appendix I. The procedure names
and arguments have been retained to be compatible with the existing
procedure calls, but each procedure is now independent of the others;
i.e. there is no nesting of proceaures and concommitant argument
passing. Global variables are used to transmit information to the
procedures rather than relying on the procedure arguments. The use
of the OVERLAY feature was retained, but it now occurs at the global
level, rather than within the output, procedures, and it does not
involve the procedure arguments. This could be avoided by using a
larger variety of print files to accommodate the different message
lengths, by making all data for output the same length, (e.g. OUTA,
OUTB and OUTl), or by introducing a more complex feature such as an
array or table for constructing the output message. Short of
revising the entire mechanism, it was felt that this represents the
best compromise. A further modification was made to cause the
value of the Pass/Fail indicator to be printed as part of the Pass/
Fail Message, and to reset this parameter to the failed condition,
i.e. 0UTA=1H(N), after each success or fail message is printed. As

8

a result the next test module must set the parameter to "Y", other-
wise the default condition would be that the test failed.

Also provided is a new test module 0100 to validate this Pass/
Fail Reporter. Rather than attempt to validate independently each
of the features employed therein, it assumes that all of the feature?
are implemented correctly, and attempts to demonstrate that each of
the three procedures does indeed produce the expected results when
called with appropriate parameter values. One line is printed
directly by a JOVIAL OUTPUT statement in this test module when the
print file is opened. A second line is printed by a call to the
procedure OUTERR, and a third line results from a call to the pro-
cedure OUTERA, which incorporates the four-character module number
into the test header line. Then to test the Pass/Fail function, the
procedure OUTERB is called, first with the parameter OUTA set to
"N", then again after setting OUTA to "Y" to demonstrate that the
appropriate pass and fail messages are printed in each instance.
Then, OUTERB is called a third time to demonstrate that the para-
meter OUTA had been reset to "N" after printing the "test successful"
message. The test module then prints a final line using a direct
JOVIAL OUTPUT statement, indicating the end of the test and the
expected number of lines which are printed. The auditor must examine
the output and determine that the appropriate messages have been
printed in the expected sequence.

The JOVIAL file:declaration which defines the print file is
included in the test module 0100, as are also the item: descriptions
for the global parameters used by the audit programs. It is there-
fore necessary that modules 0100 and 0198 must be present in every
audit program, and that they should be positioned at the beginning
of the program. Hence, the relatively low module numbers which have
been given them. The AFM 100-24 provides that the device: name
occurring in the file:declaration is to be defined by each implcmcn-
tor. It is therefore to be expected that this statement which occurs
only once in module 0100 will have to be changed for each processor
to be tested.

In testing the JCVS with the J3 processor on the IBM system/360
Model 50, the efficacy of the revised Pass/Fail Reporter and valida-
tion procedure was demonstrated, when it was found that the "test
successful" message was always printed, regardless of whether the
parameter OUTA had the value "Y" or "N". This was due to a pro-
cessor deficiency, which would not have been discovered by the
original verification procedure.

DECLARATIONS

There are 151 test modules which are designed to test the
declaration features of the JOVIAL language. Each test references
the appropriate section of AFM 100-24 which describes the feature
being tested, and the set of data declarations for simple items,
arrays and tables of all types appears to be reasonably complete
with respect to the variety of permissible forms which are represented.

The item declarations are the means for associating names with
elements of a program and for describing the attributes of such
elements. Item declarations are usually non-executable; i.e. they
do not of themselves result in the generation of executable machine
instructions. They provide information to the processor useful at
compile time only, affecting storage allocation and the form of
executable machine instructions that are generated for other state-
ments. For this reason, the set of JCVS tests which are designed to
validate the item definition features, e.g. modules 1000-1235, are
inconclusive in themselves as to what features are or are not
implemented correctly. Each of these tests upon execution will
always produce the "test successful" message, signifying only that
the test module was included in the audit program. The message
has no significance relative to the capability of the JOVIAL pro-
cessor under test to accept and interpret the feature. Careful
analysis is required on the part of the auditor to validate the
capability of the processor to handle these features. The compile
time processor output might be helpful to the auditor, but it, too,
may be inconclusive. Error flags or diagnostic information, if
present, indicate things the processor does not recognize as valid,
but the absence of such commentary does not mean that the features
have been correctly interpreted and implemented. In fact a poor
diagnostic or error detection facility in the processor would pro-
duce the same results.

As a further specific example, tnere occurs in test modules
1200 and 1210 the use of the range declaration for integer and fixed
type data. According to the language specifications, the processor
makes use of this information to provide adequate scaling and pre-
cision of representation of intermediate results. In order to test
this feature, it would be necessary to define data and formulas using
them which would demonstrate that scaling of the intermediate results
was correct. This has not been done in these or any other of the
tests included in the Pop File.

In summary, these tests give no assurance that the processor
has interpreted each feature correctly, since this can only be done
by the execution of appropriate statements which reference the items
and validate the results.

10

PROCEDURAL STATEMENTS

There are 162 test modules in the Pop File covering the features
of the procedural statements in the JOVIAL language. These modules
also reference the appropriate sections of AFM 100-24 which describe
the features being tested, and the systematic approach which has been
followed seems to have provided for the inclusion of all of the
essential features in the tests, with the exception that tests of all
Input/Output features have been purposely excluded, as have tests of
the DIRECT:statement (i.e. in-line machine code). These are con-
sidered to be processor dependent features (cf.(2) pp. 1, 5).

In general these tests are simple and straightforward in
design and adequately validate the acceptance of the features being
tested. The inaccessability of the computed results and test values
complicate the analysis of test failures. Some of the test modules
make use of features other than those under test, so that a test
failure might be attributed to the wrong cause, again complicating
the auditor's analysis of the failure. While the JCVS design made
provision for indicating interdependencies among the test modules
on the test header card, we found no instance of its use to ensure
that dependent features would be tested automatically.

The tests of arrays and tables generally use a small number of
entries; most often 2 in the case of tables, and sometimes 1 for an
array dimension. While these cases are consistent vith the standard,
a more comprehensive test of larger structures would be desirable to
demonstrate the capability of the processor to handle such references.
It is also to be noted that many of the tests (ci module 3855) rely
on the successful referencing of a single element of an array or
table for validation. Again, a more comprehensive testing of many
element references would provide better assurance; ni the processor's
capability.

