STD 7000
7501
Medium Power DC Driver Card

USER'S MANUAL

NOTICE

The information in this document is provided for reference only. Pro-Log does not assume any liability arising out of the application or use of the information or products described herein.

This document may contain or reference information and products protected by copyrights or patents and does not convey any license under the patent rights of Pro-Log, nor the rights of others.

Printed in U.S.A. Copyright® 1981 by Pro-Log Corporation, Monterey, CA 93940. All rights reserved. However, any part of this document may be reproduced with Pro-Log Corporation cited as the source.

0
7501 Medium Power DC Driver Card
USER'S MANUAL PRELIMMNAHMY

C

CORPORATION

FORWARD

This manual explains how to use Pro-Log's 7501 Medium Power DC Driver Card. It is structured to reflect the answers to basic questions that you, the user, might ask yourself about the 7501 . We welcome your suggestions on how we can improve our instructions.
The 7501 is part of Pro-Log's Series 7000 STD BUS hardware. Our products are modular, and they are designed and built with second-sourced parts that are industry standards. They provide the industrial manager with the means of utilizing his own people to control the design, production, and maintenance of the company's products that use STD BUS hardware.
Pro-Log supports its products with thorough and complete documentation. Also, to provide maximum assistance to the user, we teach courses on how to design with, and to use microprocessors and the STD BUS products.
You may find the following Pro-Log documents useful in your work: Microprocessor User's Guide and the Series 7000 STD BUS Technical Manual. If you would like a copy of these documents, please submit your request on your company letterhead.

7501 MEDIUM POWER DC DRIVER CARD

TABLE OF CONTENTS

SECTION 1	Data Sheet
SECTION 2	Functional Description
SECTION 3	Mapping
SECTION 4	Electrical and Environmental Specifications
SECTION 5	Mechanical
SECTION 6	Operating Subroutines
SECTION 7	Assembly drawing and Schematic

0 7501

0

 STD Bus MEDIUM POWER DC DRIVER CARDThe 7501 provides sixteen independent DC output circuits for the 7000 Series STD BUS. Each open collector output circuit is capable of sinking up to +225 mA of current in the on-state and can withstand a +50 V output level in the off-state. Diode clamping is included to limit the output voltage when driving inductive loads. Separate usersupplied clamp voltage inputs are provided for each group of four outputs. Sixteen LEDs provide a visual indication of the state of each output.

FEATURES

- 16 Independent DC Output Circuits
- +225mA Current Sink Rate
- +50V Output Rating
- Diode Clamp for Driving Inductive Loads
- Ground Return for each Output Circuit
- LED Indicator for each Output Circuit
- Standard 40 -pin Flat Cable Connector
- Clear Plastic Safety Shields

PRO-LOG
GORPORATION

FUNCTIONAL
Operation
The 7501 converts TTL level signals supplied by the STD BUS to latched, negative true, open-collector DC drive signals. This conversion process begins by strobing eight bits of data into one of two fully decoded write-only output port latches. These latches are cleared at power on by the SYSRESET* signal. A medium power logic driver, as shown in the accompanying figures, converts the sixteen latched output signals to an inverted, open collector signal. The driver's outputs are then brought to a $40-\mathrm{pin}$ flat cable connector at the user interface card edge. Alternating ground and output wires minimize crosstalk on the flat cable.

When driving inductive loads, a diode clamp protects each medium power logic driver output from high voltage breakdown. This diode is connected between the user-supplied clamp voltage (+50 V or less) and the output signal line. When the logic driver is switched off (no current sink), the inductive current surge raises the collector output voltage above normal levels. When the output voltage exceeds the clamp voltage, the clamp diode will limit the collector voltage to approximately the clamp voltage. A separate clamp voltage input is provided for each group of four outputs (16 outputs, 4 groups) at the user interface connector. The clamp voltage must be greater than or equal to the offstate output voltage for each output, but less than +50 V . All output signals are monitored for the low (active) state by LEDs. A diode protects each LED from reverse voltage breakdown.

SECTION 3

MAPPING

The 7501 consists of two 8 -bit output ports that may be placed anywhere in the $1 / 0$ address space of $00-\mathrm{FF}$. These ports occupy two consectuive address locations. The 7501 is shipped with hexadecimal port address 40 (port 0 address) and port address 41 (port 1 address). These port addresses are selected by jumper wires. To remap the 7501 to another address set, the user connects one jumper wire on each of SX, SY, SZA and SZB as shown in the Card Address Selection diagram.

