
'!)~199? 

~et-t, '!) 

Co:n1'ide:r•:tia1 



THIS QUANTUM CONFIDENTIAL DOCUMENT IS FOR 
INTERNAL USE ONLY. IF IT IS DISPOSED OF, IT 

SHOULD BE DESTROYED BY SHREDDING. 



Rev. D History 

This revision of the DPSG V85x User Guide contain the following changes to its 
initial release versions (Rev. A, B & C) : 

1. re-edited sections to the Table of Contents and Chapter 7 

2. revised Chapter 6 

3. a new chapter about the Eclipse Hardware and Firmware Memory Map 

4. a new chapter about the System Cylinder 

5. new instructions to the Software Tools Installation, which include 

instructions for Windows NT 4.0 version 

Acknowledgments 

This user guide is a product of a consolidated effort contributed by the members of the Eclipse 
and Tsunami teams, APE, and DPSG Engineering Operations. Special acknowledgment must be 
made to: 

• Joe Cusimano, who wrote chapters 3, 7, and 8 

• John Masles, who wrote chapters 5, 6, and 9 

• Bruce Peterson, who wrote chapter 2 and edited the contents of this user 

manual 

• Zachary Toh, Frank Inzerillo, John Lauber, and Joe Liu, who also edited the 

contents of this user manual 

• Wilfredo Morales and Lynh Dang, who wrote chapter 4 and edited the 

production of this user manual 

• Bob Condie and Natalie McKinsey, who coordinated this documentation 

project 

A hypertext version of this user guide viewable through Netscape will also be available through: 

• DPSG DEVELOPMENT ENGINEERING\ENGR OPS Web server 

• ECLIPSEFW Web server 





TABLE OF CONTENTS 

Chapter 1 Introduction 

Chapter 2 Historical Background 

Chapter 3 Fundamentals 

3.1 C Language - Calvin Coding Practices ............................................................. 3-4 

3.1.1 'C' Coding Conventions ....................................................................... 3-4 

3.1.1.1 Indenting and Bracing ........................................................... 3-4 

3.1.1.2 Naming .................................................................................... 3-5 

3.1.1.3 Functions ................................................................................. 3-9 

3.1.1.4 External Declarations ............................................................ 3-10 

3.1.1.5 Function Headers ................................................................... 3-11 

3.1.1.6 File Headers ............................................................................ 3-12 

3.1.1.7 File Names ............................................................................... 3-12 

3.1.2 'C' Coding Safety Practices .................................................................. 3-13 

3.1.2.1 Run 'Lint' ................................................................................. 3-13 

3.1.2.2 The 'Basic Rule' of the Atlas Processor ................................ 3-15 

3.1.2.3 Safe Coding Practices ............................................................ 3-15 

3.1.3 'C' Coding Efficiency ............................................................................ 3-18 

3.1.3.1 Priorities .................................................................................. 3-18 

3.1.3.2 Tradeoffs .................................................................................. 3-18 

3.1.3.3 Basic Rules of Behavior ......................................................... 3-19 

3.1.3.4 Coding Techniques ................................................................ 3-20 

3.1.3.5 Coding Examples ................................................................... 3-29 

3.2 NEC V851 Microprocessor ................................................................................. 3-49 

3.2.1 Architecture ........................................................................................... 3-49 

3.2.1.1 Instruction Set ......................................................................... 3-49 

3.2.1.2 Registers· .................................................................................. 3-51 

3.2.1.3 Data Formats ........................................................................... 3-53 



TABLE OF CONTENTS 

3.2.1.4 Signed Operations .................................................................. 3-54 

3.2.1.5 Saturated Math ....................................................................... 3-54 

3.2.1.6 Hardware Multiply and Divide ........................................... 3-54 

3.2.1.7 Execution Speed ..................................................................... 3-55 

3.2.1.8 Pipeline Stalls .......................................................................... 3-55 

3.3 The Multi-Stack Kernal ....................................................................................... 3-57 

3.3.1 Advantages of a Multi-Stack Kernel .................................................. 3-57 

3.3.2 Disadvantages of a Multi-Stack Kernal ............................................. 3-58 

3.3.3 Context Switch Latency ........................................................................ 3-58 

3.3.4 The Kernel's ISR Handler ..................................................................... 3-58 

3.3.5 The Kernel's Scheduler ......................................................................... 3-60 

3.3.6 Pending, Posting, and Suspending ..................................................... 3-61 

3.3.7 Task States .............................................................................................. 3-61 

3.3.8 Tasks in the Eclipse Code ..................................................................... 3-62 

3.3.9 Multi-Stack Kernel RAM Structure .................................................... 3-62 

3.3.10 TCB, Context, and Stack Locations ..................................................... 3-62 

3.3.11 Kernel Functions ................................................................................... 3-66 

Chapter 4 Software Tools Installation (Setup & Configuration) 

4A Installation for Win 95 
4A.1 Obtaining Access Rights to Servers .................................................... 4-2 

4A.2 Drive Mapping ...................................................................................... 4-2 

4A.3 Intersolv Software (PVCS) Installation .............................................. 4-3 

4.3.1 Installing the Version Manager ............................................... 4-3 

4.3.2 Installing the Configuration Builder ...................................... 4-6 

4A.4 Green Hills Software Installatioin ...................................................... 4-8 

4.4.1 Installing Multi .......................................................................... 4-8 

4.4.2 Installing 850ice ......................................................................... 4-10 

4.4.3 Updating Strings ....................................................................... 4-13 

4.4.4 License Extension ...................................................................... 4-14 



TABLE OF CONTENTS 

4.4.5 Shortcut to Multi ......................................................................... 4-17 

4A.5 Codewright Installation ....................................................................... 4-19 

4A.6 Template Icons Installation .................................................................. 4-21 

4.6.1 Installing Atlas Icons .................................................................. 4-21 

4.6.2 Shortcut to Icons ......................................................................... 4-23 

4A.7 Path Check ............................................................................................. 4-25 

4A.8 Firmware Build ...................................................................................... 4-26 

4A.9 Project .re file Edit .................................................................................. 4-27 

4A.10 Codewright Browser Installation (Optional) .................................... 4-28 

4B Installation for Windows NT 4.0 
4B.1 Obtaining Access Rights to Servers .................................................... 4-2 

4B.2 Drive Mapping ...................................................................................... 4-2 

4B.3 Intersolv Software (PVCS) Installation .............................................. 4-3 

4.3.1 Installing the Version Manager .............................................. .4-3 

4.3.2 Installing the Configuration Builder ...................................... 4-6 

4B.4 Green Hills Software Installatioin ...................................................... 4-8 

4.4.1 Installing Multi .......................................................................... 4-8 

4.4.2 Installing 850ice ......................................................................... 4-10 

4.4.3 Updating Strings ....................................................................... 4-13 

4.4.4 License Extension ...................................................................... 4-14 

4.4.5 Shortcut to Multi ....................................................................... 4-17 

4B.5 Codewright Installation ....................................................................... 4-19 

4B.6 Template Icons Installation .................................................................. 4-21 

4.6.1 Installing Atlas Icons .................................................................. 4-21 

4.6.2 Shortcut to Icons ......................................................................... 4-23 

4B.7 Path Check ............................................................................................. 4-25 

4B.8 Firmware Build ...................................................................................... 4-26 

4B.9 Project .re file Edit ................................................................................. 4-27 

4B.10 Codewright Browser Installation (Optional) ................................... .4-28 



TABLE OF CONTENTS 

Chapter 5 Codewright 

5.1 Introduction .......................................................................................................... 5-1 

5.1.1 Supported Versions .............................................................................. 5-1 

5.1.2 File Location Assuptions ...................................................................... 5-1 

5.1.3 True Type Fonts .................................................................................... 5-1 

5.1.4 Installing Codewright .......................................................................... 5-2 

5.2 Codewright Projects ............................................................................................ 5-4 

5.2.1 Changing Project Settings .................................................................... 5-4 

5.2.2 Changing Codewright Fonts ............................................................... 5-6 

Chapter 6 Make 

6.1 Introduction .......................................................................................................... 6-1 

6.2 Invocation .............................................................................................................. 6-1 

6.3 Dependencies ........................................................................................................ 6-2 

6.4 Targets ................................................................................................................... 6-2 

6.4.1 Makeall ................................................................................................... 6-2 

6.4.2 Getall ....................................................................................................... 6-2 

6.4.3 Rom ......................................................................................................... 6-2 

6.4.4 Ram ......................................................................................................... 6-2 

6.4.5 Filename.o .............................................................................................. 6-2 

6.4.6 Filename.ler ............................................................................................ 6-2 

6.4.7 Newrel .................................................................................................... 6-3 

6.5 Build Options ........................................................................................................ 6-3 

6.5.1 LOCAL=l ............................................................................................... 6-3 

6.5.2 NOPVCS=l ............................................................................................ 6-3 

6.5.3 SBR=l ...................................................................................................... 6-3 

6.5.4 NOLINT=l ............................................................................................. 6-3 

6.5.5 OBJ=AElB .............................................................................................. 6-3 

6.5.6 Version= "AOl.0000" ............................................................................ 6-3 



TABLE OF CONTENTS 

6.6 Utilities ................................................................................................................... 6-4 

6.6.1 Asmsym (assembly symbol generator) .............................................. 6-4 

6.6.2 Gover ...................................................................................................... 6-4 

6.6.3 CoffROM ................................................................................................ 6-4 

6.6.4 Blderr ...................................................................................................... 6-4 

6.6.5 Bldvec ...................................................................................................... 6-4 

6.6.6 Projerr ..................................................................................................... 6-5 

6.6.7 Makeprom .............................................................................................. 6-5 

Chapter 7 Using V851 In-Circuit Emulator 

7.1 Introduction .......................................................................................................... 7-1 

7.2 Emulator Resources ............................................................................................. 7-1 

7.3 Hardware Requirements ..................................................................................... 7-2 

7.3.1 Emulator Hardware .............................................................................. 7-2 

7.3.2 Target Hardware ................................................................................... 7-2 

7.3.3 Computer ............................................................................................... 7-2 

7.4 Software Requirements ....................................................................................... 7-2 

7.5 Object and Binary File Components .................................................................. 7-3 

7.5.1 ROM Object File for Emulator Download ......................................... 7-3 

7.5.2 Ramware 'UPD' File .............................................................................. 7-3 

7.5.3 Channel Parameters File ...................................................................... 7-3 

7.5.4 ITF Sector Descriptor Binary File ........................................................ 7-3 

7.5.5 Configuration Pages Binary Files ....................................................... 7-4 

7.5.6 DIAGS Macro File ................................................................................. 7-4 

7.6 Setting Everything Up ......................................................................................... 7-4 

7.6.1 Emulator Connections .......................................................................... 7-4 

7.6.2 The Emulator Shortcut (Desktop Icon) .............................................. 7-5 

7.6.3 Safely Applying Power to the Emulator and Target ....................... 7-5 

7.6.4 Safely Turning Off Power From the Emulator and Target ............. 7-5 



TABLE OF CONTENTS 

7.7 Starting the Emulator .......................................................................................... 7-5 

7.7.1 '850ice' - QBox window ........................................................................ 7-6 

7.7.2 'Multi' Debugger Window ................................................................... 7-7 

7.7.3 'Custom Buttons .................................................................................... 7-8 

7.7.4 Defining Your Own Custom Buttons ................................................. 7-9 

7.7.5 The User Configuration File ................................................................ 7-9 

7.7.6 'Spinning' up the drive ......................................................................... 7-9 

7.8 Troubleshooting ................................................................................................... 7-10 

7.8.1 "No Remote Connection Established" ................................................ 7-10 

7.9 Combo' Mode ....................................................................................................... 7-10 

7.10 Special Accommodation for the Multi-Stack Kernel ...................................... 7-10 

7.11 Setting Breakpoints .............................................................................................. 7-11 

7.12 Warning! Setting Too Many Breakpoints ........................................................ 7-12 

7.13 Viewing Data ........................................................................................................ 7-12 

7.13.1 'View' Method ........................................................................................ 7-12 

7.13.2 Double Click Method ........................................................................... 7-13 

7.13.3 Highlighting a Data Structure Method .............................................. 7-13 

7.14 Changing the Data Display from Decimal to Hex 
(and other forms) ................................................................................................. 7-14 

7.15 Making Hex the Default Display ....................................................................... 7-15 

7.16 Viewing a Source Code Module ........................................................................ 7-15 

7.17 Viewing Assembly Language Code .................................................................. 7-16 

7.18 The 'Multi' Menu Bar ........................................................................................... 7-17 

7.18.1 Control .................................................................................................... 7-17 

7.18.2 Display .................................................................................................... 7-17 

7.18.3 Config ..................................................................................................... 7-17 

7.19 Trace Dumps ......................................................................................................... 7-18 

7.19.1 New Sectional Trace Method .............................................................. 7-18 

7.19.2 Trace Searches ........................................................................................ 7-19 



TABLE OF CONTENTS 

7.20 Assertion Traps .................................................................................................... 7-19 

7.21 Experiment! ........................................................................................................... 7-19 

7 .22 Starting Diags ....................................................................................................... 7-19 

7.23 Overlay Mangement ............................................................................................ 7-20 

7.23.1 Multi Support for Overlay Breakpoints ............................................. 7-20 

Chapter 8 Eclipse Memory Map (Hardware and Firmware) 
8.1. Overview ............................................................................................................... 8-1 

8.2 'ZDA' - Zero Data Area Access Method ........................................................... 8-2 

8.3 'ZDA' -Tiny Data Area Access Method ............................................................. 8-2 

8.4 Hardware Memory Components ...................................................................... 8-2 

8.4.1 ASIC ........................................................................................................ 8-2 

8.4.2 Internal RAM ......................................................................................... 8-2 

8.4.3 SFRs ......................................................................................................... 8-3 

8.4.4 ROM ........................................................................................................ 8-3 

8.4.5 External RAM ........................................................................................ 8-3 

8.4.6 Mirrors .................................................................................................... 8-3 

8.4.7 Unmapped ............................................................................................. 8-3 

8.5 Overview of Linker Sections .............................................................................. 8-3 

8.6 Hardware Legend ................................................................................................ 8-5 

8.7 Notes ...................................................................................................................... 8-6 

Chapter 9 System Cylinders 

9.1 Introduction .......................................................................................................... 9-1 

9 .2 File System ............................................................................................................ 9-1 

9.2.1 Boot Files ................................................................................................ 9-2 

9.2.1.1 Directory ............................................................................... 9-2 

9 .2.1.2 Boot Loader .......................................................................... 9-3 

9 .2.1.3 System Defect List ............................................................... 9-3 



TABLE OF CONTENTS 

9.2.2 Normal Files ........................................................................................... 9-3 

9 .2.2.1 Directory ............................................................................... 9-4 

9.2.2.2 File ID1s ................................................................................. 9-4 

9.2.3 File System Firmware ........................................................................... 9-4 

9.2.3.1 Firmware Redundancy Algorithm 
for Reads ............................................................................... 9-4 

9.2.3.2 File Write Algorithm .......................................................... 9-5 

9.2.3.3 Current File Structure ......................................................... 9-6 

9.2.3.4 API Calls ............................................................................... 9-7 



Chapter 1 Introduction 

The DPSG V85x User Guide is written for Quantum firmware engineers, who will develop 
firmware for drives using NEC V85x microprocessors. This book not only covers the installation 
the of NEC Development Tools and the use of Codewright, the Makefile, and the V851 In-Circuit 
Emulator; it also provides you with vital background information on the NEC microprocessor, 
the Multi Stack Kernel, Coding in C, and the Eclipse Code. 

Because the Eclipse code is largely written in C and the programmer is mostly insulated from the 
underlying hardware, it is extremely important for all programmers working with this code to 
understand the impact of certain things on code size. These include but are not limited to: 

• the V851 architecture and instruction set, particularly as it relates to the loading of 
bytes and halfwords 

• the compiler's allocation of local variables in registers 

Without this knowledge, it is almost certain that poor, inefficient code will be written. Just 
because we have moved to a radically new architecture does not mean that many of the old 
limitations no longer apply. RAM and ROM will continue to be precious commodities and we 
must be sure not to waste them frivolously. Please take the time to read the 'Fundamentals' 
portions of this document so that you will understand how to write good, efficient code. 

The following list outlines the materials covered by the 'Fundamentals'. 

(1) C coding guidelines to help you understand how to write good efficient 'C' code. 
These contain: 

• 'C' Coding Conventions 
• 'C' Coding Safety Practices 
• 'C' Coding Efficiencies 

Applying the recommendations suggested in these sections will help you develop a better 
coding style for creating the most efficient object code possible. 

(2) The NEC V851 Microprocessor's Architecture. This section lists essential information about 

• Instruction Set Size and Latency 
• V851 Registers-Eclipse Configuration 
• Data Formats 
• Saturated Math Instructions 
• Hardware Multiply and Divide Instructions 
• Execution Speed 
• Pipeline Stalls 

Read this section to learn how your data will be affected by this architecture. 

(3) The Multi-Stack Kernel. This section lists the advantages and disadvantages of the Kernel; 
defines task states, tasks in the Eclipse code, and the Kernel's RAM structures; and 
illustrates the Kernel's three basic components: 

• An Interrupt Service Routine (JSR) handler 
• A Scheduler 
• A set of functions for pending and posting 

Quantum Proprietary 12/05/97 page 1-1 



Qiapter 1 Introduction DPSG V85x User Guide Rev. D 

(This page was intentionally left blank.) 

page1-2 Quantum Proprietary 12/05/97 



Chapter 2 Historical Background 

In 1992, the APE department determined that the current code base and microprocessor 
architectures were nearing the end of their life spans and embarked on a radical project whose 
goals were to: 

• develop a new base of drive firmware written in C 

• select a new high speed DSP or RISC microprocessor whose performance would be so 
great as to more than offset any inefficiencies inherent in C 

• select new state of the art Windows-based development and debug tools offering far 
more power and ease of use than previous tools 

There were compelling hardware and firmware reasons for wanting new code to be in C rather 
than assembly language. The hardware reason was that it appeared likely that in the future it 
might be necessary or desirable to be able to port the code to new and different processors 
without requiring a total code rewrite. It was hoped that using C would provide a relatively high 
degree of hardware independence. The firmware reason was that C code should be easier to 
write and maintain than assembly code. As the complexity of the drive firmware increases, 
anything that aids in the development and maintenance process is desirable. 

Although the driving force behind the project was the development of C code, the first step was 
choosing a new processor. As it turned out, "selecting" a new off the shelf processor was not 
really possible. No standard processor had just the right mix of high performance and low cost 
that was necessary for Quantum's purposes. After much study and analysis, the decision was 
made to work with NEC in the development of a new RISC microprocessor leveraged from an 
existing NEC RISC processor. APE worked closely with NEC to insure that architectural features 
and instructions critical to hard disk drive firmware were included in the new Atlas V851 
processor, and that unnecessary features were trimmed out to keep cost down. Some of the key 
added features were a high speed multiply and saturated math instructions for use by the servo, 
and a large number of 2-byte instructions for code density. 

While NEC was developing the V851, APE began development of the C firmware which was 
code-named Calvin. At the outset of the project, there was only 1 Kbyte of internal RAM in the 
V851. For many years, it had been deemed desirable to use a multi-stack kerneL but the 1 Kbyte 
or high speed RAM in the V851 was too small for that, so the first code that was developed had a 
cooperative multitasking kernel. The first offshoot of this code that has made it into production is 
the Viking code. 

By the time the Eclipse project adopted the Calvin code, the processor that was available had 2 
!<bytes of internal RAM. APE (by then renamed T&E) realized that the 2 Kbytes of high speed 
RAM was probably a bare minimum necessary to support a multi-stack kernel. So, concurrent 
with Eclipse code development, T&E embarked on the development of a multi-stack kernel. 
After a two-week trial period with the new kemeL the Eclipse team made the decision to adopt 
the new kernel and merged it into the Eclipse code. 

Once NEC was chosen as the processor vendor, APE also worked closely with NEC in the area of 
development tools and emulator hardware and software. In the past, NEC emulators were 
usually fairly good - a bit clunky perhaps but with most of the necessary features. Their 
emulator software was another matter altogether. It was ancient command-line technology and 
generally fairly difficult to use. APE had little confidence that NEC would be able to develop 
adequate much less state of the art GUI software. Therefore APE pushed NEC to choose a third 

Quantum Proprietary 12/05/97 page2-1 



Chapter 2 Historical Background DPSG V85x User Guide Rev. D 

page2~2 

party vendor who could provide a total package of integrated software tools from compiler 
through linker to debugger. NEC ended up choosing Green Hills, a software company whose 
Multi development environment was available for a number of RISC processors. As with the 
processor, "selecting" a vendor was not enough. APE had to continually work with NEC and 
Green Hills to insure that all the necessary tools were available and that they worked correctly 
and optimally. In addition, APE chose Codewright as its editor of choice because of its backward 
compatibility with Brief and its many enhanced features. The end result is a development 
environment that is still evolving, but which is a vast improvement over the past. 

