e 1

P e §

UNIX™ SUPPORT FROM BERKELEY

4.3 BSD with NFS

User’'s Supplementary
Documents

USD

UNIX is a trademark of Bell Laboratories



UNIX User’s Supplementary )

4.3 Berkeley Software Distributigg

February, .1‘986” N

A.'f: - \‘r‘

This volume contains documents ‘which supplement ‘the matral Paq,ﬂa in The Unix Us i »
ence Manual for the Virtual VAX-11 version of the system .as distributed by.U.C¥*B
Volumes 2a and 2b as provided by Bell Laboratories.

Getting Started i
Unix for Beginners - Second Edition - Msm
An introduction to the most basic uses of the system.
Learn - Computer-Aided Instruction on UNIX (Second Edition) ' ' L USD:?,
. Describes a computer-aided instruction program that walks new users througb Mbuws of o
files, the editor, and document prepararation software. L '

O

Basic Utilitieu
An Introduction to the UNIX Shell

Steve Bourne’s introduction to the capabilities of sh, a cammand interpréter es.pemally
popular for writing shell scripts. ;

An Introduction to the C shell : S USD‘4

This introduction to c¢sh, (a command mterprcter popular for interactive work) - dgsgib?es
many commonly used UNIX commands, assumes little prior knowledge of UNlX: aéud‘ has

a glossary useful for beginners. .

DC - An Interactive Desk Calculator o USD.S
A super HP calculator, if you do not need floating point.

BC - An Arbitrary Precision Desk-Calculator Language USDxé

A front end for DC that provides infix notation, control flow, and built-in functions.

Communicating with the World

Mail Reference Manual ‘ U7
Complete details on one of the programs for sending and reading your mail. ;

The Rand MH Message Handling System o Q‘SQ B
This system for managing your computer mail uses lots of small programs, instead. bf oge W
large one. )

How to Read the Network News ‘ ~ USE’9 Ry

Describes how news works (generally) and some alternatives for reading it, readnews and
vnews.



USD Contents (315

~ How to Use USENET Effectively USD:10
B Dcscﬁbces the customs, protocols, a pepte. .of network news, plus answers to the ques-
tlons ‘most; frqquenﬁ'y‘ ‘asked by newcomers to the network.
Notesﬁle Rei?t‘énce Manual USD:11
’ Tlus feature-packed system for maintaining computer-aided discussion groups is also use-
ful for réitling netnews.
Text Ednﬂlqng Q; A
A Tutonal fntro&uctxon p the Unix, Text Editor - USD:12
| An easy wayago gpg started with the line editor, ed.
Advanced Edmng on Umx USD:13
' The mﬂiteb
 Edit: A Tutonal 3 anae e USD:14

"Aninttodiction to edit, a line-oriented editor which is a version of ex, assuming no pre-
“'vious knowledge of UNIX or text editing.. .-

An lntrodusm@r,to Display Editing with Vi USD:15
" "The document to learn to use the vi screen editor.
Ex Reference Manual (Version 3.7) USD:16
' The final reference for the ex editor, which underlies both edit and vi.
Jove ManudffrUNIX Users USD:17

‘Jove is a srifali2¥eiPidocli{tnting, custoxmzable display edxtor based on EMACS. A plau-
sible alternative to vi.

;SED - A Non-interactive Text Editor . USD:18
Descnbes a one-pass variant of ed useful as a filter for processing large files.
AWK A Pattern Scanning and Processing Language (Second Edition) USD:19
' A program for data selection and transformation.
Docmnent Preparation
Typing Documents on UNIX: Using the -ms Macros with Troff and Nroff ’ USD:20

Describes and gives examples of the basic use of the typesetting tools and “-ms”, a fre-
quently used package of formatting requests that make it easier to lay out most documents.

A Revised Version of -ms USD:21
L A brief description of the Berkeley revisions made to the ~ms formatting macros for nroff
jamn'd troff.
Writing Papers with nroff using -me USD:22
 Another popular macro package for nroff :
-me Reference Manual USD:23
" The final word on -me.
NROFF/TROFF User's Manual USD:24
Extremely detailed information about these document formatting programs.
A TROFF Tutorial _ USD:25

An introduction to the most basic uses of troff for those who really want to know such
things, or want to write their own macros.



USD Coniténts. 1

A System for Typesetting Mathematics i
Describes egn, an easy-to-learn language for hxgh-quah ‘maﬁmmﬁucal typqsettxng; 03

L n"ﬁ“f..‘ﬂ‘a

Typesetting Mathematics - User’s Guide (Second Edmon) ~
More details about how to use egn. g .
YfeTE ) MIIREEET e

Tbl - A Program to Format Tables
A program for easily typesetting tabular material.
Refer - A Bibliography System
Y ‘)I lg.r'\

An introduction to one set of tools used to maintain bibliographic Ida'ttal:)'ast.:s 'I'he majorv
program, refer, is used to automatically retrieve and format. the references base& ot doctr: ¥
ment citations. ; o

Some Applications of Inverted Indexes on the UNIX System
Mike Lesk’s paper describes the refer programs in a somewhat larger context.
BIB - A Program for Formatting Bibliographies O
This is an alternative to refer for expanding citations in documents.
Writing Tools — The STYLE and DICTION Programs sy ik
These are programs which can help you understand and improve your writing style.

o
,[\

Amusements ;
A Guide to the Dungeons of Doom T

An introduction to the popular game of rogue, a fantasy game which is one of. th
known users of VAX cycles.

USD: 34,

Star Trek N
You are the Captain of the Starship Enterpnse. Wipe out the Klmgons and save the .
Federation.

S ol nnan.
. ’Sri.'v s VERRRD S PRSI

Dest: 18119
Jaon .,:L

t
g

no!

uoprensS Emn f

e . 40 18tione
jsuasV sorsisisd s

< no br0w fond st
CnsM evseld FIOSTVIRGAY

v beistel vismetzd
eheinT FR0AT £

ST O I A

TEw T e ELG

Pos 8 43
.t
31

wf”.
o



b

80500 T



UNIX User’s Supplementary Documents
(USD) 4

4.3 Berkeley Software Distribution
Virtual VAX-11 Version

April, 1986

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720






UNIX User’s Supplementary Documents
(USD)

4.3 Berkeley Software Distribution
Virtual YAX-11 Version

April, 1986

-Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720



Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Documents USD:1, 2, 3, 5, 6, 12, 13, 18, 19, 20, 24, 25, 26,
27, *28, 30, and 32 are copyright 1979, AT&T Bell
Laboratories, Incorporated. Holders of UNIX™/32V, System
III, or System V software licenses are permitted to copy these
documents, or any portion of them, as necessary for licensed
use of the software, provided this copyright notice and
_ statement of permission are included. - '

Documents USD:8, 9, 10, 11, 17, and 31 are part of the user
contributed software.

This manual reflects system enhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by
the Naval Electronics Systems Command under contract No.
N00039-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency or of the US
Government.



UNIX For Beginners

USD:1-1

UNIX For Beginners — Second Edition

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated for 4.3BSD by Mark Seiden)

ABSTRACT

This paper is meant to help new users get started on the UNIX? operating system.

It includes:

e basics needed for day-to-day use of the system — typing commands, correcting
typing mistakes, logging in and out, mail, inter-terminal communication, the file
system, printing files, redirecting I/O, pipes, and the shell.

e document preparation — a brief discussion of the major formatting programs and
macro packages, hints on preparing documents and capsule descriptions of some

supporting software.

e UNIX programming — using the editor, programming the shell, programmxng in

C, other languages and tools.
e An annotated UNIX bibliography.

INTRODUCTION

From the user’s point of view, the UNIX operat-
ing system is easy to learn and use, and presents few
of the usual impediments to getting the job done. It
is hard, however, for the beginner to know where to
start, and how to make the best use of the facilities
available. The purpose of this introduction is to
help new users get used to the main ideas of the
UNIX system and start making effective use of it
quickly.

You should have a couple of other documents
with you for easy reference as you read this one.

The most important is The UNIX Programmer’s.

Manual; it’s often easier to tell you to read about
something in the manual than to repeat its contents
here. The other useful document is A Tutorial Intro-
duction to the UNIX Text Editor, which will tell you
how to use the editor to get text — programs, data,
documents — into the computer.

A word of warning: the UNIX system has
become quite popular, and there are several major
variants in widespread use. Of course details also

1 UNIX is a trademark of AT&T Bell Laboratories.

change with time. So although the basic structure of
UNIX and how to use it is common to all versions,
there will certainly be a few things which are
different on your system from what is described
here. We have tried to minimize the problem, but
be aware of it. In cases of doubt, this paper
describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type.
what to do about mistakes in typing, how to log
out. Some of this is dependent on which system
you log into (phone numbers, for example) and
what terminal you use, so this section must
necessarily be supplemented by local informa-
tion.

2. Day-to-day Use: Things you need evervy day to
use the system effectively: generally useful com-
mands; the.file system.

3. Document Preparation: Preparing manuscripts
is one of the most common uses for UNIX sys-
tems. This section contains advice, but not
extensive instructions on any of the formatting



USD:1-2

tools.

4. Writing Programs: UNIX is an excellent system

" for developing programs. This section talks
about some of the tools, but again is not a
tutorial in any of the programming languages
provided by the system.

5. A UNIX Reading List. An annotated bibliogra-
phy of documents that new users should be
aware of.

I. GETTING STARTED
Logging In

You must have a UNIX login name, which you
can get from whoever administers your system. You
also need to know the phone number, unless your
system uses permanently connected terminals. The
UNIX system is capable of dealing with a wide
variety of terminals: Terminet 300’s; Execuport, TI
and similar portables; video (CRT) terminals like
the HP2640, etc.; high-priced graphics terminals like
the Tektronix 4014; plotting terminals like those
from GSI and DASI; and even the venerable Tele-
type in its various forms. But note: UNiX is strongly
oriented towards devices with lower case. If your
terminal produces only upper case (e.g., model 33
Teletype, some video and portable terminals), life
will be so difficult that you should look for another
terminal.

Be sure to set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed, upper/lower case mode,
full duplex, even parity, and any others that local
wisdom advises. Establish a connection using what-
ever magic is needed for your terminal; this may
involve dialing a telephone call or merely flipping a
switch. In either case, UNIX should type “login:” at
you. If it types garbage, you may be at the wrong
speed; check the switches. If that fails, push the
“break™ or “interrupt” key a few times, slowly. If
that fails to produce a login message, consult a guru.

When you get a login: message, type your login
name in lower case. Follow it by a RETURN; the
system will not do anything until you type a
RETURN. If a password is required, you will be
asked for it, and (if possible) printing will be turned
off while you type it. Don’t forget RETURN.

The culmination of your login efforts is a
“prompt character,” a single character that indicates
that the system is ready to accept commands from
you. The prompt character is usually a dollar sign $
or a percent sign %. (You may also get a message of
the day just before the prompt character, or a
notification that you have mail.)

UNIX For Beginners

Typing Commands

Once you’ve seen the prompt character, you can
type commands, which are requests that the system
do something. Try typing

date

followed by RETURN. You should get back some-
thing like

Mon Jan 16 14:17:10 EST 1978

Don’t forget the RETURN after the command, or
nothing will happen. If you think you’re being
ignored, type a RETURN; something should happen.
RETURN won’t be mentioned again, but don’t forget
it — it has to be there at the end of each line.

Another command you might try is who, which
tells you everyone who is currently logged in:

who
gives something like

mb tty0l Jan 16 09:11
ski tty0S Jan 16 09:33
gam ttyll Jan 16 13:07

The time is when the user logged in; “ttyxx” is the
system’s idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer t0 a non-existent command, you
will be told. For example,-if you type

whom
you will be told
whom: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or less
mysterious results.

Strange Terminal Behavior

Sometimes you can get into a state where your
terminal acts strangely. For example, each letter
may be typed twice, or the RETURN may not cause
a line feed or a return to the left margin. You can
often fix this by logging out and logging back in.t
Or you can read the description of the command
stty in section 1 of the manual. To get intelligent
treatment of tab characters (which are much used in
UNIX) if your terminal doesn’t have tabs, type the

t In Berkeley Unix, the command “reset<control-j>" will
ofien reset a terminal apparently in a strange state because a
fullscreen editor crashed.



UNIX For Beginners

command
stty -tabs

and the system will convert each tab into the right
number of blanks for you. If your terminal does
have computer-settable tabs, the command tabs will
set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it before
RETURN has been typed, there are two ways to
recover. The sharp-character # erases the last char-
acter typed; in fact successive uses of # erase charac-
ters back to the beginning of the line (but not
beyond). So if you type badly, you can correct as
you go:

.dd#atte##e

is the same as date.}

The at-sign @ erases all of the characters typed
so far on the current input line, so if the line is irre-
trievably fouled up, type an @ and start the line
over.

What if you must enter a sharp or at-sign as
part of the text? 'If you precede either # or @ by a
backslash \, it loses its erase meaning. So to enter a
sharp or at-sign in something, type \# or \@. The

system will always echo a newline at you after your

‘at-sign, even if preceded by a backslash. Don’t
worry — the at-sign has been recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash is
used extensively in UNIX to indicate that the follow-
ing character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that you
can type as fast as you want, whenever you want,
even when some command is typing at you. If you
type during output, your input characters will appear
intermixed with the output characters, but they will
be stored away and interpreted in the correct order.
So you can type several commands one after another
without waiting for the first to finish or even begin. -

Stopping a Program

You can stop most programs by typing the char-
acter “DEL” (perhaps called “delete” or “rubout” on
your terminal). The “interrupt” or “break™ key
found on most terminals can also be used.t In a few
programs, like the text editor, DEL stops whatever

} Many installations set the erase character for display termi-
nals to the delete or backspace key. “stty all” tells you what it
actually is.

+ In Berkeley Unix, “control-c” is the usual way to stop pro-
grams. “stty all” tells you the value of your “intr” key.

USD:1-3

the program is doing but leaves you in that program.
Hanging up the phone will stop most programs.t

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

and let someone else use the terminal you were on.*
It is usually not sufficient just to turn off the termi-
nal. Most UNIX systems do not use a time-out
mechanism, so you’ll be there forever unless you
hang up.

Mail
When you log in, you may sometimes get the
message

You have mail.

UNIX provides a postal system so you can communi-
cate with other users of the system. To read your
mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first.t After each message, mail -
waits for you to say what to do with it. The two
basic responses are d, which deletes the message,
and RETURN, which does not (so it will still be there
the next time you read your mailbox). Other
responses are described in the manual. (Earlier ver-
sions of mail do not process one message at a time,
but are otherwise similar.)

How do you send mail to someone else? Sup-
pose it is to go to “joe” (assuming “joe” is
someone’s login name). The easiest way is this:

mail joe

now type in the text of the letter

on as many lines as you like ...

After the last line of the letter

type the character “control-d”,

that is, hold down “control” and type
a letter “d”.

And that’s it. The “control-d” sequence, often
called “EOF” for end-of-file, is used throughout the
system to mark the end of input from a terminal, so
you might as well get used to it.

For practice, send mail to yourself. (This isn’t
as strange as it might sound — mail to oneself is a
handy reminder mechanism.)

$ If you use the c shell, programs running in the background
continue running even if you hang up.

* "control-d” and "logout” are other alternatives.

$ The Berkeley mail program lists the headers of some
number of unread pieces of mail in the order of their receipt.



USD:1-4

There are other ways to send mail — you can
send a previously prepared letter, and you can mail
to a number of people all at once. For more details
see mail(1). (The notation mail(1) means the com-
mand mail in section 1 of the UNIX Programmer’s
Manual.)

Writing to other userst

At some point, out of the blue will come a mes-
sage like

Message from joe tty07...

accompanied by a startling beep. It means that Joe
wants to talk to you, but unless you take explicit
action you won’t be able to talk back. To respond,
type the command
write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will appear
on yours and vice versa. The path is slow, rather
like talking to the moon. (If you are in the middle
of something, you have to get to a state where you
can type a command. Normally, whatever program
you are running has to terminate or be terminated.
If you’re editing, you can escape temporarily from
the editor — read the editor tutorial.)

A protocol is needed to keep what you type

from getting garbled up with what Joe types. Typi-
" cally it’s like this:

Joe types write smith and waits.

Smith types write joe and waits.

Joe now types his message (as many lines as
he likes). When he’s ready for a reply, he sig-
nals it by typing (o), which stands for “over”.
Now Smith types a reply, also terminated by
(o).

This cycle repeats until someone gets tired;
he then signals his intent to quit with (00),
for “over and out”.

To terminate the conversation, each side
must type a *“control-d” character alone on a
line. (*“Delete” also works.) When the other
person types his “control-d”, you will get the
message EOF on your terminal. -

If you write to someone who isn’t logged in, or
who doesn’t want to be disturbed, you’ll be told. If
the target is logged in but doesn’t answer after a
decent interval, simply type “control-d”.

t Although “write” works on Berkeley UNIX, there is a much
nicer way of communicating using display-terminals — "talk”
splits the screen into two sections, and both of you can type
simultaneously (see talk(1)).

UNIX For Beginners

-

On-line Manual

The UNIX Programmer’s Manual is typically
kept on-line. If you get stuck on something, and
can’t find an expert to assist you, you can print on
your terminal some manual section that might help.
This is also useful for getting the most up-to-date
information on a command. To print a manual sec-
tion, type ‘“man command-name”. Thus to read up
on the who command, type

man who
and, of course,
man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro-
gram called learn, which provides computer aided
instruction on the file system and basic commands,
the editor, document preparation, and even C pro-
gramming. Try typing the command

learn

If learn exists on your system, it will tell you what to
do from there. - ' '

II. DAY-TO-DAY USE

Creating Files — The Editor

If you have to type a paper or a letter or a pro-
gram, how do you get the information stored in the
machine? Most of these tasks are done with the
UNIX “text editor” ed. Since ed is thoroughly docu-
mented in ed(1) and explained in A Tutorial Intro-
duction to the UNIX Text Editor, we won’t spend
any time here describing how to use it. All we want
it for right now is to make some files. (A file is just
a collection of information stored in the machine, a
simplistic but adequate definition.)

To create a file called junk with some text in it,
do the following:

ed junk  (invokes the text editor)

a (command to “ed”, to add text)
now type in

whatever text you want ...

. (signals the end of adding text)

The “.” that signals the end of adding text must be
at the beginning of a line by itself. Don’t forget it,
for until it is typed, no other ed commands will be
recognized — everything you type will be treated as
text to be added.

At this point you can do various editing opera-
tions on the text you typed in, such as correcting
spelling mistakes, rearranging paragraphs and the
like. Finally, you must write the information you



UNIX For Beginners

have typed into a file with the editor command w:
w

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per-
manently, so if you hang up and go home the infor-
mation is lost.t But after w the information is there
permanently; you can re-access it any time by typing

ed junk

Type a q command to quit the editor. -(If you try to
quit without writing, ed will print a ? to remind you.
A second q gets you out regardless.)

Now create a second file called temp in the same
manner. You should now have two files, junk and
temp.

What files are out there?

The Is (for “list””) command lists the names (not
contents) of any of the files that UNIX knows about.

If you type

Is
the response will be

junk

temp
which are indeed the two files just ‘created. The
names are sorted into alphabetical order automati-

cally, but other variations are possible. For exam-
ple, the command

Is -t

causes the files to be listed in the order in which
they were last changed, most recent first. The -l
option gives a “long” listing:

Is -1
will produce something like

-rw-rw-rw- 1bwk 41 Jul 22 2:56 junk
-rw-rw-rw- 1 bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the file.
The 41 and 78 are the number of characters (which
should agree with the numbers you got from ed).
bwk is the owner of the file, that is, the person who
created it. The -rw-rw-rw- tells who has permis-
sion to read and write the file, in this case everyone.

Options can be combined: Is -It gives the same
thing as Is -1, but sorted into time order. You can
also name the files you're interested in, and Is will
list the information about them only. More details

t This is not strictly true — if you hang up while editing, the
data you were working on is saved in a file called ed.hup.
which you can continue with at your next session.

USD:1-5

can be found in Is(1).

The use of optional arguments that begin with a
minus sign, like -t and -It, is a common convention
for UNIX programs. In general, if a program accepts
such optional arguments, they precede any filename
arguments. It is also vital that you separate the vari-
ous arguments with spaces: Is-1 is not the same as
Is -l

Printing Files

Now that you’ve got a file of text, how do you
print it so people can look at it? There are a host of
programs that do that, probably more than are
needed.

One simple thing is to use the editor, since
printing is often done just before making changes
anyway. You can say

ed junk
1,$p

ed will reply with the count of the characters in junk
and then print all the lines in the file. After you
learn how to use the editor, you can be selective
about the parts you print.

There are times when it’s not feasible to use the
editor for printing. For example, there is a limit on
how big a file ed can handle (several thousand lines).
Secondly, it will only print one file at a time, and
sometimes you want to print several, one after
another. So here are a couple of alternatives.

First is cat, the simplest of ail the printing pro-
grams. cat simply prints on the terminal the con-
tents of all the files named in a list. Thus

cat junk
prints one file, and
cat junk temp

prints two. The files are simply concatenated (hence
the name “cat’”) onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list. The
difference is that it produces headings with date,
time, page number and file name at the top of each
page, and extra lines to skip over the fold in the
paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a new
page and print temp neatly.
pr can also produce multi-column output:
pr -3 junk

prints junk in 3-column format. You can use any
reasonable number in place of “3” and pr will do its
best. pr has other capabilities as well; see pr(1).



USD:1-6

It should be noted that pr is not a formatting
program in the sense of shuffling lines around and
justifying margins. The true formatters are nroff and
troff, which we will get to in the section on docu-
ment preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under opr
and lpr. Which to use depends on what equipment
is attached to your machine.