The $1 / 0$ address mapping and jumper selection table for 2 addresses per card shows where to place jumper straps to obtain any two sequential port addresses. in the hexadecimal range $00-\mathrm{FF}$. Using the lowest of the 2-digit hexadecimal addresses desired, find the most significant hexadecimal address digit along this vertical axis, and the least significant hex digit on the horizontal axis. For example, port addresses 40 and 41 are obtained by connecting jumpers at X2, YO, ZO and Z1.

The only restriction that applies in address selection for the 7501 is the lower of the two port addresses (40 as shipped) must occur only at every second possible address. For example, the sequence 41 and 42 is not allowed by the decoder.

The pad matrices adjacent to $\mathrm{U} 4, \mathrm{U} 5$ and U 6 are on 0.10 inch (0.25 cm) centers. The jumper wires may be conveniently replaced by wirewrap post if frequent address selection changes are anticipated.

I/O Address Decoder And Schematic For 2 Addresses Per Card

I/O Address Mapping and Jumper Selection Table for 2 Addresses Per Card.

Refer to the shcematic, Document \#105194
The 7501 uses three cascaded 74 LS 42 decoders (U4, U5 and U6) to decode address lines AO-A7. These decoders are enabled only when $10 R 0 \%$ and $10 E X P *$ is active. The $W R *$ signal is used to gate the select strobes from $U 6$ that control the output ports.

CHANGING THE 7501 PORT ADDRESS

Refer to the assembly diagram, Document \#105195
Locate deocders U4, U5 and U6 (74LS42) adjacent to the STD BUS edge connenctor. Each decoder device has a dual row of pads which form decoder output select matrices. Make one (and only one) connection to each of the matrices adjacent to U4 and U5. Make two connections to the matrices adjacent to U6.

The decoder jumper pad numbering figure shows the numbering of the pads adjacent to the decoder chips on the 7501. Also shown are the jumpers (at $X 2, Y$), SZA and SZB) which produce hexadecimal port addresses 40 and 4l, the selections made when the card is shipped.

DECODER JUMPER PAD NUMBERING

ELECTRICAL AND ENVIRONMENTAL SPECIFICATIONS 7501 Medium Power DC Output Card Electrical Specifications

| MNEM. | PARAMETER | | RECOMMENDED OPERATING LIMITS | | ABSOLUTE NON-OPERATING LIMITS | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | MIN. | TYP. | MAX. | MIN. | MAX. | UNIT |
| VAc | Supply voltage | 4.75 | 5.00 | 5.25 | 0.0 | 7.00 | Volt |
| $\mathbf{T}_{\mathbf{A}}$ | Free air temp. | 0 | 25 | 55 | -40 | 75 | ${ }^{\circ} \mathrm{C}$ |
| R_{H} | Humidity (1) | 5 | | 95 | 0 | 95 | $\% \mathrm{RH}$ |

User Electrical Characteristics over Recommended Operating Limits

MNEM.	PARAMETER	MIN.	TYP.	MAX.	UNIT
$\mathbf{V}_{\text {IL }}$	Low level user output voltage		.45	0.8	volt
$\mathbf{V}_{\text {OH }}$	High level user output voltage			50	volt
\mathbf{I} QL	Low level user output current			225	mA
$\mathbf{V C}$	User-supplied clamp voltage			50	volt
	User output current duty cycle			100	$\%$

STD BUS Electrical Characteristics over Recommended Operating Limits

MNEM.	PARAMETER	MIN.	TYP.	MAX.	UNIT
ICc	STD BUS supply current		600	1000	mA
	STD BUS input load	See STD BUS Edge Connector Pin List			
	STD BUS output drive	See STD BUS Edge Connector Pin List			

Switching Characteristics over Recommended Operating Limits

MNEM.	PARAMETER	FROM	TO	MIN.	TYP.	MAX.	UNIT
$T_{\text {PHI }}$	PROPAGATION TIME	STD DATA BUS	USER IFC		110		nsec.
$T_{\text {PLY }}$	PROPAGATION TIME	$"$	$"$		110		$n \mathrm{nsec}$
$T_{\text {PHR }}$	PROPAGATION TIME	USER IFC	STD DATA BUS		110		$\mu \mathrm{sec}$.
$T_{\text {PLY }}$	PROPAGATION TIME	$"$	$"$		110		$\mu \mathrm{sec}$.

