+RI FILE COPY. ESD ACCESSION LIS ESD RECORD COPY

RETURN
TRI Call No.___, 1/%2 _SCIENTIFIC & TECHNICAL INFOIMATION DIVISION
ESD-TR-71-236 Copy No. / of R cys (TRIMARdZ0B1210
7

THE AIR FORCE JOVIAL COMPILER VALIDATION SYSTEM (JCVS)

F. Engel, Jr.

AUGUST 1971

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford. Massachusetts

Project 8510
Prepared by

Approved for pubhc release; THE MITRE CORPORATION

distribution unlimited. Bedford, Massachusetts
Contract F19(628)-71-C-0002

When U.S, Government drawings, specifications,
or other data are used for any purpose other than
a definitely related government procurement
operation, the government thereby incurs no re-
sponsibility nor any obligation whatsoever; and
the fact that the government may have formu-
lated, furnished, or in any way supplied the said
drawings, specifications, or other datais not to be
regarded by implication or otherwise, as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destrov

ESD-TR-71-236 MTR-2091

THE AIR FORCE JOVIAL COMPILER VALIDATION SYSTEM (JCVS)

F. Engel, Jr.

AUGUST 1971

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 8510
Prepared by

Approved for public release; THE MITRE CORPORATI{ON

distribution unlimited. Bedford, Massachusetts
B Contract F19(628)-71-C-0002

FOREWORD

This report has been prepared by The MITRE Corporation under
Project 8510 of Contract F19(628)-71-C-0002. The contract is sponsored
by the Electronic Systems Division, Air Force Systems Command, L. G.
Hanscom Field, Bedford, Massachusetts.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

)

. =
' .‘ A 7"//;'« ;(5;2;7(' e

ROBERT F. JENSEN, Colonel, USAF
Director of ADPE Selection

Deputy for Command and Management Systems

ii

ABSTRACT

The Air Force JOVIAL Compiler Validation System (JCVS) was
developed to assist in the validation of performance of proposed
JOVIAL language processors. This report discusses the JCVS in the
context of its use by the Air Force Directorate of ADPE Selection,
It provides a certification of the audit test modules, and makes
recommendations for improvements to the JOVIAL audit capability.
It is recommended that the audit programs be used independently of
the JCV System.

iii

ACKNOWLEDGMENTS

The investigations and computer experimentation which served as

the basis for this report were carried out with the assistance of
Miss Tobyanne Paster, D73. Mr. Richard Robinson of RADC ISIS assisted
in making the runs on the GE-635 computer at RADC, and has cooperated
in exchanging results of subsequent experiences with JCVS.
Lt. Col, V., Godbey and Lt. R. Forney of MCS Software Technical Group
also participated in this effort. While acknowledging their valuable
assistance, the author accepts full responsibility for the statements
and conclusions reported herein.

iv

TABLE OF CONTENTS

LIST OF TABLES

SECTION I

SECTION II

SECTION III

SECTION IV

SECTION V

APPENDIX I

APPENDIX II

REFERENCES

INTRODUCTION

THE JCVS COMPONENTS
THE POPULATION FILE
THE POPULATION FILE MAINTENANCE PROGRAM
THE SELECTOR PROGRAM
THE SOURCE PROGRAM MAINTENANCE PROGRAM
THE POPULATION FILE INITIATING PROGRAM
THE REPORT WRITER PROGRAM

THE JCVS POPULATION FILE

PASS/FAIL REPORTER

DECLARATIONS

PROCEDURAL STATEMENTS

PROCESSING DECLARATIONS
VALIDATION OF THE JCVS TEST MODULES
SUMMARY AND RECOMMENDATIONS
MODIFICATIONS TO THE JCVS TEST MODULES

RESULTS OF THE JCVS TEST MODULE VALIDATION

Page

vi

[e A LS I N

10
11
12
13
18
19
23

37

LIST OF TABLES

Table Number Page
I GE-635 Job Control Cards for JOVIAL Compile

and Execute Run 15

Tl JCVS Test Module Corrections 20

ITI JCVS Test Module Validation Summary 24

vi

SECTION I

INTRODUCTION

The Air Force procedure {or the competitive procurement of
general purpose automatic data processing equipment requires the
validation of the performance claims made for each proposed ADP system
in order to establish the responsiveness to the systems requirements
of the Request for Proposal. Among these requirements, there fre-
quently occurs the need for a JOVIAL language processor which must
conform to the AFM 100-24 JOVIAL (J3) Language Specifications.<1)

The Air force JOVIAL Compiler Validation System (JCVS) (2) yas developed
under contract to assist in the task of validation of the performance
of proposed JOVIAL language processors. This report briefly discusses
the JCVS in the context of its possivle use by the Air Force Direc-
torate of ADPE Selection, MCS, summarizes the experience acquired in
working with the JCVS, critiques the audit test modules, and makes
recommendations for improvements to the JOVIAL audit capability.

The compiler validation process or audit function has two
purposes: the first is to establish that each language feature of
the Air Force standard programming language is accepted by the JOVIAL
processor under examination; the second is to establish that the
execution of each language feature produces the prescribed results.
The JCVS accomplishes this audit function by presenting to the JOVIAL
processor a set of one or more JOVIAL source programs and their
required input data (if any), which together contain statements
invoking each of the required standard JOVIAL features. Such programs
are referred to as "Audit Programs." Upon successful compilation
and execution of the audit programs, it is established that a processor
does conform to the standard for those features tested. While it is
impossible for the audit programs to check for the correct implemen-
tation of all possible combinations of standard features due to the
large number of tests that would be required, it is expected that a
sufficiently representative sample will be included to establish
reasonable confidence in the capability of the observed system.

SECTION II

THE JCVS COMPONENTS

The heart of the Air Force JCVS is the Population File. It
contains all of the JOVIAL source statements comprising the tests of
the standard features and the auxiliary procedures for reporting the
results of execution of the tests. In addition to the Population
File, the JCVS consists of a Population File Maintenance program, a
Selector program, a Source Program Maintenance program, and a con-
version program for character set transformation. These auxiliary
programs are written in ANS COBOL and provide the means for automating
the manipulation of the constituent elements of the JOVIAL audit
programs.

THE POPULATION FILE

The Population File (Pop File) is the data base for the JCVS.
It contains approximately 9000 cards of JOVIAL source statements
and commentary which are subdivided into test modules of, at most, 50
cards each. Each test module coatains all of the JOVIAL statements
necessary to effect the test of a given feature including all item
declarations, procedure declarations, etc. The test module is
completely self-contained, with the exception of the output procedures,
which are invoked to record the results of the test. The report
writing or output procedures are contained in a separate module,
providing a uniform reporting mechanism. Thus, each test module
as it exists in the Pop File may be compiled and executed independ-
ently of every other test module.

The test modules may also be compiled and executed together as
a single JOVIAL program by combining the individual modules in any
desired sequence. Through the use of appropriate conventions in
assigning names to variables, labels, procedures, etc., duplication
of names has been avoided. The characteristics of the J3 language
are such that no rearrangement or sorting of the JOVIAL statements
of the test modules is necessary.#*

*In this regard the J3 language differs significantly from both
FORTRAN and COBOL. In FORTRAN specification statements must precede

all executable statements, and in COBOL appropriate statements must
appear in the ENVIRONMENT, DATA and PROCEDURE divisions of the program
in that order (cf MIR-1953,The Air Force COBOL Compiler Validation
System (CCVS)),

The physical arrangement of the Pop File consists of 4000
characters, fixed length records, each containing the characters from
fifty 80-character cards. The first card of each record is a header
card which identifies the module and may also designate a dependence
upon other specific modules. The header card is in the form of a
JOVIAL comment line and 1is considered to be a part of the JOVIAL
test module. If more than 50 cards are required for a test, there
is provision on the header card to specify that the module is to
be appended to the preceding module as a continuation of it. Finally,
the header card may designate that the module is to be present in
every audit program, whether or not its selection has been requested.
Characters 73-76 of every card contain the module identification num-
ber, and characters 78-80 contain the card sequence number within
the module, which must be in the range of 1 to 50 inclusive. The
77th character of the header card designates which of the foregoing
functions is intended for that module. On all other cards, this
character designates JOVIAL source statements. The module identifi-
cation number, the card sequence number and the function character
provide the key basis for the functional manipulations performed
upon the Pop File by the other components of the JCV System.