Shuffling Files About

Now that you have some files in the file system
and some experience in printing them, you can try
bigger things. For example, you can move a file
from one place to another (which amounts to giving
it a new name), like this:

mv junk precious

This means that what used to be “junk” is now
“precious”. If you do an Is command now, you will
get

precious
temp

Beware that if you move a file to another one that
already exists, the already existing contents are lost
forever. :

If you want -to make a copy of a file (that is, to
have two versions. of something), you can use the cp
command:

cp precious templ

makes a duplicate copy of precious in templ.

Finally, when you get tired of creating and mov-
ing files, there is a command to remove files from
the file system, called rm.

rm temp templ

will remove both of the files named.

You will get a warning message if one of the
named files wasn’t there, but otherwise rm, like most
UNIX commands, does its work silently. There is no
prompting or chatter, and error messages are occa-
sionally curt. This terseness is sometimes discon-
certing to newcomers, but experienced users find it
desirable.

What’s in a Filename

So far we have used filenames without ever say-
ing what’s a legal name, so it’s time for a couple of
rules. First, filenames are limited to 14 characters,
which is enough to be descriptive.} Second, although
you can use almost any character in a filename,
common sense says you should stick to ones that are

t In 4.2 BSD the limit was extended to 255 characters.

UNIX For Beginners

visible, and that you should probably avoid charac-
ters that might be used with other meanings. We
have already seen, for example, that in the Is com-
mand, Is -t means to list in time order. So if you
had a file whose name was -t, you would have a
tough time listing it by name. Besides the minus
sign, there are other characters which have special
meaning. To avoid pitfalls, you would do well to
use only letters, numbers and the period until you’re
familiar with the situation.

On to some more positive suggestions. Suppose
you’re typing a large document like a book. Logi-
cally this divides into many small pieces, like
chapters and perhaps sections. Physically it must be
divided too, for ed will not handle really big files.
Thus you should type the document as a number of
files. You might have a separate file for each
chapter, called

chapl
chap2
etc...

Or, if each chapter were broken into several files,
you might have

chapl.1
chapl.2
chapl.3
chap2.1
chap2.2

You can now tell at a glance where a particular file
fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the whole
book? You could say

pr chapl.1 chapl.2 chapl.3 ......

but you would get tired pretty fast, and would prob-
ably even make mistakes. Fortunately, there is a
shortcut. You can say

pr chap*

The * means “anything at all,” so this translates into
“print all files whose names begin with chap”, listed
in alphabetical order.

This shorthand notation is not a property of the
pr command, by the way. It is system-wide, a ser-
vice of the program that interprets commands (the
“shell,” sh(1)). Using that fact, you can see how to
list the names of the files in the book:

Is chap*

produces



UNIX For Beginners

chapl.1

chapl.2
chapl.3

The * is not limited to the last position in a filename
— it can be anywhere and can occur several times.
Thus

rm *junk* *temp*

removes all files that contain junk or temp as any
part of their name. As a special case, * by itself
matches every filename, so

pr*
prints all your files (alphabetical order), and
rm *

removes all files. (You had better be very sure that's
what you wanted to say!)

The * is not the only pattern-matching feature
available. Suppose you want to print only chapters
1 through 4 and 9. Then you can say

or chap[12349]*

The [...] means to match any of the characters inside

the brackets. A range of consecutive letters or digits

can be abbreviated, so you can also do this with
pr chap({1-49]* '
Letters can also be used within brackets: [a-z]
matches any character in the range a through z.
The ? pattern matches any single character, so
Is?
lists all files which have single-character names, and
Is -1 chap?.1
lists information about the first file of each chapter
(chapl.1, chap2.1, etc.).

Of these niceties, * is certainly the most useful,
and you should get used to it. The others are frills,
but worth knowing.

If you should ever have to turn off the special
meaning of *, ?, etc., enclose the entire argument in
single quotes, as in

Is'?

We’ll see some more examples of this shortly.

What’s in a Filename, Continued

When you first made that file called junk, how
did the system know that there wasn’t another junk
somewhere else, especially since the person in the
next office is also reading this tutorial? The answer
is that generally each user has a private directory,
which contains only the files that belong to him.

USD:1-7

When you log in, you are “in” your directory.
Unless you take special action, when you create a
new file, it is made in the directory that you are

‘currently in; this is most often your own directory,

and thus the file is unrelated to any other file of the
same name that might exist in someone else’s direc-
tory.

The set of all files is organized into a (usually
big) tree, with your files located several branches
into the tree. It is possible for you to “walk”
around this tree, and to find any file in the system,
by starting at the root of the tree and walking along
the proper set of branches. Conversely, you can
start where you are and walk toward the root.

Let’s try the latter first. The basic tools is the
command pwd (“print working directory”), which
prints the name of the directory you are currently in.

Although the details will vary according to the
system you are on, if you give the command pwd, it
will print something like

/usr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory /usr,
which is in turn in the root directory called by con-
vention just /. (Even if it’s not called /usr on your
system, you will get something analogous. Make the.
corresponding mental adjustment and read on.)

If you now type
Is /usr/your-name

you should get exactly the same list of file names as
you get from a plain Is: with no arguments, Is lists
the contents of the current directory; given the name
of a directory, it lists the contents of that directory.

Next, try
Is /usr

This should print a long series of names, among
which is your own login name your-name. On many
systems, usr is a directory that contains the direc-
tories of all the normal users of the system, like you.

The next step is to try
Is /

You should get a response something like this
(although again the details may be different):

bin

dev

etc

lib

tmp

usr

This is a collection of the basic directories of files
that the system knows about; we are at the root of
the tree.



USD:1-8

Now try
cat /usr/your-name/junk
(if junk is still around in your directory). The name
/usr/your-name/junk

is called the pathname of the file that you normally
think of as “junk”. “Pathname™ has an obvious
meaning: it represents the full name of the path you
have to follow from the root through the tree of
directories to get to a particular file. It is a universal
rule in the UNIX system that anywhere you can use
an ordinary filename, you can use a pathname.

Here is a picture which may make this clearer:

(root)
/N
/ \\
bin etc usr dev tmp
/IN JIN /N /N /TN
/ |\
/ \
adam eve mary
/ / \ \
./ \  junk
junk temp

Notice that Mary’s junk is unrelated to Eve’s.

This isn’t too exciting if all the files of interest
are in your own directory, but if you work with
someone else or on several projects concurrently, it
becomes handy indeed. For example, your friends
can print your book by saying

pr /usr/your-name/chap*

Similarly, you can find out what files your neighbor
has by saying

Is /usr/neighbor-name
or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking
around in his files, or vice versa, privacy can be
arranged. Each file and directory has read-write-
execute permissions for the owner, a group, and
everyone else, which can be set to control access.
See Is(1) and chmod(l) for details. As a matter of
observed fact, most users most of the time find
openness of more benefit than privacy.

As a final experiment with pathnames, try
Is /bin /usr/bin

Do some of the names look familiar? When you run
a program, by typing its name after the prompt char-
acter, the system simply looks for a file of that
name. It normally looks first in your directory
(where it typically doesn’t find it), then in /bin and
finally in /usr/bin. There is nothing magic about

UNIX For Beginners

commands like cat or Is, except that they have been
collected into a couple of places to be easy to find
and administer.

Whdt if you work regularly with someone else
on common information in his directory? You
could just log in as your friend each time you want
to, but you can also say *“I want to work on his files
instead of my own”. This is done by changing the
directory that you are currently in:

cd /usr/your-friend

(On some systems, cd is spelled chdir.) Now when
you use a filename in something like cat or pr, it
refers to the file in your friend’s directory. Changing
directories doesn’t affect any permissions associated
with a file — if you couldn’t access a file from your
own directory, changing to another directory won’t
alter that fact. Of course, if you forget what direc-
tory you’re in, type

pwd

to find out.

It is usually convenient to arrange your own
files so that all the files related to one thing are in a
directory separate from other projects. For example,
when you write your book, you might want to keep
all the text in a directory called book. So make one

with
"~ mkdir book
then go to it with
cd book

then start typing chapters. The book is now found
in (presumably)

/usr/your-name/book
To remove the directory beok, type

rm book/*
rmdir book

The first command removes all files from the direc-
tory; the second removes the empty directory.

You can go up one level in the tree of files by
saying

cd .

“..” is the name of the parent of whatever directory
you are currently in. For completeness, “.” is an
alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far pro-
duce output on the terminal; some, like the editor,
also take their input from the terminal. It is univer-
sal in UNIX systems that the terminal can be
replaced by a file for either or both of input and out-



UNIX For Beginners

put. As one example,
Is

makes a list of files on your terminal. But if you say
Is >filelist

a list of your files will be placed in the file filelist
(which will be created if it doesn’t already exist, or
overwritten if it does). The symbol > means “put
the output on the following file, rather than on the
terminal.” Nothing is produced on the terminal. As
another example, you could combine several files
into one by capturing the output of cat in a file:

cat f1 2 £3 >temp

The symbol >> operates very much like > does,
except that it means *“add to the end of.” That is,

cat f1 f2 {3 >>temp

means to concatenate fl, f2 and f3 to the end of
whatever is already in temp, instead of overwriting
the existing contents. As with >, if temp doesn’t
exist, it will be created for you.

In a similar way, the symbol < means to take
the input for a program from the following file,
instead of from the terminal. Thus, you.could make
up a script of commonly used editing commands
and put them into a file called script. Then you can
run the script on a file by saying :

ed file <script

As another example, you can use ed to prepare a
letter in file let, then send it to several people with

mail adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX sys-
tem is the idea of a pipe. A pipe is simply a way to
connect the output of one program to the input of
another program, so the two run as a sequence of
processes — a pipeline.

For example,
prfgh

will print the files f, g, and h, beginning each on a
new page. Suppose you want them run together
instead. You could say

cat f g h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly what
we want is to take the output of cat and connect it
to the input of pr. So let us use a pipe:

catfgh|pr

USD:1-9

The vertical bar | means to take the output from
cat, which would normally have gone to the termi-
nal, and put it into pr to be neatly formatted.

There are many other examples of pipes. For
example,

Is | pr-3

prints a list of your files in three columns. The pro-
gram wc counts the number of lines, words and
characters in its input, and as we saw earlier, who
prints a list of currently-logged on people, one per
line. Thus

who | we
tells how many people are logged on. And of course
Is | we

counts your files.

Any program that reads from the terminal can
read from a pipe instead; any program that writes on
the terminal can drive a pipe. You can have as
many elements in a pipeline as you wish.

Many UNIX programs are written so that they
will take their input from one or more files if file
arguments are given; if no arguments are given they
will read from the terminal, and thus can be used in
pipelines. pr is one example:

pr-3abc

prints files a, b and c in order in three columns. But
in
catabc | pr-3

pr prints the information coming down the pipeline,
still in three columns.

The Shell

We have already mentioned once or twice the
mysterious “shell,” which is in fact sh(1).+ The shell
is the program that interprets what you type as com-
mands and arguments. It also looks after translating
* etc., into lists of filenames, and <, >, and | into
changes of input and output streams.

The shell has other capabilities too. For exam-
ple, you can run two programs with one command
line by separating the commands with a semicolon;
the shell recognizes the semicolon and breaks the
line into two commands. Thus

date; who

does both commands before returning with a prompt
character.

1 On Berkeley Unix systems, the usual shell for interactive
use is the ¢ shell, csh(1).



USD:1-10

You can also have more than one program run-
ning simultaneously if you wish. For example, if
you are doing something time-consuming, like the
editor script of an earlier section, and you don’t
want to wait around for the results before starting
something else, you can say

ed file <script &

The ampersand at the end of a command line says
“start this command running, then take further com-
mands from the terminal immediately,” that is,
don’t wait for it to complete. Thus the script will
begin, but you can do something else at the same
time. Of course, 1o keep the output from interfering
with what you’re doing on the terminal, it would be
better to say

ed file <script >script.out &

which saves the output lines in a file called
script.out.

When you initiate a command with &, the sys-
tem replies with a number called the process
number, which identifies the command in case you
later want to stop it. If you do, you can say

kill process-number

If you forget the process number, the command ps
will tell you about everything you have running. (If
you are desperate, kill 0 will kill all your processes.)
And if you’re curious about other people, ps a will
tell you about all programs that are currently run-
ning.
You can say
(command-1; command-2; command-3) &

to start three commands in the background, or you
can start a background pipeline with

command-1 | command-2 &

Just as you can tell the editor or some similar
program to take its input from a file instead of from
the terminal, you can tell the shell to read a file to
get commands. (Why not? The shell, after all, is just
a program, albeit a clever one.) For instance, sup-
pose you want to set tabs on your terminal, and find
out the date and who’s on the system every time you
log in. Then you can put the three necessary com-
mands (tabs, date, who) into a file, let’s call it
startup, and then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the contents
of startup on the terminal.

If this is to be a regular thing, you can eliminate
the need to type sh: simply type, once only, the com-
mand :

UNIX For Beginners

chmod +x startup
and thereafter you need only say
startup

to run the sequence of commands. The chmod(l)
command marks the file executable; the shell recog-
nizes this and runs it as a sequence of commands.

If you want startup to run automatically every
time you log in, create a file in your login directory
called .profile, and place in it the line startup. When
the shell first gains control when you log in, it looks
for the .profile file and does whatever commands it
finds in it.f We’ll get back to the shell in the section

on programming.

II1. DOCUMENT PREPARATION

UNIX systems are used extensively for docu-
ment preparation. There are two major formatting
programs, that is, programs that produce a text with
justified right margins, auiomatic page numbering
and titling, automatic hyphenation, and the like.
nroff is designed to produce output on terminals and
line-printers. troff (pronounced “tee-roff’) instead
drives a phototypesetter, which produces very high
quality output on photographic paper. This paper
was formatted with troff.

Formatting Packages

The basic idea of nroff and troff is that the text
to be formatted contains within it “formatting com-
mands” that indicate in detail how the formatted
text is to look. For example, there might be com-
mands that specify how long lines are, whether to
use single or double spacing, and what running titles
to use on each page.

Because nroff and troff are relatively hard to
learn to use effectively, several “packages” of canned
formatting requests are available to let you specify
paragraphs, running titles, footnotes, muiti-column
output, and so on, with little effort and without hav-
ing to learn nroff and troff. These packages take a
modest effort to learn, but the rewards for using
them are so great that it is time well spent.

In this section, we will provide a hasty look at
the “manuscript” package known as -ms. Format-
ting requests typically consist of a period and two
upper-case letters, such as .TL, which is used to
introduce a title, or .PP to begin a new paragraph.

A document is typed so it looks something like
this:

+ The c shell instead reads a file called .login



'

UNIX F_or Beginners

.TL

title of document
AU v
author name

SH

section heading

PP

paragraph ...

PP

another paragraph ...
SH

another section heading
PP

etc.

The lines that begin with a period are the formatting
requests. For example, .PP calls for starting a new
paragraph. The precise meaning of .PP depends on
what output device is being used (typesetter or ter-
minal, for instance), and on what publication the
document will appear in. For example, -ms nor-
mally assumes that a paragraph is preceded by a
space (one line in nroff, 2 line in troff), and the first
word is indented. These rules can be changed if you
like, but they are changed by chai.ging the interpre-
tation of .PP, not by re-typing the document.

To actually produce a document in standard
format using -ms, use the command

troff —ms files ...
for the typesetter, and
nroff -ms files ...

for a terminal. The -ms argument telis troff and
nroff to use the manuscript package of formatting
requests.

There are several similar packages; check with a
local expert to determine which ones are in common
use on your machine.

Supporting Tools

In addition to the basic formatters, there is a
host of supporting programs that help with docu-
ment preparation. The list in the next few para-
graphs is far from complete, so browse through the
manual and check with people around you for other
possibilities.

eqn and neqn let you integrate mathematics into
the text of a document, in an easy-to-learn language
that closely resembles the way you would speak it
aloud. For example, the eqn input

sum from i=0 to n X sub i “=" pi over 2

produces the output

" ™
2% =7

USD:1-11

The program tbl provides an analogous service
for preparing tabular material; it does all the compu-
tations necessary to align complicated columns with
elements of varying widths.

refer prepares bibliographic citations from a
data base, in whatever style is defined by the format-
ting package. It looks after all the details of
numbering references in sequence, filling in page and
volume numbers, getting the author’s initials and the
journal name right, and so on.

spell and typo detect possible spelling mistakes
in a document.t spell works by comparing the words
in your document to a dictionary, printing those that
are not in the dictionary. It knows enough about
English spelling to detect plurals and the like, so it
does a very good job. typo looks for words which
are ‘“‘unusual”, and prints those. Spelling mistakes
tend to be more unusual, and thus show up early
when the most unusual words are printed first.

. grep looks through a set of files for lines that
contain a particular text pattern (rather like the
editor’s context search does, but on a bunch of files).
For example,

grep 'ing$’ chap*
will find all lines that end with the letters ing in the
files chap*. (It is almost always a good practice to
put single quotes around the pattern you're search-
ing for, in case it contains characters like * or $ that
have a special meaning to the shell.) grep is often
useful for finding out in which of a set of files the

misspelled words detected by spell are actually
located.

diff prints a list of the differences between two
files, so you can compare two versions of something
automatically (which certainly beats proofreading by
hand).

wc counts the words, lines and characters in a
set of files. tr translates characters into other charac-
ters; for example it will convert upper to lower case
and vice versa. This translates upper into lower:

tr A-Z a-z <input >output

sort sorts files in a variety of ways; cref makes
cross-references; ptx makes a permuted index
(keyword-in-context listing). 'sed provides many of
the editing facilities of ed, but can apply them to
arbitrarily long inputs. awk provides the ability to
do both pattern matching and numeric computa-
tions, and to conveniently process fields within lines.
These programs are for more advanced users, and
they are not limited to document preparation. Put
them on your list of things to learn about.

t "typo” is not provided with Berkeley Unix.



USD:1-12

Most of these programs are either independently
documented (like eqn and tbl), or are sufficiently
simple that the description in the UNIX
Programmer’s Manual is adequate explanation.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do what-
ever possible to make the job of changing them easy.

First, when you do the purely mechanical opera-
tions of typing, type so that subsequent editing will
be easy. Start each sentence on a new line. Make
lines short, and break lines at natural places, such as
after commas and semicolons, rather than randomly.
Since most people change documents by rewriting
phrases and adding, deleting and rearranging sen-
tences, these precautions simplify any editing you
have to do later.

Keep the individual files of 2 document down to
modest size, perhaps ten to fifteen thousand charac-
ters. [Larger files edit more slowly, and of course if
you make a dumb mistake it’s better to have clob-
bered a small file than a big one. Split into files at
natural boundaries in the document, for the same
reasons that you start each sentence on a new line.

The second aspect of making change easy is to
not commit yourself to formatting details too early.
- One of the advantages of formatting packages like
-ms is that they permit you to delay decisions to the
last possible moment. Indeed, until a document is
printed, it is not even decided whether it will be
typeset or put on a line printer.

As a rule of thumb, for all but the most trivial
jobs, you should type a document in terms of a set
of requests like .PP, and then define them appropri-
ately, either by using one of the canned packages
(the better way) or by defining your own nroff and
troff commands. As long as you have entered the
text in some systematic way, it can always be
cleaned up and re-formatted by a judicious combina-
tion of editing commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any of
the programming languages available but a few
words of advice are in order. One of the reasons
why the UNIX system is a productive programming
environment is that there is already a rich set of
tools available, and facilities like pipes, I/O redirec-
tion, and the capabilities of the shell often make it
possible to do a job by pasting together programs
that already exist instead of writing from scratch.

UNIX For Beginners

The Shell

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that
already exist. For example, the first draft of the
spell program was (roughly)

cat ... collect the files
| ® .. puteach word on a new line
| tr ...  delete punctuation, etc.
| sort  into dictionary order
| uniq  discard duplicates
| comm print words in text
but not in dictionary

More pieces have been added subsequently, but this
goes a long way for such a small effort.

The editor can be made to do things that would
normally require special programs on other systems.
For example, to list the first and last lines of each of
a set of files, such as a book, you could laboriously
type

ed
e chapl.1

But you can do the job much more easily. One way
is to type

Is chap* >temp

to get the list of filenames into a file. Then edit this
file to make the necessary series of editing com-
mands (using the global commands of ed), and write
it into script. Now the command

ed <script

will produce the same output as the laborious hand
typing. Alternately (and more easily), you can use
the fact that the shell will perform loops, repeating a
set of commands over and over again for a set of
arguments:

for i in chap*
do

ed $i <script
done

This sets the shell variable i to each file name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for later

_ execution.

Programming the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language, with
variables, control flow (if-else, while, for, case), sub-



UNIX For Beginners

routines, and interrupt handling. Since there are
many building-block programs, you can sometimes
avoid writing a new program merely by piecing
together some of the building blocks with shell com-
mand files.

We will not go into any details here; examples
and rules can be found in An Introduction to the
UNIX Shell, by S. R. Bourne.

Programming in C

If you are undertaking anything substantial, C is
the only reasonable choice of programming language:
everything in the UNIX system is tuned to it. The
system itself is written in C, as are most of the pro-
grams that run on it. It is also a easy language to
use once you get started. C is introduced and fully
described in The C Programming Language by B.
W. Kernighan and D. M. Ritchie (Prentice-Hall,
1978). Several sections of the manual describe the
system interfaces, that is, how you do /O and simi-
lar functions. Read UNIX Programming for more
complicated things.

Most input and output in C is best handled with
the standard I/O library, which provides a set of /O
functions that exist in compatible form on most
machines that have C compilers. In general, it’s
wisest to confine the system interactions in a pro-
gram to the facilities provided by this library.

C programs that don’t depend too much on spe-
" cial features of UNIX (such as pipes) can be moved
to other computers that have C compilers. The list
of such machines grows daily; in addition to the ori-
ginal PDP-11, it currently includes at least
Honeywell 6000, IBM 370 and PC families, Inter-
data 8/32, Data General Nova and Eclipse, HP
2100, Harris /7, Motorola 68000 family (including
machines like Sun Microsystems and Apple Macin-
tosh), VAX 11 family, SEL 86, and Zilog Z80. Calls
to the standard /O library will work on all of these
machines.

