SUPPLEMENT TO VOLUMES I \& II

User's Monual

The information in this manual has been carefully reviewed and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the equipment described any license under the patent right of Pro-Log Corporation or others.

The material in this manual is subject to change, and Pro-Log Corporation reserves the right to change specifications without notice.

WARRANTY: Seller warrants that the articles furnished hereunder are free from defects in material and workmanship and perform to applicable, published PRO-LOG specifications for one year from date of shipment (two years for M980 Control Units). This warranty is in lieu of any other warranty expressed or implied. In no event will Seller be liable for special or consequential damages as a result of any alleged breach of this warranty provision. The liability of Seller hereunder shall be limited to replacing or repairing, at its option, any defective units which are returned. Equipment or parts which have been subject to abuse, misuse, accident, alteration, neglect, unauthorized repair or installation are not covered by warranty. Seller shall have the right of final determination as to the existence and cause of defect. As to items repaired or replaced, the warranty shall continue in effect for the remainder of the warranty period, or for ninety (90) days following date of shipment by Seller of the repaired or replaced part whichever period is longer. No liability is assumed for expendable items such as lamps and fuses. No warranty is made with respect to custom equipment or products produced, to Buyer's specifications except as specifically stated in writing by Seller and contained in the contract.

Copyright (c) 1981 by Pro-Log Corporation, Monterey, CA 93940. All rights reserved. Printed in the U.S.A. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher.
Table of Contents Pages
Miscellaneous Corrections to Vol. 1 1
Miscellaneous Corrections to Vol. II $1 \& 2$
Addenda to Vol. I
Buffer Edit - RAM Split 7-35
Buffer Edit - RAM Interleave 7-38
Addenda to Vol. II
Application Note A - Tektronix 8550 and M980/9818-14 Interface..A-1Application Note B - AMC Systems 8 and 29 Interface with M980..B-1
$\left\{\begin{array}{l}20-3 \mathrm{~A} \\ 20-3 \mathrm{~B}\end{array}\right.$
RS-232C Format Selection (with Address Offset). 20-3C 20-3D 20-3E
RS-232C 16K Wraparound Features of M980 RAM Buffer 20-20A 20-20B 20-20C
Replacement Pages for Vol. I
Error Indications and Operation Codes..........................13-1 \& 13-2

MI SCELLANEOUS CORRECTIONS TO
VOLUME I OF M980 USER'S MANUAL

PAGE
i

V

CORRECTIONS
Some of the referenced pages should be changed: FROM TO
5-17 5-21

5-2 5-3
5-6 5-5
5-8 5-9
5-11 5-13
5-13 5-15
Section 12 title should read:
BUFFER APPLICATIONS

Example 1	Page 12-1
Example 2	Page 12-2
Example 3	Page 12-3

5-23 Add note following first paragraph:
"NOTE: Illegal Bit Check does not apply to gang modules. If an attempt is made to perform an Illegal Bit Check with a gang module, an 'EO' will be displayed.'

Add note following first paragraph:
"NOTE: Illegal Bit Check does not apply to gang modules. If an attempt is made to perform an illegal Bit Check with a gang module, an 'EO' will be displayed."

Under number 6, change the word "deleted" to read "affected".

Under number 7, the display should read "1000".
Add to first paragraph:
"Some gang modules may vary from these operations. See the individual operating instructions."

