OB68K/VME1

VME/68000 SINGLE BOARD COMPUTER

REFERENCE MANUAL

245 WEST ROOSEVELT ROAD • WEST CHICAGO, ILLINOIS 60185 FAX (708) 231-7042 • PHONE (708) 231-6880

A Look At Today . . . A Vision of Tomorrow.

OB68K/VME1

VME/68000 SINGLE BOARD COMPUTER

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, Omnibyte reserves the right to make changes to any products herein to improve reliability, function, or design. Omnibyte does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

The technical information contained herein is provided for reference, evaluation and repair purposes only and is copyrighted. It may not be copied or duplicated in part or in whole for any purpose without the express written permission of Omnibyte Corporation.

VERSAbug is a trademark of Motorola, Inc. OB68K/VME1 & VME1bug are trademarks of Omnibyte Corporation

OMNIBYTE CORPORATION * 245 West Roosevelt Road * West Chicago, Illinois 60185 Copyright (c) 1984, 1985, 1986, 1990 by Omnibyte Corporation THIS PAGE LEFT BLANK

TABLE OF CONTENTS

	1	Page
1.0	INTRODUCTION/INSTALLATION	3
1.1	Introduction	3
1.2	Unpacking Instructions	3
1.3	Inspection	3
1.4	Factory Standard Configuration	3
2.0	OVERVIEW OF THE COMPUTER BOARD	6
2.1	Summary of Features	6
2.2	Specifications	6
2.2.1	Power Requirements	6
2.2.2	OB68K/VME1 Compliance	7
2.2.3	Environmental	7
2.2.4	Physical	8
2.3	OB68K/VME1 Access Time Information	8
3.0	GENERAL DESCRIPTION OF OB68K/VME1	. 11
3.1	VMEbus	. 11
3.2	Design Goals for the OB68K/VME1	. 11
3.3	Serial Interface	. 12
3.4	Parallel Interface	. 12
3.5	Timers	. 12
3.6	Bus Arbitration	. 12
3.7	On Board Memory	. 13
3.8	Address Decoding and Memory Mapping	. 13
3.9	Data Transfer Acknowledge and Bus Errors	. 13
3.10	Clocks	. 14
3.10.1	Processor Clock	. 14
3.10.2	Baud Rate Clock	. 14
3 10 3	VMEbus SYSCLK	. 14
3.11	Interrupts	. 15
3 12	Status Indicators	. 15
3 13	Restart Vector Accessing	16
4 0	ISED DEFINABLE OPTIONS	17
4 1	Serial Port Configuration	19
411	WMEDUG TERMINAL MONITOR/DEBUGGER PROGRAM	19
4.1.1	Bus Error Jumper (OP2 OP103)	20
4.2	DTACK Select (OP11)	. 20
4.5	$DIRCK Select (OPI1) \dots DI2_OP14)$. 21
4.4	Interrupts (OFS-OFIO, OFIZ-OFI4)	· 22
	On-Poord Douison Interrupts	20
	On-Board Driarity	. 24
A E	OII=DOALU PILOILLY	· 20
4.3	Dus Albitiation (UP21-UP35, UP101-UP107)	. 21
4.3.1	VMEDUS CONTROLLER BUS ARDITIATION OPTIONS	. 21
4.5.2	VMEDUS MASTER BUS Arbitration Options	. 29
4.6	INITIALIZE (OPI, OP59)	. 34

TABLE OF CONTENTS (CONTINUED)

4.7	RAM/ROM Installation	35
4.7.1	RAM/ROM Socket Configuration Options (OP51-OP58)	35
4.7.2.1	RAM Type Configuration (OP43)	37
4.7.2.2	RAM/ROM Type Options (OP43-45)	37
4.7.3	RAM/ROM Block Size (OP46-50, OP61, OP62)	38
4.8	Base Address Options (S3, S4, S5)	39
4.9	Extra I/O Bit (Port C Bit 4) Output (OP60)	41
4.10	Miscellaneous Option (OP108)	41
5.0	CONNECTOR PINOUTS	42
5.1	VMEbus P1 Connector	42
5.2	VMEbus P2 Connector	43
5.3	Front Panel Serial Port Connector	45
5.4	Compatible Cable End Connectors	46
6.0	MEMORY DECODING	47
6.1	Memory Map	47
6.2	I/O Address Assignments	48
6.3	Address Modifier Codes	50
7.0	VME1bug TERMINAL MONITOR/DEBUGGER PROGRAM	51
8.0	WARRANTY INFORMATION	51
9.0	ORDERING INFORMATION	52
10.0	OB68K/VME1 SCHEMATIC DIAGRAMS	53
11.0	APPENDICES	60
11.1	APPENDIX I (RAM/ROM CONFIGURATION TABLES)	
11.1	Appendix II (DATA SHEETS)	

LIST OF FIGURES AND TABLES

_

		Page
FIGURE	1.0	PHOTOGRAPH OF THE OB68K/VME1 1
FIGURE	1.1	OB68K/VME1 PARTS LOCATION DIAGRAM 2
TABLE	1.4	FACTORY STANDARD OPTION CONFIGURATION 5
FIGURE	2.0	BLOCK DIAGRAM
FIGURE	2.2.4	OB68K/VME1 BOARD DIMENSIONS 10
TABLE	3.12	INDICATOR LED IDENTIFICATION 15
TABLE	4.0	USER DEFINABLE OPTIONS 17
FIGURE	4.0	LOCATION OF JUMPER OPTIONS 18
TABLE	4.1	BAUD RATE SELECTION VALUES 19
TABLE	4.2	BUS ERROR (BERR) OPTIONS
FIGURE	4.3	ROM/RAM DTACK DELAY OPTIONS
TABLE	4.3	ROM/RAM DTACK DELAYS
FTCHEF	1.5 1 1 1	INTERPIER OPTIONS (UMFhus Backhlane)
FIGURE		
FIGURE	4.40	INTERRUPT OPTIONS (ON DOARD DEVICES)
FIGURE	4.40	INTERRUPT OPTIONS (UN-BOARD PRIORITI)
FIGURE	4.4D	INTERROPT OPTIONS OVERVIEW
FIGURE	4.5A	BUS ARBITRATION OPTION (Bus Request/Bus Grant) 27
FIGURE	4.5B	BUS ARBITRATION OPTION (RRS/PRI Mode Select) 28
FIGURE	4.5C	BUS ARBITRATION OPTION (BCLR Bus Clear Line) 28
TABLE	4.5D	BUS ARBITRATION OPTION (SYSCLK/BBUSY/SYSRESET) 29
FIGURE	4.5.2A	VMEbus Master OPTION (ROR/RWD Mode Select) 29
FIGURE	4.5.2B	VMEbus Master OPTION (Bus Request/Bus Grant) 30
FIGURE	4.5.2C	VMEbus Master OPTION (BR/BG Daisy-Chain)31
FIGURE	4.5.1	EXAMPLE CONFIGURATION - CONTROLLER
FIGURE	4.5.2	EXAMPLE CONFIGURATION - BUS MASTER EXAMPLE
FIGURE	4.6	RESET OPTION CONFIGURATION
FIGURE	4.7A	RAM/ROM OPTION CONFIGURATION AND LOCATION
FIGURE	4.7B	RAM/ROM TYPE OPTION CONFIGURATION
TABLE	4.7C	RAM/ROM PRIORITY CONFIGURATION
FIGURE	4.7.2.1	RAM SIZE SELECTION
FIGURE	4.7.2.2	ROM TYPE SELECTION.
FIGURE	4.7.3	RAM/ROM BLOCK SIZE SELECTION
FIGURE	4 8	BASE ADDRESS ODTIONS (DAM/DOM/TO)
FIGURE	1 9 2	DASE ADDRESS OFITONS (RAM/ ROM/ 10)
FIGURE	4.0.2	
FIGURE	4.0.5	
FIGURE	4.9	
FIGURE	4.10	MISCELLANEOUS OPTION
TABLE	5.1	IEEE PIUI4 PI CONNECTOR PINOUT
TABLE	5.2	IEEE PIUI4 PZ CONNECTOR PINOUT
FIGURE	5.2	P2 CONNECTOR CABLE 44
TABLE	5.3	FRONT PANEL SERIAL PORT 0 CONNECTOR PINOUT 45
FIGURE	6.1	MEMORY MAP 4
TABLE	6.2.1	REGISTER ASSIGNMENTS FOR 68681 DUART 48
TABLE	6.2.2	REGISTER ASSIGNMENTS FOR 68230 PI/T 49
TABLE	6.3	ADDRESS MODIFIER CODES 50
FIGURE	10.1	OB68K/VME1SCHEMATIC- CPU, BUFFERING, DECODING AND
		SYSTEM CONTROLLER 54
FIGURE	10.2	OB68K/VME1 SCHEMATIC - MEMORY AND I/O 55
FIGURE	10.3	OB68K/VME1 SCHEMATIC - PWR/GND BY-PASS 56
TABLE	10.1	OB68K/VME1 PARTS LIST 57

THIS PAGE LEFT BLANK

PHOTOGRAPH OF THE OB68K/VME1 FIGURE 1.0

1.0 INTRODUCTION/INSTALLATION

1.1 Introduction

This chapter provides the unpacking, inspection and configuration instructions for the OB68K/VME1 Single Board Computer.

1.2 Unpacking Instructions

"NOTE"

IF THE SHIPPING CARTON IS DAMAGED UPON RECEIPT, REQUEST THAT CARRIER'S AGENT BE PRESENT WHILE THE ITEMS ARE BEING UNPACKED AND INSPECTED.

Unpack the OB68K/VME1 Single Board Computer from its shipping carton. Save the packing material for storing and reshipping the items in case this becomes necessary.

1.3 Inspection

The OB68K/VME1 Single Board Computer should be inspected upon receipt for broken, damaged, or missing parts, and for physical damage to the printed circuit board or connectors.

1.4 Factory Standard Configuration

The OB68K/VME1 Single Board Computer may be used in several configurations. Prior to inserting the OB68K/VME1 in a system, care should be taken to install the proper jumper options where necessary for your system configuration. Refer to the Figure 4.0 for physical locations of these jumpers on the OB68K/VME1. Included below is standard configuration information.

The OB68K/VME1 is shipped in a configuration that allows it to be operated as the system controller in Slot 1 of a standard VMEbus chassis. Factory standard jumper configurations are indicated by dashed lines on the electrical schematic diagrams shown in Section 10. The function of each jumper group is described in detail in Section 4.

The OB68K/VME1 is configured at the factory to operate in the following way:

a) Bus Controller Functions

The System Clock (SYSCLK) and SYSRESET line are driven by this board. On-board power-on reset is enabled and the bus error jumper is installed so that bus error exception processing

will be executed, if a bus error is encountered. The BERR watchdog timer is connected to the bus. All four bus arbitration levels are enabled and this computer board uses level 3, the highest priority.

b) Interrupts

No interrupts are connected.

c) On-Board Memory

The OB68K/VME1 is configured at the factory to use 8K byte RAM chips and 16K byte PROM chips. The base address of the RAM and ROM are \$000000 and \$F80000, respectively. One hundred and twelve Kbytes of RAM space extends from \$000000 through \$1BFFFF, and 64K bytes of ROM space begins at \$F80000 and ends at \$F9FFFF. The RAM DTACK is preset at 160nS appropriate for 150nS RAM chips, while the ROM DTACK is preset at 320nS appropriate for 300nS ROM chips.

d) I/O Addressing

The 64K byte block of physical address from \$FF0000 through \$FFFFFF is decoded for I/O address space. On-board I/O facilities occupy the upper 256 bytes of this space (\$FFFF00-\$FFFFFF) and the remainder (\$FF0000-\$FFFEFF) defaults to off-board I/O space that is accessed from the VMEbus as a short I/O access (Address Modifier 4 low).

e) Serial I/O Ports

Both On-Board serial I/O ports are configured to drive RS232C terminals. Two handshake lines are provided for each port; the RTS output and the CTS input.

Please note that the above is the configuration of the OB68K/VME1 as shipped from the factory and it does not preclude setting up the board in a different configuration, if desired. Factory standard configuration is compatible with Omnibyte's optional PROM-based terminal monitor/debugger program that provides the functionality of Motorola's VERSAbug program.

JUMPER GROUP	CONFIGURATION	FUNCTION
OP1 OP2 OP3-9 OP10 OP12 OP13 OP14-20 OP25-28 OP29 OP30 OP31 OP32-34 OP35 OP43 OP44 OP45 OP46-48 OP49 OP50 OP51-57 OP58 OP59 OP60 OP61 OP62 OP101 OP102 OP103 OP105 OP106 OP107	INSTALLED INSTALLED REMOVED 1-10, 2-8 1-4,2-5,3-6 1-4,2-5,3-6 1-4,2-5,3-6 REMOVED INSTALLED INSTALLED 3-6 4-6 1-2 2-3 REMOVED 1-2 2-3 INSTALLED REMOVED 1-2 7-8,11-12 8-9,4-106-12 2-3 REMOVED INSTALLED INSTALLED INSTALLED INSTALLED INSTALLED INSTALLED INSTALLED INSTALLED INSTALLED INSTALLED INSTALLED INSTALLED	OB68K/VME1 Drives SYSRESET Bus Error (BERR) to 68000 Enabled No Interrupts Connected No Onboard Interrupts Connected RAM/ROM DTACK, 160 nS RAM; 320 nS ROM Onboard IACK Priority 1-PIACK,2-TIACK,3-IACKN Onboard IRQ Priority 1-PIRQ, 2-TIRQ, 3-INTRN No Interrupts Connected Bus Grant Lines Enabled (SYSTEM CONTROLLER) Bus Request Lines Enabled (SYSTEM CONTROLLER) Bus Request Level 3 for this Board Bus Grant Level 3 for this Board BG30UT Enabled BG00UT, BG10UT, BG20UT Disabled Release On Request (ROR) Enabled 8K Byte RAM Parts 27128 PROM Parts 128K Byte ROM Block Selected 128K Byte RAM Block Selected 0n-Board BVIACK SYSCLK Driven by OB68K/VME1 BCLR TO VMEbus Driven by OB68K/VME1 BUS ERROR from VMEbus Enabled Round Robin Arbitration Enabled OB68K/VME1 Drives BBUSY Arbiter Beset by SYSBESET
OP108 S3 S4 S5	2-3 See Figure 4.8 See Figure 4.8 ALL REMOVED	Factory Set RAM Base Address = \$00 ROM Base Address = \$F8 (LS>MS) I/O Base Address = \$FF

FACTORY STANDARD OPTION CONFIGURATION TABLE 1.4

2.0 OVERVIEW OF THE COMPUTER BOARD

This section describes the major features of the OB68K/VME1. A block diagram of this single board computer is shown in Figure 2.0.

2.1 Summary of Features

The OB68K/VME1 computer board provides the following features:

- a. MC68000 16/32 bit processor.
- b. Two asynchronous RS-232C serial ports (68681).
- c. VMEbus compatible (REVISION C.1).
- d. Full four level bus arbiter.
- e. Interrupt handler for all seven interrupt levels.
- f. On-Board BERR timeout.
- g. Separate VMEbus BERR watchdog timer.
- h. Power-on/pushbutton/software generated SYSRESET.
- i. 12.5 MHz operation standard.
- j. 16 MHz SYSCLK.
- k. Sixteen Universal JEDEC 28-Pin RAM/ROM sockets.
- 1. Up to 1M bytes ROM/448K byte RAM onboard
- m. Software programmable baud rates.
- n. (2) parallel I/O ports & (1) 24-bit timer circuit (68230).
- o. 16 Megabyte (24-bit) direct memory addressing.
- p. Optional VME1bug terminal monitor/debugger program.
- q. Two year limited warranty.

