OLYMPIA ELECTRONIC COMPACT

Training Program

SBXMPT010

Prepared by:
XEROX CORPORATION
Xerox Service Business
Service Education \& Customer Support
1341 W. Mockingbird Lane
Dallas, Texas 75247
February 1984

Table of Contents

Program Overview Page i
Introduction and Operation Page 1-1
Technical Overview Page 2-1
Service Documentation Page 3-1
Troubleshooting Page 4-1

PROGRAM OVERVIEW

The purpose of this training program is to provide you with a familiarization of the Olympia Electronic Compact, an electronic typewriter utilizing Daisy Wheel technology which can also be used as a slave printer for a host microcomputer. While completing this program you will learn about the Electronic Compacts' basic capabilities and about the documentation which will be available for you when service is necessary.

This training program is made up of the following sections or MODULES:

MODULE 1 INTRODUCTION AND OPERATION

In this module you will become acquainted with the installation of the unit as well as with its general characteristics such as print speed.

MODULE 2 TECHNICAL OVERVIEW
Here you will be presented with information concerning the actual operation of the printer.

MODULE 3 SERVICE DOCUMENTATION
Provides a description of the documentation you will actually use to service the unit as well as some practical application in its use.

MODULE 4 TROUBLESHOOTING
Discusses the troubleshooting approach supported by the service documentation.

PREREQUISITES

There are no prerequisites for this training program.

ESTIMATED TIME TO COMPLETE THIS TRAINING

Approximately 3 hours

REQUIRED RESOURCES

Olympia Service Spare Parts Catalogue
Olympia Service Description of Function (Service Manual)

TRAINING PROGRAM DIRECTIONS

This training program is self-paced and does not require the need of a Course Monitor. The estimated module times are approximate and should be used to pace yourself.

Due to your previous training on Daisy Wheel printers it will not be necessary to have an Electronic Compact available at the time you go through this program. Complete the program as time becomes available, and refer to it for review when a unit comes in for repair.

This manual is reusable. Do not write in it. Answer all questions on a piece of scratch paper. Feedback (answers) to the questions will be found at the end of each module. Proceed through each module sequentially and follow all directions.

MODULE 1

INTRODUCTION AND OPERATION

MODULE OVERVIEW

This module will introduce you to the Olympia Electronic Compact and its basic capabilities. You will be given information concerning the units operation, component location, and installation.

PREREQUISITES

Completion of the COURSE OVERVIEW

MODULE OBJECTIVE

Upon completion of this module you will be able to answer, in writing, five questions relating to the Electronic Compacts installation, operation, and basic features.

ESTIMATED TIME TO COMPLETE THIS MODULE
30 MINUTES

SECTIONI-INTRODUCTION

The Olympia Electronic Compact typewriter utilizes Daisy Wheel technology and can also be used as a slave printer.

Product Specifications for the Electronic Compact are:

Size	Length 376 mm Width 491 mm Height 137 mm
Weight	9 kg
Print Characteristics	11 CPS speed 96 or 100 character printwheel $10 / 12 / 15$ characters per inch Repeat feature for all keys Correction feature
	Stencil capability
Feeder Characteristics	Paper injector Paper end guage Variable line spacing
Memory	46 character correction memory 16 setting tab memory
Options	RS232C serial interface

PRINT CHARACTERISTICS

The Olympia Electronic Compact will print at the rate of 11 CPS in 10, 12, or 15 characters per inch pitch. When used as a typewriter it affords the operator error correction and an ability to make any key operate in a "repeat" mode.

The ribbons are a special correctable carbon ribbon housed in a cassette for easy loading. A seperate correction ribbon is also required for correction capability.

It is also possible to create stencils by disabling the ribbon lift function through a simple keyboard command.

FEEDER CHARACTERISTICS

When inserting or ejecting paper the operator is aided by the paper injector function which causes the platen to be driven by the index motor when the injector lever (bail bar lever) is pulled fully toward the operator. Additional features include variable line spacing set by means of a keyboard control, and a paper end gauage to provide a visual indication when the last available line is being typed on.

MEMORY CHARACTERISTICS

The Electronic Compact has the capacity to store the last 46 keystrokes typed and perform a correction anywhere in this range. Also, up to 16 tabs may be recorded for a document in the tab memory.

OPTIONS

The unit may be equipped with an RS232C serial interface allowing it to be used as a slave printer for a host microcomputer.

SECTION II - INSTALLATION

Installing the Electronic Compact for use as a typewriter is quite simple. You should first check the carriage for free movement from a full left to a full right position, the unit is shipped with a rubber tube cut in two sections placed around the carriage rail. If this tube is present remove the left section first and after moving the carriage to its full left position remove the right section.

You may also find a rubber band holding the ribbon cassette in place on the carriage which should be removed.

At this time a print wheel should be installed. If one is not already in place, begin by removing the ribbon cassette. First push the cassette release lever on the right of the ribbon cassette toward the platen as far as it will go. Note that as the lever was moved the ribbon was lifted by the Left \& Right Center Guides to a position above the print wheel for easier removal. Now lift the ribbon straight up and free from the unit.

Next grasp the Print Wheel Release Lever located directed behind the Left Hand Center Guide and pull it toward you as far as possible. This will cause the Printer Head to pivot back for print wheel installation.

Install the print wheel by first orienting the characters toward the platen, then aligning the round center hole in the print wheel with the print wheel motor drive shaft and the elongated hole in the print wheel with the locating pin mounted on the print wheel motor drive shaft. As the print wheel is pushed onto the shaft a positive locking effect should be felt.

Now lower the Printer Head back into its operating position. Prior to seating the ribbon cassette in place take up any slack in the ribbon by manually winding it in the direction of the arrow on the top of the cassette. Now set the ribbon cassette in place on the carriage assembly making sure to position the ribbon on the Left and Right Hand Center Guides as noted in the removal procedure. Complete the ribbon installation by moving the Cassette Release Lever toward the keyboard as far as it will go.

The AC power cord should now be plugged into a standard 115VAC outlet and the unit turned on with the ON/OFF Switch located on the left side of the unit directly below the platen knob.

When the unit is turned on the carriage will return to the full left position and then move right to the left margin setting.

SECTION III - OPERATION

USE AS A TYPEWRITER

While the Electronic Compact is now ready for use as a typewriter, there are some keys that provide special functions which should be reviewed prior to actually operating the unit.

On the left side of the space bar is a key marked Half Space, and as the term implies use of this key causes the carriage to move right one half space instead of a full space.

On the right side of the space bar is a key labeled Express. The Express key causes the carriage to be returned to the left margin, but does not cause the paper to be indexed (advanced).

At the right of the keyboard is a special key pad containing several special function keys. The key marked RELOC (2nd key from the top right hand side) is used after making a correction which involved backspacing several characters. When the RELOC key is struck it returns the carriage to return to its last position prior to entering a correction mode.

The other special function keys such as the Correction Key, Margin Release, and Tab Clear are very similar to those on a Memorywriter so will not be covered specifically at this time.

It is of interest to note that the Carriage Position Indicator lights to provide the operator with a clearly visible means of monitoring the carriage position at all times.

If you have an operational Electronic Compact available, install it at this time following the directions given in this module. After installation, type several lines of text and make some corrections using the correction and RELOC keys.

USE AS A SLAVE PRINTER

In order to use the Electronic Compact as a slave printer it must be equipped with the D80 Serial Printer Interface. While many units already have this interface, there are also a great number that do not. As a result, you may be asked by the customer to install the interface which they will obtain and bring to you along with the Electronic Compact.

If you are completing this training program with an Electronic Compact that has the D80 Interface already installed, proceed to the heading "SLAVE PRINTER OPERATION" on Page 1-8. If you are completing this training program with a unit that is to have the D80 Interface installed, proceed with the instructions in the next heading "OLYMPIA D80 INTERFACE INSTALLATION". In the event that you are completing this program with an Electronic Compact that does not have the D80 Interface installed, and it is not to be installed at this time read the rest of this module for information purposes.

OLYMPIA D80 INTERFACE INSTALLATION

The following instructions will direct you through the installation of the D80 Serial Printer Interface in the event that you are asked to do so by a customer.

1. Disconnect $A C$ power by unplugging the power cord from the wall outlet, or the unit itself. Remove upper housing of the Electronic Compact by removing two screws on the rear of the bottom housing. Remove the platen knob by pulling it straight off. Remove the upper housing by pressing in on both sides of the housing while at the same time, lifting straight up.
2. Remove the two screws which hold down the Keyboard assembly.
3. Turn the keyboard assembly upside down to access the main logic board.
4. Carefully remove the large 40 pin integrated circuit (IC4) from its socket. (See Figure 1), and insert it into the vacant socket on the D80 Interface board (location marked U16). Be sure that you install the IC with the small notch on one end oriented in the same direction as the notch on the socket.
5. Carefully remove the left hand flat keyboard cable from the Keyboard plug socket marked Cone 1 on the main logic board. Also remove the plug connector marked Cone 4.
6. Locate the three threaded studs where the main logic board is mounted to the keyboard assembly. On the exposed threads of each of the three studs, install one of the threaded standoffs which is supplied with the D80 interface kit.
7. The D80 interface board has pins which protude from its bottom side. These pins are designed to insert into the now vacant sockets of IC4, and the left hand keyboard plug of the main logic board. Carefully position the D80 interface board over the main logic board, and align it such that the two sets of pins will insert into the 40 pin and 10 pin sockets, and then press firmly to seat the pins into the connectors.
8. Plug the left side flat keyboard cable into the plug socket marked P1 on the D80 interface board.
9. Plug the Cone 4 plug into the main logic board through the square hole in the D80 interface board.
10. Install the 3 machine screws through the D80 interface board and into the threaded standoffs which were installed in step \#6. Do not over tighten these screws or the PCB may be cracked or damaged.
11. Now the power supply wires must be connected. These are the two loose wires (one gray and one blue) which are soldered to the D80 interface board. They will be connected using the two red clamps provided. Locate the plug connector which attaches to the main logic board at a point marked Cone 6. The gray wire on the Cone 6 cable attaches to the gray wire on the D80 interface. Likewise, the blue wire on the Cone 6 cable attaches to the blue wire on the D80 interface board. When applying the wire clamps, be sure that the wires are contacting the metal points inside the clamps so that the insulation will be pierced by clamp. The clamp should be squeezed together until it locks using a pair of pliers
12. It is now time to install the data cable on the D80 interface board. First it will be necessary to route the cable through the rear of the lower housing. Use a pair of pliers to twist out one of the louvers on the lower housing and route the data cable through the opening. Be sure to route the cable around the printer chassis so that there can be no interference with printer operation. Plug the data cable connector onto the D80 interface board.

This completes the installation. At this time turn to the ELECTRONIC COMPACT OPTION SETTINGS heading on Page 1-9. The instructions there will guide you through the steps required to verify proper operation of the Electronic Compact as a slave printer connected to the 820 II .

SLAVE PRINTER OPERATION

Once proper operation in the typewriter configuration has been confirmed the Electronic Compact may be used as a slave printer for microcomputers with a serial printer interface. The following instructions will enable you to attach the Electronic Compact to an 820 II to verify it's performance in this area.

1. Begin by connecting the data cable from the Electronic Compact to the printer port of the 820.
2. Turn on both the 820 and Electronic Compact.
3. Load a CPM Diskette in the 820 . When the $A>$ prompt appears on the 820 display type CTRL P. This will direct the 820 to print whatever appears on the display from this time on until another CTRLP is entered.
4. Now type DIR followed by a carriage return on the 820. The directory of your CPM Diskette should be displayed on the screen, and at the same time be printed by the Electronic Compact.