MISCELLANEOUS CORRECTIONS
T0 VOLUME II OF M980 USER'S MANUAL

PAGE	CORRECTIONS
17-5	Under COMPARE operations, \#5 should read: "Key in new format (01, 03, or 05) if desired."
18-3	Under "TTY OPERATING SEQUENCES (DATA ONLY) 9812-02" \#5. delete "Asterisk(*),".
18-4	Under PROGRAM OPERATING SEQUENCE, \#1: delete the word "listed" and replace with "programmed".
18-5	Under TTY ERRORS, second line from the bottom: delete "address field definition" and replace with "data transmission".
19-1	Photograph is incorrect. An M304 adapter is not needed to use the 9814 computer interface.
19-10	Figure 19-9 "Initialization": Each flow diagram should read as follows; START, SET INTERLOCK AND MODE ACTIVE, ADDRESS ACTIVE?, A. Change the note to read; NOTE: DEPRESS RESET AND KEY 4, OBSERVE 9814-00 IN DISPLAY,. Delete entire square "Set Mode Active."
20-3	Under 9818-00 "Remotely:" Add note: "After receiving the last data character the M980 will respond with a CR and LF".
20-6	Under 9818-06 LOCALLY: change ref. "page 20-7" to read "page 20-3". Under Locally: add note "After receiving the last data character the M980 responds with a CR and LF.
	Under 9818-10, first paragraph: change ref. "page 20-3" to read "page 20-7" delete "or via remote interface." Add note after title: "(4800 baud maximum)."
20-7	Under 9818-11 REMOTELY: add note: "No 'ACK' or 'NAK' is sent after receiving end-of-record."
	Under 9818-11, first paragraph: delete "or via remote interface". Under Remotely: add after "NAK" the words "and a CR,LF". Add note after title: "(4800 baud maximum)."

20-7 Under 9818-12, first paragraph: delete "or via remote interface". Add note after title: "(4800 baud maximum)."

20-9

20-11

20-12

20-14

20-15

20-17

20-19

20-20

Under 9818-16, first paragraph: delete "or via remote interface".

Under 9818-18, first paragraph: delete "or via remote interface".

The last sentence on this page should read:" Keying ENTER after the QXY or QXN command returns the M980 to the last active 9818 format.

In the second paragraph, after "MDS IOB" add "or M304 Adapter." Add note to figure 20-3 that a jumper can alternately be added between pins 4 and 5 of the M304 adapter.

The IC number and type referenced in the third paragraph of the "Baud Rate" section plus the addresses in the "Location" section of the table are for the MDS\#230.

For the MDS\#235, the IC number is A82 and the IC type is a 2732. The addresses for the MDS\#235 are E89A (09A), E89B (09B), and E8A3 (0A3).

Under MOTOROLA EXORcisor II, fourth paragraph, following "...terminal.", add: "(See diagram below)".

Under MOTOROLA EXORcisor II, diagram shown beneath the fifth paragraph; add this note: The cable between the keyboard terminal and the M304 is the original cable sent with the MOTOROLA EXORcisor II. The cable between the M304 and the EXORcisor II is a cable with a male connector at one end and a female connector at the other end. The RC-18 cable from Pro-Log will provide this connection."

Under TEKTRONIX 8002A MDL, UPLOAD TO 8002A: Change \#2 to read: " 2 . Using the instructions on page 20-3, select the address field to be uploaded from the M980 RAM Buffer."

Under DTE AND DCE OPERATION, first paragraph, last line: replace "below" with "in Figure 20-7".

Buffer Edit - RAM Sp1it

The RAM Split allows data stored anywhere in the first half of the RAM Buffer to be divided into two separate blocks. The two blocks always start at exactly half and three-quarters of the total RAM Buffer, respectively. The block starting at half of the total RAM contains the data originally resident at the start address and every other address in the block that is split. The block starting at three-quarters of the total RAM contains the start address plus 1 , and every other address in the block that is split.

1. Select the switches as shown.

2. Depress RESET: The 8 hex displays are blank.

3. Depress EDIT: "E 00 " is displayed to indicate Edit mode.

4. Using the hex keyboard, key in "10" to select the RAM Split mode.

5. Depress ENTER. Display shows the Default Start and End Addresses of the RAM data field to be split. (Default size is one-half of Buffer size.)

6. Accept Default field by pressing ENTER, or redefine using hex keyboard; then press ENTER to accept new field.

NOTE: Keyed-in field must reside within first half of the total RAM Buffer.