The first record of the Pop File has the module identification
number 001, and fulfills additional unique functions. The first five
cards of that record may be used to convey to the user for informa-
tional purposes only data concerning the source of the particular
Pop File and the hardware environment in which it may operate. The
content of these cards is ignored by the JCVS. Succeeding cards in
the first record are designated environmental software cards, and
may be operating system control cards, JOVIAL processor control cards,
etc., which are to be placed before and/or after every audit program
when it is selected from the Pop File. By offsetting these environ-
mental software cards by one character, the JCVS is able to handle
operating system control cards which require special characters in
Column 1.

THE POPULATION FILE MAINTENANCE PROGRAM

The Population File Maintenance Program (POPFM) provides a
mechanism for creating a new Pop File either from cards for the
individual modules, or by updating an old Pop File by means of dele-
tion, replacement or insertion of either individual cards or entire
modules on the basis of the module identification numbers and card
sequence numbers. A report of the functions performed is generated
by POPFM..

THE SELECTOR PROGRAM

The JCVS Selector Program (SELECT) operates on the Pop File to
produce a single JOVIAL source program from one or more JOVIAL test
modules residing on the Pop File. The user designates, by means of
control cards, those modules which are to be selected, The selected
modules appear in order by module number as they exist on the Pop
File. The user may direct the selectrd modules to be written onto
magnetic tape or punched cards. An audit file is produced by SELECT
containing a record of the modules selected and additional messages
relating to suspected error conditions encountered.

THE SOURCE PROGRAM MAINTENANCE PROGRAM

The JCVS Source Program Maintenance Program (SOPMM) operates on
an existing JCVS Source Program File to update and generate a new
Source Program File. The SOPMM provides the user with the ability to
add information to the source program file, delete information from
the source program file, or replace information on the source program
file on a card image by card image basis, according to the module
identification number and the card sequence number. The user may
direct the new source program file either to magnetic tape or punched
cards. An audit file is produced optionally by SOPMM providing a
record of the diagnostic and trace messages as well as a source
program listing when desired.

THE POPULATION FILE INITIATING PROGRAM

The JCVS Pop File Initiating Program (INIPOP) operates to
initiate and, at the user's option, to re-number a Pop File either
from an existing Pop File or from a card file containing the test
modules. The module identification numbers only are re-—sequenced as
directed by user supplied control cards. Certain cross-references
between modules are changed automatically when affected by the re-
numbering process. An audit report is created which contains
diagnostic messages, and an optional listing of JOVIAL source state-
ments on the new Pop File. A punched card deck of the Pop File may
be obtained as an optional output.

THE REPORT WRITER PROGRAM

The JCVS Report Writer Program (JCVSRP) operates on the Pop
File to produce a listing of the test modules on the Pop File or
a listing of all the test header cards on the Pop File, or both as
directed by user supplied control cards.

The reader is referred to the JCVS User's Manual(z) for a more
detailed description of the JCVS components and their use. In the
work with the JCVS Test Modules which was performed on both the
GE-635 at RADC and the IBM/360-50 at MITRE, it was found more con-
venient to manipulate the test module card decks manually, rather
than to use the JCVS programs enumerated above. The JCVS programs
require that control cards be prepared in addition to the JOVIAL
statement modifications, their use requires additional computer runs
to be made to generate the modified audit programs before they can
be processed by the JOVIAL compiler, and the reruns occasioned by
errors introduced in these peripheral activities lengthen the
apparent turn around time to process an audit program with the JOVIAL
compiler. However, the JCVS components have each been used at least
once, and they appear to function as deseribed. It was found
necessary to introduce a few minor modifications to initialize print
records .and repair clerical errors.

SECTION III

THE JCVS POPULATION FILE

The present set of JCVS Test Modules contained in the Population
File fall into four general categories:

The Pass/Fail Reporter and its verification tests
Tests of Declarations

Tests of Procedural Statements

Tests of Processing Declarations

S~ wn e

Each of these categories of tests is discussed in this section
with respect to its operational characteristics, the thorouhgness
and rigor of test logic, and the completeness of coverage of the
AFM 100-24 JOVIAL features,

PASS/FAIL REPORTER

The Pass/Fail Reporter consists of three JOVIAL Procedures
contained in Test Module 9998. Their function is to print one line
identifying the test module and a second line indicating that the
test was successful or had failed, The Procedure OUTERR prints a
line by calling a FORTRAN subroutine in which the information to be
printed is the 40-character Hollerith argument. This FORTRAN sub-
routine is not provided, nor are any specifications for it given. It
is not obvious how a standard conforming FORTRAN program could be
made to manipulate successfully this Hollerith argument,

The procedure OUTERA is invoked at the beginning of execution
of each test to set up the test module 1dentification line. The
4-character Hollerich argument of this procedure is the identifi-
cation number of the test, which is then combined with the invariant
part of the message by use of the JOVIAL OVERLAY feature. The
message is printed by invoking the procedure OUTERR.

At the conclusion of its execution, each test module invokes
the procedure OUTERB to set up and print the Pass/Fail message. The
argument of the procedure OUTERB is a l-character Hollerith variable
which is assumed to have been set to the value "Y' if the test were
successful, and to "N" if the test failed. The EQ relational opera-
tor is used in an IF:clause to compare the argument with the Hollerith
literal consctant lH(Y). If the condition is true, the 40-character
Hollerith variable is assigned the value of the "test successful"
message, and OUTERR is invoked to print it. If the condition is not

true, then the variable is assigned the value of the '"test failed"
message and the procedure OUTERR is invoked by the same statement.

The Pass/Fail Reporter provides a uniform reporting mechanism
for all tests, and localizes all output statements and interfaces
with FORTRAN in this one module. This particular embodiment offers
some disadvantages. The use of other than standard JOVIAL output
procedures makes the Audit Programs processor dependent, so that they
must be specifically adapted to each processor to be tested, The
FORTRAN interface with a Hollerith argument introduces a dependency
upon the processor under test. The Pass/Fail Reporter is complicated
by the use of nested procedures, i.e, procedures invoking other pro-
cedures; by the use of argument passing between procedures; by the
use of logic within the Reporter; and by the use of the OVERLAY
feature. Thus, the Pass/Fail Reporter is more sophisticated and com-
plex in terms of JOVIAL features empioyed than many of the tests
which use it to report their success or failure, and might itself be
a source of error, preventing the use of any of the audit programs.
The use of the OVERLAY feature might introduce processor dependencies
due to word boundaries in data which are to be written out, Finally,
the Pass/Fail Reporter provides no information on the test results
which can be used either to confirm the success or to assist in
diagnosing the failure of a test.

The function of the five test modules 0500-0520 is to validate
the Pass/Fail Reporter. As originally designed, these modules
attempted to verify the correct functioning of a processor for each
of the JOVIAL language features which are employed in the Reporter.
To do this independently of the Reporter itself, non-standard JOVIAL
output statements were employed to print the test results. These
statements had been subsequently replaced with calls to the Pass/
Fail Reporter procedures for printing, with the result that the
desired independent verification of these features has not been
achieved., A further defect in these tests is that the features
presumed to be tested are not tested under the same conditions of
use in the Pass/Fail Reporter. For example, the Pass/Fail Reporter
uses an IF:clause having a Hollerith:literal:relation list as its
boolean: formula, but in test module 0520 the IF:clause feature is
tested using only the boolean:constants O and 1 for the boolean: for-
mula. Certainly different machine code is required for the relational
comparison of literal formulas than for boolean:constants, and the
success of the test of the latter case does not imply that the pro-
cessor will treat the former correctly. Further, a sophisticated
optimizing processor might recognize the invariance of the boolean:
constants and generate code which would ignore completely the condi-
tional statement as employed in test module 0520, thus completely
invalidating the purpose of the test,

7

The following JOVIAL features are those presumed to be tested
by modules 0500-0520:

Hollerith Item Description

Preset Hollerith Item

Procedure Call using Hollerith Argument
Hollerith Assignment Statement

GOTO Statement

IF:clause, boolean:constant

Procedure Definition, with no Argument
Procedure Call, with no Argument

O~ PWN
.