2.2 Specifications

Listed below are the specifications for dimensions, environment, power and compliance for the OB68K/VME1.

2.2.1 Power Requirements

The computer board receives its power through the VME bus backplane. Typical power requirements are as follows:

+5 VDC <u>+</u> 5%	2.5 A. Max (1.75 A Typ.)
+12 VDC \pm 5%	50 mA Max (20 mA Typ.)
-12 VDC + 5%	50 mA Max (20 mA Typ.)

Note: Single 5 volt operation is possible with the OB68K/VME1 if the serial ports are not used.

2.2.2 OB68K/VME1 Compliance

This section lists the VMEbus compliance and options for the OB68K/VME1 computer.

Master Data Transfer Options: A24:D16 TOUT = 1 millesecond (STAT) Address Modifier Options: Any One of 29,2D,39,3A,3D,3E (DYN) Arbiter Options: Any One of PRI, OR RRS (STAT) **Requester Options:** Any One of R(0),R(1),R(2),R(3) (STAT) Any One of ROR Release on Request Release When Done RWD Interrupt Handler Options: Any of IH(X-Y) (STAT) where; 1 < X < 7 and X < Y < 7Interrupter Options:

None

Physical configuration Options: NEXP Non-expanded Bus, Double VMEbus Board

2.2.3 Environmental

Temperature:	0 to 65 degrees C (operating)	
_	-15 to +85 degrees C (storage)	
Humidity:	0 to 90% (non-condensing)	

2.2.4 Physical

The OB68K/VME1 is a standard VME Double Height printed circuit board format. The PC board is made of a glass epoxy fire retardant (94-V0) material. All critical IC's are socketed. See Figure 2.2.4 for exact dimensions of the board.

Dimensions:	9.17in. (23.3cm) X 6.29in.(16.0cm) X 0.062in.(0.16cm). Component height: <.550 in.
PC Board:	94-V0 material, fire retardant 6 sec @ 530 degrees F. Multilayer.

2.3 OB68K/VME1 Access Time Information

Listed below are access/cycle times for the various on-board devices, as well as off-board memory and I/O. Please note that many factors contribute to the timing and access times for off-board memory and I/O. Listed below are minimum access times achievable with the OB68K/VME1.

ACCESS/CYCLE	TIME (nS)	COMMENTS
On-Board RAM Cycle Time	320-1040	User Selectable.
On-Board ROM Cycle Time	320-1040	User Selectable.
VMEbus Cycle Time Memory or I/O	560 400	Release When Done. Release On Request. Data Strobe connected to DTACK. READ or WRITE. Round Robin or Parallel Arbitration.
68681 DUART Cycle Time	720-880	Clock asynchronous with processor
68230 PI/T Cycle Time	560-640	Clock asynchronous with processor

NOTE: All Access and Cycle times with 12.5 MHz processor speed.

BLOCK DIAGRAM FIGURE 2.0

OB68K/VME1 BOARD DIMENSIONS FIGURE 2.2.4

3.0 GENERAL DESCRIPTION OF OB68K/VME1

The OB68K/VME1 is a single board microcomputer designed to conform to the VMEbus specification (REVISION C.1).

3.1 VMEbus

The VMEbus is a high performance microcomputer system bus designed by the 68000 manufacturers. The bus defines the mechanical, electrical and protocol characteristics for devices that are components of a closely coupled computer system. VMEbus proponents are seeking an IEEE bus standard for this microcomputer bus. The working group for this project has been assigned the number P1014. The VMEbus allows byte, word, and longword transfers of data between modules in the system using the backplane interconnection paths. A full 32-bit addressing space is supported although short (16-bit) and standard (24-bit) addressing modes are also allowed, these being defined through the use of address modifier bits on a cycle by cycle basis. Four separate, daisy chained, bus priority levels allow the backplane to be shared by many masters that are granted the use of the bus by a centralized arbiter circuit. It is recommended that the user become familiar with the VMEbus specification.

3.2 Design Goals for the OB68K/VME1

The VMEbus specification accommodates a wide range of system designs that vary from very small and simple to extremely large and complex. Therefore, it is appropriate to describe the overall design goals of the OB68K/VME1.

The OB68K/VME1 is a straight forward, single board microcomputer design that is simple enough to operate stand-alone and flexible enough to operate in large multimaster systems. As a single board computer, it includes the CPU, RAM, ROM, two RS232C serial ports and two 8-bit parallel I/O ports - everything necessary to operate as a microcomputer.

In addition to the microcomputer capability, the OB68K/VME1 is also a full VMEbus controller and may operate in Slot 1 of the backplane. The OB68K/VME1 provides the 4-level bus arbiter functions, interrupt handling for up to seven levels, the SYSCLK, the BERR timeout, and power-on, pushbutton and program controlled SYSRESET. Thus, the OB68K/VME1 is a <u>powerful</u> VMEbus engine.

The OB68K/VME1 is optimized for use in high performance process control environments. A 12.5 MHz CPU is standard and no-wait-state operation is achieved for on-board memory access. Eight pairs of byte-wide memory sockets can be used for either PROM or static RAM chips. Using 512K bit PROMs, up to 1024K bytes of program storage is available, so most programs can reside on-board.

3.3 Serial Interface

Two asynchronous serial ports are implemented using a 68681 dual universal asynchronous receiver/transmitter (DUART). This is a single chip MOS LSI communications device that includes such advanced features as programmable baud rates, auto-echo option, four-byte FIFO buffer for each receiver and local/remote loopback. Baud rates of 50 to 38.4K baud are individually programmable for the transmit and receive channels of each serial port. Two handshake lines, CTS input and RTS output, are available for each of the two serial ports. All serial I/O lines are RS-232C compatible. The 68681 supports the vectored interrupt protocol of the 68000 family. Both the serial I/O ports are available on the user I/O pins of connector P2, and one port is also run to a connector on the front panel, for system diagnostic purposes.

3.4 Parallel Interface

A 68230 parallel I/O circuit on the OB68K/VME1 combines several binary I/O utilities into one interface chip. The 68230 also supports vectored interrupts.

Of the three bytes of parallel interface, port A and B are connected to the user I/O pins of connector P2 along with the H1 and H2 handshake lines. Port C is used for the parallel and timer interrupt request/interrupt acknowledge functions, and to interface to several status lines.

3.5 Timers

The 68230 contains a multipurpose 24-bit timer that may be configured to function as an interrupt source. Interrupts can be generated periodically, or one time only, following a programmed countdown. It can be used for elapsed time measurements or as a watchdog timer. A separate vectored interrupt capability is supported by timer interrupt and interrupt acknowledge lines on the 68230. The time base is the 8MHz 68230 CLK input prescaled by the internal 5-bit divider.

A second timer is included in the 68681. This is a 16-bit counter/timer that can be set and read by the processor.

3.6 Bus Arbitration

The VMEbus specification provides for a very fast centralized, four level, daisy chained, bus arbitration facility. The OB68K/VME1 fully supports the bus arbitration protocol. The OB68K/VME1 requests the use of the data transfer bus by interfacing to the bus request/grant lines on the backplane just as any other master on the bus. Thus this computer can operate at any of the four priority levels. For larger systems using more than one OB68K/VME1, the arbiter can be disabled by removing several jumpers. The master in Slot 1 must have the bus arbitrer enabled and provide the bus arbitration for all masters in the system. This computer has the ability to retain its bus mastership for successive data transfers as long as no other masters request the use of the bus.

3.7 On-Board Memory

A large fraction of the OB68K/VME1 is dedicated to on-board memory space in the form of sixteen 28-pin memory sockets. Several sizes of PROM and static RAM chips can be used, but for any given configuration, all PROM chips must be the same size and all RAM chips must be the same size, but the RAM and PROM sizes need not be the same. The factory standard configuration is for 8K byte RAM chips and 16K byte PROM chips, although this selection is easily changed by the user.

3.8 Address Decoding and Memory Mapping

The address decoding on the OB68K/VME1 is determined by a combination of programmable logic array devices that cannot be changed and jumper options that set the base address of the on-board memory and I/O. Any address that does not lie within the space allocated for on-board resources, defaults automatically to a VMEbus memory access. Figure 6.1 is the factory standard memory map for the OB68K/VME1.

This map places a 128K byte RAM block at \$000000 so that the exception vector table entries may be dynamically written by the processor. The 64K byte I/O block is at the very top of memory, \$FF0000-\$FFFFFF (This choice allows short addressing modes to be used when accessing I/O devices in the upper 32K bytes of memory). The 128K bytes of PROM space is located at \$F80000-\$FAFFFF. All other addresses are VMEbus memory.

3.9 Data Transfer Acknowledge and Bus Errors

The 68000 data transfers are asynchronous--A Data Transfer ACKnowledge (DTACK) signal is required to complete an access. For VMEbus cycles this signal is provided naturally by the transfer acknowledge signal of the bus. An on-board DTACK generator provides the required signal for ROM and RAM accesses. The DTACK delay is separately selectable for RAM and ROM to match the access time requirements of the installed memory devices.

In the event that unimplemented off-board memory is accessed, no DTACK will be generated. An on-board "watchdog" timer is included to detect a lack of response, and a pulse is generated that may be jumpered to the 68000 Bus Error input pin. A signal asserted on this pin will initiate bus error exception processing and a user-supplied routine may be executed to allow the system to analyze and report or recover from this condition.

Two watchdog timers are provided so that on-board and off-board BERR conditions may be treated differently. For an on-board bus error, only the local processor needs to be alerted. For an off-board bus error, the VMEbus BERR signal should be asserted. This is a controller function that is always monitoring the bus activity to detect any access cycle that exceeds the timer delay (1 millesecond).

Conditions that will cause a bus error are:

- a) Access to off-board memory addresses that have no responding memory (not plugged in, or not working).
- b) Access to off-board I/O addresses that have no responding device (not plugged in, or not working).
- c) Access to an on-board I/O address that does not return a DTACK signal.

An access to an on-board memory address will not cause a bus error even if a memory chip is not installed. The 68000 family peripheral devices return their own DTACK signal so an access to a missing on-board device (68230, 68681) will result in a watchdog timer bus error.

3.10 Clocks

Several clock sources are included on the OB68K/VME1. This section describes each of them.

3.10.1 Processor Clock

A crystal oscillator that is divided by 2 provides the clock for the 68000 processor. This processor clock is also used as the time base for the RAM/ROM DTACK generator. Notice that other clock frequencies may be used by simply replacing the 25.0 MHz oscillator with a different frequency oscillator (i.e. 20MHZ, 16MHz, 12MHz). Please note that there will also be a shift in the RAM/ROM DTACK times.

3.10.2 Baud Rate Clock

The baud rate generator for the serial communication ports is internal to the 68681 DUART. A 3.68640 MHz crystal sets the frequency of the internal oscillator and the baud rate is selected under program control.

3.10.3 VMEbus SYSCLK

A 16 MHz clock is included for use as the VMEbus SYSCLK. Because only one card in a VMEbus system can assert this signal, a jumper is provided to remove it from the bus. With this jumper removed, the card uses the SYSCLK generated by another master in the VMEbus chassis.

3.11 Interrupts

The OB68K/VME1 supports the VMEbus Interrupt Handler Module functions for all seven interrupt levels. The 68000's three interrupt priority input lines IPL2, IPL1, and IPL0 are driven by a 74148 priority encoder. IRQn lines from the VMEbus backplane or a composite on-board interrupt request may be connected to 74148 input levels by the user. For each interrupt level, jumpers allow the choice of either vectored or non-vectored interrupt protocol. All on-board interrupts share a single interrupt level. Within the on-board level, the priority of the on-board sources is selectable. On-board devices will normally be selected to operate as vectored interrupts because each interrupting device supports the vectored protocol.

3.12 Status Indicators

Three LED status indicators are mounted on the front panel to show the status of the VMEbus ACFAIL and SYSFAIL signals along with a local BDFAIL signal. The ACFAIL signal is normally driven by the power monitor circuitry in the power supply. SYSFAIL may be driven by any module in the system that is capable of detecting faults. BDFAIL is a locally generated signal asserted by the 68000 using an output pin of port C on the 68230. In addition to turning on the LED indicator, BDFAIL also drives the SYSFAIL line. SYSFAIL and ACFAIL are connected to the 68230 input lines PC0 and PC1, and to the H3 and H4 handshake lines. The 68230 can be configured to allow either one or both lines to cause a parallel IRQ. Alternately, the PC0 and PC1 lines may be read as status without configuring for interrupts.

LED#	FUNCTION	COLOR
LED5	ACFAIL	YELLOW
LED4	SYSFAIL - VME1 driven by VMEbus	RED
LED3	BDFAIL - VME1 drives BDFAIL	RED
LED2	HALT	RED
LED1	RESET	YELLOW

INDICATOR LED IDENTIFICATION TABLE 3.12

3.13 Restart Vector Accessing

When a power-on or manual reset of the processor occurs, the processor begins operation by accessing memory location zero, in Supervisory Program space, to load the restart vector and the Supervisor stack pointer. These two vectors must be stored in PROM because the contents of RAM are unknown at restart time.

A shift register that is cleared by RESET generates a signal that causes the first four (Word) memory accesses, following RESET, to be unconditionally directed to location 0 through 7 of the PROM in memory socket pair zero. For this reason one pair of PROM chips must be installed in socket pair zero. The access to these PROM locations is independent of the switch selected location of ROM in the address map of the OB68K/VME1. For proper operation after restart, some memory must exist at location \$000000 in order to have memory at the addresses where the processor expects to find exception vectors. This may be either RAM or PROM and can be in off-board memory. All other socket pairs may have either RAM or ROM installed. The Supervisor Stack Pointer must reside in locations 0 through 3, and the Program Counter must reside in locations 4 through 7.

4.0 USER DEFINABLE OPTIONS

This section describes the jumpers and options included on the board. Table 4.0 is a summary of all the user definable jumpers. The location of these jumpers are shown in Figure 4.0. Please note, in the diagrams that follow, the factory standard configuration is shown.

