

Meridian 1 Design Guidebook
Information, admonitions & gUidelines for Ml designers

Version 1.0
Issued July, 1998
Proprietary

NtJ-RTEL
NORTHERN TElECOM
Copyright © 1998 Northern Telecom Limited
/dl rights reserved.

() Printed in the USA on recycled paper.

Information subject to change without notice.

The information disclosed herein is proprietary to Northern Telecom or others and is not to be
used by or disclosed to tmauthorized persons without the written consent of Northern Telecom
Limited. The recipient of this document shall respect the security status of the information.

Version 1.0 Meridian 1 Design Guidebook

Why does this book exist?
Meridian 1 software is a big, scary continent of code: millions of lines of source,
multiple languages, decades of evolutionary change. New designers struggle to
navigate software that's older than they are. Even old hands worry that the plate
tectonics of recent projects have altered once-familiar territories beyond
recognition. The most common travel advice today, from both managers and
designers, seems to be "don't go there".

For a while, many folks hoped that we could simply seal off the SL-llibrary
frontiers and at least stay out of that jungle. Alas, fundamental changes, such as
porting to a new CPU and operating system, adding wireless communications, or
moving to an ATM switching fabric, mean that someone has to go explore how
those changes will affect the system, and so expeditions continue to be mounted.

This book is an attempt to take some of the scariness out of such Ml
exploration. Think of it as a travel guide: where to go, what to do when you get
there, and what to watch out for. It maps out each of the broad areas of concern
for an Ml designer. It tries to convey the essential patterns that recur in the
system, so that when designers look at unfamiliar code (which is inevitable) they
will understand what they see more easily. It points out the occasional minefield.
It also explains some design rules and why they exist, which should mean that
people find it easier to create better software. By understanding the issues, they'll
even be able to make informed decisions not to follow the rules someti lT' (,s
Hyper-extending the metaphor, they can learn to be good Ml ecotourists, tv

Norte! Proprietary

Meridian 1 Design Guidebook Version 1.0

11

avoid offending the natives, and to improve the chances that future visitors will
have a good experience.

What wisdom this book contains has been distilled from the best advice we could
elicit from various seasoned Ml travelers. Despite our best efforts to get our
facts straight, it presumably still has some errors or omissions, and even the
correct information will become out-of-date eventually. So, like all good travel
guide publishers, we urge you to write back to us to tell us what
recommendations were useful, what services have gone out of business, and what
new things we need to include to cover the changing Ml geography. Tradition
dictates that the best suggestions will be rewarded with a free copy of the next
edition.

Our dream is that someday, if everyone learns and follows these rules, we may all
be able to travel safely throughout the Ml world without one of these ...

Happy trails,

~#--
Geoff Huenemann
(on behalf of the Ml System Architecture team)
July, 1998

+- the Ml Tank
(no relation)

BOGOSITY ALERT: The "Ml .Rules" presented in this book are at best heuristics- they
guide the process of discovering good designs by describing things that often work, but
you still have to think through whethet they're really right in any given circumstance.

Notte! Proprietary

Version 1.0 Meridian 1 Design Guidebook

Table of Contents

WHY DOES THIS BOOK EXIST? ... i

TABLE OF CONTENTS ... iii

Part I: Understanding the Context

1. A BRIEF OVERVIEW OF M1 ... 3

1.1 MARKI.:TNIC[-[liS .. 3
1. 1.1 Ga.rsic Private Branch Exchanges .. 4
1.1.2 Call centers ... 6
1. 1.3 ucal points of presence 8
1.1.4 Virtual Private Networking (VPN) 12
1. 1.5 Power networks .. 15

1.2 CUSTOMER VALUES 15
1.2. 1 Size matten· .. 16
1.2.2 How do we stack up against the mmpetition? .. 17

1.3 DISTRIBUnON CHANNELS 18
1.4 Ml GENEALOGy .. 20

1.5 TI-IE lIARDWARE 23

1.5.1 Pl?Jsical packaging .. 23
1.5.2 ugical demmposition 23

1.5.3 Bells and whistles .. 39
1.5.4 Putting it all together .. 50

Part II: Implications for Design

2. PERVASIVE DESIGN ASPECTS 55

2.1 IT'SNOTOURI .. r\Ul.T 55
2.2 HIGII PERFORMANCE. 56

2.2.1 No stopping (ever ever ever) ... 58

Nortel Proprietary ill

Meridian 1 Design Guidebook Version 1.0

2.2.2 Getting it wrong: Using the wrong algorithm ... 58
2.2.3 Getting it wrong: No seatbelts ... 59
2.2.4 Getting it wrong: Trying too hard 60
2.2.5 Getting it wrong: Not trying hard enough .. 60

2.3 ZERO DOWNTIMI~ .. 60
2.3.1 Hotswap .. 61
2.3.2 No single points 0/ failure ... 62
2.3.3 No losing stuff ... 63

2.4 NOBODY'S MANNING TI IE SWITCH 64
2.4.1 An ounce o/prevention: Protected memory ... 64
2.4.2 Watchdogs .. 66
2.4.3 5 uper-ultra-mega-reliab!e restart code .. 66
2.4.4 The backup plan .. 67

2.5 CUSTOMERS' BUDGET WOIUUES 68
2.5.1 scalabili!J ... 69
2.5.2 srifiware packaging ... 69
2.5.3 Configurabili!J .. 70
2.5.4 Modular design ... 70
2.5.5 Reuse .. 71

2.6 BIGNESS 72
2.6.1 Vestigial code ... 72
2.6.2 Data hiding 73
2.6.3 More about reliabili!J 74
2.6.4 Paranoid code 74

2.7 NETWORKING COMPI.IC \TI ONS 75
2. 7.1 Standards compliana: 75
2.7.2 Version contro!. 75
2.7.3 Glare .. 75

2.8 CONCLUSION: PBX SOFlWARE IS ROCKET SCIENCE ... 76

~
3. PATTERNS m~ ... 77

3.1 GOOD I'ATfERNS ~ .. 79
3. 1. 1 T ransattion engine .. 79
3.1.2 LAyers .. 82
3.1.3 Master-slave ... 84
3.1.4 Publisher-subscriber .. 84
3. 1.5 Corredive Audit 85
3.1.6 Memory manager .. 87
3.1.7 Safe interpreter ... 88

3.2 NOl'-SO-GOOD PATTERNS ~ .. 89

tv Norte! Proprietary

Version 1.0

3.2.1
3.2.2
3.2.3
3.2.4

Meridian 1 Design Guidebook

Bury wait ... 89
Global variables ... 89
Replicated data ... 90
Overlaid data 91

3.3 THE USUAL SUSPECTS: PATTERNS OF PROBLEMS :!: 91
3.3.1 Race conditions 91
3.3.2 DeadlY embraces 92
3.3.3 Constipation 93
3.3.4 Software version mismatches 93
3.3.5 Partial failures 94
3.3.6 Too maf!J tasks .. 94
3.3.7 Power and groundingproblems 94

Part III: Software Architecture

4. CORE SOFTWARE ARCHITECTURE .. 97

4.1 TilE LOG ICAL VIEW 98
4.2 TIlE PROCESS vmw 100

4.2.1 How processes talk to eath other 101
4.3 TIIE PIIYSICAL VIEW .. 102

4.3. 1 Mappingjobs to processors .. 102
4.3.2 Mapping data !ype to store !Ype 103

4.4 TIlE DIWELOPMENTVIEW 104
4.5 SCENARIOS 105

4.5.1 Cold restart 105
4.5.2 Service lhange 1 06
4.5.3 Telephone call ... 107

5. THE COMPUTING PLATFORM ... 109

5.1 WHAT'S IN A PLATFORM? 109
5.2 VANILLA VXWORKS .. 111

5.2.1 Tasks ... 112
5.2.2 Interrupts ... 118
5.2.3 Tjpes of memory ... 119
5.2.4 Poszx .. 120
5.2.5 Assorted VxTools ... 120
5.2.6 Compiled caveator 121

5.3 HIGH AVAILABILITY: OUR MODIFICArIONS TO VXWORKS 123
5.3.1 Robust memory ... 123

Norte! Proprietary v

Meridian 1 Design Guidebook Version 1.0

5.3.2 Robust mass storage 128
5.3.3 Watthdogs 129
5.3.4 Restarts 130
5.3.5 Dual CPUs ... 132
5.3.6 Packaging ... 134
5.3.7 Tools 134

5.4 MAINTI':N i\ NC I': FRAMEWORKS 136
5.5 I N·l"RINS ICS .. 136

5.5.1 Hardware intrinsics .. 136
5.5.2 S rifiware intrinsics ... 136

5.6 TI IIRD-PAWIY EXTENSIONS TO TIlE PLATFORM .. 137
5.7 DISTRIBUTED PROCESSING 137
5.8 EVOlVTNG TIlE PLATFORM 138

6. THE PHONES (SL-l) 139

6.1 TI IESL-1 LANGUAGE ... 142
6.1.1 ''Stupid wde tricks': ... 146
6. 1.2 SL- l wde strudure ... 149
6.1 .3 The SL-l memory model. ... 150
6.1.4 Major SL-l data structures .. 155
6. 1.5 Some wmmon hooks 163

6.2 TI IE PBX Pl.ATFORM 165
6.2.1 Sysload 165
6.2.2 InitialiZe 166
6.2.3 Switchover 167
6.2.4 Workshed. 167
6.2.5 II 0 .. 170

6.3 CAI,L PROC I ~SSING 170
6.3.1 Messaging 171

6.4 OPERATTONS 173
6.4.1 Traffic 173
6.4.2 Billing 173

6.5 ADMINIS·mATION 174
6.5. 1 Overlqys 174
6.5.2 Set-based administration ... 17 6
6.5.3 The overlqy supervisor ... 17 6
6.5.4 Securiry 177

6.6 MAlNTI ':N t\ NC II .. 177
6.6.1 System Event and Error Reports (SEER) ... 177
6.6.2 Alarms 178

VI Norte! Proprietary

Version 1.0 Meridian 1 Design Guidebook

6.6.3 Overload contro!.f .. 178
6.6.4 "/}udit.f 179

7. MANAGEMENT ~£': ... 181

7.1 WI [,\ ' j "S IN '1'1 II ': 1()11 I) I ':S(: R II)' I 'I()N? """",." .. , ,', .. ,.,""" """, ,.".,", 181
7. 1.1 [<ault managemenl 181
7.1.2 Conflguralion managemenl 182
7. 1.3 _,Iccounling 182
7. 1.4 Pe!i017nan,'e .. 182
7.1.5 S ecurz!y 182

7.2 LI 'J; ,\(:Y OA&M ... 183
7.2.1 The data architecture problem 183
7.2.2 Overlq;'J ... 183
7.2.3 /-lardJvare },,/h'J/ructllre (/-I}) 18-1-

7.3 TRI ':N DS IN ;\ I.\N ,\ (; I·:;\ !I ·:N·I' .. 186
7.3.1 _'lutomalioll 186
7.3.2 NehvorkJ 186
7.3.3 Management In/o17nalion BaJeJ (MIBJ) 187
7.3.4 Graphiml UJer InteduceJ (GUJ.I) 188

7.4 MI-:J\II)L\N AmlINISTR,\TI\ ' I ': T<)()I S (1v1AT) , 188
7.4.1 M ,lT H Meridian I commlll1im!ionJ .. 189
7.4.2 The M ,IT platjo17n ... 190
7.4.3 Meridian I .I)'Jtem JlieJv l91
7. 4.4 5,y.r!em admil7iJlraliotl ... 191
7. 4.5 _'l!arm mallagemenl .. 191

,·eM 8. MERIDIAN EVOLUTION , .. 193

8.1 I SN" I' ME I'::-': ' I 'IN< :'I? 193
8.2 Ev(ll ,\ ' IN(; Till ': PBX 11.\luW: ,\lu ·: .. 195

8.2.1 Tbe bigpic!ltre 197
8.2.2 Call Sen1er (eS) .. 198
8.2.3 Inter Node SJvikb (I1':S) ... 199
8.2.4 Node Controller (NC) 199
8.2.5 Peripheral A lodllle (m l) , 200
8.2.6 _'lauJ A10dllie (,1M) ... 200
8.2.7 The embedded control L ,lN (I~L ,1N) .. 201
8.2.8 . ,Ivai/able (ol?/lgllrationJ 202
8.2.9 Il:7ha! abollttbe Option 11 C? 202

8.3 E \ 'ol.\, INC; Till ,: PBX s< WI'W,\RI ': .. , 203
8.3.1 ME J~fhvare OllervieJv 203

Norte! ProprietaJ)' Vll

Meridian 1 Design Guidebook Version 1.0

8.3.2 Objedification ... 204
8.3.3 UJer I ntetjace ..onceptJ" 205
8.3.4 sptem 1nfraJ"tmdure (51) ... 206
8.3.5 Nflv TNformatJ ... 208
8.3.6 s erviceJ ... 209
8.3.7 ReJourceJ .. 210
8.3.8 R -lN/AfuJic/JI.'R broadcaJ"t ... 210
8.3.9 Nel}) tooLf 210
8.3.10 Nelv memof)' al!ocation ... 211
8.3.11 Third-party Jq(tJvare ... 211

8.4 Ev()] .\ ' INC TI [I': ItISI' (W '1'111,: SYSTI,:1\·f... 212
8.4.1 Nelv Jeroice pCllkJ" ... 212
8.4.2 Nelv load proceSJeJ 214
8.4.3 Nelv aaesJ .. 215
8.4.4 Nelv tenninaIJ .. 215
8.4.5 Nelv Jecurity ... 216

8.5 RI ,:'I 'IRINC; S()MI': O]DI-:R H1Ts 217
8.5.1 CP ... 217
8.5.2 IGs ... 217
8.5.3 NE .. 217
8.5.4 EPE .. 217
8.5.5 sL-l JetJ .. 217
8.5.6 NumerouJ circuit pach .. 218

Appendices

APPENDIX A: M1 LANGUAGES .. 221

A.l SL-l 221
A.2 C 221
A.3 C++ 223
A.4 01\1I ':C; ,\ ,\ SSI ':;\fHI ,I-:H ... 224

APPENDIX B: GLOSSARY .~ ... 225

APPENDIX C: DEVELOPMENT SITES .. 237

APPENDIX D: CREDITS ... 239

INDEX ... 243

Vlll Norte! Proprietary

Version 1.0 Part I: Understanding the Context

Part I
•

Understanding
the

Context

Norte! Proprietary 1

Part I: Understanding the Context Version 1.0

2 Norte! Proprietary

Version 1.0 Part 1: Understanding the Context

1. A brief overview of Ml
Before attempting to think about hOJv a Meridian 1 does its job, we need to agree
on what that job is. This chapter is the 30,000-foot view, providing the context
for understanding the rest of the book. It will not tell you how to wire a BIX
frame, nor what a circuit pack costs, nor how to fix that bug in call forwarding.
But it will try to give a good overview of the markets we serve, the history of M1
development, the basic hardware components, and the neighboring systems with
which we often interact.

Before proceeding, a word about nomenclature. In current marketingspeak, an
SL-l00 is a "Meridian 1 Option 201". However, although the SL-l00 can host
Ml peripheral equipment, it makes much more technical sense to think of it as a
DMS-iOO variant than as simply a bigger Ml. Only the first three chapters of
this book have any relevance to the SL-l00. On the other hand, most of the
information in this book has a fairly long half-life. It tends to apply to even the
earliest SL-i ancestors of the Mi, and is likely to continue to apply for a few
generations to come.

1.1 Market niches
Enterprises today can choose from three basic strategies for their phone service:
PBX, Centrex, or VoIP.

Private Branch Exchanges (PBXs), like the Mi, reside on the customer premises.
They require a large initial investment in equipment and installation, plus an
ongoing operations effort. The customer must allocate floorspace, provide a
robust power source, plan data changes, coordinate software upgrades, and
probably provide the first level of troubleshooting and a user helpline.

In contrast, Centralized Exchange (Centrex) business selyice is like outsourcing
your PBX. It provides roughly the same services, but they are administered
centrally by a local telephone operating company, and require no up-front capital.
PBXs continue to win many sales over Centrex because of cost-effectiveness and

Norte! Proprietary 3

Part I: Understanding the Context Version 1.0

the service responsiveness that comes from self-administration. But it's worth
remembering that this competition is out there.

Voice-over-Internet-Protocol (VoIP) is the newest player in the game. IP is the
defado standard for data networking, and people are increasingly mnning
something like 10 Mbps Ethernet to the desktop. In this context, even
uncompressed 64 kbps voice starts to look inconsequential. However, there are
substantial issues stemming from the optimization of IP for data: it's good at big
packets and bursty traffic, and likes to retransmit in dle face of errors. Voice
needs lots of small packets widl guaranteed limits on delays, and has no time for
retransmission. VoIP has many potential forms, ranging from being a free long
distance trunk for your PBX, to being a fully distributed "unPBX". It has a
bunch of disadvantages: it's less reliable; voice quality is uneven (for now); it adds
to your LAN traffic; the standards are still emerging so you can't necessarily talk
to other IP phones even on your own LAN; some of the "products" are still
vaporware; propagation delay over the \V'AN can interfere with discussions; and
it doesn't have most of the traditional PBX features (yet). But it does promise
some slick computer-telephony features from good integration with your desktop
computer, and it's reallY cheap. If tariffing anomalies continue to make long
distance calls essentially free for VoIP end-users, then this will be our most
serious competitive threat.

Despite all this competition, we've sold about 100,000 M1 systems worldwide.
Here's why ...

1.1.1 Classic Private Branch Exchanges

4

Most medium-sized organizations, such as corporate or government offices,
universities, hospitals, hotels, and army bases, actively manage their own
telecommunications. These groups tend to have a large number of phones.
Their people would like to share a dialplan, probably need the same sorts of
features, may share a balance sheet, and often call each other more than dley call
outside. Of the alternatives just mentioned, PBXs play very well into dlis market.

PBXs provide a richer collection of features than were historically available from
a central office service. In fact, dle XII Sqftware Features Guide is now 41/2 inches
duck, although each customer will normally buy and deploy only a small subset of
the available features, depending on dle nature of dleir enterprise. While most of
these features are now available on Centrex too, regulatory and deployment issues
mean that the fancy new ones will likely continue to be available on PBXs first.
The following table gives a sampling of the kinds of features we provide to
different clients.

Nortel Proprietary

Version 1.0 Part I: Understanding the Context

Productivity & Time Management Cost Control

Speed call Line concentration
Hunting Automatic route selection

Call forwarding Call detail recording
Ring again Direct inward system access

Last number redial Class-of-service restrictions
... plus zillions of others Attendant administration

Applications - Horizontal Industry Segments - Vertical

Automatic call distribution International markets
Conference calling Finance

Multi-tenant service Hospitality
Voicemail Manufacturing

Microcellular terminals Health care
Centralized attendant services Insurance

In practical terms, a "medium-sized organization" can mean anything from
maybe 50 lines up to 10,000 lines. Smaller groups might choose a Key System,
such as our Norstar product line which serves at most 272 users. Larger groups
might pick something like our SL-l00, which has sites today with over 40,000
users. A very important subset of our customers is in the small end of the Ml
size range «400 lines); the Option llC accounts for nearly half of all lines sold,
and great things are expected from the new llC Compact, which only handles up
to 116 lines.

A major distinction between our customers and regular telcos is that our groups
use, rather than provide, telephone services. Therefore, billing requirements are
much softer, and proprietary interfaces have been acceptable, although this is
changing. However, because running the PBX is something many of these folks
do in their spare time, administration ought to be easy. Also, the people in
charge of providing voice communications within an enterprise are frequently
different from those providing data communications. They tend to have
competing budgets, and to have an over-simplified view of each other's job.
Increasingly, each assumes their system could do both jobs adequately (Netheads
claim voice-over-IP / Bellheads have ISDN), and each is still wrong. While we
need to keep up with these developments, neither network has a very convincing
story yet for sophisticated users of the other one, and the inertia of the installed
base of wiring and equipment will keep both voice and data networks in buildings
for some time to come.

Norte! Proprietary 5

Part I: Understanding the Context Version 1.0

To justify the initial cash outlay, people who buy PBXs expect them to be useful
for a long time. They want to have cutting-edge services, but don't expect to
have to toss out their older equipment to achieve this. One of our biggest
challenges is to continue to support older systems while evolving the product.

A major recent addition to our basic PBX functionality is support for digital
microcellular sets, allowing users to roam throughout the building speaking with
the same digital handsets they use for the public cellular phone network. Now
obviously, except in lead-lined buildings, they could have done this anyway; but
with the Ml system, they use lower powered transmission, a building can support
many more simultaneous calls, and best of all there are no air-time charges.

Mls are sold tlu-oughout the world. To be successful, they must be able to speak
the local variants of standard trunk protocols. Also, the user interface of some
features needs to be tunable to meet local expectations (from changing the
ringing cadence in Europe, to having katakana set displays in Japan).
Documentation and help screens must now be available in the "six core
languages": French and German (for Europe); Spanish and Portuguese (for the
Caribbean and Latin America); Japanese and Chinese (for Asia); and English.
And of course, there are also many non-technical concerns that are equally
imperative to our international success (politics, type-approval, currency,
marketing, export and local legal issues, etc.) but these are outside the scope of
this book.

1.1.2 Call centers

6

If Option llCs have the largest number of deployed Ml systems, call centers
probably place the greatest demands on the architecture, and have the highest
revenue potential. Call center customers tend to be very sophisticated telecom
users. They quote their average call durations to three significant figures. They
keep a very close eye on queuing times and maximum call throughput. They
engineer their operations so that their operators' lines are almost constantly
active. They care very deeplY about outages. Most call centers are vital to the
success of our customers' businesses, and a few are even used by emergency
services bureaus. Therefore, call center managers would usually much rather
spend money for reliability and speed, than risk losing client calls.

The cornerstone of call center service is Automatic Call Distribution (ACD),
which allows any number of callers to dial the same directory number and be
queued until a suitable operator is available. Conceptually, this is just first-in
first-out queuing, but it can get a bit convoluted. Based on Calling Line ID, the
system might recognize some callers, and route them to a particular queue.

Nortel Proprietary

Version 1.0 Part I: Understanding the Context

Other callers may have been given a special higher-priority number to dial. More
than one service may be available, or services may be available in more than one
language. Any given operator will be able to handle a different subset of these
callers, and Multiple Queue Assignment (MQA) allows each to receive calls
from the right subset of queues. Operators can also have their own individual
directory numbers, which allow people to dial them directly.

Calls can be redirected, or given special announcements, based on the time of
day, or their time waiting in the queue. Using Customer Controlled Routing
(CCR), customers can write scripts to route a call through a series of
announcements and queues.

Supervisors can eavesdrop on calls to ensure the quality of service is appropriate.
With Meridian MAX, they can see real-time graphical displays of the length of
the call queues, the time callers have been waiting, and statistics about how long
operators are taking to handle calls. They can then reconfigure the queues in to
optimize performance, or can generate reports to do long-term planning with the
MAXCaster forecasting tool.

In some call centers, agents may actually sit in different physical locations from
one day to the next, and the M1 must continue to send them the right set of calls
and to associate them with the right supervisor. Using some third-party magic!
we even support agents working from home.

Network ACD uses ISDN D-channel signaling to keep track of how busy up to
20 other sites are. It can then spill overflow calls intelligently to these sites using
the standard ACD queuing software. Calls are queued locally until the off-site
agent becomes idle, the agent is reserved, and then the call is delivered,
optimizing network usage. Meridian Network Administration Center (NAC)
allows centralized network control for organizations with multiple Meridian
MAX sites. The NAC software collects information from Meridian MAX call
centers and processes it in a single microcomputer, enabling the customer to
monitor and control agent/queue performance at all nodes from one central
point.

Integrated Voice Response (IVR) automates some of the process of routing an
unknown caller to the right agent, and may even be able to perform simple query
services independently. This allows companies to provide better 24-hour service,
to handle spiky traffic patterns better, or to save money by having fewer
operators.

The Off-Premise Extender from MCK Communications - see www.mckcom.

Nortel Proprietary 7

Part I: Understanding the Context Version 1.0

Using Meridian Link, Computer-Telephony Integration (CTI) allows ACD calls
to be integrated with a company's data processing system. For instance, when an
agent is presented with a call, the FastView software could simultaneously
present the customer's order history on her computer screen. Or, if the caller
hasn't paid his bills, he might be routed directly to the Collections department.
The "predictive dialing" feature of CTI automatically originates annoying
telemarketing calls during quiet periods.

An extension some analysts expect to see soon would be to have call center
operators fielding multimedia "calls", including ones that came from email, fax,
internet surfers, and video terminals, in addition to voice calls. The underlying
technology works today, although integrated, scalable, product-quality offerings
are a bit thin on the ground. But a fundamental obstacle to deploying such
technology is that not all people are good at communicating in all media, so it
isn't clear how easy it would be to staff a multimedia call center.

Originally known as Integrated Call Center Manager, and then briefly as Next
Generation Call Center, Symposium is the latest version of our ACD offering.
The new configuration uses a Symposium Call Center Server (SCCS) to control all
of the queuing off-board from the M1. SCCS uses scripts to control "Skill-Based
Routing" and integrated IVR to optimize operator efficiency. Other than that, it
doesn't do too much that's new, but it does cut down on the total number of boxt
needed to do the same old (important) job.

1.1.3 Local points of presence

8

In most environments, telephones are not in constant use, and many calls
connect people within the same building. Therefore, except for Call Centers,
Mis tend to do significant concentration. That is, there are many more lines

served by the Mi than there are trunks connecting to the outside world2. In a
sense, the Mi is always a local "point of presence" of the global Public Switched
Telephone Network (PSTN).

However, there are a number of situations in which customers think of Mi
equipment specifically as a small local point of presence for a larger switch.
Often, it is only the larger system that has any direct connection to the PSTN.
While the difference between this way of deploying an Mi and the classic PBX is
mostly in the mindset of the customer, the requirements and the economics may
be different from other cases.

The author can attest to one extreme case, a six-story office building in India that had only two outside lines
for general usage.

Nortel Proprietary

Version 1.0 Part 1: Understanding the Context

1.1.3.1 Remote peripherals

Carrier remotes

The usual way to handle a group of Ml lines located some distance from your
switch is to use public carriers (Tl or El) to connect remote peripheral
equipment up to 70 miles from your Ml. This can be especially useful when you
have a number of small branch offices around a city. Each site will be centrally
administered just as if all the lines were local. The downside is that you have to
pay an on-going charge for the links.

Fiber remotes

Peripherals can normally be only 45 feet from the Ml that supports them. If
you're lucky enough to have right-of-way between your users (say, between two
buildings on the same campus) you can use fiber optic cables to connect remote
peripheral equipment up to 3.1 miles from the main Ml. These remote units
then have the full functionality of a local peripheral.

Line-side T1

Sometimes the easiest way to wire a group of lines some distance from the main
switch is to use a Line-Side Tl Interface (LTI). The LTI card plugs into 2 slots
of an IPE cabinet, and promises to behave just like a normal analog line card
(XALC). The difference is that, rather than terminating a bunch of analog lines,
an LTI card has a full Tl (or El) trunk coming out of it. Now, instead of
running 24 individual wires out to your cluster of phones, you can run the Tl to a
Norstar key system, or simply to a channel bank, which does very simple-minded
de-multiplexing of the Tl channels back to analog lines. Besides making wiring
easier and cheaper, this also extends the maximum distance the phones can be
from your switch room to 655 feet (farther with repeaters, around the world if
you lease a public Tl).

There is arguably a more important deployment of LTI technology. Notice that
the Ml thinks it's just got a bunch of lines out there. This means that all line
features are automatically available (which would generally not be true with a real
Tl trunk). Several third-party vendors have also noticed this, and there is a
flourishing sub-industry of people building specialized boxes to do ACD, IVR,
wireless, voicemail,etc., on the far end of one of these TIs. This method of
connecting voice lines is cheaper, and also has better speech quality because it
skips several passes of digital to analog voice conversion. In fact, because we are
a global PBX market leader, it seems that any stable interface the Ml has
provided, no matter how arcane, has been reverse-engineered by third-party

Norte! Proprietary 9

Part 1: Understanding the Context Version 1.0

vendors and reused to build new services. With the advent of TAPI and other
public call control standards, we may find fewer small vendors as willing to do
this.

LTI cards are actually built by a partner company, Telecom Strategies Inc., but
they are fully supported by N ortel.

Sometimes the Ml is the remote peripheral
Some of our customers have deployed small Mls (especially Option lls) as
remotes to larger Mls. This gave them an extremely robust and feature-rich
remote system, but at a higher cost and with more administrative hassle. Part of
why this happened is that IPE carrier remotes were not available for many years.

1.1.3.2 The Fixed Wireless Radio Controller (FWRC)

10

In many third-world markets, there is a huge demand for more phone services.
It's normal in places to wait more than a year for a new line, and some rural areas
have no service at all. But for a new provider to be able to survive fmancially,
their cost per line must be minimized, and they must be able to deploy new
networks quickly and realize revenue without investing too much in outside plant
cabling or major switching fabric components. Using wireless telephony,
operators can provide basic telephone service quickly, installing radio sites and
towers-instead of trenching, cabling, and pole planting-and eliminating the
need for many kilometers of copper wire. Radio sites are both easier and cheaper
to maintain and operate than copper line plant; this translates into lower annual
recurring costs for the network operator. The service provided is essentially
identical to traditional wireline phones, but instead of being plugged into a jack
that connects it through traditional twisted-pair copper wire to the local
telephone switch, the telephone links to the network by means of a wireless radio
path. New subscribers can be added very quickly, without sending technicians to
the new site. The system is especially cost effective even in areas with very low
subscriber density, or very rugged conditions.

Nortel offers a fixed wireless solution to this market called Proximity T, based on
Time Division Multiple Access (IDMA) radio. A central offlce switch talks to a
group of FWRCs, each of which is basically a Meridian 1 Option 51 C with
mobility software.

The FWRC performs the dynamic radio resource management function,
assigning radio channels to calls as they are set up. In addition, the FWRC
includes the cards which perform the IS-54 voice coding required for digital
TDMA transmission. The FWRC can be located either at the Central Office or

Norte! Proprietary

Version 1.0 Part I: Understanding the Context

at the cell site. For added reliability, a pair of FWRCs may be deployed for each
cellsite. The wide variety of trunk protocols supported by the M1 makes it
particularly suitable for this market.

Meridian 1 as a Fixed Wireless Radio Controller

Central Office switch

1.1.3.3 The Multimedia Carrier Switch (MMCS)

FWRC at
cell site

Marne-Ia-Vallee has recently announced an Option 81 variant optimized as a
market-entry switch for international public carriers. Even five years ago, nearly
all national PSTNs were run by a government department called a Post,
Telephone and Telegraph (PTT) administration, often a branch of the post
office, which sourced its equipment from a highly-protected domestic
manufacturer. Akatel, Lucent, Ericsson, Siemens, NEC, and of course Nortel,
all grew fat on this system. The recent global trend toward at least privatization,
and usually deregulation, has created a nice big surge in an otherwise pretty flat
(or completely closed) public switching market. In 1998, most of Europe opened
up the cross-border telecom market to competition, and a number of
"supercarrier" alliances formed to capitalize on this opportunity. On a smaller
scale, regional carriers and Alternative Licensed Operators saw similar
opportunities and faced similar issues. North American Competitive Local
Exchange Carriers (CLECs) are starting to explore a similar niche.

One basic problem they all face is that even though their initial traffic loads will
be light, tl1ey need to have a lot of switching points in order to offer a credible
service. They can't afford to put a full-blown DMS into every country. The

Nortel Proprietary 11

Part I: Understanding the Context Version 1.0

MMCS gives them a cheaper alternative. The theory is that once we've captured
a carrier's attention, we will likely retain it even across a non-transparent upgrade
(like Ml to DMS). Notice that at one level the MMCS, like the FWRC, is just a
protocol converter to give service providers a local point of presence.

A second problem is that to connect with each country's existing infrastructure,
the local switches will have to support the local protocol variants. Ml already
does this fairly well.

Enhanced services (Calling Card, Debit Cards, Freephone, Callback, Equal
Access, Operator Services, Intelligent Networking, Virtual Private Networking,
better billing accuracy, etc.) increase the value of these switches to the alliances
and their end users. Some of these are already available on Ml; some need to be
built or enhanced to meet the new requirements. In MMCS, the default will be to
build them on off-board Application Processors.

\Vhile work is being done to improve the reliability of the MMCS, it is still at
heart not a Central Office-compliant architecture. This could conceivably
become an obstacle to deployment.

In the initial offering, the "Multimedia" part of the name is pretty much entirely
hype. The basic switching and access connect standard 64-kbps voice. Yes, this
gives you fax and modem data for free, and video for only a bit more work, but it
hardly gives you bragging rights ... Expect some work in the immediate future to
tackle this, perhaps with the 11MCS ending up as a value-added gateway to the
Internet.

Recent marketing carefully positions the MMCS node as "a Core Switch, baJed on
Ml technology", rather than simply an M1. This seems to be in order to
emphasize the AIN-style call control model, and possibly to allow higher margins
to be negotiated ©.

11MCS seems to have a very high standard of on-line documentation, at least
some of which ought to be leveraged by the broader Ml community. Curious
readers might start their investigations at http://47.74.128.167/mmcs.html.

1.1.4 Virtual Private Networking (VPN)

12

The recent flurry of international business mergers and expansions has
accelerated the demand for flexible, cost-effective, manageable, private
networking. Virtual Private Networking combines the administrative
convenience and security of a closed private network with the ubiquitous reach

Nortel Proprietary

Version 1.0 Part I: Understanding the Context

and cost-effectiveness of public trunks for long-haul connections. A little more
than half of our switches go to customers linking multiple sites into a VPN.

In general, Ml tries to coordinate VPN services with SL-l 00 /DMS-l 00 and
DMS-2S0, under the marketing banner of Meridian Customer Defined
Networking (MCDN).

1.1.4.1 Electronic Switched Network (ESN)
ESN is a broad collection of features that allows customers to build a VPN. It
includes both coordinated databases (for uniform billing and dial plans) and
telephony feature networking based on ISDN PRI trunks.

ESN lets customers optimize costs by laying their own cables where geography
and legislation permit, choosing leased lines between some strategically-chosen
sites, and routing over the public network between other sites. Overflowing calls
can be re-routed internally or externally, or can be blocked. This can end up
saving a lot of money.

ESN allows a uniform behavior across all corporate sites (as long as we can agree
with DMS about feature look-and-feel). ESN provides network-wide caller name
and number display, Networked Attendant Services and ACD, and miscellaneous
networked features like Ring Again and Call Pick-Up.

Depending upon national regulations, callers may even be able to dial from home
into the ESN using Direct Inward System Access (DISA) and/or break out to
the PSTN at the terminating end to bypass long-distance charges.

Mastering the full range of ESN capabilities is a somewhat Herculean task, but
answers to specific questions may be found in the ESN NTP, available in printed
form, on CD-ROM through Helmsman, or at
http://47.5.1.11:8000/data/Knowledge 2!Switching!.'vINICS!NTPs!07 ESN.PDF.

1.1.4.2 Virtual Network Services (VNS)
VNS provides VPN services to smaller locations that cannot justify dedicated
ISDN trunks, or can only accommodate a limited number of them. VNS is
based on a dedicated D-channel to do the network messaging, but can use most
PSTN or Tie trunk types to carry tl1e associated voice. People familiar with the
CCS7 public network model will recognize that this is a sinUlar idea on a smaller
scale.

VNS supports such MCDN features as trunk anti-tromboning, Network Call ID,
and Network Call Page, NAS, and NACD.

Norte! Proprietary 13

Part I: Understanding the Context Version 1.0

1.1.4.3 In-building VPNs
A special case of ESN is for a customer who wants to buy a bigger or more
disaster-proof Ml than we know how to build at the time. There have been
instances when we have networked a pair of Mls together in the same building to
do the job of a single switch. (If you were wondering who would ever buy the
Networked Call Pick-Up mentioned above, this is your answer.) There is enough
overlap between the high end of the Meridian 1 range and the low end of the
SL-I00s that this pattern may stop happening in the future, although theoretically
you might sell some twin configurations to people who were very worried about
disaster survivability.

1.1.4.4 CorWAN

14

An obvious VPN example to consider is Nortel's Corporate Wide Area Network,
our own 60,000-user ESN, which turns out to be one of the most advanced
private telecom networks in the world, and uses Mls as part of the core
technology. In 1997, it looked like this:

) I

'\"" Nortel's Glo~til Corporate Network1
~ 3 Meridia;'S(~fQO...;;witches . ,j'

Norte! Propn'etary

Y. i 4 DMS-IOO switchJs <
..•• 25 DMS-100 Centre;d.sites)

. [200 Meridian I PBXs i((
100 Magellan DPN-loo\;,witches
46 Magellan Passport \~:W>is

4 OC-48 TransportNode systems
21 OC-12 TransportNode systems
10 Mainframes

12 .000 UNIX Workstations
50.000 Personal computers

76 Non-UNIX minicomputers
105 UNIX minicomputers

Version 1.0 Part I: Understanding the Context

1.1.5 Power networks
They're the latest thing. As of last year, more of the
world's network traffic is data than voice. And data is
growing in some markets at roughly 100% per year,
compared to voice's 15%. Even our 15% growth is being
driven by fax, video, internet access, and messaging (all of
which are pretty data-ish). Running parallel networks is
expensive. This should mean that instead of having voice
networks with data overlays, the world will increasingly
have data networks with voice and multimedia overlays.

Recent propaganda claims that NORTELPOWERNETWORKSTM are
well positioned to help enterprises deal with this: Power
Networks are "responsive, reliable, simple, secure and
flexible". The central thrusts are to extol the merits of
switching over routing (although "data" equipment is
increasingly able to do this too) and to leverage our
history of good reliability. It's not entirely clear what this
means to M1, but presumably an excellent Power
Network solution would have leveraged the A TM
backbone in a Meridian Evolution switch-once we had a good native-ATM port
story. Whatever we do instead will have to play well into this new marketplace.
And presumably, this road leads to ''Web tone".

1.2 Customer values
The different market segments just discussed each emphasize different variables,
but overall the things our customers would call "quality" in a PBX are not too
surpr1S1ng.

To start with, they're all the things people have always liked about the phone
system. The themes which spring to mind are extreme reliability; low cost-of
ownership, with seamless growth at incremental cost; simplicity of installation,
operation, and end-customer use; near-zero transmission latency; suitable
management and billing systems; a rich feature set; support for global protocol
standards; and secure access and transmission.

Then there are some newer things we do, like micro-cellular,
Computer/Telephony Integration (CTI), and craftsperson interfaces in local
languages.

Norte! Proprietary 15

Part I: Understanding the Context Version 1.0

The tougher part is that, added to all of these values, our customers will
increasingly look for the frequendy-conflicting values they've come to expect
from the computer industry. They will want open interfaces (implying an infinite
number of deployable configurations to test), and Graphical User Interfaces
(GUIs) for system management. They will want to be able to run software
written by a variety of groups, including themselves. They'll want high payload
bandwidth with flexible access choices, probably including IP over Ethernet.
They might demand that we double our computing power every eighteen
months, like the nearly-disposable PC market does, without weakening our
evergreen promise! They'll also be comparing our carrier products with the
"free" internet equivalents. Some of these requirements pull us in opposite
directions. There are some challenges here.

Finally, "quality" should include some important non-functional properties that
are visible mosdy inside of Nortel. They affect the customer only indirecdy, but
are nonetheless critical if our designs are to have any long-term value that could
help us maintain our competitive position. Included in this list are things like
maintainability, flexibility, testability, portability, and reusability. Our success
with all of these "-ilities" predetermines our agility in an evolving marketplace,
and ultimately our success as a business.

How to tell if your
customers value
something ...

1.2.1 Size matters

16

One of our strengths in the market is that we offer a line of products which scale
from a small site (maybe 50 phones) up to a fairly large one (several thousand). A
company which starts small can gradually add extra users and features, leveraging
most or all of its initial investment.

The hitch is that small customers are qualitativefy different from large ones. Small
customers will want to add "manage the PBX" to the list of regular duties of a
secretary or computer support person. They need a system that is easy to set up
and maintain, and good support when they can't figure it out. They are very cost
conscious, and probably can live without redundancy. In contrast, large
customers tend to be "power users", with dedicated telecom personnel who
know as much about running a PBX as we do. They stretch the limits of capacity

Nortel Proprietary

Version 1.0 Part I: Understanding the Context

and feature interactions, and will probably have some non-Nortel equipment that
they expect us to interact with nicely. They tend to have networks of PBXs
which include remote offices (bringing us back to the needs of small sites).

Our ability to evolve a switch from the small end to the large is a distinct
marketing advantage, but also we need to continue to ensure that our products
make sense for the various niches in between. This is a potential weakness with a
closed solution like the Option 11 C Compact.

1.2.2 How do we stack up against the competition?
Bearing in mind the diverse set of requirements discussed above, how easy do
our users find it to make a Meridian 1 fit their needs? M1 has led sales in North
America for several years now, currently capturing about a third of all lines sold,
so we must be getting something right. The market changes rapidly, but numbers
below giving our rank in 1996 in various measures of usability, compared to the
competition, are probably still representative. There's certainly room to improve
(we're not number 1 in any category), but there are no huge weaknesses either,
and we ranked second place overall. Soon, companies like Cisco (LAN s) and
GroupComm (unPBXs) will have to start showing up in such comparisons ...

Usability Criteria Mite! Nortcl Ericsson GPT Lucent Siemens Alcatel
SX-200 MI MDllO iSDX DetinityG3 J-licom 300 ·1000 Series

Ease of Installation 1 4 3 2 5 6 7
Ease of operation (attendant) 2 4 2 1 6 5 7
Ease of operation (station users) 1 3 2 4 6 7 5
Maintenance 1 4 3 2 5 6 7
Moves, adds & changes capabilities 1 3 2 4 5 6 7
Price/performance ratio 3 2 4 1 5 7 6

Service and support 4 2 5 1 3 6 6

Software uPb'fades 6 2 1 7 4 3 5
System documentation 1 3 2 5 4 6 7
System management 1 2 5 4 2 6 7
Training prob'fams and materials 5 3 2 4 1 6 7

Overall Usability (I =mstomerfal'Orite) 1 2 3 4 5 6 7

Norte! Proprietary 17

Part I: Understanding the Context Version 1.0

1.3 Distribution channels

18

Unlike many Nortel products, Meridian 1 systems are usually sold and supported
by third-party distributors, rather than directly by NorteL These distributors
include telecom companies like WilTel and Sprint, divisions of big diversified
corporations like Daewoo and Xerox, some regional Nortel subsidiaries, and the
occasional national PIT. They work together with us through regional
Distributor Alliance Councils (DACs). Distributors provide:

• service centers throughout their territory

• 24 hour x 7 day a week emergency support
• field engineers trained by N ortel
• remote or on-site problem diagnosis and resolution of customer-reported

problems

• spares for emergency hardware replacement
• installation, project management, traffic/security audits, customer training

Various groups within Nortel back up the distributors with training, emergency
assistance, project management, audits, and cutover assistance.

Outsourcing of both sales and support puts a level of indirection betWeen the
customer opinions charted above and the design community. While the
distributors work hard to maintain their technical skill, we can help them out by
making our systems as self-configuring, self-diagnosing, and self-healing as
possible, and by providing excellent documentation. For more information, the
Asia-Pacific DAC has a good web site at http://47.75.6.2:8080/members/index.html.

Also, while it is in the best interests of the DAC to convey customers' wish-lists
to us, the extra step could mean we lose touch with current priorities. One of the
ways our customers get at us directly is the International SL-1 Users' Association
(ISLUA) Product Advisory Committee (see http://4 7.245.71.1 04 lislua I or
http://www.islua.orgl). The ISLUA was established in 1980 and has over 5000
members. They hold a big annual 5-day conference where they attend
educational workshops, see demos, swap whispered tips on gray market3 sources,

One potential problem with building equipment that lasts a long time is that it may outlast its usefulness to
any given customer. These customers will, understandably, want to resell it, but this presents a conundrum
for our distributors: they lose a sales opportunity and they may inherit a support cost, but at the same time
their customers probably like a healthy gray market. The gray market also messes up our pricing strategies,
which are based on what the market will bear rather than our direct costs for any given piece of equipment
or software. We'd like to (and do) charge more in markets that will pay more, but the gray market (here
some would substitute the term "free enterprise") limits our ability to do this. Corporate Security figures
Norte! concedes about $8 million a year in profits to the gray market, although for obvious reasons an exact
figure is hard to come by.

Norte! Proprietary

Version 1.0 Part I: Understanding the Context

and tell us to our face what they think of our stuff. Of course, the ISLUA is
inherently bad at telling us why people have chosen not to buy our products, but
at least it can tell us a lot about our existing customers.

DAC
/ Distributors

meet Nortel

NflRTEl

! NORTHERN TElECOM

We design &
build systems

~
Customers

meet Nortel

Keeping the distributor channels healthy is obviously critical, but we should resist
the temptation to optimize only for distributors rather than real customers. For
example, a cryptic user interface that requires highly-trained operators might
inconvenience customers but would nourish a lucrative consulting business for
the DAC members ...

There's actually a dilemma inherent in our business strategy. Anybody's product
needs to be profitable for its supplier, and valuable to its customers. Ours must
also make money for the distributors. Even if Nortel could make just as big a
profit by building our systems for a tenth of the price, and charging our end users
a tenth of the price, it might still drive our distributors out of business. As the
unPBX folks change our industry, we're going to have to grapple with this issue.

Nortel Proprietary 19

Part I: Understanding the Context Version 1.0

1.4 Ml genealogy

20

In 1876, Alexander Graham Bell built the fIrst telephone.
A century passed, and the underlying technology remained
more or less unchanged, although the world got
progressively better at building electromechanical switches.
In the late 1960s, various people started using very simple
computers to control transistors switching analog voice,
and the fIrst analog PBXs appeared (including the "Stored Program 1", from a
company called Northern Electric) .

Then in 1972, that company (soon to be renamed Northern Telecom) started
work on the world's fIrst PBX to be based on time-division multiplexing of
digital voice: the "S tored Logic 1". 1975 saw the fIrs t fIeld trials (in Belleville and
Montreal), complete with the "SL-1 set": analog voice, digital signaling, hands
free capability, 13 function keys, and no display. For comparison, around this

Nortel Proprietary

Version 1.0 Part I: Understanding the Context

time Zilog started shipping the ftrst generation of Z80s. (Remember the
TRS-80?)

Ahnost immediately, the technology began to undergo adaptive radiation to play
into various sectors of the telecom market; the DMS-IO and DPN-1O families
forked off from the original SL-l product to become public and data switches,
respectively. To this day, DMS-1O is written in the SL-llanguage, albeit an
evolved version of it. DMS-100, N ortel's flagship public switch, also reused a
great deal of the knowledge built up by the SL-l design team, although they
opted to redesign most of the hardware and software from scratch.

Over the years, the SL-l got progressively faster and smaller, and a variety of
packaging strategies targeted different sizes of customers. In 1980, AMD built us
a speedy new bit-slice processor to power the SL-l XL up to 4000 lines. In 1983,
the "Mirv" project doubled the CPU capacity while new cabinet work shrunk the
footprint to create the "Meridian SL-l" line. Two years later, we moved to the
"Omega" CPU: a massive 24-bit architecture (well, it seemed big at the time). In
1988, ''Viking'' re-worked the networks, peripherals, and cabinets, and deftned an
upgrade strategy all the way to SL-I00, to give us the "Meridian 1" line. In 1990,
the "David" project (as opposed to Goliath) cost-reduced the same architecture
(4 X 4-bit A~ID chips) onto a single gate array to bring us the "N07" ASIC for
Option 11.

Then in 1990 came the big push for a commercial platform (the "C" in "Option
xxC"). "Thor" moved us to a MC680xO CPU. Since then, we've been able to
ride Motorola's commercial processor curve fairly well, replacing the MC68030
with later generations of CPUs and memory cards without substantially
reworking the bulk of the system.

It's probably worth remembering that many of the older generations are still out
there (the oft-lamented "stalled base") and they ought to be a good market for
upgrade sales. The problem is that the equipment was built to last, and for those
customers whose needs really haven't changed, the old machines continue to
perform their jobs fairly well. To sell new machines, we have to show clear
beneftts at sensible prices, and have a good upgrade story. People want to reuse
as much equipment as possible, and outages must be kept to a minimum.

Throughout this evolution of the hardware, the software was also developing.
Each release built on previous ones, and added many new features. The ftrst
software stream was called 101. The next release supported two machine types,
so we called it X02: 102 for the L, and 202 for the VL. We continued with X03,
X04, and XOS, until XII, at which point we changed the naming convention to
be XII Release 1, XII Release 2, ...

Nortel Proprietary 21

Part I: Understanding the Context Version 1.0

22

-.. ~ .----

Xll
., Release 18

New projects are often tempted to go off on tangential side streams to allow
them to release features as early and often as they wish, but then designers need
to do the work of keeping current with advances in the base manually. X07 was a
special release for the Hospitality market, and developed further as the X37 side
stream before being reintegrated onto the main steam in about Xll Release 12.
X14 was a special Autovon stream, later reintegrated in Xll Release 3. X81 had
the code for the international market, and was reintegrated in Xll Release 20.
:MMCS didn't actually take different generic or release names, but issued sub
releases on top of standard Xll releases.

Xll Release 18 put SL-l on top ofVxWorks. Release 21 was the last generic
that had to support the older bit-slice CPUs, which allowed Release 22 to go
crazy. We added a raft of third-party code, mobility, MAT, and SCCS. X12, the
fltst new generic in years, did the major rework for Cybele, particularly on the
connection service model, and created the System Infrastructure.

Norte! Proprietary

Version 1.0 Part I: Understanding the Context

1.5 The hardware
This section attempts to be representative, rather than exhaustive. For a fairly complete set
o f current Nortcl products, check out ht:tp: //www.nortel.com/ home/quickl.

1.5.1 Physical packaging

Option HC
(shown with one expansion cabinet,

and one front panel removed)

Option HC
Compact

(5 UEMs in 2 columns)

T oday, the Ml comes in three basic shapes. Large systems (Options SlC, 61C,
and 81 C) are floor-mounted racks, with fans and power in the base and cabling
out the back. The systems are built up as a number of columns, each of which
has up to four Universal Equipment Module (UEM) shelves. The Option l1C,
targeted at smaller sites, is normally sold as a wall-mount unit to save the
customer some real estate. The Option llC Compact is (predictably) a scaled
down, pre-configured 11 C sys tern in an even more compact box.

A matrix detailing the sizes of our various current offerings can be found at
http://www.nortel.com/entprods I meridian/ products I options ITech specs.html.

1.5.2 Logical decomposition
Each generation of hardware re-thinks the physical packaging to keep up with
high-tech fashion trends. However, taking a short step back will reveal that ever
since the first SL-l, our PBXs have had the same conceptual layers: for cost
reasons, many terminals are analog; terminal wires connect to peripheral
equipment which converts signals from analog to digital, do some concentration,
and may have some basic signaling ability; peripherals connect to network

Norte! Proprietary 23

Part I: Understanding the Context Version 1.0

equipment, which switches these signals digitally; and the network equipment
connects to a computing server, which controls the overall service. This model is
fairly cost-effective, flexible, and powerful, and is nearly universal as the generic
stored-program-control telecom switch design.

We can evolve each of these main units more or less independently, and
customers can purchase different levels of capability for each, to trade off grade
of service against cost. The more powerful the CPU, the more calls and services
it can handle. The bigger the network, the more simultaneous calls can be up.
Fancier peripherals can support fancier terminals, and may offload the CPU.

--

lr---------~----~----~
----- 81----

Switching
Network

.
---- '~E

~3
~+

Consoles t third-party boxes j

Control
high-availability compute
server; service processing;
commercial maSS storage

Network
service messaging; utility
circuits; time-division
and spatial multiplexing
of digital voice

Access
phySical access; AID
conversion; concentration;
simple distributed
processing; serial devices

Note that although a small system may combine all of these functions into a
single cabinet, the logical decomposition is still essentially the same.

1.5.2.1 Power

24

The power subsystem is very dependent on the configuration. It may take 110V
AC, 220V AC, or -48V input, depending on the environment. Redundant
configurations usually have substantial battery back-up.