A detailed analysis of one of the more complex test ."nodules,
module 5310, suggests several ways in which the tests might be
improved from the standpoint of the audit function. Module 5310
tests the alternative:statement; i.e., the use of IFEITH...ORIF...
The JOVIAL alternative:statement provides for the sequential testing
of any number of conditions, each of which except the first occurs
in a successive or:if:clause. Associated with each condition is a
single independent statement which will be executed if ^nd only if
that condition is true and every condition preceding it is false.
Following execution of the associated statement, control is to be
returned to the point which would follow the last or:if:clause if
none of the set of alternative conditions were f ~.e. Thus, for an
n-condition alternative there are in general n+1 paths leading to the
following statement.

11

In the test module 5310^ there are eight alternative:statements,
two of them having three alternative conditions, the others having
just two alternative conditions in each. The expected normal execu-
tion of the program causes each alternative statement to be executed
only once, so that the remaining two or three possible alternative
paths are not tested for each statement. Instead, this test module
demonstrates different types of branching; i.e. sequences of alter-
native conditions in different alternative:statements, which are
themselves differently structured. Hence, it does not conclusively
demonstrate that the processor does indeed correctly handle the set
of alternatives. Several of the conditions in these alternative:
statements are in the form of the boolean constants 0 or 1; i.e.,
they are invariant. A sophisticated JOVIAL processor with optimiza-
tion might recognize these and generate different machine code, by-
passing the tests that would be required for the general, variable
alternatives. Thus, again, this method of testing does not provide
assurance that the processor has correctly implemented or interpreted
the feature. Finally, the logic of the test provides multiple paths
to the successful conclusion of the test, so that a combination of
errors in the interpretation of the alternative:statements could
cause the test to appear to be successful. The points just enumerated
reflect the primary emphasis of the JCVS tests on the demonstration
of the capability of a processor to accept the standard features, and
the lesser concern with tne thorough demonstration of the correctness
of interpretation or implementation of the features.

Modules 5311 and 5312 have been developed to illustrate the more
thorough testing of the alternative:statement. In module 5311, a
five condition alternative:statement is to be executed six times,
exercising each possible branch. Upon completion a check is made to
verify that each path had been traversed as expected. In module 5312,
the same five conditions are employed, but internal statement labels
and branching to them are added to demonstrate this additional capa-
bility required within an alternative:statement. A call to a pro-
cedure is also introduced to be executed as one of the branches.
Listings of these two modules are included in the recommended changes
in Appendix I.

PROCESSING DECLARATIONS

There are 43 test modules devoted to the JOVIAL processing:
declarations. These features are switches and user defined closes,
procedures and functions. Here, too, each test module references
the appropriate section of AFM 100-24 describing the feature being
tested. This set of tests seems adequate in terms of the variety of
forms and features in this category which are included in the tests.

SECTION IV

VALIDATION OF THE JCVS TEST MODULES

In order to establish validity of the JCVS test modules for
performing the audit functions, they were reviewed to ensure that:

1. They were free of mechanical and clerical errors;
2. They were free of syntactic errors, i.e. the JOVIAL

source statements conformed to the syntactic forms
of AFM 100-24;

3. They were free of logic errors; i.e. the results of
each test were consistent with the requirements of
AFM 100-24;

4. They tested a sufficient number and variety of the
language features to provide an adequate sample of
the AFM 100-24 requirements.

The adequacy of coverage of the JOVIAL language features is dis-
cussed in the previous section under the appropriate categories. The
cross reference list* of features tested by the set of modules in
the JCVS Pop File was compared to the features defined in AFM 100-24
on a paragraph-by-paragraph basis. No glaring omissions were dis-
covered, and on a purely subjective basis it was concluded that the
coverage was adequate for the intended purpose, with the reservations
previously cited concerning the intentional omission of features from
testing, the insufficiency of testing of alternatives and the lack of
logical rigor of the tests. The set of tests is open-ended, and it
is presumed that tests of the input/output features and of more com-
binations of features will be added in the future.

A two-phase procedure was followed in carrying out the error
investigation. First, selected test modules were subjected to a
desk review and analysis in which the source program listings were
examined and checked for clerical errors and consistency with
AFM 100-24. In some few instances flow charts were prepared to
assist in the validation of the logic of the tests, as for example
in the case of module 5310 cited above. Secondly, the test modules
were subjected to machine processing on two different systems to
provide an independent and more complete verification of the syntac-
tic analysis and correctness of execution results for each test.

The GE-600 Line JOVIAL processorv ' was selected for testing
the JCVS modules because of ready access to the system on the GE-635
at the Rome Air Development Center and because that processor was

"'•See reference 2, p. 196-225.

L3

thought to conform closely to the AFM 100-24 language, the known
exceptions being the Input/Output features, and the DUAL and STRING
item:declarations. The entire JCVS Pop File was divided into arbit-
rary subsets each containing from 50 to 70 test modules from which
were removed those modules requiring features known not to be implemen-
ted in the CE-600 Line JOVIAL processor. The subsetting was done to
avoid exceeding the limitations imposed by the compiler, to increase
the probability of successful compilation and execution of at least
some of the test modules during the brief test period, and to enable
analyses of the results of some runs to be made while others were in
the processing queue. A copy of the Pass/Fail Reporter, module 9998,
modified as described below, was incorporated into each subset to
make each a separate audit program for independent compilation and
execution. The set of job control cards shown in Table I was
evolved through an initial series of eight runs, in which the principal
difficulties encountered were in the setting of memory limits, the
proper identification of Input/Oucput units and files, and in the
interpretation of system error messages. These control cards were
attached to each audit program deck to effect the desired processing.
At least two runs were made with each subset with the exception of
the subset containing modules 5190 through 6085. That subset was
run only once, and the run aborted after execution of all but five
of the test modules in the set.

After each run, the printed output was examined for error
diagnostic indications which may have occurred during compilation.
If the cause of the error could be determined quickly to be in the
test module and an obvious correction could be made, this was done
and the module was left in the audit program for re-processing.
Otherwise, the test module in question was removed from the deck
before another attempt at processing was made. It was observed
that the GE-600 Line JOVIAL processor would ignore invalid state-
ments during the code generation phase of compilation, and the pro-
gram would execute with those parts missing. This would frequently
result in the "Test Successful" message being printed for that test
module when in fact the test had not been performed properly. There-
fore, it was necessary to examine carefully each run to verify
successful execution of the tests.