Jumper No.	No. of Pins	Function	SCHM PG #	PAGE #
OP1	2	SYSRESET controller/slave select	1	34
OP2	2	BERR to CPU (From onboard devices)	1	20
OP3-OP9	14	VMEbus IR01IR07 to priority encoder	1	22-23
OP10	14	ON-BOARD IRO priority select	1	22-24
OP11	11	RAM/ROM DTACK delay select	1	21
OP12	6	TIACK, PIACK, IACKN priority select	1	22-25
OP13	6	TIRO, PIRO, INTRN priority select	1	22-25
OP14-20	21	Auto Vector/Bus Vector interrupt select	2	22-23
OP21-24	8	BGnIN enable for 4 levels	1	27
OP25-28	8	BR enable for 4 levels	1	27
OP29	6	Bus Req. level for this CPU	1	30
OP30	6	Bus Grant level for this CPU	1	30
OP31-34	12	BGOUT disable for local access	1	31
OP35	2	Release on Request(ROR)/Release		
		when Done(RWD)	1	29
OP43	2	RAM chip size select	2	37
OP44-45	6	ROM chip size select	2	37
OP46-48	6	ROM block 64,128,256,512K,1M select	2	38
OP49	2	RAM block 64,128K select	2	38
OP50	4	Upper/Lower RAM block select	2	38
OP51-58	10	Memory socket configuration jumpers; 8 pairs (ROM and RAM)	2	35-36
OP59	3	Power-on and Push Button RESET	1	34
OP 60	1	68230 pin PC4	2	41
OP61-62	2	RAM block 256K,512K select	2	38
OP100	1	ON-BOARD Bus Vectored Interrupt ACK	2	22-24
OP101	2	SYSCLK to bus	1	29
OP102	2	BCLR to VMEbus	1	28
OP103	2	BERR to VMEbus	1	20
OP105	2	Round Robin/Parallel Arbitration	1	28
OP106	2	OB68K/VME1 Drives BBUSY to VMEbus	1	29
OP107	2	SYSRESET Drives Arbiter Reset	1	29
OP108	3	Factory Set	1	41
S3	16	RAM Base Address	2	39
S4	14	ROM Base Address	2	39
S5	16	I/O Base Address	2	39

USER DEFINABLE OPTIONS TABLE 4.0

FIGUIRE 4.0 LOCATION OF JUMPER OPTIONS

4.1 Serial Port Configuration

The connections to the serial ports are fixed. Each of the two ports are interfaced with four signals plus ground: RXDATA, TXDATA, RTS and CTS. The CTS input is biased so that the channel is enabled unless it is pulled down by the off-board device. The baud rate is set under software control by storing the appropriate code in the clock select register for channels A and B (CSRA and CSRB). Bits 0-3 and 4-7 of these registers control the transmit and receive baud rates, respectively. The baud rates corresponding to the available choices for the 4- bit select values are given in Table 4.1. VME1bug, if used, sets the baud rate to 9600 at power-up and reset.

Value	(ACR bit 7=0)	(ACR bit 7=1)
0	50	75
1	110	110
2	134.5	134.5
3	200	150
4	300	300
5	600	600
6	1200	1200
7	1050	2000
8	2400	2400
9	4800	4800
A	7200	1800
B	9600	9600
C	38.4K	19.2K

BAUD RATE SELECTION VALUES TABLE 4.1

4.1.1 VME1bug TERMINAL MONITOR/DEBUGGER PROGRAM

A terminal monitor/debugger program, VME1bug, is available from Omnibyte for use with your OB68K/VME1. This program is licensed from Motorola Inc. by Omnibyte and is provided as object code in two 16K (27128) PROMS.

VME1bug allows the usual terminal interaction features of display, modify, load and dump memory, run programs with breakpoints, and register display and modify. In addition VME1bug includes a HELP display, memory test, block fill, block move and one line assembler/disassembler capabilities.

4.2 Bus Error Jumpers (OP103, OP2)

When the OB68K/VME1 is a system controller (Slot 1), OP103 should be installed to drive the BERR signal on the VMEbus backplane. In the event a VMEbus transfer sequence fails to terminate within 100 microseconds, an on-board bus timeout circuit will drive the VMEbus BERR signal and terminate the transfer. Jumper OP103 connects the output of the timeout circuit to the backplane. If the OB68K/VME1 is in any other VMEbus Slot, then OP103 should be removed to avoid having two masters driving the BERR signal. See page 18, FIGUIRE 4.0 for the location of OP103.

Jumper OP2 connects both, the "On-Board Watchdog Timer" and the "VMEbus BERR" backplane signal, to an encoder that drives the BERR and HALT lines of the 68000. When OP2 is installed, BERR is enabled and if DTACK is not received from an addressed device, a bus error is generated and the processor will begin bus error exception processing. With OP2 removed, the address and data lines will be static and can be examined at leisure. This is a useful mode for debugging off- board system problems. This signal does not connect to the backplane. See page 18, FIGUIRE 4.0 for the location of OP2.

OP103	FUNCTION: BERR TO VMEbus	
IN	INSTALLED ONLY when board is in Slot 1.	
OUT	Removed when board is in any Slot but 1.	

OP2	BUS ERROR (BERR) TO 68000
IN	BERR Watchdog timer circuitry enabled. (BERR to CPU)
OUT	Processor (68000) waits indefinitely for DTACK. NOTE: This is a useful mode for troubleshooting.

TABLE 4.2 BUS ERROR (BERR) OPTIONS

4.3 DTACK Select (OP11)

The DTACK signal is generated by the accessed device in all cases except for the on-board RAM and ROM. The DTACK for the on-board memory chips is selected from a shift register that is enabled during an access. The shift register is clocked at the processor frequency and the RAM and ROM DTACK delays are independently selectable in increments from the shift register outputs. The DTACK delays are shown below. The proper tap on the DTACK generator depends upon the access time of the installed memory chips. The factory standard setting is appropriate for 250ns ROM and 120ns RAM. The DTACK jumpers are shown in Figure 4.3 and the delay values are given in Table 4.3.

OP11 /DTACK OPTION				
1 2 3 4 5 6 7 8 9 10 11	RAM DELAY INPUT ROM DELAY INPUT U39-Q7 U39-Q6 U39-Q5 U39-Q4 U39-Q3 U39-Q2 U39-Q2 U39-Q1 U39-Q0 NO DELAY			

RAM = 1 - 10ROM = 2 - 8

RAM/ROM DTACK DELAY OPTIONS FIGURE 4.3

P11-1 (RAM) P11-2 (ROM) CONNECT TO	MAXIMUM RAM/ROM ACCESS TIME 10.0 MHz	MAXIMUM RAM/ROM ACCESS TIME 12.5 MHz	MAXIMUM RAM/ROM ACCESS TIME 16.0 MHz	NO. OF WAIT STATES	NO. OF WAIT CYCLES
OP11-11	155nS	125nS	94nS	0	0
OP11-10	255nS	205nS	156nS	2	1
OP11-9	355nS	295nS	219nS	4	2
OP11-8	455nS	365nS	281nS	6	3
OP11-7	555nS	445nS	344nS	8	4
OP11-6	655nS	525nS	406nS	10	5
OP11-5	755nS	605nS	469nS	12	6
OP11-4	855nS	685nS	531nS	14	7
OP11-3	955nS	765nS	594nS	16	8

NOTE: The OB68K/VME1 may be run at a processor clock speeds of 10.0 MHz and 12.5 MHz. 16.0MHz operation is shown here for comparative and illustrative purposes only.

RAM/ROM DTACK DELAYS TABLE 4.3

4.4 Interrupts (OP3-OP10, OP12-OP14)

The interrupt jumper groups for the OB68K/VME1 are shown on the subsequent pages. Jumper group OP3-OP9 are the inputs to the priority encoder that drive the Interrupt Priority Level (IPL) signals to the 68000 processor. Inputs to this priority encoder may be any combination of the seven VMEbus IRQ (OP3-OP9) lines or the (OBIRQ) ON-BOARD I/O Interrupt Request (OP10).

Individual ON-BOARD Interrupts connect to a separate priority encoder (OP13) which prioritizes the ON-BOARD requests and generates the composite ON-BOARD Interrupt Request (OBIRQ; OP10) signal. The ON-BOARD sources are TIRQ from the 68230 timer, PIRQ from the 68230 parallel handshake lines, and INTRN from the 68681 (DUART). Option OP100, returns the /IACK signal to ON-BOARD devices during Bus-Vectored Interrupts.

During the interrupt acknowledge cycle, the processor outputs the priority level being acknowledged on address lines A1-A3. These three lines are input to a one- of-eightdecoder, U2, and the decoded outputs are brought out to jumper group OP14-20;2. Each priority level can then be jumpered to be either a Bus-Vectored (OP14-20;1) or Auto-Vectored (OP14-20;3) interrupt. For any particular level, if a Bus-Vectored Interrupt is selected, the processor proceeds to read the vector number asserted on D7-D0 by the interrupting device. If the interrupting device does not support Bus-Vectored Interrupts, then an Auto-Vectored Interrupt should be selected for that level. Note that all interrupting devices connected to a particular level must respond in the same way.

Bus-Vectored and Auto-Vectored Interrupts cannot be mixed on the same level.

All ON-BOARD devices support Bus-Vectored Interrupts. Their relative priority is chosen by connecting the ON-BOARD sources to the input of a priority encoder, a PAL16R4 (U3) using jumper group OP13. The output from the PAL16R4 is input to a 74137 decoder that is latched and enabled by the ON-BOARD Interrupt Acknowledge signal (OP10). For Bus-Vectored Interrupts OP100 is connected to the appropriate interrupt level at option OP14-20;2, if Auto-Vectored interrupts are desired for the ON-BOARD devices, the appropriate interrupt level should be connected OP14- 20;2 to OP14-20;3. Outputs from the 74137 are jumpered (OP12) to the Interrupt Acknowledge pins of the ON-BOARD parallel and serial peripheral I/O chips. For the ON-BOARD devices, if Auto-Vector mode is selected, the appropriate Auto-Vector will be accessed and an interrupt service routine would be required to poll the devices to locate the interrupt source, if more than more one ON-BOARD device is connected to the OBIRQ encoder.

NOTE: The priority of the ON-BOARD Interrupt Request inputs (PIRQ,TIRQ and INTRN) at option OP12 must be the same as the ON-BOARD Interrupt Acknowledge outputs (PIACK, TIACK, and IACKN) at option OP13. i.e., If TIRQ is connected to level 1 (OP12 1-5), TIACK must be connected to level 1 (OP13 1-5).

NOTE: ON-BOARD and OFF-BOARD INTERRUPTS can not share the same interrupt level.

Refer to page 23 for configuring VMEbus (Backplane) INTERRUPTS. Refer to page 24 and 25 for configuring up ON-BOARD INTERRUPTS. Refer to page 26 for a composite overview of the INTERRUPTS.

VMEbus (Backplane) Interrupt Jumper Options:

/IACK1 OP14 2 - 3 2 - /IACK2 OP15 2 - 3 2 - /IACK3 OP16 2 - 3 2 - /IACK3 OP16 2 - 3 2 - /IACK4 OP17 2 - 3 2 - /IACK5 OP18 2 - 3 2 - /IACK6 OP19 2 - 3 2 -	1 1 1 1 1

NOTE: Auto-Vector and Bus-Vector can not share the same interrupt level.

On-Board Interrupt Jumper Options:

OP10	On-Board Interrupt Level
1-2 3-4 5-6 7-8 9-10 11-12 13-14	INTR7 INTR6 INTR5 INTR4 INTR3 INTR2 INTR1

NOTE: ON-BOARD AND OFF-BOARD INTERRUPTS CAN NOT SHARE THE SAME LEVEL

On-Board Interrupt Acknowledge					
Level	Bus-Vec	Auto-	-Vec	ctor	
/IACK1 /IACK2 /IACK3 /IACK4 /IACK5 /IACK6 /IACK7	OP100 T OP100 T OP100 T OP100 T OP100 T OP100 T OP100 T	COOP14-2 COOP15-2 COOP16-2 COOP16-2 COOP17-2 COOP18-2 COOP19-2 COOP19-2	OP100 OP100 OP100 OP100 OP100 OP100 OP100	T0 T0 T0 T0 T0 T0 T0	OP14-3 OP15-3 OP16-3 OP17-3 OP18-3 OP19-3 OP20-3

On-Board Interrupt Priority:

All three on-board interrupting devices use the same interrupt level. The user can configure which device has priority when more then one on-board device have an interrupt pending. OP13 selects the priority of the interrupts and OP12 returns the /IACK to the proper device.

NOTE: OP12 must mirror OP13 selection for proper operation.

INTERRUPT OPTIONS - CONTINUED FIGURE 4.4

ON-BOARD INTERRUPTS:		COMMENTS:		
OP10 OP100	Interrupt input level /IACK return from CPU	OP10 and VMEbus interrupts can not share same level. OP100 is jumpered to ROW A at same level as OP10.		
OFF-BOARD INTERRUPTS (From VMEbus)		COMMENTS:		
OP3-9 Interrupt inputs from VMEbus OP14-20 /IACK return from CPU		Can not share level with OP10. Jumper between ROW C and A for VMEbus Auto-Vector devices. Jumper between ROW C and B for VMEbus Bus-Vector devices.		

4.5 Bus Arbitration (OP21-OP35, OP101-OP107)

The bus arbitration functions on the OB68K/VME1 computer board can be divided into two categories, those functions that allow the OB68K/VME1 to be a VMEbus Slot 1 Controller, and those functions that allow the OB68K/VME1 to operate as a VMEbus master. Figure 4.5.1 and 4.5.2 show the location and standard jumper configuration for all the options associated with bus arbitration. Figure 4.5.1 shows a Slot 1 Bus Controller configuration, while Figure 4.5.2 illustrates a Non-Slot 1 Bus Master configuration. The following options are covered in section 4.5.1 and pertain to Bus Controller Slot 1; OP21-28, OP101, OP102, OP105, OP106 and OP107. Non-Controller Master options are covered in section 4.5.2 and include; OP35, OP29, OP30 and OP31-34. All options pertaining to Bus Arbitration should be examined during configuration to prevent cross selection between Controller and Master configurations.

4.5.1 VMEbus Controller Bus Arbitration Options

The OB68K/VME1 provides the full four-level bus arbitration functions to allow multi-master operation of the VMEbus. According to the bus specification, the bus arbiter must reside in Slot 1 and no other master may respond to bus request signals. The arbitration is accomplished using two Programmable Array Logic (PAL*) chips. Following the VMEbus protocol, the arbitrr resolves the bus ownership during the execution of the current cycle, thereby minimizing the overhead time required for switching control of the bus.

The following jumper options are associated with the Slot 1 controller feature of the OB68K/VME1; OP21-28, OP101, OP102 OP105, OP106, and OP107.

OP21-24 connects the arbiter to the VMEbus Bus Grant (BGx) lines. Options OP25- 28 connect the Bus Request (BRx) to the arbiter. If the OB68K/VME1 board is being used as a Slot 1 controller, options OP21-28 must be installed, these options must be removed in all other configurations.

The VMEbus can arbitrate in either the Fixed Arbitration Mode (PRI ARBITER), which grants the bus based on the priority level of the request, or Round Robin (RRS ARBITER), which grants the bus on a first-come first-served basis. The choice is made using option OP105. When OP105 is removed, fixed arbitration is selected; installed, round robin arbitration is selected.

A PRI ARBITER, can drive the Bus Clear Line (BCLR). The Bus Clear Line is used by a PRI ARBITER to inform the MASTER currently in control of the bus that a higher priority request is now pending. The current MASTER is not required to relinquish control within any prescribed time limit. In multi-processor systems, only the Slot 1 Controller (MASTER) can drive BCLR. OP102 is installed if the OB68K/VME1 is used in Slot 1 and fixed arbitration mode is selected (OP105 removed); and removed for all other configurations.

NOTE: If OP102 is installed, then OP105 must be removed, BCLR is not supported with fixed arbitration.

* PAL is a trademark of Monolithic Memories, Inc.

The three options not covered thus far are OP101, OP106 and OP107. These options are associated with the Slot 1 controller features, but do not allow the user additional functionality. Options OP101, OP106 and OP107 must be installed if the OB68K/VME1 is used in Slot 1 and removed otherwise.

OPTIONS	S INSTALLED IF IN SLOT 1
OP101	SYSCLK to VMEbus
OP106	BBUSY to Arbitor
OP107	SYSRESET to Arbitor

4.5.2 VMEbus Master, Bus Arbitration Options

The following text describes the jumper options associated with the requesting and granting of the VMEbus for of the OB68K/VME1; OP35, OP29, and OP30.

The OB68K/VME1 can operate in the mode that releases the bus after each transfer, Release When Done (RWD), or Release On Request (ROR) of another master. The choice is made using jumper OP35 which is removed for RWD, Release When Done, and installed for ROR, Release On Request.