There are a number of supporting programs that
go with C. lint checks C programs for potential por-
tability problems, and detects errors such as
mismatched argument types and uninitialized vari-
ables. :

For larger programs (anything whose source is
on more than one file) make allows you to specify
the dependencies among the source files and the pro-
cessing steps needed to make a new version; it then
checks the times that the pieces were last changed
and does the minimal amount of recompiling to
create a consistent updated version.

The debugger adb is useful for digging through
the dead bodies of C programs, but is rather hard to
learn to use effectively. The most effective debug-
ging tool is still careful thought, coupled with judi-
ciously placed print statements.t

+ The "dbx" debugger, supplied starting with 4.2BSD, has ex-
tensive facilities for high-level debugging of C programs and is

USD:1-13

The C compiler provides a limited instrumenta-
tion service, so you can find out where programs
spend their time and what parts are worth optimiz-
ing. Compile the routines with the -p option; after
the test run, use prof to print an execution profile.
The command time will give you the gross run-time
statistics of a program, but they are not super accu-
rate or reproducible. .

Other Languages

If you have to use Fortran, there are two possi-
bilities. You might consider Ratfor, which gives you
the decent control structures and free-form input
that characterize C, yet lets you write code that is
still portable to other environments. Bear in mind
that UNIX Fortran tends to produce large and rela-
tively slow-running programs. Furthermore, sup-
porting software like adb, prof, etc., are all virtually
useless with Fortran programs. There may also be a
Fortran 77 compiler on your system. If so, this is a
viable alternative to Ratfor, and has the non-trivial
advantage that it is compatible with C and related
programs. (The Ratfor processor and C tools can be
used with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another language,
you are in effect building a compiler, though prob- .
ably a small one. In that case, you should be using
the yacc compiler-compiler, which helps you develop
a compiler quickly. The lex lexical analyzer genera-
tor does the same job for the simpler languages that
can be expressed as regular expressions. It can be
used by itself, or as a front end to recognize inputs
for a yacc-based program. Both yacc and lex require
some sophistication to use, but the initial effort of
learning them can be repaid many times over in pro-
grams that are easy to change later on.

Most UNIX systems also make available other
languages, such as Algol 68, APL, Basic, Lisp, Pas-
cal, and Snobol. Whether these are useful depends
largely on the local environment: if someone cares
about the language and has worked on it, it may be
in good shape. If not, the odds are strong that it
will be more trouble than it’s worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX
Programmer’s Manual, Bell Laboratories, 1978
(PS2:3)} Lists commands, system routines and inter-
faces, file formats, and some of the maintenance
procedures. You can’t live without this, although
you will probably only need to read section 1.

much easier to use than "adb”.



USD:1-14

D. M. Ritchie and K. L. Thompson, “The UNIX
Time-sharing System,” CACM, July 1974. (PS2:1)t
An overview of the system, for people interested in
operating systems. Worth reading by anyone who
programs. Contains a remarkable number of one-
~ sentence observations on how to do things right.

The Bell System Technical Journal (BSTJ) Special
Issue on UNIX, July/August, 1978, contains many
papers describing recent developments, and some
retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains several papers
describing the use of the Programmer’s Workbench
(PWB) version of UNIX.

Document Preparation:

B. W. Kemighan, “A Tutorial Introduction to the
UNIX Text Editor” (USD:12) and “Advanced Edit-
ing on UNIX,” (USD:13) Bell Laboratories, 1978.1
Beginners need the introduction; the advanced
material will help you get the most out of the editor.

M. E. Lesk, “Typing Documents on UNIX,” Bell
Laboratories, 1978. (USD:20)t Describes the -ms
macro package, which isolates the novice from the
vagaries of nroff and troff, and takes care of most
formatting situations. If this specific package isn’t
available on -your system, something similar prob-
ably is. The most likely alternative is the PWB/UNIX
macro package -mm; see your local guru if you use
PWB/UNIX.*

B. W. Kernighan and L. L. Cherry, “A System for
Typesetting Mathematics,” Bell Laboratories Com-
puting Science Tech. Rep. 17. (USD:26)t

M. E. Lesk, “Tbl — A Program to Format Tables,”
Bell Laboratories CSTR 49, 1976. (USD:28)t

J. F. Ossanna, Jr., “NROFF/TROFF User’s
Manual,” Bell Laboratories CSTR 54, 1976.
(USD:24)t troff is the basic formatter used by -ms,
eqn and tbl. The reference manual is indispensable
if you are going to write or maintain these or similar
programs. But start with:

B. W. Kemighan, “A TROFF Tutorial,” Bell
Laboratories, 1976. (USD:25)t An attempt to
unravel the intricacies of troff.

+ These documents (previously in Volume 2 of the Bell Labs
Unix distribution) are provided among the "User Supplemen-
tary” Documents for 4.3BSD, available from the Usenix Asso-
ciation.

1 These are among the "Programmer Supplementary” Docu-
ments for 4.3BSD. PSl1 is Volume 1, PS2 is Volume 2.

*The macro package -me is additionally available on Berkeley
Unix Systems. -mm is typically not available.

UNIX For Beginners

Programming:

B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language, Prentice-Hall, 1978. Contains
a tutorial introduction, complete discussions of all
language features, and the reference manual.

B. W. Kernighan and R. Pike, The Unix Program-
ming Environment, Prentice-Hall, 1984. Contains
many examples of C programs which use the system
interfaces, and explanations of “why”.

B. W. Kernighan and D. M. Ritchie, “UNIX Pro-
gramming,” Bell Laboratories, 1978. (PS2:3)}
Describes how to interface with the system from C
programs: 1/O calls, signals, processes.

S. R. Bourne, “An Introduction to the UNIX Shell,”
Bell, Laboratories, 1978. (USD:3)} An introduction
and reference manual for the Version 7 shell. Man-
datory reading if you intend to make effective use of
the programming power of this shell.

S. C. Johnson, “Yacc — Yet Another Compiler-
Compiler,” Bell Laboratories CSTR 32, 1978.
(PS1:15)%

M. E. Lesk, “Lex — A Lexical Analyzer Generator,”
Bell Laboratories CSTR 39, 1975. (PS1:16)}

S. C. Johnson, “Lint, a C Program Checker,” Bell
Laboratories CSTR 65, 1977. (PS1:9)f

S. I. Feldman, “MAKE — A Program for Maintain-
ing Computer Programs,” Bell Laboratories CSTR"
57, 1977. (PS1:12)%

J. F. Maranzano and S. R. Bourne, “A Tutorial
Introduction to ADB,” Bell Laboratories CSTR 62.
1977. (PS1:10)f An introduction to a powerful but
complex debugging tool.

S. 1. Feldman and P. J. Weinberger, “A Portable
Fortran 77 Compiler,” Bell Laboratories, 1978.
(PS1:2)t A full Fortran 77 for UNIX systems.



LEARN — Computer-Aided Instruction on UNIX USD:2-1

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the /earn program for interpreting
CAI scripts on the UNIXt operating system, and a set of scripts that provide a com-
puterized introduction to the system.

Six current scripts cover basic commands and file handling, the editor, addi-
tional file handling commands, the egn program for mathematical typing, the “~ms”
package of formatting macros, and an introduction to the C programming language.
These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used /earn to acquire
basic UNIX skills. Most usage involves the first two scripts, an introduction to
UNIX files and commands, and the UNIX editor. 4

The second version of /earn is about four times faster than the previous one in .
CPU utilization, and much faster in perceived time because of better overlap of
computing and printing. It also requires less file space than the first version. Many
of the lessons have been revised; new material has been added to reflect changes and

" enhancements in UNIX itself. Script-writing is also easier because of revisions to the
script language.

1. Introduction.

Learn is a driver for CAI scripts. It is intended to permit the easy composition of lessons and
lesson fragments to teach people computer skills. Since it is teaching the same system on which it is
implemented, it makes direct use of UNIX facilities to create a controlled UNIX environment. The
system includes two main parts: (1) a driver that interprets the lesson scripts; and (2) the lesson
scripts themselves. At present there are seven scripts:

—  Dbasic file handling commands

—  the UNIX text editors ed and vi

— . advanced file handling

—  the egn language for typing mathematics

— the “ms” macro package for document formatting

—  the C programming language

The purported advantages of CAI scripts for training in computer skills include the following:

+ UNIX is a trademark of AT&T Bell Laboratories.



USD:2-2 LEARN — Computer-Aided Instruction on UNIX

(a) students are forced to perform the exercises that are in fact the basis of training in any
case;

(b) students receive immediate feedback and confirmation of progress;

(c) students may progress at their own rate;

(d) no schedule requirements are imposed; students may study at any time convenient for
them,;

(e) the lessons may be improved individually and the improvements are immediately available
10 new users;

(f) since the student has access to a computer for the CAI script there is a place to do exer-
cises;

(g) the use of high technology will improve student motivation and the interest of their
management. '

Opposed to this, of course, is the absence of anyone to whom the student may direct questions.
If CAI is used without a “counselor” or other assistance, it should properly be compared to a text-
book, lecture series, or taped course, rather than to a seminar. CAI has been used for many years in a
variety of educational areas.!23 The use of a computer to teach computer use itself, however, offers
unique advantages. The skills developed to get through the script are exactly those needed to use the
computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education; these
assumptions are outlined in the next section. The remaining sections describe the operation of the
script driver and the particular scripts now available. The driver puts few restrictions on the script
writer, but the current scripts are of a rather rigid and stereotyped form in accordance with the theory
in the next section and practical limitations. '

2. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should not
contain long pieces of explanation; they should instead frequently ask the student to do some task.
So teaching is always by example: the typical script fragment shows a small example of some tech-
nique and then asks the user to either repeat that example or produce a variation on it. All are
intended to be easy enough that most students will get most questions right, reinforcing the desired
behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a yes or no
answer to a question. The student is given a chance to experiment before replying. The script checks
for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files might
say

How many files are there in the current directory? Type “answer N°, where N is the number of

files. :
The student is expected to respond (perhaps after experimenting) with

answer 17
or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing N by
17) is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended — a task is set for the student, appropriate parts of the
input or output are monitored, and the student types ready when the task is done. Figure 1 shows a
_ sample dialog that illustrates the last of these, using two lessons about the cat (concatenate, i.e., print)
command taken from early in the script that teaches file handling. Most learn lessons are of this
form.

After each correct response the computer congratulates the student and indicates the lesson
number that has just been completed, permitting the student to restart the script after that lesson. If



LEARN — Compqter-Aided Instruction on UNIX USD:2-3

Figure 1: Sample dialog from basic files script
(Student responses in italics; ‘$’ is the prompt)

A file can be printed on your terminal
by using the "cat” command. Just say
"cat file” where "“file” is the file name.
For example, there is a file named
“food" in this directory. List it
by saying "cat food"; then type "ready".
$ cat food

this is the file

named food.
$ ready

Good. Lesson 3.3a (1)

Of course, you can print any file with "cat”.
In particular, it is common to first use

"Is" to find the name of a file and then "cat”
to print it. Note the difference between

"Is", which tells you the name of the file,

and “cat”, which tells you the contents.

One file in the current directory is named for
a President. Print the file, then type "ready".
$ cat President

cat: can’t open President

$ ready .

Sorry, that’s not right. Do you want to try again? yes

Try the problem again.

$is

.0copy

X1

roosevelt

$ cat roosevelt
this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)
The "cat” command can also print several files

at once. In fact, it is named "cat” as an abbreviation
for "concatenate”....

the answer is wrong, the student is offered a chance to repeat the lesson. The “speed” rating of the
student (explained in section 5) is given after the lesson number when the lesson is completed success-
fully; it is printed only for the aid of script authors checking out possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly “understands”
what he or she is doing; accordingly, the current learn scripts only measure performance, not
comprehension. If the student can perform a given task, that is deemed to be “learning‘."4



USD:2-4 LEARN — Computer-Aided Instruction on UNIX

The main point of using the computer is that what the student does is checked for correctness
immediately. Unlike many CAI scripts, however, these scripts provide few facilities for dealing with
wrong answers. In practice, if most of the answers are not right the script is a failure; the universal
solution to student error is to provide a new, easier script. Anticipating possible wrong answers is an
endless job, and it is really easier as well as better to provide a simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be broken
into sufficiently small pieces. Anything not absorbed in a single chunk is just subdivided.

To avoid boring the faster students, however, an effort is made in the files and editor scripts to
provide three tracks of different difficulty. The fastest sequence of lessons is aimed at roughly the
bulk and speed of a typical tutorial manual and should be adequate for review and for well-prepared
students. The next track is intended for most users and is roughly twice as long. Typically, for exam-
ple, the fast track might present an idea and ask for a variation on the example shown; the normal
track will first ask the student to repeat the example that was shown before attempting a variation.
The third and slowest track, which is often three or four times the length of the fast track, is intended
to be adequate for anyone. (The lessons of Figure 1 are from the third track.) The multiple tracks
also mean that a student repeating a course is unlikely to hit the same series of lessons; this makes it
profitable for a shaky user to back up and try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct answers
the student has given for the last few lessons, the program may switch tracks. The driver is actually
capable of following an arbitrary directed graph of lesson sequences, as discussed in section 5. Some
more structured arrangement, however, is used in all current scripts to aid the script writer in organ-
izing the material into lessons. It is sufficiently difficult to write lessons that the three-track theory is
not followed very closely except in the files and editor scripts. Accordingly, in some cases, the fast
track is produced merely by skipping lessons from the slower track. In others, there is essentially only
one track. :

The main reason for using the learn program rather than sxmply writing the same material as a-
workbook is not the selection of tracks, but actual hands-on experience. Learning by doing is much
more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would not let
the student proceed unless it received correct answers to the questions it set and it would not tell a
student the right answer. This somewhat Draconian approach has been moderated in version 2. Les-
sons are sometimes badly worded or even just plain wrong; in such cases, the student has no recourse.
But if a student is simply unable to complete one lesson, that should not prevent access to the rest.
Accordingly, the current version of learn allows the student to skip a lesson that he cannot pass; a
no” answer to the “Do you want to try again?” question in Figure 1 will pass to the next lesson. It
is still true that learn will not tell the student the right answer.

Of course, there are valid objections to the assumptions above. In particular, some students
may object to not understanding what they are doing; and the procedure of smashing everything into
small pieces may provoke the retort “you can’t cross a ditch in two jumps.” Since writing CAI scripts
is considerably more tedious than ordinary manuals, however, it is safe to assume that there will
always be alternatives to the scripts as a way of learning. In fact, for a reference manual of 3 or 4
pages it would not be surprising to have a tutorial manual of 20 pages and a (multi-track) scnpt of
100 pages. Thus the reference manual will exist long before the scripts.

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus little of
the potential complexity of the possible directed graph is employed, since care must be taken in les-
son construction to see that every necessary fact is presented in every possible path through the units.
In addition, it is desirable that every unit have alternate successors to deal with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For exam-
ple, before the student is allowed to proceed through the editor script the script verifies that the stu-
dent understands files and is able to type. It is felt that the sooner lack of student preparation is



LEARN — Computer-Aided Instruction on UNIX USD:2-5

detected, the easier it will be on the student. Anyone proceeding through the scripts should be getting
mostly correct answers; otherwise, the system will be unsatisfactory both because the wrong habits are
being learned and because the scripts make little effort to deal with wrong answers. Unprepared stu-
dents should not be encouraged to continue with scripts.

There are some preliminary items which the student must know before any scripts can be tried.
In particular, the student must know how to connect to a UNIX system, set the terminal properly, log
in, and execute simple commands (e.g., learn itself). In addition, the character erase and line kill con-
ventions (# and @) should be known. It is hard to see how this much could be taught by computer-
aided instruction, since a student who does not know these basic skills will not be able to run the
learning program. A brief description on paper is provided (see Appendix A), although assistance will
be needed for the first few minutes. This assistance, however, need not be highly skilled.

The first script in the current set deals with files. It assumes the basic knowledge above and
teaches the student about the Is, cat, mv, rm, cp and diff commands. It also deals with the abbrevi-
ation characters *, ?, and [ ] in file names. It does not cover pipes or I/O redirection, nor does it
present the many options on the /s command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks, seven
_are review exercises. There are a total of 75 lessons in all three tracks, and the instructional passages
typed at the student to begin each lesson total 4,476 words. The average lesson thus begins with a
60-word message. In general, the fast track lessons have somewhat longer introductions, and the slow
tracks somewhat shorter ones. The longest message is 144 words and the shortest 14.

The second script trains students in the use of the UNIX context editor ed, a sophisticated edi-
tor using regular expressions for searching.3 All editor features except encryption, mark names and *;’
in addressmg are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a review les-
son. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The: ed description in the reference manual is 2,572
words long. The ed tutorial® is 6,138 words long. The fast track through the ed script is 7,407 words
of explanatory messages, and the total ed script, 242 lessons, has 15,615 words. The average ed les-
son-is thus also about 60 words; the largest is 171 words and the smallest 10. The original ed script
represents about three man-weeks of effort.

The advanced file handling script deals with /s options, I/O diversion, pipes, and supporting pro-
grams like pr, wc, tail, spell and grep. (The basic file handling script is a prerequisite.) It is not as
refined as the first two scripts; this is reflected at least partly in the fact that it provides much less of a
full three-track sequence than they do. On the other hand, since it is perceived as “advanced,” it is
hoped that the student will have somewhat more sophistication and be better able to cope with it at a
reasonably high level of performance.

A fourth script covers the egn language for typing mathematics. This script must be run on a
terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo-based termi-
nals, or the nearly extinct Model 37 teletype Again, this script is relatively short of tracks: of 76 les-
sons, only 17 are in the second track and 2 in the third track. Most of these provide additional prac-
tice for students who are having trouble in the first track.

The -ms script for formatting macros is a short one-track only script. The macro package it
describes is no longer the standard, so this script will undoubtedly be superseded in the future.
Furthermore, the linear style of a single learn script is somewhat inappropriate for the macros, since
the macro package is composed of many independent features, and few users need all of them. It
would be better to have a selection of short lesson sequences dealing with the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on C,
but that document has since become obsolete. The current script has been partially converted to fol-
low the order of presentation in The C Programming Language,’ but this job is not complete. The C
script was never intended to teach C; rather it is supposed to be a series of exercises for which the
computer provides checking and (upon success) a suggested solution.



USD:2-6 LEARN — Computer-Aided Instruction on UNIX

This combination of scripts covers much of the material which any UNIX user will need to
know to make effective use of the system. With enlargement of the advanced files course to include
more on the command interpreter, there will be a relatively complete introduction to UNIX available
via learn. Although we make no pretense that /earn will replace other instructional materials, it
should provide a useful supplement to existing tutorials and reference manuals.

4. Experience with Students.

Learn has been installed on many different UNIX systems Most of the usage is on the first two
scnpts, so these are more thoroughly debugged and polished. As a (random) sample of user experi-
ence, the learn program has been used at Bell Labs at Indian Hill for 10,500 lessons in a four month
period. About 3600 of these are in the files script, 4100 in the editor, and 1400 in advanced files.
The passing rate is about 80%, that is, about 4 lessons are passed for every one failed. There have
been 86 distinct users of the files script, and 58 of the editor. On our system at Murray Hill, there
have been nearly 2000 lessons over two weeks that include Christmas and New Year. Users have
ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of someone
doing one or two lessons and then logging out, as do instances of someone pausing in a script for
twenty minutes or more. In the earlier version of /earn, the average session in the files course took
32 minutes and covered 23 lessons. The distribution is quite broad and skewed, however; the longest
session was 130 minutes and there were five sessions shorter than five minutes. The average lesson
took about 80 seconds. These numbers are roughly typical for non-programmers; a UNIX expert can
do the scripts at approximately 30 seconds per lesson, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4 seconds of
processor time per lesson, and a system expert typing quickly took 15 seconds of real time per lesson.
A novice would probably take at least a minute. Thus a UNIX system could support ten students
working s:multaneously with some spare capacity. ‘

§. The Script Interpreter.

The learn program itself merely interprets scripts. It provxdes facilities for the script writer to
capture student responses and their effects, and simplifies the job of passing control to and recovering
control from the student. This section describes the operation and usage of the driver program, and
indicates what is required to produce a new script. Readers only interested in the existing scripts
may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory (named /ib)
containing the script data. Within this directory are subdirectories, one for each subject in which a
course is available, one for logging (named log), and one in which user sub-directories are created
(named play). The subject directory contains master copies of all lessons, plus any supporting
material for that subject. In a given subdirectory, each lesson is a single text ﬁle Lessons are usually
named systematically; the file that contains lesson 7 is called Ln.

When learn is executed, it makes a private directory for the user to work in, within the learn
portion of the file system. A fresh copy of all the files used in each lesson (mostly data for the student
to operate upon) is made each time a student starts a lesson, so the script writer may assume that
everything is reinitialized each time a lesson is entered. The student directory is deleted after each
session; any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:
(1) the text of the lesson;
(2) the set-up commands to be executed before the user gets control;
(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide whether
the answer is right; and



LEARN — Computer-Aided Instruction on UNIX USD:2-7

Figure 2: Directory structure for /earn

lib
play
studentl
files for studentl...
student2
files for student2...
files
LO.1a lessons for files course
L0.1b
editor

(other courses)

log

(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort involved
in script production is in planning lessons, writing tutorial paragraphs, and coding tests of student
performance. : ' :

The basic sequence of events is as follows. First, learn creates the working directory. Then, for
each lesson, /earn reads the script for the lesson and processes it a line at a time. The lines in the
script are: (1) commands to the script interpreter to print something, to create a files, to test some-
thing, etc.; (2) text to be printed or put in a file; (3) other lines, which are sent to the shell to be exe-
cuted. One line in each lesson turns control over to the user; the user can run any UNIX commands.
The user mode terminates when the user types yes, no, ready, or answer. At this point, the user’s
work is tested; if the lesson is passed, a new lesson is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in Figure 3.
Lines which begin with # are commands to the /earn script interpreter. For example,

#print
causes printing of any text that follows, up to the next line that begins with a sharp.