As a result of this processing, 86 JCVS test modules were com-
piled and executed successfully; 178 modules were compiled without
generating any error indications but were not executed due to prior
run termination; 46 test modules were found to contain problems
requiring further analysis to determine the nature of the error and
whether the processor or the test module was at variance with
AFM 100-24; and 49 test modules were not processed. Modifications

14

Table I

GE-635 Job Control Cards for JOVIAL Compile and Execute Run

$ SNUMB 25460

$ IDENT EMBIL,RR0BINS0N,JCVS ,IH519,5581

$ OPTION ERCNT/4500/,JOVIAL

$ JOVIAL NDECK

$ LIMITS 08,32000,,10000

$ INCODE IBMEL

** source deck goes here **

$ EXECUTE

$ ENDJOB

15

were made to ten of the test modules to achieve these results.
These modifications are included in Appendix I, and the results are
detailed in Table 2, Column 4.

The modified Pass/Fail Reporter module 9998 used the GE-600 Line
JOVIAL output statements rather than requiring a FORTRAN subprogram
for the output function because there was insufficient information
to define the interface between the GE-600 Line JOVIAL and FORTRAN.
While the GE-600 Line JOVIAL input/output features differ from those
of the AFM 100-24 language, they are used here only to perform the
reporting function, which usage does not interfere with the validity
of the tests being reported. The specific modifications consisted of
a file declaration statement and a file opening statement placed at
the beginning of the audit program, and an output statement to
replace the procedure call on line 9998J011, as follows:

FILE PRNT V(NORM) R06 $ "DECLARE PRINT FILE"
OUl(I.PRNT) $ "OPEN PRINT FILE"
I09998(3,PRNT,0,AA,7) $ "PRINT PASS/FAIL, ETC."

The IBM System/360 JOVIAL Compiler was selected as the
second machine processing test vehicle because it appeared to be
the most complete implementation of the JOVIAL language and because
it became available on the MITRE/360-50 system shortly after the
work at RADC had demonstrated the usefulness of machine testing of
the ^udit programs. The procedure followed was similar to that
employed with the GE-635, except that only those test modules which
had not executed successfully with the GE-600 Line JOVIAL were
processed on the system/360. A new Pass/Fail Reporter module 0198
previously described was used in place of module 9998 in all /360
JOVIAL runs. When, after each run, examination of the printed out-
pu. established the successful compilation and execution of a test
module, that module was considered to be validated and was removed
from further processing. Those test modules which either failed to
execute successfully or had errors detected in compilation were
analyzed further in detail. Corrections were made to sixteen modules
which were found at variance with AFM 100-24. The corrected modules
were processed again until they, too, were compiled, executed and
verified successfully. As a result of this processing, 178
additional JCVS test modules were compiled and executed successfully.
There remain 102 test modules whose status has not been resolved;
i.e. it has not been established conclusively that these test
modules are in conformance to AFM 100-24 requirements, although 31
of them did compile without error diagnostics. A complete summary
of the validation results is presented in Appendix II.

16

The successful compilation and execution of the test modules
when confirmed by examination of processor generated output, has
been accepted as validation of the modules because it is unlikely
that the same error in interpretation will be made in both the test
module and the processor, and fail to be noted by the reviewer. On
the other hand, the failure of a test module in either compilation
or execution is not conclusive evidence that the test module is
incorrect. It has been established that errors exist in both the
GE-600 Line JOVIAL and the IBM/360 JOVIAL Processors. While it was
beyond the scope of the present investigation to analyze processor
failures and make the necessary corrections, it has been possible
in a few instances to identify specific processor shortcomings, as
for example, the IBM processor's failure to reference correctly a
procedure argument in making a boolean comparison, and also the
failure to branch correctly on an index switch. In these cases the
generated code was at fault although the interpretation of the JOVIAL
source language was correct. Aside from the 39 test modules involv-
ing dual items, there are 34 test modules using Table items which
are in an unresolved status. It is suspected, but not verified,
that the processor is responsible for these failures, and that ^he
test modules are correct.

17

SECTION V

SUMMARY AND RECOMMENDATIONS

The primary objective of this study of the JOVIAL Compiler
Validation System was to establish the validity of the set of tests
with respect to their correctness and consistency with the AFM 100-24
Language Specification. Desk analysis and machine processing with
the GE-600 Line JOVIAL and the IBM System/360 J3 JOVIAL verified
that 260 of the JCVS test modules, including those corrected, meet
the criteria for use in performance validation by MCS. An additional
seventy-three test modules are satisfactory on the basis of analysis
alone, but could not be verified by processing due to the absence of
correct processor implementations of dual items and table features.
There are thirty test modules which have not been validated by any
means. They, too, might be used in the performance validation, with
the qualification that they may be modified when and if discrepancies
are established by processor rejection and subsequent analysis.

The recommended changes and corrections to the test modules to
achieve these results are documented in Appendix I. They have been
incorporated into the Population File, and the set of corrected
test modules on both magnetic tape and punched cards has been pro-
vided to the Air Force Directorate of ADPE Selection, together with
a printed listing of the source cards for the test modules.

The investigation of the JCVS test modules also established that
there are areas in which improvements can be made with respect to the
overall audic function. It is recommended that future work be
undertaken 1) to improve the rigor and thoroughness of the tests, as
exemplified by the MITRE developed modules 5311 and 5312, and 2) to
provide the auditor with more useful information about the test
results to aid in his analysis. These improvements would on the
one hand provide further assurance of the correctness of processor
implementation, and on the other enhance the usefulness of the JCVS
in the MCS performance validation environment.

In the process of carrying out this study of the audit programs,
the JCVS auxiliary programs were used on both the IBM/360 and
GE-635 systems to prepare the punched card decks for processing. The
use of the JCVS auxiliary programs was found to require more time
and to be less convenient than manual preparation of the card decks.
It is recommended that MCS distribute the JCVS audit programs on
tapes directly to the vendors independently of the JCV System.

18

APPENDIX I

MODIFICATIONS TO THE JCVS TEST MODULES

The corrections to the JCVS test modules which were necessary
to make them conform to the AFM 100-24 requirements, to correct
clerical errors, or to improve the performance with respect to the
audit function are cited in Table II. The format is that obtained
by listing the JOVIAL source language cards for the changes. The
four digits in columns 73-76 are the module numbers, and the last
three digits give the card sequence numbers. These cards are to
replace the same numbered cards in the Pop File. Also contained in
this list are completely new modules 0100, 0198, 5311 and 5312 which
are discussed in the text.