BUS OPERATION MODE OP35			
OP35	MODE	FUNCTION	
IN	ROR	RELEASE ON REQUEST	
OUT	RWD	RELEASE WHEN DONE	
The bus priority level of the OB68K/VME1 board can be any one of the four priority levels. Priority level is selected using options OP29 and OP30. To select a particular bus request level install the appropriate jumper (OP29) for the desired priority level. The bus request level (OP29) and the bus grant level (OP30) must correspond to the same level. After selecting a bus request level, install the corresponding jumper at OP30 for bus grant priority level.

The VMEbus specifications allow several bus masters to share a single bus request/grant level, thus allowing serial arbitration within the parallel arbitration scheme. If a bus grant level is active on the bus and this board does not respond to that level or has not requested the bus, the BGnOUT signal must be passed to the downstream master(s). However, if this board has requested the bus and has been granted bus ownership for the next cycle, the BGnOUT signal corresponding to this board must not be driven onto the VMEbus.

The options associated with the BGnOUT signals are OP31 through OP34. If the priority level of this board is level 3, OP31 is jumpered 1-2 and options OP32, OP33, and OP34 are jumpered 2-3. Failure to install options OP32-34 will disable the Bus Grant to all other masters on the bus.

	BUS	GRANT IN/	OUT	
B=0 0	01	3=0	0.0+0	
	Gre			0.0+0
0.0+0	01	3+0		0 🕩
	ם ו	3 ≠0	03-0	G=9 ()
BGOOUT	BG1	OUT	BG2OUT	BG3OUT

BUS GRA	NT	DAIS	Y-CHAIN
BG0OUT BG1OUT BG2OUT	= (= (= (OP34 OP33 OP32	
BG3OUT	= (OP31	

CONTRO	LLER FUNCTI	ONS (SLOT	1)
OP106	BBUSY to A	rbitor	
OP107	SYSRESET to	o Arbitor	

OB68K/VME1 BUS LEVEL					
BUS REQUEST BUS GRANT					
OP29	OP 30				
LEVEL 2					

						-		
_						OP 34		
					000	OP 3 3		-
					000	OP 32		
	U37		U64		00-0	OP 31	U 3	8
					[i]en	OP24		
					I IIII	OP23		
					[Ten]	OP22		
						OP21		
L	1]	-				7
		ппп			}	JOP28		
	OP29		OP26		OP 35			0230
					1152			00
				L	INE			
					J		,	
				OP10			u	
							1165	
TID	NCTTONS	(SLOT 1)	7					
TN	BUS REC	DUEST OUT	-					
	OP	24	<u> </u>			L]	
	OF	23				2101		
	OF	21	4	L	J			
	00101		1					

BUS DAISY-CHAIN OP34, OP33, OP32, OP31 DAISY-CHAINED THROUGH OP31, OP33, OP34 ACTIVE = OP32 = BG2OUT

BUS	OPERA	TION MO	D
ROR,	OP35	INSTAL	LED

U58

П

EXAMPLE	CONFIGURATION:
DWULL DD	CONT TOOLUITTON .

SLOT 1 CONTROLLER ROR, RELEASE ON REQUEST RRS, ROUND ROBIN ARBITRATION OB68K/VME1 BUS REQUEST/GRANT LEVEL 2

CONTROLLER FUNCTIONS (SLOT					
BUS REQUEST IN	BUS REQUEST OUT				
OP 25 OP 26 OP 27 OP 28	OP24 OP23 OP22 OP21				
SYSCLK	OP101				
/BCLR	OP102				

FIGURE 4.5.1

EXAMPLE CONFIGURATION: SLOT 2 VMEbus MASTER RWD, RELEASE WHEN DONE OB68K/VME1 BUS REQUEST/GRANT LEVEL 3

4.6 Initialize (OP1, OP59)

Jumpers are provided to select whether the onboard reset generator is to drive the VMEbus SYSRESET line or whether this board is to be reset by the SYSRESET signal. The onboard reset generator provides for both power-on and push button reset. If OP59 2-3 and OP1 are installed, SYSRESET will be driven by this board. In this configuration, the RESET instruction will also drive the SYSRESET line. If OP59 1-2 is installed and OP1 is removed, this board will be reset by the SYSRESET signal.

OP1	OP59	RESET OPTIONS
IN	2-3	Board Drives Vmebus SYSRESET
OUT	1-2	VMEbus SYSRESET Drives Board
AL	L OTHER	R COMBINATIONS NOT SUPPORTED

RESET OPTION CONFIGURATION FIGURE 4.6

4.7 RAM/ROM Installation

The OB68K/VME1 provides eight pairs of memory sockets that can be configured for 8K or 32K static RAM chips; or 8K, 16K, 32K, or 64K ROM, PROM, or EPROM chips. Several options must be configured when installing RAM/ROM chips on the OB68K/VME1 board; socket configuration, RAM/ROM type, base address, and block size. Note that only one type of RAM and one type of ROM may be used at any time. Also note that ROM must reside in sockets U25 and U26 to allow the board to reset properly, see Section 3.8 for additional information.

4.7.1 RAM/ROM Socket Configuration Options (OP51-OP58)

Jumper options OP51-OP58 configure the sockets to accept a particular type of RAM/ROM chip. Shown in Figures 4.7.1A through 4.7.1C are the location of the socket configuration options, RAM/ROM type configuration and RAM/ROM socket priority. Figures 4.8.2 and 4.8.3 show compatible RAM/ROM chip pinouts for reference.

FIGURE 4.7A RAM/ROM OPTION CONFIGURATION AND LOCATION

RAM/ROM OPTION CONFIGURATION (CONTINUED)

RAM/ROM TYPE OPTION CONFIGURATION FIGURE 4.7B

ROM	EVEN BYTE	ODD BYTE	RAM
PR7	U18	U5	PR0
PR6	U19	U6	PR1
PR5	U20	U 7	PR2
PR4	U21	U 8	PR3
PR3	U22	U 9	PR4
PR2	U23	U10	PR5
PR1	U24	U11	PR6
PR0	U25	U12	

RAM/ROM SOCKET CONFIGURATION TABLE 4.7C

4.7.2.1 RAM Type Configuration (OP43)

The configuration of option OP43 selects the on-board circuitry for the type of RAM installed in the board, thereby, determining the amount of addressing space for each socket pair. Option OP43 installed, sets the RAM chip size for 32K chips, removed sets the RAM chip size for 8K chips.

RAM SIZE SELECTION OPTION FIGURE 4.7.2.1

4.7.2.2 ROM Type Configuration (OP44,OP45)

The configuration of options OP44 and OP45 selects the on-board circuitry for the type of ROM chips installed. Use table below to configure for ROM type.

ROM TYPE	SIZE	OP 4 4	OP 4 5
2764	8K	2-3	2-3
27128	16K	1-2	2-3
27256	32K	2-3	1-2
27512	64K	1-2	1-2

ROM SIZE SELECTION OPTION FIGURE 4.7.2.2

4.7.3 RAM/ROM Block Size (OP46-OP50, OP61, OP62)

As the size of the memory chips increases, the size of the memory block allocated to on-board RAM and ROM may also need to increase (depending upon the number of chips installed).

The factory standard provides a 32K block of RAM space by connecting OP50-2 to OP50-3. This is increased to a 64K byte block by connecting OP50-1 to OP50-2. Removing jumpers OP49, OP61 and OP62 will further increase the RAM block to 128K, 256K, and 512K bytes, respectively. Choose a block size large enough to accommodate the total amount of RAM installed.

ROM space is selected for 64K bytes as the factory standard. Removing jumpers OP47, OP48 and OP46 will increase the ROM space to 256K, 512K and 1M bytes, respectively. Choose a block size large enough to accommodate the total amount of ROM installed.

When jumper OP61 or OP62 is removed to increase RAM Block Size, the corresponding jumper in S3 <u>must</u> also be removed.

When jumper OP46, OP47 or OP48 is removed to increase ROM Block Size, the corresponding jumper in S4 <u>must</u> also be removed.

ROM CONFIGURATION					
BLOCK SIZE	OP 4 6	OP 4 7	OP48		
128K 256K 512K 1Meg	IN IN OUT OUT	IN OUT IN OUT	IN IN OUT OUT		

RAM CONFIGURATION			
OP 61	OP 62		
IN OUT	IN IN		
	FIGURATI OP61 IN OUT		

OP50	BLOCK SIZE OPTION
1-2	64K or LARGER BLOCK SIZE
2-3	32K BLOCK SIZE
3-4	Setting no longer supported

4.8 Base Address Options (S3, S4, S5)

The base addresses of the RAM, ROM and I/O memory blocks are independently selectable using jumper groups S3, S4, S5, respectively. Each base address is established by comparing the upper address lines with the jumper configuration. The jumper configuration includes the block size options, which determine if an address line is "Active" or a "Don't Care". The S3, S4, and S5 jumpers, are viewed as an eight bit number (seven for ROM). These jumpers may represents a "zero" if installed, a "one" if removed, or a "don't care" if the block size jumper is removed. These jumpers are shown in Figure 4.8 in their factory standard configuration.

RAM ADDRESS = \$00000				
S3 = 1	S3 = RAM BASE ADDRESS			
PIN#	ADDR	ACT	D/C	
1 3 5 7 9 11 13 15	A16 A17 A18 A19 A20 A21 A22 A23	IN IN IN IN IN IN	x	

ROM ADDRESS = \$F80000			
S4 = H	ROM BASH	E ADDI	RESS
PIN#	ADDR	ACT	D/C
1 3 5 7 9 11 13	A17 A18 A19 A20 A21 A22 A23	IN IN OUT OUT OUT OUT	

I/O ADDRESS = \$FF0000				
S5 = 3	S5 = I/O BASE ADDRESS			
PIN#	ADDR	ACT	D/C	
1 3 7 9 11 13 15	A16 A17 A18 A19 A20 A21 A22 A23	OUT OUT OUT OUT OUT OUT OUT		

ACT = Active Address Line:

IN = 0

OUT = 1

D/C = Don't Care Address Line:

Made don't care by BLOCK SIZE options.

See APPENDIX for detailed address configuration tables.

BASE ADDRESS OPTIONS FIGURE 4.8.1

PIN NAME	FUNCTION:		
A1-A13 D0-D7 CE OE PGM Vcc GND UD	ADDRESS LINES OUTPUT LINES CHIP ENABLE OUTPUT ENABLE PROGRAM POWER GROUND USER DEFINABLE SOCKET PINS ON OB68K/VME1 (+5V; R/W; A12; A14; A15)		
NOTE	ONLY EPROMS THAT HAVE		

COMPATIBLE PINOUTS (AS SHOWN) MAY BE USED ON THE OB68K/VME1.

ROM CHIP PINOUT FIGURE 4.8.2

PIN NAME	FUNCTION:
A1-A13 D0-D7 CE	ADDRESS LINES INPUT/OUTPUT LINES CHIP ENABLE OUTPUT ENABLE
R/W Vcc GND UD	READ/WRITE ENABLE POWER GROUND USER DEFINABLE SOCKET PINS ON OB68K/VME1 (+5V; R/W; A12; A14; A15)

NOTE: ONLY STATIC RAMS THAT HAVE COMPATIBLE PINOUTS (AS SHOWN) MAY BE USED ON THE OB68K/VME1.

RAM CHIP PINOUT FIGURE 4.8.3

4.9 Extra I/O Bit (Port C bit 4) Output (OP60)

All of the available jumpers have been described above with the exception of OP60. This is the only pin of the 68230 that is undedicated. It has been terminated on a single wire wrap post to allow for user implementation of the signal, if so desired.

68230 PORT-C BIT4 OPTION FIGURE 4.9

4.10 Miscellaneous Option (OP108)

Jumper OP108 has been included on the OB68K/VME1 to optimize the functionality of the board. This option is shown here for reference ONLY, and should NEVER be changed by the user.

MISCELLANEOUS OPTION FIGURE 4.10

5.0 CONNECTOR PINOUTS

5.1 VMEbus P1 Connector

The P1 connector is pinned out according to the VMEbus specifications given in Table 5.1.

Pin	Row A	Row B	Row C
Number	Signal	Signal	Signal
	orgnar	Dignai	019na1
1	D00	PPCV*	800
2	D00	BCTP*	D00
2	D01		D09
5	D02	ACEALD"	D10
4 E	D03	BGUINA	
5		BGUUUTA	D12
6	D05	BGIIN*	D13
/	D06	BGIOUT*	D14
8	D07	BG21N*	D15
9	GND	BG2OUT*	GND
10	SYSCLK	BG3IN*	SYSFAIL*
11	GND	BG3OUT*	BERR*
12	DS1*	BR0*	SYSRESET*
13	DS0*	BR1*	LWORD*
14	WRITE*	BR2*	AM5
15	GND	BR3*	A23
16	DTACK*	AM0	A22
17	GND	AM1	A21
18	AS*	AM2	A20
19	GND	AM3	A19
20	IACK*	GND	A18
21	IACKIN*	SERCLK(1)	A17
22	IACKOUT*	SERDAT(1)	A16
23	AM4	GND	A15
24	A07	IRQ7*	A14
25	A06	IRO6*	A13
26	A05	IRO5*	A12
27	A04	IRO4*	A11
28	A03	IRO3*	A10
29	A02	IRO2*	A09
30	A01	IRO1*	A08
31	-12V	+5V STDBY	+12V
32	+5V	+5V	+5V
		-	-

(1) See VMEbus Specification (Rev. C.1) for further information on these signals.

* Indicates Low Active.

IEEE P1014 P1 CONNECTOR PINOUT TABLE 5.1

5.2 VMEbus P2 Connector

Row B of the P2 connector is defined for address and data lines needed for thirty-two bit systems. Because the OB68K/VME1 implements a 68000 processor, no connections are made to row B. Rows A and C are for user defined I/O. Both serial ports and the two parallel ports are available on P2 as shown in table 5.2.

A sixty-four pin, insulation displacement DIN 41612 connector may be used to access the I/O signals on the P2 connector. The 64 conductor ribbon cable may be terminated in three 25 contact "D" connectors as shown in Figure 5.2. The corresponding pinout for these connectors is also given in Table 5.2.

VMEbus	ROW C =	= "D"	VMEbus	ROW A	= "D'	
1C 2C 3C 4C 5C	GND PA0 PA2 PA4 PA6 U1	1 2 3 4 5	1A 2A 3A 4A 5A	GND H2 PA1 PA3 PA5 PA7	14 15 16 17 18	PADALLEL
6C 7C 8C 9C 10C 11C 12C	PB6 PB4 PB2 PB0 GND GND	6 7 8 9 10 11 12	6A 7A 8A 9A 10A 11A 12A	PA7 PB7 PB5 PB3 PB1 GND GND	20 21 22 23 24 25	PORT
13C 14C 15C 16C 17C 18C 19C 20C 21C 22C		13 14 15 16 17 18 19 20 21 22	13A 14A 15A 16A 17A 18A 19A 20A 21A 22A	GND RXDB TXDB IP1 0P1 GND	1 2 3 4 5 6 7 8 9 10	SERIAL PORT 0
23C 24C 25C 26C 27C 28C 29C 30C 31C 32C		23 14 15 16 17 18 19 20 21 21 22	23A 24A 25A 26A 27A 28A 29A 30A 31A 32A	GND RXDA TXDA IP0 OP0 GND	1 2 3 4 5 6 7 8 9 10	SERIAL PORT 1

IEEE P1014 P2 CONNECTOR PINOUT TABLE 5.2

P2 CONNECTOR CABLE FIGURE 5.2

5.3 Front Panel Serial Port Connector

Serial port 0 is also brought out to a 26-pin connector on the front panel. The pinout of this connector, given in Table 5.3, is designed so that the user end of the cable will directly drive an RS-232C terminal using a 25-pin "D" type ribbon cable connector. Care should be taken to avoid connecting serial devices to both the front panel & P2 outputs simultaneously.

