
_MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

GRAPHICS

SEMIANNUAL TECHNICAL SUMMARY REPORT

TO THE

ADVANCED RESEARCH PROJECTS AGENCY

1 JUNE - 30 NOVEMBER 1970

ISSUED 31 DECEMBER 1970

This document has been approved for public release and sale;
its distribution is unlimited.

LEXINGTON MASSACHUSETTS

The w,,k reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
This work was sponsored 'y the Advanced Research Projects Agency of the

Department of Defense under Air Force Contract AF 19(628)-5167 (ARPA
Order 691).

This report may be reproduced to satisfy needs of U.S. Government agencies.

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when i! is no longer needed.

ii° |

'I
SUMMARY

System architecture for the Terminal Support Processor (TSP) system is now

complete. The principal element in the system is a dual processor version of

the Digital Scientific Corporation Meta 4 microprogrammed computer. Main

memory (magnetic core) consists of 8 banks of 8K 16-bit words. Secondary

memory is provided by a one-million-word Digital Development Corporation

disk having a 495-kHz transfer rate and an average access time of 8.7 msec.

The TSP is connected via an Interface Message Processor (IMP) to the ARPA

computer network and other Lincoln Laboratory computers. Consoles consist

of a keyboard, a smE.ll number of visual and audible indicators, a graphic in-
put tablet, and a pair of storage scopes. Displays are driven from a shared
',ector and character generator which is now complete and being tested. An

extensive character set include most of the commonly used sets. A low cost
input tablet has been developed utilizing a resistive sheet as the writing sur-
face and an ordinary pencil as a pickup stylus.

TSP system software will be written in an extension f BCPL BCPL pro-

grams will be compiled into code for a 16-bit machine called BCOM which
will be simulated by microcode in the Mcta 4 processors. The BCOM ma-

chine has an unusual addressing scheme oriented tward the addressing modes

most often used by the BCPL compiler. Much 10 programming in the TSPiwill be handled directly in microcode, and the processors in the system have
been assigned specific system tasks to take advantage of the speed potential of

specialized microcode. A simulator and assembler for Meta 4 microcode are

now available on TX-2.

An IMP for connecting TX-2, the IBM 360/67, and the TSP to the ARPA net-

work was delivered in July 1970, but connection to the network awaits instal-
lation of telephone equipment now scheduled for December 197-. The TX-2

interface hardware is connected and operating. The 36G/67 interface is

scheduled for delivery in December. Network control programs for both ma-

chines are under development.
Graph-theoretical work has yielded an improved planarity test algorithm. Its

advantages and utility will be tested in close interaction with the Laboratory's

integrated ci'cuit desigr program.

Accepted for the Air Force
Joseph R. Waterman, Lt. Col., USAF
Chief, Lincoln Laboratory Project Office

ili

CONTENTS

Summary
Glossary

vI. Terminal Support Processor (TSP) System
I

A. TSP System Hardware
2

B. TSP Console Hardware

C. TSP Programming
7D. Supporting Software
1II. ARPA Network

12
A. Network Hardware

12
B. 360/67 Network Software

13C. TX-2 Network Software
14I

A. Introduction

15
B. Description of Planarity Test

.

mV

GLOSSARY

APEX The TX-2 time-sharing system

BCOM BCPL Compilation Oriented Machine - the simulated

machine for executing TSP software

BCPL Basic C,"mbined Programming Language - an intermediate-

level language for computer programming

CMS The monitor system most widely used by on-line users of
Lincoln Laboratory's IBM 360/67 computer

CF1 Control Program - a time-sharing system for the IBM 360/67
computer

LIL Local Interaction Language - a language for ute in the TSP
system

NCP Network Control Program

RAP ROM Assembly Prc.ram - an assembler for Meta 4 microcode

TSP Terminal Support Processor

vII

GRAPHICS

I. TERMINAL SUPPORT PROCESSOR (TSP) SYSTEM

The TSP system is intended to provide local support services to interactive graphics users
of a computer network. The design is aimed at serving a maximum of 20 consoles, each con-
sisting of a keyboard, a tablet, and a pair of storage scopes. Basic interactive graphics services
include the following-

Keyboard echoing to displays
Tablet tracking and inking
Character recognition
Scaling and scissoring of picture information.

A major motivation for the TSP system design was the desire to provide effective interactive

graphics services more economically than experience indicates they can be provided in P. large
generAl purpose computer en, ironment. To accomplish this goal, the TSP design makes use of
storage scopes to eliminate the large memory requirements of refreshed displays and time-
shames a relatively powerful processor configuration.

The TSP has system programs to provide the basic 10 services required by an interactive

graphics user, but experience shows that users require greater flexibility than can be provided

by any package of system services. To meet such needs, the system provides a language called
LIL (Local Interaction Language). By writing programs in LUL, a user can control interaction
between his console input and output device.- and between his LIL program and other programs

in the computer network. LIL is a general purpose language with prim.,ives for manipulating

display structures and handling message-oriented input-output.
The TSP system has the form of a small general purpose time-sharlng system oriented

toward effective handling of small programs requiring short bursts of execution and fast response.

The TSP provides no file system, and user programs must be kept in some other computer in

the network. Although the TSP and LIL offer a general purpose capability. users are e'icouragrd
to view the system as providing a sophisticated console rather than another enmputational facility.

WFtecti.e use ot the TSP system assume, that a user can partition his overall protblem be-

tween the TSP and some other computer (or computers) in the network. If the 1(.) interactions

can be handled directly in the TSP while lare compuations are being carried on elsewhere n

the network, a satisfactory it'ract'ive environment may be presented to titv umcr. It is proxblyv

true th~t some interactive ;inlicatioru exist which cannot be adequately partitioned, but analysis
of existing lineractive programns at Lincoln Laboratory suggests that ,.,ny problem, of interest

and imporare. can be handled in this way.

The TSP is being developed as an independent nust computer in the ARPA computer nvtwork.

It will be connected to the Laboratory's IMP along with I X-Z and the IM 16,0 -7. The TSP will

send and receive message* in a nmanner identical to other boat computers . hul it will not act as

a serving host for users at other hosts.