#print file
prints the contents of file; it is the same as cat file but has less overhead. Both forms of #print have

the added property that if a lesson is failed, the #print will not be executed the second time through;
this avoids annoying the student by repeating the preamble to a lesson.

#create filename
creates a file of the specified name, and copies any subsequent text up to a # to the file. This is used
for creating and initializing working files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the shell for execution. The #user
mode is terminated when the student types one of yes, no, ready or answer. At that time, the driver
resumes interpretation of the script.

#copyin

#uncopyin



USD:2-8 LEARN — Computer-Aided Instruction on UNIX

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is” to find the name of a file and then "cat”
to print it. Note the difference between
"Is", which tells you the name of the files,
and "cat”, which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create roosevelt

this file is named roosevelt

and contains three lines of

text.
#copyout
#user
#uncopyout
tail -3 .ocopy >X1
#cmp X1 roosevelt *
#log
#next

3.2b2

Anything the student types between these commands is copied onto a file called .copy. This lets the
script writer interrogate the student’s responses upon regaining control.

#copyout
#uncopyout

Between these commands, any material typed at the student by any program is copied to the file
.ocopy. This lets the script writer interrogate the effect of what the student typed, which true believers
in the performance theory of learning usually prefer to the student’s actual input.

#pipe

#unpipe
Normally the student input and the script commands are fed to the UNIX command interpreter (the
*“shell””) one line at a time. This won’t do if, for example, a sequence of editor commands is provided,
since the input to the editor must be handed to the editor, not to the shell. Accordingly, the material
between #pipe and #unpipe commands is fed continuously through a pipe so that such sequences
work. If copyout is also desired the copyout brackets must include the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.
#cmp filel file2 : .

is an in-line implementation of cmp, which compares two files for identity.
#match stuff

The last line of the student’s input is compared to stuff, and the success or fail status is set according
to it. Extraneous things like the word answer are stripped before the comparison is made. There
may be several #match lines; this provides a convenient mechanism for handling multiple “right”
answers. Any text up to a # on subsequent lines after a successful #march is printed; this is illus-
trated in Figure 4, another sample lesson.

#bad stuff



LEARN — Computer-Aided Instruction on UNIX USD:2-9

Figure 4: Another Sample Lesson

#print

What command will move the current line
to the end of the file? Type

"answer COMMAND", where COMMAND is the command.
#copyin

#user

#uncopyin

#match m$

#match .m$

"m$" is easier.

#log

#next

63.1d 10

This is similar to #match, except that it corresponds to specific failure answers; this can be used to
produce hints for particular wrong answers that have been anticipated by the script writer.

#succeed
#fail
print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the “commands” yes, no, ready, or answer, the driver ter-
minates the #user command, and evaluation of the student’s work can begin. This can be done either
"by the built-in commands above, such as #match and #cmp, or by status returned by normal UNIX
commands, typically grep and test. The last command should return status true (0) if the task was
done successfully and false (non-zero) otherwise; this status return tells the driver whether or not the
student has successfully passed the lesson.

Performance can be logged:

#log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file. The com-
mand

#log

by itself writes the logging information in the logging directory within the /earn hierarchy, and is the
normal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it. A
typical set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10 units,
25.2a for student with speed near S5, and 25.3a for speed near 2. Speed ratings are maintained for
each session with a student; the rating is increased by one each time the student gets a lesson right
and decreased by four each time the student gets a lesson wrong. Thus the driver tries to maintain a
level such that the users get 80% right answers. The maximum rating is limited to 10 and the
minimum to 0. The initial rating is zero unless the student specifies a different rating when starting a
session.



USD:2-10 LEARN — Computer-Aided Instruction on UNIX

If the student passes a lesson, a new lesson is selected and the process repeats. If the student
fails, a false status is returned and the program reverts to the previous lesson and tries another alter-
native. If it can not find another alternative, it skips forward a lesson. bye, bye, which causes a
graceful exit from the /earn system. Hanging up is the usual novice’s way out.

The lessons may form an arbitrary directed graph, although the present program imposes a limi-
tation on cycles in that it will not present a lesson twice in the same session. If the student is unable -
to answer one of the exercises correctly, the driver searches for a previous lesson with a set of alterna-
tives as successors (following the #next line). From the previous lesson with alternatives one route
was taken earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student’s speed of
response, or try to estimate the elegance of the answer, or provide detailed analysis of wrong answers.
Lesson writing is so tedious already, however, that most of these abilities are likely to go unused.

The driver program depends heavily on features of UNIX that are not available on many other
operating systems. These include the ease of manipulating files and directories, file redirection, the
ability to use the command interpreter as just another program (even in a pipeline), command status
testing and branching, the ability to catch signals like interrupts, and of course the pipeline mechan-
ism itself. Although some parts of /earn might be transferable to other systems, some generality will
probably be lost.

A bit of history: The first version of /earn had fewer built-in words in the driver program, and
made more use of the facilities of UNIX. For example, file comparison was done by creating a cmp
process, rather than comparing the two files within /earn. Lessons were not stored as text files, but as
archivzs. There was no concept of the in-line document; even #print had to be followed by a file
name. Thus the initialization for each lesson was to extract the archive into the working directory
(typically 4-8 files), then #print the lesson text. ' : ’ '

, The combination of such things made learn slower. The new version is about 4 or 5 times fas-
ter. Furthermore, it appears even faster to the user because in a typical lesson, the printing of the
message comes first, and file setup with #create can be overlapped with the printng, so that when the
program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text files.
They can be edited without any difficulty, and UNIX text manipulation tools can be applied to them.
The result has been that there is much less resistance to going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non-programmers
who have used learn:

(a) A novice must have assistance with the mechanics of communicating with the computer to get
through to the first lesson or two; once the first few lessons are passed people can proceed on
their own. ,

(b) -The terminology used in the first few lessons is obscure to those inexperienced with computers.
It would help if there were a low level reference card for UNIX to supplement the existing pro-
grammer oriented bulky manual and bulky reference card.

(c) The concept of “substitutable argument” is hard to grasp, and requires help.
(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time for a
reasonably intelligent and motivated novice to proceed from ignorance to a reasonable ability to
create new files and manipulate old ones seems to be a few days, with perhaps half of each day spent
on the machine.

The normal way of proceeding has been to have students in the same room with someone who
knows UNIX and the scripts. Thus the student is not brought to a halt by difficult questions. The
burden on the counselor, however, is much lower than that on a teacher of a course. Ideally, the stu-
dents should be encouraged to proceed with instruction immediately prior to their actual use of the



LEARN — Computer-Aided Instruction on UNIX USD:2-11

computer. They should exercise the scripts on the same computer and the same kind of terminal that
they will later use for their real work, and their first few jobs for the computer should be relatively
easy ones. Also, both training and initial work should take place on days when the UNIX hardware
and software are working reliably. Rarely is all of this possible, but the closer one comes the better
the result. For example, if it is known that the hardware is shaky one day, it is better to attempt to
reschedule training for another one. Students are very frustrated by machine downtime; when noth-
ing is happening, it takes some sophistication and experience to distinguish an infinite loop, a slow
but functioning program, a program waiting for the user, and a broken machine.*

One disadvantage of training with learn is that students come to depend completely on the CAI
system, and do not try to read manuals or use other learning aids. This is unfortunate, not only
because of the increased demands for completeness and accuracy of the scripts, but because the
scripts do not cover all of the UNIX system. New users should have manuals (appropriate for their
level) and read them; the scripts ought to be altered to recommend suitable documents and urge stu-
dents to read them.

There are several other difficulties which are clearly evident. From the student’s viewpoint, the
most serious is that lessons still crop up which simply can’t be passed. Sometimes this is due to poor
explanations, but just as often it is some error in the lesson itself — a botched setup, a missing file, an
invalid test for correctness, or some system facility that doesn’t work on the local system in the same
way it did on the development system. It takes knowledge and a certain healthy arrogance on the
part of the user to recognize that the fault is not his or hers, but the script writer’s. Permitting the
student fo get on with the next lesson regardless does alleviate this somewhat, and the logging facili-
ties make it easy to watch for lessons that no one can pass, but it is still a problem.

The biggest problem with the previous /earn was speed (or lack thereof) — it was often excruci-
atingly slow and made a significant drain on the system. The current version so far does not seem to
have that difficulty, although some scripts, notably egn, are intrinsically slow. egn, for example, must -
do a lot of work even to print its introductions, let alone check the student responses, but delay is
perceptible in all scripts from time to time.

Another potential problem is that it is possible to break /earn inadvertently, by pushing inter-
rupt at the wrong time, or by removing critical files, or any number of similar slips. The defenses
against such problems have steadily been improved, to the point where most students should not
notice difficulties. Of course, it will always be possible to break learn maliciously, but this is not
likely to be a problem.

One area is more fundamental — some UNIX commands are sufficiently global in their effect
that /earn currently does not allow them to be executed at all. The most obvious is ¢d, which changes
to another directory. The prospect of a student who is learning about directories inadvertently mov-
ing to some random directory and removing files has deterred us from even writing lessons on cd, but
ultimately lessons on such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their
suggestions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox, and M.
J. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also provided
many of the ideas in the system. We are also indebted to Don Jackowski for serving as a guinea pig
for the second version, and to Tom Plum for his efforts to improve the C script.

References

1. D.L. Bitzer and D. Skaperdas, “The Economics of a Large Scale Computer Based Educational
System: Plato IV,” in Computer Assisted Instruction, Testing and Guidance, ed. Wayne Holtz-
man, pp. 17-29, Harper and Row, New York, 1970.

* We have even known an expert programmer to decide the computer was broken when he had simply left
his terminal in local mode. Novices have great difficulties with such problems.



USD:2-12 LEARN — Computer-Aided Instruction on UNIX

2. D.C. Gray, J.P. Hulskamp, J.H. Kumm, S. Lichtenstein, and N.E. Nimmervoll, “COALA - A
Minicomputer CAI System,” IEEE Trans. Education, vol. E-20(1), pp. 73-77, Feb. 1977.

3. P. Suppes, “On Using Computers to Individualize Instruction,” in The Computer in American
Education, ed. D.D. Bushnell and D.W. Allen, pp. 11-24, John Wiley, New York, 1967.

4, B.F. Skinner, “Why We Need Teaching Machines,” Harv. Educ. Review, vol. 31, pp. 377-398,
1961. Reprinted in Educational Technology, ed. J.P. DeCecco, Holt Rinehart & Winston (New
York, 1964)

5. K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories, 1978. See sec-
tion ed (1).

6. B.W. Kernighan, 4 Tutorial Introduction to the UNIX text editor, 1974. Bell Laboratories inter-
nal memorandum

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, New Jersey, 1978.



An Introduction to the UNIX Shell _ USD:3-1

An Introduction to the UNIX Shell

S. R. Bourne

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated for 4.3BSD by Mark Seiden)

ABSTRACT

The shellf is a command programming language that provides an interface to the
UNIXt operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as while, if then else, case
and for are available. Two-way communication is possible between the shell and
commands. String-valued parameters, typically file names or flags, may be passed to
a command. A return code is set by commands that may be used to determine
control-flow, and the standard output from a command may be used as shell input.

.The shell can modify the environment in which commands run. Input and output
can be redirected to files, and processes that communicate through ‘pipes’ can be
invoked. Commands are found by searching directories in the file system in a.
sequence that can be defined by the user. Commands can be read either from the
terminal or from a file, which allows command procedures to be stored for later use.

1.0 Introduction

The shell is both a command language and a programming language that provides an interface to the
UNIX operating system. This memorandum describes, with examples, the UNIX shell. The first sec-
tion covers most of the everyday requirements of terminal users. Some familiarity with UNIX is an
advantage when reading this section; see, for example, "UNIX for beginners".! Section 2 describes
those features of the shell primarily intended for use within shell procedures. These include the
control-flow primitives and string-valued variables provided by the shell. A knowledge of a program-
ming language would be a help when reading this section. The last section describes the more
advance;i features of the shell. References of the form "see pipe (2)" are to a section of the UNIX
manual.

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the name of
the command to be executed; any remaining words are passed as arguments to the command. For
example,

who

is a command that prints the names of users logged in. The command

t This paper describes sh(1). If it’s the c shell (csh) you’re interested in, a good place to begin is William
Joy’s paper "An Introduction to the C shell” (USD:4).
+ UNIX is a trademark of AT&T Bell Laboratories.



USD:3-2 An Introduction to the UNIX Shell

Is -1

prints a list of files in the current directory. The argument -/ tells /s to print status information, size
and the creation date for each file.

1.2 Background commands
To execute a command the shell normally creates a new process and waits for it to finish. A com-
mand may be run without waiting for it to finish. For example,

ccpgm.c &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the shell
not to wait for the command to finish. To help keep track of such a process the shell reports its pro-
cess number following its creation. A list of currently active processes may be obtained using the ps
command.

1.3 Input output redirection

Most commands produce output on the standard output that is initially connected to the terminal.
This output may be sent to a file by writing, for example,

‘Is =1 >file

The notation >file is interpreted by the shell and is not passed as an argument to /s. If file does not
exist then the shell ~reates it; otherwise the original contents of file are replaced with the output from
Is. Output may be appended to a file using the notation

Is -1 >>file

_In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the termmal by writing; for
example,

we <file

The command wc reads its standard input (in this case redirected from file) and prints the number of
characters, words and lines found. If only the number of lines is required then

wc -1 <file
could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by writing
the ‘pipe’ operator, indicated by |, as in,

Is =11 we
Two commands connected in this way constitute a pipeline and the overall effect is the same as
Is -1 >file; wc <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and are
run in parallel. Pipes are unidirectional and synchronization is achieved by halting wc when there is
nothing to read and halting /s when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the result as
output. One such filter, grep, selects from its mput those lines that contain some specified string. For
example, ,

Is | grep old
prints those lines, if any, of the output from /s that contain the string old. Another useful filter is sort.



An Introduction to the UNIX Shell USD:3-3

For example,
who | sort
will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,
Is'| grep old | wc -1
prints the number of file names in the current directory containing the string o/d.

1.5 File name generation
Many commands accept arguments which are file names. For example,

Is -1 main.c

prints information relating to the file main.c.
The shell provides a mechanism for generating a list of file names that match a pattern. For example,

Is -1 %c

generates, as arguments to /s, all file names in the current directory that end in .c. The character * is
a pattern that will match any string including the null string. In general patterns are specified as fol-
lows.

Matches any string of characters including the null string.
Matches any single character.

. Matches any one of the characters enclosed. A pair of characters separated by a minus
will match any character lexically between the pair.

For example,
[a-z]*

matches all names in the current directory beginning with one of the letters a through z.
/usr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file name is
found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It may
also be used to find files. For example,

o %

—
.

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of /usr/fred. (echo is a standard UNIX
command that prints its arguments, separated by blanks.) This last feature can be expensive, requiring
a scan of all sub-directories of /usr/fred.

There is one exception to the general rules given for patterns. The character ‘.” at the start of a file
name must be explicitly matched.

echo *
will therefore echo all file names in the current directory not beginning with “.’.
echo .*

will echo all those file names that begin with ‘.’. This avoids inadvertent matching of the names .’
and ‘..’ which mean ‘the current directory’ and ‘the parent directory’ respectively. (Notice that /s
suppresses information for the files ‘.’ and °..”.)



USD:3-4 An Introduction to the UNIX Shell

1.6 Quoting

Characters that have a special meaning to the shell, such as < > # ? | &, are called metacharacters.
A complete list of metacharacters is given in appendix B. Any character preceded by a \ is quored
and loses its special meaning, if any. The \ is elided so that

echo \?
will echo a single ?, and
echo \\

will echo a single \. To allow long strings to be continued over more than one line the sequence
\newline is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the above
mechanism is clumsy and error prone. A string of characters may be quoted by enclosing the string
between single quotes. For example,

echo xxk%kx’Xx
will echo
XX%AkRAkXX

The quoted string may not contain a single quote but may contain newlines, which are preserved.
This quoting mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is also available that prevents interpretation of some
but not all metacharacters. Discussion of the details is deferred to section 3.4.

- 1.7 Prompting , ‘ o .

When the shell is used from a terminal it will issue a prompt before reading a command. By default

this prompt is ‘$ *. It may be changed by saying, for example, )
PS1=yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed then
the shell will issue the prompt ‘> . Sometimes this can be caused by mistyping a quote mark. If it is
unexpected then an interrupt (DEL) will return the shell to read another command. This prompt may
be changed by saying, for example,

PS2=more

1.8 The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If the
user’s login directory contains the file .profile then it is assumed to contain commands and is read by
the shell before reading any commands from the terminal.

1.9 Summary
o Is
Print the names of files in the current directory.
o Is >file

Put the output from Is into file.
e Is | wec -1l
Print the number of files in the current directory.

° Is | grep old ‘
Print those file names containing the string old.



An Introduction to the UNIX Shell USD:3-5

o Is | grepold | we -1
Print the number of files whose name contains the string old.

e ccpgmc&
Run cc in the background.

2.0 Shell procedures
The shell may be used to read and execute commands contained in a file. For example,

sh file [ args ... ]

calls the shell to read commands from file. Such a file is called a command procedure or shell pro-
cedure. Arguments may be supplied with the call and are referred to in file using the positional
parameters $1, $2, .... For example, if the file wg contains

who | grep $1
then

sh wg fred
is equivalent to

who | grep fred

UNIX files have three independent attributes, read, write and execute. The UNIX command chmod
(1) may be used to make a file executable. For example,
chmod +x wg
will ensure that the file wg. has execute status. Follév)ing this, the command
wg fred - , '
is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new process is
created to run the command.

As well as providing names for the positional parameters, the number of positional parameters in the
call is available as $#. The name of the file being executed is available as $0.

A special shell parameter $* is used to substitute for all positional parameters except $0. A typical
use of this is to provide some default arguments, as in,

nroff -T450 -ms $*
which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the arguments ($1, $2, ...) executing commands
once for each argument. An example of such a procedure is te/ that searches the file /usr/lib/telnos
that contains lines of the form

fred mh0123
bert mh0789

s

The text of tel is



USD:3-6 An Introduction to the UNIX Shell

fori
do grep $i /usr/lib/telnos; done

The command
tel fred

prints those lines in /usr/lib/telnos that contain the string fred.
tel fred bert

prints those lines containing fred followed by those for bert.
The for loop notation is recognized by the shell and has the general form

for name in wi w2 ...
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a newline
or semicolon. Furthermore, reserved words like do and done are only recognized following a newline
or semicolon. name is a shell variable that is set to the words w/ w2 ... in turn each time the
command-list following do is executed. If in wl w2 ... is omitted then the loop is executed once for
each positional parameter; that is, in $* is assumed.

Another example of the use of the for loop is the create command whose text is
for i do >$i; done
The command
| cfeate‘ alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation >file may be used on
its own to create or clear the contents of a file. Notice also that a semicolon (or newline) is required
before done.

2.2 Control flow - case
A multiple way branch is provided for by the case notation. For example,

case $# in

1) cat>8$1;

2) cat>>$2 <$1 ;;

*)  echo ‘usage: append [ from ] to";;
esac

is an append command. When called with one argument as
append file

$# is the string / and the standard input is copied onto the end of file using the car command.
append filel file2

appends the contents of filel onto file2. If the number of arguments supplied to append is other than
- 1 or 2 then a message is printed indicating proper usage.

The general form of the case command is
case word in
pattern) command-list 3;
esac

The shell attempts to match word with each paitern, in the order in which the patterns appear. If a



An Introduction to the UNIX Shell USD:3-7

match is found the associated command-list is executed and execution of the case is complete. Since
* is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argument. The
first match found defines the set of commands to be executed. In the example below the commands
following the second * will never be executed.

case $# in
*) o s
*) o5
esac

Another example of the use of the case construction is to distinguish between different forms of an
argument. The following example is a fragment of a cc command.

for i

do case $i in
~[ocs]) ... 5
-%)  echo ‘unknown flag $i’;;
*c) /lib/c0 $i ...
*)echo ‘unexpected argument $i’ ;;
esac

done

&

To allow the same commands to be associated with more than one pattern the case command pro-
vides for alternative patterns separated by a | . For example,

case $iin
-X I-y) eee
esac
is equivalent to

case $i in
-[xy])

esac

The usual quoting conventions apply so that
case $i in
\?)

will match the character ?.

2.3 Here documents
The shell procedure el in section 2.1 uses the file /usr/lib/telnos to supply the data for grep. An alter-
native is to include this data within the shell procedure as a here document, as in,

for i
do grep $i <!

fred mh0123
bert mh0789

!
done

In this example the shell takes the lines between <<! and ! as the standard input for grep. The string

! is arbitrary, the document being terminated by a line that consists of the string following <<.



USD:3-8 ' An Introduction to the UNIX Shell

Parameters are substituted in the document before it is made available to grep as illustrated by the
following procedure called edg.

ed $3 <<% ,
2/$1/s//$2/g
w

%
The call

edg string] string?2 file
is then equivalent to the command

ed file <<%
g/string1/s//string2/g
w

%

and changes all occurrences of stringl in file to string2. Substitution can be prevented using \ to
quote the special character $ as in

ed $3 <<+
1,\8s/81/82/g
w

+

(This version of edg is equivalent to the first except that ed will print a ? if there are no occurrences
- of the string $1.) Substitution within a here document may be prevented entirely by quoting the ter- -
minating string, for example, | o . :

grep $i <<\#

#
The document is presented without modification to grep. If parameter substitution is not required in
a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of letters,
digits and underscores. Variables may be given values by writing, for example,

user=fred box=m000 acct=mh0000

which assigns values to the variables user, box and acct. A variable may be set to the null string by
saying, for example,

null=
The value of a variable is substituted by preceding its name with $; for example,
echo $user

will echo fred.
Variables may be used interactively to provide abbreviations for frequently used strings. For exam-
ple, '

b=/usr/fred/bin

mv pgm $b

will move the file pgm from the current directory to the directory /usr/fred/bin. A more general nota-
tion is available for parameter (or variable) substitution, as in,



An Introduction to the UNIX Shell | USD:3-9

echo ${user)

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmp)a

will direct the output of ps to the file /tmp/psa, whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substituted.
Except for $? the following are set initially by the shell. $? is set after executing each command.