The Pass/Fail Reporter Module 9998 uses all of these features
except the last two items, and in addition, employs the OVERLAY
feature, the definition of a procedure having a Hollerith argument,
and the nesting of procedures with argument passing required. These
last features are not explicitly validated by test modules 0500-0520,

A few specific programming errors were noted in module 9998,
The global variables OUTLl, OUTA, OUTB were not defined. Since these
variables are referenced in almost every module, it is necessary
that their item:descriptions occur at the beginning of the audit
programs. The argument AA of the procedure OUTERR(AA) was not passed
to the output subroutine, so that the message to be printed was lost,
Finally, in the definition of the procedure OUTERA(CC), its argument
was illegally declared to OVERLAY another datum. Since at execution
time the dummy argument CC is replaced by any number of actual
arguments, each of which may be defined in a different calling pro-
gram unit, guch use of OVERLAY is inconsistent.

In view of the difficulties enumerated above, MITRE provided
a new module 0198 to replace test module 9998 as the Pass/Fail
Reporter. This module is listed in Appendix I. The procedure names
and arguments have been retained to be compatible with the existing
procedure calls, but each procedure is now independent of the others;
i,e. there is no nesting of proceaures and concommitant argument
passing. Global variables are used to transmit information to the
procedures rather than relying om the procedure arguments, The use
of the OVERLAY feature was retained, but it now occurs at the global
level, rather than within the output procedures, and it does not
involve the procedure arguments. This could be avoided by using a
larger variety of print files to accommodate the different message
lengths, by making all data for output the same length, (e.g. OUTA,
OUTB and OUT1), or by introducing a more complex feature such as an
array or table for constructing the output message. Short of
revising the entire mechanism, it was felt that this represents the
best compromise, A further modification was made to cause the
value of the Pass/Fail indicator to be printed as part of the Pass/
Fail Message, and to reset this parameter to the failed conditionm,
i.e. OUTA=1H(N), after cach success or fail message is printed, As

a result the next test module must set the parameter to "Y', other-
wise the default condition would be that the test failed.

Also provided is a new test module 0100 to validate this Pass/
Fail Reporter. Rather than attempt to validate independently each
of the features employed therein, it assumes that all of the features
are implemented correctly, and attempts to demonstrate that each of
the three procedures does indeed produce the expected results when
called with appropriate parameter values. One line is printed
directly by a JOVIAL OUTPUT statement in this test module when the
print file is opened. A second line is printed by a call to the
procedure OUTERR, and a third line results from a call to the pro-
cedure OUTERA, which incorporates the four-character module number
into the test header line. Then to test the Pass/Fail function, the
procedure OUTERB is called, first with the parameter OUTA set to
"N, then again after setting OUTA te "Y" to demonstrate that the
appropriate pass and fail messages are printed in each instance,
Then, OUTERB is called a third time to demonstrate that the para-
meter OUTA had been reset to 'N" after printing the "test successful"
message. The test module then prints a final line using a direct
JOVIAL OUTPUT statement, indicating the end of the test and the
expected number of lines which are printed. The auditor must examinec
the output and determine that the appropriate messages have been
printed in the expected sequence,

The JOVIAL file:declaration which defines the print file is
included in the test module 0100, as are also the item:descriptions
for the global parameters used by the audit programs. It is therec-
fore necessary that modules 0100 and 0198 must be present in every
audit program, and that they should be positioned at the beginning
of the program, Hence, the relatively low module numbers which hawve
been given them. The AFM 100-24 provides that the device:name
occurring in the file:declaration is to be defined by each implemen-
tor. It is therefore to be expected that this statement which occurs
only once in module 0100 will have to be changed for each processor
to be tested,

In testing the JCVS with the J3 processor on the IBM system/260
Model 50, the efficacy of the revised Pass/Fail Reporter and valida-
tion procedure was demonstrated, when it was found that the 'test
successful" message was always printed, regardless of whether the
parameter OUTA had the value "Y" or "N"., This was due to a pro-
cessor deficiency, which would not have been discovered by the

original verification procedure.

DECLARATIONS

There are 151 test modules which are designed to test the
declaration features of the JOVIAL language, Each test references
the appropriate section of AFM 100-24 which describes the feature
being tested, and the set of data declarations for simple items,
arrays and tables of all types appears to be reasonably complete
with respect to the variety of permissible forms which are represented.

The item declarations are the means for associating names with
elements of a program and for describing the attributes of such
elements. Item declarations are usually non-executable; i.e. they
do not of themselves result in the generation of executable machine
instructions. They provide information to the processor useful at
compile time only, affecting storage allocation and the form of
executable machine instructions that are generated for other state-
ments, For this reason, the set of JCVS tests which are designed to
validate the item definition features, e.g. modules 1000-1235, are
inconclusive in themselves as to what features are or are not
implemented correctly. Each of these tests upon execution will
always produce the ''test successful'" message, signifying only that
the test module was included in the audit program. The message
has no significance relative to the capability of the JOVIAL pro-
cessor under test to accept and interpret the feature, Careful
analysis is required on the part of the auditor to validate the
capability of the processor to handle these features, The compile
time processor output might be helpful to the auditor, but it, too,
may be inconclusive., Error flags or diagnostic information, if
present, indicate things the processor does not recognize as valid,
but the absence of such commentary does not mean that the features
have been correctly interpreted and implemented, In fact a poor
diagnostic or error detection facility in the processor would pro-
duce the same results,

As a further specific example, there occurs in test modules
1200 and 1210 the use of the range declaration for integer and fixed
type data. According to the language specifications, the processor
makes use of this information to provide adequate scaling and pre-
cision of representation of intermediate results, In order to test
this feature, it would be necessary to define data and formulas using
them which would demonstrate that scaling of the intermediate results
was correct, This has not been done in these or any other of the
tests included in the Pop File.

In summary, these tests give no assurance that the processor
has interpreted each feature correctly, since this can only be done
by the execution of appropriate statements which reference the items
and validate the results.

10

PROCEDURAL STATEMENTS

There are 162 test modules in the Pop File covering the features
of the procedural statements in the JOVIAL language. These modules
also reference the appropriate sections of AFM 100-24 which describe
the features being tested, and the systematic approach which has been
followed seems to have provided for the inclusion of all of the
essential features in the tests, with the exception that tests of all
Input/Output features have been purposely excluded, as have tests of
the DIRECT:statement (i.e. in-line machine code). These are con-
sidered to be processor dependent features (cf.(2) pp. 1, 5).

In general these tests are simple and straightforvard in
design and adequately validate the acceptance of the features being
tested. The inaccessability of the computed results and test values
complicate the analysis of test failures. Some of the test modules
make use of features other than those under test, so that a test
failure might be attributed to the wrong cause, again complicating
the auditor's analysis of the failure. While the JCVS design made
provision for indicating interdependencies among the test modules
on the test header card, we found no instance of its use to ensure
that dependent features would be tested automatically.

The tests of arrays and tables generally use a small number of
entries; most often 2 in the case of tables, and sometimes 1 for an
array dimension., While these cases are consistent with the r~tundard,
a more comprehensive test of larger structures would be desirable to
demonstrate the capability of the processor to handle such references.
It is also to be noted that many of the tests (ci module 3655) rely
on the successful referencing of a single element of an array or
table for validation., Again, a more comprehensive testing of many
element references would provide bette:r assur~ac2 oi the processor's
capability,

A detailed analysis of one of the more complex test modules,
module 5310, suggests several ways in which the tests might be
improved from the standpoint of the audit function, Module 5310
tests the alternative:statement; i.,e,, the use of IFEITH,,.ORIF,.,
The JOVIAL alternative:statement provides for the sequential testing
of any number of conditions, each of which exccpt the first occurs
in a successive or:if:clause. Associated with each condition is a
single independent statement which will be executed if and on.iy if
that condition is true and every condition preceding it is false.
Following execution of the associated statement, crntrol is to be
returned to the point which would follow the last or:if:clause if
none of the set of alternative conditions were truec. Thus, for an
n-condition alternative there are in general ntl paths leading to the
following statement.