The system architecture for tile TSP is now complete. All system hardware has been

ordered from vendors or is being constructed in the Laboratory. Delivery oL all system com-

ponents is expected during the first quarter of 1971. A description of the TSP architecture is

presented in Sees. I-A through I-C with the status of each system component indicated.

A. TSP System Hardware

1. Processors and Memory

The principal element in the TSP is a dual processor version of the Digital Scientific Cor-

poration Meta 4 computer (see Fig. 1). This is a high performance, microprogrammed, 16-bit

rachine with a typical microinstruction execution time of 90 nsec. Microinstructions are

fetched only from a plug-in, read-only memory (ROM) which has a maximum capacity in each

central processor (CP) of 4K 16-bit words, or 2K 32-bit microinstructions.

So-called "firmware" routines, in the ROM, access 16-bit words from main memory and

manipulate them in general registers in the CP. Although up to 32 registers are available in

the Meta 4, in the TSP configuration only 20 will be implemented in each CP. A typical micro-

instruction combines the contents of two of these registers and puts the result into a third.

Most of these combinations realize simple Boolean and arithmetic (Z's complement) functions.

Some of these registers also help realize special functions, some of which relate to communica-

tions outside the CP.

The main memory utilizes magnetic cores and consists of 65K words arranged in 8 banks

of 8K words each. Each bank has four ports, one for each of the two CT's and one for each of

the four input-output processors (TOPs). The ports on each bank respond in a nonclocked manner

to access requests, and are priority ranked in order to resolve simultaneous request conflicts.

The read-restore and clear-write main memory cycle time is 900 nsec. Hence, in order

to maintain maximum CP utilization of main memory exactly 10 microinstructions should be

executed for each memory access. In practice this 10 1 ratio need not be exactly maintained:

The memory will always wait asynchronously for a request, and suitable interlocking is built

into the CP request mechanism so that firmware routines will wait for memory to be available.

Each CP communicates with memory via two dedicated general registers in the CP. One is

used to send the memory address and the other to send or receive the memory word. Special

bits in microinstructions which reference these registers indicate whether a read or write op-

eration is to he initiated.

Each CP also communicates with an associated lOP via another pair of special registers in

the CP. These same special bits are used, in this case, to direct whether input-output (10) op-

erations are to be initiated and, once initiated, how to interlock the execution of microinstruc-

tions with them.

10 operations can be either direct, or on a cycle-stealing basis. In the direct case the firm-

ware selects an 10 device and causes a word transfer hetween it and the CP. The selection and

transfer paths are via the two s'pecial registers. In the cy'le-stealing case, word transfers

occur directly between the device and the memory via tic OP and the port connection to memory.

The direct mode is used to initiate the cycle-stealing transfers; no further involvement of the

CP is required until some change of state in the device requires that an asynchronous ps2udo-

interrupt he sent to the CP. Approximately Z0 cycle-stealing devices could be operating simul-

taneously in an interleaved fashion on each CP. Although a similar number of direct 10 devices

could also be running simultaneously, a CP could communicate with only one at a time.

2

The current schedule calls for the Meta 4 computer hardware to be delivered to Lincoln

Laboratory in January 1971.

2. 10 Connections

FigLre 2 shows the principal 10 devices to be conne-ted into tie TSP system. The followi.ig
paragraphs discuss each device in turn, indicating its function in the system and its present

delivery or development status.

a. IMP

The IMP connection provides access to the ARPA network, and, in addition, it will provide
the initial means of loading programs into the TSP system from either of the two other host
computers at Lincoln Laboratory (TX-2 and the IBM 360/67). A full duplex, cycle-stealing con-
nection can allow information transfers in each direction at a bit rate well in excess of the
standard IMP/HOST rate of approximately 100 kHz.

The IMP itself was delivered to the Laboratory in July 1970. The interface hardware is be-
ing built in the Laboratory and is expected to be ready for testing when the Meta 4 computer is
delivered and accepted, so that it can be used for initial checkout of the 'rSP system.

b. Secondary Storage

Within the TSP system, secondary storage is provided by a 1,000,000-word Digital Develop-
ment Corporation disk. This will have a word transfer rate of 495 kHz anzl an average access
time of 8.7 msec. Good performance of the TSP system requires that user programs and data

be rolled on and off the disk with high speed and efficiency. The disk controller achieves this by
providing both command and data chaining capability, thereby minimizing main mni i.,lry ioves
and/ .r wasted disk space and access time. All command and data word transfers use cycle-
stealing access to memory. The disk controller is being provided by Digital Scientific Cor-
poration with delivery expected during the first quarter of 1971.

c. User Console

All the user consoles together comprise three distinct I devices: the storage scope dig -
plays, the tablets, and the keyboards and indicators. Each of these devices has us own multi-
pl,-xing scheme tailored to the requirements of the device. All are being developed in the Lab-

oratory. Section I-D discusses further the console hardware.

Keyboards and Indicators:- This will be a low data rate, directly programmed

(non-cycle-stealing) device which sends information to the CP whenever a user presses a key
or button and receives information which causes lights or other indicators to turn ON or OFF.
A time-multiplexed, serial transmission scheme is being explored for this device. Every piece

of information will be in a word which contains a console identification tag.

Tablets:- Each of the tablets must he sampled for tv.'o words of u-ta between
150 and 200 times per second. Since the system must process each tablet reading before the
next arrives from the same tablet, a direct 10 connection would appear natural, but the interrupt
overhead in this mode would be unnecessarily high. By using a eycle-stealing connection to

enter the tablet data into buffer blocks in memory, a single interrupt per scan of all tablets is

sufficient. The design will avoid cycle-stealing as well as program load for inactive tablets.

3

Displays:- The multiplexer which drives the storage scopes is the display

generator itself. In the full TSP system there will be two display generators, each driving the

storage scopes at ten consoles. The LX-1 microprocessor is interposed between the Meta 4

and the display generators to provide scaling, scissoring and other services.

