IPLEXIUS

Plexus Sys3 UNIX Programmer’s Manual -- vol 2B

98-05037.5 Rev A September 24, 1984




PLEXIUS oo, vos



Plexus Sys3 UNIX Programmer’s Manual -- vol 2B

98-05037.5 Rev A September 24, 1984

PLEXUS COMPUTERS, INC.

3833 North First St.
San Jose, CA 95134

408/943-9433



Copyright 1984
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval
system, or translated into any language, in any
form or by any means, without the prior written
consent of Plexus Computers, Inc.

The information contained herein is subject to
change without notice.  Therefore, Plexus
Computers, Inc. assumes no responsibility for the
accuracy of the information presented in this
document beyond its current release date.

Printed in the United States of America



Programmer’s Manual for UNIX* System il
Volume 2 - Supplementary Documents

January 1983

This volume contains documents that supplement the information contained in the Plexus Sys3
UNIX Programmer’s Manual - vol 1. The documents are grouped roughly into the areas of
General Works, Basics, Document Preparation Tools, Programming and Language Tools, and
System Administration and Maintenance Tools. Further general information may be found in the
July - August 1978 special issue of "The Bell System Technical Journal" on the UNIX Time
Sharing System.

These documents contain occasional localisms, typically references to other operating systems
like GCOS and IBM. In all cases, such references may be safely ignored by users of UNIX
systems.

* UNIX is a trademark of AT&T Bell Laboratories.



J



Plexus Sys3 UNIX Programmer’s Manual -- vol 2B

PREFACE

This manual contains a collection of documents that describe specific aspects of the UNIX*
operating system. These include descriptions of programming, language, administrative and
maintenance tools.

Additional documents describing the operating system, document preparation tools and
programming and language tools are collected in the Plexus Sys3 UNIX Programmer’s Manual
-- vol 2A (Plexus publication number 98-05036).

Both these volumes (2A and 2B) should be used as supplementary documents for the Plexus
Sys3 UNIX Programmer's Manual -- vol 1A (Plexus publication number 98-05045) and Plexus
Sys3 UNIX Programmer’s Manual -- vol 1B (Plexus publication number 98-05046), the basic
reference manual for the operating system.

Comments
Please address all comments concerning this manual to:

Plexus Computers, Inc.
Technical Publications Dept.
3833 North First St.

San Jose, CA 95134
408/943-9433

Revision History
The second edition (#98-05037.2) contained new front matter.

The third edition (#98-05037.3) contained a new VPM document.
For the fourth edition (#98-05037.4), several documents were re-typeset.

This edition (#98-05037.5) re-typesets several other documents and includes an updated
version of the VPM documents.

UNIX is a trademark of AT&T Bell Laboratories. Plexus is licensed to distribute UNIX under the authority of AT&T.






BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry
Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-11 under the UNIXt time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input, output,
and do arithmetic on indefinitely large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage allecator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundréd-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are
— to do computation with large integers,
— to do computation accurate to many decimal places,
— conversion of numbers from one base to another base.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.



BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry
Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIXt
time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called DC [5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language
[2]. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714
the program responds immediately with the line
428571

The operators —, *, /, %, and "~ can also be used; they indicate subtraction, multiplication, divi-
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the ‘unary’ minus sign). The expression

7+-3
is interpreted to mean that —3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with ~ having the greatest binding power, then * and % and /, and finally + and
—. Contents of parentheses are evaluated before material outside the parentheses. Exponen-
tiations are performed from right to left and the other operators from left to right. The two
expressions '

tUNIX is a Trademark of Bell Laboratories.



a"b"c and a"(bc)
are equivalent, as are the two expressions
a*b*c and (a*b)*c
BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

X=x+3

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x = sqrt(191)
X

produce the printed result
13

Bases

There are special internal quantities, called ‘ibase’ and ‘obase’. The contents of ‘ibase’,
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

ibase = 8
11

will produce the output line
9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A—F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10—15 respectively. The
statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of ‘obase’, initially set to 10, are used as the base for output numbers. The
lines

obase = 16
1000

will produce the output line



3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit-
ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting ‘obase’ to 100000. Strange (i.e. 1, 0, or negative) output bases are han-
dled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are con-
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called ‘scale’ is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications, the scale of the result is never less than the max-
imum of the two scales of the operands, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity ‘scale’. The scale of a quotient is the contents of the internal quantity ‘scale’.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled’ as if the implied multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu-
ment and the contents of ‘scale’.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of ‘scale’ must be no greater than 99 and no less than 0. It is initially set to
0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can be used in expressions just like
other variables. The line
scale = scale + 1
increases the value of ‘scale’ by one, and the line
scale

causes the current value of ‘scale’ to be printed.

The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in
internal computation even when ‘ibase’ or ‘obase’ are not equal to 10. The internal computa-
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to col-
lide with simple variable names. Twenty-six different defined functions are permitted in addi-
tion to the twenty-six variable names. The line



define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace }. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return (x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form
auto x,y,z

There can be only one ‘auto’ statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function definition is

define a(x,y){
auto z
z = x"y
return (z)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: b().

If the function a above has been defined, then the line
a(7,3.14)
would cause the result 21.98 to be printed and the line
x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:



fGall
define f(al])
auto a[]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The ‘if*, the ‘while’, and the ‘for’ statements may be used to alter the flow within pro-
grams or to cause iteration. The range of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way

if (relation) statement
while (relation) statement
for(expressionl; relation; _expression2) statement

or

if (relation) {statements}
while(relation) {statements}
for (expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y
where two expressions are related by one of the six relational operators <, >, <=, >=,
== or !=. The relation == stands for ‘equal to’ and != stands for ‘not equal to’. The
meaning of the remaining relational operators is clear.
BEWARE of using = instead of == in a relational. Unfortunately, both of them are

legal, so you will not get a diagnostic message, but = really will not do a comparison.

The “if” statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence,

The ‘while’ statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false, con-
trol passes to the next statement beyond the range of the while.

The ‘for’ statement begins by executing ‘expressionl’. Then the relation is tested and, if
true, the statements in the range of the ‘for’ are executed. Then ‘expression2’ is executed.
The relation is tested, and so on. The typical use of the ‘for’ statement is for a controlled itera-
tion, as in the statement

for(i=1;i<=10; i=i+1) i

which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define f(n){
auto i, x
x=1
for(i=1; i<=n; i=i+1) x=x*
return(x)
} ¥
The line
f(a)



-6-

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m)|

auto X, j

x=1

forG=1; j<=m; j=j+1) x=x*(n—j+1)/j
return (x)

}

The following function computes values of the exponential function by summing the appropri-
ate series without regard for possible truncation errors:

scale = 20
define e (x)|
autoa, b,c,d, n
a=1
b=1
c=1
d=0
n=1
while(1==1){
a = a*x
b = b*n
c=c¢+ a/b
n=n-++1
if(c==d) return(c)
d=c¢

Sceme Details

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state-
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any-
where that an expression can. For example, the line

x=y+17)
not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = ali=i+1]
causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.



-7-

x=y=z is the same as x=(y=z)
Xx=+y X = x+y
X=—y X =Xx—y

x =*y X = x%y
Xx=/y X = x/y

x =%y X = x%y
x="y X=Xy
x++ x=x+1)—1
X—— x=x—-1)+1
+ +x X = x+1

- —X x =x—1

Even if you don’t intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x=—y and x= —y. The first replaces x by x—y and the second by —y.

Three Important Things
1. To exit a BC program, type ‘quit’.
2. There is a comment convention identical to that of C and of PL/I. Comments begin
with ‘/*’ and end with ‘*/°.
3. There is a library of math functions which may be obtained by typing at command level
bc —I

This command will load a set of library functions which, at the time of writing, consists of sine
(named °‘s’), cosine (‘c’), arctangent (‘a’), natural logarithm (‘I’), exponential (‘e’) and Bessel
functions of integer order (4j(n,x)’). Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library routines is discussed elsewhere [3].

If you type
be file ...

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

Acknowledgement
The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

References
[1] K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories, 1978.
[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

[31 R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell Laboratories
internal memorandum, 1975.

[4] S. C. Johnson, YACC — Yet Another Compiler-Compiler. Bell Laboratories Computing Sci-
ence Technical Report #32, 1978.

[5] R. Morris and L. L. Cherry, DC — An Interactive Desk Calculator.



-8-

Appendix

1. Notation

In the following pages syntactic categories are in iralics, literals are in bold; material in
brackets [] is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state-
ments.

2.1. Comments
Comments are introduced by the characters /* and terminated by */.

2.2. lIdentifiers

There are three kinds of identifiers — ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade-
cimal digits A— F are also recognized as digits with values 10—135, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre-
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.



3.1. Primitive expressions ‘ 5

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3.1.1.1. identifiers
Simple identifiers are named expressions. They have an initia] value of zero.

3.1.1.2. array-name lexpression |
Array elements are named expressions. They have an initial value of zgro.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions, scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name ([expression [,expression...]1)

A function call consists of a function name followed by parentheses containing a gamma-
separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu- ﬂa)
ments are passed by value. As a result, changes made to the formal parameters have no effect /
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale (expression)
The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants
Constants are primitive expressions.

3.14. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

B



-10 -

3.2. Unary operators
The unary operators bind right to left.

3.2.1. — expression
The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. — — named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression + +

The named expression is incremented by one. The result is the value of the named
expression before incrementing.

3.2.5. named-expression — —

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator
The exponentiation operator binds right to left.

3.3.1. expression ~ expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso-
lute value of the right expression, then the scale of the result is:

min (axb, max ( scale,a))

3.4. Multiplicative operators
The operators *, /, % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

min (a +b, max ( scale, a, b))

3.4.2. expression /| expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.
3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More pre-
cisely, a%b is a—a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale



-11 -
3.5. Additive operators .
The additive operators bind left to right.

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression — expression

The result is the difference of the two expressions. The scale of the result is the max-
imum of the scales of the expressions.

3.6. assignment operators
The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression = + expression
3.6.3. named-expression = — expression
3.6.4. named-expression =* gxpression
3.6.5. named-expression =/ expression
3.6.6. named-expression =% expression

3.6.7. named-expression =" expression

The result of the above expressions is equivalent to ‘‘named expression = named expres-
sion ' OP expression’’, where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression < expression
4.2. expression > expression
4.3. expression < = expression
4.4. expression > = expression
4.5. expression = = expression

4.6. expression != expression



-12-

5. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/I.
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur-
rounding them with { }.

6.3. Quoted string statements
"any string"

This statement prints the string inside the quotes.

6.4. If statements

if (relation ) statement
The substatement is executed if the relation is true.

6.5. While statements

while (relation ) statement

The statement is executed while the relation is true. The test occurs before each execu-
tion of the statement.

6.6. For statements

for (expression; relation; expression ) statement

The for statement is the same as
first-expression
while (relation ) |

statement

last-expression

)

All three expressions must be present.



-13 -

6.7. Break statements

break
break causes termination of a for or while statement.

6.8. Auto statements
auto identifier [ ,identifier)

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol-
lowing the array name by empty square brackets. The auto statement must be the first state-
ment in a function definition.

6.9. Define statements

define([parameter [ ,parameter. ..11) |
statements }

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements
return

return (expression?)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return(0). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control ta UNIX when it
is first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.



DC — An Interactive Desk Calculator

Robert Morris
Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIXt
time-sharing system to do arbitrary-precision integer arithmetic. It has provi-
sion for manipulating scaled fixed-point numbers and for input and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.

gh November 15, 1978

tUNIX is a Trademark of Bell Laboratories.



DC — An Interactive Desk Calculator

Robert Morris
Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNIX} time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fami-
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A—F which are treated as digits with values 10—15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

+ =% "

The top two values on the stack are added (+), subtracted (—), multiplied (*), divided
(/), remaindered (%), or exponentiated (). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun-
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

tUNIX is a Trademark of Bell Laboratories.




SX

Ix

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the 1 is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command 1 and is treated
as an error by the command L.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capi-
talized, the top value on the stack is popped and the string execution level is popped by
that value.

>x =x !1<x !>x '=x

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX
command terminates.

All values on the stack are popped; the stack becomes empty.



The top value on the stack is popped and used as the number radix for further input. If i
is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that all
digits are in the range 0—99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the 100’s complement notation, which is analogous
to two’s complement notation for binary numbers. The high order digit of a negative number
is always —1 and all other digits are in the range 0—99. The digit preceding the high order —1
digit is never a 99. The representation of —157 is 43,98,—1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi-
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,3
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Commumcatlon between the alloca-
tor and DC is done via pointers to these headers.



-4.

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
‘buddy system’ of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca-
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou-
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing

the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99,—1 by the digit —1. In any case, digits which are not in the range
0—99 must be brought into that range, propagating any carries or borrows that result.



Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canomcal form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division
The scales are removed from the two operands. Zeros are appended or digits removed

from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi-
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni-
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun-
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root
The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton’s method with successive approximations
by the rule

= (x, +2)
xII
The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is 1. If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the indicated multiplication had been
performed.



Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _- The hexadecimal digits A—F correspond to the
numbers 10—15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f. The o
command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command O pushes the value of the output base on the
stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output;
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line; a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal-
hexadecimal conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis-
ters with the commands s and 1. The command sx pops the top of the stack and stores the
result in register X. x can be any character. lx puts the contents of register x on the top of the
stack. The 1 command has no effect on the contents of register x. The s command, however,
is destructive.

Stack Commands

The command c¢ clears the stack. The command d pushes a duplicate of the number on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in [l pushes the ascii string on the stack. The q command quits or in
executing a string, pops the recursion levels by two.

Internal Registers — Programming DC

The load and store commands together with [l to store strings, x to execute and the test-
ing commands ‘<’, ‘>’, ‘=" ‘1<’ “I>’ ‘I=" can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com-
mands compare the top two elements on the stack and if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0-9,

[lipl + si lil0>alsa
Osi lax



Push-Down Registers and Arrays

, These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands s and
1 also work on registers but not as push-down stacks. 1 doesn’t effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com-
mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose pro-
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket [...] commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan-
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much faster.

The reason'for a stack-type arithmetic design was to permit all DC commands from addi-
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com-
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith-
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user



-8-

asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.
References

[1]1 L. L. Cherry, R. Morris, BC — An Arbitrary Precision Desk-Calculator Language.
[21 K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct. 1965).






)

A Portable Fortran 77 Compiler

S. 1. Feldman
P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Fortran language has just been revised. The new language, known as For-
tran 77, became an official American National Standard on April 3, 1978. We
report here on a compiler and run-time system for the new extended language.
This is believed to be the first complete Fortran 77 system to be implemented.
This compiler is designed to be portable, to be correct and complete, and to
generate code compatible with calling sequences produced by C compilers. In
particular, this Fortran is quite usable on UNIX} systems. In this paper, we
describe the language compiled, interfaces between procedures, and file formats
assumed by the I/0 system. An appendix describes the Fortran 77 language.

1 August 1978

tUNIX is a Trademark of Bell Laboratories.



A Portable Fortran 77 Compiler

S. I. Feldman
P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

The Fortran language has just been revised. The new language, known as Fortran 77,
became an official American National Standard [1] on April 3, 1978. for the language, known
as Fortran 77, is about to be published. Fortran 77 supplants 1966 Standard Fortran [2]. We
report here on a compiler and run-time system for the new extended language. The compiler
and computation library were written by SIF, the 1/0 system by PJW. We believe ours to be
the first complete Fortran 77 system to be implemented. This compiler is designed to be port-
able to a number of different machines, to be correct and complete, and to generate code com-
patible with calling sequences produced by compilers for the C language [3]. In particular, it is
in use on UNIXT systems. Two families of C compilers are in use at Bell Laboratories, those
based on D. M. Ritchie’s PDP-11 compiler[4] and those based on S. C. Johnson’s portable C
compiler [5]. This Fortran compiler can drive the second passes of either family. In this paper,
we describe the language compiled, interfaces between procedures, and file formats assumed by
the 1/0 system. We will describe implementation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-11, the VAX-
11/780, and the Interdata 8/32 UNIX systems. The command to run the compiler is

£77 flags file . . .

£77 is a general-purpose command for compiling and loading Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The £77 and cc commands cause slightly different loading sequences to be
generated, since Fortran programs need a few extra libraries and a different startup routine than
do C programs.) The following file name suffixes are understood:

g Fortran source file

e EFL source file

I Ratfor source file

.C C source file

.S Assembler source file
.0 Object file

The following flags are understood:
=S Generate assembler output for each source file, but do not assemble it. Assem-

tUNIX is a Trademark of Bell Laboratories.



-2,

bler output for a source file x.f, x.e, x.r, or x.c is put on file x.s.

—c Comopile but do not load. Output for x.f, x.e, X.r, x.¢, or x.s is put on file x.o.

-m Apply the M4 macro preprocessor to each EFL or Ratfor source file before
using the appropriate compiler.

—f Apply the EFL or Ratfor processor to all relevant files, and leave the output
from x.e or x.r on x.f. Do not compile the resulting Fortran program.

—p Generate code to produce usage profiles.

—of Put executable module on file £ (Default is a.out).

-w Suppress all warning messages.

-~-w66 Suppress warnings about Fortran 66 features used.

-0 Invoke the C object code optimizer.

-C Compile code the checks that subscripts are within array bounds.

—onetrip Compile code that performs every do loop at least once. (see Section 2.10).

-U Do not convert upper case letters to lower case. The default is to convert For-
tran programs to lower case.

—u Make the default type of a variable undefined. (see Section 2.3).

-I2 On machines which support short integers, make the default integer constants

and variables short. (—I4 is the standard value of this option). (see Section
2.14). All logical quantities will be short.

-E The remaining characters in the argument are used as an EFL flag argument.
-R The remaining characters in the argument are used as a Ratfor flag argument.
-F Ratfor and and EFL source programs are pre-processed into Fortran files, but

those files are not compiled or removed.

Other flags, all library names (arguments beginning —1), and any names not ending with one of
the understood suffixes are passed to the loader.

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case.
Examples will be presented in lightface lower case. Names representing a class of values will be
printed in italics.

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler
intermediate code. Since there are C compilers running on a variety of machines, relatively
small changes will make this Fortran compiler generate code for any of them. Furthermore,
this approach guarantees that the resulting programs are compatible with C usage. The runtime
computational library is complete. The mathematical functions are computed to at least 63 bit
precision. The runtime I/0 library makes use of D. M. Ritchie’s Standard C I/0 package (8]
for transferring data. With the few exceptions described below, only documented calls are
used, so it should be relatively easy to modify to run on other operating systems.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences
briefly in the Appendix. The most important additions are a character string data type, file-
oriented input/output statements, and random access 1/0. Also, the language has been cleaned
up considerably.

In addition to implementing the language specified in the new Standard, our compiler
implements a few extensions described in this section. Most are useful additions to the



-3.

language. The remainder are extensions to make it easier to communicate with C procedures
or to permit compilation of old (1966 Standard) programs.

2.1. Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double
precision real variables. A double complex version of every complex built-in function is
provided. The specific function names begin with z instead of c.

2.2. Internal Files

The Fortran 77 standard introduces ‘‘internal files”> (memory arrays), but restricts their
use to formatted sequential I/0 statements. Our 1/0 system also permits internal files to
be used in direct and unformatted reads and writes.

2.3. Implicit Undefined statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state-
ment is integer if its first letter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an
implicit statement for overriding this rule. As an aid to good programming practice, we
permit an additional type, undefined. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic
for each variable that is used but does not appear in a type statement. Specifying the —u
compiler flag is equivalent to beginning each procedure with this statement.

2.4. Recursion
Procedures may call themselves, directly or through a chain of other procedures.

2.5. Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as
‘“types’ in type statements and in implicit statements. Local variables are static by
default; there is exactly one copy of the datum, and its value is retained between calls.
There is one copy of each variable declared automatic for each invocation of the pro-
cedure. Automatic variables may not appear in equivalence, data, or save statements.

2.6. Source Input Format

The Standard expects input to the compiler to be in 72 column format: except in com-
ment lines, the first five characters are the statement number, the next is the continuation
character, and the next sixty-six are the body of the line. (If there are fewer than
seventy-two characters on a line, the compiler pads it with blanks; characters after the
seventy-second are ignored).

In order to make it easier to type Fortran programs, our compiler also accepts input in
variable length lines. An ampersand (“‘&’’) in the first position of a line indicates a con-
tinuation line; the remaining characters form the body of the line. A tab character in one
of the first six positions of a line signals the end of the statement number and continua-
tion part of the line; the remaining characters form the body of the line. A tab elsewhere
on the line is treated as another kind of blank by the compiler.

In the Standard, there are only 26 letters — Fortran is a one-case language. Consistent
with ordinary UNIX_ system usage, our compiler expects lower case input. By default, the
compiler converts all upper case characters to lower case except those inside character
constants. However, if the —U compiler flag is specified, upper case letters are not
transformed. In this mode, it is possible to specify external names with upper case letters
in them, and to have distinct variables differing only in case. Regardless of the setting of



-

-4.

the flag, keywords will only be recognized in lower case.

2.7. Include Statement

The statement
include 'stuff’

is replaced by the contents of the file stuff. includes may be nested to a reasonable
depth, currently ten.

2.8. Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a binary con-
stant, denoted by a letter followed by a quoted string. If the letter is b, the string is
binary, and only zeroes and ones are permitted. If the letter is o, the string is octal, with
digits 0—7. If the letter is z or x, the string is hexadecimal, with digits 0—9, a—f. Thus,
the statements

integer a(3)
data a / b'1010’, 0'12', z'a' /

initialize all three elements of a to ten.

2.9. Character Strings

For compatibility with C usage, the following backslash escapes are recognized:

\n newline
\t tab

\b backspace
\f form feed

\0 null

\' apostrophe (does not terminate a string)

\" quotation mark (does not terminate a string)
\ \

\x X, where xis any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and /0 system
recognize both the apostrophe (') and the double-quote ( " ). If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated
quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string constant is
aligned on an integer word boundary. Each character string constant appearing outside a
data statement is followed by a null character to ease communication with C routines.

2.10. Hollerith

Fortran 77 does not have the old Hollerith (nh) notation, though the new Standard
recommends implementing the old Hollerith feature in order to improve compatibility
with old programs. In our compiler, Hollerith data may be used in place of character
string constants, and may also be used to initialize non-character variables in data state-
ments.

2.11. Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply-
dimensioned array to be represented by a singly-subscripted reference in equivalence
statements. Fortran 77 does not permit this usage, since subscript lower bounds may now
be different from 1. Our compiler permits single subscripts in equivalence statements,
under the interpretation that all missing subscripts are equal to 1. A warning message is



2.12.

2.13.

2.14.

2.15.

-5-

printed for each such incomplete subscript.

One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the ini-
tial value is already past the limit value, as in

do10i=21

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop would be performed at least once. In order
to accommodate old programs, though they were in violation of the 1966 Standard, the
—onetrip compiler flag causes non-standard loops to be generated.

Commas in Fermatted Input

The I/0 system attempts to be more lenient than the Standard when it seems worthwhile.
When doing a formatted read of non-character variables, commas may be used as value
separators in the input record, overriding the field lengths given in the format statement.
Thus, the format

(i10, £20.10, i4)
will read the record
—345,.05e-3,12

correctly.

Short Integers

On machines that support halfword integers, the compiler accepts declarations of type
integer*2. (Ordinary integers follow the Fortran rules about occupying the same space. as
a REAL variable; they are assumed to be of C type long int; halfword integers are of C
type short int.) An expression involving only objects of type integer*2 is of that type.
Generic functions return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using the —I2 flag, all small integer constants will
be of type integer*2. If the precision of an integer-valued intrinsic function is not deter-
mined by the generic function rules, one will be chosen that returns the prevailing length
(integer*2 when the —I2 command flag is in effect). When the —I2 option is in effect, all
quantities of type logical will be short. Note that these short integer and logical quantities
do not obey the standard rules for storage association.

Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard.
In addition, there are functions for performing bitwise Boolean operations ( or, and, xor,
and not) and for accessing the UNIX command arguments ( getarg and iargc ).

3. VIOLATIONS OF THE STANDARD

3.1.

We know only thre ways in which our Fortran system violates the new standard:

Double Precision Alignment

The Fortran standards (both 1966 and 1977) permit common or equivalence statements to
force a double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c

equivalence (a(1),b), (a(4),c)



-

-6-

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities
be on double word boundaries; other machines (e.g., IBM 370), run inefficiently if this
alignment rule is not observed. It is possible to tell which equivalenced and common
variables suffer from a forced odd alignment, but every double precision argument would
have to be assumed on a bad boundary. To load such a quantity on some machines, it
would be necessary to use separate operations to move the upper and lower halves into
the halves of an aligned temporary, then to load that double precision temporary; the
reverse would be needed to store a result. We have chosen to require that all double pre-
cision real and complex quantities fall on even word boundaries on machines with
corresponding hardware requirements, and to.issue a diagnostic if the source code
demands a violation of the rule.

3.2. Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in an external statement. This requirement arises as a
subtle corollary of the way we represent character string arguments and of the one-pass
nature of the compiler. A warning is printed if a dummy procedure is not declared exter-
nal. Code is correct if there are no character arguments.

3.3. T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record which has already been pro-
cessed. (Section 6.3.2 in the Appendix.) The implementation uses seeks, so if the ‘unit is
not one which allows seeks, such as a terminal, the program is in error. (People who can
make a case for using tl should let us know.) A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any
record lengths except where specifically required by Fortran or the operating system.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is neces-
sary to know the conventions for procedure names, data representation, return values, and
argument lists that the compiled code obeys.

4.1. Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has an underscore
appended to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name. Fortran library procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

4.2. Data Representations
The following is a table of corresponding Fortran and C declarations:

Fortran C
integer*2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x  double x;
complex x struct { float r, i; } x;
double complex x  struct { double dr, di; } x;
character*6 x char x[6];

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory).



4.3. Return Values ‘ N

A function of type integer, logical, real, or double precision declared as a C function that
returns the corresponding type. A complex or double complex function is equivalent to a C
routine with an additional initial argument that points to the place where the return value is to
be stored. Thus,

complex function f( . . .)
is equivalent to

f_(temp, ...)
struct { float r, i; } *temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

character*15 function g( . ..)
is equivalent to

g_(result, length, . . .)
char result[ 1;
long int length;

and could be invoked in C by
char chars[15];

g._'(t':hars, 15L,...); W

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels). are not passed to the
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has
no entry points with alternate return arguments, the returned value is undefined.) The state-
ment

call nret(*1, *2, *3)
is treated exactly as if it were the computed goto
goto (1, 2, 3), nret().

4.4. Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of
type character or that is a dummy procedure, an argument giving the length of the value is
passed. (The string lengths are long int quantities passed by value). The order of arguments is
then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in



external f
character+7 s
integer b(3)

call sam(f, b(2), s)
is equivalent to that in

int fO;
char s[7];
long int b[3];

sam_(f, &bl1], s, OL, 7L):

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1
by default. Fortran arrays are stored in column-major order, C arrays are stored in row-major
order.

5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran 1/0 is based on ‘‘records”. When a direct file is opened in a Fortran program,
the record length of the records must be given, and this is used by the Fortran I/0 system to
make the file look as if it is made up of records of the given length. In the special case that the
record length is given as 1, the files are not considered to be divided into records, but are
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read or
write request on such a file keeps consuming bytes until satisfied, rather than being restricted to
a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will
ever be read or written by any means except Fortran 1/0 statements. Each record is preceded
and followed by an integer containing the record’s length in bytes.

The Fortran 1/0 system breaks sequential formatted files into records while reading by
using each newline as a record separator. The result of reading off the end of a record is
undefined according to the Standard. The 1/0 system is permissive and treats the record as
being extended by blanks. On output, the I/0 system will write a newline at the end of each
record. It is also possible for programs to write newlines for themselves. This is an error, but
the only effect will be that the single record the user thought he wrote will be treated as more
than one record when being read or backspaced over.

5.2. Portability Considerations

The Fortran 1/0 system uses only the facilities of the standard C 1/0 library, a widely
available and fairly portable package, with the following two nonstandard features: The 1/0 sys-
tem needs to know whether a file can be used for direct I/0, and whether or not it is possible
to backspace. Both of these facilities are implemented using the fseek routine, so there is a
routine canseek which determines if fseek will have the desired effect. Also, the inquire state-
ment provides the user with the ability to find out if two files are the same, and to get the name
of an already opened file in a form which would enable the program to reopen it. (The UNIX
operating system implementation attempts to determine the full pathname.) Therefore there are
two routines which depend on facilities of the operating system to provide these two services.
In any case, the I/0 system runs on the PDP-11, VAX-11/780, and Interdata 8/32 UNIX sys-
tems.



-9.

5.3. Pre-Connected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the
standard input, unit 6 is connected to the standard output, and unit 0 is connected to the stan-
dard error unit. All are connected for sequential formatted I/0.

All the other units are also preconnected when execution begins. Unit n is connected to
a file named fort.n. These files need not exist, nor will they be created unless their units are
used without first executing an open. The default connection is for sequential formatted 1/0.

The Standard does not specify where a file which has been explicitly opened for sequential
I/0 is initially positioned. In fact, the I/O system attempts to position the file at the end, so a
write will append to the file and a read will result in an end-of-file indication. To position a file
to its beginning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned as
they come from the program’s parent process.

REFERENCES |
1.  Sigplan Notices 11, No.3 (1976), as amended in X3J3 internal documents through
“/90.1.

2. USA Standard FORTRAN, USAS X3.9-1966, New York: United States of America Stan-
dards Institute, March 7, 1966. Clarified in Comm. ACM 12, 289 (1969) and Comm.
ACM 14, 628 (1971).

3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood Cliffs:
Prentice-Hall (1978).

4. D. M. Ritchie, private communication.

5. S. C. Johnson, ‘‘A Portable Compiler: Theory and Practlce”, Proc. 5th ACM Symp. on
Principles of Programming Languages (January 1978).

6. S. 1. Feldman, ‘“An Informal Description of EFL”’, internal memorandum.

7. B. W. Kernighan, ‘“‘RATFOR — A Preprocessor for a Rational Fortran’’, Bell Laboratories
Computing Science Technical Report #55, (January 1977).

8. D. M. Ritchie, private communication.



-10 -

APPENDIX. Differences Between Fortran 66 and Fortran 77

The following is a very brief description of the differences between the 1966 [2] and the
1977 (1] Standard languages. We assume that the reader is familiar with Fortran 66. We do
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most
important aspects of the new language. At present the only current information on the 1977
Standard is in publications of the X3J3 Subcommittee of the American National Standards
Institute. The following information is from the ‘‘/92>* document. This draft Standard is writ-
ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or
textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of ‘‘Hollerith” (nh) as data have been officially removed, although our com-
piler, like almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per-
missible to jump out of the range of a do loop, then jump back into it. Extended range
has been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended range is so unreliable in many compilers, that this change
really counts as no loss.

2. Program Form

2.1. Blank Lines
Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that program an external
name:

program work
Block data procedures may also have names.
block data stuff

There is now a rule that only one unnamed block data procedure may appear in a pro-
gram. (This rule is not enforced by our system.) The Standard does not specify the effect
of the program and block data names, but they are clearly intended to aid conventional
loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have addi-
tional entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, all entry points are subroutine names. If it begins with a function
statement, each entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name of the same type as that where control entered must be
assigned a value. Arguments do not retain their values between calls. (The ancient trick



-11-

of calling one entry point with a large number of arguments to cause the procedure to
“remember’’ the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is still illegal. Furthermore, the trick doesn’t work in our
implementation, since arguments are not kept in static storage.)

2.4. DO Loops

do variables and range parameters may now be of integer, real, or double precision types.
(The use of floating point do variables is very dangerous because of the possibility of
unexpected roundoff, and we strongly recommend against their use). The action of the
do statement is now defined for all values of the do parameters. The statement

dol0i=1u,d

performs max(0, [(u—1)/d]) iterations. The do variable has a predictable value when
exiting a loop: the value at the time a goto or return terminates the loop; otherwise the
value that failed the limit test.

2.5. Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by
an asterisk, as in

subroutine s(a, *, b, *)

The meaning of the ‘‘alternate returns” is described in section 5.2 of the Appendix.

3. Declarations

3.1. CHARACTER Data Type

3.2,

One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by a constant
expression:

character*17 a, b(3,4)
character*(6+3) ¢

If the length is omitted entirely, it is assumed equal to 1. A character string argument
may have a constant length, or the length may be declared to be the same as that of the
corresponding actual argument at run time by a statement like

character*(*) a

(There is an intrinsic function len that returns the actual length of a character string).
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the last charac-
ter of the preceding element, without holes.

IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j,
k, 1, m, or n is of type integer, other variables are of type real, unless otherwise declared.
This general rule may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), character*(17) (s)

declares that variables whose name begins with an a ,b, ¢, or g are real, those beginning
with w, x, y, or z are assumed complex, and so on. It is still poor practice to depend on
implicit typing, but this statement is an industry standard.



@mm

-12-

3.3. PARAMETER Statement

It is now possible to give a constant a symbolic name, as in
parameter (x=17, y=x/3, pi=3.14159d0, s="'hello")

The type of each parameter name is governed by the same implicit and explicit rules as
for a variable. The right side of each equal sign must be a constant expression (an
expression made up of constants, operators, and already defined parameters).

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in
1966). The lower bound of each dimension may be declared to be other than 1 by using a
colon. Furthermore, an adjustable array bound may be an integer expression involving
constants, arguments, and variables in common.

real a(—5:3, 7, m:n), b(n+1:2+n)

The upper bound on the last dimension of an array argument may be denoted by an aster-
isk to indicate that the upper bound is not specified:

integer a(5, *), b(*), c(0:1, —2:%)

3.5. SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure do not netessarily
retain their values between invocations of that procedure. At any instant in the execution
of a program, if a common block is declared neither in the currently executing procedure
nor in any of the procedures in the chain of callers, all of the variables in that common
block also become undefined. (The only exceptions are variables that have been defined
in a data statement and never changed). These rules permit overlay and stack implemen-
tations for the affected variables. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. The declaration

save a, /b/, ¢

leaves the values of the variables a and ¢ and all of the contents of common block b
unaffected by a return. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block
must be saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, ‘“‘intrinsic func-
tions’’, rather than being divided into “‘intrinsic’® and “‘basic external’’ functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic.
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be
passed.

4. Expressions

4.1. Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apos-
trophe is to be included in a constant, it is repeated:

! ’

abc

ain"t’



-13 -

There are no null (zero-length) character strings in Fortran 77. Our compiler has two
different quotation marks, * ' >>* and *“ " . (See Section 2.9 in the main text.)

4.2. Concatenation

One new operator has been added, character string concatenation, marked by a double
slash (‘//**). The result of a concatenation is the string containing the characters of the
left operand followed by the characters of the right operand. The strings

‘ab' // 'cd’

‘abed’
are equal. The strings being concatenated must be of constant length in all concatenations
that are not the right sides of assignments. (The only concatenation expressions in which

a character string declared adjustable with a “‘*(»)>’ modifier or a substring denotation
with nonconstant position values may appear are the right sides of assignments).

4.3. Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left
side.) If the left side is longer than the right, it is padded with blanks. If the left side is
shorter than the right, trailing characters are discarded.

4.4. Substrings

It is possible to extract a substring of a character variable or character array element, using
the colon notation:

a(i,j) (m:n)

is the string of (n—m+1) characters beginning at the m" character of the character array
element a;. Results are undefined unless m<n. Substrings may be used on the left
sides of assignments and as procedure actual arguments.

4.5. Exponentiation

4.6.

It is now permissible to raise real quantities to complex powers, or complex quantities to .

real or complex powers. (The principal part of the logarithm is used). Also, multiple
exponentiation is now defined:

asxbixc = g ** (b*xC)

Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine
integer and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data state-
ments. (A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power). An adjustable
dimension may now be an integer expression involving constants, arguments, and vari-
ables in B common..

Subscripts may now be general integer expressions; the old cvxc’ rules have been

removed. do loop bounds may be general integer, real, or double precision expressions.
Computed goto expressions and 1/0 unit numbers may be general integer expressions.



-14 -

5. Executable Statements

5.1. IF-THEN-ELSE

5.2.