19

TABLE II

JCVS Test Module Corrections

PA

JO VI
• SYSO
• SYSO

•SYSO
STAR
TERM

STEP.
A L c OM PI I F
01• UT1LIT
03> UTILIT
OS' UTILIT
Tt
I

MOUUL: o
FILF PRf^T

HITRF 360/50 OfT 9 1970 JAN ?7 1971
H VALIDATION SYSTEM IflM 360/50
Y 'SYS002* UTILITY
Y 'SYS004I UTILITY
Y 'SYS006' UTILITY

0 3R4K

ITFM OUTl
•T^M OUTA
ITFM OUTB

!TEM OUT
IT^M HUT

rJVF

ovr
M
B8
nn

• •

• "PUT
• t

• 'OUT
• •

• 'OUT
t •

ERA -

ERR -

LM019
IN019

I TF"
!T FM
ITEM
UVFRLAY

OPEN OIJTP
OUTPUT PR
OUTS = *M

OUTTRAtnu
OUTA = 1H
OUTf RB(nij

OUTA = 1H
OUTFRBIUU
OUTPUT PR

MO'JULF 0

ERR - Trie
PRIN
A RO
A ME
A on

OP f-
PROC CHJ

ITFM

PEG1N

GG
ou

FND •
PROG OUT
ITEM ttb
BEGIN •

IF n
HUT

GOTO
OUTl? =
OUTPUT

ENJ "OU
PRUC OU

ITFM cr

BCGIN ••
OUT

END • • OU

100 » OUTPUT PRINT ROUTINE ••

M 1000 R ".0 V(X) 6 * '«6 IS NA»E DEFINED RY ••
•'IMPLEMENTOR FOP SYSTEM OUT-
••PUT PRINTER UNIT. THIS

••STATEMENT SHOULD RF REPLACED RY VENDO0 A? RFQUIRED.
H 40 *
H 1 t
H t i

12 H H »
4 P 4H

nun = ou
OUT! 3 = 0

f
P 16H(
P ?0H<
RR, OUT

UT PRNT 40H<
NT 40H(INIT

0100) i
TH) S

11 H
RLAY
RLAY
H 40
H -:6
H 20
it. *

I) *

T12.0UTU S
UTA t

MODULE

B,DD $
\THIS IS
IAL TEST

TEST I *
J I

AF-JCVS TEST » » *
PRINT PROCEDURFS-

) V
I *

(N I
Tl)
(Y)
TA| OUTERMOUTA) t

COMPLETED-PRINTEO 7 LINFS ****)»
PR INT ROUTINES ' '

ROUTINE THAT
ACTFR MESSAGE
'.ITS A MODULE NUMRER INTO
INTS IT
ESTS A FL^G AND PRINTS TFST PASSED
E FLAG

ITEM GGG H 40 t

NT 40H| TCST
jon * THREE

N"RMAL PRINT
TS A 40 CHAR
UTlNF THAT P
SSAGE ANL' PR
UTINF THAT T

AILED AND TH
TERR (GGJ 1
GG MO I

•'OUTERR''
G = GG i
TPUT PRNT

•OUTERR*•
fRH(BB) *
H ' $

•OUTERS' •
UTA EO]H(YI
12 = 36H1 MD
LN0198 »
36H< MODULE

PPNT OUTl $

TFRB*•
TFRA(FE)
H 4 %
OUTCRA'<
PUT PRNT
TEPA••

GGG i

% GOTO LM019P S
OULE TEST FAILFD

TFST SUCCESSFUL
0UTA=1H(NI t

I *

) $

ITEM EE H 4

CC = FE
AA %

00"i*.ooi

OOOUOC*
000] A00<.
000' AOO-S

00011 006
0001FOO7

OlOiV. 001
0100J0O?

•Olonjoo 3
•or,ri J004

•0100JD05
O'OOJOOT

0100JOOH
0'OOJOOO

n 1 i/njOl'1

01nojol]
oimjo' 2
0' 00J01 *
0100J014
0100J01 *•
0100J016
0100 1017

OIOOJOIP
0100J019
O100J020
01O0J02!
0100J02?
0100J021
0100JO?4
0100J025
0)00J026
019RC001
01Q8J002
019BJO03
0198J004
019RJ005
01O8JO06
01QRJ007
0198J00«

0190J009
01°8J010
019RJ011
019RJ012
O19RJ013
01"RJ014
0198J015
0I98J016
0 198 JO 17
0198J018
0198J019
0198J020
0198J021

0198J022
019RJ023
019RJ024
0198J025
0198J026
0198J027

20

TABLE II (Continued)

• 'GOTO

• 'PRDC
STAT-

EOURE ,
!TF
IT =
ITF
ITE
ITF
IT*
ITC

IF

•'THIS
•'MIxF

• TLAS

LR5

n ~>ATA
HUT
ITF
TAB
1 h

si Fir»

N»MF
ERR PRINT
- I sosrn
« IT05CP
" IHOS03
M. ivnso3
- I WO SO 3
'< 1X^503
" IM0S21
IA14->Q FQ

F IAS?10
IFF
ORI

230. 1RIF
F TFSTS T

TVPrs FO
S=4HI1465
M IJ715 5
Lf TA-M6<;

-•444
2446

) i

7
IS
1 i
IS

I 10

FO 1 t

24R4
4 R
7 P

-3 R
14 R

• t

> >
450.

o.,
10^0.

i 5.
q R l<»no.

.47500

.1
,;7rq()«
.9<»F0
.175F1

11 R 67S...fl*n
R 17...271 P ST »
% GOTO LY1430 I

GOTO LA52]0 $
ITU SA5230 FO VIM t GHTT LZS230*
F SA5?i0 FO V<41« GOTO LJS230 $

SD5230 FQ VIVE";)* SCS?30=V(Nn)t
HE IFFITH,OPIF STATFMFNTS
R BOOL FAN FORMALA
) % TIITERA(nUTB) $
H 6 p tM(STFP) »

V b 1 t

* *

TI-ON NUMBER 4.4.1.?
IA7O40I»3t)=]%

3.1' I
3.14 »
V(FF) t

IOC(PA 7500.INO 1024t G0T3 IN7SO0*
LN7500i ••FRR^R' '

IZ7540

LB1200
•"PRHC
LPX125
ID120 0
' • IFFI
• 'CLAS
" TH! S
• 'USF
•-THIS

LA5311

IFSS02It2$l
IF560? <*?t)
IS5604It?t)

IP
r,nTr,

1UTA-1HCJ) %
10.^ ^.0162
nUTFPDI^UTA)