LX- i acts as a ,ycle-stealiaig 10 device to the Meta 4 system, but this connection operates

as a memory port expander so that LX-1 can access memory in a manner similar to a CP. LX-1

is a microprogrammed computer, also, hut its instruction memory is not a ROM. This miemory

needs to be loaded at system load time; hence, a second 10 device connection will be built to

reatie this operation. This will be a cycle-stealirtg device which will be mder the control of

the Meta 4.

d. Miscellaneous 10 Devices

The operator's console, a real-time clock, program stall and power fail alarms are stand-

ard Meta 4 10 devices which are included in the system. In addition, the Laboratory will build

a program controlled interrupt device to facilitate interprocessor communication and a special

device to capture information about memory parity errors and protection violations occvrring

in the lOP's.

B. TSP Console Hardware

1. TSP ,')inlays

The TSP display generator which consists of a vector generator and a character generator

has been constructed and connected to our SEL test computer for evaluation and test The SEL

computer simulates both the LX-t from which the display generator will be driven, and the ROM

for the character generator, which is not yet available. With this connection the full capability

of the display generator can be exercised, and the ROM contents can be verified prior to con-

struction. Test resu 3 are -.ory encouraging.

The display generator has a 10-bit resolution and uses the multiplying D-to-A converter

(DACs) developed for the TX-2 conic generators for its operation. However, these multiplying

DACs are used in a different manner. In the TX-2 conic generator, a stroke or vector is gen-

erated by a pair of parametric equations

X=X +Xt

Y-Y +Y t 0
0

where Xo, Yo, , i , and t are the starting positions, velocities and total drawing time, and

are explicitly given. A diagram of the vector generation portion of the TX-2 conic generator is

shown in Fig. 3.

In the TSP display generator a vector is produced by the following operation:

X - X0(1- V) +X1 V vI
Y Y 0 (1o ' - + Yt V 0

where X o v, X i , YI are the starting and the ending coordinates of the vector and V is the
reference to the multiplying DACs. The hardware realization of this scheme is shown in Fig. 4.
"This method of vector generation is conceptually simpler. It simplifies the programming for

4

p

drawing connected lines because only successive end points need be given. In addition, the

hardware requirement is also reduced.

One implicit parameter in the TSP scheme is time, which is contained in V. In order to

draw a vector at a constant speed, the time for V I must be proportional to the vector length.

Otherwise, intensity variation and variation of the line width will result. Experiments show

that a 25-percent speed variation is acceptable, and the TSP display generator is designed to

keep the speed variation less than that value. This is accomplished by varying both the number

of steps in the full count and the rate to which the steps are added.

The character generator operates on the same principle, except that the range is only
5 bits and the character stroke data are provided from a read-only memory. Two mode features,

the slanting of characters and a 90' rotation of the characters, are provided by the character

generator.

The character set for the TSP system is shown in Chart I. The design attempts to provide

a comprehensive set that will satisfy the needs of most users. The set includes the characters

of the ASCII, IBM 360 system, Teletype, APL\360* and TX-2 sets as well as some additional
i mathematical and phonetic symbols. The chart car, be generally divided into two halves. The

left half of the chart contains the ASCII characters. The right half contains the extra characters

needed to make up the following sets:

(a) APL mathematical symbols and upper case Greek letters,
(columns 1010, 1011, 1100).

(b) Phonetic symbols (column IIO1.

(c) Lower case Greek letters, special symbols, a nondisplaying dummy
and a symbol for all undefined character codes which happens to be the
Chinese character for forest (11111110).

Samples of the character generator outputs are shown in Figs. 5, 6, 7.

2. TSP Tablet

A low cost input tablet for the TSP was fabricated and tested. It uses a resistive sheet as

the writing surface and an ordinary pencil as the pickup stylus. It is a potentiometer device

and depends on direct contact to function. A diagram of the tablet is shown in Fig. 8.
A low frequency sinusoidal voltage is applied to a conductive sheet through four sets of

diodes, setting up a potential gradient along orie axis of the tablet during one half-cycle of the

sine wave and along the other axis during the other half-cycle. The gradient is fixed by the ma-
terial distribution of the resistive sheet, although the magnitude is time varying. At any instant

the voltage at any point on the tablet is directly related to the distance of that point from the

driven edges of the tablet.
In order to calibrate, or normalize, the tablet to some standard scale, a normalization

probe for each axis is placed at the tablet's edge just beyond the normal writing area. The out-

puts of these probes are fed to an analog comparator. When the output of a normalization probe

reaches a reference voltage, the stylus pickup voltage is sampled and converted. One conver-

sion for the horizontal position is made during the first half-cycle of the driving sinusoid and

one for the vertical position during the second half-cycle. Experiments using this tablet on TX-2

* APL\360, an IBM program product, is a conversational terminal system based on a language
described by K, E. Iverson in A Programming Language (Wiley, New York, 1962).

5

> 3 2 r' '

- 0 I : ODi -- 1< M -

--- -- --.- - ---- -

_ I

0-- 0. L It) Y x ' N '- -

o- o 0 .0 Y) 'r 0f N. OD AC~ X 2

-- A-:--70-
4-0 0 ~ ~ U ~ W I. L) I - .0

1 0 1 J 0.

showed that this staggered sampling does not produce any noticeable distortion of handwr' -n

characters, as long as the sampling frequency is above 100 THz. For the final system, the oper-

ating frequency probably will be between 150 to 200 Hz.

The tablet sheets are made from tin-oxide coated glass plates normally used as fluorescent

light diffusors and RFI shields. Driving contacts to the tablet's edges are made through ten

spring-loaded pins. Since the sampling rate is low, a single analog-to-digital converter can

serve many tablets, and since no expensive components are required, it is expected that a very

low cost multitablet system will be achieved.
The experimental tablet was built and tested on TX-Z for a period of two months. It worked

fairly weL. There was no noticeable wear on the tablet surface. The resolution and linearity
] were adequate, One problem uncovered was noise in the pickup signal which occurs when tile

stylus is making or breaking contact with the tablet surface. Several schemes for avoiding the
noise by detecting a poor contact condition have been tried, including RF impedance detector,
DC level detector, and frequency discriminator. None worked well. Currently, a scheme

using a strain gage is being investigated. In the final system, the Meta 4 firmware will do some

simple filtering on the tablet data and hopefully minimize this noise problem.