Correct printing of the Diskette Directory verifies the Electronic Compact's ability to function as slave printer, and concludes this portion of the module. If the Directory printed properly turn to the Module Conclusion on Page 1-10.

However, if following the above directions did not produce the expected results it is possible that either the CPM Diskette, or the Electronic Compact, or both will have to have certain options reconfigured. The option settings of the Electronic Compact should be checked first, so that the CPM Diskette can be reconfigured to match it. Continue through the following instructions to determine the option settings for both units and make required changes to the settings.

ELECTRONIC COMPACT OPTION SETTINGS

1. Disconnect AC power by unplugging the power cord from the wall outlet, or the unit itself. Remove upper housing of the Electronic Compact by removing two screws on the rear of the bottom housing. Remove the platen knob by pulling it straight off. Remove the upper housing by pressing in on both sides of the housing while at the same time, lifting straight up.
2. Remove the two screws which hold down the keyboard assembly.
3. Turn the keyboard assembly upside down to access the main logic board.
4. Check the position of the jumper which controls the Baud Rate (Fig. 1). The proper setting for use with an 820 is 1200 Baud, however it the unit is set for another Baud Rate to match the customers needs it should be left there. Later on in these instructions you will be told how to match the 820 to the Electronic Compact, at this time simply make a note of the Baud Rate the Electronic Compact is set for.

Figure 1
5. Just to the left of the Baud Rate jumpers are the Option Jumpers. Only positions A and E are used. Check the position of the jumpers, for use with an 820 there should be NO jumpers present at A or E. If there are jumpers at position A or E, remove them and set them aside for reinstallation prior to returning the unit to the customer.
6. This completes the option setting for the Electronic Compact. Reposition the keyboard assembly and reinstall the two screws which secure it. Do not reinstall the upper housing at this time.

CPM DISKETTE CONFIGURATION

It is now time to check the configuration of the CPM Diskette. Load the CPM Diskette into the 820. When the $A>$ prompt appears type CONFIGUR and a carriage return.

The system will display:
Enter SOURCE disk name (or RETURN for this disk):
Touch the Return Key once.
The system will display:
Enter DESTINATION disk name (or RETURN for same disk):
Touch the Return Key once.
The system will display:
Enter number of function to be executed. Upon completion of the selected function the program will return to this menu. Touch ESC when all desired selections have been made.

1) Record Restart Command
2) Select Printer Port Options
3) Select Comm Port Options
4) Select I/O Device Assignments
5) Select Keyboard Data Format
6) Select Screen Attributes
7) Select Floppy Disk Head Step Rate

Touch the $\mathbf{2}$ Key once.
The system will display:
Move cursor to option and <SPACE >to cycle through valid parameters. Touch $<E S C>$ to exit or $<R>$ to reset to original values.

OPTION PRINTER

Baud Rade 1200
Stop Bits 1
Word Length 7
Parity Even

Clear-to-Send	Ignore
Carrier Detect	Ignore
Protocol	XON / XOFF

If the BaudRate option is not set for the same Baud Rate that you determined the Electronic Compact was set for use the cursor to highlight it, and then use the space bar to change the setting until it is the same as the Electronic Compact.

No other options will require setting. At this time touch the ESC key two times.
The system will display:
The selections you have made are not yet in effect.
Please enter one of the following:
<S> = Save and activate the selections permanently.
$<\mathrm{Q}>$ or $<\mathrm{ESC}>\quad=$ Quit without making any changes.
$<T\rangle=$ Temporarily activate the selections - but do not save them.

If you Did Not change the Baud Rate, or any other setting touch escape. If you Did change the Baud Rate or any other setting touch the S key. Remember that if you changed any Option Settings they are now permanently recorded on the diskette, and that to change them again this procedure will have to be repeated.

Now that both the 820 and the Electronic Compact have the same option settings the Diskette Directory should print properly. Again, from the $A>$ prompt on the 820 type CTRL P, and then DIR. The result should be simultaneous display, and printing of the Diskette Directory. If the units are still not producing the expected results continue with this training program to it's conclusion, after which you will be better prepared to troubleshoot any remaining problems.

MODULE CONCLUSION

In this module you have been given information on the Olympia Electronic Compact. You have read about its capabilities and how to install it for use as a typewriter. Now proceed to the test questions on the next page.

This page intentionally left blank

MODULE 1 - Introduction

TEST

DIRECTIONS:

Answer the following questions on a separate sheet of paper. Do not write in this book. When you are finished, verify your answers with the feedback sheet located on the next page.

1. What aid is provided for the operator when loading paper?
2. How many previously typed characters are stored in memory for correction as necessary?
3. What is the function of the Express Key?
4. What means is provided to use the Electronic Compact as a slave printer?
5. How is the RELOC key used in the correction process?

MODULE 1 - Introduction
TEST - Feedback

1. What aid is provided for the operator when loading paper?

Paper ejector feature indexes.platen
2. How many previously typed characters are stored in memory for correction as necessary?

46
3. What is the function of the Express Key?

Return carriage w/o line feed
4. What means is provided to use the Electronic Compact as a slave printer?

DB25 Serial Plug
5. How is the RELOC key used in the correction process?

Returns carriage to original position

MODULE 2

TECHNICALOVERVIEW

MODULE OVERVIEW

In this module you will be introduced to the major components of the Electronic Compact and their purposes.

PREREQUISITES
Completion of the INTRODUCTION AND OPERATION Module.

MODULE OBJECTIVE

After completing this module you will be able to answer five questions, in writing, relative to Electronic Compact component functions and locations.

ESTIMATED TIME TO COMPLETE THIS MODULE
1 HOUR

HARDWARE CONFIGURATION

The following six major assemblies make up the Electronic Compact, and they will be discussed in the order listed here:

1. Chassis and platen Assembly
2. Keyboard Assembly
3. Printer Assembly
4. Power Pack Assembly
5. Print Control Circuit Board
6. Housing Assembly

CHASSIS and PLATEN ASSEMBLY

The function of this assembly is to properly position and hold the paper. Major components of this assembly are the Platen, Index Motor, and Feed Rollers.

KEYBOARD

In the typewriter mode the keyboard provides the unit with the operator input used to determine which characters should be struck, when to execute a line feed, etc. When used as slave printer this information primarily comes from the host microcomputer, but it is important to note that the keyboard is not disabled and the unit will respond to its commands.

PRINTER ASSEMBLY

This assembly has the most visible functions with sub- assemblies such as the printwheel motor, hammer solenoid, and ribbon feed motor combining to produce the actual output of the Electronic Compact, the printed page.

POWER PACK

The purpose of the Power Pack is to provide regulated DC voltages, transformed from AC line voltage, to the various electrical and electronic components within the unit.

PRINT CONTROL CIRCUIT BOARD

While monitoring inputs from various sources within the unit and from the operator this circuit board controls all functions such as hammer fire, print wheel movement, paper indexing, and carriage positioning.
Major components located on the Print Control Circuit Board include:
IC 1 Keyboard Buffer
IC 4 CPU
IC 10 Inverter for Driver Circuits
Drivers for all motors as well as the hammer solenoid.

HOUSING

The purpose of this assembly is to efficiently lodge all of the components necessary for operation of the Electronic Compact.

ELECTRONIC COMPACT OPERATIONAL DESCRIPTION

At power on the Power Pack transforms the AC line voltage and produces the following DC voltages for use by the unit: 36V--12V--6V--5V

The transformer T1 is protected by a thermal fuse rated at 125 degrees C, and a 1.25A delay fuse.

Also at power on all control lines (CPU Outputs) are set to logic 0 . Visible indication of this is movement of the carriage to the left stop. After reaching the full left position the carriage is moved, by the horizontal step motor, 20 steps (spaces) to the right which corresponds to the default setting for the left margin. The printwheel and ribbon drive motors are positioned in their home positions at this time as well.

Upon completion of the preceeding steps, the Electronic Compact will remain in a standby mode awaiting input from the keyboard. The Print Control Circuit Board monitors the keyboard for such input, and upon its receipt, will cause the appropriate output to be performed.

As an example, we will consider the unit's response to a keyboard input of the letter M. When the M key is depressed the Print Control Circuit Board must first position the print wheel so that the M spoke is directly in front of the hammer. At the same time the ribbon lift mechanism must be activated to insure the ribbon will be placed between the print wheel and the paper.

Next, the necessary print density must be determined. This is done by varying the time that power will be applied to the hammer fire solenoid. Three levels of print density are possible and the appropriate one is selected by the CPU. In our example, the longest duration hammer fire would be effected due to the width and size of a M.

After the hammer fire solenoid has been energized for the correct amount of time the ribbon lift mechanism will be deenergized and the print wheel will be returned to the home position. If another key had already been struck the print wheel would move in the direction requiring the least movement to reach the next location and the entire process would repeat itself until all characters which had been struck at the keyboard were printed.

The Print Control Circuit Board will continue to look for and respond to external and internal inputs until the unit is turned off.

This concludes this module. You may now proceed to the next page and complete the module questions. When finished, check your answers with the feedback sheet at the end of the module.

This page intentionally left blank

DIRECTIONS:

Answer the following questions on a separate sheet of paper. Do not write in this book. When you are finished, verify your answers with the feedback sheet located on the next page.

1. What electrical protection is provided for T1?
2. State the purpose of the power pack?
3. How is even print density for all size characters insured?
4. True or False? The keyboard is disabled when the Electronic Compact is used as a slave printer.
5. What is a visual indication at power on that CPU output control lines were reset to logic 0?

MODULE 2 - Technical Overview
TEST - Feedback

1. What electrical protection is provided for T1?

A 125 degree thermal fuse and a 1.25A fuse
2. State the purpose of the power pack?

Transforms AC line voltage to necessary DC voltages
3. How is even print density for all size characters insured?

By varying the time the hammer fire solenoid is energized
4. True or False? The keyboard is disabled when the Electronic Compact is used as a slave printer.

FALSE
5. What is a visual indication at power on that CPU output control lines were reset to logic 0 ?

Carriage restores full left and moves right to margin

MODULE 3

SERVICE DOCUMENTATION

MODULE OVERVIEW

In this module you will work with the available Service Documentation for the Olympia Electronic Compact.

PREREQUISITE

Completion of the Introduction and Operation, and Technical Overview Manuals.

MODULE OBJECTIVE

Upon completion of this module you will be able to answer, in writing, four questions about the Olympia Electronic Compact Service Documentation.

ESTIMATED TIME TO COMPLETE THIS MODULE
30 Minutes

DESCRIPTION OF FUNCTION MANUAL

The Description of Function Manual contains information on the installation, repair, and maintenance for the Olympia Electronic Compact and is divided into 9 sections as described below.

SECTION 1 TECHNICALDATA

In this section information such as voltage requirements, power consumption, and brief descriptions of major components such as the keyboard is found.

SECTION 2 GENERALCHARACTERISTICS

Listed here are the six major assemblies of the Electronic Compact.

SECTION 3 DESCRIPTION of FUNCTION

Principals of operation are covered in this section with short descriptions of such things as the Switching on Routine and Character Printing.

SECTION 4 ADJUSTMENTS, MEASUREMENTS

Using line drawings in addition to written instructions this part of the manual will be used to perform mechanical adjustments to manufacturers specifications.

SECTION 5 DISASSEMBLY and ASSEMBLY

Provides written instructions supported by some exploded views to guide you in removing and installing major components such as the Keyboard with Control PCB.

SECTION 6 LUBRICATION

Identifies components to be lubricated as well as the type of lubricant to be used.

SECTION 7 TROUBLESHOOTING

Presents a troubleshooting flow chart and a diagram indicating the pins for each IC Chip to be tested for input voltage and ground.