$?

$#

$$

$!
$-

The exit status (return code) of the last command executed as a decimal string. Most
commands return a zero exit status if they complete successfully, otherwise a non-zero
exit status is returned. Testing the value of return codes is dealt with later under if and
while commands.

The number of positional parameters (in decimal). Used, for example, in the append
command to check the- number of parameters.

The process number of this shell (in decimal). Since process numbers are unique
among all existing processes, this string is frequently used to gencrate unique temporary
file names. For example,

ps a >/tmp/ps$$
rm /tmp/ps$$

The process number of the last process run in the background (in decimal).
The current shell flags, such as -x and -v.

Some variables have a special meaning to the shell and should be avoided for general use.
$MAIL When used interactively the shell looks at the file specified by this variable before it

issues a prompt. If the specified file has been modified since it was last looked at the
shell prints the message you have mail before prompting for the next command. This
variable is typically set in the file .profile, in the user’s login directory. For example,

MAIL=/usr/spool/mail/fred

$HOME The default argument for the cd command. The current directory is used to resolve file

name references that do not begin with a /, and is changed using the ¢d command. For
example,

cd /usr/fred/bin
makes the current directory /usr/fred/bin.
cat wn

will print on the terminal the file wn in this directory. The command cd with 00 argu-
ment is equivalent to

~¢d SHOME

This variable is also typically set in the the user’s login profile.

SPATH A list of directories that contain commands (the search path). Each time a command is



USD:3-10 An Introduction to the UNIX Shell

executed by the shell a list of directories is searched for an executable file. If $PATH is
not set then the current directory, /bin, and /usr/bin are searched by default. Otherwise
$PATH consists of directory names separated by :. For example,

PATH =:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :), /usr/fred/bin, /bin
and /usr/bin are to be searched in that order. In this way individual users can have
their own ‘private’ commands that are accessible independently of the current direc-
tory. If the command name contains a / then this directory search is not used; a single
attempt is made to execute the command.

$PS1  The primary shell prompt string, by default, ‘$ °.
$PS2  The shell prompt when further input is needed, by default, ‘> °.
$IFS  The set of characters used by blank interpretation (see section 3.4).

2.5 The test command
The test command, although not part of the shell, is intended for use by shell programs.. For example,

test —f file

returns zero exit status if file exists and non-zero exit status otherwise. In general fest evaluates a
predicate and returns the result as its exit status. Some of the more frequently used test arguments
are given here, see test (1) for a complete specification.

test s true if the argument s is not the null string
test —f file true if file exists
. test —r file true if file is readable
test —w file true if file is writable
test —d filetrue if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell. A while
or until loop and an if then else branch are also provided whose actions are determined by the exit
status returned by commands. A while loop has the general form

while command-list,
do command-list,
done

The value tested by the while command is the exit status of the last simple command following while.
Each time round the loop command-list, is executed; if a zero exit status is returned then command-
list, is executed; otherwise, the loop terminates. For example,

while test $1
do...

shift
done

is equivalent to

fori
do ...
done ,
shift is a shell command that renames the positional parameters $2, $3, ... as $1, $2, ... and loses $1.

Another kind of use for the while/until loop is to wait until some external event occurs and then run
some commands. In an until loop the termination condition is reversed. For example,



An Introduction to the UNIX Shell USD:3-11

until test -f file
do sleep 300; done
commands '

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control flow - if
Also available is a general conditional branch of the form,

if command-list

then command-list

else command-list

fi
that tests the value returned by the last simple command following if.
The if command may be used in conjunction with the test command to test for the existence of a file
as in

if test -f file

then process file

else do something else ¢
fi

An example of the use of if, case and for construcnons is glven in secnon 2.10.
A multiple test if command of the form

if ...

then ...

else if...

then ...
else if...

fi

may be written using an extension of the if notation as,

if ...
then ...
elif
then ...
elif ...

fi
The following example is the touch command which changes the ‘last modified’ time for a list of files.
The command may be used in conjunction with make (1) to force recompilation of a list of files.



USD:3-12 - An Introduction to the UNIX Shell

flag=

for i

do case $i in R
-c) flag=N3;

*)if test —f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \'$i\" does not exist
else >8$i
fi

esac

done

The -c flag is used in this command to force subsequent files to be created if they do not already
exist. Otherwise, if the file does not exist, an error message is printed. The shell variable flag is set
to some non-null string if the —¢ argument is encountered. The commands

In...;rm...

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence ’

&

if command!
then command?2
fi

may be written
commandi && command2
- Conversely,
. commandl || command2
executes command?2 only if command| fails. In each case the value returned is that of the last simple
command executed.

2.8 Command grouping
Commands may be grouped in two ways,

{ command-list ; }
and '

( command-list )

In the first command-list is simply executed. The second form executes command-list as a separate
process. For example,

(cd x; rm junk )
executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.



An Introduction to the UNIX Shell USD;3-13

2.9 Debugging shell procedures
The shell provides two tracing mechanisms to help when debugging shell procedures. The first is
invoked within the procedure as

set -v
(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help
isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the —n flag
which prevents execution of subsequent commands. (Note that saying set —n at a terminal will
render the terminal useless until an end-of-file is typed.)

The command
set —x

will produce an execution trace. Following parameter substitution each command is printed as it is
executed. (Try these at the terminal to see what effect they have.) Both flags may be turned off by
saying

set -

and the current setting of the shell flags is available as $-.

2.10 The man command

" The following is the man command which is used to diplay sections of the UNIX manual on your ter-
minal. It is called, for example, as ‘

man sh'
man -ted
man 2 fork

In the first the manual section for sh is displayed.. Since no section is specified, section 1 is used.
The second example will typeset (-t option) the manual section for ed. The last prints the fork
manual page from section 2, which covers system calls.



USD:3-14 An Introduction to the UNIX Shell

cd /usr/man

: ‘colon is the comment command’
: ‘default is nroff ($N), section 1 ($s)’
N=ns=1

for i
do case $i in

[1-9]*)s=$i ;;
~t) N=t;
-n) N=nj;
-*)  echo unknown flag \$i\";;

*)if test —f man$s/$i.$s
then ${N)}roff man0/${N}aa man$s/$i.$s
else : look through all manual sections’
found=no
forjin123456789
do if test —f man$;j/$i.$;
then man §$j $i .

found=yes
fi
done
. case $found in . :
no) echo $i: manual page not found” ’ .
esac :

fi
esac

done

Figure 1. A version of the man command

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An argu-
ment to a shell procedure of the form name=value that precedes the command name causes value to
be assigned to name before execution of the procedure begins. The value of name in the invoking
shell is not affected. For example,

user=fred command

will execute command with user set to fred. The -k flag causes arguments of the form name=value to
be interpreted in this way anywhere in the argument list. Such names are sometimes called keyword
parameters. If any arguments remain they are available as positional parameters $1, $2, ....

The set command may also be used to set positional parameters from within a procedure. For exam-
ple,

set — *

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that the first
argument, —, ensures correct treatment when the first file name begins with a - .



An Introduction to the UNIX Shell USD:3-15

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied with the
call. Keyword parameters are also made available implicitly to a shell procedure by specifying in
advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are made of
all exportable variables for use within the invoked procedure. Modification of such variables within
the procedure does not affect the values in the invoking shell. It is generally true of a shell procedure
that it may not modify the state of its caller without explicit request on the part of the caller. (Shared
file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this com-
mand is the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the variable d
is not set

echo $d
or
) “echo $(d)
will echo nothing. A default string may be given as in
‘ echo S(dé.}

which will echo the value of the variable d if it is set and ‘. otherwise. The default string is evaluated
using the usual quoting conventions so that

echo ${d-"*"}
will echo * if the variable d is not set. Similarly
echo ${d-$1)

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be assigned
a default value using the notation

echo ${d=.)
which substitutes the same string as
echo ${d-.)

and if d were not previously set then it will be set to the string .’. (The notation ${...=...} is not
available for positional parameters.)

If there is no sensible default then the notation
echo ${d?message)

will echo the value of the variable d if it has one, otherwise message is printed by the shell and execu-
tion of the shell procedure is abandoned. If message is absent then a standard message is printed. A
shell procedure that requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?)



USD:3-16 An Introduction to the UNIX Shell

Colon (:) is a command that is built in to the shell and does nothing once its arguments have been
evaluated. If any of the variables user, acct or bin are not set then the shell will abandon execution of
the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The com-
mand pwd prints on its standard output the name of the current directory. For example, if the
current directory is /usr/fred/bin then the command .

d="pwd
is equivalent to
d=/usr/fred/bin

The entire string between grave accents (...") is taken as the command to be executed and is replaced
with the output from the command. The command is written using the usual quoting conventions
except that a * must be escaped using a \. For example,

Is ‘echo "$1™
is equivalent to

Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including here
documents) and the treatment of the resulting text is the same in both cases. This mechanism allows
string processing commands to ‘be used within shell procedures. An example of such a command is
basename which removes a specified suffix from a string. For example, '

basename main.c .c
will print the string main. Its use is illustrated by the following fragment from a cc command.

case $A in
*,c) B='basename $A .c

esac

that sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.

o foriin’'ls -t;do...
The variable i is set to the names of files in time order, most recent first.

e  set ‘date’; echo $6 $2 $3, $4
will print, e.g., 1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and file
name generation for the arguments to commands. This section discusses the order in which these
evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a command is
. executed the following substitutions occur.

e  parameter substitution, e.g. Suser
e command substitution, e.g. ‘pwd

Only one evaluation occurs so that if, for example, the value of the variable X is the string ‘
3y then



An Introduction to the UNIX Shell USD:3-17

echo $X

will echo 3y.
e  Dblank interpretation

Following the above substitutions the resulting characters are broken into non-blank words
(blank interpretation). For this purpose ‘blanks’ are the characters of the string $SIFS. By
default, this string consists of blank, tab and newline. The null string is not regarded as a
word unless it is quoted. For example,

-

echo
will pass on the null string as the first argument to echo, whereas
echo $null

will call echo with no arguments if the variable null is not set or set to the null string.
e file name generation

Each word is then scanned for the file pattern characters *, ? and [...] and an alphabetical
list of file names is generated to replace the word. Each such file name is a separate argu-
ment.

The evaluations just described also occur in the list of words associated with a for loop. Only substi-
tution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and "...” a third quoting mechanisrr is
provided using double quotes. Within double quotes parameter and command substitution occurs
but file name generation and the interpretation of blanks does not. The following characters have a
special meaning within double quotes and may be quoted using \.

$  parameter substitution
*  command substitution
ends the quoted string
\  quotes the special characters $° " \

For example,
echo "$x”

will pass the value of the variable x as a single argument to echo. Similarly,
echo "$*”

will pass the positional parameters as a single argument and is equivalent to
echo "$1 82 ...

The notation $@ is the same as $* except when it is quoted.
echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to
echo "$1" "$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.



USD:3-18 ' An Introduction to the UNIX Shell

metacharacter
\ $ * ) :
’ n n n n n t
) y n n t n n
¢ y y n y t n
t terminator
y  interpreted
n  not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eval may be
used. For example, if the variable X has the value 3y, and if y has the value pgr then

eval echo $X

will echo the string pgr.
In general the eva/ command evaluates its arguments (as do all commands) and treats the result as
input to the shell. The input is read and the resulting command(s) executed. For example,

wg="eval wholgrep’
$wg fred

is equivalent to
who | grep fred »
"In this example, eval is requi;ed since there is no interpretation of metacharacters, such as |, follow-
ing substitution. *
3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is
being used interactively. An interactive shell is one whose input and output are connected to a termi-
nal (as determined by gty (2)). A shell invoked with the -i flag is also interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.
o Input output redirection may fail. For example, if a file does not exist or cannot be created.
e  The command itself does not exist or cannot be executed.

e The command terminates abnormally, for example, with a "bus error” or "memory fault”. See
Figure 2 below for a complete list of UNIX signals.

e  The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case an
error message will be printed by the shell. All remaining errors cause the shell to exit from a com-
mand procedure. An interactive shell will return to read another command from the terminal. Such
errors include the following. '

e  Syntax errors. e.g., if ... then ... done

e A signal such as interrupt. The shell waits for the current command, if any, to finish execution
and then either exits or returns to the terminal.

e  Failure of any of the built-in commands such as ¢d.
The shell flag —e causes the shell to terminate if any error is detected.



An Introduction to the UNIX Shell USD:3-19

1 hangup
2  interrupt
3* quit

4*  illegal instruction

5* trace trap

6* IOT instruction

7* EMT instruction

8* floating point exception

9  kill (cannot be caught or ignored)
10* bus error

11* segmentation violation

12* bad argument to system call

13  write on a pipe with no one to read it
14 alarm clock

15 software termination (from kill (1))

Figure 3. UNIX signalst
Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself
ignores quit which is the only external signal that can cause a dump. The signals in this list of poten-
tial interest to shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap com-
mand is used if some cleaning up is required, such as removing temporary ﬁles For example,

- trap rm /tmp/ps$$; exit’ 2 ‘ .
sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands
rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The exir is required;
otherwise, after the trap has been taken, the shell will resume executing the procedure at the place
where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal is
never sent to the process. They can be caught, in which case the process must decide what action to
take when the signal is received. Lastly, they can be left to cause termination of the process without
it having to take any further action. If a signal is being ignored on entry to the shell procedure, for
example, by invoking it in the background (see 3.7) then trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the rouch command (Figure 4). - The cleanup
action is to remove the file junk$$.

+ Additional signals have been added in Berkeley Unix. See sigvec(2) or signal(3C) for an up-to-date list.



USD:3-20 An Introduction to the UNIX Shell

flag=
trap m -f junk$$; exit" 12 3 15
for i
do case $i in
-c) flag=N;;

*)if test —f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \'$i\" does not exist
else >8i
fi

esac

done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be possible
for the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed on
exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap.
The following fragment is taken from the nohAup command.

trap” 12315

which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked
- commands. - : _ »

Traps may be reset by saying
trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps
may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the trap com-
mand. scan takes each directory in the current directory, prompts with its name, and then executes
commands typed at the terminal until an end of file or an interrupt is received. Interrupts are
ignored while executing the requested commands but cause termination when scan is waiting for
input.

d="pwd
foriin *
do if test —-d $d/%i
then cd $d/8i
while echo "$i:"
trap exit 2
read x
do trap : 2; eval $x; done

done

Figure 5. The scan command



An Introduction to the UNIX Shell USD:3-21

read x is a built-in command that reads one line from the standard input and places the result in the
variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system call
fork. The execution environment for the command includes input, output and the states of signals,
and is established in the child process before the command is executed. The built-in command exec
is used in the rare cases when no fork is required and simply replaces the shell with a new command.
For example, a simple version of the nohup command looks like

trap” 12315
exec $*

The trap turns off the signals specified so that they are ignored by subsequently created commands
and exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is only
subject to parameter and command substitution. No file name generation or blank interpretation
takes place so that, for example,

echo ... >*.c
will write its output into a file whose name is *.c. Input output specifications are evaluated left to
right as they appear in the command. ’

> word The standard output (file descriptor 1) is sent to the file word which is created if it does
not already exist.

>> word The standard output is sent to file word. If the file exists then output is appended (by
seeking to the end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from the file word.

<< word The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word. If word is quoted then no interpretation of the
document occurs. If word is not quoted then parameter and command substitution
occur and \ is used to quote the characters \ $ * and the first character of word. In the
latter case \newline is ignored (c.f. quoted strings).

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is used
as the standard output.

<& digit The standard input is duplicated from file descriptor digit.
<&- The standard input is closed.
>&- The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that specified
by the digit instead of the default 0 or 1. For example,

.. 2>file
runs a command with message output (file descriptor 2) directed to file.
L 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file descrip-
tor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two streams.)

The environment for a command run in the background such as
list *.c | lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty file
/dev/mull. This prevents two processes (the shell and the command), which are running in parallel,
from trying to read the same input. Chaos would ensue if this were not the case. For example,



USD:3-22 An Introduction to the UNIX Sheli

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT and
INTERRUPT signals so that they are ignored by the command. This allows these signals to be used
at the terminal without causing background commands to terminate. For this reason the UNIX con-
vention for a signal is that if it is set to 1 (ignored) then it is never changed even for a short time.
Note that the shell command ¢rap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of argument

zero is a minus, then commands are read from the file .profile.

~c string
If the -c flag is present then commands are read from string.

-s If the -s flag is present or if no arguments remain then commands are read from the standard
input. Shell output is written to file descriptor 2.

-i If the i flag is present or if the shell input and output are attached to a terminal (as told by
gtty) then this shell is interactive. In this case TERMINATE is ignored (so that kill 0 does not
kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is interruptable).
In all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell3 and the PWB/UNIX shell,* some
features having been taken from both. Sumlantxes also exist with the command interpreters of the
Cambridge Multiple Access System® and of CTSS.6

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the
shell. 1 am also grateful to the members of the Computing Science Research Center and to Joe
Maranzano for their comments on drafts of this document.

References

1. B. W. Kemighan, UNIX for Beginners, 1978. Reprinted as USD:1 in UNIX User’s Manual,
Usenix Association, (1986).

2. K. Thompson and D. M. Ritchie, UNIx Programmer’s Manual, Bell Laboratories, 1978. Seventh
Edition. \

3. K. Thompson, “The UNIX Command Language,” in Structured Programming—Infotech State of

the Art Report, pp. 375-384, Infotech International Ltd., Nicholson House, Maidenhead,
Berkshire, England, March 1975.

4. J. R. Mashey, PWB/UNIX Shell Tutorial, September 30, 1977.

5. D. F. Hartley (Ed.), The Cambridge Multiple Access System - Users Reference Manual, Univer-
sity Mathematical Laboratory, Cambridge, England, 1968.

6. P. A. Crisman (Ed.), The Compatible Time-Sharing System, M.L.T. Press, Cambridge, Mass.,
-1965.



An Introduction to the UNIX Shell

Appendix A - Grammar

item:

word
input-output
name = value

simple-command: item

simple-command item

command: simple-command

pipeline:

andor:

( command-list )

{ command-list }

for name do command-list done

for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac

if command-list then command-list else-part fi

command
pipeline | command

pipeline
andor && pipeline
andor | | pipeline

command-list: andor

command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file

file:

case-part:

pattern:

else-part:

empty:
word:
name:

digit:

< file
>> word
<< word

word

& digit

& -

pattern ) command-list 5

word
pattern | word

elif command-list then command-list else-part
else command-list
empty

a sequence of non-blank characters

a sequence of letters, digits or underscores starting with a letter

0123456789

USD:3-23



USD:3-24 An Introduction to the UNIX Shell

Appendix B - Meta-characters and Reserved Words

a) syntactic
| pipe symbol
&& ‘andf symbol
H ‘orf” symbol

: command separator

% case delimiter

& background commands

() command grouping

< input redirection

<< input from a here document
> output creation

>>  output append

b) patterns
* match any character(s) including none
? match any single character

[.] match any of the enclosed characters

C) substitution
${...} substitute shell variable
‘e substitute command output

d) quoting
\ quote the next character
‘... quote the enclosed characters except for

" w

«" quote the enclosed characters except for $* \ *

e) reserved words

if then else elif fi
case in esac
for while pntil do done

{1



An Introduction to the C shell USD:4-1

An Introduction to the C shell

William Joy
(revised for 4.3BSD by Mark Seiden)

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNIXt} systems. It incor-
porates good features of other shells and a Aistory mechanism similar to the redo of
INTERLISP. While incorporating many features of other shells which make writing
shell programs (shell scripts) easier, most of the features unique to csh are designed
more for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a valu-
able basic explanation of the shell here. Simple terminal interaction with c¢si is pos-
sible after reading just the first section of this document. .The second section
describes the shell’s capabilities which you can explore after you have begun to
become acquainted with -the shell. Later sections introduce features which are use-
ful, but not necessary for all users of the shell.

Additional information includes an appendix listing special characters of the
shell and a glossary of terms and commands introduced in this manual.

Introduction

A shell is a command language interpreter. Csi is the name of one particular command inter-
preter on UNIX. The primary purpose of csh is to translate command lines typed at a terminal into
system actions, such as invocation of other programs. Csh is a user program just like any you might
write. Hopefully, csh will be a very useful program for you in interacting with the UNIX system.

In addition to this document, you will want to refer to a copy of the UNIX User Reference
Manual. The ¢sh documentation in section 1 of the manual provides a full description of all features
of the shell and is the definitive reference for questions about the shell.

Many words in this document are shown in iralics. These are important words; names of com-
- mands, and words which have special meaning in discussing the shell and UNIX. Many of the words
are defined in a glossary at the end of this document. If you don’t know what is meant by a word,
you should look for it in the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh and aided in its
debugging and in the debugging of its documentation. I would especially like to thank Michael Ubell
who made the crucial observation that history commands could be done well over the word structure
of input text, and implemented a prototype history mechanism in an older version of the shell. Eric
Allman has also provided a large number of useful comments on the shell, helping to unify those

+ UNIX is a trademark of AT&T Bell Laboratories.



USD:4-2 ' An Introduction to the C shell

concepts which are present and to identify and eliminate useless and marginally useful features. Mike
O’Brien suggested the pathname hashing mechanism which speeds command execution. Jim Kulp
added the job control and directory stack primitives and added their documentation to this introduc-
tion.