At last, the if-then-else branching structure has been added to Fortran. It is called a
“Block If*’. A Block If begins with a statement of the form

if (...) then
and ends with an
end if
statement. Two other new statements may appear in a Block If. There may be several
else if(. . .) then
statements, followed by at most one
else

statement. If the logical expression in the Block If statement is true, the statements fol-
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elseif
statement in the group is executed. If none of the elseif conditions are true, control
passes to the statements following the else statement, if any. (The else must follow all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If
structures). A case construct may be rendered

if (s .eq. ‘'ab’) then
else if (s .eq. ‘cd’) then
else
end if

Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an aster-
isk, as in

call joe(j, *10, m, *2)
A return statement may have an integer expression, such as
return k

If the entry point has n alternate return (asterisk) arguments and if 1<k < n, the return
is followed by a branch to the corresponding statement label; otherwise the usual return to
the statement following the call is executed.

6. Input/Output

6.1. Format Variables

A format may be the value of a character expression (constant or otherwise), or be stored
in a character array, as in

write (6, '(i5)") x



-15-

6.2. END=, ERR=, and IOSTAT= Clauses :
A read or write statement may contain end=, err=, and iostat= clauses, as in
write(6, 101, err=20, iostat=a(4))
read(S, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the units on which the I/0 is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during 1/0, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable
referred to in the iostat= clause is given a value when the 1/0O statement finishes. (Yes,
the value is assigned to the name on the right side of the equal sign.) This value is zero if
all went well, negative for end of file, and some positive value for errors.

6.3. Formatted 170

6.3.1. Character Constants

Character constants in formats are copied literally to the output. Character constants can-
not be read into.

write(6,'(i2,” isn""t ",i1)") 7, 4
_produces ' -

7isn't 4

Here the format is the character constant
(i2, isn"t ',il1)

and the character constant
isn't

is copied into the output.

6.3.2. Positional Editing Codes

- t, tl, tr, and x codes control where the next character is in the record. trnor nx specifies
that the next character is n to the right of the current position. tln specifies that the next
character is n to the left of the current position, allowing parts of the record to be recon-
sidered. tn says that the next character is to be character number n in the record. (See
section 3.4 in the main text.)

6.3.3. Colon

A colon in the format terminates the I/O operation if there are no more data items in the
1/0 list, otherwise it has no effect. In the fragment

x='("hello", :, " there", i4)’
write(6, x) 12
write (6, x)

the first write statement prints hello there 12, while the second only prints hello.

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in
front of non-negative numeric output. The sp format code may be used to make the
optional plus signs actually appear for all subsequent items while the format is active. The
ss format code guarantees that the I1/0 system will not insert the optional plus signs, and
the s format code restores the default behavior of the I/0 system. (Since we never put



c

-16 -

out optional plus signs, ss and s codes have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case iw.0 is
special, in that if the value being printed is 0, the output field is entirely blank. iw.l is
the same as iw.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with
the implementation. (We do not print it.) There is a gw.d format code which is the same
as ew.d and fw.d on input, but which chooses f or e formats for output depending. on the
size of the number and of 4.

6.3.9. ““A” Format Code

6.4.

6.5.

A codes are used for character values. aw use a field width of w, while a plain a uses the
length of the character item.

Standard Units
There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be expli-
citly specified by an asterisk, as in

read(*, 10) a,b
Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write (*, 10)

List-Directed Formatting

List-directed I/0 is a kind of free form input for sequential I/O. It is invoked by using an
asterisk as the format identifier, as in

read(6, *) a,b,c



-17 -

On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the I1/0 list is not changed.
Values may be preceded by repetition counts, as in

4x(3.,2.) 2+, 4+'hello’
~ which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

6.6. Direct 1/0

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access I/0 statements.

Direct access read and write statements have an extra argument, rec=, which gives the
record number to be read or written.
read(2, rec=13, err=20) (a(i), i=1, 203)

reads the thirteenth record into the array a.

The size of the records must be given by an open statement .(see below). Direct access
files may be connected for either formatted or unformatted I/0.

6.7. Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted I/0 on
internal files. (I/O is not a very precise term to use here, but internal files are dealt with
using read and write). There is no list-directed I/O on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in

character+=80 x
read(5,"(a)") x
read(x,"(i3,i4)") nl,n2

which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.

(We also support a compatible extension, direct I/O on internal files. This is like direct
1/0 on external files, except that the number of records in the file cannot be changed.)

6.8. OPEN, CLOSE, and INQUIRE Statements
These statements are used to connect and disconnect units and files, and to gather infor-
mation about units and files.

6.8.1. OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

open(1, file="'fort.junk’)

open takes a variety of arguments with meanings described below.



-18 -

unit= a small non-negative integer which is the unit to which the file is to be connected.
We allow, at the time of this writing, 0 through 9. If this parameter is the first one
in the open statement, the unit= can be omitted.

iostat= is the same as in read or write.
err= is the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the
file to be connected to the unit. The filename should not be given if the
status=scratch.

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown
is assumed. If scratch is given, a temporary file will be created. Temporary files are
destroyed at the end of execution. If new is given, the file will be created if it
doesn’t exist, or truncated if it does. The meaning of unknown is processor depen-
dent; our system treats it as synonymous with old.

access= sequential or direct, depending on whether the ﬁle} is to be opened for sequen-
tial or direct I/0.

form= formatted or unformatted.

recl= a positive integer specifying the record length of the direct access file being opened.
We measure all record lengths in bytes. On UNIX systems a record length of 1 has
the special meaning explained in section 5.1 of the text.

blank= null or zero. This parameter has meaning only for formatted 1/0. The default
value is null. zero means that blanks, other than leading blanks, in numeric input
fields are to be treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the
old file.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err= with their usual meanings, and status=
either keep or delete. Scratch files cannot be kept, otherwise keep is the default. delete
means the file will be removed. A simple example is

close(3, err=17)

6.8.3. INQUIRE
The inquire statement gives information about a unit (“‘inquire by unit’’) or a file
(“‘inquire by file””). Simple examples are:

inquire (unit=3, namexx)
inquire (file="junk’, number=n, exist=1)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file
name are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or
unit= must be used.

iostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and
is set to .false. otherwise.

opened= a logical variable. The logical variable is set to .true. if the file is connected to
a unit or if the unit is connected to a file, and it is set to .false. otherwise.



-19-

number= an integer variable to which is assigned the number of the unit connected to
the file, if any.

named= a logical variable to which is assigned .true. if the file has a name, or .false.
otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or
the name of the file connected to the unit (inquire by unit). The name will be the
full name of the file.

access= a character variable to which will be assigned the value 'sequential’ if the con-
nection is for sequential I/0, 'direct’ if the connection is for direct I/0. The value
b_ecomes undefined if there is no connection.

sequential= a character variable to which is assigned the value 'yes' if the file could be
connected for sequential I/0, 'no’ if the file could not be connected for sequential
1/0, and 'unknown' if we can’t tell.

direct= a character variable to which is assigned the value ‘yes’ if the file could be con-
nected for direct I/0, 'no’ if the file could not be connected for direct I/0, and 'unk-
nown' if we can’t tell. :

form= a character variable to which is assigned the value ‘formatted’ if the file is con-
nected for formatted 170, or 'unformatted’ if the file is connected for unformatted
1/0.

formatted= a character variable to which is assigned the value ‘yes' if the file could be
connected for formatted 1/0, 'mo’ if the file could not be connected for formatted
1/0, and ‘unknown’ if we can’t tell.

unformatted= a character variable to which is assigned the value 'yes’ if the file could be
connected for unformatted 1/0, 'no’ if the file could not be connected for unformat-
ted 1/0, and 'unknown' if we can’t tell.

recl= an integer variable to which is assigned the record length of the records in the file
if the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the
last record read from a file connected for direct access.

blank= a character variable to which is assigned the value 'null’ if null blank control is in
effect for the file connected for formatted 170, ‘zero’ if blanks are being converted to
zeros and the file is connected for formatted 1/0.

The gentle reader will remember that the people who wrote the standard probably weren’t
thinking of his needs. Here is an example. The declarations are omitted.

open(l, file="/dev/console")

On a UNIX system this statement opens the console for formatted sequential I/0. An inquire
statement for either unit 1 or file "/dev/console" would reveal that the file exists, is connected
to unit 1, has a name, namely "/dev/console", is opened for sequential I/0, could be connected
for sequential 1/0, could not be connected for direct I/O (can’t seek), is connected for format-
ted 170, could be connected for formatted 1/0, could not be connected for unformatted 1/0
(can’t seek), has neither a record length nor a next record number, and is ignoring blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for
a file is to open it and try to read and write it. The err= parameter will return system error
numbers. The inquire statement does not give a way of determining permissions.



RATFOR — A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Although Fortran is not a pleasant language to use, it does have the advantages of universality and

(usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran
while retaining its desirable qualities, by providing decent control flow statements:

statement grouping

if-else and switch for decision-making
while, for, do, and repeat-until for looping
break and next for controlling loop exits

and some ‘‘syntactic sugar’’:

free form input (multiple statements/line, automatic continuation)
unobtrusive comment convention

translation of >, >=, etc., into .GT., .GE., etc.
return(expression) statement for functions

define statement for symbolic parameters

include statement for including source files

Ratfor is implemented as a preprocessor which translates this language into Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is

remarkably pleasant to use. Ratfor programs are markedly easier to write. and to read. and thus easier to
debug, maintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to othér env ironments. Ratfor is

written in itself in this way, so it is also portable: versions of Ratfor are now running on at least two
dozen different types of computers at over five hundred locations.

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its imple-

mentation, and user experience.



RATFOR — A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Most programmers will agree that Fortran
is an unpleasant language to program in, yet
there are many occasions when they are forced
to use it. For example, Fortran is often the only
language thoroughly supported on the local com-
puter. Indeed, it is the closest thing to a univer-
sal programming language currently available:
with care it is possible to write large, truly port-
able Fortran programs[1]. Finally, Fortran is
often the most ‘‘efficient” language available,
particularly for programs requiring much compu-
tation.

But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow statements
— conditional branches and loops — which
express the logic of the program. The condi-
tional statements in Fortran are primitive. The
Arithmetic IF forces the user into at least two
statement numbers and two (implied) GOTO’s; it
leads to unintelligible code, and is eschewed by
good programmers. The Logical IF is better, in
that the test part can be stated clearly, but hope-
lessly restrictive because the statement that fol-
lows the IF can only be one Fortran statement
(with some further restrictions!). And of course
there can be no ELSE part to a Fortran IF: there is
no way to specify an alternative action if the IF is
not satisfied.

The Fortran DO restricts the user to going
forward in an arithmetic progression. It is fine
for *“1 to N in steps of 1 (or 2 or ...)"", but there
is no direct way to go backwards, or even (in
ANSI Fortran[2]) to go from 1 to N—1. And of
course the DO is useless if one's problem doesn’t
map into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The resulting code is particularly
difficult to read and understand, and thus hard to
debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and to
translate it into the unpleasant one with a
preprocessor. This is the approach taken with
Ratfor. (The preprocessor idea is of course not
new, and preprocessors for Fortran are especially
popular today. A recent listing [3] of preproces-
sors shows more than 50, of which at least half a
dozen are widely available.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of
Fortran (universality, portability, efficiency)
while hiding the worst Fortran inadequacies.
The language is Fortran except for two aspects.
First, since control flow is central to any pro-
gram, regardless of the specific application, the
primary task of Ratfor is to conceal this part of
Fortran from the user, by providing decent con-
trol flow structures. These structures are
sufficient and comfortable for structured pro-
gramming in the narrow sense of programming
without GOTO'’s. Second, since the preprocessor
must examine an entire program to translate the
control structure, it is possible at the same time
to clean up many of the ‘‘cosmetic’ deficiencies
of Fortran, and thus provide a language which is
easier and more pleasant to read and write.

Beyond these two aspects — control flow
and cosmetics — Ratfor does nothing about the
host of other weaknesses of Fortran. Although
it would be straightforward to extend it to pro-
vide character strings, for example, they are not
needed by everyone, and of course the prepro-
cessor would be harder to implement.
Throughout, the design principle which has
determined what should be in Ratfor and what
should not has been Ratfor doesn't know any For-
rran. Any language feature which would require

This paper is a revised and expanded version of oe published in Sofiware— Praciice and Experience, October
1975. The Ratfor described here is the one in use on UNIX and Gcos at Bell Laboratories, Murray Hill, N. J.



that Ratfor really understand Fortran has been
omitted. We will return to this point in the sec-
tion on implementation.

Even within the confines of control flow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has been
to provide a small set of the most useful con-
structs, rather than to throw in everything that
has ever been thought useful by someone.

The rest of this section contains an infor-
mal description of the Ratfor language. The con-
trol flow aspects will be quite familiar to readers
used to languages like Algol, PL/I, Pascal, etc.,
and the cosmetic changes are equally straightfor-
ward. We shall concentrate on showing what the
language looks like.

Statement Grouping

Fortran provides no way to group state-
ments together, short of making them into a
subroutine. The standard construction *‘if a con-
dition is true, do this group of things,” for
example,

if (x > 100)

{ call error("x>100": err = 1: return }

cannot be written directly in Fortran. Instead a
programmer is forced to translate this relatively
clear thought into murky Fortran, by stating the
negative condition and branching around the
group of statements:

if (x .le. 100) goto 10
call error(5hx>100)
err = 1
return
10

When the program doesn’t work, or when it
must be modified, this must be translated back
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form is the way the computation is written in
Ratfor. A group of statements can be treated as
a unit by enclosing them in the braces { and }.
This is true throughout the language: wherever a
single Ratfor statement can be used, there can be
several enclosed in braces. (Braces seem clearer
and less obtrusive than begin and end or do and
end, and of course do and end already have For-
tran meanings.)

Cosmetics contribute to the readability of
code, and thus to its understandability. The
character **>"" is clearer than *.GT.”, so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many For-
tran compilers permit character strings in quotes

(like "x>100"), quotes are not allowed in ANSI
Fortran, so Ratfor converts it into -the right
riumber of H’s: computers count better than
people do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi- -
colons. The example above could also be written
as

if (x > 100) {
call error("x>100")
err = 1
return

}

In this case, no semicolon is needed at the end
of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the
if is a single statement (Ratfor or otherwise), no
braces are needed:

if(y<=00&z<=0.0)
write(6, 20) y, z

No continuation need be indicated because the
statement is clearly not finished on the first line.
In general Ratfor continues lines when it seems
obvious that they are not yet done. (The con-
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In par-
ticular, proper indentation is vital, to make the
logical structure of the program obvious to the
reader.

The “‘else’’ Clause

Ratfor provides an else statement to han-
dle the construction “‘if a condition is true, do
this thing, otherwise do that thing.”

if (@ <=b)
{ sw

I

0; write(6, 1) a, b }
else
{sw=1; write(6, 1) b, a }

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is cir-
cuitous indeed:



if (a .gt. b) goto 10
sw=20
write(6, 1) a, b
goto 20
10 sw =1
write(6, 1) b, a
20

This is a mechanical translation; shorter forms
exist, as they do for many similar situations. But
all translations suffer from the same problem:
since they are translations, they are less clear and
understandable than code that is not a transla-
tion. To understand the Fortran version, one
must scan the entire program to make sure that
no other statement branches to statements 10 or
20 before one knows that indeed this is an if-
else construction. With the Ratfor version, there
is no question about how one gets to the parts of
the statement. The if-else is a single unit, which
can be read, understood, and ignored if not
relevant. The program says what it means.

As before, if the statement following an if
or an else is-a single statement, no braces are
needed:

if (a<=1b)
sw=20
else
sw =1

The syntax of the if statement is

if (legal Fortran condition)
Ratfor statement
else
Ratfor statement

where the else part is optional. The legal Fortran
condition is anything that can legally go into a
Fortran Logical IF.  Ratfor does not check this
clause, since it does not know enough Fortran to
know what is permitted. The Ratfor statement is
any Ratfor or Fortran statement, or any collec-
tion of them in braces.

Nested if’s

Since the statement that follows an if or an

else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a useful example, consider this problem:
the variable f is to be set to —1 if x is less than
zero, to +1 if x is greater than 100, and to 0
otherwise. Then in Ratfor, we write

if (x <0)
= -1
else if (x > 100)
f=+1
else
f=0

Here the statement after the first else is another
if-else. Logically it is just a single statement,
although it is rather complicated.

This code says what it means. Any ver-
sion written in straight Fortran will necessarily be
indirect because Fortran does not let you say
what you mean. And as always, clever shortcuts
may turn out to be too clever to understand a
year from now.

Following an else with an if is one way to
write a multi-way branch in Ratfor. In general
the structure

if (...)

else if (...

else if (...

|

else

provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also provides
a switch statement which does the same job in
certain special cases. in more general situations,
we have to make do with spare parts.) The tests
are laid out in sequence, and each one is fol-
lowed by the code associated with it. Read down
the list of decisions until one is found that is
satisfied. The code associated with this condition
is executed, and then the entire structure is
finished. The trailing else part handles the
‘*default™ case, where none of the other condi-
tions apply. If there is no default action, this
final else part is omitted:

if (x < 0)
x =0
else if (x > 100)
x = 100

if-else ambiguity

There is one thing to notice about compli-
cated structures involving nested if’s and else’s.
Consider



-

if (x > 0)
if (y > 0)
write(6, 1) x, y
else

write(6, 2) y

There are two if's and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as it
is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the
closest previous un-else’ed if. Thus in this case,
the else goes with the inner if, as we have indi-
cated by the indentation.

It is a wise practice to resolve such cases
by explicit braces, just to make your intent clear.
In the case above, we would write

if (x> 0) {
if (y > 0)
write(6, 1) x, y
else

write(6, 2) y
}

which does not change the meaning, but leaves
no doubt in the reader’s mind. If we want the
other association, we must write

if (x > 0) {
if (y > 0)
write(6, 1) x, y
}
else
write(6, 2) y

The “‘switch’’ Statement

The switch statement provides a clean way
to express multi-way branches which branch on
the value of some integer-valued expression.
The syntax is

switch (expression) {

case exprl :
statements

case expr2, expr3 :
statements

default:
Statements

)

Each case is followed by a list of comma-
separated integer expressions. The expression
inside switch is compared against the case
expressions exprl, expr2, and so on in turn until
one matches, at which time the statements fol-
lowing that case are executed. If no cases match
expression, and there is a default section, the

statements with it are done; if there is no
default, nothing is done. In all situations, as
soon as some block of statements is executed,
the entire switch is exited immediately.
(Readers familiar with C[4] should beware that
this behavior is not the same as the C switch.)

The “‘do” Statement

The do statement in Ratfor is quite similar
to the DO statement in Fortran, except that it
uses no statement number. The statement
number, after all, serves only to mark the end of
the DO, and this can be done just as easily with
braces. Thus

doi=1,n{
x@i) = 0.0
y(i) = 0.0
z(i) = 0.0
)

is the same as

dol0i=1,n
x(@i) = 0.0
y(@i) = 0.0
z(i) = 0.0
10 continue

The syntax is:

do legal-Fortran-DO-text
Ratfor statement

The part that follows the keyword do has to be
something that can legally go into a Fortran DO
statement. Thus if a local version of Fortran
allows DO limits to be expressions (which is not
currently permitted in ANSI Fortran). they can be
used in a Ratfor do.

The Ratfor statement part will often be
enclosed in braces. but as with the if. a single
statement need not have braces around it. This
code sets an array to zero:

doi=1,n
x(i) = 0.0

Slightly more complicated,

doi=1,n
doj=1,n
m@i,j) =0

sets the entire array m to zero, and



doi=1,n
doj=1,n

if i <j)
m(i, j) = -1

else if (i == j)
m(@,j) =0

else
m(, j) = +1

sets the upper triangle of m to —1, the diagonal
to zero, and the lower triangle to +1. (The
operator == is “‘equals’, that is, **.EQ.”.) In
each case, the statement that follows the do is
logically a single statement, even though compli-
cated, and thus needs no braces.

“‘break’’ and *‘next”’

Ratfor provides a statement for leaving a
loop early, and one for beginning the next itera-
tion. break causes an immediate exit from the
do; in effect it is a branch to the statement after
the do. next is a branch to the bottom of the
loop, so it causes the next iteration to be done.
For example, this code skips over negative
values in an array:

doi=1,n{
if (x(i) < 0.0)
next
process positive element

}

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that level
of enclosing loop; thus

break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to break. next 2 iterates
the second enclosing loop. (Realistically, multi-
level break's and next’s are not likely to be
much used because they lead to code that is hard
to understand and somewhat risky to change.)

The ‘“‘while’’ Statement

One of the problems with the Fortran DO
statement is that it generally insists upon being
done once, regardless of its limits. If a loop
begins

DOl =21

this will typically be done once with I set to 2,
even though common sense would suggest that
perhaps it shouldn’t be. Of course a Ratfor do
can easily be preceded by a test

if  <=k)
doi=j k |

| -

but this has to be a conscious act, and is often
overlooked by programmers.

A more serious problem with the DO state-
ment is that it encourages that a program be
written in terms of an arithmetic progression
with small positive steps, even though that may
not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the
Fortran DO, it is that much harder to write and
understand.

To overcome these difficulties, Ratfor pro-
vides a while statement, which is simply a loop:
“while some condition is true, repeat this group
of statements’. It has no preconceptions about
why one is looping. For example, this routine to
compute sin(x) by the Maclaurin series combines
two termination criteria.

real function sin(x, e)
# returns sin(x) to accuracy e, by
# sin(x) = x — x*»3/3! + x*+5/5! — ...

sin = x
term = X
i=3
while (abs(term) >e & i<100) {
term = —term * x**2 / float(i*(i—1))
sin = sin + term
i+ 2

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done zero times, that is, no attempt will be made
to compute x**3 and thus a potential underflow
is avoided. Since the test is made at the top of a
while loop instead of the bottom, a special case
disappears — the code works at one of its boun-
daries. (The test i<100 is the other boundary —
making sure the routine stops after some max-
imum number of iterations.)

As an aside, a sharp character “‘#' in a
line marks the beginning of a comment; the rest
of the line is comment. Comments and code can
co-exist on the same line — one can make mar-
ginal remarks, which is not possible with
Fortran’s *‘C in column 1°° convention. Blank
lines are also permitted anywhere (they are not
in Fortran); they should be used to emphasize
the natural divisions of a program.



The syntax of the while statement is

while (legal Fortran condition)
Ratfor statement

As with the if, legal Fortran condition is some-
thing' that can go into a Fortran Logical IF, and
Ratfor statement is a single statement, which may
be multiple statements in braces.

The while encourages a style of coding not
normally practiced by Fortran programmers. For
example, suppose nextch is a function which
returns the next input character both as a func-

tion value and in its argument. Then a loop to

find the first non-blank character is just

while (nextch(ich) == iblank)

N

A semicolon by itself is a null statement, which
is necessary here to mark the end of the while;
if it were not present, the while would control
the next statement. When the loop is broken,
ich contains the first non-blank. Of course the
same code can be written in Fortran as

100  if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few com-
pilers) believe this line is illegal. The language at
one’s disposal strongly influences how one thinks
about a problem.

The “‘for’’ Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop-
body from reason-for-looping a step further than
the while. A for statement allows explicit initiali-
zation and increment steps as part of the state-
ment. For example, a DO loop is just

for(i=lii<=nji=i+1)..
This is equivalent to

i=1
while (i <= n) |{

i+1
}
The initialization and increment of i have been

moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the
advantage that they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ-
ous section can be re-written with a for as

for (i=3; abs(term) > e & i < 100; i=i+2) {
term = —term * x**2 / float(i*(i—1))
sin = sin + term

The syntax of the for statement is

for ( init ;, condition ;, increment )
Ratfor statement

init is any single Fortran statement, which gets
done once before the loop begins. increment is
any single Fortran statement, which gets done at
the end of each pass through the loop, before
the test. condition is again anything that is legal
in a logical IF. Any of init, condition, and incre-
ment may be omitted, although the semicolons
must always be present. A non-existent condition
is treated as always true, so for(;;) is an
indefinite repeat. (But see the repeat-until in
the next section.)

The for statement is particularly useful for
backward loops, chaining along lists, loops that
might be done zero times, and similar things
which are hard to express with a DO statement,
and obscure to write out with IF’'s and GOTO’s.
For example, here is a backwards DO loop to find
the last non-blank character on a card:

for(i=180;i>0i=1i—1)
if (card(i) '= blank)
break

(*'=""is the same as “NE."). The code scans
the columns from 80 through to 1. If a non-
blank is found, the loop is immediately broken.
(break and next work in for's and while's just as
in do’s). If i reaches zero, the card is all blank.

This code is rather nasty to write with a
regular Fortran DO, since the loop must go for-
ward, and we must explicitly set up proper condi-
tions when we fall out of the loop. (Forgetting
this is a common error.) Thus:

DO10J =1, 80
I=281-1]
IF (CARD(I) .NE. BLANK) GO TO 11
10 CONTINUE
I=0
11

The version that uses the for handles the termi-
nation condition properly for free; i is zero when
we fall out of the for loop.

The increment in a for need not be an
arithmetic progression; the following program
walks along a list (stored in an integer array ptr)
until a zero pointer is found, adding up elements
from a parallel array of values:



sum = 0.0
for (i = first; i > 0; i = ptr(i))
sum = sum + value(i)

Notice that the code works correctly if the list is
empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential
boundary error.

The “‘repeat-until’’ statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This service
is provided by the repeat-until:

repeat
Ratfor statement
until (legal Fortran condition)

The Ratfor statement part is done once, then the
condition is evaluated. If it is true, the loop is
exited; if it is false, another pass is made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break, or an implicit stop such as running out of
input with a READ statement.

As a matter of observed fact[8], the
repeat-until statement is much less used than the
other looping constructions; in particular, it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don’t handle null
cases well.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test part
of do, while and repeat-until, and to the incre-
ment step of a for.

‘‘return’’ Statement

The standard Fortran mechanism for
returning a value from a function uses the name
of the function as a variable which can be
assigned to; the last value stored in it is the
function value upon return. For example, here
is a routine equal which returns 1 if two arrays
are identical, and zero if they differ. The array
ends are marked by the special value —1.

# equal _ compare strl to str2;

# return 1 if equal, 0 if not
integer function equal(strl, str2)
integer str1(100), str2(100)

integer i
for (i = 1;strl(i) == str2();i=i+ 1)
if str1G) == —1) {
equal = 1
return
}
equal = 0
return
end

In many languages (e.g., PL/I) one instead
says

return (expression)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return
statement — in a function F, return(expression)
is equivalent to

_{ F = expression; return }
For example, here is equal again:

# equal _ compare strl to str2;

# return 1 if equal, 0 if not
integer function equal(strl, str2)
integer str1(100), str2(100)

integer i
for i = 1;strl (i) == str2(d);i=i+1)
if (str1(i) == -1)
return(1)
return(0)

end

If there is no parenthesized expression after
return, a normal RETURN is made. (Another
version of equal is presented shortly.)

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
is to read and understand programs. Accord-
ingly, Ratfor provides a number of cosmetic
facilities which may be used to make programs
more readable.

Free-form Input

Statements can be placed anywhere on a
line; long statements are continued automati-
cally, as are long conditions in if, while, for, and
until. Blank lines are ignored. Multiple state-
ments may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make



some reasonable guess about whether the state-
ment ends there. Lines ending with any of the
characters

& ( _

are assumed to be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

+ o= e

Any statement that begins with an all-
numeric field is assumed to be a Fortran label,
and placed in columns 1-5 upon output. Thus

write(6, 100); 100 format("hello")
is converted into

write(6, 100)

100 format(5hhello)

Translation Services

Text enclosed in matching single or double
quotes is converted to nH... but is otherwise
unaltered (except for formatting — it may get
split across card boundaries during the reformat-
ting process). Within quoted strings, the
backslash ‘\’ serves as an escape character: the
next character is taken literally. This provides a
way to get quotes (and of course the backslash
itself) into quoted strings:

"\

is a string containing a backslash and an apos-
trophe. (This is nor the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character ‘%’
is left absolutely unaltered except for stripping
off the ‘%’ and moving the line one position to
the left. This is useful for inserting control
cards, and other things that should not be
transmogrified (like an existing Fortran pro-
gram). Use ‘%’ only for ordinary statements,
not for the condition parts of if, while, etc., or
the output may come out in an unexpected place.

The following character translations are

made, except within single or double quotes or
on a line beginning with a ‘%".

== .eq. l= .ne.
> .gt. >= .ge.
< At <= le.
& .and. | .or.
! .not. - .not.

In addition, the following translations are pro-
vided for input devices with-restricted character
sets.

$( {

‘‘define’’ Statement

Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non-
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

define ROWS 100
define COLS 50

dimension a(ROWS), b(ROWS, COLS)
if i > ROWS | j > COLS) ...
Alternately, definitions may be written as
define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis:
this allows multi-line definitions.

It is generally a wise practice to use sym-
bolic parameters for most consjants, to help
make clear the function of what would otherwise
be mysterious numbers. As an example, here is
the routine equal again, this time with symbolic
constants,

define YES 1
define NO 0
define EOS -1
define ARB 100

# equal _ compare strl to str2;

# return YES if equal, NO if not
integer function equal(strl, str2)
integer str1 (ARB), str2(ARB)
integer i

for (i = 1 strl(i) == str2(i):i =i+ 1)
if (str1(i) == EOS)
return(YES)
return(NO)
end

“‘include’’ Statement
The statement

include file

inserts the file found on input stream file into the
Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks
on a file, and include that file whenever a copy is
needed:



subroutine x
include commonblocks

end
suroutine y
include commonblocks

end
This ensures that all copies of the COMMON
blocks are identical

Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such
as missing braces, else clauses without an if, and
most errors involving missing parentheses in
statements. Beyond that, since Ratfor knows no
Fortran, any errors you make will be reported by
the Fortran compiler, so you will from time to
time have to relate a Fortran diagnostic back to
the Ratfor source.

Keywords are reserved — using if, else,
etc., as variable names will typically wreak havoc.
Don't leave spaces in keywords. Don’t use the
Arithmetic IF.

The Fortran nH convention is not recog-
nized anywhere by Ratfor; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C[4] on the
UNIX operating system[5]. The language is
specified by a context free grammar and the
compiler constructed using the YACC compiler-
compiler[6].

The Ratfor grammar is simple and straight-
forward, being essentially

prog : stat
| prog stat
stat  : if (...) stat

| if (...) stat else stat

| while (...) stat

| for (...; ... ...) stat

| do ... stat

| repeat stat

| repeat stat until (...)

| switch (...) { case ...: prog ...
default: prog }

| return

| break

| next

| digits stat

| { prog }

| anything unrecognizable

The observation that Ratfor knows no Fortran
follows directly from the rule that says a state-
ment is ‘‘anything unrecognizable’. In fact most

of Fortran falls into this category, since any
statement that does not begin with one of the
keywords is by definition ‘‘unrecognizable.”

Code generation is also simple. If the first
thing on a source line is not a keyword (like if,
else, etc.) the entire statement is simply copied
to the output with appropriate character transla-
tion and formatting. (Leading digits are treated
as a label.) Keywords cause only slightly more
complicated actions. For example, when if is
recognized, two consecutive labels L and L+1
are generated and the value of L is stacked. The
condition is then isolated, and the code

if (.not. (condition)) goto L

is output. The sratement part of the if is then
translated. When the end of the statement is
encountered (which may be some distance away
and include nested if’s, of course), the code

L continue

is generated, unless there is an else clause, in
which case the code is

goto L+1
L continue

In this latter case, the code
L+1

is produced after the srarement part of the else.
Code generation for the various loops is equally
simple.

continue

One might argue that more care should be
taken in code generation. For example, if there
is no trailing else,

ifi>0x=a
should be left alone, not converted into

if (.not. (i .gt. 0)) goto 100
Xx=a

100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed where
this kind of ‘‘inefficiency’” will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by ‘%".

The use of a compiler-compiler is
definitely the preferred method of software
development. The language is well-defined, with
few syntactic irregularities. Implementation is
quite simple; the original construction took
under a week. The language is sufficiently sim-
ple, however, that an ad hoc recognizer can be
readily constructed to do the same job if no
compiler-compiler is available.



The C version of Ratfor is used on UNIX
and on the Honeywell Gcos systems. C com-
pilers are not as widely available as Fortran,
however, so there is also a Ratfor written in
itself and originally bootstrapped with the C ver-
sion. The Ratfor version was written so as to
translate into the portable subset of Fortran
described in [1], so it is portable, having been
run essentially without change on at least twelve
distinct machines. (The main restrictions of the
portable subset are: only one character per
machine word; subscripts in the form c*v+¢;
avoiding expressions in places like DO loops; con-
sistency in subroutine argument usage, and in
COMMON declarations. Ratfor itself will not gra-
tuitously generate non-standard Fortran.)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C); this
compiles into 2500 lines of Fortran. This expan-
sion ratio is somewhat higher than average, since
the compiled code contains unnecessary
occurrences of COMMON declarations. The exe-
cution time of the Ratfor version is dominated
by two routines that read and write cards.
Clearly these routines could be replaced by
machine coded local versions; unless this is
done, the efficiency of other parts of the transla-
tion process is largely irrelevant.

4. EXPERIENCE

Good Things

“It’s so much better than Fortran'" is the
most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be vacuous, it does
seem to be true that decent control flow and
cosmetics converts Fortran from a bad language
into quite a reasonable one, assuming that For-
tran data structures are adequate for the task at
hand.

Although there are no quantitative results,
users feel that coding in Ratfor is at least twice
as fast as in Fortran. More important, debugging
and subsequent revision are much faster than in
Fortran. Partly this is simply because the code
can be read. The looping statements which test
at the top instead of the bottom seem to elim-

-10 -

inate or at least reduce the occurrence of a wide
class of boundary errors. And of course it is
easy to do structured programming in Ratfor:
this self-discipline also contributes markedly to
reliability.

One interesting and encouraging fact is
that programs written in Ratfor tend to be as
readable as programs written in more modern
languages like Pascal. Once one is freed from
the shackles of Fortran’s clerical detail and rigid
input format, it is easy to write code that is read-
able, even esthetically pleasing. For example,
here is a Ratfor implementation of the linear
table search discussed by Knuth [7]:

Alm+1) = x
for(i=1:AD)'=xii=i+1)
if i > m) |

m =i

B(i) =1
}
else

B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including
a subset of the Ratfor preprocessor itself. can be
found in [8).

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Fortran. and in a few cases this may be difficult
to relate back to the offending Ratfor line, espe-
cially if the implementation conceals the gen-
erated Fortran. This problem could be dealt with
by tagging each generated line with some indica-
tion of the source line that created it, but this is
inherently implementation-dependent. so no
action has yet been taken. Error message
interpretation is actually not so arduous as might
be thought. Since Ratfor generates no variables.
only a simple pattern of IF's and GOTO's. data-
related errors like missing DIMENSION statements
are easy to find in the Fortran. Furthermore.
there has been a steady improvement in Ratfor’s
ability to catch trivial syntactic errors like unbal-
anced parentheses and quotes.

There are a number of implementation
weaknesses that are a nuisance, especially to new
users. For example. kevwords are reserved.
This rarely makes any difference, except for
those hardy souls who want to use an Arithmetic
IF. A few standard Fortran constructions are not
accepted by Ratfor. and this is perceived as a
problem by users with a large corpus of existing
Fortran programs. Protecting every line with a



‘%" is not really a complete solution, although it
serves as a stop-gap. The best long-term solu-
tion is provided by the program Struct [9], which
converts arbitrary Fortran programs into Ratfor.

Users who export programs often complain
that the generated Fortran is ‘‘unreadable™
because it is not tastefully formatted and con-
tains extraneous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the gen-
erated Fortran), but it has always seemed that
effort is better spent on the input language than
on the output esthetics.

One final problem is partly attributable to
success — since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects like code
generation.

5. CONCLUSIONS

Ratfor demonstrates that with modest
effort it is possible to convert Fortran from a bad
language into quite a good one. A preprocessor
is clearly a useful way to extend or ameliorate
the facilities of a base language.

When designing a language, it is important
1o concentrate on the essential requirement of
providing the user with the best language possi-
ble for a given effort. One must avoid throwing
in “‘features”’ — things which the user may trivi-
ally construct within the existing framework.