SECTION 8 ACCEPTANCE CHECK

A checklist of items to review when installing the Electronic Compact. This checklist should also be used when servicing a previously installed unit as a type of "Call Management" procedure.

SECTION 9 FOLDOUTS, CIRCUIT DIAGRAMS, LAYOUTS

Additional reference items such as the layout of components on the Control PCB and an exploded view of the Printer Head Assembly are given in this section.

DESCRIPTION OF FUNCTION MANUAL USAGE

Locate and read the Power Pack Removal/Replacement Procedure in Section 5. Note that as with most of the procedures in Section 5 there is no diagram or drawing to aid you in locating the components you are working with. It is recommended that you use the Spare Parts Catalogue to locate exploded parts views with which you can identify components when necessary.

Turn to Printer Adjustments in Secton 4 and review the Printer Head, Hammer Solenoid procedure. Each adjustment procedure in this section is presented in the same way, with a line drawing on the left and a written description with specifications, if any, on the right of the page.

Look through Section 9 to familiarize yourself with the various graphic aids provided for your use whether installing, troubleshooting, or repairing the Electronic Compact.

SPARE PARTS CATALOGUE

This separate book provides you with detailed exploded view diagrams for each area of the unit for which parts might be needed, as well as the Olympia part number and description.

The Spare Parts Catalogue is divided into Sections A and B, one for each of two versions of the Electronic Compact available.

In Section A of the Spare Parts Catalogue turn to the appropriate page for the Printer Head Mechanism to see how the replaceable parts for the Printer Head Mechanism are illustrated.

When part replacements are required you will locate the needed part in the Spare Parts Catalogue, obtain its Olympia Part Number, and order it in accordance with standard procedures in effect at your Service Center. If you would like further information about current procedures for obtaining Olympia parts contact your Zone Manager.

You have now completed the Service Documentation Module. If you feel comfortable with the information presented proceed to the next page and answer the questions presented. If you are not yet comfortable with the usage of the Service Documentation review those areas you are not comfortable with and then answer the questions on the next page.

This page intentionally left blank

MODULE 3 - Service Documentation

TEST

DIRECTIONS:

Answer the following questions on a separate sheet of paper. Do not write in this book. When you are finished, verify your answers with the feedback sheet located on the next page.

1. What section of the Description of Function manual contains information on lubrication points?
2. Instructions on specifications for mechanical adjustments can be found in
3. What is the Olympia Part number for a Printer Head Assembly?
4. The 5 V input voltage for IC1 could be tested at pin \qquad $-$

MODULE 3 - Service Documentation
TEST - Feedback

1. What section of the Description of Function manual contains information on lubrication points?

Section 6

2. Instructions on specifications for mechanical adjustments can be found in

Section 4

3. What is the Olympia Part number for a Printer Head Assy.?

330-52005
4. The 5 V input voltage for IC1 could be tested at pin \qquad .

Pin 20

MODULE 4

troubleshooting

MODULE OVERVIEW

In this module you will be provided information necessary to systematically approach troubleshooting situations for the Olympia Electronic Compact.

PREREQUISITE

Completion of the Service Documentation module.

MODULE OBJECTIVE

After completing this module you will be able to answer, in writing, four questions relative to troubleshooting the Electronic Compact.

ESTIMATED TIME TO COMPLETE THIS MODULE
20 Minutes

Troubleshooting of the Olympia Electronic Compact will be to the level of Field Replaceable Units as determined by the Spare Parts Catalogue. Determination of the problem will be aided by use of the units Self Test feature and the Troubleshooting Diagram in Section 7 of the Description of Function Manual.

SELF TEST

The Self Test feature of the Electronic Compact provides you with a means of verifying printer operation without requiring that you know how to type. The use of Self Test is described in Step 6, Print of the Acceptance Check in Section 8 of the Description of Function Manual. Read this procedure at this time, and if you have an Electronic Compact available run Self Test to become familiar with its function.

TROUBLESHOOTING DIAGRAM

This problem soiving aid is designed to provide you with a systematic approach to repair of a nonfunctioning unit. It is divided into steps for mechanical or electrical problems. Note that the Diagram does not mention use of the Self Test feature. It is strongly recommended that prior to using the Diagram you use the Self Test feature to observe visual symptoms that may be used to respond to questions in the Diagram.

OTHER TROUBLESHOOTING AIDS

Additional troubleshooting assistance may be obtained by using the circuit diagrams in Section 9 and the Description of Function in Section 3.

After servicing an Electronic Compact, you should check the Lubrication Points as described in Section 6 and perform the appropriate steps of the Acceptance Check in Section 8. If the unit is to be used as a slave printer, it should be connected to an 820 II following the instructions in Module 1 to confirm that it can interface with a host microcomputer properly.

You have now completed the Troubleshooting Module. Proceed on to the next page and answer the written questions.

MODULE 4 -Troubleshooting

TEST

DIRECTIONS:

Answer the following questions on a separate sheet of paper. Do not write in this book. When you are finished, verify your answers with the feedback sheet located on the next page.

1. How is Self-Test begun?
2. The troubleshooting diagram is located in what section?
3. What help for troubleshooting can be found in section 9 ?
4. True or False? Self-Test is the first step of the troubleshooting diagram.

MODULE 4 - Troubleshooting
 TEST - Feedback

1. How is Self-Test begun?

Hold margin release and turn power on
2. The troubleshooting diagram is located in what section?

Section 7
3. What help for troubleshooting can be found in section 9 ?

Circuit diagrams and PWB component layout
4. True or False? Self-Test is the first step of the troubleshooting diagram.

FALSE

PUBLICATION COMMENT SHEET

Please use this comment sheet to assist with identification of errors or needed improvements in this publication. For specific errors, include specific page numbers.

Date
NAME \qquad
JOB TITLE \qquad
MAILING ADDRESS \qquad
\qquad
\qquad

PUBLICATION NAME - OLYMPIA ELECTRONIC COMPACT Technical Training Program PUBLICATION NUMBER - SBXMPTO10

PAGE NO. DESCRIPTION OF ERROR OR IMPROVEMENT
\qquad

Please mail this form to the following address.
XEROX CORPORATION
1341 W. MOCKINGBIRD LANE
MS301
DALLAS, TEXAS 75247
ATTEN: DAVID LEESE, MANAGER, XSB SERVICE EDUCATION \& CUSTOMER SUPPORT

OLYMP IA

ELECTRONIC COMPACT INTERFACE

```
The D80 interface board is available in
serial or parallel configuration.
Customized: data cables to connect with a
wide variety of micro computers are also
available. Detailed information is
contained i.n this package.
To install the D80 interface in your Olympia Electronic Compact Typewriter you need a screwdriver and needle noose plier. Then follow the attached instructions which cover:
```

- Installation
- Set-up Instructions
- Computer Hook-up
- To Change Defaults
- Code Chart
- Cable Reference Charts

Installation and Setup Instructions Olympia Electronic Compact Interface Board Serial or Parallel Version

Installation

l. Remove upper housing of the Olympia Electronic Compact Typewriter by removing two screws on the rear of the bottom housing. Remove the platen knob and unsnap the upper housing.
2. Remove the two screws which hold down the keyboard assembly.
3. Turn the keyboard assembly upside down to access the main logic board.
4. Carefully remove the large 40 Pin integrated circuit (IC4) from its socket, (See illustration \#l), and insert it into the vacant socket on the D80 interface board (Location Marked Ul6 on illustration \#2). Be sure that you install the IC with the small notch on one end oriented in the same direction as indicated in illustration \#2.
5. Carefully remove the left hand flat keyboard cable from the keyboard plug socket marked Cone l on the Electronic Compact logic board, and the plug connector marked Cone 4. (See illustration \#l)
6. Locate the three threaded studs where the Electronic Compact logic board is mounted to the keyboard assembly. On the exposed threads, of each of the three studs, install one of the threaded standoffs which is supplied with the D80 interface.
7. The D80 interface board has pins which protrude from its bottom side. These pins are designed to insert into the now vacant socket of IC4 and also into the left hand vacant keyboard plug socket of the Electronic Compact interface board. Carefully position the D80 interface board over the typewriter logic board, and align it such that the two sets of pins will insert into the 40 pin and 10 pin sockets and then press firmly to seat the pins into the connectors.
8. Plug the left side flat keyboard cable into the plug socket marked Pl on the D80 interface board. See illustration \#2.
9. Plug the Cone 4 plug into the Electronic Compact logic board through the square hole in the D80 interface. (See illustration \#2)
10. Install the 3 machine screws through the D80 interface board and into the threaded standoffs which were installed in step \#6. Do not over tighten these screws or the PCB may be damaged or cracked.

Rev. 6/83
the power supply wires must be connected. These are the two loose grey and blue wires which are soldered to the D80 interface board. This is done using the two red connector clamps. Locate the plug connector which attaches to the Electronic Compact at a point marked Cone 6 (See illustraion \#l). The grey wire on the Cone 6 cable attaches to the grey wire on the D80 interface and the blue wire on the Cone 6 cable attaches to the blue wire on the D80 interface.

To accomplish this connection, the wires on the Cone 6 connector are fed through the wire clamp and the wire on the D80 interface is inserted into the opposite side of the clamp which is then pressed together with a pair of pliers, and snapped closed. Be sure that the wires are aligned such that they will be pinched by the metal crimp when you squeeze the clamp with the pliers.
12. Installation of Leader Cable

SERIAL
To install the leader cable, it is necessary to remove one louver from the typewriter housing in order to accomodate an exit hole for the cable. Facing the rear of the machine, break out one louver on the left side lower housing. Insert the leader cable through the hole and route it around the printer chassis.

PARALLEL

To install the leader cable, it is necessary to remove two louvers from the typewriter housing in order to acomodate an exit hole for the cable. Facing the rear of the machine, break out two louvers on the left side lower housing. Insert the leader cable through the hole and route it around the printer chassis and plug it into the parallel cable header on the D80 board (see illustration \#2). Be sure that all 26 pins are plugged in and that the cable exits away from the D80 PCB.

Data cables are provided as optional items for the Electronic Compact. Please refer to the attached Cable Reference Chart to select the cable required for your computer.

SERIAL

The Electronic Compact serial interface board has the following features:

```
* RS 232 Compatible
* Baud Rates from 75 to 19,200 Baud
* Selectable Handshake Polarity
* Selectable CR-LF logic
* Xon/Xoff Protocol supported
* ETX/ACK Protocol supported
* Approximately 70 character buffer
```


Computer Hookup

Refer to the operating instructions of the host computer to determine which pins should be connected for proper operation. Normally only three wires are needed. These are usually Ground, RTS (Handshake) and RXD (Receive Data). The above wires on the D80 interface connect to ground, Handshake (CTS-RTS-DTR, etc.) and TXD Transmit data on the host computer.

Optional interface cables are available in these configurations (see also attached cable reference chart).

		20x		4X		5 X	
RTS	(Handshake)	Pin	20	Pin	4	Pin	5
RXD	(Receive Data)	Pin	3	Pin	3	Pin	2
TXD	(Transmit Data)	Pin	2	Pin	2	Pin	3
GND	(Signal Ground)	Pin	7	Pin	7	Pin	7

In an application which uses Xon/Xoff or ETX/ACK protocol, the RTS (Handshake) is not used, and the TXD (Transmit Data) is connected to the RXD (Receive Data) on the host computer. If ETX-ACK Protocol is used, the Block length must not exceed 64 characters.

The Electronic Compact interface board is delivered with the baud rate preset to 1200 baud and the handshake polarity high ready. The carriage return and line feed logic is set such that a CR=Carriage Return plus Line Feed and LF is ignored.

Provisions are made for changing the defaults as shown on page 5, "To change defaults".