An Introduction to the C shell : USD:4-3

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other programs are invoked. While it
has a set of builtin functions which it performs directly, most commands cause execution of programs
that are, in fact, external to the shell. The shell is thus distinguished from the command interpreters
of other systems both by the fact that it is just a user program, and by the fact that it is used almost
exclusively as a mechanism for invoking other programs.

Commands in the UNIX system consist of a list of strings or words interpreted as a command
name followed by arguments. Thus the command

mail bill

consists of two words. The first word mail names the command to be executed, in this case the mail
program which sends messages to other users. The shell uses the name of the command in attempting
to execute it for you. It will look in a number of directories for a file with the name mail which is
expected to contain the mail program. :

The rest of the words of the command are given as arguments to the command itself when it is
executed. In this case we specified also the argument bill which is interpreted by the mail program to
be the name of a user to whom mail is to be sent. In normal terminal usage we might use the mail
command as follows. :

% mail bill
I have a question about the csh documentation.
My document seems to be m155mg page 5.
- Does a page five exist?
~ Bill
EOT

%

Here we typed a message to send to bill and ended this message with a “D which sent an end-
of-file to the mail program. (Here and throughout this document, the notation ““x” is to be read
“control-x" and represents the striking of the x key while the control key is held down ) The mail pro-
gram then echoed the characters ‘EOT’ and transmitted our message. The characters ‘% * were
printed before and after the mail command by the shell to indicate that input was needed.

After typing the ‘% °* prompt the shell was reading command input from our terminal. We typed
a complete command ‘mail bill’. The shell then executed the mail program with argument bill and
went dormant waiting for it to complete. The mail program then read input from our terminal until
we signalled an end-of-file via typing a “D after which the shell noticed that mail had completed and
signaled us that it was ready to read from the terminal again by printing another ‘% * prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete com-
mand is typed at the terminal, the shell executes the command and when this execution completes, it
prompts for a new command. If you run the editor for an hour, the shell will patiently wait for you
to finish editing and obediently prompt you again whenever you finish editing.

An example of a useful command you can execute now is the tsez command, which sets the
default erase and kill characters on your terminal - the erase character erases the last character you
typed and the kill character erases the entire line you have entered so far. By default, the erase char-
acter is the delete key (equivalent to “*?’) and the kill character is ““U’. Some people prefer to make
the erase character the backspace key (equivalent to ““H’). You can make this be true by typing

tset —-e

which tells the program tset to set the erase character to tset’s default setting for this character (a
backspace).



USD:4-4 .. An Introduction to the C shell

1.2. Flag arguments

A useful notion in UNIX is that of a flag argument. While many arguments to commands
specify file names or user names, some arguments rather specify an optional capability of the com-
mand which you wish to invoke. By convention, such arguments begin with the character ‘-’
(hyphen). Thus the command

Is
will produce a list of the files in the current working directory. The option -s is the size option, and
Is -s

causes /s to also give, for each file the size of the file in blocks of 512 characters. The manual section
for each command in the UNIX reference manual gives the available options for each command. The
Is command has a large number of useful and interesting options. Most other commands have either
no options or only one or two options. It is hard to remember options of commands which are not
used very frequently, so most UNIX utilities perform only one or two functions rather than having a
large number of hard to remember options.

1.3. Output to files

Commands that normally read input or write output on the terminal can also be executed with
this input and/or output done to a file. '

Thus suppose we wish to save the current date in a file called ‘now’. The command
date

will print the current date on our terminal. This is because our terminal is the default standard out-
put for the date-command and the date command prints the date on its standard output. The shell
lets us redirect the standard outputr of a command through a notation using the metacharacter ‘>’ and
the name of the file where output is to be placed. Thus the command

date > now

runs the date command such that its standard output is the file ‘now’ rather than the terminal. Thus
this command places the current date and time into the file ‘now’. It is important to know that the
date command was unaware that its output was going to a file rather than to the terminal. The shell
performed this redirection before the command began executing.

One other thing to note here is that the file ‘now’ need not have existed before the date com-
mand was executed; the shell would have created the file if it did not exist. And if the file did exist?
If it had existed previously these previous contents would have been discarded! A shell option
noclobber exists to prevent this from happening accidentally; it is discussed in section 2.2.

The system normally keeps files which you create with ‘>’ and all other files. Thus the default is
for files to be permanent. If you wish to create a file which will be removed automatically, you can
begin its name with a ‘# character, this ‘scratch’ character denotes the fact that the file will be a
scratch file.* The system will remove such files after a couple of days, or sooner if file space becomes
very tight. Thus, in running the date command above, we don’t really want to save the output for-
ever, so we would more likely do

date > #now

*Note that if your erase character is a ‘#, you will have to precede the ‘#’ with a ‘\’. The fact that the ‘#
character is the old (pre-CRT) standard erase character means that it seldom appears in a file name, and al-
lows this convention to be used for scratch files. If you are using a CRT, your erase character should be a
“H, as we demonstrated in section 1.1 how this could be set up.



An Introduction to the C shell USD:4-5

1.4. Metacharacters in the shell

The shell has a large number of special characters (like ‘>’) which indicate special functions.
We say that these notations have syntactic and semantic meaning to the shell. In general, most char-
acters which are neither letters nor digits have special meaning to the shell. We shall shortly learn a
means of quotation which allows us to use metacharacters without the shell treating them in any spe-
cial way.

Metacharacters normally have effect only when the shell is reading our input. We need not
worry about placing shell metacharacters in a letter we are sending via mail, or when we are typing in
text or data to some other program. Note that the shell is only reading input when it has prompted
with ‘% ’ (although we can type our input even before it prompts).

1.5. Input from files; pipelines

We learned above how to redirect the standard output of a command to a file. It is also possible
to redirect the standard input of a command from a file. This is not often necessary since most com-
mands will read from a file whose name is given as an argument. We can give the command

sort < data

to run the sort command with standard input, where the command normally reads its input, from the
file ‘data’. We would more likely say

sort data

letting the sort command open the file ‘data’ for input itself since this is less to type.
We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the standard
input, it would sort lines as we typed them on the terminal until we typed a "D to indicate an end-of-
file. - : o '

A most useful capability is the ability to combine the standard output of one command with the
standard input of another, i.e. to run the commands in a sequence known as a pipeline. For instance
the command

Is -5

normally produces a list of the files in our directory with the size of each in blocks of 512 characters.
If we are interested in learning which of our files is largest we may wish to have this sorted by size
rather than by name, which is the default way in which /s sorts. We could look at the many options
of Is to see if there was an option to do this but would eventually discover that there is not. Instead
we can use a couple of simple options of the sort command, combining it with /s to get what we
want.

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus
Is -s | sort -n

specifies that the output of the /s command run with the option -s is to be piped to the command
sort run with the numeric sort option. This would give us a sorted list of our files by size, but with
the smallest first. We could then use the -7 reverse sort option and the head command in combina-
tion with the previous command doing

Is -s | sort -n -r | head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We have run
this to the standard input of the sort command asking it to sort numerically in reverse order (largest
first). This output has then been run into the command head which gives us the first few lines. In
this case we have asked head for the first 5 lines. Thus this command gives us the names and sizes of
our 5 largest files. )



USD:4-6 An Introduction to the C shell

The notation introduced above is called the pipe mechanism. Commands separated by |’ char-
acters are connected together by the shell and the standard output of each is run into the standard
input of the next. The leftmost command in a pipeline will normally take its standard input from the
terminal and the rightmost will place its standard output on the terminal. Other examples of pipe-
lines will be given later when we discuss the history mechanism; one important use of pipes which is
illustrated there is in the routing of information to the line printer.

1.6. Filenames

. Many commands to be executed will need the names of files as arguments. UNIX pathnames

consist of a number of components separated by ‘/’. Each component except the last names a direc-
tory in which the next component resides, in effect specifying the path of directories to follow to
reach the file. Thus the pathname

/etc/motd

specifies a file in the directory ‘etc’ which is a subdirectory of the root directory ‘/’. Within this direc-
tory the file named is ‘motd’ which stands for ‘message of the day’. A pathname that begins with a
slash is said to be an absolute pathname since it is specified from the absolute top of the entire direc-
tory hierarchy of the system (the root). Pathnames which do not begin with ‘/° are interpreted as
starting in the current working directory, which is, by default, your hiome directory and can be
changed dynamically by the cd change directory command. Such pathnames are said to be relative to
the working directory since they are found by starting in the working directory and descending to
lower levels of directories for each component of the pathname. If the pathname contains no slashes
at all then the file is contained in the working directory itself and the pathname is merely the name of
the file in this directory. Absolute pathnames have no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and *.’s (periods). In fact, all
printing characters except ‘/’ (slash) may appear in filenames. It is inconvenient to have most non- -
alphabetic characters in filenames because many of these have special meaning to the shell. The char-
acter °.’ (period) is not a shell-metacharacter and is often used to separate the extension of a file name
from the base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that part of the
name that is left when a trailing ‘. and following characters which are not ‘.’ are stripped off). The
file ‘prog.c’ might be the source for a C program, the file ‘prog.o’ the corresponding object file, the file
‘prog.errs’ the errors resulting from a compilation of the program and the file ‘prog.output’ the output
of a run of the program.

If we wished to refer to all four of these files in a command, we could use the notation
prog.*

This expression is expanded by the shell, before the command to which it is an argument is executed,
into a list of names which begin with ‘prog.’. The character ‘** here matches any sequence (including
the empty sequence) of characters in a file name. The names which match are alphabetically sorted
and placed in the argument list of the command. Thus the command

echo prog.*
will echo the names
prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed them above. The
echo command receives four words as arguments, even though we only typed one word as as argu-
ment directly. The four words were generated by filename expansion of the one input word.

Other notations for filename expansion are also available. The character ‘?” matches any single
character in a filename. Thus



An Introduction to the C shell . USD:4-7

echo? 1?7 M

will echo a line of filenames; first those with one character names, then those with two character
names, and finally those with three character names. The names of each length will be independently
sorted.

Another mechanism consists of a sequence of characters between ‘[’ and ‘. This metasequence

matches any single character from the enclosed set. Thus

prog.[co]
will match

prog.c prog.o
in the example above. We can also place two characters around a ‘-’ in this notation to denote a
range. Thus

chap.[1-5]
might match files

chap.1 chap.2 chap.3 chap.4 chap.5
if they existed. This is shorthand for

chap.[12345]

and otherwise equivalent.

An important point to note is that if a list of argument words to a command (an argument list)
contains filename expansion syntax, and if this filename expansion syntax fails to match any existing -
file names, then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.

Another very important point is that files with the character ‘.’ at the beginning are treated spe-
cially. Neither **’ or ‘? or the ‘[’ ‘" mechanism will match it. This prevents accidental matching of
the filenames ‘.’ and °.." in the working directory which have special meaning to the system, as well as
other files such as .cshrc which are not normally visible. We will discuss the special role of the file
.cshre later.

Another filename expansion mechanism gives access to the pathname of the Aome directory of
other users. This notation consists of the character ‘™ (tilde) followed by another user’s login name.
For instance the word “bill’ would map to the pathname ‘/usr/bill’ if the home directory for ‘bill’ was
‘fusr/bill’. Since, on large systems, users may have login directories scattered over many different disk
volumes with different prefix directory names, this notation provides a convenient way of accessing
the files of other users.

A special case of this notation consists of a *” alone, e.g. “/mbox’. This notation is expanded by
the shell into the file ‘mbox’ in your home directory, i.e. into ‘/usr/bill/mbox’ for me on Emmnie Co-vax,
the UCB Computer Science Department VAX machine, where this document was prepared. This can
be very useful if you have used c¢d to change to another directory and have found a file you wish to
copy using cp. If I give the command

cp thatfile ~
the shell will expand this command to
cp thatfile /usr/bill

since my home directory is /usr/bill.

There also exists a mechanism using the characters *(’ and ‘)’ for abbreviating a set of words
which have common parts but cannot be abbreviated by the above mechanisms because they are not



USD:4-8 An Introduction to the C shell

files, are the names of files which do not yet exist, are not thus conveniently described. This mechan-
ism will be described much later, in section 4.2, as it is used less frequently.

1.7. Quotation 7
We have already seen a number of metacharacters used by the shell. These metacharacters pose
a problem in that we cannot use them directly as parts of words. Thus the command
echo *
will not echo the character “*’. It will either echo an sorted list of filenames in the current working
directory, or print the message ‘No match’ if there are no files in the working directory.
The recommended mechanism for placing characters which are neither numbers, digits, ¢/, ‘.’ or
‘-’ in an argument word to a command is to enclose it with single quotation characters *, i.e.
echo ™

There is one special character ‘!’ which is used by the Aistory mechanism of the shell and which can-
not be escaped by placing it within ** characters. It and the character ** itself can be preceded by a
single ¢\’ to prevent their special meaning. Thus

echo \\!
prints
1

These two mechanisms suffice to place any pnntmg character into a word which is an. argument toa
shell command. They can be combined, as in

echo \™

which prints
%

since the first ‘\’ escaped the first ** and the ‘** was enclosed between ‘” characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are several
ways to force it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely to con-
tinue for several minutes unless you stop it. You can send an INTERRUPT signal to the cat command
by typing “C on your terminal.* Since cat does not take any precautions to avoid or otherwise handle
this signal the INTERRUPT will cause it to terminate. The shell notices that catr has terminated and
prompts you again with ‘% ’. If you hit INTERRUPT again, the shell will just repeat its prompt since it
handles INTERRUPT signals and chooses to continue to execute commands rather than terminating like
cat did, which would have the effect of logging you out.

Another way in which many programs terminate is when they get an end-of-file from their stan-
dard input. Thus the mail program in the first example above was terminated when we typed a "D
which generates an end-of-file from the standard input. The shell also terminates when it gets an
end-of-file printing ‘logout’; UNIX then logs you off the system. Since this means that typing too many
“D’s can accidentally log us off, the shell has a mechanism for preventing this. This ignoreeof option
will be discussed in section 2.2.

*On some older Unix systems the DEL or RUBOUT key has the same effect. “stty all” will tell you the INTR
key value.



An Introduction to the C shell ’ . USD:4-9

If a command has its standard input redirected from a file, then it will normally terminate when
it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a “D. This is because it read to the end-of-file
of our file ‘prepared.text’ in which we placed a message for ‘bill’ with an editor program. We could
also have done '

cat prepared.text | mail bill

since the cat command would then have written the text through the pipe to the standard input of the
mail command. When the cat command completed it would have terminated, closing down the pipe-
line and the mail command would have received an end-of-file from it and terminated. Using a pipe
here is more complicated than redirecting input so we would more likely use the first form. These
commands could also have been stopped by sending an INTERRUPT.

Another possibility for stopping a command is to suspend its execution temporarily, with the
possibility of continuing execution later. This is done by sending a STOP signal via typing a “Z. This
signal causes all commands running on the terminal (usually one but more if a pipeline is executing)
to become suspended. The shell notices that the command(s) have been suspended, types ‘Stopped’
and then prompts for a new command. The previously executing command has been suspended, but
otherwise unaffected by the STOP signal. Any other commands can be executed while the original
command remains suspended. The suspended command can be continued using the fg command
with no arguments. The shell will then retype the command to remind you which command is being
continued, and cause the command to resume execution. Unless any input files in use by the
suspended command have been changed in the meantime, the suspension has no effect whatsoever on
the execution of the command. This feature can be very useful during editing, when you need to look
at another file before continuing. An example of command suspension follows.

% mail harold
~ Someone just copied a big file into my directory and its name is
Z
Stopped
% Is
funnyfile
prog.c
prog.o
% jobs
[1] + Stopped mail harold
% fg
mail harold
funnyfile. Do you know who did it?
EOT
%

In this example someone was sending a message to Harold and forgot the name of the file he wanted
to mention. The mail command was suspended by typing “Z. When the shell noticed that the mail
program was suspended, it typed ‘Stopped’ and prompted for a new command. Then the /s com-
mand was typed to find out the name of the file. The jobs command was run to find out which com-
mand was suspended. At this time the fg command was typed to continue execution of the mail pro-
gram. Input to the mail program was then continued and ended with a "D which indicated the end of
the message at which time the mail program typed EOT. The jobs command will show which com-
mands are suspended. The “Z should only be typed at the beginning of a line since everything typed
on the current line is discarded when a signal is sent from the keyboard. This also happens on INTER-
RUPT, and QUIT signals. More information on suspending jobs and controlling them is given in sec-
tion 2.6.



USD:4-10 ‘An Introduction to the C shell

If you write or run programs which are not fully debugged then it may be necessary to stop
them somewhat ungracefully. This can be done by sending them a QUIT signal, sent by typing a “\.
This will usually provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file ‘core’ has been created containing information about the running program’s state
when it terminated due to the QUIT signal. You can examine this file yourself, or forward informa-
tion to the maintainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will ignore
INTERRUPT and QUIT signals at the terminal. To stop them you must use the kill command. See sec-
tion 2.6 for an example.

If you want to examine the output of a command without having it move off the screen as the
output of the

cat /etc/passwd
command will, you can use the command
more /etc/passwd

The more program pauses after each complete screenful and types ‘—More—’ at which point you can
hit a space to get another screenful, a return to get another line, a ‘?’ to get some help on other com-
mands, or a ‘qQ’ to end the more program. You can also use more as a filter, i.e.

cat /etc/passwd | more

“works just like the more simple more command above.

For stopping ouitput of commands not involving more you can use the “S key to stop the
typeout. The typeout will resume when you hit “Q or any other key, but “Q is normally used because
it only restarts the output and does not become input to the program which is running. This works
well on low-speed terminals, but at 9600 baud it is hard to type “S and “Q fast enough to paginate the
output nicely, and a program like more is usually used.

An additional possibility is to use the “O flush output character; when this character is typed, all
output from the current command is thrown away (quickly) until the next input read occurs or until
the next shell prompt. This can be used to allow a command to complete without having to suffer
through the output on a slow terminal; “O is a toggle, so flushing can be turned off by typing “O again
while output is being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way in
which it operates. The remaining sections will go yet further into the internals of the shell, but you
will surely want to try using the shell before you go any further. To try it you can log in to UNIX and
type the following command to the system:

chsh myname /bin/csh

Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:’ to get onto
the system. Thus I would use ‘chsh bill /bin/csh’. You only have to do this once; it takes effect at next
login. You are now ready to try using csh.

Before you do the ‘chsh’ command, the shell you are using when you log into the system is
‘/bin/sh’. In fact, much of the above discussion is applicable to ‘/bin/sh’. The next section will intro-
duce many features particular to csh so you should change your shell to csh before you begin reading
it.



An Introduction to the C shell USD:4-11

2. Details on the shell for terminal users

2.1. Shell startup and termination

When you login, the shell is started by the system in your home directory and begins by reading
commands from a file .cshrc in this directory. All shells which you may start during your terminal
session will read from this file. We will later see what kinds of commands are usefully placed there.
For now we need not have this file and the shell does not complain about its absence.

A login shell, executed after you login to the system, will, after it reads commands from .cshrc,
read commands from a file .Jogin also in your home directory. This file contains commands which
you wish to do each time you login to the UNIX system. My .login file looks something like:

set ignoreeof

set mail=(/usr/spool/mail/bill)
echo "${prompt}users” ; users
alias ts \

‘set noglob ; eval ‘tset —s -m dialup:c100rv4pna —m plugboard:?hp2621nl **
ts; stty intr “C kill “U crt ’
set time=15 history=10
msgs -f
if (—e $mail) then

echo "${prompt}mail”

mail
endif

~ This file contains several commands to be executed by UNIX each time I login. The first is a set
command which is interpreted directly by the shell. It sets the shell variable ignoreeof which causes
the shell to niot log me off if I hit “D. Rather, I use the logout command to log off of the system. By
setting the mail variable, I ask the shell to watch for incoming mail to me. Every 5 minutes the shell
looks for this file and tells me if more mail has arrived there. An alternative to this is to put the com-
mand

biff y

in place of this set; this will cause me to be notified immediately when mail arrives, and to be shown
the first few lines of the new message.

Next I set the shell variable ‘time’ to ‘15° causing the shell to automatically print out statistics
lines for commands which execute for at least 15 seconds of CPU time. The variable ‘history’ is set to
10 indicating that I want the shell to remember the last 10 commands I type in its history list,
(described later).

I create an alias “ts” which executes a tset(1) command setting up the modes of the terminal.
The parameters to tset indicate the kinds of terminal which I usually use when not on a hardwired
port. I then execute “ts” and also use the stty command to change the interrupt character to “C and
the line kill character to “U.

I then run the ‘msgs’ program, which provides me with any system messages which I have not
seen before; the ‘~f option here prevents it from telling me anything if there are no new messages.
Finally, if my mailbox file exists, then I run the ‘mail’ program to process my mail.

When the ‘mail’ and ‘msgs’ programs finish, the shell will finish processing my .login file and
begin reading commands from the terminal, prompting for each with ‘% °. When I log off (by giving
the logout command) the shell will print ‘logout’ and execute commands from the file ‘.logout’ if it
exists in my home directory. After that the shell will terminate and UNIX will log me off the system.
If the system is not going down, I will receive a new login message. In any case, after the ‘logout’
message the shell is committed to terminating and will take no further input from my terminal.



USD:4-12 An Introduction to the C shell

2.2. Shell variables

The shell maintains a set of variables. We saw above the variables history and time which had
values ‘10’ and ‘15°. In fact, each shell variable has as value an array of zero or more strings. Shell
variables may be assigned values by the set command. It has several forms, the most useful of which
was given above and is

set name=value

Shell variables may be used to store values which are to be used in commands later through a
substitution mechanism. The shell variables most commonly referenced are, however, those which
the shell itself refers to. By changing the values of these variables one can directly affect the behavior
of the shell.