STD/7501 USER CONNECTOR PIN LIST			
PIN NUMBER			NUMBER
MNEMONIC			MNEMONIC
Ground	2	1	Clamp 0-3
Ground	4	3	Output 0*
Ground	6	5	Output 1^{*}
Ground	8	7	Output 2*
Ground	10	9	Output 3*
Ground	12	11	Clamp 4-7
Ground	14	13	Output 4*
Ground	16	15	Output 5*
Ground	18	17	Output 6*
Ground	20	19	Output 7*
Ground	22	21	Clamp 8-11
Ground	24	23	Output 8*
Ground	26	25	Output 9*
Ground	28	27	Output 10*
Ground	30	29	Output 11*
Ground	32	31	Clamp 12-15
Ground	34	33	Output 12*
Ground	36	35	Output 13*
Ground	38	37	Output 14*
Ground	40	39	Output 15*

User Connector Pin List

Edge Connector Pin List

MECHANICAL SPECIFICATIONS

Refer to the Card Address Selection diagram for component placement information.
When placed in a Series 7000 STD BUS card rack, the 7501 requires clearances of $0.150^{\prime \prime}$ on the circuit side and $0.600^{\prime \prime}$ on the component side of the printed circuit board. These clearances are required for the safety shields on the component side and the circuit side of the 7501.

User Mating Connector Information
The 7501 uses a $40-$ pin male PC board header connector (3M PN 3432-130 or equivalent). The matching female socket for use in standard flat cable applications is 3M PN 3417-6040.

Card Address Selection

SECTION 6

7501 OPERATING SUBROUTINE MODULES
This section provides flow diagrams and subroutines to operate your 7501 card. These may be used intact, or used as models to construct subroutines for a specific application.

The subroutines are written in 8080-family assembly code and will execute on 8080 , 8085 , and $Z 80$ processors. The memory addresses selected are compatible with Pro-Log's 7801 (8085A) and 7803 (Z80) processor cards. The 7501 port addresses used are the address jumper selections made when the 7501 is shipped.

To use these subroutines in systems other than those described above, the memory and/or $1 / 0$ port addresses may require change for compatibility. The $1 / 0$ routines provided must be duplicated for the two ports on the 7501. The correct port address must be inserted in each routine.

The flow diagrams presented can be easily translated into the assembly code used by any microprocessor since they show the steps required to achieve 7501 operation without reference to a particular microprocessor.

The (Set Bit) routine can set a bit or bits on an output port. To use the routine, load the accumulator with the bits that should be changed and set the $H L$ pointer to a place in memory where the port status is stored, Setting a bit will cause the corresponding output driver to sink (conduct) current.

The (Clear Bit) routine can clear a bit or bits on an output port. To use the routine, load the accumulator with the bits that should be changed and set the HL pointer to a place in memory where the port status is stored. Clearing a bit will cause the corresponding output dirver to turn-off (not conduct current).

0

PRO-LOG CORPORATION

HEXADECIMAL			MNEMONIC			TITLE 7501 DATE
PAGE	ADR	INSTR.	LABEL	INSTR.	MODIFIER	
	0			LDAI		F LOAD A WITH BIT(S) TO BE SET
	1			-	XX	T
	2			LDPI	HL	F SET MEMORY POINTER
	3			-	$x \times$	
	4			-	$x \times$	t
	5	47	(SET BITS)	LDB	A	\&SAVE BITS IN B
	6	$7 E$		LDA	$M(H L)$	\&GET PRESENT PORT STATUS
	7	BO		ORA	B	$\checkmark O R I N$ NEW BITS
	8	77		STAN	(HL)	\&STORE NEW PORI STATUS
	9	D3		OPA		+SEND NEW DATA TO PORT
	A	$x \times$		-	$x \times$	\square
	B	ca		RTS		
	C					
	D					
	E					
	F					
	0			LDAI		IF LOAD A WITH BIT(S) TO BE CLEARED
	1			-	$x \times$	\square
	2			LDPI		I- SET MEMORY POINTER
	3			-	$x \times$	
	4			-	$x \times$	\square
	5	$2 F$	(CLEAR BTTS)	CMA		F COMPLEMENT BITS AND PUT IN B
	6	47		LDB	$\dot{\text { A }}$	\downarrow
	7	$7 E$		$\angle D A$	$m\left(H_{L}\right)$	-GET PRESENT PORT STATUS
	8	AO		ANA	B	- MASK OF BITS
	9	77		STAN	(HL)	- STORE NEW PORT STATUS
	A	D3		OPA		- SEND NEW DATA TO PDRT
	B	XX		-	xx	b
	C	ca		RTS		
	D					
	E					
	F					

-

USER'S MANUAL

2411 Garden Road
Monterey, California 93940
Telephone: (408) 372-4593
TWX: 910-360-7082
Telex: 171829