One must also avoid getting sidetracked on
irrelevancies. For instance it seems pointless for
Ratfor to prepare a neatly formatted listing of
either its input or its output. The user is
presumably capable of the self-discipline required
to prepare neat input that reflects his thoughts.
It is much more important that the language pro-
vide free-form input so he can format it neatly.
No one should read the output anyway except in
the most dire circumstances.

Acknowledgements

C. A. R. Hoare once said that *‘One thing
[the language designer] should not do is to
include untried ideas of his own.” Ratfor follows
this precept very closely — everything in it has
been stolen from someone else. Most of the
control flow structures are taken directly from
the language C[4] developed by Dennis Ritchie;
the comment and continuation conventions are
adapted from Altran[10].

I am grateful to Stuart Feldman, whose
patient simulation of an innocent user during the
early days of Ratfor led to several design
improvements and the eradication of bugs. He

<11 -

also translated the C parse-tables and YAcCC
parser into Fortran for the first Ratfor version of
Ratfor.

References

(11 B. G. Ryder, “The PFORT Verifier,”
Software— Practice & Experience. October
1974.

American National
American National
New York, 1966.

For-word: Fortran Development Newsletter,
August 1975.

B. W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice-Hall, Inc.,
1978.

D. M. Ritchie and K. L. Thompson, ““The
UNIX Time-sharing System.”> CACM, July
1974.

S. C. Johnson, “YACC — Yet Another
Compiler-Compiler.”> Bell Laboratories
Computing Science Technical Report #32,
1978.

D. E. Knuth, “Structured Programming
with goto Statements.’” Computing Surveys,
December 1974.

B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, 1976.

B. S. Baker, *‘Struct — A Program which
Structures Fortran®, Bell Laboratories
internal memorandum, December 1975.

A. D. Hall, “The Altran System for

Rational Function Manipulation — A Sur-
vey.” CACM, August 1971.

(2]

Standard Fortran.
Standards Institute,

31
(4]

(5]

(6]

)

8]
191

(10]



PWB/Graphics Overview
A. R. Feuer

Bell Laboratories
Piscataway. New Jersey 08854

1. INTRODUCTION

PWB/Graphics. or just graphics. is the name given to a growing collection of numerical and
graphical commands available as part of the Programmer's Workbench (1). In its initial rejease.
graphics includes commands 10 construct and edit numerical data plots and hierarchy charts.
This memorandum will help you get started using graphics and show you where to find more
information. The examples below assume that you are familiar with the UNIX™ Shell [1].

2. BASIC CONCEPTS

The basic approach taken in graphics is 10 generate a drawing by describing it rather than by
drafting it. Any drawing is seen as having two fundamental attributes: its underlying logic and
its visual layout. The layout encompasses one representation of the logic. For exampie.
consider the attributes of a drawing that consists of a plot of the function y=x? for x between 0
and 10. The logic of the plot is the description as just given. viz. v=x>.0<x<10. The layout
consists of an x-v grid. axes labeled perhaps 0 to 10 and 0 to 100. and lines drawn connecting
the x-y pairs 0.010 1.1 10 2.4and soon.

The way to generate a picture in graphics is
gather data | transform the data | generate a layout | display the layout.

To generate the specific plot of v=x2.0<x <10 and display it on a Tektronix* display terminal
would be:

gas —s0.t10 | af "x“2° | plot | td

gas generates sequences of numbers. in this case starting at 0 and terminating at
10.

af performs general arithmetic transformations.

plot builds x-v plots.

td dispiays drawings on Tekironix terminals.
The resulting drawing is shown in Figure 1.

The lavout generated by a graphics program may not always be precisely what is wanted. There
are two ways 1o influence the lavout. Each drawing program accepts options to direct certain
lavout features. For instance. in the previous example we may have wanted the x-axis labzls 10
indicate each of the numbers plotied and we might not have wanted any v-axis labels at al!. To
achieve this the plor command would be changed to:

plot —xil,ya
producing the drawing of Figure 2.

The output from any drawing command can also be affected by editing it directly a1 a display
terminal using the graphical editor. ged. To edit a drawing really means to edit the computer
representation of the drawing. In the case of grapiucs the representation is called a graphical
pnmitive siring. or GPS. All of the drawing commands (e.g.. plor) write GPS and all of the
device filiers (e.g.. 1d) read GPS. Ged allows you 1o manipulaie GPS at a display terminal b)
interacting with the drawing the GPS describes.



PWBIGraphics Overview

Py | whegin- wid | 2%, #* ) M o8-

ooooooo

lllllllllllll

...........

.....

00000000000

sed °z oDy

000000

g 1010 | 2K, 42 | (Q2°0s- S0 | o0y




PWR/Graphics meew 3

GPS describes graphical objects drawn within a Cartesian plane 65,534 units on each axis. The
plane, known as the universe, is partitioned into 25 equal sized square regions. Multi-drawing
displays can be produced by placing drawings into adjacent regions and then displaying each
region. .

3, GETTING STARTED

To access the graphics commands when logged in on a PWB/UNIX system type graphics. Your
Shell variable PATHE will be altered to include the graphics commands and the Shell primary
prompt will be changed to °. Any command accessible before typing graphics will stil! be
accessible; graphics only adds commands. it doesn't take any away. Once in graphics, you can
find out about any of the graphics commands using whatis. Typing whatis by itself on a
command line will generate 8 list of all the commands in graphics along with instructions on
how 1o find out more about any of them.

All of the graphics commands accept the same command line format:
A command is: 2 command-name followed by argumen(s).

A command-name is. the name of any of the graphics commands.

An argument is. 2 file-name or an option-string.

A file-name is: any file name not beginming with =, or a = by itself to
reference the standard input.

An option-string is: a — followed by option(s).

An option is: letter(s) followed by an optional value. Options may be

separated by commaes.

You will get the best results with graphics commands if you use 2 display terminal. Plor(1)
fillers can be used in conjunction with grop (see gutil(1)) to get somewhat degraded drawings on
Versatec printers and Dasi-type terminals. And since GPS can be stored in a file, it can be
created from any terminal for later displaying on a graphical device.

To remove the graphics commands from your PATH Shell variable type EOT (control-d on mios:
terminals). To logoffl UNIX from graphics type quit.

4, EXAMPLES OF WHAT YOU CAN DO
4.1 Numerical Manipulation and Plotting

Star(1) describes a collection of numerical commands. All of these commands operate on
vectors. A vector is a text file that contains numbers separated by delimiters, where a delimiter
is anything that is not a8 number. For example,

12345, and
arf tty47 Mar § 09:52

are both vectors. (The latter being the vector: 47 § 9 52.)

Here is an easy way to generate 2 Celsius-Fahrenheit conversion table using gas to generate the
vector of Celsius values:

gas —s0,t100,i10 | af *C,9/5°C+32°



The output is:
- 0.0 32
10 50
20 68
30 86
40 104
50 122
80 140
_J0 153
30 178
90 194
100 212
This is what is going on:

gas -s0,t100,110 We have seen gus in an earlier example. In this case the
sequence starts at 0, terminates at 100, and the increment
between successive elements is 10.

af "C,9/5°C+32° We have also seen gf Arguments 0 qf are expressions.
Operands in an expression are either constants or fllenames. If
a filename is given that does not exist in the current directory it
is taken as the name for the standard input. In this example C
references the standard input. The output is a vector with odd
elements coming from the standard input and even elements
being a function of the preceding odd element.

Here is an example that illustrates the use of vector titles and multiline plots:

gas | title —v*first ten integers” >N
roet N >RN

root =3 N >R3N

root —=rL.S N >RL.5N

plot =FN,g N R1.SN RNR3N|ud

The resulting piot is shown in Figure 3.

title =v"zame’ Title associates a name with a2 vector. In this case, first ten
intuers is associated with the vector output by gas. The vecior
is stored in file N.

roet =rn Root outputs the nth root of each element on the input. If

=prr is not given thea the square root is output. Also, if the
input is a titled vector the title will be transformed to reﬁec: the
root function.

plot =FXg Y This command generates a multiline plot with Y(2)- plotted.
versus X. The g option causes tick marks 10 appear instead of
grid lines.

The next example generates a histogram of random numbers.
rand =100 | title =v*100 random nnmbers® | qsort | bucket | hist | td
The output is shown in Figure 4.



soquw wopues (| 4O wesboasyy -y enbyy

SAIBINK HOONYY 00N

$06°0 499°0 02°0 915°0 85Y'0 106°0 $91°0 190°0

cofeccccecfecccacfecaccacfovcncan feeccccefocccee Receocen- .o

lllllllllllllllllllllllllllllllllllllllll

cod eecfececnnc fleecccee [POTPTTY PEYYILY ETTITY I ce-

co-Dococsccfecccce-fecoacerflecccccac feocscco Ppeccoce-Roconcccgon-
eof) cosccccfencccacflccccccr fevovocrfeacccns 4} ccccee '4 ooooooo .o
safeccscocfoccccccfeccecacfacccocefoccnce focecar Pooscoss eee

4 5 5 5 ° ¢ v~

ies Overview

£ 4

ssofioiu] uBY 3ISJ]) B JO 31009 l.om. ‘g by g

SV KDL 1SN
@ o6 ® ¢ ® § vy § I




6 : PWBIGraphics Overview

rand ~n100 Rand oursuts random numbers using rand(3C). In this case

100 aumbers are output in the range O w 1.
qsort Qsort sorts the eiements of 2 vector it :ucending order.
bucket Bucker breaks the range of a vector into intervals and counts

how many elements from the vector fall into each interval
The output i a vector with odd elements being the interval
boundaries and even elements being the counts.

hist Hist builds a histogram based om interval boundaries and
couats.

4.2 Drawings Built from Bexes

There is a large class of drawings composed from boxes and text. Examples are structure
charts, configuration drawings, and flow diagrams. In graphics the geaeral procedure to
construct such box drawings is the same as that for numerical plotting. Namely gather and
transform the data, build and display the layout.

AS an example, consider hierarchy charts. The command line
dtoc| rtoe| td
'omput.s the drawing shown in Figure §.

Droc outputs a table of conteats that describes a directory structure (Figure Sa). The fields
from left to right are level aumber, directory name, and the number of ordinary readable files
contained in the directory. Vroc reads a (textual) table of contents and outputs a visual table of
contents, or hierarchy chart. Input 10 vroc consists of a sequeace of entries, each describing a
box to be drawn. An entry conmsists of a level aumber, an optional style field, a text string to
be placed in the box, and a mark field to appear above the top right hand corner of the box.

§. WHERE TO GO FROM HERE

The best way to learn about graphics is to log onto a PWB/UNIX system and use it. Tutorials
exist for szar(l) and ged(1). (2] contains administrative information for graphics. Reference
information can be found in the PWB/UNIX User’s Manual under the following manual pages:

ged(1), the graphical editor;

203(5), a description of a graphical primitive string,

graphics(1), the eatry point for graphics;

guti1), a collection of utility commands;

szar(1), numericai manipulation and plotting commands;

1ek4000(1), a collection of commands to manipulate Tektronix 4000 series terminals; and
toc(1), routines to build tables of contents.

é. REFERENCES
(1] PWB/UNIX User's Manual — Release 2.0., Bell Laboratories, 1979.
2] R L. Chen and D. E Pinkston, Adminiszrairve Informarion for PWB/Graphics, Beil
Laboratories Memoraadum, 1979.

January 1980



PWGmphics ‘Om

Figure 5. Directory Structure for Graphlcs

Q. “source’ 2

T v 12

2 cBhe 1%

2. gutil.g é

2.1, ‘evricnt. o’ ?

2.2. -1 -N-N ]

§.3. _pwg.g: S

. s1a8%,

4. wex4000.¢° ;

4.1, “oma.g”

4.4, “w.o’ 8

S. .g¢° 3

S. 1. “tiec.d’ 3

5.2. “viee.d” 2

6. “whatls.c® 108

Filguwe Sa. Dioc cutput

Y ?
oz
R ) 1 % o | S . | 3 o
am.e e a0 =







Administrative Information For PWB/Graphics

Ruth L. Chen
Diane E. Pinkston

Bell Laboratories
Piscataway, New Jersey 08854
1. INTRODUCTION

This document is a reference guide for svstem administrators who are using or establishing a
PWB/Graphics facility [1] on UNIX™. It contains information about directory structure.
installation, makefiles. hardware requirements. and miscellaneous facilities of PWB/Graphics.

2. PWB/Graphics STRUCTURE

Figure | contains a graphical representation of the directory structure of PWB/Graphics. In this
paper. the Shell variable SSRC will represent the parent node for graphics source. On
PWB/UNIX SSRC is /usr/src/cmd. If PWB/Graphics is copied onto other systems. SSRC could
have other values but should. in general. be the same as on PWB/UNIX.

The graphics command (see graphics(1)) resides in /usr/bin. All other PWB/Graphics
executables are located in /usr/bin/graf. /ust/lib/gral contains text for whatis documentation
(see auril(1)) and editor scripts for moc (see roc(1)).

PWB/Graphics source resides below the directory SSRC/graf. SSRC/graf is broken into the
following subdiretories:.

e include - contains the following header files: debug.h. errpr.h. gsl.h. gpl.h. setopt.h. and
util.h. : _

e Src - contains source code partitioned into subdirectories by subsystem. Each subdirecion
contains its own Makefile (or Install file for whatis.d).

e glibd - contains source used to build the graphical subroutine library in
SSRC/graf/lib/glib.a.

e stat.d - contains source for numerical analysis and piotting routines.

o 1ek4000.d - contains source for ged (the graphical editor). /d (a Tektronix display
funciion). and other Tektronix dependent routines.

¢ gutil.d - contains source for utility programs.

e toc.d - contains source for wable of contents drawing routines.

e whatis.d - contains mm files and the install routine for quick-reference documentation.
o lib - contains glib.a which contains commonly used graphical subroutines.

e man - Figure ] shows SSRC/graf/man as a dotied box because this directory does not exis:
on PWB/UNIX systems where ali manual pages reside in /usr/man. SSRC/graf/man s
created if PWB/Graphics is copied onto another system (see section 3.). and will contain the
following manual page files: graphics.]. gutil.1, stat.]. 1ek4000.1. toc.1. ged.! and gps.3.

3. INSTALLING PWB/Graphics
Procedures for installing PWB/Graphics:



Administrative [nformation For PWBIGraphics

Fig. 1 PY¥B/Graphics Structure

@I80

=
BIN LB sc
RN R oo
RN

STAL. TBC. 0 T3 GTTL. D WATIS.C




Adswiniswative Information For PWBIGragphics 3

1. PWB/UNIX systems,

= To build the eatire Graphics system (i.e. all boxes except man in Figure 1), execlne
(as superuser)

o/:mkemd graf
J/:mkemd resides in /ust/sre, and all manual pages exist in /usr/man.
~ To build a particular subsystem, execute
J/:mkemnd graf subsystem
- To build a particular command within a subsystem, execute
_ J:mkemd graf subsystem command-name
2. UNIX/TS systems not running PWB,
- See appendix for tape copying procedures.
- Bui_ld $SRC/graf/lib and PWB/Graphics executables (dashed boxes in Figure 1) by
typing: :

make —f SSRC/graf/graf.mk

- To make a particular graphics subsystem use the Makefile in SSRC/graf/sre, ¢.g.

cd SSRC/graf/src
make subsystem

— Note, there is 2 name conflict between PWB/Graphics plor and UNIX/TS pior(1). The
recommended fix is to remove /usr/bin/plot and move the pio«(1) filters from /usr/lid
to /usr/bin.

A subsystem is either glib, swat, tek4000, toc, gutil or whatis. Glib must exist before other
subsystems can be built. Write permission in /usr/bin and /usr/lib is needed, and the
following libraries are assumed to exist:

/lib/libe.a Standard C library, used by all subsystems.

/lib/libm.2a - Math library, used by all subsystems.

/ust/lib/macros/ [nt]pwbmm.me Programmer’s Workbench memorandum macros
for [ndroff, used by the whatis subsystem.

The build process takes approximately one hour of system time. If the make must be
stopped, it is a good idea to rebuild from the top Upon completion, the following things
will be created and owned by bin.

/ust/lib/graf A directory for data and editor scripts.
/usr/bin/graf A directory for executables. '
/usr/bin/graphics Commasand entry point for PWB/Graphics.

Makefiles use executable Shell procedures cco and cca. Ceo is used to compile C source
and install load modules in /ust/bin/graf. The cca command compiles C programs and
loads object code into archive files.

Whatis.d contains source files for whatis and the executable sorameand Irstall.

Install command-name



4 Administratrve Information For PWBIGraphics.

calls nroff to produce whatis documentation for command-name in /use/lib/graf. To install
me entire whms subsystem, use the Makefile in SSRC/graf/sre.

3.1 %akeﬁlo Pammm

Makefiles use various macro parameters, some of which can be specified on the command line
to redirect outputs or inputs. Parameters specified in higher level Makefiles are passed to lower
levels, Below is a list of specifiable parameters for Makefiles followed by their defauit values in
parenthesis and an explanation of their usage.

1. $SRC/graf/graf.mk
BIN1 (/ust/bin) instailation directory for the graphics command.
BIN2 (/usr/bin/graf) instilstion directory for other graphic commands.
SRC (Jusr/sre/emd)  pareat directory for source code.

- 2. SSRC/graf/sre/Makefile

BIN1 (/ust/bin) installation directory for the graphics command.
BIN2 (/usr/bin/graf) installation directory for other graphic commands.
LIB (/ust/lib/graf)  installation directory for whatis documentation.

3. SSRC/graf/src/stat.d/Makefile
BIN (././bin) instailation directory for executable commands.

4. SSRC/graf/src/toc.d/Makefile:
- BIN (././bin) installation directory for exacutable commands.

5. SSRC/graf/src/tek4000.d/ Makefile
BIN (../../%in) installation directory for exesutable commands.

6. SSRC/graf/sre/gutil.d/Makefile '
BIN (../../bin) inmnation directory for executable commands.

The following example will make a new version of the sraphml editor. ged, in /al/pmt/dp/bin: _
& SBC/mt/srdtsk-woo 4
maks BiNw=/a1/pmt/dp/bin ged

- TEXTRONIX TERMINAL

The PWB/anhxcs display function :d and the graphical editor ged both use Tektronix Series
4010 storage tubes. Below is a list of device considerations necessary for PWB/Graphxcs
operation. :

4.1 Geity Table Eatry

When a Tektronix 4010 series terminal is connected via a dedicated line to UNIX, an eatry in
the systern table (in /usr/sre/cmd/getty.c) is suggested, to store terminal status information.
This table eatry appears as follows on PWB/UNIX:



Adminisrative Inforniation For PWB/Graphics ' 5

W /® table °6° — 4800/9600 -~ tektronix 4014 */
'6" 7.
ANYP+ RAW4+ FF1, ANYP+ ECHO+ CRMOD+ FF1,
B4800, B4800,
"\033\014\000iogin: *,

7,°6,
ANYP+ RAW< FF1, ANYP+ ECHO+ CRMOD+ FFl

B9600, B9600,
“\033\014\000login: *,

but on other systems it may have to be created and then referenced in /etc/inittab. Standard
parity and a form-feed delay are necessary. The form-feed delay. gives the screen time to clear
without losing information. Below is an example of the terminal status as printed by sty

speed 4800 baud

m - '#!; ﬁu - 'Qe'

even odd - n! echo - tsbs fI1
4.2 Strap Options:

" The siandard strap options as listed below should be used (see the Reference Manual for the
Tektronix 4014 [3]):

1. LF effect - LF causes line-feed only.

2. CR effect - CR caused carriage return only.

3. vDel implies loy - Del key is interpreted as low-order y valug.

4. Graphics Input terminators - None. '
4.3 Enhanced Graphics Medule

The Enhanced Graphics Module of Tektronix terminals is required for PWB/Graphics. The
EGM provides different line styles (solid, dotted, dot-dashed, dashed, and long-dashed). right
and left margin cursor location, and 12-bit cursor addressing (4096 by 4096 screen points).

S. MISCELLANEOUS INFORMATION

5.1 Annennccments

The graphics command provides a means of printing out announcements to users. To set up an
- snouncement facility, creste a readable text file containing the announcements named

anpounce. Also in /usr/bin/graphics redefine the Shell variable SGRAF to be the directory
- pathname of the snnounce file.

$.2 Uselog

The graphics command also provides a means of monitoring its use by listing users in a file. To
set up a uselog facility create a writeable file named .uselog (in the same directory as announce
if snnouncements are being used) and redefine the Shell variable SGRAF within
/ust/bin/graphics to specify the directory location. Each time a user executes graphics, an entry
of the login name, terminal aumber, and sysiem date are recorded in .nselog.

5.3 Restricied Environments

r\ Restricted eavironments can be used to limit user access to the sysitem (see rsi(1) [4]). In a

\ frestricied eavironment, commands in /rbin and /ust/tbin are executed before those in /bin and
/ust/bin. The commands ed, mv, rn, and sh require resiricted interface programs which do not
allow users to move or rernove files that begin with dot (.)[2].



6 | Adsminiszrative Information For PW2B/Graphics

Creating restricted environments for graphics:
1. Create a reswricted ged command in /ust/rbin as follows:

exed /use/din/graf/ged —=R

2. Create restricted logins for users or create s comrmunity login with 2 working directory
(resched through .profile) set up for each user. A restricted login specifies /bin/rsh as
the terminal interface program and is created by adding /bin/rsh to the ead of the
/ewe/passwd file eatry for that login.

3. Call graphies =r from .profile.
The execution of graphics =r changes SPATH to look for commands in /rbin and /ust/rbin

and executes 8 restricted Sheil The <R option is appended to the ged command so that the
escape from ged 10 UNIX ('command) will also use a restricted Shell

ACKNOWLEDGEMENTS

We wish (0 thank Alan R. Feuer for his valuable contributions, suggestions, and careful reading
of this document. We aiso thank M. J. Petreils for his help in supplying information
concerning the PWB/UNIX eaviroament.

REFERENCES | |
(1] Feuer, A. R. PWB/Graphics Overview. Bell Laboratories, 1979.
(2] Petrella, M. 1. Restricted Access o PWB/UNIX — DRAFT. Bell laboratories, May 1979.
(3] Tektronix. Users's Manual for 4014 and 4014-1 Display Terminal July, 1974.
(4] PWBIUNIX Users’s Manual — Release 2.0.



Adminisrative IMM For PWB/Graphics 7

APPENDIX

Procedures for tape copying (as superuser)

= Locate graphics source by changing directory to SSRC, the parent directory.
== Then copy source and maaual pages from the tape by typing

epio —idm < /dev/mt4 (creates graf)
¢d graf
epio =idm < /dev/mt0 (crestes man)

This will result in the directory structure indicated by the solid boxes plus SSRCIgraf/man in
Figure 1. Necessary sub-directories will be created (see cpio(1)).

Jaruary 1980






A Tutorial Introduction to the Graphical Editor
Alan R. Feuer

Bell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTICON

Ged is an interactive graphical editor used to display, edit, and construct drawings on
Tektronix® 4010 series display terminals. The drawings are represented as a sequence of
objects in a token language known as GPS (for graphical primitive string). GPS is produced by
the drawing commands in PWB/Graphics (1] such as vroc and plor as well as by ged itself.

The examples in this tutorial illustrate how to construct and edit simple drawings. Try them to
become familiar with how the editor works, but keep in mind that ged is intended primarily to
edit the output of other programs rather than to construct drawings from scratich. A summary
of editor commands and options is given in Section 3.

As for notation, literal keystrokes are printed in boldface. Meta-characters are also in boldface
and are surrounded by angled brackets. For example, <return> means return and <sp>
means space. In the examples, output from the terminal is printed in normalface type. Inline
comments are in normalface and are surrounded by parentheses.

2. COMMANDS

To start we will assume that you have successfully entered the graphics environment (as
described in graphics(1) of [2]) while logged in at a display terminal. To enter ged type

ged <return>

After a moment the screen should be clear save for the ged prompt, e, in the upper left corner.
The » tells you that ged is ready to accept a command.

Each command passes through a sequence of stages during which you describe what the
command is to do. All commands pass through a subset of these stages:

1. command line

2. text

3. points

4. pivot

5. destination

As a rule, each stage is terminated by typing <return> . The <retarn> for the last stage of a
command triggers execution.

2.1 The Command Line

‘The simplest commands consist only of a command line. The command line is modeled after a
conventional command line in the Shell. That is

command-name [ = option(s)) (filename] <return>

? is an example of a simple command. It lists the commands and options understood by ged.
Type

*? <retura> (you type a question mark followed by a return)
to generate the list.



2 Graphical Editor Tutorial

A command is executed by typing the first character of its name. Ged will echo the full name
and wait for the rest of the command line. For example, ¢ references the erase command. As
erase consists only of stage 1, typing <retwrm> causes the erase action to occur. Typing
<rubout> after a command aame and before the final <retarn> for the command aborts the
conmimand. Thus while

s¢rase <retura>
erases the display screen,

serase <rabout>
brings the editor back to e.

Following the command-oame, options may be eatered. Options control such things as the
width and style of lines to be drawn or the size aad orientation of text. Most options have a

_ default value that applies if a value for the option is aot specified on the command line. The
ser command allows you to examine and modify the default values. Type

sget <return>
t0 see the curreat default values.

The value of an optioa is either of type integer, character, or Boolean. Boolean values are
represented by 4 for true and = for false. A default value is modified by providing it as an
optiont to the set command. For example, to change the default text height to 300 uaits type:

oset ~1300 <return>

Arguments on the command line, but aot the ccm:ziand-name, may be edited using the erase
and kil characters from the Shefl (Actually, this applies whenever text is being entered.)

2.2 Constructing Graphical Objects

Drawings are stored as GPS in a display buffer internal to the editor. Typically, a drawing in ged
is composed of instances of three graphical primitives: arc, lines, and rext.

2.2.1 Generating tzxt. To put a line of text on the display screen use the Texr command. First
enter the convmand line (stage 1):

sText <return>

Next enter the rexz (stage 2):
a line of text <return>,

And then enter the starting point for the text (stage 3):
< position carsor> <return>

Positioning of the graphic cursor is done either with the thumbwheel knobs on the terminal
keyboard or with an auxiliary joystick. The <return> establishes the location of the cursor to
be the starting point for the text string. The Text command ends at stage 3, so this <return>
initiates the drawing of the text string. ’

Text accepts optioas to vary the angle, height, and line width of the characters, and to either
ceater or right justify the text object. The text string may spaa more than one line by escaping
the <resurn> (i.8., \<retarm>) to indicate coatinuation. To illustrate some of these
capabilities, try the following:



Graphical Editor Tusorial ' 3

oText —¢ <returg> (right justify text)
top\< return > '

right <return>

<position curser> <rpeturn>

oText =290 <return> (rotate text 90 degrees)

loewer\<returs >

left <return>

< position cursor> <return> (pick a point below and left of the previous point)

rxéﬁﬁ

lover
left

Figure 1. Generating text objectﬁ ’

- 2.2.2 Drawing lines. The Lines command is used to construct objects built from 2 sequence of
straight lines. It consists of stages 1 and 3. Stage 1 is straightforward: -

sLines possible options <return>
Lines accepts options to specify line style and line width.

Stage 3, the entering of points, is more interesting. Poinzs are referenced either with the graphic
cursor or by name. We have already entered a point with the cursor for the Texr command.
For Lines it is more of the same. As an example, let us build a triangle:

°Lines <return>

< position cuzsor> <sp> (locate the first point)

< position cursor> <sp> (the second point)

< position cursor> <sp> (the third point)

< position cursor> <sp> (back 1o the first point)
<return> (terminate points, draw triangle)

Typing <sp> enters the location of the crosshairs as a point. Ged identifies the point with an
integer and adds the location to the current poinr se.. The last point eatered can be erased by
typing # . The current point set can be cleared by typing @ . On receiving the final <return>
the points are connected in aumerical order.

2.2.2.1 Accessing points by name. The points in the current point set may be.referenced by
name using the $ operator. $a references the point aumbered n. Using § we can redraw the
triangle of Section 2.2.2 by entering:

eLines <return>

< position cursor> <sp>

< position curser> <sp>

< position enrsor> <sp>

$0 <retarn> (reference point 0)
< return >



] Graphical Editoe Tutorial

first polnt entared
faurth paint third point

Flnri 5 Buildin; a triangle

At the start of sach command that includes stage 3, points, the current point set is empty. The
point set from the previous command is saved and is accessible using the . operator. . swaps
the points in the previous point set with those in the curreat set. The = operator can be used
to identify the current points. To illustrate, let us use the triangle just eatered as the basis for
drawing a quadrilateral:

sLines <retumm>

. (access the previous point set)
= (identify the current points)
# (erase the last point)
<pesition cursor> <sp> (add 2 aew point)

$0 <retura> (close the figure)

<retarad>



Graphical Editor Tusmrial

Figure 3. ‘Accessing the previous point set

Individual points {from the previous point set can be referenced by using the . operator with $.
We will build a triangle that shares an edge with the quadrilateral:

eLines <return>

$.1 <return> (reference point 1 from the previous point set)
' $.2 <return> (reference point 2)
m <sp> (enter a new point)
$0 <return> (or 8.1, to close the figure)
<return>

polmt | fron previous polnt sst,

qnev peine

pelnt 2 from previous point set

. m Figare 4. Referencing points from the previous point set

A point can also be given a name. The > operator allows you to associate an upper case letter
with a point just entered. A simple example is:



6 - : . . Graphical Editor Turorial

sLiges <retura>

< pesition cursor> <sp> (enter a point)

>A (name the poiat A)
< pesition cursor> <sp>

<retuin >

[n commands that follow you can now reference point A using the $ operator, as in:

sLines <return>

SA

<positioa cursor> <sp>
<return>

2.2.7 Drawing curves. Curves are interpolated from a sequence of three or more points. The
Arc cornmand generates a circular arc given three points on a circle. The arc is drawn starting
at the first point, through the second point, and ending at the third point. A circle is an arc
with the first and third points coincideat. One way to draw a circle is thus:

sArc <return>
<pesition cursor> <sp>
<position cursor> <sp>
$0 <retum>

<return>

1.3 Editing Objects T

2.3.1 Addressing objects. An object is addressed by pointing to one of its handles. All objects

have an object-handle. Usually the object-handle is the first point entered when the object was

reated. The odjects command marks the location of each object-handle with an O. Type
sgbjects =v <return>

to see the handles of ail the objects on the scrzen.

Some objects, Lines for example, also have point-handles. Typically each of the points entared

when an object is constructed becomes a point-handle. (Yes, an object-handle is also a point-
handle.) The poincs command marks each of the point-handles.

A handle is pointed to by including it within a defined-area. A defined-area is generated either
with 2 command line option or interactively using the 3raphic cursor. As an example, try
deleting one of the objects you have created on the screen.

Delete <return>

< pagition cursor> <sp> (above and to the left of some object-handle)

< pesition carsor> <sp> (below and to the right of the object-handle)
<retusa > (the defined-area should include the object-handle)
<retura> (if ail is weil, delete the object)

The defined-area is outlined with dotted lines. The reason for the seemingly extra <return>
at the ead of the Delere command is to give you an opportunity to stop the command (using
<rubout>) if the defined-area is not quite right. Every command that accepts a defined-area
will wait for a confirming <return> . Use the aew command to get a fresh copy of the
rermaining objects.

Notice that defined-areas are eatered as poins in the same way that objects are created.
Actually, a defined-area may be generated by giving aaywhere from zero to 30 points.
Inputting zero points is particularly useful to point to a single baadle. It creates a small
defized-ares 2bout the location of the terminating < reusin> . Using a zero point defined-area,
the Delerg crowmunand would be:



Graphical Editor Tumorial ‘ 7

«Delete <return>

< position cursor> (ceater the crosshairs on the object-handle) -
<rpetern> (terminate the defined-area)
<rpeturn> (delete the object)

A defined-area can also be given as a command line option. For example, to delete everything
in the display buffer give the wniverse opiion to the Delete command. Note the difference
beiween the commands Delete —u and erase.

2.3.2 Changing the location of an object. Objects are moved using the AMove command. Create a
circle using Arc, then move it as follows:

«Move <return> .

< position cursor> <return> (centered on the object-handle)

<return> (this establishes a pivot, marked with an asterisk)
< position cursor> <return> (this establishes a destination)

The basic move operation telocates every point in each object addressed by the distance from
the pivor to the destination. In this case we chose the pivot to be the obpctohandle.
effectively we moved the object-handle to the destination point.

2.3.3 Changing the shape of an object. The Box command is a special case of generating lines.
Given two points it creates a rectangle such that the two points are at opposite corners. The
sides of the rectangle lie paralle! to the edges of the screen. Draw a box:

*Box <return>
< position cursor> <sp>
< pesition cursor> <return>

Box generates point-handles at each vertex of the rectangle. Use the points command to mark
the point-handles. The shape of an object can be altered by moving point-handles. The next
example illustrates one way to double the height of a box.

«Move =p+ <return>

< position cursor> <sp> (left of the box, between the top and bottcm edges)
< position cursor> <return> (right of the box, below the bottom edge)
< position carser> <return> (on the top edge)

< position curser> <return> (directly below on the bottom edge)



3 | ' Graphical Editor Tuworral

tws polnts Fo~ Box

'\

A plivet

. dastlmation
: 4

\

0000000 0escOv 000000

\

tue polnts for deflred—ares

Figure 8. Growing a box

Since the points flag is true, the operation is applied to 2ach point-handle addressed. In this
case each point-handle within the defined-area is moved the distance from the pivot to the
destination. If p were false only the object-handle would have been addressed.

2.3.4 Changing the size of an object. The size of an object can bde changed using the Scale
command. Scale scales objects by changing the distance from each handle of the object to a
pivot by a factor. Put a line of text on the screen and try the following Scale commands:

«Scile =200 <retwrs> (factor is in perceat)

< pasition cursor> <return> (poiat to object-handle)

< pasiticn cursor> <return> "(set pivot to rightmost character)
<retEmd ’

sScale =80 <return>

. <returA> (reference the previous defined-area)

< pasitiea carsor> <return> (set pivot above a character near the middle)
<retarm>



W"*

Graphical Editor Tutorial 9

8 plvo.t for Scele -S5O

A LINE OF TEXT.

K LINE EE ivot for Scale -rzm

erlgl lira
of text

Figure 6. Scaling text

A useful insight into the behavior of scaling is to note that the position of the pivot does not
change. Also observe that the defined-area is scaled to preserve its relationship to the graphical
objects.

The size of objects can also be chansed by moving point-handles. Generate a circle, this time
using the Circie command:

+Circle <return> :
< position cursor> <sp> (specify the center)
< position cursor> <return> (specify a point on the circle)

Circle generates an arc with the first and third point at the point specified on the circle. The
second point of the arc is located 180° around the circle. One way to change the size of the
circle is to move one of the point-handies (using Move =p).

‘The size of text characters can be changed via a third mechanism. Character height is a
property of a line of text. The Edit command allows you to change character height as follows:

sEdit =hheight <return> (height is in universe units, see Section 2.4)
< position cursor> <return> (point to the object-handle)
<return>

2.3.5 Changing the orientation of an object. The orientation of an object can be altered using
Rouwate. Rotate rotates each point of an object about a pivot by an angle. Try the following
rotations on a line of text:

eRotate —=a%0 <return> (angle is in degrees)

<position cursor> <return> (point to object-handle)

< position cursor> <return> (set pivot to rightmost character)
<return>

eRotate ~-=2—-90 <return>

. <return> (reference previous defined-area)
< position cursor> <return> (set pivot to a character near the middle)
<retuern >



10 Graphical Editor Tusorial

criglngl text
lvet fo~ Rotate -8
#MOTHER LINE OF

=
]

ANQTHER U F TEXT

L)

g pivet for Ratate -s=50

2

Figure 7. Rotating text

2.0.6 Changing the siyle or width of lines. In the current editor objects can be drawn from lines
in any of five styles (solid, dashed, dot-dashed, dotted, long-dashed) and three widths (narrow,
medium, bold). Style is controlled by the s option, width by .

«Lines < wn,sdo <return>
< position cursor> <sp>

. <pesition cursor> <sp>
<retern>

creates a narrow width dotted line.

oEdit -~ wb,sdd <return>
< pesition cursor> <return> (point to abject-handle of the line)
<refusd>

changes the line to bold dot-dashed.
2.4 View Comwaands

All of the objectss we have drawn lie within a Cartesian plane, 65,534 units on each axis,
known as the unmiverse. Thus far we have displayed only a small portion of the universe oa the
display screea. The command

syiew =u <return>
displays the eatire universe.