EXPANDED P3 CONNECTION TABLE

Signal	25 -" D"	P3 Pin	P3 Pin	25 "D"	Signal
GND RxDB TxDB CTS RTS N/C GRD N/C N/C	1 2 3 4 5 6 7 8 9	1 3 5 7 9 11 13 15 -	2 4 6 8 10 12 14 16 -	14 15 16 17 18 19 20 21 22	N/C N/C N/C N/C N/C N/C N/C N/C N/C
N/C	10	-	-	23	N/C
N/C	12	_	_	24	N/C
N/C	13	-	-	-	-

FRONT PANEL SERIAL PORT 0 CONNECTOR PINOUT TABLE 5.3

5.4 Compatible Cable End Connectors

Connector numbers that are compatible with the serial and parallel I/O connectors of the OB68K/VME1 are given below. For your convenience, the numbers of the connectors for the user end of the cables are also listed below.

Serial I/O (Front Panel)

Cable connector for Computer end, 26 socket -	Berg # 65484-009 Ansley # 609-2641
Cable connector for Terminal/Modem end: 25 pin "D"	-
	Berg # 66167-025
P2 Connector Cable	Ansley # 609-25P
Cable Connector at Computer end, 50 socket -	Berg # 65484-021 Ansley # 609-5041
Cable connector for Terminal/Modem end; 3 - 25 pin	"D" -
	Berg # 66167-025
	Ansley # 609-25P

NOTE that these are common ribbon cable connectors, and although the part numbers above are only for the Berg and T & /Ansley parts, equivalent connectors are available from several vendors.

For user convenience, Omnibyte can furnish an assembled parallel and serial and P2 connector cable. Order numbers for these cables are given in Section 9.0. The (front panel) serial I/O cable is a 26 conductor cable terminated in a 26 contact connector at the computer end and terminated in a 25 pin "D" connector on the user end. The P2 Connector (64 contact) connector and cable carry the signals from both serial ports and the two parallel ports. It is split into three sections, each terminated with a 25 pin "D" connector. See Figure 5.2 for a diagram of the P2 Connector Cable.

6.0 MEMORY DECODING

According to the VMEbus specification, the OB68K/VME1 supports a 16 megabyte address space using only connector P1. From this space, three blocks of memory are selected for use by I/O and onboard RAM and onboard ROM space. Any address that does not fall within these three blocks automatically defaults to global VMEbus memory.

6.1 Memory Map

The factory standard memory map is shown in Figure 6.1. Jumper setting for this memory map are as follows. See section 4.9 for additional information.

S3	Ram Base Address	00000000 = \$00
S4	Rom Base Address	00011111 = F8
S5	I/O Base Address	11111111 = \$FF

 $\begin{array}{l} JUMPER IN = 0\\ JUMPER OUT = 1 \end{array}$

FIGURE 6.1 MEMORY MAP

6.2 I/O Address Assignments

Tables 6.2.1 and 6.2.2, show the address assignments for the serial and parallel circuits, respectively. The values given are the factory standard address assignments that may be relocated to any other 64K byte boundary using Jumper groups S3, S4 and S5. Note that on-board parallel and serial peripherals have 8- bit paths and that they are addressed at odd memory locations only.

68681 SERIAL PORT: PORT 0 = REGISTER B, PORT 1 = REGISTER A					
READ (R/WN=1)	WRITE (R/WN=0)	BASE ADDRESS			
MODE REGISTER A (MR1A, MR2A) STATUS REGISTER A (SRA) *RESERVED* RX HOLDING REGISTER A (RHRA) INPUT PORT CHANGE REG. (IPCR) INTERRUPT STATUS REG. (ISR) COUNTER/TIMER UPPER (CTU) COUNTER/TIMER LOWER (CTL) MODE REGISTER B (MR1B, MR2B) STATUS REGISTER B (MR1B, MR2B) STATUS REGISTER B (SRB) *RESERVED* RX HOLDING REGISTER B (RHRB) INTERRUPT VECTOR REG. (IVR) INPUT PORT START COUNTER COMMAND STOPCOUNTERCOMMAND	MODE REGISTER A (MR1, MR2) CLOCK SELECT REG. A (CSRA) COMMAND REGISTER A (CRA) TX HOLDING REGISTER A (THRA) AUX. CONTROL REGISTER (ACR) INTERRUPT MASK REG. (IMR) C/T UPPER REGISTER (CTUR) C/T LOWER REGISTER (CTLR) MODE REGISTER B (MR1B, MR2B) CLOCK SELECT REG. B (CSRB) COMMAND REGISTER B (CRB) TX HOLDING REGISTER B (THRB) INTERRUPT VECTOR REG. (IRB) OUTPUT PORT CONF. REG. (OPCR) SET OUTPUT PORT BITS COMMAND RESET OUTPUT PORT BITS COMMAND	SFFFF81 SFFFF83 SFFFF85 SFFFF87 SFFFF89 SFFFF8B SFFFF8B SFFFF91 SFFFF93 SFFFF93 SFFFF97 SFFFF97 SFFFF99 SFFFF99 SFFFF99B			
NOTE: 1) **READS AND/OR WI LOCATIONS WILL SINCE THESE ARI IMPLEMENTED LOC	** RITES TO THESE ADDRESS CAUSE TRAP ERRORS, E UNDEFINED AND UN- CATIONS	SFFFFA1 SFFFFA3 SFFFFA7 SFFFFA9 SFFFFAB SFFFFAD SFFFFAD			
2) *RESERVED*: REA REGISTERS WILL DIAGNOSTIC MODI WILL EXIT THIS	ADING OF THESE RESERVED L PLACE THE DUART IN A E; ONLY A HARDWARE RESET MODE.	\$FFFFB1 \$FFFFB3 \$FFFFB5 \$FFFFB7 \$FFFFB9 \$FFFFBB \$FFFFBD \$FFFFBD \$FFFFBF			

REGISTER ASSIGNMENT FOR 68681 DUART TABLE 6.2.1

The following table is for users who use off-sets from a pointer register. For this example, the pointer register will be A0, and will have \$FFFF81 written into it.

Address	Hex Off-Set	Decimal Off-Set	ADDRESS	HEX Off-Set	Decimal Off-Set
\$FFFF81	\$0	0	\$FFFF91	\$10	16
FFFF83	\$2	2	FFFF93	\$12	18
FFFF85	\$4	4	FFFF95	\$14	20
FFFF87	\$6	6	FFFF97	\$16	22
FFFF89	\$8	8	FFFF99	\$18	24
FFFF8B	\$A	10	FFFF98	\$1A	26
FFFF8B	\$C	11	FFFF9B	\$1C	28

PI/T PARALLEL POP	RT 68230	
REGISTER NAME	MNEMONIC	PHYSICAL ADDRESS
Port General Control Reg.	PGCR	\$FFFFC1
Port Service Request Reg.	PSRR	\$FFFFC3
Port A Data Direction Reg.	PADDR	\$FFFFC5
Port B Data Direction Reg.	PBDDR	\$FFFFC7
Port C Data Direction Reg.	PCDDR	\$FFFFC9
Port Interrupt Vector Reg.	PIVR	\$FFFFCB
Port A Control Reg.	PACR	\$FFFFCD
Port B Control Reg.	PBCR	\$FFFFCF
Port A Data Reg.	PADR	\$FFFFD1
Port B Data Reg.	PBDR	\$FFFFD3
Port A Alternate Reg.	PAAR	\$FFFFD5
Port B Alternate Reg.	PBAR	\$FFFFD7
Port C Data Reg.	PCDR	\$FFFFD9
Port Status Reg.	PSR	\$FFFFDB
N.A.		\$FFFFDD
N.A.		\$FFFFDF
Timer Control Reg.	TCR	\$FFFFE1
Timer Interrupt Vector	TIVR	\$FFFFE3
N.A.		\$FFFFE5
Counter Preload Reg High	CPRH	\$FFFFE7
Counter Preload Reg Middle	CPRM	\$FFFFE9
Counter Preload Reg Low	CPRL	\$FFFFEB
N.A.		\$FFFFED
Count Reg High	CNTRH	\$FFFFEF
Count Reg Middle	CNTRM	\$FFFFF1
Count Reg Low	CNTRL	\$FFFFF3
Timer Status Reg	TSR	\$FFFFF5

REGISTER ASSIGNMENTS FOR 68230 PI/T TABLE 6.2.2

The following table is for users who use off-sets from a pointer register. For this example, the pointer register could be A0, and would have \$FFFF81 written into it.

ADDRESS H	lex Off-Set	Decmial Off-set	ADDRESS	Hex Off-Set	Decmial Off-Set
\$FFFFC1 \$FFFFC3 \$FFFFC5 \$FFFFC7 \$FFFFC9 \$FFFFCB \$FFFFCD \$FFFFCD \$FFFFD1 \$FFFFD3 \$FFFFD3 \$FFFFD5	\$0 \$2 \$4 \$6 \$8 \$A \$C \$E \$10 \$12 \$14	0 2 4 6 8 10 12 14 16 18 20	\$FFFFD9 \$FFFFDB \$FFFFDD \$FFFFDF \$FFFFE3 \$FFFFE3 \$FFFFE5 \$FFFFE7 \$FFFFE9 \$FFFFE8 \$FFFFEB \$FFFFEB	\$18 \$1A \$1C \$1E \$20 \$22 \$24 \$26 \$28 \$28 \$2A \$2C	24 26 28 30 32 34 36 38 40 42 44

6.3 Address Modifier Codes

On each memory access, VMEbus masters must assert an allowed value for the address modifier codes AM0...AM5. The OB68K/VME1 outputs FC0, FC1 and FC2 on AM0, AM1 and AM2, respectively. Address modifier 3 is strapped high because all allowed AM codes require AM3 to be be high. AM5 is high for all short address (16-bit) and standard address (24-bit) data transfers. Address modifier four distinguishes between standard accesses (AM4=High) and short accesses (AM4=L). Only I/O accesses are addressed using the short address mode. The following address modifier codes are supported:

Hexadecimal Code	Address Modifier	Functions
3E	HH HHHL	Std. Supervisory Prog.
3D	HH HHLH	Std. Supervisory Data
3A	HH HLHL	Std. User Prog.
39	HH HLLH	Std. User Data
2D	HL HHLH	Short Supervisory I/O
29	HL HLLH	Short User I/O

Note: Only the I/O space is accessed using the short (16-bit address) mode.

ADDRESS MODIFIER CODES TABLE 6.3

7.0 VME1bug TERMINAL MONITOR/DEBUGGER PROGRAM

A terminal monitor/debugger program, VME1bug, is available from Omnibyte for use with your OB68K/VME1. This program is licensed from Motorola Inc. by Omnibyte and is provided as object code in two 16K (27128) PROMS.

VME1bug allows the usual terminal interaction features of display, modify, load and dump memory, run programs with breakpoints, and register display and modify. In addition VME1bug includes a HELP display, memory test, block fill, block move and one line assembler/disassembler capabilities.

8.0 WARRANTY INFORMATION

All items manufactured and sold by Omnibyte Corporation are warranteed against defects in materials or workmanship and are guaranteed to meet specifications in effect at the time of manufacture for a period of (2) years from the date of delivery, to the original purchaser only.

Omnibyte's responsibility under this warranty is limited to repair or replacement of any item (at our option) returned to the factory during the warranty period, freight prepaid. Omnibyte shall either repair or replace the item, provided that the failure of the item, in our opinion, was not due to abuse, modification or acts of God. EXCEPT AS OTHERWISE INDICATED, THERE ARE NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Omnibyte's liability shall be limited to the purchase price of the item or items, and Omnibyte shall not be responsible or liable for any lost profits or consequential damages, or for any claim against the purchaser by any party.

"NOTE"

<u>ALL</u> BOARDS BEING RETURNED TO OMNIBYTE CORPORATION FOR REPAIR <u>MUST</u> BE ACCOMPANIED WITH AN RMA NUMBER (RETURN MATERIAL AUTHORIZATION). THIS NUMBER WILL BE ISSUED TO YOU BY OMNIBYTE WHEN REQUESTING AUTHORIZATION TO RETURN YOUR BOARD. ALSO, AN EXPLANATION OF THE PROBLEM AND NAME AND PHONE NUMBER OF THE PERSON USING THE BOARD WHEN THE PROBLEM OCCURRED SHOULD BE ENCLOSED WITH THE RETURNED BOARD. THIS PROCEDURE WILL HELP US TO SPEED UP THE REPAIR AND RETURN OF YOUR BOARD.

ANY BOARDS RECEIVED BY OMNIBYTE CORPORATION WITHOUT A RMA NUMBER WILL BE RETURNED TO SENDER, UNTIL A RMA NUMBER HAS BEEN OBTAINED.

9.0 ORDERING INFORMATION

Order numbers for the Omnibyte OB68K/VME1 computer, Monitor/Debugger program and other accessories are as follows:

OB68K/VME1 Single Board Computer (0K RAM,12.5MHz).....OB68K/VME1-0K-00-12
OB68K/VME1 Single Board Computer (16K RAM,12.5MHz)....OB68K/VME1-16K-00-12
VME1bug in two 16K X 8 PROMS.....OB68K/VERSA-VME1-128K
Front Panel Serial I/O Cable Assy.-10' longOB68K/SIC
VME1 P2 Connector Interface CableOBFG01285
 (See Figure 5.2 for details)
Additional pair RAM chips (2-8KX8 CMOS, 120nS).....OBSA01839

OMNIBYTE's terms are: NET 30 DAYS with approved credit. The F.O.B. point is West Chicago, Illinois. Items will be shipped United Parcel Service surface unless otherwise instructed.

THIS PAGE LEFT BLANK

10.0 OB68K/VME1 SCHEMATIC DIAGRAMS

The electrical schematic diagrams are shown in Figures 10.1, 10.2 and 10.3. Factory standard jumper options are shown as dotted lines in these figures. The parts list for the OB68K/VME1 is listed in Table 10.1.

"NOTE"

THE FOLLOWING INFORMATION CONTAINS VALUABLE PROPRIETARY INFORMATION WHICH REMAINS PROPERTY OF OMNIBYTE CORPORATION AND IS COPYRIGHTED. IT IS PROVIDED HERE FOR REFERENCE AND REPAIR PURPOSES ONLY. IT MAY NOT BE DUPLICATED FOR ANY REASON WITHOUT THE EXPRESS WRITTEN PERMISSION OF OMNIBYTE CORPORATION.