Nartd Proprietary

Version 1.0 Part 1: Understanding the Context

1.5.2.2 Control

Call processor (CP)
This is the heart (well, brain) of the traditional "Common Equipment (CE)",
where all of the high-level call processing, maintenance, and user interface
functions are performed. On older systems and Option llCs, the CP even does
ringing and tone timing. Until the ''X-Calibur'' project, this was the only real
computing engine in the entire system, so it was hardwired into the Network
Equipment (NE), and controlled NE behavior through a group of hardware
registers. Successive generations tended to move more computing power and
messaging bandwidth lower into this structure, allowing service functions to
migrate this way as well.

"Redundant Configurations" (Options 61C and 81C, and the older 61, 71, and
81) have dual CPs. The inactive CP waits in warm-standby mode, in case of
failures of the primary CPo

Memory
Each configuration has a slightly different combination of on-chip cache, L2
cache, SRAM, DRAM, shadowed DRAM, and Flash ROM, based on the
technology available, the speed required, and the amount of redundancy
expected.

Storage
Each machine has some subset of: PCMCLA Flash ROM, tapes, floppies,
(possibly shadowed) hard disks, CD-ROMs, or even off-board storage via an
Ethernet port. The choices are based on the available technology, size of loads,
reliability, speed, and system cost.

User interface
In earlier systems all Operations, Administration, and Maintenance (OA&M) was
controlled by teletype-style terminals connected directly to the Common
Equipment via a serial port. Later generations often used more sophisticated
management tools and Application Processors connected to an Ethernet LAN
port on the Common Equipment shelf, or had Serial Data Interface cards on the
Network Equipment.

Nortei Proprietary 25

Part I: Understanding the Context Version 1.0

1.5.2.3 Network

26

The Network layer connects streams of digital data, and routes control messages
around the system. On the Meridian 1, the Network Equipment (NE) performs
these tasks.

The network "loops" that carry speech between NE and Peripheral Equipment
(PE) have changed over the years, but generally contain 32 channels of 64-kilobit
PCM voice each. The usual arrangement is to multiplex the channels at the bit
level (one bit per time-slot per cycle). Mixed in with the payload data, signaling
data is carried between terminals, and between the Core and the PE.

M1 NE tends to be engineered to have a fairly high blocking ratio; a loaded
switch has about four times as many terminals as network connections. This is
flne as long as many terminals are idle at any given time, but still requires a bit of
planning to get the load balancing right.

A fully-populated network module, connecting 16 loops of 32 channels each, is
known as a half group. A pair of these network modules comprises a full group.

Besides the expected switching function, many sorts of digital trunks and service
circuits (like conference bridges and tone generators) are also hosted by the NE.
The obvious reason for putting service circuits on the NE shelf instead of the PE .
shelf is because it allows fast non-blocking connection to the switching fabric.
The more subtle reason is that historically there has been much better
computational power available on the NE than on PE.

Original network equipment
Each network card can switch one 32 x 64-kbps channel network loop. They
can co-exist with E-Nets.

Enhanced Networks (E-Net)
Each pack terminates 2 network loops. The time switching now uses random
timeslots, rather than being based on flxed matched pairs.

Extended Networks (X-Net)
Each pack terminates a "Superloop" equivalent to 4 original network loops, and
now has some intelligence in the peripheral shelf. X-Nets only talk to Intelligent
Peripheral Eqiupment (IPE), discussed below.

Nortel Proprietary

Version 1.0 Part I: Understanding the Context

Inter-Group Switch (IGS)

On our largest machines (Options 71, 81,
and 81C), several network groups are
connected to each other with dedicated
junctors. Each junctor extends 1 network
link (32 timeslots) in a dedicated one-way
path from one group to another. The
IGS is a space switch, composed of 8
junctors in each direction between each
pair of network groups in the system. It
can currently connect up to 5 network
groups, although this is likely to increase
to at least 8 in the near future.

1.5.2.4 Small System Controller (SSC)

The SSC, also known as the SCORE (System Core) card, is an all-singing, all
dancing processor board for the Option 11 C that combines call processing
control, non-blocking network switching, and both Ethernet and serial access
functions.

The board currently has an MC68040 CPU, with a companion MC68360 for I/O
processing and timing, an auxiliary MC68020 for tone generation and security, a
DSP for tone detection, and an A31 IVD Message Handler to signal to its
Peripheral Equipment. The SSC uses PCMCIA flash ROM cards instead of
disks, and has a daughtercard architecture for additional memory or fiber
connections. Up to two extra cabinets can be connected using plastic fiber
(within 10 meters) or glass fiber (up to 3 km away).

The SSC runs most of the same software as our larger systems do, but with
certain machine-specific changes IFDEF'd into it. The main Call Processor does a
bit more work than a large system's CP (eg: tone timing) but for fewer agents, so
it works out okay. By reusing the same software, Option llC customers get all
of the same features as larger systems, thus reducing our development and
documentation costs and providing a consistent look and feel for customers who
upgrade or have multiple systems.

~ Complete hardware details are at http://47.147.74.2/BV\xrrraining/docs/llC hardware slides. doc

Norte! Proprietary 27

Part I: Understanding the Context Version 1.0

1.5.2.5 Access shelves

28

This layer provides distribution, concentration and media adaptation. All of the
diverse access types for payload data streams discussed in this chapter reach the
switching function provided by Network Equipment by way of an access shelf.
On small systems, these cards plug into the main cabinet.

Earlier generations of Ml had almost no intelligence available to the Peripheral
Equipment. Furthermore, there was a degree of concentration done between the
NE and the PE. Therefore, digital trunks and some service circuits were placed
directly into the NE shelves.

Enhanced Existing Peripheral Equipment (EEPE)

These are quite old now, but are still deployed
because IPEs can not support certain old
terminal types. The key line card is the:

• SLILC: supports "SL-l" set line card + old
attendant consoles

Intelligent Peripheral Equipment (IPE)

Most of the X-Calibur cards (X- ...) live on IPE.
Typical IPE cards include:

• XPEC: Peripheral Controller - receives
signaling and control information from the
network shelf over the DS-30X links, and
returns status information.

• XALC: Analog Line Card

• XDLC: Digital Line Card

.
Il

Il .

Il

Il

P._
~

II
"-~

"

I,

~
!

~~ - ""' . ..,.. ,

• XMLC: Extended Message Line Card, supports Message Waiting lamp

• XEM: Ear & Mouth trunk Card
• XUT: Universal Trunk Card, for Central Office connections

• XDTR: Digitone Receiver (detects in-band signals)

• MGate: DS-30X access, especially for voicemail, IVR, etc.

N ortel Proprietary

.

I . .-
~,CJ:::XXl

Version 1.0 Part I: Understanding the Context

1.5.2.6 Line access: Terminals

The following is a sample of the phones we sell with the Meridian 1. Many of
these are also sold with other Nortel products, notably the DMS family of central
office switches. Also, other companies produce clones of many of these sets that
will work with M1.

Analog sets

These are your Plain Ordinary Telephone Service (POTS)
phones, although they sometimes support the Peculiar
and Novel Services (PANS) like Call Waiting, developed
in later years. They have both analog voice and analog
signaling. The "500" set has a rotary dial (your
grandmother's phone), while the "2500" set has buttons,
but other than that they are basically identical. They are
known in the code as PBX sets. The M1 can also host
"CLASS" sets (really designed for home use) but we
would normally prefer to sell people digital sets.

SL-l sets

Also known as a Business Communications System (BCS)
set, this is the original business set first shipped in 1975.
It looks a bit clunky now, but it's still reasonably useful.
It uses six wires to provide analog voice and (slightly
sluggish) digital signaling. SL-1 sets have been superseded
by digital sets, and we no longer sell any equivalent.

Digital sets
The "Delta II" and "Aries" families of sets, also known as
Meridian Modular Terminals (MMT), have both digital
voice and digital signaling. Some of the variables are
display size, display language, number of buttons, soft
keys, headset connections, and external data ports. "Real
soon now", the M9617 set will come with a USB port and
a compact disc full of PC software to drive CTI
applications.

Nortel Proprietary 29

Part I: Understanding the Context

30

Basic Rate Interface CBRI) sets

Basic Rate Interface is the station-style version of
Integrated Services Digital Network (ISDN) access. A
BRI set terminates "2B+ D" -two 64-kilobit "Bearer"
channels, theoretically for voice + data, and one 16-
kilobit "Data" channel for signaling. It's a nice option for
work-at-home, although there are some better ones under
development (eg: cable modems, xDSL, etc.) and it's
fairly unconvincing as an alternative to an office LAN.

Mobile sets

There are a number of options for mobile handsets. At
the low end, there are Companion and Meridian series
Cordless Telephone (CT) sets, which allow you to move a
few hundred yards from your desk. At the higher end,
Companion supports several cellular standards, for which
users can choose terminals from Nortel or other vendors.

Attendant consoles

There are a number of variations on the original attendant
console, but they all do essentially the same jobs, and
most of these jobs are heading towards obsolescence.
About the only thing attendants still do much better than
electronics are ever likely to is provide a warm human
response to an external caller, and this is sufficient to
ensure their survival for at least a little longer.

PC-based consoles

Take the M2250 console shown above, remove the
user interface, re-box it to sit under a PC monitor,
and add some Windows ™ message center software
to drive it, and you'll have the Meridian 1 Attendant
Pc. In addition to all of the usual console features, it
includes dial-by-name and drag-and-drop speed call.

CPLUS4 was an earlier, DOS-based equivalent.

No relation to C++-.

Nortel Proprietary

Version 1.0

Version 1.0 Part I: Understanding the Context

Data terminals

The Meridian Communications Adapter (MCA) allows data devices to
communicate through the telephone network. Personal computers, ASCII
terminals, video equipment and Group IV facsimiles can connect to the M1 via
the built-in RS-232 or V.35 interfaces by adding an MCA to a Meridian Digital
Telephone. This product includes the 19.2 K and 28.8 K asynchronous MCAs,
and the 64K synchronous MCA. Also, an Analog Terminal Adapter (ATA)
has just been released, allowing users to attach fax machines, computer modems,
or 500/2500 sets to a digital set, and use both simultaneouslY.

1.5.2.7 PSTN access: Trunks

Trunks are our links outside of the M1; they provide
speech and signaling paths to other switches around the
world. The Meridian 1 supports a plethora of trunk
types. The details depend on what country you're in, how
much money you want to spend, and how many calls you
need to support.

Historically (right back to Alexander Graham Bell) trunks were analog; they were
basically an extra-long pair of speaker wires. To this day, many trunks still are
analog, and we support several variants. Analog trunk standards differ by the
way they use such things as in-band tones and electrical polarity to achieve
signaling; by the services they support using those signals; and by whether they
use two wires (carrying speech in both directions at once, with a bit of echo) or
four (each pair carrying speech in one direction, much better for long distances).

Digital trunks make it easier to multiplex many conversations at a time onto a
single pair of wires, will span arbitrary distances without degrading speech quality,
support more interesting signaling, and can haul data and video as easily as voice,
so they are by far the most common for modern long-distance trunks. All digital
voice trunking (and for that matter digital switching too) starts by converting the
analog audio signal to a digital data stream using Pulse-Code Modulation (pCM)5.

Math weenie details on PCM: The basic technique is 1l01l-111liform logarithmic quantizjllg of the waveform:
quantizing to convert a continuous amplitude signal to digital; logarithmic 0ike decibels are) because it's a

good match for how our ears hear volume; but non-uniform because log(O)=-oo, which makes silence hard to
represent. The human ear can hear frequencies approaching 20,000 r [z, but normal speech doesn't include
much higher than 4,000 Hz. Nyquist's Theorem says you have to sample at twice the frequency of the
waveform you're trying to catch, so we sample at 8,000 lIz (although your CD player needs a much higher
sample rate to get the piccolos). Bytes are a convenient size to make each sample, and turn out to be good
enough, so the total bandwidth needed for a one-way speech path with no extra compression is 64 kbps.

Norte! Proprietary 31

Part I: Understanding the Context Version 1.0

32

A-Law is the ITU-T's standard for PCM encryption; I-l-Law (pronounced "myoo
law'') is the North American equivalent. We can support either.

From an Ml's point of view, digital trunks come in two speeds: 1.5 Mbps
(24 X 64-kbps channels), known as Tl, which is the standard in North America
and Japan; and 2 Mbps (32 x 64-kbps channels), known as El, which is the
standard everywhere else. Higher speed connections, like T3 (45 Mbps) and
OC-3 (155 Mbps), are now the norm in the public network. We probably ought
to start supporting them now for big Option 81Cs and busy call centers, and we
will certainly need them if we ever increase the bandwidth we deliver to the
desktop. Unfortunately, doing so well would require a lot of other rework, most
notably a high-speed access shelf of some description.

The service protocols which run on top of digital trunks can be grouped into
Channel-Associated Signaling (CAS) and Common Channel Signaling (CCS). Put
simply, CAS has a dedicated signaling subchannel for each voice path on the wire,
either in a dedicated signaling channel or mixed into the voice stream. Most of
the CAS trunks we support are national variants of "R2" signaling. CCS puts all
of the signaling for a carrier into a separate common stream which may be routed
differently from the voice payload, and supports a number of cost-reducing or
even revenue-generating features. Within Ml, we usually [mis]use the term
"ISDN" to refer to all CCS trunks. We support DPNSS, DASS2, QSIG, and
MCDN for private networks; and ETSI or ANSI PRI, and dozens of national
CCS7 variants for public networks. Most of these come in both Tl and El sizes.

In all, we support the standard trunk interfaces of over 100 countries, which at
the moment is one of our key competitive strengths.

At the receiving end of a trunk, poor impedance matches can cause a portion of
the transmitted signal to be reflected back towards the source. On long-haul
connections, you can hear this as an echo, and it can become surprisingly difficult
to talk or even think clearly in its presence. Analog trunks use echo suppressors,
which try to determine which end of the trunk is speaking and insert loss in the
opposite direction. Digital trunks use echo cancellers, which digitally subtract a
predicted echo signal from the received stream. Both techniques improve voice
quality, but may interfere with fax and data calls. Therefore, since the Ml can't
(yet) automatically route data calls differently from voice calls, customers usually
have dialplan options that let them access trunks with no echo treatment (eg: our
6-500-ESN dialplanC!).

See htt;p://47.141.5.216/ESN Idocumentation/plan.html for more details.

Nortel Proprietary

Version 1.0 Part I: Understanding the Context

The physical carrier for a trunk signal may be copper, infrared transmission,
fiber-optic cables, microwave radio, or satellite links. Each has different
engineering pros and cons, depending on the physical, economic, and regulatory
environment of the customer, but each terminates on the Ml as some sort of
trunk card.

Finally, the following section will discuss several types of "service trunks", which
provide facilities like loudspeaker paging and recorded announcements. These
are not true trunks, in the sense that they do not provide external connections to
other switches, but they tend to interact with call processing hardware and
software in the same manner as normal trunks would.

1.5.2.8 Wireless access: Companion
•

The Companion brand name really covers a collection of technologies that
support various cordless terminals with the Ml in various markets around the
world.

The Companion Microcellular service allows standard digital cellular
telephones to be used for in-building wireless operations. This has a number of
advantages compared to public cellular service. There is no charge for air time,
the phones operate at lower power, and many more phones can be operate
simultaneously in the same physical area, without requiring people to carry two
handsets. But to make this work bandwidth must be licensed from the local
cellular companies.

The micro cellular service is composed of a collection of components:

Option He - 81

upgradable on
existing M1
systems

°MISP

°EIMC

oMXC-----

- E"","",
- HDLe

Norte! Proprietary 33

...

Part I: Understanding the Context Version 1.0

Companion Meridian Digital Enhanced Cordless Telecommunications
(MDECT) is a similar in-building service made to the European DECT
standard. It uses different but similar hardware and software, and has essentially
similar user values: roaming, hand-off, decent voice quality, and some security.
Companion C200 "Unlicensed" Personal Communications Systems (UPCS) is
yet another flavor, based on yet another set of standards for the North American
market. Unlike the Meridian Microcellular controller, the C200 works with more
or less any switch. Again, the user values are similar, and C200 handsets are
lighter, but they can't be used with the regular cellular network when you leave
the building

The inner details of the wireless access hardware are not too important for most
designers. However, you should remember that a user's terminal is not
permanently mapped to a given voice port (because it's mobile! ©) and ends up
routing through a Multi-purpose ISDN Signaling Processor (MISP) in a way that
resembles internet access; but that a lot of the regular digital set software is
reused to provide most services; and that the substantial extra processing power
is provided by extra controller packs, eg: the Embedded Intelligent Mobility
Controller (EIMC) and Microcellular Transcoder Card (MXC).

Finally, recent enhancements to Companion have started to deliver Computer
Telephony Integration (CTI) features to wireless users. Although the current
user interface is inherently slim, this may prove to be a powerful combination in
some environments like factories and hospitals.

1.5.2.9 WAN access: Bit conservation

34

Within a building or campus, the bandwidth over your own wires is very cheap,
so there is little to gain from compression technologies. This changes
dramatically as soon as you leave the campus. The Passport family of N ortel
products includes a version packaged to fit on an M1 shelf. Passport connects an
organization's LAN and PBX into an ATM or frame relay WAN backbone, to
give you two major advantages:

• Lower voice networking costs: Meridian Passport can cut voice trunking
costs in two ways. It reduces the bandwidth needed to carry voice traffic
by compressing a voice channel from 64 kbps down to 32k, 24k or 16k
using Adaptive Differential Pulse Code Modulation (ADPCM) and silence
suppression; and it consolidates voice with data traffic into a common
WAN using dynamic bandwidth allocation, which is much more cost
effective than using dedicated voice links.

Norte! Proprietary

Version 1.0 Part I: Understanding the Context

Multimedia wide area networking: By adding Meridian Passport to your
Meridian I systems, you can build a WAN to handle voice, data, image and video
traffic. You can also use Meridian Passport to consolidate all multimedia traffic
generated at a Meridian I location and deliver it to a larger existing WAN.

This product pits two Nortellines of business against each other (Broadband vs.
Enterprise Networks) to earn revenue from a given customer, and so presents
special challenges in terms of actual sales, but the technology seems solid enough.

The NetRunner and Marathon voice-over-IP gateway families, made by
MICOM (which we now own) are an alternative to Passport. They cut costs by
consolidating and compressing voice, fax, legacy data, and LAN traffic before
sending it out as TCP lIP over public n X 64-kbps or TIIEI Frame Relay
circuits. They are low-end alternatives to Meridian Passport, and currently lead
the industry in sales in their market segment. MICOM also has a number of
other voice compression technologies that we are likely to leverage over time.

An enterprise network using NetRunner might look something like this:

Norte! Proprietary 35

Part I: Understanding the Context Version 1.0

1.5.2.10 Control access: Signaling links

36

The payloads normally carried by PBXs are streams of 64-kbps digital voice data,
sometimes known as "bearer" or "traffic" channels. These streams enter the Ml
through terminals attached to Peripheral Equipment, are switched to other
terminals by Network Equipment, and are never seen by the Call Processor.
However, for the CP make the right decision about which pipes the NE should
connect, it must receive signals from the outside world. In the traditional case,
this is done by a phone going off-hook and dialing digits, which were carried in
band in the payload voice stream.

However, there are a number of off-board boxes which would like to have more
sophisticated discussions with the Ml call processor. The boxes themselves will
be discussed in Section 1.5.3, but first I'll give a brief overview of the connectivity
options. (There's a chicken-and-egg problem with this discussion; please bear
with me.)

The earliest off-board call manipulation technique, and one that is still used,
especially by third-party vendors, is telephone emulation on traditional voice
ports. Rather than having a special, dedicated signaling channel, each port
pretends to go off-hook, dial DTMF digits, or maybe even send proprietary
digital messages. This approach is automatically scalable, and gives full access to
the standard feature set of the terminal being emulated (typically a M2616 digital
set). On the other hand, it is nearly impossible to define more sophisticated
messages and services.

Therefore, the Ml also supports a range of higher-level protocols, for both
system management and call control signaling. These in tum are stacked on top
of several underlying standard network protocols:

Norte! Proprietary

Version 1.0 Part I: Understanding the Context

Ml ~ auxiliary processor signaling links

The physical connection to the M1 depends on the speed required and the
vintage of the equipment at each end. 19.2 kbps serial connections used to be
"fast". Today, 10BaseT Ethernet or OC-3 fiber would probably be the medium
of choice. Small systems may opt to use the shelf's inter-card backplane (the CE
MUX bus) directly, to save additional cabling.

Early applications assumed that they had a dedicated point-to-point cable, and
tended to build their own messages directly on top of the physical medium.
Examples of this include traffic monitoring, Call Detail Recording (CDR) for
billing, Property Management Systems (PMS) for hotels, and the original TTY
user interfaces. The High Speed Link (HSL), now a misnomer since access is
only at 19.2 kbps, is used by Meridian Max to track and direct the progress of
calls through a group of ACD queues. A typical ACD call would have five or
more HSL messages. Max then uses the Load Management Link (LML), also
known as the Configuration Control Link (CCL), to manage performance by
changing the datafill which controls how calls get routed.

Application Modules (described in the Section 1.5.3.10) communicate with the
M1 core equipment over our proprietary Application Module Link (AMI.,).
AML is a call control protocol designed to manage calls going to a group of
similar agents (like operators in an ACD group or ports on a voicemail system).
I t is usually carried using Link Access Procedure-Balanced (LAPB) over a serial
port on the older Enhanced Serial Data Interface (ESDI) or Multi-purpose Serial
Data Link (MSDL) card, or more recently on TCP lIP over Ethernet. For IPE
Modules, the AML messages are simply carried on the CE-MUX bus. AML

Norte! Proprietary 37

Part I: Understanding the Context Version 1.0

38

drives services provided by CCR, M911, ICCM, Meridian Mail, Meridian Link,
and VISIT, all described in the next section.

The AML hardware also supports an older subset of the AML protocol called
Command and Status Link (CSL) for talking to Meridian Mail. And the MMail
system itself provides an external control interface called Meridian Mail Access
using RS232 Service Module (RSM) cards.

AML use is reserved for Nortel equipment. Meridian Link, the name of one
type of Application Module, and (perhaps confusingly) also the name of the
protocol it speaks, lets other "host" computers control both AML and Meridian
Mail Access to build integrated voice/ data applications. Meridian Link lets the
other computer monitor and control telephone sets, call routing and voice
processing features. Typical applications include customer service centers, dealer
locator services. hot lines, fund-raising, market research, reservations, brokerage
services, and emergency services. Meridian Link is carried over the host
machine's native data protocol: X.25/LAPB (HDLC) or Ethernet. We currently
support more host computer middleware packages than any other PBX in the
industry, including:

• Dialogic's CT Connect
• Digital Equipment Corporations CIT
• Genesys's Labs T-Server
• Hewlett-Packard (HP) Applied Computerized Telephony (ACT)
• International Business Machines (IBM) Call Path
• Microsoft Windows NT Telephony Application Programming Interface

(TAP I) 2.0

• Tandem Call Applications Manager (CAM)

• Nihon Unisys

MMCS also uses an Ethernet Meridian Link connection to control its AIN-style
call routing, rechristening the service Application Processor Link (APL).

We also support Novell's Netware Telephony Services API (TSAPI) standard,
but the configuration is different, and is based on the Meridian Communications
Adapter (MCA).

These days, the physical carriers tend to be shared by a suite of higher-level
protocols, each tailored to a different job. The user interface might log in via
telnet. The System Management Platform (SMP) uses telnet too, but can also
perform request/response style transactions using VxWorks or RogueWave
sockets (Net. h++) over Transmission Control Protocol (TCP). Database
archives and software delivery use Network File System (NFS) over User

Norte! Propn"etary

Version 1.0 Part I: Understanding the Context

Datagram Protocol (UDP). Alarms are signaled to the Event Monitor
application using the industry-standard Simple Network Management Protocol
(SNMP) protocol over UDP. We also use SNMP for the session management
code that controls logon.

1.5.3 Bells and whistles
The following devices are roughly the latest of several generations of products
which have performed services for the M1. Each will doubtless be replaced by
newer, faster, cheaper, smaller, niftier versions as time goes by, but the important
thing is to at least be aware that the services exist, and that they are sort of
separate from the heart of the switch. Each performs a generic service that is
reused in multiple applications.

Many of the products in this section have versions that are "in-skins": that is,
they are so closely linked to our architecture that they can be placed inside the
standard Mi cabinetry, and our customers may not think of them as separate
units at all. Others are built from hardware and software that sits beside the Mi,
and uses the access and signaling pipes just described to send and receive data
streams. Some may even be located remotely.

Because these systems are a bit removed from the Mi, they are more likely to
continue to work as customers upgrade their Mi software and hardware, or even
alongside our competitors' switches. The downside is that for exactly the same
reasons, they have more direct competition from third-party equipment
manufacturers. For instance, many Mi installations have voicemail systems that
were not built by N ortel.

If our future market became dominated by the "unPBX", then these extra
gadgets probably constitute many of the important ways that a "call server"
(analagous to today's ftle server or printer server) could add value to the voice
switching function that TCP lIP over Ethernet would steal from the Mi
switching fabric. The other key piece a good unPBX needs would be a PSTN
gateway so that people not on the internet could talk to you. This might
conceivably look a lot like today's Peripheral Equipment.

Nortel Proprietary 39

Part I: Understanding the Context Version 1.0

You'll notice that almost all of these gadgets are variations of the following
simple model (which itself is only a slight variation on a PBX):

signal ing
access

circuit
switch

generic value-added gadget

\V'e might keep on the lookout for opportunities to merge some of them,
although we need to balance the advantages of fewer platforms against those of
cheap, plug-and-play style, single-function boxes.

1.5.3.1 Conference bridges

40

Mixing together PCM voice requires a bit of careful digital signal processing, and
rather than trying to do it in the network, we connect each party in a conference
call to a port on some sort of conferencing circuit, the latest vintage of which is
the Meridian Integrated Conference Bridge (MICB). The MICB is a single
card, 32-port bridge that can handle up to 10 simultaneous conference calls. It
fits into a single IPE slot and merges the digital voice streams together magically
so that everybody hears the correct set of other speakers. It also has built in
tones and multi-lingual voice prompting.

Customers buy the MICB in one of four capacity options (12, 16,24 and 32
ports), but this is just a software-controlled behavior, and additional ports may be
activated by software "keycodes". If more than 32 ports are required, multiple
cards may be used. Having a single hardware form makes our ordering and
manufacturing processes simpler (and therefore cheaper).

This card is used to support a range of conference styles, including 3-way call,
meet-me conference, chairperson-controlled conference, and attendant
controlled conference.

Norte! Proprietary

Version 1.0 Part I: Understanding the Context

1.5.3.2 Recorded announcements

Recorded announcement (RAN) machines are used to play back voice messages
to both internal people (say, to tell them they've dialed a wrong number), and to
external callers (for things like your business hours and locations). Meridian
Integrated Recorded Announcements (MIRAN) can support up to 10
messages, and 40 simultaneous playback channels. Like the MICB, we sell it in a
range of capacity options (20, 36, or 40 concurrent calls), but the hardware is the
same for each, and the upgrade is just removing the hobble with a software
keycode. For even greater capacities, an M1 can support up to 16 MIRAN cards,
but a better solution is to use the card in the new broadcast mode, whereby many
listeners can be connected using one-way speech paths to a single MIRAN port,
allowing a single card to support 300 listeners.

By default, a MIRAN can record only four minutes of speech, but this can be
upgraded to over 5 hours using plug-in PCMCIA cards. Special features include
time-of-day messaging, remote recording, and simplified OA&M. The card uses
some cool newfangled dual-sided surface mount technology.

As with many of the other "bells & whistles", some customers use external, third
party boxes, or older generations of Nortel equipment, to do this job.

1.5.3.3 Music boxes

Music "trunks" are close cousins of recorded announcement machines. Like
RAN s, they get used when you don't yet have a better place to send a caller.
Unlike RANs, you can send a caller to music at any time, rather than having to
align with the start of a message. There are many variations, which may end up
using radio, tapes, flash ROM, or even a simple synthesizer as the music source.
The software adds music to a call much like it would make any other trunk
connection.

1.5.3.4 Voicemail

Meridian Mail is a family of voicemail products (now "Multimedia Mail ", which
seems to mean voice, fax and text storage), ranging from a single-card option (12
ports, 48 hours of voice storage) optimized for Option 11C, to the monster free
standing Message Services Module, with up to 192 ports, 42,000 mailboxes, and
2400 hours of shadowed voice storage. The whole family tries to have an
identical end-user interface. It was the first major addition to the original switch,
and is also able to work with DMS-100 and non-Nortel products, although
certain features work best on the M1. In the near future, Meridian
Communications Exchange (MCE) will replace it.

Norte! Proprietary 41

Part I: Understanding the Context Version 1.0

Meridian Text Telephony System (MITS) uses some of the multimediality of
:MMail to help deaf people communicate. If a deaf person calls in using a
TrY /IDD terminal, :MMail can originate a voice call to the required person, play
them a message indicating that a TrY /IDD call is waiting so that a chat session
can begin, or take a message if the person is unavailable.

Visual Interactive Technology (VISIT) Messenger is a client/server product
that allows users to manage voicemail, email, and faxes with a single email-style
indexing system. Regardless of medium, you can see who sent the message,
when it was sent, and its status. Because its desktop client can take full advantage
of desktop GUIs, Meridian Messenger allows much more efficient access to
standard voicemail features. It also allows store-and-forward manipulation of
faxes, as well as allowing email to be sent out as fax to people without email
facilities. VISIT Assistant is sort of call center for one: call queuing,
prioritization, and redirection for a single telephone, driven by a desktop GUI.

VISIT Messenger, VISIT Assistant, Meridian Integrated Voice Resonse (IVR),
and third-party voice mail service providers can control the Meridian Mail system
using the Meridian Mail Access product. Connection to the Meridian Mail
system is provided using a serial connection to either the Meridian Mail RS-232
Service Module (RSM) card or through the serial port of one of the CPU
modules.

Meridian Mail Net Gateway (MMNG) connects MMail to a TCP /IP WAN
using the MVIP protocol. This is such an obviously good way to send voice over
IP that it's amazing it wasn't done sooner. The Internet may be a fairly lousy way
to send real-time data, but it's excellent for the kind of asynchronous transfers
that voicemail systems do. When MVIP is used for controlling :MMail, PC client
applications like Meridian Messenger can access all of the :MMail features, but
using simple GUIs instead of user-hostile dialed-digit combinations.

Meridian Mail Reporter is a Windows application that improves the
manageability of a Meridian Mail system. By gathering and sorting data, Meridian
Mail Reporter can help make a Meridian Mail system run more efficiently, protect
owners from toll fraud, and allow them to bill back special features such as fax on
demand to specific departments.

1.5.3.5 Integrated Voice Response (IVR)

42

IVR offers an extensive range of advanced capabilities, including outdialing,
Audiotex, fax-on-demand, fax broadcasting, interactive fax (for fax order
confirmation, bank statements by fax, etc.), discrete and continuous speaker-

Nortel Proprietary

Version 1.0 Part I: Understanding the Context

independent speech recognition, text-to-Speech, Analogue Display Services
Interface (ADS!), IBM and DEC host connectivity, and SQL database support.

IVR technology allows companies to employ fewer operators by automating
repetitive or routine telecom activities. IVR systems are often used to front-end
big call centers, so that real operators only talk to people who have already
identified who they are and why they're calling. At it's best, IVR provides end
customers with quick access to information at any time of the day or night, from
any push-button phone. You'll recognize the following typical IVR uses:

• Health care-physician referral, appointment scheduling, test result
reporting, appointment confirmation

• Banking-account balance and interest rate inquiries, loan applications
• Catalog sales-order entry, order status, inventory inquiries

• Customer service-order status, service dispatch, product or repair
information

• Human resources-scheduling, benefits inquiries, employment
opportunities

• Education-class registration, special event ticket purchases, tuition
payments

• Insurance-claims status, eligibility
• Reservations-airlines, hotels, travel agencies

Integrated IVR (alias Meridian IVR) includes four main components: a GUI
based application generator, a system administration pack that allows installation
on a live switch, a report generator, and a voice prompt editor. It takes advantage
of detailed knowledge about the Ml interfaces and calling features, but is
therefore less flexible.

Open IVR provides flexibility for increased functionality and the capability of
working with both Meridian and non-Meridian switches.

The Integrated Meridian Speech Directory (IMSD) allows a user to "dial" by
speaking the desired party's name into the handsee. The initial applications focus
on Corporate Directory Voice Dialing (CallAssist) and System Security
(CallSecure). The project is known internally as Language Command
Environment (LANCE).

This service is sometimes known as "Ghostbusters". Try it at MPK by dialing 5555.

Nortel Proprietary 43

Part I: Understanding the Context Version 1.0

1.5.3.6 Dialing emergency services

"911" is the universal number for emergency services in North America (similar
to "999" in the UK, or "112" in the rest of Europe). With the new legislation,
PBXs are now going to be required to provide 911 capability and location
specific information regarding these emergency calls. Nortel is working with
T elident, a third-party vendor in Minneapolis, to build the Meridian 911 product
that will address these changing needs. This product provides translation of non
DID numbers, comprehensive on-site notification, and database management
and synchronization.

The portfolio includes the following three products:

• Station Translation System (STS)-hardware between the M1/MSL-100 and
the outgoing trunks that carry the 911 calls

• TRAX On-site Notification-software application that resides in a PC
attached to STS used to notify security staff about 911 calls in progress

• ShadowMAX Database Maintenance Software-resides in a non-dedicated
PC and ensures that the data in the STS and TRAX is consistent and
performs the necessary remote ALI database updating

1.5.3.7 Alarms

The system monitor card has several "dry contacts", relay inputs from external
sensors (like sump pumps, intrusion detectors, and fire alarms) which allow the
M1 to report environment problems, and relay outputs to control external
devices, often connected to sirens or flashing lights to indicate serious outages.

1.5.3.8 Management tools

44

Meridian Administrative Tools (MAT) is the standard tool for system
administration. It's a PC-based, GUI-style system that connects to the M1 over
the Ethernet port. It provides Traffic Analysis, Call Accounting, Call Tracking,
Alarm Management, Maintenance Windows, ESN Analysis and Reporting, and
on-line NTPs. Meridian Manager was an earlier incarnation of this tool. As a
consequence of these external boxes which rely on our user interface, we need to
minimize changes to it.

Meridian 1 Network Management (MNM) for Spectrum (built by Cabletron)
is one of a class of third-party systems that uses Simple Network Management
Protocol (SNMP) over the Ethernet interface to do alarm management. It

Norte! Proprietary

Version 1.0 Part I: Understanding the Context

leverages the Release 22 "Open Alarms" package. \V'e no longer sell MNMs, but
there are a number of them in the field.

Several different CDR post processors are available from third-party vendors
which take a stream of Call Detail Records and produce resource utilization or
department billing reports. Every time we change the CDR format, we risk
messing these up. Although we don't sell them, many of our customers rely
heavily on them.

When a customer upgrades from one software release to the next, they normally
use a separate PC-based application to do d atabase conversion to correct the
formats of any changed overlays. Configurator is a \V'indows NT application
that helps advise on and coordinate database changes, and populates control
tables on the M1. It also talks to Symposium TAPI server, and probably other
boxes.

1.5.3.9 The other music

"Music" sort of stands for Multi-User System for Interactive Communications,
but is also just a Rainbow-style code name for a soon-to-be-product. It
combines a MUDdy web-browser interface, server-based persistency of calls and
user profiles, and Symposium call processing to give a potentially-exciting new
way of thinking about control of multimedia calls. We'll have to wait to see how
much the market likes the product as shipped.

1.5.3.10 Off-board processing engines

Why have them?

Many of the gadgets just described do things which you might
think the Mi was quite capable of doing for itself. There are
many advantages to putting new services outside of the main
computing platform. New code can be written without delving
into the complexities of SL-i software, although the trade-off is
that it's harder to take advantage of the Mi's detailed service state knowledge.
But precisely because of this the integration job is easier. Features can be sent
out as soon as they're ready, rather than waiting for the whole Mi software
release to be ready, but you have to build, ship and install new hardware for each
site, instead of just installing some software. The main CPU remains free to
work on delivering calls (which for an active call center or a big Option SiC is
enough to keep it very busy), as long as the new messaging overhead is not to
severe. Failure modes are more controllable, typically affecting only one

Nortel Proprietary 45

Part I: Understanding the Context Version 1.0

46

processor. Customers may be able to leverage Moore's Law (which predicts the
decline in cost of computing horsepower by 50% every 18 months), although the
trade-off is that they have to buy an extra box in the ftrst place. And tools like
MAT and Meridian NAC may connect to multiple PBXs simultaneously.

Therefore, in addition to some highly-tailored cards and boxes that perform
specialized roles, many of the functions just described are implemented on more
general-purpose platforms. These platforms challenge our distribution ability (as
Moore's Law makes obsolete machines we thought our customers would like),
but the numerous advantages mean we'll stay in this business somehow or other
for the foreseeable future.

What are the platform options?

There's an inappropriately long list of platforms to choose from. Each combines
a commercial CPU running a commercial operating system, some storage, usually
a database, and assorted Digital Signal Processing (DSP) chips. We can
rationalize the diversity by saying that they serve different niches, but thinking of
ways to merge onto a smaller subset of platforms might be a better use of the
mental energy.

Customer Controlled Routing Meridian Mail

Two Application Modules in an AEM

Application Module (AM) is the name for the ftrst family of boxes to provide
generic auxiliary processing. They are built around an MC68030 or MC68040
single board computer sharing a VME bus with a disk/tape unit, a power supply,
and a few extra cards. Depending on which additional cards are equipped, AMs
provide communication paths to the Ml via LAPB/X.25, RS-232 serial, modem
over 2-wire PSTN line for remote maintenance, Ethernet, or SCSI. If you put

Norte! Proprietary

Version 1.0 Part I: Understanding the Context

two AMs into a UEM shelf, you call it an Application Equipment Module
(AEM). Alternatively, some AMs (called IPE Modules) have packaging that fits
4 slots in an IPE shelf and or 3 slots in an Option 11 C cabinet. These tend to be
about half the cost and lower capacity, and are well-suited to the small system
market. Either way, the software running on them is the AMBase application
sitting on a Unix platform. Among the applications available on an AM are CCR,
MQA, MAX, NAC, Meridian Mail, Meridian IVR and Meridian Link. AMs came
from the Mountainview lab (now MPK).

Client PCs
(running MS Windows)

Meridian Applications Server
(Pentium, DSPs, SeQ Unix)

Meridian 1
PBX

Meridian Applications Server (MAS), circa 1993, previously known as
TeleWare, is a standard Pentium PC tower running SCO Unix. It connects to the
Ml via an RS-232 port and analog lines (for fax and voicemail transmission), and
to the customer's LAN using standard Ethernet or token ring. It is used to host
VISIT Messenger and VISIT Assistant. The server connects to the Meridian
Mail RSM card via short haul modems. MAS was built by the Minnetonka lab.

MMCS Core Switch
(Meridian 1)

MMCS
Management

System

The MMCS Application Platform (AP), circa 1997, is a DEC "Prioris" rack
mounted Pentium board running SCO Unix with an Oracle database. APs
handle most advanced services, like AIN call processing, flexible CDRs and SS7

Norte! Proprietary 47

Part I: Understanding the Context Version 1.0

48

signaling. The software platform on which their services are built is called
APBase. The AP has no voice-handling ability, so applications like IVR are done
by having the AP control additional MMCS Voice Processing Systems (VPS),
yet another platform: a single-slot IPE card, industry-standard CPU, PCMCIA
flash ROMs, various DSPs, 24-port M2616 emulation to M1. The AP and VPS
were designed by Marne-la-Vallee.

The grand unifying theory of platform evolution is that one day soon, everybody
will be on the Next Generation Server (NGen). This is the latest multimedia
applications server family for the Enterprise Networks product line. It is based
on a choice ofIntel CPUs running Windows NT, with built-in DSPs and
Multimedia storage. It ships either as a Tower Rack Platform (TRP), or as an
IPE card. The idea is that it will provide a common scalable platform for the
numerous Meridian applications that have previously been deployed on
incompatible platforms. It speaks TAPI and ECTP (Enterprise Computer
Telephony Porum), and PCI and PC Card (pCMCIA) cards can be added as
necessary. The strategy is to buy generic equipment (CPU, O/S, bus, and some
middleware) and build only specialized, high-value components where we think
we have some competitive strengths (DSPs, applications). The problem is, even
if it became true that NGen had the right price, capabilities, and robustness to
serve all of the markets for which it claims to be useful, there would still be a
huge installed base of older equipment that we would have to interact with, and
that might even want feature upgrades. NGen is from Toronto, circa 1997.

NGen is or hopes to be a host platform option for a whole bunch of stuff:

Applications
which are or might be

built on NGen

Norte! Proprietary

Version 1.0 Part I: Understanding the Context

The Integrated Meridian Speech Directory (IMSD) was prototyped on the
MicroNAV platform, which is a scaled-down version of Nortel's central office
voice-activated services platform, the Network Applications Vehicle (NA V).
The IMSD server comprises two IPE cards. The first one is a Service Provider
Interface card (SP!) which connects to the IPE backplane and behaves like a
digital line card; the second one is the Single Board Computer (SBC) which is
Pentium 200 (or Pentium II) class industry standard PC motherboard.
MicroNAV is an Ottawa box, based on the speech processing research done out
of Montreal. IMSD will probably go to market on an NGen platform.

Multimedia Resource Server: Two platform configurations are available: the
MRS/Tower connects to the high performance Intel/UNIX Applications
Processor over an Ethernet or Token Ring LAN, while the MRS/ AP
combining both Application Processor and Multimedia Resource Server
functions in a single unit-is available as a low entry-cost solution for developers
and end-users.

Several of the newer IPE cards also fit the model of off-board processing
engines. The Multi-Purpose ISDN Signaling Processor (MISP) card provides
Layer 2 and 3 of BRI (data link & network layer). The SIT Interface Line Card
(SILC) and MISP talk with each other to make BRI work. Another example is
mobility's EIMC, already discussed.

Norte! Proprietary 49

Part I: Understanding the Context Version 1.0

1.5.4 Putting it all together

50

The following diagram shows the kind of complexity typical of a big call center
today. The proliferation of platform and link options should be simplified a bit
under the NGen/Symposium regime, but it is equally likely that perfectly useful
legacy systems will ensure that most sites will have a mixture of these and even
competitors products to deliver their services.

Main
office

Host

Additional ACD
management site

Small Call Center
= MUnk+CCR (AMBase)

(The agent positions shown would also naturally have Ml phones, but the
diagram is already busy enough without attempting to show them.)

Nortel Proprietary

Version 1.0 Part I: Understanding the Context

A more industry-standard variation of the same idea is to run Telephony
Applications Program Interface (TAPI) over TCP lIP over Ethernet LAN. This
is done using TAPI software on a Windows NT server, which connects by
TCP lIP to Meridian Link, which in turn connects to the M1 using AML.
Windows Clients talk to the NT server over the client LAN. This solution
provides full Computer-Telephony Integration with no special wiring at the
desktop for either phone or Pc.

Open IVR

Meridian 1

Voice
lines

Protected
Ethernet

LAN

Symposium
TAPI

Server
Client

Ethernet
LAN

Notice that we require a separate, protected LAN to ensure that call traffic and
customer LAN traffic don't interfere with each other. They may however be
bridged together.

Norte! Proprietary 51

Part I: Understanc:ling the Context Version 1.0

52 Notte! ProprietalJ'

Version 1.0 Part II: Implications for Design

Part II
, Imp I i cat ions

for
Design

Nortel Proprietary 53

Part II: Implications for Design Version 1.0

54 Norte! Proprietary

Version 1.0 Part II: Implications for Design

2. Pervasive design aspects

2.1 It's not our fault
Many Ml programming challenges can not be analyzed clearly at the "object" or
procedural level because their solutions are smeared throughout the code.
Perhaps surprisingly, this is not the fault of the designers or even the architecture;
rather, it reflects the fundamental difficulty of isolating those aspects of the
design that cut across a system's basic functionality.

A fairly good analogy from Digital Signal Processing goes something like this.
When you look at a complex waveform, it can be hard to see what's going on.
But if you could look at precisely the same signal in the frequency domain, it
might turn out to be much easier to characterize, because behavior that was
dispersed in the first view is localized in the second.

5 frequency

What is dispersed and therefore
looks complex in the Time domain ...

... may be revealed to be localized
and simple in the Frequency domain

Similarly, the design aspects discussed in this chapter show up in many or all
components, or exist in the interstitial spaces between components.
Furthermore, they tend to apply at many levels of granularity. (Extending the
above analogy, you get roughly the same spectral pattern regardless of your
sample duration ...) Trying to understand these aspects of a program by looking
at its structure just makes the job more difficult, which may explain why they are
not usually treated adequately in existing design specs or training courses.
Therefore, this book separates the discussion of pervasive design aspects from
the subsequent analysis of Ml software architecture.

Norte! Proprietary 55

Part II: Implications for Design Version 1.0

Most of these requirements follow directly from the preceding chapter's
discussion of the ways our customers deploy Mis. Software weenies will
recognize many of them as flavors of classical good ideas for programming, with
a bit of added emphasis on why they matter to PBXs. The tools that perform the
coding magic analogous to DSP's Fourier transforms are only just starting to
exist in research labs8, and unfortunately are not available in tl1e Mi environment
at tllls time. Therefore getting it right will require conscious, consistent effort to
successfully weave these considerations into a functional design. The degree to
which we succeed in meeting these requirements determines the strength of our
technical advantage in the market.

The other point to note is that some of the requirements we want to satisfy will
pull us in opposite directions, and that how we choose to balance them is a
strategic decision:

increase functionality reduce cost

41!
high-tech

reduce time-to-market

increase reliability

In the slow-moving days of government telecom monopolies and heavy
regulation, Nortel did well to optimize around high reliability and feature
richness. These days, our competitors are thriving by getting cheap stuff out the
door fast, and we need to learn that this agility is important to our customers as
they become less able to predict their needs.

2.2 High performance

56

We don't build Crays. We do neither heavy number crunching, nor high-volume
data processing, and Pong had fancier graphics. Viewed in isolation, each
transaction processed by an Mi tends to look pretty darned trivial. For example,

{ph one goes o ff- hoo k 7 give d ialton ej

So why would anyone call it high-performance computing?

For an interesting discussion of a possible long-term solution to this problem, check out Gregor Kiczales'
work on "Aspect-Oriented Programming" at Xerox PARe.

Norte! Proprietary

Version 1.0 Part II: Implications for Design

\Vhat makes the job tricky is that we must be able to handle a large number of
these transactions with deterministic response times. The SL-1 architecture
requires the main CP to handle every key press, display update, tone change,
speech connection, and timer. Wink-start analog trunks must get a response
within 70 milliseconds. We should supply a 3-second worst-case response to any
telephone stimulus (and much faster is much better). On Option 11 C, CP
controlled tones must have their cadences timed well enough to sound right to
users. At the same time, the CP must be able to handle more than 250
transactions per second. Turning this around, on average we get only 4
milliseconds to process each transaction.

To start with, this means all code must be reasonably efficient. You'll see lots of
design decisions that optimized for speed over clarity, reliability, etc. Provided
these optimizations were not too extreme, they were probably helpful. Also, as
will be discussed in the platform chapter, the scheduling algorithms we choose
must give a bounded worst-case response.

Apart from the "hard" real-time requirements, there are a number of levels of
softer requirements. To compete in the marketplace, we need to handle as many
lines as we can for a given system cost. Craftsperson terminal response must be
fast enough for efficient management of the system. Background maintenance
and audit tasks must cycle frequently enough to keep our switches healthy.

Furthermore, when requests exceed our capacity limits, we need to do something
sensible. We should keep processing as many calls as possible, and where
possible apply some form of back-pressure to try to reduce the incoming
message flow. We must not simply slow to a congested crawl under the heavy
traffic (like shared-Ethernet does!). Getting this right takes fairly careful
planning, and flow control at a number of levels.

number
of calls
handled

no limits

/-_--... best ,d,'~v ,blc.
p:.'.f'fOri""an".iO

likely result without
careful design

demand

And of course the payload streams (traditionally voice, and now video and data
too) have extremely stringent real-time requirements. So far at least, these are
handled in hardware.

Norte! Propn'etary 57

Part II: Implications for Design Version 1.0

2.2.1 No stopping (ever ever ever)
There is exactly one software task (tSL1) that handles a!! basic call processing.
The time it takes to get through the main loop of this task affects both our
latency and throughput, so it would seem obvious that we should never block
execution within this loop.

Going to disk

Mobility software requires a database to keep track of nomadic subscribers.
RogueWave provides a nice disk-based B-tree system, which seemed like an excellent
place to keep this data. Unfortunately, disk reads and writes take time. It happened
that an early version of the mobility software did this disk I/O from within tSL1,

thereby holding up the rest of call processing every time a user wandered into range.

The overriding Ml design axiom is that tSLl doesn't stop. If you need to wait for
something, or put time gaps between outgoing messages, or read from external devices,
or anything like that, then either you have to go back into a call queue and wait for a
new message to wake you up, or you need to have a separate server task to do the
waiting around. And while any sort of blocking in tSLl messes up our ability to
control latency, going to disk is particularly bad because disk accesses may fail for a
variety of reasons, and if this happens from tSLl you can take down the whole switch.
That is how the mobility problem was noticed ...

2.2.2 Getting it wrong: USing the wrong algorithm

58

The order of performance of your algorithm, rather than its implementation,
tends to define performance over a big data set. Even the best tactical
optimizations will not make an 0(n2) algorithm faster than an O(n) algorithm if n
gets at all big. We have to balance memory frugality against algorithm speed, but
increasingly we should be willing to spend a few bytes to get faster code.

For example, until recently we used singly-linked queues for Call Register
management. As of Release 21, we decided it made more sense to doubly link
them in order to avoid having to rescan the entire list just to do a BACK_PTR ()

operation to find the previous entry in a queue. While this doubled the amount
of memory dedicated to queue pointers, and marginally increased the work
involved in most queue operations, it improved a mid-queue dequeue () operation
from O(n) to 0(1) performance. This was particularly important once we started
having calls in multiple ACD queues. It also enabled us to rebuild the queues if
we got lost.

Norte! Proprietary

Version 1.0 Part II: Implications for Design

Similarly, we have frequently chosen bit arrays to track service circuit allocation,
and this requires scanning the array each time we need to find a free device. It
probably makes sense to convert this code so that it uses a queuing strategy.

2.2.3 Getting it wrong: No seatbelts
Paradoxically, one way we can get the real-time challenge wrong is to take the
wrong shortcuts. For instance, our compiler historically has no run-time checks
for exceeding stack or array boundaries. This does speed up the code a bit. But,
if we ever needed those checks, the resultant errors are extremely hard to track
down.

Picture an array of 6 pointers. Now picture a piece of befuddled code that thinks
the array is bigger tl1an it is, and writes a number to memory using IDe 9th pointer
in the array. Since the piece of memory it's dereferencing is probably not even a
pointer, it could end up storing its number absolutely anywhere, and you
wouldn't know it until something else needed the original value that got trampled.
In fact, the errant code would probably work just fine, because when it went to
read back its number, it would be right where it left it. This is one reason we use
hardware memory protection.

I rnyytr{O]

my_ptr(lj

mLptr\21

myytr(3)

myytr{4J

my_ptr{51

other
data"

something sensible

something sensible

something sensible

something sensible

something sensible

something sensible

could be anything

Nortel Proprietary 59

Part II: Implications for Design Version 1.0

2.2.4 Getting it wrong: Trying too hard
There are other examples in the code where we have just tried a litde too hard to
write blindingly fast code. Perhaps the most stunning of these is the core
intrinsic for finding the data associated with a terminal, TNTRANS. We knew
TNTRANS was going to get called a lot, and that it needed to pass several
parameters into and out of the procedure. So we agreed that anybody who used
it would first arrange a group of variables in memory in the following strict order:

INTEGER xxx_ITEM;
UPOINTER [.U_TN_LINEJ ULxxxPTR;
PPOINTER [.P_TN_LINEJ PLxxxPTR;
UPOINTER [. U_TN_CARDJ UCxxxPTR;
PPOINTER [. P _ TN_CARD J PCxxxPTR;
UPOINTER [.U_TN_LOOPJ ULPxxxPTR;
PPOINTER [.P_TN_LOOPJ PLPxxxPTR;
PPOINTER [. P_TN_GROUPJ PGRPxxxPTR;

Then, rather than taking the time to copy parameters to and from the stack, we
only pass a reference to the first item. Then in the procedure code, we used the
address of that item to find the addresses all of the others. Now this works, and
it's probably faster than any alternatives, but it is very britde code. Everyone just
has to know that this is how you use TNTRANS. If anybody moves any of these
variables, the code will break. If designers look for procedures that reference
these variables, the cross-reference won't tell them about TNTRANS.