PARALLEL

Pin Assignments
The pin assignments on the Electronic Compact leader cable plug are as follows:

```
Data Strobe
    Data Bit 0
    Data Bit l
    Data Bit 2
    Data Bit 3
    Data Bit 4
    Data Bit 5
    Data Bit 6
    Data Bit 7
    Acknowledge
    Busy
    Paper Out (GND)
    Select (+5V)
    ERROR (+5V)
    GROUND
```

Pin \#
Pin \#
Pin \# 2
Pin \# 3
Pin \# 4
Pin \# 5
Pin \# 6
Pin \# 7
Pin \# 8
Pin \# 9
Pin \#lo
Pin \#ll
Pin \#l2
Pin \#l3
Pin \#l5
Pin \#l8-26

The optional parallel cables map these signals to a variety of different connectors for direct attachment to your computer. Please refer to the attached cable reference chart.

1. Setting of jumpers on header marked A thru H : See illustration \#2 (Option Setting)
a. Code Jumper "A" Not Installed

CR Carriage Return + Line Feed LF Ignored

Jumper "A" Installed
Express
Carriage Return + Line Feed
b. For Radio Shack Computers install a jumper on Position "C". This causes a CR+LF (Carriage Return + Line Feed) to occur when either a CR (Carriage Return) or LF (Line Feed) is sent from the host computer.

Note: Installing a jumper on "C" supersedes the setting of the "A" jumper above.
C. For Parallel operation be sure that there is a jumper installed on position "F".

Note: Jumpers $B-D-E-G$ and H are not used in parallel operation.
2. Once you have made the proper connections above, it is time to reposition the keyboard assembly.

Position the keyboard assembly and reinstall the two mounting screws.
3. Replace upper housing and platen knob and reinstall the two screws on the lower housing.

The D80 interface is now setup. Turn on the typewriter and test it for proper operation from its keyboard. If it performs properly, proceed with the hook up to the host computer.

Attached is an ACSII Code Chart for the Olympia Electronic Compact with D80 interface. Please note that the typewriter keyboard has several characters which are not part of the normal ASCII Code Set. These characters are printable by using the substitute ASCII characters which are all listed in the ASCII Code Chart.

OLYMPIA

D80 Interface Code Set

)ec.	Hex.	ASCII	D80 Output	Description
3	3	ETX	ETX	End of Text
6	6	ACK	ACK	Acknowledge
7	7	BEL	Bell \& Mar. Release	Ring Bell \& Margin Release
8	8	BS	Back Space	
9	9	HT	Horizontal Tab	
10	A	LF	Line Feed (Option)	Jumper Selectable enable
12	C	FF	Form Feed	
13	D	CR	Carr.-ret. \& LF	Carriage Return only if LF is enabled
17	11	DCl	X -ON	
19	13	DC3	X-OFF	
32	20	SP	Space	Horizontal Space
33	21	!	!	Exclamation Point
34	22	"	"	Quotation Mark
35	23	\#	\#	Number Sign
36	24	\$	\$	Dollar Sign
37	25	\%	\%	Percent Sign
38	26	\&	\&	Ampersand
39	27	1	'	Acute accent or apostrophe
40	28	((Open Parenthesis
41	29))	Closed Parenthesis
42	2A	*	*	Astrisk
43	2B	+	$+$	Plus Sign
44	2C	,	,	Comma
45	2D	-	-	Hyphen or Minus Sign
46	2E	-	-	Period
47	2F	/	/	Slash
48	30	0	0	Number 0
49	31	1	1	Number 1
50	32	2	2	Number 2
51	33	3	3	Number 3
52	34	4	4	Number 4
53	35	5	5	Number 5
54	36	6	6	Number 6
55	37	7	7	Number 7
56	38	8	8	Number 8
57	39	9	9	Number 9
58	3A	:	:	Colon
59	3B	;	;	Semicolon
-60	3 C	$<$	\pm	Less than symbol changes to plus/minus
61	3D	=	$=$	Equal
+62	3E	>	\bigcirc	Greater than symbol changes to degree
63	3 F	?	?	Question Mark

D80 Interface Code Set
, SCII CODE

lec.	Hex.	ASCII	D80 Output	Description
3	3	ETX	ETX	End of Text
6	6	ACK	ACK	Acknowledge
7	7	BEL	Bell \& Mar. Release	Ring Bell \& Margin Release
8	8	BS	Back Space	
9	9	HT	Horizontal Tab	
10	A	LF	Line Feed (Option)	Jumper Selectable enable
12	C	FF	Form Feed	
13	D	CR	Carr.- ret. \& LF	Carriage Return only if LF is enabled
17	11	DCl	$\mathrm{X}-\mathrm{ON}$	
19	13	DC3	X-OFF	
32	20	SP	Space	Horizontal Space
33	21	-	!	Exclamation Point
34	22	"	"	Quotation Mark
35	23	\#	\#	Number Sign
36	24	\$	\$	Dollar Sign
37	25	\%	\%	Percent Sign
38	26	\&	\&	Ampersand
39	27	1	1	Acute accent or apostrophe
40	28	$($	(Open Parenthesis
41	29)	Closed Parenthesis
42	2A	*	*	Astrisk
43	2B	+	+	Plus Sign
44	2 C	,	,	Comma
45	2D	-	-	Hyphen or Minus Sign
46	2 E	,	-	Period
47	2 F	1	1	Slash
48	30	0	0	Number 0
49	31	1	1	Number 1
50	32	2	2	Number 2
51	33	3	3	Number 3
52	34	4	4	Number 4
53	35	5	5	Number 5
54	36	6	6	Number 6
55	37	7	7	Number 7
56	38	8	8	. Number 8
57	39	9	9	Number 9
58	3A	:	:	Colon
59	3B	;	;	Semicolon
60	3 C	$<$	\pm	Less than symbol changes to plus/minus
61	3D	$=$	=	Equal
62	3E	>	-	Greater than symbol changes to degree
63	3 F	?	?	Question Mark

Hex. ASCII

3
6
6
7
8
9
10
12
13
17
19
32
33
34
35
36
37
38
39
$\begin{array}{ll}40 & 28 \\ 41 & 29\end{array}$
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 59 60

61
62
63

3
6
7
8
9
A
C
D
11
13
20
21
22

$$
23
$$

$$
24
$$

25
26
27

29
2A
2B

2C

2D

2E

2 F 30 31 32 33 34

$$
35
$$

$$
36
$$

$$
37
$$

38

39 3A
3B 3C 3D
3E
$3 F$

ETX
 ACK
 BEL

BS
HT
LF
FF
CR
DCl
DC3

$$
\mathrm{X}-\mathrm{OFF}
$$ SP Space

Space

"
\# \#

$\#$	$\#$
$\$$	$\$$

\% \%

$\&$	$\&$
1	1

Form Feed

$$
\mathrm{X}-\mathrm{ON}
$$

$$
!
$$

$$
\begin{aligned}
& \# \\
& \$ \\
& \% \\
& \% \\
& \&
\end{aligned}
$$

End of Text Acknowledge Ring Bell \& Margin Release
Back Space
Horizontal Tab
Line Feed (Option)
Carr.- ret. \& LF

)(*

+	+
+	,

$$
+
$$

+	+
-	-
-	

Hyphen or Minus Sign

Period
Slash
Number 0
Number 1
Number 2
Number 3
Number 4
Number 5
Number 6
Number 7
Number 8
Number 9
Colon
Semicolon
Less than symbol changes to plus/minus
Equal
Greater than symbol changes to degree Question Mark

64	40	@	@	At Sign
65	41	A	A	Captial A
66	42	B	B	Capital B
67	43	C	C	Captial C
68	44	D	D	Capital D
69	45	E	E	Capital E
70	46	F	F	Capital F
71	47	G	G	Capital G
72	48	H	H	Capital H
73	49	I	I	Capital I
74	4A	J	J	Capital J
75	4B	K	K	Capital K
76	4 C	L	L	Capital L
77	4D	M	M	Capital M
78	4 E	N	N	Capital N
79	4 F	0	0	Capital O
80	50	P	P	Capital P
81	51	Q	Q	Capital Q
82	52	R	R	Capital R
83	53	S	S	Capital S
84	54	T	T	Capital T
85	55	U	U	Capital U
86	56	V	V	Capital V
87	57	W	W	Capital W
88	58	X	X	Capital X
89	59	Y	Y	Capital Y
90	5A	Z	Z	Capital Z
91	5B	[[Open Bracket
*92	5C	\}	§	Back Slash symbol changes to section
93	5D]]	Close Bracket
*94	5E	\wedge	¢	Caret symbol changes to cent sign
95	5 F			Underscore
*96	60	「	$\bar{\pi}$	Grave accent symbol changes to paragraph
97	61	a	a	Letter a
98	62	b	b	Letter b
99	63	c	c	Letter c
100	64	d	d	Letter d
101	65	e	e	Letter e
102	66	f	f	Letter f
103	67	g	g	Letter g
104	68	h	h	Letter h
105	69	i	i	Letter i
106	6A	j	j	Letter j
107	6B	k	k	Letter k
108	6C	1	1	Letter 1
109	6D	m	m	Letter m
110	6 E	n	n	Letter n
111	6 F	\bigcirc	\bigcirc	Letter o

)ec.	Hex.	ASCII	D80 Output	Description
. 12	70	p	p	Letter p
. 13	71	q	q	Letter q
. 14	72	r	r	Letter r
. 15	73	S	s	Letter s
. 16	74	t	t	Letter t
. 17	75	u	u	Letter u
. 18	76	v	v	Letter v
. 19	77	w	w	Letter w
. 20	78	x	x	Letter x
. 21	79	y	Y	Letter y
. 22	7A	${ }^{2}$	2	Letter z
. 23	7B	ξ	1/2	Left brace symbol changes to $1 / 2$
. 24	7C	1	1/4	Vertical bar symbol changes to $1 / 4$
. 25	7D	\}	${ }^{2}$	Right brace symbol changes to superscript 2
. 26	7E	\sim	3	Tilde symbol changes to superscript 3
. 27	7 F	DEL	DEL	Delete last character
$\begin{aligned} & \text { 7; } 85 \\ & \text { j27;117 } \end{aligned}$	$\begin{aligned} & \text { lB;55 or } \\ & \text { lB;75 } \end{aligned}$	ESC U	Index	1/2 Line feed positive
?7;68	1B; 44 or	ESC D	Rev. Index	1/2 Line feed negative
)r27:100	1B; 64			
?7;32	1B; 20	ESC SP	1/2 Space	Horizontal Half Space

- All codes preceded by the asterisk convert a ASCII character to a character present on the typewriter daisy wheel which is not part of the ASCII code set.