EOUBES

5AS
t
?44t ?4»4

r.r-Tn in200 s
TH, nD|f ?454
SIFICATION NUMBER 6.4.2

•inntlLF TESTS THE ABILITY np
THE IFFITH, ORIF STATFMFMTS

M-IOULE WRITTEN PY F. ENGFL,
nUTP^4H(5">11) *
OUTERA(nnTR) *
ITEM lASni I
ITEM IPK3U I
ITTM BAS31I R

. IFFITH RA5311 t

THC CIMpIl Fp TH

JO 71. 3. I1 TFST1

ORI F
OPIF

IAS-*! I
IB5311

pa

16 s P o *
16 s P o *
p o *
BEGIN IA5311* I A5MU16

BA5311=0 « FrD
t IA5311=IAS311*2 *
$ BEGIN

IA5311=IAS311*« 1
BA«?3U*J %
CN0

-IRIF IAS311 ro ? 1

1RIF IA SI U IS 7 f
nS3H= I»S311*i 1

IA*311=IA5311*1 t

END
IP IBe311 LS 6 *

BFGIN IBS3H=! BS-»H*1 t
GflTp IAS311 * CN0

Ic IB53U FQ 6 *

0510*001
OMSA 001
loiojn?<5
IOIOJO^O
IOIOJO'1
1010J03?
1O10J033
101 0J034
m">J022
) <.30,|000
1445J012
145SJ011
14*5jni7
14SSJ01fl
146SJ003
14>,5J004
146SM0OS
1570J01R
2K00J007
2501JO11
4122JOO?
41TRJ02R
4144J016
41SSJ016
4I60J016
4175J008
41 7SJ010
4 1 37.) 01 6
4345J014
44*OJ016
44S5A001
4R4OJ027
5UOJ009
S311A001
S311J002
S311J00->
S311J004
S311J0O5
5311HO0A
S>11J007
S3! nooe
?311J009
5311J010
S311J0!J
S1UJ012
53U JO 13
5311J014
5311J01S
S311J016
5311J017
5 3UJ01 P
S31U0I9
5 311JO?0
S311J0?1
53UJ022
5311J023
5311J024
5311J025
c311J026

21

TABLE II (Concluded)

9EGIN IF IA5 311 FQ 31 f
GOTP LYMll t FNO

LY53ii.
LZ53H.
• MFE IT
1 'CLASS
•'THIS
••USF T
•THIS

LA5312.

LB5312.

LC5312.

LD5312.

LF5312.

:)UTA=IH
GOTO L7
HIJTA=1H
"'JTFRBI

H, ORIF
IFICATIO
MnnuLF T
Hb IFFIT
MODULE M

PUT1*-*
OUTER A
ITEM I
ITFM I
ITE* R

IFFITH

'IP I F IA
n»IF IB
(m iF I A

(N) t
5311 $
(Y) t
OUTA) $

2454
N NUMBER 6.4.2
FSTS THE ABILITY OF
H, PRIF STATEMENTS
RITTEN BY F. ENGELi
HI5312)t

THE COMPILER TO

JR 71 .3.15 TFST2

LF5312.
LX5312.

LY5312.
LZS312.

LF5340
LY5340
• • L OC A T

(niJTB)
A5312
B5312
AS^12
BA'^12

5M? FO
5312 EO
5312 FO

16 S P
lft S P
P 0 I
BFGIN

ORIF
ENP
IF IB53
IF IH53
IR5312=
GOTP LA
I A5312=
GnTC IC
PROC PA

RFGI
IA
RA

FNO
IF IA53
r»JTA = lH
GOTO LZ
PUTA=1H
OUTERBI

PR3012
0UTR=4
PUTB=4
0UTR=4
IF NOT

IA5312 LS 7 *

IA5312 = IA5312U6 $
BA5312=0 $ FNO

GOTO LF5312 »
PA5312 *
BEGIN IA*312=IA5312»4 S

GOTO LB5312 S FNO
IA5312=IA5312*1 t

12 EO A * GOTO LF5312 S
12 GR 4 S GOTO LX5312 t
IB5312*1 *
5312 *
IA5312+2 »
5312 $
5312 %
N ••PA5312"
5312=1A5312+R $
5312=1 $

•• PA531?"
12 FO 11 t GOTO LY5312 S
(N) t
5312 %
(Y) t
OUTA I »

= 15.0A4 S
HI60?5)$
HI60S0)t
HI6095)$

INOTINPT R85340J) t GOTO LY5340 t

'!nN
BEGIN ••TR7421••
ITEM IJ7421 I 12 U $

L»74?l. IF IK74?l($l*l EO 12 GOTP LY742! t

5M' JQ?R
5'U J029
53U JOH)
5 3' 1 J 0 \ !
5311J03?
53!2AO01
5312JOO?
5312JO01
53'2J004
5312J00*
S312"P06
5M2J007
5*1 2JOO*>
5 31 ? jr>Or-
5317J01n
5312J01)
5312J01?
5312JP13
5312J014
531 2.10! c

5312J016
5312J017
531?J011
5352J019
5312J020
5 312J02!
5312J02?
5317J023
5312J0?4
53I2J025
531?J026
5-,l?J02T
5312J02R
5312J029
5317J030
5312J031
531?J032
531?J033
531? J034
5460J022
6085H0Ob
6090H006
6095H006
6125J0?2
6125J02?
6735J005
6 745J01 7
6745J01P
6 74 5 J 02 5

22

APPENDIX II

RESULTS OF THE JCVS TEST MODULE VALIDATION

In Table III the entire set of JCVS Test Modules are listed by
module number, indicating the results of machine processing and
analysis for each module. The first column of this table indicates
those modules which were modified by MITRE, with an asterisk desig-
nating those modules which were newly created by MITRE. In the
next two columns are indicated the results of the machine processing
on the GE-635 and IBM/360, respectively. The significance of the
symbols appearing therein is as follows:

S - Successful compilation and execution without error
C - Compilation without error
M - Successful compilation and execution without error

after modification by MITRE
F - Failed in execution after compilation without error
N - Errors detected during compilation
W - Withheld from processing for known deficiency in

processor, e.g. dual item.

A mar k in the fourth column indicates that by analysis of the
source program and processing results, if any, the test module com-
plies with the requirements of AFM 100-24. The last column of the
table indicates those modules whose status is unresolved; i.e. there
has been no confirmation of validity by successful machine proces-
sing of the module. A letter D in this column identifies test
modules involving Dual Items, for which no processor implementation
exists.