PART NUMBER	DESCRIPTION	# OF PIECES	LOCATION
OBCN00406	26 RT ANGLE PIN HEADERS	1	P3
OBCN01160	705-C133-714A-96P Connector	2	P1. P2
OBCP00104	1 uF CAP	19	(8, 14, 17, 19, 21, 22)
020100101	.1 41 014	13	23, 30, 31, 32-38, 40-42
OBCP00105	.47 uF CAP	1	C1
OBCP00106	1.0 uF CAP	1	C6
OBCP00108	10 uF CAP (TANTALUM)	1	C15
OBCP00110	47 uF CAP	1	C2
OBCP00881	.22 uF CAP	8	C3, 7, 16, 20, 24,
			25, 26, 28
OPCP00916	470 pF CAP	5	C4, 5, 9, 10, 13
OBCP01050	4.7 pF CAP	1	C11
OBCP01051	12 pF CAP	1	C12
OBDI00137	1N916	1	D1
OBHW01186	2-56 NUT	4	P1. P2
OBHW01187	$2-56 \times 1/2$ IN MACHINE SCREW	4	P1. P2
OBTC00192	741.508	1	U48
OBTC00209	74574	1	1160
OBTC00340	MC682301.10 PT/T	1	1134
OBTC00364	PAI_34_0 (PAI_16I_8CN)	1	U16
OBTC00585	PAI_{33} (PAL16R4ACN)	1	113
OBTC00795	741.5137	1	111
OBTC00822	74128	1	1161
OBTC00824	741.20	2	1147 1162
OBIC00024	MC1488/75188P	1	1144
OBTC00833	MC1489/75189P	1	1145
OB1C00033	SCN68681ACTN40 DUART	1	1131
OBTC01040	$12 5MH_7 MC68000 TN / P/ PK$	1	1143
OBIC01040	74LS123	2	1132 1133
OBTC01154	7450120	1	1137
OBIC01154	745120	1	
OBIC01155	251 c2521 DCB		1115 $1126-1128$
OBIC01150	20102021FCB	4	013, 020-020
OBIC01157	74532	2	1138 1151
OBIC01150	74152	2	
OBIC01139		1 1	1152
OBIC01103	MC74E04	⊥ 1	1136
OBIC01191	9K V 9 CMOS DAM UM6264-12D	2	
OBIC01203	741 C20	2	
OBIC01409	DAT 25 0 (020152)	2	1163
OBIC01514	PALS3.0 (025133) PAT36.0 ($PAT-AMD$ 22010)	1	1135
OBIC01515	$74\Delta IS641 = 1$	⊥ 1	1149
OBICU1501	7472041-1	⊥ 1	1157
OBICU1302	170244 0 1707 0 (DAL201 0 ACM)	1	ττ <i>ι</i> 1
OBIC01505	PAT 28 0 (PAT 201 0ACM)	1	
OBICU1303	74ALS645-1N	- -	1153 1154 1155 1156
OBICATIO	NT-CEOGUAL	υ	U58, U59
OBJP00809	B-JUMP	53	STD. FACTORY CONFIG

OB68K/VME1 PARTS LIST TABLE 10.1

PART NUMBER	DESCRIPTION	# OF PIECES	LOCATION
OBLE00153 OBLE00835	SLOT SELECT LEDS (RED) DIALIGHT-YELLOW	3 2	L2, L3, L4 L1, L5
OBPC01918	VME Circuit Board	1	
OBRE00011	100 OHM 1/4W 5%	2	R2, R6
OBRE00041	10K OHM 1/4W 1%	2	R3, R4
OBRE00042	10K OHM 1/4 5%	1	R7
OBRE00048	33K OHM 1/4W 5%	1	R200
OBRE00053	1M OHM 1/4W 5%	1	R5
OBSA00529	2 PIN BERG STICK	7	OP11, OP35, OP43, OP101,
			OP102, OP103, OP105
OBSA00649	7 PIN BERG STICK	1	OP14
OBSA00759	3 PIN BERG STICK	5	OP44, OP45, OP50, OP59
			OP59, OP108
OBSA00760	4 PIN BERG STICK	1	OP31
OBSA00868	1 X 9 PIN STRIP	1	OP11
OBSA00921	1 PIN BERG STICK	3	OP50,OP60, OP100
OBSA00987	2 X 3 PIN STRIP	4	OP12, OP13, OP27, OP29
OBSA00988	2 X 2 PIN STRIP	2	OP1, OP106
OBSA01060	2 X 8 PIN STRIP	2	S3, S5
OBSA01061	2 X 6 PIN BERG STRIP	3	OP51, OP52, OP53
OBSA01062	2 X 4 PIN STRIP	4	OP21, OP28, OP31, OP46
OBSA01280	2 X 7 PIN STRIP	4	OP3, OP10, OP14, S4
OBSA01960	2 X 30 PIN STRIP	1	OP54 - OP58
OBSK00382	20 PIN LOW PROFILE SOCKET	3	U3, U16, U63
OBSK00385	28 PIN LOW PROFILE SOCKET	16	U5-U12, U18-U25
OBSK00386	40 PIN LOW PROFILE SOCKET	1	U31
OBSK00574	48 PIN SOCKET	1	U34
OBSK01056	68 PIN 'R' PACKAGE SOCKET	1	U43
OBSK01476	24 PIN SLIM LOW PROFILE SKT	3	U16, U41, U42
OBSK01519	4 PIN OSCILLATOR SOCKET	2	U40, U50
OBSP00064	4.7K OHM SIP (10-PIN)	5	SP1-3, SP8, SP9
OBSP00913	47K OHM 10 PIN SIP	4	SP4-7
OBSP01053	4.7K OHM 4 PIN SIP	1	SIP25
OBSW00163	PUSH BUTTON SWITCH	1	SW1
OBXT01020	3.6864 MHz CRYSTAL	1	X1
OBXT01764	25.0 MHz OSCILLATOR	1	U40
OBXT01151	16.0 MHz OSCILLATOR	1	U 50

OB68K/VME1 PARTS LIST - CONTINUED TABLE 10.1

FRONT PANEL

PART NUMBER	DESCRIPTION	# OF PIECES
OBCH01226 OBHW01217 OBHW01218 OBHW01219 OBHW01220 OBHW01221 OBHW01223 OBHW01224 OBHW01225	VME FRONT PANEL HEXAGON NUT; M 2.5 SPRING WASHER (LOCKWASHER) FLATHEAD SCREW M2.5 X 10 FILLISTER HEAD SCREW (X10) CAPTIVE SCREW RETAINER COLLAR SCREW P.C. BOARD HOLDER FRONT PANEL HANDLE	1 3 1 2 2 2 3 2

OB68K/VME1 PARTS LIST - CONTINUED TABLE 10.1

11.0 APPENDICES

The Appendices in this manual contain information pertinent to the operation of the OB68K/VME1 Single Board Computer.

11.1 Appendix I (RAM/ROM CONFIGURATION TABLES)

Appendix I contains information and tables to help the user configure the RAM and ROM devices on the OB68K/VME1.

APPENDIX I (RAM/ROM CONFIGURATION TABLES)

The appendix is divided into two sections. Section one deals with configuring the ROM while section two deals with configuring RAM.

ROM CONFIGURATION:

To properly configure the Base Address for the On-Board ROM requires the following steps to be completed:

- Step 1. Configure OP44 and OP45 for type of ROM chips (see section 4.7.2.1).
- Step 2. Configure OP51-OP58, as needed, for type of ROM chip (see section 4.7.1).
- Step 3. Configure S4 for base address per following charts.
- Step 4. Verify proper /DTACK setting for type of ROM chips.

The following charts are used to configure ROM base address via S4.

- 0 = Jumper installed.
- 1 = Jumper removed.

B = Jumper must be removed for block size requirement.

NOTE: Corresponding OPtion jumpers must also be removed:

ROM SIZE = 2764

- B in column 1 = OP47 removed.
- B in column 3 = OP48 removed.
- B in column 5 = OP46 removed.

ROM = 27	ROM = 2764 S4 CONFIGURATION							
ADDR:	13	11	9	7	5	3	1	
\$000000 020000 040000 060000 080000 0A0000 0C0000 0E0000	0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0	

ROM = 2764 S4 CONFIGURATIO							
ADDR:	13	11	9	7	5	3	1
\$100000 120000 140000 160000 180000 1A0000 1C0000 1E0000	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 1 1 1 1 1	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1

ROM SIZE = 2764 (CONTINUED)

ROM = 276	54	S4		ONFI	GUE	ATI	ON	
ADDR:	13	11	9	7	5	3	1	
\$200000 220000 240000 260000 280000 2A0000 2C0000 2E0000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0	11111111	000000000000000000000000000000000000000	0 0 0 1 1 1	0 1 1 0 1 1	0 1 0 1 0 1 0 1	
ROM = 276	54	S4	1 CC) NF]	GUF	RATI	ON	
ADDR:	11	9	7	5	3	1		
\$400000 420000 440000 460000 480000 480000 4A0000 4C0000 4E0000	000000000000000000000000000000000000000	1 1 1 1 1 1	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 1 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1	
ADDR:	13	11	9	7	5	3	1	
\$600000 620000 640000 660000 680000 6A0000 6C0000 6E0000	0 0 0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	
ROM = 2764 S4 CONFIGURA					RATI	ION		
ADDR:	13	11	9	7	5	3	1	
\$800000 820000 840000 860000 880000 8A0000 8C0000 8E0000	1 1 1 1 1 1	0 0 0 0 0 0 0 0		0 0 0 0 0 0 0	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	

ROM = 276	54	S4 CONFIGURATION					ON
ADDR:	13	11	9	7	5	3	1
\$300000 320000 340000 360000 380000 3A0000 3C0000 3E0000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0	1111111111	1 1 1 1 1 1	0 0 0 1 1 1 1	0 1 1 0 1 1	0 1 0 1 0 1 0 1
ROM = 276	54	S4		ONF 1	GUF	RATI	ON
ADDR:	13	11	9	7	5	3	1
\$500000 520000 540000 560000 580000 5A0000 5C0000 5E0000	000000000000000000000000000000000000000	1 1 1 1 1 1 1	000000000000000000000000000000000000000	1 1 1 1 1 1 1	0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1
ROM = 2764 S4 CONFIGURATION						ON	
ADDR:	13	11	9	7	5	3	1
\$700000 720000 740000 760000 780000 780000 720000 7E0000	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 1 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0
ROM = 27	64	S4		ONFI	GUF	RATI	ION
ADDR:	13	11	9	7	5	3	1
1							

ROM SIZE = 2764 (CONTINUED)

the second s		_					
ROM = 27	54	S4		ONFI	GUE	RATI	ON
ADDR:	13	11	9	7	5	3	1
\$A00000 A20000 A40000 A60000 A80000 AA0000 AC0000 AE0000	1 1 1 1 1 1 1	000000000000000000000000000000000000000	1 1 1 1 1 1 1	000000000000000000000000000000000000000	0 0 0 1 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1
ROM = 27	54	S4		ONFI	GUF	RATI	ION
ADDR:	13	11	9	7	5	3	1
\$C00000 C20000 C40000 C60000 C80000 CA0000 CC0000 CE0000	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1
ROM = 27	54	S4		ONFI	GUF	RATI	ION
ADDR:	13	11	9	7	5	3	1
\$E00000 E20000 E40000 E60000 E80000 EA0000 EC0000 EE0000	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	000000000000000000000000000000000000000	0 0 0 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0

	ROM = 276	54	S4		ONFI	GUI	RATI	ION
	ADDR:	13	11	9	7	5	3	1
	\$B00000 B20000 B40000 B60000 B80000 BA0000 BC0000 BE0000	1 1 1 1 1 1 1	000000000000000000000000000000000000000	11111111111	111111111111	0 0 0 1 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1
1	ROM = 276	54	S	4 CC	ONFI	GUI	RAT	ION
	ADDR:	13	11	9	7	5	3	1
	\$D00000 D20000 D40000 D60000 D80000 DA0000 DC0000 DE0000	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1	0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1
	ROM = 27	54	S	4 CC	ONF:	IGUI	RAT	ION
	ADDR:	13	11	9	7	5	3	1
	\$F00000 F20000 F40000 F60000 F80000 FA0000 FC0000 FE0000	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0

			ROM	SIZE	=	2

M SIZE = 27128

ROM = 27128 S4 CONFIGURATION								
ADDR:	13	11	9	7	5	3	1	
\$000000 040000 080000 0C0000	00000	0000	00000	0000	0 0 1 1	0 1 0 1	B B B B	

IL

ROM = 27:	L28	S	4 CC	ONFI	IGUI	RATI	ION
ADDR:	13	11	9	7	5	3	1
\$100000 140000 180000 1C0000	0000	0 0 0 0	0 0 0 0	1 1 1 1	0 0 1 1	0 1 0 1	ввв

ROM SIZE = 27128 (CONTINUED)

ROM = 27128 S4 CONFIGURATION							
ADDR:	13	11	9	7	5	3	1
\$200000 240000 280000 2C0000	0000	000000	1 1 1 1	0000	0 0 1 1	0 1 0 1	8 8 8 8 8

ROM = 272	128	S	4 CC	ONF	GUI	RAT	ION
ADDR:	13	11	9	7	5	3	1
\$400000 440000 480000 4C0000	0 0 0 0	1 1 1 1	0 0 0 0	0000	0 0 1 1	0 1 0 1	B B B B

ROM = 273	L28	S	4 CC	ONFI	IGUE	RAT I	ION
ADDR:	13	11	9	7	5	3	1
\$600000 640000 680000 6C0000	0 0 0 0	1 1 1 1	1 1 1 1	0 0 0 0	0 0 1 1	0 1 0 1	B B B B B

ROM = 272	L28	S	4 CC	ONF	GUI	RATI	ION
ADDR:	13	11	9	7	5	3	1
\$800000 840000 880000 8C0000	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	B B B B

ъ

ROM = 27128 S4 CONFIGURATION								
ADDR:	13	11	9	7	5	3	1	
\$A00000 A40000 A80000 AC0000	1 1 1 1	0 0 0 0	1 1 1 1	0 0 0 0	0 0 1 1	0 1 0 1	B B B B	

ROM = 27128 S4 CONFIGURATION							
ADDR:	13	11	9	7	5	3	1
\$300000 340000 380000 3C0000	00000	00000	1 1 1 1	1 1 1 1	0 0 1 1	0 1 0 1	B B B B B

ROM = 27128 S4 CONFIGURATION								
ADDR:	13	11	9	7	5	3	1	
\$500000 540000 580000 5C0000	0 0 0 0	1 1 1 1	00000	1 1 1 1	0 0 1 1	0 1 0 1	B B B B B B	

ROM = 27128 S4 CONFIGURATION									
ADDR:	13	11	9	7	5	3	1		
\$700000 740000 780000 7C0000	00000	1 1 1 1	1 1 1 1	1 1 1 1	0 0 1 1	0 1 0 1	8 8 8 8		

ROM = 27128 S4 CONFIGURATION									
ADDR:	13	11	9	7	5	3	1		
\$900000 940000 980000 9C0000	1 1 1 1	000000	0 0 0 0	1 1 1 1	0 0 1 1	0 1 0 1	B B B B B		

ROM = 27128 S4 CONFIGURATION									
ADDR:	13	11	9	7	5	3	1		
\$B00000 B40000 B80000 BC0000	1 1 1 1	0 0 0 0	1 1 1 1	1 1 1 1	0 0 1 1	0 1 0 1	B B B B B		

ROM SIZE = 27128 (CONTINUED)

ROM = 273	128	S4	4 CC	ONFI	IGUI	RATI	ION
ADDR:	13	11	9	7	5	3	1
\$C00000 C40000 C80000 CC0000	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	B B B B

ROM = 27128 S4 CONFIGURATION								
ADDR:	13	11	9	7	5	3	1	
\$E00000 E40000 E80000 EC0000	1 1 1 1	1 1 1 1	1 1 1 1	0000	0 0 1 1	0 1 0 1	B B B B B	

ROM = 27128 S4 CONFIGURATION								
ADDR:	13	11	9	7	5	3	1	
\$D00000 D40000 D80000 DC0000	1 1 1 1	1 1 1 1	0000	1 1 1 1	0 0 1 1	0 1 0 1	B B B B	