Most frustratingly, the existence of code like this means that we can not turn on
certain levels of optimization in a new compiler that would have made everything a
bit faster.

2.2.5 Getting it wrong: Not trying hard enough
The most common culprits here are code that has been written for non-real-time
environments and ported to the M1. For example, when we first installed Orbix,
we noticed that it was doing 17 malloe () s for every transaction.

2.3 Zero downtime

60

Perhaps the key difference between one of our systems and a typical PC is that the
PBX is alwqys in service. PC owners, despite their whining, have a remarkably high
tolerance for system crashes (think fi'iC). Even healthy PCs are typically turned off
periodically, giving them a chance to clean up many lurking problems. They may
also get rebooted during maintenance, software installation, etc. Between planned

Norte! Proprietary

Version 1.0 Part II: Implications for Design

and unplanned outages, a typical desktop PC is down for about 43 hours per year.
In contrast, dependability is a performance requirement in telecom contracts, and
our systems shoot for the industry standard of no more than 3 minutes per year
out-of-service. Even this degree of unreliability might be a big deal: what if you
have to make an emergency call (say, to your PC help desk ©)?

Eric Raymond's thought-provoking paper The Cathedral and the Bazaar9 bisects the
world's software into (as you might expect) Cathedrals and Bazaars. He argues
convincingly that the "bazaar" model of development, where diverse groups of
coder-users hack into the source code almost at will, actually produces great
software as long as you get a few key things right, the biggest of which is to
release software early and very frequently. Given this perspective, and
notwithstanding what I will state in Chapter 4, the M1 is a cathedral. This has
historically been the right call, both because our distribution model couldn't
handle more frequent releases, and because the overriding objective was for users
to see as few bugs as possible-zero downtime. As our world changes, we
should rethink this!

The single requirement for zero downtime bifurcates into two obvious design
aspects: high availabili!J (we're almost always able to handle calls) and fault tolerance
(we more or less keep handling calls in the face of many hardware or software
problems). It also implies a subtler one: no littering (because you can't rely on
the next reboot to clean up after you).

2.3.1 Hot swap
If the switch is never down, the corollary is that changes must be performed
while it is up. Fortunately, this is not as hard as changing the engine of a car
while driving it, but it does take some planning. For hardware designers, this
means cards and shelves must be able to be brought in and out of service with
minimal impact to the rest of the system: "hot insertion" is the norm, and card
enable/ disable and diagnostic code must work on a live system.

At the software level, this has two different guises. The first is patching. We
know that, despite our best efforts, there will always be bugs in the code we ship.
Also, there may be special local customizations in some markets that we don't
want to ship with the general release. And finally, there may be some features
which we wish to sell to customers with older versions of the main software. For
all of these reasons, the platform must support patching (adding complexity), but
more than that, all code must itself be patchable, and this requires an

It's on the web in at least four languages. Tty http://www.carthspace.net/-esrlwritings/cathcdral-bazaarl.

Norte! Proprietary 61

Part II: Implications for Design Version 1.0

understanding of the patching mechanism. In the pre-Thor days, when we still
had to worry about things like non-resident overlays, there were more things that
could make patching tricky. These days, about the only rule to remember is that
patches work by changing where a procedure call branches to, so that an infinite
loop within a procedure can't be patched without restarting the task.

The second version of software "hot swap" is that an entire new load must be
deliverable to a running switch. Again, this adds complexity to the platform, and
again requires some knowledge in the rest of the design community. For
redundant systems (currently Options 6IC and 8IC), we load one half of the
switch while the other side handles call processing, and then quickly switch
activity over to the new side. There are three parts to loading the new side, which
each require quite different processes. The executable code is compiled and
shipped to the customer site. The protected data store is converted from the
most recent version of the customer's local database by the system loader. And
the unprotected data is built from scratch by restarting the switch. Thi.s strategy
also gives us a back-out route if the new software fails spectacularly.

Hot software download is an extension of this philosophy. Some new
components have dual program store banks, and Peripheral Software Download
(PSDL) loads the new code into the standby side while the active side is
processing calls. This means that we can do the download at a relatively leisurely
pace (about 2 hours to load the biggest possible switch) because there is only a
minimal impact to the customer-new features may not be available yet, and
there is a slight decrease in traffic handling capacity.

2.3.2 No single points of failure
Even though modem solid-state hardware is very reliable, there should still be no
single point of failure that can take down more than 400 lines1ll. Many of our
critical systems have redundant hardware that would never be needed if the
primary system always functioned normally, and this in itself leads to fairly
complex platform software. Thankfully, most of this effort is encapsulated in the
lower layers of code.

There's also a somewhat obscure French regulatory requirement that any
redundant system must be able to gracefully switch over from one unit to the
other, under normal traffic, with no more than 0.02% dropped calls. Since we

10 Actually, this seems to be merely a good idea (as opposed to a regulatory requirement), but since we've spent
the last twenty years telling our customers how important it is, it's probably here to stay.

62 Nortel Proprietary

Version 1.0 Part II: Implications for Design

want to sell globally, this puts some added pressure on our design teams, and
rules out certain simple fail-over solutions.

The system must also be fault tolerant at all levels. For instance, if a peripheral
fails and starts sending a torrent of spurious messages, or stops sending messages
altogether, we need to isolate this error from the rest of the system. Calls
involving terminals on that peripheral probably can not be saved, but they must
be cleaned up gracefully, recovering all associated resources. And other calls
should continue undisturbed. Similarly, most procedures, case statements, state
machines, etc., need to do something quiedy non-violent in response to an
unexpected message. Flows should be designed so that bugs are only reported
once in the chain of procedure calls, and this usually means not explicidy
reporting when a procedure you call returns an error code. The best mechanism
for doing this depends on where you are in the system, and so detailed examples
of this are given in the Platform and SL-l chapters.

Beyond all this robust hardware, it's crucial that our software doesn't take the
system down. All of the code needs to be reliable, but extra-careful design,
inspection, and testing are required for interrupt handlers, or code with data store
protection or interrupts disabled. And to paraphrase Hoare, about the only way
to guarantee correctness is to keep code so simple that there are obviously no
defects. Keep as much as possible out of these critical segments.

2.3.3 No losing stuff
If things go well, we're always up. This means that if we have a memory leak (or
any other resource gobbling) it's a big problem. If anybody allocates even one
byte of memory as part of a regularly-executed task and then forgets to free it
later, the system will eventually fail.

Nortel Proprietary 63

Part II: Implications for Design Version 1.0

Memory f ragmentation

A subtler problem that caught us when we jumped onto the Object-Oriented
bandwagon was memory fragmentation. Typical 00 practice makes heaVy use of "the
heap" (an apt description for the amount of planning and organization involved in this
memory manage.ment strategy). Whenever you need to work with some data, you
allocate a work space on the heap, do your stuff, and then free it later. This is a really
bad idea in our environment, for two principal reasons.

The fust is that it costs real-time. It's always preferable to doas much work as possible
at compile or loadbuilc! time, rather than during can processing. Generic routines to
allocate and free a block may take a fair bit of time.

The second is that in the general case this technique will leave us with a bunch of small,
non-contiguous pieces of free memory Non-teal-time 00 systems detect and correct
this problem with a technique called "garbage collection". GC algorithms are
improving, but they still cost a lot of real-time, so we cwrently don't attempt to do any.
In the absence of garbage collection, we just end up with a bunch of increasingly-small
free store fragments, and progressively slower malloes.

So when's the best t ime
to allocate stuff?

compile
or load >
time
©

init
time
@

run
> time

®

2.4 Nobody's manning the switch
Many sites, especially those with small PBXs or buildings where the Ml is acting
as a remote concentrator for another main switch, have nobody watching the
system. Who can blame them? With an expected 3 minutes per year total
downtime, it would be worse than being a May tag repairman. The effect of this
is that our systems have to prevent, detect and correct their own problems.

2.4.1 An ounce of prevention: Protected memory

64

Some industry experts argue strongly against the need for protected memory.
The claim is that it adds complexity and cost to the hardware design (true) and
that it's slower to write to protected memory (also true) . Nevertheless, we do use
it for two main reasons.

Norte! Proprietary

Version 1.0 Part II: Implications for Design

The ftrst is that, even now that we're using VxWorks, we have a single flat
address space. Any task can read from or write to any address in memory. We
use hardware-enforced memory protection to prevent bad code from corrupting
critical data. If somebody forms a bad pointer and tries to use it to write to
protected data, their process traps. Note that you can still trample unprotected
data, and this does lead to horribly difficult debugging problems. (Hint: avoid a'!Y
temptation to do pointer arithmetit:)

The second reason we use protected memory is that, by protecting the more
stable data, we signiftcantly improve the odds that a warm restart will successfully
bring us back to a healthy state. "Checkpointing" is a standard fault-tolerance
technique whereby the current state of a program and its data, including
intermediate results, are saved to some non-volatile store. If the program gets
lost, it can be restarted at the point at which the last checkpoint occurred.
Checkpointing our system, with thousands of calls that are all essentially
independent processes, is impractical. Our variation of this is to keep stable data
in memory that has hardware protection against inadvertent changes. This really
had a lot more benefit in the days when it took 15 minutes to load the whole
image from a tape drive. These days, there is no time advantage to warm restarts
over cold ones. The beneftts are that we don't lose protected data (like recent
database changes) and that we preserve those calls that are already talking.

A further margin of safety is provided by saving some data to a disk or flash
ROM. This is done by hand-building the required code to save the "important"
bits. In particular, for historical reasons the M1 disk memory is 16 bits wide, and
so no attempt is made to store the strut1ure of things like linked lists and DN
trees. This turns out to be helpful when upgrading from one release to another,
where internal data structures are highly likely to change, and it also saves disk
space. The downside is that it's more stuff to get right (which means that it
sometimes goes wrong); we can't just set a flag saying "this data should be
persistent across power failures and reboots".

See Chapter 5 for a more complete discussion of restarts and memory types.

Nortel Proprietary 65

Part II: Implications for Design Version 1.0

Safe languages
A "safe" language protects untrustworthy programs from each other, and might allow
us to abandon hardware-based data protection. The key idea is that object references
(pointers) are un forgeable. Pointer authenticity might even be combined with type-of
acccss pcrmission (for read, change, and delete). Such a language would need to have at
least the following characteristics:

• all pointers are automatically initialized, at least to NIL

• pointer arithmetic is disallowed
• re-casting pointers (to override type cbecking) is disallowed
• array bounds and stack overflow/underflow checking is enforced

Since all of the resident Ml languages give you more than enough rope to hang
yourself, it is unlikely that we will abandon memory protection soon.

Besides buzzword compliance, one reason we might consider porting the Ml code to
Java would be to achieve this safety. However, now that our customers believe that
hardware data protection is buying them some reliability, we might conceivably choose
to keep it, if only for marketing reasons ...

2.4.2 Watchdogs
How do you tell if you're deadlocked, in an infinite loop, or in some other way
failing to get the job done? You can't detect all cases automatically, but we catch
most by running "watchdog" timers. \V'hen software is functioning normally, it
periodically resets this timer. But if the timer ever expires, it automatically causes
some kind of reinitialization. Watchdogs will be discussed in some detail in the
Platform chapter, but it is worth remembering that all software must complete its
processing within the watchdog time window, and that every SL-l service must
provide suitable code in module INIT to be invoked during a restart, for example
if a watchdog timer does expire.

2.4.3 Super-ultra-mega-reliable restart code

66

A barking watchdog, a dying task, a hardware fault, or a craftsperson's command
can all cause the system to reinitialize. This will cause an outage, but the hope is
that it will also clean up some existing problem and lead to a healthier system. If
an outage is bad, failing to recover is even worse. If critical sections of code must
be good, initialization code must be perfect. By the same logic, the code that
saves and restores the customer database must also be very clean. We also need

Nortel Proprietary

Version 1.0 Part II: Implications for Design

to think up ways of making initialization code better than standard code at
finding and fixing (or at least tolerating) errors, since the fact that init code is
being invoked suggests that there may be something wrong with the system.

Call processing code presents a special challenge after a warm restart. Call
Registers, which hold all of the detailed data describing a call are stored in
unprotected data. But unprotected data is cleared during a warm start (although
calls are not taken down). We achieve this alchemy by examining the Network
Equipment connection data, and reconstructing the CRs based on what we find
there. For simple POTS calls, this presents no real difficulties (although we lose
those calls that were not in a stable talking state.) For featured calls, the
connection memory is insufficient to rebuild all the data. Usually, terminal states
are reset, CDR data is lost, and all references to the feature are cleared, so it is
both impossible and unnecessary for the feature code to do anything at this
point. Still, it leads to some possibly nasty failure cases, especially for networked
features, and all software should have a plan for approximately graceful failure.

As mentioned in Chapter 1, call centers hate losing callers. And as just
mentioned above, we normally drop calls that are not in a stable talking state over
any restart. Unhappily, a busy call center tends to have lots of interesting calls
waiting in the queue, so we've always had some pressure to try to keep from
dropping them. The problem is, we don't have any spare real-time on these
switches, so we can't build the ACD queues in protected memory (even if the
idea didn't scare the bejeezus out of us--queue manipulation is more prone to
corrupting memory than most code, but at least it's usually unprotected memory
so it might get cleaned up by a restart). We recently managed some slight-of
hand to rebuild the queues, but the solution is probably a bad one for general use:
we sneak some of the queue information into a part of Thor's memory that SL-1
does not generally know about, so INITIALIZE doesn't try to reinitialize it. This
solution works, and it's fast, but it has already caused us its first problems.

2.4.4 The backup plan
In a good year, we have zero downtime. Failing that, even if something very bad
happens, a restart will almost always clean up the problems. But even more
severe corruptions may be fixable by reloading the database from disk or flash
memory. INITIALIZE is then called, which does an especially thorough job of
setting up all the critical data structures. This of course will cause an even longer
outage than a regular restart, but with a bit of luck it will leave you in a known,
healthy state.

Norte! Proprietary 67

Part II: Implications for Design Version 1.0

Sometimes even rebooting won't help

One lUs22 site had an 8-hour complete outage that could have been avoided by better
system awareness.

The Story: We save historical alarm data on disk (ironically, part of the effort to
improve reliability). Somehow, we managed to corrupt this file. On the next trap, when
we tried to open it, the event collector task choked. Tlus killed the restart, and another
one was immediately started. Because the corruption was on the disk, neither
reinitializing nOr rebooting could improve the situation.

Moral #1: The mOre permanent the data, the more important it is to avoid corrupting
it.

Moral #2: Since a serious bug ill any restart code will knock out all call processing, it's
best to keep the restart . code as simple as possible, and defer non-critical work until
after the restart.

Moral #3: It's a good general rule that a less important job should neve! hold up a
more important job. In this case, we held up everything because one disk ftle was hosed.
Even pretty thorough testing is unlikely to detect this sOrt of problem. Omy careful
design will save you.

2.5 Customers' budget worries

68

Although the average cost per line over the lifetime of our systems is low, the
initial purchase of any PBX tends to be a large capital investment, and subject to
more intense scrutiny than, say, that of a desktop Pc. Customers have to believe
that they are investing in a product that will continue to be useful for a long time.
At the same time, even the rare customer who thinks they know exactly what
system they will need over the next ten years probably can't afford to install the
whole thing on the ftrs t day.

"no forklifts"

Capitalizing on customers' fears, PBX vendors regularly describe each other's
system changes as "forklift upgrades": customers will have to cart away their
installed box, with enormous cost and disruption. A big selling feature of Ml is
our "evergreen by design" story. This line helps us convince a skittish customer

Norte! Proprietary

Version 1.0 Part II: Implications for Design

that (a) their system won't be obsolete tomorrow, and (b) they can upgrade it
gradually as their business grows or their needs become more complex. Their
initial investments will still look sound, and will continue to amortize out nicdy
over the coming years. Their incremental needs will be met by only incremental
investments. And the cutover from current equipment to the next generation can
be achieved with no noticeable outage.

2.5.1 Sca/ability
The fIrst design implication of the evergreen policy is that Ml capacity must have
a continuous upgrade path from a small switch (overlapping with the high end of
the N orstar product line) to a fairly large one (overlapping with a low end
SL-l00). This is one of the big reasons for having a line of modular "Options",
rather than simply having several different switches of varying capacities. If you
need more terminals, add a PE shdf. If you need more simultaneous calls, add
an NE shelf, or maybe upgrade your CPo Even the Option 11C can add extra
cards and extension cabinets.

Pivotally, the substantial costs of confIguration, installation, testing, and user
education (which combine to be greater than the cost of the switch) do not need
to be repeated. For instance, even if you have to upgrade your CP, you can
probably leave all of your existing network and peripheral equipment, cabling,
and terminals exactly where they are.

Even a customer buying a very big switch must believe that, if it were necessary,
the switch could handle even more tramc, or at worst that we will soon announce
an upgrade that could. This is mostly a hardware requirement, but handling the
transitions shows up in software, particularly in platform and maintenance code.
Also, because this has caused the Ml to be a hierarchical multi-shelf cluster of
components, the Ml itself becomes a network, and subject to most of the
potential problems that occur in networks more generally.

2.5.2 Software packaging
Packaging fills two different needs: it allows us to keep loads to a reasonably
small size (much more true historically than today) and it allows us to charge
customers incrementally for added functionality. The mechanism has changed
through the years, as the surrounding technology and cost trade-offs have shifted,
but the concept of having easily-turn-off-and-on-able code seems likdy to persist
for a long time.

Nortel Proprietary 69

Part II: Implications for Design Version 1.0

This shows up in the software in two ways. The ftrst effect is that the platform
must provide the control mechanism for installing and activating packages, and
the packages themselves must have the corresponding hooks to allow that
activation. The second, more subtle effect is that that one package can not in the
general case assume the existence of others.

2.5.3 Configurability
Not all customers want the same things. Even two customers who want the
same feature set may well need them to behave quite differently from each other,
so having conftguration data to control this behavior is sensible. However, it is
equally important that the switch can be configured with a minimal amount of
effort, and therefore it is critical that we reduce optionality to that which
customers need, and give sensible defaults for each option.

Conftgurability allows system costs to match customer value more closely; the
cost contributed by functions a given customer doesn't need (perhaps Mobility,
for example) must be minimized.

In early SL-l software, the SET ORIGIN statement was frequently used to map
software explicitly to given memory locations. Over time, we moved this
decision into later stages of the loadbuild process, and then out into restarts or
even run time. Done carelessly, this risks memory fragmentation and real-time
problems, but is does add a degree of flexibility that reduces design and
engineering effort.

2.5.4 Modular design

70

In addition to a clearly modular hardware design, we have built some degree of
modularity into our software. The following is the marketing view of our
software structure. It does not correspond precisely to the real hardware or
software structure (described in Part III of this book), but it is still important in
that it represents what our customers believe to be an important aspect of their
investment. The theory is that each of these encapsulated layers may be
upgraded independently of the others, and this is approximately true.

Arguably, there should be a layer in this picture called "Terminals", but we didn't
really separate out a clean terminal abstraction. About the closest we come to
this is to reuse the SL-l set interface to drive other terminal types, and this has
resulted in some slightly mutant code.

Nortel Proprietary

Version 1.0 Part II: Implications for Design

2.5.5 Reuse
Modularity leads very directly to reusability. In the hardware domain, it means
we can use IPE with various generations of CPU technology, and even with the
SL-100. Similarly, new terminals, protocols, processors, and features are
inevitable, and a modular design helps ease the integration effort.

In software, it allows us to evolve each component in isolation. This greatly
improves the effectiveness of multi-site development. It also helps shorten our
time-to-market, which is crucial in our business.

While some of the original rush of enthusiasm in the software community about
the value of software reuse has been tempered by actual experience, it still seems
likely that some reuse is a good idea. As with performance aspects of our design,
the wise advice is probably to strive for the Buddhist ideal of the "middle path".

Dubious reuse example

Maybe we shouldn't always attempt reuse. There is reuse, but its kind of scary, in
Flexible l lcature Code. Basically, you go down the DN tree, terminate on an FFC flag,
strip off and store the ITC digits, replace them with the Special Prefix (SPRE) fIxed
feature access digits, and retranslate. (This is only truc for features that were written
prc-FI Ie.) I t works, but it adds complexity to the SPllli code, and it costs us real-time.
Is it good news? It's not entirely clear, rcally.

N orIel Proprietary 71

Part II: Implications for Design Version 1.0

2.6 Bigness

2.6.1 Vestigial code
Once the investment has been made in a huge code bulk, nobody can bear to
throw it out. So we usually end up making only incremental changes to our
legacy product with each release. At one level, this is just reuse, and is often a
good idea. It always appears to save us money, when compared to the cost of
rewriting the whole thing from scratch. But it can still be very expensive in other
ways - the resultant code is likely to be bigger, slower, and clumsier than what we
might be able to achieve by starting from scratch. At some point, these costs
outweigh the initial savings.

We also suffer from the well-known "shared refrigerator syndrome": many
people put stuff in, and nobody wants to remove anything that might still be
wanted. Things get duplicated, people move, and projects get canceled. Before
long, it's not a pretty sight. A few years back, a static analysis of the SL-l code
showed that 8% of the total volume of code was l'Ompletefy unreachable. Nobody
called it. Ever. This did not even count the intentionally cautious code which
could only be reached under perverse error conditions, nor places which were
logically unreachable because of tautological comparisons. These were simply
procedures which only had definitions, with no invocations. That's over 150,000
lines of useless flab. And even after this analysis was done, an executive decision
was made to leave it all there, just in case it was somehow needed after all. 11 This
problem is certainly exacerbated by the lack of a clear software ownership model.

At the same time, like the bachelors' fridge with five half-full bottles of ketchup,
we have several known instances of useful code with unnecessary replication. On
the trivial end, the analysis just mentioned noticed nine different algorithms, with
about twenty instances each, of code to write ,,-------" to the telephone display.
eg:

• for i:=l to 7; output "-"

• output "----"; output "---"
for i:=l to .SEVEN_DASHES; output "-"

This may seem unimportant. Okay. at this scale it probably is unimportant (since
you might take as much time finding and testing a utility to do this as writing
your own), but we have much bolder examples as well ...

II Reliable rumor has it that most of this code was subsequently liposuctioned as a skunkworks project, but the
mindset that was afraid of touching it is revealing. 'l'here's a fairly deep-rooted fear of the SI,-l library in
some corners of the development community.

72 Nortel Proprietary

Version 1.0 Part II: Implications for Design

Name transmutations

One of the ftrst thinf.,'li a new designer notices here is that we pick an internal "working
title" for most projects, and then let marketeers rename the technology when we're
ready to seU it. Cybele becomes Meridian Evolution. TNT becomes DMT becomes
Pangaea becomes DTIW. You just have to know that they're all exactly the same thing.

Meridian mythology includes a (possibly apocryphal) tale of how this once got us into
trouble. Once upon a time, we renamed a terminal project some time during the
development phase. Unfortunately, the integration team was passed the code with each
name, and somehow integrated it twice: once with the old name and then a second time
with the new name. Great battles are then said to have been waged over the need or
difftculty of backing out the original copy, and further rumor has it that both are stiU
there today.

Some SI,-l storytellers insist that these events neve! happened, but to do so is to miss
the point of fables. We should think about why ou! development process makes the
story merely unlikely, rather than implausible ...

2.6.2 Data hiding
Perhaps the central strength of 00 design is that it codifies the not-so-new
notion of data hiding. An earlier way of thinking nearly the same thought was
called "Abstract Data Types", and it too taught that you want to hide the data for
your service beneath some sort of API. People can then access it only through
the procedures you provide, and shouldn't know or care how you've stored it. 12

This was a good idea in the '70s, and it's still a good idea today, although then as
now there are engineering considerations that sometimes force other choices in
embedded systems.

A narrow interface (with implementation details hidden) also fosters reuse. It
makes it much easier to identify the exact behavior of a piece of code; it means
you spend less time trying to figure out the interface (because it's smaller); it
allows code on one side of the interface to be replaced while reusing the other
side; and it makes the code more likely to be trustworthy because you can see all
the ways it might hurt you.

12 The canonical example is the "point" data type provided by a graphics package, which might be stored
internally in either polar or rectangular coordinates, or even something more exotic, without affecting its
usability by client applications. This example also shows the practical limitations of the technique: the choice
of coordinate system will impact how easy it is to design certain functions, how quickly they will execute,
and, with the discreet mathematics of computers, maybe even the results. Hut at least with an /\Uf, you can
change you r mind, change the implementation, and leave the rest of the program intact. Add inheritance
and polymorphism to ,\ DTs, and you've got most of 00.

Norte! Proprietary 73

Part II: Implications for Design Version 1.0

Unfortunately, the heavy use of the single shared data interface POOL, while it does
make for some speedy code, runs precisely counter to this advice. Where you
have the opportunity, minimize what you put into the global pool by using local
COMPOOLS and nested procedures. Other subsystems should only be able to see
the things they need to.

2.6.3 More about reliability
We don't have a protected operating system. If we did, we might be able to claim
that an error in one modular software component would be unable to adversely
affect any other components. Instead, we have to design carefully to try to
minimize tllls risk. This becomes especially important as we start to pull third
party stuff into the system, either off-board (CTI, SNMP, billing systems) or
scarier yet-on-board (Orbix, Envoy, Seaweed, etc.) The sheer scale of the
system makes tllls problem especially formidable.

In the early 14th Century, a Franciscan monk named William of Ockham wrote: _nil. non Bunt multiplk,wt<1' n<e<&&It.Jt<m.

Since fewer and fewer software designers speak fluent Latin, tllls is now usually
studied in translation: "Keep it simple, stupid". Keep extra features from
creeping into your design. Factor out recurring code into a single place.
Minimize interfaces. Resist the temptation to add complexity to what is already a
sufficiently complicated system. Less is more.

2.6.4 Paranoid code

74

It's not too hard to find "redundant" SL-1 code. For example, there are ELSE

clauses started by comments like "% we should never get here", and DEFAULT

clauses in complete-looking CASE statements. They're in there because the system
is too huge to keep perfect. This defensive driving does make the system bigger,
and correspondingly more difficult to understand. It's still usually the right thing
to do, so that at least you get predictable failure modes when bad things happen.

Norte! Proprietary

Version 1.0 Part II: Implications for Design

2.7 Networking complications

2.7.1 Standards compliance
An Ml is usually a leaf node in the huge global telephone network, and therefore
the standards-compliance of protocols, and even of feature operation, becomes
important. This means we sometimes have to build new interfaces in a way that
isn't very natural for our existing system. This in tum means it may be worth our
effort to influence standards directions.

2.7.2 Version control
Because different nodes are upgraded at different times, we need to support
many versions of the various protocols simultaneously. This usually requires
being able to support versions that are both newer and older than the one you
would prefer to work with, at least for a subset of your messages, and hopefully
at least rudimentary success at handling fairly different implementations from
competitors' products.

This problem pops up at many different levels. Now that we've put intelligence
in the peripherals, these may get out of sync with the CPo We also have to agree
on which versions of which protocols we will use to connect the Ml to the
PSTN. Application Processors and management stations may have the most
sophisticated protocols, but at least they tend to be industry standards like SNMP
or TAP!. The Meridian Administration Tools (MAT) product has a "release"
field in its common database for each switch that it connects to, which all its
applications reference. \'Vhen asked to update its system data, MAT queries each
switch to establish what software is currently loaded. It can simultaneously
support PBXs running different loads.

It appears to be a good rule of thumb to put a standard interface between
components that you expect to want to upgrade independently, even if we
currently control both ends of the pipe.

2.7.3 Glare
Finally, a standard network call processing headache is "glare". This term
describes the situation when both ends of a trunk are seized simultaneously. It
can happen on two-way trunks because each end is being driven by an
independent switch. You can engineer around it, but only by having dedicated

Norte! Proprietary 75

Part II: Implications for Design Version 1.0

incoming and outgoing trunks, which is not generally an acceptable expense.
Trunk call processing code has had to be set up since day one to be able to detect
and handle this problem. Glare is really just a special case of the generic problem
of having a bunch of free-running computers in the network, of which the Ml
core is only one, all of which are trying to update state information. All designs
should think about this.

2.8 Conclusion: PBX software is rocket science

76

PBX software turns out to encounter most of the tough problems in computer
science simultaneously. In particular, we worry about:

• real-time system problems
• high availability, with some fault tolerance
• classical distributed applications problems
• multinational, multivendor protocol and feature interworking

• multisite development, including third-party code
• a large, complex legacy base, with an evergreen support model, and

upgrades expected to have zero outage time

• two orders of magnitude differences in scale between various sites

• cost

About all we're missing is heavy number crunching. To nobody's surprise, doing
all this consistently is kind of tough. We can't afford to ignore tools and
processes that might increase our chances of getting it right.

Norte} Proprietary

Version 1.0 Part II: Implications for Design

3. Patterns

What's a "Pattern"?

lice! free to skip this box if you already know why "Pattern" is the Object-Oriented
community's word-of-the-month ...

The study of patterns is a widespread attempt to start describing standard, effective
solutions in 00 design. It is today':; equivalent to the efforts of our forefathers to
catalogue various :;ound algorithms for building stacks, sorting data, etc. that were
distilled in Knuth's classic cookbook, The Art of Computer Programmillg.

A t about the same time that Knuth was pondering linked lists, a real-live architect,
Christopher Alexander, was doing what architects do: thinking about designing
bu.ildings. I lis thoughts resulted in The TitJ1eless W ~ of Buildillg, which proposed a
pattern language for architecting buildings and cities:

I':ach pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without
ever doing it the same way twice.

The idea struck a chord with the Gang of Four, who had been plagued by a vague dija
vu each time they solved a common design problem, and asked the obvious question,
" I sn't there a pattern here?" Desigll PatteTIIs, their scminal book, was their answer.

Thcn last year, five engineers at Siemens wrote Pattern-Oriented S ojtware Architedtlre,
which not only is trendy but also seems to be helpful for thinking about how we design
large systems. Apart from providing yet another catalog of reusable Pattems, perhaps
their most helpful contribution to the field (and the one which I'm about to reuse in the
true spirit of patterns) was an organizing principle for understanding when to use
particular patterns:

• Architectural Patterns provide the skeletons for system-level architectures.
• Design Patterns are strategies for handling component structure.
• Idioms arc tactical plans for implementing a design given the idiosyncrasies of

the language & programming environment we're using.

"But wait!" you clamor. "Patterns may be a great 00 word, but the SL-l is very
non-OO code."

Nortel Proprietary 77

Part II: Implications for Design Version 1.0

78

Okay, this is definitely true, and for that reason, many canonical 00 patterns
don't show up in SL-l. This chapter is included for two reasons. First, the
00 patterns do (or at least probably should) apply to all of the new C++ code.
By including this chapter, I get a convenient place to ask designers who are
serious about writing good C++ to go look at some of the Pattern literature,
starting with http://hillside.net/patterns/patterns.html. Nortel also now has a
"Pattern Center", with a home page at http://seal/NPC.

The second reason is that, although the Pattern movement happens to have
grown out of the 00 community, there's no particular reason the thinking
should only apply to 00 code. I claim there are some clear patterns in the SL-l
code. This should not be surprising, since all of the pervasive requirements just
discussed in Chapter 2 keep pushing people down similar paths as they try to
solve similar problems. Understanding SL-l patterns should be as valuable to
SL-l designers as understanding 00 patterns is to 00 designers. And the less
idiomatic patterns are probably valid in both solution spaces.

I'll even add in a new twist. Like the other Pattern books, I'll catalog some good
patterns (~). But I'll also describe some common bad patterns (~), in the hope
of helping people understand imperfect designs without encouraging their
replication. And (succumbing to temptation) I'll even describe some things that
frequently go wrong, with a list of ugly patterns (~). Knowing about the ugly
patterns may at least reduce debugging time, but should also help people think
about ways to avoid the problems in the first place.

Following tradition, each pattern will be described in four steps: a name for it, a
context it appears in, the problem it is solving, and the solution itself. Real
examples from the Ml are also included.

Good patterns tend to look obvious to experienced designers. After all, the
whole point is that they've been seen before. Nonetheless, they provide a good
shorthand for discussion, can reduce time-to-market by encouraging design reuse,
and aid new people's understanding by exposing the wisdom gained over decades
of building telecom systems.

Nortel Proprietary

Version 1.0 Part II: Implications for Design

3.1 Good patterns

3.1.1 Transaction engine ~
Context: This is the big architectural pattern in PBXs (and many other telecom
products). It is the single key to understanding a big chunk of the SL-l software.
It forms the backbone for all call processing and administration. You can use
this pattern whenever you need to maintain the integrity of a complex object
model in the face of asynchronous change requests from multiple agents.

Problem: The bulk of the work a PBX does for each terminal could be specified
by a Finite State Machine: get a request, perform an action, move to a new state,
and wait for the next stimulus. The changes to state information normally affect
how subsequent transactions should be processed. For example, if one
transaction attempts to terminate a call on a given phone, and another transaction
attempts to originate a call from that same phone, then the order in which they
are processed has a great bearing on who ends up talking to whom.

Because you have to service requests from a large number of autonomous agents,
you can't lock the database and wait for the first call to finish. The transaction
requests individually have implicit real-time response requirements (at least soft
ones), and the capacity of the overall system must also be maximized. But even if
this weren't true, you might cause deadlocks if two agents were involved in
related calls.

Solution: The best way to handle all of these worries is usually a run-to
completion Transaction Engine. The essence of the pattern is that you handle
exactly one transaction at a time, and you complete that whole transaction
atomically, as fast as you can. Interrupts may queue up other requests while
you're working, but you don't stop working on one transaction until you have
performed any actions you're going to perform, changed any state information
you're going to change, and returned any result you're going to return. This
pattern guarantees that, except for the call you're actively processing, every other
call in tlle system is in a known, stable state.

The broad term Ml software uses for the state information that is saved between
transactions is Progress Mark (PM). Suspect a Transaction Engine any time you
run across a variable named anythingPM. For call processing, the place the
known, stable call state information is kept is generally the Call Register (CR), and
particularly MAINPM and AUXPM. For service changes (overlay processing), look for
the global variable SCSTEPPM. Matry other PMs exist.

Nortel Proprietary 79

Part II: Implications for Design Version 1.0

80

The fact that each transaction must be completed in a way that lets the database
return to a stable dormant state will guide the structure of your transactions, and
what should constitute an event. By convention, the parameter passed to a
transaction handler that specifies which event has happened is called SOURCE on
M1. See module POOL for about 150 examples of SOURCE event lists.

If absolutely necessary, other tasks may read from the database without going
through the transaction engine, but they must understand that they risk having
different pieces of data misaligned if they interrupt the main transaction engine
during an update.

Besides maintaining data integrity, this pattern also prevents the sort of deadlocks
that happen whereby two processes end up waiting for each other.

external
events

... may kic off other transactions
(especially timers)

Real examples: Recognizing this pattern is tricky because the actual code tends
not to look exactly like this pattern. The server side of a client-server design
almost insists on a Transaction Engine model, but there are also bigger but more
subtle examples in M1. The biggest is the one that runs the entire call processing
database: WORKSHED. No task that supports more than one terminal can wait
around for input. But if you had a different task to service each terminal, you
would eat up enormous amounts of stack space, risk new race conditions (see

Norte! Proprietary

Version 1.0 Part II: Implications for Design

"The usual suspects", below), and take the real-time hit of a context switch for
every incoming message. What really happens is that, rather than having 1000
tasks to handle 1000 calls, WORKSHED does the waiting on behalf of everyone, like
this:

WHILE . TRUE DO
poll all input & timing queues in order of priority
IF any queue has a transaction waiting
THEN

process transaction
ELSE

do background work
update timing queues

There's also nearly an exact duplicate in the overlay manager, which is one of the
jobs scheduled by WORKSHED.

This is a pretty standard sort of idea with multi-user databases. The trick is in
seeing a PBX as just a big collection of multi-user databases. One database is the
collection of active calls. Another is the equipment configuration. Another the
directory numbers. The ACD queues might be viewed as yet another.
Unfortunately, a change in anyone of these may affect the behavior of others, so
we need to treat the entire mass as the single "everything call processing needs to
know about" database.

There are various things to get wrong, especially if you don't understand the
pattern.

)(Note that in a hard real-time environment, the best latency we can really
promise is equal to the execution time of our longest transaction. Therefore,
we need to limit the work done for any given transaction. The period allotted
to process a transaction is called a "timeslice", and is usually capped by the
platform. On the DMS-100, any process that exceeds its timeslice is killed, and
the call cleaned up. On Ml, we can't detect an individual transaction running
long (usually an infmite loop or deadlock) until the watchdog timer expires
(after 2 seconds). In this case, we actually restart the entire system.

)(If you suspend in an unstable state, with half a transaction processed, things
you thought you knew about the switch, like which phones are on-hook, are
likely to change while you sleep, and you may disrupt other software that
depends upon stable dormant states.

)(Unless you're very careful, this pattern is easily violated by priority-based
multitasking. It is crucial that no higher-priority task can alter the state of your
data. This is a good reason to make sure that only the SL-1 task can change
call processing variables.

Norte! Proprietary 81

Part II: Implications for Design Version 1.0

K It's even harder to get this pattern right if you try to share processing across a
number of CPUs. This will be the central challenge if we ever attempt to
evolve to load-sharing symmetric multiprocessing (ie: add more CPUs
whenever you need more power).

K If you forget to update your Progress Mark, you're in an infinite loop.
Stop snickering! This happens all the time. Fortunately, it's usually quickly
detected during the test phase. In SL-1, the usual cure is to call a local
procedure called something like INCRSTEP.

3.1.2 Layers ~
Context: You can use Layers to construct any large system that needs
decomposition. This is Architectural Pattern #1 from Pattern-Oriented Software
Architecture. A brief description follows, but you can refer to that book for a
really good discussion of how to build Layers right. Good layering has the added
bonuses of increasing the odds of code reuse and the ease of portability.

Problem: You need to be able to think about, and then build, a complex system
or subsystem. You want to allow a bunch of designers to work simultaneously
on the problem. You may even want to buy parts of the solution. You want to
provide as much flexibility as you can afford to put in, because platforms and
interfaces are likely to evolve. Performance is an issue.

Solution: Design your architecture as a series of layers. Probably start with the
lowest layer of abstraction, and work your way up. Ideally, each layer should
build its services only upon those provided by the layer immediately beneath it,
and all of its components should be at the same level of abstraction. Each layer
provides a fairly narrow API to the layer above it, and its implementation may be
changed extensively provided that the API is retained.

This pattern may really just be a guideline for implementing Dijkstra's separation
of concerns, "to deal with the difficulties, the obligations, the desires, and the
constraints one by one ... to reduce the detailed reasoning needed to a doable
amount"13.

13 The long version of this discussion appears in A Dirripline tif Programming, Dijkstra, 1976.

82 Nortel Proprietary

Version 1.0 Part II: Implications for Design

Real examples: The most conspicuous example of Layers in telephony is the
OSI 7 -layer stack for networking protocols. You know:

application
presentation

seSSion

transport
network

data link

physical

Both the spec and the usual implementation of this stack embody Layers. This
design's choice of seven layers is at least fortuitous, if not deliberate.
Psychologists tell us that we can really only keep track of 7±2 things at a time in
our short-term memory. Not exceeding this limit to the number oflayers helps
designers to keep their brains around your design.

Cautionary tale

If somebody goes to the trouble of designing a layered architecture, it's important to
respect it. At least one ISDN feature on Ml violated the orthodox ISO layering. !twas
written on top of PRI layer 1 & 2 by calling the routines directly, rather than on top of
the ISDN service. There was a bug in this feature. Our storyteller tded to debug it in
the field by using the ISDN trace utility, which naturally didn't show any ISDN service
procedures being hit. J\fter a week of cursing his god for not providingbim with a
bigger brain, he tried trace-pointing the lower level routines, got hits, and traced them
back up to the rogue feature code.

A second good example of Layers is the overall Ml software architecture,
described in detail in the next chapter, which goes something like this:

As an example of how this layering has helped us, the relatively narrow interface
that the above "Intrinsics" layer provides between the SL-l code and the

Norte! Proprietary 83

Part II: Implications for Design Version 1.0

hardware was very handy when we ported from Omega to Thor, or wanted to
build emulators.

The Ml system is big enough and complex enough that most of the above layers
can be further decomposed into their own layers.

3.1.3 Master-slave ~
Context: This architectural pattern, also described in Pattern-Oriented Software
Architecture, is for partitioning work, preferably into semantically-identical sub
tasks.

Problem: Need to divide-and-conquer a piece of work to ease the load on the
maltl processor.

Solution: The Master divides the work into sub-tasks, and delegates these to
other processors. The slaves should not be aware that they are part of a larger
structure; each should have whatever resources it needs to be able to operate
independendy.

Real examples: Patterns literature discusses a number of ways to use Master
Slave with redundant slaves to produce a more robust system. However, at
present we really only use this pattern for load-sharing. The active Core CP is
normally the master of the Network and Peripherals, who perform sub-tasks to
handle calls. The roles are reversed in Symposium call processing. The off
board Call Center Server becomes the master, and the Ml CP is the slave.

This pattern is most powerful when a large number of slaves can be instantiated
to do equivalent work in parallel. One such example in the Ml context is
Network ACD, when a Meridian NAC drives a set of Meridian switches. At a
more trivial level, the Core CP may ask a number of CTS circuits to play timed
tones to a large number of listeners simultaneously.

3.1.4 Publisher-subscriber ~

84

Context: This pattern helps keep the state of multiple cooperating components
synchronized. Like the previous pattern, Publisher-Subscriber is discussed at
length in Pattern-Oriented S oJtware An-hite,ture. This design pattern is also known as
"Observer", and may help you build a "Model-View-Controller" architecture.

Problem: Data changes in one place, but many other components depend on
this data. When information changes, all of the dependent components must be
informed of the change. You (always) want components to be loosely coupled,

Nortel Proprietary

Version 1.0 Part II: Implications for Design

and you would prefer that the information provider not even know of the
existence of the components that depend on it.

Solution: The Publisher-Subscriber paradigm separates the world into
information producers and consumers. The name provides almost enough
information for you to guess how to build it, although there are at least two basic
implementations, which might be characterized as push vs. pull technology. As
with the previous pattern, go look at the book for a really thorough discussion.

A weakness of this pattern is that it may become difficult to change your
published interface once you have a number of entrenched subscribers (although
the counter-argument is that not following the pattern doesn't make the changes
any easier). This is in fact a general problem that shows up in all sufficiendy
popular legacy systems. As mentioned earlier, even the proprietary interface to
our digital telephones, which was never meant to be used by anything else, has
been reverse-engineered and incorporated into a number of third-party systems
which our customers now depend upon!

Real examples: Symposium provides a Publisher-Subscriber structure as a
platform on which to build other services. For example, when the team wanted
to make a web page showing how many calls had been handled, they just had to
write a litde client application that subscribed to the PresentCall event.

Thor's Hardware Infrastructure might also have been a good place to use this
pattern (but it didn't ...)

3.1.5 Corrective Audit ~
Context: You provide a service which hands out resources to clients. The clients
are supposed to return those resources when they're fmished.

Problem: Client code occasionally messes up. Items may fall off of the queues
through improper usage, or because the code that was using them trapped.
Syncronization may be lost between your state variables or resource objects and
the hardware they represent (such as pairings between lamp and state or between
call data and network connections). Remember that the Ml runs forever, so
every lost resource is a big deal.

Norte! Proprietary 85

Part II: Implications for Design Version 1.0

86

Solution: In the background, go look for lost sheep. State mismatches are fairly
easy to detect. Items which have fallen off of a queue are a bit trickier, but the
gist of that pattern is:

• Run through your resource pool marking all items as removable.
• Step through each known queue, including the free queue, marking each

item as in-use. Don't allow interruptions within a single queue scan.
• Run back through the pool adding all removable items to your free queue.

Possibly attempt to notify the previous owner that it's dropped something.

Corrective Audits are often designed as low-priority infInite loops. That is, they
run in the background any time the switch has nothing better to do. Because this
means that you can't simply block out other transactions and run. to completion,
your marking strategy must not get confused when other activities change the
queues. In general, if you arrange your enqueuing code such that it marks each
item as in-use whenever it adds it to any queue, the above algorithm will work.
The fust and last loops of the algorithm may be combined by careful coding. As
we have discovered in the past, less careful coding is likely to kill valid calls.

Real examples: MAIN_AUDIT is the general auditor for system pool resources,
checking the consistency of well over 100 conditions in data structures
representing things like terminals, calls, network connections, and conference
bridges. It normally runs in the background or as part of the daily routine
schedule (also known as "midnight routine", see Overlay 17), but can also be
manually invoked as Overlay 44.

LAMP_AUDIT ostensibly exists to make sure key-set lamps correcdy reflect the
current call state. It normally audits one lamp/ state pair per timeslice. However,
people have taken advantage of the fact that it was a convenient periodic task to
do all sorts of other stuff, such as the Low-Speed Link audit, the attendant
console Busy Lamp Field audit, and Idle Trunk counting.

The overlay supervisor keeps private lists of the TN s, DN s, etc., that each
craftsperson is accessing to ensure mutual exclusion, and these lists are audited by
routines like SBA MU AUDIT.

Nortel Proprietary

Version 1.0 Part II: Implications for Design

3.1.6 Memory manager ~
Context: Many independent applications need to allocate memory dynamically.

Problem: The Ml system is scalable and eonfigurable, so you don't know at
compile time how much memory you'll need for each application. On the other
hand, using the heap consumes real-time, is susceptible to memory fragmentation
and leakage, has unpredictable failure modes, is hard to audit, and makes
debugging trickier.

Solution: Create a Memory Manager. The salient characteristics to remember
when designing such a system are:

• Allocate memory infrequendy (ideally only on restarts), in large contiguous
chunks, and split these into blocks, avoiding memory fragmentation.

• Structure the blocks into queues, including a free block queue. A dequeue
operation can be much faster than a generalized malloe, which has to
search for a block of the right size.

• Associate the blocks with an owner, to help trace memory leaks.

• Audit the blocks to make sure they're all on queues. Ideally, the audit
should pass the blocks to an application-provided routine to confirm that
state data is sound.

• Provide standard tools to track memory usage, and to print out block
contents.

Real examples: The big SL-l Memory Manager is the Call Register system.
While CRs were initially created to track call states, they have been reused as a
generic managed memory system. Among its Corrective Audits, MAIN_AUDIT

invokes CRAUDIT to ensure call register queue sanity.

Notice that this CRAUDIT is really a garbage collector. Despite my earlier claim
that we can't afford garbage collection, we can afford CRAUDIT because of two
simplifying properties of the system. The first is that all CRs are the same size, so
recovering a block doesn't require any rearrangement of memory. The second is
that the chore of picking up CR garbage is the exception rather than the rule.
Regular call processing politely returns all CRs to the queue. CRAUDIT should only
expect to fmd calls that died violendy. Therefore, the workload is pretty light,
and the number of disconnected CRs that CRAUDIT hasn't yet found will always be
too small to affect performance.

The rest of Thor (the non-SL-l part) now uses Seaweed, which replaces the
standard malloe and free procedures. Seaweed follows the Memory Manager
pattern.

Nortel Proprietary 87

Part II: Implications for Design Version 1.0

3.1.7 Safe interpreter <L

88

Context: Non-experts want to write features too.

Problem: It's too expensive for us to write a feature that only one customer
needs. That doesn't stop the customer from needing it. But the system itself,
along with the supporting toolset, represent a prohibitive learning curve, even if
we were inclined to allow customers to tamper with the code.

Solution: Provide a "programming environment" which is simple enough and
safe enough that customers can write their own features. Do this by providing a
virtual machine, with a controllable interface to the real box, and some extra
abstractions to make coding easier.

As a sweeping generalization, interpreters enable easier development
environments than compilers. If nothing else, you can try things out instantly,
without having to wait for a compiler to run, but high-level debugging tools can
also usually leverage tl1e interpreter's environment to allow arbitrary examination
of variables, single-stepping through lines of source code. Because the
abstractions the customer needs are high-ish level building blocks, the size of the
customer-written code is likely to be small-ish, so you can probably afford to
interpret it, so do. Besides, as Gosling points out in his defense of Java byte
code, an efficient interpreter may theoretically be Jaster than native machine code
on any processor whose power is limited by memory fetch speed (like most of
ours).

A Safe Interpreter effectively gives you a big leap in flexibility and time-to
market.

Real examples: CCR scripts allow Ml call center customers to script their own
call flows.

The other obvious example from the computing industry is Java (or maybe it's
called J ava** by the time you read this). There is at least some talk of putting a
Java Virtual Machine onto the M1.

Extremely real example: The archetypal Safe Interpreter was my driver during
a journey along the Afghan border. He spoke six languages, could fix the truck,
and knew his way around the local tribal customs, providing a safe interface
between his customer and a pretty gnarly reality. He very effectively converted
naive requests into reasonable actions, without allowing us to stray into the
(many) nearby areas that would prove unsafe.

Norte! Proprietary

Version 1.0 Part II: Implications for Design

3.2 Not-so-good patterns

3.2.1 Busy wait 'l
This pattern has many flavors, but is often a misguided version of the
Transaction Engine. You usually have a choice between designing your lowest
layer around interrupts or polling. Interrupts stop you in the middle of what
you're doing. Polling requires you to go and check if anything needs doing. In a
hard real-time environment, interrupts are more usual, but both have their place.
Once you get above the lowest layer, you really want the software to wait quietly
for work to be fed to it. Any other action ought to be unnecessary.

A Busy Wait eats up CPU cycles to no visible advantage. It says, "Are we there
yet? Are we there yet? Are we there yet? ... " until there's something to do.

In general, a priority-based system can tolerate at most one Busy Wait with no
impact on performance, and it will only run when there is really nothing else to do.
In contrast, a class-based scheduler (which we VxWorks doesn't directly provide,
but WORKSHED sort of is) allows Corrective Audits, for instance, to be written as
simple infinite loops and then manages to allocate them only a portion of the
CPU time.

The most common place to find Busy Waits in Ml code is when a task needs a
very short delay. These Busy Waits should be avoided, as they not only waste
time, but tend to spawn errors whenever we speed up the CPu. If you must do
one, the following unusually portable copy is provided for your cloning pleasure.
It came from the set download code, buried deep inside TCM_OUTPUT_MSG:

START TIME := RTCLOCK;
WHILE-AOUTPUT(OUTPTR) DO

IF RTCLOCK - START TIME >= .DL WAIT TIME THEN
BEGIN -

BUFFER OVERFLOW(.ERR30,570,OUT DATA[2);
RETURN; -

END

The SL-l "tier" processing within WORKSHED also uses a Busy Wait to poll for
input, monitor Ring Again calls, etc.

3.2.2 Global variables 'l
This is a tactical idiom for doing lots of different things. Global (or at least
shared) buffers can be very effective at improving real-time performance. But
Global Variables can also be used to avoid careful design; as long as all important
state information is kept in Global Variables, you don't have to think very hard

Norte' Proprietary 89

Part II: Implications for Design Version 1.0

about what your API should be. The entire POOL module is an extended example
of the Global Variables pattern.

Problems with the Transaction Engine pattern frequently stem from designers'
having made the Progress Mark a Global Variable. To begin with, anybody can
change its value. Designers sometimes take advantage of this to short-circuit the
normal state transition progression. This works, but can make it very difficult to
understand the underlying logic of the state machine. The other big problem
appears when we need to run more than one copy of the state machine (for
instance, when two attendant consoles are operating on the same Ml switch) .
What we need are private instances of the Progress Marks, but this has not
generally been done, which means that the code generally breaks. In the case of
consoles, the procedure SETATTNPTRS () was created to make sure that the global
variables are refering to the right console instance, but we end up having to
invoke it billions of times per call.

Two examples in one

The overlilY input processor is a reasonably useful piece of SL-l code. However, it
actually contains both the Busy Wait and the Global Variables patterns. Client code gets
invoked on every tU;neslice, and has to check SCINPUTMSG to see if there.is anyJ:easoo
for it to have beeo called. If it only checks SCINPUT to see what the inputis, it will
produce random behavior. Both of these variables are global, making it difficult to
handle multiple terminals. SET _SLICE_ VARS sets up all the right globals to get around
this, but what you really wanted was for each terminal to have private copies of the
variables.