Quantum Proprietary 12/05/97 



Chapter 3 Fundamentals 

Read This First! 

We have an opportunity to produce drive products with better features faster than anyone 
else out there if we use these powerful new tools right. We also have an opportunity to 
make our projects late and full of bugs. 

We're not trying to imply that your project will take on excessive risk by using the V851 
and the 'C code architecture. What we're saying is that this is a change in the way you are 
accustomed to developing firmware. These are the changes and the challenges: 

You Can Debug in 1C1 Faster 
The debugger (see 'Using the V851 In-Circuit Emulator') is much more powerful than 
anything you've had before. You will be viewing your code symbolically (without 
sacrificing any of the nitty-gritty bit level and assembly, traces, and stuff) and stepping 
through reams of code with each click of the mouse. 

Debugging symbolically in 'C allows you to hack through the logic of your code in order to 
get to the actual nitty-gritty bug you are looking for without having to slog through 
hundreds of lines of assembly. 

Read .1calvin Coding Practices! ' 

You Can Really Mess Up When You Write in 'C' 

The problem is that your style may not create the most efficient object code. Your highest 
priority is to create the most efficient object code possible. 

Your other priority is to create code that other people can read. Just imagine a whole 
project, maybe 10 firmware engineers, each writing in his own style. Now imagine the 
same code getting handed from project to project, going through literally hundreds of 
firmware authors. It's not a particular style that makes 'C' code readable, it's consistency 
of style. 

We have produced a document that outlines standards for coding style that most folks have 
agreed on. Please follow the 'C' coding conventions that we have outlined, even if you 
don't agree with some of the rules. It will produce code that everyone can read. 

'C' Is Not a #Self-Documenting Language" 

Please lace your code with lots of comments describing the meanings of your algorithms, 
what variables are used for, why algorithms do what they do, and where to go look for 
important information about functions and data. 

The names of your variables and functions may be obvious to you but they are not to other 
engineers. Do not name your variables and functions so that they are easier to type. 
Name them so that they are easier to read. They will be read much more often than they 
are typed. 

Quantum Proprietary 12/22197 page3-1 



Chapter 3 Fundamentals DPSG VBSx User Guide Rev. D 

page3-2 

For some reason I have seen less comments put into 'C' code than assembly code. I have 
also seen projects stop so that firmware engineers would go back and type comments into 
their code. Don't let this happen to you. 

Read .1c Coding Safety Practices!' 

The Compiler Can Create Some Pretty Mysterious Bugs for You 

The compiler was written to generate very efficient code for the V851, which is a 'signed' 
processor. Because of this, you can make some coding mistakes that don't look like 
mistakes. The most common problem is that the compiler 'optimizes out' some of your 
code; in other words, it disappears (you give it a condition that could not possibly exist, so 
it quietly makes your object code go away). Another problem is that you don't get the math 
or control flow results you expect. 

If you learn the quirks that make this happen up front, you will save yourself a lot of grief 
later. 

Read .1c Coding Efficiency!' 

Writing 'C' for Firmware is Different 

If you write your 'C' code as if it were going to run in a computer it will be way too 
inefficient for disk drive firmware. We don't get to use all the features of the 'C' language 
because of this. 'C' code written for efficient firmware can also be harder to read than code 
written for a computer. 

Even with these two tradeoffs, the efficient 'C' firmware is still much faster to write and 
debug and easier to read than assembly language. 

Learn 'Efficiency' at the Same Time as You Learn 'C' 

The most common argument that I hear from developers when changing from assembly to 
'C' is that it is difficult enough to learn 'C' without also having to learn to write it 
efficiently. This is not true. 

If you take this attitude then you will be forced to re-write your code late in your project. 
There is no time set aside in your schedule for this, so you will be late and stressed. 

If you learn to write your code efficiently the first time then it will save you (and your 
project) a great deal of problems. 

Think about it. If you learn to write efficient code from the start, it will take some extra 
work up front. However, as you become more familiar with this process it will become 
much easier. The code you develop in the last two-thirds of your project will take very 
little additional time to make it efficient. 

If you do not learn efficient coding up front, but put it off until the end of your project, then 
you'll have to go back over all your code (or someone else will, and they won't like you). 
The total amount of work you'll have to do is more. 

Quantum Proprietary 12/22/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Examine Your Listing Files 

The 'C' coding efficiency document provides general rules for keeping your code size 
down. However, because of differences in style the only way to really ensure that you are 
generating a minimum amount of assembly output is to read the assembly listing outputs 
of the compiler when your code is built. 

This is a must! You cannot learn to develop efficient code any other way. 

Managers, Allow Your Engineers to Do This 

It is of no use for firmware engineers to commit themselves to developing efficient, 
maintainable code if managers don't encourage and provide the resources to accomplish it. 
If you are not committed to the above principles it would be better to delete this section 
from the documentation. Here are some suggestions regarding how to support the 
development of efficient, maintainable 'C' code in your group: 

• Express your commitment to the development of efficient, maintainable 
code 'up front'. Verbally announce this commitment to your team. Get 
team buy-in. 

• Forego immediate executable results long enough to allow enough time 
for staff to get through the initial learning curve. Give your team the 
resources they need to accomplish this goal. 

• Seek out team members that need help getting up to speed. Don't 
assume that everybody will make the transition. Some people in each 
team always have problems. 

• Enforce the requirement for efficient code, adherence to coding 
conventions, and well commented code. One strategy is to have team 
members check each other's work. 

• Know that, although extra effort must be expended at the beginning of 
your project to transition to 'C', the overall project time will be less than 
an assembly language project. This will only be true if the above advice 
is taken, however. 

Quantum Proprietary 12./2.2/97 page3-3 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-4 

3.1 C Language - Calvin Coding Practices 

Coding practices are defined for three purposes; maintainability, robustness, and efficiency. 
This chapter is broken into three sections according to these purposes. 

Calvin 'C' coding conventions support maintainability and are mandatory. The 'C' 
language invites a wide range of coding styles. The Calvin coding conventions make the 
code easier to understand by limiting variations in style. 

Practices for robustness and efficiency have developed through an understanding of the 
marriage between compiler and microprocessor target These are strongly recommended. 
However, you may find exceptions to these rules that are necessary. Do not take these 
recommendations lightly. H you fail to observe these practices you will create bugs that are 
very difficult to detect. 

For clarity, a glossary is included at the end of this chapter. However, it will not define 
terms that are un-ambiguously described in ANSI or other standard 'C' publications. 
Before starting this document look up the descriptions of 'Declarations' and 'Definitions'! 
This is important to many of the standards below. 

3.1.1 'C' Coding Conventions 

3.1.1.1 Indenting and Bracing 
Indents are 4 spaces each. There shall be no tabs in any code files. Braces shall occupy 
separate lines. The 'else' keyword can occupy either a separate line or the same line as its 
preceding (closing) brace. Indenting and bracing rules apply to all expressions in which 
they are used including structure declarations and data initialization. 

if (expression) 
{ 

statement; 
}else 
{ 

statement; 

alternatively ... 

if (expression) 
{ 

statement; 
} 
else 
{ 

statement; 

Quantum Proprietary 12/2.2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.1.1.2 Naming 

Prefixes 
Prefixes are single lower-case letters that indicate the storage class of their associated 
variables. Prefixes can be paired and even tripled when appropriate. Prefixes are applied 
only to data definitions. 

Use of Underscores 

uUnionName 
sStructureName 
pPointerName 
eEnumeratedType 
psPointerToAStructure 
puPointerToAUnion 
pePointerToAnEnumeratedType 
ppPointerToAPointerToAVariable 
ppsPointerToAPointerToAStructure 

Underscores (' _') are allowed only when imbedded in symbolic constants. 

Symbolic Constants 
Symbolic constants shall be used in all expressions requiring values except where the 
acceptability of a hard-coded value is obvious. Symbolic constants will contain all 
uppercase letters and numbers, and can contain imbedded underscores (' _'). They shall not 
be preceded by underscores. 

CONSTANT 
MULTI WORD CONSTANT 

NO'f A1lowed ... 

CONSTANT 

Portable Storage Types 
For code portability, the elementary data types have been redefined. All data declarations 
shall use these redefinitions. They shall not use the ordinary 'C' language types. 

Quantum Proprietary 12/2.2/97 

signed char byte 
unsigned char ubyte 
signed short hword 
unsigned short uhword 
signed long word 
unsigned long uword 

page3-5 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-6 

Ordinary Variables 
Ordinary variables include bytes, halfwords, and words, as well as associated arrays. They 
shall be named such that the first word is all lower case letters and/ or numbers and the 
remaining words are capitalized. 

byte 
ubyte 
hword 

ordinaryVariable; 
ordinaryVariable2; 
tnacount; 

Structure, Union, and Enumerated Type Declarations 
Structure, union, and enumerated type declarations are named in the same manner as 
ordinary variables. Note that prefixes are not applied here. 

struct exampleStructure 
{ 

byte ordinaryVariable; 
} ; 

enmn exampleEnmneratedType 
{ 

} ; 

FIRST VALUE, 
SECOND VALUE 

Structure, union, and enumerated type definitions are prefixed according to the rules for 
'prefixes'. Since the prefix forms the initial lower case part of the name, all of the words in 
the name are capitalized. 

struct exampleStructure sDefinedStructure; 
struct exampleStructure *psPointerToDefinedStructure; 
enmn exampleEnumeratedType eDefinedEnmn; 

Quantum Proprietary 12/1.2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Unions for Multiple Field Type Access 
Unions are commonly used for code efficiency for bit, byte, half word, and word access to 
the same memory location. Typically, the location breaks down to bit fields (such as in the 
case of registers) which are grouped for 8, 16, or 32 bit access. The following names will be 
given to union members which are used for those accesses; 8 bits = 'all8', 16 bits = 'all16', 
-and 32 bits = 'a1132'. The structure declaring the bit fields shall be named 'bit'. 

union byteAndBitsAccess 
{ 

} ; 

byte all8; 
struct 
{ 

ubyte bitZeroExample 1; 
ubyte bitOneExample l; 
ubyte bitTwoExample 1; 

}bit; 

ASIC, Processor, and Other Registers 
When a structure member or variable name defines an ASIC, processor, or other hardware 
register, it shall be named with all upper case letters which appear just as the register does 
in its hardware manual. However, certain exceptions are required for registers. For 
coding efficiency, unions are often used to allow either byte or halfword access to the same 
registers. A union member that defines a register pair which, in the hardware manual was 
named with LO/HI suffixes (or some similar naming method), the register pair's union is 
named without the suffix. H two registers to be paired have dissimilar names, the name of 
the register with the lowest address shall be used. The halfword member of the union is 
named 'all16', the register pair structure is named 'reg', and the byte members within the 
structure shall be named 'lo 'and 'hi' respectively. 

Quantum Proprietary 12/2.2/97 

ubyte SECTROLLO; 
ubyte SECTROLHI; 

or 

union 
{ 

uhword all16; 
struct 
{ 

}reg; 
}SECTROL; 

ubyte lo; 
ubyte hi; 

page3-7 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-8 

Typedefs 
Typedefs are used to define types that are not built into the language. The type name 
follows the format for an ordinary variable. The type tag is the type name preceded by a 
11 t''. The tag is needed only when it is necessary to refer to the type within the typedef itself. 
When the type name is used in a data definition, the name for the data item follows the 
rules for the type of data that it is. For example, if the typedef is for a structure, then a 
definition of a data item of this type will be preceded by an /1 s11

• 

Functions 

typedef struct tListEntry 
{ 

byte info; 
tListEntry *pNext; 
tListEntry *pPrev; 

}listEntry; 

listEntry sMyList[lOJ; 

typedef struct 
{ 

byte hour; 
byte minute; 
byte second; 

}dayTime; 

dayTime sMyTime; 

Functions shall be named such that the first letter for all words in the name is capitalized. 

jsomeFunction (); 

Quantum Proprietary 12/22/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.1.1.3 Functions 

Function Definitions 
Function definitions shall contain all the variable names in their parameter lists within the 
list itself. 'Void' shall be used if there is no return value and/ or there is no parameter. 

word SomeFunction (word inputWord, byte inputByte) 
{ 

} 

variablel = variable2; 
return (word) ; 

void OtherFunction (void) 
{ 

variableA = variableB; 

Function Declarations (Prototypes) 
Function declarations shall contain parameter lists identical to the functions they describe. 
All functions shall be declared (prototype). 

Quantum Proprietary 12/2.2/97 

word SomeFunction (word inputWord, byte inputByte); 
void OtherFunction (void); 

page3-9 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-10 

3.1.1.4 External Declarations 

External Data Declarations 
Global data shall be declared external in a header file named after the module (i.e., asic.h & 
asic.c) that defines them. Local data shall not be declared in header files. Symbolic 
constants used to reference global data shall be coded in the header file in which they are 
declared. 

asic.h ... 

extern byte formatterStatus; 

#define STATUS BUSY OxOl 

asic.c ... 

byte formatterStatus; 

External Function Declarations 
Global functions are prototyped in header files and local functions are prototyped in the 
module in which they occur. 

somefunc. h .•• 

extern void SomeFunction(word inputWord, 
byte inputByte); 

somefunc.c ..• 

void SomeFunction(word inputWord, byte inputByte) 
{ 
} 

/* A function local to somefunc.c */ 

void OtherFunction(void); 

void OtherFunction (void) 
{ 

variablea = variableb; 

Quantum Proprietary 12./22/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.1.1.5 Function Headers 
All functions shall be preceeded with a header of the following form.at 

/******************************************************************************** 
* FUNCTION NAME: Actual Function Name 
* * DESCRIPTION: 
* 
* 
* 
* 

Brief description of the function's purpose. Brief description of how it 
accomplishes its purpose. Cautionary notes regarding its use and modification. 
Charts, Truth tables, and Other graphic descriptions of important input or 
output structures, etc. 

* PARAMETERS: parameterName -- Description of each parameter with its name as coded 
* in the function declaration. 
* * RETURNS: Description of the value returned, if any. 
* * VARIABLES AFFECTED: Description of important variables changed by the function and how 
* they are changed. 
* * MAJORCHANGEIIlSTORY: 
* 
*DATE 
* * mm/dd/yy 
* 

AUTHOR 

Your Name 

DESCRIPTION 

Changes You Made 

******************************************************************************/ 

Note: 'Your Name' is your full name. This should be enough information for someone to 
find you in the company phone book for questions. 'Changes You Made' includes 
initial release. 

Note: H you use the 'Codewright' editor, custom buttons are provided which allow 
insertion of this and file headers. 

Quantum Proprietary 12/2.2/97 page3-11 



Qiapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-12 

3.1.1.6 File Headers 
All module files shall contain a header of the following format 

/******************************************************************************** 
* * FILE NAME: Actual File name 
* * PVCS: $Header: Required for PVCS version control. 
* * CONTENTS: Description of source code file. 
* * HOW TO USE FUNCTIONS IN THIS MODULE: 

* 
* 
* 
* 
* 

Description of what the functions in this module have in common. 
Brief description of each major function within the module (not 
necessarily every function). Brief overview of what functions call 
these functions and WHY. 

* REVISIONHISTORY: 
* * PVCS: $Log: List of all checkins from PVCS version control. 
* ********************************************************************************/ 

3.1.1.7 File Names 

filename.* 
A 'RAM' code, header, or other type of file. If this is a code or header file then the 
functions in it will run in RAM and will not be referenced directly by ROM code. 

r_filename. * 
'r_! indicates that the file is associated with code that runs in ROM. If the file is a 
header file, then it can contain definitions both that ROM and RAM functions use. 
However, it cannot contain definitions that are used by RAM functions and not 
ROM functions. If the file is a code file, it cannot contain direct references to RAM 
functions or definitions in RAM header files. 

a_filename. * 
'a_: indicates that the file is associated with code that is specific to AT interface 
functions. 

ra_filename. * 
'ra_: indicates ROM AT interface functions. 

s_filename. * 
's_! indicates that the file is associated with code that is specific to SCSI interface 
functions. 

rs_filename. * 
'rs_: indicates ROM SCSI interface functions. 

r_coddef.h & r_global.h 
'ROM' header files which have no corresponding code file. These are general 
purpose definition files which are (potentially) used by all code modules regardless 
of whether they are RAM or ROM. These names are examples based on existing 
Calvin code. 

Quantum Proprietary 12/22/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.1.2 'C' Coding Safety Practices 
Your code could get optimized out by the compiler and you may not know it! Two 
variables that get the same hex values stored in them may not be equal when compared! 
You could increment a number and it decrements instead! 

All of these things can happen because 'C' is dramatically affected by the data types that 
you declare for your variables. The Calvin code has used some practices that avoid pitfalls 
such as these. The result is 'robust' code. Here is how you can have robust code, too. 

3.1.2.1 Run 'Lint' 

Lint is a program that is much more fussy about your data types than the actual 'C' 
compiler. It scans your code as the compiler does and outputs warning messages whenever 
it sees the slightest potential problem. These messages can indicate some real problems 
that you would have otherwise found during testing (or customer service). 

How to Run 'Lint' 
You need to get your own copy of Lint. However, you can check it out by running ape's 
copy as follows (Assuming the ape server is mapped to drive 't:'): 

Running 'Lint' from a Command Line 
Here is an example command line: 

t:\ape\calvin\utils\lint\lint -DXXXXX ghs.lnt idless.c > idless.err 

- DXXXXX sets the global environment variable which is recognized in the codedef.h file, 
which sets all the other compiler switches for the source code. 

'ghs. lnt' is a file that contains commands for Lint to ignore certain errors. This will be 
explained in more detail later. 

'idles s. c' is an example source code file. 

Running 'Lint' from Codewright 
Using the Project menu's configure option, enter the following into the 'debug' entry (or 
another, of your choice): 

ftee t:\ape\calvin\utils\LINT\LINT --DXXXXX ghs.lnt %b%e >%r.err 

The options are the same as for command line invocation. 

'%b%e' is the codewright keyword for the file currently being edited 

'> % r. err' causes the error output to go to a file named after the file being edited, 
suffixed 'err' . 

You can then click on the menu bar item 'Window' and select 'Output' to get the errors. 

Quantum Proprietary 12/22197 page3-13 



Chapter 3 Fundamentals DPSG VBSx User Guide Rev. D 

page3-14 

Controlling the Number of Messages 
Lint will generate warnings for some things that are intentional on your part. You can tum 
off these messages in two ways: 

The command line allows you to specify a file which contains all the errors that you wish to 
be ignored. That is the 'ghs.lnt' from above. An example line in 'ghs.lnt' looks like this: 

-e46 II Disable Field type should be int 

Within the actual source code file you can turn off and on the various errors on a case-by
case basis. Special comments are used to do this. They look like this: 

/*lint -e46 Disable Field type should be int */ 

In both cases 'Disable Field type should be int' is just a comment. The file 
'ghs. lnt' contains lots of control stuff, too, so take a look at it. 

The Error Marker 
Each error line contains an 'overbar' that points to where Lint thinks the actual error is. 
This is much more informative than the compiler's output. 

Have Faith 
When you see the output, your first reaction may be to give up. Don't. When you have 
sorted through one file, you will have learned enough to use this tool constructively and 
reduce the outputs generated by other files. It may even save you from some real problems 
in the future. 

Quantum Proprietary 12/2.2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.1.2.2 The 'Basic Rule' of the Atlas Processor 
Atlas is a signed processor. This means that the high order bit of all words (32-bits, as 
stored in registers) is a sign bit. The processor sign extends halfwords and bytes when they 
are loaded into registers, meaning that their high order bits are replicated all the way out to 
the high order bit of the target register. 

For instance, loading a byte that contains '80' hex into a register will result 
in 'FFFFFF80' hex. 

The compiler knows about this and is affected in a lot of ways by this behavior. You must 
always predict what the compiler will do with your variables based on their sign. 

3.1.2.3 Safe Coding Practices 
There are always exceptions to what are considered 'safe' practices. However, any 
departures from them must be clearly documented! The most common conflict with safe 
practices is the requirement to generate efficient code. 

All Bit Fields Should Be Unsigned (Use uword, uhword, or ubyte) 
If you declare a bit field to be signed, you lose one of its bits to the sign bit. In the extreme 
(and this is the most common case), a single bit field that is declared signed can have only 
two values; zero and -1 (that's minus one!). Declaring a bit field signed can cause some of 
your code to be optimized out as you attempt to assign or compare it with values it cannot 
have. 

Note: This is never in conflict with generating efficient code. 

struct dangerousBitStructure 
{ 

byte unsafeBit : 1; 
/* This bit is signed. */ 
byte unused : 7; 

} ; 

if unsafeBit == 1) 
{ 

statement; 

!! !! The above expression will be 'optimized' out! 