2.4.1 Windowing. A mapping of a portioa of the universe oanto the display screen is called 2
window. The extent or magnification of a window is altered using the zoom command. To build
a window that includes all of the objects you have drawa type

ozoo@ <retura>

< pasitiea carsor> <sp> (above and to the left of any object)
< pssition cursor> <retura (below and to the right, also ead poinm)
<retnrn> _ : (verify) :

Zooming can be either in of our. Zooming ig, 23 with a camera lens, increases the maani.ﬁn@qu,
of e window. The area outlined by poin is expanded (o Al the screen. Zoowing owt



Graphical Editor Tusoriel 1

decreases msgnification. The current window is shrunk so that it fits within the defined-area.
The direction of the zoom is controlled by the sense of the out flzg; o true means zoom out.

The location of a window is altered using view. View moves the window so that a given point.in
the universe lies at a given location on the screen.

sview <return>
<position cursor> <return> (locate a point in the universe)
<position carsor> <return> (locate a point on the screen)

View also provides access to several predefined windows. We have already seen view —u. view
==} displays the home-window . The home-window is the window that circumscribes all of the
objects in the universe. The result is similar to that of the example using zoom given earlier.

Lastly, using view you may select to window on a particular region. The universe is partitioned
into 25 equal sized regions. Regions are numbered from 1 to 25 beginning at the lower left and
proceeding toward the upper right. Region 13, the ceater of the universe, is used as the default
region by drawing commands such as plor and vroc (see [1]).

2.5 Other Commands

2.5.1 Imteracting with files. To save the contents of the display buffer copy it to a file using the
write command:

ewrite filename <return>

The contents of filename will be a GPS, thus it .can be displayed using any of the device filters
(e.g., d [1]) or read back into ged.

A GPS is read into the editor using the read command:
oread filename <return>

The GPS from filename is appended to the display buffer and then displayed. Because read does
not change the current window only some or none of the objects read may be visible. A useful
command sequence to view everything read is

spead —e~ filename <return>
sview =h <return>

The display function of read is inhibited by setting the echo flag to false. view —h windows on
and displays the full display buffer.

The read command may also be used to input text files. The form is:
read (= option(s)] filename <return>

followed by a single point to locate the first line of text. A text object is created for each line
of text from filename. Options to read are the same as those for the Texr command.

2.5.2 Leaving the editor. Use the guit command to terminate an editing session. As with the
text editor ed, quit responds with ? if the internal buffer has been modified since the last write.
A second quir forces exit.

2.6 Otber Useful Things to Know.
2.6.1 One line UNIX escape. As in ed, ! provides a temporary escape to the Sheil

2.6.2 Typing ahead. Most programs under UNIX allow you to type input before the program is
ready to receive it. In general this is not the case with ged; characters typed before the
appropriate prompt are lost.



12 Graphical Editor Tusorial .

2.6.3 Speeding things up. Displaying the conteats of the display buffer can bde time coasuming,
particularly if much text is involved. The wise use of two flags to control what gets displayed
can make life more pleasant: the echo flag controls echoing of new additions to the display
- buffer; the text flag controls whether text will be outlined or drawn.

3. COMMAND SUMMARY

- In the summary, characters actually typed are printed in boldface. Command stages are printed
in italics. Arguments surrounded by brackets are optional. Parentheses surrounding argumeats
separated by ‘*or” means that exactly one of the arguments must be given. For example, the
Delets command (Section 3.2) accepts the arguments <~universe, =view, and poinrs.

3.1 Coastruct commands:

Are [=echo,style, width] points
Box (=echo,style, width] points
Circle [=echo,style, width] poines
Hardware [=—echo] text points
Lines [=echo,style, width] points
Text (—angle,echo he:;ht,mdpoml,mhtpommext,w\dth] text points
3.2 Edit commands:
- Delete (= (nnivem or view) or poinzs )
Edic {=angle,echo, height, style, width} ( = (universe or view) or points)
Kopy [=echo,poiats,x] points pivot destination
Move [=echo,points,x] poines pivor destinazion
Rotate {=angie,echo,kopy,x] poing pivor destination
- Scale {=echo, factor,kopy,x] poncs pivet destination
33 View commands:
coordinates poinss
erase
aew
objects ( = (universe or view) or points )
points (= (labelled-points or universe or view) or poinrs )
view ( = (home or universe ot region) or (=x] pivot destination )
x (=view] poincs
100m " [=out]l points
3.4 Othsr commands:
quit
read (—engle,echo, height,midpcint, rightpoint, text, width] filename (destination]
set (- sangle,echo, factor, height, kopy, midpoint, points, rightpoiat, style.text, width,x]

- ®WYile fileriama

J



Graphical Editor Turerial _ ‘ 13

.

command

-9

3.5 Options:

Options specify parameters used to construct, edit, and view graphical objects. If a parameter
used by a command is not specifed as an option, the default value for the parameter will be
used. The format of command options is

= option [,option)

where option is keylerter{value]. Flags take on the vaiues of true or false mdmted by + and -
respectively. If no value is given with a flag, true is assumed.

Object options:
anglen Specify an angle of n degrees.
echo When true, changes to the display buffer will be echoed on the screen.

factorn Specify a scale factor of n percent.
beightr  Specify height of sext to be n universe-units (0< n<1280).

kopy The commands Scale and Rowate can be used to either create new objects or
to alter old ones. When the kopy flag is true, new objects are created.

midpoint  When true, use the midpoint of a text string to locate the string.

out When true, reduce magnification during zoom.

points When true, operate on points otherwise operate on objects.

rightpoint When true, use the rightmost point of a text string to locate the string.
stylenpe  Specify line style to be one of following fypes:

S0 solid
ds dashed
dd dot-dashed
do dotted
d long-dashed
text Most text is drawn as, a sequence of lines. This can sometimes be painfully

slow. When the text flag is false, sext strings are outlined rather than drawn.
widthype  Specify line width to be one of following fypes:

n narrow
m medium
' _ b bold
x One way to find the center of a rectangular area is to draw the diagonals of
the rectangle. Whea the x flag is true, defined-areas are drawn with their
diagonals.
Area options:
home _Reference the home-window.
regionn Reference region n.

universe Reference the universe-window.

view Reference those objects currently in view.



14 ' Graphical Editor Tutorial

4. ACKNOWLEDGEMENTS , _
Ged borrows freely (rom the ideas and code of the gex program by D. J. Jackowski. The first
version of ged was writtea by D. E. Pinkston.
$. REFERENCES.

{1] Feuer, A. R.; “PWB/Graphics Overview”, TM 79-3782-1, June 11, 1979.

(2] PWBIUNIX User's Manual Release 2.0, Bell Laboratories, 1979.



Graphical Editor Tutorial
< APPENDIX: SOME EXAMPLES OF WHAT CAN BE DONE

1. Text Centered Within a Clrcle

«Circle <er>

<position cursor> <sp> (establish center)

< position cursor> <cr> (establish radius)

oText =m <er> (text is to be centered)

some text <er>

$.0 <cr> (first point from previous set, i.e., circle center)
<er>




16

2. Making Notes on 2 Plot
o! gas|plot =g >A <cr>

svead —e= A <cr>
eview =h <cr>

sLines —sdo <cr>

< position carsor> <sp>
< pgsition carsor> <sp>
<pssition cursor> <sp>
<>

eget <1150,/ <cr>
sText = <2>

Graphical Editor Tutorial

(generate a plot, put it in file A)

(input the plot, but do aot display it)
(window on the plot)
(draw dotted lines)

(end of Lines) -
(set text height to 130, line width to narrow)
(right justify text)

threshold beyond which nothing matters <cr>

< pesition cursor> <cr>
oText =2=90 <cr>

(set right point of text)
(rotate text negative 90 degrees)

threshold beyond which nothing matters <cr>

< position cursor> <cr>

ox <>

<position cursor> <sp>

<pasition cursor> <cr>

sText =h300,»m.m <cr>

'SOME KIND OF PLOT <>

<pasition cursor> <cr>

(set top end of text)

(8nd center of plot) .

(top left of plot)

(bottom right)

(build title: height 300, weight medium, ceatered)

(set title ceatered above plot)

SOME KIND QF PLQT

1

-] .

troshald dagnd which rawtting nstiers

i
g
-
$
$
g
z
3
2
e
4 5 6 8 9

10



Graphical Editor Tutorial

17
. 3. A Psge Layout with Drawings and Text
«! rand —31,0100 | title —v°seed 1° | gsort | bucket | hist —ri2 >A <>
(put a histogram, region 12, of 100 random numbers into file A)
*! rand —32,2100 | title —v"seed 2° | qsort | bucket | hist —r13 >B <er>
(put another histogram, region 13, into file B)
ol ed <cr> (create a file of text using the text editor)
s <cr>
On this page are two histograms <cz>
from a series of 40 <cr>
designed to [llustrate the weakness <cr>
of multiplicative congruential random number generators. <cr>
9l \n(alu <cr> (mark end of page)
. <>
wC <er> (put the text into file C)
156
q <er>
«! nroff C|yeo C <er> (format C, leave the output in C)
sview —u <cr> (window on the universe)
eread A <cr>
sread B <cr> :
sread —h300,wn,m C <cr> (text height 300, line weight narrow, text centered)
< position cursor> <er> (center text over two plots)
eview ~h <cr> (window on the resultant drawing)



Graphical Editor Tutoral

18

January 1980

1ax%

£60°0 TR0 H1L°0 LSO KY'O o9LD oW 'O I%00°0

1O

e g ecccce. ecosccoc Poco

pose o efleocncca e

hooe & 4 ﬁato

booe _.'On-

beowo

ce-doccccccf..

196°0 ¢YW'¢ W20 NSO %O 1060 SN'O IWN'O

beoe

" — —

”:us;ﬂihﬂ

'S 019400 P

o) issp gy j0 sojues

wopUR Y _4_..5:.&.80 oA uao_«nuuh...quiu %o sseupen

-

s1ensnii |
1514y ony om 80vd st W)

&ﬂﬁ"”s’a;ggoavue



Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratories
Murray Hill, New Jersey 07974

Lex helps write programs whose control flow is directed by instances of regular expressions in the in-
put stream.. It is well suited for editor-script type transformations and for segmenting input in prepara-
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and partitioning the
input into strings which match the given expressions. As each such string is recognized the correspond-
ing program fragment is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments written by the user are executed in the ord-
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
match possible at each input point. If necessary, substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free-
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au-
tomatically to portable Fortran. It is available on the PDP-11 UNIX, Honeywell GCOS, and IBM OS
systems. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler-
compiler system.

Table of Contents
1. Introduction. 1
2. Lex Source. 3
3. Lex Regular Expressions. 3
4. Lex Actions. 5
5. Ambiguous Source Rules. 7
6. Lex Source Definitions. 8
7. Usage. 8
8. Lex and Yacc. 9
9. Examples. 10
10. Left Context Sensitivity. 11
11. Character Set. 12
12. Summary of Source Format. 12
13. Caveats and Bugs. 13
14. Acknowledgments. 13
15. References. 13

1 Introduction.

Lex is a program generator designed for lexical process-
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match-
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu-
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog-
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro-
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.
The user supplies the additional code beyond expres-
sion matching needed to complete his tasks, possibly in-
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user’s
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user’s freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to



= yylex

Source —

Input — — QOutput

An overview of Lex

Figure 1

write processing programs in the same and often inap-
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, called ‘‘host
languages.” Just as general purpose languages can pro-
duce code to run on different computer hardware, Lex
can write code in different host languages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for - the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica-
tion may be directed to the combination of hardware and
host language appropriate to the task, the user’s back-
ground, and the properties of local implementations. At
present there are only two host languages, C[1] and For-
tran (in the form of the Ratfor languagel2]). ‘Lex itself
exists on UNIX, GCOS, and 0S/370; but the code gen-
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user’s expressions and actions (called

source in this memo) into the host general-purpose
language; the generated program is named yylex. The
yylex program will recognize expressions in a stream
(called input in this memo) and perform the specified ac-
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
(\J+$ ;

is all that is required. The program contains a %% delim-
iter to mark the beginning of the rules, and one rule.

lexical
rules

!

LEX—2

This rule contains a regular expression which matches
one or more instances of the characters blank or tab
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and
tab; the + indicates ‘‘one or more ...’’; and the $ indi-
cates ‘‘end of line,” as in QED. No action is specified, so
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
(\J+s$ ;
[\t]+ printf (" ");

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple trgnsformations, or
for analysis and statistics gathering on a lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface

Lex and Yacc [3]. Lex programs recognize only regular

expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as-
signs structure to the resulting pieces. The flow of con-
trol in such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Yacc users will
realize that the name yylex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4]. The automaton is
interpreted, rather than compiled, in order to save space.
The result is still a fast analyzer. In particular, the time

grammar
rules

[Te]

|
rYacc I

l

|

Input~— | yylex. I - [ yyparsLI — Parsed input

Lex with Yacc

Figure 2



taken by a Lex program to recognize and partition an in-
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in-
clude forward context require a significant amount of re-
scanning. What does increase with the number and com-
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user’s fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun-
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac-
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcdefg, and the input stream is abcdefh, Lex will recog-
nize ab and leave the input pointer just before cd. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.
The general format of Lex source is:

{definitions)

%%

{rules)

%%

{user subroutines)

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is re-
quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user’s control decisions; they are a table, in
which the left column contains regular expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog-
nized. Thus an individual rule might appear

integer  printf("found keyword INT");
to look for the string integer in the input stream and print
the message ‘‘found keyword INT” whenever it appears.
In this example the host procedural language is C and the
C library function printfis used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com-
pound, or takes more than a line, it should be enclosed in

LEX—3

braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to
American spelling. Lex rules such as ‘

colour priritf ("color");
mechanise  printf("mechanize");
petrol printf("gas");

would be a start. These rules are not quite enough, since
the word petroleum would become gaseunr, a way of deal-
ing with this will be described later.

v

3 Lex Regular Expressions.

The definitions of regular expressions are very similar
to those in QED [5]. A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex-
pression

as7D

looks for the string a57D.
Operators. The operator characters are

N[T7-2.+4+]1O)8/ ()% < >

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (*) indi-
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz"++"

matches the string x)z+ + when it appears. Note that a
part of a string may be quoted. It is harmless but un-
necessary to quote an ordinary text character: the expres-
sion

"xyz+ +"

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac-
ter, the user can avoid remembering the list above of
current operator characters, and is safe should further ex-
tensions to Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is another, less readable, equivalent of the above



expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not
contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an éxpression, \n must be used;
it is not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al-
ways a text character.

Character classes. Classes of characters can be
specified using the operator pair []. The construction
[ab] matches a single character, which may be a, b, or c.
Within square brackets, most operator meanings are ig-
nored. Only three characters are special: these are \ —
and . The — character indicates ranges. For example,

la-z0-9<>_]

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using — between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple-
mentation dependent and will get a warning message.
(Eg., [0-z] in ASCII is many more characters than it is in
EBCDIC). If it is desired to include the character — in a
character class, it should be first or last; thus

[ +0-9]

matches all the digits and the two signs.

In character classes, the ~ operator must appear as the
first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

[“abcl]

matches all characters except a, b, or c, including all spe-
cial or control characters; or

[*a-zA-Z]

is any character which is not a letter. The \ character pro-
vides the usual escapes within character class brackets.

Arbitrary character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

\40-\176]

matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an op-
tional element of an expression. Thus

LEX—4

ab?c

matches either ac or abc. .

Repeated expressions. Repetitions of classes are indicat-
ed by the operators * and +.

a*

is any number of consecutive a characters, including zero;
while

a+
is one or more instances of a. For example,
la-z] +
is all strings of lower case letters. And
| [A-Za—z][A—Za—20-9]+

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages. '

Alternation and Grouping. The operator | indicates
alternation:

(ablcd)

matches either ab or cd. Note that parentheses are used
for grouping, although they are not necessary on the out-
side level;

ablcd

would have sufficed. Parentheses can be used for more
complex gxpressions:

(ablcd+) ?(ef)*

matches such strings as abefef, efefef, cdef, or cddd, but
not abe, abed, or abcdef.

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are ~ and $. If the first character of an expression is
*, the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of ~, complementation of character classes, since
that only applies within the [] operators. If the very last
character is $, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the /operator char-
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus



o

ab}
is the same as
ab/\n

Left context is handled in Lex by start conditions as ex-
plained in section 10. If a rulé is only to be executed
when the Lex aytomaton interpfeter is in start condition
x, the rule should be prefixed by

<X> .

using the angle bracket operatar gharacters. If we con-
sidered *‘being at the beginning of a line to be start con-
dition ONE, then the * operator wquld be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions. The operators {} specify ei-
ther repetitions (if they enclose numbers) or definition
expansion Gf they enclose a name). For example

{digit)

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con-
trast,

a(1,5)

looks for 1 to 5 occurrences of a.
‘Finally, initial % is special, being the separator for Lex
source segments,

4 Lex Actions.

When an expression writtén as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which:aid in writing actions. Note
that there is a default ‘action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match ‘everything. When Lex is be-
ing used with Yacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina-
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at-
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. - Specifying a C null statement, ; as an action
causes this result. A frequent rule is

[\t\n]

LEX~$

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character |, which indicates that the action for this rule is
the action for the next rule. The previous example could
also have been written

n\tn

n\nn

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
la—z]+. Lex leaves this text in an external character ar-
ray named yytext. Thus, to print the name found, a rule
like

la-z]+  printf("%s", yytext);

will print the string in yytext. The C function printf ac-
cepts a format argument and data to be printed; in this
case, the format is “print string’” (% indicating data
conversion, and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac-
tion? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or readjust, to
avoid this, a rule of the form fa—z/+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a-zA-Z]+  {words+ +; chars + = yyleng;)
which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by '

yytextlyyleng-1)
in Cor
yytext(yyleng)

in Ratfor.



Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou-
tines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input ex-
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n) may be
called to indicate that not all the characters matched by

the currently successful expression are wanted right now. -

The argument n indicates the number of characters in
yytext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, but in a
different form.

Example: Consider a language which defines a string as
a set of characters between quotation (") marks, and pro-
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some-
what confusing, so that it might be preferable to write

{

if (yytextlyyleng-1] == \\")
yymore();

else .
.. normal user processing

\"[*"]s

which will, when faced with a string such as "abc\"def"
first match the five characters "abd\; then .the call to
yymore() will cause the next part of the string, "def, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled ‘‘nor-
mal processing”’.

The function yyless() might be used to reprocess text in
various circumstances. Consider the C problem of distin-
guishing the ambiguity of ‘‘=-a’. Suppose it is desired
to treat this as ‘‘=— a’ but print a message. A rule
might be
{
printf("Operator (=—) ambiguous\n");
yyless(yyleng-1);

... action for =— ...

)

=—[a-zA-Z]

which prints a message, returns the letter after the opera-

tor to the input stream, and treats the operator as “=-=—".

Alternatively it might be desired to treat this as ‘= —a”

To do this, just return the minus sign as well as the letter

to the input: -
=—[a-zA-Z] |

printf ("Operator (=—) ambiguous\n");

yyless(yyleng-2);

... action for = ...

}

will perform the other interpretation. Note that the ex-

pressions for the two cases might more easily be written

LEX—6

=—/[A-Za-7]
in the first case and
=/-[A-Za-z]

in the second; no backup would-be.required in the rule
action. It is not necessary to recognize the whole

‘identifier . to observe' the ambxguxty The possnblhty of

““=—3" however, makes
=—/["\t\n]
a still better rule. - IR

In‘addition to these routmes, Lex ‘also permlts access to
the 170 routines it uses. They are:

1)  input() which returns the next input character;

2)  output(c) which writes the character ¢ on the out-
put; and

3)  unput(c) pushes the character c. back onto the in-

put stream to be read later by input().

By default these routines are provided as. macro

definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named lexshf, which is described below under
‘“‘Character Set”’. These routines define the relationship
between external files and internal: characters, and. must
all be retained or modified consistently.. They may . be

~ redefined, to cause input or output to be transmitted to or

from strange places, including other programs or internal
memory; but the character set used must be consistent in
all routines; a value of zero returned by input must mean
end of file; and the relationship between unput and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + * ? or $§ or containing /implies
lookahead. Lookahead is also necessary to match an ex-
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library lmposes a 100 characler hmlt on
backup.

Another Lex library routine that the user W|li some-
times want to redefine is yywrap() which is called wheir-
ever Lex reaches an end-of-file. If yywrap returns a 1,
Lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more

‘input to artive: from a new source. - In-this case, the user

should provide 4 yywrap which arranges for ‘new input
and returns 0. This .instructs Lex to continue processmg
The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end-

. of-file; the only access to this condition is through

yywrap. In fact, unless a private version of input() is sup-
plied a file containing nulls cannot be handled, since a
value of 0 returned by input is taken to be end-of-file.

In Ratfor all of the standard I/0 library routines, input,



output, unput, yywrap, and lexshf, are defined as integer
functions. This requires input and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

5 Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same number of
characters, the rule given first is preferred.
Thus, suppose the rules

keyword action ...;
identifier action ...;

integer
(a-z] +

to be given in that order. If the input is integers, it is tak-
en as an identifier, because /a-z/+ matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int) will
not match the expression integer and so the identifier in-
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .+ dangerous. For exam-
ple,

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

‘first’ quoted string here, ‘second’ here
the above expression will match
'first' quoted string here, ‘second’

which is probably not what was wanted. A better rule is
of the form

'["\n}»'

which, on the above input, will stop after first. The
consequences of errors like this are mitigated by the fact
that the . operator will not match newline. Thus expres-
sions like .= stop on the current line. Don’t try to defeat
this with expressions like f\n/+ or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some

LEX-17

Lex rules to do this might be

she s++;
he h++;

\n |
where the last two rules ignore everything besides he and
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in-
stances of hAe included in she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means ‘‘go do the next alternative.”

It causes whatever rule was second choice after the

current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she {s++; REJECT;}
he {h++; REJECT;}

\n |

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re-
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char-
acters were in both classes.
Consider the two rules

albc]+
alcd) +

{...; REJECT;}
{...; REJECT;}

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string acch matches
the first rule for four characters and then the second rule
for three characters. In contrast, the input accd agrees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di-
gram to be incremented, the appropriate source is

%%
[a-z][a-z]

{digram [yytext[0]] [yytext[1]] + +; REJECT;)
\n ;

k]

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.



6 Lex Source Definitions.
Remember the format of the Lex source:

{definitions)

{user routines)

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei-
ther in the definitions section or in the rules section.
Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the gen-
erated program. There are three classes of such things.

1)  Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which contain a com-
ment, are passed through to the generated pro-
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con-
vention.

Anything included between lines containing only
%{ and %} is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor statements that must begin in
column 1, or copying lines that do not look like
programs.

Anything after the third %% delimiter, regardliess
of formats, etc., is copied out after the Lex out-
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %{ and %), and begining in column 1, is as-
sumed to define Lex substitution strings. The format of
such lines is

2)

3)

name translation

and it causes the string given as a translation to be associ-
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the {name)} syntax in a rule. Using {D} for the digits
and {E} for an exponent field, for example, might abbre-
viate rules to recognize numbers:

LEX—8

D : [0-9]

E [TEdell-+]?(D} +
%% .

{D}+ printf ("integer");
{D}+""(D}+({(ED)? |
{D}+"{D}+({ED? |

{D}+(E}

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35.EQ.I, which does not
contain a real number, a context-sensitive rule such as

[0-91+/""EQ printf("integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other com-
mands, including the selection of a host language, a char-
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilitics are discussed below
under “‘Summary of Source Format,” section 12.

7 Usage.

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li-
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
1/0 libraries, one for C defined in terms of the C stan-
dard library {6], and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R.

The C programs generated by Lex are slightly different
on 0S/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli-
citly requested by making the first line of the source file
%C.

The Ratfor generated by Lex is the same on all sys-
tems, but can not be compiled directly on TSO. See
below for instructions. The Ratfor I/0 library, however,
varies slightly because the different Fortrans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor I/0 li-
brary, dependent on Fortran character 1/0, is quite slow.
In particular it reads all input lines as 80A1 format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source



file using a Ratfor host should begin with the ““%R’’ com-
mand.

UNIX. The libraries are accessed by the loader flags
-llc for C and -lir for Ratfor; the C name may be abbrevi-
ated to -/l. So an appropriate set of commands is

C Host Ratfor Host

lex source
rc -2 lex.yy.r -lir

lex source
cc lex.yy.c -1l -IS

The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex I/0 routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input, output and unput are given, the
library can be avoided. Note the ¢*-2”’ option in the Rat-
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
¢.” library. The appropriate command sequences are:

C Host Ratfor Host

./lex source
Jrc a= lex.yy.r ./lexrlib h=

./lex source
Jcc lex.yy.c ./lexclib h=

The resulting program is placed on the usual file .program
for later execution (as indicated by the ‘‘h="" option); it
may be copied to a permanent file if desired. Note the
‘“a="" option in the Ratfor compile command, this indi-
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver-
sion, type

exec 'dot.lex.clist(Iex)’ 'sourcename’
exec 'dot.lex.clist(cload)’ libraryname membername’

The first command analyzes the source file and writes a C
program on file lex.yy.text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on hr289.lcl.load’) placing the object
program in your file libraryname. LOAD(membername) as
a completely linked load module. The compiling com-
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C-
compiled Lex programs on the OS system. Even so, al-
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro-
grams, leaving a file lex.yy.rat instead of lex.yy.text in
your directory. The Ratfor program must be edited, how-
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

’,

exec ‘dot.lex.clist(lex)’ 'sourcename’

LEX—9

exec 'dot.lex.clist(rload)’ libraryname membername’

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes to
operate. ‘

The steps involved in processing the generated Ratfor
program are:

a.  Edit the Ratfor program.

1. Remove all tabs.

2.  Change all lower case letters to upper case letters.
3. ' Convert the file to an 80-column card image file.
b.  Process the Ratfor through the Ratfor preproces-

sor to get Fortran code.
c. - Compile the Fortran.

d. Load with the Ilibraries
'sys1.fortlib'.
The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

'hr289.Irl.load’ and

8 Lex and Yacc.

If you want to use Lex with Yacc, note that what Lex
writes is a program named yylex(), the name required by
Yacc for its analyzer. Normally, the default main pro-
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
wlex(). In this case each Lex rule should end with

return (token);

where the appropriate token value is returned. An easy
way to get access to Yacc’s names for tokens is to compile
the Lex output file as part of the Yacc output file by plac-
ing the line

# include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named “‘good’’ and the lexical rules to be named
“better”’ the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -1l -IS

The Yacc library (-ly) should be loaded before the Lex li-
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.
As a trivial problem, consider copying an input file

while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program



LEx—10

%%
int k;
[0-91+ {
scanf(-1, yytext, "%d", &k);
if (k%7 == 0)
printf("%d", k+3);
else
printf ("%d" ,k);

to do just that. The rule [0-9]+ recognizes strings of di-
gits; scanf converts the digits to binary and stores the
result in k. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

%%

int k;
-2[0-91+

scanf(-1, yytext, "%d", &k);

i:rintf ("%d", k%7 == 0 ? k+3 : k);
-2[0-9.]+ ECHO;

[A-Za-z][A-Za-20-9]+ ECHO;

Numerical strings containing a *‘.”* or preceded by a letter
will be picked up by one of the last two riles, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a?b:c means “‘if a
then belse ¢

For an example of statistics gathering, here is a pro-
gram which histograms the lengths of words, where a
word is defined as a string of letters.

int lengs[100];
%%
[a-z]+ lengslyyleng] + +;
. |
\n ;
%%
yywrap()
int i;

printf("Length No. words\n");
for(i=0; i<100; i+ +)
if (lengsli] > 0)
printf ("%5d%10d\n",i,lengsi]);
return(1);

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return(1); indicates that Lex is to per-
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con-
tinue reading and processing. To provide a yywrap that

‘meanings of

never returns true causes an infinite loop.

As a larger example, here are some parts of a program
written by N. L. Schryer to convert double precision For-
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a [aAl
b [bB]
¢ [Cl
z k2

An additional class recognizes white space:
W [\t]+

The first rule changes ‘‘double precision’ to ‘“‘real’, or
“DOUBLE PRECISION”’ to ‘“‘REAL”.

{d}lo}{u}{b}{ll{e}{W}{pl{r}(e}{C]{ll{s}{l}{o}{n] {
gmntf (yytext[0] =="d"'? "real" : "REAL");

Care is taken throughout this program to preserve the
case (upper or lower) of the original program. The condi-
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica-
tions to avoid confusing them with constants:

"™ "["0] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as ‘‘beginning of line, then five blanks,
then anything but blank or zero.”” Note the two different
“. There follow some rules to change double
precision constants to ordinary floating constants.

[0-91+ (WHd} (W} +-1?2{W}[0-9]+ |
[0-91+{wW}".{WHd} (W} [+-1?{W}[0-9] + |
«{WHo-91 +{WHa} (W} [+-1?{W}[0-91+ {
/* convert constants */
for({p=yytext; «p =0, p++)

if (tp == 'd’l#p === 'D’)
‘p=+ Iel_ ldl;

ECHO;

}

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or D. The
program than adds ‘e-‘d’, which converts it to the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d By using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here).



LEx—-11

{d}{s}{i}{n})
{d}{cHolls)
{d}{sHa}{r}{t)
{d}{a}{t}{a} (n)

(e o} a0

Another list of names must have initial d changed to ini-
tial a:

printf ("%s",yytext +1);

{d}{1}{oHe} |

{dHiHol(gl10 |

{d}{m}{i}{n})1 |

{d{mHa}{x}1 |
yytext[0] =+ ‘a’ - 'd";
;-ECHO;

And one routine must have initial d changed to initial .

{d}1{m}{a}{c}{h} {yytext[0] =+ 'r' - 'd’,

To avoid such names as dsinx being detected as instances
of dsin, some final rules pick up longer words as
identifiers and copy some surviving characters:

[0-9]+
\n |
. ECHO;

[A-Za-z][A-Za-20-9]+ :

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex-
ample, a compiler preprocessor might distinguish prepro-
cessor statements and analyze them differently from ordi-
nary statements. This requires sensitivity to prior con-
text, and there are several ways of handling such prob-
lems. The " operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa-
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con-
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user’s action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat-
ed with a start condition. It will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
"a {flag = 'a’, ECHO;}
‘b {flag = 'b"; ECHO;}
“c {flag = ‘¢, ECHO;)
\n {flag = 0; ECHO;}
magic  {

switch (flag)

casé ‘a"; printf("first"); break;
case 'b": printf("second"); break;
case 'c”: printf("third"); break;
default: ECHO; break;

}

}

should be adequate.

To handle the same problem with start conditions, each
start condition must be introduced to Lex in the
definitions section with a line reading

%Start namel name2 ...
where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The conditions

may be referenced at the head of a rule with the <>
brackets:

<namel >expression

is a rule which is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEGIN namel,;

which changes the start condition to namel. To resume
the normal state,



LEX—-12

BEGIN 0;

resets the initial condition of the Lex automaton inter-
preter. A rule may be active in several start conditions:

<namel,name2,name3>
is a legal prefix. Any rule not beginning with the <>
prefix operator is always active.

The same example as before can be written:

%START AA BB CC

%%

*a (ECHO; BEGIN AA;}

“b {ECHO; BEGIN BB;}

“c : {ECHO; BEGIN CC;}
- \n {ECHO; BEGIN 0;)

< AA>magic printf ("first");

< BB>magic printf("second");

< CC> magic printf("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user’s code.

11 Character Set.

The programs generated by Lex handle character 1/0
only through the routines input, output, and unput. Thus
the character representation provided in these routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small in-
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the I/O rou-
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine lexshf is called to change the representation
delivered by input into a right-adjusted integer. If the
user changes the I/0 library, the routine lexshf should
also be changed to a compatible version. The Ratfor li-
brary I/0 system is arranged to represent the letter a as
in the Fortran value IHa while in C the letter a is
represented as the character constant ‘@’ If this interpre-
tation is changed, by providing I/0 routines which
translate the characters, Lex must be told about it, by giv-
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con-
taining only “%T". The table contains lines of the form

{integer) {character string}

which indicate the value associated with each character.
Thus the next example maps the lower-and upper case
letters together into the integers 1 through 26, newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T

1 Aa

2 Bb
26 Zz
27 \n
28 +
29 -
30 0
31 1
39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char-
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac-
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou-
tines for input and output run almost unmodified on
UNIX, GCOS, and 0S/370, they are not really machine
independent, and would not work with CDC or Bur-
roughs Fortran compilers. The user is of course welcome
to replace input, output, unput and lexshf but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave input and output as routines that read
with 80A1 format, but replace lexshf by a table lookup
routine.

12 Summary of Source Format.
The general form of a Lex source file is:

{definitions)}

%%

{rules)

%%

{user subroutines}

“The definitions section contains a combination of
1) Definitions, in the form ‘‘name space transla-
tion”’.
2) Included code, in the form ‘‘space code’’.
3) Included code, in the form

% {
code
%)



LEX—13

4)  Start conditions, given in the form
%S namel name?2 ...
5)  Character set tables, in the form

%T
number space character-string

%T
6) A language specifier, which must also precede any

rules or included code, in the form “%C” for C
or “%R” for Ratfor.

7)  Changes to internal array sizes, in the form
%x nnn

where nnn is a decimal integer representing an ar-
ray size and x selects the parameter as follows:

Letter Parameter
p positions
n states
e tree nodes
a transitions
k packed character classes
o output array size

Lines in the rules section have the form ‘‘expression ac-
tion”> where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

X the character "x"

"x" an "x", even if x is an operator.

\x - an "x", even if x is an operator.

[xy] the character x or y.

[x-z] the characters x, y or z.

["x] any character but x.

. any character but newline.

°x an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
x$ an x at the end of a line.

x? an optional x.

X#* 0,1,2, ... instances of x.

X+ 1,2,3, ... instances of x.

xly anxoray.

x) an x.

x/y an x but only if followed by y.

{xx) the translation of xx from the definitions section.

x{m,n}  mthrough n occurrences of x

13 Caveats and Bugs.

There are pathological expressions which produce ex-
ponential growth of the tables when converted to deter-
ministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used unmput to change
the characters forthcoming from the input stream. This is
the only restriction on the user’s ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non-
supported features are REJECT, start conditions, or vari-
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outside of
Lex is patterned on Yacc and the inside on Aho’s string
matching routines. Therefore, both S. C. Johnson and A.
V. Aho are really originators of much.of Lex, as well as
debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

15 References.

1. B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language, Prentice-Hall, N. J. (1978).

2. B. W. Kernighan, Ratfor: A Preprocessor for a
Rational Fortran, Software — Practice and Experi-
ence, S, pp. 395-496 (1975).

3. S. C. Johnson, Yacc: Yet Another Compiler Com-
piler, Computing Science Technical Report No.
32, 1975, Bell Laboratories, Murray Hill, NJ
07974.

4. A. V. Aho and M. J. Corasick, Efficient String
Matching: An Aid to Bibliographic Search, Comm.
ACM 18, 333-340 (1975).

5.  B. W. Kernighan, D. M. Ritchie and K. L.
Thompson, QED Text Editor, Computing Science
Technical Report No. 5, 1972, Bell Laboratories,
Murray Hill, NJ 07974.

6. D. M. Ritchie, private communication. See also
M. E. Lesk, The Portable C Library, Computing

Science Technical Report No. 31, Bell Labora-
tories, Murray Hill, NJ 07974.






The M4 Macro Processor

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

M4 is a macro processor available on UNIXT and GCOS. Its primary use
has been as a front end for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited for functional languages like Fortran,
PL/I and C since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro proces-
sors, including

® arguments
condition testing

e arithmetic capabilities
e string and substring functions
e file manipulation
This paper is a user’s manual for M4.
July 1, 1977

TUNIX is a Trademark of Bell Laboratories.



The M4 Macro Processor

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor —
replacement of text by other text.