3.2.3 Repl icated data ~

90

The Ml is a network, and it is frequently efficient to keep copies of some
information at more than one node of that network. For instance MAT and the
Ml Core each have a replica of most of the configuration data. One example of
how unwieldy this can get is the number of telephone directory databases an
enterprise ends up maintaining. Ever try to get your phone number changed in
"all" of the Nortel databases?

Especially within a node, the temptation to replicate data should be resisted. It's
far easier to keep data correct if there is only a single master version, and all other
applications that need the information query the master for it. (If everyone gets a
pointer to the data, references are faster, but it gets harder to make changes.
Consider the case when data is deleted but some user continues to reference it. It
kind of works for a while, but probably has stale data, until that portion of

Norte! Proprietary

Version 1.0 Part II: Implications for Design

memory is reallocated and written over by someone else. These are really tough
to track down, because the appearance of the symptom is linked to some
unrelated event!) If real-time or survivability concerns make replication
unavoidable, then we must at least think through a protocol for ensuring that the
copies can't get out of sync, and we probably want a Corrective Audit too.

3.2.4 Overlaid data ~
In the embedded systems philosophy, bits are precious. The first SL-1 had only
16K words of store in total, including program store, protected and unprotected
data, and I/O buffer space. People try to save bits, especially in structures that
have many instances like Call Registers, by using the same field to mean several
different things in different contexts. This was so important to our early
designers that the SL-1 language makes you manually code the word in which you
want each element of a structure to appear.

The technique is reliable if and onjy if the different uses of a given bit can't collide.
The problem is that, as features evolve, features that were once mutually
exclusive start to cohabitate. If one feature overwrites data stored by second
feature, the latter will behave randomly. Sometimes, the random behavior will
even be correct, accidentally. Like all intermittent problems, these bugs are very
tough to understand, even if they are easy to fix once understood.

3.3 The usual suspects: Patterns of problems
Given the claim that many characteristics are ubiquitous in the M1 design, it
should not be surprising to see that certain villains are repeat offenders. Apart
from the issues already highlighted in the above Patterns discussion, expect the
following kinds of failures.

3.3.1 Race conditions ~
Race conditions are the first of a broad class of ills that are endemic to multi
process designs. Race conditions happen when two independently-running
processes modify information about a single real entity, resulting in non
deterministic behavior. In other words, if process A gets there fltst, the results
are different than if process B does. Within the M1 Call Processor, many
independent processes send messages to each other. Also, as discussed in the
previous chapter, the Ml itself has become a network of components which

Norte! Proprietary 91

Part II: Im:plications for Design Version 1.0

communicate through messaging. A further layer out, the Ml connects to the
PSTN through trunks using one or more different messaging standards. All this
asynchronous messaging leads to many different strains of race condition.

The worst problems occur when a task thinks it knows about a state that has
really changed, and continues about its work without checking. The farther it
gets, the more likely it is to be trampling something, and the more backtracking
will be necessary to get back to a sane position.

Race conditions are nasty problems to debug, because they tend to happen
intermittently. One class of "Heisenbugs"14 traces to race conditions. Other race
conditions happen only during the customer's busiest hour. Particularly
malevolent ones happen only during demos. The intermittence of race
conditions means that the best way around them is by careful analysis and
planning, rather than by hoping to detect them during test.

One way to help software to detect race conditions (and other maladies) is to
design handshakes into protocols. The Ml has had problems with oversimplified
download protocols, where the absence of an acknowledgment to a message
might mean:

(a) I didn't receive your message,
(b) I got it, but I have no idea what you're talking about, or
(c) I got your message, I understood it, and I'm doing just fine, thanks.

The Transaction Engine pattern also helps avoid some race conditions, but they
still happen.

3.3.2 Deadly embraces ~
This is the friendlier European name for "deadlock". Like race conditions, it is a
problem stemming from having multiple processes running, but this time each is
waiting for the other to say something, or to release a semaphore. Another cause
of deadlock is Busy Waiting. If a high-priority process is in a tight loop checking
its input buffer, it may be preventing another process from being able to send
messages to that buffer.

Peer-to-peer messaging, where neither end has priority over the other, is .
especially vulnerable to deadlock if the protocols aren't designed carefully,
especially if both ends have "blocking" semantics, that is they wait for a response

14 Errors which change or disappear when debugging tools are turned on (after Werner Heisenberg's work in
quantum physics).

92 Nortel Proprietary

Version 1.0 Part II: Implications for Design

to each message. The usual safety precaution is to run a timer which wakes you
up if you don't hear from the other guy.

In contrast, "livelock" is a situation in which some critical stage of a task is
unable to finish because its clients perpetually create more work for it to do after
they have been serviced but before it can clear its queue. Livelock differs from
deadlock in that the process is not blocked or waiting for anything, but has a
virtually infinite amount of work to do and can never catch up. This doesn't
have to be an overload situation; it could just be a bug that, in the process of
handling a message, recreates the same type of message.

3.3.3 Constipation ~
This is yet another pattern common to miscommunicating processes. A process
sending a lot of messages may run into this problem, which in tum can lead to
deadlocks. The problem is that all the buffers get filled up because nobody is
reading anything. This is especially likely if the reads are being done at a lower
priority than writes. One reason to do some flow control at the leaf nodes it to
reduce the risk of constipation further along the tree.

A constipated process will either hang, or start dropping messages on the floor.
Either case will cause you grief, but if you can't prevent the situation, you must at
least choose which of these two failure modes is likely to be least damaging.

The classical place to discover Busy Waits is in output code that doesn't want to
cause constipation, on a system that doesn't provide a good mechanism for very
short delays. For instance, when we build faster CPUs, we often discover that
LAMP_AUDIT starts sending out messages faster than the rest of the equipment can
handle. We should probably expose VxWorks' taskDelay () or even nanosleep ()

to SL-l to remove this excuse ...

3.3.4 Software version mismatches ~
A classic recurring networked-computing hurdle is handling software upgrades.
You can't change the software on both ends of a communications pipe at
precisely the same instant. This leaves you with one of the following choices:

• accept random results during the phase in which the versions are
mismatched

• take (at least a portion of) the system out of service while you upgrade all
components

N ortel Proprietary 93

Part II: Implications for Design Version 1.0

• pay a performance price to make your protocol completely version
independent

• freeze the interface
• pay a code-bulk price to have version-tolerant designs

None of these choices is really ideal, but usually at least one is tolerable in any
given situation. The crises come when the problem was forgotten, and the
choice not made explicit, or when a collection of components carefully code up
different choices.

3.3.5 Partial failures ~
Ml is a network, and most of the network must be working for anything useful
to result. One thing that happens to us sometimes is that a portion of the system
gets in trouble, and reinitializes. If other nodes don't hear about this, the
Replicated Data they have about this node's state will now be incorrect. From
this point on, any number of symptoms may appear. This is one of the reasons
for Corrective Audits and handshakes.

3.3.6 Too' many tasks ~
The root cause of any of the above problems may be a design based on too many
asynchronous tasks. The 00 design paradigm asks you to think about all your
objects as independent communicating entities. It's a useful discipline, and may
help with component reuse or object distribution across platforms. However,
just because you've formulated a design this way doesn't mean you always have to
code it this way. Your elegant diagrams may result in slow code with severe non
deterministic wobbliness. Sometimes all you really needed was a procedure call.

3.3.7 Power and grounding problems ~
Meridian 1 seems to be plagued by these, especially in Florida. Repeated
hardware problems can usually be traced to this source, although on the older
systems faulty cabling also gave us many headaches. Pournelle's Law15 holds that
if you ever have any computer problem, check your cables. Successive recent
generations of our PBX have tried to reduce our problems by simplifying the
cabling-probably quite a sound plan of attack.

15 Jerry Poumelle, science fiction writer and senior contributing editor to Byte magazine.

94 Nortel Proprietary

i1 ersion 1.0 Part III: Software Architecture

Part I II
: : -o~tvJare

: Arc~itec~ure
. I \ ir" I

I
~"WWW"'~tg

Norte! Proprietary 95

Part III: Software Architecture Version 1.0

96 Nortel Proprietary

Version 1.0 Part III: Software Architecture

4. Core software architecture
APXt'tEKT())V: The word and the sensibility are ancient Greek. "Architecture"
evokes designs that mix clever engineering with fine art, a coherency of structure
and ornament, a delicate balance of forces. One Victorian gentleman lectured,
with charming bombast, "No person who is not a great sculptor or painter can be

an architect. If he is not a sculptor or a painter, he can only be a builder."16

Alan Kay pointed out that the architecture of gothic
cathedrals came from people with the art and science to
imagine fantastic stone structures that were mostly air; the
pyramid builders, while also impressive in their own way,
basically made rock piles. The cornerstones of a software
architecture are the long-term decisions we make about
where we allow or restrict flexibility in our structures.
Kay is one of a number of luminaries who have lately
argued to varying extents that the correct highest-level

software architecture is necessary, and perhaps nearly sufficient, to produce all
manner of good things in the final product: efficiency, correctness, robustness,
reusability, even beauty. In essence, the argument is yet another return to
Dijkstra's separation of concerns.

Part III of this book describes our core software structure. If the M1 is not quite
a cathedral, neither is it fair to say that it was built with no thought of
architecture. The problem is more that the architecture was best suited to the
original specifications of the building. It has since undergone many renovations
and extensions by different owners, and has a new foundation, new siding, and
new plumbing. If not pristine, it is at least full of character and more or less
functional, with only a little dry rot.

This chapter will attempt to cover the big picture, using the descriptive models
Kruchten espoused in his "4+1" methodology.17 These amount to five different

16 John Ruskin, whose works included The Poetry of Anhitecttlre and most of the 19th century's art criticism.

17 Phillipe Kruchten, lEI ':1 ': Software, November '95; see http: //www.rational.com /supportitechpaperslieee/

Norte! Proprietary 97

Part III: Software Architecture Version 1.0

views of the same architecture, which between them capture all of the major
aspects of the design. The remaining chapters of the book delve into a bit more
detail-not everything you'll ever need to know, but hopefully enough to get you
started. With teams on three continents busily modifying the software. you'll
probably need to go look at the code if you want to understand the next level of
detail with any reliability.

4.1 The logical view

98

At the top of the software layers are the two basic interfaces the Ml has with the
world. On the left is the craftsperson interface (MAT and the overlays): on the
right is call processing. SYSLOAD and INIT are used to reboot and restart the
system, respectively. WORKSHED is the scheduler for all SL-l software. The
Hardware Infrastructure (HI) is the maintenance framework built by the Thor
team. POOL is the single module that declares all symbols (data types and
procedure names) shared between SL-l modules. The third-party things include
memory management, protocol stacks, and assorted spare parts. And the
operating system is currently VxWorks, although we have made several additions.

The current structure reflects the evolution of tl1e product. In tho beginning, th~
SL-l software used to do more or less the whole job of running the switch, so it
needed its own scheduling and management functions. SL-l code communicates
with the real equipment through a family of procedures called intrinsics. Because
this interface is fairly narrow, several generations of porting from one processor
family to another have been relatively painless. In 1990, one of these porting
projects, Thor, encapsulated the SL-l software, and hoisted it on top of a
commercial real-time operating system, VxWorks. VxWorks in turn now
provides a platform for many new services, typically coded in C or C+t, Among
these new applications, the biggest are MAT, Mobility, and SCCS.

Norte! Proprietary

Version 1.0 Part III: Software Architecture

Each of these components will be discussed in more detail in the coming
chapters.

SYSLOAD

features
& protocols

Nortel Proprietary

call
events

utilities

99

Part III: Software Architecture Version 1.0

4.2 The process view

100

The run-time relationships now look roughly like this:

3J-d party platform extensions Nortel's
extensions

• 0 ' • ~. " ••• ••• ' •••••••••••••••• . ' ~ •• -. ' . • • •••• " ••

VxWorks Operoting System

telephones,
trunks, ...

Maybe the first thing to notice here is the prominent blob labeled "SL-l". As
stated, there was a time when almost all of the PBX software was written in SL-l,
and it is still responsible for the bulk of the traditional PBX-type work. It has
exclusive responsibility for the call processing state machine. It runs all of the
calls, manipulates most of the configuration data, keeps the call processing
hardware in service, and audits everything to make sure it's all still okay.

Until recently, if the SL-l task trapped, it was quietly restarted. Other calls, and
certainly other tasks, were unaffected. This gave us some troubles synchronizing
states between SL-l and non-SL-l code, so now we restart the whole machine.
The original model was probably the right idea, though, and we are likely to be

Norte! Proprietary

Version 1.0 Part III: Software Architecture

pressed back in this direction to improve reliability of non-SL-l applications and
decrease recovery time. 18

The other key observation is that the operating system is not a "process" at all.

4.2.1 How processes talk to each other
The different pieces of software communicate with each other through a variety
of mechanisms:

• For intra-SL-l message passing, shared memory is probably the most
common. It's fast, which still matters. But it's susceptible to corruption if
more than one process .is writing to the same database, which is why we try
to keep all call processing state data isolated to SL-l code. There are many
implicit conventions about how SL-l global variables will be used.
Procedures control subsequent actions as side effects of updating these
variables.

• Asynchronous inter-process communication can be with VxWorks
messages and semaphores, but also sometimes with shared memory, which
sometimes works.

• Direct procedure calls are the norm with the core processor, as they are
well optimized for speed, and avoid some scheduling complexities.

• Recently-added software has made some use of Remote Procedure Calls
(RPCs) and Common Object Request Broker Architecture (CORBA).

18 What we really need is the concept of "call death", as opposed to "process death". Each CR is sort of a
lightweight task control block, and usually the other CRs have valid data. Don't kill SL-l; kill this call.

Nortel Proprietary 101

Part III: Software Architecture Version 1.0

4.3 The physical view
The physical layout of software is determined both by history and by engineering
considerations. It has a great effect on the "non-functional" aspects of operation
that were discussed at length in Chapter 2.

4.3.1 Mapping jobs to processors

102

On the original SL-1 PBX, this was an easy decision. You had one processor. It
did everything.

The core CPU got overburdened, and the code got more complicated. The
software was poorly documented and brittle. It became increasingly hard to
make substantial changes to the SL-1 code without breaking something. Delivery
of SL-1 code changes was locked to global software release schedules. Features
written in SL-1 could obviously only be sold to Ml customers. And in any case,
you couldn't hire designers who understood the SL-1 language. Pretty soon, the
decision began to look equally easy, although the answer was different: do things
anywhere but the main processor. This led to off-board processing for ISDN,
microcellular, OA&M, voicemail, various ACD components, and CDR
formatting.

Then a curious thing happened. Some designers began to realize that SL-l was
actually a reasonable vehicle for call processing. There is an opinion (by no
means universally-held, but the faction is growing) that any code which is
contingent on call processing states should be done not just in the core
processor, but in SL-1. Signal processing, on the other hand, is well suited to off
board processing, since after all the PBX is expressly designed to stream voice
data from one place to another. CDR formatting and GUIs are also sensible
things to run elsewhere, but care must be taken to engineer both the size of the
pipes going to the off-board processors and the priority of the tasks servicing
those pipes.

Nortel Proprietary

Version 1.0 Part III: Software Architecture

4.3.2 Mapping data type to store type
Cache

· recently used code & data
· fixed size (depends on

hardware generation)

Unprotected RAM

· call & equipment states
· globals, statics, & mallocs

Protected RAM

• configuration information
(=structured customer database)
· mallocs (mostly SL- l)