11

In the test module 5310 there are eight alternative:statements,
two of them having three alternative conditions, the others having
just two alternative conditions in each. The expected normal execu-
tion of the program causes each alternative statement to be executed
only once, so that the remaining two or three possible alternative
paths are not tested for each statement. Instead, this test module
demonstrates different types of branching; i.e. sequences of alter-
native conditions in different alternative:statements, which are
themselves differently structured. Hence, it does not conclusively
demonstrate that the processor does indeed correctly handle the set
of alternatives, Several of the conditions in these alternative:
statements are in the form of the boolean constants 0 or 1; i.e.,
they are invariant. A sophisticated JOVIAL processor with optimiza-
tion might recognize these and generate different machine code, by-
passing the tests that would be required for the general, variable
alternatives. Thus, again, this method of testing does not provide
assurance that the processor has correctly implemented or interpreted
the feature., Finally, the logic of the test provides multiple paths
to the successful conclusion of the test, so that a combination of
errors in the interpretation of the alternative:statements could
cause the test to appear to be successful, The points just enumerated
reflect the primary emphasis of the JCVS tests on the demonstration
of the capability of a processor to accept the standard features, and
the lesser concern with the thorough demonstration of the correctness
of interpretation or implementation of the features.

Modules 5311 and 5312 have been developed to illustrate the more
thorough testing of the alternative:statement. In module 5311, a
five condition alternative:statement is to be executed six times,
exercising each possible branch. Upon completion a check is made to
verify that each path had been traversed as expected. In module 5312,
the same five conditions are employed, but internal statement labels
and branching to them are added to demonstrate this additional capa-
bility required within an alternative:statement. A call to a pro-
cedure is also introduced to be executed as one of the branches,
Listings of these two modules are included in the recommended changes
in Appendix I.

PROCESSING DECLARATIONS

There are 43 test modules devoted to the JOVIAL processing:
declarations. These features are switches and user defined closes,
procedures and functions., Here, too, each test module references
the appropriate section of AFM 100-24 describing the feature being
tested. This set of tests seems adequate in terms of the variety of
forms and features in this category which are included in the tests.

SECTION 1V

VALIDATION OF THE JCVS TEST MODULES

In order to establish validity of the JCVS test modules for
performing the audit functions, they were reviewed to ensure that:

1. They were free of mechanical and clerical errors;

2. They were free of syntactic errors, i.e. the JOVIAL
source statements conformed to the syntactic forms
of AFM 100-24;

3. They were free of logic errors; i.e. the results of
each test were consistent with the requirements of
AFM 100-24;

4. They tested a sufficient number and variety of the
language features to provide an adequate sample of
the AFM 100-24 requirements.

The adequacy of coverage of the JOVIAL language features is dis-
cussed in the previous section under the appropriate categories. The
cross reference list* of features tested by the set of modules in
the JCVS Pop File was compared to the features defined in AFM 100-24
on a paragraph-by-paragraph basis, No glaring omissions were dis-
covered, and on a purely subjective basis it was concluded that the
coverage was adequate for the intended purpose, with the reservations
previously cited concerning the intentional omission of features from
testing, the insufficiency of testing of alternatives and the lack of
logical rigor of the tests. The set of tests is open-ended, and it
is presumed that tests of the input/output features and of more com-
binations of features will be added in the future.

A two-phase procedure was followed in carrying out the error
investigation. First, selected test modules were subjected to a
desk review and analysis in which the source program iistings were
examined and checked for clerical errors and consistency with
AFM 100-24, 1In some few instances flow charts were prepared to
assist in the validation of the logic of the tests, as for example
in the case of module 5310 cited above. Secondly, the test modules
were subjected to machine processing on two different systems to
provide an independent and more complete verification of the syntac-
tic analysis and correctness of execution results for each test.

The GE-600 Line JOVIAL processor(a) was selected for testing
the JCVS modules because of ready access to the system on the GE-635
at the Rome Air Development Center and because that processor was

*See reference 2, p. 196-225,
13

thought to conform closely to the AFM 100-24 language, the known
exceptions being the Input/Qutput features, and the DUAL and STRING
item:declarations. The entire JCVS Pop File was divided into arbit-
rary subsets each containing from 50 to 70 test modules from which
were removed those modules requiring features known not to be implemen-
ted in the GE-600 Line JOVIAL processor. The subsetting was done to
avoid exceeding the limitations imposed by the compiler, to increase
the probability of successful compilation and execution of at least
some of the test modules during the brief test period, and to enable
analyses of the results of some runs to be made while others were in
the processing queue. A copy of the Pass/Fail Reporter, module 9998,
modified as described below, was incorporated into each subset to
make each a separate audit program for independent compilation and
execution. The set of job control cards shown in Table I was
evolved through an initial series of eight runs, in which the principal
difficulties encountered were in the setting of memory limits, the
proper identification of Input/Output units and files, and in the
interpretation of system error messages. These control cards were
attached to each audit program deck to effect the desired processing,
At least two runs were made with each subset with the exception of
the subset containing modules 5190 cthrough 6085. That subset was
run only once, and the run aborted after execution of all but five
of the test modules in the set,

After each run, the printed output was examined for error
diagnostic indications which may have occurred during compilation,
If the cause of the error could be determined quickly to be in the
test module and an obvious correction could be made, this was done
and the module was left in the audit program for re-processing.
Otherwise, the test module in question was removed from the deck
before another attempt at processing was made, It was observed
that the GE-600 Line JOVIAL processor would ignore invalid state-
ments during the code generation phase of compilation, and the pro-
gram would execute with those parts missing. This would frequently
result in the "Test Successful'" message being printed for that test
module when in fact the test had not been performed properly. There-
fore, it was necessary to examine carefully each run to verify
successful execution of the tests,

As a result of this processing, 86 JCVS test modules were com-
piled and executed successfully; 178 modules were compiled without
generating any error indications but were not executed due to prior
run termination; 46 test modules were found to contain problems
requiring further analysis to determine the nature of the error and
whether the processor or the test module was at variance with
AFM 100-24; and 49 test modules were not processed. Modifications

14

Table I

GE-635 Job Control Cards for JOVIAL Compile and Execute Run

$ SNUMB 25460

$ IDENT EMBIL,RROBINSON,JCVS ,IH519,5581
$ OPTION ERCNT/4500/,JOVIAL

$ JOVIAL NDECK

$ LIMITS 08, 32000,,10000

$ INCODE IBMEL

** source deck goes here *¥*
$ EXECUTE

ENDJOB

<y

L5

were made to ten of the test modules to achieve these results.
These modifications are included in Appendix I, and the results are
detailed in Table 2, Column 4,

The inodified Pass/Fail Reporter module 9998 used the GE-600 Line
JOVIAL output statements rather than requiring a FORTRAN subprogram
for the output function because there was insufficient information
to define the interface between the GE-600 Line JOVIAL and FORTRAN.
While the GE-600 Line JOVIAL input/output features differ from those
of the AFM 100-24 language, they are used here only to perform the
reporting function, which usage does not interfere with the validity
of the tests being reported. The specific modifications consisted of
a file declaration statement and a file opening statement placed at
the beginning of the audit program, and an output statement to
replace the procedure call on line 9998J011, as follows:

FILE PRNT V(NORM) RO6 $ ''DECLARE PRINT FILE"
OU1(!,PRNT) $ "OPEN PRINT FILE"
109998(3,PRNT,0,AA,7) $ "PRINT PASS/FAIL, ETC."

The IBM System/360 JOVIAL Compiler(3) was selected as the
second machine processing test vehicle because it appeared to be
the most complete implementation of the JOVIAL language and because
it became available on the MITRE/360-50 system shortly after the
work at RADC had demonstrated the usefulness of machine testing of
the wudit programs. The procedure followed was similar to that
employed with the GE-635, except that only those test modules which
had not executed successfully with the GE-600 Line JOVIAL were
processed on the system/360, A new Pass/Fail Reporter module 0198
previously described was used in place of module 9998 in all /360
JOVIAL runs. When, after each run, examination of the printed out-
Pu. established the successful compilation and execution of a test
module, that module was considered to be validated and was removed
from further processing, Those test modules which either failed to
execute successfully or had errors detected in compilation were
analyzed further in detail. Corrections were made to sixteen modules
which were found at variance with AFM 100-24, The corrected modules
were processed again until they, too, were compiled, executed and
vevified successfully. As a result of this processing, 178
additional JCVS test modules were compiled and executed successfully,
There remain 102 test modules whose status has not been resolved;
i.e. it has not been established conclusively that these test
modules are in conformance to AFM 100-24 requirements, although 31
of them did compile without error diagnostics. A complete summary
of the validation results is presented in Appendix II.