SERIAL CABLE NUMBER PARALLEL CABLE NUMBER

Altos Computer	20X	--
Apple II with SSM-AIO Interface	5 X	10
Apple II with SSM-ASIO Interface	4X	--
Apple II with SSM-APIO Interface	--	7
Apple II with CCS-7710A Interface	4X	--
Apple II with CCS-7728/7729 Interface	--	9
Apple II with Mountain CPS Card	--	11
Apple II with Super Serial Card	4X	--
Apple II with A2B0002 Parallel Card	--	11
Apple II with EPSON Interface Card	--	5
Apple III	5X	--
Atari 400 with 850 Interface Adaptor (Parallel)	--	1
Atari 800 with 850 Interface Adaptor	--	1
Basis 108	5X	--
Billings Computer	--	6
Commercial Computer XP-1	4X	--
Commodore PET with TNW1000 Interface	4X	--
Commodore 8032 with TNW1000 Interface	4X	--
Commodore 64 with CX 6401 Interface	--	13
Commodore VIC-20 with CX 6401 Interface	--	13
CPT 8000	5X	--
Compaq	--	6
Eagle II, III, IV	5 X	12
Heathkit	4X	--
Hewlett-Packard 85	20X	--
Hewlett-Packard 86	--	12
Hewlett-Packard 125	5 X	--
Hewlett-Packard 300	5X	--
Hewlett-Packard 2640B	20X	--
IBM-PC	--	6
Intertec Superbrain II	20X	--
Kaypro II	5X	12
NEC PC 8001A	--	4
Northstar-Advantage/Horizon	20X	--
Ohio Scientific	20X	--
Olympia OPC	5X	--
Osborne 01	20X	--
Panasonic HHC	5X	--
Phillips/MICOM 2000	5X	--
Quasar HHC	5X	--
Radio Shack TRS80-I	--	8
Radio Shack TRS80-II, 12	--	9
Radio Shack TRS80-III	--	8
Radio Shack TRS80-16	--	9
Radio Shack TRS80-100	--	12
Sanyo MBC 1000	--	12
Sanyo MBC 2000/3000	--	3
Sharp ZL 6000	20x	--
Sharp ZL 6100	20X	--
SWIP 6809 (Southwest Technical Products)	20X	--
SSB Chiefton	$5 X$	--
Texas Instrument TI 99-4A	20X	2
Texas Instrument DS 990-4	20X	--
Vector Graphics VIP, 1600, 2600,	4 X	--
2800, 305, 5005	4X	--
Victor 9000	5X	--
Wang 2200T	--	12
Wicat 150	4X	--
Xerox 820	20X	--
Xerox 8201I	20X	--

Olympia Service

electronic compact

Funktionsbeschreibung Description of function Description de fonctionnement Descripción de Funciones

Olympia international

List of Contents

1. Technical data
2. General characteristics
3. Description of function
3.01 Power pack
3.02 Switching-on routine
3.03 Keyboard, keyboard scanning
3.04 Microcomputer
3.05 Control circuit board
3.06 Delay circuit, Reset circuit
3.07 Shift
3.08 Buzzer
3.09 Hammer solenoid, Impression
3.10 Expander circuit
3.11 Motors, Driver circuit
3.12 Photo interrupters
3.13 Printing
3.14 Ribbon lift, Ribbon transport
3.15 Correction tape lift, transport
3.16 Paper feed
4. Adjustments, measurements
4.01 Chassis, horizontal drive
4.02 Chassis, paper injector
4.03 Printer
4.04 Printer, ribbon, correction ribbon
4.05 Motor excitation, impression, resistance of coils
5. Disassembly and assembly
5.01 Housing
5.02 Printer
5.03 Ribbon mechanism
5.04 Printer head
5.05 Selection motor
5.06 Printer PCB, flat cable
5.07 Platen
5.08 Drive unit (wire and pulley)
5.09 Horizontal motor
5.10 Keyboard with control PCB
5.11 Keyswitch, Keyboard diodes
5.12 Power pack
5.13 Fuses
6. Lubrication
7. Trouble shooting
8. Acceptance check
9. Foldouts, circuit diagrams, layouts

A Ribbon lift, feed
B Printerhead
C Block circuit diagram
D Circuit diagram power pack
E Layout power pack
F Circuit diagram control PCB
G Layout control PCB
H Circuit diagram keyboard
I Layout keyboard
$J \quad$ Circuit diagram printer PCB
K Layout printer PCB
L Connector diagram

1. Technical Data

Type of machine
Approvals
Voltage

Primary circuit
Secondary circuit

Electronic typewriter with typewheel UL, CSA, CEE, VDE
$U H=+36 \mathrm{~V}$
$U L=+12 \mathrm{~V}$
ULL $=+6 \mathrm{~V}$
$U C=+5 \mathrm{~V}$
GND $=\varnothing$ - potential control PCB
60 W Rated load 21 W Stand-by

1 Stepping motor $36 \mathrm{~V} / 12 \mathrm{~V}$ Typewheel selection
1 Stepping motor $36 \mathrm{~V} / 12 \mathrm{~V} / 6 \mathrm{~V}$ Horizontal drive (Printer)
1 Stepping motor $36 \mathrm{~V} / 6 \mathrm{~V}$ Vertical drive (Index, paper feed)
1 Stepping motor $36 \mathrm{~V} / 6 \mathrm{~V}$ Ribbon

Fuses
$115 \mathrm{~V} / 60 \mathrm{~Hz} \quad 220 \mathrm{~V} / 50 \mathrm{~Hz}$

Primary	$11,25 \mathrm{~A}$ slow-blow	
circuit	1 Thermal fuse $125^{\circ} \mathrm{C}=$	$11,25 \mathrm{~A}$ slow-blow
Secondary	$11,25 \mathrm{~A}$ slow-blow (VH)	$11,25 \mathrm{~A}$ slow-blow (UM)
circuit	$12,5 \mathrm{~A}$ slow-blow (UL)	$12,5 \mathrm{~A}$ slow-blow (UL)
	$12,0 \mathrm{~A}$ slow-blow (ULL)	$12,0 \mathrm{~A}$ slow-blow (ULL)
	1 Thermal fuse $125^{\circ} \mathrm{C}$	

Printer Typewheel with 96 or 100 characters, interchangeable, positioning by
stepping motor, typing speed 11 cps , impression control switchable 3
grades, original +4 copies,
Typing pitch
Pica $\quad 10 /$ inch $=2.54 \mathrm{~mm}$
Elite $\quad 12 /$ inch $=2.2 \mathrm{~mm}$
Micro $\quad 15 /$ inch $=1.69 \mathrm{~mm}$