Quantum Proprietary 12/1.2/97 page 3-15 



Chqpter 3 Fundamen.tals DPSG V85x User Guide Rev. D 

page3-16 

Don't Use Variables in Expressions With More Than Their Maximum Value 
Be aware of the actual maximum of signed variables, remembering that you lose the high 
order bit to the sign bit. See 'Elementary Data Types' in the glossary. When using hex 
values, you may lose track of the real sign of your variables. This can conflict with 
efficiency in 'C' coding. Here is the most common trap: 

byte asicRegister; II This is some ASIC register. We declare it 
II signed so that loads and stores will not 
II generate extra masking code to strip off 
II the sign bit. This is OK as long as you 
II don't break the rules later. 

byte temporaryVariable; II This is a variable we'll use in our 
II example. It's the same type as the 
II register, which should be OK. 

main() 
{ 

temporaryVariable asicRegister; II We safely (and efficiently) 
II load all 8 bits of the 
II register. 

if (temporaryVariable Oxff) II Oops! Oxff is a positive 
II 255! The (signed) variable 
II couldn't possibly contain 
II this (its maximum is 127). 

} ; 

asicRegister O; II Everything within this 'if' 
II statement will be optimized 
11 out!!! 

Be Aware That Hex Values are Always Positive 
All hex values are positive. For instance, Hex 80 is decimal +128. However, the same bit 
value in a signed variable is -128. Don't create confusion or your code may not behave as 
expected. Note that, in this example, you could have assigned the variable the value Ox80, 
which would not get optimized out. It would, however, give the variable an actual value of 
minus 128. This is often done to generate efficient code. 

word signedVariable; 

signedVariable = -128; 

if (signedVariable == Ox80) 
{ 

statement; 
} ; 

Oops! The above are NOT equivalent! 
Your code will be optimized out! 

Quantum Proprietary 12/22/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Ensure Order of Execution by Declaring Variables 'Volatile' 
The volatile declaration means that the associated variable is an ASIC register or a variable 
that is changed during interrupts and can't be expected to remain the same within a code 
fragment. This forces the compiler to order loads and stores of it exactly as you have coded 
it. If you don't declare ASIC registers and global variables affected by interrupts volatile, 
then the optimizer may (cleverly) move your assignments around (or optimize them out) 
within functions and your code will fail. 

ubyte resetRegister; II An ASIC register. 
volatile ubyte good.Register;// This is OK 

resetRegister = Ox80; 
resetRegister = O; 
resetRegister = OxFF; 

II Reset the ASIC 
II Clear Reset 
II Tri-state the Reset 

Oops! The reset register wasn't declared volatile! 
The first two assignments will get optimized out 
because nothing depended on them. The ASIC reset 
fails. 'Good' register is declared correctly. 

Use the 'C to Assembly Language Interface 
Calvin has a tool set which converts defined data structures to symbolic constants that the 
assembly language code can use to reference those structures. This is documented 
elsewhere in the handbook. If you write assembly language code that uses hard coded 
constants for data structure access, then if the data structures change in 'C' and the 
corresponding changes aren't made in the assembly language, your code will crash. 

Use the 'C to Assembly Language Interface's Bit Mask Header Files 
As the 'C' to assembly language interface tool generates symbolic constants, it also 
generates bit masks for all the bit fields in the structures. It does this for both the assembly 
language and the 'C' code. Using these masks in the 'C code ensures that the masks 
remain consistent with the structures just the same as it does for the assembly language. 

Quantum Proprietary 12/22/97 page3-17 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-18 

3.1.3 'C' Coding Efficiency 
'C' programming for Calvin requires maximum performance in a minimum of code space. 
You must pay up-front attention to the way that you write your code and the way the 
compiler turns it into assembly. We cannot stress this enough. We have seen overhead as 
low as 6% above assembly language when the 'C' code is written efficiently. 

Don't write your code inefficiently at first, assuming you can squeeze it later. Start out with 
a basic knowledge of practices that are efficient and code accordingly. At first, examine the 
assembly language results of each function you write until you become familiar with how 
the compiler treats your style of coding. Adjust your style to produce the most compact 
code possible. As time goes on, it will be increasingly unnecessary to check your assembly. 

3.1.3.1 Priorities 
The first priority is generating the minimum number of assembly instructions taking into 
consideration the actual number of bytes of those instructions. Execution time is the next 
lower priority. Portability is last on the list of priorities. 

3.1.3.2 Tradeoffs 

Readabilitr 
Some level of readability is lost when programming for maximum efficiency. Still, the 
resulting 'C' will be much more readable than assembly language. Just remember that the 
most important readability tool is good comments! 

Portabilitr 
Portability is also reduced somewhat as there is a direct relationship between the 
microprocessor's language and the 'C' code that produces it. However, 'C' is dramatically 
more portable than assembly language, no matter how it is written. 

Debug Display 
The optimization process done after the compiler generates assembly code ties assembly 
lines to their respective 'C' lines, but they tend to drift away as optimization combines them 
together and eliminates some. 

When debugging in' C and displaying the assembly language, you may then notice that, 
even though you are stopped on a subroutine call that uses a variable, the variable does not 
yet contain what you think it should. This may be because the assembly code that 
initializes the variable has not yet been reached. This can cause confusion in debugging, 
which once understood, is tolerable. 

Quantum Proprietary 12/22/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.1.3.3 Basic Rules of Behavior 

Check Assembly Output 
Examine the assembly output of the compiler as you develop your code. This step cannot 
be omitted or left out of your schedule. Fortunately, as you become familiar with the 
compiler and efficient coding techniques, this will be required less often. 

Understand the Microprocessor 

You need to know at least as much about the processor as an assembly programmer 
because you are constantly optimizing for the processor, trying to predict what the 
compiler is going to do with your 'C' code. 

Design Stingy Algorithms 
Sometimes, when writing in 'C', it's tempting to design 'extra flexible algorithms' or other 
cool stuff just because of the language before you. As a result, you may look at the 
individual lines of code you've created and see that they themselves are as code efficient as 
possible, yet you've just designed an algorithm that, in itself, is very costly. If you wouldn't 
design it in assembly, don't design it in 'C'. 

Watch for Library Routines 
Library routines linked into your code package can add invisible overhead. Library 
routines can be re-coded and replaced with custom functions at the end of the project. 

Don't Duplicate Code 
Code duplication is more common and harder to recognize than you think. If you're an 
assembly programmer you may be in the habit of in-lining variable stores and other code 
fragments due to their efficiency. However, in 'C', this could be costly due to register set
ups and other overhead factors. In 'C', it is also tempting to define multiple subroutines 
that do nearly the same thing. One way to see if you are duplicating code is to 'grep' the 
occurrences of your variables. If a variable appears in a lot of places then chances are 
you're duplicating code. 

Plan for the Future 
Plan each algorithm in terms of what happens when its data structures change. For 
instance, if you design an array of structures that starts out with a single byte per structure 
then you can write algorithms that access the elements with array subscripting variables 
(rather than pointers) and that won't cost you too much. However, if someone adds two 
bytes to the structure then the subroutine that you have written will re-compile with a 
complicated multiply algorithm to access each of the array elements and no one will know 
it until someone notices that the code doesn't fit into ROM anymore. 

Don't let the code deteriorate 
The degree of deterioration that occurs as a result of maintenance engineer's uncertainty 
determines the useful lifespan of the code. For this reason, the degree of maintainability in 
the initial release of your code determines the lifespan of the code package. Also, 
maintenance engineers must be aware of all the code efficiency requirements in order to 
minimize this deterioration. 

Quantum Proprietary 12/2.2/97 page3-19 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-20 

3.1.3.4 Coding Techniques 
The following coding techniques are outlined in no particular order. 

Declare Variables Signed Whenever Possible 
This is crucial! ATLAS is a signed processor. If you declare a byte or halfword as 
unsigned, the compiler will generate code to mask off the (potential) sign-extended bits 
every time it is loaded from memory. The potential amount of excess code that can get 
generated by variables declared unsigned is huge. Declaring the variable signed will 
prevent this. 

However, there is a tradeoff. A signed byte has only seven useful bits for math and 
compares (unless you are really interested in its sign). A signed halfword has only 15. So 
the general rule is to declare variables based on its real range of values. See 'Elementary 
Data Types' in the glossary for those ranges. But this is only important if math or compares 
are done on the variable. See 'Safe Coding Practices' for some examples of math that can 
fail with signed variables. 

Often, you can get away with declaring a byte or halfword signed, even though you need 
all 8 bits of its value. If you will never compare or do math on the contents then this is true. 
This is most often the case with ASIC registers. Here are the things you can and cannot do 
with signed bytes and halfwords: 

Can Do: 

Assign an 8-bit value to a signed byte: 

byte A; 
A = Oxff; 

A is really (-1). However, you cannot compare it to Oxff later because Oxff is really +255. 

Store a signed byte as an 8-bit value. 
All 8 bits will be stored in memory. 

Retrieve a signed byte as an 8-bit value. 
All 8 bits will be retrieved from memory. No extra code will be generated. 

Can't Do: 

Compare an 8-bit value to a signed byte: 

byte A; 
A = Oxff; 
if (A == Oxff) 
{ 

statement; 

The if-statement will fail because A is really -1, not +255 
(the real value of Oxff) 

Quantum Prqprietary 12/2.2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Declare Local Variables as Words (Do for all locals!) 
Do not declare local as bytes or half-words. If you do this, the compiler will generate extra 
assembly code to truncate the counter values to bytes or half-words each time you do math 
on them, even if your algorithm would never generate values greater than the byte or half
word in size. 

Can Do: 

Use a word as a loop counter: 

word workWord = l; 

do 
{ 

workWord++; 
}while (workWord < 100); 

Can't Do: 

Don't use bytes or half words as counters: 

byte workByte = l; 

do 
{ 

workByte++; 
}while(workByte < 100); 

Do Not Define Large Data Structures or Arrays Locally 
Large data structures and arrays, when declared local to functions, use up stack space. Do 
not do this. Instead, define them globally. They will go into external DRAM. 

You may want to consider developing some memory manager code if you need to 
temporarily allocate DRAM for functions to use. 

Reducing Compound Logical if-expressions 
Use DeMorgan equivalents to reduce the complexity of logical expressions. For example: 

Wrong: 
if(!AI I (A&&!B)) 

Right 
if(!AI I !B) 

Quantum Proprietary 12/l.2/97 page3-21 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-.22 

Bitwise OR boolean variables instead of logically ORing them 
Logically ORing boolean variables causes multiple compares to get generated. Bitwise 
ORing them together will cause them to be arithmetically combined and then a single 
compare to be generated, which is more efficient 

However, bit fields are NOT boolean variables and must not be bitwise OR'd. A boolean 
variable is TRUE if non-zero and FALSE if zero. 

Note: You cannot bitwise AND boolean variables instead of logically ANDing them! 

Wrong: 

Right: 

Tboolean A; 
Tboolean B; 

if A 11 B) 
{ 

(more code ... ) 

if (A I B) 
{ 

(more code •.. ) 

This will fail completely: 

if (A&B) 
{ 

(more code ... ) 

Quantum Proprietary 12/2.2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Bit Fields 
Bitwise manipulation forces the compiler to generate a lot of excessive shifting, ORing, and 
ANDing instructions to combine the bit fields. Do not assign one bit to another. Setting, 
clearing, and testing bit conditions are OK. Assigning bit values to other bit values 
generates excessive code. 

Wrong: 

Right: 

Wrong: 

Right: 

if(A.Bit51B.Bit3) 

if (A.BitS I I B.Bit3) 

A.Bit2 = B.Bit4 

A.Bit2 = 0; 

if (B.Bit4) 
{ 

A.Bit2 1; 

Quantum Proprietary 12/22/97 page 3-23 



Qzapter 3 Fundamentals DPSG V85.x User Guide Rev. D 

page3-24 

Do Not Repeat Logical Tests 
H you need to make the same decision twice in a subroutine and the code can't be 
structured to avoid doing the same test in more than one place then the duplicate tests will 
generate double the code. It is better to assign the results of the first test to a variable and 
then test the variable lat~. 

Wrong: 

Right 

if(B==C} 
{ 

D=E; 

( ... MoreCode ... ) 

if(B==C} 
{ 

F=G; 

BequalsC=(B==C); 

if(BequalsC) 
{ 

D=E; 

( ... MoreCode ... ) 
if(BequalsC) 
{ 

F=G; 

Quantum Proprietary 12/2.2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Do Not Repeat Logical Test Values 
Even if the logical tests are different, don't re-use the same literal value in multiple logical 
tests. A Green Hills optimization should minimize the repeated assignment of the same 
literal to a register used in repeated tests but there will be circumstances in which 
optimization won't be able to catch repeated use of the same literal. It's better to create a 
variable assigned to the literal and compare that in each test. 

Wrong: 

Right 

if (a==Oxff) 
{ 

if (b==Oxff) 
{ 

e=Oxff; 

if(a==e) 
{ 

if(c==Oxff) 
{ 

d=lO; 

if(b==e) 
{ 

if (c==e) 
{ 

d=lO; 

Quantum Proprietary 12/22/97 page3-25 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page 3-26 

Do Not Post-Increment/Decrement Variables inside 'if' expressions 
Doing this forces the compiler to store the original value of the variable in a register, 
increment it, then test the variable and jump on it. This forces the compiler to work with 
two copies of the variable instead of one. 

Wrong: 

Right: 

if (A++) 
{ 

if(A) 
{ 

C=B; 

A++; 
C=B; 

Minimize Stack Usage 
When stack is in internal RAM, performance is fast; however, when stack is in external 
RAM, performance is slow. (See Figure 3.3, Memory Regions Occupied by Task RAM 
Structures, on page 3-61.) 

Try To Keep the Number of Function Parameters Under 4 
We have four parameter registers (R6 - R9). Passing more than four parameters 
uses four bytes of stack per additional parameter. 

Never Pass Structures by Value (instead, pass pointers to structures) 
(If you pass a structure (rather than a pointer to the structure) to a subroutine, the 
compiler all compilers do this) will 'invisibly' pass the entire structure ONE WORD 
AT A TIME! Large local structures or arrays should be global. 

Set Local Variables As Late As Possible 
Don't set local variables where they are defined (at the top of the subroutine). Whenever 
you set a variable to a value and subsequently call another function the compiler assigns 
the variable to a permanent register to ensure that its value is preserved across the call. 
Assigning a variable to a permanent register requires that it be saved on the stack at the 
start of the function and restored from the stack at the end, totaling 8 bytes per variable. 
This quickly adds up into large prologues and epilogues costing code space, performance, 
and stack utilization. You may even write some inefficient looking 'C' code to defer the 
setting of variables until calls are done which may generate better assembly. In general, 
look at the assembly output of your 'C' code and see how the compiler is using permanent 
registers. Try to coerce the compiler into using less permanent registers. 

Quantum Proprietary 12/2.2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Avoid Using Array Subscript Variables 
When you use constants for array subscripts the compiler determines their value so this 
kind of indexing is free. However when you use variables for array subscripts then the 
indexing is done at run time, generating lots of assembly instructions. When the array 
elements are only one byte each this is not too expensive but when they are more than one 
byte then a multiply must be done to arrive at the effective address. This is even worse 
when the number of bytes per element is not a power of two because the index can't use a 
shift operation. 

Use Pointers to Structures Instead of Array Subscripts 
When you increment/ decrement a pointer to a structure, the compiler adds the 
right value to it automatically. Due to the indirect register oriented nature of this 
microprocessor, it is very efficient to use pointers to structures in initialization 
loops and other operations. It is even worth allocating such a pointer as a local 
variable. 

Pass Pointers To Structures to Subroutines 
When you pass a pointer to a structure into a subroutine, subsequent references within the 
subroutine via the indirection operator(->) are just as efficient as referencing the members 
directly(.). 

Design Data Groups in Powers of 2 
Multiplies and divides are much more efficient if they are based on powers of 2. This 
allows you to explicitly do shift operations instead of multiplies, divides, and modulos. 

Quantum Proprietary 12/22/97 page3-27 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-28 

Avoid 'for' Loops Controlled By Counter Variables 
One of the costly things you can do is design a loop to initialize all the elements of a 
structure into a 'for' loop controlled by some counter. 

Wrong: 

Right 

for(i=O;i<MAX STRUCTURE;i++) 
{ -

jiveStruct[i].count=O; 

This forces the compiler to assemble two essentially parallel operating functions. 
One is the incrementing and control of the variable 'i', and the other is the 
initialization of 'JiveStruct'. The 'i' subscript probably generates an ugly multiply 
operation to access the appropriate structure element. As simple as this 'C' looks, 
it can generate a LOT of assembly instructions. 

struct jiveStruct *pJiveStruct; 

pJiveStruct = jiveStruct; 

do 
{ 

*pJiveStruct->count = O; 
pJiveStruct++; 

}while (pJiveStruct < &jiveStruct[MAX_STRUCTURE]); 

Replace 'for' and 'while' loops with do-while Loops 
'For' loops are the most expensive generally, followed by 'while' loops. 'For' loops tend to 
be oriented around counter variables but are the same as 'while' loops if they're organized 
around pointers. In either case, 'for' loops and 'while' loops start with a jump to the bottom 
of the loop where the range is tested. This jump is a three cycle operation. In cases where 
you know you will always execute the first pass of the loop, use a do-while construct 
instead. This does not cause a jump to the bottom. 

Use 'for(;;)' loops with break tests 
The least expensive construct seems to be as follows: 

for (; ; ) 
{ 

if (pJiveStruct < &jiveStruct[MAX_STRUCTURE]) 
{ 

break; 

Quantum Proprietary 12/22/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundammtals 

Other kinds of loops like this could be do-while(TRUE) loops, but these create a compiler 
warning 'condition always true', which we discourage. We don't want any warnings being 
generated as no warnings should be ignored. 

Explicitly Cast Multiply/Divide Variables 
Although the microprocessor provides multiply and divide opcodes, if you're not careful 
you can cause the compiler to use a library subroutine to do multiplies and divides. This is 
because there is only one combination of variable types that the divide opcodes can handle. 

e.g. (word) MOL = (hword) operandl * operand2; 

(word) DIV = (word) num I (hword) denom; 

Note. Multiply and Divide are different. 

Use Integer Arithmetic for Modulus 
Doing a modulus operation ( x = y % 5) causes the compiler to generate a call to a library 
subroutine. Instead, you should use an integer operation to get the same result ( x = y -
((int) (y / 5) *5) ). This generates the appropriate arithmetic inline and gives the compiler 
the opportunity to optimize for any partial results it may have on hand in existing registers. 
Also, if you have any partial results in existing variables you should use them in the 
calculation. 

The Conditional Expression/Assembly Language Trick 
A common trick that assembly language programmers do is to test a condition, make one or 
more default assignments, then execute a conditional jump, which if not taken, will cause a 
non-default set of assignments to be made. This saves a jump. 

To take advantage of a custom compiler optimization produced for us, code conditional 
expressions as follows: 

result = (conditionl == condition2) ? resultl 

Don't do this when assigning bits! 

Do: result = result2; 

Quantum Proprietary 12/22/97 

if (condition) 
{ 

result = resultl; 

result2; 

page 3-29 



Chapter3 Fundamentals DPSG V85x User Guide Rev. D 

page3-30 

3.13.5 Coding Examples 

Pro1rram 3-1. Code efficiencv test module. 
!*** ... ********************'******************************************************* 
* FILE NAME: codeeff.c 

* CONTENTS: Code efficiency test module. 

* HOW TO USE THIS MODULE: 
* This module contains code for the purpose of determining coding efficiency only. 

* It is not used in the product at all. It should contain a minumum amount of 
* includes, etc. 
********************************************************************************/ 

/*lint -e46 */ 

/** include files **/ 
#include "r_global.h" 

/** public data **/ 

#pragma ghs startzda 

Program 3-2. Code efficiencv test variables. 
/************************'******************************************************* 
* CODE EFFICIENCY TEST VARIABLES: 
*This is variable space for my tests for code efficiency. 
********************************************************************************/ 

ubyte globalUbytel; 
ubyte globa1Ubyte2; 
ubyte globa1Ubyte3; 
ubyte globa1Ubyte4; 
volatile ubyte globalVolatileUbytel; 
volatile ubyte globalVolatileUbyte2; 
volatile ubyte globalVolatileUbyte3; 
volatile ubyte globalVolatileUbyte4; 
uh word globalUhwordl; 
uh word globa1Uhword2; 
uh word globa1Uhword3; 
uh word globa1Uhword4; 
volatile uh word globalVolatileUhwordl; 
volatile uh word globalVolatileUhword2; 
volatile uh word globalVolatileUhword3; 
volatile uhword globalVolatileUhword4; 
word globalWordl; 
word globa1Word2; 
word globa1Word3; 
word globa1Word4; 
volatile word globalVolatileWordl; 
volatile word globalVolatileWord2; 
volatile word globalVolatileWord3; 
volatile word globalVolatileWord4; 
volatile word globalVolatileWordS; 

Quantum Proprietary 12/22/97 



DPSG V85x User Guide Rev. D 

struct 
{ 

uword bitFieldla :15; 
uword bitFieldlb :1; 
uword bitFieldlc :16; 

}globalBitWordl; 

struct 
{ 

uword bitField2a :15; 
uword bitField2b :1; 
uword bitField2c :16; 

}globalBitWord2; 

struct threeByteStructType 
{ 

} ; 

ubyte byteOne; 
ubyte byteTwo; 
ubyte byteThree; 

Chapter 3 Fundamentals 

struct threeByteStructType globa1ThreeByteStruct[20]; 
struct threeByteStructType globalSingleThreeByteStruct; 

struct twoDimensionalThreeByteStructType 
{ 

ubyte byteOne; 
ubyte byteTwo; 
ubyte byteThree; 

}globalTwoDimensionalThreeByteStruct[20] [100]; 

#pragma ghs endzda 

Quantum Proprietary 1]/22/97 page3-31 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-32 

Pro21'am 3-3. Multiple stores into same srlobal variable. 
!**,,..******************************~******************************************** 
* MULTIPLE STORES INTO SAME GLOBAL VARIABLE. 
* The compiler should keep temporary copies of 1 and 12 in temporary registers 
* in this instance. It should then only store the 1 and 12 into globalUbyte's 1 
* and 2 upon the second set of stores. 