16

The successful compilation and execution of the test modules
when confirmed by examination of processor generated output, has
been accepted as validation of the modules because it is unlikely
that the same error in interpretation will be made in both the test
module and the processor, and fail to be noted by the reviewer. On
the other hand, the failure of a test module in either compilation
or execution is not conclusive evidence that the test module is
incorrect. It has been established that errors exist in both the
GE-600 Line JOVIAL and the IBM/360 JOVIAL Processors, While it was
beyond the scope of the present investigation to analyze processor
failures and make the necessary corrections, it has been possible
in a few instances to identify specific processor shortcomings, as
for example, the IBM processor's failure to reference correctly a
procedure argument in making a boolean comparison, and also the
failure to branch correctly on an index switch. In these cases the
generated code was at fault although the interpretation of the JOVIAL
source language was correct., Aside from the 39 test modules involv-
ing dual items, there are 34 test modules using Table items which
are in an unresolved status. It is suspected, but not verified,
that the procesdor is responsible for these failures, and that the
test modules are correct.

17

SECTION V

SUMMARY AND RECOMMENDATIONS

The primary objective of this study of the JOVIAL Compiler
Validation System was to establish the validity of the set of tests
with respect to their correctness and consistency with the AFM 100-24
Language Specification, Desk analysis and machine processing with
the GE-600 Line JOVIAL and the IBM System/360 J3 JOVIAL verified
that 260 of the JCVS test modules, including those corrected, meet
the criteria for use in performance validation by MCS. An additional
seventy-three test modules are satisfactory on the basis of analysis
alone, but could not be verified by processing due to the absence of
correct processor implementations of dual items and table features.
There are thirty test modules which have not been validated by any
means. They, too, might be used in the performance validation, with
the qualification that they may be modified when and if discrepancies
are established by processor rejection and subsequent analysis.

The recommended changes and corrections to the test modules to
achieve these results are documented in Appendix I, They have been
incorporated into the Population File, and the set of corrected
test modules on both magnetic tape and punched cards has been pro-
vided to the Air Force Directorate of ADPE Selection, together with
a printed listing of the source cards for the test modules.

The investigation of the JCVS test modules also established that
there are areas in which improvements can be made with respect to the
overall audit function., It is recommended that future work be
undertaken 1) to improve the rigor and thoroughness of the tests, as
exemplified by the MITRE developed modules 5311 and 5312, and 2) to
provide the auditor with more useful information about the test
results to aid in his analysis. These improvements would on the
one hand provide further assurance of the correctness of processor
implementation, and on the other enhance the usefulness of the JCVS
in the MCS performance validation environment.

In the process of carrying out this study of the audit programs,
the JCVS auxiliary programs were used on both the IBM/360 and
GE-635 systems to prepare the punched card decks for processing. The
use of the JCVS auxiliary programs was found to require more time
and to be less convenient than manual preparation of the card decks.
It is recommended that MCS distribute the JCVS audit programs on
tapes directly to the vendors independently of the JCV System.

18

APPENDIX I

MODIFICATLIONS TO THE JCVS TEST MODULES

The corrections to the JCVS test modules which were necessary
to make them conform to the AFM 100-24 requirements, to correct
clerical errors, or to improve the performance with respect to the
audit function are cited in Table II, The format is that obtained
by listing the JOVIAL source language cards for the changes. The
four digits in columns 73-76 are the module numbers, and the last
three digits give the card sequence numbers, These cards are to
replace the same numbered cards in the Pop File. Also contained in
this list are completely new modules 0100, 0198, 5311 and 5312 which
are discussed in the text.

19

PASTER MITR

SYS001 UTILITY
¢ SV'S003® UYL ITY
SYS00S UTILITY
STARTS

TERMS

L MODULZ 0100

"OSTATFEMENT SHOULD RF REPLACED RAY VENDNO AS REQUIREN,*
ITEM OQUT1 H 40

TTEM QUTA H
[TEM NUTB H

3

]
i

TABLE 1II
JCVS Test Module Corrections

360750 oc
JOVIAL COMPILFR VALIDATINN SYSTEM

T 9 1970 JAN 27 1971
IB™ 360/50

'SYS002' UTILITY 03R4
SYS00& UTILITY
*SYSO06T OTILITY

OUTPUT PRINT ROUTINE e
FILF PRKT = 1000 ¥ 40 VIX) 6§

$
$
$

I1TEM DQUTLIZ2 H 36 8
& P G4Hl

ITEM NUTLI? M

DVEKLAY

OvERLAY
I TEM Aa H 40
ITFM B8 H.JOé
ITEM DN H 20
OVFRLAY A& =

AUTPOT PRNT 4OHI

) s

426 IS NAME DEFINED Ay

¢ P IMPLEMENTOR EQP SYSTEM NUT-

''PUT PRINTER UNIT. THIS

uT1=NUT12,0UTls $
OUTY3=DUTA §
$
P 16H(MODULF TEST) $
P 20HL) s
BB, OUTB,DO $
APFN NUTPUT PRNT 4O04(1THIS IS AN AF-JCVS TEST = * =
INITJAL TEST OF PRINT PROCEOQURES-) s
s

nuT3 = «H(J100)

QUTFRAINUTA)
NUTA = 1HIN)
NUTERBINUTL)
nuTa = InlYy)
OUTERB(UUTA)

MWTPUT PRMHT &OH{

$
$
$
$

$ OUTERARIQUTA) s

TEST COMPLETEN~PRINTED 7 LINFS * % = %) ¢

L MOADULF O01%R * THREE PRIMNY ROUTINES g0
SOYNUTERR ~ THe NOU'RMAL PRINT RAUTINE THATY 5.
ko PRINTS A 40 CHARACTER MESSAGF g
*YQUTERA - A ROUTINF THAT PUTS A MCNULFE NUMBFR INTOD L
38 A MESSAGE AND PRINTS IT L
'YOUTFRB ~ A ROUTINF THAT TESTS A ELAG AND PRIMTS TEST PASSED *¢
U NE FATLED AND THE FLAG LA
PROC OUTERR IG6H) $
ITFM GG H 40 ¢ ITEM GGG H 40 $
BEGIN **OUTERR'?*
GGG = GG $
UTPUT PRNT GGG $

ENO * 'OUTERR'?"
PRNC. NUTFKHIBB) $

ITEM Hb H

$

REGIN **CUTERB'*
1F NUTA EQ JHLY)

$ GOTO LMO198 s

UT12 = 36HI MIOULE TESTY FAILFED)8
GOTO LNO19A §

LMO198,., OUT12 = 36H(MNOULE TEST SUCCESSFUL) s
LNO19B. NUTPUT PRNT NUTL $ NUTA=1HIN) $

ENO **OUTERB®*?

PRUC QUTERAC(FE) $ ITEM EF H 4 $

ITFM CC H & §

BEGIN **OUTERA"! CC = FE $

OUT PUT PRNT AA $

EMD YYOUTEPRA'

20

00011001
000N1AaND
0001400
00N1AN0G
oonNT ANUS
a00M1L 00
00017007
0109001
0100J002
0100J003
C17°nJo0s
010NJ0no0s
0YnN3JO07
01004004
0'*u0Jooe
conJoln
0109Jo1tl
010N JoY e
0'00Jo1?
017°0J014
01G60Jo1+=
01004015
01001017
0100J01 R
0100J013
n1onJ020
01024021
010104027
0100J0213
010NJ024
N010N0JI02S
01N0J02A
019RC 001
012RJN02
01984002
0198J004
0198J005
012RJ0O0S
012°R8J007
0192J400%
0198 J0O09
0v'egJolo
019AJ011
019R8J012
019RJ013
012RJO1 4
0198J015
0)98J016
019R JOV7
01984018
019RJ019
019RJ020
019AJ021
019ARJ022
019RJ023
019RJ02 4
019RJ025
01983026
01984027

TABLE II (Continued)

*IG0TN STAT-NAMF 2444

PIPROCENLRE yERR PRINT 2464 2484
[TF™ 1S0503 A)Y 1) 4 R 450,,.47500 s
ITEM 17050 A S) T P Neeal $
[TF*™ THOSN3 A 7 J =3 P 10N0,,.17F7038+ ¢
ITEM [VOS03 A 15 S 14 R 15.4..99F0 $
[TE* [wWOSN3 A 13 S 9 K 1464N70.,..175F1 %
ITes [xnS03 A 15 S 11 R 675,,,.A80 s
[TE™ [M0DS21 [10 S R 17...271 P &9 &