The M4 macro processor is an exten-
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [1].
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there. '

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric ‘‘token” (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it
is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari-
ous useful operations; in addition, the user

can define new macros. Built-ins and user-
defined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

Usage
On UNIX, use

m4 [files]

Each argument file is processed in order; if
there are no arguments, or if an argument is
‘=, the standard input is read at that point.
The processed text is written on the stan-
dard output, which may be captured for sub-
sequent processing with

md [files] > outputfile

On GCOS, usage is identical, but the pro-
gram is called ./m4.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define (name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter). stuff
is any text that contains balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,
define(N, 100)

if G > N)

defines N to be 100, and uses this “symbolic



constant’’ in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define
has arguments. If a macro or built-in name
is not followed immediately by ‘(C, it is
assumed to have no arguments. This is the
situation for N above; it is actually a macro
with no arguments, and thus when it is used
there need be no (...) following it.

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For
example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con-
tains a lot of N’s.

Things may be defined in terms of
other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or,
to say it another way, is M defined as N or
as 100? In M4, the latter is true — M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 100; it’s just as if
you had said

define(M, 100)

in the first place.

If this isn’t what you really want, there
are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the .string N, so
when you ask for M later, you’ll always get
the value of N at that time (because the M
will be replaced by N which will be replaced
by 100).

Quoting

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes ° and ° is not expanded
immediately, but has the quotes stripped off.
If you say

define(N, 100)
define(M, 'N’)

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out-
put, you have to quote it in the input, as in

‘define’ = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it’s seen;
that is, it is replaced by 100, so it’s as if you
had written

define (100, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn’t have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)
define('N’, 200)
In M4, it is often wise to quote the first

argument of a macro.

If * and ’ are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote([, 1)

makes the new quote characters the left and
right brackets. You can restore the original
characters with just



changequote

There are two additional built-ins
related to define. undefine removes the
definition of some macro or built-in:

undefine("N’)

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefine('define’)

but once you remove one, you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys-
tems, so you can tell which one you’re
using:

ifdefCunix’, ‘define(wordsize,16)’ )
ifdef(Cgcos’, ‘define (wordsize,36)" )

makes a definition appropriate for the partic-
ular machine. Don’t forget the quotes!

ifdef actually permits three arguments;
if the name is undefined, the value of ifdef
is then the third argument, as in

ifdefCunix’, on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing — replacing one
string by another (fixed) string. User-
defined macros may also have arguments, so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, $1 = §1 + 1)
generates code to increment its argument by
1:

bump(x)
is

x=x+1

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro

name itself is $0, although that is less com-
monly used.) Arguments that are not sup-
plied are replaced by null strings, so we can
define a macro cat which simply concaten-
ates its arguments, like this:

define(cat, $1$28384$58687$889)
Thus
cat(x, y, z)
is equivalent to
Xyz
$4 through $9 are null, since no correspond-

ing arguments were provided.

Leading unquoted blanks, tabs, or
newlines that occur during argument collec-
tion are discarded. All other white space is
retained. Thus

b ¢

defines atobe b c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma “'protected’’ by parentheses does not
terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

define(a,

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is incr, which increments its
numeric argument by 1. Thus to handle the
common programming situation where you
want a variable to be defined as “one more
than N”°, write

define(N, 100)
define(N1, ‘incr(N)’)

Then N1 is defined as one more than the
current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)



unary + and —

*x or " (exponentiation)
+ / % (modulus)

=lI= < <= > >=
(not)

(logical and)
(logical or)

-+

&or&&
lorll

Parentheses may be used to group opera-
tions where needed. All the operands of an
expression given to eval must ultimately be
numeric. The numeric value of a true rela-
tion (like 1>0) is 1, and false is 0. The
precision in eval is 32 bits on UNIX and 36
bits on GCOS.

As a simple example, suppose we want
M to be 2«xN+1. Then

define(N, 3)
define(M, ‘eval 2**N+1)")

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the input
at any time by the built-in function include;

include(filename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value
of include (that is, its replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude ("'silent
include’’) says nothing and continues if it
can’t access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com-
mand. M4 maintains nine of these diver-
sions, numbered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert com-

mand; in particular, divert or divert(0)
resumes the normal output process:

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of wundivert is nor the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in  divhum returns the
number of the currently active diversion.
This is zero during normal processing.

System Command

You can run any program in the local
operating system with the syscmd built-in.
For example,

syscmd (date)

on UNIX runs the date command. Normally
sysemd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func-
tion mkremp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string c; oth-
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns “yes’” or “no’ if they
are the same or different.



define(compare, “ifelse($1, $2, yes, no)’)

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the
input

ifelse(a, b, ¢, d, e, f, g)

if the string a matches the string b, the
result is ¢. Otherwise, if d is the same as e,
the result is f. Otherwise the result is g. If

the final argument is omitted, the result is
null, so

ifelse(a, b, ¢)

is ¢ if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of
the string that makes up its argument. Thus

len (abcdef)

is 6, and len((a,b)) is 5.

The built-in substr can be used to pro-
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero), and is n charac-
ters long. If n is omitted, the rest of the
string is returned, so

substr(now is the time’, 1)
is

ow is the time
If i or n are out of range, various sensible
things happen.

index(s1, s2) returns the index (posi-
tion) in s1 where the string s2 occurs, or
—1 if it doesn’t occur. As with substr, the
origin for strings is 0.

The built-in translit performs charac-
ter transliteration.

translit(s, f, t)

modifies s by replacing any character found

in f by the corresponding character of t.
That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don’t have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit (s, aeiou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it up
to and including the next newline; it is use-
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted. If you
add dnl to each of these lines, the newlines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert(—1)
define(...)

divert

Printing

The built-in errprint writes its argu-
ments out on the standard error file. Thus
you can say

errprint (‘fatal error’)

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don’t forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the page
number where it is described.



changequote(L, R)

define (name, replacement)
divert (number)

divhum

dnl

dumpdef(‘'name’, ‘name’, ...)
errprint(s, s, ...)

eval (numeric expression)
ifdef('name’, this if true, this if false)
ifelse(a, b, ¢, d)

include (file)

incr(number)

index(sl1, s2)-

len (string)
maketemp (... XXXXX...)
sinclude (file)

substr(string, position, number)
syscmd (s)

translit (str, from, to)
undefine ('name’)

undivert (number,number,...)

LW pPpUbbbhAUVUNWABUNWDERUBUVWOVE D =W

Acknowledgements

We are indebted to Rick Becker, John
Chambers, Doug Mcllroy, and especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve-
ments. We are also deeply grateful to
Weythman for several substantial contribu-
tions to the code.

References

[1] B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, Inc.,
1976.






UNIX Remote Job Entry User’s Guide

A. L. Sabsevitz
K. A. Kelleman

Bell Laboratories
Piscataway, New Jersey 08854

1. PREFACE

A set of background processes running under UNIX* support remote job entry to IBM System/360
and /370 host computers. RJE is the communal name for this subsystem.* UNIX communicates
with IBM's Job Entry Subsystem by mimicking an IBM 360 remote multileaving work station. The
UNIX User's Manual page rje(8) summarizes its design and operation. The manual also
contains a description of the send(1) command, which is the user's primary method of
submitting jobs to RJE, and rjestat(1), which allows the user to monitor the status of RJE and to
send operator commands to the host system. This guide is a tutorial overview of RJE and is
addressed to the user who needs to know how to use the system, but does not need to know
details of its implementation. The two following sections constitute an introduction to RJE.

2. PRELIMINARIES

To become a UNIX user, you must receive a login name that identifies you to the UNIX system.
You should also get a copy of the UNIX User's Manual. This contains a fairly complete
description of the system and includes the section How to Get Started, which introduces you to
UNIX; you should read that section before proceeding with this guide.

In order to begin using RJE, you need only become familiar with a subset of basic commands.
You must understand the directory structure of the file system, and you should know something
about the attributes of files: see cd(1), chmod(1), chown(1), cp(1), In(1), Is(1), mkdir(1), mv(1),
rm(1). You must know how to enter, edit, and examine text files: see cat(1), ed(1), pr(1). You
should know how to communicate with other users and with the system: see mail(1), mesg(1),
who(1), write(1). And, finally, you might have to know how to describe your terminal to the
system: see ascii(5), stty(1), tabs(1).

3. BASIC RJE

Let's suppose that you have used the editor, ed(1), to create the file, jobfile, that contains your
job control statements (JCL) and input data. This file should look exactly like a card deck,
except that for convenience alphabetic characters may be in either upper or lower case. Here is
an example:

UNIX is a Trademark of Bell Laboratories.

“* In this paper, RJE refers to the UNIX facilities and not to the Remote Job Entry feature of IBM's HASP or JES
subsystems.



2 ' Remote Job Entry User's Guide

$ cat jobfile
//gener job (9999,r740),pgmrname,class=x usr=(mylogin,myplace)
//step exec pgm=iebgener
//sysprint dd sysout=a
/Isysin dd dummy
//sysut2 dd sysout=a
//sysut1 dd «
first card of data

last card of data
/%

To submit this job for execution, you must invoke the send(1) command:
$ send jobfile
The system will reply:

10 cards
Queued as /usr/rie/rd3125

Note that send tells you the number of cards it submitted and reports the file name that contains
your job in the queue of all jobs waiting to be transmitted to the host system. Until the
transmission of the job actually begins, you can prevent the job from being transmitted by doing
a chmod 0 on the queued file to make it unreadable. For our example, you could say:

chmod 0 /usr/rje/rd3125

When your job is accepted by the host system, a job number will be assigned to it, and an
acknowledgement message will be generated. This indicates that your job has been scheduled
on the host system. Later, after the job has executed, its output will be returned to the UNIX
system. You will be notified automatically of both of these events: if you are logged in when RJE
detects these events, and if you are permitting messages to be sent to your terminal (see
mesg(1)). The following two messages will be sent to you (still using the example above) when
the job is scheduled and when the output is returned, respectively:

Two bells : :
12:18:42 gener job 384 -- rd3125 acknowledged

Two bells
12:21:54 gener job 384 -- /al/user/rje/prnt0 ready

Two bells, with an interval of one second between them, precede each message. They should
be interpreted as a warning to stop typing on your terminal, so that the imminent message is not
interspersed with your typing.

If you are not logged.in when one of these events occurs, or if you do not allow messages to be
sent to your terminal, then the notification will be posted to you via the mail(1) command. You
can prevent messages directly by executing the mesg(1) command, or indirectly by executing
another command, such as pr(1), which prohibits messages for as long as it is active. You may
inspect (by invoking the mail command) your mail file (/usr/mailllogname) at any time for
messages that have been diverted. Setting your MAIL variable to the name of your mail file will
cause the shell to notify you when mail arrives. For this example, the mail might look as follows:



Remote Job Entry User's Guide 3

$ mail
From rje Mon Aug 1 12:20:36 1977
12:18:42 gener job 384 -- rd3125 acknowledged

?d
From rje Mon Aug 1 12:21:55 1977
12:21:54 gener job 384 -- /al/user/rie/prnt0 ready

?d

The job acknowledgement message performs two functions. First, it confirms the fact that your
job has been scheduled for eventual execution. Second, it assigns a number to the job in such
a way that the number and the name together will uniquely identify the job for some period of
time.

The output ready message provides the name of a UNIX file into which output has been written
and identifies the job to which the output belongs (see Is(1)):

$Is -l prntO
-r--r-xr-- 1 rje 1184 Aug 1 12:21 prntO

Note that rje retains ownership of the output and allows you only read access to it. It is intended
that you will inspect the file, perhaps extract some information from it, and then promptly delete
it (see rm(1)):

$ rm -f prnt0

The retention of machine-generated files, such as RJE output, is discouraged. It is your
responsibility to remove files from your RJE directory. RJE output files may be truncated if the
output exceeds a set limit. This limit is tunable by the system administrator. Output beyond the
current limit will be discarded, with no provision for retrieval. If the output were truncated in the
previous example, the second notification message would have been:

Two bells
12:21:54 gener job 384 -- /al/user/rje/prnt0 ready (truncated)

The user should also be aware that RJE attempts to keep a set number of blocks free on any file
system it uses. This number is also tunable by the system administrator. Warning messages or-
suspension of certain functions will occur as this limit is approached.

The most elementary way to examine your output is to cat it to your terminal. The Appendix of
this document shows the result of listing the output of our sample job in this way. Because UNIX
has no high volume printing capability, you should route to the host’s printer any large listings of
which you desire a hard copy.

The structure of an output listing will generally conform to the following sequence:

HASP log
jcl information
data sets
HASP end

Normally burst pages will not be present. Single, double, and triple spacing is reflected in the
output file, but other forms controls, such as the skip to the top of a new page, are suppressed.
Page boundaries are indicated by the presence of a blank (space character) at the end of the
last line of each page.

The big file scanner bfs(1) or the context editor ed(1) provide a more flexible method than
cat(1) for examining printed output; bfs can handle files of any size and is more efficient than ed
for scanning files.

RJE is also capable of receiving punched output as formatted files (see pnch(5)); this format
allows an exact representation of an arbitrary card deck to be stored on the UNIX machine.



4 Remote Job Entry User's Guide

However, there are few commands that can be used to manipulate these files. You will probably
want to route your punched output to one of the host's output devices.

4. SEND COMMAND

The send(1) command is capable of more general processing than has been indicated in the
previous section. In the first place, it will concatenate a sequence of files to create a single job
stream. This allows files of JCL and files of data to be maintained separately on the UNIX
machine. In addition, it recognizes any line of an input file that begins with the character ~ as
being a control line that can call for the inclusion, inside the current file, of some other file. This
allows you to send a top level skeleton that “pulls” in subordinate files as needed. Some of
these may be “virtual” files that actually consist of the output of UNIX commands or Shell
procedures. Furthermore, the send command is able to collect input directly from a terminal,
and can be instructed to prompt for required information.

Each source of input can contain a format specification that determines such things as how to
expand tabs and how long can an input line be.  The manual page for fspec(5) explains how to
define such formats. When properly instructed, send will also replace arbitrarily defined
keywords by other text strings or by EBCDIC character codes. (These two substitution facilities
are useful in other applications besides RJE; for that reason, send may be invoked under the
name gath to produce standard output without submitting an RJE job.)

Two options of send that everyone should be acquainted with are: the ability to specify to which
host computer the job is to be submitted, and a flag that guarantees that a job will be
transmitted to the host computer in order of submission (relative to other jobs submitted with the
same flag). To run our sample job on a host machine known to RJE as A, we would issue the
command:

$ send A jobfile
When no host is explicitly cited, send makes a reasonable choice.
To insure that a job will be transmitted in order of submission, set the -x flag:
$ send -x jobfile
This flag should be used sparingly. The complete list of arguments and flags that control the
execution of send can be found in send(1).
5. JOB STREAM

It is assumed that the job stream submitted as the resuit of a single execution of send consists
of a single job, i.e., the file that is queued for transmission should contain one JOB card near the
beginning and no others. A priority control card may legitimately precede the JOB card. The
JOB card must conform to the local installation's standard. At BISP, it has the following
structure:

//Iname job (acct],. . .]),pgmrname[,keywds="7] [usr=...]

6. USER SPECIFICATION
A “usr” specification is required on print or punch output that is to be delivered to a UNIX user.
usr=(login,place,[level])

where login is the UNIX login name of the user, level is the desired level of notification (see end
of this section for an explanation), and place is as follows:

A. If place is the name of a directory (writable by others), then the output file is placed there
as a unique prnt or pnch file. The mode of the file will be 454.

B. If place is the name of an existing, writable (by others), non-executable (by others) file,
then the output file replaces it. The mode of the file will be 454.



WM

Remote Job Entry User’s Guide 5

C. If place is the name of a non-existent file in a writable (by others) directory, then the
output file is placed there. The mode of the file will be 454.

D. If place is the name of an executable (by others) file, then the RJE output is set up as
standard input to place, and place is executed. Five string arguments are passed to
place. For example, if place is a shell procedure, the following arguments are passed as

$1...9%5:

1. Flag indicating whether file space is scarce in the file system where place resides. A
0 indicates that space is not scarce, while 1 indicates that it is.

Job name.

Programmer's name.

Job number.

Login name from the “usr=..." specification.

O s e

A ":" is passed if a value is not present. The current directory for the execution of place
will be set to the directory containing place. The environment (see environ (7)) will contain
values for LOGNAME and HOME based on the login name from the “usr=..." specification,
and a value for TZ. Since the login name supplied on the “usr=..." specification cannot
be believed for security purposes, the UID will be set to a reserved value.

E. In all other cases, the output will be thrown away.

The place value must not be a full pathname, unless it refers to an executable file (see D
above). For cases A, B, and C above (and case D, if a full pathname is not supplied), the name
of the user’s login directory will be used to form a full pathname.

The “usr=..." field may occur anywhere within the first 100 card images sent and within the
first 200 output images received by the UNIX system. The only restriction is that it be contained
completely on a single line or card image. Therefore, the “usr=..." field may be placed on a
JOB card or comment card. It may also be passed as data.

For redirection of output by the host, a “usr=..." card, if not already present, must be supplied
by the user. This can be done by placing a job step that creates this card before your output
steps.

Messages generated by RJE or passed on from the host are assigned a level of importance
ranging from 1 to 9. The levels currently in use are:

3 transmittal assurance
5 job acknowledgement
6 output ready message

The optional /evel field of the “usr=..." specification must be a one or two-digit code of the
form mw. A message from the host with importance x (where x comes from the above list) is
compared with each of the two decimal digits in level. If x>w and if the user is logged in and is
accepting messages, the message will be written to his or her terminal. Otherwise, if x>m, the
message will be mailed to the user. In all other cases, the message will be discarded. The
default level is 54. You should specify level 1 if you want to receive complete notification, and
level 59 to divert the last three messages in the above list to your mailbox.

7. MONITORING RJE

RJE is designed to be an autonomous facility that does not require manual supervision. RJE is
initiated automatically by the UNIX reboot procedures and continues in execution until the
system is shut down. Experience has shown RJE to be reasonably robust, although it is
vulnerable to system crashes and reconfigurations.

Users have a right to assume that when the UNIX system is up for production use, RJE will also
be up. This implies more than an ability to execute the send(1) command, which should be
available at all times; it means that queued jobs should be submitted to the host for execution



6 ' Remote Job Entry User’s Guide

and their output returned to the UNIX system. If a user cannot obtain any throughput from RJE,
he or she should so advise the UNIX operators. '

The rjestat(1) command, invoked with no arguments will report the status of all RJE links for
which a given UNIX system is configured. It may sometimes also print a message of the day
from RJE.

$ riestat
RJE to B operating normally.
RJE to A down, reason: IBM not responding.

A host machine may be reported to be not responding to RJE because it is down, or because of
its. operator's failure to initialize the associated line, or because of a communications hardware
failure.

Rjestat also has the ability to sehd operator commands to the host machine and retrieve the
responses generated by the commands. Refer to the rjestat(1) manual page for a complete
description of this command.



Remote Job Entry User's Guide

Appendix-Sample JES2 QOutput Listing

$ cat rie/pmt0
14.40.31 JOB 384 $HASP373 GENER STARTED - INIT 26 — CLASS X - SYS RRMA
14.40.32 JOB 384 $HASP395 GENER ENDED

1 AUG 77 JOB EXECUTION DATE
54 CARDS READ
76 SYSOUT PRINT RECORDS
0 SYSOUT PUNCH RECORDS

0.01 MINUTES EXECUTION TIME
1 //IGENER JOB (9999,R740),PGMRNAME,CLASS=X
s USR=(MYLOGIN,MYPLACE)
/NEBGENER EXEC PGM=IEBGENER
//ISYSPRINT DD DUMMY
//ISYSIN DD DUMMY
//ISYSUT2 DD SYSOUT=A
//ISYSUT1 DD =
n"
IEF2361 ALLOC. FOR GENER IEBGENER
IEF2371 DMY ALLOCATED TO SYSPRINT
IEF2371 DMY ALLOCATED TO SYSIN
IEF2371 JES ALLOCATED TO SYSUT2
IEF2371 JES ALLOCATED TO SYSUT1
IEF1421 GENER IEBGENER - STEP WAS EXECUTED - COND CODE 0000
IEF2851 JES2.JOB0384.S00102 SYSOUT
IEF2851 JES2.J0OB0384.S10101 SYSIN
IEF3731 STEP /IEBGENER/ START 77242.1440

OB HAWN

IEF3741 STEP /IEBGENER/ STOP 77242.1440 CPU OMIN 00.13SEC SRB OMIN 00.01SEC VIRT 36K SYS 188K

JOB 384

sssssxs  SERVICE UNITS=0000174 SERVICE RATE=0000268 SERVICE UNITS;SECOND

ssxsxss  PERFORMANCE GROUP=005
ss222x2  EXCP COUNT BY UNIT ADDRESS
IEF3751 JOB /GENER / START 77242.1440

IEF3761 JOB /GENER / STOP 77242.1440 CPU  OMIN 00.13SEC SRB  OMIN 00.01SEC

sxxexxx  SERVICE UNITS=0000174 SERVICE RATE=0000268 SERVICE UNITS/SECOND
sxxax22  APPROXIMATE PROCESSING TIME= .01 MINUTES

sxxaxxs  EXCPS=000000000

ssx2s42 PROJECTED CHARGES= .01

first line of data

last line of data

+OS/VS2 REL 3.7 JES2+ END JOBNAME=GENER BIN=R740 JOB #=384 PGMRNAME
+0OS/VS2 REL 3.7 JES2+ END JOBNAME=GENER BIN=R740 JOB #=384 PGMRNAME
+OS/VS2 REL 3.7 JES2+ END JOBNAME=GENER BIN=R740 JOB #=384 PGMRNAME

$ rm -f rje/prnt0






e

RJE Administrative Guide 1

UNIX Remote Job Entry Administrative Guide

1. INTRODUCTION

This document reflects the Plexus implementation of RJE, and is based on the Remote Job
Entry Administrative Guide from Bell Laboratories, by M. J. Fitton.

1.1 Purpose

This document is intended to augment the existing body of documentation on the design and
operation of UNIX* IBM RJE'. The reader should be familiar with rje(8), and the UNIX Remote
Job Entry User’s Guide, April 1, 1980. There will be assumptions made concerning allocation of
responsibilities between UNIX and IBM operations, hardware configuration, etc. Although these
assumptions may not fully apply to your location, they should not interfere with the intent of this
document.

The major topics discussed in this paper are as follows:
e SETTING UP — hardware requirements and RJE generation on the IBM and UNIX systems.

e DIRECTORY STRUCTURES - the controlling RJE directory structure and a typical RJE
subsystem directory structure.

¢ RJE PROGRAMS — programs that make up an RJE subsystem.
e UTILITY PROGRAMS — utility programs that are available for debugging or tracing.

e RJE ACCOUNTING - the accounting of jobs done by RJE, and some methods for using this
accounting data.

e TROUBLE SHOOTING - error recovery and procedures for identifying and fixing RJE problems.
1.2 Facilities

Discussions will focus on a hypothetical RJE connection between a UNIX system, pwba, and an
IBM 370/168, referred to as B. We also assume that pwba is connected to an IBM 370/158,
referred to as C. The UNIX machine emulates an IBM System/360 remote multi-leaving work
station. For more information on the multi-leaving protocol, see Appendix B of OS/VS MVS
JES2 Logic (SY24-6000-1).

2. SETTING UP

2.1 Hardware

To use RJE on a Plexus Sys3 UNIX system, one Intelligent Communications Processor (ICP) is
needed per remote line to drive the RJE line.

2.2 IBM Generation

The following applies to the host IBM system. The remote line to the UNIX machine should be
described as a System/360 remote work station. The following parameters must be initialized
and must agree with their counterparts on the UNIX machine:

e Number of printers (NUMPR) — the number of logical printers (up to 7)

* UNIX is a Trademark of AT&T Bell Laboratories.

1. In this document, RJE refers to the UNIX facilities of rje(8) and not to the Remote Job Entry feature of IBM's HASP or
JES2 subsystems.



2 RJE Administrative Guide

e Number of punches (NUMPU) — the number of logical punches (up to 7)
e Number of readers (NUMRD) — the number of logical readers (up to 7)
The JES2 parameters for our hypothetical connection to IBM system B are as follows:

RMT5 S/360,LINE=5,CONSOLE,MULTI,TRANSP,NUMPR =5,
NUMPU=1,NUMRD=5,ROUTECDE=5

R5.PR1 PRWIDTH=132

R5.PR2 PRWIDTH=132

R5.PR3 PRWIDTH=132

R5.PR4 PRWIDTH=132

R5.PRS PRWIDTH=132

R5.PU1 NOSUSPND

R5.RD1 PRIOINC=0,PRIOLIM=14

RS5.RD2 PRIOINC=0,PRIOLIM=14

R5.RD3 PRIOINC=0,PRIOLIM=14

R5.RD4 PRIOINC=0,PRIOLIM=14

RS5.RDS PRIOINC=0,PRIOLIM=14

System pwba is referenced by line 5 (LINE=5), remote 5 (RMT5). It is defined as having a
console, for the rjestat(1) command, five printers, one punch, and five readers. Although you
may have up to seven printers or punches, the total number of printers and punches may not
exceed eight. The line is described as a transparent (TRANSP), multi-leaving (MULTI) line. The
remaining information describes attributes associated with the printers, punches and readers.

Normally, separator pages are transmitted with IBM print files. UNIX RJE does not remove
separator pages. To prevent transmission of separator pages on printer 1 of the previous
example, its attributes would be:

R5.PR1 PRWIDTH=132,NOSEP

NOSEP should be included for all printers when separator pages are not desired. Most IBM
systems can also be told via a console command to cancel transmission of separator pages on
printers. This can be done from the IBM system console, or from the remote UNIX machine via
rjestat. For example, the following JES2 command would cancel separator page transmission on
printer 1:

$TR5.PR1,S=N
2.3 UNIX Generation

If the RJE remote dialing facility is to be used, the administrator must make sure that the
definition for RJIECU in the file /usr/include/rje.h is the device to be used for remote dialing.
RJECU is defined to be /dev/dn2 when distributed. To compile and install RJE, the normal
make(1) procedures are used (see Setting up UNIX). Once an RJE subsystem has been
installed, the remote line must be described in the configuration file /usr/rje/lines. This file as it
exists on our hypothetical system pwba is as follows:

B pwba /usr/rie1 riel vpm0O 5:5:1 1200:512:y
C pwba /usr/rie2 rie2 vpm1 1:1:1 1200:512

/usr/rje/lines is accessed by all components of RIE. Each line of the table (maximum of 8)
defines an RJE connection. Its seven columns may be labeled host, system, directory, prefix,
device, peripherals, and parameters. These columns are described as follows:

¢ host — The IBM System name, e.g., A, B, C. This string can be up to 5 characters long.
e system — The UNIX System name (see uname(1)).
o directory — the directory name of the servicing RJE subsystem (e.g., /usr/rje2).



RJE Administrative Guide 3

o prefix — the string prepended to most files and programs in the directory (i.e., rje2).

e device — the name of the controlling Virtual Protocol Machine (VPM) device, with /dev/
excised. In order to specify a VPM device, all VPM software must be installed, and the proper
special files must be made (see vpm(4) and mknod(1M)).

¢ peripherals — information on the logical devices (readers, printers, punches) used by RJE.

o

There are three subfields. Each subfield is separated by “:" and is described as follows:

1.

Number of logical readers.

2. Number of logical printers.

3. Number of logical punches.

Note: the number of peripherals specified for an RJE subsystem must agree with the number
of peripherals that have been described on the remote machine for that line.

e parameters — this field contains information on the type of connection to make. Each

subfield is separated by ":". Any or all fields may be omitted; however, the fields are
positional. All but trailing delimiters must be present. For example, in

1200:512:::9-5556-1212

subfields 3 and 4 are missing, but the delimiters are present. Each subfield is defined as
follows:

1.

space - this subfield specifies the amount of space (S) in blocks that RJE tries to
maintain on file systems it touches. The default is 0 blocks. Send(1) will not submit
jobs and rjeinit issues a warning when less than 1.5S blocks are available; rjerecv
stops accepting output from the host when the capacity falls to S blocks; RJE becomes
dormant, until conditions improve. If the space on the file system specified by the user
on the “usr=" card would be depleted to a point below S, the file will be put in the job
subdirectory of the connection's home directory rather than in the place that the user
requested.

size - this subfield specifies the size in blocks of the largest file that can be accepted
from the host without truncation taking place. The default is no truncation. Note that
UNIX has a default one Mega-byte file size limit.

badjobs — this subfield specifies what to do with undeliverable returning jobs. If an
output file is undeliverable for any reason other than file system space limitations (e.qg.,
missing or invalid “usr=" card) and this subfield contains the letter y, the output will be
retained in the job subdirectory of the home directory, and login rje is notified via
mail(1). If this subfield has any other value, undeliverable output will be discarded.
The default is n.

console — this subfield specifies the status of the interactive status terminal for this
line. If the subfield contains an i, the status console facilities of rjestat will be inhibited.
In all cases, the normal non-interactive uses of rjestat will continue to function. The
default is y.

When multiple readers have been specified, jobs that are submitted for transmission to IBM are
assigned to the reader with the fewest cards on it. Each reader gets an equal amount of
service. This prevents smaller jobs from having to wait for a previously submitted large job to be
transmitted. When multiple printers or punches have been specified, returning jobs get assigned
to free printers (or punches) allowing smaller output files to bypass large output files.

Deciding how many peripherals to specify depends on the use of that RJE subsystem. If an RJE
subsystem is heavily used for off-line printing (i.e., output does not return to the UNIX machine),
the administrator would want to specify multiple readers, but would not have a need for multiple
printers or punches.



4 RJE Administrative Guide

3. DIRECTORY STRUCTURES
3.1 Controlling Directory

The controlling directory used by RJE is /usr/rje. This directory contains RJE programs for use
by separate RJE subsystems (e.g., rje1, rje2, rje3), and the shell queuer’s directory. Most RJE
programs existing here have been compiled such that each RJE subsystem shares the text of
these programs. A snapshot of this directory on our hypothetical machine is as follows:

~TWXT-XT-X 2 rje rje 4068 Mar 4 10:42 cvt
-rwW-r--r-- 1 rje rje 42 Apr 10 09:52 lines
“IrWXI~-XI-X 2 rje rje 16096 Apr 10 13:01 rjedisp
“TWXT~—XT-X 2 rje rje 2328 Mar 4 10:21 rjehalt
“IWXTr~-XIr-X 2 rje rje 10396 Apr 15 10:07 rjeinit
-r-x------ 2 rje rje 785 Apr 8 09:00 rjeload
~IrWBT~-XT~-X 2 rje rje 5040 Mar 27 09:28 rjeqer
~TWXT-XT-X 2 rje rje 4072 Apr 1 15:40 rjerecv
“I'WXT~XT~-X 2 rje rje 3888 Mar 27 09:35 rjexmit
“rW8Ir-XT-X 1 root rje 2696 Mar 27 14:42 shqger
-TWXT-XT-X 2 rje rje 5920 Apr 2 15:47 snoop
drwxr-xr-x 2 rje rje 80 Mar 25 13:26 sque

RJE subsystems are generated in their own directory by linking the program names in this
directory to the appropriate names in the subsystem directory. The programs are described in
Section 4. The file lines is the configuration file used by all RUE subsystems. The directory
sque is used by the Shell queuer (shger). This directory contains:

~rw-r--r-- 1 rje rje
“-rw-r--r-- 1 rje rje O Feb 14 14:04 1log

When shqer has work to do, the files log and errors will be of non-zero length, and temporary
files (tmp=*) will also appear here. For a complete description of shqer and these files, see
Section 4.8.

3.2 Subsystem Directory

The RJE subsystem described in this section maintains the connection between pwba and IBM
B, and will be referred to as rje1. The first line of /usr/rje/lines (see Section 2.3) describes rje?.
As noted in this file, rje? runs in the directory /usr/rjel. A snapshot of this directory is as
follows:

O Feb 14 14:04 errors

™



RJE Administrative Guide 5
-IrwW-r--r-—- 1 rje rje 4990 Apr 15 08:30 acctlog
“IT'WXT~XIr-X 2 rje rje 4068 Mar 4 10:42 cvt
-rw-r--r-—- 1 rje rje O Apr 15 04:02 errlog
drewxrwxrwx 2 rje rje 192 Apr 10 09:51 job
-rw-r--r-- 1 rje rje 194 Apr 15 08:11 joblog
-rw-r--r-- 1 rje rje O Apr 15 08:11 resp
~IrWXT—-XT-X 2 rje rje 15096 Apr 10 13:01 rjeidisp
“TWXT-XT-X 2 rje rje 2328 Mar 4 10:21 rjeihalt
“TWXT-XTr-X 2 rje rje 10398 Apr 15 10:07 rjelinit
“r-X------ 2 rje rje 785 Apr 8 09:00 rjelload
~rw8r-Xr-Xx 2 rje rje 5040 Mar 27 09:28 rjelqger
~TWXT~-XI-X 2 rje rje 4072 Apr 1 15:40 rjelrecv
~“TWXT-XT-X 2 rje rje 3888 Mar 27 09:35 rjelxmit
drwxr-xr-x 2 rje rje 144 Apr 15 08:30 rpool
~TWXT-XIr-X 2 rje rje 5920 Apr 2 15:47 snoopO
drwxrwxrwx 2 rje rje 176 Apr 10 13:03 spool
drwxr-xr-x 2 rje rje 224 Apr 10 13:56 squeue
-rw-r--r-- 1 rje rje O Apr 15 10:30 stop
~-rw-r—--r-- 1 rje rje 274 Mar 7 20:25 testjob

The programs rje1+, cvt, and snoop0 are linked to the corresponding programs in /usr/rje, and
are described in detail in Section 4. The remaining files and their uses are as follows:

acctlog — accounting data is stored in this file, if it exists. This file is the responsibility of the
RJE administrator. For a discussion of its uses, see Section 5.

errlog — used by rje1 to log errors. It can be useful for debugging rje? problems.

joblog — used by rje7qer and rjestat to notify rje1xmit that a job (or console request) has
been submitted. It also contains the process-group number of the rjel1 processes. The
program cvt can be used to convert this file to a readable form.

resp — contains console messages received from IBM B. These messages can be
responses for rjestat, or IBM responses to submitted jobs (i.e., on reader messages). This
file is truncated if it grows to a size greater than 70,000 bytes.

stop — indicates that rjethalt has been executed. The existence of this file indicates to
rjestat that rje1 has been halted by the operator.

testjob — a sample job that can be submitted to test the rje7 subsystem. Originally, the job
control statements may have to be changed to suit your IBM system.

When rje1 terminates abnormally, the file dead should appear in this directory. This file contains
a short message indicating why rje7 is not operating, and is used by rjestat to report the
problem. The remaining directories and their uses are as follows:

job — used to save undeliverable jobs, if the proper parameter has been specified in
/usr/rie/lines. The sample job described above is also delivered to this directory. This
directory should be mode 777.

rpool — contains temporary files used to gather output from the remote machine. These files
are named pr=* (for print output files), and pu=* (for punch output files). Once a complete file
has been received, the file is dispatched in the proper way by rje1disp.

spool — used by send to store temporary files to be submitted to the remote machine. This
directory must be mode 777.

squeue - used by rje? to store submitted files until they are transmitted. The program
rje1qger is used by send to move the temporary files in the spool directory to this directory.



6 RJE Administrative Guide

4. RJE PROGRAMS

All programs described below, with the exception of rjestat, exist in /usr/rje. These programs
are “shared text” and are linked (except shger) to the proper names in each subsystem
directory. The names described below are generic; the programs in the rje2 directory would be
rje2qer, rje2init, etc.

Each available RJE subsystem occupies three process slots. The slots are used for rje?xmit,
the transmitter; rje?recv, the receiver; and rje?disp, the dispatcher. One additional process slot
is used for shqger, regardless of how many subsystems are available.

Each RJE subsystem tries to be self-sustaining, and logs any errors encountered during normal
operation in its errlog file.

4.1 Rjeqger

This program is used by send to queue files for transmission. When invoked, it performs the
following steps:

1. Moves the temporary pnich(5) format file in the spool directory to the squeue directory.
2. Writes an entry at the end of the file joblog containing:

o the name of the file to be transmitted

e the submitter's user-id

o the number of card images in the file

o the message level for this job

The file joblog is used to notify rjexmit of work to be done.