< Load, Save
Hard disk

. customer database

Flash ROM

· program object code
· default database
• patches

~ constant churn
~~~ 

updated by call processing 
and OA&M code: 

resurrected by Warm start: 
reinitializ b Cold start 

<: new software releases 

This whole issue is covered in detail in the Platform chapter, but there are a few 
overriding guidelines. 

Caching isn't planned, it just happens. Whatever was most recently needed is in 
there. This is sometimes the same as what will soon be needed, but often not. 

Unprotected Data is for things like state data that changes frequently. Protected 
Data is for more permanent stuff. T he time to read both types is about the same, 
although writes to protected data are noticeably slower. 

The bulk of feature and protocol logic goes into the Call Processor, historically in 
the SL-1 code, and now increasingly in C or C++. ISDN chose not to follow 
this rule, instead putting a lot of logic into the peripheral card. This helps 
performance if the messaging overhead to the core CPU is small, and it speeds 
development if the interface is clean and simple. However, they must resolve 
many of the standard Ugly Patterns in distributed computing. Also, ironically, 
they will have to pay a substantial development price to port the functionality if 
(as is expected) the next generation of M1 doesn't have standard Network 
Equipment. Normally, putting the logic onto an adjunct processing board should 
mean close to zero rework if we change the main architecture. Despite the 
problems with SL-1 coding, on balance life is probably easier if call processing 
code is implemented there and peripheral software doesn't try to understand 
about call states. 

Norte! Proprietary 103 



Part III: Software Architecture Version 1.0 

4.4 The development view 

104 

Maybe the best way of understanding the scope of the M1 software challenge is 
to look at the loadbuild process. The source for the M1 system is written in 
SL-l , C, C++, and various native assembly languages, as well as taking input from 
a number of control and data files. The SL-1, assembler, and C source lives in 
the PLS library. The C++ is in ClearCase. The source code for Orbix is in hiding, 
and was last spotted in Ireland. The loadbuild process draws from a vast-ish 
array of these source files to produce a single executable image for a particular 
switch. Don't focus too hard on the details. They change over time, and 
between development groups. The picture is really here to demonstrate the 
complexity that has evolved into the static structure. 

GJJJoPoPoP 
sour ce SLi source C source c.+ source assembly 

I t I I 

1 compsl1 (sJkol!lp, gee, ¢c, gas) I 

b 
archive files 

cprom 

objec"ts 

, 
o 

diskos.sym 

source OS canf igo 

diskos 

! 

oP 
xxxDB 

! 

libos.a 
I 

utility 

& 
Ovtres.o 

oP 0 000 []Jl 

I 
"'1 

! 
L .. 

* ~ 

opco1e fde SU rnf,g '---_-+ __ l.......---l 

cont 'g.ree 
I 

psdl.rec 

o o 
sllres res.sym disksys resfile 

floppy/hard disk 

N orte! Proprietary 

o 
renfile: 



Version 1.0 Part III: Software Architecture 

4.5 Scenarios 

4.5.1 Cold restart 
If a user presses the MANUAL RESET button on the CP card, the system will be 
rebooted. That is, the database will be reloaded (usually from disk) and all of the 
key data structures will be reinitialized. Unlike a warm restart, the active calls will 
not be resurrected. 

Looking at the steps in detail, the fIrst thing that happens in this scenario is a 
hardware interruptCD. This signals VxWorks to restart the operating system~. 
This in turn restarts the various device drivers@ enabling the hardware®, and 
recreates all of the main tasks~, including tSLl. When tSLl is recreated, 
WORKSHED is restarted and it in turn invokes SYSLOAD@ to reload the customer 
database. Once SYSLOAD has fInished, WORKSHED asks INITCV to reinitialize all of 
the major SL-l data structures and polls the network hardware. Finally, WORKSHED 

launches various background activities® and we're ready to handle calls. 

Logical View 

Norte! Proprietary 105 



Part III: Software Architecture Version 1.0 

4.5.2 Service change 

106 

A craftsperson makes changes to the customer database by typing commands at a 
TTY terminal. 

Looking at the steps in detail, each keypress generates an I/O interruptCD into 
the CPo The TTY interrupt service routine queues the character in the TTY 
input buffer~. WORKSHED@, in one of its infinite loops, notices the character and 
passes it up to the overlay supervisor@)o This in turn passes it up to the service 
change code~ for whatever overlay this TTY has active. The overlay will 
attempt to parse the command, and will usually discover that it needs more 
characters, and just go back to sleep until they arrive®. This process will repeat 
itself, building up the command character by character. Finally, once the whole 
command has been typed, the overlay will do something usefulCV. 

Logical View 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

4.5.3 Telephone call 
A phone call is composed of a series of transactions, each of which goes roughly 
like this. 

The telephone set (say a digital set) sends a TCM signaleD to the peripheral. This 
gets converted into the older SSD format0, and relayed on to the CP via the 
hardware intrinsics. The network input interrupt causes the ISR to fetch the 
message from the Peripheral Signaling card on the NE shelf, and enqueue it for 
call processing@. WORKSHED sees the message, finds the associated terminal, and 
reacts to it based on the current terminal and call states@). It may also send a 
message back through the same path~ to either the originating or terminating 
terminal@. 

Logical View 

Norte! Proprietary 107 



Part III: Software Architecture Version 1.0 

108 Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

5. The computing platform 
The platform is the combination of hardware, fIrmware, and software that 
provides the foundation upon which the rest of the M1 can do its job. The 
platform provides a robust, effIcient environment for applications to do their 
stuff, and abstractions to cushion them from the harsh realities of evolving 
processor idiosyncrasies. 

When our systems go down, there are tremendous potential costs to our 
customers, and ultimately to Nortel: lost revenue, legal costs, lost customers, 
replaced equipment, manpower (including sending people to site, investigation, 
patching, etc.), and potentially even human costs (for instance, when the M1 
serves a hospital). While all designers can help minimize software faults, most of 
the responsibility for containing the effects of faults, providing graceful 
degradation, or at least recovering from total outages rests on the platform team. 

This chapter will focus on the Call Processor platform, for the most part ignoring 
other software platforms within the M1 system. This is partly because tl1e bulk 
of the M1 software lives on the CP, partly because the platforms on several of 
the adjacent processors might reveal similar lessons, and partly because I don't 
know anything much about the other ones (like MAT, SCCS, EIMC, etc.). 

5.1 What's in a platform? 
The platform doesn't really contain anything customers know they want. Its job 
is to enable designers to create applications which live up to the pervasive 
requirements discussed in Chapter 2. A few ingredients are critical: 

• Multitasking - (but with fast context switches) to simplify designs 

• Mutual exclusion - to prevent other tasks from running some of the time 

• Suitable scheduling - to help the tasks work sensibly together 

• Redundancy - so the system is always available 

Norte! Proprietary 109 



Part III: Software Architecture Version 1.0 

110 

• Fault handling - some degree of fault tolerance, plus diagnosis and (self) 
repatr 

• Cold/warm restart - for initial installs, and when fault handling doesn't 
suffice 

• Communication with other local nodes - synchronous and asynchronous 

• Timers - lower overhead delays and wake-ups, plus reliable time of day 

• Memory management - including hardware protection 

• Device drivers - disk, tape, terminal, and maybe others 

• System configuration - because we support many different setups 

• Live software upgrade - so that we can install new features without 
causing outages 

• Patching - so we can fix the new features 

• Debuggers - hopefully including a set of field-safe tools 

• Reliability - because our customers have no tolerance for down-time 

• Low overhead - both in terms of real-time and code bulk 

• Bearable cost - because customers want to buy features, not platforms 

Some other services are just "nice-to-haves", because we can work around their 
absence or create them ourselves on top of the platform: 

• Third-party software - the larger the available selection, the better 

• CORBA - to let the third-party stuff talk to each other 

• Quality of service selectability for control: 

• Reliable, Flow Controlled (Slow) 

• Try-once, Overload Controlled (Fast) 

• Name mapping 
• Protocol ,-ersioning 

And a few services which are standard on some operating systems we would 
prefer to live without: 

• GUI libraries - our GUTs are all off-board for performance reasons 

• Garbage Collection - none are quite fast enough (yet) 

• Web Browsers - gimme a break 

Not surprisingly, we have cobbled together a system that delivers reasonably well 
on the must-haves, if less convincingly on the would-be-nice:;, and avoids the 
rather-nots. Keeping the cost bearable and the code bulk down will probably 
always mean not having all of the bells and whistles. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

Although our platform is now based on VxWorks running on an MC680xO, this 
should be viewed as the current commercial platform, rather than the only or fmal 
solution. As designers, we should expect to see at least two, and possibly three 
platforms in the near future. Nonetheless, real-time code, even good, (Ded, 
layered, concerns-all-separated, real-time code, is ultimately not vague enough to 
let us completely ignore the specifics of our platform. T he following sections 
attempt to impart a broad understanding of how VxWorks' idiosyncrasies affect 
our designs, and also how our code might be written to also allow reasonably 
painless porting to other ass. 

Why should we even have a platform team? 

Years ago, we built a processor which was sO darned unimprovable we called it 
"Omega". Right. That was four generations ago, and it seems unlikely we will ever get 
a "last step" in processor evolution, but it Illas the last time we tried to have a CPU built 
just for M1. Somebody noticed that there are other organizations (eg: Intel, Motorola, 
etc.) whose CPU production volumes and corresponding R&D efforts are so much 
huger than ours that it seemed silly and unnecessary to compete with them. 

The next logical step was the operating system: if we don't run on a scratch-built chip, 
why do we need to have a home-brewed Real-Time Operating System? T he answer 
turned out to be that lots of commercial operating systems were a poor fit for our 
product. We need our platform to be small, fast, and fault-tolerant. It is perhaps good 
news that hardly anyone fills our needs perfectly, but we are now able to buy pieces of 
the solution that do a lot of the work for us. The theory goes that we can then tunc 
them, or maybe layer things on top of them, to end up with a good enough platform 
that has two strategic advantages over the old one: it's cheaper, and we can buy some 
applications off the shelf which will already run on them. 

By induction, we could simply buy each successive layer, including the applications, and 
all go surfing. The good news Gob-security wise) is that we seem to be good enough at 
solving some of the market requirements that it's worth keeping the R&D shop open. 
However, more and more of our work will leverage externally-designed products. 

5.2 Vanilla VxWorks 
Wind River Systems provides pretty good VxWorks documentation. In particular, the Reference 
Guide gives an exhaustive API description, and the Programmers Guide gives instructions on how to 
use it. The Training Workshop notes are also good, but are best understood with the accompanying 
lectures. Unfortunately, collectively these three documents are about six inches thick. 

This section is an attempt to get you started with a lower overhead. It's not a substitute if you need 
to be an expert, but it's probably good enough for a typical designer. For the next level of detail, see 
Illside Thor. 

Norte! Proprietary 111 



Part III: Software Architecture Version 1.0 

This section attempts to distill the most crucial VxWorks19 essence into a 
manageable volume, and adds some specific rules for use within the M1 context 
and a few juicy stories about how things have gone wrong when these rules 
weren't followed. 

VxWorks is a commercial real-time operating system suite which runs in (among 
other things) JPL's Pathfinder Mars landing vehicle, and the Meridian 1. Not 
unlike the nuclear missiles in which it also runs, VxWorks was built for speed but 
not comfort-latency is known and controllable, but major design decisions 
consistently favored performance over safety. 

VxWorks is based on preemptive priority multitasking, simplifying control of 
concurrent transactions by allowing solutions to mirror the real-world problems 
they're modeling. 

The VxWorks kernel is a set of normal subroutines, as opposed to the other 
common types of kernel: supervisor mode subroutines, a set of tasks, or a fried 
chicken pitch-man (oops, sorry). In VxWorks, all tasks run in supervisor mode 
(remember, performance over safety). Therefore, application code and Interrupt 
Service Routines (ISRs) can invoke the kernel with normal subroutine calls, 
keeping the overhead extremely low. 

Even though we now (since CP2/Rls21) use VxVMI to manage memory 
protection, tasks still share a single flat address space. This gives us fast inter-task 
messaging and fast context switches, but it means bad pointers in one application 
can end up trampling store belonging to any task. Also, there is no explicit 
detection of memory leaks, and certainly no garbage collection (speed, not 
comfort). 

5.2.1 Tasks 
Task implementation is also very light-weight: each task is represented by a Task 
Control Block (TCB) and a stack. Apart from the full register save, task context 
switching is not much more expensive than a subroutine call. On the other hand, 
stack crashes are not detected (yet again, performance over safety). 

19 For the curious, the name "VxWorks" comes from the early days when Wind River made a toolkit that 
"worked" with Microtec's VRTX real-time operating system, although VxWorks no longer contains any of 
the original VRTX code. Nobody admits to knowing what VRTX stands for anymore ... 

112 Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

Why might we prefer stack overflow detection? 

Outside of North J\merica, public dial plans are seldom the regimented 3+3+4 digits 
we're used to seeing, and variable-length directory numbers arc common. /l site in 
England Oet's call it Big lmportant American Bank) did a configuration change to 
handle International digit processing. The problem was that the software which does 
translations is recursive, and the depth of recursion is dependcnt on the numbering 
scheme, so that evcn though it tested out fine at homc, it blew up in the field. 

1t gcts worse. The stack overflowed into protected memory, and the processor simply 
stopped dead during the next recursion when it tried to write to the stack. The 
watchdog then started barking, and the CPU did a forced switch over. This happened 
erratically, but often, so it looked like we suddenly had huge hardware problems. 
Tracking this down to its root cause ended up being very expensive. 

Moral: If you create a new task, make sure to allocate a generous stack. Not only will 
it be used to store all of the locals and registers for your own procedures, but also for 
any operating system procedures that you invoke. Worse than that, most interrupt 
handlers also use YOllr stack space. So allocate what you think is more than you need, 
test your code thoroughly (ideally under a reasonably heavy traffic load) and then use 
the VxWorks checkStack tool to make sure there was still a comfortable buffer of 
unused space ar the top of your stack. Remember, stack overflows aren't detected, so if 
you get this wrong,yo1lr code will still work. You'll just have trampled somebody else's 
data, which gets very tough to debug. r\ bigger stack doesn't cost any more rcal-time, 
and memory is cheap. 

Bonus advice about stacks: Never return a reference to a procedure's local 
variables. Locals are kept on the stack, whieh gets reused by other procedures after you 
return. The simplest case actually works: in the absence of interrupts, the procedure 
which just called you can see anything you left on the stack, as long as it hasn't called 
any other procedures yet. This is sort of a curse, because it lcads to transient errors, 
rather than simply failing utterly every time you test it. Returning pointers to local 
variables is a good problem to look for in code inspections. 

As a rule, the best time to create tasks, or any other system resources, is on a 
system restart. On any real-time critical system that may run for years without 
taking a break, it's better to have a reusable pool of each resource type that's a bit 
bigger than you need, than to keep allocating and freeing resources. The same 
applies to memory allocation. (See the Memory Manager pattern in Chapter 3.) 
Ml software mostly follows this guideline, but the problem is that we use some 
third-party software that doesn't. In particular, the TCP lIP stack and the ORB 
both do dynamic malloeS and task creation, and have therefore caused some 
performance problems and memory leaks. 

The old SL-l code now runs as a single self-contained VxWorks task, tSLl. 

Within this task, WORKSHED schedules the SL-l transactions as if they were being 
handled by a number of separate tasks. See the next chapter for details. 

Nortel Proprietary 113 



Part III: Software Architecture Version 1.0 

5.2.1.1 Task state transitions 

114 

VxWorks allocates CPU time to tasks in a very predictable manner. Except 
during interrupts, the highest priority task that's been in the ready state longest is 
always the one running. When application code or an Interrupt Service Routine 
(ISR) does anything that might make a higher priority task ready to run (such as 
giving a semaphore) the corresponding kernel subroutine ensures that the right 
task will be run. All state transitions happen as a side effect of kernel subroutine 
calls by tasks or interrupt service routines. If two or more tasks have the same 
priority level, the tick ISR coordinates round-robin sharing among them. 

Pended 

ITBITBITB 
De 

ITB event happens (eg: semaphore released) 1 --------timer expires 

Ready 

~ 
highest priority 
task in ready state 

(only this tosk is taking CPU time) 

Suspended 

ITcsl ITcsl 
ITCBI 

When a task traps, it moves to "suspended" state. VxWorks provides a "delete 
hook" option, which lets you invoke a procedure to do any necessary cleanup 
whenever a task traps. Resources like flle descriptors, semaphores, sockets, and 
memory blocks are freely accessible among tasks. This flexibility means that our 
coding policy must discourage indiscriminate sharing of resources. Since 
VxWorks doesn't, task code ought to keep track of any resources it owns and 
free them using a delete hook. At the moment we actually restart the system for 
tSL1, which is an effective if slightly heavy-handed way of ensuring that all 
operating system resources are cleaned up. 

You can end up giving a semaphore to a suspended task if you're careless and 
VxWorks won't notice (but the watchdog probably will ... ). 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

5.2.1.2 Task priorities 

Priorities are assigned on a stable basis (with the new exception of tSL1) . The 
conventional wisdom is that this is fairly easy to tune and more efficient than 
trying to compute algorithms like "run the task whose deadline is earliest". 

"Priority inversion" is when you have a high priority task waiting for a lower 
priority task to complete its work. It can happen during semaphored sections, 
but VxWorks provides a parameter, SEM_INVERSION_SAFE, in its semTake 

procedure which will prevent inversion. The trick is to temporarily set the 
priority of the running task equal to the highest priority task which is waiting. 
See the VxWorks Programmer's Guide for a clear example. We end up sort of doing 
this manually for the SL-1 task because it doesn't schedule its work queue using 
VxWorks semaphores. Also be aware that message queues can suffer from 
similar problems, which need to be planned around. 

Task priorities are determined by black magic, but there are some heuristics to 
help. In general, more important and shorter deadline stuff needs to be high 
priority (closer to 0). It's also generally better to have a server process running at 
a higher priority than its clients. Even though VxWorks lets you, it's usually best 
not to change running task priority because it gets very hard to maintain 
deterministic behavior. 

Struggles with dynamic priorities 

Tn ruslS, we wanted to get fair-share scheduling. We built it, but it interfered horribly 
with the VxGDB debugger. Early versions went through and removed aU breakpoints 
on every task-switch interrupt, had a huge overhead, and sometimes artificially elevated 
the priority of a pellded or even suspended task. So although it was almost working, 
we ripped it out before shipping. In Rls22, we redid it, but now at message interrupt 
time, not on clock ticks. The goal is to have a transaction engine with priorities 
appropriate to the current transaction. The Interrupt handler puts a priority on the 
message in the queue, and the ISH. changes the tSLl priority to do proper priority 
inversion. After another recent effort, we now change the priority of the tSLl task 
dynamically, again to try to match transaction priority with task priority. And yet 
another effort went into Meridian Evolution. We'll get there in the end ... 

Within each priority, we have enabled round-robin CPU sharing by calling 
kernelTimeSlice. The problem is that then round-robin scheduling happens 
within every priority (that is, all tasks at priority x will share time equally amongst 
themselves, all tasks at priority y will also share time equally amongst themselves, 
etc.). A more controlled but time-consuming way to accomplish something 
similar is usually to call taskDelay (0) to swap explicitly with any other waiting 
task within your priority. This would also allow you to determine when the swap 
happens, and avoid things like tUsrRoot sharing with tExcTask in a non-

Norte! Proprietary 115 



Part III: Software Architecture Version 1.0 

116 

deterministic manner. On the positive side, our method is a cheap way to almost 
get class-based scheduling. On the negative side, you have to make sure you play 
nicely with other tasks at your priority level-don't trample each other's data. 

The following is a catalog of the tasks running on a Meridian 1 switch, their 
priorities, and a rough description of what each is for. Of course this list changes 
over time, but it should give a sense of what's going on. The "i" command from 
the VxWorks shell will list the tasks running on any given load you're interested 
In. 

Task Name Priority Purpose 

[tUsrRoot] [0* ] [the initial task: configures the .rystem, spawns the 

tExcTask 0* 
shell, then exits] 
exception handling 

tLogTask 0* message logging and output 
tSwd 0 software watchdog 
hiExcTask 1 additional exception handling for HI 
tRstTask 11 restart logic: registers task starts, restarts, 

deletes 
tRpt 11 writes the report log to disk 
tTimer 11 MAT: SNMP heartbeat task 
tEvtColl 11 MAT: alarm management event collector 
tEvt 11 " 
tRdbTask 20* VxGDB host debugger task 
tMMIH 21 MSDL/MISP interface handler 
TimerThread 40 Mobility: ORB timer heartbeat task 
tNetTask 50 • task-level network functions 
tOrbixd 50 Mobility: Iona's ORB 
tFtpdTask 55 * FTP server 
tTftpdTask 55 TFTP server 
hiservO 60 HI utility tasks, handles work q'd by HI ISRs 
hiserv1 60 " 
hiserv2 60 " 
hiserv3 60 " 
hiExcScan 60 scans for exceptions on HI -managed devices 
cnipMon 60 monitors CNI ports 
ipbMoni 60 monitors cards on the CPU backplane 
tTapeTask 60 tape emulation for legacy database interface 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

RootTmrMgr 80 Mobility: timer server task 
tRlogInetd 100 rlogin daemon 
tPortmapd 100* RPC port mapper 
pdtLogin 100 direct (serial) PDT login monitor 
pdtBrkTask 100 PDT breakpoint handler 
tOTPreaper 100 old Data Transfer Protocol (should be removed!) 
tOTPlisten 100 " 
BootpServer 150 Mobility: TCP lIP bootp server for EIMC 
hifmon 230 HI hardware fault monitor 
tod24 240 24-hour time-of-day, manages non-SLl 

"midnight" audit jobs 
tSNMP 240 MAT: Simple Network Management Protocol 
tScriptMgr 240 MAT: maintenance windows 
bootpSrvrd 240 Mobility: alternate bootp server (orb-based?) 
mspServer 240 Mobility: Mobile Service Provider (call proc.) 
tPRNT 240 MSDL/MISP card interface handler 
thlpTask 240 overlay supervisor-accessible help feature 
pdtShell01 240 direct-login PDT shell 
tRlogindOO 240 MAT: network login daemon 
pdtShell02 240 MAT: network login PDT shell 
tRlogchlOO 241 MAT: network login PDT child 
tAlarmLog 245 Mobility: alarm management 
OAMSRV 245 Mobility: OA&M server 
tSL1 250** The SL-l code, basically all of call processing 

. VxWorks predefines these priorities 
H the SL-l task changes its priority depending on what it's doing 

Nortel Proprietaf)' 117 



Part III: Software Architecture Version 1.0 

Why is tSLl the lowest priority task? 

If the most important job of the PBX is call processing, you might expect tSLl to be 
much nearer to the top of the list. The problem is with WORKSHED, the SL-l work 
scheduler that acts as a mini-OS task manager. It controls a number of independent 
activities, some of which arc audits that run whenever there is nothing better to do. 
These will take an infinite amount of time if they are allowed to do so, so nothing with 
a lower priority than tSLl can ever expect to get CPU time. To make call processing 
work in spite of this, we sometimes try to change the tSLl priority dynamically, but the 
safest technique is to ensure that no other tasks take very much of the total CPU time, 
and that what they take is split up into very short segments. 

5.2.2 Interrupts 

118 

Interrupts are requests for urgent, short pieces of work to be done. They signal 
the CPU to halt normal task processing (whatever the priority) and call the 
routine pointed to by the interrupt vector table. They are predominantly used to 
service hardware (clocks, device drivers, DMA) and handle exceptions (like the 
bus errors caused by referencing illegal addresses) . 

If you have occasion to write an Interrupt Service Routine (ISR), there are a 
number of special requirements to consider. 

• Write very short, very fast, very clean code. Code inspect it thoroughly. 
It's extremely important that all interrupt code be very reliable. A bus error 
will cause an ungraceful switchover or a warm restart. 

• Don't process a message in the ISR. Just enqueue it against task code, and 
return. Do the processing as part of standard, prioritized task execution. 

• Remember that there is no "context". When you get called, tl1e registers 
contain iliings that are important to whatever code you've just interrupted. 
If you're doing anything at all complex (and you probably shouldn't be!) 
you'll need a wrapper around your code: 

Norte! Proprietary 



Version 1.0 

Interrupt 
Vector Table 

Part III: Software Architecture 

Interrupt Service 
Routine (ISR) wrapper 

hardware 

vector number V 
handler: 

change stack base 
save critical registers 

handler - <your ISR code> 

Typically: 
· reads & writes memory 

mapped I/O registers 
· write to memory 
· write to a message queue 
· semGiveO 

" 

restore registers 
restore stack base 
return from interrupt 

\ 

But never: 
· printfO 
· semTakeO 
· maliocO 

• Finally, remember that the MC68k series chips use the task stack for 
processing interrupts, so people have to allocate enough space to handle 
the worst-case nesting of interrupts on top of normal task recursion. If you 
need a lot of stack space (and you probably shouldn't) you should reset the 
stack base to a safe area of memory that you have previously allocated, and 
then restore it before returning. 

5.2.3 Types of memory 
At loadbuild time, VxWorks allocates three types of memory: text, data, and BSS. 
"Text", per Unix jargon, is where your executable code is stored. Data segments 
contain text strings and other large constants. Blocks Started by Symbol (BSS), 
are things like arrays and static C variables. Text and Data comprise the load fue. 
BSS is not loaded, but is zeroed out during the boot process. 

The rest of the memory we use is allocated dynamically (via malloe), usually 
during a restart. There is no simple way to allocate memory for use by a task in 
such a way that it would automatically be deleted if the task goes away (although 
if the task traps, and we go into a restart, all the unprotected memory is cleared 
anyway ©). Memory protection and restarts are covered in more detail in 
Section 5.3.1. 

WARNING: When different VxWorks tasks call the same procedure, they get the same text, 
data, and BSS segments (unlike in Unix, where only the text segment is shared). Their 
stacks will of COUrse be different, so code reentraney is possible but it's not automatic. 
(Speed is better than safety.) 

Norte! Proprietary 119 



Part III: Software Architecture Version 1.0 

5.2.4 Posix 
Portable Operating System Interface for Unix (posix) is the IEEE's attempt to be 
a universal, Unix-like Operating System API. VxWorks supports a Po six API 
(along with many non-Po six extensions). If we used it exclusively, it would make 
porting to some other operating systems almost effordess. However, it appears 
at present as if some of the proprietary parts of the VxWorks API are too helpful 
to ignore. But if you have the choice, stick with Posix. 

5.2.5 Assorted VxTools 

120 

The following is a list of more-or-less useful tools available on VxWorks: 

VxHelp gives detailed on-line help for the following stuff 

the shell can interpret C code to query values of variables, etc., can also set 
breakpoints (but usually use VxGDB) 

moduleShow find out what VxWorks knows about a loaded module 

Ikup look up symbols containing a given substring 

i, ti display information about one or all tasks 

tt trace a task's stack 

5, so single step 

b, bd, bdall set and remove breakpoints 

I disassemble code 

c, cret resume execution of a task 

sp, td spawn or delete a task 

Id, unId, reId load, unload, or reload a module, not usually used by us (try 
patching) 

timex, timexN times execution of a function 

spy gives a task activity profile to see who's hogging the CPU 

WindView, Stethoscope Look useful, but not currendy used much by us. 
Maybe a good job for a coop? 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

5.2.5.1 GNU source-level debug (GDB) 

This tool is allows debugging of the CjC++ portions of the Ml software to be 
debugged at the source-code level. It has a more limited ability to understand 
SL-l code, and is not available in the field. 

See T00057, THOR High Level Debtlgger in Doctoollibrary TOOLDOCS, or try 
http: //47.82.33.147 /-mtvjbg01 /SDF/GDB MJ\NUAI-SjC:ontent.html 

5.2.6 Compiled caveats 
The following catalog of hints and warnings should prove useful to designers 
doing any detailed interaction with the operating system: 

• The shell does not understand symbolic macros (#define) so use grep to 
find the corresponding value. 

• The shell interprets all variables as 32-bit integers unless otherwise 
specified. 

• The shell doesn't really understand data structures (use VxGDB). 

• TaskIds are unique at any given point in time, but they get re-used when 
the task dies! 

• VxWorks does not check to see if a directory is valid on a shell ed 

• Task variables cause context switches to be slower 

• If you use semFlush to "catch up" all tasks waiting for a semaphore, the 
semaphore state still does not go to full . 

• Mutual exclusion semaphore's may not be used in an Interrupt Service 
Routine. Use intLoek instead, but use it cautiously. intLock does not 
prevent task context switching if you either block (eg: semTake, malloe, etc.) 
or unblock a higher priority task (eg: semGive), and interrupts are unlocked 
on every context switch . 

• If you're using a mutual exclusion semaphore (or writing an ISR for that 
matter), don't do any work which could be placed outside of the critical 
region, don't pend or delay, probably don't even loop ... This will help 
avoid latency problems, deadlocks, and errors. To help this be true, you 
probably want to put an API on the routines which access your critical 
resource and initialize and manipulate the semaphores yourself rather than 
having your client code manipulate them directly. 

Norte! Proprietary 121 



Part III: Software Architecture Version loO 

122 

• Fast event occurrences can cause lost information if the task waiting on a 
semaphore is not high enough priority. It is instructive to think through 
the following example. IfVxWorks is executing this code: 

FOREVER 
{ 

semTake (semld, WAIT FOREVER); 
printf("Got the sema~hore\nff); 

then you will have the following behavior: 

> semGi ve (Semid) ~ 1 message printed 
> semGi ve (Semid) ; semGi ve (Semid) ~ 2 messages printed 
> semGi ve (Semid) ; semGi ve (Semid) ; semGi ve (Semid) ~ ~ messages printed 

If you increased the priority of the server loop, you would get the expected 
3 messages printed, or you could use a counting semaphore. 

• ~Ihen using msgQreeeive, if the message in the queue is 75 bytes long but 
you only ask for 50, the remaining 25 bytes are lost permanently. 

• Message queues end up copying the data in your message at least twice, so 
keep messages smallish. For better performance (especially from an ISR) 
consider putting pointers to the data into the message, rather than the data 
itself. 

• If you're worried that you may not own all accesses to a critical resource, 
you can use taskLoek to protect your critical region, but again, keep it short. 

• To avoid deadlocks, try using only a single semaphore to protect resources 
which will need to be accessed at the same time. Failing that, apply 
semaphores in a strictly hierarchical, nested manner. That is, have a master 
lock that controls access to the lower-Ievcllocks. Grab the master, try to 
acquire the lower locks, and if one is unavailable, free all the locks you've 
gotten so far. (This is of course a lock management transaction engine, and 
is good general advice, rather than a VxWorks-specific trick ... ) 

• malloe can be slow, and may even pend under certain circumstances. 

• taskDelay is subject to drift. For more accurate task start intervals, try 
wdStart with semGive, because this way your next timer is restarted during 
the ISR, rather than when your task actually gets to the front of the ready 
queue. 

• The Standard I/O Library contains macros as well as routines. As usual, 
breakpoints can't be set in macros. 

• Mobility, SMP, ISDN, QSIG, MMIH, and IeeM all now use the as heap. 

Norte! Proprietat)' 



Version 1.0 Part III: Software Architecture 

5.3 High availability: Our modifications to VxWorks 

5.3.1 Robust memory 
One of our fIrst extensions to the VxWorks platform allowed us to engineer what 
sort of memory gets used to handle differen t things. T he following details 
change with every generation of hardware, but the considerations rem ain valid. 
Most of the details are carefully hidden from application code by the platform 
team. 

survives 
warm start 

totally 
volat ile 

Call Processor Memory Types 

Slower 

I protected DRAM J 
protected SRAM 

I unprotected DRAM* I 
unprotected SRAM 

Speed of Access 
Faster 

* Call Registers & ACD queues 
rebuilt in unprotected RAM 
after a warm start 

The boot ROM amounts to a very short program that only knows how to fInd 
and load the main software. I t is shipped on the CPU board, and is never 
expected to change. It must be short enough that it is provably correct; it m ore 
or less can't be fIxed. 

N ortel Proprietary 123 



Part III: Software Architecture Version 1.0 

124 

Flash ROM is relatively cheap, very stable, and fairly fast to read. Write access is 
slow and awkward. It turns out to be a good place to put the executable code, 
but it does make patching a hassle. It also makes it hard to set breakpoints 
(although in the lab we don't usually put the code into flash). We use the MMU 
to do set patches and breakpoints, temporarily mapping what should be a flash 
address to a spot in RAM. Because you always want a complete, valid copy of 
the OS somewhere, flash is duplicated, and we only update one side at a time. 

Dynamic Random Access Memory (DRAM) is cheap, and access is fast. On 
redundant machines, there is a complete DRAM bank associated with each cpu. 
The active CPU updates its DRAM, and the Changeover Memory Bus (CMB) 
ASIC copies these updates to the other DRAM. Besides the cost of the 

hardware, there is also a 2x performance cost on writes to shadowed DRAM. 

The report queue is required after a restart so that you can reconstruct what went 
wrong. The boot string is a series of parameters that help the boot ROM 
determine what the best place to find the boot image is likely to be. Both are 
stored in a magical area of DRAM that is not trampled during a restart or even a 
reboot. 

Static RAM (SRAM) is not as cheap, but is faster than DRAM. We often 
provide at least a small amount of SRAM to try to improve system performance. 
With the right tools, it is likely that we could get better performance from our 
existing hardware by carefully tuning what we put into SRAM. 

Finally, there is usually on-chip cache, and sometimes nearby L2 cache, for both 
executable code and data. Cache is flushed at run time on a simple least-recently
used basis. Because our code tends to branch around an awful lot, we typically 
choose very short line sizes for the cache. Even so, neither data nor program 
store caching is as effective for us as it is for some types of problems. The 
current cache is write-through, and takes roughly 7 times as long to write as to 
read. 

A hard disk or other commercial mass storage system is sometimes used to store 
things like the customer database. Disks are very cheap memory, but access time 
is non-deterministic, because it depends on things like where the disk heads are, 
so we can't use them to store data we need in real time. 

A further level of reliability, already discussed in Chapter 2, is provided by using 
the MMU to make certain areas of RAM protected against inadvertent 
corruption. We require people to explicitly unprotect data, change their variable, 
and then reprotect it. Of course, during this window, they are also free to 
trample anybody else's protected memory, so it is very important that they put 
some care and attention into this part of their code. The unprotect/reprotect 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

sequence costs a bit of real-time on writes, but there is no extra cost for reads. 
As a rule of thumb, state data (like Call Registers) that is subject to constant 
chum is in unprotected memory, while configuration data (like the customer 
database) is in protected memory. More surprisingly, we also store analog trunk 
states, which change constantly, in protected memory. This apparent eccentricity 
is to ensure that we don't end up hanging these trunks over a restart. 

Protected memory isn't handled very easily for third-party software-if it needs 
to update protected memory, we have to turn off memory protection globally, 
invoke the third-party software (which may be interrupted by higher priority 
tasks), and turn protection back on when it returns, which is obviously a bit 
unsafe.20 

20 This caused a major performance problem for Meridian Evolution, when the hardware changes forced a 
change in our memory protection software. Essentially, where UNPROT had once meant "toggle a bit on the 
processor board", it now meant "scan through the MMU table and toggle the setting for all pages that are 
currently protected". This in turn slowed restarts, which do a lot of protected memory updates, down to a 
crawl. It's an example of the dangers of using the wrong algorithm in a low-level routine. The eventual 
solution was to use a pair of memory protection maps: one with some pages protected, and one with 
everything unprotected. Then when UNPROT is called, simply swap out the real table. 

Norte! Proprietary 125 



Part III: Software Architecture Version 1.0 

5.3.1.1 CP memory layout 

~.:.l.·.· .... :" 
~ 

The detailed layout of memory on our machines is very dependent on node type, 
number of telephones, hardware generation, type of SIMMs installed, and 
software version. The following picture, based on the fIrst Meridian Evolution 
release, is presented only to convey a general sense of what's out there. 

DRAM 

flash ROM 

SRAM 

The most recent detailed memory layouts are available from the performance group in Mission Park. 
At the time of printing, the best document was probably Marjie Hempstead's Meridian 1 System 
Capacities, X 11 Release 23, in Doctoollibrary SLIDOCS, although Inside Thor also has some good 
details up to CP2. 

5.3.1.2 Conjuring with bad pointers 

126 

If somebody tries to write to Flash ROM, we ignore it. The theory is that our 
only easy alternative would be to trap, and do a warm start. What has probably 
just happened is that somebody has dereferenced an uninitialized local pointer. 
Locals are stored on the stack, and one of the most common other things to fInd 
on the stack is a return address, which is just a pointer to program store, which is 
in Flash. 

Now of course the phone call in question will probably not behave the way the 
designer would have wished. If the purported pointer was supposed to refer to 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

any very interesting data, the odds are that the subscriber will end up having to 
hang up and redial, but at least we didn't cause the switch to restart. 

A related trick is called "pointer remapping". If we attempt to write to a totally 
invalid address, we catch the exception, map that address to a special area of 
RAM, and store the value there. Subsequent writes or reads at the same bad 
address will also be caught, and we will return the value we put there. If the fIrst 
bad reference is a read, we set up the mapping and return zero. The alchemy sort 
of works. We take bad code and may make it function correctly. Of course, it's 
still bad code. \V'e do generate a record of the problem and encourage people to 
debug their pointer setup, but it does provide complete symptomatic relief some 
of the time. 

While both of these tricks prevent outages in the fIeld, they also mean that fewer 
bugs get noticed (and fIxed). It's a philosophy predicated on living with bad 
code, rather than working towards perfect code. \V'e might be better off to hide 
the errors only in the fIeld, so that at least in the lab we get the failures that force 
us to investigate the errant code. 

pointer alchcmv appar atu\} 

We may soon stop doing pointer remapping. I nstead, a bad SL-1 pointer would signal a longjump 
back to the start of the WORKSHED loop. Other tasks would be killed and restarted after suitable 
information has been captured (see Reqllirements Specification for Ext'eptiofl Prot'essing on the Platform 
Team's home page- http: //47.82.33.147 /projects /OSI~volutionSite/). 

Norte! Proprietary 127 



Part III: Software Architecture Version 1.0 

5.3.1.3 Virtual memory 

Wind River on Virtual Memory 

The V xWorks belief system holds that: 

1) all threads shall run in a single flat virtual address space, and 

2) the as shall be "just a collection of libraries" that an application Links to as if they 
were any other libraries. 

By having a flat address spacc, addressing is fastcr generally, and in particular caching 
may be more efficient across context switches by allowing you not to flush the cache. 
As with most embedded systems, VxWorks provides no true virtual memory. That is, 
you can't swap pages to disk to fake a bigger more usable memory than the 1t.t\M you 
actually have. Virtual memory is nice for desktop systems, especially when the cost of 
1M of fu\M is much greater than the cost of 1M of disk swap space, but it leads to 
slower, non-deterministic performance. So the conventional wisdom is that you would 
never want V M for an embedded system (although this is exactly what the original SL-1 
did with "overlays", because they are the non-real-time side of our real-time system). 

We do sometimes use a form of virtual addressing to implement our patching 
strategy. Because the code is running in flash ROM, which we can only change in 
256K chunks, we don't do in-line patching. Instead, we put the patches into 
regular data store, and then tell the MMU to make sure we execute the patched 
version of the procedures. 

At several times during the history of development, the amount of available 
memory has been extremely tight, or CP performance has been bounded by 
memory throughput. Both problems have led to people going to a lot of trouble 
to optimize memory usage, and this shows up in some densely-packed, multiply
overlaid structures, such as Call Registers . 

5.3.2 Robust mass storage 

128 

Commercial disks are cheap and already fairly reliable, 
but we also sell redundant disk configurations (sort of 
minimalist RAID systems) to ensure that customers' 
databases are preserved. Of course, this is no 
protection whatsoever against either bad software 
corrupting the image before it gets saved, or operator 
error. ("Dang! I just deleted the master archive flie again . . . ") The Mass Storage 
Redundancy (MSR) feature allows duplication of either directories or flies, so that 
methodical organization can prevent such catastrophes. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

5.3.3 

The M1 hard drive is partitioned into three directories: Ip, lu, and lidO. These 
contain protected flies (software, fIrmware, default database flies, report data text 
flie, script flie, non-customized flies); unprotected flies (database flies, error 
reporting flies, patches, flies generated by the system during run-time, customized 
flies); and card id flies, respectively. 

The report log tracks the operation of the system, and records any abnormal 
conditions. A typical flie would contain records like the following: 

500 SRPT0770 TOO 1 : Midnight job server starts on side 1 
Number of jobs to do : 2 115/9/93 2 : 00 : 00 . 975) 

501 SRPT0773 TOO 1 : Starting midnight job ' rstThr ' 115/9/93 2 : 00 : 00 . 979) 
502 SRPT0773 TOO 1 : Starting midnight job ' pchMidNite ' 115/9/93 2 : 00 : 00 . 981) 
503 SRPT0774 TOO 1 : Midnight jobs completed on side 1 115/9/93 2 : 00 : 50 . 487) 
504 CIOD0157 CMDU 1 is ACTIVE , RDUN is ENABLED 115/9/93 2 : 12 : 02 . 516) 
505 HWI0009 HI FS : saving data to directory " /u/db/hi bak" 115/9/93 2 : 13 : 01.133) 
506 CCED0760 SWO 1 : Graceful switch- over to side 0 requested 115/9/93 3:14 : 46.615) 
507 HWI0003 HI Init : Graceful SWO Start continues on side 0 115/9/93 3 : 14 : 24 . 647) 
508 HWI0004 HI Init : Phase S( "objects link" ) begins (15/9/93 3 : 14 : 24 . 647) 
509 HWI0004 HI Init : Phase 7 ("objects enable" ) begins (15/9/93 3 : 14 : 24 . 092) 
510 HWI0007 HI Init : SWO Start complete at side 0 in 0 seconds (15/9/93 

3 : 14 : 25 . 674) 
511 CCED0762 SWO 0 : Graceful switch-over to side 0 completed 

Previous Gracefu l SWO : at 14/9/93 3 : 15 : 03 115/9/93 3 : 14 : 25 . 861 ) 
512 BERR0705 EXC 1 : Bus Error in Task " tSL1 " IOx4710000) 

SR=Ox3000 , PC=Ox46d758a , Addr=Ox1670fc40 , SSW=Ox074d 114/10/93 14 : 32 : 27 . 663) 

e/c: 

Unlike some call processing systems, we do not use our disks to store Call Detail 
Records as they are generated. Instead, they are buffered (using CR data blocks) 
until they get shipped to an off-board processor, usually over a narrowish-band 
dialup port. We have had systems run out of buffers because the port speed 
(eg: 1200 baud) was too slow to keep up with their call traffIc, and this caused the 
extra CDRs to be tossed. There is an opportunity to improve on this, especially 
in the low end of the market. On large systems, it's probably just as well that we 
process off board. 

ror a more detailed description of the Core Multiple Drive Unit (CMDU) layout, see Inside Thor. 

Watchdogs 
As discussed in Chapter 2, a watchdog is a timer designed to detect deadlocks, 
infInite loops, and other situations where the switch "hangs". Each board has a 
hardware watchdog timer on it. The watchdog hardware simply counts down to 
zero, and as soon as it gets there it signals a switch over (on redundant nodes) or a 
cold restart. What keeps this from happening is that the software watchdog task, 
which runs at priority 0, and loops continuously like this: 

N ortel Proprietary 129 



Part III: Software Architecture Version 1.0 

DO FOREVER 
check_that_all_tasks_are_healthy; 
2 second delay 7 hardware watchdog timer; 
DELAY(less_than 2 seconds); -

Because the software watchdog runs at the highest task priority, we know that if 
the hardware watchdog time expires ever, no software is running. 

The software watchdog also keeps track of how long other tasks are running, and 
may trigger a warm restart if it thinks there is a problem. 

5.3.4 Restarts 
\~'hen things go badly wrong (a task traps, too many pointers are remapped, a 
watchdog timer expires) we can't just halt and display "An unexpected error has 

occurred" on all the phones. Most people don't even think of a PBX as a 
computer, and they have no patience for the sort of bugs they have learned to 
expect from computers. As mentioned in Chapter 2, what we usually try to do is 
restart the system in some way, but causing the minimum amount of disruption 
needed to fix any particular fault. There is a progression of restart types available, 
and if the first type doesn't fix the problem, we'll usually move on to the next. 

5.3.4.1 Task restarts 

130 

Individual Vx\Vorks tasks can be created and killed independently. As with all 
resources, we prefer to do this only at the time of a system restart, but there are 
at least two other times it happens. The first is that if a new user logs in, a task is 
created to serve the terminal, and this task is deleted when the user logs out. The 
other major case is when a task dies violently. Under normal circumstances, we 
would then recreate the task immediately. 

Until recently, this applied to the SL-1 task. That is, if tSLl choked or if the 
software watchdog expired, we would recreate the task, call WORKSHED which in 
turn would call INITIALIZE to set up all the dynamic call processing data 
structures, and carry on. This was known as an "init", and used to be the fastest 
of the various M1 restart types. tSLl task restarts have recently been disabled 
because we had trouble keeping the state data synchronized between the newly
initialized SL-1 code and all of the other tasks, but they may return again in the 
future. For now, we just go straight to a warm restart, although the other tasks 
can still be restarted individually. 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

5.3.4.2 Warm restart 
Warm restarts happen if the manual reset button on the CP card is pressed, an 
interrupt handler traps, or we get too many pointer remaps. We restart the 
operating system, which means that all of the unprotected data gets deallocated, 
including the Call Registers. We then run the initialization code in SL-1 module 
INIT, which sets up all of the basic SL-1 data structures and then queries the 
network connection data to set up the appropriate CRs. This process does not 
manage to recreate all of the subtleties of call feature data, but basic POTS 
behavior is preserved. Calls which were not in a talking state (and thus had no 
network connections) are dropped. No new call processing transactions are 
processed until this phase has been completed. 

Warm restarts also now rebuild the ACD queues, using some unprotected data 
that is salvaged before the operating system gets a chance to clear it. 

WARNING: Protected data survives a warm restart, but unprotected doesn't. Tt is critical 
that we never allocate protected data and try to remember where it is with an 
unprotectcd pointer. On the ncxt warm restart, we'll lose the pointer. Of course, if we 
reverse this (using protected pointer to unprotected block of memory), we'll cnd up 
with a dangling pointer. This at least can be fixed, by allocating a new unprotected 
block, but we have to remember to do so. 

5.3.4.3 Cold restart 
This is part of our normal software install sequence, although it may also happen 
if the hardware watchdog expires, the CP card is reseated, or its manual reload 
button is pressed. SYSLOAD reloads the database (and on non-flash machines, the 
code too), usually from a hard disk. Unsaved database changes are lost, and all 
calls are dropped. We then run roughly the same code as we would for a warm 
restart, but without the call-reconstruction phase. 

A cold restart takes roughly as long as a warm one, but has a more severe impact 
on the customer. Calls are taken down, and any unsaved database changes are 
lost. On the other hand, it almost always clears any memory corruptions. 

If this cold restart is happening because the power has just been turned on, then 
there is one extra step. In this case, the very ftrst thing we do before restarting 
the operating system is to write an "uninitialized store" pattern across all RAM, 
to set up memory parity. The reason this was important was that when we 
ported to Thor, we discovered that several pieces of code were reading from 
memory before writing, which (apart from yielding meaningless results) would kill 
the restart. Since debugging a switch that won't come up is horribly difftcult, this 
workaround was put in place. 

Norte! Proprietary 131 



Part III: Software Architecture Version 1.0 

5.3.5 Dual CPUs 

5.3.5.1 Hot standby 

Larger Ml systems are shipped with dual Call Processor cards. Either CPU is 
powerful enough to drive the whole system, and each is connected to all 
peripherals. The backup CPU is held in reset state, and is not actually running. 
The inactive DRAM bank is kept in sync with the active one by the CMB ASIC. 

5.3.5.2 Graceful switchover 

132 

The hot-s tandby CPU is normally stopped. Therefore "you don't know if it 
works". Our customers actually invoke graceful switch over periodically (some 
are rumored to do it all day long, although once a day might be more typical) to 
ensure that the redundant cable paths and CPU are all still okay, just in case they 
need to do a real one. 

Graceful switchover also happens under minor failures, if it appears that the CPU 
is healthy but the related components are not, such as lOP /IOC faults, CMDU 
faults, and memory parity faults. 

Since graceful switchovers happen at a time when the switch is essentially healthy, 
it is reasonable to take a bit of time to prepare first, but the actual out-of-service 
hit to the switch must be minimized. On M1, there is currently a pause of about 
'/4 second, and no calls are dropped. 

The text segment (code) lives in flash ROM, which is duplicated, so you don't 
have to copy it. The patches do have to be re-applied on the new side. The data 
segment, both protected and unprotected, is mostly sitting in the reflected 
DRAM, so it's also available on the new side. The SL-l stack, :rvIMU context, 
exception vector table, and interrupt stack are in SRAM, and need to be copied 
across before resuming processing. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

To switch over, we mask out all interrupts21 to freeze the state, copy the stack 
and register state, reinitialize the devices (preserving IP addresses and physical 
device states as much as possible), and effectively do what looks like a return 
from interrupt to get things going again. 

The "reflecti~e-memory" system makes switch over fast (the outage is about a 
second), but we don't really want to build another one because it interferes with 
porting the OS and the performance of the system. Various vendors22 are 
helping us look at supporting reflective memory without fancy duplex buses, 
using off-the-shelf hot-swappable compact PCI boards, and then providing 
automatic failover. 

5.3.5.3 Ungraceful switchover (failover) 

If the hardware watchdog expires, we suspect hardware problems and force a 
switch over to the backup CPU. There's no point spending time getting the other 
side ready; just switch CPUs and get back in service as fast as possible. Since we 
know d1ere's some kind of fault in this circumstance, we do a warm restart on the 
new side in the hopes of clearing it. On Mi, we currendy take about 30 seconds 
to do an Ungraceful Switch over, and all calls that aren't in a talking state are 
dropped. 

5.3.5.4 Split mode 

In the lab, we allow redundant machines to be run split to double the number of 
test environments available to designers. This does not affect most application 
level software, but only one side gets to use the networks. 

5.3.5.5 Software delivery 

We also use split mode to deliver new software loads to the field. The basic idea 
is that we split the switch, load the new software onto the inactive side, and do an 
ungraceful switch over to the new side. 

In the primordial SL-i software release process, the Integration Control Team 
used Overlay 43 (Datadump) to write the database out onto a tape containing the 
new software release. Next, they would change the jumpers on the Mass Storage 
Interface (MSI) board to tell it to boot from tape (or later, floppy) instead of 
from the hard drive. They would then reset the standby side, booting from this 

21 Our flag should have been a readers/writers semaphore, but we never managed to get that going, so it's a 
straight semaphore. 

22 At least Chorus, Tandem, and Sun, and probably others before we're done ... 

Norte! Proprietary 133 



Part III: Software Architecture Version 1.0 

new tape. As part of the boot process, SYSLOAD converted the customer data to 
the new format where necessary. Once the standby side was ready to handle 
calls, an ungraceful switch over would be initiated, and after a brief outage the 
switch would start processing calls with the new software. The previously-active 
side could then be loaded from tape and made ready to act as the new standby. 
This process was one-way (you couldn't convert the new database into the old 
format if you wanted to back out later) but you always had the option of 
rebooting to a previously saved backup image if things went badly wrong. Also, 
until you had brought the old side back to hot-standby mode, you could cut back 
to the old load in a hurry if things looked bad on the new side. 

There is still a vestigial tape emulation system (some like to call it an 
"abstraction") at the heart of the evolved software delivery system even though 
we haven't had any real tapes for years. And there is still a datadump "overlay", 
even though it is always resident in RAM. In CP1, we've shipped on floppies, 
and used a utility to load the new software onto the hard disk, and only ever 
booted from there. Since CP2, the image we normally boot from is in Flash 
memory. In the near future, most customers will probably have new loads and 
patches shipped to them over the Internet. 

On a single-CPU system (Options 11, 21A, 21, 21E or 51), the process is similar, 
but you get a total outage during the reboot/rebuild process. 

5.3.6 Packaging 
With Thor (in particular with Option 11 C), we started shipping the whole 
software load to all sites. Prior to that, unpurchased software was optimized out 
of the load, and you had to get a new cartridge if you wanted to install another 
package. Now everything except mobility is there, but some is deactivated. If 
you purchase a new feature, we tell you a magic "key code" which you can use to 
enable the software. This means switches need a bit more memory, but 
customers don't need to wait for us to ship them new packaged loads. 

5.3.7 Tools 

5.3.7.1 Patching 

134 

If serious bugs are detected in a load which has already been shipped, we need a 
way to fix the installed loads, sometimes with some urgency. Historically, we had 
a very narrow bandwidth to switches in the field (especially outside of North 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

America), so we couldn't afford to send a large chunk of object code each time 
(and in particular we couldn't just send a new image fue). In any case, we would 
usually be dealing with a customer who was already unhappy, so we couldn't 
disrupt their system further just to fix the problem. We didn't want the cure to 
seem worse than the disease. 

The required magic is performed roughly as follows. We figure out the required 
software update using standard lab tools. We compile and link the module(s), 
producing a new load fue. Using a variety of tools, this gets built into a patch fue, 
which is transmitted down to the site. There the patch is loaded into RAM, and 
the MMU is told to map calls to the old procedure (usually in flash ROM) to the 
new location. Thus we can alter the software with no interruption to call 
processing, even on a single-CPU system. 

The downsides are that the patched code is more error prone (because it can't be 
tested as thoroughly and is often written under time pressure); that it runs more 
slowly (because it is not in flash); that it must be re-applied on cold restarts and 
switchovers; and that there is some extra administrative overhead. All of this 
means that we want to keep the total number of patches small. 

,]"00116, the Thor Pattiler Users Glfide, is in Doctoollibrary TOOLDOCS or on the web at 
http: //47.82.33.147 / ~raviycrlT()C.htm . The Meridian Patch Library reference guide is on the web 
at http://47.58.130.173/B1G{MPI jmpl.pdf. 

5.3.7.2 Problem Determination Toolkit (PDT) 

PDT is the low-level debugging utility built by the Thor team. There are a 
number of existing documents describing how to use it. 

Try 1-02824, Thor Lab User's Guide and I "03226, Thor Tn/Jllica! Notes in Doctoollibrary MLVDOCS, or 
the Debu~,.jng Techniques chapter of Illside the Optiot! ttC at 
http://47.75.6.2:8080/common ets info/I'DI' l'ilcs/lnside Optl! C.pdf. 

5.3.7.3 sllSpy, sllqShow, systat, memShow, segPctShow 

These tools check on the overall health of the system, and are particularly useful 
for debugging platform issues. 

Imide Thor has a reasonable description of these tools, and they also have on-line help. 

Nortel Proprietary 135 



Part III: Software Architecture Version 1.0 

5.4 Maintenance frameworks 
On top of the platform, or maybe surrounding the applications, we need a 
general purpose maintenance framework to help manage system. In the earliest 
days of SL-l, when the OS was not separated out, this framework was impossible 
to think about in any isolated way. 

With the Thor project, we not only added the VxWorks as, but the first 
generation maintenance framework, called the Hardware Infrastructure (HI). 
This is discussed in more detail in the Management chapter. 

The following (now cancelled) generation used 00 technology to take this a step 
further, creating the System Infrastructure (SI), which is covered in the Meridian 
Evolution chapter. 

5.5 Intrinsics 
Intrinsics were originally sort of indexed assembler language subroutines d1at 
either had to be blindingly fast or had to do things (like access 110 mapped 
addresses) that were hard to code in SL-1. These days they are all normal C 
subroutines. 

5.5.1 Hardware intrinsics 
These defIne our interface to the real hardware, eg: rOREAD. They are deflned in 
module intr. c. Because they isolate most code from the details of hardware 
implementation, they make the job of porting between platforms somewhat 
eaSier. 

5.5.2 Software intrinsics 

136 

These are mosdy code we knew would be called a lot, which needed to be extra 
speedy, eg: TNTRANS. Until Thor, all intrinsics lived in ROM, and ran a bit faster 
than the rest of SL-1. Now all software is in flash ROM, but the software 
intrinsics are still a bit faster by virtue of being written in carefully tuned C rather 
than SL-1. They are defIned in module swintr. c. 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

5.6 Third-party extensions to the platform 
In Release 22, we stopped supporting the old bit-slice processors, and this 
allowed us to start experimenting with third-party software. Most of this ends up 
living between the previously existing operating system and the application code. 
The major pieces are: 

• Orbix: an Object Request Broker from Iona, used for Mobility. 

• Seaweed: a memory management system to keep Orbix from fragmenting 
the RAM. It overloads standard functions like malloe with its own 
versions (see Memory Manager in Chapter 3) so you don't have to do 
anything special to take advantage of its improvements. 

• RogueWave: a broad spare-parts library of C++ classes, mostly for MAT, 
although Meridian Evolution would have used it too. See the book 
TooJs.h++, Foundation Class Ubraryfor C++ Programming from RogueWave. 

• Envoy: a Simple Network Management Protocol (SNMP) stack from 
Epilogue Technology, used mostly for MAT. 

• Retix: an ASN.l encoder used by Envoy. 

5.7 Distributed processing 
Intelligent Peripheral Equipment cards were developed to distribute more of the 
system's processing to its peripheral hardware. To allow for a flexible evolution 
of and ease of support for this distributed system, the ability to download 
microprocessor software into RAM for these cards is preferable to restricting 
software storage only to ROM. Existing cards which can do this are XNET, 
XPEC, and XNPD. The strategy calls for simple peripheral software, unaware of 
call state (eg: "dialing''), altll0ugh it does understand terminal state (eg: "idle"). 
The peripheral is a slave to the feature logic in the core CPU, and its software is 
version-coupled with it. 

Two new cards, MISP and MSDL, will follow the same path. One major 
enhancement that will be made for these new cards is the ability to store 
downloaded software in flash ROM on MISP /MSDL cards themselves. This will 
elin1inate the requirement for downloading in the event of loss of power to the 
card, which will reduce the time required to bring up the cards to functional state. 

Nortel Proprietary 137 



Part III: Software Architecture Version 1.0 

We don't yet have any way of doing symmetric load-sharing between multiple 
CPUs, although we are discussing some possibilities. 

5.8 Evolving the platform 
The Call Server Evolution project is actively considering a major new platform, 
probably based on an Intel CPU, which among other differences is little-endian23• 

There is no generic way to write software that is both completely machine
independent and maximally efficient. As an application designer, what should 
you do? 

The vast majority of differences in the first generation of a porting exercise will 
be taken care of by the compiler. This is still a big deal, especially with respect to 
support tools like source-level debuggers and patchers, but most designers can 
ignore it. The OS differences are likely to be masked if you've been writing to 
POSIX all along, but there is a chance that there will be performance problems, 
and new bugs (or at least subtly different interpretations of standards) so 