Ribbons	Special cassette Correctable carbon ribbon (lift-off), colour code yellow $13 \mathrm{~mm} \times 105 \mathrm{~m}$, 80,000 strikes Carbon ribbon normal, colour code red $13 \mathrm{~mm} \times 105 \mathrm{~m}, 80,000$ strikes Carbon ribbon multi, colour code blue $13 \mathrm{~mm} \times 105 \mathrm{~m}, 320,000$ strikes
Correction ribbon	Lift-off ribbon $7 \mathrm{~mm} \times 7 \mathrm{~m}, 1700$ corrections
Keyboard	4θ alphanumeric keys, mechanical switch, buffer memory 11 characters, repeat function on everykey except dead keys
	Function keys: Margin release key, Margin set key (L\&R), Back space key*, Correction key*, Relocation key, Tab set key, Tab clear key, Index key* Reverse index key*, Return key*, Shift key (L\&R), Shift lock key (LED), Express key, Space bar*, Half space key, Repeat key
	Key with * repeats its function by pressing the key deeper or pressing the repeat key after the operation of each key.
	Slide switches: Pitch selector $10,12,15$ Line space selector $1,1-1 / 2,2$ Impression control 3 grades
Paper holder	Platen size Length 346 mm (13.62 in) Diameter 40.3 mm (1.59 in)
	Paper capacity 355.6 mm (14 inches)
	```Typing capacity 202.1 mm(11.5 in) Pica 115 characters Elite 138 characters Micro 172 characters```
	Line spacing 4.23 mm at selection 1 , variable line spacer, paper injector, paper end gauge, paper release lever
Electronic control	Single chip microcomputer System 8049 (or microprocessor 8039 with external EPROM)
Correction memory	46 characters (46 spaces)
TAB memory	16 settings

Present margin Left 20 Right 85 on Pica
Self demonstration for service
Prints out all characters, space, backspace, correction, carrier return,relocation express
Dimension
Width 491 mm (19.3 in) Length 376 mm (14.8 in) Height 137 mm ( 5.4 in )
Weight ..... 9 kg
2. General characteristics
This electronic typewriter model ELECTRONIC COMPACT consists ofthe following six major assemblies- Chassis and platen unit- Keyboard

- Printer assembly
with typewheel motor, hammer solenoid, photo interrupters fortypewheel and printer home position, ribbon feed mechanism,correction mechanism
- Power packto transform $A C$ to regulated $D C$
- Control Print Circuit Boardwith 8 bit microcomputer for controlling all functions, driverdevice for stepping motors and hammer solenoid, buzzer
- Housing

3. Description of function
3.01 Power pack
(Circuit Diagram D)
The power pack is transforming the power voltage with the ferro-magnetic constant voltage transformer T1. This transformer is keeping its iron core with a resonance circuit within the saturation phase, so that the voltage changes within permissible range of $+15 \%$ will not influence the secondary voltages.

At the power input, a filter consisting of coil L1 and capacitor C1 works against interfering frequencies.

The primary winding in the constant voltage transformer T1 is protected by a thermal fuse which functions at $125^{\circ} \mathrm{C}$ and a delay fuse 1.25 A .

Voltage for the secondary circuit is rectified by the bridge rectifiers D1 and D2. The ripple voltage generated in the secondary circuit is smoothed by the capacitors C4, C5, C6, C8. High frequency noise is attenuated by the capacitor C7.

5 V DC for the microcomputer system (UC) is regulated from the 12 V (UL) via ICI.
3.02 Switching-on routine

All control lines outgoing from the CPU (IC4) are set to logic $\sigma(+5 \mathrm{~V})$ when switching on the machine (See 3.06).
The printer is moved to the left until the arm of reset plate is pulled out of the photo interrupter PH2. After recognizing the left end, the horizontal step motor is activated by the microcomputer so as to move the printer 20 spacings to the right from $\alpha$ on the margin scale (on Pica). This pre-set margin is programed to set at 20 on the left, 85 on the right (on Pica).
The typewheel is turned by the switching-on routine to the basic position via its stepping motor.
The ribbon step motor also moves to its base position.
3.03 Keyboard, Key scanning

The key switch modules are mechanical contact switches and they close and open at the cross points of the key matrix $8 \times 9$ (See circuit Diagram H).
When a key is depressed, the contact is closed and effecting the connection between the columns and rows. The microprocessor IC4 is scanning the lines $S p 0 \ldots$ Sp 8 and Ze $0 \ldots$ Ze 8 every 12.6 ms in the BCD code. Its output pin $35 \ldots 38$ send the scanning pulse one after another to the columns Sp $0 \ldots$... Sp 8 via the binary decoder IC 5 by tapping 4 ports to 10 with $H$-signal $(+5 \mathrm{~V})$. The signal scanned forms
an octal code, which is read via the keyboard buffer IC 1 by the input pin $12 \ldots 19$ of the IC 4 (See Circuit Diagram F). A signal is recognized as correct after two times scanning for one time key operation.
The octal codes (8 bits data) of the last 11 characters or functions are memorized in the RAM of IC 4 as the key operation memory (key buffer memory). At the same time, the 8 bits data in the IC 4 is the address for the command which is written in the $2 \mathrm{~K}-$ ROM (or EPROM IC 2). The command makes the microcomputer activating the machine functions via the driver circuit and the actuators.

The 8 bits microcomputer 8049 is a single chip type computer with $\mathrm{N}-\mathrm{MOS}$ system. It is replaced during the introduction by the pincompatible microprocessor 8039 (Identification IC 4 on the control circuit board, see Diagram F) with external EPROM IC 2. The microcomputer is including the ALU, $2 \mathrm{~K} \times 8$ bits programme memory, $128 \times 8$ bits RAM data memory, 27 I/0 lines ( $3 \times 8$ bits I/0 ports, 1 interrupt input and 2 test inputs), multiplex address/data bus. The internal clock generator in CPU is clocked by means of a quartz with 6 MHz .


Fig-1


Fig. 2

The IC 4 processes the information from the keyboard, the operation keys and photo interrupters and controls stepping motors and buzzer (See Circuit Diagram F).
3.05 Control circuit board (Circuit Diagram F)


The IC components of the control circuit board are:
IC 1 - Keyboard buffer
IC 2 - EPROM (programme memory) 2716 D
IC 3 - Address latch (octale 3 -state D-latch)
IC 4 - CPU
IC 5 - 4 to 10 decoder
IC 6 - I/0 expander
IC 7 - NOR Gate 4001 BC for CPU reset and delay-1
NOR Gates for shift control (flip flop)-2
IC 8 - NAND Gate for buzzer
IC 9
IC 10 - Inverter for driver circuit activation
IC 11
TRA1 - Transistor Array 2004C
The control circuit board includes the drivers for the motors and the hammer solenoid beside the control components (See G).

The plug arrangement is:
Cone 1 Keyboard output Ie
2 Keyboard input Sp
3 Horizontal motor (printer)
4 Vertical motor (index)
5 Printer PCB
6 Power pack
7 Paper injector switch

3.06 Delay circuit, Reset circuit (Circuit Diagram F)

Since the voltage $U L+12 V$ and then $U C+5 \mathrm{~V}$ are not soon available when switching on the machine, a switching-on delay circuit is effected to $U C+5 \mathrm{~V}$ which activates the motors and the hammer solenoid. The CPU (IC 4) has H-level at its pin 33 and the NOR gate IC 7 at pin 13 when the machine is switched on. During increasing of the UL to +12 V , the Zener diode $Z \mathrm{D} 1$ gives 4.5 V ( $\mathrm{UL}-7.5 \mathrm{~V}$ ) to the base of transistor $\operatorname{Tr} 3$. And its collector comes to L-level when the UL reaches 10V or more. The L-level goes to the pin 12 of NOR gate IC 7 . The L-level is led to the base of $\operatorname{Tr} 31$ from the output of IC 7 and the $\operatorname{Tr} 31$ is opened. In the meantime $\operatorname{Tr} 6$ for the driver circuit still keeps opening.
Then the capacitor $C 2$ is charged, the reset input pin 4 of CPU comes to H -level and the CPU initiates its programme. After the CPU has initiated the programme, the pin 33 comes to $L$-level and the pin 13 of IC 7 also comes to L-level. The output of IC 7 comes to H-level. Then the transistor $\operatorname{Tr} 31$ and $\operatorname{Tr} 6$ open and the control voltage +5 V is switched through to the driver circuit.
When the machine is switched off or when the UL drops below 9V, Tr 3 opens and pin 12 of IC 7 comes to H-level. The output of IC 7 comes to L-level. Then the transistors $\operatorname{Tr} 31$ and $\operatorname{Tr} 6$ open and the control voltage +5 V for the driver circuit is switched off.
The switched-through transistor ( $\operatorname{Tr} 3$ ) gives $H$-level to the base of $\operatorname{Tr} 4$, which makes the pin 4 of CPU L-level via the reset line. Then the reset is effected by means of the capacitor $C 2$.

### 3.07 Shift

(Circuit Diagram F)
The emitter of transistor $\operatorname{Tr} 1$ has H-level from the CPU (IC 4) via the pin 9 of IC 5.
When pressing the shift lock key, +5 V goes to the pin 1 of IC 7 via the cone 1 pin 9 and the cone 2 pin 1 , and the flip flop is set. Since the output of flip flop comes to H -level and one of the TRA 1 is inverted, L-level goes to the LED via the cone 1 pin 10 and the LED lights on. In the meantime $H$-level goes to the keyboard diode $D \varnothing$ via the collector of $\operatorname{Tr} 1$ and cone 2 pin 3 , and goes to the keyboard buffer IC 1 via the cone 1 pin 4 . Thus the key scanning from CPU detects the shift lock key being depressed.

When one of the shift keys is depressed, +5 V goes to the p in 6 of IC 7 via the cone 2 pin 1, and the flip flop is reset. Since +5 V goes through the diode D 2 and inverts one of the TRA 1 , L-level goes to the LED via the cone 1 pin 10 and the LED lights on. And the key scanning from CPU detects the shift key being depressed. While the shift key is depressed, the current keeps flowing via D 2 to TRA 1 and the LED keeps lighting on. However, the output of IC 7 keeps L-level.

When the shift key is released, the input of the IC 7 comes to Llevel and the output is keeping its L-level. Since the base of Tr 1 comes to $H$-level and it opens, the LED has no voltage and lights off. In the meantime L-level goes to the keyboard diode D $\emptyset$ via the cone 2 pin 3 , and goes to the keyboard buffer IC 1 via
cone 1 pin 4. Thus the key scanning from CPU detects the shift key being not depressed.
3.08 Buzzer
(Circuit Diagram F)
The buzzer is operated by a single shot multi-vibrator consisting of the lower 2 NAND gates of the IC 8.
The CPU (IC 4) applies a L-impulse to the multi-vibrator from the pin 34. A H-level is formed for about 0.5 second at the pin 3 of IC 8 and operates the oscillator (higher 2 NAND gates) which activates the buzzer BUZ via the transistor $\operatorname{Tr} 2$.
3.09 Hammer solenoid, Impression
(Circuit Diagram F)
The CPU (IC 4) applies continuously H -level to its pin 31. The base of $T 20$ comes to L-level via one of TRA 1 . It locks and keeps the hammer solenoid. The pin 31 of CPU comes to L-level for character printing. The base of $\operatorname{Tr} 20$ comes to H -level with +5 V from $\operatorname{Tr} 6$. Then the current from +36 V flows to the magnet coil via the cone 5 pin a8 and to the collector of $\operatorname{Tr} 20$ from another end of the magnet coil via the one 5 pin b7. Thus the striking of plunger for printing is activated.

After striking, the Zener diode ZD 6 limits the fly-back voltage to 51 V .

The current flows the solenoid for constant printing is limited by the $\operatorname{Tr} 30$ under the control of the $\operatorname{Tr} 20$ base. The total printing impression can be adjusted by the variable resistor VR 1, which changes the volume of current flowing to the hammer solenoid.

Impression
The different type contour of characters is considered so that the current will flow to the hammer solenoid for a different time. It is divided into 3 stages:

- Normal : All normal capital and small letters and symbols. - Strong : Large space letters (for example Ww Mm \& §).
- Weak : Small space symbols (for example ,.-_').

The necessary time for the concerned characters are filed in the ROM of CPU or EPROM. It controls the output time of L-level from the CPU.

The print impression can be selected with the slide switch on the keyboard according to the number of copies. It also controls the output time of L-level from the CPU.

- Position 1 Normal impression

No contact and therefore no signal to the CPU.
Position 2 Higher impression
Slide switch contact S2 in the keyboard matrix is closed. The CPU detects it by key scanning as described in paragraph 3.03.

This makes the output time of L-level 0.38 ms longer from the pin 31.

- Position 3 Highest impression

Slide switch contact S1 in the keyboard matrix is closed. The output time of L-level is 0.59 ms longer.
3.10 Expander circuit

Since the 8039 (IC 4) has only 27 I/O lines, extension of the output lines port $20 \ldots 23$ (pin $21 \ldots 24$ ) is effected to the ribbon, vertical, typewheel and horizontal motors via the I/O expander IC 6..

The IC 6 has a programme port with one line, 4 input and 4 output ports each with 4 lines. The 4 output ports operate the driver circuit.


Fig-4

### 3.11 Motors, driver circuit

The stepping motors make movements with following step spaces:
Typewheel positioning
1 full step of motor $=3.6^{\circ}=1$ spoke of typewheel
Horizontal positioning
1 full step of motor $=7.5^{\circ}=1 / 60$ in $=0.423 \mathrm{~mm}$
6 full steps of motor $=1$ pitch $10 \mathrm{cpi}=2.54 \mathrm{~mm}$
5 full steps of motor $=1$ pitch $12 \mathrm{cpi}=2.12 \mathrm{~mm}$
4 full steps of motor $=1$ pitch $15 \mathrm{cpi}=1.69 \mathrm{~mm}$

## Vertical positioning

1 full step of motor $=7.50=1 / 72$ in $=0.3528 \mathrm{~mm}$
8 full steps of motor $=1$ line spacing $=1 / 6$ in $=4.23 \mathrm{~mm}$
12 full steps of motor $=1-1 / 2$ line spacing $=1 / 4 \mathrm{in}=6.35 \mathrm{~mm}$
16 full steps of motor $=2$ line spacing $=1 / 3 \mathrm{in}=8.46 \mathrm{~mm}$

Ribbon motor
For cassette ribbon feed and lift, 11 steps $=82.5^{\circ}$ from basic position in both directions

For correction tape feed and lift, 30 steps $=22^{\circ}$ from basic position in one direction and back.

For the typewheel motor, a bit pattern is transmitted from the CPU via the port $10 \ldots 13$ of IC 6 to the 4 control lines. It is inverted by the inverter IC 9 and switches on the basis of $\operatorname{Tr} 12 \ldots$ Tr 15. The motor works by changing the bit patterns in order.

Above description also applies to other stepping motors under the consideration of each switching time and driving device.

Bitmuster/Timing Chart


Fig. 5
$t_{A}=10 \mu \mathrm{~s}$ const, $t_{B}=x \mathrm{~ms}$ const, $t_{C}=130 \mu \mathrm{~s} \ldots 5 \mathrm{~ms}$
Typewheel motor $x=500 \mathrm{~ms}$, horizontal motor $x=1.3 \mathrm{~ms}$, vertical motor $x=1.6 \mathrm{~ms}$

The power control for motors is effected from the port 1 of CPU to the basis of $\operatorname{Tr} 8 \ldots \operatorname{Tr} 11$ via inverting in the transistor arrey TRA 1. Since the horizontal motor needs 3 different voltages, $\operatorname{Tr} 7$ is activated exclusively for this motor.

During motor functioning the operation voltage switches continuously between VHH and VHL via the transistors $\operatorname{Tr} 7 \ldots \operatorname{Tr} 11$ (See Fig. 5).

Motors Operation voltage Keeping voltage

Typewheel motor	36 V	12 V	0 V
Horizontal motor	36 V	12 V	6 V
Vertical motor	36 V	6 V	0 V
Ribbon motor	36 V	6 V	0 V



Fig. 6

### 3.12 Photo interrupters

The basic positions of the step motors except the vertical motor are detected by the CPU via the photo interrupters.

Motor Photo interrupter

Typewheel motor Horizontal motor Ribbon motor

PH 3 on the printer head
PH 2 on the printer PCB
PH 1 on the printer PCB

When printer head is pulled backward for ejection of the typewheel, its arm releases the reset crank and the reset plate leaves the PH 2 (See Drawing B).

### 3.13. Character printing

After pressing a key (paragraph 3.03), the typewheel motor controlled by the CPU (paragraph 3.11) brings the typewheel to the position for printing of the selected character. The shortest turning distance from the last typewheel position will be selected. At the same time the ribbon lift and feed are effected by the ribbon motor. After a certain waiting time, the hammer solenoid is powered and strikes the plunger with the hammer and the typewheel spoke against the platen. Then the carrier transport starts the spacing step selected by the pitch selector slide switch. At the same time the ribbon is lowered. If no further signal of key operation follows, the typewheel turns back after 1.3 sec . to its home position (See Fig 7).