TF TA147%0 F) V(ONI ¢ GOIT0 LY143N §
NRIF TAS210 EQ 1 8 GOTD LAS210 ¢
[FFITH SA§230 FQ V(A) ¢ GNTD LZ523n%¢
ORIF SA5230 FQ V(AYS GNATD 125220 ¢
LR5230. NRIF SDS230 FQ VIYES)S® SCS5230=Vv(NNIS
PETHIS MAINULFE TFESTS THE TFFITH,NPIF STATFMENTS
TEMIXFN NATA TYPCS FOR 870L FAN FORMALA
NUTY=4H(14651 ¢ IJUTERA(NUTRL §
ITEM 147155 H 4 P GH(STFP) ¢
TABLE TA7165 v 5 1 ¢
1 62
COCTLASSIFICAYION NUMRER 4,64,1,2
IAT940($381=1¢%
[FS8C2({s2%1= 3.1 ¢
IFS602 ($281= 3,14 §
[S5604(82%1= VIFFI ¢
[F *LOACIPATSN0.IND 1024% GOT LMTSNOS
ANTO OLMTS0NS 1IERRNR
LZ7540. "UTA=1H{Y)S
10,6 9,01625A8
LB1200. NUTFRPR{NITA)S

*CPRACENHRES 264¢ 24R6
LPX125.

Lb1200. GOTO LC1200 8

CSIFFLTH, NOTF 2654

SYCLASSIFICATINN MUMRER 6.4.2
COTHLIS MONPULF TESTS THF ABILITY NF THE CAIMPILFE T0
PPUSF THE [FFITH, NRIF STATEMENMTS

SITHIS MINULE WRITTEN RY F, ENGFL, JP, Tla3.1% TFSTY

NUTR=4H(S?111] ¢

OUTERA(NUTR) ¢
ITEM TAS211 [16 S P O $
ITEM [RE3Y] 1 16 S P O
[TF™ BAS31Y R P O
LAS311. IFFITH RAS31] ¢ AEGIN [AS3]1=1A5211¢16 §

RAS311=0 $¢ FMD
ARTF 145311 FQO 1 ¢ [A45311=1A5311+2 ¢
ORIF IRS311 GR & ¢ REGIN
[A5311=T1A5311+8 ¢
RAR3Li=) ¢
eND
ARIF 145311 FQ 2 ¢
[48311=1+53]1]1¢s
WMIF [AS3]1 LS 7 ¢
145311=1A5311+1 $
END
IF 188311 LS 6 3
RFGIN [RS311=T1TRS311+1 ¢
GOTO LAS3LY ¢ END
[IBS311 FO 5 ¢

21

o051 nr0N1
0c15A 001
10100029
10YNJ0N20
10V000")
10174071
101040313
1017J0%¢
129173022
1439 100G
146459012
14559011
1465 1N 7
14559018
14654001
144559004
14684005
1570J01R
25009007
25004011
41224002
4138 N2 A
414644016
4158401 A
G14A0J01A
41754008
4V T75J010
41370015
4345) 014
4450J016
4455A001
GRLNYND2T
5140J009
5311A001
53114002
521140072
£311J 004
57114005
5311HN0A
53110007
s211J400¢8
£211J009
53114010
531140}
£31] M2
53114013
5311J01¢
53114015
3114016
5311J0'7
S311J01R
£311J019
53114020
53114021
53114022
53114023
5211J0246
52114025
£311J026

TABLE II (Concluded)

SEGIN IF 1AS311 FQ 31 s
GOTO LYS311 8 FND
DUTA=1H(N) $
GITO LZS311
LYS311. NUTA=1H(Y) §
L25311. NUTFRA(ODUTAL §
**FEITH, NRIF 2454 *
*'CLASSIFICATION NUMBER 6,4.2
PPTHIS MONDULF TESTS THE ABILITY OF THE CO4PILER TQ .
*OUSF THE IFEITH, DRIF STATEMENTS J
COTHIS MNODULE ARITTEN 8Y F, ENGEL, JR. 71.3.15 TEST?2 .
MWTR=4H(53121%
QUTYERA(NUTB)
ITEM 1AS312 I s P
ITFEM 85312 I S P
ITEM RAS312 B P O $
LAS312. IFFITH B8AS212 § BFGIN [A5312=1A5312¢16 $
B8A5312=0 8 FND
$ GNTO LFS312 s
$ PA5312 §
$ BEGIN [1A5312=1A5112¢4 $
GITD LBS312 8 END
ORIF T1A5312 LS 7 s 1AS312=1A53]12+]1 $
END
LDS5312. IF [B5312 EQ 4 ¢ GITO LF5312 §
IF IR%312 GR & $ G6GNTO LX5312
135312=1B85312+1 s
GDTO LAS2 2 3
LES312. [A5312=1A45312+2 s
GaTc 1Cs5312
PROC PAS312 8
RFEGIN **PAS312""
[A5312=1A5312+8 §
RAS5212=1 $
END VOIPAD L2 v e
LFS312. IF 1A5312 FQ 31 $ GOTO LYS5312 ¢
LX5312. MUTA=IH({N) $
GOTO LZ5312 s
LY5312. NUTA=]1H(Y) $
LZ5312. OQUTEKB(OUTA) §
PR3012 = 15,044 $
OUTAR=4H(50251%
MU TB=4H(6090)s
MUTR=LH(K095) s
LES340. [F NOT (NOT(NONT RB5340}) $ GOTO LYS5340 $
LYS5360.
YOLOCATINN '
BEGIN '*'TRT421*
ITEM [J7421 1 12 U 8
LAT421. IF IK7421(s1sl €EQ 12 & GOTN LYT42) $

w

le 0 s
16 0 s

LB5312., RIF 1AS5312 FQ
NnerF 185312 €EQ
LCS5312. ORIF 1AS312 fQ

N

22

SHLL 2.2
5111unpeR
571114029
311401
53'1403)
52110032
53124001
53124702
531200013
53120006
5312J00%
53124006
5212J007
51312J00°
53112300
53124010
53124011
531240172
5312J011
S312401¢4
SALE2.00
53124016
53124017
53124019
53124019
53120020
53124021
53124022
S312J023
53124024
53124025
5312J02¢
§712J027
53124028
53122029
53124030
5312J031
53124032
53124033
S312J034
54600022
6085H006
6090H006
6095H006
61250022
6125J02¢
6735J00¢
6745J017
67454018
67451025

APPENDIX II

RESULTS OF THE JCVS TEST MODULE VALIDATION

In Table III the entire set of JCVS Test Modules are listed by
module number, indicating the results of machine processing and
analysis for each module. The first column of this table indicates
those modules which were modified by MITRE, with an asterisk desig-
nating those modules which were newly created by MITRE, 1In the
next two columns are indicated the results of the machine processing
on the GE-635 and IBM/360, respectively. The significance of the
symbols appearing therein is as follows:

S - Successful compilation and execution without error

C - Compilation without error

M - Successful compilation and execution without error
after modification by MITRE

F - Failed in execution after compilation without error

N - Errors detected during compilation

W - Withheld from processing for known deficiency in
processor, e.g. dual item,

A mark in the fourth column indicates that by analysis of the
source program and processing results, if any, the test module com-
plies with the requirements of AFM 100-24, The last column of the
table indicates those modules whose status is unresolved; i.e. there
has been no confirmation of validity by successful machine proces-
sing of the module. A letter D in this column identifies test
modules involving Dual Items, for which no processor implementation
exists,

28

Table III

JCVS Test Module Validation Summary

2 2w
o u:-z g'c
SE o 1 \oo.-'t ﬂ?, u:g
Yt B O < N < — =

boias 58 S5 FF BT &%

No. Test Name § (bg._) ﬂg 8<: o

0100 P/F Reporter Validat * S

0198 Pass/Fail Reporter * S

0500 Define-Preset H Item S v

0505 Assignment Statement S v

0510 GOTO Statement S v

0515 Procedure,Err Print S v

0520 1IF Clause S v

1000 Simple Items S v

1005 Simple Items S v

1010 Simple Items v M v

1015 Simple Items W v D

1020 Simple Items S v

1025 Simple Items S v

1030 Simple Items S v

1035 Simple Items S '

1200 Simple Items v C M v

1205 Simple Items C S v

1210 Simple Items c S v

1215 Simple Items W ' D

1220 Simple Items C S v

1225 Simple Items C S v

1235 Simple Items C S v

1400 Simple Items c S v

1405 Simple Items c S v

1410 Simple Items c S v

1415 Simple Items W v D

1420 Simple Items C S v

1425 Simple Items c S \Y

1430 Simple Items v c M v

1435 Simple Items] S v

Table II1 (Continued)