thorough testing is a must. SL-l should mask the bit/byte/word packing 
differences, except for two important cases. The first is that booting from an old 
database could be an issue. This will usually be covered because we save a text 
file, which will automatically be converted, so you only have the usual version
dependence problems to worry about. The second case is when the CP is 
messaging to other processors, and this will need explicit planning to get right. 

23 According to the hacker jargon me, this excellent term derives from Swift's "Gulliver's Travels" via the 
Danny Cohen's famous paper "On Holy Wars and a Plea for Peace" [USC/lSI lEN 137, April 1, 19801. 
'1 'he Lilliputians, being very small, had correspondingly small political problems. The Big-Endian and l,ittle
Endian parties debated over whether soft-boiled eggs should be opened at the big end or the little end. 
"Big-endian" now describes a computer architecture in which, within a given multi-byte numeric 
representation, the most significant byte has the lowest address (the word is stored "big-end-flrst"). Most 
processors, including the IBM 370 family, the PDP-10, the Motorola microprocessor families, and most of 
the various RISC designs, are big-endian. Intel chips are little-endian. There's a theory that mathematicians 
naturally think of the least significant bit as bit zero, and want it stored on the right, while engineers naturally 
count from the left starting at one. The main thing is to agree, and capture it in your design documents! 

138 Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

6. The phones (SL-l ) 
The overall M1 software architecture diagram featured a prominent bubble 
labeled "SL-1". This is the large mass of code written in "Switching Language 1" 
whose evolution dates to the earliest of our digital switches. Prior to the Thor 
project, that bubble used to do the entire PBX job, including stuff like 
scheduling, I/O, memory management, and initialization. In fact, SL-1 probably 
still thinks it's in charge, since we never really told it that it's now just another 
application running on top ofVx\V'orks. 

To over-dramatize the picture: 

Norte! Proprietary 139 



Part III: Software Architecture Version 1.0 

140 

It shouldn't be too surprising that the SL-1 code in turn can be decomposed into 
a structure very similar to that of the Ml system as a whole. Roughly speaking, 
we have the following run-time relationships: 

The SL-1 the code still assumes nearly all responsibility for managing telephones 
and calls. 

• S YS LOAD (global procedure #0) is invoked by the fIrmware on a reboot. Its 
primary responsibilities are to load the customer confIguration database 
into protected memory and enable all TTYs. Then it cranks up WORKSHED to 
manage the distribution of work. 

• WORKSHED is the work scheduler. V xWorks treats all of SL-1 as a single task, 
tSLl. Within this task, WORKSHED ensures everyone gets a chance to run. 
WORKSHED starts by calling INITIALIZE to set things up, and then loops 
forever (barring catastrophe), sharing work between the remaining bubbles. 
Each of these manipulate the same interdependent set of call and terminal 
data, so it is critical that WORKSHED coordinates their activities in a way that 
keeps them from trampling each other's work. (See the Transaction E ngine 
pattern in Chapter 3.) 

• INITIALIZE initializes the call related data structures in the system, and the 
I / O system, and then returns control to WORKSHE D. 

• Call Processing code receives incoming messages from the various terminal 
types, does digit translation, connects speech paths, and generally runs the 
call state machines. 

N orte! Proprietary 



Version 1.0 Part III: Software Architecture 

• Maintenance code keeps all of the equipment in service, both 
autonomously and under craftsperson control, and audits data structures to 
make sure they're healthy. 

Administration code is the rest of the craftsperson interface to the Meridian 1. 
Its "overlays" manipulate the hardware and software configuration database. 

To give an idea of the relative scale of these entities, of the 2 million-odd lines of 
SL-1 code, nearly half are for call processing. Comparing module counts, the 
subsystems divide up SL-1like this: 

FEDERAL 

DPNSPROC 
DTI2_CODE 

POOL 

M1 pedants will leap to point out that some PLS subsystems really seem to fit 
into more than one wedge. Okay, you caught me. The idea of this pie chart is 
really to give a broad sense of the system composition. If you want more details, 
you'll just have to keep reading ... 

Norte! Proprietary 141 



Part III: Software Architecture Version 1.0 

What's that Federal Syst ems slice of the pie? 

One of our customers is the United States government, and one of their requirements 
is that access to the code that controls their software be on a need-to-know basis. 
Therefore, the whole library is peppered with clauses like: 

=> IFDEF FEDERAL 
=> COpy xxx 
=> ENDDEF 

Tf you have security clearance, and you ~et the appropriate context, then the Federal 
Systems code magically appears in the source. Otherwise, aU you can get at is a series of 
dummy header fUes. Do not disturb the TrDEF clauses, or put anything new inside of 
them! 

Sadly, now that you know this, we're going to have to shoot you. 

6.1 The SL-l language 

142 

SL-1 is an ALGOL 60 derivative, which is little help to the average new designer 
today, although people who have worked with Pascal or Modula-2 (or to some 
extent Cor PL/I) will recognize much of what they see. To read SL-1 code, you 
have to start by learning the language, and the reference manual is as good a place 
as any to go for that foundation. This section will not lament the SL-1 syntax, 
which is already well explored by the references given in Appendix A. 

But to achieve SL-1 fluency, to really understand the code, you need to know 
much more than the grammar. As a minimum, you'll need to build a vocabulary 
of important SL-1 symbols; for example, an SL-1 programmer should instantly 
recognize "CRPTR" as the index of the call register that holds the state information 
for the call receiving the current message, and might remember that on an 
MC680xO machine its value is always in register D2. You'll also need to build a 
m ental picture of the software structure. This chapter will attempt to help with 
both of these tasks . 

Turing told us that you could write a given program in more or less any language, 
but he didn't promise that each would make the job equally easy. By making 
some things harder than others, the linguistic tools of the SL-1 language shaped 
how we built the SL-l system. Above all, there are some the things that aren't in 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

the language. It is argued that these omissions were the result oflanguage 
designers who knew they needed to optimize for execution speed, and did the 
best they could with limited resources. But this is just an early, special case of the 
general rule that we should only do in-house those things in which we're 
prepared to invest enough to do excellendy-otherwise we should out-source, 
especially when there are good enough standard products available. 

• There are no run-time integer multiplication or division operators (although 
there is a MULT intrinsic), and no floating point support of any kind. What 
you can do is add, subtract, and shift left or right. So you'll see code that 
uses ((A«2) +A) because the designer wanted to a speedy way to compute 
(A*5) . 

• Scope control for symbols is a bit crude. You can have a system-wide 
global variable (module POOL), a module-wide global variable (local COMPOOL 

declarations), or a stack-based local variable that disappears when you leave 
the procedure. This situation is improved a bit by SL-1's ability to nest 
procedures, so that at least you can defIne a variable as local to a procedure 
and all the ones nested in it. Even still, good data hiding isn't easy, and 
there are tons of global variables in our system. 

• Lots of common routines have important side-effects via the global 
variables that they change. This is very speedy, but hard to manage and 
understand. Expect side-effects any time you see the result of a function 
call being assigned to XDUMMY, or whenever you see a line like this: 

IF MYFUNC () THEN NULL; 

• Pointers have very limited type-checking. We do a compile-time check that 
a pointer refers to the right "Target Logical Page" of data (eg: . U_BASIC), 

but on the switch all data is really in a flat address space and we no longer 
have real paging. On the MC680xO machines, we reserve register AS to 
always point to SLIMemoryBase, the start of unprotected data. 

• Except for the stack, there are no private variable instances on a per
process basis. The overlay supervisor, which was extended to keep track of 
the activities of a number of different users, had to go to some trouble to 
fake this. 

• There is no automatic range checking of table indices, although we do 
truncate to the right fIeld size on assignments. This makes it especially 
important to do the checks yourself. 

• There are no compile-time warnings about the use of uninitialized locals, or 
about unused locals and parameters. Watch out! 

Norte! Proprietary 143 



Part III: Software Architecture Version ·1.0 

144 

• A standard compiler optimization (called McCarthy evaluation or "early 
exit") leverages the observation that you don't always need to evaluate 
every clause in a compound Boolean expression. If A is false, then 
(A AND B) is always going to be false, regardless of the value of B. 

Conversely, if A is true, then (A OR B) is always going to be true. SL-1 
doesn't do early exit from Boolean expression evaluation. Thus, the 
following line of real code (from QPRSEG1) is totally unsafe: 

IF PCFPTR = NIL I LOOPTYPE:PCFPTR A= .CONF LOOP THEN RETURN; 

A safer way to have coded this would be: 

IF PCFPTR = NIL THEN RETURN; 
IF LOOPTYPE:PCFPTR A= .CONF LOOP THEN RETURN; 

At this point, we're not likely to add this optimization, because (as 
discussed above) some code relies upon side effects of functions. For 
example, the following harmless-looking code may have the insidious 
problem that it requires that MYFUNC always be executed because MYFUNC 

changes some global data as a side effect of being called. 

IF (N=O) & MYFUNC(X) 
THEN ... 

If the compiler detected that w=o and tried to optimize out the call to 
MYFUNC, the software would break. 

• We don't have generalized dynamic binding or procedure variables, but we 
do have global procedures that are referenced by an absolute number. This 
can be used to call different code at different times, most notably with 
overlays (global procedure #6). 

• We don't have a general mechanism for inheritance (making a structure just 
like some other structure, only with some new bits added on). For ftxed 
variables, the slightly-awkward SET ORIGIN statement is sometimes used to 
fake this. For relocatable structures, the more common practice is to 
manage conceptual inheritance manually, by hand-coding the same ftelds 
into the same places of each of several structures. For example, all the 
structures in the DN tree contain XFLAG and those pointer flags, allleafDN 
blocks have the DNTYPE field, and all the set datablocks contain a set type 
field. Similarly, it is critical that the first 19 words of the UTRKBLOCK exactly 
match those of U _ DPNSS _CHAN _ BLK, but this is "automated" by a comment 
warning designers not to mess it up. At least the compiler will choke if you 
have two structures with the same name but different offsets, so some 
kinds of accidents will be prevented. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

• We only recently got the ability to pass references to structures as 
parameters, although you always had the option of passing pointers 
(precisely as fast, but more dangerous ... ). 

• Enumerated types are faked using integers, and the SL-1 idiom equivalent 
to the C code: 

enum cookieType {ChocolateChip, PeanutButter, Oatmeal} 

will normally be: 

.CHOCOLATE CHIP = 1; 

.PEANUT BUTTER = .CHOCOLATE CHIP + 1; 

.OATMEAL = .PEANUT_BUTTER +-1; 

INTEGER MY_COOKIE' (0,2); % need two bits for a cookie 

There's no compelling reason not to just hard-code the above using the 
integers 1,2, and 3, although doing it as a series does emphasize the fact 
that you don't really care about the values per se, bl,lt only that they be 
distinguishable from each other. Unfortunately, this abstraction is 
somewhat defeated by the original CASE syntax, which demanded that you 
place the code for the symbol with ordinal value n in the nth clause in the 
statement. The updated syntax allows the clauses in arbitrary order, but 
much of the code still out there is written with the original syntax. In 
general (with the notable exception of definitions to support external 
protocols) you're using dot constants in a context like this for readability, 
and not because the underlying values mean anything or are likely to 
change. 

• In days of yore, the design philosophy that smaller procedures were easier 
to read was intentionally embedded in the compiler as a refusal to accept 
large procedures. Ironically, this rule was intended to ensure that code was 
easy to read. As time passed, new designers decided they needed longer 
procedure bodies, and figured out a way to code around the restriction. 
That's why you'll see a bunch of procedures called xxx_CaNT, where xxx is 
the name of the procedure that was a bit too long. The bottom of xxx then 
calls xxx_CaNT. Logically, just think of these procedures as a single slightly
hard-to-read one. 

• The original support for character strings was arguably worse than 
FORTRAN's, which is something of an accomplishment. Until Release 19, 
the closest you could get to a string data type was a pair of ASCII 

Nortel Proprietary 145 



Part III: Software Architecture Version 1.0 

characters. Because it was a lot of work for designers to print out helpful 
messages, a lot of the :MMI is a bit cryptiC.24 

6.1.1 "Stupid code tricks,,25 
The following are examples of SL-1 code which work, but are definitely not the 
best way to do things. Designers who excel in writing such hard-to-read code 
should apply to the International Obfuscated C Code Contest, which exists 
specifically to provide a safe arena for horrible code. Others should think of the 
following examples as anti-patterns. 

)( The Camp-On code carefully defines two state constants to have the same 
value, . TIME_REM _ RECALL=3 and . CAMPON _ RECALL=3, so that it can reuse a 
procedure that two different features both need. It then uses both 
constants, as well as the hard-coded value 3, interchangeably in various 
places. A better solution would have used the new CASE syntax with a 
"(. TIME_REM_RECALL, .CAMPON_RECALL): my_proc;" clause. 

)( Various development tools have limitations on the size of the files they can 
handle, so SL-1 flles are usually split into multiple sections, sometimes 
somewhat arbitrarily. The convention is to have an MSOURCE file called, for 
example, OVLXXX. This file consists entirely of "=> COpy" commands to 
bring in the real source, which in tum is stored in SEGMENT flles called 
OVLSE01, OVLSE02, ... 

Now it turns out each of these flles can also include copy commands. It 
also turns out that there's no check to prevent more than one flle from 
copying the same segment. And in fact, OVLSEll and OVLSE17 both include 
a "=> COpy OVLSE19" record. So if you go look at module OVL511 in x-view, 
you'll see two definitions of PROCEDURE OVLDECIMAL, and all of the other 
things in segment 19! 

)( The following would code compile, would work, and would not be helpful: 

IF I:=J+K:=J+3 THEN ... 

24 People familiar with DMS-I0 point out that SL-1 modules support "data" segments, which DMS-10 
designers used extensively for handling text messages long before strings were available. For instance, they 
used this technique to map "LD 11" to "LD DIGITALSETS". I don't know why Ml didn't. 

25 Apologies to David Letterman, and to the designers may have written this code with the best intentions, but 
without the aids of code inspections, a powerful development toolset, or long-term code ownership. 

146 Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

The equivalent code should be: 

K := J+3; 
I := J+K; 
IF IA=O THEN ... 

)( The SL-1 language allows a given symbol to be a global, a local, or 
(perversely) both. Within a nested procedure, you can even add an 
additional local definition of an existing local symbol. Just because it will 
compile does not make it a good idea. It will usually cause more confusion 
than it's worth, and it can cause problems that are tough to track down. 
Try to ensure that your new locals are not already somebody else's existing 
globals, and vice versa. This goal is made more difficult by the people who 
made such generic symbols as I, x, Y, INDEX, COUNT, DIGIT, RESULT, STATE 

and PTR globals. 

)( Hard-coded values for global procedure numbers are used liberally, rather 
than dot constants. "RETURN VECTABLE [254] A=VECTABLE [ . NOGLOBAL_ VT_NUM]" 

in OVL511, which manages to mix the two methods in a single line of source 
code. 

)( POOL contains the definition". THREE=3", whose only usage is in lines like 

CASE (LOOKUP(.YES_NO_KEYWORDS)-l) OF .THREE ... 

Constants are better than scattered magic numbers, but don't apply the rule 
blindly. . THREE doesn't tell you what the constant is supposed to represent 
(like . MAX_DIGITS), and it can never equal anything but "3" without making 
the code unreadable. Also, it turns out there was only one clause in this 
particular CASE statement, so the programmer should probably just have 
used a simple IF .•. THEN statement. 

A related but better justified example is the family of constants like 
". BUG4001=4001". While it appears to be at best a waste of time to have 
defined them, they do facilitate tracking down the source of error 
messages. The best place to put these definitions is usually POOL, but since 
it is a major hassle to make changes to POOL, a number of people have 
placed them in local COMPOOLS, or in SEGMENTS that get copied into local 
COMPOOLS. This is tolerable, but if they subsequently get added to POOL, the 
obsolete references should be deleted. 

LANDMINE ALERT: There should never be a reason to define any dot constant 
twice within the same scope. For instance, the code that includes the 
definition for. BUG0004 appears twice within the same segment of POOL. This is 
an accident waiting to happen ... 

Norte! Proprietary 147 



Part III: Software Architecture Version 1.0 

148 

What are all these INFOR & OUTFOR tags? 

SL-l has run 011 a wide variety of processors over the years. By default, most code 
ends up being shipped to all target machines, with the compiler bearing the brunt of 
the porting workload. But in cases where machine-specific code is required, the INFOR 

and OUT FOR compiler directives let designers specify which target loads will get their 
code. INFOR means put it in; OUT FOR means leave it out. The available choices are: 

• ALL = everything 

• OMEGA = the 24-bit AMD bit slice CPU. INFOR OMEGA clauses also get included 
in loads for both Thor & Option l1C, so for just Omega you need to say 
"INFOR OMEGA & ~GAMMA" . 

• GAMMA = Thor, the Motorola MC680xO family of CPUs, including Option 11 C 

C _SSERIES = Option l1C, including flash machines 

• FLASH_ROM = Option 11 C machines which execute from flash memory (for 
speed), rather than shadowed DRAM. Somewhat confusingly, this directive does 
I/ot include the later generations of Thor (CP2/CP3) which also use Flash ROM. 

ST = "Small Turbo", a Mirv machine, the 16-bit AM!) bit slice CPU small system 
(predating Omega). INFOR ST is also included in Option 11 loads, so for just 
ST machines you need to say "INFOR ST & ~SSERIES". 

SSERIES = Small Series (Option 11) 

• MSERIES, SLIM, N _ OR _XN = ollcitllt sections. These should no longer appear in 
live code. 

PROTOTYPE, DEBUG = test code, could be anything, should not go to the field 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

6.1.2 SL-l code structure 
It's a dynamic design, which is a polite way of saying that you're going to have to 
go read the code if you really need to know exactly how anything works at any 
given time on any given machine, but this chapter can still help you understand 
what to expect. 

The whole design philosophy is bottom-up: "I can cluster together variables into 
a structure, and group procedures into a module" versus "I can implement this 
abstract data type by having a number of fields in this structure, and break down 
this module's functionality into a number of separate procedures". There is an 
overriding embedded systems mentality visible in the core SL-1 modules. Coding 
is close to the machine, with little or no abstraction. It is painstakingly optimized 
at various points for either store usage, or execution speed, or both. 

There are exactly three tiers in the static SL-1 code hierarchy. The lowest, POOL, is 
the mother of all APIs: 90,000 lines of code which declare every symbol that is 
shared by two or more SL-1 modules26• Regrettably, every variable, constant, and 
procedure declared in POOL is then accessible to every module in the system. The 
middle tier of SL-1 is the collection oflocal COMPOOL segments, which declare the 
shared symbols for a particular module. On top of both of these are the main 
implementation segments. In some cases, (eg: module AAXXX) the middle and top 
tiers are combined, and the local COMPOOL appears in the same PLS segment as the 
code. 

Static SL-l Code Organization 

342 Module Source (MSOURCE) control files t:;;:> AABCSXXX AAPBXXXX 

2407 implementation SEGMENTs t:;;:> 

(may be COPY"d into !!lore thon one MSOURCE file!) 

240 local compools t:;;:> 

1 global compool t:;;:> 

!~ IrA1\.PL..J.-,-axL .... -''po~O..c, 
AAXXX 

poot 

ABDNXXX ACDC 

26 I'm lying. It's not quite true that every shared constant is in POOL. The other, scarier, technique is to have 
each module that needs the constant declare its own local copy. Now, as long as they're all the same, things 
will work out fine. The only safe way to achieve this is put the definition into a PLS segment, and then 
COpy that segment every time you need it. Alternatively, you have to hope you don't get blown away by 
typos. Finally, you'll see the occasional muddle whereby all three techniques arc employed in different places 
to define a single constant. This is a bad thing. 

Norte! Proprietary 149 



Part III: Software Architecture Version 1.0 

Why COpy procedure segment s mor e t han once? 

Each COpy adds a copy of the machine code for your procedure into the Ml program 
store. COpy provides a convenient way to get around the old PLS limitation of 1000 
lines per module. But memory is still not free, although it's now getting cheaper. Why 
would more than one module ever copy the same segment? 

Historica l reason #1: 

"Overlays" used to be overlaid. That is, there was a single overlay space that, at any 
given time, could have exactly one of the various overlay modules in it. Any code that 
was common to more than one overlay was best handled through a single shared 
segment that each overlay could COpy. 

Hist orical reason #2: 

There used to be a strict limit to the number of global procedure numbers available. ff 
you had several copies of the executable code, one ill each module that needed to call it, 
you didn't need to use up a global procedure number. 

Dodgy pseudo-OO reason (~ ) : 

Since COpy is essentially a macro expansion, the symbols the copied segment refers to 
will be specific to the context into which it is copied. Thus, you could design 
polymorphic behavior into your segment by defining different local copies of the 
procedures the copied procedure calls. You could also sort of get inheritance by 
referencing different kinds of local variables along with some shared structures. But 
the odds of people successfully maintaining code like this, even assumillg you could get 
it right to begin with, would not be high. 

6.1.3 The SL-l memory model 

150 

The original SL-1 machine had 4 X 16K pages of memory: one each for 
executable code, protected data, unprotected data, and I/O buffer space. Ever 
since then, our pointers have been based on a paged model, even though it no 
longer bears any relation to the hardware. The technique might eventually be 
leveraged into a decent virtual memory system, or to support memory protection 
for multi-tasking, or possibly to support private variables. But right now it isn't. 

We have what amounts to a virtual machine implemented half at compile time 
and half at run time, which maps from SL-1 addresses to native target-machine 
addresses. Regardless of the conventions of the target CPU, SL-1 addresses start 
bit counting with the low-order bit. There is also a slight residual propensity to 

think all things are 16 bits long, although between the Omega (24-bit) and Thor 
(32-bit) ports, most of these have been cleaned up. The key details are: 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

• For arrays of little things (bit fields), the compiler only fills the low-order 
words. This is mostly because some of the old code, that explicitly steps 
through structures and does its own pointer manipulation, would fail if we 
fix this. 

• On a DATADUMP, only low-order words are saved. On SYSLOAD, only the low
order words are restored, with the top half being set to zero, rather than 
sign-extended. Thus the DN tree has to be re-derived from the terminal 
blocks (rather than just being restored). 

• Pointers are composed of two parts. The first has evolved from a 2-bit 
physical bank-switched page number into a 9-bit logical page number which 
is used for compile-time pointer checking. The second is the "SL-l 
address", an offset that has evolved from 16 to 32 bits. To get the real 
native pointer, you have to shift the SL-l address two bits to the right, and 
then add a base offset. However, as long as the CPU speed is much faster 
than the memory fetch time, it probably doesn't really cost us anything to 
do this run-time indexing. 

• Type INTEGER now uses the full 32 bits of a longword. It is no longer safe 
to assume #FFFF is the same as -1. 

• Packing is big-endian, although we're still puzzling about how best to 
handle the Intel port. Within the CPU it doesn't matter much, but as was 
pointed out earlier the Ml machine is really a network of processors, and 
the messaging can get tricky if the CPU is byte-transsexual. 

• There's an added barrier to understanding, which is that the syntax differs 
slightly between "structures" and global variables. With global variables, 
the assumption is that each variable will begin on the word boundary 
following the previous variable, and you use the SET ORIGIN command to 
override this. Since structures are basically type definitions, it doesn't make 
any sense to try to reset the "origin" in the middle of them. Also, 
structures tend to be things that get repeated many times in memory (think 
of Call Registers), so people worry more about how to pack them, and 
almost always use the syntax where each field's starting offset is specified 
individually. The array packing rules are still the same. 

Nortel Proprietary 151 



Part III: Software Architecture Version 1.0 

152 

An example may help to visualize the SL-1 memory mode~ and will also make 
obvious the potential memory savings that future compiler work might yield. 
Assume the following lines of SL-1 code: 

COMPOOL 
BEGIN 

SET ORIGIN H.100; 
INTEGER MYARRAY[200]; 
INTEGER MYINT; 
UPOINTER PTRLIST [5]; 
INTEGER FIELDS (0,4) [8]; 
INTEGER NEXT (2,2) [6]; 
INTEGER ONEBYTE (0,8); 
INTEGER NEXTBYTE (8,8); 

END; 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

Given the above source code, the compiler will actually build the variables in 
memory like this: 

Bit Offset : 31 16 15 o 
r-------------------------------~ 

H. lOO 
MYARRAY[O] 

MYARRAY[l] 

MYARRAY [199] 

Ul H. lCS Ul MYINT 
QJ 

>-< 
-0 
-0 PTRLIST[O] 
<t: 
-0 
>-< PTRLIST[l] 
0 
So 

rl PTRLIST[2] 
H 
Ul 

PTRLIST[3] 

PTRLIST [4] FIELDS[O] 

H.lCE [3] [2] [ 1] [0] 

unused [7] [6] [5] [ 4] NEXT[O] 

H.lDO 

ONEBYTE 

Note especially that NEXTBYTE does not land in the same word as ONEBYTE without 
resetting the origin. 

To help people write portable code, SL-1 provides a family o f "pseudo
procedures" which are guaranteed to return the right portions of a data structure 

Norte! Proprietary 153 



Part III: Software Architecture Version 1.0 

irrespective of the CPU on which they're running. Pseudo-procedures generate 
in-line code rather than procedure calls, and have the magical characteristic of 
being able to "run" at compile time (if enough information is available) or run 
time (if passed relocatable variables as parameters). The exhaustive list is given in 
the SL-1 Language reference, but a sampling follows: 

• ADDRESS - returns the "SL-1 address" (not a native pointer) of its argument 

• LOGICAL_PAGE - takes an identifier, and returns the Logical Page Number, of 
which the high-order bit indicates whether or not the identifier is protected 

• BITWIDTH - the size of a bitfield in bits (1 to 16). Unfortunately, this 
intrinsic can not be passed bigger things like integers and pointers. 

• SIZE - the size of a structure, in words 

6.1.3.1 Protected data store (PDS) 

154 

Protected Data should hold anything that needs to survive a restart. This is 
traditionally the customer configuration data-data blocks describing things such 
as which features and telephone numbers are associated with each set. Note that, 
as discussed in Chapter 2, protected data is not automatically persistent; 
additional code must be written to dump it to disk, if it is to survive power 
failures or reboots. However, it is normally the intent that most protected data 
will be archived to disk in some form, and reloaded on a reboot. By contrast, this 
is never true of unprotected data. 

Logical pages 0 to 511 are hard-coded as protected, unprotected, or non-existent 
at the top of module POOL, usually referenced by tag (" . U_ROUTE_DATA", 

". P_BASIC", etc.) To "malloc" a block of protected data, use code like the 
following: 

P MQA PTR := 
GET_PDATA_BLK(SIZE(MQA_DATA_BLK) ,LOGICAL_PAGE (MQA_DATA _BLK)); 

It used to be possible to toggle the memory protection directly using 
PROTECT ( . ON), but this procedure doesn't do anything on Thor machines. To 
write to protected data now, use code like: 

WRITEPDS(LOGICAL PAGE(ACD AGENT ID) , 
ADDRESS(ACD AGENT ID:P-POSITION PTR) , 
AGENT_ID_CODE); - - -

WARNING; Overlay 43 (Datadump) locks out all other overlays, so most of the risks of 
writing to PDS during the dump are avoided. Tf you're w.riting to PDS from call 
processing, you will be okay as long as all the associated writes are done during a single 
timeslice. Otherwise, you could cause an inconsistency in the dumped image. Reading 
from protected data stare does not require any special effort. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

6.1.3.2 Unprotected data store CUDS) 

This is where all transient data should go, most notably call registers and state 
information for anything that doesn't survive restarts. Information like who's 
talking to whom, which lamps are lit, and which phones are ringing, is stored in 
UDS. Note that call registers don't really survive warm restarts; they are 
reconstructed as well as we can manage out of the network connection memory. 
A lot of the more subtle data gets lost in the process. 

Medical History 

We keep Call Forward on No Answer (C]iNA) data in protected store, but because we 
let people change it frequently, we kept basic Call Forwarding (CFW) data in 
unprotected store. Some guy (we'll call him Dr. Marcus Welby, M.D.) had his phone 
forwarded to his beeper. Now one day, the switch did a restart. 1t recovered normally, 
but of course it lost the CFW data in the process. The next thing that happened was a 
medical emergency, in which it would have been awfully helpful to have paged that guy 
whose phone was no longer forwarded. 

We've since moved CFW data to Protected Data Store. 

Moral: Yow: choice of data store type matters more than you might think. End-users 
shouldn't know about restarts and power losses, so the things end-users do care about 
should persist across such interruptions. 

6.1.4 Major SL-l data structures 
The reason the Ml mostly works is that all of tl1e code that manipulates call 
control and terminal data structures lives in SL-l and is scheduled by WORKSHED. 

All designers should have at least a basic understanding of the data structures 
discussed in the following sections. 

6.1.4.1 Call Registers and CRPTR 

Call Registers (CRs) hold the information about each active call. They contain 
such things as who originated the call and to whom the call was made, what time 
the call started, which features are active on IDe call, what digits were dialed, and 
the current call state (in MAINPM and AUXPM). 

Norte! Proprietary 155 



Part III: Software Architecture Version 1.0 

MAINPM typically goes through the following transitions: 

SON_CRs 

originator hangs up 

.I)El.AYDIALING 
"debounce" keypad {ignore transient gl1tchesj 

originator stays off-hook 

timeout 

destination is busy 

peo~le are talking I parties hang up 
~-"-'--"""'---~--" 

Even though CRs are getting kind of big (about 180 words27), there isn't room to 
store a lot of the specialized feature data in a regular CR. If we made the CR big 
enough, then all calls would have the extra overhead. The compromise chosen 
was to allow a linked list of up to 52 extra data blocks ("son" Call Registers) to be 
linked on as needed. Many features define their own refinements to the SON_CR 

structure, and link them to the main CR using CREATE_SON. They cost a little 
more real-time to get to, but they make sense as long as most calls don't need 
them. An alternative is bit reuse: overlay two or more semantic meanings on tlle 
same CR fields . This works well, but forces the features to be mutually exclusive. 

CRs as a generalized memory abstraction 

CRs are also used by some features as placeholders in timing queues, or even as 
print buffers. Because we had already gone to the trouble of providing a fast way 

27 That's right. We've got nearly lK bytes of complex, interconnected, overlaid, state data, and we still need to 
link extra SONCRs. Getting call processing code right is tough: it takes real skill, and thorough testing. 

156 Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

of allocating and freeing CRs, and auditing them to make sure we never lost any, 
reusing them as a generic buffer is kind of a reasonable thing to do, provided that 
you don't hold on to them too long, and that you make suitable changes to the 
engineering recommendations so the switch doesn't run out of CRs. It does 
mean that we end up using medium-sized buffers to hold small things, but as 
long as we're not fragmenting the memory this is not a huge problem. 

You can look at the number of CRs in each queue on a live system by using the 
pdt command "sllqshow". On a very slow switch, the output might look like 
this: 

SL1 queues of size > 0 
Cadence (queue 2 at Ox4ab186c) size : 2 
128LowP (queue 3 at Ox4ab1880) size : 14 

2Sec (queue 4 at Ox4ab1894) size : 19 
Ring (queue 5 at Ox4ab18a8) size : 5 
Dial (queue 6 at Ox4ab18bc) size : 6 
Idle (queue 12 at Ox4ab1934) size : 4460 

RAN (queue 14 at Ox4ab195c) size : 2 

6.1.4.2 Terminal Numbers (TNs) 

The usual software abstraction for the telephones, trunks, and service circuits 
involved in a call is the TN. The TN actually specifies the physical location-the 
network group, loop, shelf, card, and unit-where this terminal's wire terminates 
on the PBX. Because it is so closely tied to the hardware, the internal format 
used for TNs depends on the vintage of the machine. Originally, we could 
handle only 4 telephones per line card. Over the years, this has evolved to up to 
32 sets today, but the size of the TN is stil116 bits, thanks to slightly hideous 
packing sorcery. There's also a special version for Option 11 C, since it has no 
use for shelf or card information. Fortunately, almost all call processing code can 
treat the TN as a handle, a unique identifier for the phone in question, without 
attempting to parse the internal structure. 

Group, Loop, Card, and Unit Blocks 
These blocks form a dynamically-allocated tree structure that holds all of the 
protected configuration data and the unprotected state data for each TN on the 
switch. It also holds the data for each component in the hierarchy (group, loop, 
shelf, card, and unit). TNTRANS is the intrinsic normally called to traverse the tree, 
and it initializes a group of pointers, one to each of these blocks. By convention, 
the local variable which points to this pointer group is called an ITEMPTR. 

Note that the protected items point to the unprotected ones, and never vice
versa, so that you get the right behavior over restarts. 

Norte! Proprietary 157 



Part III: Software Architecture Version 1.0 

158 

The TN Tree 

Unprotected Data 
ULOOP BLOCK UUNITBLOCK 

TDBLOCK and CONFBLOCK are the analogous structures to link tone detectors and 
conference bridges, respectively, to call registers. 

TN templates 
In the beginning, memory was very expensive. Therefore, designers were always 
trying to think up ways to limit the amount of memory used by the Ml system. 

One of the ways that they came up with, was to separate the protected TN blocks 
(for both PBX and BCS sets) into two areas: 

1. the "fixed area" that contains data that's always needed, or data that is not 
big enough to warrant the allocation of a dynamic entry which will use up at 
least one word of memory, and 

2. the "dynamic area" which allocates memory only when required by a 
dynamic entry, dependent on a TN's configuration. 

Information in the fixed area can easily be access using a fixed data structure 
since all of the data is fixed. However, the information in the dynamic area can 
vary from TN to TN, depending on what dynamic entries are configured. 
Therefore, a fixed data structure cannot be used for this dynamic area. 

Instead of allocating extra memory to store the type and size of each and every 
dynamic entry in a TN's dynamic area, the idea of templates was used instead. 

N ortel Proprietary 



Version 1.0 Part III: Software Architecture 

The assumption was that most TNs would have the exact same dynamic 
configuration as many other TNs in terms of sizes and types (not content). 

Therefore, templates were created. These templates define the type, size and 
location of the data that is stored in the (dynamic) "template area". Each TN 
block contains an index (for faster access, a pointer was also later allocated) to the 
appropriate template that defines this "template area". In this way, the template 
can be used for the template area, similar to how the fixed area's fixed data 
structure is used to access the appropriate data. Therefore, any TN with the 
same template area configuration can share the same template. 

For example, if a TN were created, and copied 1000 times, only one template 
would be needed. The fixed area content (eg: DN, CFW DN, HUNT DN, etc.) 
can be different, but the same template can be shared as long as the type and size 
of each template entry is the same. 

Model telephones 
The above templates are instantiated automagically when new TNs are created on 
large systems. The Option 11 C makes the same idea accessible to the 
craftsperson by providing a wide variety of pre-programmed, model telephone 
layouts from which to choose. Using telephone layouts or templates, technicians 
can perform a few simple steps at installation to activate multiple telephones. 

6.1.4.3 Phantom TNs (PHTNs) 
Ml Terminal Numbers took a step towards greater abstraction 
in Release 20 with the invention of Phantom TNs. For some 
applications, it is convenient to have a terminal profile that is 

not linked to a physical phone. A Phantom TN (PHTN) is ordinal), terminal 
configuration data for a phone that does not physically exist. This allows 
customers to define TNs and associated DNs without buying the hardware 
associated with them (i.e. phone sets, line cards, etc.). 

For example, we allow ACD agents to "roam" to a different desk each day. 
When the agent logs on, we automatically invoke Remote Call Forwarding to 
transfer all her calls to today's real DN. PHTNs also allow multiple published 
DNs to terminate (again via Call Forwarding) on a single real phone, which can 
be convenient in certain service industries. Yet another use for these Phantom 
TNs was for defining templates for DTEV terminal provisioning. The 
craftsperson defines a series of "models" with typical user profiles, and then uses 
these for auto installation. 

Norte! Proprietary 159 



Part III: Software Architecture Version 1.0 

160 

To ensure we always send calls somewhere, the feature that created PHTNs also 
needed to create a default Call Forwarding DN. In the absence of other 
instructions, a call to a PHTN will go to this default DN. 

We have developed different flavors of PH TN over the years. The original 
Phantom TN was based on the SOO set, and can only be used as a temporary 
home from which to forward calls. No hardware is required for these, but the 
customer does have to use Overlay 17 or 97 to tell the M1 that some loop 
number is the "phantom loop", and then all TNs on this loop will be PHTNs. 
With Incremental Service Management (IS1'v1), we charge people for the 
combined number of real TNs plus PHTNs configured (although it's sort of 
selling software by the pound ... ) 

The second type ofPHTNs was built on top of standard BCS set call processing 
code for an early mobility product needed to be able to launch calls from a 
PHTN. For instance, a user may give an assortment of destinations where he or 
she might be located, and we could attempt calls to each of them to try to track 
down the real person. These BCS-type pnTNs were reused for Controlled DN 
processing by Symposium. Because these PHTNs are used to originate calls, it 
was expedient to require them to be associated with a dedicated physical network 
loop. The alternative would have been to visit all of the lower-level code being 
invoked and teach it that it not to try to connect speech paths and send messages 
to the non-existent phones. 

This is exactly what a later mobility project did. Now calling them ''Virtual 
TNs", the project extended the SOO-type PHTNs to micro cellular sets. A 
portable set often changes its physical location (hence, "portable") and thus its 
access point to the M1 network. Virtual TNs are used to store the portable set's 
configuration. Like the original PHTNs, Virtual TNs require no physical 
hardware. But Virtual TN s are used throughout call processing code, so that 
Mobility users have access to the full suite of M1 features. To achieve this the 
PHTNs were changed from disabled to enabled for call processing. On 
microcellular calls, real physical TNs (ports on an MXC card) are only used to 
reserve network paths for connecting speech path. Virtual TN s allow mobility to 
handle the many-to-many mapping of roaming sets, and the extra layer of 
concentration from idle terminals. The model looks like it may extend well to IP 
telephony. 

Yet another type of PHTN, built on top of DTI2 trunks, is used by Digital 
Private Network Signaling System (DPNSS) code. DTI2 PHTNs are used for 
ISDN Semi-Permanent Connections, for A.ustralia. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

These various PHTN types have been layered on top of each other over the 
years, and the resulting code is not always too clean. For example, each loop can 
either host real TNs or one of the different PHTN types, but instead of having a 
single table recording which of these it is, there are three tables, PHTNLOOP [ 1 • 

PHTNBCSLOOPS [1. and PHTNDTI2LOOPS [1. which are used to try to track this single 
state. Tracing through the use of these tables reveals a lot about how the 
Phantom TN code works. In particular, be aware that code that appears to apply 
to all PHTN types. such as function IT_IS_A_PHANTOM_LOOP (), may only apply to 
a subset. It would be helpful to merge these some day. 

There's also another, unrelated fake TN type called Logical TN (LTN). It was 
created for Integrated Message Systems (IMS) voice mail in Release 14, and is 
used to map each IMS attendant terminal to a voice messaging port. And these 
LTNs are not related to the Meridian Evolution Logical TNs, nor to ISDN 
Logical Terminal Identifiers (LTIDs). 

6.1.4.4 Directory Number blocks 

Directory Number blocks (DNXLBLOCK) form a dynamically-allocated tree structure 
that helps call processing software route calls based on the digits dialed. The 
main features of this tree are that it supports variable length dialplans, and that it 
may be traversed very quickly by call processing code. DNTRANS is the intrinsic 
normally called to do this traversal. 

Because customers all have their own dialplans, CDNXPTR[custHl is used to find 
the root of each DN tree. Each branch of a DN tree either terminates in a 
DNBLOCK leaf, usually corresponding to a local telephone. or grafts onto a 
ROUTE_MASTER_HT, which leads to a list of trunks routing out of the PBX. As with 
the TN tree. each node in the tree is a relocatable structure. The simplest PBX 
sets need no further data, so no DNBLOCK is even allocated. 

An additional tree for each customer group is used to handle Flexible Feature 
Codes, and this one is rooted at FFC_CDNXPTR:P_CUST_DATA_BLK. 

Norte! Proprietary 161 



Part III: Software Architecture Version 1.0 

162 

" CbNXl?TR 

The DN Tree 

first 
digit 

:E'IRST_DNxtB;r.OCK 

second 
digit 

........... ® 
" 7 

DNXLBLOCK 

second 
digit 

'--"'~I''''''''''''''''''~'''''''''''''''' I ........... 1h ..... 

DNXLl3LOCK 

I 

r 

third 
digit a phone 

--. 
4 
5 extension 

257 
7 

DNXLBLOCK DNBLOCK 

a phone 

extension 
53 

DNBLOCK 

Chapter 4 of the Ml Core Course notes contains a thorough discussion of both DN and TN 
translation, The notes are available on the web at: 
http: //47.49,0, 148!Dcpartmcnt! Training!coursc documcntation / 

Controlled DNs (CDNs) 
A CDN is used for off-board call control (like SCCS), and is basically an ACD 
Directory Number without agents. There are two modes: default and controlled. 
In controlled mode, the CDN acts as a parking lot for calls waiting for treatments 
from the controlling applications. In default mode, which is normally only used 
if the AML link fails, it works like ACD. 

CDN calls are controlled by messages coming over the AMI.. (either ELAN or 
LAPB) . When the call is fIrst terminated on the CDN, an Incoming call (ICC) 
message is sent over the AMI.. to the call-control application. This application 
will then return a message that might tell the M1 to connect this call to music, 
route it to a DN, or even merge it with another call. 

It is common to publish several different numbers for subscribers to dial that 
correspond to different services. Once the call reaches the M1, there are a variety 
of mechanisms that can remember how the call arrived (known as Dialed 
Number Information Service (DNIS)) before placing them all in the same CDN 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

queue. The DNIS data is then included in the ICC message so that the call 
control application may decide how best to handle the call. 

Merge call is useful for applications that want to send their call to a destination, 
but want to make sure it terminates before connecting to call. Meanwhile callers 
can "enjoy" recorded announcements, music, ringback, IVR, or even silence 
while in CDN queue. Multiple calls can be made to different destinations on 
behalf of the caller in the CDN queue (as in PCS), and then the CDN call will be 
merged with the first successful one. 

CDN implementation reused much of the ACD code, which made it easy to 
provide the queuing and default ACD behavior. 

Virtual DNs (VDNs) 
Virtual Network Services require a pool ofVDNs to track calls. Up to 4000 
VDNs may be configure using Overlay 79. One is required for each active VNS 
call. 

6.1.4.5 VECTABLE 
VECTABLE is an array, indexed by global procedure number, of the start of 
program store for each of these procedures. It is used to locate procedure bodies 
when executing the code, and for SNAP and PDT. On some machine types, 
VECTABLE is also used for packaging, by overwriting entries for packaged-out 
procedures with a nil procedure, combined with setting the appropriate bit in 
SERV PACK RESTR. 

6.1.5 Some common hooks 
Calls to the following procedures are scattered liberally throughout the SL-1 
library. It may be helpful to understand what they do, and when to use them. 

6.1.5.1 SNAPVARO 
There are nearly 1200 calls to SNAPVAR sprinkled throughout the call processing 
code. These calls trigger data collection for a tool called SNAP. SNAP traces the 
execution of the SL-1 code without stopping it, and also displays useful details 
about key variables like MAINPM: CRPTR. 

SNAP output is helpful, but it tends to be a bit verbose. There is a post
processing tool on Unix called "roadmap" which thins out some of the 

Nortel Proprieta1J: 163 



Part III: Software Architecture Version 1.0 

redundant information, formats the output, and best of all substitutes the local 
procedure names where appropriate to give a much more readable result. The 
following is an example of the kind of output roadmap produces. 

WORKSHED : inpu t task 
LIN500 : lin 500 

elt: 

LIN 500 : disconnect_msg 
ONHOOK : onhook 

DISCONNECT : disconnect 
DISCONNECT : camp_on 

CAMP SEARCH : camp search 
MUSIC MODULE : music module - -
CAMP SEARCH : rem percamp ton e 

REMOVE SON : find son -
REMOVECRPTR : unlInk 

REMOVE : removecrptr 
DECR ATTN QU : decr attn qu 

DIGPROC : -digproc --
DIGPROC : dialing 

SNAP is extremely valuable in the early stages of debugging a problem. The only 
downside is that you have to manually code the calls to SNAPVAR, or it won't do 
anything. A lot of effort has been spent embedding these calls into most existing 
features, but beware that there may be places that were missed. 

A complete user guide can be found under F02907, SNAP Too! S fides, in Doctoollibrary ML VDOCS. 
From Unix, "man roadmap" also gives quite usable instructions. 

6.1.5.2 BUGO 
When call processing software detects information which is not in the correct 
format or gets into an invalid state, a BUG message is output. BUG messages 
are intended to assist designers debug their code. Ideally, BUG messages should 
never occur in the final product. 

BUG numbers are managed globally to ensure each is unique. To get the next 
available number, send an email to "SL1 MSG (BNR)" . 

6.1.5.3 ERRO 

164 

General hardware or database problems are reported with ERR messages. These 
problems can be corrected in the field (eg: a hardware failure or database 
configuration error). If possible, instead of an ERR report, use the error type 
related to your hardware or software component, eg: Primary Rate Interface 
(PRI) and Remote Peripheral Equipment (RPE). 

N orte! Proprietary 



Version 1.0 Part III: Software Architecture 

Unless errors are suppressed, this global procedure prints "ERR" followed by 
your error number. Since Release 19, BUG and ERR messages normally get 
filtered along with all the other error messages by the centralized fault 
management reporter. 

6.1.5.4 WARNINGO 
This is not a global. It's one of dozens of local procedures of this name, with 
many unrelated implementations, which puts out a warning message on the 
attendant console's display, or to memory, or to a TIT screen, or whatever the 
local designer wanted when it was written. Don't use this without checking what 
it means in your context. 

6.1.5.5 MARKOVERFLOWO and MARKBUSYO 
These routines update the call state in the CR, provide the right tone to the caller, 
notify the appropriate services, and peg the operational measurements when a call 
is unable to complete. 

6.2 The PBX platform 

6.2.1 Sysload 
As stated at the beginning of this chapter, SYSLOAD is the ftrst SL-1 procedure to 
be invoked after a reboot. It's main job is to load the most recently dumped 
customer conftguration database into protected memory. SYSLOAD is a big 
procedure (group of procedures really), but in simple terms, SYSLOAD sets up the 
protected data, and then calls INITIALIZE to set up the unprotected data. Only 
after this has been done will call processing begin. 

Datadump is controlled by LD 43 & ill 143 overlays, and can either be part of 
the automated daily routine or done manually. The main reason customers do 
regular Datadumps is to recover gracefully from power failures or severe memory 
corruptions. 

When a customer upgrades from one release to the next, all of the protected data 
must be converted to reflect any changes to data structures between the releases. 
This job is done by procedure CONV, which is invoked by SYSLOAD. To a designer, 
this essentially means that you have to write a new procedure, which will use 
WRITE_PDATA to spit out the new version of your structures, and then link your 

Norte! Proprietary 165 



Part III: Software Architecture Version 1.0 

new procedure into the right procedure called by X81CONV. It's really important 
to get this stuff right, because customers rely on being able to reboot in cases of 
emergency. They're already in a bad mood if they have to reboot. They get even 
less pleased if the reboot doesn't work. 

WARNING: Datadump only dumps the low-order 16 bits of your 32-bit data. 

For more information on what you need to do to make sure protected data for your application is 
converted correctly, see B01826, SYSLOAD alld CONVERSION, in Doctoollibrary BVWDOCS. 

6.2.2 Initialize 

166 

The INITIALIZE procedure is invoked for one of three reasons: 

(a) VxWorks is doing a cold restart, for instance because the system has just 
rebooted. 

(b) VxWorks is doing a warm restart, for instance because a hardware failure in 
the common equipment has occurred, or the manual initialize button on 
the common equipment has been pressed. 

(c) VxWorks has initiated an SL-1 task restart or the tSLl has trapped 
(although from Release 22 onwards, this just causes a warm restart). 

The operations performed differ slightly according to the cause of the restart, but 
in general the following sequence is executed: 

• Rebuild the unprotected software data blocks: queue structures, I/O data 
blocks, Customer Data Blocks, Route Data Blocks, and TN blocks. 
Allocate the Call Registers and place them in the idle queue. 

• Test most devices for response and for permanent interrupts. Disable and 
mark as faulty any that do not respond. If an interrupt cannot be cleared 
by disabling the offending device, then mask out that interrupt. If the 
initialize was caused by a failure of an I /O device then mark that device as 
faulty. 

• In redundant systems, if any faults seem to be present but the inactive side 
seems to be healthy, then choose which side looks most promising to run 
on. 

• Perform or initiate downloading to X-cards such as XNET, XPEC, and 
XCT, as well as certain set types (XNPD, MISP, and MSDL). 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

• Invoke REBUILDCALLS to rebuild the call registers for calls that were 
established before the SYSLOAD or INITIALIZE occurred. Connections to 
either conference loops or IDS (or MF-sender) loops are not rebuilt and 
are cleared in hardware. 

• Enable interrupts so that message processing can recommence. 

• Print messages on all Maintenance TrY s giving the details of the restart, 
and start Call Detail Recording. 

6.2.3 Switchover 
On redundant machines (that is, machines with twin CPUs) the active CPU does 
all of the work, and the inactive CPU just waits around in case the ftrst fails. The 
hardware ensures that the data store on the inactive side shadows that on the 
active side, so that in the event of failure, the inactive CPU can jump in instantly 
and continue. 

Now that our operating system has been disentangled from the SL-1 code, 
switchover is really a platform concern. The only real requirement is that SL-1 
provide suitable initialization code to be invoked on an ungraceful switchover. 

6.2.4 Workshed 
As discussed in the Patterns chapter, WORKSHED is the overall work scheduler for 
the SL-1 code during normal PBX operation. It's really a Transaction Engine 
manager, making sure that the call processing, administration, and maintenance 
code all gets to run fairly, and that they do not end up trampling each other. 

The ftrst priority of WORKSHED is call processing messages. There is a philosophy 
that under heavy trafftc "committed" calls, that is calls that are already in 
progress, should take precedence over new calls, so we defer processing 
origination-type messages until other types of calls-in-progress messages have 
been handled. If all of these have been handled, WORKSHED will do administration 
work, and then background work like tone cadences, audits and timers are 
serviced in successively lower-priority "tiers". Recent work has been done to give 
AML call message handling a similar priority to more traditional call processing 
messages. 

Note that interrupts are asynchronous events that can happen at any time during 
the above scheduling. However, all that should usually happen during interrupt 

Nortel Proprietary 167 



Part III: Software Architecture Version 1.0 

handling is that a message be appended to the appropriate queue, which will then 
be processed in order when WORKSHED gets to it. 

6.2.4.1 Timeslices 

168 

The key concept to understanding WORKSHED is the timeslice. 

Consider a (slightly simplified) phone call: 

• a caller goes off hook and receives dialtone 
• he presses a digit, dialtone stops, and the PBX remembers the digit 

• he presses another digit, and the PBX remembers the digit ... 
• after enough digits, the PBX translates the digits and rings a destination set 

• the destination answers, and the PBX connects speech path 

• a caller disconnects, and the PBX takes down the call 

Each of these steps is a single, atomic transaction. Any number of events may 
make demands on the PBX between or even during (in the case of interrupts) 
each step. Other calls may come and go; users may log in or out; the time of day 
will change. But it is very convenient to be able to ignore all of that and just 
concentrate on this call as if it were the only thing happening. 

Each of the above steps corresponds to a WORKSHED timeslice. During each, a 
message arrives, an action is performed, and state data is updated so that the call 
processing code will know what to do with the next message. WORKSHED ensures 
that no other SL-1 code runs during your timeslice. In return, you have to 
promise to finish what you're doing and return fairly quickly (under about 100 
milliseconds). Since no other SL-1 code will run until you finish, various real
time critical jobs are being delayed, and eventually we'll start dropping trunks. 
The watchdog timer will detect gross abuse (after two seconds) and restart the 
switch, but you will have started causing trouble long before tl1is. Also, if you're 
really running long transactions very often, you'll be seriously impacting the total 
call capacity of the switch before long. 

Now consider a database change. This time the transaction processing happens 
at many levels. At the simplest level, a user presses a key, the PBX remembers 
the keystroke, echoes it to the terminal, and waits for another keystroke. At a 
higher level, these characters assemble into command lines, and the overlay 
processor interprets these one at a time, modifies the database accordingly, and 
awaits the next command. Overlay input processing is done in between call 
processing transactions, so it will occasionally change the value of a structure that 
matters (like the DN tree) during a call. But this will never happen during 
another transaction. 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

So when does my code get to run? 

There arc essentially three ways code can be invoked. 

1. Interrupt code: Interrupts signal the CPU directly that they need immediate 
attention. They get to run almost immediately, but are restricted to very short 
amounts of work. [n general, all an interrupt handler will do is to enqueue a 
message to be processed by task.level code. 

2. VxWorks task code: This is the normal execution mode for all non·S]'·1 
software, in eluding the VxWorks kernel itself. I t is strictly priority based, meaning 
that the highest priority task that has work to do is always the one running. It 
doesn't really have a transactional "timeslice" paradigm, although it can share 
things equally within a priority level. 

3. SL·l task code: One of the VxWorks tasks is tSLl. All SL·l code runs under 
this task, and to manage this SJA runs its own scheduler (WORKSHED) which is 
desit,1ll.ed to let transactions on thc call processing data complete atomically. [lor 
instancc, once we start to process an off·hook message, no other SL·l requests 
will be handled until we've found and filled in a call register, updated the terminal 
state, and queued for dial·tone. This helps keep the state data sound in the face of 
the barrage of messages that hits the switch during heavy traffic. tSL1 usually 
runs at a very low priority, and so is interrupted by most other tasks. That's why 
it's important that other code normally avoids changing (or even examining) call 
processing data structures. Within tSL1, there are a number of effective 
priorities, but the key is that tbey don't interrupt each other within a !,Yiven 
transaction. If a higher priority message comes in, tbe previous transaction still 
completes and thcn NEXT_TASK finds the highest priority transaction waiting to 
run. 

6.2.4.2 Timers 

As discussed many times, SL-1 code is transaction based. In general, you can't 
place a DELAY (10 seconds) in the middle of your transaction, because you would 
hold up the rest of the world. What you do instead is to set a timer, and then ask 
WORKSHED to let you know when the timer expires. 

Basically you have a choice between two levels of timer granularity: timing "ticks" 
can be either 128 milliseconds or 2 seconds. There are many variations, but the 
general idea is to set either (or both) of ORIGTO or TERTO, the originating and 
terminating timeout counters in your call register, to the right number of ticks, 
and then link the CR into one of the timing queues. WORKSHED invokes 
TIMING_TASK every 128 milliseconds, which decrements the counters 
appropriately. Whenever one of the counters reaches 1, WORKSHED calls your code, 
based on how you've set MAINPM. If your feature needs to run extra timers, grab a 
free call register or a timing block, link it to your call, set a counter for the 

Norte! Proprietary 169 



Part III: Software Architecture Version 1.0 

number of ticks you want to wait, and then link that block into one of the timing 
queues. 

There are a few important things to note here. The first is that the timing is only 
approximate. Depending on where you are within a tick when you first ask for 
the timer, you could lose almost the entire first tick worth of delay. At the other 
end of the wait, once the timer expires, you \\'111 only be invoked as soon as 
WORKSHED gets to you. If there are other messages waiting, or if other timers 
timed out at the same time as yours, there may be some delay. The other 
important thing to stress is that your task is not suspended. You will normally 
continue to handle other messages during the time you're waiting for your timer. 
If one of those messages means that you no longer have any need for the timer, 
you may cancel it by UNLINKing the CR from the timing (lueue. Finally, whenever 
you LINK your CR to a timing queue, you can wait forever by passing the value 
. TIMER_OFF, or continue the countdown on any existing timer by passing in 
.UNCHANGE. 

6.2.5 I/O 
The Meridian 1 has gone through many incarnations. Because each transition 
was done with limited resources, and because we needed to have a smooth 
transition strategy for our installed base of switches, large parts of the system 
were usually left unchanged from one generation to the next. In particular, you 
will notice that we still use a Tape Emulation system (TEMU) for reading and 
writing to mass storage, even though the medium has changed. 

For sending characters to TTY terminals, use the global procedure LOGPUTCHAR, 
or higher-level output routines like DECIMAL. 

6.3 Call processing 

170 

The call processing code comprises roughly a million lines of SL-l software. It 
was written by hundreds of people over a period of more than twenty years at 
half a dozen different sites around the world, and so it would be unfair to claim 
that there's a very complete uniformity of design thinking behind it. 
Nonetheless, learning how any given feature works is quite a tractable piece of 
work. To begin with, there is a certain rough structure to the code as a whole: 

Norte! Proprietary 



Version 1.0 

Applications 

MPO (Multi-Party Operations) 
SAR (Scheduled Access Restrictions) 

FFC (Flexible Feature Codes) 
RGA (Ring Again) 

(see internal fir index in POOL) 

SNAP I 

Part III: Software Architecture 

Interfaces 

~ NAS DECODE 
(NetworkAttendant Services)j 

ISDN . 
NMC HANDLER 

Utilities 
/

'1> (Netwo ..... r ... k Message Centre) 1(, 

'~ liN 
¢i:i: 

ONHOOK 
SETSPEECHPATH 

DISCONNECT 
SNAP] /' 

,. . .;?iP 

Drivers 

MARK OVERFLOW 
PATHIDLE 
BCSLAMP 

SNAi'3 

The above structure is not rigidly adhered to, but you can find it in the code. 
These days, most of the utilities and drivers that a new feature needs are likely to 
exist already, so the exercise becomes one of piecing together the required 
functionality from a collection of useful parts (sort of like Dr. Frankenstein did ©). 

fA future issue might attempt a decent annotated catalog if call events and utilities.} 

6.3.1 Messaging 
The original Peripheral Equipment did analog-to-digital conversion on the speech 
path, and simple concentration (by virtue of the fact that at any given time most 

Norte! Proprietary 171 



Part III: Software Architecture Version 1.0 

172 

phones were idle). The PE had no "intelligence", and any stimulus on a phone 
(eg: digit key pressed, digit key released, receiver off-hook) was just relayed up to 
the CPo This made peripherals cheap, but led to the CP needing to handle a large 
number of extremely simple messages with minimal delay for each one. 

The original analog line cards had a Scan and Signal Distributor (SSD) chip that 
detected state changes for up to 4 terminals, built an appropriate 16-bit message, 
and signaled to the network controller's terminal scan process that it was ready to 
send the message. The SL-1 sets and the original attendant consoles also had 
SSD chips inside of them. The protocol became known as SSD signaling. An 
analog line-to-line call normally had 12 incoming and 4 outgoing SSD messages. 

As new features were developed, particularly caller name and number display, the 
number of outgoing messages skyrocketed to 70 per call! One reason for this 
enormous count is that each character in a display update has to be put into a 
separate SSD message. Another is that we seem to send an inordinate number of 
messages to ensure that the hands free speaker is in the right state. 

Digital sets are connected via Time Compression Multiplexing (TCM) loops. 
%en TCM was introduced, its messages were converted into SSD format to 
help the evergreen-ness of the Network and Peripheral Equipment. So even 
though we had an opportunity to start working with fewer, longer messages, it 