One of the most important variables is the variable parh. This variable contains a sequence of
directory names where the shell searches for commands. The ser command with no arguments shows
the value of all variables currently defined (we usually say set) in the shell. The default value for path
will be shown by sez to be

% set

argv 0

cwd fusr/bill
home /usr/bill
path (. /usr/ucb /bin /usr/bin)
prompt %

shell /bin/csh
status . 0.

term - ci100rvdpna
user bill

%

This output indicates that the variable path points to the current directory ‘.’ and then ‘/usr/ucb’,
‘/bin’ and ‘/usr/bin’. Commands which you may write might be in ‘.’ (usually one of your direc-
tories). Commands developed at Berkeley, live in ‘/usr/ucb’ while commands developed at Bell
Laboratories live in ‘/bin’ and ‘/usr/bin’.

A number of locally developed programs on the system live in the directory ‘/usr/local’. If we
wish that all shells which we invoke to have access to these new programs we can place the command

set path=(. /usr/ucb /bin /usr/bin /usr/local)
in our file .cshrc in our home directory. Try doing this and then logging out and back in and do
set

again to see that the value assigned to path has changed.

One thing you should be aware of is that the shell examines each directory which you insert into
your path and determines which commands are contained there. Except for the current directory “.’,
which the shell treats specially, this means that if commands are added to a directory in your search
path after you have started the shell, they will not necessarily be found by the shell. If you wish to
use a command which has been added in this way, you should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it will
find the newly added command. Since the shell has to look in the current directory ‘.’ on each com-
mand, placing it at the end of the path specification usually works equivalently and reduces overhead.

+ Another directory that might interest you is /usr/new, which contains many useful user-contributed
programs provided with Berkeley Unix.



An Introduction to the C sheil USD:4-13

Other useful built in variables are the variable home which shows your home directory, cwd
which contains your current working directory, the variable ignoreeof which can be set in your .login
file to tell the shell not to exit when it receives an end-of-file from a terminal (as described above).
The variable ‘ignoreeof’ is one of several variables which the shell does not care about the value of,
only whether they are set or unset. Thus to set this variable you simply do

set ignoreeof
and to unset it do
unset ignoreeof

These give the variable ‘ignoreeof’ no value, but none is desired or required.

Finally, some other built-in shell variables of use are the variables noclobber and mail. The
metasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous contents
of the named file. In this way you may accidentally overwrite a file which is valuable. If you would
prefer that the shell not overwrite files in this way you can

set noclobber
in your .login file. Then trying to do

date > now
- would cause a diagnostic if ‘now’ existed alreédy. You could type
date >! now '

" if you really wanted to overwrite the contents of ‘now’. The ‘>!" is a special metasyntax indicating
that clobbering the file is ok.t '

2.3. The shell’s history list

The shell can maintain a history list into which it places the words of previous commands. It is
possible to use a notation to reuse commands or words from commands in forming new commands.
This mechanism can be used to repeat previoys commands or to correct minor typing mistakes in
commands. :

The following figure gives a sample session involving typical usage of the history mechanism of
the shell. In this example we have a very simple C program which has a bug (or two) in it in the file
‘bug.c’, which we ‘cat’ out on our terminal. We then try to run the C compiler on it, referring to the
file again as ‘!$’, meaning the last argument to the previous command. Here the !’ is the history
mechanism invocation metacharacter, and the ‘$’ stands for the last argument, by analogy to ‘$’ in the
editor which stands for the end of the line. The shell echoed the command, as it would have been
typed without use of the history mechanism, and then executed it. The compilation yielded error
diagnostics so we now run the editor on the file we were trying to compile, fix the bug, and run the C
compiler again, this time referring to this command simply as ‘!c’, which repeats the last command
which started with the letter ‘c’. If there were other commands starting with ‘c’ done recently we
could have said ‘!cc’ or even ‘!cc:p’ which would have printed the last command starting with ‘cc’
without executing it.

After this recompilation, we ran the resulting ‘a.out’ file, and then noting that there still was a
bug, ran the editor again. After fixing the program we ran the C compiler again, but tacked onto the
command an extra ‘-0 bug’ telling the compiler to place the resultant binary in the file ‘bug’ rather
than ‘a.out’. In general, the history mechanisms may be used anywhere in the formation of new

+The space between the ‘" and the word ‘now’ is critical here, as ‘'now’ would be an invocation of the histo-
ry mechanism, and have a totally different effect.



USD:4-14 . An Introduction to the C shell

% cat bug.c
main()

printf("hello);

}
%cc!$
cc bug.c
"bug.c’, line 4: newline in string or char constant
"bug.c”, line 5: syntax error
%ed!$
ed bug.c
29
4s/),/"&/p
printf("hello");
w
30

q

% Ic

cc bug.c

% a.out

hello% le

ed bug.c

30

4s/lo/lo\\n/p :
printf("hello\n");

W ;

32

q
% !c —o bug
cc bug.c -0 bug
% size a.out bug
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b
% 1s -1 i*
Is -1 a.out bug
-rwxr-xr-x 1 bill 3932 Dec 19 09:41 a.out
-rwxr-xr-x 1 bill 3932 Dec 19 09:42 bug
% bug
hello
% num bug.c | spp
spp: Command not found.
% “spp”ssp
num bug.c | ssp
1 main()
3¢
4 printf("hello\n");
51}
%! | lpr
num bug.c | ssp | lpr



An Introduction to the C shell USD:4-15

commands and other characters may be placed before and after the substituted commands.

We then ran the ‘size’ command to see how large the binary program images we have created
were, and then an ‘ls -I’ command with the same argument list, denoting the argument list ‘*.
Finally we ran the program ‘bug’ to see that its output is indeed correct.

To make a numbered listing of the program we ran the ‘num’ command on the file ‘bug.c’. In
order to compress out blank lines in the output of ‘num’ we ran the output through the filter ‘ssp’, but
misspelled it as spp. To correct this we used a shell substitute, placing the old text and new text
between “” characters. This is similar to the substitute command in the editor. Finally, we repeated
the same command with ‘!'’, but sent its output to the line printer.

There are other mechanisms available for repeating commands. The history command prints
out a number of previous commands with numbers by which they can be referenced. There is a way
to refer to a previous command by searching for a string which appeared in it, and there are other,
less useful, ways to select arguments to include in a new command. A complete description of all
these mechanisms is given in the C shell manual pages in the UNIX Programmer’s Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transformations on input com-
mands. This mechanism can be used to simplify the commands you type, to supply default argu-
ments to commands, or to perform transformations on commands and their arguments. The alias
facility is similar to a macro facility. Some of the features obtained by aliasing can be obtained also
using shell command files, but these take place in another instance of the shell and cannot directly
affect the current shells environment or mvolve commands such as ¢d which must be done in the
current shell.

As an example, suppose that there is a new version of the mail program on the system called
‘newmail’ you wish to use, rather than the standard maxl program which is called ‘mail’. If you place
the shell command

alias mail newmail
in your .cshrc file, the shell will transform an input line of the form
mail bill
into a call on ‘newmail’. More generally, suppose we wish the command ‘Is’ to always show sizes of
files, that is to always do ‘~s’. We can do
aliasIs Is -s
or even
- alias dir Is -s
creating a new command syntax ‘dir’ which does an ‘Is -s’. If we say
dir “bill
then the shell will translate this to
Is —-s /mnt/bill

Thus the alias mechanism can be used to provide short names for commands, to provide
default arguments, and to define new short commands in terms of other commands. It is also possi-
ble to define aliases which contain multiple commands or pipelines, showing where the arguments to
the original command are to be substituted using the facilities of the hlstory mechanism. Thus the
deﬁnmon

aliascd cd \!*;Is”’

would do an /s command after each change directory ¢cd command. We enclosed the entire alias
definition in ‘> characters to prevent most substitutions from occurring and the character ‘" from



USD:4-16 , An Introduction to the C shell

being recognized as a metacharacter. The I’ here is escaped with a ‘\’ to prevent it from being inter-
preted when the alias command is typed in. The ‘\!*" here substitutes the entire argument list to the
pr&aliasing cd command, without giving an error if there were no arguments. The ‘;’ separating com-
mands is used here to indicate that one command is to be done and then the next. Similarly the
definition

alias whois ‘grep \!" /etc/passwd’
defines a command which looks up its first argument in the password file.

Warning: The shell currently reads the .cshrc file each time it starts up. If you place a large
number of commands there, shells will tend to start slowly. A mechanism for saving the shell
environment after reading the .cshrc file and quickly restoring it is under development, but for now
you should try to limit the number of aliases you have to a reasonable number... 10 or 15 is reason-
able, 50 or 60 will cause a noticeable delay in starting up shells, and make the system seem sluggish
when you execute commands from within the editor and other programs.

2.5. More redirection; >> and >&
There are a few more notations useful to the terminal user which have not been introduced yet.

In addition to the standard output, commands also have a diagnostic output which is normally
directed to the terminal even when the standard output is redirected to a file or a pipe. It is occasion-
- ally desirable to direct the diagnostic output along with the standard output. For instance if you want
to redirect the output of a long running command into. a file and wish to have a record of any error
diagnostic it produces you can do

command >& ﬁle

The >& here tells the shell to route both the. dxagnosnc output and the standard output into ‘ﬁle
Similarly you can give the command V

command | & lpr
to route both standard and dxagnostlc output through the pipe to the line printer daemon /pr.f
Finally, it is possible to use the form
command >> file
to place output at the end of an existing file.}

2.6. Jobs; Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands
separated by semicolons, a single job is created by the shell consisting of these commands together as
a unit. Single commands without pipes or semicolons create the simplest jobs. Usually, every line
typed to the shell creates a job. Some lines that create jobs (one per line) are

sort < data
Is —s | sort —n | head -5
mail harold

If the metacharacter ‘&’ is typed at the end of the commands, then the job is started as a back-
ground job. This means that the shell does not wait for it to complete but immediately prompts and

$ A command of the form
command >&! file
exists, and is used when noclobber is set and file already exists.
t If noclobber is set, then an error will result if file does not exist, otherwise the shell will create file if it
doesn’t exist. A form
command >>! file
makes it not be an error for file to not exist when noclobber is set.



An Introduction to the C shell USD:4-17

is ready for another command. The job runs in the background at the same time that normal jobs,
called foreground jobs, continue to be read and executed by the shell one at a time. Thus

du > usage &

would run the du program, which reports on the disk usage of your working directory (as well as any
directories below it), put the output into the file ‘usage’ and return immediately with a prompt for the
next command without out waiting for du to finish. The du program would continue executing in
the background until it finished, even though you can type and execute more commands in the mean
time. When a background job terminates, a message is typed by the shell just before the next prompt
telling you that the job has completed. In the following example the du job finishes sometime during
the execution of the mail command and its completion is reported just before the prompt after the
mail job is finished.

% du > usage &

[1] 503

% mail bill

How do you know when a background job is finished?
EOT

[1] - Done du > usage

%

. If the job did not terminate normally the ‘Done’ message might say sqmething else like ‘Killed’. If
you want the terminations of background jobs to be reported at the time they occur (possibly inter-
rupting the output of other foreground jobs), you can set the notify variable. In the previous example
this would mean that the ‘Done’ message might have come right in the middle of the message to Bill.
Background jobs are unaffected by any signals from the keyboard like the STOP, INTERRUPT, or QUIT
signals mentioned earlier. ' ‘

Jobs are recorded in a table. inside the shell until they terminate. In this table, the shell
remembers the command names, arguments and the process numbers of all commands in the job as
well as the working directory where the job was started. Each job in the table is either running in the
foreground with the shell waiting for it to terminate, running in the background, or suspended. Only
one job can be running in the foreground at one time, but several jobs can be suspended or running
in the background at once. As each job is started, it is assigned a small identifying number called the
job number which can be used later to refer to the job in the commands described below. Job
numbers remain the same until the job terminates and then are re-used.

When a job is started in the backgound using ‘&’, its number, as well as the process numbers of
all its (top level) commands, is typed by the shell before prompting you for another command. For
example,

% Is -s | sort -n > usage &
[2] 2034 2035
%

runs the ‘Is’ program with the ‘-s’ options, pipes this output into the ‘sort’ program with the ‘-n’
option which puts its output into the file ‘usage’. Since the ‘&’ was at the end of the line, these two
programs were started together as a background job. After starting the job, the shell prints the job
number in brackets (2 in this case) followed by the process number of each program started in the
job. Then the shell immediates prompts for a new command, leaving the job running simultaneously.

As mentioned in section 1.8, foreground jobs become suspended by typing “Z which sends a
STOP signal to the currently running foreground job. A background job can become suspended by
using the stop command described below. When jobs are suspended they merely stop any further
progress until started again, either in the foreground or the backgound. The shell notices when a job
becomes stopped and reports this fact, much like it reports the termination of background jobs. For
foreground jobs this looks like



USD:4-18 An Introduction to the C shell

% du > usage
Z

Stopped

%

‘Stopped’ message is typed by the shell when it notices that the du program stopped. For background
jobs, using the stop command, it is

% sort usage &

[1] 2345

% stop %1

[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change what you are
doing (execute other commands) and then return to the suspended job. Also, foreground jobs can be
suspended and then continued as background jobs using the bg command, allowing you to continue
other work and stop waiting for the foreground job to finish. Thus

% du > usage

“Z

Stopped .

% bg ’
[1] du > usage &

%

starts ‘du’ in the foreground, stops it before it finishes, then continues it in the background allowing
more foreground commands to be executed. This is especially helpful when a foreground job ends up
taking longer than you expected and you wish you had started it in the backgound in the beginning.

All job control commands can take an argument that identifies a particular job. All job name
arguments begin with the character ‘%’, since some of the job control commands also accept process
numbers (printed by the ps command.) The default job (when no argument is given) is called the
current job and is identified by a ‘+’ in the output of the jobs command, which shows you which jobs
you have. When only one job is stopped or running in the background (the usual case) it is always
the current job thus no argument is needed. If a job is stopped while running in the foreground it
becomes the current job and the existing current job becomes the previous job - identified by a ‘-’ in
the output of jobs. When the current job terminates, the previous job becomes the current job. When
given, the argument is either ‘%-’ (indicating the previous job); ‘%#’, where # is the job number;
‘%pref” where pref is some unique prefix of the command name and arguments of one of the jobs; or
‘%?" followed by some string found in only one of the jobs.

The jobs command types the table of jobs, giving the job number, commands and status
(‘Stopped’ or ‘Running’) of each backgound or suspended job. With the ‘-I’ option the process
numbers are also typed.



An Introduction to the C shell ) USD:4-19

% du > usage &

[1] 3398 »

% Is —s | sort -n > myfile &

[2] 3405

% mail bill

“Z

Stopped

% jobs

[1] - Running du > usage
[2] Running Is -s | sort -n > myfile
[3] + Stopped mail bill
% fg %ls

Is -s | sort -n > myfile

% more myfile

The fg command runs a suspended or background job in the foreground. It is used to restart a
previously suspended job or change a background job to run in the foreground (allowing signals or
input from the terminal). In the above example we used fg to change the ‘Is’ job from the back-
ground to the foreground since we wanted to wait for it to finish before looking at its output file. The
bg command runs a suspended job in the background. It is usually used after stopping the currently
running foreground job with the STOP signal. The combination of the STOP signal and the bg com-
mand changes a foreground job into a background job. The stop command suspends a background
job.

The kill command terminates a background or suspended job immediately. In addition to jobs,
it may be given process numbers as arguments, as printed by ps. Thus, in the example above, the run-
- ning du command could have been terminated by the command -

% kill %1
[1] Terminated du > usage
%

The notify command (not the variable mentioned earlier) indicates that the termination of a
specific job should be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically
stopped. When such a job is then run in the foreground, input can be given to the job. If desired,
the job can be run in the background again until it requests input again. This is illustrated in the fol-
lowing sequence where the ‘s’ command in the text editor might take a long time.

% ed bigfile
120000
1,$s/thisword/thatword/

[1] ed bigfile &
%

. ... some foreground commands
[1] Stopped (tty input) ed bigfile
% fg
ed bigfile
w

- 120000

q
%



USD:4-20 An Introduction to the C shell

So after the ‘s’ command was issued, the ‘ed’ job was stopped with “Z and then put in the background
using bg. Some time later when the ‘s’ command was finished, ed tried to read another command and
was stopped because jobs in the backgound cannot read from the terminal. The fg command
returned the ‘ed’ job to the foreground where it could once again accept commands from the termi-
nal.

The command
stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to the
terminal. This prevents messages from background jobs from interrupting foreground job output and
allows you to run a job in the background without losing terminal output. It also can be used for
interactive programs that sometimes have long periods without interaction. Thus each time it out-
puts a prompt for more input it will stop before the prompt. It can then be run in the foreground
using fg, more input can be given and, if necessary stopped and returned to the background. This
stty command might be a good thing to put in your .Jogin file if you do not like output from back-
ground jobs interrupting your work. It also can reduce the need for redirecting the output of back-
ground jobs if the output is not very big:

% stty tostop

% wc hugefile &

[1] 10387

% ed text

. . . some time later

q
[1] Stopped (ity output)  wc hugefile
% fg wc ’ s
wc hugefile : A

13371 30123 302577
% stty -tostop

Thus after some time the ‘wc’ command, which counts the lines, words and characters in a file, had
one line of output. When it tried to write this to the terminal it stopped. By restarting it in the fore-
ground we allowed it to write on the terminal exactly when we were ready to look at its output. Pro-
grams which attempt to change the mode of the terminal will also block, whether or not zostop is set,
when they are not in the foreground, as it would be very unpleasant to have a background job change
the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell, it knows noth-
ing about background jobs started in other login sessions or within shell files. The ps can be used in
this case to find out about background jobs not started in the current shell.

2.7. Working Directories

As mentioned in section 1.6, the shell is always in a particular working directory. The ‘change
directory’ command chdir (its short form cd may also be used) changes the working directory of the
shell, that is, changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files related
to that project in that directory. The ‘make directory’ command, mkdir, creates a new directory.
The pwd (‘print working directory’) command reports the absolute pathname of the working directory
of the shell, that is, the directory you are located in. Thus in the example below:



An Introduction to the C shell USD:4-21

% pwd

fusr/bill

% mkdir newpaper
% chdir newpaper
% pwd
/usr/bill/newpaper
%

the user has created and moved to the directory newpaper. where, for example, he might place a
group of related files.

No matter where you have moved to in a directory hierarchy, you can return to your ‘home’
login directory by doing just

cd

with no arguments. The name ‘.." always means the directory above the current one in the hierarchy,
thus

cd..

changes the shell’s working directory to the one directly above the current one. The name ‘..’ can be
used in any pathname, thus,
»

cd ../programs

means change to the directory ‘programs’ contained in the directory above the current one. If you
have_several directories for different projects under, say, your home dlrectory, this shorthand notation .
permits you to switch easily between them.

The shell always remembers the pathname of its current working directory in the variable cwd.
The shell can also be requested to remember the previous directory when you change to a new work-
ing directory. If the ‘push directory’ command pushd is used in place of the cd command, the shell
saves the name of the current working directory on a directory stack before changing to the new one.
You can see this list at any time by typing the ‘directories’ command dirs.

% pushd newpaper/references
“/newpaper/references ~

% pushd /usr/lib/tmac

/usr/lib/tmac “/newpaper/references ~
% dirs

/usr/lib/tmac “/newpaper/references ~
% popd
“/newpaper/references
% popd

~

%

The list is printed in a horizontal line, reading left to right, with a tilde (*) as shorthand for your
home directory—in this case ‘/usr/bill’. The directory stack is printed whenever there is more than
one entry on it and it changes. It is also printed by a dirs command. Dirs is usually faster and more
informative than pwd since it shows the current working directory as well as any other directories
remembered in the stack.

The pushd command with no argument alternates the current directory with the first directory
in the list. The ‘pop directory’ popd command without an argument returns you to the directory you
were in prior to the current one, discarding the previous current directory from the stack (forgetting
it). Typing popd several times in a series takes you backward through the directories you had been in
(changed to) by pushd command. There are other options to pushd and popd to manipulate the con-
tents of the directory stack and to change to directories not at the top of the stack; see the ¢s# manual
page for details.



USD:4-22 An Introduction to the C shell

Since the shell remembers the working directory in which each job was started, it warns you
when you might be confused by restarting a job in the foreground which has a different working direc-
tory than the current working directory of the shell. Thus if you start a background job, then change
the shell’s working directory and then cause the background job to run in the foreground, the shell
warns you that the working directory of the currently running foreground job is different from that of
the shell.

% dirs -1
/mnt/bill

% cd myproject
% dirs
“/myproject

% ed prog.c
1143

“Z

Stopped

% cd ..

% Is

myproject
textfile

% fg

ed prog.c (wd: “/myproject)

»

This way the shell warns you when there is an implied change of working directory, even though no
cd command was issued. In the above example the ‘ed’ job was still in ‘/mnt/bill/project’ even though
the shell had changed to ‘/mnt/bill’. A similar warning is given when such a foreground job- ter-
minates or is suspended (using the STOP. signal) since the return to the shell again implies a change of
‘working directory. ' ' V

% fg

ed prog.c (wd: “/myproject)

. . . after some editing

q

(wd now: ")
%

These messages are sometimes confusing if you use programs that change their own working direc-
tories, since the shell only remembers which directory a job is started in, and assumes it stays there.
The “~I’ option of jobs will type the working directory of suspended or background jobs when it is
different from the current working directory of the shell.

2.8. Useful built-in commands
We now give a few of the useful built-in commands of the shell describing how they are used.

The alias command described above is used to assign new aliases and to show the existing
aliases. With no arguments it prints the current aliases. It may also be given only one argument such
4 v

alias Is

to show the current alias for, e.g., ‘Is’.

The echo command prints its arguments. It is often used in shell scripts or as an interactive
command to see what filename expansions will produce.