23

Table III

JCVS Test Module Validation Summary

Module
No. Test Name

>^ >,
X> X>

a
4-1

0
•a a> -H c •o
a> § o OJ CO a)
•H o •J ^D J •H >» 01 >
4-1 H o < co < r-l r-l 9 i—i

•H M \0 H —^. w H 4J o
•a s § X > eg w
o w m o o< 4-1 0) s o n M •-) o W P4

* S
*

S
S
s

s
s
s
s

S
V

V

V

V

V

V

V M

w
s
s
s
s

V

V

V

V

V

V

D

V c
c
c
w
c

c
c
c
c
c

w
c
c

M
S
s

s

s
s
s
s
s

s
s

V

V

V

V

V

V

V

V

V

V

V

V

V

D

D

V c
c

M
s

V

V

0100 P/F Reporter Validat
0198 Pass/Fail Reporter
0500 Define-Preset H Item
0505 Assignment Statement
0510 GOTO Statement

0515 Procedure,Err Print
0520 IF Clause
1000 Simple Items
1005 Simple Items
1010 Simple Items

1015 Simple Items
1020 Simple Items
1025 Simple Items
1030 Simple Items
1035 Simple Items

1200 Simple Items
1205 Simple I terns
1210 Simple Items
1215 Simple Items
1220 Simple Items

1225 Simple Items
1235 Simple Items

1400 Simple Items
1405 Simple Items
1410 Simple Items

1415 Simple Items

1420 Simple Items

1425 Simple Items

1430 Simple Items

1435 Simple Items

24

Table III (Continued)

JCVS Test Module Validation Summary

Modul e
No. Test Name

1440 Simple Items
1445 IFEITH, ORIF
1450 IFEITH, ORIF
1455 Simple Items
1460 IFEITH, ORIF

1465 IFEITH, ORIF
1500 Ordinary Tables
1505 Ordinary Tables
1510 Ordinary Tables
1515 Ordinary Tables

1520 Ordinary Tables
1525 Ordinary Tables
1530 Ordinary Tables
1545 Ordinary Tables
1550 Ordinary Tables

1555 Ordinary Tables
1560 Ordinary Tables
1565 Ordinary Tables
1570 Ordinary Tables
1575 Ordinary Tables

1580 Ordinary Tables
1585 Ordinary Tables
1590 Ordinary Tables
1595 Ordinary Tables
1600 Ordinary Tables

1605 Ordinary Tables
1610 Ordinary Tables
1615 Ordinary Tables
1620 Ordinary Tables
1625 Ordinary Tables

M
o
d
i
f
i
e
d

by

M
I
T
R
E

G
E
-
6
0
0

J
O
V
I
A
L

I
B
M
/
3
6
0

J
O
V
I
A
L

C
o
m
p
l
i
e
s

by

A
n
a
l
y
s
i
s

S
t
a
t
u
s

no
t

R
e
s
o
l
v
e
d

C F V

V c M V

c S V

v c M V

c F V V

V N
c

MF
S

V V

N F V V

W D
C S

W D
C F V

c S
c S
c F V

w D
c S
w D

V N MF V V

C F V

C S
w D
c S
C S
w D

c S
c S
c S
c S
c S

25

Table III (Continued)

JCVS Test Module Validation Summary

Module
No. Test Name

JO

T3
<U

•H
M-l W
•H pi
•O H
O M
X X

o
o

I
w u

o
ro <
"»>» M

s & pa o

en

B to
o c

o

0)
CO PS

nj

1630 Ordinary Tables
1635 Ordinary Tables
1700 Ordinary Tables
1705 Ordinary Tables
1710 Ordinary Tables

C
c
c
c
c

s
s
s
s
s

1715
1720
1725
1730
1735

Ordinary
Ordinary
Ordinary
Ordinary
Ordinary

Tables
Tables
Tables
Tables
Tables

C
C
c
c
w

s
s
s
F v

D

1740 Ordinary Tables
1745 Ordinary Tables
1750 Ordinary Tables
1755 Ordinary Tables
1760 Ordinary Tables

C
C
c
c
c

s
s
s
s
s

1765 Ordinary Tables
1770 Ordinary Tables
1775 Ordinary Tables
1780 Ordinary Tables
1785 Ordinary Tables

C
C
W
c
c

s
s

s
s

1790 Ordinary Tables
1795 Ordinary Tables
1800 Ordinary Tables
1805 Ordinary Tables
1810 Ordinary Tables

C
C
c
c
c

s
s
s
s
s

26

Table III (Continued)

JCVS Test Module Validation Summary

Module
No. Test Name

>, >»
X Xi 4-1

o
-a 03 CO C T»

<u o a>-,-i OJ
•r-l O J vO .-J •H CO CO >
U-l w o 3 n < *i >^ 3 -*
•H 1 vO M *"». M Cu-i •u O
TJ ' > gg E to CO CO
O H w o o c 4-1 QJ

X X O T> H >D u< CO 0(5

N W D
C S
c S
c s
c s

c s
c s
c s
c F V

w D

c s
c s
c s
c s
c s

c s
c s
c s
c s
w D

V N M V

N F V

N N V

N N V

N F V

1815
1820
1825
1830
1835

1840
1845
1850
1855
1860

1900
1905
1910
1915
1920

1925
1930
1935
1940
1945

2500
2505
2510
2515
2520

Ordinary
Ordinary
Ordinary
Ordinary
Ordinary

Tables
Tables
Tables
Tables
Tables

Ordinary Tables
Ordinary Tables
Ordinary Tables
Ordinary Tables
Ordinary Tables

Ordinary
Ordinary
Ordinary
Ordinary
Ordinary

Tables
Tables
Tables
Tables
Tables

Ordinary Tables
Ordinary Tables
Ordinary Tables
Ordinary Tables
Ordinary Tables

Defined Tables
Defined Tables
Defined Tables
Defined Tables
Defined Tables

27

Table III (Continued)

JCVS Test Module Validation Summary

Modul e
No. Test Name

2525 Defined Tables
2530 Defined Tables
2535 Defined Tables
2540 Defined Tables
3500 Arrays

3505 Arrays
3510 Arrays
3515 Arrays
3520 Arrays
3525 Arrays

3530 Arrays
3535 Arrays
3540 Arrays
3545 Arrays
3600 Defined Tables

3605 Defined Tables
3610 Defined Tables
3615 Defined Tables

3620 Defined Tables
3625 Defined Tables

3630 Defined Tables

3635 Defined Tables
3640 Defined Tables

3645 Defined Tables

3650 Defined Tables

>, >.
X> J=> o
XI 0) 01 c *o
o> o 01 •H 0>

•r-l O HJ v£> ,J •^ w to >
14-1 1 O < ro < r-t >% D —i
•r^ vO M

•^ I-1 a, .—i •u 0
T3 H < > X > £ TO as u)
o H w o <a o o c •U o>
X £ o <-> M >-> o < w ei

C S
w D
N F V

N N V

C S

c S
c s
c s
c s
c N V

w D
c s
c s
F F V

w N V

w N V

w N V

w N V

w N V

w N V

w S
w D
w N V

w N V

w N V

28

Table III (Continued)