* This only occurs when the volatile assignments are inserted between the non
* volatile assignments. You could consider this a compiler efficiency problem 
* and this has been reported to Green Hills. 
* * Even though we have seen a compiler inefficiency here, we believe that it is 
* unreasonable to expect the compiler to catch all cases so this kind of 'C' 
* coding inefficiency will be reported. 
********************************************************************************/ 

void SameGlobalVariableBad (void); 

void SameGlobalVariableBad (void) 
{ 

globalUbytel = 1; 
globalVolatileUbytel globalUbytel; 
globa1Ubyte2 = 12; 
globalVolatileUbytel globa1Ubyte2; 

globalUbytel = 1; 
globalVolatileUbytel globalUbytel; 
globa1Ubyte2 = 12; 
globalVolatileUbytel globa1Ubyte2; 

Pro21'am 3-4. OK example. 
/**,,..****************~*********************************************************** 
* This is the OK example. The compiler figures out that the first two 
* assignments are unnecessary. 
********************************************************************************/ 

void SameGlobalVariableOk {void); 

void SameGlobalVariableOk (void) 
{ 

globalUbytel l; 
globa1Ubyte2 12; 

globalUbytel 1; 
globalVolatileUbytel 
globa1Ubyte2 = 12; 
globalVolatileUbytel 

globalUbytel; 

globa1Ubyte2; 

Quantum Proprietary 12/2.2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Pro£ram 3-5. Non-word function parameters. 
/**,,..*************************.************************************************** 
*NON-WORD FUNCTION PARAMETERS. 
* This caused an unexpected result. Regardless of whether the parameters are 
* words or bytes, the caller converts the data to the parameter type. However, if 
* the parameter is a word type, the callee does not re-convert the data type for its 
* target. It must assume that the conversion is alread done. This is the opposite of 
* what I would expect. In any case, defining function parameters as words 
* eliminates the callee's conversion, saving code. 
********************************************************************************/ 

void NonWordParmCallerl (void); 
void NonWordParmCaller2 (void); 
void NonWordParmCalleel (ubyte inputParm); 

void NonWordParmCallerl (void) 
{ 

NonWordParmCalleel (globalVolatileUbytel); 

void NonWordParmCaller2 (void) 
{ 

NonWordParmCalleel (globalVolatileUbyte2); 

void NonWordParmCalleel (ubyte inputParm) 
{ 

globalVolatileUbyte3 inputParm; 

/******************************************************************************** 
* If the final destination of an operation is a memory location defined to be a byte 
* or ubyte, the compiler will emit a ST.B instruction which merely stores the low order 8 bits 
* of the register. This obviously performs a truncation. Thus it is not necessary to have 
* the compiler do truncation on intermediate results. The same holds true for hwords and uhwords 
********************************************************************************/ 

Do this: 

ubyte ASICREG; 

void F (word A, word B); 
{ 

Word C; 
C A + B; 
ASICREG = C; 

Do Not do this: 

void G (ubyte A, ubyte Bl 
{ 

Quantum Proprietary 1'2/22/97 

Ubyte C; 
C = A + B; 
ASICREG = C; 

page3-33 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page.3-34 

/******************************************************************************** 
* Example showing why you use words instead of hwords or bytes 
********************************************************************************/ 

#define ubyte unsigned char 
#define uh word unsigned short 
#define uword unsigned long 

#define byte signed char 
#define hword signed short 
#define word signed long 

#pragma ghs startzda 
word a; 

void goodl(word b, word c) 
{ 

a = b + c; 
II add r6,r7 
II st.w r7,zdaoff( a) [zero] 
II jmp [lpJ -
} 

void good2(uword b, uword c) 
{ 

a = b + c; 
II add r6,r7 
II st.w r7,zdaoff( a) [zero] -II jmp [lp] 
} 

void badl(hword b, hword c) 
{ 

a = b + c; 
II shl 16,r6 
II sar 16,r6 
II shl 16,r7 
II sar 16, r7 
II add r6,r7 
II st.w r7,zdaoff(_a) [zero] 
II jmp [lp] 
} 

void bad2 (uhword b, uhword c) 
{ 

a = b + c; 
II and r21,r6 
II and r21,r7 
II add r6,r7 
II st.w r7,zdaoff( _a) [zero] 
II jmp [lp] 
} 

void bad3(byte b, byte c) 
{ 

a = b + c; 
II shl 24,r6 
II sar 24,r6 
II shl 24,r7 
II sar 24,r7 
II add r6,r7 
II st.w r7,zdaoff(_a) [zero] 
II jmp [lp] 
} 

void bad4(ubyte b, ubyte c) 
{ 

Quantum Proprietary 12/1.2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

a == b + c; 
II and r20,r6 
II and r20, r7 
II add r6,r7 
II st.w r7,zdaoff( _a) [zero] 
II jmp [lp] 
} 

Pro2J'am 3-6. Word function parameters. 
/**"1r**************************************************************************** 
* WORD FUNCTION PARAMETERS. When function parameters are words, 
* the data is not converted by the callee. 
********************************************************************************! 

void WordParmCallerl (void); 
void WordParmCaller2 (void); 
void WordParmCalleel (word inputParm); 

void WordParmCallerl (void) 
{ 

WordParmCalleel ((word) globalVolatileUbytel); 

void WordParmCaller2 (void) 
{ 

WordParmCalleel ((word) globalVolatileUbyte2); 

void WordParmCalleel (word inputParm) 

globalVolatileUbyte3 input Parm; 

Quantum Proprietary 12/22197 page3-35 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-36 

Pro2l'am 3-7. Repeated 'if' expressions. 
/*** .... **********.**********.****************************************************** 
* REPEATED 'IF' EXPRESSIONS. Whether at the same nesting level or not, repeatedly 
*testing the same condition raises an eyebrow. 
* It may be possible for the author to re-design the logic. We see that if there is a test 
* on a local variable, the compiler sees that it is the same test and optimizes it. 
* Ifwe test a global variable, even though it is not volatile, the compiler repeats the test. 
* Even though we have seen a compiler inefficiency here, we believe that it is 
* unreasonable to expect the compiler to catch all cases. 
********************************************************************************/ 

void RepeatedifExpression (void); 

void RepeatedifExpression (void) 

if (globalUbytel == 1) 
{ 

globa1Ubyte2 = 12; 

if (globalUbytel == 1) 
{ 

globa1Ubyte3 = 13; 

Quantum Proprietary 12/2.'2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Pro21'ant 3-8. Multiple code fra1m1.ents that do the same thin2. 
/**"1<*************"**********¥************************ .... *************************** 
*MULTIPLE CODE FRAGMENTS THAT DO THE SAME THING. 
* Typically, the compiler will be unable to see code fragments that repeat 
*assignments (etc) unless they are very close together. 
* Even though we have seen a compiler inefficiency here, we believe that it is 
* unreasonable to expect the compiler to catch all cases so this kind of 'C' coding 
* inefficiency will be reported. 
********************************************************************************! 

void RepeatedFragmentl (void); 
void RepeatedFragment2 (void); 

void RepeatedFragmentl (void) 

globalUbytel = 1; 
globalVolatileUbytel = 2; 
globalUhwordl = 3; 
globalVolatileUhwordl = 4; 
globalWordl = 5; 
globalVolatileWord4 = 6; 

/* Now repeat the whole thing within the same function. */ 

globalUbytel = 1; 
globalVolatileUbytel = 2; 
globalUhwordl = 3; 
globalVolatileUhwordl = 4; 
globalWordl = 5; 
globalVolatileWord4 = 6; 

void RepeatedFragment2 (void) 

{ 

Quantum Proprietary 12/1.2/97 

globalUbytel = 1; 
globalVolatileUbytel = 2; 
globalUhwordl = 3; 
globalVolatileUhwordl = 4; 
globalWordl = 5; 
globalVolatileWord4 = 6; 

page3-37 



Chqpter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3~38 

Pro2J"am 3-9. Repeated constants. 
/**,.**********.***************************************************************** 
* REPEATED CONSTANTS. When a constant is used more than once it should be 
* stored in a temporary register. The compiler remembers a single repeated constant. 
* However, it forgets as soon as you introduce a second constant. You should assign 
* repeated constantsb to local variables to ensure that they are remembered. 
* 
* NOTE: The compiler is really bad on this one. Even when we try to assign repeated 
* constants to temporary variables the compiler overrides them and repeatedly sets 
*registers over and over again!!! 
********************************************************************************/ 

void RepeatedConstantsBad (void); 
void RepeatedConstantsNoGoodTry (void); 

void RepeatedConstantsBad (void) 

globalVolatileWordl l; 
globalVolatileWordl 2; 
globalVolatileWord2 l; 
globalVolatileWord2 2; 
globalVolatileWord3 l; 
globalVolatileWord3 2; 
globalVolatileWord4 l; 
globalVolatileWord4 2; 

void RepeatedConstantsNoGoodTry (void) 

word valueOne l; 
word valueTwo 2; 

globalVolatileWordl 
globalVolatileWordl 
globalVolatileWord2 
globalVolatileWord2 
globalVolatileWord3 
globalVolatileWord3 
globalVolatileWord4 
globalVolatileWord4 

valueOne; 
valueTwo; 
valueOne; 
valueTwo; 
valueOne; 
valueTwo; 
valueOne; 
valueTwo; 

Quantum Proprietary 12/2.2197 



DPSG VBSx User Guide Rev. D Chapter 3 Fundamentals 

Pro21'am 3-10. Bitwise or'd bit fields. 
/**~**************************************************************************** 
* BITWISE OR'd BIT FIELDS. In an 'if expression, you must not OR together two 
* bit fields BITWISE and then test the resulting condition as you would whole word 
* variables. This is because the resulting shifting ANDing and ORing is huge. 
* This is a nasty mistake that I haven't seen happen very often but it is a big 
*mistake if it does occur. 
* It will be a low priority to find this case because of its unlikelihood. 
********************************************************************************/ 

void BitwiseOredFieldsBad (void); 
void BitwiseOredFieldsGood (void); 

void BitwiseOredFieldsBad (void) 
{ 

if (globalBitWordl.bitFieldlb 
globalBitWord2.bitField2b) 

{ 

globalVolatileWord4 l; 

void BitwiseOredFieldsGood (void) 
{ 

if (globalBitWordl.bitFieldlb I I 
globalBitWord2.bitField2b) 

{ 

globalVolatileWord4 l; 

Quantum Proprietary 12/1.2/97 page.3-39 



Chapter 3 Fundamentals DPSG VBSx User Guide Rev. D 

page 3-.40 

Pro!!l'am 3-11. Post-incrementinsr a variable within a 'while' (or other conditional) statement 
/***'1<************************~*************************************************** 
* POST-INCREMENTING A VARIABLE WITHIN A 'WHILE' 
* (or other conditional) STATEMENT: 
* Post increments force the compiler to save a temporary copy of the register 
* assigned to the associated variable so that the pre-incremented version can be 
* tested. This takes an extra two bytes per statement. 
* We should find lots of these. 
********************************************************************************/ 

void PostincrementifExpressionBad (void); 
void PostincrementifExpressionGood (void); 

void PostincrementifExpressionBad (void) 

word postincrementLoopControl = 0; 

while ( postincrementLoopControl++ < 100 ) 
{ 

globalVolatileWord4 1; 

void PostincrementifExpressionGood (void) 

word postincrementLoopControl = O; 

while ( postincrementLoopControl < 100 
{ 

globalVolatileWord4 = 1; 
postincrementLoopControl++; 

Quantum Praprietary 12/22/97 



DPSG VBSx User Guide Rev. D Chapter 3 Fundamentals 

Prol!Tam 3-12. Subroutine with more than 4 parameters. 
/***'1<**********************************'***************************************** 
*SUBROUTINE WITH MORE THAN 4 PARAMETERS: 
* There are only four registers (R6 - R9) dedicated to parameter passing. Functions with more 
* than 4 parameters force the stack to be used for the additional parameters. This 
*uses more code than functions with four or less parameters. Note that in my 
*example I execute the same number of instructions regardless of the number 
* of parameters. 
********************************************************************************/ 

void FiveParameterFunction (word parml, word parm2, word 
parm3, word parm4, word parm5) 
{ 

globalVolatileWordl 
globalVolatileWord2 
globalVolatileWord3 
globalVolatileWord4 
globalVolatileWord5 

parml; 
parm2; 
parm3; 
parm4; 
parm5; 

void FourParameterFunction (word parml, word parm2, word 
parm3, word parm4) 
{ 

Quantum Proprietary 12/22/97 

globalVolatileWordl 
globalVolatileWord2 
globalVolatileWord3 
globalVolatileWord4 
globalVolatileWord5 

parml; 
parm2; 
parm3; 
parm4; 
parm4; 

page 3-41 



Qzapter 3 Fundamentals DPSG V85x User Guide Rev. D 

Proe:ram 3-13. Arravs usin2 subscript variables. 
/**,,.*************~*****~*******~************************************************ 
* ARRAYS USING SUBSCRIPT VARIABLES: This forces the compiler to use 
*arithmetic for access to the elements. Pointer arithmetic generates less assembly, 
* even with the counter shown below included. 
********************************************************************************/ 

void ArrayWithSubscripts (void); 
void ArrayWithoutSubscripts (void); 

void ArrayWithSubscripts (void) 

hword arrayindex 0; 

do 
{ 

globalThreeByteStruct[arrayindex].byteOne = l; 
globalThreeByteStruct[arrayindex] .byteTwo = 2; 
globalThreeByteStruct[arrayindex].byteThree = 3; 
arrayindex++; 

}while (arrayindex < 20); 

void ArrayWithoutSubscripts (void) 

word arrayCount = 0; 
struct threeByteStructType *structPointer 
&globalThreeByteStruct[O]; 

do 
{ 

structPointer->byteOne = l; 
structPointer->byteTwo = 2; 
structPointer->byteThree = 3; 
arrayCount++; 
structPointer++; 

}while (arrayCount < 20); 

page 3-42 Quantum Proprietary 12/2.2/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Prol?I'am 3-14. Arrays usine: two subscrit>t variables. 
/**~*******************~***********'"********************************************* 
* ARRAYS USING TWO SUBSCRIPT VARIABLES: 
* This forces the compiler to use even more complex arithmetic for access to 
* the elements. Pointer arithmetic generates less assembly, even with the counter 
* shown below included. 
* NOTE: The code size difference here is dramatic. 
********************************************************************************/ 

void ArrayWithTwoSubscripts (void); 
void ArrayWithoutTwoSubscripts (void); 

void ArrayWithTwoSubscripts (void) 

hword arrayindexl 0; 
hword arrayindex2 0; 

do 
{ 

do 
{ 
globalTwoDimensionalThreeByteStruct 

[arrayindexl] [arrayindex2] .byteOne l; 

globalTwoDimensionalThreeByteStruct 
[arrayindexl] [arrayindex2] .byteTwo = 2; 

globalTwoDimensionalThreeByteStruct 
[arrayindexl] [arrayindex2] .byteThree 3; 

arrayindexl++; 

}while (arrayindex2 < 100); 
}while (arrayindexl < 20); 

void ArrayWithoutTwoSubscripts (void) 

{ 

word 
word 

arrayCountl 
arrayCount2 

O; 
0; 

struct twoDimensionalThreeByteStructType *structPointerl 
&globalTwoDimensionalThreeByteStruct[O] [OJ; 
struct twoDimensionalThreeByteStructType *structPointer2 
&globalTwoDimensionalThreeByteStruct[O] [0]; 

do 
{ 

structPointer2 structPointerl; 

do 
{ 

structPointer2->byteOne = l; 
structPointer2->byteTwo = 2; 
structPointer2->byteThree = 3; 
arrayCountl++; 

Quantum Proprietary 12/22/97 page 3-43 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-44 

structPointer2++; 
}while (arrayCount2 < 100); 

structPointerl +=100; 
II Note that this adds 100 * size of structure 

}while (arrayCountl < 20); 

Pro21"am 3-15. Arrays or structures as function parameters. 
/*** ... *************************************.************************************** 
*ARRAYS OR STRUCTURES AS FUNCTION PARAMETERS: This forces 
* the compiler to push the entire array or structure onto the stack. 
* Instead, you should use a pointer to the array or structure. The example below uses 
* a structure. 
********************************************************************************/ 

void ArrayParamCaller (void); 
void ArrayParamCallee (struct threeByteStructType 
testThreeByteStruct); 
void ArrayAddressParamCallee (struct threeByteStructType 
*testThreeByteStruct); 

void ArrayParamCaller (void) 

ArrayParamCallee (globalSingleThreeByteStruct); 

void ArrayParamCallee (struct threeByteStructType 
testThreeByteStruct) 

globalUbytel 
globa1Ubyte2 
globa1Ubyte3 

testThreeByteStruct.byteOne; 
testThreeByteStruct.byteTwo; 
testThreeByteStruct.byteThree; 

void ArrayAddressParamCallee (struct threeByteStructType 
*testThreeByteStruct) 

globalUbytel 
globa1Ubyte2 
globa1Ubyte3 

testThreeByteStruct->byteOne; 
testThreeByteStruct->byteTwo; 
testThreeByteStruct->byteThree; 

Quantum Proprietary 12/2.2/97 



DPSG V85x User Guide Rev. D C!ug?ter 3 Fundamentals 

Prol?l'am 3-16. For and while loops vs do-while Ioop,s. 
/**,,.**************************************** *********************************** 
* FOR AND WHILE LOOPS VS DO-WHILE LOOPS: For loops and while loops 
* (with the 'while' statement at the top) each generate two more bytes of code than 
* do-while loops. The reason is that the for and while loops execute an initial jump 
* to the bottom of the routine to test the range. Of course, the do-while method only 
* works if you know that the function must execute the first pass of the loop. 
********************************************************************************/ 

void ForLoopExample (void); 
void DoWhileExample (void); 
void WhileLoopExample (void); 

void ForLoopExample (void) 

word exampleCount; 

for (exampleCount = 0; exampleCount < 10; 
exampleCount++) 
{ 

globalVolatileUbytel 1; 

void WhileLoopExample (void) 

word exampleCount = 0; 

while (exampleCount < 10) 
{ 

} ; 

globalVolatileUbytel 1; 
exampleCount++; 

void DoWhileExample (void) 

Quantum Pruprietary 12/12197 

word exampleCount 0; 

do 
{ 

globalVolatileUbytel = 1; 
exampleCount++; 

}while (exampleCount < 10); 

page3-45 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-.46 

Prosrram 3-17. Bvte and half-word local variables. 
/***'***********'***************************************************************** 
* BYTE AND HALF-WORD LOCAL VARIABLES: Local numeric variables should 
* always be WORDs unless specifically required to be smaller. 
* The reason for this is that the V851 is a 'signed' processor, meaning that whenever 
* it loads a byte or halfword into a register it 'sign extends' the high-order bit. 
*If you unnecessarily declare a local counter variable as a byte (for instance), then 
* whenever any math is done on it, extra assembly instructions will be generated 
* to mask off any overflow bits. 
********************************************************************************/ 

void LocalByteExample (void) 
{ 

byte localBytel; 

localBytel 1; 

do 
{ 

globalVolatileUbytel = 1; 
localBytel++; 
II Extra code generated to mask off the upper 24 
(overflow) bits. 

}while (localBytel < 10); 

void LocalHwordExample (void) 
{ 

hword localHwordl; 

localHwordl 1; 

do 
{ 

globalVolatileUbytel = 1; 
localHwordl++; 
II Extra code generated to mask off the upper 16 
(overflow) bits. 

}while (localHwordl < 10); 

void LocalWordExample (void) 
{ 

word localWordl; 

localWordl 1; 

do 

Quantum Proprietary 12/22/97 



DPSG V85x User Guide Rev. D 

Quantum Proprietary 12/22/97 

globalVolatileUbytel = 1; 
localWordl++; 
II No extra code generated. 

}while (localWordl < 10); 

Chapter 3 Fundamentals 

page3-47 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

{This page was intentionally left blank.) 

page3-48 Quantum Proprietary 12/22/97 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.2 NEC V851 Microprocessor 

3.2.1 i\rcllitecl1ll'e 
This document describes the 'Atlas' V851 Microprocessor architecture as it affects firmware 
development For further documentation on the processor, you can refer to the appropriate 
NEC publications. 