## Typenabdruck/Typing



Korrektur/Correction


Fig-7

### 3.14 Ribbon transport, ribbon lift

The ribbon motor A1 moves from its home position 11 steps $=82.5^{\circ}$ in one direction.
The ribbon lift cam A2 swings the ribbon center guide-R B4 via the cam follower and the ribbon lift crank B5. The center guide-L is turned together by means of the tooth connection. Thus the ribbon is lifted to the printing position.
The ribbon feed cam A5 moves the ribbon feed arm A6 via the cam follower and the cam lever A7. The ribbon feed arm pushes the finger plate, so that the feed wheel A8 turns counterclockwise. The ribbon is transported by the rubber roller A9. The ribbon feed spring A10 turns the ribbon feed pulley A11 and the used ribbon is wound up. After printing, the ribbon motor turns back its home position. For
the next character printing, the motor will move 11 steps in the opposite direction.

The ribbon change lever A12 can sense the type of ribbon cassette. If a normal carbon ribbon cassette is used, the arm of ribbon change lever gets into a opening of the cassette and enables the full stroke of the ribbon feed arm A6 for 4 teeth on the feed wheel A8. In the meantime, the multi-carbon ribbon cassette has no opening on the referring section it pushes the ribbon change lever, so that the transport stroke will be 1 tooth only.

### 3.15 Correction tape transport and lift

When pressing the correction key, the information from the keyboard matrix is transmitted to the CPU (paragraph 3.03). The typewheel motor and the ribbon motor are activated according to the 46-correction memory stored in the RAM range.

The ribbon motor turns counterclockwise 30 steps $=225^{\circ}$ from its basic position. The correct cam A13 lifts the correct arm A14 at the end of the movement. At the same time the correct feed pawl A15 feeds the correct feed ratchet A16 and the correction tape is transported. The brake spring A17 keeps the correction tape tension at the correct tape spool.
After the correction performed, the ribbon motor turns back to its home position.
3.16 Paper feed

If the paper bail shaft is pulled forward beyond its pressure point for activating of the paper feed, the angle of right paper bail arm closes the first contact $S 10$ of the paper feed switch.

The key scanning by the CPU transmits $H$-level via the decoder IC 5 , connector 7 pin 1, switch S 10, buffer IC 1 to the input pin 17 of CPU (see paragraph 3.03). Then the horizontal motor activated in single function.

When pulling the paper bail further forward, the second contact is closed. H-level is transmitted via the cone 7 pin 3, switch S 11 buffer IC 1 to the input pin 19 of the CPU. Thus the horizontal motor is activated in repeat function.

The horizontal motor drives the platen via the drive gear, drive pulley, drive cog belt and platen pulley.

The index key (forward) and the reverse index key (backward) activates the corresponding platen movement via the contacts on the keyboard matrix.
4.01 Chassis, horizontal drive

$\stackrel{\rightharpoonup}{n}$	Function/assembly $:$ Horizontal motor   Clearance between $:$ Pinion of horizontal motor / Drive pulley   Clearance $: \emptyset \mathrm{mm}, \emptyset$-clearance   Adjustment $:$ Repositioning of horizontal motor   Note : Motor must have slight heaviness at 4 points of way of   $\quad$printer by manual movement of the drive wire.
	Function/assembly $:$ Tension of drive wire   Clearance $: 9 \mathrm{~mm}$ slack by $5 \mathrm{~N}(500 \mathrm{~g})$ load   Adjustment $:$Both tension pulleys should be adjusted equally   (symmetrically) to outside   Note $:$The wire must be parallel to the chassis support.      For assembly see 5.08   Gauge $:$ Spring balance
	Function/assembly $:$ Drive wire / Chassis support   Clearance $: 7.9 \pm 4 \mathrm{~mm}$   Adjustment $:$ Adjust the excentric bearing screw after slacken-off the nut.   Note $:$ The height of both tension pulleys should be even so that    the wire will be parallel to chassis support.

4.01 Chassis, horizontal drive

	Function : Printing, type distance   Clearance between $:$ Typewheel / Platen   Clearance $: 3.5 \mathrm{~mm}$   Adjustment : At adjustplate even left and right by slacken-off the set screws    Screw c is fixed fulcrum, screws a and b must be loosed   Function : Motion adjustment   Clearance : Printout uniform of complete characters   Adjustment : Screw b is fixed fulcrum, screws a and c must be loosed.
	Function/assembly $:$ Final position of printer / Chassis frame   Clearance between $:$ Chassis frame outside / Adjust screw   Clearance $: \approx 6,5 \mathrm{~mm}$   Adjustment : Screw on $\approx 6,5 \mathrm{~mm}$. Position the printer to the left end so that               the guide hole of reset plate will be hidden half. Excite the motor (see 4.05 .1$)$ and adjust the screw again so   that the guide hole will be hidden half.

### 4.02 Chassis, paper injector

	Function/assembly $:$ Paper injector switch   Clearance between $:$ Paper injector switch final position / Paper bail arm right   Clearance $: 0$ mm, contact   Adjustment $:$ Adjust the paper bail arm right   Note $:$ If switch is pressed into second stage, the paper bail arm   must contact the switch holder just before final position.
	Function/assembly $:$ Tension of drive belt / Vertical drive pulley   Clearance $: 3.5 \ldots 4 \mathrm{~mm}$ slack at $5 \mathrm{~N}(500 \mathrm{~g})$ load   Adjustment $:$ At eccentric bearing screw and nut (spanner size 13 mm )   Note : Ensure detent of platen and engagement of motor pinion /   drive pulley    Function : Vertical motor pinion / drive pulley   Clearance : 0.1 mm backlash   Adjustment : Repositioning of vertical motor   Note : Motor must be able to be rotated by hand freely.
	Function/assembly $:$ Platen / Chassis plate   Clearance between $:$ Right side of rubber portion / inside of chassis plate   Clearance $: 17 \mathrm{~mm}$ distance    0.02 mm lateral play of platen   Adjustment $: 2$ set screws right and 2 set screws left on platen

4.03 Printer

	Function/assembly   Clearance between Clearance Adjustment	: Line locator / Printer chassis   : Line locator / typing line   : Adjust after typing lilili lilili   : Lateral : Repositioning after slacken-off the screws   Height : Forming the arms of printer chassis
	Function/assembly Clearance between Clearance Adjustment	: Line locator   : Line locator / platen   : $0.3 \ldots 0.5 \mathrm{~mm}$   : Repositioning of the line locator
	Function/assembly Clearance   Adjustment   Note	: Typewheel motor / Photo interruptor   : Position detector must be in the middle of the light barrier if motor is in home position.   : Repositioning of position detector   : Excitation of typewheel motor (see 4.05.1)

4.03 Printer
: Printerhead, hammer solenoid
: Hammer / Typewheel
: The notch of hammer must strike the prism of the spoke central
: Excitation of typewheel motor (see 4.05.1) and
Repositioning of solenoid bracket
: Ensure printout of complete characters (see 4.01.1, 4.03.5).
A clearance of typewheel must exist.
4.04 Printer, Ribbon/Correction Ribbon

	Function/assembly   Clearance   Adjustment   Note	: Ribbon lift cam, ribbon feed cam / printer chassis   : Home position see drawing   : Excitation of ribbon motor (see 4.05.1), 3 socket screws slacken-off   Repositioning of the ribbon lift cam   : Center position is reached, if height of two strokes is equal.
	Function/assembly   Clearance between   Clearance   Adjustment   Note	: Ribbon height / printer head   : Upper edge of carbon ribbon / printout of characters   : min. 0.2 mm at (( pica   : By forming the bearing arm of center guide lift crank. Widening of adjusting slot raises carbon ribbon. Narrowing of adjusting slot lowers carbon ribbon.   : Underscoring stroke must impact on carbon ribbon. Bottom edge of raised carbon ribbon must overlap top edge of correction ribbon.
	Function/assembly Clearance between Clearance Note Adjustment	: Follower arm home position / cam shaft (feed cam)   : Cam shaft / Cam follower   : $0 \ldots 0.5 \mathrm{~mm}$   : In basic position   : With eccentric screw at printer chassis

4.04 Printer, Ribbon/Correction Ribbon

4.05 Motor excitation, impression, resistance of coils

	Function/assembly : Impression / Control PCB   Adjustment : Variable resistor VR 1 on control PCB     Turning clockwise: Higher impression    Turning counterclockwise: Lower impression

5. Disassembly and assembly
5.01 Housing
6. Pull out the platen knob and remove the top cover.
7. Loosen the bottom pan fastening screws (2 pcs) at the rear side of the main cover.
8. Latch off the main cover from the bottom pan by pressing both lower sides of the main cover at the same time. Remove the main cover by lifting off from the right side.
9. Remove 4 nuts which fasten the chassis to the bottom pan.
10. Assemble in the reverse sequence.
5.02 Printer
11. Remove the housing.
12. Remove the keyboard assembly if necessary (see 5.10).
13. Disconnect the flat cable from the control board and remove the cable clamps.
14. Remove the wire holder set screws (2 pcs) from the bottom of the printer.
15. Remove the right side adjust plate after removing the screws and washers.
16. The printer unit will be removed from the guide shaft by pulling it out to right.
17. Assemble in the reverse sequence. Adjustment of ring and and cylinder by the adjust plate is required after the installation (see 4.01.4)!
5.03 Ribbon mechanism
18. Remove the top cover.
19. Remove the ribbon feed spring B 10 and correct arm spring A 3.
20. Remove the ribbon base set screws ( 3 pcs) and a nut.
21. Remove the ribbon base unit from the printer.
22. Assemble in reverse sequence.
5.04 Printer head
23. Remove the ribbon base unit (see 5.03).
24. Unhook the toggle lever spring A 4 from the printer chassis.
25. Disconnect fromprinter PCB the connector sockets wired from the typewheel motor, hammer solenoid and photo-interrupter.
26. Remove the printer head unit after loosening the center screw and nut.
27. Assemble in the reverse sequence.

Adjust the play between the center screw and the head frame shaft so that the printer head functions properly without any rickety.
5.05 Typewheel motor

1. Remove the printer head assembly (see 5.04).
2. Take the lead wires off the slits of printer head frame.
3. Remove the photo-interrupter B 10 by slacking-off set screw.
4. Remove the nut B 6 on right hand. Pull out the head frame
shaft B 9 to left and remove the spacer B 7.
5. Remove the motor set nuts (3 pcs).
6. Remove the typewheel motor by pressing downward.
7. Assemble in the reverse sequence. Adjustment of positioning typewheel motor and photo-interrupter will be required (see 4.03.3).
5.06 Printer PCB, Flat Cable
8. Remove the printer assembly (see 5.02).
9. Remove the ribbon motor A 1 by slacking-off 2 screws and disconnect the connector socket 13 from the printer PCB.
10. Remove the cam shaft B 5 if it was not removed together with the ribbon motor.
11. Disconnect the connector sockets from the printer PCB. Remove the shoulder screw and tooth washer.
12. The printer PCB may be removed.
13. After slacking-off the flat cable holder, remove the flat cable. Ensure to avoid bending and rubbing the flat cable.
14. Assemble in the reverse sequence. Check the positioning of photo-interrupters.
5.07 Platen
15. Move the paper end gauge to left and slacken-off the platen socket screws (2 pcs).
16. Pull out the platen knob comp. to left.
17. Remove the paper end gauge with washer and spring.
18. Remove the platen shaft set c-clip on the right side.
19. Lift off the platen to upper left.
20. Assemble in the reverse sequence. Ensure for adjustments 4.02.3.

5.08 Drive unit (wire and pulleys)
21. Remove the top cover.
22. Slacken-off the tension pulley set nuts left and right.
23. Slacken-off the drive wire by driving both eccentric tension pulley screws to the center.
24. Remove the drive wire from the wire holder and the tension pulleys.

25. Remove the drive pulley from the shaft after removing c-clip.
26. Pull the drive wire out of the drive pulley.
27. When assembling, ensure: The drive wire is divided into two parts by the metal stopper. Wind the longer end $3-1 / 2$ turns clockwise and the shorter end 3-1/2 turns counterclockwise around the drive gear. Ensure coils not crossed. When the drive wire is hooked around the tension pulleys, holding the wound wire by adhesive tape will be suggested.
5.09 Horizontal motor
28. Remove the housing.
29. Remove the keyboard unit (see 5.10).
30. Disconnect the connector cone 3 from the control PCB.
31. Remove the motor set screws (2 pcs) at rear of chassis.
32. Remove the motor from the bracket.
33. Assemble in the reverse sequence. Follow the adjustment for positioning motor in 4.05.1 !
5.10 Keyboard with control PCB
34. Remove the housing.
35. Remove the keyboard set screws (2 pcs) from the bottom pan.
36. Stand the keyboard up and disconnect the flat cable connector (cone 5) and 4 lead wire connectors (cone $3,4,6,7$ ) from the control PCB.
37. Disconnect 2 flat cable connectors (cone 1,2).
38. Remove 4 control PCB set nuts and a tooth washer. Remove the board by holding edges.
Note: The control PCB should be wrapped up in conductive foil or aluminum foil for electrostatic shielding.
39. Assemble in the reverse sequence. Check all functions after the installation.
5.11 Key switch, Keyboard diodes
40. Remove the keyboard with the control PCB (see 5.10).
41. Pull out the individual key top straight upward.
42. Pull out the key switch straight upward after removing 2 soldered points on the reverse side of keyboard. 5 keys with repeat function have 4 soldered points.
43. The diode corresponding to each key will be accessible through the slit on the keyboard panel. Remove 2 soldered points of the diode.
44. Assemble in the reverse sequence.
5.12 Power pack
45. Disconnect the power supply cord from the outlet. Remove the housing.
46. Remove the switch cover by removing the switch cover set screw. Take out the switch and power inlet with wires.
47. Remove the wire clamps and disconnect the connector 6 from the control PCB (Remove the control PCB if necessary - see 5.10).
48. Remove the 4 power pack set screws located around the transformer.
49. Remove the power pack cover by slacking-off 2 set screws.
50. Remove the power pack from the bottom pan.
51. Assemble in the reverse sequence. Check electrical safety!
5.13 Fuses
52. Disconnect the power supply cord from the outlet. Remove the top cover.
53. Remove the power pack cover set screws (2 pcs). Remove the power pack through the room between the paper pan and the bottom pan.
54. Check the cause of the fuse functioned.
55. Assemble in the reverse sequence.
56. Schmierplan/Lubrication chart

Hammer-Lagerstellen
Hammer bearings

Rolle am Farbband-Hubarm Roller at ribbon change lever


Farbbandheber (1 u. 2) Ribbon center guide
Farbbandheber-Lagerstel-
len (3)
Shaft for ribbon center guide

Farbbandtransport (1)
Lagerstellen (2 u. 3) übrige Stellen

Ribbon transport (1) pins, slot $(2 \& 3)$ other holes

(s)

	Bestellnummern/Reference Number $\begin{array}{ll} W=4 / 511 / 0041 & F=4 / 521 / 0044 \\ M_{Z}=4 / 502 / 0021 & F W=4 / 521 / 0107 \end{array}$	$\begin{aligned} & 3 \\ & = \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{N}{\Sigma} \\ & \bar{O} \\ & \vdots \\ & \hline \end{aligned}$		Fett/Grease F
	```Kassettenhalte-Mechanismus (1, 2, 3) Cassette hold mechanism```			X	
	Papierlöser (1 u. 2) Paper release übrige Lagerstellen other bearing points	X		X	
	Papierhaltearm-Rastung Paper bail arm right			X	
	Schreibwalzenlager links u. rechts Platen bearing left and right Walzenrastfeder Variable spring for platen			X	x
	Papierführungsrollen Paper feed roller			X	
Alle übrigen Lager- u. Gl And all other bearing and	itstellen sliding points	X			