3. Notifies user that file has been queued.

Send determines which host system is desired, and invokes the proper rje?qer by getting the
prefix from the lines file (e.g., if sending to IBM C from our machine, rje2qer would be invoked).

4.2 Rjeload

This program is used to start an RJE subsystem. Its prefix determines which subsystem to start
(e.g., rje2load starts rje2). To start the RJE subsystems on our machine, the following
commands are executed in /etc/rc when changing to init state 2 (multi-user):

rm —f /usr/rje/sque/log
su rje —¢ "/usr/rie1/rie1load ic0"
su rje —¢ "/usr/rje2/rje2load ic1"

The file /usr/rje/sque/log is removed to ensure the correct operation of shqer. When invoked,
rjeload performs the following steps:

1. Finds the proper ICP device by using the minor device number of the corresponding VPM
device (the first two bits).

2. Uses dnid(1) to perform the following:
e reset the ICP
¢ load the VPM script (/etc/rjeproto)
e start the ICP running
3. Executes rje?init to start the rje? processes (e.g., rje2load executes rje2init).
4.3 Rjehalt

This program is used to halt an RJE subsystem. To halt rje2 on our machine, /usr/rje2/rje2hait
is executed. This should be done in the shutdown procedure for your machine to ensure

/@%



~

RJE Administrative Guide 7

graceful termination of RJE. Rjehalt will allow only those users with permission to halt an RJE
subsystem. Rjehalt uses the header on the file joblog to get the process-group of the RJE
subsystem processes. This group is signaled to terminate. When all processes have
terminated, rjehalt sends a “signoff” record to the host machine. This signoff record is taken
from the file signoff (ASCIl text), if it exists, otherwise a ‘/*signoff’ record is sent. On
completion, rjehalt creates the file stop in the subsystem directory, that causes rjestat to report
that RJE to the corresponding host has been stopped by the operator.

4.4 Rjeinit

This program initializes an RJE subsystem. It is used by rjeload, and can be used to restart a
subsystem if the VPM script has previously been started. Rjeinit should only be executed by
user rje. Rjeinit fails if there are less than 100 blocks or 10 inodes free in the file system. It
issues a warning if there are less than 1.5X blocks, (where X is the first field in the parameters
for that line), or 100 inodes free in the file system. If rjeinit fails, the reason for the failure is

reported, and the file dead is created containing “Init failed”. This will be reported by rjestat until
a subsequent rjeinit succeeds. Rjeinit performs the following functions:

1. Truncates the console response file resp.

2. Sends a signon record to the host. The signon record is taken from the file signon (ASCH
text), if it exists, otherwise rjeinit sends a blank record as a signon.

Sets up pipes for process communication.

Resets process-group for RJE subsystem and restarts error logging.

Rebuilds the joblog file from jobs queued for transmission.

Notifies rjedisp (via a pipe) of any returned files still remaining in the rpool directory.
Starts the appropriate background processes (rje?xmit, rje?recv, and rje?disp).

® N O U s W

Reports started or not started.

If failure occurs in a background process, it is reported by that process (error logging). The
failing process will normally attempt to reboot the subsystem by executing rje?init with a + as its
argument (see Section 7). When rjeinit is executed with + as its argument, this indicates an
attempted reboot, and rjeinit will behave differently (No re-dialing is done to remote hosts, errors
are logged rather than printed, etc.).

4.5 Rjexmit

This program writes data to the VPM device. Rjexmit is started by rjeinit and runs in the
background. When running, rjexmit performs the following processing:

1. Checks the joblog file for files to be transmitted. This is done every 5 seconds when not
transmitting data. When transmitting data, the joblog is checked after transmitting 1 block
from each active reader?, and the console®.

2. Queues files from the joblog according to the first two characters of the file name:

e rdx — these files are queued on the reader with the fewest cards. Normal use of the
send command creates these files.

¢ sq+ — these files are queued on the last available reader to assure sequential
transmission. Using the —x option to the send command creates these files.

2. Reader refers to the logical readers used by RJE.
3. Console refers to the RJE logical console, which is distinct from the logical readers.



8 RJE Administrative Guide

e co* —these files are queued on the console. The rjestat command creates these files.
All files described above contain EBCDIC data.

3. Sends information to rjedisp (via a pipe) for use in user notification of job status (see
Section 4.7).

4. Builds blocks for transmission from active readers and the console. These blocks are built
according to the multi-leaving protocol.

5. Performs the following peripheral control:

e Sends requests to open readers when jobs have been assigned to them. These
readers are not active until a grant is received from rjerecv (via a pipe).

e Halts and activates readers when waits or starts (respectively) are received from
rjerecv.

¢ Sends printer or punch grants when an open request is received from rjerecv.
6. Notifies rjedisp that a file has been transmitted, and unlinks the file.

If rjexmit encounters fatal errors, it creates the dead file with an appropriate message, and
signals the other background processes to exit. If possible, rjexmit will attempt to reboot the
RJE subsystem by executing rjeinit.

4.6 Rjerecv

This program reads data from the VPM device. Rjerecv is started by rjeinit and runs in the
background. When running, rjerecv performs the following processing:

1. Reads blocks of data received from the host system.
2. Handles data received according to its type. The two types of data are:
e Control information — rjerecv performs the following peripheral device control:
a. Notifies rjexmit of grants to its requests to open readers.
b. Passes wait and start reader information to rjexmit.
c. Passes open requests (for printers and punches) from the host to rjexmit.
¢ User Information — the three major types of user information received are:

a. Console responses and job status messages. This data is appended to the resp
file for use by rjestat and rjedisp.

b. The printer output from user jobs. This data is collected in temporary files (prx) in
the rpool directory. When a complete print job has been received, rjerecv
notifies rjedisp (via a pipe) that the file is to be dispatched.

c. The punch output from user jobs. This data is handled the same as printer output
except that the rpool files are named pux.

If the console response file resp exceeds 70,000 characters, rjerecv truncates the file.

Rjerecv stops accepting output from the remote machine if the number of free blocks in
the file system falls below space blocks (space is described in Section 2.3).

5. Rjerecv truncates files to size blocks if a received file exceeds this value (size is
described in Section 2.3).

If rjerecv encounters fatal errors, it creates the dead file with an appropriate error message,
signals the other background processes to exit, and reboots the RJE subsystem.



RJE Administrative Guide [e]

@ 4.7 Rjedisp

This program dispatches user information. Rjedisp is started by rjeinit and runs in the
background. When running, rjedisp performs the following processing:

1. Dispatches output; the two types of output are printer and punch output. After receiving
notification of output ready from rjerecv, rjedisp searches for a “usr="'line in the received
file. The format of a “usr="line is as follows:

usr=(user,place,level)

Rjedisp dispatches the output according to the place field. See UNIX Remote Job Entry
User’s Guide for a detailed description of the user specification.

2. Dispatches messages. The three types of messages are as follows:

e Job transmitted — this message is sent to the submitting user when rjedisp reads this
event notice from the rjexmit pipe.

e Job acknowledgement — rjedisp dispatches IBM acknowledgement messages to
submitting users. If a job is not acknowledged properly or within a reasonable amount
of time, a “Job not acknowledged” message is dispatched.

e QOutput processing — rjedisp dispatches job output messages according to the options
specified on the “usr=" card. A normal output message indicates the returned file
name is ready.

Messages can be masked by using the level on the “usr=" card.

3. Whenever output is to be handled by shqer, rjedisp checks that shqer is running. This is
done by looking for the shqer log file. If this file does not exist, rjedisp starts shqer.

4.8 Shgqer

This program executes user programs when they appear in the place field of the “usr="line in a
returned output file (print or punch). Shqer is started by rjedisp when the first output file using
this feature is returned. Subsequent files using this feature are logged for execution by rjedisp.
When started, shqer performs the following processing:

1. Builds the log file from file names in the /usr/rje/sque directory. Each log entry is the
name of a file (tmp?) that contains the following information:

e the name of the file to be executed

e the name of the input file (file returned from IBM)
e the name of the IBM job

e the programmer name

o the IBM job number

e the user's name from the “usr="line

e the user's login directory

o the minimum file system space

2. Shqger uses two parameters. The first is the delay time between log file reads. The
second is a nice(2) factor which is applied to any programs spawned by shqer. These
values are defined in /usr/include/rje.h (QDELAY and QNICE).

- 3. When each log entry is read, the appropriate program is spawned with the following
characteristics:

e The returned RJE file is the standard input to the program.



10 RJE Administrative Guide

e The standard and diagnostic outputs are /dev/null.
e The LOGNAME, HOME, and TZ variables are set to the appropriate values.
e The arguments to the spawned program, in order, are:

a. a numerical value indicating that the file system free space is equal or above (0)
or below (1) space blocks (see Section 2.3).

the IBM job name.
the programmer name.
the IBM job number.

e o T

e. the user's login name.

4. After executing each program, the tmp? file and the returned RJE file are removed.

5. UTILITY PROGRAMS
5.1 Snoop

Snoop is the generic name of a program that can be used to trace the state of a VPM device
and its associated communications line. Snoop depends on the trace(4) driver for its
information. It reads trace entries from /dev/trace and converts them into a readable form that
is printed on the standard output.

The usable name of snoop for a particular RJE subsystem is snoopN, where N is the low order
three bits from the VPM minor device number. If VPM device names adhere to the vpm0, vpm{1,
vpmn naming convention, each snoop name corresponds to its VPM device. In our hypothetical
system, vpmO is used by the rje1 subsystem, and vpm1 is used by the rje2 subsystem (see
Section 2.3). Therefore, /usr/rje1/snoop0 and /usr/rje2/snoop1 are linked to /usr/rje/snoop.

Each snoop prints trace entries for its associated VPM device. Trace entries are printed in the
following form:

sequence type information
where
o sequence specifies the order of trace occurences. It is a value between 0 and 99.
¢ type specifies the action being traced (e.g., transfers, driver activity).
¢ information describes data being transferred and driver activity.
The following table explains the meaning of trace types and their associated information.

type information meaning

CL Closed The VPM device has been closed.

CL Clean The VPM driver is cleaning up for this device.
OP  Opened The VPM has been successfully opened.

OP  Failed(open) The open failed because the device was already open.

OP  Failed(dev) The open failed because the device number was out of
range.

OP  Failed(set) The open failed because the ICP could not be reset.



RJE Administrative Guide

RR

RX

RD

SC

ST

ST

TR

TR

TR

TR

TR

TR

TR

TR
TR
TR

TR

TR

Buf
Buf

num bytes

Exit(num)

Startup
Stopped
Started
R-ACK

S-ACK

R-NAK

S-NAK
R-ENQ
S-ENQ
R-WAIT

R-OKBLK

. R-ERRBLK

R-SEQERR
R-JUNK

TIMEOUT

The VPM script has returned a receive buffer to the VPM
driver.

The VPM script has returned a transmit buffer to the
VPM driver.

Num bytes were read from the VPM device by rjerecv.

The VPM script has terminated. The VPM exit code is
num. Exit codes are defined in vom(4).

The ICP has been started.

The VPM script has been stopped.

The script has started tracing.

A two byte acknowledgement (ACK) string has been
received from the remote system. This indicates that

the previous transmission was properly received.

A two byte acknowledgement (ACK) string has been
transmitted to the remote system.

A “not-acknowledged” (NAK) character has been
received from the remote system. This indicates that
the previous transmission was not properly received.

A ‘“not-acknowledged” (NAK) character has been
transmitted to the remote system.

A enquiry (ENQ) character has been received from the
remote system.

A enquiry (ENQ) character has been transmitted to the
remote system.

The remote machine has requested that no data be
transmitted to it.

A valid data block was received from the remote
machine.

An invalid Cyclic Redundancy Check (CRC) was
received with a data block.

The block sequence count on a received data block was
invalid.

An invalid data block was received from the remote
system.

The remote machine did not respond within 3 seconds.

11



12 RJE Administrative Guide

TR S-BLK A data block has been transmitted to the remote
system. :

WR  num bytes Num bytes were written to the VPM device by rjexmit.

Trace entries of type TR are traces from the VPM script. Section 7.5 describes required
responses to events and shows examples of typical snoop output.

5.2 Rjestat

This program is supplied as a user command. The program’s two functions are to describe the
status of the RJE subsystems and to provide a remote IBM status console. The remainder of this
section describes these two functions.

5.2.1 RJE Status

When invoked, rjestat reports the status of the RJE subsystems. If remote system (host) names
are specified, only those statuses are reported. Rjestat uses the following rules to report the
status of a subsystem:

e Rjestat prints the contents of the file status if it exists in the subsystem directory. This file
can contain any message the administrator wishes to have printed when users use rjestat.

o If the file dead exists in the subsystem’s directory, the subsystem is not operating and the
reason is contained in the file. Rjestat reports that RJE to host is down and prints the
contents of the dead file as the reason.

e If the file stop exists in the subsystems directory, the rjehalt program has been used to
inhibit that RJE subsystem. Rjestat reports that RJE to host has been stopped by the
operator.

e If neither the dead nor the stop file exists, rjestat reports that RJE to host is operating
normally.

Rjestat is supplied as the user’s vehicle for checking the status of RJE. It is not meant to be an
administrative tool; however, the reason for failure can be used to track the problem.

5.2.2 Status Console

To use rjestat as a status console, the —shost argument is used. Rjestat prints the status of the
subsystem, then prompts with host: if the subsystem is up. Each console request is submitted
to the RJE processes for transmission, and output is handled as specified. Rjestat checks the
status prior to submitting each request, and will tell the user to try later if the subsystem goes
down. Rjestat allows the rje or super-user logins to submit other than display requests. For a
complete description of how to use the status console features, see rjestat(1).

5.3 Cwvt

This program converts any subsystem'’s joblog file to readable form. The first line printed is the
process group number of the subsystem processes. The remaining output consists of entries in
the following form:

file user-id records level

Where file is the name of the submitted file, user-id is the submitters user number, records is
the number of “card” images, and level is the message level. The records and level fields are
not used if the file name is co* (console request submitted by rjestat).

6. RJE ACCOUNTING

Each RJE subsystem will store accounting information in the acctlog file, if it exists. It is the
responsibility of the RJE administrator to create and maintain this file in the subsystem’s



RJE Administrative Guide 13

directory. Entries in this file describe RJE line use and are of the following form:
day time file user records
Each field is delimited by a tab character. The meanings of each field is as follows:
1. day - The day of occurrence in the form mm/dd.
2. time — The time of occurrence in the form hh:mm:ss.
3. file — The name of the UNIX file. The first two characters identify its type as follows:
o rd/sq — the file was transmitted to the remote system
e pr — the print output file was received from the remote system
¢ pu — the punch output file was received from the remote system
4. user — The user-id of the user responsible for the transfer.
5. records — The number of records (card images) transferred for this file.

Since acctlog data is not used by RJE, it should not be allowed to grow too large. This can be
accomplished by moving or processing the file during a system reboot (i.e., in /etc/rc before the
RJE subsystems are started).

The following list describes some of the reports that could be generated from the acctlog data.
Implementation of a program to produce accounting reports is the responsibility of the
administrator.

» Periodic Reports — by using the day and time fields in the data, periodic usage reports can
be produced.

e By User Reports — by using the user field in the data, usage-by-user reports can be
produced.

o By Subsystem Reports - by using the /usr/rje/lines file information and each acctlog file, a
usage-by-subsystem (or remote system) report can be produced.

Other reports can be produced using the type of file, size of jobs, etc.

7. Trouble Shooting

This section deals with RJE problems, and some methods for resolving them. The topics
discussed in this section are as follows:

o Automatic Error Recovery
e Manual Error Recovery
e RJE Problems
¢ ICP/VPM Problems
e Trace Interpretation
7.1 Automatic Error Recovery

RJE attempts to be self-sustaining with respect to its availability. In general, if problems occur
on the communications line or the remote machine (e.g., a crash) RJE will continually try to
restart itself (this action will be referred to as a “reboot”). For example, if an RJE subsystem is
started using rjeload, but the IBM system is not available, a fatal error will occur. The process
that detects this error (usually rjexmit or rjerecv) will reboot the subsystem by executing rjeinit
with a + as its argument. When rjeinit detects a + argument, it waits one minute before
attempting to bring up the subsystem.

The rjehalt program can be used to prevent an RJE subsystem from rebooting itself when the
remote system is not available for a known period of time. When the remote system is made



14 RJE Administrative Guide

available, the subsystem may be started in the normal way.
7.2 Manual Error Recovery

In order to manually recover from errors, one must know how to start and stop an RJE
subsystem. There are two ways to start an RJE subsystem:

e rje?load — this program loads and starts the VPM script, and executes rje?init.

e rje?init — this program starts the rje? subsystem. In order to use this program, the VPM
script must be loaded and started.

To stop the rje? subsystem, the rje?halt program should be executed. This stops the
subsystem gracefully and will prevent a reboot.

The rjeload program must be used to start RJE for the first time (after a UNIX system reboot).
Subsequently, as long as the script is running, execution sequences of rjehalt and rjeinit will
stop and start RJE.

Manually starting and stopping RJE can be useful in tracking down problems. For example, if
user jobs are not being submitted to the host machine, the following sequence can ease
identification of the problem:

1. Halt the ailing subsystem.

2. Start a snoop process in the background with its output redirected to a file.
3. Restart the subsystem.

4. Scan the snoop output to determine where the problem is.

The snoop program is the most useful software tool for identifying RJE problems. Its uses are
described in Section 7.5.

7.3 RJE Problems

This section describes problems that can occur in an RJE subsystem. These problems generally
occur when the subsystem has not been set up properly. The following is a list of things to
check to ensure that an RJE subsystem has been set up properly.

1. IBM description — the description of the remote UNIX machine must be consistent with the
description in Section 2.2.

2. UNIX description — the file /usr/rje/lines must be set up properly. Section 2.3 describes
this file in detail.

3. ICP/VPM setup — the VPM software must be installed and the proper VPM and ICP devices
made. Each VPM device must correspond to the proper ICP device; see vom(4).

4. Free space — as a general rule, all file systems must have a reasonable amount of free
space. File systems containing RJE subsystems must have sufficient free space as
described in Section 2.3 to ensure proper RJE operation.

5. Directories — each subsystem'’s directory and the controlling directory should be checked
for the following:

¢ All needed files exist.
o The proper prefix is on each applicable RJE program.
e The link count is correct for files that are linked.
e All file and directory modes are correct.
A sample subsystem directory and the controlling directory are shown in Section 3.

6. Initialization — peripherals information must be consistent on both systems (see Section
2.3). The line must be started on the IBM system, proper hardware connections made, etc.



RJE Administrative Guide 15

Problems with a subsystem are indicated by error messages. Rjeinit checks for obstacles in
bringing up RJE. If an obstacle is found, an error message indicating the obstacle is printed on
the error output. [f a problem is encountered during normal operation, the message is logged in
the errlog file. This file, error messages, the output from snoop, and the checklist above should
be used to determine and fix any subsystem problems. Generally, if a subsystem is set up
properly but will not operate, the problem is the way the VPM or ICP has been set up, the remote
system, or the hardware.

7.4 ICP/VPM Problems

This section describes the ICP and VPM uses, and problems that can occur. After installing ICP
hardware and making ICP devices, all VPM software and devices must be made. See vpm(4).
The following is a snapshot of the ICP and VPM devices used on our hypothetical machine:

crw-r--r-- 1 rje rje 9, O Apr 16 07:04 /dev/icO
crw-r--r-- 1 rje rje 15, O Apr 16 10:51 /dev/vpmO
crw-r--r-- 1 rje rje 9, 1 Apr 10 08:21 /dev/ic1l
crw-r--r-- 1 rje rje 15, 41 Apr 7 13:25 /dev/vpml

where /dev/ic? corresponds to /dev/vpm? (?=0,1). The VPM minor device number determines
which VPM and ICP devices are used. See vpm(4) to determine VPM minor device numbers.
The program rjeload prints the devices being used by the corresponding RJE subsystem.

The following is a list of items to check when problems occur:

1. Proper hardware — the line unit must be compatible with the modem and have the proper
settings (see Section 2.1). Be sure that the ICP address and interrupt vector are correct.

2. Proper Devices — the major and minor device numbers for both the ICP and VPM must be
correct. It should also be verified that the RJE subsystem is using the correct ICP and VPM
device names.

3. Script runs — verify that the VPM script is able to run. This is done by tracing the proper
VPM with the proper snoop program. Snoop will print “started” entries for both the ICP and
VPM script (see Section 5.1). If no output appears from snoop when rjeload is executed,
either the ICP is not working properly, or the ICP or VPM has not been set up properly (see
items 1 and 2). Output of any other type from snoop should indicate where the problem is
occurring.

7.5 Trace Interpretation

This section describes how to interpret trace output from the snoop program, and gives several
examples. Section 5.1 describes the format and meaning of trace output lines, and should be
read before this section.

Lines with type TR are traces from the VPM script. All others are driver traces and indicate the
following:

e CL — activity occurring when the device has been closed.
e OP - activity occurring when the device has been opened.
e RD - read from device occurred.

e WR — write to device occurred.

¢ RR - a receive buffer has been returned.

e RX — a transmit buffer has been returned.

e ST - start or stop activity.

e SC — script exit type, exit value is given.



16 RJE Administrative Guide

Section 5.1 enumerates all possible trace lines for each type, and describes the event. The
remainder of this section consists of example trace output and its interpretation. Comments
describing events will appear after the “+" in trace output. If more than one VPM were running,
sequence numbers might not appear in order. For clarity, example sequences will be in order.

7.5.1 Normal RJE startup

The following is an example of trace output when RJE has been started up. In this case the
remote machine responds to the enquiry byte (ENQ). The RJE subsystem signs on to the
machine, then follows the handshaking protocol (exchanging ACKs).

Tracing vpmO

0 ST Startup * |CP started

1 TR Started * Script started

2 TR S-ENQ * Enquiry byte sent

3 ST Start * VPM Driver start

4 oP Opened  * VPM Device open

5 TR R-ACK * Received acknowledgement
6 TR S-ACK * Handshaking

7 WR 84 bytes  * Signon record written
8 TR R-ACK * Handshaking

9 TR S-BLK * Sent signon block

10 TR R-ACK * Block acknowledged
11 RX Buf * Transmit buffer returned
12 TR S-ACK * Handshaking

13 TR R-ACK *

14 TR S-ACK *

15 TR R-ACK *

16 TR S-ACK *

17 TR R-ACK *

18 TR S-ACK *

19 TR R-ACK * .

20 TR S-ACK * Handshaking

If any jobs had been submitted via the send command, or jobs were waiting to be returned, the
traces would reflect the transfers rather than handshaking (see Section 7.5.3).

7.5.2 RJE startup — IBM not responding

This example shows trace output when RJE has been started, but does not receive a response
from the remote machine. In general, the RJE script will timeout if a response is not received
from the remote machine within 3 seconds of the last transmission. When a timeout is detected
while starting up, the enquiry byte (ENQ) is retransmitted. This is repeated 6 times before the
script gives up. Other timeout responses will be discussed later.

Tracing vpmO

86 ST Startup + |CP started

87 TR Started * Script started

88 TR S-ENQ * Enquiry byte sent

89 ST Start * VPM Driver start

90 OP Opened * VPM device open

91 WR 84 bytes * Signon record written
92 TR TIMEOUT = No response to enquiry
93 TR S-ENQ * Enquiry byte sent

94 TR TIMEOUT  * No response

95 TR S-ENQ * Enquiry byte sent

96 TR TIMEOUT = No response



RJE Administrative Guide

97 TR S-ENQ

98 TR TIMEOUT
99 TR S-ENQ

0 TR TIMEOUT
1 TR S-ENQ

2 TR TIMEOUT
3 RR Buf

4 RD 1 bytes

5 SC Exit(0)

6 CL Clean

7 ST Stopped

8 CL Closed

* Enquiry byte sent

* No response

* Enquiry byte sent

* No response

* Enquiry byte sent

* No response

* Receive buffer returned
* 1 byte read (error)
* Script exits normally
* Cleanup done

* ICP stopped

* VPM device closed

17

The above sequence will be repeated approximately every minute until a positive response is
received from the host. During that minute the RJE subsystem is dormant, and the rjestat
command will report that IBM is not responding. When this occurs, either the IBM machine is not
available, down, line not started, etc., or there is a communications problem somewhere from
where the ICP transmits data to where it receives data. The RJE administrator should first verify
that the IBM machine is up, and the communications line has been started. If so, a hardware

trace of the communications line should be done to aid in detecting the problem.

7.5.3 Transmitting and Receiving

This example shows trace output from the start of job transmission through its return. For
simplicity, only one job is being transmitted and returned.

Tracing vpmO

94 TR R-ACK
95 TR S-ACK
9% TR R-ACK
97 TR S-ACK
98 WR 4 bytes
99 TR R-ACK

0 TR S-BLK

1 TR R-OKBLK
2 RX Buf

3 RR Buf

4 TR S-ACK

5 RD 7 bytes

6 TR R-ACK

7 TR S-ACK

8 WR 481 bytes
9 WR 470 bytes
10 TR R-ACK

11 TR S-BLK

12 TR R-ACK
13 RX Buf

14 WR 470 bytes
15 TR S-BLK

16 TR R-OKBLK
17 RX Buf

18 RR Buf

19 WR 470 bytes
20 RD 66 bytes
21 TR S-BLK

22 TR R-ACK

* Handshaking

E3
* .
* Handshaking

* Open reader request written

* Handshaking

* Sent open request block

* Received block (grant)

* Transmit buffer returned

* Receive buffer returned

* Block acknowledged

* Read 7 bytes (grant)

* Handshaking

* Handshaking

* First block written

* Second block written

* Handshaking

= First block sent

+ Block acknowledged

* Transmit buffer returned

* Third block written

* Second block sent

+ Received block (on reader msg)
* Transmit buffer returned

* Receive buffer returned

* Fourth block written

* Read 66 bytes (on reader msg)
* Third block sent

* Block acknowledged



18

23
24
25
26
27

O W O WO O O O
OCoONOOObdW

COoONOOTSAL,WN-—-O

RX
WR
TR
TR
RX

TR
TR
TR
RR
TR
RD
TR
TR
TR
TR
TR
TR
WR
TR
TR
TR
RX
RR
TR
RD
TR
RR
TR
RD
TR
RR
TR
TR
RR
TR
TR
TR
TR
TR
RD
RD
TR
TR

Buf

147 bytes
S-BLK
R-ACK
Buf

R-ACK
S-ACK
R-OKBLK
Buf
S-ACK

7 bytes
R-ACK
S-ACK
R-ACK
S-ACK
R-ACK
S-ACK

4 bytes
R-ACK
S-BLK
R-OKBLK
Buf

Buf
S-ACK
64 bytes
R-OKBLK
Buf
S-ACK
505 bytes
R-OKBLK
Buf
S-ACK
R-OKBLK
Buf
S-ACK
R-ACK
S-ACK
R-ACK
S-ACK
470 bytes
494 bytes
R-ACK
S-ACK

RJE Administrative Guide

* Transmit buffer returned
+ Fifth block written

* Fourth block sent

* Block acknowledged

* Transmit buffer returned
*

* More of the same

*

* Handshaking

* Handshaking

* Received block (request)
* Receive buffer returned

* Block acknowledged

* Read open printer request
* Handshaking

* ¥ *

* .
* Handshaking

* Printer grant written

* Handshaking

* Block sent (grant)

* First block received

* Transmit buffer returned
* Receive buffer returned
* Block acknowledged

* Read first block

* Second block received
* Receive buffer returned
* Block acknowledged

* Read second block

* Third block received

* Receive buffer returned
* Block acknowledged

* Fourth block received

«* Receive buffer returned
* Block acknowledged

* Handshaking

*

* .

+* Handshaking

* Read third block

* Read fourth block

* Handshaking

* Handshaking

%k

+ And so on
"

Requests and grants are part of the multi-leaving protocol. Appendix B of OS/VS MVS JES2
Logic (SY24-6000-1) describes this protocol in detail. When jobs are being transmitted and
received simultaneously, as in a busier RJE subsystem, much less handshaking is involved.
Rather than acknowledging blocks with ACKs, the protocol allows a block to be returned (this
implies acknowledgement of the received block). The following example shows trace output at a



RJE Administrative Guide

busy time:

tracing vpmO

41 TR R-OKBLK
42 RX Buf

43 RR Buf

4 TR S-BLK

45 WR 493 bytes
46 RD 496 bytes
47 TR R-OKBLK
48 RX Buf

49 RR Buf

50 RD 65 bytes
51 WR 4 bytes
52 TR S-BLK

53 TR R-OKBLK
54 RX Buf

55 RR Buf

56 TR S-BLK

57 WR 493 bytes
58 RD 7 bytes
59 TR R-OKBLK
60 RX Buf

61 RR Buf

62 WR 493 bytes
63 RD 496 bytes
64 TR S-BLK

65 TR R-OKBLK

Notice that since there is work to be done on both sides, acknowledgements are implied.

* Received block
%*

*
* Sent block
*
E 3

* Received block

* X ¥ ¥

* Sent block

* Received block
%

*

* Sent block

E3

%

* Received block

* ¥ * *

* Sent block
+* Received block

7.5.4 Timeout Error Recovery

19

This example shows activity resulting from timeouts occurring during normal operation. These
timeouts were caused because the remote JES3 system has performance problems, and

occasionally does not respond in the required three seconds.

Tracing vpm1

27 TR S-ACK
28 TR R-ACK
29 TR S-ACK
30 TR TIMEOUT
31 TR S-NAK
32 TR TIMEOUT
33 TR S-NAK
34 TR R-ACK
35 TR S-ACK
36 TR R-ACK
54 TR R-ACK
556 TR S-ACK
56 TR TIMEOUT
57 TR S-NAK
58 TR R-ACK

* Handshaking

*
* .

* No response

* Not acknowledged
* No response

* Not acknowledged
* Response

* Handshaking

« Handshaking

* No response

* Not acknowledged
* Response

* X ¥ # %



20 RJE Administrative Guide

59 TR S-ACK * Handshaking

The response to these timeouts are NAKs (not acknowledged). RJE will respond this way up to
six times before giving up and attempting a reboot. At this time rjestat would report that there
are “Line Errors”. NAK is a request to retransmit the previous response.

7.5.5 Communication Line Errors
This example shows trace output from an RJE subsystem that uses a dial-up connection. The
phone line is noisy and is prone to dropping.

Tracing vpm1

63 TR S-ACK * Handshaking

64 TR R-ACK *

65 TR S-ACK *

66 TR R-JUNK * Noise on the line
67 TR S-NAK * Not acknowledged
68 TR R-ACK * Recovery

69 TR S-ACK *

70 TR R-ACK *

71 TR S-ACK *

72 TR TIMEOUT = Line has dropped
73 TR S-NAK * Attempting to recover
74 TR TIMEOUT =

75 TR S-NAK *

76 TR TIMEOUT =

77 TR S-NAK *

78 TR TIMEOUT =

79 TR S-NAK *

80 TR TIMEOUT =

81 TR S-NAK *

82 TR TIMEOUT = .

83 TR S-NAK o

84 RR Buf * Receive buffer returned
85 RD 1 bytes * 1 byte read (error)
86 SC Exit(0) * Script exits

87 CL Clean * Cleanup

88 ST Stopped * |CP Stopped

89 CL Closed * VPM device closed

The error read in the above sequence causes RJE to reboot and rjestat to report line errors. |If
this type of thing were to occur frequently, a different method of communication should be used.

7.5.6 Error Responses

As seen in the sections above, the response to most errors is to send a NAK. The only
exception is when starting up (see Section 7.5.2). Whenever a NAK is received on either side, it
indicates that the previous transmission was not properly received. This should be followed by
retransmission of the previous data. Generally, NAKs should not occur frequently, and should be
followed by recovery. If errors occur frequently or NAKs do not cause recovery, the line should
be checked for problems.

On some IBM systems, (e.g., JES2), an /O error is printed at the system console whenever a
NAK is received. These I/O errors can also be helpful in detecting the problem; however, they
will not be discussed here as they vary with the system. It is assumed that someone in IBM



RJE Administrative Guide

support can assist if needed.

21



‘D



SED — A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-interactive context editor that runs on the UNIX} operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;

2) To edit any size file when the sequence of editing commands is too
complicated to be comfortably typed in interactive mode.

3) To perform multiple ‘global’ editing functions efficiently in one pass
through the input.

This memorandum constitutes a manual for users of sed.

W’N August 15, 1978

tUNIX is a Trademark of Bell Laboratories.



SED — A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction
Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;

2) To edit any size file when the sequence of editing commands is too complicated to
be comfortably typed in interactive mode;

3) To perform multiple ‘global’ editing functions efficiently in one pass through the
input. :

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac-
tive and non-interactive operation, considerable changes have been made between ed and sed;
even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem-
blance between the two editors is in the class of patterns (‘regular expressions’) they recognize;
the code for matching patterns is copied almost verbatim from the code for ed, and the descrip-
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer’s Manual[1]. (Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:
[address1,address2] [function] [arguments]

One or both addresses may be omitted; the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.



1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after
s functions (see Section 3.3);
-e: tells sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing
commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com-
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com-
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of-
control commands, fand b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ-
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:
The command
2q
will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (‘{ }’) (Sec. 3.6.).



2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter-
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern (‘regular expression’) enclosed in slashes (‘/’). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex ‘™ at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign ‘$’ at the end of a regular expression matches the null character at the
end of a line.

4) The characters ‘\n’ match an imbedded newline character, but not the newline at the
end of the pattern space.

5) A period ‘.’ matches any character except the terminal newline of the pattern space.

6) A regular expression followed by an asterisk ‘*’ matches any number (including 0)
of adjacent occurrences of the regular expression it follows.

7) A string of characters in square brackets ‘[ ]’ matches any character in the string,
and no others. If, however, the first character of the string is circumflex ‘™,
the regular expression matches any character except the characters in the string
and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences ‘\(* and ‘\)’ is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) The expression ‘\d’ means the same string of characters matched by an expression
enclosed in ‘\(’ and *\)’ earlier in the same pattern. Here dis a single digit; the
string specified is that beginning with the dth occurrence of ‘\(’ counting from
the left. For example, the expression ‘"\(.*\)\1’ matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., ‘//’) is equivalent to the last reg-
ular expression compiled.

To use one of the special characters (" $.* [ 1\ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash ‘\’.

For a context address to ‘match’ the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,

and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,



@ and the process is repeated.

Two addresses are separated by a comma.

Examples:
/an/ matches lines 1, 3, 4 in our sample text
/an.*an/ matches line 1
/"an/ matches no lines
/./ matches all lines
N./ matches line 5
/r*an/ matches lines 1,3, 4 (number = zero!)

/A(an\).*\1/  matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func-
tion name, possible arguments enclosed in angles (< >), an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are not part of the argument, and should not be typed in actual editing

commands.

3.1. Whole-line Oriented Functions
(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2)n -- next line

(1)a\

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the » command.

<text> -- append lines

(1)i\

The a function causes the argument <text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character (*\’) immediately preceding the new-
line. The <text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the out-
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; <text> will still be written to the out-
put.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

<text> -- insert lines



.5.

The i function behaves identically to the a function, except that <text> is 3
written to the output before the matched line. All other comments about the a
function apply to the i function as well.

(2)c\

<text> -- change lines

The ¢ function deletes the lines selected by its address(es), and replaces them
with the lines in <text>. Like a and j, ¢ must be followed by a newline hid-
den by a backslash; and interior new lines in <text> must be hidden by
backslashes.

The ¢ command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of <text> is
written to the output, nor one copy per line deleted. As with a and i, <text>
is not scanned for address matches, and no editing commands are ‘attempted on
it. It does not change the line-number counter.

After a line has been deleted by a ¢ function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the ¢ function will be placed before the text of the
a or rfunctions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap-
pear, as always in sed commands. To get leading blanks and tabs into the output,.precede the
first desired blank or tab by a backslash; the backslash will not appear in the output. '

Example: ' ’ﬂ)

The list of editing commands:
n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX

Where Alph, the sacred river, ran
XXXX

Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com-
mand lists: ‘

n n
i\ c\
XXXX XXXX
d

3.2. Substitute Function
One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by <pattern>) with <replace- ) 53
ment>. It can best be read:

Substitute for <pattern>, <replacement>



-6 -

The <pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between <pattern> and a con-
text address is that the context address must be delimited by slash (‘/’) charac-
ters; <pattern> may be delimited by any character other than space or new-
line.