3.2.1.1 Instruction Set 
The following summary shows you two important values for each V851 machine 
instruction; the size in bytes and the number of cycles required to execute the instruction. 
As you develop 'C' and assembly code, both code size and performance can be revealed by 
studying the resulting assembly language using this chart 

This table is most commonly used to perform manual 'pipeline' optimization of assembly 
code by determining the latency associated with each instruction. For instance, if an 
instruction is executed with an issue value of 1, but a latency value of 2, then the results of 
the instruction can't be used for 2 cycles but another instruction can be executed within 1 
cycle. So, you will insert some unrelated instruction (such as initializing a register for some 
future operation) after the current one to make use of the machine cycle sacrificed by the 
latency. 

The compiler automatically performs pipeline optimization, but the assembler does not 
Latency can account for about a 20% performance loss unless optimization is done. 

The size and performance values are as follows: 

• Bytes: The size in bytes of the instruction 
• Issue: The number of machine cycles required for the instruction. 
• Repeat The number of machine cycles required until the same instruction can be 

repeated. 
• Latency: The number of machine cycles required until the result is available. 

2 1 1 1 
4 1 1 1 
4 1 1 1 
4 1 1 2 
4 1 1 2 
4 1 1 2 
4 1 1 1 
4 1 1 1 
4 1 1 1 
2 1 1 2 
2 1 1 2 
2 1 1 2 
2 1 1 1 
2 1 1 1 
2 1 1 1 
2 1 1 1 

Quantum Proprietary 12122197 page3-49 



Chapter 3 Fundamentals 

page3-50 

DPSG V85x User Guide Rev. D 

"• " 

2 1 1 1 add imm5,reg2 
4 1 1 1 ad di im.m16,r~,reg2 
2 1 1 1 sub r~1,reg2 

2 1 1 1 subr r~l,reg2 

2 1 1 1 cm..E_ im.m5,reg2 
2 1 1 1 cm_E_ r~l,re__g_2 

2 1 1 1 shl im.m5,reg2 
4 1 1 1 shl r~1reg2 
2 1 1 1 shr im.m5,reg2 
4 1 1 1 shr r~l,reg2 

2 1 1 1 sar im.m5,r~2 

4 1 1 1 sar regl,reg2 
2 1 1 1 and re__g_l,r~2 

4 1 1 1 andi im.m16,r~l,reg2 
2 1 1 1 or r~l,reg2 

4 1 1 1 ori imm16,r~l,re__g_2 

2 1 1 1 xor r~l,r~2 
4 1 1 1 xori im.m16,re__g_l,reg2 
2 1 1 1 not r~l,r~2 
2 1 1 1 tst r~l,reg2 
4 4 4 4 setl bitnum,dis.£_16]!~ 
4 4 4 4 clrl bitnum,dis_£16[r~ 

4 4 4 4 notl bitnum,dis_E_16:fre_gil 
4 3 3 3 tstl bitnum,dis_E_l~~iI 
2 1 1 2 mulh r~l,reg2 
2 1 1 2 mulh im.m5,reg_2 
4 1 1 2 mulhi im.m16,re__g_l,r~2 

2 36 36 36 divh r~l,r~2 
2 1 1 1 satadd r~l,re__g_2 
2 1 1 1 satadd im.m5,reg2 
4 1 1 1 satsubi im.m16,re_g2 
2 1 1 1 satsub re_g_l,reg2 
2 1 1 1 satsubr re__g_l,reg2 
2 * * * bcond dis.£.9 
2 3 3 3 lm_E_ [r~ij_ 
4 3 3 3 j_r d~22Tufl 
4 3 3 3 larl dis_E_22~reg2 
4 1 1 1 setf cccc,r~2 

4 1 1 1 halt 
4 4 4 4 tr~ vector 
4 4 4 4 reti 
4 1 1 * ldsr re__g_2,r~ID 

4 1 1 1 stsr regID,reg2 
4 1 1 1 di 
4 1 1 1 ei 
2 1 1 1 n<?.E_ 

Table 3-1. Instruction Set Size and Latency Summary 
*See pp 217 - 220 of the NEC: V851TM User's Manual Sept., 1996 

Quantum Proprietary 12122197 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.2.1.2 Registers 
The V851 provides thirty-two 32-bit registers. In order to create efficient 'C' code and to 
write assembly code that works, you must understand how these registers are used. 
Registers are used in the following ways: 

• 
• 
• 
• 
• 

~·~, }~'¥'~·°'! ' 
rO 

rl 
r2 
r3 
r4 
r5 
r6 
r7 
r8 
r9 
rlO 
rll 
r12 
r13 
r14 
r15 
r16 
r17 
r18 
r19 
r20 
r21 
r22 
r23 
r24 
r25 
r26 
r27 
r28 
r29 
r30 

r31 

Dedicated by the microprocessor architecture RO, R30 (ep), PSW 
Reserved by special purposes by the compiler or assembler, R6 - R9, RlO, Rl 
Reserved by servo code as agreed upon by Quantum development teams 
Temporary registers useable by 'C and assembly code 
Permanent registers useable by 'C and assembly code 

Dedicated by 
Micro rocessor 
Reserved 

The Zero Register. Always contains zero. 
Bit bucket if written to. 

Reserved Will become available with version 3.0 emulator 
Dedicated 
Reserved 
Reserved 

Tem · ter 
Tem · ter 
Tem · ter 
Tem · ter 
Tem · ter 
Tem · ter 

· ter 

Dedicated to Servo 
Dedicated to Servo 
Reserved 
Reserved 
Dedicated to Servo 
Permanent Re 
Permanent Re 
Permanent Re 
Permanent Re 
Permanent Re 
Permanent Re 
Permanent Re 
Dedicated by 
Micro rocessor 

Stack Pointer s 
Global Pointer for SDA Small Data Area Access 
Will become available with version 3.0 emulator 
Parameter re 
Parameter re 

Return value from function calls. 

General · ter 
General · ter 
General . ter 

General . ter 

· ter 

ares 

· ter 
· ter 
· ter 

General · ter 
General · ter 
General . ter 

.Link Pointer return address for function calls 

Table 3-2. V851 Registers - Eclipse Configuration (26 register mode) 
Except for rO and r30, these registers are based from GHS usage. 

Quantum Proprietary 12122197 page3-51 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-52 

Twenty-Six Register 
Mode 

Register Zero 

Small Data Area 
Access 

Temporary Registers 

Permanent Registers 

Function Parameter 
Registers 

As a compiler option, this model of operation specifies that only 
26 of the 32 registers are available to the compiler. By selecting 26 
register mode we allow some registers to be reserved by servo 
code. This would normally allow servo to use six registers with
out saving them on the stack each time it executes. However, we 
have selected an option that allows the compiler to use r20 and 
r21 as mask registers, forcing servo to reset them to their mask 
values after using them. This reduces the number of dedicated 
servo registers to four. 

This register is hard-wired by the V851 to always contain the value 
zero (zero, or rO). This saves code by providing an immediate 
value for initialization, compare, and data access. Writing to it is 
writing to the bit bucket. 

This data access method uses the global pointer register (gp or r4) 
as a base register. It provides 321< in either direction from the 
global pointer. Although this is not currently used by the Eclipse 
code, it is an available option. 

The registers r6 - r16 are used most freely by the compiler. It 
assumes that all of them are destroyed by function calls. A 
function is free to use a temporary register w / o saving it's 
contents. Therefore a caller of a function can make no 
assumptions about the value in a temporary register upon return 
from the called function. The typical use of temporary registers is 
for values that need not be preserved across calls. 

The registers r23 - r29 are typically used for values that must be 
preserved across function calls. The compiler assumes that any 
function that is called will preserve the contents of any 
permanent registers that it changes. A function will preserve the 
original value (save/restore using the stack) stored in any 
permanent register it uses. Therefore, a caller of a function can 
assume that the value in all permanent registers will be preserved 
across the function call. 

The registers r6 - r9 are used for passing parameters to functions. 
Functions with more than 4 parameters force the compiler to pass 
the additional ones on the stack, which is inefficient. These 
registers are also used as temporary registers within functions. 

Function Return Value The register rlO is used to provide the return value of functions to 
Register their callers. It is also treated as a temporary register since it can 

be destroyed by any function that does not return a value. 

Dedicated Servo 
Registers 

The registers r17, r18, r19, and r23 are used by servo code only. 
Since only the servo code uses these registers, they need not be 
saved. This makes the servo code faster. 

Quantum Proprietary 12122197 



DPSG V85x User Guide Rev. D 

Mask Registers 

Element Pointer 
Registers 

Link Pointer 

Chapter 3 Fundamentals 

We have selected a compiler option to use registers r20 and r21 as 
mask registers. The value of r20 is always Oxff and the value of 
r21 is always Oxffff. This allows the compiler to do more code 
efficient masking operations. 

The register r30 (ep) is hard-wired in the V851. (i.e., the short 
loads and stores implicitly use ep. It is used by the compiler to 
generate short (2-byte) loads and stores to RAM. This is typically 
done for structure access in code fragments that do many accesses 
to the same structure. As a result, the compiler will use the ep 
register periodically throughout the code where it can take 
advantage. The compiler generates object code which initializes 
the element pointer with the base address of the structure. It can 
then use ep-relative short loads and stores to access the 
structure's members. The largest displacement from the element 
pointer that a structure member can have is 127 bytes when 
accessed as a byte, or 255 bytes when accessed as a halfword or 
word. 

The register r31 (Ip) is used as a return address when calls to 
functions are issued. Since there is only one link pointer, any 
function that performs a call must save the link pointer on the 
stack. 

3.2.1.3 DataFormats 
Data for the V851 is stored in three different formats; words, halfwords, and bytes. The 
following rules show how your data will be affected by these formats: 

Words 

Halfwords 

Bytes 

Quantum Proprietary 12122197 

Words are 32 bits in size. They must be stored on 32-bit boundaries. 
The compiler enforces this so in order to avoid unused spaces between 
members your structures should define all the words before halfwords 
and bytes. This is the preferrable format for arithmetic operators. 

Halfwords are 16 bits in size. They must be stored on 16-bit boundaries. 
The compiler enforces this so in order to avoid unused spaces between 
members structures should define all the halfwords before bytes. 

Bytes are 8 bits in size. 

page3-53 



Chaoter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-54 

3.2.1.4 Signed Operations 
The V851 processor is a 'signed' processor. That is, data that is loaded from memory into 
registers is sign extended. Immediate values in machine instructions are sign extended 
before being applied to the instruction, and multiply and divide operations are sign
extended. This affects the three data formats in the following ways: 

Words 

Halfwords 

Bytes 

No sign extension is performed when loading words from memory, since 
this is the largest data format 

Bit 15 of memory is sign extended when loaded into a register. 
For instance, if a halfword value of Ox8000 is loaded into a register, 
the register will become Oxffff8000 

Bit 7 of memory is sign extended when loaded into a register. 
For instance, if a halfword value of Ox80 is loaded into a register, 
the register will become Oxffffff80 

3.2.1.5 Saturated Math 
Saturated math instructions are special machine instructions which allow registers to reach 
their full positive or negative values and stay at that value. For example, the maximum 
positive value of any register is Ox7fffffff. If any saturated math operation would cause the 
register to exceed Ox7fffffff then the value would be set to Ox7fffffff. The same goes for 
negative values. The maximum negative value of a register is OxSOOOOOOO. Any saturated 
math operation that would cause the register to exceed Ox80000000 would cause the 
register to be set to Ox80000000. This generally affects assembly language programming as 
there is no 'C language facility to take advantage of saturated math operations. 

Note. GHS provides saturated math operations as special inline functions; however, they 
are not that useful. GHS also provides El() and DI()as special inline functions. (See page 33 
of the Green Hills Software: Embedded VBOO Development Guide, Version 1.8.8) 

3.2.1.6 Hardware Multiply and Divide 
The V851 provides multiply and divide instructions which can greatly improve the 
efficiency of the firmware object code. However, it is sometimes necessary to coerce the 
compiler into using hardware multiplies and divides by explicitly casting operands. If the 
operands are not of the appropriate data types, the compiler will use a library function, 
which is very inefficient. The following data types are required for hardware multiply and 
divide instructions to be generated. 

Multiply 

Divide 

If both operands are variables then both operands must be no greater 
than half-words in size. If one of the operands is a constant, then less 
code will be generated if the operand is not greater than 15 or less than 
-16. 

Divide is word = word/hword. There is no divide instruction 
which uses a constant 

Quantum Proprietary 12122197 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.2.1.7 Execution Speed 
The V851 processor is very fast. When driven by a 25 Mhz clock, each single-cycle 
instruction executes in only 40 ns. However, executing data loads and stores to external 
RAM causes wait states to be used, resulting in approximately 1 microsecond per 
instruction. So, it is vital to avoid external RAM accesses in performance-critical code 
sections. 

3.2.1.8 Pipeline Stalls 
The V851 is generally a RISC processor. In other words, most instructions require only 1 
machine cycle to execute. However, some instructions require more than one machine 
cycle in which to present their data. For instance a load from internal RAM into a register 
executes in 1 machine cycle but the register contents are not available for another machine 
cycle. The trick is to insert another unrelated instruction after the load to use the next 
machine cycle while the previous one completes. This is called pipeline optimization. The 
compiler performs pipeline optimization automatically for you. However, the assembler 
does not. So you must code in pipeline optimization by hand when writing in assembly 
language. 

See the instruction set summary in this document for the machine cycle requirements 
associated with each instruction. 

Quantum Proprietary 12122197 page3-55 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

(This page is intentionally left blank.) 

page3-56 Quantum Proprietary 12122197 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.3 The Multi-Stack Kernel 

The multi-stack kernel provides increased drive performance through the deterministic 
(repeatable or consistent response to events) execution of concurrent tasks. Execution of tasks 
is generally independent; normally the tasks don't need to know anything about each other. 
However, since they must share resources, some degree of coordination is required. 

Each task is provided with its own stack. Each task also has a 'context' structure where the 
kernel saves its registers when the task is not executing. 

Tasks are executed by priority. When the processor is not executing an interrupt service 
routine, the highest priority active task executes. 

Tasks have two basic states; active and suspended. When a task is in the active state, it can 
execute. However, an active task may not actually be executing because it may be preempted 
by a higher priority task. 

A task becomes suspended by 'pending' on events (indications of some occurrence which are 
'posted' by ISRs or tasks). A suspended task cannot execute. A task is made active when an 
event that it had pended on is posted. 

The multi-stack kernel consists of three basic components; an ISR handler, a scheduler, and a 
set of functions for pending, posting, and suspending. 

3.3.1 Advantages of a Multi-Stack Kernel 
Some of the technical merits of the multi-stack kernel are as follows: 

• Code can be written in a linear manner 
Each task goes about its business in a straight line. No special code is built into 
the tasks to pass control to other tasks. This makes the code much more straight
forward. 

• Smaller code 
When compared with the cooperative multi-tasking kernel or code which 
manages multi-tasking via flags and polling loops, code written for the multi
stack kernel is more compact because it focuses multi-tasking within the kernel 
itself. 

• Code is easier to understand 
Because the code is linear and multi-tasking is hidden within the kernel, each 
task is easier to understand than code written for the cooperative multi-tasking 
kernel or code which manages multi-tasking via flags and polling loops. 

• Less latency in response to events 
Because the kernel causes a task that is pending on an event to preempt other 
tasks immediately upon the posting of an event, the event response latency is 
consistent and fast. 

Quantum Proprietary 12122197 page3-57 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-:58 

3.3.2 Disadvantages of a Multi-Stack Kernel 
Here is one trade-off associated with the multi-stack kernel: 

• Limited Amount of Internal RAM 
Because the kernel uses multiple stacks and contexts which must support high 
performance, it uses internal RAM for stacks and contexts where speed is 
important. The V851 processor has only 2K of internal RAM. However, we have 
found in practice that it is possible to implement the multi-stack kernel and still 
have enough internal RAM to produce a very fast drive. 

3.3.3 Context Switch Latency 
The average time that it takes to post an event and then switch from one task to another is 
approximately 6 microseconds. 

3.3.4 The Kernel's ISR Handler 
When an interrupt occurs and the microprocessor PC jumps to the interrupt vector, special 
handling occurs. The interrupt' s service routine address is captured and the kernel's ISR 
handler begins execution. 

The kernel's ISR handler keeps track of the 'JSR nesting level'. If a task is interrupted then 
the ISR nesting level is zero. If an interrupt service routine is interrupted by a higher 
priority interrupt then the ISR nesting level is 1 or greater and the new interrupt's service 
routine is executed without special processing. 

If the JSR nesting level is zero when an interrupt occurs then the kernel's ISR handler saves 
the current task's registers in the current task's context structure. It then executes the 
interrupt service routine. Upon return from the service routine the scheduler is executed. 
The scheduler could then resume execution of a different task than the one that was 
interrupted if a new event was posted by the interrupt service routine. This would only 
happen if the posted event activates a higher priority task (preemption). 

Interrupt service routines written for the multi-stack kernel are normal functions. They are 
not coded with the 'interrupt pragma'. However, they will typically enable interrupts 
almost immediately upon starting. The Kernel's ISR handler takes care of saving and 
restoring registers. 

The servo (NMI) is not included in this scheme. It operates independently of the kernel. 
Also, the timer overflow and retract interrupt. This is because none of these generate 
events. 

Quantum Proprietary 12122197 



DPSG V85x User Guide Rev. D 

ISR 

Saver6ina 
global RAM 

Variable 

r6 = Address Of 
Interrupt Service 

Routine 

Add 1 to 
isrNestingLevel 

Quantum Proprietary 12122197 

Save Current 
Task's Registers 

in Context 

Stack = ISR Stack 

Execute Interrupt 
Service Routine 

Set 
isrNestingLevel 

too 

Activate Highest 
Priority Ready 

Task 

Stack = Task's 
Stack 

Resume Task 

Figure 3-1. Kernel ISR Handling 

Chapter 3 Fundamentals 

Save Interrupted 
ISRs Registers 
onISRStack 

Execute Interrupt 
Service Routine 

Subtract 1 from 
isrNestingLevel 

Restore 
Interrupted ISRs 

Registers from ISR 
Stack 

Return from 
Interrupt 

page3-59 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-.60 

3.3.5 The Kernel's Scheduler 
The kernel's scheduler is executed under two different circumstances; when the Kerner s 
ISR handler is managing the return from an interrupt service routine with an ISR nesting 
level of zero or when a task posts an event which is pended on by some suspended task of 
higher priority. 

A change of the current task from one task to another is called a' context switch'. 

Called by a Task 
Posting an Event 

Save Permanent 
Registers & Others 

on Stack 

Disable Interrupts 

Change Task's 
State to 

Suspended 

No 

Called by Return 
FromISR 

Restore Task 
Context and 
Activate It 

Figure 3-2. Kernel Scheduler 

Starting at Highest 
Priority (0) 

Halt 

Quantum Proprietary 12122197 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

3.3.6 Pending and Posting 
The multi-stack kernel provides a set of tools which implement various flavors of these 
three basic functions: 

• 

• 

Pending 
The calling task provides one or more bits indicating the event(s) which can 
activate it once it suspends. The caller will suspend immediately if none of the 
events on which it is pending have been posted. There are thirty-two potential 
event bits. 

Posting 
The calling task or interrupt service routine provides one or more bits indicating 
event(s) which have occurred. If there is a higher priority task pending on an 
event that was posted then the calling task will be immediately preempted by the 
higher priority task. Interrupt service routines are not preempted in this way. In 
that case, the pending task is activated when the lowest level interrupt service 
routine is exited. _ 

3.3.7 Task States 
There are two basic states that a task can be in; active and suspended. However, there's 
also a transitional state called 'suspended request' which will be discussed. These states are 
as follows: 

• Active 
The task is ready to run although it may not actually be running. An active task 
could be preempted by a higher priority task. In that case the task remains active 
but control is given to the higher priority task. When not servicing an interrupt, 
the highest priority active task always runs. If there are no active tasks then the 
processor executes a HALT instruction and can only be awakened by an 
interrupt. A task changes from the suspended to the active state when an event 
on which it was pending is posted. 

• Suspended 
The task is pending on one or more events and has given up microprocessor 
control to the next lower priority active task until one of the events is posted. 
When suspended, all the task's registers are saved in its context area. This 
includes its PSW and PC. When the task is activated again it will resume 
execution at the instruction immediately following the point at which it became 
suspended. 

• Suspended Request 
This is an internal state that is equivalent to suspended. It is required in order to 
safely implement the transition from active to suspended. 

Quantum Proprietary 12122197 page3-61 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

page3-62 

3.3.8 Tasks in the Eclipse Code 
Eclipse has implemented five tasks: 

1. Serial Debug (priority 0) 
This task's stack and context are in external, DRAM. 

2. Exception Task (priority 1) 
This task is designed for maximum determinism with low speed. Posting an 
event to the exception task will cause all the other tasks to be preempted 
immediately. However, once started, this task executes slowly because its stack 
and context are in external RAM. This task is used for abort command and reset 
functions. 