8. RAM SPLIT EXAMPLES

a. 4 K BUFFER EXAMPLE: (DEFAULT SIZE)

0000
Data Block to be Split $(0000 \longrightarrow 07 \mathrm{FF})$

07 FF
0800
EVEN Address Data Stored at

OBFF
0C00

0FFF
$(0800 \longrightarrow 0 B F F)$
ODD Address Data Stored at ($0 \mathrm{C} 00 \longrightarrow 0 \mathrm{FFF}$)
b. 8 K BUFFER EXAMPLE: (DEFAULT SIZE)

Data Block to be Split $(0000 \longrightarrow 0 \mathrm{FFF})$

0FFF EVEN Address Data Stored at
$(1000 \longrightarrow 17 \mathrm{FF})$

ODD Address Data
(1800 $\longrightarrow 1$ FFF)
$\rightarrow 17$ F)
c. 16 K BUFFER EXAMPLE: (DEFAULT SIZE)

0000

Data Block to be Split
$(0000 \longrightarrow 1 \mathrm{FFF})$

EVEN Address Data
$(2000 \longrightarrow 2 \mathrm{FFF})$
2FFF
3000
ODD Address Data
(3000 $\longrightarrow 3$ FFF)

3FFF

Buffer Edit - RAM Interleave

The RAM Interleave allows data stored in two separate blocks to be alternately stored in a defined area in the first half of the RAM Buffer. The two blocks always start at exactly half and three-quarters of the total RAM Buffer, respectively. The block starting at half the total RAM contains the start address and every other address in the block to be interleaved. The block starting at three-quarters of the total RAM, contains the start address plus 1 , and every other address in the block to be interleaved.

1. Select the switches as shown.
2. Depress RESET: The 8 hex displays are blank.

3. Depress EDIT: "E 00 " is displayed to indicate Edit Mode.

4. Using the hex keyboard, key in "11" to select the RAM Interleave mode.

5. Depress ENTER. Display shows the Default start and end addresses of the RAM Buffer where the data will be stored. (Default size is one half Buffer size.)

16K RAM Buffer
6. Accept Default field by pressing ENTER, or redefine using hex keyboard; then press ENTER to accept new field.

NOTE: Keyed-in field must reside within the first' half of the total RAM Buffer.

7. When the RAM Interleave operation is complete, the display indicates "F" for finished.

8. RAM INTERLEAVE EXAMPLES:
a. 4 K BUFFER EXAMPLE: (DEFAULT SIZE)

0000
Data Block to Store Interleave Data $(0000 \longrightarrow 07 \mathrm{FF})$

07 FF
0800
EVEN Address Data $(0800 \longrightarrow 0 \mathrm{BFF})$
0 BFF
0C00
ODD Address Data $(0 \mathrm{COO} \longrightarrow 0 \mathrm{FFF})$
0FFF
b. 8 K BUFFER EXAMPLE: (DFFAULT SIZE)

0000

Data Block to Store Interleave Data $(0000 \longrightarrow 0 \mathrm{FFF})$

0 FFF
1000
17 FF
1800
ODD Address Data $(1800 \longrightarrow 1 \mathrm{FFF})$

1FFF
c. 16 K BUFFER EXAMPLE: (DEFAULT SIZE)

0000
Data Block to Store Interleave Data $(0000 \longrightarrow 1 \mathrm{FFF})$

1FFF
2000
2FFF
3000

There are two methods for interfacing the M980/9818-14 with the Tektronix 8550. One requires no modifications. The other requires a jumper from pin 8 to pin 20 on the M304 adapter.

METHOD 1 (No Modifications)

Operating Sequence

NOTE: Do not install M304 adapter with M980 power ON.

1. Install M304 adapter in the parallel interface connector. Connect the terminal connector to J101 of the Tektronix 8550 DOS/50 via an RC-18 cable or equivalent.
2. Switch power on, and turn on the on-1ine modem switch.
3. Select 9818-14 via the hex keyboard, using the procedure on page 20-3 of the M980 User's Manual (Vol. II).

To Download to the M980 from the Tektronix 8550

The 8550 executes the WHEX command, to dump the file to J101 and thereby to the M980 RAM Buffer.