JCVS Test Module Validation Summary

Module
No. Test Name

XI

w
Pi
H

o <
I >

w o

o
c-> <•

s >
CQ O
M "-3

£>

CO CO

•t-l CO

0< I-I
6 co
O C
O <

o
c -a

a)
CO >

3 .-i

•u o
CO CO
4-1 QJ

3655 Defined Tables
3660 Defined Tables
3990 Switches
3905 Switches
3910 Switches

W
W
s
s
s

N
N

v
v

3915 Switches
3920 Switches
3925 Switches
3930 Switches
3935 Switches

F
F
W
S
s

F
S

v

D

3940 Switches
3945 Switches
3950 Switches
3955 Switches
3960 Switches

S
s
S
S
s

3965 Switches
4000 BIT
4005 BIT
4010 BIT
4015 BIT

N
C
c
c
c

F
S
s
s
s

4080 BYTE
4085 BYTE
4090 BYTE
4095 BYTE
4120 ENTRY and ENT

C
C
C
C
C

S
S
S
S
F v

29

Table III (Continued)

JCVS Test Module Validation Summary

Modul e
No. Test Name

4122 ENTRY and ENT
4124 ENTRY and ENT
4126 Entry and Ent
4128 Entry and Ent
4130 Entry and Ent

4132 Entry and Ent
4134 Entry and Ent
4136 Entry and Ent
4138 Entry and Ent
4140 Entry and Ent

4142 Entry and Ent
4144 Entry and Ent
4146 Entry and Ent
4148 Entry and Ent
4150 Entry and Ent

4152 Entry and Ent
4154 Entry and Ent
4156 Entry and Ent
4158 Entry and Ent
4160 Entry and Ent

4162 ENTRY and ENT
4175 PRIME LOC
4178 PRIME LOC
4181 PRIME LOC
4184 PRIME LOC

4187 PRIME LOC
4190 PRIME LOC
4193 PRIME LOC
4196 PRIME LOC
4199 PRIME LOC

M
o
d
i
f
i
e
d

by

M
I
T
R
E

G
E
-
6
0
0

J
O
V
I
A
L

I
B
M
/
3
6
0

J
O
V
I
A
L

C
o
m
p
l
i
e
s

by

A
n
a
l
y
s
i
s

u
o
c -a

01
Cfl >
3 i-i
4-> O
CO (0
4J 01
W OS

V N MF V

C N V

C F V

c F •

C F V

c F V

c F
F

V

V

V F
c

C

MF
S

S

V V

V N
C
C
c

c
c

M
S
S
s

s
s

V

V N
c

M
s

V

V N

C

M

S

V

N N V

V C NM V V

N N V

C N V

V N
S

M V

F N V

N N V

N N V

30

Table III (Continued)

JCVS Test Module Validation Summary

Module
No. Test Name

0)

•4-1 W
•^ K
•V H
O M
S X

o j o a
' > w o

o
n <
X > m o
H •->

o
o C *J

o
c -o

t)
2 >
*J O
CO co

•
W OS

4200 NENT
4205 NENT
4210 NENT
4215 NENT
4220 NENT

S
S
S
S
S

4225 NENT
4230 NENT
4235 NENT
4300 NWDSEN
4305 NWDSEN

S
S
N
S
S

w

4310 NWDSEN
4315 NWDSEN
4340 ODD
4345 ODD
4350 ODD

S
s
s
F
s

M v

4390 ALL
4450 Procedures
4455 Procedures
4460 Procedures
4465 Procedures

4470 Procedures
4475 Procedures
4480 Procedures
4485 Procedures
4490 Procedures

s
N
C
c
c

c
c
N
N
c

M
S
S
s

s
s
s
s
s

V

4495 Procedures
4470 Procedures
4475 Procedures
4780 Procedures
4785 Procedures

C
C
c
c
c

s
s
s
s
s

V

v
v
v

31

Table III (Continued)

JCVS Test Modules Validation Summary

Module
No. Test Name

^
,£

o
X

O o
I
w
o

o
en <

s >
PQ O
H n

CD (0

•H tO
lH ^
CVi •—I E m
o c
o <

>
i—l

o
CO
0)

4800 Functions
4805 Functions
4810 Functions
4815 Functions
4820 Functions

C
C
C
C
C

s
s
s
s
s

4825 Functions
4830 Functions
4835 Functions
4840 Functions
4845 Functions

N
N
C
C
w

N
s
s
M

5100 Functions
5105 Functions
5110 Functions
5115 Functions
5120 Functions

C
C
C
C
C

S
S
S
S
S

v
v
V

V

V

5160
5180
5185
5190
5280

Functions
RETURN
RETURN
RETURN
IF Clause

N
S
S
s
s

M

5310 IFEITH, ORIF
5311 IFEITH, ORIF
5312 IFEITH, ORIF
5340 FOR Loops
5342 FOR Loops

*
S
S

s
s

v
v
v

5344 FOR Loops
5346 FOR Loops
5348 FOR Loops
5350 FOR Loops
5352 FOR Loops

S
S
S
s
s

32

Table III (Continued)

JCVS Test Module Valiation Summary

Modul e
No. Test Name

5354 FOR Loops
5356 FOR Loops
5358 FOR Loops
5360 FOR Loops
5362 FOR Loops

5364 FOR Loops
5366 FOR Loops
5368 FOR Loops
5370 FOR Loops
5372 FOR Loops

-o
01

•H

•H as

is
o
o

I
Ed
O

<
M

o
CO <
^ M
S > « o

CO 10
0) -H
•^ CO

O.r-1
g CO
o c
o<

-o
01
>
o

C/2 OS

C3

s
s
s
s
s

s
s
s
s
s

5390 Loop Control
5392 Loop Control
5394 Loop Control
5396 Loop Control
5400 Numeric Expression

S
S
s
s
s

5405 Numeric Expression
5410 Numeric Expression
5415 Numeric Expression
5420 Numeric Expression
5425 Numeric Expression

F
S
S
S
s

F

5430 Numeric Expression
5435 Numeric Expression
5^40 Numeric Expression
5445 Numeric Expression
5450 Numeric Expression

5455 Numeric Expression
5460 Numeric Expression
5465 Numeric Expression
5470 Numeric Expression
5475 Numeric Expression

S
S
s
s
s

s
F
S
F
S

N

S

33

Table III (Continued)

JCVS Test Module Validation Summary

Module
No. Test Name

X>

XI

O H
X X

o <
• >

w o

o
en <

pa o

03 CO
a) T-I

f-j CO
r-l >>
Q.r-1
6 «
o c

o
C T3

CO >
3 ^H
4J O
cti co
i-> 0)
w oi

5480 Numeric Expressions
5485 Numeric Expressions
5490 Numeric Expressions
5495 Numeric Expressions
5500 Numeric Expressions