The history command will show the contents of the history list. The numbers given with the
history events can be used to reference previous events which are difficult to reference using the con-
textual mechanisms introduced above. There is also a shell variable called prompr. By placing a I’
character in its value the shell will there substitute the number of the current command in the history



An Introduction to the C shell USD:4-23

list. You can use this number to refer to this command in a history substitution. Thus you could
set prompt="\! % °
Note that the ‘!’ character had to be escaped here even within ** characters.

The limit command is used to restrict use of resources. With no arguments it prints the current
limitations:

cputime unlimited
filesize unlimited
datasize 5616 kbytes
stacksize 512 kbytes

coredumpsize unlimited
Limits can be set, e.g.:
limit coredumpsize 128k

Most reasonable units abbreviations will work; see the csh manual page for more details.
The logout command can be used to terminate a login shell which has ignoreeof set.

The rehash command causes the shell to recompute a table of where commands are located.
This is necessary if you add a command to a directory in the current shell’s search path and wish the
shell to find it, since otherwise the hashing algorithm may tell the shell that the command wasn’t in
that directory when the hash table was computed. '

The repeat command can be used to repeat a command several times. Thus to make 5 copies
of the file one in the file five you could do :

‘repeat S cat one >> five

The setenv command can be used to set variables in the environment. Thus
setenv TERM adm3a

will set the value of the environment variable TERM to ‘adm3a’. A user program printenv exists
which will print out the environment. It might then show:

% printenv

HOME=/usr/bill

SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a

USER =bill

%

The source command can be used to force the current shell to read commands from a file. Thus
source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect right away.

The time command can be used to cause a command to be timed no matter how much CPU
time it takes. Thus



USD:4-24 ‘ An Introduction to the C shell

% time cp /etc/rc /usr/bill/rc
0.0u 0.1s 0:01 8% 2+ 1k 3+2io 1pf+0w
% time wc /etc/rc /usr/bill/rc

52 178 1347 /etc/rc

52 178 1347 /usr/bill/rc

104 356 2694 total
0.1u 0.1s 0:00 13% 3+3k 5+3i0 7pf+0w
%

indicates that the cp command used a negligible amount of user time (u) and about 1/10th of a sys-
tem time (s); the elapsed time was 1 second (0:01), there was an average memory usage of 2k bytes of
program space and lk bytes of data space over the cpu time involved (2+1k); the program did three
disk reads and two disk writes (3+2i0), and took one page fault and was not swapped (1pf+0w). The
word count command wc on the other hand used 0.1 seconds of user time and 0.1 seconds of system
time in less than a second of elapsed time. The percentage ‘13%’ indicates that over the period when
it was active the command ‘wc’ used an average of 13 percent of the available CPU cycles of the
machine.

The unalias and unset commands can be used to remove aliases and variable definitions from
the shell, and unsetenv removes variables from the environment.

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are more features of
the shell to be discussed here, and all features of the shell are discussed in its manual pages. One use-
ful feature which is discussed later is the foreach built-in command which can be used to run the

same command sequence with a number of different arguments.

_ If you intend to use UNIX a lot you you should look through the rest of this document and the
csh manual pages (sectionl) to become familiar with the other facilities which are available to you.



An Introduction to the C shell USD:4-25

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells to be invoked to read and execute
commands from these files, which are called sheII scripts. We here detail those features of the shell
useful to the writers of such scripts.

3.2. Make

It is important to first note what shell scripts are not useful for. There is a program called
make which is very useful for maintaining a group of related files or performing sets of operations on
related files. For instance a large program consisting of one or more files can have its dependencies
described in a makefile which contains definitions of the commands used to create these different files
when changes occur. Definitions of the means for printing listings, cleaning up the directory in which
the files reside, and installing the resultant programs are easily, and most appropriately placed in this
makefile. This format is superior and preferable to maintaining a group of shell procedures to main-
tain these files.

Similarly when working on a document a makefile may be created which defines how different
versions of the document are to be created and which options of nroff or troff are appropriate.

3.3. Invocation and the argv variable
A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of ¢sh commands and “..." is replaced by a
sequence of arguments. The shell places these arguments in the variable argv and then begins to read -
commands from the script. These parameters are then available through the same mechanisms which
are used to reference any other shell variables.

If you make the file ‘script’ executable by doing
chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a ‘# character)
then a ‘/bin/csh’ will automatically be invoked to execute ‘script’ when you type

script
If the file does not begin with a ‘#’ then the standard shell ‘/bin/sh’ will be used to execute it. This
allows you to convert your older shell scripts to use c¢s# at your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it, the input
line is parsed into distinct commands. Before each command is executed a mechanism know as vari-
able substitution is done on these words. Keyed by the character ‘$’ this substitution replaces the
names of variables by their values. Thus

echo $argv

when placed in a command script would cause the current value of the variable argv to be echoed to
the output of the shell script. It is an error for argv to be unset at this point.
A number of notations are provided for accessing components and attributes of variables. The
notation
$7name

expands to ‘1’ if name is set or to ‘0’ if name is not set. It is the fundamental mechanism used for
checking whether particular variables have been assigned values. All other forms of reference to



USD:4-26 An Introduction to the C shell

undefined variables cause errors.
The notation
$#name
expands to the number of elements in the variable name. Thus

% set argv=(a b ¢)
% echo $?argv

1

% echo $#argv
3

% unset argv

% echo $2argv

0

% echo $argv
Undefined variable: argv.
%

It is also possible to éccess the components of a variable which has several values. Thus
$argv([1]
gives the first component of argv or in the example above ‘a’. Similarly
$argv[$#argv] '
would give ‘c’, and
$argv(1-2] .
would give ‘a b’. Other notations useful in shell scripts are
$n . ‘
where 7 is an integer as a shorthand for
$argv(n]
the nth parameter and
s#
which is a shorthand for
$argv
The form
$3

expands to the process number of the current shell. Since this process number is unique in the sys-
tem it can be used in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input read from the shell’s standard input (not the
script it is reading). This is useful for writing shell scripts that are interactive, reading commands
from the terminal, or even writing a shell script that acts as a filter, reading lines from its input file.
Thus the sequence

echo ’yes or no?\c¢’
set a=($<)

would write out the prompt ‘yes or no?’ without a newline and then read the answer into the variable
‘a’. In this case ‘$#a’ would be ‘0’ if either a blank line or end-of-file ("D) was typed.



An Introduction to the C shell USD:4-27

One minor difference between ‘$n° and ‘Sargv[n]’ should be noted here. The form ‘Sargv[n]’
will yield an error if n is not in the range ‘1-$#argv’ while ‘Sn’ will never yield an out of range sub-
script error. This is for compatibility with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of the form ‘n-’"; if there
are less than n components of the given variable then no words are substituted. A range of the form
‘m-n’ likewise returns an empty vector without giving an error when m exceeds the number of ele-
ments of the given variable, provided the subscript 7 is in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate expressions
in the shell based on the values of variables. In fact, all the arithmetic operations of the language C
are available in the shell with the same precedence that they have in C. In particular, the operations
‘=="and ‘!=" compare strings and the operators ‘&&’ and ‘| |” implement the boolean and/or opera-
tions. The special operators ‘=" and ‘I are similar to ‘==" and ‘!=" except that the string on the
right side can have pattern matching characters (like *, ? or []) and the test is whether the string on
the left matches the pattern on the right.

The shell also allows file enquiries of the form
-? filename
where ‘? is replace by a number ovf single characters. For instance the expression primitive
-¢ filename
tell whether the file ‘filename’ exists. Other primitives test for read write and execute access to the

file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form ¢(
command )’ which returns true, i.e. ‘1’ if the command succeeds exiting normally with exit status 0,
or ‘0’ if the command terminates abnormally or with exit status non-zero. If more detailed informa-
tion about the execution status of a command is required, it can be executed and the variable
‘$status’ examined in the next command. Since ‘$status’ is set by every command, it is very tran-
sient. It can be saved if it is inconvenient to use it only in the single immediately following com-
mand.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and some of its
control structure follows:



USD:4-28 An Introduction to the C shell

% cat copyc

#

# Copyc copies those C programs in the specified list
# to the directory “/backup if they differ from the files
# already in “/backup

#

set noglob

foreach i ($argv)

if ($i I” *.c) continue # not a .c file so do nothing

if (! =r “/backup/$i:t) then
echo $i:t not in backup... not cp\'ed
continue

endif

cmp -s $i “/backup/$i:t # to set $status

if ($status != 0) then
echo new backup of $i
cp $i “/backup/$i:t
endif
end

This script makes use of the foreach command, which causes the shell to execute the commands
between the foreach and the matching end for each of the values given between ‘(" and )’ with the
. named variable, in this case ‘i’ set to successive values in the list. Within this loop we may use the
command break to stop executing the loop and continué to prematurely terminate one iteration and
begin the next. After the foreach loop the iteration variable (i in this case) has the value at the last
iteration.

We set the variable noglob here to prevent filename expansion of the members of argv. This is a
good idea, in general, if the arguments to a shell script are filenames which have already been
expanded or if the arguments may contain filename expansion metacharacters. It is also possible to
quote each use of a ‘$’ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form
if ( expression ) then
command
endif

The placement of the keywords here is not flexible due to the current implementation of the shell.t

+The following two formats are not cimcmly acceptable to the shell:

if ( expression ) # Won’t work!
then :

command
endif

and

if ( expression ) then command endif # Won’t work



An Introduction to the C shell USD:4-29

The shell does have another form of the if statement of the form
if ( expression ) command
which can be written

if ( expression ) \
command

Here we have escaped the newline for the sake of appearance. The command must not involve | ’,
‘& or * and must not be another control command. The second form requires the final ‘\’ to
immediately precede the end-of-line.

The more general if statements above also admit a sequence of else-if pairs followed by a single
else and an endif, e.g.:

if ( expression ) then
commands

else if (expression ) then
commands

else
commands
endif

Another important mechanism used in shell scripts is the ‘" modifier. We can use the modifier
“r’ here to extract a root of a filename or ‘:e’ to extract the extension. Thus if the variable i has the
value ‘/mnt/foo.bar’ then :

% echo $i $i:r $ice
/mnt/foo.bar /mnt/foo bar
%

shows how the “:r’ modifier strips off the trailing ‘.bar’ and the the ‘:e’ modifier leaves only the ‘bar’.
Other modifiers will take off the last component of a pathname leaving the head “h’ or all but the last
component of a pathname leaving the tail “:t’. These modifiers are fully described in the csh manual
pages in the User’s Reference Manual. It is also possible to use the command substitution mechanism
described in the next major section to perform modifications on strings to then reenter the shell’s
environment. Since each usage of this mechanism involves the creation of a new process, it is much
more expensive to use than the ‘’ modification mechanism.} Finally, we note that the character ‘#’
lexically introduces a shell comment in shell scripts (but not from the terminal). All subsequent char-
acters on the input line after a ‘#’ are discarded by the shell. This character can be quoted using *” or
‘\’ to place it in an argument word.

3.7. Other control structures

The shell also has control structures while and switch similar to those of C. These take the
forms .

It is also important to note that the current implementation of the shell limits the number of > modifiers
on a ‘S’ substitution to 1. Thus

% echo $i Si:h:t
/a/b/c /a/b:t
%

does not do what one would expect.



USD:4-30 ’ . An Introduction to the C shell

while ( expression )
commands
end

and
switch ( word )
case strl:

commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh. C programmers should note that we use breaksw to exit
from a switch while break exits a while or foreach loop. A common mlstake to make in csh scripts is

. to use break rather than breaksw in switches.

Finally, csh allows a goto statement, w1th labels lookmg hke they do in C, i.e.:

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which is run-
ning the script. This is different from previous shells running under UNIX. It allows shell scripts to
fully participate in pipelines, but mandates extra notation for commands which are to take inline
data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As an
example, consider this script which runs the editor to delete leading blanks from the lines in each
argument file:

% cat deblank

# deblank — remove leading blanks
foreach i ($argv)

ed - $i << EOF

1,$s/°[ 1%/

w

q
EOF
end
%

The notation ‘<< EOF” means that the standard input for the ed command is to come from the text
in the shell script file up to the next line consisting of exactly “EOF". The fact that the ‘EOF’ is
enclosed in ** characters, i.e. quoted, causes the shell to not perform variable substitution on the



An Introduction to the C shell USD:4-31

intervening lines. In general, if any part of the word following the ‘<<’ which the shell uses to ter-
minate the text to be given to the command is quoted then these substitutions will not be performed.
In this case since we used the form ‘1,$’ in our editor script we needed to insure that this ‘$’ was not
variable substituted. We could also have insured this by preceding the ‘$’ here with a ¢\, i.e.:

L\Ss/ [ 1*//
but quoting the ‘EOF terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell script
so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a ‘goto label’ and
we can remove the temporary files and then do an exit command (which is built in to the shell) to
exit from the shell script. If we wish to exit with a non-zero status we can do

exit(1)
e.g. to exit with status ‘1°.

3.10. What else?

There are other features of the shell useful to writers of shell procedures. The verbose and echo
options and the related -v and -x command line options can be used to help trace the actions of the
shell. The -n option causes the shell only to read commands and not to execute them and may some-
times be of use.

One other thmg to note is that csh will not execute shell scripts whxch do not begin with the
character ‘#’, that is shell scripts that do not begin with a comment. Similarly, the ‘/bin/sh’ on your
system may well defer to ‘csh’ to interpret shell scripts which begin with ‘#’. This allows shell scripts
for both shells to live in harmony.

There is also another quotation mechanism using ‘"> which allows only some of the expansion
mechanisms we have so far discussed to occur on the quoted string and serves to make this string
into a single word as *” does.



USD:4-32 ‘ An Introduction to the C shell

4. Other, less commonly used, shell features

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the foreach control structure at the terminal to aid in performing
a number of similar commands. For instance, there were at one point three shells in use on the Cory
UNIX system at Cory Hall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/csh’. To count the number of persons using
each shell one could have issued the commands

% grep —c csh$ /etc/passwd
27

% grep —c nsh$ /etc/passwd
128

% grep —c -v sh$ /etc/passwd
430

%

Since these commands are very similar we can use foreach to do this more easily.

% foreach i ('sh$’ csh$’ ~v sh$)
? grep —c $i /etc/passwd

? end

27

128

430

%

_ -Note here that the shell prompts for input with ?* when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You can_',
for example, do '

% set a=(ls")
% echo $a
csh.n csh.rm
% Is

csh.n
csh.rm

% echo $#a
2

%

The set command here gave the variable a a list of all the filenames in the current directory as value.
We can then iterate over these names to perform any chosen function.

The output of a command within ©’ characters is converted by the shell to a list of words. You
can also place the °’ quoted string within ‘"’ characters to take each (non-empty) line as a component
of the variable; preventing the lines from being split into words at blanks and tabs. A modifier “:x’
exists which can be used later to expand each component of the variable into another variable split-
ting it into separate words at embedded blanks and tabs. ’

4.2. Braces { ... } in argument expansion

Another form of filename expansion, alluded to before involves the characters ‘{’ and ‘}’. These
characters specify that the contained strings, separated by ‘,’ are to be consecutively substituted into
the containing characters and the results expanded left to right. Thus

A(strl,str2,...strn}B

expands to



An Introduction to the C shell USD:4-33

Astr1B Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively (i.e.
nested). The results of each expanded string are sorted separately, left to right order being preserved.
The resulting filenames are not required to exist if no other expansion mechanisms are used. This
means that this mechanism can be used to generate arguments which are not filenames, but which
have common parts.

A typical use of this would be
mkdir “/{hdrs,retrofit,csh}

to make subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directory. This mechanism is most
useful when the common prefix is longer than in this example, i.e.

chown root /usr/{ucb/{ex,edit},lib/{ex?.7* how_ex})

4.3. Command substitution
A command enclosed in ’ characters is replaced, just before filenames are expanded, ‘by the out-
put from that command. Thus it is possible to do
set pwd="pwd
to save the current directory in the variable pwd or to do
ex ‘grep -1 TRACE *.c

to run the editor ex supplying as arguments those files whose names end i in ‘.’ which have the string
‘TRACE’ in them.* od

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of different
substitutions performed by the shell. The exact meaning of certain combinations of quotations is also
occasionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX prbgrams,
and debugging shell scripts. See the csh(1) manual section for a list of these options.

oy

*Command expansion also occurs in input redirected with ‘<<’ and within
shell manual section for full details.

quotations. Refer to the



USD:4-34 An Introduction to the C shell

Appendix - Special characters

The following table lists the special characters of csh and the UNIX system, giving for each the
section(s) in which it is discussed. A number of these characters also have special meaning in expres-
sions. See the c¢s2 manual section for a compiete list.

Syntactic metacharacters
2.4 separates commands to be executed sequentially
1.5 separates commands in a pipeline

’:
() 2.2,3.6  brackets expressions and variable values
& 2.5 follows commands to be executed without waiting for completion

Filename metacharacters

/ 1 separates components of a file’s pathname

? 1.6 expansion character matching any single character

* 1.6 . expansion character matching any sequence of characters

[] 1.6 expansion sequence matching any single character from a set

b 1.6 used at the beginning of a filename to indicate home directories

{} 4.2 used to specify groups of arguments with common parts

Quotation metacharacters

\ 1.7 prevents meta-meaning of following single character
: 1.7 prevents meta-meaning of a group of characters
" 4.3 like ’, but allows variable and command expansion

Input/output metacharacters

< 1.5 indicates redirected input
> 1.3 indicates redirected output

Expansion/substitution metacharacters

$ 3.4 indicates variable substitution

! 2.3 indicates history substitution

: 3.6 precedes substitution modifiers

b 2.3 used in special forms of history substitution
: 4.3 indicates command substitution

Other metacharacters

# 1.3,3.6  begins scratch file names; indicates shell comments
- 1.2 prefixes option (flag) arguments to commands
% 2.6 prefixes job name specifications



An Introduction to the C shell USD:4-35

Glossary

This glossary lists the most important terms introduced in the introduction to the shell and gives
references to sections of the shell document for further information about them. References of the
form ‘pr (1)’ indicate that the command pr is in the UNIX User Reference manual in section 1. You
can look at an online copy of its manual page by doing

"man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this
manual.

. Your current directory has the name ‘.’ as well as the name printed by the command
pwd; see also dirs. The current dlrectory ‘.’ is usually the first component of the
search path contained in the variable path, thus commands which are in ‘.” are found
first (2.2). The character ‘.’ is also used in separating components of filenames (1.6).
The character ‘.’ at the beginning of a component of a pathname is treated specially
and not matched by the filename expansion metacharacters ‘?’, “*’, and ‘[’ ‘]’ pairs
(1.6).

w Each directory has a file ..’ in it which is a reference to its parent directory. After
changing into the directory with chdir, i.e.

chdir paper
you can return to the parent directory by doing
chdir ..

_ The current directory is printed by pwd (2.7).

a.out ‘Compilers which create executable 1mages create them, by default in the file a.out.
" for historical reasons (2.3). .

absolute pathname
A pathname which begins with a ‘/’ is absolute since it specifies the path of direc-
tories from the beginning of the entire directory system - called the roor directory.
Pathnames which are not absolute are called relative (see definition of relative path-
name) (1.6).

alias An alias specifies a shorter or different name for a UNIX command, or a transforma-
tion on a command to be performed in the shell. The shell has a command alias
which establishes aliases and can print their current values. The command unalias
is used to remove aliases (2.4). :

argument Commands in UNIX receive a list of argument words. Thus the command
echoabc

consists of the command name ‘echo’ and three argument words ‘a’, ‘b’ and ‘c’. The
set of arguments after the command name is said to be the argument list of the com-
mand (1.1).

argv The list of arguments to a command written in the shell language (a shell script or
shell procedure) is stored in a variable called argv within the shell. This name is
taken from the conventional name in the C programming language (3.4).

background Commands started without waiting for them to complete are called background com-
: mands (2.6).

base A filename is sometimes thought of as consisting of a base part, before any ‘.” charac-
ter, and an extension - the part after the ‘. See filename and extension (1.6) and
basename (1). -

bg The bg command causes a suspended job to continue execution in the background
(2.6).



USD:4-36

bin

break
breaksw
builtin
case

cat

cd
chdir

chsh

cmp
command

command name

An Introduction to the C shell

A directory containing binaries of programs and shell scripts to be executed is typi-
cally called a bin directory. The standard system bin directories are ‘/bin’ containing
the most heavily used commands and ‘/usr/bin’ which contains most other user pro-
grams. Programs developed at UC Berkeley live in ‘/usr/ucb’, while locally written
programs live in ‘/usr/local’. Games are kept in the directory ‘/usr/games’. You can
place binaries in any directory. If you wish to execute them often, the name of the
directories should be a component of the variable path.

Break is a builtin command used to exit from loops within the control structure of
the shell (3.7).

The breaksw builtin command is used to exit from a switch control structure, like a
break exits from loops (3.7).

A command executed directly by the shell is called a builtin command. Most com-
mands in UNIX are not built into the shell, but rather exist as files in bin directories.
These commands are accessible because the directories in which they reside are
named in the path variable. )

A case command is used as a label in a switch statement in the shell’s control struc-
ture, similar to that of the language C. Details are given in the shell documentation
‘csh (1)’ (3.7).

The cat program catenates a list of specified files on the szandard output. It is usu-
ally used to look at the contents of a single file on the terminal, to ‘cat a file’ (1.8,
2.3).

The c¢d command is used to change the working directory. With no arguments, cd
changes your working directory to be your home directory (2.4, 2.7).

The chdir command is a synonym for cd. Cd is usually used because it is easier to
type. L : ,
The chsh command is used to change the shell which you use on UNIX. By default,
you use an different version of the shell which resides in ‘/bin/sh’. You can change
your shell to ‘/bin/csh’ by doing

chsh your-login-name /bin/csh
Thus I would do
chsh bill /bin/csh

It is only necessary to do this once. The next time you log in to UNIX after doing this
command, you will be using csh rather than the shell in ‘/bin/sh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>