3. Keyboards and indicators

The TSP console will contain a keyboard and a small number of indicator lights and audible

signaling devices, The keyboard design assumes a standard commercially available keyboard

with, at most, a very few extra keys. Since the TSP character set is quite large, multiple

shifts will be required to key all the characters from a standard keyboard. Several commercial

keyboards having both mechanical and solid state encoding schemes have been purchased for

evaluation. Several prc 3sals for keyboard layout have been generated by representatives of

the prospective user's community. The many implications of the hardwa: e, firmware, software,

and human factor aspects of the keyboard design problem are now being studied, and keyboard

selection should take place in the very near future.

C. TSP Programming

The microprocessors in the TSP system are capable of executing simple program steps at

a rate of 10 per main memory cycle. If all the necessary system programs could be contained

in the read-only memories of the microprocessors, very high system performance would be

achieved, but only about 4K words of such memory are available and extrapolation from the TX-2

system indicates that at least 24K words of program will be required to pr, ;de all the TSP
services. It is therefore necessary to use the microprocessor to simulate . processor which

can draw its instructions from the larger but slower core memory. Such a simulated processor
will execute program steps more slowly, but programs can be much larger and can be much

more readily changed. Preliminary investigation suggests that a simple 16-bit processor can

be simulated in a Meta 4 microprocessor, using about half of the available ROM space. If the

other half of the ROM is used to execute small rottines directly in microcode, and if these rou-

tines are called frequently during normal operations, substantially higher overall performance
can be achieved. The TSP system design makes use of this technique, realizing some system

functions in "firmware" (ROM program executed directly by the microprocessors) and so-ne in
"software" (main memory programs executed by simulation). In the following discussions

the terms "program" and "routine" will be used as general terms applying equally to firmware

or software.

7

1. System Software

System software will be written in an extension of BCPL, an intermediate-level language

reasonably well suited to the kind of progran ing needed for the system and familiar to a

major segment of the programming group. BCPL compiles into a machine-independent inter-

mediate form which allows the generation of a compiler for a new machine to be accomplished

relatively easily. Some thought was given to interpreting this intermediate form directly in

firmwar v, but it appeared that little would be gained in run-time efficiency, and that the flex-

ibility of being able to write in assembly code would be lost. Instead, it was decided to define

a convenient machine language into which BCPL will be compiled. The resulting 16-bit machine

is called BCOM (for BCPL Compilation Oriented Machine) and will be simulated by firmware in

the Meta 4 microprocessors. BCPL compilation will take place in TX-2, and BCOM binary will

be transmitted to the TSP system via the IMP whenever a new system is to be generated. A

BCOM assembler will also be available in TX-2 for maintenance, 10, and other programs not

readily handled in BCPL

2. User Software

User software will be written in LIL (Local lnterac.2on Language). (See Graphics Semiannual

Technical Summary for 31 May 1970 for a discussion of the user specifications of LIL.) Imple-

mentation plans call for LIL programs to be compiled in TX-2 or some other large machine in

the network and transmitted to the TSP system in a form similar to machine language with the

exception that all addresses of executable code are symbolic. This compiled form will be loaded

into program segments by means of LIL primitives which will structure the program segmnts

so that they may be readily modified at run time. Not all LIL programs need be self-modifying,

but those representing commands to generate displays must be, if the resulting picture is to be

modified in response to a user interaction. The actual bit patterns representing the structured

program in TSP memory may be considered to be LIL machine language. Except for debugging

the system, this machine language form, which is quite arbitrary since there is no correspond-

ing real machine, need not be accessible to users or the.: programs.

The LIL machine will be simulated by a combination of firmware and software. Simple

primitives, such as many in the general purpose parts of the language, can be handled directly

in firmware, but more complex primitives, such as those for program structuring and 10 con-

trol, must be handled with software routines because the ROM space for firmware is much too

small. The software will not be realize,, in LIL machine language itself, because the LIL sym-

bolic addressing scheme requires translation of all addresses, an unnecessary source of over-

head in system routines. Instead, these LIL run-time routines will be realized in the same

fashion as -ther 'ystem software (i.e., written in BCPL and executed in a simulated BCOM).

3. The BCOM Marline

The basic problem in designing an order code for a 16-bit machine is deciding how memory

will be addressed. Since BCPL, the language for which the BCOM machine is being designed, is

a stack-oriented language, an obvious first choice is to provide a hardware stack pointer and

stack pointer relative addressing. However, not all addressing can be stack relative. Constants

known at compile time and static variables will not be on the stack. Constants may be embedded

in the executable code and accessed via program counter relative addressing. Static variables

have addresses which are known at compile time. These addresses may be embedded in the

8

executable code, and the variables accessed via program counter relative addressing followed by

an indirect cycle.

Since the value of any BCPL variable may itself be an address, it is convenient to add a level

of indirect addressing to the addressing modes described above. It is also common (e.g., in
vector application) to treat the sum of two variables as an address. This can be done conveniently

by providing an index register in addition to the stack pointer. First, the value of one variable

is loaded into the index register. Then an addressing mode is used which extracts the value of

the second variable, adds the contents of the index register, and uses the result as the effective

address.

The eight addressing modes of the BCOM machine are:

Effective Address Used to Obtain

*A + PC Value of a constant or address of a static variable

+A + SP Value of a variable on the stack

+A + X Value of a vector subscripted by a small ronstant

(*A +f PC) Value of a static variable
(+A + SP) Value of a variable whose cddress is contained in a

variable on the stack
(A + PC) + X Value of a vector subscripted by a large constant

(+A + SP) + X Value of a vector on the stack subscripted by a variabho,
or of a static vector subscripted by a variable on the
stack

((*A + PC)) + X Value of a static vector subscripted by a static variable

where the following definitions hold:

Symbol Meaning

+A Contents of the address field of the instruction,
interpreted as an 8-bit positive integer

*6 Contents of the address field of the instruction,
interpreted as an 8-bit signed integer

PC Contents of the program counter

SP Contents of the stack pointer

X Contents of the index register

(Z) Contents of memory location Z

This addressing scheme may appear strange to assembly language programmers nare familiar
with hardware-oriented machine designs. Its justification Is that these are the addressing modej

most often used by the BCPL compiler, and therefore their use makes most efficient use of the

three bits available for address-mode specification.