3. Command Task (priority 2) 
This is the main command execution task. It is responsible for completion of all 
host commands and inquiries. It is designed for moderate speed, with its context 
in internal RAM and its stack starting in internal RAM and extending into 
external RAM. 

4. Pre-Processor Task (priority 3) 
This task has two primary responsibilities; handing off commands from the low 
level interface to the command task and performing as much processing as 
possible on commands waiting in the queue while the command task waits for 
events from the disk. This task is designed for greatest speed, with its context 
and stack in internal RAM. 

5. Background Task (priority 4) 
This task performs low priority background operations. During power-up, it 
performs drive initialization. During normal operations it performs SMART 
functions. It also performs self-scan operations. Not designed for speed, its 
context and stack are in external RAM. 

3.3.9 Multi-Stack Kernel RAM Structures 
Each task has the following data structures associated with it 

• TCB 
This is the Task Control Block. This is the main identifier for the task. It contains 
the events pended on by the task, a pointer to its context, and its state. 

• Context 
This structure contains all the registers that must be saved when a task is 
interrupted or preempted. 

• Stack 
This is a block of memory where the task's stack will be maintained. 

3.3.10 TCB, Context, and Stack Loeations 
Where performance is critical various RAM structure will be located in internal RAM. 
Where performance is non-critical, the RAM structures will be located in external RAM. 
TCBs are always located in internal RAM. The following figure illustrates the locations of 
each task's RAM structures: 

Quantum Proprietary 12122197 



DPSG V85x User Guide Rev. D Chapter 3 Fundamentals 

Preprocessor 
Task 

Command 
Task 

Exception 
Task 

Background 
Task 

Figure 3-3. Memory Regions Occupied by Task RAM Structures 

An example of a multi-tasking scenario 

Debug Monitor 

Below is a logic-analyzer like example of write operations on a typical multi-tasking drive: 

r--···Seek Completes It Formatter Starts 
! 
i 

DiskISR I I I 11 I I I I r I T 1 ~l 
I I I I I I 
I I I I I I 
I 1-i I I I I 
l I I i 

HostISR I ! I 

I I I I I I I I 
I l I 1--- I . 
I I 11 

Exception 

Command 

Pre-Processor 

Background 

I I 

I 
! 

11 

I 
I 
I I I I I I I I ...- I I 

I 

rl-I 
I I 

I I i---: 
I I 

I I I 
l I i I 

! ~· I I I 
I I J 

I I r 
11 

I I I I i 
I I I I I 

I I I I I I r-I I I 
I I I I I ,__ 

Figure 3-4. A typical hyper-write under multi-tasking control 

In the above diagram, background, pre-processor, command, and exception activities are 
'tasks'. The host and disk ISRs are not tasks. The active state of the lines of the diagram is 
high and inactive is low. The following describes the above scenario: 

Quantum Proprietary 12122197 page3-63 



Chapter 3 Fundamentals 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

page~ 

DPSG V85x User Guide Rev. D 

The background task is active and running with some 'SMART' activity. The 
command, pre-processor, and exception tasks are all suspended, pending on 
events. 

A write command is received from the host. The host JSR executes . 

The pre-processor task (which was pending on a command received event) 
activates and executes, pre-empting the background, and fills in a queue entry 
for the command. It then posts a command ready event. 

The command task (which was pending on a command ready event) activates 
and executes, pre-empting the pre-processor task, and performs the write 
command. When it starts the disk write, it pends on a disk event, suspending 
until the event occurs. 

The pre-processor executes (because it was pre-empted by the command task and 
is the next lower priority task) and looks for something to do. It has no work to 
do so it pends on another command received event, and suspends. 

The background task resumes execution (because it was pre-empted by the pre
processor task and is the next lower priority task) and continues with its SMART 
activity. 

Another write command comes in from the host. The host ISR executes and posts 
a command received event. 

The pre-processor task (which was pending on a command received event) 
activates and executes, pre-empting the background, and fills in a queue entry 
for the command. It then posts a command ready event. Since the command 
task is pending on a disk event (not a command ready event), the pre-processor 
is not pre-empted by it The pre-processor can go on and decode the command, 
allocate cache, receive the host data, etc. while the command task is waiting for 
the disk to finish. When the pre-processor task runs out of work to do it pends 
on a command received event, and suspends. 

Because it was pre-empted by the pre-processor task, the background task 
resumes execution and continues its SMART work. 

When the disk completes.1 the disk ISR posts a disk event, activating and 
executing the command task, which pre-empts the background task. The 
command task finishes up the write command. It then pends on another 
command ready event, which has already been posted by the pre-processor task 

Quantum Proprietary 12122197 



DPSG V85x User Guide Rev. D Chanter 3 Fundamentals 

(so it does not become suspended). The command task continues, executing the 
new write command. 

• The next thing that happens is there for illustration. Some (use your imagination) 
error occurs (maybe a servo bump something). The command task posts an 
event indicating this, is pre-empted by the exception task, the exception task 
activates and executes, handles the error, and then pends again on an exception 
event, and suspends. 

• The command task resumes execution and starts the disk, pending on a disk 
event. 

• Since the pre-processor task is pending on a command received event and there 
is none, it doesn't activate. 

• The background task does resume execution, finishes its SMART work, and then 
has nothing else to do. It pends on some event and suspends. Since the 
background task is the lowest priority task, when it suspends the processor halts. 

• Eventually, a disk interrupt will post a disk event, activating and executing the 
command task again (not shown). 

Quantum Proprietary 12122197 page3-65 



Chapter 3 Fundamentals DPSG V85x User Guide Rev. D 

3.3.11 Kernel Functions 

The following functions are used by tasks to pend, post, suspend, etc: 

• eventControlldent PendEvents (eventControlldent eEvents) 
This function causes the calling task to pend on the events specified in eEvents. 
The caller suspends if there were no posted events that were pended on for the 
task. If the task pends on events which were posted, this function will return 
those events. 

Note. Since this function enables interrupts, it MUST NOT be called from a 
critical section. Also, this function must not be called from an interrupt. 

• void PostEvents(eventControlldent eEventld) 
This function posts events. It can be called from either tasks or interrupts. More 
than one event ID bit can be provided in eEventid. If a higher priority task is 
pending on one of the events posted then the posting task will be preempted by 
that task. Note that this function enables interrupts so it must not be called from 
a critical section. 

• void ClearPostedEvents(eventControlldent eEvents) 
This function un-posts the events indicated in eEvents. 

Note. Since this function enables interrupts, it MUST NOT be called from a 
critical section. 

• eventControlldent CheckPostedEvents(eventControlldent eEvents) 
This function returns events passed in the parameter if they are currently posted. 

page 3-.66 Quantum Proprietary 12122197 



Chapter 4 Software Tools (Setup & Configuration) 

4A Installation for Win 95 

How to use this manual 

This manual provides simple, step-by-step instructions that will guide you through the 
installation of the Atlas development tools. 

System Requirements 
A Pentium class 90 MHz with 32 Mb of RAM is required as a minimum. You must be running 
Win 95. Performance will vary depending on CPU speed and amount of RAM. The firmware 
build process is CPU and RAM limited. A Pentium Pro 200 MHz with 64 Mb of RAM will 
complete an Eclipse firmware build in sixteen minutes. 

Network Requirements 
Your system must have loaded Novell VLMs and be logged in to the home server using the 
Novell Directory Services (NDS) mode before the installation should be attempted. Your login ID 
must be a member of the Novell group "G-ENG-FWENG.ENG.MILP.QNTM" in order to receive 
access rights to the install directories. Your manager can add you to this group. Also, your login 
ID must be a member of your home server PVCS user group. This group will grant access rights 
and mappings to the INTERSOLV PVCS tools. Your manager can add you to this group. 

Server 
APE 
BLUE LIGHT 
LE'IHAL 
TITAN 

Installation Sequence 

PVCS User Grou Name 
Pvcs User.ENG.MILP.QNTM 
G-BLUE-PVCS_USER.BLT.ENG.MILP.QNTM 
G-LE'IHAL-PVCS_USER.FWE.ENG.MILP.QNTM 
G-TITAN-PVCS_USER.HCS.ENG.MILP.QNTM 

The installation of the Atlas Firmware Development Environment follows a sequential order: 

I. Obtaining access rights to servers 
2. Drive Mapping 
3. Intersolv Software (PVCS) Installation 
4. Green Hills Software Installation 
5. Codewright Software Installation 
6. Template Icons Installation 
7. Path Check 
8. Firmware Build 
9. Project.re file Edit 

Quantum Proprietary I 2108197 page4A-1 



Chapter 4 Softwtll'e Tools Installations 

4A.1 Obtaining Access Rights to Servers 
Before installing through the network, 
check if you have access rights to: Lethal\ Vo12\PVCS 

Ape\ Voll 
Blue_light\ Voll 

*** If you do not have privileges to Lethal \ vo12, 
check your server's volume 1 for PVCS privileges 

••• Call the l/S responce center at x6470 

DPSG V85x User Guide Rev. D 

(for access to Ape\Fwtools) 
(for access to Eclipse) 

•••Make sure I/S upgrades your network access to Netware Directory Service (NOS). Check 
by viewing the contents of your network. To view your network, select the control panel 
through your Start\ Settings menu then double-click the Network icon. 

The Atlas firmware development system uses two of the Intersolv software packages, PVCS 
Configuration Builder and PVCS Version Manager. The current working PVCS install base is 
P:\ on your server. In order to use the tools, your manager must add your User ID to the LAF 
database. 

Your manager may add you to the database as follows: 

• Run p:\cb\win95\admin\laf.exe 
• A window should appear containing an icon labelled "Central" 
• Double click the "Central" icon 
• A window labelled "LAF Database Central: CENTRAL" should appear with a box labelled "Select 

Product" 
• Click on the line containing "PVCS Configuration Builder" under "Product Name" which also contains 

"WIN95-WIN" under "Operating System" 
• Click the "Licenses" pull-down menu, then select "Assign/Unassign Users" 
• Enter the User ID in the box provided 
• Click the "Add" button, then click the "OK" button 
• In the window labelled "LAF Database Central: CENTRAL", click on the line containing "PVCS 

Version Manager" under "Product Name" and "WIN95-DOS" under "Operating System" 
• Click the "Licenses"pull down menu, then select "Assign/Unassign Users" 
• Enter the User ID in the box provided 
• Click the "Add" button, then click the "OK" button 

4A.2 Drive Mapping 
Since the tools for this installation are obtained through network servers, 
map your computer's network to: 

P:\ \Lethal\ Vol2\PVCS 
'"'F\.ic; on '•!:ncl~\ lethal_vol2 t .. .,,,.e en9 rnilp qntm' 1'F' '1 

Q:\ \Ape\ Voll ape_vol1 en9 mllp qntrn on '$nd:.' 10·:1 

U:\ \Blue_light\ Voll blueJc1ht_\:011 bit enq mil :1 . ntrn on ''l:nd~' IU 1 

page4A-2 Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4A.3 Intersolv Software (PVCS) Installation 

4.3.1 Installing the Version Manager 
Using Win95 Explorer, locate\ \Lethal\ Vol2\Pvcs\ Vm\ Vmwin95 

1$1··§! Pvcs on '$nds\.lethaLvo12.fwe.eng.milp.q 
· Admin 

··!ii Cb 
. ··!ii Dos 
~J·fil Extended 
iiJ··tit Lafdb 
B··tit Vm 

liJ .. &J dos 
$··&1 Nt 
$··& Pvcsproj 
Iii··& Vmnt 
· Vmwin16 

Vmwin95 

Double-click the Setup icon to open Intersolv Software for Version Manager Installation 

On the Welcome (to the Version Manager) window, 
-Press the Next button 

Quantum Proprietary 12108197 page4A-3 



Chapter 4 Sofiware Tools Installations DPSG V85x User Guide Rev. D 

page4A-4 

When a Custom Installation window prompts you 
to Select the Products to Configure, 

- Select at least the PVSC Version Manager then 
- Press the Next button 

When the Select Program Folder window prompts you 
to Specifiy the Installation Directory for Products, 

- Press the Next button (this accepts the default directory) 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

On Setup Workstation window, 
- Press the Next button 

On the Autoexe.bat window, 
- Press the Next button 

On Setup Complete window, 
- press the Finish button to complete Setup. 

Quantum Proprietary 12108197 page4A-5 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

page4A-6 

4.3.2 Installing the Configuration Builder 
Using Win95 Explorer, locate\ \Lethal\ Vol2\Pvcs\ Cb\ Cbwin95 

'. .. !ii! .lethal_vol2.t.ve.eng. 
l i!i··il Compat 
l l!J.·ii Cte 
i r!J-&1 Cyclone 
~ Iii-ii L 
l iiJ-lil Le 

Double-click the Setup icon to open Intersolv Software for Configuration Builder Installation 

On the Welcome (to the Configuration Builder) window, 
- Press the OK button 

When the Product Configuration Setup window prompts you 
to Specify the Installation Directory for Products, 

- Press the OK button (this accepts the default directory) 

On the Note (about path statement) window, 
- Press the OK button 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D . Chapter 4 Software Tools Installations 

When an Update Startup File window prompts you 
to Select the method for modifying Autoexec.bat, 

- Select "Save Changes to Current Autoexec.bat in Autoexec.new" 
(This is not a default. You must choose the second option!!!) 
then press the OK button 

On the Confirm Startup File Selection window 
- Press the OK button 

On the Information (to inform you that installation is complete) window, 
- Press the OK button 

On the Question window, 
- Press the Yes button to view the readme file or 

press the No button to end Intersolv Software Installation program. 

Quantum Proprietary I 2108197 page4A-7 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

4A.4 Green Hills Software Installation 

4.4.1 Installing Multi 
Using Win95 Explorer, locate\ \Ape\ Voll\Ape\Fwtools\ V850\GHS 

page4A-8 

Open the Dated folder declared as 'OK' 

~Hi! .ape_vol1.eng.milp.qntm on 'Snds' 
. EHii Ape 

i f!Hil Asic 
i!Hil Benchmrk 
liHiil Bluebox 
iil·-ii Carousel 
iiJ·-il Cosim 
1*Hil Dell 
f!Hiil emul_port 
$··ti Flash 
~Ha FW_850e 
~Hil Fwtools 
· til·-ii Cwright 

EH.ii V850 
~Hiiit Ghs 

$Jit~~c: 

e-!! .ape_ vol1.eng.milp.qntm on '$nds' 
i 8-ii Ape 
· ' r!Hill Asic 

Benchmrk 
Bluebox 

Double-click the Setup icon to open the Green Hills Software program for Multi Setup 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

On the Welcome (to the MultiSetup Program) window, 
- Press the Next button 

On the Choose Destination Location window, 
- Press the Next button again (this accepts the default location) 

On the Select Program Folder window, 
- Press the Next button again (this accepts the default location) 

On the Information (to inform you that installation is complete) window, 
- Press the OK button 

Quantum Proprietary I 2108197 page4A-9 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

page 4A-10 

4.4.2 Installing 850ice 
Using an editor, modify the Config.sys file 

-Add 
Shell=C:\command.com C:\ /p /e:1024 

** Restart your computer 

** Make sure your computer's network is mapped to: 

P:\ \Lethal\ Vol2\PVCS 
Q:\ \Ape\ Voll 
U:\ \Blue_light\ Voll 

Using Win95 Explorer, locate\ \Ape\ Voll\Ape\Fwtools\ V850\Nec\850ice\ Win95 

Open the Data folder declared as 'OK' 

1$1··§! .ape_ vol1.eng.milp.qntm on '$nds' 
· EHiii Ape 

$··ii Asic 
$··ii Benchmrk 
~l·ii BlueboM 
EHi:\I Carousel 
~-·& Cosim 
iiJ··ii Dell 
$··ii emul_port 
lE··ii Flash 
~-·ii FW_850e 
El·ii Fwtools 
i liJ .. iiJ Cwright 

El··ii V850 
lE··iiJ Ghs 
EJ .. {ij Nee 

El··ii 850ice 
~--(ijj PcMOA9 
$·· .. Win95 
El··ii WinNT 

97·07·08 

Bal 
~ 97·07·18 is O.K 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

EHii Fwtools 
! l±Hii Cwright 
! EHii V850 
! ~Hil Ghs 

l~HiiJ Nee a ... 850ice 

l~Hii Gigabit 

~Hilt PcMCIA 95 a .. (il Win95 
. l±J·&I 97-01-21 

i!J·&I 97-03-17 : 
liJ ... 97-03·25 
liJ .. ii 97-04-07 
~-ii 97-04-23 
1~Hil 97-05-os 
liJ .. (il 97-07-08 
l!J .... 97-07-18 

r!J .. a WinNT 

Double-click the Update icon to run the Setup.bat file 

On the BATHELPR window, 
- Press the Enter key to accept the first default path for the GreenHills directory 
- Press the Enter key again to accept next default to support MultiStack kernal debug 

Quantum Proprietary 12108197 page4A-11 



Chapter 4 Software Tools Installations 

page4A-12 

On the Setup window, 
- Press any key 

then close the Setup window 

DPSG V85x User Guide Rev. D 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4.4.3 Updating Strings 
Using Win 95 Explorer, locate 
\\Ape\ Voll\Ape\Fwtools\GHS\ V850\Quantum\ Update.bat 

$·§! .ape_vol1.eng.milp.qntm on '$nds' [Q:) 
. $lit Ape 

!Bi:) Asic 
~-·i:I Benchmrk 
ffi··iiJ Bluebox 
iiJ ·iii Carousel 
OOiiJ Cosim 
ffi··iiJ Dell 
[tl··iil emuLport 
$··iii Flash 
ftl··ii F'w' _ 850e 
El·tif Fwtools 
' !*1 ·lD Cwright 

BlD V850 
B·i:J Ghs 
. IE· iii 97-03-18 

IB·lD 97-04-30 
~ID 97-oa-20 
ffi··i:I 97-09-26 
i ..• Lic_Updt 
L .. ~ Quantum 

Double-dick the Update.bat icon to run the Update.bat file 

On the Update window, 
- Press any key 
then close the Update window 

Quantum Proprietary 12108197 page 4A-13 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

4.4.4 License Extension 
Using Win 95 Explorer, locate\ \Ape\ Voll\Ape\Fwtools\ V850\GHS\Lic_Updt 

Double click on the Lic_Updt folder 

Select the Edit\Select All menu 

page4A-U 

1$1-!i! .ape_ vol1.eng.rnip.critm Cl'I '$nds' (Q:) 

: $··iii Ape 
i i r!J ·iii Asic 
i i l±l--iil Benchmrk 
. i r!J··iil BluebDll 

r!i··iil Carousel 
l±l·iil Cosin 

! i rB·-iil Dell 
! ! r!i·iil el!U_port 

EB ·iii Flash 
$·iii FW_850e 
S·-iil Fwtools 
. OO··iil Cwright 

~-·iii V850 
S·ii Ghc 
j r!J··iil 97·03-1 B 
\ rE··iil 97-04.30 

i ! 1~·H• 97·08-20 
r!i··iil 97-09-26 
B:J.-@tl Lic_Updt 
L4i-·iil Quantum 

Quantum Proprietary I 2108197 



DPSG V85x User Guide Rev. D 

Desktop 
S·.iJ My Computer 
' ttJ··& 3~ Floppy (A:) 
~ & Windows 95 (C:) 

£B .. €fa Acroread 
1!Hil Adobe 
!···Iii Batch file for V85>e 
~·ii Bkupe>eec 
rB ·ill Cw32 : .. a Dos 
ffi .. €f.a Eclipse 

rii·fl'J.m
~ .... .-~'--
·iiil')'pt'.IN:----

Chapter 4 Software Tools Installations 

Click and drag the highlighted selection from the Lic_Updt folder to the C:\Green folder 

Using Win 95, locate and open your local drive's Green folder 

Desktop 
B--·J!J My Computer 
' f:\:l eiJ 31f Floppy (A:) 

B·s Windows 95 (C:J 
f:H iii Acroread 
~iii Adobe 
i .. ·fil Batch file lorVSS. 

oo!m Bkupe><ec 
riJiil Cw32 
1lm Dos 
oolii Eclipse 
~]-~Green 
. :iliil810 

: iii 850 
r±liil 850demo 
\ ill ansi 
,. l2ifl ibsrc 
L.s v810 

: ~~B10u 

Double click on the Updatelt.bat folder 

Quantum Proprietary 12108197 

• rruli.plc 
l:lmvc.exe i Necmog.dB 

new.bmp 
nexten.bmp 

~ obr.pic 
~ obr2.plc 
l.f.ropenbmp !paste.bmp 

poparrow.bmp 
prodist 

lc:i~:=nte: qlilbmp 
AeadMe 4.24. TXT 
AeadMe.TXT 
redo.bmp 

1:1 Aegsvr32.e•e 

search.bmp 
1:1 setdev.exe 

l!lset~bat 
l:l sin800. exe 
l:l sim850. e•e 

11.f.r:::b: 
stopfilbmp 
target.def 
undo.bmp 
unrnerge. bmp 

l:IUpdate.exe 
M@llWI 

~ v810.bld 
v810ef.bld 
v830ef.bld 

page4A-15 



Chapter 4 Software Tools Installations 

page 4A-16 

On the Update window, 
- Press any key 
then close the Update window 

DPSG V85x User Guide Rev. D 

Quantum Proprietary I 2108197 



DPSG V85x User Guide Rev. D 

4.4.5 Shortcut to Multi 
Using Win95 Explorer, create: 

(1) an Eclipse folder in the root of the C drive, 

(2) a src folder in the Eclipse folder, 

(3) an at folder in the src folder and/ or 

(4) a scsi folder in the src folder 

Chapter 4 Software Tools Installations 

F:1 Exploring - (C) 

E~; ~ ~~{: :;~ ~, "~~· J: { '";' ; ''<i , ':' ~ - »lh , ~ , " }\tit' 

Eolder 

Note. The name you choose for you folders must be specific for your program. You may also 
want to create build/interface folders (i.e., E1AT, E2SC, ... ) 

Using Win95 Explorer, locate C:\ Green\Multi.exe 

Click and drag the Multi.exe file from the Green folder to the desktop 

Select Properties from the Shortcut to Multi icon's pop-up menu 

Quantum Proprietary 12108197 page4A-17 



Chapter 4 Software Tools Installations 

On the shortcut to Multi Properties window, 
Click the Shortcut tab 

Within Shortcut section 

On the Target Field 
-Type C:\Green\multi.exe -nosplash ecliat 

On the Start in Field 
-Type either C:\Eclipse\src\at 

or C:\Eclipse\src\scsi 

DPSG V85x User Guide Rev. D 

(Note. Choose the appropriate path for your program.) 