didn't really work out that way. 

Given the history, it shouldn't be surprising that the messaging complexity comes 
together in module DSET (which created the "Delta II" digital sets), inside 
procedure TCM _OUTPUT _MSG. This procedure is used for any sort of control of a 
digital terminal. It may recluest a change to the terminal speech paths (eg: tum on 
handsfree), update an LCD key status indicator or the display, or change the set 
configuration. The particular request is specified by a combination of two 
parameters. To get a sense of the possible range, look at the raft of message 
types called . CMD _ xxx or . DCON _ xxx in module POOL. In all cases, once the TCM 
message has been formed, it is sent to the line card (originally an ISDLC, now 
probably an XDLC) via the PBX output buffer using SEND_PBX. The buffer 
contents ultimately get converted into SSD messages by the intrinsic 
WRITE ENET NWK or WRITE XPE NWK. - - - -

The SSD message then goes out to the XNET controller, which relays is to the 
XPEC on the PE shelf, which converts the SSD messages back into TCM 
signaling for the benefit of the line card and terminal! 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

6.4 Operations 
Operations, Administration, Maintenance, & Provisioning (OAM&P) is the 
vintage telecom industry term which includes almost all of the non-call handling 
things our customers need to run their switches. These functions are not really 
as cleanly separated as my section-headings make them appear, so please bear 
with me as I try to cover most of the essentials. 

Under Operations, I will focus on two groups of operating data an Ml produces: 
traffic and billing. 

6.4.1 Traffic 
Traffic statistics, also known as Operational Measurements (OMs), are used to 
help make engineering decisions: Do I need to buy more trunks? Is my CPU fast 
enough? \X'hich networks are getting the highest usage? 

Traffic measures things like the number of times all trunks are busy, high-water 
marks for resource usage, and device failures. The usual term is to "peg" an OM, 
meaning to increment that particular counter when a condition is detected. Every 
half-hour, the accumulated counts are transferred to "hold" registers and tested 
against critical thresholds, and a subset of the traffic measures are printed. 

Traffic data is kept in unprotected store, in data blocks like ULOOPBLOCK and 
UTRKBLOCK. It may be printed in reports by Overlay 2, and may also trigger alarms 
at preset thresholds. See especially modules TFC and TFP. 

6.4.2 Billing 
Call Detail Recording (CDR) is our per-call billing system, such as it is. CDRs 
can be used to track who called whom, which features were invoked, and how 
long each call lasted. If enabled, CDR software will send a stream of 220-byte 
records, typically one for each trunk call, over a serial data port to a downstream 
billing processor. Billing systems sometimes also view CDRs statistically (like 
OMs), to track patterns in overall call rates. 

Because we take an interrupt to push out each byte of each CDR, there is a 
substantial overhead for d1e CPU. CDRs are often turned off because in many 
PBX environments there is no attempt made to bill users, and generating CDRs 
just puts an unnecessary load on the system. 

Norte! Proprietary 173 



Part III: Software Architecture Version 1.0 

CDRs are buffered in Call Registers in . QU_CDR while they are waiting to be sent 
out the serial port (another example of using CRs as a generic managed memory 
system). However, call processing will steal back unprocessed CRs from .QU_CDR 

if no other CRs are free. Under heavy pressure, a PBX would rather provide dial 
tone than guarantee to bill for it. 

Many different types of CDR may be produced, depending on whether the call completed 
normally, what sort of services were invoked, what sort of facilities were involved in the call, 
etc. lior more details, try the X11 Softu}are Fea/llres Gllide, which dedicates 192 pages to CDRs. 

6.5 Administration 

6.5.1 Overlays 

174 

The fIrst thing to understand about "overlays" is that we don't overlay them 
anymore. In the earliest SL-1 machines, we only had a total of 16K to load all of 
the executable code, so we used a fairly standard technique to cheat a bit. We 
knew that there was only one craftsperson terminal (now false), and that they 
could only ever want to be working with one area of confIguration data at a time 
(false even then), so we split the MMI code up into a series of files. Each file 
could manipulate one of the main areas of data, and we would load one of these 
files at a time into the single shared 1K "overlay" space, sandwiched between the 
8K ROM and the real start of Program Store. This is the origin of the name 
overlay, and the reason you enter an overlay by typing "LD" (for "Load"). 

Overlays do one of three basic jobs: 

• "Service Change" tools, prompt-driven tools which change confIguration 
data for the system, customers, terminals, features, routes, etc., 

• "Print Overlays" which display the above data, or 

• "Maintenance Overlays" which manage the other components of the SL-1 
system. 

The structure of the permanent switch data is nested, and must be entered in the 
right sequence. For instance, because each dialplan is specifIc to a customer, you 
can't enter route data before you've defIned the customer to which it will belong. 
The diagram below tries to show how the main pieces fIt together. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

For multi-customer Mls, we actually treat the switch as if it were split, and you 
end up needing to use real (albeit very short) trunks to route a call between 
customers. There's no abstraction in the MMI of a dialplan as distinct from 
route selection or physical trunks, although there is one built internally (the DN 
tree). 

The job of overlays usually involves updating some element in the protected data. 
Since this is generally dangerous, and since we allow people to type "****,, to 
escape out of any activity they decide they aren't happy with, the usual coding 
technique is to work with a temporary buffer called a WORKAREA, and only copy the 
results to protected memory when we're sure the craftsperson wants the change. 

6.5.1.1 Linked overlays 
Because we originally only had room for one overlay at a time in main memory, 
the user interface used to force a craftsperson to leave one overlay to perform 
actions in another. In particular, if you defined a PBX set in overlay 10, you had 
to quit it and enter overlay 20 to print out your data. To reduce this headache, 
we have now linked a few of these together (at last check, overlays 10, 11, and 20, 
but not 12, 13, or 14) so that you can get at all their commands from any of them. 

You can recognize that you are in a "linked" overlay because the prompt is 
"REQ:" instead of "REQ". It might be argued that there is still much room for 
improvement, although the real solution is to use MAT. 

The complete set of overlays is described in the X 11 Il1put! Output GHide (four volumes), or is 
available on-line at http://47.82.33.147 /-mtvjbgQ1 I SI.1 ()vcrlay/SI J Overlayl ndex.html. 

Norte! Proprietary 175 



Part III: Software Architecture Version 1.0 

6.5.2 Set-based administration 
On very small MIs, people may not want the expense of a TTY terminal. 
Therefore, we allow an ordinary PBX set to be used to configure the database. 
Sometimes installers will bring a TTY with them to set the switch up initially, and 
then take it away with them when they're finished. Other real masochists might 
in theory do the whole thing from a phone. 

Apart from the obvious difference that the signal is 
coming in from a phone, there is the other equally 
obvious difference that a phone doesn't have big 104-key 
PC keyboard. In order to reuse almost all of the 
software, we have carefully chosen each of the command 
names in the overlays to map uniquely to the 
corresponding telephone digits. A procedure (LOOKUP) in 
the overlay manager maps "LD" to "53", because "L" is 
on the 5 key, and "D" is on the 3 key of a telephone. Because of the way this 
was done, it is actually possible on a TTY to type "KE", ''JE'', "LF", or any other 
letter pair that maps to "53" instead of "LD" (if this sort of thing amuses you ... ). 
The other non-TTY approach is console-based administration. However, these 
days neither of these methods is used very often, and many of the newer overlays 
do not really support them. The real trend is to move all OA&M to MAT. 

6.5.3 The overlay supervisor 

176 

The overlay supervisor allows users to log in, and then it used to have to load in 
each bit of overlay code whenever someone typed "LD xx". Since all code is 
now always in memory, this overlaying of HMI code is no longer necessary. 

However, overlays were originally implemented using a set of global variables to 
keep track of what the craftsperson was doing. Because you can now have more 
than one craftsperson terminal on an Ml, the overlay manager must manage to 
keep these right for whichever terminal has sent in a given request. 
SET_SLICE _ VARS () does this for multi-user administration. 

Also, a small number of overlays can be nested. This is known as "overlay 
linking", and is also managed by the overlay supervisor. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

6.5.4 Security 
A craftsperson must go through a login procedure to get access to OA&M 
functions. Limited Access Passwords (LAPW) give users access to specific 
overlays or debugging tools, depending on the user level. Some may have "print 
only" access. Multi-customer switches support an extra level of security to keep 
customers from interfering with each other. Up to 100 userids and passwords 
may be configured using Overlay 17. An audit trail may also be requested, so that 
you can later tell what each user did (or tried to do!). 

Many auxiliary processing subsystems, including Meridian Mail, ICCM, MAT, 
and MICB, also have there own independent security arrangements. 

SL-1 call processing can restrict access to toll trunks using Code Restriction, 
administered by Overlays 19 and 49. The authorization codes used then get 
recorded in the associated CDRs, so that bills can be traced back to the user. 

6.6 Maintenance 
For M1, see G00021, OA&M Standardsfor Meridian 1 Developers in Doctoollibrary GLOBPROC. 

For Meridian Evolution, see M02253, the Fault Management Developer's Guide in Doctoollibrary 
SL1oocs. 

6.6.1 System Event and Error Reports (SEER) 
SEER, written for the Alarm Centralization project, has added a fault 
management fliter on top of the traditional SL-1 error messages. It provides a 
standard interface for managing all of these, and automatically escalates severity 
with repeated failures. 

Each error message has: 

• a mnemonic, for example: 

o ERR (for operational errors, such as buffer overflows, but also used for 
some bugs) 

o BUG (software errors, such as # ACD agents < 0) 

o SCH (Service Change, usually typos byadmin folks) 

o AUD (audit noticed a problem) 

Nortel Proprietary 177 



Part III: Software Architecture Version 1.0 

o SYS (mostly packaging issues, and some general errors. The SYS alarm 
numbers are in hexadecimal because they used to be printed by code 
that didn't have access to decimal conversion routines.) 

o etc. 

• a four digit alarm code, unique within this mnemonic 

• a severity, . SEER_CRITICAL, . SEER_MAJOR, . SEER_MINOR, or . SEER_NONE 

For a discussion of the code, see MOl 076, Meridian 1 Fault Management in Doctoollibrary SL 1 DOCS. 

For a complete explanation of all 14,000 messages, see http: //47.74.128.167/s tj / M,!,sOl .html. 

6.6.2 Alarms 
Critical errors (like dead trunks) cause alarms to be raised at the site. We have a 
general ftltering system which goes something like this: 

All Ml error 
messages 

Formatted 
error messages 

Critical MMail 
ond AEM error 
messages 

History 
File 

Critical 
Alarm. 
Filter 

Filter 
Table: 
eg: 
- SYS+ 
- IN!+ 

Only Critical 
error messoges Filtered 

SDI 
Port 

6.6.3 Overload controls 

178 

The SL-l maintenance software attempts to detect, report, and isolate "babbling" 
cards. If we notice a component spewing out too many messages within a given 
time window, or if a large percentage of its messages are invalid, we assume it's a 
babbler. The overload software also kicks in if we run out of input buffers. 

The software tries to decide if the problem is with a unit, card, shelf, or loop, and 
to disable the smallest component possible. It also warns the craftsperson by 
spitting out an OVD log. 

N ortel Proprietary 



, Version 1.0 Part III: Software Architecture 

6.6.4 Audits 
MAIN_AUDIT and LAMP_AUDIT were already mentioned in Chapter 3's discussion of 
the Corrective Audit pattern. They are substantial collections of code which are 
responsible for ensuring that the presumed state of various SL-l entities matches 
the actual state. 

Norte! Proprietary 179 



Part III: Software Architecture Version 1.0 

180 Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

7. Management 

7.1 What's in the job description? 
Classical telecommunications has a sub-discipline called Operations, 
Administration, and Maintenance (OA&M), or occasionally OAM&P, where 
P=Provisioning. This is basically all the rest of the applications-level code that 
doesn't do the call processing. By their nature, these functions are easiest to do 
with in-depth knowledge of both the platform and the call machine, so the SL-1 
software is not unusual in having some of its OA&M code strewn throughout the 
rest of the system. In fact, "manageability" probably qualifies as one of the 
important pervasive aspects of the system that Chapter 2 examined. Like the 
other aspects, it too tends to apply to all components and all levels of granularity. 
The difference is that there's also a substantial corresponding software structure 
to support the relatively small local hooks. 

The new and improved ISO jargon for OA&M is Fault, Configuration, 
Accounting, Performance, & Security (FCAPS). FCAPS captures the nature of 
the job slightly better, but both terms are still common. 

7.1.1 Fault management 
The first duty of the management code is to deal with faults. Fault Management 
code must isolate the error down to the smallest field-replaceable unit, alert the 
maintenance personnel that something is amiss, and then tell Configuration 
Management to take the misbehaving equipment out of service and determine 
whether there is any other path to sub tending equipment or if it too must be 
taken out of service. At a manned site with an organized spare equipment 
inventory, we expect the Mean Time to Repair (MTTR) to be around 45 minutes 
or better. 

Norte! Proprietary 181 



Part III: Software Architecture Version 1.0 

A particular challenge is that we must be able to diagnose a problem that has 
caused the system to restart or even reboot (and hence lose all its state 
information). To do this, the platform allocates a report record in a special part 
of memory that is preserved across reboots, and the error handling code tries to 
write some meaningful notes here before restarting things. Although this doesn't 
help recover from the fault directly, it may provide useful debugging information. 

7.1.2 Configuration management 
Another obvious job of the management subsystem is to allow a craftsperson to 
alter the configuration of the equipment. More recent systems may even 
automate most of this task ("plug-and-play"). 

7.1.3 Accounting 
At the high level, we need to track which features are installed, and how many 
telephones are equipped, because this determines what PBX owners pay us. 

At a more detailed level, we record authorization code usage against long distance 
calls in Call Detail Records (CDRs) because this allows PBX owners to distribute 
their costs appropriately within their user community. 

7.1.4 Performance 
We need to report things like how many calls we are handling during busy hour, 
how many times a trunk group is completely busy, which equipment had 
problems, and which system bottlenecks are approaching their limits. This allows 
our customers to plan when they will need to upgrade their equipment. 

We also need to detect and handle overload conditions. 

7.1.5 Security 

182 

We must control access to the system as a whole, and to certain functions (like 
intrusive debugging tools) in particular. This is even more important now that 
the M1 supports LAN and dial-up connections. 

Within call processing software, "authcodes" help customers control costs by 
providing restricted access to toll trunks. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

Security may also interact with Configuration Management to ensure that 
customers get what they pay for (and not more). 

7.2 Legacy OA&M 

7.2.1 The data architecture problem 
Ml contains a complex database built by people whose expertise was not in 
complex databases, and whose principal focus was call processing. It has evolved 
over a number of decades, and is now somewhat labyrinthine and arcane. It has 
little tricks like storing its 32-bit entities in a 16-bit fue system, and using TNTRANS 

to infer semantic links between disjoint structures. Our new user interface 
(MAl) hides some of its blemishes, but one is still tempted to pull tlle whole 
tlllng out and replace it wit11 a good, commercial database. This would make 
archiving, redundancy, integrity semaphores, and version control somebody else's 
problem (say, Oracle or Sybase). It would simplify the design job of load-sharing 
the call processing task across processors. It would reduce maintenance effort, 
and probably make training new designers easier. 

And it would be a mammot11 task, have no immediate customer benefits, and 
probably lead to serious code bloat and real-time problems. For now, we're not 
seriously pursuing this idea, and on-switch management tools must come to 
terms with t11e existing code. The only promising alternative that the MAT team 
is attempting to leverage is to wrap the existing code to present a fairly 
normalized database fa<;:ade to the external management box(es). 

7.2.2 Overlays 
The overlays which handle most of the traditional SL-l OA&M have already 
been discussed in the preceding chapter, but I will briefly reemphasize a few key 
ideas here. 

OA&M code is not typically real-time critical, and shouldn't be where a PBX 
spends much effort during a busy hour. Therefore, we originally stored much of 
the administration code on a tape and loaded parts of it as needed into a common 
overlay space. These "overlays" are permanently resident today, but the name 
and much of the design have carried over from earlier days. 

Nortd Proprietary 183 



Part III: Software Architecture Version 1.0 

Part of the reason they are still the foundation of even our more advanced 
OA&M system is that they need to modify feature and equipment configuration 
data, and the only safe place to do that is within the SL-l transaction engine 
(WORKSHED). If translations or provisioning data were allowed to change at 
random times, it would cause havoc to call processing. 

The rest of the reason we still use overlays is that they were written on top of 
POOL, which allows them to peer inside of the call processing system. Recent 
code uses inheritance to present a standardized management API to the rest of 
the world (discussed in the next chapter). Older code sort of didn't need to, 
because OA&M code could always see everything it needed to directly. This was 
fast, but the tight coupling made evolution harder. 

7.2.3 Hardware Infrastructure (HI) 

184 

HI is the maintenance infrastructure of the M1. It's either the highest level of the 
platform, or the lowest level of the management software, depending on your 
politics. 

On earlier machines, any bus error would cause a warm restart. The Ml system 
had 10 shelves and 30' cables worth of extended addressing, so there were lots of 
opportunities to drop bits. It was clear that the software would need to detect 
bus errors reliably and at least retry the operations, but before Thor, the 
maintenance code and the operational code of the SL-1 were intertwined in a 
kind of Gordian knot. 

Hardware Infrastructure was envisioned to separate out that code which allows 
the machine to reason about itself and hardware failures. It focused on the 
physical layout of the system, with no "logical processor" abstraction. Some 
configuration and maintenance overlays were merged, effectively adding a 
standardized management portal to all pieces of equipment, with a uniform 
enable/ disable/ test/ configure interface. 

The HI task maintains CP hardware information, decides on the severity of error 
conditions, and issues switchover or task restart decisions. Additional HI interrupt 
code captures information at the time of bus errors and sends it to the HI task 
for handling. 

HI maintains and relies upon a self-descriptive information model, driven by a 
number of control flies: 

• hi. db defines all Hardware Infrastructure flies and thresholds 
• cnib. db describes all the CNI cards in the system 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

• cp . db describes the Call Processor cards (2 typically) in the system 

• iop. db describes lOP cards (2 typically) in the system 

• ipb. db describes connections between what network group and which 
CNI port 

• simm . db describes how many SIMMs are installed on each CP card. 

It provides a simple state tree, reflecting the physical cabling of the network, and 
fIle system redundancy. The Dependency Management part of HI might have 
(but doesn't) propagate state changes downward, so it is not really as useful as it 
could have been. 

7.2.3.1 Trouble "shooting" 

When a fault happens, we hope the following activities will happen: 

1. detect the fault 
2. collect information 
3. diagnosis the real problem 
4. form a strategy to solve the problem 
5. choose the best tactics within that strategy 
6. plan a procedure 
7. execute that procedure (clear the fault) 
8. selectively escalate certain recurring/important problems 

Machines are good enough at 1, 2, and maybe 3. Beyond that, we'd prefer to 
hand the job over to humans, except that most of our systems are unattended. 
Therefore, we at least need to have a default response, to try to restore some 
measure of service until a craftsperson can get there. There's an old Far Side 
cartoon with a veterinary student memorizing a list that went something like this: 

We do something similar. HI has a table with pre-arranged treatments for 
problems, with the most common result being to kill call processing. Of course, 

Norte! Proprietary 185 



Part III: Software Architecture Version 1.0 

in our case the system doesn't stay dead-it comes back to life through some 
kind of restart. But, also of course, shooting the horse doesn't fix the broken leg. 
Sometimes a restart, or even a reboot, does not clear a problem. If it looks like a 
problem with redundant hardware, HI may try to switch to the other side. If it is 
in a single pack, like a tone circuit, HI may try to take that hardware out of 
service and carry on as well as it can. 

7.3 Trends in management 
The Information Technology industry keeps moving the yardsticks, continually 
increasing customers' expectations of functionality (if not reliability). Our 
system management designers, in particular, must keep abreast of these trends. 

7.3.1 Automation 
In the earliest switching systems, if something failed to work, the craftsperson 
might have been alerted by the smell of an electrical coil melting itself. He'd then 
pull out a circuit tester, and go around hunting for the fault, looking for loose 
cables, feeling for overheating components, checking for moths in the relays © ... 
the system wouldn't give many clues, but then, it wasn't too complicated either, 
and the problem would get solved. 

As systems have evolved, we tried to add a measure of automation to the process. 
This includes automated configuration, fault detection, and repair (or at least 
isolation) of faulty equipment. The trend is towards having the craftsperson 
specify policies and processes for management, and having the machine take care 
of itself. The switch has a model of its pieces, and the dependencies between 
them. The different parts of the FCAPS framework then work together to 
achieve the desired behavior. Fault Management may notice a component having 
trouble. FM would tell Configuration Management to update the state of that 
component in the model. CM might take information from Accounting and 
Performance Reporting to decide what the best workaround would be. 

We should continue to take whatever steps we can in this direction. 

7.3.2 Networks 

186 

In the first SL-1, there was only one processor, and it was on the core shelf. 
Now, we have multiple local CPUs (CP, IOC, INS, NCs, ACCs, EIMC, MISP, 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

and assorted Application Modules) networked together within the M1 system. 
Our customers might wish to manage multiple systems within a campus, perhaps 
including SL-100s or even routers in a coordinated fashion. And a large 
corporate or carner customer might wish to manage the wide area network, doing 
things like dynamic route control or network ACD load balancing to handle 
traffic changes or outages. 

Our management strategy must move customers from element management to 
network management, and beyond this to business process management based 
on process and policy decisions. Getting there probably means tiers of 
management boxes, with the management systems themselves being manageable 
by other management systems. 

7.3.3 Management Information Bases (MIBs) 
If you have 00 technology, or even careful traditional design, all of the elements 
can be made similar, by having the same state space and similar abstract 
operations (enable, disable, test, fault-diagnose, fault-propagate). The "tough 
part" of management is data attribute administration across all object types. The 
problem is that it is driven by the implementation details of all of these different 
object types, which may be somewhat difficult to abstract. 

With 00, the Common Object Request Broker Architecture (CORBA) allows 
objects (and the management thereof) to be distributed among processing nodes. 
CORBA uses Interface Definition Language (IDL) is the base mechanism for 
object interaction, and specifies remote procedure calls for object management 
across platforms. But CORBA is really about full-scale object interaction, and 
not just the remote control of managed objects. 

The generic, not-necessarily-OO, network management version of this is called a 
Management Information Base (MIB). In the world of Simple Network 
Management Protocol (SNMP), a MIB contains the defmition of all managed 
objects on a network element, and provides a framework for identifying and 
managing the objects within the network. The MIB accepts commands from the 
managing system, and sends out a stream of state information about the managed 
objects. The MIB comprises a hierarchical database, and a table-driven API. 

Before it was cancelled, ME had two example MIBs. A MIB on the Fore INS 
stored all configuration data, which operations were permitted, and any alarms, 
and was managed via SNMP get/set and traps. On the CP node, the System 
Infrastructure included our own home-built MIB. 

Norte! Proprietary 187 



Part III: Software Architecture Version 1.0 

7.3.4 Graphical User Interfaces (GUIs) 
When the cryptic command line interface was introduced, it looked like an 
enhancement compared to LEDs and front panel toggle switches, or debugging 
by sense of smell. These days, people expect (possibly 3D, full-color, animated, 
hyper-linked) graphical representations of the important information, and help 
screens and/or intuitive interfaces that allow them to leave the manuals in their 
original shrink-wrap. 

This all takes processing power, which is a scarce resource on the Call Processor 
platform. Therefore, we introduced the System Management Platform (SMP), 
whose role is to convey the internal details to a craftsperson in a way which lives 
up to these expectations. Where the management code used to reside entirely 
within the CP, it is now largely off-board. However, there is still heavy 
interaction between the on-switch management framework and Meridian 
Administrative Tools (MAT), the software running on the SMP. 

7.4 Meridian Administrative Tools (MA 1) 

188 

MAT consists of a Windows 95 or NT-based GUI and a set of applications used 
to manage Meridian systems. Over time, the existing character-based overlays 
will be used less and less, as the GUIs incorporate more functionality. This 
should reduce training costs, speed up operations, and eliminate some kinds of 
errors in user input. 

MAT offers different user interfaces depending on the experience level of the 
user: skilled maintenance personnel, skilled configuration personnel, or clerical 
users doing bulk data entry. The Enhanced Command Line Interface will also 
still be supported via Overlay Pass through. Context-sensitive help screens are 
provided where possible. 

MAT 6 is basically MAT 5 with all of the appropriate changes to support the 
Meridian Evolution hardware. Added to this, there is an express provisioning 
mode, automatic card detection and in-service, Peripheral Software Download 
(PSDL) control, a more uniform state model, an inventory tool, and a substantial 
reduction in the number of overlays to be used. The overall goal of the program 
is simplification of system management. Presumably, it will need substantial 
rework once the new evolution strategy is finalized. 

MAT differs significantly from previous management products in that it is task 
oriented. That is, MAT presents the end user with coherent, consistent steps 
oriented towards completing whatever task a user needs to execute. The goal is 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

to significantly enhance end-user productivity, and actively reduce complexity and 
confusion. 

There are at least two markets that may demand the long-term support of the 
command line interface, in addition to any GUI we might build. For Option 11C 
and especially 11C Compact, the total system cost is low enough that adding a PC 
for management may make us uncompetitive. At the opposite end of the 
spectrum, power users may have their own off-board boxes to control many 
different communications systems (especially things like Cisco routers). These 
systems will typically be built around scripts that drive the command line 
interface, and do not extend easily to support a GUI. Therefore, although MAT 
is very important for some customers, it can't be our whole management story. 

7.4.1 MAT ~ Meridian 1 communications 
MAT has a choice of physical interfaces to the M1. For local connections, the 
physical connection was traditionally an RS-232 serial data link CD, and is now 
usually Ethernet (2). The Ethernet connecting MAT with the Ml is known as the 
embedded Local Area Network (ELAN). The ELAN will also extend to the 
Symposium Call Center Server (SCCS) and the InterNode Switch (INS). It is 
critical that a router be used to separate the ELAN from the rest of the customer 
LAN, to protect each from the traffic loads of the other. To access remote sites, 
we would typically run PPP over a modem link @. 

PSTN 

Ethernet 

serial interface 

Across any of these links, we use a suite of higher-level protocols. 

The old command line interface was telnet-based "TTY" emulation, and this is 
used even on the latest version of MAT to get at some of the older overlays, like 
Station Administration and ESN configuration. Even some of the newer GUIs 
are really just front-ends for the old SL-l overlays. 

Nortel Proprietary 189 



Part III: Software Architecture Version 1.0 

Alarms are signaled to the Event Monitor application using Simple Network 
Management Protocol (SNMP) over User Datagram Protocol (UDP). We also 
use SNMP for the session management code that controls logon. We have 
defined Alarm and Session MIBs to control the SNMP transactions. 

For ME, MAT also ran a separate SNMP session directly to the INS, using Fore's 
ATM Management Interface (AMI). In the future, this might be done through 
the M1. Database archives and software delivery use Network File System (NFS) 
over UDP. Finally, request/response style transactions for switch administration 
in the Equipment Management application for ME would have used the new 
Management Interface (MI) software, built on TCP /IP. MI combines an 
Attribute Dictionary and an enurn conversion service to build a mostly version
independent message transport service over RogueWave sockets (Net. h++). For 
coding expediency, the MI service is now also used by Overlay 117 code even if 
the old command line interface is being used. 

MAT will also normally have direct connections to other equipment: RS-232 to 
Meridian Mail, and V.24 serial links to MDECT DMC cards inside Access 
Modules. 

7.4.2 The MAT platform 

190 

MAT expects to run on a standard Pentium-based PC, with 32 MB of RAM, 1.3 
GB of hard disk space, a CD/ROM, an SVGA card, and a 10Base-T Ethernet 
card. Significantly, this is a relatively normal, commercial platform; our product 
is the software. 

Except on very small systems, the cost of the MAT box is clearly offset by the 
benefit, and it's just noise in the cost of a big system. Therefore, we were able to 
make MAT mandatory for Meridian Evolution (but not MSSE), and that in turn 
let us simplify some of the switch design. 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

7.4.3 Meridian 1 system view 
MAT provides an integrated application 
to monitor, manage, configure, and 
maintain Ml systems. This section will 
not attempt thorough MAT training, 
but will give an idea of what MAT is 
like. 

Three familiar Windows view types are 
provided: tree, list, and property sheet. 
The example at right shows most of the 
G UI features you'd expect from a 
Windows application. You can drag, 
resize, scroll, and hide the view in all the 
normal ways. Most administrative tasks 
pop up mouse-navigable dialog boxes 
with suitable defaults. Dependency 
failures get propagated through the tree 

Routing and Translations 

Speed Gall 
Station Administration 

Network Loops 

structure. It's fairly obvious that an untrained user would learn his way around 
this system much faster than anyone would ever figure out Overlays, even with the 
NTPs. 

7.4.4 System administration 
MAT performs numerous system management tasks. Refer to the User Guide 
for your software vintage for specific details. 

System software installation/ archive MAT Equipment Management application 
System configuration MAT Equipment Management application, CLI Overlays, MAT I~:SN 

application 
Customer-level data MAT Station Administration, MAT Overlay Pass through 

Terminal adds, moves, and changes MAT Station Administration, Overlays 

System maintenance MAT Equipment Management application, CLI, O \'erlays 
Alarms MAT Alarm Management application 

Call analysis MAT CDR, MAT Call Tracking 

Traffic analysis MAT Traffi c Analysis 

7.4.5 Alarm management 
MAT provides a standard hierarchy of terms for evaluating and discussing the 
severity of alarms. There is an Event Default Table (EDT) which maps all legacy 
events to one of these severity levels, which may be overridden using the Event 

N orte! Proprietary 191 



Part III: Software Architecture Version 1.0 

192 

Preference Table (EPT). The EPT also allows the craftsperson to specify that 
the severity level be raised based on the frequency of an event type. Critical 
alarms will typically also be signaled by a siren or flashing light. The available 
severity levels are: 

• Critical - things are real bad 

• Major - an important subsystem is unavailable 

• Minor - something like a pool of resources running low 

• \Varning - you can ignore this for a while 

MAT reports current alarm conditions sorted by severity, event type, time of 
occurrence, status, etc., and tries to provide advice on how to clear them. 

The event log is stored in a circular buffer on the Call Processor, and is preserved 
across reboots and restarts. It can be viewed through Overlay 117, or with the 
MAT Event Monitor tool. 

The M1 uses SNMP to signal alarm conditions to l\1A T. 

l\Ionitoring L';vent Monitor 

l't:r;-;isteocc E\'ent Log 

Summary Alarm Hanner 

,\Iarm tailoring h-cnt default and preference tables 

Command line passthrough O\'Crlay 117 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

8. Meridian Evolution 

8.1 Isn't ME extinct? 
Of course not! Or at least the Meridian 1 product line is still leading the market, 
and will continue to evolve to meet market demands. Now admittedly, Cybele, 
the project that would have put an ATM switching fabric into the M1, and 
Pangaea, the project that was building our new line of terminals, were 
unceremoniously decapitated. And unhappily they had come to be known as 
"Meridian Evolution". Therefore, the evolutionary path is temporarily hard to 
ftnd, but we might reasonably expect to see a new plan very soon, perhaps one 
liberally peppered with terms like "IP" and "webtone". And it seems entirely 
likely that this plan will call for substantial changes to both the architecture of the 
M1, and the market it serves, and that to get there from here various people will 
try to rescue much of the work that was done under the ME banner. 

What follows is a Cybele time capsule. It hasn't been changed since before the 
project was cancelled, and it probably will be removed in the next edition of this 
book. I've left it in to record for posterity the substantial amount of work done, 
to allow people to understand some of the issues that would have had to be 
addressed for it to have succeeded, and to show that it contained some good 
ideas that the salvage crews should try to extract if possible. 

Nortel Proprietary 193 



Part III: Software Architecture Version 1.0 

194 

The vision th ing 

How should the Ml evolve to keep pace with the times? Given the 20th century's 
dramatic, sustained rate of technology mutation, how can we build anything that will be 
marketable for more than a few months? The guiding vision that attempts to address 
these fears goes something like this. We will build: 

• person-to-person communications 
• regardless of location 
• over any media 
• using any device 
• simply and easily 
• securely and reliably 
• easily controUed by computers 

It's a pretty good start. You can see in this outline most of the ortbodox Norte! values, 
and yet it's hard to argue against it as the system you'd like to have at the "end" of the 
evolution process. 

This chapter will describe what we've done recently to move towards this vision. Bear 
in mind that the "Ml Rules" already described in the rest of the book will mostly still 
apply, both because tbe domain still has many of the same essential properties, and 
because Meridian Evolution reuses much of the original Ml hardware and software. 

Newton's third law of management asserts that for every vision there is an equal and 
opposite revision; the goal we're currently working towards will shift before we get 
there. Up until this point, the information covered by this book has had a fairly long 
half-life. Some of it has been true for the past twenty years, and is likely to continue to 
be true for another twenty. This chapter is inherently less stable stuff. It talks about 
things that are not on the market, and may not even be bu.ilt yet. Please forgive mc if it 
looks a bit quaint after a few years. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

8.2 Evolving the PBX hardware 
When most people say "Meridian Evolution", they're talking about the results of 
the Cybele project. That is, Meridian 1, but with an Asynchronous Transfer 
Mode (A TM) switching fabric. In its ftrst incarnation, ME has all of the usual 
merits of M1, plus the following new advantages: 

• non-blocking networks 

• simpler, more reliable cabling (OC-3), plus an inherent ability to distribute 
peripherals up to 2 km with multi-mode fiber, or as far as 15 km with 
single-mode fiber (which will allow some customers to substantially reduce 
administrative overhead by consolidating multiple existing M1s on a 
campus with a single new Call Server) 

• dramatically simplified network engineering and load balancing 

• cheaper (both direct cost and total cost-of-ownership) 

• higher capacity (more ports, more connections, and more calls per hour28) 

• "multimedia ready" 

That last bullet deserves some explanation. ME is ready for multimedia in the 
sense that the INS can connect high or variable bandwidth channels. What ME 
does not have is a native-ATM or other high-speed data access peripheral 
(although we should expect something in the near future). ME Access Modules 
still only connect your basic 64 kbps Constant Bit Rate (CBR) streams, just like 
the original SL-1 did 25 years ago. This means that for now A TM to the desktop 
(already a suspect solution due to cost) is mythical, and the "integrated ATM 
backbone" requires you to convert the TDM trunks back to ATM (with 
something like Passport), which you could have done precisely as easily before we 
had A TM switching. 

Speaking of revisions, one of the original goals of ME has already shifted with 
the changing LAN market. In the time since ME was first considered, TCP lIP 
over Ethernet has gone from being an important LAN technology to totally 
dominating the LAN market. During that same period, ATM has moved to 
command the WAN backbone, but has lost momentum as a desktop technology. 
Thus, the original gamble that people would use M1 as their primary data 
backbone switch has become a bit of a long shot. Besides cost, one technical 
reason for this is that there is no real shortage of bandwidth to the desk. A TM 
does the most for you when you're trying to mix a large number of payload 

~H Currently a myth, but we should be able to address capacity issues by the time we get to market. 

Norte! Proprietary 195 



Part III: Software Architecture Version 1.0 

streams with different characteristics. The last hop to the desktop has very little 
need for multiplexing, and any cheap, high-bandwidth pipe will do. This does 
not mean that switching and transmission should not and will not use ATM. 

Why ATM? 

In the early '90s, all the crystal balls were predicting a merge in voice and data transport. 
10 prevent data equipment vendors from walking off with our market, we saw that we 
would need a plausible story that WOuld convince customers that their "legacy data" 
could move nicely through OUf wites. Technically, ATM looked (and still looks) like the 
best way to do this. Its advantages include: 

• mixing variable and constant bit rate traffic 

• lowering costs by mixing real-time with non-real-time applications 

• supporting guaranteed Quality of Service (QoS), which E thernet still can't d029 

• having low overhead/high capacity for a given wire speed 

• having proven scalability to multi-gigabit speeds 

• being connection-oriented: inherently more efficient and better QoS, but also 
inherently trickier to handle topology changes mid-call 

• being standards-based technology (eg: we bought the INS) 

• having some successful ATM networks deployed worldwide (although there are 
orders-of-magnitude more examples of IP networks ... ) 

An added bonus was that, as one of the four founding members of the ATM Forum, 
N ortel had Some ability to make the standard look like we wanted it to. 

Despite the above arguments, TCP /IP over Ethernet is by far the dominant choice for 
carrying data to the desktop in today's market. This is partly because it's well-optimized 
for data and has many reliable vendors, but perhaps mostly because the Network 
I ntcrface Cards are incredibly cheap, and arc starting to become free as vendors include 
them by default on their motherboards. Assuming that in the very best case we might 
hope that ATM would displace a portion of this market, it seems obvious that a good 
Ethernet wiring closet solution will be imperative. On-Ramp can no longer become 
one. It also seems obvious that we will need to develop a better understanding of bow 
ME can take full advantage of, and not be displaced by, tomorrow's LANs. 

29 But this can't last many more months ... 

196 Notte! Proprietary 



Version 1.0 Part III: Software Architecture 

8.2.1 The big picture 
For all of its differences, the ME hardware has the same layers as traditional M1 
hardware. 

Consoles 

Meridian Evolution Hardware 

I third-party boxes I 

Control 
more processing power; 
I/O controller; 6 Ethernet 
ports; slots for 2 NCs 

Network 
INS only for Multinode 
configurations; up to 29 
NCs, each switching 1000 
A TM ports; selectable 
redundancy; no service 
circuits; interconnect is 
single- or multi-mode fiber 

Access 
Up to 4 AMs per NC; all 
service circuits and ports 
now hosted by the AMs; 
new cards include A TM 
Access Controller pack, 
MSDI, MGATE, CTS, and 
TMDI/EMDI trunks 

~::;;a = new or changed stuff 

The three basic PBX layers described in Chapter 1 are still clearly visible, even if 
all of the big pieces seem to have changed. Given the above diagram, a customer 
could be forgiven for struggling to find the "evolution" part of ME. It's worth 
spending a moment talking about what hasn't changed. All of the IPE, the wiring 
through the building and out to desktops, and the terminals, can stay where they 
are. This is the bulk of the hassle factor of changing an installed PBX, and it 
should provide enough inertia to retain most customers over the upgrade. But 
our competitors will still call it a "forklift upgrade". The marketing angle is that 
at no point during the upgrade is the total system out of service. While strictly 
true, this may fail to impress some customers because the catch is that at some 
point during the upgrade each peripheral needs to be taken down. 

The layering of hardware is a bit stronger than previously. In the early SL-1 s, the 
cabling connecting the control layer to the switching layer was essentially an 
extension of the main CE bus. The design was tightly coupled, and NE or 

Norte! Proprietary 197 



Part III: Software Architecture Version 1.0 

cabling problems would often show up as CE bus errors. At the same time, 
many service and access circuits appeared on the NE shelf, because there was no 
computing power on, and weak messaging out to, the PE shelves. 

In the new model, the CS, INS, NCs, and AMs are much more loosely coupled; 
they are each essentially free-standing computers, each running VxWorks, 
networked with OC-3 cables. Access and service circuits are now strictly done at 
the access layer. Architecturally, this has many advantages. It means errors 
should be easier to isolate. The different layers can evolve more independently 
than before. And we should get to make "buy vs. build" decisions more often 
(starting with the INS). 

A mostly unimportant disadvantage of the new equipment is that the packaging is 
not as slick as that of the older M1. The Call Server and Node Controller have 
three form factors: wall mount, floor mount, and 19" rack mount. The INS must 
be rack mounted, but has a quite different appearance from the CS and NC. The 
AMs and PMs use traditional M1 UEM shelves. The result may end up looking a 
bit haphazard, and may require a larger footprint for some configurations. 

8.2.2 Call Server (CS) 

198 

This shelf contains the main Call Processor (CP), Input/Output Controller 
(IOC), System Monitor (SM), Power Distribution Unit (PDU), Clock Controller, 
and 6 Ethernet ports. The CS shelf also has two slots available for Node 
Controllers for small configurations. In the first iteration, the main computing 
engine is the same family of Motorola CPUs used for M1. Later generations 
should also include an Intel Pentium option. Call Servers are optionally 
redundant. 

Besides some cost savings and improved performance, the real reason for 
redesigning this equipment was to fulfill the new clocking and I/O requirements. 
The main job being performed is identical to that of the CP in older M1 vintages. 
The new 10C hosts a 170 Mbyte PCMCIA hard disk, a serial port, an Ethernet 
port, and one or two ATM ports. The clock meets Stratum 3 specs (and 
therefore also Stratum 4)-not a ±2 nanosecond per day Cesium clock, but good 
enough for Central Office deployment. The SM monitors the ambient 
temperature and external sensors (like door alarms), drives external alarm 
systems, and talks to MAT. 

Norte! Propn'etary 



Version 1.0 Part III: Software Architecture 

8.2.3 Inter Node Switch (INS) 
This is a 4X32 port ATM switch, built by Fore Systems. It is not required for 
single-node systems, and is optionally redundant for large systems. 

8.2.4 Node Controller (NC) 
This is where the most fundamental hardware change of the Cybele project 
happened. The Node Controller is a 1000-portJ° ATM switching matrix, and 
replaces the older TDM switching shelves. It is optionally and selectively 
redundant. NCs can not co-exist with older network styles, so the upgrade path 
is not as evolutionary as we usually like to offer. 

TDM over A TM: our own private standard 

We worry about latency to the point of paranoia. 

The model to which we compare voice switching proposals is the old cross-bar 
machine: a direct, end-to-end copper circuit connecting two parties. By comparison, 
the data forerunner is the telegraph, which itself is the electronic successor to the pony 
express: you gave your packet to a clerk, who passed it to a rider, who lept from horse 
to horse aCross the continent, and you hoped that a courier would deliver the message 
at the far end. 

Some voice-over-IP services put hundreds of O.125-millisecond voice samples into a 
single IP frame; this improves bandwidth utilization, but delays the voice by several 
tenths of a second. We Were too worried about latency even to fill up a single ATM cell 
with voice, because it would have added 6 milliseconds (!) to the latency at the initial 
point of entry into the switching network. So we put each sample frOID a given voice 
stream into a different cell, and combine 2 T1s worth of conversations into a single ceil, 
rather than waiting for one stream to fill up the cell. This does reduce latency. It also 
means we need to do much more work at the start of a call to pre-arrange "time slots" 
in the ATM cells, leading to a non-standard version of ATM, and we can't simply hook 
up other ATM equipment to an NC and have it work for free. 

And it means that we use much more bandwidth that is really necessary, since we reserve 
a timeslot for each terminal, whether or not it is active. 

30 Actually, it's bigger than this, but we're currently choosing to sell it as a 1 ODD-port, non-blocking switch that 
doesn't require any engineering effort on setup. ruture configurations may leverage this latent power. 

N ortel Proprietary 199 



Part III: Software Architecture Version 1.0 

8.2.5 Peripheral Module (PM) 
For upgrades of existing equipment, this is really a traditional IPE shelf with a 
new DS30-to-ATM interface called an Access Controller to allow it to speak 
ATM to the NC. The Peripheral Equipment Power Supply (PEPS), Ringing 
Generator (RG), and most other cards can stay where they are. 

IPE 

I
Z 
8 

UEM shelf 

PM 

UEM shelf 

8.2.6 Access Module (AM) 

200 

To host the range of new service cards that replace the older equivalents that 
used to reside on Network Equipment shelves (ie: CTS, TMDI, EMDI, MSDI, 
MGATE, and SISP), the current packaging requires customers to configure new 
AM shelves. AM shelves, still based on the same UEM form factor as the old 
IPE, are barely distinguishable from PMs. The main difference is that they 
support the CE-MUX bus, thus allowing a unified trunk card portfolio across the 
full range of Options. 

AM 

UEM shelf 

Earlier in the project, the AM was known as a Peripheral Group Controller 
(pGC), and the term is still frequently used. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

8.2.7 The embedded control LAN (ELAN) 
As mentioned above, the boxes just described now form a loosely coupled 
network connected by OC-3 fibers . This new Embedded LAN (ELAN) allows 
the components to communicate using industry-standard protocols built on IP, 
like File Transfer Protocol (FTP), Network File System (NFS), and Point-to
Point Protocol (PPP). The ELAN is used for software download and archiving, 
system management, application processor messaging, and even call control. 

The ELAN comprises multiple physical transports: ATM, call server backplane 
(IPB), CE-MUX peripheral bus, and DS-O for mobility EIMCs. While some 
ELAN messaging uses IP to leverage standard tools, we also do a lot of raw 
messaging. Our proprietary raw messaging protocol increases performance, 
understands connection orientedness, supports multiple sessions running over a 
single virtual circuit, and ties distributed objects together. It is fast but, like IP, it 
does not guarantee message delivery. (Applications must be designed with this in 
mind.) 

C ybele Message Service organizes the IP / raw messaging transport for ME, 
delivering messages from one network node to another. It hides the underlying 
hardware involved, and hence, makes application software more portable. In 
addition, it provides a mechanism to detect the newly inserted network card. 

For a thorough review of IF and raw messaging in the ELAN, see MO 1720: Cybele Messaging S ermce in 
Doctool library SL 1 DOCS. 

Norte! Proprietary 201 



Part III: Software Architecture Version 1.0 

8.2.8 Available configurations 
The ME architecture allows a wide range of configurations. The smallest setup, 
shown on the left, would usually be wall-mounted, with the NC card in one of 
the two available slots right in the Call Server shelf. At the top end, we could put 
together the 20,000-line system shown on the right. Depending on the 
customer's budget and skittishness, the CS, INS, and soon even NCs can be 
made redundant. 

Minimal setup: "Sinale Node" 
(200-800 lines) 

A loaded system 
(up to 20,000 lines) 

(The ability to increase redundancy by connecting an AM to 
multiple NCs is not supported in the first release.) 

8.2.9 What about the Option lle? 

202 

The Option 11C hardware is already non-blocking and cost-effective. Therefore, 
the Meridian Small Systems Evolution (MSSE, not to be pronounced "messy") 
does not change to an ATM switching fabric. The main advantages of MSSE 
over Option 11 C from a customer's perspective are that MSSE can: 

• run ME software (so it won't fall off the development curve!), 

• be managed by MAT6 (although unlike ME this is optional), 

• drive DTEV sets, 
• host ME peripheral cards, and 

• run IPE NGen-based applications, specifically SCCS and MCE. 

The Option 11C Small System Controller (SSC) has been upgraded with more 
memory, as well as conference, tone, and I/O resources. The power supply has 
been beefed up, and a new slightly-pregnant door has been added to allow future 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

faceplate cabling, so the MSSE is compatible with both the new ME circuit packs 
and most legacy packs. The exceptions are the TDS/DTR, XTD, XMFR, and 
XMFC/MFE, which have been replaced by the CTS card and the SSC itself. 

Comparing costs to benefits, the Option llC-to-MSSE upgrade may prove to be 
something of a tough sell. Hopefully, MSSE will at least be attractive to new 
sites, but if that's the only source of sales, we'll probably have to keep supporting 
the old equipment for a long time, including new software releases. Since over 
half of the switches we sell are Option llCs we will need to think hard about this 
part of the business. 

8.3 Evolving the PBX software 

~ 
Denny Landaveri's Software System Architecture gives a (slightly dated) overview of the ME software. 
There are also a number of training videotapes available from the IRe, although they arc also a bit 
dated. Be sure to get a copy of the accompanying slides, ybele Overview for S / W DesigllCrs. 

Although the new ATM switching fabric was the most obvious hardware change 
in ME, it had little immediate effect on most of the software. After all, most of 
the code didn't care how SETSPEECHPATH worked, but only that it accomplished 
what it was supposed to do. About the only immediate broad impact caused by 
changing the network equipment was a new TN format (discussed later). 

8.3.1 ME software overview 
For the obvious reasons, ME endeavored to reuse as much as possible of the 
original, working, debugged Ml PBX software. At the same time, some basic re
architecting was done in an attempt to make subsequent evolution more painless. 
This led to the following model. The basic rule here (per the Layers pattern) is 
that each layer can use only the layer immediately beneath it. The main exception 
is management, which by its nature likes to prod into all of the other boxes. This 
diagram is really the top level of the ME class hierarchy, and is best explored by 
using Rational ROSE to look at the model in /proj /cybele/model/MEModel. We 
will also try to webify it soon. 

Norte! Proprietary 203 



Part III: Software Architecture Version 1.0 

Meridian Evolution Architecture: Logical View 

Management 

Operating System (VxWorks) and Messaging Service 

Basic Services [C] 

(Drivers) 

Basic Resources [c. some native assembler] 

8.3.2 Objectification 

31 

A fundamental tenet in the Cybele creed was that Object Oriented design was 
good for you. Using 00 technology would ensure better designs, more code 
reuse, and faster time-to-market. C++- designers could be hired off the street, and 

C++- libraries and tools purchased from third-party vendors.31 

To make 00 designs work in our environment, several strategic restrictions were 
imposed. The first, known as a "solid state" model, was that object instances 
should only be allocated once. This avoids both real-time problems and memory 

SKLCPTIC'S REB U·lTAl.: Yes, you can hire C++ designers off the street (at a price), but if they apply their usual 
techniques you may get slow code, memory fragmentation, and worse. While some 00 designs are 
inherently clean, it is easy to write astoundingly bad C++- code. And the hard part of understanding a PBX 
design is not the language, which has a trivial number of symbols and concepts compared with the millions 
of lines of code. Code reuse and fast time-to-market require a good process (so people can fmd, understand, 
and trust the existing code) and not simply a well-partitioned initial design. We have been unable to buy 
decent protected memory management or source-code patching tools. And the third-party tools we have 
found have not been universally bug-free, scalable, or well-supported. But this is not the time to have the 
C++ debate. I t was at least the cool new thing to be working on, and as such directly addressed employee 
satisfaction, which is especially helpful in an environment where good people have many career choices. 

204 Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

fragmentation common in many standard 00 approaches. The second strategy 
was that as many decisions as possible should be made at compile or loadbuild 
time. For instance, the mapping of messages to SI queue priorities is table-driven 
at compile time. These guidelines are useful for precisely the same reasons they 
always were (as discussed in Chapter 2). Also, classes must be reentrant, because 
the SI process model allows higher priority tasks to interrupt lower priority ones, 
rather than preserving the atomicity of transactions the way traditional SL-1 
scheduling does. 

8.3.3 User Interface concepts 
As discussed earlier, the original SL-1 was built with an embedded systems 
mentality. The ftrst result of this was that the software design was very close to 
the real hardware, and required changes each of the many times we redesigned 
circuit packs. The second was that it seemed profligate to spend precious real
time on fancy formatting, or precious memory on help screens. Since then, 
memory has become very cheap and processing power for a GUI has become 
available on a separate CPU. With user expectations being much higher than 
they were in SL-1 days, it seemed imperative to invest in a modern management 
tool that would help people deal with the complexity of a modern M1. Context
sensitive help added to traditional command line interface (LD 117), many old 
overlays now obsolete, with functionality rolled into MAT. 

The revised :rvrA T tool has a more-uniform state machine (an extension of the 
ISO model) for managing different kinds of equipment. Equipment status is 
displayed constantly, so the craftsperson can see abnormal conditions without 
having to check explicitly. A standard method is available for viewing and 
modifying individual objects (like cards), container objects (like shelves), and even 
whole classes (like all ACCs). 

The Ml database will no longer be archived on lOP, CMDU, or 10DU/e. 
Instead, the MAT PC can use any commercial removable media, such as floppy 
disks, Zip disks, or even NFS-mounted devices. 

MAT is discussed to some extent in Chapter 7. Many of the changes were in the 
off-board code, which is outside the scope of this book, but some of them had 
implications for the switch-based software. The Cybele team created the System 
Infrastructure (SI) as a foundation for these UI enhancements. 

Norte! Proprietary 205 



Part III: Software Architecture Version 1.0 

8.3.4 System Infrastructure (SI) 

206 

SI is the management framework for ME. It provides policies for operational 
and management aspects which each component must follow. These policies 
ensure that each managed object has a standard behavior for serviceability, 
provisioning, alarm management, and fault detection. The SI object model 
provides a blueprint for inheritance (for kind-of relationships), composition (for 
part-of relationships), and connectivity of ME software components. And SI 
defines appropriate interfaces for industry-standard management tools. 

The System Infrastructure (SI), as might be guessed from its name, has somewhat 
megalomaniacal fantasies of itself as axial to the PBX software. 

SI World View 

Of course, this is still a more balanced view than that held by tSL1, which 
believes itself to be the onlY piece of software on the switch. \V'hile the other 
boxes in the above picture also communicate with each other directly, and while 
it is probably correct to consider the main job of a PBX to be call processing and 
not system management, it is true that SI has a hand in more or less everything 
that happens on the ME switch today. 

SI is the successor to the Hardware Infrastructure (HI) that was built during the 
Thor project, and is the biggest new piece of software for ME. SI implements 
what is perhaps the central idea behind ME: the separation of logical (call 
processing software) and physical (hardware) terminals. SI provides the mapping 
between these two. SI is a Class Model which provides a blueprint for the design 
of software components (objects). 

Originally envisioned as a tree-structure of hardware components, we found we 
needed more than that as the system started to get more distributed. The result 
was a transaction engine with multiple priorities. 

Nortel Proprietary 



Version 1.0 Part III: Software Architecture 

The project goals were to provide a software base which: 

• is platform-independent 

• is extendable 

• promotes re-use 
• supports the "next generation" PBX (ATM or other networks, message 

based, managed system, fault tolerant) 

• defines interfaces in terms of normalized states and commands 

• enforces a design which meets system requirements-there is only one 
good way to hook into the system, and other attempts will fail entirely 

<nilS 

~~ Q .--'--------'------'----"---'--i 

QL-_______ ,-_______ ~ 

real is calls 

Operating System eVxWorks) 

.... Interrupts enqueue 
a message against the 
appropriate task 

On the core processor, there is also a Management Interface (MI) process which 
talks to MAT, and of course the SL-l task, which continues to handle most call 
processmg. 

8.3.4.1 Internode communication 

SI and VxWorks also now run in many non-core processors. One aspect of the 
S1's job is to organize a framework for communication between these nodes. 
Originally, it was thought that Simple Network Management Protocol (SNMP) 
would be a good solution, but it was found to have performance problems and 
required a substantial investment in design effort. SNMP is used, but so far 
mostly for autonomous notifications, like fault reporting. Other mechanisms are 
also in place, most notably the Object Request Broker (ORB) that was inherited 
by some earlier work on mobility, which is used for request-response dialogues, 
and NFS, for software download. 

Norte! Proprietary 207 



Part III: Software Architecture Version 1.0 

Among the basic services provided by SI, which developers can use to build their 
own features, are a messaging service, a name service, and an event notifier. 

8.3.4.2 Timers 
SI provides a new timing service that allows code to run at a certain time of day, 
or after a certain fixed delay. It is unsuitable for very short (millisecond) delays. 

8.3.5 New TN formats 

8.3.5.1 Hardware TNs 
The Terminal Number has always been closely tied to the hardware, and as such 
has been contorted through the years as our electronics became more densely 
packed. One of the big changes with Meridian Evolution has been the 
unification of the TN format across the product line, including the MSSE. 

t New TN format (ME- MSSE): l - '". 

I; ( 

8.3.5.2 Logical TNs 

208 

Inside the core, there is a new terminal abstraction called the Logical Terminal 
Number (LTN). LTNs range from 1 to 64k, and should now be used in place of 
the old TNs throughout the SL-l code. The Hardware TN format (above) is 
used only for user interaction in overlay code. An SI identifier (S II D) is used to 
tell SI proxy objects about the TN. 

TNTRANS will now fetch an LTN item pointer, rather than the old TN item 
pointer. LTN_SET_PTRS may be used before invoking overlay code. 
LTNGET_SIID_UNIT will get the SI identifier to send to SI code. 

N ortel Proprietary 



Version 1.0 

LTNMaster 
header table 

(fixed location) 

LTNMH'!' 

The LTN Tree 

t'1'tCTABt E 

Protected Data 

Part III: Software Architecture 

(may be phantom INs) ! 

,."w.». "'~*" «::::?:~~~,:<-:,~ ~ 

Unprotected Data 

UUNITBLOCK 

8.3.5.3 Phantom TNs 
For Meridian Evolution, the format for each of the above types of Phantom TN 
has changed to be a simple member number {OOO to 999}, and the hardware 
requirement has been removed. Each of these TN types has a different address 
space, so there can be a SOO-type PHTN 42 and a BCS-type PHTN 42. Because 
PHTNs don't correspond to physical hardware, the S IID is set to NIL. 

8.3.6 Services 

Old iargesystem PHTN format: 

~oop Shelf Card Unit 

Old Option l1C PHTN format: 

ca r<;l Unit 

The new :ME services attempt to provide a layer of abstraction between the call 
processing code and the physical hardware. We should now be able to develop 
new generations of hardware without reworking too much of the existing SL-l 
code. 

Nortel Proprietary 209 



Part III: Software Architecture Version 1.0 

8.3.7 Resources 
A managed object on a remote ELAN node requires a "proxy" object in the ME 
core. Proxies inherit properties from the corresponding physical resources, and 
are used to track the state of their real counterparts. Through multiple 
inheritance from "mix-in" classes, they may also pick up other properties like 
persistence, membership in a redundancy group, or network node status. Proxies 
then message to remote real objects, or in some instances directly to drivers. 