By default, only the first string matched by <pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of <pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char-
acters are special:

& s replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the a&h substring matched
by parts of <pattern> enclosed in ‘\(" and ‘\)’. If nested sub-
strings occur in <pattern>, the ath is determined by counting
opening delimiters (‘\(*).

As in patterns, special characters may be made literal by
preceding them with backslash (‘\’).

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next instance of <pattern> begins just after the
end of the inserted characters; characters put into the line from
<replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub-
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub-
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by <filename>. If
<filename> exists before sed is run, it is overwritten; if not, it
is created.

A single space must separate wand <filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.



Examples:

The following command, applied to our standard input,
s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file ‘changes’:

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:
s/[.,;2:1/*P&*/gp
produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:
/X/s/an/AN/p
produces (assuming nocopy mode):
In XANadu did Kubhla Khan
and the command:
/X/s/an/AN/gp
produces:
In XANadu did Kubhla KhAN

3.3. Input-output Functions
(2)p -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by <filename>.
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the wand <filename>.

A maximum of ten different files may be mentioned in write functions and w
flags after sfunctions, combined.

(1)r <filename> -- read the contents of a file

The read function reads the contents of <filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a



-8-

functions and the r functions is written to the output in the order that the func-
tions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care

should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples
Assume that the file ‘notel’ has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.
Then the following command:
/Kubla/r notel
produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in the
input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space; the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2)D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the list of edit-
ing commands again from its beginning.

(2)P -- Print first part of the pattern space
Print up to and including the first newline in the pattern space.

The Pand D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.



3.5. Hold and Get Functions
Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The A functions copies the contents of the pattern space into a hold area (des-
troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (des-
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example
The commands

1h

1s/ did.*//
1x

G

s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

(2)! -- Don’t

The Don’t command causes the next command (written on the same line), to
be applied to all and only those input lines rot selected by the adress part.

(2){ -- Grouping

The grouping command {* causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of the group-
ing command. The first of the commands under control of the grouping may
appear on the same line as the {* or on the next line.



-10 -

W The group of commands is terminated by a matching ‘)’ standing on a line by
‘ itself.

Groups can be nested.
(0):<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and ¢ functions. The <label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com-
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2)t<label> -- test substitutions

The t function tests whether any successful substitutions have been made on
the current input line; if so, it branches to <label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is

m reset by:

1) reading a new input line, or
2) executing a ¢ function.

3.7. Miscellaneous Functions
(1) = -- equals

The = function writes to the standard output the line number of the line
matched by its address.

(1)q -- quit

The g function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

Reference

(1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer’s Manual. Bell Labora-
tories, 1978.






Source Code Control System User’s Guide

ABSTRACT

The Source Code Control System (sccs) is a system for controlling changes to files of text
(typically, the source code and documentation of software systems). It provides facilities for
storing, updating, and retrieving any version of a file of text, for controlling updating privileges to
that file, for identifying the version of a retrieved file, and for recording who made each change,
when and where it was made, and why. Sccs is a collection of programs that run under the
uNix™ based PwB (Programmer’s Workbench) time-sharing system.

This document, together with relevant portions of [1], is a complete user's guide to sccs, and
supersedes all previous versions. The following topics are covered:

¢ How to get started with sccs.

e The scheme used to identify versions of text kept in an sccs file.

e Basic information needed for day-to-day use of sccs commands, including a discussion of
the more useful arguments.

e Protection and auditing of sccs files, including the differences between the use of sccs by
individual users on one hand, and groups of users on the other.

Neither the implementation of SCCs nor the installation procedure for sccs are described here.






N -

2.1
2.2
23
2.4
2.5
2.6

o A~ W

5.1

5.2
5.3

54
5.5
5.6
5.7
5.8
5.9

. INTRODUCTION
. SCCS FOR BEGINNERS

. HOW DELTAS ARE NUMBERED
. SCCS COMMAND CONVENTIONS
. SCCS COMMANDS

Source Code Control System
User’s Guide

Terminology 1

Creating an SCCS File—The “admin” Command 2
Retrieving a File—The “get” Command 2
Recording Changes—The “delta” Command 3
More about the “get” Command 4

The “help” Command 5

get 9

5.1.1 ID Keywords 10

5.1.2 Retrieval of Different Versions 10

5.1.3 Retrieval with Intent to Make a Delta 12
5.1.4 Concurrent Edits of Different sibs 13

5.1.5 Concurrent Edits of the Same sib 14

5.1.6 Keyletters That Affect Output 15

delta 16

admin 18

5.3.1 Creation of Sccs Files 18

5.3.2 Inserting Commentary for the Initial Delta 19
5.3.3 Initialization and Maodification of Sccs File Parameters 19
prs 20

help 21

rmdel 22

cde 23

what 23

scesdiff 24

5.10 comb 24
5.11 val 24

6. SCCSFILES . . . . . . . i i e e e e e e e e e e e e e e e e 25

6.1
6.2
6.3

REFERENCES

Protection 25
Format 26
Auditing 26



LIST OF FIGURES

Figure 1. EvolutionofanSccsFile . .. .. . . .. .. ... ... ...
Figure 2. Tree Structure withBranchDeltas . . . . . . . . . . . . ¢ v v v v i v v ..
Figure 3. Extending the BranchingConcept. . . . . . . . . . . .« vt v i v v v v o



TABLE 1. Determination of New SID

January 1980

LIST OF TABLES






SCCS User’'s Guide 1

1. INTRODUCTION

The Source Code Control System (sccs) is a collection of PwB commands that help individuals
or projects control and account for changes to files of text (typically, the source code and
documentation of software systems). It is convenient to conceive of SCCs as a custodian of files;
it allows retrieval of particular versions of the files, administers changes to them, controls
updating privileges to them, and records who made each change, when and where it was made,
and why. This is important in environments in which programs and documentation undergo
frequent changes (because of maintenance and/or enhancement work), inasmuch as it is
sometimes desirable to regenerate the version of a program or document as it was before
changes were applied to it. Obviously, this could be done by keeping copies (on paper or other
media), but this quickly becomes unmanageable and wasteful as the number of programs and
documents increases. SCCS provides an attractive solution because it stores on disk the original
file and, whenever changes are made to it, stores only the changes; each set of changes is
called a “delta.”

This document, together with relevant portions of [1], is a complete user's guide to sccs. This
manual contains the following sections:

e Sccs for Beginners: How to make an sccs file, how to update it, and how to retrieve a
version thereof.

e How Deltas Are Numbered: How versions of SCCs files are numbered and named.

e Sccs Command Conventions: Conventions and rules generally applicable to all sccs
commands.

e Sccs Commands: Explanation of all SCCS commands, with discussions of the more useful
arguments.

e Sccs Files: Protection, format, and auditing of sccs files, including a discussion of the
differences between using SCCs as an individual and using it as a member of a group or
project. The role of a “project SCCs administrator” is introduced.

2. SCCS FOR BEGINNERS

It is assumed that the reader knows how to log onto a PwWB system, create files, and use the text
editor [1]. A number of terminal-session fragments are presented below. All of them should be
tried: the best way to learn SCCS is to use it.

To supplement the material in this manual, the detailed sSccs command descriptions (appearing
in [1]) should be consulted. Section 5 below contains a list of all the sccs commands. For the
time being, however, only basic concepts will be discussed.

2.1 Terminology

Each sccs file is composed of one or more sets of changes applied to the null (empty) version of
the file, with each set of changes usually depending on all previous sets. Each set of changes is
called a “delta” and is assigned a name, called the S ccs /D entification string (SiD), composed of
at most four components, only the first two of which will concern us for now; these are the
“release” and “level” numbers, separated by a period. Hence, the first delta is called “1.1", the
second “1.2", the third “1.3", etc. The release number can also be changed allowing, for
example, deltas “2.1", “3.19", etc. The change in the release number usually indicates a major
change to the file.

Each delta of an sccs file defines a particular version of the file. For example, delta 1.5 defines
version 1.5 of the sccs file, obtained by applying to the null (empty) version of the file the
changes that constitute deltas 1.1, 1.2, etc., up to and including delta 1.5 itself, in that order.



2 SCCS User's Guide

2.2 Creating an SCCS File—The “admin” Command
Consider, for example, a file called “lang” that contains a list of programming languages:

c

pli
fortran
cobol
algol

We wish to give custody of this file to sccs. The following admin command (which is used to
administer sccs files) creates an sccs file and initializes delta 1.1 from the file “lang”:

admin —ilang s.lang

All sccs files must have names that begin with “s.”, hence, “s.lang”. The —i keyletter, together
with its value “lang”, indicates that admin is to create a new Sccs file and initialize it with the
contents of the file “lang”. This initial version is a set of changes applied to the null sccs file; it
is delta 1.1.

The admin command replies:
No id keywords (cm7)

This is a warning message (which may also be issued by other sccs commands) that is to be
ignored for the purposes of this section. Its significance is described in Section 5.1 below. In
the following examples, this warning message is not shown, although it may actually be issued
by the various command.

The file “lang” should be removed (because it can be easily reconstructed by using the get
command, below):

rm lang
2.3 Retrieving a File—The “‘get’” Command
The command:

get s.lang

causes the creation (retrieval) of the latest version of file “s.lang”, and prints the following
messages:

1.1
5 lines

This means that get retrieved version 1.1 of the file, which is made up of 5 lines of text. The
retrieved text is placed in a file whose name is formed by deleting the “s.” prefix from the name
of the sccs file; hence, the file “lang” is created.

The above get command simply creates the file “lang” read-only, and keeps no information
whatsoever regarding its creation. On the other hand, in order to be able to subsequently apply
changes to an sccs file with the delta command (see below), the get command must be
informed of your intention to do so. This is done as follows:

get —e s.lang



SCCS User's Guide 3

The —e keyletter causes get to create a file “lang” for both reading and writing (so that it may
be edited) and places certain information about the sccs file in another new file, called the p-file,
that will be read by the delta command. The get command prints the same messages as
before, except that the sSID of the version to be created through the use of delta is also issued.
For example:

get —e s.lang
1.1

new delta 1.2
5 lines

The file “lang” may now be changed, for example, by:

ed lang
27

$a
snobol
ratfor

W
41
q

2.4 Recording Changes—The ‘‘delta” Command

In order to record within the sccs file the changes that have been applied to “lang”, execute:
delta s.lang

Delta prompts with:
comments?

the response to which should be a description of why the changes were made; for example:
comments? added more languages

Delta then reads the p-file, and determines what changes were made to the file “lang”. It does
this by doing its own get to retrieve the original version, and by applying diff (1) to the original
version and the edited version.

When this process is complete, at which point the changes to “lang” have been stored in
“s.lang”, delta outputs:

1.2

2 inserted

0 deleted

5 unchanged

The number “1.2" is the name of the delta just created, and the next three lines of output refer
to the number of lines in the file “s.lang"”.

1. All references of the form name (N) refer to item name in command writeuP section N of [1].



4 SCCS User’'s Guide

2.5 More about the “‘get”’ Command
As we have seen:
get s.lang

retrieves the latest version (now 1.2) of the file “s.lang”. This is done by starting with the original
version of the file and successively applying deltas (the changes) in order, until all have been
applied.

For our example, the following commands are all equivalent:
get s.lang
get —r1 s.lang
get —r1.2 s.lang

The numbers following the —r keyletter are SiDs (see Section 2.1 above). Note that omitting the
level number of the siD (as in the second example above) is equivalent to specifying the highest
level number that exists within the specified release. Thus, the second command requests the
retrieval of the latest version in release 1, namely 1.2. The third command specifically requests
the retrieval of a particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually
indicated by changing the release number (first component of the sID) of the delta being made.
Since normal, automatic, numbering of deltas proceeds by incrementing the level number
(second component of the sIiD), we must indicate to sccs that we wish to change the release
number. This is done with the get command:

get —e —2 s.lang

Because release 2 does not exist, get retrieves the latest version before release 2; it also
interprets this as a request to change the release number of the delta we wish to create to 2,
thereby causing it to be named 2.1, rather than 1.3. This information is conveyed to delta via
the p-file. Get then outputs:

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the version delta will create.
If the file is now edited, for example, by:

ed lang
41
/cobol/d
w

35

q



SCCS User's Guide 5

and defta executed:

delta s.lang
comments? deleted cobol from list of languages

we will see, by delta’s output, that version 2.1 is indeed created:

2.1

0 inserted

1 deleted

6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be
created in a similar manner. This process may be continued as desired.

2.6 The “help” Command

If the command:
get abc

is executed, the following message will be output:
ERROR [abc]: not an SCCS file (co1)

The string “co1” is a code for the diagnostic message, and may be used to obtain a fuller
explanation of that message by use of the help command:

help col
This produces the following output:

cot:

"not an SCCS file”

A file that you think is an SCCS file
does not begin with the characters "s.".

Thus, help is a useful command to use whenever there is any doubt about the meaning of an
sccs message. Fuller explanations of almost all SCCS messages may be found in this manner.

3. HOW DELTAS ARE NUMBERED

it is convenient to conceive of the deltas applied to an sccs file as the nodes of a tree, in which
the root is the initial version of the file. The root delta (node) is normally named “1.1” and
successor deltas (nodes) are named “1.2", “1.3", etc. The components of the names of the
deltas are called the “release” and the “level” numbers, respectively. Thus, normal naming of
successor deltas proceeds by incrementing the level number, which is performed automatically
by scCs whenever a delta is made. In addition, the user may wish to change the release
number when making a delta, to indicate that a major change is being made. When this is done,
the release number also applies to all successor deltas, unless specifically changed again.
Thus, the evolution of a particular file may be represented as in Figure 1.

FTRTRTRTOQ

|
|
|
1.1 13 1.4 | a1 2.2
RETURN 1 RETUAN 2
Figure 1. Evolution of an Sccs File

Such a structure may be termed the “trunk” of the sccs tree. It represents the normal
sequential development of an sccs file, in which changes that are part of any given delta are
dependent upon all the preceding deltas.



6 SCCS User's Guide

However, there are situations in which it is necessary to cause a branching in the tree, in that
changes applied as part of a given deita are not dependent upon all previous deitas. As an
example, consider a program which is in production use at version 1.3, and for which
development work on release 2 is already in progress. Thus, release 2 may already have some
deltas, precisely as shown in Figure 1. Assume that a production user reports a problem in
version 1.3, and that the nature of the problem is such that it cannot wait to be repaired in
release 2. The changes necessary to repair the trouble will be applied as a delta to version 1.3
(the version in production use). This creates a new version that will then be released to the
user, but will not affect the changes being applied for release 2 (i.e., deltas 1.4, 2.1, 2.2, etc.).

The new delta is a node on a “branch” of the tree, and its name consists of four components,
namely, the release and level numbers, as with trunk deltas, plus the “branch” and “sequence”
numbers, as follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a descendant of a particular trunk delta,
with the first such branch being 1, the next one 2, and so on. The sequence number is
assigned, in order, to each deilta on a particular branch. Thus, 1.3.1.2 identifies the second
delta of the first branch that derives from delta 1.3. This is shown in Figure 2.

1312

11 1.2

Figure 2. Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming of the resulting
deltas proceeds in the manner just illustrated.

Two observations are of importance with regard to naming deitas. First, the names of trunk
deltas contain exactly two components, and the names of branch deltas contain exactly four
components. Second, the first two components of the name of branch deltas are always those
_of the ancestral trunk delta, and the branch component is assigned in the order of creation of the
branch, independently of its location relative to the trunk delta. Thus, a branch delta may always
be identified as such from its name. Although the ancestral trunk delta may be identified from
the branch delta’s name, it is not possible to determine the entire path leading from the trunk
delta to the branch delta. For example, if deita 1.3 has one branch emanating from it, all deltas
on that branch will be named 1.3.1.n. If a delta on this branch then has another branch
emanating from it, all deltas on the new branch will be named 1.3.2.n (see Figure 3). The only
information that may be derived from the name of deita 1.3.2.2 is that it is the chronologically
second delta on the chronologically second branch whose trunk ancestor is delta 1.3. In
particular, it is not possible to determine from the name of deita 1.3.2.2 all of the deltas between
it and its trunk ancestor (1.3).



0—0

SCCS User’'s Guide 7

11 1.2

Figure 3. Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree
structures. Although this capability has been provided for certain specialized uses, it is strongly
recommended that the SCCs tree be kept as simple as possible, because comprehension of its
structure becomes extremely difficult as the tree becomes more complex.

4. SCCS COMMAND CONVENTIONS

This section discusses the conventions and rules that apply to SCCS commands. These rules
and conventions are generally applicable to all sScCs commands, except as indicated below.
Sccs commands accept two types of arguments: keyletter arguments and file arguments.

Keyletter arguments (hereafter called simply “keyletters”) begin with a minus sign (—), followed
by a lower-case alphabetic character, and, in some cases, followed by a value. These keyletters
control the execution of the command to which they are supplied.

File arguments (which may be names of files andior directories) specify the file(s) that the given
SCCs command is to process; naming a directory is equivalent to naming all the sccs files within
the directory. Non-sccs files and unreadable? files in the named directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the name “—" (a lone
minus sign) is specified as an argument to a command, the command reads the standard input
for lines and takes each line as the name of an sccs file to be processed. The standard input is
read until end-of-file. This feature is often used in pipelines [1] with, for example, the find (1) or
Is (1) commands. Again, names of non-sccs files and of unreadable files are silently ignored.

All keyletters specified for a given command apply to all file arguments of that command. All
keyletters are processed before any file arguments, with the result that the placement of
keyletters is arbitrary (i.e., keyletters may be interspersed with file arguments). File arguments,
however, are processed left to right.

Somewhat different argument conventions apply to the help, what, sccsdiff, and val commands
(see Sections 5.5, 5.8, 5.9, and 5.11).

Certain actions of various SCCs commands are controlled by flags appearing in sccs files. Some
of these flags are discussed below. For a complete description of all such flags, see admin (1).

The distinction between the real user (see passwd (1)) and the effective user of a PWB system is
of concern in discussing various actions of SCCS commands. For the present, it is assumed that
both the real user and the effective user are one and the same (i.e., the user who is logged into
a PWB system); this subject is further discussed in Section 6.1.

2. Because of Permission modes (see chmod(1)).



8 SCCS User’s Guide

All sccs commands that modify an sccs file do so by writing a temporary copy, called the x-file,
which ensures that the sccs file will not be damaged should processing terminate abnormally.
The name of the x-file is formed by replacing the “s.” of the sccs file name with “x.”. When
processing is complete, the old sccs file is removed and the x-file is renamed to be the sccs file.
The x-file is created in the directory containing the sccs file, is given the same mode (see
chmod (1)) as the sccs file, and is owned by the effective user.

To prevent simultaneous updates to an sccs file, commands that modify sccs files create a
lock-file, called the z-file, whose name is formed by replacing the “s.” of the sccs file name with
“z2.". The z-file contains the process number [1] of the command that creates it, and its
existence is an indication to other commands that that sccs file is being updated. Thus, other
commands that modify sccs files will not process an sccs file if the corresponding z-file exists.
The z-file is created with mode 444 (read-only) in the directory containing the sccs file, and is
owned by the effective user. This file exists only for the duration of the execution of the
command that creates it. In general, users can ignore x-files and z-files; they may be useful in

the event of system crashes or similar situations.
Sccs commands produce diagnostics (on the diagnostic output [1]) of the form:
ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to the help command (see Section 5.5)
to obtain a further explanation of the diagnostic message.

Detection of a fatal error during the processing of a file causes the SCCs command to terminate
processing of that file and to proceed with the next file, in order, if more than one file has been
named.

5. SCCS COMMANDS

This section describes the major features of all the sScCs commands. Detailed descriptions of
the commands and of all their arguments are given in the PwB User's Manual, and should be
consulted for further information. The discussion below covers only the more common
arguments of the various SCCS commands.

Because the commands get and delta are the most frequently used, they are presented first.
The other commands follow in approximate order of importance.



SCCS User’'s Guide 9

The following is a summary of all the sccs commands and of their major functions:
get Retrieves versions of SCCs files.
delta Applies changes (deltas) to the text of Sccs files, i.e., creates new versions.
admin Creates sccs files and applies changes to parameters of sccs files.

prs Prints portions of an sccs file in user specified format.

help Gives explanations of diagnostic messages.

rmdel Removes a delta from an sccs file; allows the removal of deltas that were created
by mistake.

cdc Changes the commentary associated with a delta.

what Searches any Pwa file(s) for all occurrences of a special pattern and prints out
what follows it; is useful in finding identifying information inserted by the get
command.

scesdiff  Shows the differences between any two versions of an sccs file.

comb Combines two or more consecutive deltas of an sccs file into a single delta; often
reduces the size of the sccs file.
val Validates an sccs file.
5.1 get

The get command creates a text file that contains a particular version of an sccs file. The
particular version is retrieved by beginning with the initial version, and then applying deltas, in
order, until the desired version is obtained. The created file is called the g-file; its name is
formed by removing the “s.” from the sccs file name. The g-file is created in the current
directory [1] and is owned by the real user. The mode assigned to the g-file depends on how
the get command is invoked, as discussed below.

The most common invocation of get is:
get s.abc

which normally retrieves the latest version on the trunk of the sccs file tree, and produces (for
example) on the standard output [1]:

1.3
67 lines
No id keywords (cm7)

which indicates that:

1. Version 1.3 of file “s.abc” was retrieved (1.3 is the latest trunk delta).

2. This version has 67 lines of text.

3. No ID keywords were substituted in the file (see Section 5.1.1 for a discussion of ID
keywords).

The generated g-file (file “abc”) is given mode 444 (read-only), since this particular way of
invoking get is intended to produce g-files only for inspection, compilation, etc., and not for
editing (i.e., not for making deltas).



10 SCCS User's Guide

In the case of several file arguments (or directory-name arguments), similar information is given §)
for each file processed, but the sccs file name precedes it. For example:

get s.abc s.def
produces:

s.abc:

1.3

67 lines

No id keywords (cm7)

s.def:

1.7

85 lines

No id keywords (cm7)

5.1.1 Ip Keywords

In generating a g-file to be used for compilation, it is useful and informative to record the date
and time of creation, the version retrieved, the module’'s name, etc., within the g-file, so as to
have this information appear in a load module when one is eventually created. SccCs provides a
convenient mechanism for doing this automatically. Identification (D) keywords appearing
anywhere in the generated file are replaced by appropriate values according to the definitions of
these ID keywords. The format of an ID keyword is an upper-case letter enclosed by percent
signs (%). For example:

%%

is defined as the ID keyword that is replaced by the sIiD of the retrieved version of a file. -
Similarly, %H% is defined as the 1D keyword for the current date (in the form “mm/dd/yy”), and %)
%M°% is defined as the name of the g-file. Thus, executing get on an sccs file that contains the

PL/I declaration:

DCL ID CHAR(100) VAR INIT("%M% %I|% %H%°);

gives (for example) the following:
DCL ID CHAR(100) VAR INIT("MODNAME 2.3 07/07/77°);

When no ID keywords are substituted by get, the following message is issued:
No id keywords (cm7)

This message is normally treated as a warning by get, although the presence of the i flag in the
sccs file causes it to be treated as an error (see Section 5.2 for further information).

For a complete list of the approximately twenty 1D keywords provided, see get(1).
5.1.2 Retrieval of Different Versions

Various keyletters are provided to allow the retrieval of other than the default version of an sccs
file. Normally, the default version is the most recent deita of the highest-numbered release on
the trunk of the sccs file tree. However, if the scCs file being processed has a d (default SID)
flag, the sID specified as the value of this flag is used as a default. The default siD is interpreted
in exactly the same way as the value supplied with the —r keyletter of get.

The —r keyletter is used to specify an SID to be retrieved, in which case the d (default siD) flag
(if any) is ignored. For example:

get —r1.3 s.abc "N)



SCCS User's Guide 11

retrieves version 1.3 of file “s.abc”, and produces (for example) on the standard output:

1.3
64 lines

A branch delta may be retrieved similarly:
get —r1.5.2.3 s.abc
which produces (for example) on the standard output:

1.5.2.3
234 lines

When a two- or four-component SID is specified as a value for the —r keyletter (as above) and
the particular version does not exist in the SCCs file, an error message results. Omission of the
level number, as in:

get —r3 s.abc

causes retrieval of the trunk deita with the highest level number within the given release, if the
given release exists. Thus, the above command might output:

3.7
213 lines

if the given release does not exist, get(retrieves the trunk delta with the highest level number
within the highest-numbered existing release that is lower than the given release. For example,
assuming release 9 does not exist in file “s.abc”, and that release 7 is actually the highest-
numbered release below 9, execution of:

get —r9 s.abc
might produce:

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file “s.abc” below release 9. Similarly,
omission of the sequence number, as in:

get —r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the given
branch, if it exists. (If the given branch does not exist, an error message results.) This might
result in the following output:

4.3.2.8
89 lines

The —t keyletter is used to retrieve the latest (“top”) version in a particular release (i.e., when
no —r keyletter is supplied, or when its value is simply a release number). The latest version is
defined as that delta which was produced most recently, independent of its location on the sccs
file tree. Thus, if the most recent delta in release 3 is 3.5,

get —r3 —t s.abc
might produce:

3.5
59 lines



12 SCCS User’s Guide

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same
command might produce:

3.2.1.5
46 lines

5.1.3 Retrieval with Intent to Make a Delta

Specification of the —e keyletter to the get command is an indication of the intent to make a
delta, and, as such, its use is restricted. The presence of this keyletter causes get to check:

1. The user list (which is the list of login names and/or group IDs of users allowed to make
deltas (see Section 6.2)) to determine if the login name or group ID of the user executing
get is on that list. Note that a null (empty) user list behaves as if it contained all possible
login names.

2. That the release (R) of the version being retrieved satisfies the relation:

floor = R = ceiling

to determine if the release being accessed is a protected release. The floor and ceiling
are specified as flags in the sccs file.

3. That the release (R) is not locked against editing. The lock is specified as a flag in the
sccs file.

4. Whether or not multiple concurrent edits are allowed for the ScCs file as specified by the j
flag in the sccs file (multiple concurrent edits are described in Section 5.1.5).

A failure of any of the first three conditions causes the processing of the corresponding sccs file
to terminate.

If the above checks succeed, the —e keyletter causes the creation of a g-file in the current
directory with mode 644 (readable by everyone, writable only by the owner) owned by the real
user. If a writable g-file already exists, get terminates with an error. This is to prevent
inadvertent destruction of a g-file that already exists and is being edited for the purpose of
making a delta.

Any ID keywords appearing in the g-file are not substituted by get when the —e keyletter is
specified, because the generated g-file is to be subsequently used to create another delta, and
replacement of ID keywords would cause them to be permanently changed within the sccs file.
In view of this, get does not need to check for the presence of ID keywords within the g-file, so
that the message:

No id keywords (cm7)
is never output when get is invoked with the —e keyletter.

In addition, the —e keyletter causes the creation (or updating) of a p-file, which is used to pass
information to the delta command (see Section 5.1.4).

The following is an example of the use of the —e keyletter:
get —e s.abc
which produces (for example) on the standard output:

1.3
new delta 1.4
67 lines

If the —r and/or —t keyletters are used together with the —e keyletter, the version retrieved for
editing is as specified by the —r and/or —t keyletters.

The keyletters —i and —x may be used to specify a list (see get (1) for the syntax of such a list)
of deltas to be included and excluded, respectively, by get. Including a delta means forcing the
changes that constitute the particular delta to be included in the retrieved version. This is useful

™



r\

SCCS User’'s Guide 13

if one wants to apply the same changes to more than one version of the sccs file. Excluding a
delta means forcing it to be not applied. This may be used to undo, in the version of the sccs
file to be created, the effects of a previous delta. Whenever deltas are included or excluded, get
checks for possible interference between such deltas and those deltas that are normally used in
retrieving the particular version of the sccs file. (Two deltas can interfere, for example, when
each one changes the same line of the retrieved g-file.) Any interference is indicated by a
warning that shows the range of lines within the retrieved g-file in which the problem may exist.
The user is expected to examine the g-file to determine whether a problem actually exists, and
to take whatever corrective measures (if any) are deemed necessary (e.g., edit the file).

w The —i and —x keyletters should be used with extreme care.

The —k keyletter is provided to facilitate regeneration of a g-file that may have been accidentally
removed or ruined subsequent to the execution of get with the —e keyletter, or to simply
generate a g-file in which the replacement of ID keywords has been suppressed. Thus, a g-file
generated by the —k keyletter is identical to one produced by get executed with the —e
keyletter. However, no processing related to the p-file takes place.

5.1.4 Concurrent Edits of Different SiDs

The ability to retrieve different versions of an sccs file allows a number of deltas to be “in
progress” at any given time. This means that a number of get commands with the —e keyletter
may be executed on the same file, provided that no two executions retrieve the same version
(unless multiple concurrent edits are allowed, see Section 5.1.5).

The p-file (which is created by the get command invoked with the —e keyletter) is named by
replacing the “s.” in the sccs file name with “p.". It is created in the directory containing the
sccs file, is given mode 644 (readable by everyone, writable only by the owner), and is owned
by the effeactive user. The p-file contains the following information for each delta that is still “in
progress”:

e The sID of the retrieved version.
e The sID that will be given to the new delta when it is created.
¢ The login name of the real user executing get.

The first execution of “get —e" causes the creation of the p-file for the corresponding sccs file.
Subsequent executions only update the p-file by inserting a line containing the above
information. Before inserting this line, however, get checks that no entry already in the p-file
specifies as already retrieved the SID of the version to be retrieved, unless multiple concurrent
edits are allowed.

If both checks succeed, the user is informed that other deltas are in progress, and processing
continues. If either check fails, an error message results. It is important to note that the various
executions of get should be carried out from different directories. Otherwise, only the first
execution will succeed, since subsequent executions would attempt to over-write a writable g-
file, which is an sccs error condition. In practice, such multiple executions are performed by
different users,* so that this problem does not arise, since each user normally has a different
working directory [1].

Table 1 shows, for the most useful cases, what version of an sccs file is retrieved by get, as
well as the SID of the version to be eventually created by delta, as a function of the siD specified
to get.

3. Other information may be there also. but is not of concern here. See get(1) for further discussion.
4. See Section 6.1 for a discussion of how different users are Permitted to use SCCS commands on the same files.



14 SCCS User’s Guide
TABLE 1. Determination of New SID
Case SID —b Keyletter Otl.ae'r SID SID of Delta
Specified” Usedt Conditions Retrieved to be Created
1. nonef no R defaults to mR mR.mL mR.(mL +1)
2. nonef yes R defaults to mR mR.mL mR.mL.(mB +1).1
3. R no R > mR mR.mL R.1§
4. R no R = mR mR.mL mR.(mL +1)
5. R yes R > mR mR.mL mR.mL.(mB +1).1
6. R yes R = mR mR.mL mR.mL.(mB +1).1
7. R - g ;ez“l:o?’;iis . hR.mL**  hR.mL.(mB+1).1
Trunk successor
8. R — in release > R R.mL R.mL.(mB +1).1
and R exists
9. R.L no No trunk successor R.L R.(L +1)
10. R.L yes No trunk successor R.L R.L.(mB +1).1
11. RL - a’:;]e‘:f;es;“ R.L R.L.(mB +1).1
12. R.L.B no No branch successor ~ R.L.B.mS  R.L.B.(mS +1)
13. R.L.B yes No branch successor R.L.B.mS R.L.(mB +1).1
14. R.L.B.S no No branch successor  R.L.B.S R.L.B.(S +1)
15. R.L.B.S yes No branch successor R.L.B.S R.L.(mB +1).1
16. R.L.B.S - Branch successor R.L.B.S R.L.(mB +1).1
* “R”, “L”, “B”, and “S’ are the ‘“release”, “level”, “branch”, and ‘‘sequence’ components of the SID,

§

respectively; ‘“m’’ means “maximum’. Thus, for example, “R.mL” means ‘“‘the maximum level number
within release R”’; “R.L.(mB+1).1” means “the first sequence number on the new branch (i.e., maximum
branch number plus 1) of level L within release R”. Note that if the SID specified is of the form “R.L”,
“R.L.B”, or “R.L.B.S”, each of the specified components must exist.

The —b keyletter is effective only if the b flag (see admin(1)) is present in the file. In this table, an entry
of “~" means ‘irrelevant’.

This case applies if the d (default SID) flag is not present in the file. If the d flag is present in the file,
then the SID obtained from the d flag is interpreted as if it had been specified on the command line.
Thus, one of the other cases in this table applies.

This case is used to force the creation of the first delta in a new release.

** “hR” is the highest existing release that is lower than the specified, nonexistent, release R.

5.1.5 Concurrent Edits of the Same SiD

Under normal conditions, gets for editing {(—e keyletter is specified) based on the same SID are
not permitted to occur concurrently. That is, delfa must be executed before a subsequent get
for editing is executed at the same SID as the previous get. However, multiple concurrent edits
(defined to be two or more successive executions of get for editing based on the same retrieved



SCCS User's Guide 15

SID) are allowed if the j flag is set in the sccCs file. Thus:

get —e s.abc
1.1

new delta 1.2
5 lines

may be immediately followed by:

get —e s.abc
1.1

new delta 1.1.1.1
5 lines

without an intervening execution of delta. In this case, a delta command corresponding to the
first get produces delta 1.2 (assuming 1.1 is the latest (most recent) trunk delta), and the deilta
command corresponding to the second get produces delta 1.1.1.1.

5.1.6 Keyletters That Affect Output

Specification of the —p keyletter causes get to write the retrieved text to the standard output,
rather than to a g-file. In addition, all output normally directed to the standard output (such as
the siD of the version retrieved and the number of lines retrieved) is directed instead to the
diagnostic output. This may be used, for example, to create g-files with arbitrary names:

get —p s.abc > arbitrary-filename

The —p keyletter is particularly useful when used with the “!" or “$" arguments of the PwB
send (1) command. For example:

send MOD=s.abc REL=3 compile
if file “compile” contains:

//plicomp job job-card-information
/[stepl exec plicke

//pli.sysin dd *

T—s

“lget —p —rREL MOD

/*

/]

will send the highest level of release 3 of file “s.abc”. Note that the line “~—s", which causes
send(1) to make ID keyword substitutions before detecting and interpreting control lines, is
necessary if send(1) is to substitute “s.abc” for MOD and “3" for REL in the line ““Iget —p
—rREL MOD".

The —s keyletter suppresses all output that is normally directed to the standard output. Thus,
the siD of the retrieved version, the number of lines retrieved, etc., are not output. This does
not, however, affect messages to the diagnostic output. This keyletter is used to prevent non-
diagnostic messages from appearing on the user's terminal, and is often used in conjunction with
the —p keyletter to “pipe” the output of get, as in:

get —p —s s.abc | nroff

The —g keyletter is supplied to suppress the actual retrieval of the text of a version of the sccs
file. This may be useful in a number of ways. For example, to verify the existence of a
particular sID in an sccs file, one may execute:

get —g —r4.3 s.abc

This outputs the given siD if it exists in the sccs file, or it generates an error message, if it does
not. Another use of the —g keyletter is in regenerating a p-file that may have been accidentally
destroyed:



16 SCCS User's Guide

get —e —g s.abc

The —I keyletter causes the creation of an /-file, which is named by replacing the “s.” of the
sccs file name with “I.”. This file is created in the current directory, with mode 444 (read-only),
and is owned by the real user. It contains a table (whose format is described in get (1)) showing
which deltas were used in constructing a particular version of the sccs file. For example:

get —r2.3 —1 s.abc

generates an /-file showing which deltas were applied to retrieve version 2.3 of the sccs file.
Specifying a value of “p” with the —I keyletter, as in:

get —lp —r2.3 s.abc

causes the generated output to be written to the standard output rather than to the /-file. Note
that the —g keyletter may be used with the —I keyletter to suppress the actual retrieval of the
text.

The —m keyletter is of use in identifying, line by line, the changes applied to an sccs file.
Specification of this keyletter causes each line of the generated g-file to be preceded by the SID
of the delta that caused that line to be inserted. The SID is separated from the text of the line by
a tab character.