The 8550 is capable of downloading data to the M980 RAM Buffer in three formats. To dump in:
a. TEK HEX format, enter to the 8550: WHEX: REMO (Start Address) (End Address) 00
b. INTEL format, enter to the 8550:

WHEX: I REMO (Start Address) (End Address) 00
c. MOTOROLA format, enter to the 8550:

WHEX: M REMO (Start Address) (End Address) 00

Data in the program memory from the Start Address to the End Address, inclusive, transfers in the selected format to the M980 RAM Buffer, one line at a time (see "Address Offset" description, p. 20-3A). If a checksum error occurs, an "E6" is displayed. The M980 and 8550 must then be reset and the operation rerun. When the operation is completed, the 8550 prints the DOS/50 Prompt ().

To Upload to the Tektronix 8550 from the M980.

Execution of the RHEX command by the 8550 , before a local list operation, initiates the upload operation.

1. The 8550 is capable of receiving data from the M980 RAM Buffer in three formats. To upload in:
a. TEK HEX format, enter to the 8550:

RHEX: REM1
b. INTEL format, enter to the 8550:

RHEX: I REM1
c. MOTOROLA format, enter to the 8550: RHEX: M REM1
2. Key in Start and End Address, using the hex keyboard on the M980.
3. Depress ENTER.

The M980 outputs the RAM Buffer data located between the Start and End Addresses to the 8550 's system memory, line by line in the selected format (see "Address Offset" description, p. 20-3A). When uploading is completed, the 8550 prints the DOS/50 Prompt ().

Figure A-1 M980/8550 Interconnect

METHOD 2 - (Modifications)

Operating Sequence

NOTE: Do not install M304 adapter with M980 power on.

1. Install M304 adapter in the parallel interface connector. Connect the modem connector to J103 (paper tape port) of the Tektronix 8550 via an RC-18 cable or equivalent.
2. Switch power on, and turn on the on-1ine modem switch.
3. Select 9818-14 via the hex keyboard, using the procedure on page 20-3 of the M980 User's Manual (Vol. II).

To Download to the M980 from the Tektronix 8550

The 8550 executes the WHEX command, to dump the file to J103 and thereby to the M980 RAM Buffer.

Enter to the 8550: WHEX PPTP (Start Address)(End Address)

Data in the program memory from the Start Address to the End Address, inclusive, transfers in TEK-HEX format to the M980 RAM Buffer, one line at a time. If a checksum error occurs, an "E6" is displayed. The M980 and 8550 must then be reset and the operation rerun. When the operation is completed, the 8550 prints: *WHEX* EOJ.

To Upload to the Tektronix 8550 from the M980

Execution of the RHEX command by the 8550 , before a local list operation, initiates the upload operation.

1. Enter to the 8550: RHEX PPTR.
2. After selecting the 9818-14 active state on the M980, depress ENTER and key in the Start and End Addresses, using the hex keyboard.
3. Depress ENTER on the M980.

The M980 outputs the RAM Buffer data located between the Start and End Addresses to the 8550's system memory, line by line in TEK-HEX format. When uploading is completed, the 8550 prints: *RHEX* EOJ.

When interfacing the M980 with AMC systems:

1. Use the M304 adapter and an RC-18 or equivalent cable.
2. Make sure that the AMC system has an RS-232C port available. Set the port for 4800 baud maximum, and even parity.
3. Connect the assigned AMC RS-232C port to the M304 modem connector, via the RS-232C cab1e.
4. P1ug the M304 adapter into the paralle1 I/O connector on the M980.
5. Turn power on the M980 and the AMC system. Note: Do not install M304 adapter while the M980 power is on.
6. Place the M304 switches in the ON-LINE and MODEM ON positions.

To Download to the M980 RAM Buffer from AMC Systems 8 or 29

1. Determine the assigned RS-232C port name on the AMC system. Example: UPI:
2. On the M980, depress RESET, key 8 , key 1 , key 8 , and ENTER. The M980 display shows "18 AAA".
3. Type on the AMC console: STAT PUN: = UPI:

PIP PUN: = (file name to be downloaded)

The data stored in the file named is downloaded to the M980 RAM Buffer in the MOS TECH format. The left-most display on the M980 flashes " 1 " while the transfer is taking place. When completed, the M980 display shows "18 AAA".