Press the Apply button and then press OK 

page 4A-18 Quantum Proprietary I 2108197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4A.5 Codewright Installation 
Using Win95 Explorer, locate\ \Ape\ Voll \Ape\Fwtools\ Cwright\ Ver4\ V4.0d 

t=.1-·~ .ape_ voll .eng.~.qntm on '$nds' 
. EJiJ Ape 

' 00 ·(i) Asic 
r!J (i) Benchmrk 
i!J (i) Bluebox 
IB··(i) Carousel 
IB··(i) Cosim 
r!J(i) DeU 
i!J .. (i;J emul_porl 
i!J .. (i;J Flash 
$·fiJ F\V _ 850e 
B· fiJ Fwlools 
' El !iJ Cwright 

til £r!1 F onls 
a£r!I Ver4 
. ffi··ill firmware 

ltJ·fiJ Palches 
tf.Jfi) V4.0a 

; Ei:J{jfrj V4.0d 
r~ii Ver5 

Double-dick the Install.exe icon to start the Codewright Installation 

Cw16dl.z 
lllcw16exe.z 
81cw32dlz 
8'Cw32exe.z i Cwdafog.z 

Cwhelp.z 
Cwrighlz 

'1ewi1artz i Cwsync.z 
Dde.z 
Dietz 

~Disk.1 
lilEpsilon.z 
&IHlpfile.z 
lllH1pidx16.z 
Ill Hlpicbc32. z 
lll)lndude.z ... 

lnslall.ns 
lilLib.z 
Ill Linedraw.z 
lllMisc.z 
Ill Parado>c.z 
'41Pascal.z 
[ID Reactne.bcl 
llilRedislz 
lllsample.z 
[jt Selup.bmp 
@Selup.dll 
~Selup.pkg 
lllsupporl.z 
lllvi.z 
lilXbase.z 

When a Codewright 4.0d Product Selection window prompts you to select a product 
- Press the 32-bit button 

When an Installation Directory window prompts you 
to enter the directory for the installation, 

- Press the OK button (this accepts the default location) 

Quantum Proprietary 12108197 page 4A-19 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

page4A-20 

On the User Registration window, 
- Press the Next button (this accepts the default selection) 

When a Codewright Installation Type window prompts you 
to select the type of installation you prefer. 

- Select Typical 
then press the Next button 

When Initial Keymap Emulation window prompts you 
to select a keymap 

-Select Brief or CUA (your choice) 
then press the Install button 

On the first Installation Complete window, 
- Press the OK button 

On the second Installation Complete window, either 
- Press the Yes button to view the readme file or 

press the No button to immediately view the installed items. 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4A.6 Template Icons Installation 

4.6.1 Installing Atlas Icons 
Using Win95 Explorer, locate\ \Blue_light\ Voll\Eclipse\Make 

GJ··.lllilMeke 
$€:! mcefee 
itliiil New 
Efl··fil Old 
l4J.iiiJ Scsi 
[llfil Servo 
t!i fiJ Servowr 
f!l-fil Src 
:iJ fiJ Src.old 

Double-click the Setup.exe icon to start the Template Icons Installation 

On the Welcome (to the Atlas Icon Setup) window, 
- Press the Next button 

When a Choose Destination Location window prompts 
you to Select the Products to Configure, 

- Press the Next button (this accepts the default location) 

Quantum Proprietary 12108197 

iii old 
~-inst32i.ex_ 
r:l_isdel.exe 
~ setup.1 
@_setup.di! 
~_setup.lib 
~Diskl.id wwww 

page 4A-21 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

On the Select Program Folder window 
- Press the Next button (this accepts the default folder) 

On the Setup Complete window, 
- Press the Finish button to view the installed items 

page4A-22 Quantum Proprietary I 2108197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4.6.2 Shortcut to icon 
To access the program development icons from your desktop, 

Select the Build AT A Local icon inside the Atlas Development window 
Click and drag the icon out to the desktop by pressing the right button of your mouse 

BuildATA BuildATA 
Network NoPvcs 

• • Ill 
Build SCSI Build SCSI Build SCSI 

Loc:el Network NoPvcs 

When a pop-up menu appears, 
- Drag the mouse down to scroll to Create Shortcut(s) Here 

then press the left button of your mouse 

Select the Build AT A Local icon on the desktop with the right button of your mouse 
When a pop-up menu appears, 

- Drag the mouse down to scroll to Properties 
then press the left button of your mouse 

Quantum Proprietary 12108197 page4A-23 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

*** 

page4A-24 

On the Build ATA Local Properties window, 
- Click the Shortcut tab 

Within Shortcut section: 

(1) Change the Target field information 

- Replace Win with Win95 
- Replace"project_ATA"=l with E4_ATA=1 NOLINT=l 

Note. Remember to remove the " ". 
(See Build Options on page 6-3 for definitions of field information.) 

- Replace makefile with Eclipse.mak 

(2) Change the Start in field information 

-Replace C:\PROGRA-1\ATLAS with C:\Eclipse\src 

(3) Press the OK button 

Note. To set the program development shortcuts within the Start/Programs menu 

Select the Build AT A Local icon inside the Atlas Development window 
with the right button of your mouse 

When a pop-up menu appears, 
- Drag the mouse down to scroll to Properties 

then press the left button of your mouse 

Follow the instructions in the beginning of this page 

D 
~ 

Apply the instructions in the Shortcut to Icons section to all the Atlas development icons. 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4A.7 Path Check 

*** Make sure your C:\Autoexec.bat file contain the following paths! 
If it does not, 

- type in the missing paths using an editor. 

:Environment Variables to support Eclipse code builds. 

set path=u:\eclipse\utils;c:\green;p:\vm\dos;p:\cb\dos 
set user=TYPE YOUR USER NAME HERE 
set vcsid=%user% 
set temp=c:\ temp 
set tmp=c: \temp 

set serversrc=u: \eclipse\ src 
set vcscfg=%serversrc% \ vcs.cfg 
set project=eclipse 

set workdir=u:\mr\ transfer\ %user% 

set iepath=c:\green 
set islvini=c:\ windows 
set libpath=p:\ vm\ win95;p:\cb\ win95 
set server_path=u:\eclipse 

*** Note: Make sure that you TYPED YOUR USER NAME!!!!! 
*** Note: The workdir path, ... /mr/ ... ,used here is specific for the Tsunami program. 

Use the workdir path specific for your program. 

Quantum Proprietary 12108197 page4A-25 



Chapter 4 Sotlware Tools Installations DPSG V85x User Guide Rev. D 

4A.8 Firmware Build 

page4A-26 

Before starting a build, 

(1) Use the Win 95 explorer to: 

(a) Create a Utils folder in the C drive's main folder (root directory) 

(b) Drag the tm.exe. icon 

from U:\ \Blue_light\ Voll\Eclipse\Utils 
to C:\ \ Utils 

(2) Create an Eclipse.bat file, that contain: 

attach blue_light\ TYPE YOUR USER NAME HERE 
map u:=blue_light\ voll: 

(3) Save the Eclipse.bat file in the C drive's main folder (root directory) 

(4) Create a temp folder in the C drive's main folder (root directory)) 

,.,. Restart your computer 

,.,. Make sure your computer's network is mapped to: 

(5) Run C:\Eclipse.bat 

(6) Using MSDOS, 

-Type cd C:\eclipse\src 
then press the Enter key 

- Type get eclipse.mak 

then press the Enter key 

P:\ \Lethal\ Vol2\PVCS 
Q:\ \Ape\ Volt 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

Double-click one of the Build icons to start a build 

4A.9 Project .re file Edit 

Using an editor, view the ".re" file 

~~ 1.ii.lit.I 
BuildATA 

Lo ca.I 

(e.g., For the Eclipse AT project this file is c:\eclipse\src\at\ecliat.rc): 

Make sure the file contains the following: 

remote 8501CE32 

If the file does not contain a "32" after the "remote 850ICE," use the editor to modify the file. 

Note. The ".re" file is a read-only file. Therefore, switch off the read-only setting of the 
file. To switch off the read-only setting: 

Select the ecliat.rc icon with the right button of your mouse 
When a pop-up menu appears, 

- Drag the mouse down to scroll to Properties 
then press the left button of your mouse 

On the Ecliat.rc Properties window, 
Within General section 

(1) Click the Read-only attribute to remove the check mark 

(2) Press the OK button 

Change a line to your project ".re" file 

Change from : remote 850ICE 
to remote 850ICE32 

Note. After saving the file switch on the read-only setting of the file. 

Quantum Proprietary 12108197 page 4A-27 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

4A.10 Codewright Browser Installation (Optional) 

page4A-28 

To install a browser to Codewright, you must: 

(1) Install Microsoft Visual C++ (version 2.0 or later)on you hard drive 

(2) Delete the contents of your Src folder in C:\Eclipse 

(3) Modify the Target field of the build icon that you will use 

Make sure your Target field contain the follawing path! 
If it does not, type in the missing path. 

P:\CB\ WIN95\BUILD.EXE E4_ATA=1 NOLINT=l 
SBR=l -script eclipse.mak makeall 

(4) Modify the Autoexec.bat file 

Make sure your C: \Autoexec.bat file contain the follawing paths! 
If it does not, type in the missing paths using an editor. 

set include=c:\msdev\include 

set 
path=u:\ eclipse\ utils;c:\green;p:\ vm \ win95;p:\cb\ win95;c:\msdev\ bin 

(5) Change the Browser Database Field Information in Codewright's 
Project\ Properties\ Directories 

Make sure your Browser Database field contain the follawing path! 
If it does not, type in the missing path. 

C: \Eclipse \src \ecliat. bsc 

(6) Reboot your computer, run Eclipse.bat, get Eclipse.mak, then double-click the build icon 
that you will use 

Quantum Proprietary 12108197 



4B Installation for Windows NT 4.0 

How to use this manual 

This manual provides simple, step-by-step instructions that will guide you through the 
installation of the Atlas development tools. 

System Requirements 
A Pentium class 90 MHz with 32 Mb of RAM is required as a minimum. You must be running 
Windows NT 4.0. Performance will vary depending on CPU speed and amount of RAM. The 
firmware build process is CPU and RAM limited. A Pentium Pro 200 MHz with 64 Mb of RAM 
will complete an Eclipse firmware build in sixteen minutes. 

Network Requirements 
Your system must have loaded Novell VLMs and be logged in to the home server using the 
Novell Directory Services (NDS) mode before the installation should be attempted. Your login ID 
must be a member of the Novell group "G-ENG-FWENG.ENG.MILP.QNTM" in order to receive 
access rights to the install directories. Your manager can add you to this group. Also, your login 
ID must be a member of your home server PVCS user group. This group will grant access rights 
and mappings to the INTERSOL V PVCS tools. Your manager can add you to this group. 

Server 
APE 
BLUE LIGHT 
LETHAL 
TITAN 

Installation Sequence 

PVCS User Grou Name 
PVCS User.ENG.MILP.QNTM 
G-BLUE-PVCS_USER.BLT.ENG.MILP.QNTM 
G-LETHAL-PVCS_USER.FWE.ENG.MILP.QNTM 
G-TITAN-PVCS_USER.HCS.ENG.MILP.QNTM 

The installation of the Atlas Firmware Development Environment follows a sequential order: 

I . Obtaining access rights to servers 
2. Drive Mapping 
3. lntersolv Software (PVCS) Installation 
4. Green Hills Software Installation 
5. Codewright Software Installation 
6. Template Icons Installation 
7. Path Check 
8. Firmware Build 
9. Project.re file Edit 

Quantum Proprietary 12109197 page 4B-1 



Chapter 4 Software Tools Installations 

4B.1 Obtaining Access Rights to Servers 
Before installing through the network, 
check if you have access rights to: Lethal\ Vol2\PVCS 

Ape\ Voll 
Blue_light\ Voll 

*** If you do not have privileges to Lethal \ vol2, 
check your server's volume 1 for PVCS privileges 

*** Call the I/S responce center at x6470 

DPSG V85x User Guide Rev. D 

(for access to Ape\Fwtools) 
(for access to Eclipse) 

***Make sure I/S upgrades your network access to Netware Directory Service (NDS). Check 
by viewing the contents of your network. To view your network, select the control panel 
through your Start\ Settings menu then double-click the Network icon. 

The Atlas firmware development system uses two of the Intersolv software packages, PVCS 
Configuration Builder and PVCS Version Manager. The current working PVCS install base is 
P:\ on your server. In order to use the tools, your manager must add your User ID to the LAF 
database. 

Your manager may add you to the database as follows: 

• Run p:\cb\win95\admin\laf.exe 
• A window should appear containing an icon labelled "Central" 
• Double click the "Central" icon 
• A window labelled "LAF Database Central: CENTRAL" should appear with a box labelled "Select 

Product" 
• Click on the line containing "PVCS Configuration Builder" under "Product Name" which also contains 

"WIN95-WIN" under "Operating System" 
• Click the "Licenses" pull-down menu, then select "Assign!Unassign Users" 
• Enter the User ID in the box provided 
• Click the "Add" button, then click the "OK" button 
• In the window labelled "LAF Database Central: CENTRAL", click on the line containing "PVCS 

Version Manager" under "Product Name" and "WIN95-DOS" under "Operating System" 
• Click the "Licenses"pull down menu, then select "Assign!Unassign Users" 
• Enter the User ID in the box provided 
• Click the "Add" button, then click the "OK" button 

4B.2 Drive Mapping 
Since the tools for this installation are obtained through network servers, 
map your computer's network to: 

P:\ \Lethal\ Vol2\PVCS 
... F\.ics on '$nds \.lethal_ vol2 t11,,1e eng.rnilp.qntrn' (P) 

Q:\ \Ape\ Voll a _1e_vol1 eng mil qntm on '$nds' (0.·1 

U:\ \Blue_light\ Voll blue_liqht_vol1 blt.enq mil .. ntrn on '$nds' (U) 

page4B-2 Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4B.3 Intersolv Software (PVCS) Installation 

4.3.1 Installing the Version Manager 
Using the Windows Explorer, locate\ \Lethal\ Vol2\Pvcs\ Vm\ Vmnt 

1$1 §! Pvcs on '$nds\.lethal_ vol2.fwe.eng.mip.qn 
. i!Hm Admin 

ffiiil Cb 
lE·iil Dos 
r!i-iil EHtended 
t!Jfi'I Lafdb 
Biil Vm 

~ ... dos 
i!J .. il Nt 
ffi .. il Pvcsproj 
ffi .. iil Vmnt 
f!i··fi'I Vmwin16 

... L•Y1111'1ir'~ ... 

Double-dick the Setup icon to open Intersolv Software for Version Manager Installation 

On the Welcome (to the Version Manager) window, 
- Press the Next button 

Quantum Proprietary 12109197 page4B-3 



Chapter 4 Sotlware Tools Installations DPSG V85x User Guide Rev. D 

page4B-4 

When a Custom Installation window prompts you 
to Select the Products to Configure, 

- Select at least the PVSC Version Manager then 
- Press the Next button 

When the Select Program Folder window prompts you 
to Specifiy the Installation Directory for Products, 

- Press the Next button (this accepts the default directory) 

Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

On Setup Workstation window, 
- Press the Next button 

On the Autoexe.bat window, 
- Press the Next button 

On Setup Complete window, 
- press the Finish button to complete Setup. 

Quantum Proprietary 12109197 page4B-5 



Chapter 4 Soflware Tools Installations DPSG V85x User Guide Rev. D 

page4B-6 

4.3.2 Installing the Configuration Builder 
Using the Windows Explorer, locate\ \Lethal\ Vol2\Pvcs\Cb\Cbnt 

E.Hiil Cb 
i ~-·Cl Cbnt 
i 1!Hii Cbtut 
i iiHil Cbwin16 
! iiJ .. fil Cbwin95 
i OO··fil Dos 
l iiJ .. fil Nt 
i iiJ .. fil Win 
l iiJ .. fil Win95 

Double-click the Setup icon to open Intersolv Software for Configuration Builder Installation 

On the Welcome (to the Configuration Builder) window, 
- Press the Next button 

When a Custom Installation window prompts you to 
Select the Products to Configure, 

- Select at least the PVCS Configuration Builder 
then Press the Next button 

Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

When the Select Program Folder window prompts you 
to Specify the Installation Directory for Products, 

- Press the Next button (this accepts the default directo 

On the Setup Workstation window, 
- Press the Next button 

On the Setup Complete window, 
- Press the Finish button 

Quantum Proprietary 12109197 page 4B-7 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

4B.4 Green Hills Software Installation 

4.4.1 Installing Multi 
Using the Windows Explorer, locate\ \Ape\ Voll\Ape\Fwtools\GHS\ Winnt\Current\ Win32 

page4B-8 

El··il Fwtools 
i $··ii Bugpts 
! lil··il Ccrider 
i ifl··il Cwri!tit 
i B··ii Ghs 
! l lil··ii Win31 
i i ifl··il Win95 
i i B··il WinNT 
i i ffi··il beta 
! ' B··iiil Current 
i i ffi··ii 850ice 
! l $-ii Quantum 
! ! ffi-fl Win32 

Double-click the Setup icon to open the Green Hills Software program for Multi Setup 

On the Welcome (to the Multi Setup Program) window, 
- Press the Next button 

Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

On the Choose Destination Location window, 
- Press the Next button again (this accepts the default location) 

On the Information (to inform you that installation is complete) window, 
- Press the OK button 

Quantum Proprietary 12109197 page4B-9 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

4.4.2 Installing 850ice 
Using Win95 Explorer, locate\ \Ape\ Vol1\Ape\Fwtools\ V850\Nec\850ice\ WinNT 

Open the Data folder declared as 'OK' 

Select the Edit\SelectAll menu 

page 4B-10 

l~H§! .ape_ vofl .eng.milp.qntm on '$nds' 
. ~Hit Ape 

lE·lii Asic 
e··lii Benchmrk 
ffi ·tit BluebOI< 
iii··lii Carousel 
tE··tm Cosirn 
r~Hiil Dell 
lE··fli elll.ll_port 
tEli! Flash 
r:f.l·fli FW_B50e 
B-·tm Fwtools 
: r±l··fli Cwright 
. EHE VB50 

GJiiJ Ghs 
~-f.iii Nee 

El··fli B50ice 

Cosim 
CPUPlus 
Del 

IE Iii emul....pott 
cl-Jlii Flash 
'*Hil FW _ 850e 
~Ha Fwtools 

l±l·iiJ PcMCIA 9 
Jii·&I Win95 
l±J·~WinNT 

. iB··iil Cwright 
t:!:itiil V850 

fii·iil Ghs 
S··iil Nee 

B·-\iil 850ice 
$-tiil PcMCIA 95 
oo-iiil \lfon95 
~--\iii \lfonNT 

~l (ii 97-03-11 
ffi& 97-03-18 
~& 97-03-27 
Ea··& 97-07·18 
rii<a 97-09-18 
.rb ... r:b. .. . n.'i' .. 1 .. 1 ... 1 

97·07·18 

IDll 
97·11-13 

~ 97·09·1 Bis O.K 

Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

Note. The Select all window appears if the Explorer window's View\ Options is not set 
to show all files. 