ROM = 27128 S4 CONFIGURATION									
ADDR:	13	11	9	7	5	3	1		
\$F00000 F40000 F80000 FC0000	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0 0 1 1	0 1 0 1	B B B B B		

ROM SIZE = 27256

ROM = 27256 S4 CONFIGURATION								
ADDR:	13	11	9	7	5	3	1	
\$000000 080000	0 0	0 0	0 0	0 0	0 1	B B	B B	

ROM = 272	256	S4	4 CC	ONF	IGUI	RATI	EON
ADDR:	13	11	9	7	5	3	1
\$200000 280000	0 0	00	1 1	0 0	0 1	B B	B B

ROM = 272	= 27256 S4 CONFIGURATION							
ADDR:	13	11	9	7	5	3	1	
\$400000 480000	0 0	1 1	0 0	0 0	0 1	B B	B B	

ROM = 27256 S4 CONFIGURATION								
ADDR:	13	11	9	7	5	3	1	
\$100000 180000	0 0	0 0	0 0	1 1	0 1	B B	B B	

ROM = 27256 S4 CONFIGURATION								
ADDR:	13	11	9	7	5	3	1	
\$300000 380000	0 0	0 0	1 1	1 1	0 1	B B	B B	

ROM = 27256 S4 CONFIGURATION							
ADDR:	13	11	9	7	5	3	1
\$500000 580000	0 0	1 1	0 0	1 1	01	B B	В В
ROM SIZE = 27256 (CONTINUED)

							_			
ROM = 272	256	S4	4 C0	ONFI	IGUI	RATI	ION			
ADDR:	13	11	9	7	5	3	1			
\$600000 680000	0 0	1 1	1 1	0 0	0 1	B B	B B			
ROM = 27256 S4 CONFIGURATION										
ADDR:	13	11	9	7	5	3	1			
\$800000 880000	1 1	0 0	0 0	0 0	0 1	B B	B B			
ROM = 272	256	S4		ONF'	GUI	TAS	LON			
ADDR:	13	11	9	7	5	3	1			
\$A00000 A80000	1 1	0 0	1 1	0 0	0 1	B B	B B			
ROM = 272	256	S4		ONF	GUE	ATI	ION			
ADDR:	13	11	9	7	5	3	1			
\$C00000 C80000	1	1 1	0 0	0 0	0 1	B B	B B			
POM - 27	256		1 00		CIII	<u>א היי</u>				
1000 - 277	1									
ADDR:	13	11	9	7	5	3	1			
\$E00000 E80000	1 1	1 1	1 1	0 0	0 1	B B	B B			

ROM = 272	256	S	4 C(ONF	GUF	RATI	ION			
ADDR:	13	11	9	7	5	3	1			
\$700000 780000	0 0	1 1	1 1	1 1	0 1	B B	B B			
ROM = 27256 S4 CONFIGURATION										
ADDR:	13	11	9	7	5	3	1			
\$900000 980000	1 1	0 0	0 0	1 1	0 1	B B	B B			
ROM = 27256 S4 CONFIGURATION										
ADDR:	13	11	9	7	5	3	1			
\$B00000 B80000	1 1	0 0	1 1	1 1	0 1	B B	B B			
ROM = 272	256	S4	4 CC	ONFI	GUF	RATI	ION			
ADDR:	13	11	9	7	5	3	1			
\$D00000 D80000	1 1	1 1	0 0	1 1	0 1	B B	B B			
ROM = 27256 S4 CONFIGURATION										
ADDR:	13	11	9	7	5	3	1			

ROM SIZE = 27512

\$F00000 F80000 1 1 1 1 0 B B 1 1 1 1 1 B B

ROM = 27512 S4 CONFIGURATION										
ADDR:	11	9	7	5	3	1				
\$000000	0	0	0	0	в	в	в			

ROM = 27512 S4 CONFIGURATION									
ADDR:	11	9	7	5	3	1			
\$100000	0	0	0	1	в	в	в		

ROM SIZE = 27512 (CONTINUED)

ROM = 275	512	S	4 CC	ONF	GUE	ATI	ION				
ADDR:	13	11	9	7	5	3	1				
\$200000	0	0	1	0	в	в	в				
ROM = 275	512	S	4 CC	ONF	GUF	TAS	ION				
ADDR:	13	11	9	7	5	3	1				
\$400000	0	1	0	0	в	в	в				
ROM = 27512 S4 CONFIGURATION											
ADDR:	13	11	9	7	5	3	1				
\$600000	0	1	1	0	в	в	В				
ROM = 27512 S4 CONFIGURATION											
ADDR:	13	11	9	7	5	3	1				
\$800000	1	0	0	0	в	в	в				
ROM = 275	512	S	4 CC	ONF	GUF	RATI	ION				
ADDR:	13	11	9	7	5	3	1				
\$A00000	1	0	1	0	в	в	В				
ROM = 275	512	S4	4 CC	ONF	LGUF	RATI	ION				
ADDR:	13	11	9	7	5	3	1				
\$C00000	1	1	0	0	в	в	в				
ROM = 275	512	S4	4 CC	ONF	GUF	RATI	ION				
ADDR:	13	11	9	7	5	3	1				
\$E00000	1	1	1	0	в	в	в				

ROM = 27512 S4 CONFIGURATION											
ADDR:	13	11	9	7	5	3	1				
\$300000	0	0	1	1	В	В	в				
ROM = 275	512	S	4 CC	ONFI	GUE	RATI	ION				
ADDR:	13	11	9	7	5	3	1				
\$500000	0	1	0	1	в	в	В				
ROM = 27512 S4 CONFIGURATION											
ADDR:	13	11	9	7	5	3	1				
\$700000	0	1	1	1	в	в	В				
ROM = 27512 S4 CONFIGURATION											
ADDR:	13	11	9	7	5	3	1				
\$900000	1	0	0	1	в	в	в				
ROM = 275	512	S	4 CC	ONF	GUP	RATI	ION				
ADDR:	13	11	9	7	5	3	1				
\$B00000	1	0	1	1	В	в	в				
ROM = 275	512	S	4 CC	ONFI	GUP	RATI	ION				
ADDR:	13	11	9	7	5	3	1				
\$D00000	1	1	0	1	В	в	в				
ROM = 275	512	S	4 CC	ONFI	GUI	RATI	ION				
ADDR:	13	11	9	7	5	3	1				
\$F00000	1	1	1	1	в	в	в				

•

RAM CONFIGURATION:

To properly configure the Base Address for the On-Board RAM requires the following steps to be completed:

- Step 1. Configure OP43 for type of RAM chips (see section 4.7.2)
- Step 2. Determine the total amount of RAM Memory (use table A-1 below).
- Step 3. Configure OP50, 49, 61, and 62 for a block size large enough to encompass the total amount of RAM memory (use table A-2 below).
- Step 4. Configure S3 using following charts per block size.
- Step 5. Verify /DTACK option for RAM speed.

NUMBER	R OF PAIRS	1	2	3	.4	5	6	7	xxx
	8K by 8	16K	32K	48K	64K	80K	96K	112K	xxx
SIZE	32K by 8	64K	128K	192K	256K	320K	384K	448K	xxx

NOTE: Only 7 pairs of RAM are allowed, U12 and U25 must have ROM.

TOTAL RAM MEMORY TABLE A-1

	32K	64K	128K	256K	512K	BLOCK SIZE
OP50	2-3	1-2	1-2	1-2	1-2	
OP49	IN	IN	OUT	OUT	OUT	
OP61	IN	IN	IN	OUT	OUT	
OP 62	IN	IN	IN	IN	OUT	
OPTION						-

BLOCK SIZE CONFIGURATION TABLE A-2 The following charts are used to configure RAM base address via S3.

0 = Jumper installed.

1 = Jumper removed.

B = Jumper must be removed for block size requirement.

NOTE: Corresponding OPtion jumpers must also be removed: B in column 1 = OP49 removed.

- B in column 3 = OP61 removed.
- B in column 5 = OP62 removed.

RAM BLOCK SIZE = 32 OR 64K

S3 CONFIGURATION FOR RAM BLOCK SIZE = 32 OR 64K	
BLOCK SIZE = 32 OR 64K	
	-
ADDRESS: 15 13 11 9 7 5 3	1
\$000000 0 </td <td>0 1 0 1 0 1 0 1 0 1 0 1 0 1 0</td>	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

S3 CONFIGURATION FOR RAM										
BLOCK SIZE = 32 OR 64K										
ADDRESS:	15	13	11	9	7	5	3	1		
\$200000 210000 230000 240000 250000 260000 270000 280000 280000 280000 280000 20000 20000 20000 20000 20000 2F0000		000000000000000000000000000000000000000	111111111111111111111111111111111111111		0000001111111111111	0000111100001111	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	010101010101010101		

S3 CONFIGURATION FOR RAM								
BLOCK SI								
ADDRESS:	15	13	11	9	7	5	3	1
\$300000 310000 320000 330000 340000 350000 360000 370000 380000 380000 380000 380000 380000 300000 300000 350000 350000			1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0101010101010101

RAM BLOCK SIZE = 32 OR 64K (CONTINUED)

٦

BLOCK SIZE = 32 OR 64K ADDRESS: 15 13 11 9 7 5 3 1	M	RAM	FOR I	ION I	GURAT:	S3 CONFIC
ADDRESS: 15 13 11 9 7 5 3 1		ĸ	R 641	32 01	ZE = 3	BLOCK SI2
	9 7 5 3 1	9	11	13	15	ADDRESS:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>					\$400000 410000 420000 430000 440000 450000 460000 470000 480000 480000 480000 480000 480000 480000 480000 480000 480000 480000

BLOCK SIZ	ZE = 3	32 OI	R 641	ζ				
ADDRESS:	15	13	11	9	7	5	3	1
\$500000 510000 520000 530000 550000 560000 570000 580000 580000 580000 580000 580000 580000 500000 500000 550000	000000000000000000000000000000000000000	111111111111111111111111111111111111111	000000000000000000000000000000000000000	111111111111111111111111111111111111111	000000111111111111	0 0 0 1 1 1 0 0 0 0 1 1 1	0011001100110011	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	-			-				

S3 CONFIGURATION FOR RAM														
BLOCK SIZE = 32 OR 64K														
ADDF	ESS:	15	13	11	9	7	5	3	1					
\$700 710 720 730 040 750 760 780 780 780 780 780 780 780 780 780						0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1 1 0 0 0 0 1 1 1 1	0 0 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0					

S3 CONFIC	GURATI	ION I	FOR F	RAM										
BLOCK SIZ	IZE = 32 OR 64K													
ADDRESS:	15	13	11	9	7	5	3	1						
\$800000 810000 820000 830000 840000 850000 860000 870000 880000 800000 800000 800000 800000 800000 800000 800000 800000 800000 800000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0 1 1 1 1 1	001100110011	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0						

RAM BLOCK SIZE = 32 OR 64K (CONTINUED)

S3 CONFIGURATION FOR RAM BLOCK SIZE = 32 OR $64K$ ADDRESS: 15 13 11 9 7 5 3 1 \$900000 1 0 0 1 0 0 1 0 0 1 \$900000 1 0 0 1 0 0 1 0 \$900000 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
BLOCK SIZE = 32 OR $64K$ ADDRESS: 15 13 11 9 7 5 3 1 \$900000 1 0 0 1 0 0 1 0 0 1 \$900000 1 0 0 1 0 0 0 1 \$900000 1 0 0 1 0 0 1 0 0 1 \$900000 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1	 S3 CONFIC	GURAT	ION B	FOR H	RAM				
ADDRESS: 15 13 11 9 7 5 3 1 \$900000 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	BLOCK SIZ	ZE = 3	32 OF	R 641	ĸ				
\$900000 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 </td <td>ADDRESS:</td> <td>15</td> <td>13</td> <td>11</td> <td>9</td> <td>7</td> <td>5</td> <td>3</td> <td>1</td>	ADDRESS:	15	13	11	9	7	5	3	1
	\$900000 910000 920000 930000 940000 950000 960000 970000 980000 980000 980000 980000 980000 980000 980000 980000 980000 980000	1 1 1 1 1 1 1 1 1 1 1 1			111111111111111111111111111111111111111	0 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0 0 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0

S3 CONFIG	JURAT	ION I	FOR F	RAM				
BLOCK SIZ	ZE = 3	32 OI	R 641	κ				
ADDRESS:	15	13	11	9	7	5	3	1
\$A00000 A10000 A20000 A30000 A40000 A50000 A60000 A60000 A80000 A80000 A80000 A80000 A80000 A80000 A80000 A80000 A80000 A80000 A80000 A80000 A80000 A80000	111111111111111111111111111111111111111		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1	0000111 1000011111	0011 001100110011100111	010101010101010101

S3 CONFIC	GURAT	ION	FOR I	RAM						S3 CONFIG	URAT	ION	FOR I	RAM			
BLOCK SI2	ZE =	32 01	R 641	ĸ						BLOCK SIZ	ZE = 3	32 01	R 641	к			
ADDRESS:	15	13	11	9	7	5	3	1		ADDRESS:	15	13	11	9	7	5	3
 \$B00000	1	0	1	1	0	0	0	0		\$C00000	1	1	0	0	0	0	0
B10000	1	0	1	1	0	0	0	1		C10000	1	1	0	0	0	0	0
B20000	1	0	1	1	0	0	1	0		C20000	1	1	0	0	0	0	1
B30000	1	0	1	1	0	0	1	1		C30000	1	1	0	0	0	0	1
B40000	1	0	11	1	0	1	0	0		C40000	1	11	0	0	0	1	0
в50000	1	0	1	1	0	1	0	1		C50000	1	1	0	0	0	1	0
B60000	1	0	1	1	0	1	1 1	0		C60000	1	1	0	0	0	11	1
в70000	1	0	1	1	0	1	1	1		C70000	1	1	0	0	0	1	1
B80000	1	0	1	1	1	0	0	0		C80000	1	1	0	0	1	0	0
в90000	1	0	1	1	1	0	0	1		C90000	1	1	0	0	1	0	0
BA0000	1	0	1	1	1	0	1	0		CA0000	1	11	0	0	1	0	1
BB0000	1	0	1	1	1	0	1	1		СВ0000	1	1	0	0	1	0	1
BC0000	1	0	1	1	1	1	0	0		CC0000	1	1	0	0	1	1	0
BD0000	1	0	1	1	1	1	0	1		CD0000	1	1	0	0	1	11	0
BE0000	1	0	1 1	1	1	1	1	0		CE0000	1	1	0	0	1	1	1
BF0000	1	0	1 1	1	1	1	1	1		CF0000	1	1 1	0	0	11	11	1

RAM BLOCK SIZE = 32 OR 64K (CONTINUED)

S3 CONFIGURATION FOR RAM														
BLOCK SIZE = 32 OR 64K ADDRESS: 15 13 11 9 7 5 3 1														
ADDI	RESS:	15	13	11	9	7	5	3	1					
\$D0(D1(D2(D3(D4(D5(D5(D7(D8(D9(D8(D0(DE(DC(DE(0000 0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0 0 1 1	0 0 1 0 0 1 0 0 1 0 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0					

S3 CONFIGURATION FOR RAM

BLOCK SIZE = 32 OR 64KADDRESS: \$E00000 E10000 E20000 E30000 E40000 E50000 E60000 E70000 E80000 E90000 EA0000 EB0000 EC0000 ED0000 EE0000 EF0000