To Upload to AMC System 8 or 9 from the M980 RAM Buffer

1. Determine the assigned RS-232C port name on the AMC system. Example: URI:
2. Type on the AMC console: STAT RDR: = URI: PIP (file name) $=$ RDR:
3. On the M980, depress RESET, key 8 , key 1 , key 2 , ENTER, and ENTER. The M980 display shows the Start and End addresses of the M980 RAM Buffer. Depress ENTER to upload the entire contents of the RAM Buffer or, using the M980 keyboard, key in the Start and End Addresses of the data you wish to upload to the AMC system. Depress ENTER

The data stored between the previously selected Start and End addresses of the M980 RAM Buffer is transferred to the AMC system in the INTEL HEX format. (This format sends a "Control Z " character, which is required by the AMC system to terminate a transfer.) The left-most display on the M980 flashes " 0 " while the transfer is taking place. When completed, the M980 display will show "12 AAA".

RS-232C FORMAT SELECTION (With Address Offset)

This sequence allows the substitution of a Default Address for the First Address received or listed. The Address Offset is automatically determined by the M980 and is subtracted from, or added to, all addresses in the Receive and List modes until the m980 is reset and a new Default Address is selected.

Operation

1. Instal1 the M304 adapter on the M980 (power must be off), using RC-18 cable or equivalent. Connect to system via M304 terminal or modem connector, whichever is appropriate. Turn the M304 on-line switch on and modem on if attached. Select the switches as shown.
2. Turn M980 power on. Depress RESET. The 8 hex displays are blank.

3. Depress key 8 to select the 9818 RS-232C option. Display shows "9818 01" as a Default format.

4. Select a new format using hex key pad. 9818-10 Intel format is shown. Note: If an "E5" is displayed, check that the CTS and/or DTR lines are in the active (high) state.

5. Depress the EDIT key to accept the selected format. The display shows "0000" to indicate the Default Start Address (explained later).

Default Start Address
6. If a different Default Start Address is desired, use the hex key pad to enter the fourdigit address. The example shown uses address "0100" as the Default Address (explained later).
7. Depress ENTER. The Default Start Address is accepted. Display shows the selected format is now active for downloading (receiving) or remotely uploading (listing) the M980 Buffer data.
8. Any output of data is indicated by a "0" in the left-most display. Any input of data is indicated by a "1" in the left-most display. Upon completion, the "0" or "1" is removed from the display. The format is now active again for downloading or uploading.
9. To upload (1ist) data "loca11y," depress ENTER. The First and Last Addresses or the previously selected Start and End Addresses (step 10) of the M980 RAM Buffer are displayed. The example shown is from reset and with a 16 K RAM Buffer installed.

10. To upload a limited address field, key in new Start and End Addresses, using the hex keys.
11. Depress ENTER. The data located between the previously displayed addresses are uploaded to the remote source, in the selected format. A "0" is displayed in the left-most display as described in step 8.

Downloading (Receiving)

The Default Start Address " 0000 ", or the entered Default Start Address (step 6), is compared to the First Incomming Address. If the Default Start Address is smaller than the First Incomming Address, the difference (Address Offset) is subtracted from all incomming addresses. If the Default Start Address is greater than the First Incomming Addresses, the difference (Address Offset) is added to all incomming addresses. The result of this addition or subtraction is then used as the Absolute Address of the RAM Buffer.

EXAMPLE: Using the Intel format 9818-10, the Default Start Address (step 6) is " 0100 ". The incomming addresses are between "E000" and "FFFF". (See figure 20-3E.)

```
    E000 = First Address received.
- 0100 = Default Start Address.
    DF00 = Address Offset
    E000 = First Address received
- DF00 = Address Offset.
    0100 = Absolute Address of RAM Buffer
    FFF0 = Last Address received.
- DF00 = Address Offset.
    20F0 = Absolute Address of RAM Buffer.
```

Note: If an upload is performed after a download and before reset, the same address offset is used. This allows outgoing addresses to match incoming addresses without reinitializing a Default Address.