In other respects, the BCOM design has developed along relatively more conventional lines.
A complete basic machine has been specified with room for exteno-on to meet special demands

and to allow further optimization as the compiler develops. Meta 4 ftrmwave to simulate BCOM

has been written and is being debugged using the Meta 4 simulator on TX-2. It is expected that
delivery of a ROM to simulate BCOM will match the delivery of the Meta 4 processors.

9

4. 10 Programming

All 10 devices in the 'I SP system require some firmware to support them. For functionally

simple devices such as the disk and the IMP, firmware services will be limited to hardware

acknowledgment of interrupts and queueing of interrupt events for software processing. For the

functionally complex devices (the keyboards, indicators, tablets, and displays) firmware serv-

ices will be more extensive. By handling simple, frequently exercised routines such as tablet

tracking and inking, and display scaling and scissoring directly in firmware, advantage can be

taken of the high execution .-peed of microcode. By similarly handling infrequent tasks requiring

fast response, such as keyboard character echoing to displays, it is possible to avoid software

level interrupts with consequent gain in efficiency and simplification of software design. Current

plans call for all system software services to be called by a dispatcher working fror a task

queue. Software routines must run to completion or requeue themselves appropriately. Software

response times are therefore anticipated to be on the order of milliseconds. Situations requir-

ing faster response will be handled by firmware or 10 channel command chaining.

5. Processor Specialization

In order to take advantage of the speed potential of specialized firmware routines, the three

microprocessors in the TSP have been assigned specific system tasks. Figure 9 is a simplified

representation of the system showing the principal 10 paths, the three processors, and memory.

The principal functions performed by the processors both in software and firmware are:

Processor A (Meta 4 CPA)

BCOM simulation
Firmware Tablet tracking and stroke demarcation

Keyboard character handling and string demarcation

Network control program (NCP) functions
Scheduling

Software Disk allocation
User 10 stream management

Processor B (Meta 4 CPB)

LIL simulation
Firmware BCOM simulation

Software LIL run-time routines

Processor C (LX-1)

Translation of user display output streams
Scaling and scissoring of picture information

Firmware Display tablet tracking bugs and ink
Echo keyed input characters

Software None

It may be noted that both the Meta 4 processors (A and B) have firmware for BCOM sinula-

tion. and this arrangement will allow certain pieces of system software to be moved from one

processor to th other to equalize system load, but there is no plan to treat the two as a general

multiprocessor configuratior.

10

D. Supporting Software

TSP implementation plans call for most supporting software to operate on TX-2 with system

loading through the IMP connection. Compilers are needed for LIL and BCPL, assemblers for

BCOM and for Meta 4 and LX-1 microcode, and simulators for the Meta 4 and LX-i to allow

firmware to be substantially debugged before being committed to actual read-only memory. TX-2

editors and some debugging facilities can be used directly, but some new utility and debugging
programs are planned to allow TSP memory and machine states to be examined from TX-2 con-
soles. Work has not yet been started on the LIL and BCPL compilers. Work has just begun on
a BCOM assembler, and it should be available when needed to prepare checkout programs for the
hardware. The LX-t assembler and simulator have been available ior some time, but a few
changes are necessary to reflect hardware design modifications. The status of the Meta 4
microcode assembler and simulator are discussed in the following two sections.

1. Meta 4 Simulator

A simulator for the Meta 4 computer has been written. It operates under the APEX time-

sharing system on the TX-2 computer. The entire microinstruction set of the Meta 4 is imple-
mented in the simulator with the exception of the two input-output (10) instructions.

The simulator has been checked out by using it to run a series of small Meta 4 programs
designed to test the simulation of the various microinstructions, instruction modifiers and com-

binations thereof. The simulator appears to operate the way we understand the Meta 4 to oper-

ate. One or two programs which are known to run on a real Meta 4 have been run under the

simulator and have produced the correct results. This second phase of simulator checkout will
be continued.

The simulator has not been programmed to handle the two 10 instructions because many of

the exact details of the 10 configuration are not known. As this information becomes available,
the simulator will be expanded to handle those 10 devices which it appears it would be useful to
simulate.

The . imary use of the Meta 4 simulator will be to verify the system firmware before the
actual read-only memory is fabricated. Consequently the simulator offers many debugging and
checking features designed to alert the programmer to errors in the code he has written. When
the simulator encounters a microinstruction which is in error, the instruction is not simulated.
Instead a message is typed on the user's console. The user is to'd the location of the offending
instruction and what is wrong with it. The simulator can catch such errors as: illegal general
register usage, illegal core memory reference, illegal ROM reference. Timing checks are in-
cluded in the simulator so that the user is told if his program violates the timing restrictions
which exist in the current Meta 4 hardware when core memory is referenced.

The'user is provided with the capability of monitoring his program as it is being run by the
simulator. The user may specify thai he wishes to see the results of his program's operation
after it has run any given number of instructions. On a storage scope at the user's console, the
simulator displays the contents of the ZO general registers in the Meta 4. marking those that
have changed since the last display. The display also includes the program counter and instruc-
tion representation for tne microinstruction just simulated, as well as the location of the next
instruction to be simulated. When the user finishes looking at the display, he may hit a specific 4
key on his typewriter to caise the next instructions to be simulated and the results displayed.

III

While he is looking at his display, the simulator is in an interrupted state and control has

been passed to RAP, the microcode assembly program, allowing the symbolic debugging features

being designed for RAP to he implemented easily.

2. RAP - A Meta 4 Microcode Assembler

An assembler called RAP for the ROM of the Meta 4 was produced and is now being used.

RAP accepts symbolic source language statements representing Meta 4 microinstructions

and generates a binary TX-2 file which can be used as input to the Meta 4 simulator.