The —n keyletter causes each line of the generated g-file to be preceded by the value of the
%M% ID keyword (see Section 5.1.1) and a tab character. The —n keyletter is most often used
in a pipeline with grep (1). For example, to find all lines that match a given pattern in the latest
version of each SCcs file in a directory, the following may be executed:

get —p —n —s directory | grep pattern

If both the —m and —n keyletters are specified, each line of the generated g-file is preceded by
the value of the %M% ID keyword and a tab (this is the effect of the —n keyletter), followed by
the line in the format produced by the —m keyletter. Because use of the —m keyletter and/or
the —n keyletter causes the contents of the g-file to be modified, such a g-file must not be used
for creating a delta. Therefore, neither the —m keyletter nor the —n keyletter may be specified
together with the —e keyletter.

See get (1) for a full description of additional get keyletters.
5.2 delta

The delta command is used to incorporate the changes made to a g-file into the corresponding
sccs file, i.e., to create a delta, and, therefore, a new version of the file.

Invocation of the delta command requires the existence of a p-file (see Sections 5.1.3 and
5.1.4). Delta examines the p-file to verify the presence of an entry containing the user’s login
name. If none is found, an error message results. Delta also performs the same permission
checks that get performs when invoked with the —e keyletter. If all checks are successful, defta
determines what has been changed in the g-file, by comparing it (via diff (1)) with its own,
temporary copy of the g-file as it was before editing. This temporary copy of the g-file is called
the d-file (its name is formed by replacing the “s.” of the sccs file name with “d.”) and is
obtained by performing an internal get at the SID specified in the p-file entry.

The required p-file entry is the one containing the login name of the user executing delta,
because the user who retrieved the g-file must be the one who will create the delta. However, if
the login name of the user appears in more than one entry (i.e., the same user executed get
with the —e keyletter more than once on the same sccs file), the —r keyletter must be used
with delta to specify an SID that uniquely identifies the p-file entry®. This entry is the one used to



SCCS User's Guide 17

obtain the sID of the delta to be created.

In practice, the most common invocation of delta is:
delta s.abc

which prompts on the standard output (but only if it is a terminal):
comments?

to which the user replies with a description of why the delta is being made, terminating the reply
with a newline character. The user's response may be up to 512 characters long, with newlines
not intended to terminate the response escaped by “\".

If the sccs file has a v flag, delta first prompts with:
MRs?

on the standard output. (Again, this prompt is printed only if the standard output is a terminal.)
The standard input is then read for MR® numbers, separated by blanks and/or tabs, terminated
in the same manner as the response to the prompt “comments?”.

The —y and/or —m keyletters are used to supply the commentary (comments and MR
numbers, respectively) on the command line, rather than through the standard input. For
example:

delta —y"descriptive comment" —m"mrnuml mrnum?2" s.abc

In this case, the corresponding prompts are not printed, and the standard input is not read. The
—m keyletter is allowed only if the sccs file has a v flag. These keyletters are useful when delta
is executed from within a Shell procedure (see sh(1)).

The commentary (comments and/or MR numbers), whether solicited by delta or supplied via
keyletters, is recorded as part of the entry for the delta being created, and applies to all sccs
files processed by the same invocation of delta. This implies that if delta is invoked with more
than one file argument, and the first file named has a v flag, all files named must have this flag.
Similarly, if the first file named does not have this flag, then none of the files named may have it.
Any file that does not conform to these rules is not processed.

When processing is complete, delta outputs (on the standard output) the SID of the created delta
(obtained from the p-file entry) and the counts of lines inserted, deleted, and left unchanged by
the delta. Thus, a typical output might be:

1.4

14 inserted

7 deleted

345 unchanged

It is possible that the counts of lines reported as inserted, deleted, or unchanged by delta do not
agree with the user’s perception of the changes applied to the g-file. The reason for this is that
there usually are a number of ways to describe a set of such changes, especially if lines are
moved around in the g-file, and delta is likely to find a description that differs from the user's
perception. However, the tota/ number of lines of the new delta (the number inserted plus the
number left unchanged) should agree with the number of lines in the edited g-file.

8. The SID specified may be either the SID retrieved by get, or the SID delta is to create.

6. In a tightly controlled environment, it is expected that deltas are created only as a result of some trouble
report, change request, trouble ticket, etc. (collectively called here Modification Requests, or MRs) and that
it is desirable or necessary to record such MR number(s) within each delta.



18 SCCS User's Guide

If, in the process of making a delta, delta finds no ID keywords in the edited g-file, the message:
No id keywords (cm?7)

is issued after the prompts for commentary, but before any other output. This indicates that any
ID keywords that may have existed in the sccs file have been replaced by their values, or
deleted during the editing process. This could be caused by creating a delta from a g-file that
was created by a get without the —e keyletter (recall that ID keywords are replaced by get in
that case), or by accidentally deleting or changing the 1D keywords during the editing of the g-file.
Another possibility is that the file may never have had any ID keywords. In any case, it is left up
to the user to determine what remedial action is necessary, but the delta is made, unless there
is an i flag in the sccs file, indicating that this should be treated as a fatal error. In this last
case, the delta is not created.

After processing of an sccs file is complete, the corresponding p-file entry is removed from the
p-file.” If there is only one entry in the p-file, then the p-file itself is removed.

In addition, delta removes the edited g-file, unless the —n keyletter is specified. Thus:
delta —n s.abc
will keep the g-file upon completion of processing.

The —s (“silent”) keyletter suppresses all output that is normally directed to the standard output,
other than the prompts “comments?” and “MRs?”. Thus, use of the —s keyletter together with
the —y keyletter (and possibly, the —m keyletter) causes delta neither to read the standard
input nor to write the standard output.

The differences between the g-file and the d-file (see above), which constitute the delta, may be
printed on the standard output by using the —p keyletter. The format of this output is similar to
that produced by diff (1).

5.3 admin

The admin command is used to administer sccs files, that is, to create new sccs files and to
change parameters of existing ones. When an sccs file is created, its parameters are initialized
by use of keyletters or are assigned default values if no keyletters are supplied. The same
keyletters are used to change the parameters of existing files.

Two keyletters are supplied for use in conjunction with detecting and correcting “corrupted” sccs
files, and are discussed in Section 6.3 below.

Newly-created sccs files are given mode 444 (read-only) and are owned by the effective user.

Only a user with write permission in the directory containing the sccs file may use the admin
command upon that file.

5.3.1 Creation of Sccs Files
An sccs file may be created by executing the command:
admin —ifirst s.abc

in which the value (“first”) of the —i keyletter specifies the name of a file from which the text of
the initial delta of the sccs file “s.abc” is to be taken. Omission of the value of the —i keyletter

7. .All updates to the p-file are made to a temporary copy, the g-file, whose use is similar to the use of the x-
file, which is described in Section 4 above.



SCCS User's Guide 19

indicates that admin is to read the standard input for the text of the initial delta. Thus, the
command:

admin —i s.abec < first

is equivalent to the previous example. If the text of the initial delta does not contain ID keywords,
the message:

No id keywords (cm?7)

is issued by admin as a warning. However, if the same invocation of the command also sets the
i flag (not to be confused with the —i keyletter), the message is treated as an error and the sccs
file is not created. Only one sSCCs file may be created at a time using the —i keyletter.

When an sccs file is created, the release number assigned to its first delta is normally “1", and
its level number is always “1". Thus, the first delta of an sccs file is normally “1.1". The —r
keyletter is used to specify the release number to be assigned to the first delta. Thus:

admin —ifirst —r3 s.abc

indicates that the first delta should be named “3.1" rather than “1.1". Because this keyletter is
only meaningful in creating the first delta, its use is only permitted with the —i keyletter.

5.3.2 Inserting Commentary for the Initial Delta

When an sccs file is created, the user may choose to supply commentary stating the reason for
creation of the file. This is done by supplying comments (—y keyletter) and/or MR numbers®
(—m keyletter) in exactly the same manner as for delta. If comments (—y keyletter) are
omitted, a comment line of the form:

date and time created YY/MM/DD HH:MM:SS by logname
is automatically generated.

If it is desired to supply MR numbers (—m keyletter), the v flag must also be set (using the —f
keyletter described below). The v flag simply determines whether or not MR numbers must be
supplied when using any sCCs command that modifies a delta commentary (see sccsfile (5)) in
the sccs file. Thus:

admin —ifirst —mmrnuml —fv s.abc
Note that the —y and —m keyletters are only effective if a new Sccs file is being created.
5.3.3 Initialization and Modification of Sccs File Parameters

The portion of the sccs file reserved for descriptive text (see Section 6.2) may be initialized or
changed through the use of the —t keyletter. The descriptive text is intended as a summary of
the contents and purpose of the sccCs file, although its contents may be arbitrary, and it may be
arbitrarily long.

When an scCs file is being created and the —t keyletter is supplied, it must be followed by the
name of a file from which the descriptive text is to be taken. For example, the command:

admin —ifirst —tdesc s.abc

specifies that the descriptive text is to be taken from file “desc".

8. The creation of an SCCS file may sometimes be the direct result of an MR.



20 SCCS User’s Guide

When processing an existing sccs file, the —t keyletter specifies that the descriptive text (if any)
currently in the file is to be replaced with the text in the named file. Thus:

admin —tdesc s.abc

specifies that the descriptive text of the sccs file is to be replaced by the contents of “desc”;
omission of the file name after the —t keyletter as in:

admin —t s.abe
causes the removal of the descriptive text from the sccs file.

The flags (see Section 6.2) of an sccs file may be initialized and changed, or deleted through
the use of the —f and —d keyletters, respectively. The flags of an SCCs file are used to direct
certain actions of the various commands. See admin (1) for a description of all the flags. For
example, the i flag specifies that the warning message stating there are no ID keywords
contained in the sccs file should be treated as an error, and the d (default siD) flag specifies the
default version of the sccs file to be retrieved by the get command. The —f keyletter is used to
set a flag and, possibly, to set its value. For example:

admin —ifirst —fi —fmmodname s.abc

sets the i flag and the m (module name) flag. The value “modname” specified for the m flag is
the value that the get command will use to replace the %M% ID keyword. (In the absence of the
m flag, the name of the g-file is used as the replacement for the %M% ID keyword.) Note that
several —f keyletters may be supplied on a single invocation of admin, and that —f keyletters
may be supplied whether the command is creating a new sccs file or processing an existing
one.

The —d keyletter is used to delete a flag from an sccs file, and may only be specified when
processing an existing file. As an example, the command:

admin —dm s.abc

removes the m flag from the sccs file. Several —d keyletters may be supplied on a single
invocation of admin, and may be intermixed with —f keyletters.

Sccs files contain a list (user list) of login names and/or group IDs of users who are allowed to
create deltas (see Sections 5.1.3 and 6.2). This list is empty by default, which implies that
anyone may create deltas. To add login names and/or group IDs to the list, the —a keyletter is
used. For example:

admin —axyz —awql —al234 s.abc

adds the login names “xyz" and “wql” and the group ID “1234" to the list. The —a keyletter may
be used whether admin is creating a new Sccs file or processing an existing one, and may
appear several times. The —e keyletter is used in an analogous manner if one wishes to
remove (“erase”) login names or group IDs from the list.

5.4 prs

Prs is used to print on the standard output all or parts of an sccs file (see Section 6.2) in a
format, called the output data specification, supplied by the user via the —d keyletter. The data
specification is a string consisting of sccs file data keywords® interspersed with optional user
text.

9. Not to be confused with get /D keywords.



SCCS User’s Guide 21

Data keywords are replaced by appropriate values according to their definitions. For example:
HH

is defined as the data keyword that is replaced by the sID of a specified delta. Similarly, :F: is

defined as the data keyword for the sccs file name currently being processed, and :C: is defined

as the comment line associated with a specified deita. All parts of an sccs file have an
associated data keyword. For a complete list of the data keywords, see prs(1).

There is no limit to the number of times a data keyword may appear in a data specification.
Thus, for example:

prs —d":l: this is the top delta for :F: :I:" s.abc
may produce on the standard output:
2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the siD of that delta using the —r
keyletter. For example:

prs —d":F:: :l: comment line is: :C:" —r1.4 s.abc
may produce the following output:
s.abc: 1.4 comment line is: THIS IS A COMMENT

If the —r keyletter is not specified, the value of the sID defaults to the maost recently created
delta.

In addition, information from a range of deltas may be obtained by specifying the —I or —e
keyletters. The —e keyletter substitutes data keywords for the SID designated via the —r
keyletter and all deltas created earlier. The —I keyletter substitutes data keywords for the SiD
designated via the —r keyletter and all deltas created /ater. Thus, the command:

prs —d:l: —r1.4 —e s.abc
may output:

1.4
1.3
1.2.1.1
1.2
1.1

and the command:
prs —d:I: —r1.4 —I| s.abc
may produce:

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the sccs file may be obtained by specifying both
the —e and —I keyletters.

5.5 help

The help command prints explanations of ScCs commands and of messages that these
commands may print. Arguments to help, zero or more of which may be supplied, are simply



22 SCCS User's Guide

the names of sccs commands or the code numbers that appear in parentheses after sccs
messages. If no argument is given, help prompts for one. Help has no concept of keyletter
arguments or file arguments. Explanatory information related to an argument, if it exists, is
printed on the standard output. If no information is found, an error message is printed. Note
that each argument is processed independently, and an error resulting from one argument will
not terminate the processing of the other arguments.

Explanatory information related to a command is a synopsis of the command. For example:
help geS rmdel
produces:

ge5:
“nonexistent sid"
The specified sid does not exist in the

given file.
Check for typos.
rmdel:
rmdel —rSID name ...
5.6 rmdel

The rmdel command is provided to allow removal of a delta from an sccs file, though its use
should be reserved for those cases in which incorrect, global changes were made a part of the
delta to be removed.

The delta to be removed must be a “leaf” delta. That is, it must be the latest (most recently
created) delta on its branch or on the trunk of the sccs file tree. In Figure 3, only deltas 1.3.1.2,
1.3.2.2, and 2.2 can be removed; once they are removed, then deltas 1.3.2.1 and 2.1 can be
removed, and so on.

To be allowed to remove a delta, the effective user must have write permission in the directory
containing the sccs file. In addition, the real user must either be the one who created the delta
being removed, or be the owner of the sccs file and its directory.

The —r keyletter, which is mandatory, is used to specify the complete siD of the deita to be
removed (i.e., it must have two components for a trunk delta, and four components for a branch
delta). Thus:

rmdel —r2.3 s.abc

specifies the removal of (trunk) delta “2.3" of the sccs file. Before removal of the delta, rmdel
checks that the release number (R) of the given SID satisfies the relation:

floor = R = ceiling

Rmdel also checks that the SID specified is not that of a version for which a get for editing has
been executed and whose associated delta has not yet been made. In addition, the login name
or group ID of the user must appear in the file's user list, or the user list must be empty. Also,
the release specified can not be locked against editing (i.e., if the | flag is set (see admin (1)),
the release specified must not be contained in the list). If these conditions are not satisfied,
processing is terminated, and the delta is not removed. After the specified delta has been
removed, its type indicator in the delta table of the sccs file (see Section 6.2) is changed from



SCCS User's Guide 23

“D" (for “delta”) to “R” (for “removed”).
5.7 cdc

The cdc command is used to change a delta’'s commentary that was supplied when that delta
was created. Its invocation is analogous to that of the rmdel/ command, except that the delta to
be processed is not required to be a leaf delta. For example:

cdc —r3.4 s.abc
specifies that the commentary of delta “3.4" of the sccs file is to be changed.

The new commentary is solicited by cdc in the same manner as that of delta. The old
commentary associated with the specified delta is kept, but it is preceded by a comment line
indicating that it has been changed (i.e., superseded), and the new commentary is entered
ahead of this comment line. The “inserted” comment line records the login name of the user
executing cdc and the time of its execution.

Cdc also allows for the deletion of selected MR numbers associated with the specified delta.
This is specified by preceding the selected MR numbers by the character “!". Thus:

cdc —r1.4 s.abc
MRs? mrnum3 'mrnum1
comments? deleted wrong MR number and inserted correct MR number

inserts “mrnum3” and deletes “mrnum1” for delta 1.4.

5.8 what
The what command is used to find identifying information within any pws file whose name is
given as an argument to what. Directory names and a name of “—" (a lone minus sign) are not

treated specially, as they are by other scCCs commands, and no keyletters are accepted by the
command.

What searches the given file(s) for all occurrences of the string “@(#)", which is the replacement
for the %2% ID keyword (see get (1)), and prints (on the standard output) what follows that string
until the first double quote ("), greater than (>), backslash (\), newline, or (non-printing) NUL
character. Thus, for example, if the sccs file “s.prog.c” (which is a C program), contains the
following line (the %M% and %I % ID keywords were defined in Section 5.1.1):

char id[] "%Z%%M%:%I|%";
and then the command:
get —r3.4 s.prog.c

is executed, and finally the resulting g-file is compiled to produce “prog.0” and “a.out”, then the
command:

what prog.c prog.o a.out
produces:

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what need not be inserted via an 1D keyword of get, it may be
inserted in any convenient manner.



24 SCCS User’s Guide

5.9 sccsdiff

The sccsdiff command determines (and prints on the standard output) the differences between
two specified versions of one or more SccCs files. The versions to be compared are specified by
using the —r keyletter, whose format is the same as for the get command. The two versions
must be specified as the first two arguments to this command in the order in which they were
created, i.e., the older version is specified first. Any following keyletters are interpreted as
arguments to the pr(1) command (which actually prints the differences) and must appear before
any file names. Sccs files to be processed are named last. Directory names and a name of
“—" (a lone minus sign) are not acceptable to sccsdiff.

The differences are printed in the form generated by diff (1). The following is an example of the
invocation of sccsdiff:

scesdiff —r3.4 —r5.6 s.abc
5.10 comb

Comb generates a Shell procedure (see sh(1)) which attempts to reconstruct the named scCs
files so that the reconstructed files are smaller than the originals. The generated Shell
procedure is written on the standard output.

Named sccs files are reconstructed by discarding unwanted deltas and combining specified
other deltas. The intended use is for those SCCSs files that contain deltas that are so old that they
are no longer useful. It is not recommended that comb be used as a matter of routine; its use
should be restricted to a very small number of times in the life of an sccs file.

In the absence of any keyletters, comb preserves only leaf deltas and the minimum number of
ancestor deltas necessary to preserve the “shape” of the SCCs file tree. The effect of this is to
eliminate “middle” deltas on the trunk and on all branches of the tree. Thus, in Figure 3, deltas
1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated. Some of the keyletters are summarized as
follows:

The —p keyletter specifies the oldest delta that is to be preserved in the reconstruction. All
older deltas are discarded.

The —c keyletter specifies a list (see get(1) for the syntax of such a list) of deltas to be
preserved. All other deltas are discarded.

The —s keyletter causes the generation of a Shell procedure, which, when run, produces only a
report summarizing the percentage space (if any) to be saved by reconstructing each named
sccs file. It is recommended that comb be run with this keyletter (in addition to any others
desired) before any actual reconstructions.

It should be noted that the Shell procedure generated by comb is not guaranteed to save any
space. In fact, it is possible for the reconstructed file to be /arger than the original. Note, too,
that the shape of the sccs file tree may be altered by the reconstruction process.

5.11 val

Val is used to determine if a file is an SccCs file meeting the characteristics specified by an
optional list of keyletter arguments. Any characteristics not met are considered errors.

Val checks for the existence of a particular delta when the sID for that delta is explicitly specified
via the —r keyletter. The string following the —y or —m keyletter is used to check the value set
by the t or m flag respectively (see admin (1) for a description of the flags).

Val treats the special argument “—" differently from other SCCS commands (see Section 4). This
argument allows val to read the argument list from the standard input as opposed to obtaining it
from the command line. The standard input is read until end-of-file. This capability allows for



SCCS User's Guide 25

one invocation of val with different values for the keyletter and file arguments. For example:

val —
—yc —mabc s.abc
—mxyz —ypl1 s.xyz

first checks if file “s.abc” has a value “c¢” for its type flag and value “abc” for the module name
flag. Once processing of the first file is completed, val then processes the remaining files, in this
case “s.xyz", to determine if they meet the characteristics specified by the keyletter arguments
associated with them.

Val returns an 8-bit code which is a disjunction of the possible errors detected. That is, each bit
set indicates the occurrence of a specific error (see val(1) for a description of the possible errors
and their codes). In addition, an appropriate diagnostic is printed unless suppressed by the —s
keyletter. A return code of “0" indicates all named files met the characteristics specified.

6. SCCS FILES

This section discusses several topics that must be considered before extensive use is made of
sccs. These topics deal with the protection mechanisms relied upon by sccs, the format of
sccs files, and the recommended procedures for auditing sccs files.

6.1 Protection

Sccs relies on the capabilities of the PwB operating system for most of the protection
mechanisms required to prevent unauthorized changes to sccs files (i.e., changes made by
non-sccs commands). The only protection features provided directly by sccs are the release
lock flag, the release floor and ceiling flags, and the user list (see Section 5.1.3).

New sccs files created by the admin command are given mode 444 (read only). It is
recommended that this mode not be changed, as it prevents any direct modification of the files
by non-sCCs commands. It is further recommended that the directories containing sccs files be
given mode 755, which allows only the owner of the directory to modify its contents.

Sccs files should be kept in directories that contain only sccs files and any temporary files
created by sCCs commands. This simplifies protection and auditing of sccs files (see Section
6.3). The contents of directories should correspond to convenient logical groupings, e.g., sub-
systems of a large project.

Sccs files must have only one link (name). The reason for this is that those commands that
modify SCCs files do so by creating a temporary copy of the file (called the x-file, see Section 4)
and, upon completion of processing, remove the old file and rename the x-file. If the old file has
more than one link, removing it and renaming the x-file would break the link. Rather than
process such files, sccs commands produce an error message. All sccs files must have names
that begin with “s.”.

When only one user uses SCCS, the real and effective user IDs are the same, and that user ID
owns the directories containing sccs files'®. Therefore, sccs may be used directly without any
preliminary preparation.

However, in those situations in which several users with unique user IDs are assigned
responsibility for one sccs file (for example, in large software development projects), one user
(equivalently, one user ID) must be chosen as the “owner” of the sccs files and be the one who

10. Previously, the OPerating System under which SCCS executed allowed for only 256 unique user IDs. This
Presented the situation in which several users needed to share user IDs (and thus shared identical file
Permissions). The OPerating System currently in use (Version 7 of UNIX) allows for 65,536 unique user IDs, and it
is recommended that each user have a unique user ID.



26 SCCS User’s Guide

will “administer” them (e.g., by using the admin command). This user is termed the sccs
administrator for that project. Because other users of SCCS do not have the same privileges and
permissions as the sCCs administrator, they are not able to execute directly those commands
that require write permission in the directory containing the sccs files. Therefore, a project-
dependent program is required to provide an interface to the get, delta, and, if desired, rmde/
and cdc commands.

The interface program must be owned by the sccs administrator, and must have the
set user ID on execution bit on (see chmod (1)), so that the effective user ID is the user ID of the
administrator. This program’s function is to invoke the desired sScCs command and to cause it to
inherit the privileges of the interface program for the duration of that command’s execution. In
this manner, the owner of an sccs file can modify it at will. Other users whose login names or
group 1Ds are in the user list for that file (but who are not its owners) are given the necessary
permissions only for the duration of the execution of the interface program, and are thus able to
modify the sccs files only through the use of delta and, possibly, rmdel and cdc. The project-
dependent interface program, as its name implies, must be custom-built for each project.

6.2 Format
Sccs files are composed of lines of Ascii text'! arranged in six parts, as follows:

Checksum A line containing the “logical” sum of all the characters of the file (not
including this checksum itself).

Delta Table Information about each delta, such as its type, its SID, date and time of
creation, and commentary.

User Names List of login names and/or group IDs of users who are allowed to modify
the file by adding or removing deltas.

Flags Indicators that control certain actions of various SCCsS commands.

Descriptive Text  Arbitrary text provided by the user; usually a summary of the contents and
purpose of the file.

Body Actual text that is being administered by sccs, intermixed with internal
sccs control lines.

Detailed information about the contents of the various sections of the file may be found in
sccsfile (5); the checksum is the only portion of the file which is of interest below.

It is important to note that because sccs files are Ascili files, they may be processed by various
PWB commands, such as ed(1), grep (1), and cat(1). This is very convenient in those instances
in which an sccs file must be modified manually (e.g., when the time and date of a delta was
recorded incorrectly because the system clock was set incorrectly), or when it is desired to
simply “look” at the file.

w Extreme care should be exercised when modifying SCCS files with non-SCcCS commands.
6.3 Auditing

On rare occasions, perhaps due to an operating system or hardware malfunction, an sccs file, or
portions of it (i.e., one or more “blocks™”) can be destroyed. ScCs commands (like most PwB
commands) issue an error message when a file does not exist. In addition, SCCs commands use
the checksum stored in the Sccs file to determing whether a file has been corrupted since it was
last accessed (possibly by having lost one or more blocks, or by having been modified with, for

11. Previous versions of SCCS uP to and including Version 3 used non-ASCIlI files. Therefore, files created by earlier
versions of SCCS are incomPatible with the current version of SCCS.



SCCS User’'s Guide 27

example, ed(1)). No scCs command will process a corrupted sccs file except the admin
command with the —h or —z keyletters, as described below.

It is recommended that sccCs files be audited (checked) for possible corruptions on a regular
basis. The simplest and fastest way to perform an audit is to execute the admin command with
the —h keyletter on all sccs files:

admin —h s.file1 s.file2 ...
or
admin —h directory1 directory2 ...

If the new checksum of any file is not equal to the checksum in the first line of that file, the
message:

corrupted file (co6)

is produced for that file. This process continues until all the files have been examined. When
examining directories (as in the second example above), the process just described will not
detect missing files. A simple way to detect whether any files are missing from a directory is to
periodically execute the /s (1) command on that directory, and compare the outputs of the most
current and the previous executions. Any file whose name appears in the previous output but
not in the current one has been removed by some means.

Whenever a file has been corrupted, the manner in which the file is restored depends upon the
extent of the corruption. |f damage is extensive, the best solution is to contact the local PwB
operations group to request a restoral of the file from a backup copy. In the case of minor
damage, repair through use of the editor ed(1) may be possible. In the latter case, after such
repair, the following command must be executed:

admin —z s.file

The purpose of this is to recompute the checksum to bring it into agreement with the actual
contents of the file. After this command is executed on a file, any corruption which may have
existed in that file will no longer be detectable.

REFERENCES
[1] Bell Laboratories, Documents for Use with the PwB Time-Sharing System.






SCCS User’s Guide

ADDENDUM

The following changes to the Source Code Control System are effective with the UNIX
SYSTEM III release.

1. Modified Commands

Three SCCS commands have been modified:

1. comb
2. get
3. scesdiff

Modifications to each of these commands are described below.
1.1 comb
e enhancement

Comb generates a shell procedure that, when executed, reduces the size of an
SCCS file. Because of temporary file naming conventions, two or more comb-
generated shell procedures could not be executed concurrently. Temporary files
are now uniquely named so that simultaneous execution is possible.

1.2 get
e enhancement

Previously the -i and -x keyletters (for forced inclusion or exclusion of deltas to
produce the generated lile) would imply the -k keyletter. That is, the generated
file would be created with mode 644 and identification keyword replacement
would be suppressed. The -i and -k keyletters no longer imply the -k keyletter.

e coding error correction

Under certain circumstances, temporary files that should only have existed for the
duration of the execution of get would not be removed when get terminated.
Temporary files are now properly removed.

1.3 scesdiff
© new capability
A new keyletter (-s), which takes a numeric argument, allows the user to specify

the file segmentation size that bdiff(1) (used by sccsdiff) will pass to diff(1). This
can be useful when a high system load causes diff to fail due to lack of space.

e change

The output of scesdiff is no longer piped through pr(l) by default. A new
keyletter (-n) specifies that the output is to be piped through pr but arguments
cannot be passed to pr as was the previous case. This alleviates scesdiff knowing
anything about pr.



SCCS User’s Guide

2. New Commands
Two new commands have been added to SCCS:
sact print current SCCS file editing activity.
unget undo the effect opf a previous get for editing of an SCCS file.

The manual entries for these commands are provided in the Plexus Sys3 UNIX
Programmer’s Manual -- Volume 1.

N



SCCS Interface Program 1

Function and Use of an SCCS Interface Program

ABSTRACT

This memorandum discusses the use of a Source Code Control System Interface Program to
allow more than one user to use SCCS commands upon the same set of files.

1. Introduction

In order to permit UNIX* users with different user identification numbers (user IDs) to use SCCS
commands upon the same files, an SCCS interface program is provided to temporarily grant the
necessary file access permissions to these users. This memorandum discusses the creation
and use of such an interface program. This memorandum replaces an earlier version dated
March 1, 1978.

2. Function

When only one user uses SCCS, the real and effective user IDs are the same, and that user ID
owns the directories containing SCCS files. However, there are situations (for example, in large
software development projects) in which it is practical to allow more than one user to make
changes to the same set of SCCS files. In these cases, one user must be chosen as the
“owner” of the SCCS files and be the one who will “administer” them (e.g., by using the admin
command). This user is termed the SCCS administrator for that project. Since other users of
SCCS do not have the same privileges and permissions as the SCCS administrator, they are not
able to execute directly those commands that require write permission in the directory containing
the SCCS files. Therefore, a project-dependent program is required to provide an interface to the
get, delta, and, if desired, rmdel, cdc, and unget commands.'

The interface program must be owned by the SCCS administrator, must be executable by non-
owners, and must have the set user ID on execution bit on (see chmod(1)?), so that, when
executed, the effective user ID is the user ID of the administrator. This program'’s function is to
invoke the desired SCCS command and to cause it to inherit the privileges of the SCCS
administrator for the duration of that command's execution. In this manner, the owner of an
SCCS file (the administrator) can modify it at will. Other users whose login names are in the
user list® for that file (but who are not its owners) are given the necessary permissions only for
the duration of the execution of the interface program, and are thus able to modify the SCCS files
only through the use of delta and, possibly, rmdel and cdc.

3. A Basic Program

When a UNIX program is executed it is passed (as argument 0) the name by which it is invoked,
followed by any additional user-supplied arguments. Thus, if a program is given a number of
links (names), it may alter its processing depending upon which link is used to invoke it. This
mechanism is used by an SCCS interface program to determine which SCCS command it should
subsequently invoke (see ezec(2)).

UNIX is a Trademark of Bell Laboratories.

1. Other SCCS commands either do not require write Permission in the directory containing SCCS files or are
(generally) reserved for use only by the administrator.

2. All references of the form name (N) refer to item name in section N of the UNIX User's Manual.

3. This is the list of login names of users who are allowed to modify an SCCS file by adding or removing deltas. The
login names are sPecified using the admin (1) command.



2 SCCS Interface Program

A generic interface program (“inter.c”, written in C) is shown in Attachment I. Note the
reference to the (unsupplied) function “filearg”. This is intended to demonstrate that the
interface program may also be used as a pre-processor to SCCS commands. For example,
function “filearg” could be used to modify file arguments to be passed to the SCCS command by
supplying the full pathname of a file, thus avoiding extraneous typing by the user. Also, the
program could supply any additional (default) keyletter arguments desired.

4. Linking and Use

In general, the following demonstrates the steps to be performed by the SCCS administrator to
create the SCCS interface program. It is assumed, for the purposes of the discussion, that the
interface program “inter.c” resides in directory "/x1/xyz/sccs”. Thus, the command sequence:

cd /x1/xyz/sccs
cc ... inter.c -0 inter ...

compiles “inter.c” to produce the executable module “inter” (the ellipses represent other
arguments that may be required). The proper mode and the set user ID on execution bit are set
by executing:

chmod 4755 inter
Finally, new links are created, by (for example):*

In inter get
In inter delta
In inter rmdel

Subsequently, any user whose shell parameter PATH (see sh(1)) specifies directory
“/x1/xyz/sccs” as the one to be searched first for executable commands, may execute, for
example:

get —e /x1/xyz/sccs/s.abc

from any directory to invoke the interface program (via its link “get”). The interface program
then executes “/usr/bin/get” (the actual SCCS get command) upon the named file. As previously
mentioned, the interface program could be used to supply the pathname "/x1/xyz/sccs”, so that
the user would only have to specify:

get —e s.abc

to achieve the same results.

5. Conclusion

An SCCS interface program is used to permit users having different user IDs to use SCCS
commands upon the same files. Although this is its primary purpose, such a program may also
be used as a pre-processor to SCCS commands since it can perform operations upon its
arguments.

4. The names of the links may be arbitrary, Provided the interface Program is able to determine from them the names
of SCCS commands to be invoked.



Attachment |
SCCS Interface Program

SCCS Interface Program “inter.c”

main(argc, argv)
int argc;
char *argv[];

register int i;
char cmdstr[LENGTH]

/t
Process file arguments (those that don't begin with ‘—').
*/
for (i = 1;i < argc; i++)
if (argv(i][0] '= —)
argv[i] = filearg(argvlil);

/t

Get ‘'simple name’ of name used to invoke this program
(i.e., strip off directory-name prefix, if any).

*/

argv[0] = sname(argv[0));

/*

Invoke actual SCCS command, passing arguments.
*/

sprintf(cmdstr, "/usr/bin/%s", argv[0]);
execv(cmdstr, argv);

April 1980






A Dial-Up Network of UNIX Systems

D. A. Nowitz
M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

A network of over eighty UNIXt computer systems has been established
using the telephone system as its primary communication medium. The net-
work was designed to meet the growing demands for software distribution and
exchange. Some advantages of our design are:

- The startup cost is low. A system needs only a dial-up port, but systems
with automatic calling units have much more flexibility.

- No operating system changes are required to install or use the system.

- The communication is basically over dial-up lines, however, hardwired
communication lines can be used to increase speed.

- The command for sending/receiving files is simple to use.

1. Purpose

The widespread use of the UNIX system' within Bell Laboratories has produced problems
of software distribution and maintenance. A conventional mechanism was set up to distribute
the operating system and associated programs from a central site to the various users. How-
ever this mechanism alone does not meet all software distribution needs. Remote sites gen-
erate much software and must transmit it to other sites. Some UNIX systems are themselves
central sites for redistribution of a particular specialized utility, such as the Switching Control
Center System. Other sites have particular, often long-distance needs for software exchange;
switching research, for example, is carried on in New Jersey, lllinois, Ohio, and Colorado. In
addition, general purpose utility programs are written at all UNIX system sites. The UNIX system
is modified and enhanced by many people in many places and it would be very constricting to
deliver new software in a one-way stream without any alternative for the user sites to respond
with changes of their own.

Straightforward software distribution is only part of the problem. A large project may
exceed the capacity of a single computer and several machines may be used by the one group
of people. It then becomes necessary for them to pass messages, data and other information
back an forth between computers.

Several groups with similar problems, both inside and outside of Bell Laboratories, have
constructed networks built of hardwired connections only.2:3 Qur network, however, uses both
dial-up and hardwired connections so that service can be provided to as many sites as possible.

tUNIX is a Trademark of Bell Laboratories.



2 UUCP Network

2. Design Goals

Although some of our machines are connected directly, others can only communicate over
low-speed dial-up lines. Since the dial-up lines are often unavailable and file transfers may take
considerable time, we spool all work and transmit in the background. We also had to adapt to a
community of systems which are independently operated and resistant to suggestions that they
should all buy particular hardware or install particular operating system modifications. There-
fore, we make minimal demands on the local sites in the network. Our implementation requires
no operating system changes; in fact, the transfer programs look like any other user entering the
system through the normal dial-up login ports, and obeying all local protection rules.

We distinguish “active” and “passive” systems on the network. Active systems have an
automatic calling unit or a hardwired line to another system, and can initiate a connection. Pas-
sive systems do not have the hardware to initiate a connection. However, an active system can
be assigned the job of calling passive systems and executing work found there; this makes a
passive system the functional equivalent of an active system, except for an additional delay
while it waits to be polled. Also, people frequently log into active systems and request copying
from one passive system to another. This requires two telephone calls, but even so, it is faster
than mailing tapes.

Where convenient; we use hardwired communication lines. These permit much faster
transmission and multiplexing of the communications link. Dial-up connections are made at
either 300 or 1200 baud; hardwired connections are asynchronous up to 96<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>