Uploading (Listing)

When uploading data from the M980 RAM Buffer, the Default Start Address is compared to the RAM Buffer Start Address. If the Default Start Address is smaller than the RAM Buffer Start Address, the difference (Address Offset) is subtracted from all outgoing addresses. If the Default Start Address is greater than the RAM Buffer Start Address, the difference (Address Offset) is added to all outgoing addresses. The result of this subtraction or addition is then used as the Absolute Address to be sent.

EXAMPLE: Using the Intel format 9819-10, the Default Start Address (step 6) is "E000". The RAM Buffer Start and End Addresses (step 9) are "0100" and "20FF", respectively.
(See figure 20-3E.)

```
    E000 = Default Address
    0100 = First (Start) Address of RAM Buffer.
    DF00 = Address Offset.
    0100 = First Address of RAM Buffer to be sent
+ DF00 = Address Offset.
    E000 = First Absolute Address sent.
    20F0 = Last Address of RAM Buffer to be sent.
+ DF00 = Address Offset
    FFF0 = Last Absolute Address sent.
```


Figure 20-3E. Downloading.

Figure 20-3E. Uploading.

INSERT ON PAGE 20-20 AFTER STEP 7

RS-232C 16K WRAPAROUND FEATURES OF M980 RAM BUFFER

In all RS-232C formats where the address information is presented with the incoming data stream (Intel, Motorola, Tek-Hex, etc.), the Absolute Addresses are accepted and wraparound occurs after the end of each 16 K boundary is reached (i.e., addresses 3 FFF , 7 FFF , BFFF, and FFFF).

The M980 RAM Buffer is addressed with a 14 -bit address bus. When the Absolute Address (16 bit) is received, the two high-order address bits are ignored. When 16 K boundaries are crossed, the Buffer is addressed at location 0000 hex. For example: Absolute Address 4000 hex (01000000 0000 0000) addresses the buffer at address 0000 hex (000000000000 0000) .

These bits are ignored by the M980

As a result, data wraparound occurs at 16 K boundaries. If the buffer is less than 16 K , data written to nonbuffered locations are lost.

M980 BUFFER SIZE CONSIDERATIONS

16K RAM Buffer: All absolute addresses and their associated data are accepted and wraparound occurs after addresses 3FFF, 7FFF, BFFF, and FFFF (see Fig. 20-5A).

8K RAM Buffer: Only absolute addresses 0000 through $1 F F F, 4000$ through $5 F F F, 8000$ through $9 F F F$, and $C 000$ through DFFF are accepted. All other absolute addresses and their data are lost (see Fig. 20-5B).

4K RAM BUFFER: Only absolute addresses 0000 through 0FFF, 4000 through $5 F F F, 8000$ through $8 F F F$, and C 000 through CFFF are accepted. All other absolute addresses and their data are lost (see Fig. 20-5C).

DOWNLOADING DATA FROM A DEVELOPMENT SYSTEM

When downloading data to the 9980 from a development system, in which the program being downloaded is located in absolute addresses not available in the M980 RAM Buffer, the following procedure applies:

1. Move the program from its present memory locations to start at a memory location located on a 16 K boundary. The 16 K boundaries are located at addresses $0000,4000,8000$, and C000. As an alternative, use the address offset procedure on page 20-3A.
2. Download the program to the M980, making sure that no more data is downloaded than the M980 RAM Buffer size can accommodate.

BUFFER
ADDRESSES

3 FFF		3FFF	7FFF	BFFF FFFF	
			VALID	DDRE	
0000	16 K RAM	0000	4000	8000	C000

ABSOLUTE
ADDRESSES

Figure 20-5A Example of 16 K RAM Buffer and the Addresses Accepted as Valid Addresses for Loading Data

3 FFF		3FFF	7FFF	BFFF	FFFF	These absolute addresses and their associated data are lost.
	8 K RAM not installed	INVALID ADDRESSES				
$\frac{2000}{1 \mathrm{FFF}}$		1FFF	5FFF	9FFF	$\overline{\text { DFFF }}$	
	8K RAM		LID	RES		These absolute addresses and their associated data are accepted.
0000		0000 ,	4000	8000	C000	

BUFFER
ADDRESSES

All absolute addresses and their associated data are accepted.