S3 CONFIC	GURAT:	ION B	FOR I	RAM				
BLOCK SIZ	ZE = 3	32 OF	R 641	ĸ				
ADDRESS:	15	13	11	9	7	5	3	1
\$F00000 F10000 F20000 F30000 F40000 F50000 F70000 F80000 F80000 F80000 F80000 F00000 F00000 FE0000					0 0 0 0 0 0 0 1 1 1 1 1 1	00011100001111	001100110011	0 1 0 1 0 1 0 1 0 1 0 1 0

RAM BLOCK SIZE = 128K

T

S3 CONFIC													
BLOCK SI2													
ADDRESS:	ADDRESS: 15 13 11 9 7												
\$000000 020000 040000 060000 080000 0A0000 0C0000 0E0000	0 0 0 0 0 0 0 0	000000000	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	00001111	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1	B B B B B B B B B B B B B B B B B B B					
						_							

S3 CONFIGURATION FOR RAM													
BLOCK SIZE = 128K													
ADDRESS:	15	13	11	9	7	5	3	1					
\$100000 120000 140000 160000 180000 1A0000 1C0000 1E0000	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	1111111	0 0 0 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1	вввввв					

I CA CONFI D 7 M <u> </u>

S3 CONFIC	GURAT	ION	FOR	RAM					S3 CONFIC	GURAT	ION	FOR I	RAM				
BLOCK SI	ZE =	128K							BLOCK SIZ	ZE =	128K						
ADDRESS:	15	13	11	9	7	5	3	1	ADDRESS:	15	13	11	9	7	5	3	1
\$200000 220000 240000 260000 280000 2A0000 2C0000 2E0000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	000011111	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1	B B B B B B B B B B B B	\$300000 320000 340000 360000 380000 3A0000 3C0000 3E0000	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 1 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1	B B B B B B B B B B B

S3 CONFIC	GURAT	ION H	FOR I	RAM							
BLOCK SIZE = 128K											
ADDRESS:	15	13	11	9	7	5	3	1			
\$300000 320000 340000 360000 380000 3A0000 3C0000 3E0000	0 0 0 0 0 0 0	000000000000000000000000000000000000000	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0	вввввв			

S3 CONFIC	GURAT	ION I	FOR I	RAM						
BLOCK SIZE = 128K										
ADDRESS:	15	13	11	9	7	5	3	1		
\$500000 520000 540000 560000 580000 5A0000 5C0000 5E0000	0 0 0 0 0 0 0	1 1 1 1 1 1	0 0 0 0 0 0 0	1 1 1 1 1 1	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	B B B B B B B B B B		

BLOCK SIZE = 128K											
ADDRESS:	15	13	11	9	7	5	3	1			
\$600000 620000 640000 660000 680000 6A0000 6C0000 6E0000	0 0 0 0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1	8 8 8 8 8 8 8 8 8			

S3 CONFIC	GURAT	ION	FOR I	RAM							
BLOCK SIZE = 128K											
ADDRESS:	15	13	11	9	7	5	3	1			
\$700000 720000 740000 760000 780000 780000 720000 7E0000	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 1 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1	вввввв			

S3 CONFIG	GURAT	ION I	FOR I	RAM							
BLOCK SIZE = 128K											
ADDRESS:	15	13	11	9	7	5	3	1			
\$800000 820000 840000 860000 880000 8A0000 8C0000 8E0000	1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	B B B B B B B B B B B B B B B B B B B			

5

0

1

1

3

0

1

1

в

B B B B B B

в

в

S3 CONFIGURATION FOR RAM

S3 CONFIGURATION FOR RAM									S3 CONFIGURATION FOR RAM						
BLOCK SIZE = 128K										BLOCK SI	ZE = 3	128K			
ADDRESS:	15	13	11	9	7	5	3	1		ADDRESS:	15	13	11	9	7
\$900000 920000 940000 960000 980000 9A0000 9C0000 9E0000	1 1 1 1 1 1 1	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1 1 1 1 1 1	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	8888888		\$A00000 A20000 A40000 A60000 A80000 AA0000 AC0000 AE0000	1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 1 1 1

S3	CONF	IGUR	ATION	FOR	RAM
----	------	------	-------	-----	-----

BLOCK SIZE = 128K											
ADDRESS:	15	13	11	9	7	5	3	1			
\$B00000 B20000 B40000 B60000 B80000 BA0000 BC0000 BE0000	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	1 1 1 1 1 1	111111111	00001111	0 0 1 0 0 1	0 1 0 1 0 1 0 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			

S3 CONFIGURATION FOR RAM

S3 CONFIC	GURAT	ION B	FOR	RAM						
BLOCK SIZE = 128K										
ADDRESS:	15	13	11	9	7	5	3	1		
\$D00000 D20000 D40000 D60000 D80000 DA0000 DC0000 DE0000	1 1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0 0 0	1111111	0 0 0 1 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		

BLOCK SIZE = 128K											
ADDRESS:	15	13	11	9	7	5	з	1			
\$C00000 C20000 C40000 C60000 C80000 CA0000 CC0000 CE0000	1 1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	B B B B B B B B B			

BLOCK SIZE = 128K										
ADDRESS:	15	13	11	9	7	5	3	1		
\$E00000 E20000 E40000 E60000 E80000 EA0000 EC0000 EE0000	1 1 1 1 1 1 1	1 1 1 1 1 1	11111111	000000000000000000000000000000000000000	00001111	0 0 1 0 0 1 1	0 1 0 1 0 1 0 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		

RAM BLOCK SIZE = 128K (CONTINUED)

S3 CONFIC												
BLOCK SI2	BLOCK SIZE = 128K											
ADDRESS:	15	13	11	9	7	5	3	1				
\$F00000 F20000 F40000 F60000 F80000 FA0000 FC0000 FE0000	1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 1 1 1	0 0 1 0 0 1 1	0 1 0 1 0 1 0	B B B B B B B B B B B B B B B B B B B				

RAM BLOCK SIZE = 256K

S3 CONFIG	GURAT	ION	FOR	RAM					
BLOCK SI2	ZE = 2	256K							
ADDRESS:	15	13	11	9	7	5	3	1	
\$000000 040000 080000 0C0000	0 0 0 0	00000	0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	B B B B	B B B B B	

S3 CONFIGURATION FOR RAM											
BLOCK SIZE = 256K											
ADDRESS:	15	13	11	9	7	5	3	1			
\$200000 240000 280000 2C0000	0 0 0 0	0 0 0 0	1 1 1 1	0 0 0 0	0 0 1 1	0 1 0 1	B B B B	B B B B			

S3 CONFIC											
BLOCK SIZE = 256K											
ADDRESS:	15	13	11	9	7	5	3	1			
\$400000 440000 480000 4C0000	0 0 0 0	1 1 1 1	0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	B B B B	B B B B			

S3 CONFIGURATION FOR RAM

BLOCK SIZE = 256K									
ADDRESS:	15	13	11	9	7	5	3	1	
\$100000 140000 180000 1C0000	0 0 0	0 0 0 0	0 0 0 0	1 1 1 1	0 0 1 1	0 1 0 1	в в в в	B B B B	

BLOCK SIZE = 256K									
ADDRESS:	15	13	11	9	7	5	З	1	
\$300000 340000 380000 3C0000	0 0 0 0	0 0 0 0	1 1 1 1	1 1 1 1	0 0 1 1	0 1 0 1	B B B B	B B B B	

S3 CONFIC											
BLOCK SIZE = 256K											
ADDRESS:	15	13	11	9	7	5	3	1			
\$500000 540000 580000 5C0000	0 0 0 0	1 1 1 1	0 0 0 0	1 1 1 1	0 0 1 1	0 1 0 1	B B B B B	B B B B B			

RAM BLOCK SIZE = 256K (CONTINUED)

S3 CONFIC	GURAT	ION	FOR I	RAM					S3 CONFIGURATION FOR RAM	
BLOCK SI	ZE = 2	256K				L			BLOCK SIZE = 256K	
ADDRESS:	15	13	11	9	7	5	3	1	ADDRESS: 15 13 11 9 7 5 3	1
\$600000 640000 680000 6C0000	0 0 0 0	1 1 1 1	1 1 1 1	0 0 0 0	0 0 1 1	0 1 0 1	B B B B	B B B B	\$700000 0 1 1 1 0 0 B 740000 0 1 1 1 0 1 B 780000 0 1 1 1 0 B 780000 0 1 1 1 0 B 7C0000 0 1 1 1 1 B	B B B B
S3 CONFIC	GURAT	ION	FOR I	RAM					S3 CONFIGURATION FOR RAM	
BLOCK SIZ	ZE = 2	256K							BLOCK SIZE = 256K	
ADDRESS:	15	13	11	9	7	5	3	1	ADDRESS: 15 13 11 9 7 5 3	1
\$800000 840000 880000 8C0000	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	B B B B	: 18 B	\$900000 1 0 0 1 0 0 B 940000 1 0 0 1 0 1 B 980000 1 0 0 1 1 0 B 960000 1 0 0 1 1 0 B 9C0000 1 0 0 1 1 B	B B B B
S3 CONFIG	GURAT	ION	FOR I	RAM					S3 CONFIGURATION FOR RAM	
BLOCK SI	ZE = 2	256K				L			BLOCK SIZE = 256K	
ADDRESS:	15	13	11	9	7	5	3	1	ADDRESS: 15 13 11 9 7 5 3	1
\$A00000 A40000 A80000 AC0000	1 1 1 1	0 0 0 0	1 1 1 1	0 0 0 0	0 0 1 1	0 1 0 1	B B B B B	B B B B B	\$B00000 1 0 1 1 0 0 B B40000 1 0 1 1 0 1 B B80000 1 0 1 1 0 1 B B80000 1 0 1 1 1 0 B BC0000 1 0 1 1 1 B	B B B B
S3 CONFIG	GURAT	ION	FOR	RAM					S3 CONFIGURATION FOR RAM	
BLOCK SI	ZE = 2	256K							BLOCK SIZE = 256K	
ADDRESS:	15	13	11	9	7	5	3	1	ADDRESS: 15 13 11 9 7 5 3	1
\$C00000 C40000 C80000 CC0000	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	B B B B	B B B B	\$D00000 1 1 0 1 0 0 B D40000 1 1 0 1 0 1 B D80000 1 1 0 1 1 0 B D80000 1 1 0 1 1 0 B DC0000 1 1 0 1 1 B	B B B B
S3 CONFI	GURAT	ION	FOR	RAM					S3 CONFIGURATION FOR RAM	
BLOCK SI	ZE =	256K							BLOCK SIZE = 256K	
ADDRESS:	15	13	11	9	7	5		1	ADDRESS: 15 13 11 9 7 5 3	1
\$E00000 E40000 E80000 EC0000	1 1 1 1	1 1 1 1	1 1 1 1	0 0 0 0	0 0 1 1	0 1 0 1	B B B B	B B B B	\$F00000 1 1 1 1 0 0 B F40000 1 1 1 1 0 1 B F80000 1 1 1 1 0 1 B F80000 1 1 1 1 1 0 B FC0000 1 1 1 1 1 B	B B B B

RAM BLOCK SIZE = 512K

S3 CONFIG	JURAT	ION	FOR	RAM					S3 CONFIGURATION FOR RAM
BLOCK SIZ	ZE = !	512K							BLOCK SIZE = 512K
ADDRESS:	15	13	11	9	7	5	3	1	ADDRESS: 15 13 11 9 7 5 3 1
\$000000 080000	0 0	0 0	0 0	0 0	01	B B	B B	B B	\$100000 0 0 0 1 0 B B B 180000 0 0 0 1 1 B B B
S3 CONFIG	GURAT	ION	FOR	RAM					S3 CONFIGURATION FOR RAM
BLOCK SIZ	ZE = .	512K							BLOCK SIZE = 512K
ADDRESS:	15	13	11	9	7	5	3	1	ADDRESS: 15 13 11 9 7 5 3 1
\$200000 280000	0 0	0 0	1 1	0 0	01	B B	B B	B B	\$300000 0 0 1 1 0 B B B 380000 0 0 1 1 1 B B B
S3 CONFIG	GURAT	ION	FOR	RAM					S3 CONFIGURATION FOR RAM
BLOCK SIZ	ZE = 3	512K							BLOCK SIZE = 512K
ADDRESS:	15	13	11	9	7	5	3	1	ADDRESS: 15 13 11 9 7 5 3 1
\$400000 480000	0 0	1 1	0 0	0 0	0 1	B B	B B	B B	\$500000 0 1 0 1 0 B B B 580000 0 1 0 1 1 B B B
S3 CONFIG	GURAT	ION	FOR	RAM					S3 CONFIGURATION FOR RAM
BLOCK SIZ	ZE = !	512K	·	r			T		BLOCK SIZE = 512K
ADDRESS:	15	13	11	9	7	5	3	1	ADDRESS: 15 13 11 9 7 5 3 1
\$600000 680000	0 0	1 1	1 1	0 0	0 1	B B	B B	B B	\$700000 0 1 1 1 0 B B B 780000 0 1 1 1 1 B B B
S3 CONFIG	GURAT	ION	FOR	RAM					S3 CONFIGURATION FOR RAM
BLOCK SIZ	2E = !	512K							BLOCK SIZE = 512K
ADDRESS:	15	13	11	9	7	5	3	1	ADDRESS: 15 13 11 9 7 5 3 1
\$800000 880000	1 1	0 0	0 0	0 0	0 1	B B	B B	B B	\$900000 1 0 0 1 0 B B B 980000 1 0 0 1 1 B B B
ľ				RAM					S3 CONFIGURATION FOR RAM
S3 CONFIG	URAT	ION 1	COR 1						•
S3 CONFIG BLOCK SIZ	SURAT: SE = S	ION 1 512K							BLOCK ZE = 512K
S3 CONFIG BLOCK SIZ ADDRESS:	GURAT: LE = ! 15	ION 1 512K 13	11	9	7	5	3	1	BLOCK ZE = 512K ADDRES:: 15 13 11 9 7 5 3 1

RAM BLOCK SIZE = 512K (CONTINUED)

\$F00000 F80000

1 1

1 1

1 1

1 1

0 1

B B

B B

B B

S3 CONFIG	GURAT	ION	FOR	RAM						S3 CONFIGURATION FOR RAM								
BLOCK SIZE = 512K									BLOCK SIZ	ZE =	512K							
ADDRESS:	15	13	11	9	7	5	3	1		ADDRESS:	15	13	11	9	7	5	3	1
\$C00000 C80000	1 1	1 1	0 0	0 0	0 1	B B	B B	B B B D80000 1 1 0 1 0 1 0 1 1						B B	B B	B B		
S3 CONFIC	GURAT	ION	FOR	RAM					[S3 CONFIG	GURAT	ION	FOR	RAM				
BLOCK SI2	ZE =	512K	12K							BLOCK SIZ	ZE =	512K						
ADDRESS:	15	13	11	9	7	5 3 1				ADDRESS:	15	13	11	9	7	5	3	1

\$E00000 E80000

1 1

•

1 1

1 1

0 0

0 1

в

в

в

в

в

в

1	o	
T	0	

SUGGESTION/PROBLEM REPORT

Omnibyte Corporation welcomes your comments on its products and this publication. Please use this form.

TO: OMNIBYTE CORPORATION 245 West Roosevelt Road West Chicago, Illinois 60185

Attn: Technical Support

COMMENTS

Product:______ Manual:_____

PLEASE PRINT:

NAME	TITLE	
COMPANY	DIVISION	
STREET	MAILDROP	PHONE
CITY	STATE	ZIP

TECHNICAL SUPPORT: (708)231-6880 FAX (708)231-7042