The source language format was derived from the manufacturer's assembler specifications

with modifications to adapt the language to the TX-2 environment. With only one exception,
names for instructions and modifiers were carried over directly. The format of an instruction

line was changed drastically since the manufacturer's card column format is not compatible

with the TX-2 environment which lacks card facilities. The new format allows variable size

identifiers with the order determini.g the meaning. Numbers are accepted In octal as well as

hex notation.

A working version of RAP was achieved in 2 man-days from initial conception by starting

with Mark 5 (TX-2's assembler) and making appropriate modifications (e.g., reserved symbols,

meaning of the various fields). As a result, much of the power and facilities of Mark 5 carry

over directly. For example:

RAP is an on-line interactive program in the APEX TX-Z time-sharing
system environment. Hence one may make changes to a program and
see the effects of the changes almost immediately. Many steps in the
evolution of a program are possible in one console session.
A macro facility is available.

Editing of a program may be done via any one of 3 editors available in
APEX.

Listings may be obtained via the console typewriter, console display
scope or high-speed xerographic printer.

Extensive concordance facilities are available to enable one to find all
occurrences of identifiers and to edit all occurrences at the same time.

A direct interface between RAP and the simulator is currently being designed in order to

provide an integrated symbolic assembler-debuggr for ROM programs.

U. ARPA NETWORK

Current plans for the ARPA network call for the connection of three Lincoln Laboratory

computer systems into the network. These are: (1) The Laboratory's principal service facility,

an IBM 360/67, (Z) the TX-Z, an experimental computer which has been supporting the Graphics

program, and (3) the new TSP system discussed above. This section reports the status ot work

on the connections and the supporting software for the 360/67 and TX-Z.

A. Network Hardware

The ARPA network IMP at Lincoln Laboratory is configured to handle two S0-kbit telephone

channels and thr-.: host computers - one local host and two distant boets. The local host machine

will be the Lincoln Laboratory IBM system 360 Model 67 compui r; one distant itost machine will

be the TX-Z computer and the other will be one of the CPUs in the TSP system.

The contection between TX-2 and the IMP consists of a full duplex, tIme-interleaved (simul-

taneous bidirectional) buffered data path. Although the TX-Z word size is 36 bits, the word size

1ZI

transmitted over the TX-Z 10 interface to and from the IMP is 32 bits (8 lower bits of each

quarter word in TX-2). This unusual interfacing arrangement is intended to increase the effi-

ciency of handling 8-bit byte-oriented transmissions which are expected to dominate network

traffic. The data buffering in each direction consists of a full width buffer register plus a full

width shift register. The data path for each direction is handled by a separate TX-2 10 Sequence.

Both data paths are capable of operating over direct memory access cycle-stealing channels;

however, the program is being written to cycle-steal only on the output TX-2-to-IMP data path
due to the limited number of available channels. The input data path will utilize program inter-

ript 10 facilities.

The IMP was delivered to the Laboratory in July 1970. Since that time the interface has

been under test, "echoing" messages back and forth between the IMP and TX-2 over a temporary

25-foot cable. Integration of the IMP into the network awaits installation of the T-carrier tel-
ephone equipment which is now scheduled for early December. Installation of the permanent

1 300-foot remote host cables is under way, the IMP will be moved to its final location and tested

with the pe' nanent cable prior to arrival of the telephone equipment.

The 360/67 interface has been ordered from the University of California at Santa Barbara and

is scheduled for delivery in mid-December. It is a full-duplex connection to the 360 multiplexor

channel.

B. 360/67 Network Sofware

CP-67 is the time-sharing system which runs on the Laboratory's IBM 360/67. It provides

virtual System 360 machines for on-line users. In order to provide network access to a virtual
machine, some modifications and functional extensions to the CP-67 system will be required.
To minimize the effect on CP during the developmental stages and the initial use of the network,

the IMP will be directly attached to a virtual machine and will be driven by code in the virtual

machine rather than from code in the real-core CP system. This virtual machine will contain
the Network Control Program (NCP) whose function ia to handle network scheduling and protocol.

and to control and account for network access to the CP system.
A rendezvous table will be used to schedule the virtual machine NCP which will be interrupt-

driven through the following software interfaces:

(I) User's processes communicate with the NCP through NCP commands.
For each command issued by a user. a reply is returned giving the status
ot the socket. In addtion, the NCP generates an interrupt to a user
process whenever:

A send connection is compl-aed. Le.. when an NCP control message
is received from a remote NCP which matches a previous local
request to establish a send connection

A connection is closed by the remote process or host
A message is received from a remar process and no message
iii currently stacked for the receiving process

A remote process trawimits an interrupt message.

(2) The IMP/OUT software interface will process requests to transmit
information over the network. This routine issues the 10 commands to'
the hardware interface to transmit to the IMP.

(3) The IMP/IN interface will recelve messages from the network. initializing
or modifying entries in the rendeovous table, transferring messages to
the appropriate entry in the rendeavo is table for output through a differ-
ent interface. This routine issues the 10 commands to the hardware
interface to receive data from the IMP,I!

13,

(4) The NCP software inter/ace to CP and the virtual consoles associated
with processes will be controlled by a logger routine which receives
input from the IMP/IN interface and passes output to the IMP/OUT
interface.

() rocal terminals will also be controlled by the NCP, enabling local users
to connect directly to the NCP and thus to the network without going
through a CP virtual machine.

Through the terminal associated with the NCP virtual machine, network status can be monitored
and special corrective action taken to insure the integrity of the rendezvous table.

The logger running in the NCP virtual machine will cause a new virtual machine to be created
for a network user and will establish connections between NCP sockets and the virtual machine

to simulate a local typewriter terminal. In this way, a remote network user can become a user
of the Lincoln Laboratory CP-67 system to run any of the available virtual machine operating

systems.

CMS is the monitor system most frequently run in CP virtual machines. A CMS user will
be able to:

Initialize a connection with a process in some host computer on the

network

Communicate with the remote process in a manner similar to a local
user, i.e., similar to a user logged in on a local terminal
Send and receive a file or data set over the connection

Disable the connection.