JCVS Test Module Validation Summary

E I
o men £
@ o @ - @

Module @ 8'&1 *R2 2% 32
- O = ~ = Ot & 0

No. Test Name i 85 A g = 2 g " g9

== (Ve - O< v

1440 Simple Items c F

1445 TIFEITH, ORIF v c M v

1450 IFEITH, ORIF C S v

1455 Simple Items v c M v

1460 1IFEITH, ORIF c F v

1465 1IFEITH, ORIF v N MF v

1500 Ordinary Tables c S

1505 Ordinary Tables N F

1510 Ordinary Tables W

1515 Ordinary Tables C S

1520 Ordinary Tables W

1525 Ordinary Tables c F

1530 Ordinary Tables © S

1545 Ordinary Tables c S

1550 Ordinary Tables c F

1555 Ordinary Tables W

1560 Ordinary Tables c S

1565 Ordinary Tables W

1570 Ordinary Tables v N MF

1575 Ordinary Tables C F

1580 Ordinary Tables c S

1585 Ordinary Tables W

1590 Ordinary Tables c S

1595 Ordinary Tables c S

1600 Ordinary Tables W

1605 Ordinary Tables c S

1610 Ordinary Tables c S

1615 Ordinary Tables c S

1620 Ordinary Tables c S

1625 Ordinary Tables c S

25

Table 111 (Continued)

JCVS Test Module Validation Summary

5 Eoa
] w o 8w
= oW @41 <@» aS
W O Mg = > 3
- O - ~ B — < 0

Module B E m B E 8 g g 30

No. Test Name =E Um HAS O umx

1630 Ordinary Tables c S

1635 Ordinary Tables c S

1700 Ordinary Tables C S

1705 Ordinary Tables C S

1710 Ordinary Tables c S

1715 Ordinary Tables c S

1720 Ordinary Tables C S

1725 Ordinary Tables c S

1730 Ordinary Tables C F

1735 Ordinary Tables W

1740 Ordinary Tables c S

1745 Ordinary Tables C S

1750 Ordinary Tables C S

1755 Ordinary Tables c S

1760 Ordinary Tables c S

1765 Ordinary Tables c S

1770 Ordinary Tables C S

1775 Ordinary Tables W

1780 Ordinary Tables C S

1785 Ordinary Tables (o S

1790 Ordinary Tables C S

1795 Ordinary Tables c S

1800 Ordinary Tables C S

1805 Ordinary Tables ¢ S

1810 Ordinary Tables C S

26

Table III (Continued)

JCVS Test Module Validation Summary

5 B
] TERL
] =) Ut)
Zw 83 2% IB 32

Module ZE 2 FE OB 2%

No, Test Name o8 232 8 35 e o

1815 Ordinary Tables N W

1820 Ordinary Tables c S

1825 Ordinary Tables c S

1830 Ordinary Tables c S

1835 Ordinary Tables C S

1840 Crdinary Tables c S

1845 Ordinary Tables & S

1850 Ordinary Tables C S

1855 Ordinary Tables c F

1860 Ordinary Tables W

1900 Ordinary Tables c S

1905 Ordinary Tables c S

1910 Ordinary Tables C S

1915 Ordinary Tables C S

1920 Ordinary Tables C S

1925 Ordinary Tables c S

1930 Ordinary Tables c S

1935 Ordinary Tables C S

1940 Ordinary Tables c S

1945 Ordinary Tables W

2500 Defined Tables v N M

2505 Defined Tables N F v

2510 Defined Tables N N v

2515 Defined Tables N N v

2520 Defined Tables N F v

27

JCVS Test Module Validation Summary

Table 111 (Continued)

Module
No,

Test Name

Modified by
MITRE

GE-600
JOVIAL

IBM/ 360
JOVIAL

Complies by
Analysis

Status not
Resolved

2525
2530
2535
2540
3500

3505
3510
3515
3520
3525

3530
3535
3540
3545
3600

3005
3610
3615
3620
3625

3630
3635
3640
3645
3650

Defined
Defined
Defined
Defined
Arrays

Arrays
Arrays
Arrays
Arrays
Arrays

Arrays
Arrays
Arrays
Arrays
Defined

Defined
Defined
Defined
Defined
Defined

Defined
Defined
Defined
Defined
Defined

Tables
Tables
Tables
Tables

Tables

Tables
Tables
Tables
Tables
Tables

Tables
Tables
Tables
Tables
Tables

28

b3l SR 20 3 sHOO o000 Q=220

T E =

Zmwmwm Zuununwmw wn z"H

Z 2222

w

<

< <

L R -

< < < U

Table III (Continued)

JCVS Test Module Validation Summary

b B
5 am S
e 23 B2 3%
Module WhE O N<g = > D
- o O - ~ H O =t FEN
No. Test Name 'gg ::'.18 ES gg N
= = (TN = O« n
3655 Defined Tables W N
3660 Defined Tables 1 N
3990 Switches S
3905 Switches S
3910 Switches S
3915 Switches F F
3920 Switches F S
3925 Switches W
3930 Switches S
3935 Switches S
3940 Switches S
3945 Switches S
3950 Switches S
3955 Switches S
3960 Switches S
3965 Switches N F
4000 BIT G S
4005 BIT C S
4010 BIT C S
4015 BIT C S
4080 BYTE C S
4085 BYTE C S
4090 BYTE C S
4095 BYTE C S
4120 ENTRY and ENT C F

29

Table III (Continued)

JCVS Test Module Validation Summary

Module
No. Test Name

Modified by
MITRE
GE-600
JOVIAL

IBM/ 360
JOVIAL

Complies by
Status not
Resolved

Analysis

4122 ENTRY and ENT
4124 ENTRY and ENT
4126 Entry and Ent
4128 Entry and Ent
4130 Entry and Ent

<4

[eNeoKe Ne R
"11’1:1"!125

4132 Entry and Ent
4134 Entry and Ent
4136 Entry and Ent
4138 Entry and Ent v
4140 Entry and Ent

(oMo}

[@Me]
ma’ﬁ"ﬂ"’j

4142 Entry and Ent
4144 Entry and Ent v
4146 Entry and Ent
4148 Entry and Ent
4150 Entry and Ent

OO0 =Z0
nmnmnxwm

4152 Entry and Ent
4154 Encry and Ent
4156 Entry and Ent v
4158 Entry and Ent
4160 Entry and Ent v

ZOZoOoo
TunXunuwm

4162 ENTRY and ENT

4175 PRIME LOC

4178 PRIME LOC v
4181 PRIME LOC

4184 PRIME LOC

OZ2 020
ZZ§ZU}

=

4187 PRIME LOC v
4190 PRIME LOC
4193 PRIME LOC
4196 PRIME LOC
4199 PRIME LOC

ZZ T wnZ
Z 2 2

30

g 4 < <<

< << <

<< <<

Table II1I (Continued)

JCVS Test Module Validation Summary

Module
No. Test Name

Modified by
MITRE
GE-600
JOVIAL

1BM/ 360
JOVIAL

Complies by
Analysis
Status not
Resolved

4200 NENT
4205 NENT
4210 NENT
4215 NENT
4220 NENT

mmmwmwm

4225 NENT
4230 NENT
4235 NENT
4300 NWDSEN
4305 NWDSEN

nmzZumown
=

4310 NWDSEN

4315 NWDSEN

4340 ODD

4345 ODD v
4350 ODD

T w;mmom

4390 ALL

4450 Procedures v
4455 Procedures

4460 Procedures

4465 Procedures

PSR
nmm

4470 Procedures
4475 Procedures
4480 Procedures
4485 Procedures
4490 Procedures

OZ2ZZ200
mmmmm

4495 Procedures
4470 Procedures
4475 Procedures
4780 Procedures
4785 Procedures

OO0O0O0O0
nmmmmwmn

31

< < <<

Table 111 (Continued)

JCVS Test Modules Validation Summary

Module
No.