S
w
w
w
w

D
D
D
D

5505 Numeric Expressions
5510 Numeric Expressions
5515 Numeric Expressions
5520 Numeric Expressions
5525 Numeric Expressions

5530 Numeric Expressions
5535 Numeric Expressions
5540 Numeric Expressions
5545 Numeric Expressions
5800 Simple Comparisons

5805 Simple Comparisons
5810 Simple Comparisons
5815 Simple Comparisons
5820 Simple Comparisons
5825 Simple Comparisons

5830 Simple Comparisons
5835 Simple Comparisons
5840 Simple Comparisons
6000 Chained Comparisons
6005 Chained Comparisons

6010 Chained Comparisons
6015 Chained Comparisons
6020 Chained Comparisons
6025 Chained Comparisons
6030 Chained Comparisons

W
W
w
w
w

w
w
w
w
s

s
s
w
s
s

s
s
s
N
N

C
w
C
C
N

s
s

s
s
s

D
D
D
D
D

D
D
D
D

34

Table III (Continued)

JCVS Test Module Validation Summary

Module
No. Test Name M

o
d
i
f
i
e
d

by

M
I
T
R
E

G
E
-
6
0
0

J
O
V
I
A
L

I
B
M
/
3
6
0

J
O
V
I
A
L

>->
XI

«] «

1—1 >.

°5

o
C -3

03 >
3 r->
U O
ca en
4-> a)
CO 0£

V N N V

V C M V

V C

c
M
S

V

c N V

c S
N S
N s

V N

N

M

s
V

C F V

w V D
c S
c S
c S

w D
c s
c s
c s
c F V

c s
c s
w D
c s
c s

c s
c s
c s
c s
c s

6085 Boolean Expression
6090 Boolean Expression
6095 Boolean Expression
6100 Boolean Expression
6105 Boolean Expression

6100 Boolean Expression
6115 Boolean Expression
6120 Boolean Expression
6125 Boolean Expression
6130 Boolean Expression

6135 Boolean Expression
6200 Assignment
6400 Exchange
6405 Exchange
6410 Exchange

6415 Exchange
6420 Exchange
6425 Exchange
6430 Exchange
6435 Exchange

6440 Exchange
6445 Exchange
6450 Exchange
6455 Exchange
6460 Exchange

6465 Exchange
6470 Exchange
6475 Exchange
6500 DEFINE
6600 LIKE

35

Table III (Concluded)

JCVS Test Module Validation Summary

Module
No. Test Name

>,

0)
•H
IH W
•H OS -a H
O H

S3 X

O .J o <
I > w o

o

**. H s >
PQ O
M ^

CO w

CLu—I
§cfl c

o
c xi

ID
10 >
3 .-<

•P O
CO CO
4J 01
C/i OS

6605 LIKE
6610 LIKE
6700 Overlays
6705 Overlays
6710 Overlays

6715 Overlays
6720 Overlays
6725 Overlays
6730 Overlays
67 35 Overlays

6740 Overlays
6745 Overlays
6750 Overlays
6755 Overlays
6760 Overlays

6765 Overlays
6770 Overlays
6775 Overlays
6780 Overlays
6785 Overlays

6790 Overlays
6795 Overlays
6800 Overlays
6805 Overlays
9998 Module 9998 *

C
C
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
w

c
c
c
N
M

s
s
s
s
F

s
s
F
S
M

F
M
S
S
S

S
N
S
N

N
N
S
N

v
D

v
v

36

REFERENCES

1. Department of the Air Force, Air Force Manual AFM 100-24:
Standard Computer Programming Language for Air Force Command and
Control Systems. Short Title: CED2400, Washington, D.C.,
15 June 1967.

2. Hq. Electronic Systems Division (AFSC), ESD-TR-70-278: User's
Manual JOVIAL Compiler Validation System, Directorate of
Systems Design and Development, L. G. Hanscom Field, July 1970.

3. IBM Corporation, Program Information Department, Contributed
Program Library Type III, 360-03.2.010: The System/360 JOVIAL
Compiler, Hawthorne, N. Y.

4. General Electric Co., Information Systems, CPB-1650: GE-600
Line JOVIAL, Phoenix, Arizona, 1970.

5. Frank Engel, Jr., The Air Force COBOL Compiler Validation

System (CCVS), The MITRE Corporation, ESD-TR-71-61 (MTR-1953).
Contract F19(628)-71-C-0002, Bedford, Mass., 28 September 1970.

37

Security Clarification

DOCUMENT CONTROL DATA -R&D
(Security clettillcelion of title, body ol ebltrect end indexing ennotetion mutt b* entered when the orere II report It cl filled

ORIGINATING ACTIVITY (Corpormle mulhor)

The MITRE Corporation
P. O. Box 208 Bedford, Massachusetts

U, REPORT IECUDITV CLASSIFICATION

UNCLASSIFIED
2b. GROUP

3 REPORT TITLE

THE AIR FORCE JOVIAL COMPILER VALIDATION SYSTEM (JCVS)

4 DESCRIPTIVE NOTCa (Type ol report end Ineluelre dmtee)

9 AuTMORii]ffininim«, middle inltlml, let! nmme)

Frank Engel, Jr.

e REPORT DATE

AUGUST 1971
7«. TOTAL NO. OF PAGES

43
76. NO. OF REFS

5
»m. CONTRACT OR GRANT NO

F19(628)-71-C-0002
6. PROJEC T NO.

8510

M. ORIGINATOR'S REPORT NUMBERIS)

ESD-TR-71-236

9b. OTHER REPORT NOID (Any other numbtri that may bm maligned
thta report)

MTR-2091

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Electronic Systems Division, Air Force
Systems Command, L. G. Hanscom Field,
Bedford, Massachusetts 01730

13. ABSTRAC T

The Air Force JOVIAL Compiler Validation System (JCVS) was developed
to assist in the validation of performance of proposed JOVIAL language processors.
This report discusses the JCVS in the context of its use by the Air Force
Directorate of ADPE Selection. It provides a certification of the audit test modules,
and makes recommendations for improvements to the JOVIAL audit capability.
It is recommended that the audit programs be used independently of the JCV System.

DD,FN0OR:.,1473
Security Classification

Security Classification

KEY wonos
HOLE

AIR FORCE PROCUREMENT

COMPILERS

COMPUTER PROGRAMS

COMPUTERS

COMPUTER SYSTEMS PROGRAMS

JOVIAL

PROGRAMMING LANGUAGES

Security Classification