7. Trouble shooting
7.1 Supply voltage

ICI

IC6

IC2

IC7

IC3

IC4

IC5

IC9.. ICl1

TRAI

8. Acceptance check

1. Packing

Check the packing for signs of damage
2. Housing

Following the removal of the transit safety devices the housing should be checked for signs of damage
3. Operating controls

The operating controls such as the platen release lever, platen knobs, paper release lever, paper retaining bails etc. should be checked for signs of damage
4. Feed-in and transport of the paper

Check the correct feed-in and transport of the paper
5. Paper release

Check the paper release function. In the released setting it should be possible to reposition the original and four duplicates
6. Print

Commence the automatic reproduction of the range of characters by the simultaneous operation of the margin release and on/off keys, repeating this process for all the pitches and settings of the impression energy switch. During this process check the backspacing, printer return and correction functions.
7. Corrections

Corrections must be made so as to lift-off the complete character from the paper without leaving traces. The correction ribbon must transport one tooth and remain tensioned.
8. Ribbon lift/ribbon transport

Ribbon lift must take place correctly in both halves of the ribbon.
Check the transport of the ribbon for correction functioning depending on the type of cassette used.
9. TypewheelCheck the interchangeability and the freedom of movementof the typewheel
10. Keyboard functioning testCheck all the functions of the keyboard
Check :

- the operation of all keys, spacing trip, backspace key
- the shift and shift lock functions
- the set and clear functions of the tabulator

Farbbandhebung, -Transport
Ribbon lift, feed

1 Farbband Motor Ribbon motor
2 Bandhubkurve Ribbon lift cam
3 Zugfeder f. Korrekturbandträger Correct arm spring
4 Zugfeder für Führungshebel Toggle lever spring
5 Bandtransportkurve Cam shaft

6 Transportarm Ribbon feed arm

7 Koppel Cam change lever

8 Bandschaltrad Feed roller
$9 \quad$ Transportrolle Rubber roller

10 Transportfeder Feed spring

11 Transportrad Ribbon feed gear

12 Transportwechsler Ribbon change lever

13 Korrekturbandkurve Correct cam

14 Korrekturbandträger Correct arm

15 Transportklinke f. Korrektur Feed pawl

16 Korrekturschaltrad Correct feed ratchet

17 Bremsdrehfeder
Brake spring

Druckwerkskern
Printer head

1 Farbbandheber links Center guide left
2 Abschlagmagnet - Hammer solenoid

3 Hammer hammer
4 Farbbandheber rechts Center guide right
5 Farbbandhubarm Center guide lift crank
6 Mutter
Nut
7 Distanzrohr
Spacer
8 Positionsfinder Position detector
9 Druckerachse
Head frame shaft
10 Gabellichtschranke Photo interrupter
11 Typenradmotor Selection motor

12 Arm am Rahmen für Druckwerkskern Arm at printer head chassis

13 Steuerhebel Reset crank
14 Steuerschieber Reset plate

1	162	EPROM
2	$\begin{aligned} & \text { st } 1 \\ & \text { CONE } \end{aligned}$	Stecker Tastatur Connector keyboard
3	IC 8	nand-6ate $\begin{gathered}\text { Summer } \\ \text { Buzzer }\end{gathered}$
4	Tr 2	Summer-Transistor Buzzer-Transistor
5	IC 5	4 to 9 Decoder
6	ic 7	Input Nor gate CPU reset
7	Tr 1	Translstor Umschaltung/Shift
8	$\begin{aligned} & \text { St } 2 \\ & \text { CONE } \end{aligned}$	Stecker Tastatur Connector keyboard
9	Tr 4	Transistor Reset CPU
10	Tr 3	Transistor 5 v-verzogerung/Delay
1	Tr 31	Transistor 5 V-verzogerung/Delay
12	Ir 6	Transistor $5 \boldsymbol{V}$-Verzogerung/Delay
13	Tr 29	Lelstungstransistor Abschlagmagnet/Hammer drive transistor
14	tar 1	Transistor-Array fur Anpassung CPU an Lelstungstransistoren Transistor-Array for matching CPU to power transistors
15	$\begin{aligned} & \text { St } 6 \\ & \text { CONF } \end{aligned}$	Stecker Stromversorgung Connector power supply
16	Tr 7	Transistor Translstor power down mode
17	$\begin{aligned} & \text { St }{ }^{3} \\ & \text { CONE } \end{aligned}$	Stecker Horizontalmotor Connector carrier motor
18	$\begin{aligned} & \text { St } 7 \\ & \text { CONE , } \end{aligned}$	Stecker Paplereinzugsschalter Connector paper feed swltch
19	$\begin{aligned} & \text { St } 8 \\ & \text { CONE } 8 \end{aligned}$	Testanschlub fur Leiterplatte Testpin for PCB
20	$\text { St } 5$ $\text { CONE } 5$	Stecker Druckwerks-Lelterplatte Connector carrier PCB
21	Tr 8...tr 11	Lelstungstranslstoren Motoren Power transistors for motors
22	IC 9...ic 11	Inverter fur Anpassung CPU an Motor-Treiberstufen Inverters for matching CPU to motor power transistors
23	Ir 12...ir 21	Leistungstransistoren fur Schrittmotoren Orive transistors for stepping motors
24	Tr 30	Transistor Abdruckkonstanz Constant current (impression)
25	vRI	Trimmer fur Abdruckenergle Variable resistor for Impression
26	IC 6	1/0 Expander 0 8243 C
27	IC 2	CPU 8 DIt-MIkroprozessor 8039 CPU bit Microcomputer 8039
28	Buz	Summer/Buzzer
29	$\begin{aligned} & \text { St } \\ & \text { CONE } \end{aligned}$	Stecker Vertikalmotor Connector indexmotor
30	1 C 3	Octal 3-state latch fur adressen
31	IC 1	Tastaturbuffer (Octal 3-state bus buffer) for keyboard

Stromlaufplan Tastatur
Circuit diagram, keyboard

PH 1
St 11 CONE 11
St 10 CONE 10
St 13 CONE 13
PH 2
St 14 CONE 14
St 15 CONE 15
St 12
CONE 12

Farbband-Lichtschranke/Ribbon sensor
Stecker Abschlagmagnet
Connector Hammer solenoid
Stecker Typenrad-Lichtschranke Connector selection sensor
Stecker Typenrad-Motor Connector selection sensor Druckwerk-Lichtschranke/Carrier sensor Stecker Farbbandmotor Connector ribbon motor
Stecker Steuer-Leiterplatte Connector control PCB
Stecker DW-Positions LED Connector carsol LED

Sil/CONEI
Tastatur/keyboard

Sil / CONET
Papiereinzugschalter Paperfeed switch

$\mathrm{St} 2 / \mathrm{CONE} 2$
Tastatur/keyboard

$$
7
$$

$$
\begin{array}{l|l}
8 \\
9
\end{array}
$$

Sts/CONES
Druckwerks-Leiterpiatle Carrier P.C.B

St3/CONE3
Horizontal motor Carrier motor

$1 a$	$F G N D$
$2 a$	$C B$
$3 a$	$C A$
$4 a$	B
$5 a$	\bar{A}
$6 a$	\bar{B}
$7 a$	A
$8 a$	$H B$
$9 a$	$P H$
$10 a$	C

$1 b$	$C B$
$2 b$	$C A$
$3 b$	B
$4 b$	\bar{A}
$5 b$	\bar{B}
$6 b$	A
$7 b$	$H A$
$8 b$	$G N D$
$9 h$	S
	R

R

St4/CONE4
Verikal motor Index motor

St6/CONE6
Stromverss igung.
Powerpack

Silo/CONEIO
Typenrad-Lichtschranke Selection sensor

Stll/CONEll
Absehlagmagnet
Hammer solenoid

Typenrab-Lichsschranke
Selection sensor

St12/CONE12
DW-Positions-LED
Carsol LED

St15/CONEI5 Steuer-Leiterplatte Control P.C.B