Test Name

Modified by
MITRE
GE-600
JOVIAL

IBM/ 360
JOVIAL

Complies by
Analysis

Status not
Resolved

4800
4805
4810
4815
4820

4825
4830
4835
4840
4845

5100
5105
5110
5115
5120

5160
5180
5185
5190
5280

5310
5311
5312
5340
5342

5344
5346
5348
5350
5852

Functions
Functions
Functions
Func tions
Functions

Functions
Functions
Functions
Functions
Functions

Functions
Functions
Functions
Functions
Functions

Functions
RETURN
RETURN
RETURN
IF Clause

IFEITH, ORIF
IFEITH, ORIF
IFEITH, ORIF

FOR Loops
FOR Loops

FOR Loops
FOR Loops
FOR Loops
FOR Loops
FOR Loops

32

[sNeoNeNeNe] Tooz=Z [eNeNeoNeNe!

[72] w nwnwmn=Z

munumunmwm

Z2unn=2 nunmwnwvwm

mununwmwm

< <4 <<

<

Table III (Continued)

JCVS Test Module Valiation Summary

5 B
o [s] g-c
= o B34 =@ ws
U [O « (S I+ — o S

Module o & vE =¥ B e

No, Test Name g:E [tgg E«g 85.: * o

5354 TFOR Loops S

5356 FOR Loops S

5358 TFOR Loops S

5360 FOR Loops S

5362 FOR Loops S

5364 TFOR Loops S

5366 FOR Loops S

5368 FOR Loops S

5370 FOR Loops S

5372 TFOR Loops S

5390 Loop Control S

5392 Loop Control S

5394 Loop Control S

5396 Loop Control S

5400 Numeric Expression S

5405 Numeric Expression F F

5410 Numeric Expression S

5415 Numeric Expression S

5420 Numeric Expression S

5425 Numeric Expression S

5430 Numeric Expression S

5435 Numeric Expression S

5440 Numeric Expression S

5445 Numeric Expression S

5450 Numeric Expression S

5455 Numeric Expression S

5460 Numeric Expression F N

5465 Numeric Expression S

5470 Numeric Expression F S

5475 Numeric Expression S

- 33

Table III (Continued)

JCVS Test Module Validation Summary

2 AR
'o ww g
s o3 9.4 =% a5
- O Mg > I
g $E S5 3FF BT 5%
No. Test Name %E 82 .n_a‘g 85 :n-'g
5480 Numeric Expressions S
5485 Numeric Expressions %) D
5490 Numeric Expressions W D
5495 Numeric Expressions W D
5500 Numeric Expressions W D
5505 Numeric Expressions %) D
5510 Numeric Expressions W D
5515 Numeric Expressions W D
5520 Numeric Expressions %) D
5525 Numeric Expressions %) D
5530 Numeric Expressions 1] D
5535 Numeric Expressions W D
5540 Numeric Expressions W D
5545 Numeric Expressions W D
5800 Simple Comparisons S
5805 Simple Comparisons S
5810 Simple Comparisons S
5815 Simple Comparisons %)
5820 Simple Comparisons S
5825 Simple Comparisons S
5830 Simple Comparisons S
5835 Simple Comparisons S
5840 Simple Comparisons S
6000 Chained Comparisons N S
6005 Chained Comparisons N S
6010 Chained Comparisons C S
6015 Chained Comparisons W
6020 Chained Comparisons C S
6025 Chained Comparisons C S
6030 Chained Comparisons N S

34

Table III (Continued)

JCVS Test Module Validation Summary

2 2w
© L RZ 8"':!
3 T T
W O MAE e~ 3

Module SE S 35 OBE 53

No. Test Name 29 B e S8 85‘- G

6085 Boolean Expression v N N v

6090 Boolean Expression v c M v

6095 Boolean Expression v c M v

6100 Boolean Expression @ S

6105 Boolean Expression c N v

6100 Boolean Expression c S

6115 Boolean Expression N S

6120 Boolean Expression N S

6125 Boolean Expression v N M v

6130 Boolean Expression N S

6135 Boolean Expression c E v

6200 Assignmenit W v D

6400 Exchange c S

6405 Exchange c S

6410 Exchange c S

6415 Exchange W D

6420 Exchange G S

6425 Exchange c S

6430 Exchange @ S

6435 Exchange E F v

6440 Exchange C S

6445 Exchange c S

6450 Exchange W D

6455 Exchange c S

6460 Exchange C S

6465 Exchange € S

6470 Exchange C S

6475 Exchange & S

6500 DEFINE C S

6600 LIKE @ S

35

Table II1 (Concluded)

JCVS Test Module Validation Summary

2 B @
o wn ® 8'0
= o 94 I% b
U [O <« 0 < — >N 3 o=
Module gl O S a—~ & o
No Test Name e :-'18 58 ES 339
) == Oon AR ud wnx
6605 LIKE S
6610 LIKE C S
6700 Overlays C S
6705 Overlays C S
6710 Overlays C F
6715 Overlays C S
6720 Overlays c S
6725 Overlays c F
6730 Overlays C S
6735 Overlays v C M
6740 Overlays C F
6745 Overlays v C M
6750 Overlays c S
6755 Overlays C S
6760 Overlays c S
6765 Overlays C S
6770 Overlays C N
6775 Overlays c S
6780 Overlays C N
6785 Overlays W
6790 Overlays c N
6795 Overlays C N
6800 Overlays (o S
6805 Overlays N N
9998 Module 9998 * v M

. 36

REFERENCES

Department of the Air Force, Air Force Manual AFM 100-24:
Standard Computer Programming Language for Air Force Command and
Control Systems, Short Title: CED2400, Washington, D,C.,

15 June 1967,

Hq. Electronic Systems Division (AFSC), ESD-TR-70-278: User's
Manual JOVIAL Compiler Validation System, Directorate of
Systems Design and Development, L, G, Hanscom Field, July 1970,

IBM Corporation, Program Information Department, Contributed
Program Library Type III, 360-03,2,010: The System/360 JOVIAL
Compiler, Hawthorne, N, Y,

General Electric Co., Information Systems, CPB-1650: GE=-600
Line JOVIAL, Phoenix, Arizona, 1970,

Frank Engel, Jr,, The Air Force COBOL Compiler Validation

System (CCVS), The MITRE Corporation, ESD-TR-71-61 (MTR-1953).
Contract F19(628)-71-C-0002, Bedford, Mass., 28 September 1970.

37

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classitication of title, body of abstract and indexing snnotation must ba antarad when the overall raport is classifiad)

1. ORIGINATING ACTIVITY (Corporata author) 28, REPORT SECURITY CLASSIFICATION

The MITRE Corporation UNCLASSIFIED

2b. GROUP

P.O. Box 208 Bedford, Massachusetts

3. REPORT TITLE

THE AIR FORCE JOVIAL COMPILER VALIDATION SYSTEM (JCVS)

4. OESCRIPTIVE NOTES (Typa of report and Incluslve dates)

8. AUTHORIS) (First name, middia inltial, last name)

Frank Engel, Jr.

6. REPORT OATE 78. TOTAL NO. OF PAGES 75, NO. OF REFS
AUGUST 1971 43 5
8a. CONTRACT OR GRANT NO. 8. ORIGINATOR'S REPORT NUMBER(S)

F19(628)-71-C-0002

b. PROJECT NO.

8510

ESD-TR-71-236

[-H b, OTHER REPORT NOIS) (Any other numbers that may ba assigned
this report)

@ MTR-2091

10. OISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Electronic Systems Division, Air Force

Systems Command, L. G. Hanscom Field,
Bedford, Massachusetts 01730

13. ABSTRACT

The Air Force JOVIAL Compiler Validation System (JCVS) was developed
to assist in the validation of performance of proposed JOVIAL language processors.
This report discusses the JCVS in the context of its use by the Air Force
Directorate of ADPE Selection. It provides a certification of the audit test modules,
and makes recommendations for improvements to the JOVIAL audit capability.
It is recommended that the audit programs be used independently of the JCV System.

DD &SV..1473

Security Classification

Security Clsssificstion

KEY WORDS

LINK A

LINK B

LINK C

ROLE wT

ROLE wT

ROLE wT

AIR FORCE PROCUREMENT

COMPILERS

COMPUTER PROGRAMS

COMPUTERS

COMPUTER SYSTEMS PROGRAMS

JOVIAL

PROGRAMMING LANGUAGES

Security Classification