The resource layer of the ME software architecture is comprised of the proxies 
for the physical resources. 

Proxies are instances of concrete classes (like Digital_Line_ card_ proxy), which 
in turn are reflnements of abstract classes (in this example, PE_ card_proxy). This 
inheritance structure makes it possible to provide a lot of standard management 
functions and default behavior automatically. 

8.3.8 RAN/Music/IVR broadcast 
Recorded Announcements (RAN), music, and Integrated Voice Response (IVR) 
systems frequently end up playing the same thing to many listeners at once. A 
recent enhancement to the Ml software permits a single source to be broadcast 
to many listeners at once, dramatically reducing the number of packs needed to 
support a given trafflc leveL While not strictly part of ME, it is being rolled out 
at the same time. 

8.3.9 New tools 
New tools for ME are summarized at http: //47.82.33.147/~eddyg/CvbeleTool,, l C:ybcl eTools.html. 

There's also a largish document called ME_Tech_Notes from ML V that talks at a very detailed level 
about ME and its tools. The most current version should be at 
http: // 4 7 .49.4.28:8080 / Department / D225 / Documents l Useful Hints!' 

8.3 .9.1 SIDebug 

210 

SIDebug is a collection of C++ macros and class deflnitions that allow you to 
add easy debugging support to your code. SIDebug is intended to use as little 
real time as possible, with the least used when debugging output is not desired. 
The SIDe bug facilities will be shipped with the product, allowing some 
debugging facilities in the fleld. It is sort of akin to SNAP for the Ml code. The 
preceding web link to Eddy's tools page contains further documentation. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

8.3.9.2 Technical Support Interface (TSI) 

This is the evolution of the Problem Determination Toolkit (pDT). It is 
designed to support local or remote debugging. It uses the VxWorks shell more 
heavily than its predecessor, and supports multiple users a bit better. 

8.3.9.3 Patching 

c++ patching had some new challenges for the platform team, but most have 
been addressed at this point. Check out the C++ patching web page at 
http://47.82.33.147!-raviyeripatcher.html. 

8.3.10 New memory allocation 
In the oldest days of SL-l, we had one page of unprotected data and one page of 
protected data. You got 4k of each, and no negotiation was possible or 
necessary. As we grew, we evolved towards the model shown in Section 5.3.1.1. 
The main goal was to allow each system to grow in a way which best matched its 
individual need, without requiring the craftsperson to go through a complex 
.. . 

engmeenng exerctse. 

8.3.11 Third-party software 
The third-party software packages Seaweed, RogueWave, OrbL'C, Envoy, and the 
SNMP Management Information Base (11IB), which were brought into the Ml 
platform just before Cybele, are still available. Since most Cybele software is 
written in C++, these libraries are now useful to a broader range of software than 
before. 

RogueWave classes are mostly used as a template library, rather than inheriting 
from them. This improves the real-time performance, but does create some code 
bulk issues. 

If you plan to introduce more third-party software to the switch, watch for the 
following potential problems (all of which have been observed before): 

• It won't understand protected memory. Reading protected data is 
obviously okay. However, if you want it to update protected data, you'll 
either have to unprotect everything before you invoke it (risky) or copy the 
results later from a temporary buffer into protected memory (may have race 
conditions, and will slow down your code). 

Norte! Proprietary 211 



Part III: Software Architecture Version 1.0 

• It may not have been design around the pervasive needs of our system. In 
particular, a lot of software is poorly optimized for a real-time system that 
doesn't get restarted regularly. It may make heavy use of malloes, or store 
things on disk. 

• It won't know that registers AS and D2 are sacrosanct. This may be fine if 
you're invoking it from C or c++ code, but not from SL-1. 

• Behavior under error conditions may be ugly. Test this to ensure that if it 
traps, all resources are cleaned up and that task is restarted in a sensible 
way. 

• Because we end up relying on an outside vendor, risk management is more 
problematic. Make sure we have a clear contract specifying support and 
pricing when it comes to shipping it. Do extra contingency planning. 
What if they deliver late? \V'hat if they lose their source code? What if they 
go out of business? 

8.4 Evolving the rest of the system 

8.4.1 New service packs 

212 

Since we no longer have Network Equipment, we can't have NE cards, so we 
had to reinvent the way we provided conferencing, tones, and ISDN. 

The new packs share some nice new properties. Automatic card-detect 
provides automatic discovery of field-replaceable components, including card 
type, serial number, firmware version, and capabilities (eg: number of ports on a 
conference bridge). Express provisioning allows components that have pre
configured default data to be provisioned automatically. Automatic in-service 
allows the system to be configured to always try to put components in service as 
soon as they are provisioned. And a new expanded state model makes 
managing the new cards more uniform, as shown below: 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

LEDs on the cards understand this state model, and always reflect the current 
condition. 

8.4.1.1 Multi-purpose Serial Data Interface (MSDI) 
The card provides 4 synchronous serial data ports, mostly for AML/CSL, but 
also for telnet MAT access as an alternative to Ethernet. 

8.4.1.2 Conference, Tone, and I/O Server (CTS) 
This multi-use DSP card provides 2 serial I/O ports and either 32-party 
conference or 32 channels of tone transmission and detection. 

8.4.1.3 Tl and El Multi-purpose Digital Interface (TMDI or EMDI) 
Each card provides a single DTI/PRI interface with integrated D-channel 
processmg. 

8.4.1.4 Next Generation Platform (NGen) 
This is an auxiliary general-purpose computing platform, with built-in digital 
signal processing capabilities. It comes either as a PC tower or a two-slot IPE 
card. It provides the required computing power for Meridian Personal 
Communications Exchange (MCE, formerly called MPCX), Symposium Call 
Center Server, and DTEV Personal Directory, and is expected to host other 
applications in the future. 

8.4.1.5 Mail Server Gateway Card (MGATE) 
This IPE card provides up to 32 port voice connectivity to Meridian Mail 
tl1rough either traditional Network Loop Interface or DS-30XV. 

8.4.1.6 Meridian ISDN Signaling Processor (MISP) 
There is a family of cards, of varying capacities, which do protocol support for 
ISDN. 

Norte! Proprietary 213 



Part III: Software Architecture Version 1.0 

8.4.2 New load processes 

8.4.2.1 Amber 

"Amber", the new loadbuild process, uses a standard CD/ROM or Ethernet to 
deliver complete, non-packaged software loads to site. \V'hen this file is loaded 
onto the ME hard disk, the system automatically checks to see if it is more recent 
than the version in flash ROM, and if so it burns the newer version into flash. 

Activation of new features, and system size increases via Incremental Service 
Management (ISM), are done using an encrypted keycode system. The 
Distributor Keycode Application (DKA) is a stand-alone, Windows '95-based 
program used to retrieve and view keycode contents without having to be 
physically connected to the target system. The keycode is stored in a file, along 
with a "wrapper" which contains manufacturing and ordering information, and 
permits access to certain feature packages and ISM limits. Keycode files are 
normally downloaded electronically, or delivered on floppy, but can be manually 
entered in an emergency. 

security cartridge 

Amber includes the use of a "dongle", essentially an 
electronically-readable serial number embedded in 
something that looks like an oversized watch battery, 
which must match the number the software expects 
to see. It provides a measure of protection against 
software piracy. The dongle replaces the older, larger 
security cartridge, which used to have to be upgraded 
with each new addition to a switch's functionality. 

MSSE has a similar process, but ships software on PCMCIA ROM cards. 

8.4.2.2 Peripheral Software Download (PSDl) 

214 

Several of the newer peripheral cards (at least the XNET, XPEC, MSDI, MSDL 
Downloadable D-channel Handler (DDCH), and MGATE) have two banks of 
flash ROM for storing their software. The general idea is to load the inactive side 
with new software, and then cut over to it once it's ready. The design means that 
we can take our time doing the download, since there is no disruption in service 
during it. Because the software is stored in flash ROM, it's not subject to 
inadvertent trampling and survives power failures, which means fewer outages 
and faster recovery times. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

There is also an audit task that runs in the background and checks the current 
load against whatever is stored on disk. If the current load is found to be out of 
date, it is automatically updated to reflect the most recent load on disk. 

8.4.3 New access 
The On-Ramp program should provide two important extensions to our product 
line: a wiring closet solution, and a high-speed access shelf. Existing plans should 
deliver the former, but with some modification the latter should also be possible, 
and would greatly improve our multimedia plausibility. 

8.4.4 New terminals 
The D esktop Evolution (DTEV) program is designed to 
produce our next generation of telephones. DTEV sets have 
several context-sensitive soft keys, which may be programmed 
to activate any of a list of features. One or more "Conspicuous 
Keys" provides fast access to different application features: 
personal directory, message waiting, information, feature list, or Computer 
Telephony Integration. 

Configuration may be done on an individual set basis, in a template fashion via 
the DTEV "model" set, or to some extent by the users themselves. 

From an architectural point of view, it is worth noting that the new sets are 
expected to require substantially longer messages (to drive the enhanced user 
interface), and a directory server somewhere in the system. 

Norte! Proprietary 215 



Part III: Software Architecture Version 1.0 

8.4.5 New security 

216 

ME requires MAT, which may be hooked up to the PBX through the customer's 
LAN. To cope with the implicitly greater security concerns, a simplified security 
model has been created. The new model reduces complexity, provides a single 
point of security, and allows for evolution of services. The customer will still 
have to ensure that their LAN is configured so as not to pound the PBX with 
broadcast storms, not so much for security reasons but just to ensure the Call 
Processor doesn't get distracted from its main task. 

Norte! Proprietary 



Version 1.0 Part III: Software Architecture 

8.5 Retiring some older bits 

8.5.1 CP 
ME requires the new Call Server. 

8.5.2 IGS 
The old inter-group switch is replaced by the INS. 

8.5.3 NE 
The older generations of network equipment are replaced by NCs, and can't co
exist. 

8.5.4 EPE 
There is no evolution plan for the old EPE. IPE shelves may be upgraded to 
AMs. 

8.5.5 SL-l sets 
If there's no EPE, there's nowhere to put SL-1line cards, so there can't be any 
SL-1 sets. Since they basically did the job, we may expect existing customers not 
to be universally delighted that we have manufacturer-discontinued them. 
Hopefully the DTEV terminals will restore their good humor. 

This also meant that we could retire the slow messaging queue, which used to 
send messages down to SL-1 sets at a pace that would not flood them. We're 
sort of glad to be rid of the code that did this. It would space out messages using 
the clock interrupt handler, which meant that a problem sending one of these 
message led to a bus error during the clock interrupt handler. (Remember: do as 
little as possible during any Interrupt Service Routine!) 

N ortel Proprietary 217 



Part III: Software Architecture Version 1.0 

8.5.6 Numerous circuit packs 

218 

XDTR, CONF/TDS, 3PE, PRI/DTI, MSDL, ESDI, SDI, DCHI, and MISP 
cards are all going. While they have good replacements, upgrading customers 
may balk at paying for something they already have. 

Nortel Proprietary 



Version 1.0 Appendices 

es 

Norte! Proprietary 219 



Appendices Version 1.0 

220 Norte! Proprietary 



Version 1.0 Appendices 

Appendix A: Ml languages 

A.1 SL-l 
The SL-l language, and its associated p-code & machine code, are described in detail in Chapter 3 
of the Meridian 1 Core course notes. They are available on the web at: 

http: //47 .49.0.148/Department/Trainingl course documentation 1 

The Global SL-l Coding Standard is in the GLOBPROC library of Doctool under G00074. 

Of course the best reference for SL-l is the code itself. Go explore it with x-view. I f you'll be 
doing a lot of SL-l work, you might want to set your default editor to the xemacs version that ML V 
and MPK have enhanced specifically for SL-1 viewing, and also look at the sll-print tool which does 
pretty-printing of the source code. Both have man pages. 

SL-1 comprises most of the call-oriented software. It is discussed in detail in 
Chapter 6. 

We are in the process of creating an on-line glossary of commonly-used SL-1 
symbols. It should be available by the time this book is published. Try searching 
the intranet for "SL-1 Glossary". 

A.2 C 
There are a billion C books around. The classic source is The C Programming Language, Second 
Edition; Brian W. Kernighan and Dennis M. Ritchie; Prentice-Hall, 1988. 

~ Please follow the C coding standards for Ml, given under T00045 in the tooldocs library in Doctool. 
They make the reverse engineering tools usable. 

C & C++ code is stored in ClearCase. 

C is the language of the operating system, most intrinsics & drivers, and the 
Hardware Infrastructure. It gives direct access to real pointers (not SL-1 virtual 

Norte! Proprietary 221 



Appendices Version 1.0 

222 

pointers). It lets you multiply by something isn't a power of two. And it's just 
more comfortable for many newer designers to work in. The code was mostly 
developed using the GNU C compiler. 

Those programmers (like myself) who find that they sometimes need to debug 
code after they write it are reminded that, although macros seem to be just like 
procedure calls only faster, it's really tough to set breakpoints in them. 

C was first added when we went to a commercial operating system. Since we had 
to support the C interface anyway to get VxWorks running, people then had the 
opportunity to program "new" stuff in either language, but in practice this was 
mostly limited to non-cali-oriented software. 

From C (or C++-), we can get at SL-l symbols using the macros SLlRAddrOf ... , 
SLlputVar ... , SLlgetVar ... , SLlRptr ... , SLlWSizeOf..., SLlRAddrO, and 
SLlGetTidO. The C/SL-1 Inteiface Programmer's Reference in Doctool has details. 
However, we would prefer to minimize the C/SL-l interface to keep complexity 
manageable, especially because C and C++-procedures can not be seen from the 
xview tool. The QSIG and mobility code have done heavy C/SL-l interactions, 
and have encountered some challenges along the way. 

WARNING 

As a real-time optimization, our compilers ensure that register D2 always points to the 
"context" Call Register and AS always points to the SL-1 task data. Subroutine calls do 
not save or restore the contents of these registers, and the code we compile carefully 
avoids trampling them. However, 3rd-party code compiled elsewhere (specifically, 
Seaweed, Orhix, Epilogue Envoy SNMP, and Retix/SNACC ASN.1 code) makes no 
such arrangement. Therefore, you get two problems with the foUowing call sequence: 

Third_Party_C_or_C++ _code (eg: some VxWorks driver) tails 
Our C or c++ code cails - - - -

Our _ SL1_ code (eg: SL1callGETCALLREG () ) 

First of all, when you hit the SL-1 code, AS and D2 will have random values, and the 
SL-1 code may perform approximately random acts. Secondly, if you load the right 
values into these registers, the original values will not automatically be restored when 
you return to the 3rd party stuff, and it in turn will have roughly random side effects. 
These problems may be subtle, and will be very difficult to debug. 

Two macros have been provided to help designers to resolve this issue. Calling 
SLlsaveREGS from your C or C* procedures before invoking any SL-1 routines will 
save the previous values of AS and D2 and initialize AS as the SLIMemoryBase. 
Unfortunately, there is no way to determine which call you're working on automatically, 
so D2 remains as it was. Upon return from the SL-1 code, you can call SL 1 re s tREGS 
to restore AS and D2 to their previous values. 

Norte! Proprietary 



Version 1.0 Appendices 

A.3 C++-
C +t- books also abound. Try The C +t- Programming Langllage, Second Edition; Bjarne Stroustrup; 
Addison-Wesley Publishing Co., 1991 , reprinted with corrections June 1994; ISBN 0-201 -53992-6. 

Some reasonably useful the C +t- usage tips are given in the Mission Park C++ Coding Standard under 
G00058 in the GLOBPROC library of Doctoo\. It is also summarized at 
http://47.82.33.147/-1ang/Process/Standards/html/C++CodingStandardPROCapp.htm\. 

Not all C +t- code is patchable! I'or the latest guidelines in making your code ficld-fixable, see 
http: //47.82.33.147/-raviver/ patcher.htm\' 

Once C was up and running, it was only a matter of time before C +!- showed up. 
Newer stuff, particularly Mobility, Cybele, and the System Infrastructure, is 
mostly written in C+!-. RogueWave provides a standard class library of useful 
spare C +!- parts. 

The code was mostly developed using CenterLine C+!-, but is about to be ported 
to the GNU compiler. We had to add a bit to handle protected memory. 
Essentially, each Object is implemented as two chunks of memory; the protected 
part contains a pointer to the unprotected part which is updated on warm starts. 

If you're new to object oriented design, then besides learning the syntax ofC+!-, 
you're also going to have to learn about the CD paradigm more generally. You'll 
also probably want to learn about the Rational Rose modeling tool. Several 
projects are experimenting with automatic generation of at least some header files 
directly from Rose models. 

While the Thor Coding Standard in Doctool recommends including debug code in 
your source and using #ifdef DEBUG to turn it on and off, the availability of 
source-level debugging tools should now obviate this need. You should still use 
rptReport and rptTrace to indicate that some debugging is required. 

Nortei Proprietary 223 



Appendices Version 1.0 

A.4 

224 

Header fj les 

The following system header mes are available for use. 1'0 view one of these mes simply 
establish a Thor context and use the command "ff -d name.h". The path to the flle will 
be displayed and you may now view the me, for instance using "mOre". To change any 
of these fUes, use the PLS update mechanism you would use for any me. 

mcsTypes.h 

This fUes contains types for the C code written for Multimedia Communication Systems 
products. It contains generic defIDes such as ERROR, INT32, TRUE/FALSE, etc. 

mcsMacros.h 

This fUes contains macros for the C code written for Meridian Communication Systems 
products. It contains, for example, macros to access 32, 16 and 8 bit words. 

SL~Types . h 

Vroposed new fUe for MSL·l speciflc types. T his fue does not currently exist, however 
it will be created and updated as needed. 

SL~Defs . h 

This file contains SL·l language specific declarations such as SL·IMemoryBase, and the 
real/virtual macros SL·1RAddr and SL·1VAddr. 

SL~Pool.h 

This fUe contains all of the macros that are automatically generated from the pool used 
to access SL-l data structures from a C program. 

gamma.h 

This me contains constants specific to the Option 81 Call Processing (CP) board. It 
should be included by any module which needs to know about the hardware 
configuration of the operating system. This fUe includes intTypes.h. 

Omega assembler 
The Omega assembly language, used for SL-l intrinsics, is described in SLot Omega Assembler 
SpecificatiollS; D. Landaveri, 22 Aug 1984, BNR Mountain View, Ca. 

The Microtec Meta-Assembler was the basis from which the Omega assembly language was built. It 
is described in Macro Meta Assembler Mantla~ Microtec, Version 6.0, Microtec Sunnyvale, Ca. 

Assembly language was occasionally used for ftrmware, some of the old machine
speciftc code, and a few intrinsics. 

Norte! Proprietary 



Version 1.0 Appendices 

Appendix B: Glossary 

A31 

ACC 
ACD 
ADAC 
ADPCM 

ADPGC 
AIN 

AM 
AM 
Amber 

AML 
ANI 

This glossary is more-or-less optimized for Ml folks , but there are some other, broader ones 
available on the web. I n particular: 

Systems Engineering also provides a nice glossary of terms at 
htU,J: 1147 .201.134.S3:S0S0/WWW IAdministration 1 Abbrevs/abbr. html 

Acronyms Commonly Used in BNR (remember BNR?) are at 
htU?:! 147.S0.1 0.52:5555 / docs / public l [,[,000067 1.0/html/IT000067 1.html 

The "Acronym-O-Matic" tool at ht'lJ: //47.4. 193.9 /-aar/aomlindex.html is also okay. 

"SHAB": Show Acronyms/Abbreviations has a monster (2Sk entries!) list of industry acronyms at 
http://47.202.33.26:S0S0/-gaikin /shabpage. html 

Finally, the l'ree On-line Dictionary of Computing (FOLDOC), which grew out of the hacker 
jargon flie (http://sagan.earthspace.net/jargonl), is a phenomenal source for understanding 
computer lexicography, history and culture. There are several mirror sites: try 

http: //www.nightflight.com /foldoc/. 

the Integrated Voice & Data signaling chip on the IPE shelf (handles up to 
640 sets) 
Access Controller, the CPU in the new Access Module or Peripheral Module 
Automatic Call Distribution 
Advanced Distributed Access Controller, the next generation of the AM 
Adaptive Differential Pulse Code Modulation, a technique for carrying PCM 
voice with fewer bits, whereby each value sent only gives the difference 
between the current sample and the previous one 
Advanced Distributed Peripheral Group Controller, now called the ADAC 
Advanced Intelligent Networking, a set of public network standards in which 
call processing services which are controlled by separate, off-switch computers 
Access Module (in ME) 
Application Module (in Ml) 
project name for the new Meridian family order processing/ software 
distribution/ configuration strategy, based on CDROM, Internet, and 
PCMCIA 
Application Module Link 
Automatic Number Identification 

Norte! Proprietary 225 



Appendices 

ANSI 
API 

ATM 

audiotex 

BCS 
BCS sets 
bearer 

BHCA 
BIX 

BRI 
BSP 
BSS 
C 

CardLAN 

CAS 
Casper 
CCITT 

CCR 

CCS7 
CDB 
CDN 
CDR 
CE-MUX 

CLASS 

226 

Version 1.0 

American National Standards Institute 
Application Programming Interface-a stable, often standardized, method for 
applications to use a utility, especially across different vendors, versions and 
platforms 
Asynchronous Transfer Mode-a connection-oriented protocol based on 53-
byte cells that allows voice and data to be carried reasonably efficiently on the 
same carner 
premium rate (eg: "900") calls that provide menu-driven information, 
entertainment or services using IVR technology, sort of an audio-only 
forerunner of internet surfing 
Business Communications Systems 
the SL-1 set + digital sets 
refers to the channels that carry payload voice or data, as opposed to those 
which carry signaling information (used especially for ISDN) 
Busy Hour Call Attempts-a unit for measuring switch capacity 
Building Interoffice Cross connect-a Nortel wiring frame where we map 
switch ports to a building's telephone cables. It resembles a rat's nest, only 
with more colors. 
Basic Rate Interface 
Board-Support Package-a collection ofVxWorks drivers 
Blocks Started by Symbol-uninitialized store in VxWorks (or Unix) 
Since Thor, used as a suffix on the Meridian Option names, as in Option 11 C, 
to indicate "Commercial" processor-the MC680xO family of CPUs ... except 
that both Option 81 and Option 8iC use Motorola chips 
IPE shelf maintenance communications protocol, between the CP and the 
peripheral cards 
Channel Associated Signaling 
next generation Attendant Console 
Consultative Committee on International Telegraphy and Telephony (now the 
ITU-T) 
Customer Controlled Routing, lets a customer set up a simple script to direct 
incoming calls through a maze of announcements, menu options, etc. 
Common Channel Signaling No.7, also known as SS7 
Customer Data Base, the configuration information on a switch 
Controlled Directory Number 
Call Detail Recording 
Common Equipment Multiplexed bus-the basis for CP control of Network 
Equipment 
Custom Local Area Signaling Services-a range of features designed for public 
telephony, based on the ability to display information like calling line ID using 
a low-speed in-band modem. 

Norte! Proprietary 



Version 1.0 

CLEC 

CLI 
CLID 
CMA 
CMB 
CMDU 
CNI 
CO 
CORBA 

Appendices 

Competitive Local Exchange Carrier (as opposed to the entrenched ILECs like 
Nynex, Pacific Bell, etc.) in the North American dialtone market. For obvious 
reasons, CLECs are often very aggressive about alternative access strategies 
built around cable TV, wireless, and TCP lIP. They were sort of invented by 
the Telecom Act of 1996, and are rapidly evolving to include interstate traffic. 
Compare RBOC, ILEC, IEe. 
Calling Line Identification (generic term) 
Calling Line Identification (term used in ISDN configuration) 
Changeover Memory Arbitrator-decides which memory is valid 
The later Thor version of CMA 
Core Multi-Disk Unit (2 SCSI floppies, 1 hard drive) 
Core-to-Network Interface 
Central Office 
Common Object Request Broker Architecture-the 00 way for distributed 
objects to talk to each other 

CP Call Processor-the brains behind the M1 system 
CP2 MC68040 Call Processing hardware with new memory management 
CP3 MC68060 " 
CP4 bus & memory upgrade to CP3, with some software optimizations 
CPP Pentium" 
CPE Customer Premises Equipment 
CPLUS PC-based attendant console 
CPS I Call Processing Serial Interface 
CPU Central Processing Unit 
craftsperson The generic name for the person who runs a switch. In the public switching 

world, this is a telco employee, but on a small PBX it may be almost anyone. 
Stereotypically, he will be high-school educated, trained on the job, careful and 
tidy, somewhat resistant to change, and possibly unionized. Especially in the 
global market, he may have limited English skills. While individuals obviously 

CR1 
CSL 

CTAS 
CTI 

CTS 

vary, if someone with this profile can't run our product, we're in trouble. 
Cybele Release 1-the obsolete name for the obsolete:ME Release 1 
Command and Status Link-an interface between the Meridian 1 and Meridian 
Mail that was the precursor to AML, based on the ISDN Application Protocol 
Customer Technical Assistance 
Computer Telephony Integration, either off-board call control or simultaneous 
delivery of "screen pops" of customer data to an agents computer with a 
customer's call 
Cellular Terminal Server-the controller for all cellular activity on a wireline 
switch, runs on the EIMC card 

Norte! Proprietary 227 



Appendices 

CTS 

Cybele 

DASS2 
David 

DCH 
Delta 
dialplan 

DID 
DITI 
DKA 
DMS 
DMS-10 

DMT 
DN 
DNIS 
DPN 

DRAM 
DRU 
DSP 
DTEV 
DTI 

DTI2 

DTMF 
DTR 
E&M 

228 

Version 1.0 

Conference Tone Server pack for ME-has 2 serial ports, plus 30 configurable 
ports for either conference bridging or tone output. On MSSE, must either be 
all conf or all tone. 
Initial project name for Meridian Evolution. Cybele was an ancient Phrygian 
nature goddess ("The Great Mother of the Gods''), whose early worship, 
involving music, dance, pine trees, and ecstatic self-mutilation, probably led to 
the Orthodox Christian veneration of Mary. Her consort, A ITis, died 
violently in various mythic traditions. It's not clear how much she knew about 
ATM. 
Digital Access Signaling Services 2-a British private networking standard 
Not Goliath-internal project name for Option 11 (a small switch, optimized 
for 96 lines) which was also known as "Fox" 
ISDN D-Channel Handler 
project name for M2317 digital set-DELTA _2 shows up frequently in the code 
arrangement of telephone numbers for sets, trunks, and possibly features on a 
switch 
Direct Inward Dialing 
DIgital Trunk Interface-the payload carrier for ISDN services 
Distributor Keycode Application-a Windows '95 program 
Digital Multiplex System-Nortel's main Central Office switching product line 
Digital Multiplex Switch-10-a small-line size public carrier switch that 
originally forked off of the original SL-1 product line. 
Digital Modular Terminals-one of many old names for DTEV 
Directory Number 
Dialed Number Identification Services 
Digital Packet Network-one of the products that originally forked off of the 
original SL-1 product line. 
Dynamic Random Access Memory-cheaper but slower than Static RAM 
Dual-mode Radio Unit-the business end of the TRU 
Digital Signal Processing, or Digital Signal Processor 
Desktop Evolution-the new phones 
Digital Trunk Interface card (non-ISDN T-1 trunks in North America and 
Japan) 
Digital Trunk Interface card (non-ISDN E-1 trunks in countries other than 
North America and Japan) 
Dual-Tone Multi-Frequency signaling (for "tone" dialing) 
Digital Tone Receiver-an EPE card 
Ear & Mouth trunks-also explicated by some glossaries to mean Earth & 
Mark, or rEceive & transMit, and even Exdpere & Missere (allegedly Latin for 
receive and send) 

Nortel Proprietary 



Version 1.0 Appendices 

El 2.048 Mbps digital trunk-usually carrying 32 x 64-kbps voice channels, the 
standard in Europe (compare Tl) 
Enterprise Computer Telephony Forum ECTF 

EIMC Embedded Intelligent Mobility Controller-the main computing engine for 

EFRC 
micro cellular 
Enhanced Full Rate Codec-near-wireline voice quality of service for 
micro cellular conforming to IS-641. 

EMDI El Multipurpose Digital Interface-a new ME trunk card, includes on-board 
DCH 

EPE Enhanced Peripheral Equipment (2nd generation)-the predecessor of IPE 
ESN Electronic Switched Network 
ETAS Emergency Technical Assistance Services 
ETSI European Telecommunications Standards Institute 
failover hot swap of a task from a failing processor to another processor 
fault tolerance The ability to continue some degree of operation in the face of component 

failures (compare high availability) 
FCAPS Fault, Configuration, Accounting, Performance, & Security-the more 

mainstream, ISO-compliant IT word for what telcos call OA&M 
FFC Flexible Feature Code 
flash memory Any of several (Rj4) recent cheap, non-volatile, solid-state data storage chip 

technologies, designed to replace Electrically Erasable Programmable Read 
Only Memory (EEPROM). Their basic advantage over traditional EEPROM 
is that they can be cleared and reprogrammed without removing them from 
the board. This is the memory that survives all restarts, powerdowns, etc. It is 
not really "Read Only" (or it wouldn't be "Programmable") but it takes an 
extra jolt of power (hence "Flash") and a bit more time to write to it, so you 
don't want to use it for volatile stuff. The technology is also being deployed in 
digital cameras, hand-held computers, cell-phones, etc. 

Fox another internal project name for Option 11 
Freya AN orse goddess of love and beauty, and the Option 21 project codename 
FTP File Transfer Protocol 
FX Foreign Exchange 
Gamma internal name for the Thor CPU board family 
GUI Graphical User Interface 
HDLC High-level Data Link Control-an IBM network protocol 
HI Hardware Infrastructure-the maintenance platform for SL-l 
high availability The ability to provide nearly continuous service. Strategies must detect 

and recover from system faults, and typically include redundant components, 
hot card swapping, automatic graceful switchover, and uninterruptible power. 
Lots of things can go wrong: natural disasters, hardware failure, software 

Nortel Proprietary 229 



Appendices Version 1.0 

problems, human error, security breach/vandalism, communication failure, 
scheduled downtime. Each requires a different kind of solution. 

HMI Human Machine Interface 
homologation The group that prepares product for sale into the international 

marketplace and knows about standards, protocols, testing, etc. In biology, 
"homology" is the similarity of structures as a result of similar embryonic 

I/O 
ICCM 
IEC 

IEEE 

IGS 
ILEC 

in-band 

INS 

in-skins 

IODU 
lOP 
IP 
IPE 
ISDLC 
ISDN 

ISL 

ISM 
ITU-T 

IVR 
kbps 
LAN 
LAPB 

230 

origin and development, considered strong evidence of common descent. 
Input/ Output 
Integrated Call Centre Manager-became "Symposium Call Center Server" 
Inter Exchange Carrier, lately more often spelled "IXC" -a long-distance 
provider, ego AT&T, MCI, Sprint, WorldCom 
Institute of Electrical and Electronic Engineers-the international professional 
society for hardware folks 
InterGroup Switch-connects pre-ME network shelves 
Incumbent Local Exchange Carrier (usually an RBOC)-the opposite of a 
CLEC 
sending signals over the same channel bandwidth as service being provided to 
a customer (such as DTMF tones over a voice channel) 
InterNode Switch, connects up to 29 Node Controllers in ME-built down 
the street by Fore Systems 
refers to an auxiliary system (like voicemail) that fits seamlessly inside the main 
cabinets 
Input/Output Disk Unit 
Input/Output Processor 
Internet Protocol 
Intelligent Peripheral Equipment (3rd generation) 
Integrated Services Digital Line Card-an EPE card 
Integrated Services Digital Network-a set of public network standards that 
people had hoped would carry voice & data around the PSTN (prior to the 
explosive growth of the internet). It's still important for voice traffic, along 
with country-specific variants like German 1 TR6 and French VNR4. 
ISDN Signaling Link, the D Channel for PRI/BRI, or just a stand-alone 
signaling path 
Incremental Software Management-a scheme for selling software by the port 
The telecom standardization sector of International Telecommunications 
Union, known until March of 1993 as the Consultative Committee on 
International Telegraphy and Telephony (CCITf) 
Integrated Voice Response 
kilo-bits per second (1000, not 1024) 
Local Area Network 
Link Access Procedure-Balanced, an HDLC variant used to support X.25 

Nortel Proprietary 



Version 1.0 

latency 

LDAP 
Liberator 
MAC 

MAT 

Mbps 
MCDN 
MCE 

Appendices 

the big issue in real-time software-the time between the occurrence of an 
event and our response to that event. In real-time software, the maximum 
latency is engineerable. That is, you can promise that for a given type of event, 
the latency will be no more than a certain period of time. A late answer may 
be worse than a wrong answer! 
Lightweight Directory Access Protocol 
MCS product for large networks (150-15000 users) 
Medium Access Control-the lower sublayer of the ISO data link layer. The 
interface between a node's Logical Link Control and the network's physical 
layer. The MAC differs for various physical media. The MAC address is the 
hardware address of a device connected to a shared network medium. 
Meridian Administration Tools, the software on the off-board box (SMP) that 
does OA&M for Meridian 1 systems 
mega-bits per second (1,000,000, not 1,048,576) 
Meridian Customer Defined Network 
Meridian Communications Exchange-the successor to "Meridian Mail", a 
unified messaging platform complete with control by speech recognition 
Multimedia Communications Systems MCS 

1\1E Meridian Evolution-the "new" name for the cancelled Cybele project 
Media-Pro trade name for existing Meridian software distribution product-the 

"Software Factory" 
Meridian Link links PBX telephony with host applications, using application layer 

messages on top of either the LAPB, X.25 or TCP /IP protocols. This is the 
foundation for Computer Telephony Integration on the M1. 

l'v1DECT Meridian Digital Enhanced Cordless Telecommunications. DECT is a 

MIB 

.Mirv 
MISP 
MMCS 

MNM 

Monarch 
MPCx 
MSDI 

MSDL 

European digital cordless air access standard. 
Management Information Base-lives on the INS & stores all configuration 
data, which operations are permitted, and any alarms, managed via SNMP 
get/ set and traps 
an older 16-bit CPU 
Multi-purpose ISDN Signaling Processor card 
Multimedia Carrier Switch-a strategy to deploy M1s as access vehicles for 
DMS-250, providing a cheap country point of presence for European alternate 
carriers. 
Meridian 1 Network Management-SNMP-based, runs on Cabletron's 
Spectrum 
MCS product for small networks (5-200 users) 
Meridian Personal Communications eXchange-old name for MCE 
Multipurpose Serial Data Interface-the 1\1E version of MSDL, has 4 
synchronous RS-232 ports for either ISL DCH or AML 
Multipurpose Serial Data Link card (lives in the Network) 

Nortel Proprietary 231 



Appendices 

MSI 

MSP 

MSSE 

MTBF 
MUD 

l\1XC 

NC 

NCOS 
NEBS 

NGen 

NGen IPE 

NTP 
OA&M 
OC-3 

OEM 

Omega 
CD 
ORB 
Orbix 
as 
OSI 
ass 
Pangaea 
PBX 

232 

Version 1.0 

Mass Storage Interface-provides the interface between d1e CPU and the 
Multi Disk Unit, and holds a security cartridge which must match with the 
floppy software 
Mobility Service Provider (the EIMC)-the switch interface software in the 
M1 CPU that the l\1XC talks to. 
Meridian Small Systems Evolution (Cybelized Option 11 C), sometimes called 
Half-Node 
Mean Time Between Failures 
Multi-User Dungeon-a user interface concept begun by Dungeons & 
Dragons aficionados, whereby users are represented in a space by "avatars", 
and can see and interact with each other and their environment-sort of a low
tech virtual reality 
Microcellular Transcoder Card-channels voice to and from microcellular 
radio units 
Node Controller-a non-blocking ATM switch that connects up to 4 Access 
Modules or Peripheral Modules, with 800 ports each 
Network Class of Service 
Bellcore Network Equipment Building Specification (GR-63-CORE & GR-
1089-CORE)-the physical! electrical requirements for putting equipment into 
a Central Office 
"Next Generation" Computer Telephony Multimedia Server Applications 
platform-part of the "Blue" in the Rainbow technology evolution program 
low-end NGen solution for use in the peripheral equipment shelves of 
Meridian 1 C-Series and Cybele switches, based in Intel x86, with DSPs on 
board 
Northern Telecom Practice-the documentation we ship with our products 
Operations, Administration, and Maintenance 
Optical Carrier, level3-carries 155 Mhps, equivalent to 100 T1 trunks. This 
is the new glass connection between ME nodes, replacing the bulky, slower 
cables. 
Other Equipment Manufacturer-stuff we sell or at least work with that's built 
by somebody else 
an older 24-bit CPU 
Object Oriented 
Obect Request Broker 
3rd-party object request broker-used by Mobility 
Operating System 
Open Systems Interconnection 
Operations Support Systems 
an older name for DTEV 
Private Branch Exchange 

Nortel Proprietary 



Version 1.0 

PCI 

PCMCIA 

PCS 

PDT 
PM 
PGC 

POP 
PO SIX 
POTS 
PPP 
PRI 
PRI2 
PSDL 
PSTN 

PIT 
QSIG 
R2 

RAID 

Rainbow 

RAM 
RAN 
RAS 

Appendices 

Peripheral Component Interconnect-a fast (data-bursting 32-bit, 132 
:ME/sec) self-configuring local bus standard designed for component-to
component connections for PCs supporting multimedia, full-motion video, 
etc. CompactPCI is a more rugged, higher reliability mechanical packaging of 
PC!, and is likely to be the standard for telecom boxes in the near future. 
Personal Computer Memory Card International Association-a compact bus 
interface standard (renamed "PC-Card" in March 1997). We use the term to 
refer to cards that fit it, that we ship with pre-loaded software on 40 :ME Flash 
Memory for Option lle. We also use it for packaging DSPs. Sometimes 
expanded as People Can't Memorize Computer Industry Acronyms. 
Personal Communication Services-telecommunications services that bundle 
voice communications, numeric and text messaging, voicemail and various 
other features into one device, service contract and bill. 
Problem Determination Toolkit 
Peripheral Module-an IPE shelf with an Access Controller card added 
Peripheral Group Controller-the older name for the ME Access Module 
controller 
Point of Presence 
Portable Operating System Interface for Unix 
Plain Ordinary Telephone Service 
Point-to-Point Protocol, the successor to SLIP, uses dynamic IP addresses 
ANSI Primary Rate Interface card (23B+D T1 trunks; 1.544 Mbps) 
ETSI Primary Rate Interface card (30B+D El trunks; 2.0 Mbps) 
Peripheral Software DownLoad 
Public Switched Telephone Network-also occasionally called Global 
Switched Telephony Network (GSTN) 
Post Telegraph and Telephone administration 
ECMA protocol standard for multi-vendor inter-PBX ISDN signaling 
Register-type signaling system #2-usually Multi-Frequency Compelled (MFC) 
but that's a whole other book 
Redundant Array of Independent Disks-an industry-standard fault-tolerant 
file system with transparent data recovery in the case of disk failure, originally 
(circa 1988) a UC Berkeley project to make a big fast reliable virtual disk out of 
a bunch of small cheap floppy disks. 
A strategic Nortel architecture program, whose components were known by 
various color names, and later by more ethereal names like earth, wind, & fire 
Random Access Memory 
Recorded Announcement 
Return Addresses Stack 

N ortel Proprietary 233 



Appendices 

RBOC 

Version 1.0 

Regional Bell Operating Company-one of seven local service providers 
created by the fission of AT&T in 1984, each of which may in turn comprise 
several LECs 

Retix 3rd-party ASN.1 encoder 
RFC Remote Function Call 
RogueWave a third-party built library of standard C++ functions (time, date, string, linked 

RSM 

SCORE 
SDI 
SDRAM 

Seaweed 
SI 
SIMM 

SL-1 

SL-100 

SLIP 
SMF 

SMP 

SMTP 

SNA 

SNMP 

SPRE 
SRAM 

234 

lists, and some other fundamental structures) 
RS232 Service Module, or maybe Remote Service Module (sources disagree)
a remote management link card for Meridian Mail 
System Core card-another name for the SSC 
Serial Data Interface 
Synchronized DRAM-a newer memory type that is faster because it can be 
coordinated with the dock signal of the CPU 
3rd-party memory management software, brought in by Mobility 
System Infrastructure-evolution of HI for Meridian Evolution 
Single In-line Memory Module-a daughterboard strategy that packages a lot 
of memory into a small amount of motherboard real estate. Each SIMM card 
can hold 1, 2, 4, 8, 16, 32, 64, or 128 Mbytes of RAM. 
Stored Logic 1 (Nortel's first fully-digital switching system); also Switching 
Language 1 
a large Nortel PBX, based on DMS-100 technology-ought to be able to 
handle up to SOOk BHCA; the biggest actually deployed today has about 43k 
lines 
Serial Line Interface Protocol-allows TCP lIP rlogins to the CPU 
Single Mode Fiber-optical fiber that is very carefully engineered to deliver a 
signal end to end with exactly one path (no internal reflective paths) so that it 
can carry that signal over much longer distances than Multi-Mode Fiber (lSkm 
versus 3km) 
System Management Platform-now often called MAT (which originally 
denoted the software running on the SMP, whereas SMP originally denoted 
the management software running on the Mil) 
Simple Mail Transfer Protocol-a standard protocol used to drive Meridian 
Mail 
Systems Network Architecture-IBM's high-level networking protocol for 
mainframes 
Simple Network Management Protocol-a network node management 
protocol, used for a subset of the messages to MAT 
Special PREfix-the M1 service access codes 
Static (because unlike DRAM it doesn't need regular refreshing) Random 
Access Memory, but it will still forget everything if you lose power (unlike 
Flash ROM), and you can't pack it as tightly as DRAM-usually used for cache 

Norte! Proprietary 



Version 1.0 

SS7 
SSC 

SSD 

SSERIES 
ST 
STS-3c 

SWD 
Tl 

TAPI 

TeB 

TCM 

TCP 

TDB 
TDM 

TDMA 

TDS 
Temu 

TGS 
Thor 

thoughput 

timeslot 
TMDI 

TN 
TaD 

Appendices 

Signaling System 7-Bellcore term for CCS7 
Small System Controller-providing the CPU, network, and DSP card for 
Option llC 
Scan and Signal Disributor-the chip on the old LC machine that detected 
state changes for up to 4 terminals, built an appropriate 16-bit message, and 
signaled to the Network Controller terminal scan process that it was ready to 
send the message 
internal name for "small" series of CPUs-the Option 11 
Small Turbo-Option 11 predecessor 
Synchronous Transport Signal, level3c, also known as Synchronous Transfer 
Module, level 1 (STM-l)-usually carried over OC-3 fiber 
Software Watchdog 

1.544 Mbps digital trunk, usually carrying 24 x 64-kbps voice channels-the 
standard in North America (compare El) 
Telephony Applications Program Interface-pushed by Microsoft, becoming 
the de fodo standard 
Task Control Block (VxWorks) 
Time Compression Multiplexing-an Ml-specific way of doing TDM using 
bit-interleaving and carrying two bearer and two signaling channels per 
terminal. This is the standard 2-wire interface for our digital ("Aries") sets. 
Transmission Control Protocol-a reliable data connection on top of Internet 
Protocol 
Trap Data Block 
Time Division Multiplexing-a general technique for putting multiple 
conversations onto a single wire, typically by interleaving bytes from each 
conversation (eg: Tl) 
Time Division Multiple Access-a technology that allows a single wire or radio 
frequency to support multiple calls 
Tone and Digit Switch 
Tape Emulation-we no longer have tape drives, but the ftle system still has 
tape emulation because it allowed us to avoid rewriting some code. 
Telephony Gateway Server 
the Norse thunder god; a small town in Indiana (pop. 205); and the original, 
internal project name to port SL-l from Omega to MC68k 
the total amount of transaction processing you can manage in a given time 
period (cf: latency) 
a channel in a TDM scheme used to transmit one signal 
Tl Multipurpose Digital Interface-a new ME trunk card, includes on-board 
DCH 
Terminal Number 
Time of Day 

Nortel Proprietary 235 



Appendices 

TRU 
TSAPI 

TIT 
UDP 
UEM 
UPS 
USB 
Viking 

VISIT 

Version 1.0 

Transmit Receive Unit-the radio card for microcellular 
Telephony Services API-pushed by Novell/Lucent, we support TSAPI on 
Norstar, M1, and DMS 
historically, a Teletypewriter, although now a generic ASCII terminal 
User Datagram Protocol, a connectionless data protocol on top of IP 
Universal Equipment Module-a standard M1 shelf 
Uninterrupted Power Supply 
Universal Serial Bus-a data connector standard 
the project that re-worked the M1 networks and peripherals, creating the "M1" 
product line and most of the X-things. 
Visual Interactive Technology-soon to be subsumed into the Symposium 
label 

VME stands for VERSAmodule Eurocard (only people claim it doesn't because 
Motorola had already copyrighted VERSAmodule when VME became a 
standard)-a common small system bus standard 

VPIM Voice Profile for Internet Mail-an Electronic Mail Association standard, 
based on SMTP and Multipurpose Internet Mail Extension (MIME) 

VPN Virtual Private Network 
WAN Wide Area Network 
WATS Wide Area Telephone Service 
XALC Extended Analog Line Card-an IPE card 
XDTR Digital Tone Receiver-an IPE card 
XEM Extended Ear & Mouth trunk-an IPE card 
XMFC/MFE Multi-frequency Compelled, Multi-frequency Sender-Receiver 
XMFR Multi-frequency Receiver 
XPEC Extended Peripheral Equipment Controller-an IPE card which functionally 

replaces the old peripheral buffer controller 
XTD Extended Tone Detector 
XUT Extended Universal Trunk-an IPE card 

236 Nortel Proprietary 



Version 1.0 Appendices 

Appendix C: Development sites 
F or those new to N ortel, it may be in teres ring to see how work on the Meridian 1 
system has become a global development effort. 

Lod, Israel 
Fibre Remoie IrE. 
1\,11 (;ustomiL.alions 

Silicon .<\utomatiou 
Systems, 
I3(lJlgalor~, India 
MI software, 

parltlt'ft."d \\ith MLV 

• Nortel Sites 

o Partners & JVs 

Norte! Proprietary 237 



Appendices Version 1.0 

238 Norte! Proprietary 



Version 1.0 Appendices 

Appendix D: Credits 
The value of this book comes almost entirely from the assembled knowledge of 
the subject-matter experts in Mission Park, Belleville, and Marne-la-Vallee. The 
following people all helped make the book what it is: 

Charles Babin Hukam Gupta Siamak Razzaghe-Ashrafi 
Mary Bechtel Marjorie Hempstead Ann Recktenwald 
Greg Behm Mayme Ho Ken Roberts 
John Boyd Greg Hobbs Mary Sipple 
Michel Burger Ian Hopper Eddie Soliman 
Dan Calahan June Hymowech Alan Takahashi 
Pascal Cassat Roy Isaac Tiffany Truong 
Tej Chaddha Mason Kudo Ramakrishnan Venka taraman 
Conway Chan Rob la Riviere Robert Verkroost 
Stephen Chan Henry Lang Gary Walchli 
Simon Chiu Scott Laribeau Sheng Wang 
Jonathan Crowther Patrick Masse Betty-Anne Wilde 
Michael Curry NlichaelMcKinney Shawn Wilde 
Tonu Dam Pompey N agra Terri Wood 
Steven Fraser Dung Nguyen Lawrence Wong 
Anne Garrison Andy Phan Doug Zork 
Eddy Gorsuch Ragu Ragunath 

If I've missed you, please come yell at me. 

The serpent was revealed to inhabit the "Sea of Darkness" to the southwest of 
Europe by Archbishop Olaus Magnus' Hist017a de Gentibus Septentrionalibus (1555), 
and arrives in this book courtesy of the Granger Collection. The M1 tank comes 
to you from the friendly folks at General Dynamics (Land Systems Division). 
Lanercost Priory (the golden arches) was built in Cumbria by the Augustinian 
Order in 1220, and debuilt by Henry VrII in 1536. The alchemist's still is from 
John French's The Art ojDistillation, circa 1650. The various telco logos in the 
DAC diagram are owned by Ameritech, MCr, Southwestern Bell, Wiltel, Sprint, 
and USWest. If you don't understand that Windows:JB is a Microsoft trademark, 
then you probably didn't understand anything else in the book either. Most of 
the good M1 diagrams were pirated from various existing Nortel documents. 

Nortel Proprietary 239 



Appendices Version 1.0 

240 

This book was originally Ian Hopper's idea, and he protected the project long 
enough to get this edition published. 

Karyn cooked, cleaned, proofread, and looked after the Boffin while I wrote. 

The whole project owes a secret debt to the work done by the DMS folks to 
create their An·hitedure Thin Guide, Programming Model, and SYJ'tem DeJ'tription books. 
From any Unix window, the following incantation will produce a good first draft 
of my book: 

sed s/DMS/Ml/g thinguide pmodel sysdesc > mlguidebook 

About link rot: 

On the day I sent this book to press, all of the web sites I reference worked, but 
since the average lifespan of an internet page is only 77 days, you may need to use 
your favorite search engine to find some of these things. The good news is that, 
once on the web, information mostly tends to hide, rather than really 
disappearing. 

Name dropping: Giants mentioned in passing 

Alexander Graham Bell (1847-1922), born in Scotland, but also claimed by the 
Canadians, invented the telephone (1876) and the telephone company (1877). 
Also taught the deaf, helped bring photography to National Geographii; and 
experimented with aviation. 

Edsger Dijkstra (1930-) is known for his decades of pontifical contributions on 
how to get algorithms and languages right. He's probably best remembered for 
his castigations of COBOL, FORTRAN, and BASIC (GOTO ConJ'idered Harmful); 
semaphores; and his network algorithms (eg: shortest path, minimum spanning 
tree), which are regaining importance for things like Open Shortest Path First 
(OSPF) routing for the Internet. 

Tony Hoare (1934-) is Professor and head of tlle Programming Research Group 
at Oxford. His 150 papers & books have made many fundamental contributions 
to the field in the areas of algorithms (eg: Quicksort), languages, OS techniques, 
methods, notations, proof techniques, communicating sequential processes, 
distributed computing (the "transputer"). He wrote Structured Programming (1972) 
with Dijkstra and O. J. Dahl. From time to time, he has worked with N ortel. 

Alan Kay (1940-) was a founding principal of the Xerox Palo Alto Research 
Center (P ARC), which under his stewardship is credited with having more or less 
invented everything we recognize in the current desktop computing model: 

Nortel Proprietary 



Version 1.0 L\ppendices 

Ethernet, laser printing, the "client-senTer" paradigm, GUIs with overlapping 
"windows", Smalltalk, Object-Oriented design, and laptops. His strong interest 
in education and personal computing then took him to Atari and Apple, and he is 
now at Disney Imagineering. 

Donald Knuth (1938-) is "Professor Emeritus of The Art of Computer 
Programming" at Stanford University. His 60-odd publications focus on 
mathematical algorithms, structured programming, and languages. He also 
invented TeX and coined "Literate Programming", but he is most knO\vn for his 
magnum opus, weighing in at 2200 pages: The ~ -1rl q/ Computer PrognlIJI1JJi/~~ (1968). 
Volumes 1-3 are no\v into a third edition, in at least eight languages. Volume 4 
will be out in 2004, and Volume 5 in 2009, but he has no fIrm dates yet for 
Volumes 6 & 7 (seriously ... ). 

David Parnas (1941-) is a nomadic professor of CSjEE (so far at UNC Chapel 
Hill, Technische Hochschule Darmstadt, Carnegie Mellon, Victoria, Queens, 
IVIaryland, and now MdvIaster) who has focused on big, safety-critical, real-time 
programs, and on how technology can be applied to the benefIt of society. He 
was a strong proponent of data hiding. Besides his academic work (about 180 
papers), he has worked on a number oflarge commercial and government 
systems, one of which gained him some mainstream notoriety when he resigned 
from the committee advising the "Star \V'ars" project, and widely published his 
concern that the project was fraudulent and dangerous. 

Alan Turing (1912-1954) was a British mathematician who made a number of 
unique contributions to the fIeld. He is mainly remembered for The Turing 
machil1e: 011 Compllttlbie NllmberJ with al1 applimliol7 to tbe EI1/Jcbeidtlng.,problem, which 
sort of invented the computer program as we know it; the Bombe, the machine 
that decrypted the Nazi "Enigma" code; and the "Turing Test", which states that 
a machine is "intelligent" if you can't tell otherwise by communicating with it. 
His death by cyanide poisoning, which followed arrest and trial as a homosexual, 
is thought to have been a suicide. 

The Gang of Four (named after Mao Zedong's ruling council, or possibly the 
legendary punk band) are Erich Gamma, Richard Helm, Ralph Johnson, and 
John Vlissides. They brought Christopher Alexander's work on patterns into the 
computing community with their book DeJign PattemJ (1995). Buschmann, 
Meunier, Rohnert, Sommerlad, and Stal followed up in 1996 \vith Pal/em-Oriented 
Sqjiware Anlii/edure: A .fYJlem q/PattemJ. For more patterns stuff, go look at 
11 ttp://hillside.net/pattcrns/patterns.html. 

Nortel Proprie/a~T 241 



Appendices Version l.U 

242 N0I1e! Proplietao' 



Version 1.0 

Index 

A 

A31 ·24 
ACD . yee call centen 
ADPCM·31 
AIN ·44 
AM· 42, 177-178 
Amber' 188-189 
1\ML· 34,48, 144, 148, 187 
ANSI·28 
API· 35,66,73, 79, 97, 104, 106, 163, 

166 
r\TM· 13,31, 128, 168, 170, 173-182, 

197,199,203 

B 

BCS sets' 139 
bearer' 32 
Bell, Alexander Graham' 17, 27 
BIX· 2 
BRI· 26,46 
BSS'104 

Appendices 

c 
call centers' 5,6,28,38- 42,47,61, 78 
~\CD' 5-6, 8,11,34,54,61,72,75,89, 

115, 135, I-H, 143-144, 157, 165 
CCR . 5, 34, 43, 78 
"-IQ"-\ . 5, 43, 135 
N~\CD' 12 
Symposium· 6,19,41,47,75,87,95,141, 

143,167,179,188 
CAS'28 
CCR . Jee call eenlen 
CCS7· 12,28 
CDN . 143, 144 
CDR· 34,41,61,89,90, 154, 169 
CE-MUX . 34, 178 
Cen trex . 2, 3 
CLASS' 25 
CLI·169 
Civrn· 108, 116 
CMDU· 113, 114, 116, 181 
CNT· 102, 164 
Companion· 4, 9, 19, 26, 30-31, 46, 53, 

89, 118, 141-14~ 178, 183 
COREA· 89,96,166 
CorWAN·12 
CP2· 97, 110, 118, 130 
CP3·130 
CPI"US' 26 

Norte! Proprietary 243 



Appendices 

craftsperson· 13,60, 76, 86,92, 124, 140-
141, 154-158, 161,164-166,169,181, 
186 

CSL· 34, 187 
en· 6, 13,26,31,67, 189 
CTS' 75, 177, 179, 187 
Cybele· 19,66, 170, 173, 176, 178-179, 

181,186,195,199,203 

D 

DASS2·28 
David· 18,214 
Delta' 26, 153 
dialplan' 3,29, 155 
Dijkstra, Edsger . 73, 86,214 
DISA ·11 
DKA ·188 
DMS . 10, 11,25 
DMS-lO· 17,72,200,205,214 
DMS-I00 . 2, 11, 18, 38, 72 
DtyIT' 66 
DN . 59, 65, 127, 133, 140, 141-144, 149, 

155 
DNIS'144 
DRJ\tyf· 22, 108, 116, 117, 130 
DSP . 24, 42, 51, 187 
DTEV· 66, 141, 179, 188-191 
DTI· 188, 191 
DT12·142 
DTMF· 33 
DTR ·179 

E 

El ·7,28,32,188 
ECTF· 44 
EIMC' 31,46,95, 102, 165 
EMDI· 177, 188 

Version 1.0 

EPE·191 
ESN . 11, 12,40, 168, 169, 214 
ETSI·28 

F 

failover . 117 
fault tolerance' 56, 68, 95 
FCAPS' 161, 165 
FFC· 65, 143 
flash memory' 61, 130 
FTP . 102, 178 

G 

Gang of Four' 69 
GUI· 38, 96, 166-169, 181 

H 

HDLC' 34 
HI· 86, 101-102, 113, 119, 163-164, 182 
high availability· 56, 68 
HMI·157 
Hoare, Tony' 58 

I 

I/O' 23,53,80,92, 107, 120, 123-124, 
132,147,151,176, 179, 187 

ICCM· 34, 107, 157 
IEEE· 104,214 
IGS' 23, 191 
in-band' 25, 27, 33 
INS, 165-168, 173-174, 176, 178, 191 
in-skins' 35 
IODU·181 

244 Nortel Proprietary 



Version 1.0 

lOp· 116, 164, 181 
Ip· 2, 13,32,34,36,38,48,99, 102, 117, 

142, 168, 170, 173-178 
IPE· 7, 8, 23-25, 34, 36, 43-46, 64, 175, 

177,179,188,191 
ISDLC·153 
ISDN· 4, 6, 11-12,26,28,31,46, 74,89-

90, 107, 142, 187-188 
ISM· 141, 188 
ITU-T·27 
IVR· 6, 8,25,38-40,43-44, 144, 185 

K 

Kay, Alan· 86 
kbps ·2,31,33,34, 173,214 
Kiczales, Gregor· 214 
Knuth, Donald· 69 
Kruchten, Phillipe . 86,214 

L 

LAN· 2, 22, 26, 31-32, 43, 45, 48, 162, 
167, 173, 178, 190 

LAPB . 34,43, 144 
latency· 13,53,72,97,106,176,177 
LTI· 7, 8 

M 

Jv1.AT· 19,40,42,67,80,86-87,95,101-
103, 120, 156-157, 162, 166-170, 176, 
181, 183, 187, 190 

MCDN . 11, 12,28 
MCE· 38, 179, 188 
MDECT· 31, 168 
Meridian Link· 6, 34-35, 43, 48 
MIB· 166, 186 

Appendices 

l\1irv . 18, 130 
MISp· 31,46,102,121,147,165, 188, 

191 
MMCS . 9-11, 19,35,44-
MNM·41 
MSDI· 177, 187, 189 
MSDL· 34, 102, 121, 147, 189, 191 
MSI·117 
MSSE· 168, 179, 184, 189 
MXC· 31, 142 

N 

NAS· 11, 12 
NC·176-178 
NGen . 44, 45, 47, 188 
Norstar· 4, 7, 62 
NTp·11 

o 
OA&M· 22,37,89, 103, 156-163 
Object Oriented design· 58, 66, 69, 83, 

119,166,181,214 
OC-3 . 28, 33, 173, 176, 178 
Otnega· 18,74,96,130,133 
Option 11 ·4-5,8, 14, 18,20-24,38,43, 

52,63,118-119,130,138,140,167, 
179 

Option llC . 4-5, 14,20-24,38,43,52, 
63,118-119,130,138,140,167,179 

ORB . 89,99, 102, 120, 166, 183 
Orbix· 56,67,91, 120, 186 
as ·107, 108, 112, 117, 119, 121 
OSI·73 

Norte! ProprielaJ:J' 245 



Appendices 

p 

Pangaea' 66, 170 
PC!' 44, 117 
PCMCIA· 22,24,37,44, 176, 189 
PCS'144 
PDT· 102-103, 119, 144, 186 
PGC'178 
pl\r . 70, 177 
PO SIX ·121 
POTS, 25, 61, 115 
Pournelle,Jerry' 83,214 
PPP' 167, 178 
PRI· 11,28,74,146,188,191 
PSDL· 57, 167, 189 
PSTN . 6-7, 11-12,27,36,43,67,81 
PTT'9,15 

Q 

QSIG . 28, 107 

R 

R2·28 
RAID· 112 
RAM· 108, 111-112,116-120, 168 
RAN· 37, 138, 185 
relnotes 

Carrier· 7 
Fiber' 7 

Retis:' 120 
RogueWave' 35,53, 120, 168, 186 
RSM . 34, 38, 43 

246 

5 

SCORE· 23 
SDI·191 
Seaweed' 67, 77, 120, 186 
SI· 119, 181-184 
SL-I00 . 2,4, 11, 18,63-64 

Version 1.0 

small systems' 4-5, 8, 14, 18,20-24,38, 
43,52,63,118-119,130,138,140,167, 
179 

SMP· 35, 107, 166 
SNA . 144, 145, 186 
SN:tviP· 35,41,67, 101, 120, 166-170, 

183, 186 
SPRE·65 
SRAM· 22, 108, 117 
SS7·44 
SSC . 23-24, 179 
SSD· 93, 153 
SSERIES . 130 
ST· 130 

T 

T1 '7-8,28,32, 188 
TAPI . 8,35,41,44,48,67 
TCB·98 
TCM· 79,93,153 
TCP' 32-38,48,99, 102, 168, 173-174 
TDM· 173, 176 
TDMA·9 
TDS' 147, 179, 191 
Thor' 18,57,61, 74-77, 86-87, 97, 110, 

114-123, 130, 133, 135, 163, 18~ 19~ 
198,201,206 

timeslot . 177 
TMDI . 177, 188 
TN· 55, 138-139, 140-143, 147, 180,183-

184 

Norte! Proprieta1J' 



Version 1.0 

TOD·113 
TSAPI·35 
11rY. 34,38,92,146,151,156,168 
Turing, Alan· 126 

u 
UDP . 35, 168 
UEM . 20,43, 176, 177 
USB· 26 

v 
Viking· 18 
VISIT· 34, 38, 43 
VME·42 
VNS· 11-12, 144 
VoIp·2 
VPN·lO-12 

Appendices 

w 
WAN· 3, 31, 38,173 
Windows· 26,35,39-44,48, 166, 169, 

188 

x 
XII· 3, 18, 19, 110, 154, 156 
XALC· 7,25 
XDTR . 25, 191 
XEM·25 
XMFC/MFE . 179 
XMFR·179 
XPEC· 25, 120, 147, 153, 189 
XTD·179 
XUT· 25 

Norte! Proprietary 247 





Building a better Meridian 1 
Some of the M I code is over 25 years old. That's like, what, three centuries in Internet year? 
Parnas said a major cau e of software aging i "ignorant surgery"- changes made by people 
who do not understand the original design, which gradually dcstroy the arch itecture. 
Educati ng our surgeon will be vital if our oftware is to urvive many more operation. 

A modern PBX does a complex job. ot surprisingly, this makes the M 1 PBX a very com
plex system. This book attempts to help designers get their heads around this complexity, and 
understand the programming hazards that lead to outage , broken features, and awkward 
interaction failures. It aims to reduce the ometimes hidden costs of poor quality, mainte
nance, and lost opportunitics. The insights it is able to impart should directly address the 
problem of software aging. lts success will mean happier designers, and happier customers. 
To help readers understand the Ml design, th is book separates the key concerns into three 
main components: context, wisdom, and structure. 

Part I: Understanding the context 
The fir t section reviews why our cu tomers buy M I s, the Ml history, and the Ml's main 
hardware components. 

Part II: Implications for Design 
The second section talks about those pervasive aspects of the design which respond directly 
to the requirements set out in the fiJ:st section. The "Ml rules" discu ed here tend to apply 
throughout the software. 

Part III: Software Architecture 
The third ection starts by discussing the overall structure of the Ml software, and then 
examines each major component of that structure. These chapters should give teams enough 
working knowledge of the arcas in which they are not expert to operatc safely within their 
own spheres. 

"Great document - and a fun read." 
- Bruce Barrett 

founding SL-l design team member 

"Excellent ... comprehensive coverage of the art and science of Meridian 1." 
- Peter Tarle, 

Product Architecture & Advanced Progranls, Meridian mall Systems 

"Nearlv adequate! Please tell me how to improve the next edition." 
-Geoff Huenemal1Jl , 

Author 


	Why does this book exist?
	Table of Contents
	Part I: Understanding the Context
	1. A Brief overview of M1
	1.1 Market niches
	1.1.1 Classic Private Branch Exchanges
	1.1.2 Call centers
	1.1.3 Local points of presence
	1.1.4 Virtual Private Networking (VPN)
	1.1.5 Power networks

	1.2 Customer visits
	1.2.1 Size matters
	1.2.2 How do we stack up against the competition?

	1.3 Distribution channels
	1.4 M1 genealogy
	1.5 The hardware
	1.5.1 Physical packaging
	1.5.2 Logical decomposition
	1.5.3 Bells and whistles
	1.5.4 Putting it all together


	Part II: Implications for Design
	2. Pervasive design aspects
	2.1 It's not our fault
	2.2 High performance
	2.2.1 No stopping (ever ever ever)
	2.2.2 Getting it wrong: Using the wrong algorithm
	2.2.3 Getting it wrong: No seatbelts
	2.2.4: Getting it wrong: Trying too hard
	2.2.5 Getting it wrong: Not trying hard enough

	2.3 Zero downtime
	2.3.1 Hot swap
	2.3.2 No single points of failure
	2.3.3 No losing stuff

	2.4 Nobody's manning the switch
	2.4.1 An ounce of prevention: Protected memory
	2.4.2 Watchdogs
	2.4.3 Super-ultra-meta-reliable restart code
	2.4.4 The backup plan

	2.5 Customers' budget worries
	2.5.1 Scalability
	2.5.2 Software packaging
	2.5.3 Configurability
	2.5.4 Modular design
	2.5.5 Reuse

	2.6 Bigness
	2.6.1 Vestigial code
	2.6.2 Data hiding
	2.6.3 More about reliability
	2.6.4 Paranoid code

	2.7 Networking complications
	2.7.1 Standards compliance
	2.7.2 Version control
	2.7.3 Glare

	2.8 Conclusion: PBX software is rocket science

	3. Patterns
	3.1 Good patterns
	3.1.1 Transaction engine
	3.1.2 Layers
	3.1.3 Master-slave
	3.1.4 Publisher-subscriber
	3.1.5 Corrective Audit
	3.1.6 Memory manager
	3.1.7 Safe interpreter

	3.2 Not-so-good patterns
	3.2.1 Busy wait
	3.2.2 Global variables
	3.2.3 Replicated data
	3.2.4 Overlaid data

	3.3 The usual suspects: Patterns of problems
	3.3.1 Race condition
	3.3.2 Deadly embraces
	3.3.3 Constipation
	3.3.4 Software version mismatches
	3.3.5 Partial failures
	3.3.6 Too many tasks
	3.3.7 Power and grounding problems


	Part III: Software Architecture
	4. Core software architecture
	4.1 The logical view
	4.2 The process view
	4.2.1 How processes talk to each other

	4.3 The physical view
	4.3.1 Mapping jobs to processors
	4.3.2 Mapping data type to store type

	4.4 The development view
	4.5 Scenarios
	4.5.1 Cold restart
	4.5.2 Service change
	4.5.3 Telephone call


	5. The computing platform
	5.1 What's in a platform?
	5.2 Vanilla VxWorks
	5.2.1 Tasks
	5.2.2 Interrupts
	5.2.3 Types of memory
	5.2.4 Posix
	5.2.5 Assorted VxTools
	5.2.6 Compiled caveats

	5.3 High availability: Our modifications to VxWorks
	5.3.1 Robust memory
	5.3.2 Robust mass storage
	5.3.3 Watchdogs
	5.3.4 Restarts
	5.3.5 Dual CPUs
	5.3.6 Packaging
	5.3.7 Tools

	5.4 Maintenance Frameworks
	5.5 Intrinsics
	5.5.1 Hardware intrinsics
	5.5.2 Software intrinsics

	5.6 Third-party extensions to the platform
	5.7 Distributed processing
	5.8 Evolving the platform

	6. The phones (SL-1)
	6.1 The SL-1 language
	6.1.1 "Stupid code tricks"
	6.1.2 SL-1 code structure
	6.1.3 The SL-1 memory model
	6.1.4 Major SL-1 data structures
	6.1.5 Some common books

	6.2 The PBX platform
	6.2.1 Sysload
	6.2.2 Initialize
	6.2.3 Switchover
	6.2.4 Workshed
	6.2.5 I/O

	6.3 Call processing
	6.3.1 Messaging

	6.4 Operations
	6.4.1 Traffic
	6.4.2 Billing

	6.5 Administration
	6.5.1 Overlays
	6.5.2 Set-based administration
	6.5.3 The overlay supervisor
	6.5.4 Security

	6.6 Maintenance
	6.6.1 System Event and Error Reports (SEER)
	6.6.2 Alarms
	6.6.3 Overload controls
	6.6.4 Audits


	7. Management
	7.1 What's in the job description?
	7.1.1 Vault management
	7.1.2 Configuration management
	7.1.3 Accounting
	7.1.4 Performance
	7.1.5 Security

	7.2 Legacy OA&M
	7.2.1 The data architecture problem
	7.2.2 Overlays
	7.2.3 Hardware Infrastructure (HI)

	7.3 Trends in Management
	7.3.1 Automation
	7.3.2 Networks
	7.3.3 Management Information Bases (MIBs)
	7.3.4 Graphical User Interfaces (GUIs)

	7.4 Meridian Administrative Tools (MAT)
	7.4.1 MAT ↔ Meridian 1 communications
	7.4.2 The MAT platform
	7.4.3 Meridian 1 system view
	7.4.4 System administration
	7.4.5 Alarm management


	8. Meridian Evolution
	8.1 Isn't ME extinct?
	8.2 Evolving the PBX hardware
	8.2.1 The big picture
	8.2.2 Call Server (CS)
	8.2.3 Inter Node Switch (INS)
	8.2.4 Node Controller (NC)
	8.2.5 Peripheral Module (PM)
	8.2.6 Access Module (AM)
	8.2.7 The embedded control LAN (ELAN)
	8.2.8 Available configurations
	8.2.9 What about the Option 11C?

	8.3 Evolving the PBX software
	8.3.1 ME software overview
	8.3.2 Objectification
	8.3.3 User Interface concepts
	8.3.4 System Infrastructure (SI)
	8.3.5 New TN formats
	8.3.6 Services
	8.3.7 Resources
	8.3.8 RAN/Music/IVR broadcast
	8.3.9 New tools
	8.3.10 New memory allocation
	8.3.11 Third-party software

	8.4 Evolving the rest of the system
	8.4.1 New service packs
	8.4.2 New load processes
	8.4.3 New access
	8.4.4 New terminals
	8.4.5 New security

	8.5 Retiring some older bits
	8.5.1 CP
	8.5.2 IGS
	8.5.3 NE
	8.5.4 EPE
	8.5.5 SL-1 sets
	8.5.6 Numerous circuit packs


	Appendices
	Appendix A: M1 languages
	A.1 SL-1
	A.2 C
	A.3 C++
	A.4 Omega assembler

	Appendix B: Glossary
	Appendix C: Development Sites
	Appendix D: Credits
	Index