A user process running under CMS calls on a program called NET to communicate with the

NCP. At any time, the user process can make a call to a CMS service function to wait for an

interrupt from the NCP. When the interrupt occurs, the code and status information can be ob-

tained to indicate t1,e nature of the interrupt.
In order for a CMS user to act as a user of a remote process, it will be necessary to modify

the CMS system to operate the terminals in a manner supporting asynchronous input and output.
Currently, the operation of a CMS terminal is controlled by the CMS system programs such that
keyboard input is only permitted when requested by a program, and output does not interrupt

keyboard input. Since the CMS system communcatik4 with a remote process does not know
when ir-' is required and must be able to print output when it is received, CMS will be modified

to permit keyboard input to be controlled by the user and will force termimal output when it is

received.

The user interface to the NCP has already baen implemented, and work is progressing on
the IMPAN and IMP/OUT interfaces which will be completed by the time the 340/IMP hardware

interface is installed.

The logger interface should he operational in January 1971, as well as a .unber of user

facilities for conversing over the network and for transmitting files over the network.

C. TX-2 Notwork Sofwtrt

As part of an experiment to gain experaence with alternate protocols for the ARPA network.

an impleimentation of the protocol described by R. Kahn in 'Network Working Group/Request for

Commentm. No, 60, was begin. This protocol differs from the official network protocol (Host-

#tost Prolo.ol. Document Nc. I. by S. Crocker) in two major ways:

14

(1) Buffer allocation is on a per-message basis, rather than on a i r-bit
basis.

(2) T?'e NCP need allocate space only in response to local user requests,
never in response to network messages.

An NCP implementing the Kalin protocol has been completed, but results of the comparison

with the Document No. I protocol will not be available until both have been finished.

The TX-2 NCP is scheduled for completion b, mid-January 1971. The necessary changes

to other parts of the APEX system to effect typewriter communication with i6. processes

ahould be ready by mid-February.

IMl. GRAPH THEORY

A. Introduction

The problems that arise in multilevel layout of electrical circuits are related tv the graph-

theoretical problem of extracting planar suberaphs from nonplanar graphs. While the circuit

problems are both more complicated and usio. e flexible than the graph-theoretical one, advances

in applicable graph theory can produce techniques of practical value to the automation of circuit
layout.

Tho. present research has led to the development of an improved planarity test, based on a

new approach to planar graphs. It should be noted that the term planarity test is used here to

refer collectively to the testing of graphs for planarity, extrr.ction of planar subgraphs from
nonplanar graphs, and layout of planar graphs.

B. Description of Planarity Test

The early stages of research have already been reported* The motivating idea of this work

has been the observation that any planar graph, once a planar layout is known, can be drawn

'flrom the interior out;' that is, starting with a 'ingle node, one can construct the graph by

drawing each successive, Pnew* node outside he periphery of the portion completed at the pre-

ceding step; at each step, edges are added only between the new node and nodes on the periphery

just mentioned. This method of drawing will subsequently be referred to as "peripheral expan-
sionm It should be noted that this method is baed on manipulation of the nodes of the graph in

an ordered sequence; clearly, the ordering of tht Se:;tnce is critical.

The initial research was devoted to finding a I &rph-teoretical property, tubsequently
called the connected sequence property, such that: given a graph G and an ordering of the %er-

tices of G into a connected sequence. G is planar if and only if a planar drawing of G can be

constructed by *peripheral expanslon." based on this sequence. The discovery of tho connert

sequence property was complicated by the requirement that the peripheral attachmen: algorith.,11

function without back tracking.

The most difficult portion of the research was the subequeht development of an algorithm

for "sorting* vertices of a graph Into a "connected sequence.* The main features of this algorithm

are a follows. First, a sequence of _pea, called a chain sequence, Is coastructed. 41ts def-

Initlon is not important here.) The chain sequence II constructed iteratively, sarting with two

Graphics. Semiannual Technical Summary to the Advanced Research Pro)ecxs Agency. iUnoln
Laboratory. KLLT. 10 November 1069), pp. IZ-15. DDC AD-700316.

15i

paths POl PI such that Po P (i.e., " followed by Pt) is a circuit. in general, a partially com-
pleted chain sequence P0' P I..... Pk is augmented in one of the iollowing two ways:

Replace a path P 7 Pi (where P is of the form. PP P'p3) with two paths

P1 Qp ,2, where Q is a new path;
Insert a new path Q into the sequence, following a path P..

Constructing the path Q is the subqtance of the algorithm. The main feature of this con-

struction is its inherently "local" character. Briefly, if we designate nodes not yet belonging

to any P. as "untreated," and paths Pk adjacent to untreated nodes as "incomplete," then path Q

is generated by considering only the largest-indexed incomplete path P; specifically Q is con-

structed from the untreated nodes tn ,hich Pi is adjacent. Thus the algorithm is independent of
"global" properties, i.e., properties -related to arbitrary untreated nodes. Completion of the

algorithm occurs when every node in the graph is included in at least one path.

Finally, a connected sequence of nodes is easily constructed from a chain sequence

P0 , Pt P as follows. If P consists of the nodes v, 2, ve, define int (P) as the path

V2 V3 . rt* Then the sequence

PO o int(P I) o int(P 2) o... o int(P

can be proven to be a connected sequence. (If S and T are sweunoes of n _-es, then S a T

denotes "the nodes of S followed by the nodes of T")

In summary, the planarity test consists of two parts: the first is the "sorting" algorithm,

which generates a connected sequence of nodes; the second is the "peripheral expansion" algo-

rithm, wtich tests for planarity.

Advantages:- The primary advantages of the new planarity test are:

(1) High speed combined with a small data base

(2) Efficiency in extracting several planar subgraphs from a single non-
planar graph

(3) Simplification of the final process of coordinatizing the edges of a
planar graph.

Each of these advantages will be explained briefly.

Speed and Data Base:- The peripheral expansion algorithm is intrinsically very simple

and fast; at each step it operates merely on the periphery of a partially constructed graph.

The speed and data eeonomy of the sorting algorithm stem from the algorithm's depending only

on local properties of the grapn, as explained above.

The sorting algorithm, the slower of the two parts, has an absolute upper bound of order

Y-i2 (m - number of edges). This beund is pessimistic, however, and in actual practice the al-

gorithm may be considerably faster.