Figure 20-5B Example of 8 K RAM Buffer and the Addresses Accepted as Valid Addresses for Loading Data

BUFFER
ADDRESSES

3 FFF	12 K RAM not in- stalled
0 FFF	Standard 4 K RAM
0000	

ABSOLUTE
ADDRESSES
\(\left.$$
\begin{array}{llll}\text { 3FFF } & \text { 7FFF } & \text { BFFF } & \text { FFFF }\end{array}
$$ \begin{array}{l}These absolute

addresses and their

associated data are\end{array}\right]\)| lost. |
| :--- | :--- | :--- |

Figure 20-5C Example of 4 K RAM Buffer and the Addresses Accepted as Valid Addresses for Loading Data

ERROR INDICATIONS AND OPERATION MODES

ERROR INDICATIONS

CODE	EXPLANATION
E0	Set-up error. The Source, Destination, or MFG toggle switches are not in the proper position, e.g. a non-valid operation such as program MASTER.
E1	Data error. A failure to Blank Check, Program, Compare.
E2	No option. Option selected does not exist.
E3	Address error. Performing an operation and the address given cannot be complied with. Example: Duplicate Master to Buffer. If you try to move a 2K program into the last 1 K of Buffer, this error indication will appear prior to attempting the operation.
E4	No Personality Module. A Personality Module is not installed. Buffer operation may continue.
E5	Option Interface not ready. Option selected, but when checked, the interface is not properly hooked up. Example: 9818 RS232C adapter installed but ON-LINE/OFF-LINE switch is in the OFF-LINE position.
E6	Communication CHECKSUM error. When using one of the interfaces, in which the checksum of each line is sent over the interface, and the checksum does not match, this error will be displayed. An example: Intel Format RS232C.
E7	Remote control error indication: Response to the QXN command.
E8	Personality Module Preliminary Test Failure (see individual operating instruction).

OPERATION CODES

CODE (DISPLAY)	EXPLANATION
	Auto Mode Selected. Auto Blank Check Active. Auto Blank Check Error.(MFG Mode only).
$\begin{array}{lllllll} \mathbf{A} & \cdot & \mathbf{C} & \text { A } & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \cdot & \mathbf{C} & \cdot & . & \mathbf{E} & \mathbf{1} \end{array}$	Auto Compare Active. Auto Compare Error (MFG Mode only).
$\begin{array}{llllllll} \mathbf{A} & \cdot & \mathbf{D} & \cdot & \cdot & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \cdot & \mathbf{D} & . & \cdot & . & \mathbf{E} & \mathbf{1} \end{array}$	Auto Duplicate Active. Auto Duplicate Error (MFG Mode only).
A F	Auto Mode Finished.
$\begin{array}{lllllll} \hline \mathbf{B} & \cdot & \cdot & \cdot & . & \dot{1} \\ \mathbf{B} & \cdot & \cdot & \cdot & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{B} & \cdot & . & . & . & \mathbf{E} & \mathbf{1} \\ \mathbf{B} & \cdot & . & . & . & \mathbf{F} & . \end{array}$	Blank Check Selected. Blank Check Active. Blank Check Error (MFG Mode only). Blank Check Finished.
$\begin{array}{lllll} \mathbf{C} & \cdot & \dot{A} & \dot{A} & \dot{1} \\ \mathbf{C} & . & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{C} & . & . & \mathbf{E} & 1 \\ \mathbf{C} & . & . & \mathbf{F} & . \\ \hline \end{array}$	Compare Selected. Compare Active. Compare Error (MFG Mode only). Compare Finished.
	Duplicate Selected. Duplicate Active. Duplicate Error (MFG Mode only). Duplicate Finished.

Note: A period (.) denotes a blank display.

OPERATION CODES

Note: A period (.) denotes a blank display.

2411 Garden Road
Monterey, California 93940
Telephone (408) 372-4593
TWX: 910-360-7082