Planar;ty Extraction'- In tht, layout of .onplanar networks, one often wishes to extract

-everal planar ,oubgraphs in an attempt to best watch electrical requirements. The present

algorithm permits such multiple extraction with minimum effort: one can simply re-apply the

highly officient peripheral expansion alzorith,., with varying heuristics for discarding nonplanar

edges.

t16

Coordinatization:- Even after obtaining a planar graph, one still must obtain geometric
coordinates for the lines (and nodes) of the graph. This process is often based on a "checker-
board" or "ripple" version of Lee's routing algorithn.' which is siow and very costly in terms

of storage.

The present algorithm facilitates a much simpler approach. Because the graph is con-

structed "from the interior out," a planar coordinatization can be obtained by using the idea of
an "envelope" - an expanding rectangle enclosing the periphery of the partially drawn graph.
The four points of this rectangle contain all the information needed to coordinatize the arcs con-

necting the current periphery with the next point in the connected sequence.
This coordinatization algorithm is suitable for rapidly generating a planar display. How-

ever, further computation would probably be necessary to increase the density and redu.ce the

size of the graph.

Applications:- When programming is completed, the algorithm will be tested in close

interaction with the needs of the Laboratory's current integrated circuits design program.1

I I

L MAIN '

processor confiuration. cP~

1 10

DIVICES

I Vox' I SM 1

I I

* C. Y. Lee, "An Algorithm for Path Connections and Its Applications," IRE Trans. ElectronicComputers EC-.O, 346-365 (196).

7 "-7

(Mae)

D DSPLAY
GENERATOR CONTROL

MEMORY lope

I_[1 NDICATORS INTERRUPTS

57R* SCOPESP

Fi YOA. 2 Prnia 0d Vicsi S ytm

KNE8 R

REEEC Ik
INPUTj

MDDAC

0-11

NOT REPRODUCIBLE

Fig. 5. TSP character set, normal mode, Fig. 6. TSP character set, slant mode,
photographed from Tektronix 611 storage some conditions as Fig. 5.
scope driven from TSP character generator
connected to SEL 810A test computer.

Fig. 7. Sample of text by TSP character generator, same
conditions as Fig. 5.

NlOT REPR

20

7 l? -9-6 1 REFERENCE MULTIPLEXER

INPUT

COMPARATOR -

FNORMALWRITING

AREA -4- .. NORMALIZATION

FROM
OTHEF,

15O TO 200 Hi A

SAMPLE 10-BIT
AND A'O

HOLD CON4VERTERI _____ ULTIPLEXER
OUTPUT TO TSP

Fig. 8. TSP tablet system.

IIS
Fig. 9. Simplified diagram of TSP system. PROCESSOR A EPROCESSOR 8 PROCESSOR C

(META 4) (MEA 9LKII

KEYBOARDS INDICATORS

TABLETS STORAGE SCOPES

CONSOLES

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classiification, of title, body of abstractinad Indexing annoltion smust be entered whmen tile overell report is classified)

3. REPORT TITLE

Graphics, Semiannual Technical Summary to the Advanced Research Projects Agency

4. DESCRIPTIVE NOTES (2r.po of report and inclusive date.)

Semiannual Technical Summary - 1 June through 30 November 1970

S. AUTHOR(S) (Loet name. first name., Initial)

Porgie, James W.

S. REPORT DATE 7s. TOTAL NO. OF PAGES r,'~ NO. OF REFS

30 November 1970 281 3

9a, ORIGINATOR'S REPORT NUMBER(S)

$a. CONTRACT OR GRANT NO. F19628-70C0230 Semiannual Technical Summary
for 30 November 1970

h. PROJECT NO. ARPA Order 691
Ob. OTHER REPORT NOWS (Any odiees machere Mhat way be

asel*ed #il& report)

c. ESD-TR-70-355

10. AVAILABILITYILIMITATION NOTICES

This document has been approved for public release and sale; Its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None { Advanced Research Projects A, cy,None Department of Defense

1.A4 AC T

'%System architecture for the Terminal Support Processor (TSP) system in now complete. The principal element in
the system is a dual processor version of the Digital Scientific Corporation Meta 4 microprogramnmed computer. Main
memory (magnetic core) consists of 8 banks of 8K 16-bit words. Secondary memory is provided by a one -million -word
Digital Development Corporation disk having a 495-kHz transfer rate and an average access time of 8. 7 msec. The TSP
is connected via an Interface Message Processor (-MP) to the ARPA computer network and other Lincoln Laboratory
computers. Consolen consist of a keyboard, a small number of visual and audible Indicators, a graphic input tablet.
and a pair of storage scopes. Displays are driven trom a shared vector and character generator which is now complete
and being tested. An extensive character set includes most of the commonly used sets. A low cost input tablet he* been
developed utilizing a resistive sheet as the writing surface and an ordinary pencil as a pickup stylus()*-_

TSP system software will be written in an extension of BCPL. BCPL programs will be compiled into codefor a
16-bit machine called 1COM which will be simulated by microcode In the Meta 4 processors. The BCOM machine has
an unusual addressing scheme oriented toward the addressing modes most often used by the B1CPL compiler. Much 10
programming in the TSP will be handled directly in microcode, and the processors in the system hive been assigned
specific system tasks to take advantage of the speed potential of specialized microcode. A simulator and assembler for
Mets 4 mic rocode are now available an TX -2.

An IMP for connecting TX-2. the IBM 360/67. and the TSP to the ARPA network was delivered in July 1970, but con-
nertion to the network awaits installation of telephone equipment now scheduled for December 1970. The TX-2 inter-
face hardware is connected and operating. The 360/67 Interface Is scheded for delivery is December. Network con-
troul programs for both machines are under development.

Gra,,h -theoretical work has yielded an improved planarity tat algorithm. its adVantag' and utility will be tested
in close interaction with the Laboratory.s integrated circuit design program.

IA. KIEV 11OCO

graphical communication time sharing display systems
TX -2 man-machine programmung languges

22 LJNCI.AMIPIKDn

security Calflwcatioa