If the Select All window appears, 
- Press the OK button then 

On the Explorer window 
- Select the Views/Options menu 

On the Options window 
- Select the Show all files radial button 
- Press Apply button 
then press the OK button 

Quantum Proprietary 12109197 page 4B-ll 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

page 4B-12 

Select the Edit/Select All menu again 

If the Select All window does not appear, 
Click and drag the highlighted selection from the 850ice folder to the C:\ Green folder 

~···.iJ My Computer 
1$!·& 3~ Floppy (A:) 
El·e Windows 95 [C:) 
! t!J·till Acroread ["' ... ,,..., ----

filtill Adobe :-',_; ----
! ·&I Batch fie fof.~ll.'i:."'----

ffi .. (il Bkupe~ec ~,_: -----
t!Hm cwJ2 !-,_: -----
: .. (ii Dos l--<,_: -----
$.till Eclipse h 
fil·till 1111 t-'"'· -----
:..till Hpfonts ~,..: -----
! .. (ii Kpcms ~ 
ffi!SJ Lotapps ~;...; -----
i!J.!SJ Mm i ;-: ----
$ ii.I MSOlfice c,_: ----
$ till My Documeil!!l:;-----
fil·till Nwclient i ;...: ----
ffi.iiif Orawin i;-' ----
i!J .. (il Photoshop t~, ... : ----
t!J·&I Program Filer';-; ----
t!J·iil Qct r .... : ----
: ... 'G Recycled j,_~ -----

!:::f; ~~~p t .... : -----
! ii utils 

Quantum Proprietary I 2109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4.4.3 Updating Strings 
Using Win 95 Explorer, locate 
\\Ape\ Vol1\Ape\Fwtools\GHS\ V850\Quantum\Update.bat 

I;!··!! .ape_voll.eng.milp.qntm on '$rids' [Q: 
i EHiil Ape 
! . rfl··<il Asic 
: tE·<il Benchmrk 
· ffi.fil Bluebox 

i!J .. fi!il Carousel 
i!J .. fi!il Cosim 
ffi··liil Den 
r±J··!il em.rl_port 
~Hiil Flash 
$-(ii Fvl _B5Cle 
EHilil Fwtools 
' ~Hil Cwiight 

B··fi!il VB50 
B··<il Ghs 
j ffi· liil 97-03-1 B 

~-- 97-04-30 
1iHiil 91-00-20 
i!J .. fi!il 97-09-26 
i····iil Lic_ U pdt 
L ... Quantum 

Double-click the Update.bat icon to run the Update.bat file 

On the Update window, 
- Press any key 
then close the Update window 

Quantum Proprietary 12109197 page4B-13 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

4.4.4 License Extension 
Using Win 95 Explorer, locate\ \Ape\ Voll\Ape\Fwtools\ V850\GHS\Lic_Updt 

Double click on the Lic_Updt folder 

Select the Edit\Select All menu 

page4B-U 

S·!i! .ape_von.eng.mip.qntm on '$nds' [Q:) 
' EJ-Gii Ape 

, l±lfii Ask: 

1±1·8 Benchmrk 
liJ··iiil BlueboM 
r:i:J--Gii Carousel 
l~Hil Cosim 
l~Hiil Dell 
rii-a emul_port 
l±l·tiiJ Flash 
i±l··iiil FYI 050e 
B·iiil Fwt~ls 
. r:i:J·& Cwright 

EJ-8 V050 
B·ii Ghs 
' rB·fil 97·03·10 

rii·tiil 97·04·30 
ffi·& 97-00-20 
r!i·Gii 97-09-26 
ffi~ Lic_Updt 
lfl·& Quantum 

Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D 

Desktop 
~ .. jJ My Computer 
' f~Hii!!il 3~ Floppy (A:] 

l~Hlii3 Windows 95 (C:] 
riHi'I Acroread 
iii ·iiil Adobe 
j ... fill Batch file forV85>c 

IB·iill Bkupe>cec 
iiJ .. {ij Cw32 
) .... fill Dos 

l!J .. iill Eclipse 

itHIHlll-
~ .... tif~i---
L .. Qiri,~~----

Chapter 4 Software Tools Installations 

Click and drag the highlighted selection from the Lic_Updt folder to the C:\Green folder 

Using Win 95, locate and open your local drive's Green folder 

Desktop 
$-!I My Computer 
' $ a 31Hloppy fA:J 
~Ha Windows 95 (C:J 

l±l·i.ll Acroread 
t!Ji.lJ Adobe 
j ... i.lJ Batch fie for V85x 

rHi.lJ Bkupexec 
ciJ.i.lJ Cw32 
i i.lJ Dos 

t!J@iil Eclipse e .. fj1j Green 
' : ... 810 

~= :deroo 
; iii ibsrc 
L .. iiil v810 
: @iii v81 !AJ 
-~ •• A 

Double click on the Updatelt.bat folder 

Quantum Proprietary 12109197 

• rruti.plc 
l:lmvc.e•e 
~ Necmsg.dll 
fir new.bmp I ne><terr.bmp 

obi.pie 
obr2.plc 

llJ' open.bmp 
fir paste. bmp 
Ill poparrow.bmp 
~prodist 

11:1~~=.;.:: qlit.bmp 
Aeadt'1e 4.24. TXT 
Aeadvie. TXT 
redo.bmp 

1:1 A egsw32. e.e 

save.bmp 
fir search.bmp 
1:1 setdev.e.e 
(!!Setup.bat 

1:1 sirn800. e•e ll:l:::;•e 

stop.bmp 
stopll.bmp 
target def 
undo.bmp 

~ unmerge.bmp 
l:lupc1ate.
MMliii 

~ v810.bld 
v810eW.bld 
v830eW.bld 

page4B-15 



Chapter 4 Software Tools Installations 

page4B-16 

On the Update window, 
- Press any key 
then close the Update window 

DPSG V85x User Guide Rev. D 

Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4.4.5 Shortcut to Multi 
Using the Windows Explorer, create: 

(2) a src folder in the Eclipse folder, 

(3) an at folder in the src folder and/ or 

(4) a scsi folder in the src folder 

Note. The name you choose for you folders must be specific for your program. You may also 
want to create build/interface folders (i.e., E1AT, E2SC, ... ) 

Using the Windows Explorer, locate C:\Green\Multi.exe 

Click and drag the Multi.exe file from the Green folder to the desktop 
using the right button of your mouse 

When a pop-up menu appears, 
- Drag the mouse down to scroll to Create Shortcut(s) Here 
then press the left button of your mouse 

Select the Shortcut to multi.exe icon on the desktop with the right button of your mouse. 

Quantum Proprietary 12109197 page 4B-17 



Chapter 4 Soflware Tools Installations DPSG V85x User Guide Rev. D 

page 4B-18 

When a pop-up menu appears, 
- Drag the mouse down to scroll to Properties 

then press the left button of your mouse 

On the shortcut to Multi Properties window, 
- Gick the Shortcut tab 

Within Shortcut section 
On the Target Field 
-Type C:\Green\multi.exe -nosplash ediat 

On the Start in Field 
-Type either C:\Eclipse\src\at or C:\Edipse\src\scsi 

(Note. Choose the appropriate path for your program.) 

Press the Apply button and then press OK 

Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4B.5 Codewright Installation 
Using the Windows Explorer, locate \\Ape\ Voll\Ape\Fwtools\Cwright\ Ver4\ V4.0d 

l~·~ .ape_ voll.eng.milp.qntm on '$nds' 
' El·& Ape 

' riHil Asic 
iii& Benchmrk 
rB·\i;I Bluebox 
iiJ .. (i;I Catousel 
iiJ .. ili:J Cosim 
rfi .. (i;j Dell 
iii ·lil emul_port 
rfilil Flash 
$ liJ FW _ 8!i0e 
EJ .. liJ F wtools 
' El Gil Cwright 

. l±lB Fonts 
8iil Ver4 
' l!Hi!.!1 firmware 

rfilii Patches 
! t*J .. i!I V4.0a 
l l±I~ V4.0d 
[~·B Ver5 

Double-dick the Install.exe icon to start the Codewright Installation 

Cw16dl.z 
liilcw16exe.z 
lflcw32dlz 
lflcw32exe.z 
liilcwdalog.z 
'lcwhelp.z 
llJlcwright.z 
llcwstarlz 
liilcwsync.z 
'IDde.z 
8'Dict.z 
~Disk.1 
liilEpsilon.z 
81Hlpfile.z 
lliilHlpidx16.z 
1ii1Hlpidx32.z 
811ndude.z -

Install.ins 
81Lib.z 
!!11.i'ledraw. z 
llMisc.z 
81Paradox.z 
llJIPascal.z 
['ID Readme.txt 
llfiRedist.z ISample.z 

Setup.bmp 
Setup.dll 

~Setup.pkg 
81support.z 
l!lvi.z 
lliilXbase.z 

When a Codewright 4.0d Product Selection window prompts you to select a product 
- Press the 32-bit button 

When an Installation Directory window prompts you 
to enter the directory for the installation, 

- Press the OK button (this accepts the default location) 

Quantum Proprietary 12109197 page 4B-19 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

page4B-20 

On the User Registration window, 
- Press the Next button (this accepts the default selection) 

When a Codewright Installation Type window prompts you 
to select the type of installation you prefer. 

- Select Typical 
then press the Next button 

When Initial Keymap Emulation window prompts you 
to select a keymap 

- Select Brief or CUA (your choice) 
then press the Install button 

On the first Installation Complete window, 
- P ... OIC"L" 4-l,.n nv ................. __ ....... _..,"" -. .. -.... ...., ....... """'"""".&.I. 

On the second Installation Complete window, either 
- Press the Yes button to view the readme file or 

press the No button to immediately view the installed items. 

Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4B.6 Template Icons Installation 

4.6.1 Installing Atlas Icons 
Using the Windows Explorer, locate \ \Blue_light\ Vol1\Eclipse\Make 

fi.J~ Make 
iiliil mcafee 
:iJWil New 

f$iil Old 
~iii Scsi 
i!!iil Servo 
tiJ .. WiJ Servowr 
i!!iil Src 
~--W!I Src.old 

Double-click the Setup.exe icon to start the Template Icons Installation 

On the Welcome (to the Atlas Icon Setup) window, 
- Press the Next button 

When a Choose Destination Location window prompts 
you to Select the Products to Configure, 

- Press the Next button (this accepts the default location) 

Quantum Proprietary 12109197 

(ii old 
~-inst32i.ex_ 
~_isdel.exe 
~ setup.1 
~_setup.dll 
~-setup.lib 
[!'} Disk1 .id wwww 

page4B-21 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rey. D 

On the Select Program Folder window 
- Press the Next button (this accepts the default folder) 

On the Setup Complete window, 
- Press the Finish button to view the installed items 

page4B-22 Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Sotlware Tools Installations 

4.6.2 Shortcut to icon 
To access the program development icons from your desktop, 

Select the Build AT A Local icon inside the Atlas Development window 
Click and drag the icon out to the desktop by pressing the right button of your mouse 

BuildATA BuildATA 
Network NoPvcs 

Ill . Ill IJ 
Build SCSI Build SCSI 
Network NoPvcs 

When a pop-up menu appears, 
- Drag the mouse down to scroll to Create Shortcut(s) Here 

then press the left button of your mouse 

Select the Build ATA Local icon on the desktop with the right button of your mouse 
When a pop-up menu appears, 

- Drag the mouse down to scroll to Properties 
then press the left button of your mouse 

Quantum Proprietary 12109197 page4B-23 



Chapter 4 So(lware Tools Installations DPSG V85x User Guide Rev. D 

...... 

page4B-24 

On the Build AT A Local Properties window, 
- Click the Shortcut tab 

Within Shortcut section: 

(1) Change the information in the Target field 

- The field information must have: 
P:\CB\NT\BUILD.EXE E4_ATA=l NOLINT=l -script eclipse.mak 
make all 

Note. E4_ATA is an example of a build stage and type. 
Note. See Build Options on page 6-3 for definitions of field information. 

(2) Change the Start in field information 

- The field information must have: C: \Eclipse \src 

(3) Press the OK button 

Note. To set the program development shortcuts within the Start/Programs menu 

Select the Build AT A Local icon inside the Atlas Development window 
with the right button of your mouse 

When a pop-up menu appears, 
- Drag the mouse down to scroll to Properties 

then press the left button of your mouse 

Follow the instructions in the beginning of this page 

Apply the instructions in the Shortcut to Icons section to all the Atlas development icons . 

Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4B.7 Path Check 

Unlike Win 95 operating systems, which use an autoexec.bat file to set paths to the computer, 
Windows NT 4.0 operating systems set paths through an environment. 

- To access the environment: 

- Select the My Computer icon on the desktop with the right button of your mouse. 

When a pop-up menu appears, 
Drag the mouse down to scroll to Properties then press the left button of your 
mouse 

Select the Environment tab within the System Properties window then set the following 
in the User Variables field to support the Eclipse code builds: 

set path= u: \eclipse\ utils;c: \green;p: \ vm \ dos;p: \ cb \dos 

set user=TYPE YOUR USER NAME HERE 

set vcsid=%user% 

set temp=c: \temp 

set tmp=c: \temp 

set serversrc=u: \eclipse\ src 

set vcscfg=%serversrc% \ vcs.cfg 

set project=eclipse 

set workdir=u:\mr\transfer\ %user% 

set iepath=c:\green 

set islvini=c:\ windows 

set libpath=p:\ vm\nt;p:\cb\nt 

set server_path=u: \eclipse 

***Note. Make sure that you TYPED YOUR USER NAME !!!!! 
***Note. The workdir path, ... /mr/ ... ,used here is specific for the Tsunami program. Use the 

workdir path specific for your program. 

Quantum Proprietary 12109197 page4B-25 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

4.SB Firmware Build 

page4B-26 

Before starting a build, 

(1) Use the Windows explorer to: 

(a) Create a Utils folder in the C drive' s main folder (root directory) 

(b) Drag the tm.exe. icon 

from U:\ \Blue_light\ Voll\Eclipse\Utils 
to C:\ \ Utils 

(2) Create a temp folder in the C drive's main folder (root directory) 

*"' Restart your computer 
** Make sure your computer's network is mapped to: 

P:\ \Lethal\ Vol2\PVCS 
Q:\ \Ape\ Voll 
U:\ \Bluelight\ Voll 

Note. An example of a disconnected computer path to Bluelight\voll 
To reconnect simply double click on the Bluelight Server icon in the Windows 
explorer. 

(3) Using MSDOS 

-Type cd C:\eclipse\src 
then press the Enter key 

- Type get eclipse.mak 
then press the Enter key 

Double-click one of the Build icons to start a build 

Quantum Proprietary 12109197 



DPSG V85x User Guide Rev. D Chapter 4 Software Tools Installations 

4B.9 Project .re file Edit 

Using an editor, view the ".re" file 
(e.g., For the Eclipse AT project this file is c:\eclipse\src\at\ecliat.rc): 

Make sure the file contains the following: 

remote 850ICE32 

If the file does not contain a "32" after the "remote 850ICE," use the editor to modify the file. 

Note. The ".re" file is a read-only file. Therefore, switch off the read-only setting of the 
file. To switch off the read-only setting: 

Select the ecliat.rc icon with the right button of your mouse 
When a pop-up menu appears, 

- Drag the mouse down to scroll to Properties 
then press the left button of your mouse 

On the Ecliat.rc Properties window, 
Within General section 

(1) Click the Read-only attribute to remove the check mark 

(2) Press the OK button 

Change a line to your project ".re" file 

from remote 850ICE 
to remote 850ICE32 

Note. After saving the file switch on the read-only setting of the file. 

Quantum Proprietary 12109197 page 4B-27 



Chapter 4 Software Tools Installations DPSG V85x User Guide Rev. D 

4B.10 Codewright Browser Installation (Optional) 

page4B-28 

To install a browser to Codewright , you must: 

(1) Install Microsoft Visual C++ (version 2.0 or later)on you hard drive 

(2) Delete the contents of your Src folder in C:\Eclipse 

(3) Modify the Target field of the build icon that you will use 

Make sure your Target field contain the follawing path! 
If it does not, type in the missing path. 

P:\CB\NT\BUILD.EXE E4_ATA=1 NOLINT=l SBR=l 
-script eclipse.mak makeall 

(4) Modify the User Variables field in My Computer\Properties\Environment 

Make sure your User Variables field contain the follawing paths! 
If it does not, type in the missing paths. 

set include=c: \msdev\include 

set path=u:\ eclipse\ utils;c:\green;p:\ vm \nt;p:\ cb\nt;c:\msdev\bin 

(5) Change the Browser Database Field Information in Codewright's 
Project\ Properties\ Directories 

Make sure your Browser Database field contain the follawing path! 
If it does not, type in the missing path. 

C: \Eclipse \src \ ecliat. bsc 

(6) Reboot your computer, run Eclipse.bat, get Eclipse.mak, then double-click the build icon 
that you will use 

Quantum Proprietary 12109197 



Chapter 5 Codewright 

5.1 Introduction 

At the start of the Atlas firmware development effort, Codewright was choosen as the most 
advanced Windows based editor available at the time. Throughout this document there 
will be numerous references to particular dialog boxes and menu selections. These items 
will be uniquely specified using the following syntax: for each level of menu or dialog box, 
the entry to select will be displayed seperated by the I character. For example, to select the 
fonts dialog box under Windows 95 you would select the start menu, followed by settings, 
followed by control panel, followed by fonts. The short hand syntax for that in this 
document would be (Start Menu I Settings I Control Panel I Fonts). 

5.1.1 Supported Versions 
This document assumes that you are using Microsoft Windows 95, Codewright version 
4.0E, GreenHills Multi version 1.8.7, and PVCS version 5.1.2. 

5.1.2 File Location Assumptions 
For the purposes of this section of this document we assume that the project is named 
Eclipse, your local project source files are in c: \eclipse\ src . Codewright as been 
installed inc: \cwright, the GreenHills software is installed inc: \green. Windows 95 
is installed in c: \windows and the network project files are in u: \eclipse \src. 

5.1.3 True Type Fonts 
Codewright uses Windows true type fonts to display files, and you are free to pick any font 
you choose. Unfortunately, Windows has a very limited selection of fixed-point true type 
fonts from which to choose. There are two additional fonts that Premia supplied to address 
this issue, and you can load them as follows. 

Run Win95 and open the fonts dialog box with (Start Menu I Settings I Control Panel I 
Fonts). Next select (File I Install New Font), and select the path: 

\\blue_light\voll\eclipse\cwright\fonts. 

Finally, click on the (Select All) button and the (Copy fonts to Fonts folder) entry as 
indicated below: 

Quantum Proprietary 12/08/97 page 5-1 



Chapter 5 Codewright DPSG V85x User Guide Rev. D 

page5-2 

5.1.4 Installing Codewright 
Version 4.0a of Codewright can be installed from the network by running the following: 

\\blue_liqht\vol1\eclipse\cwriqht\v4\cw4.0a\install.exe 

The suggested directory for all versions is c:\cwright. Once you have completed this install 
there are patches that must be applied to bring Codewright up to the latest version. Apply 
the patches by running the following: 

\\blue_liqht\vol1\eclipse\cwriqht\v4\patches\update.bat 

To help you get started with Codewright (and the other tools), there is a set of 
configuration files modifed for eclipse firmware development on the network (this is in lieu 
of having you execute the "Billions and Billions" of steps required for manual 
configuration). To load these files execute the following: 

\\blue_light\vol1\eclipse\cwright\v4\firmware\update.bat 

This will rename existing files as follows: 

c:\cwright\cfile.tpl 
c:\cwright\hfile.tpl 
c:\cwright\funct.tpl 
c:\eclipse\src\eclipse.pjt 

And will copy over the following new files: 

c:\cwright\cfile.tpl 
c:\cwright\hfile.tpl 
c:\cwright\funct.tpl 
c:\cwright\ini.new 
c:\eclipse\src\eclipse.pjt 

c:\cwright\cfile.sav 
c:\cwright\hfile.sav 
c:\cwright\funct.sav 
c:\eclipse\src\pjt.sav 

The next step is to merge in the entries in the file new.ini with your cwright.ini file. This is 
best done with an editor other than Codewright (as Codewrite likes to update the 
cwright.ini file when you exit). The new.ini file will have several sections that match those 
in cwright.ini, you will need to cut the information out of these sections and paste them in 
the corresponding sections in cwright.ini. Using this cut and paste approach allows for 
updating an existing cwright.ini file that you might have customized with your own 
preferences. 

This merge of files will change the default appearance of Codewright by bringing up a tool 
bar along the left side containing a variety of usefull icons. There will also be three new 
icons added to the top tool bar just before the help (?) icon. The first of these is used in a 
blank file to create the default comment block for ".c" source files. The next new icon is 
also used in a blank file to create the default comment block for ".h" include files. The last 
new icon can be used anywhere in a ".c" source file to create a new function comment 
block. 

Quantum Proprietary 12/08/97 



DPSG V85x User Guide Rev. D Chapter 5 Codewright 

When you first bring up Codewright after these changes it should look like the following: 

Quantum Proprietary 12/08/97 page5-3 



Chapter 5 Codewright DPSG V85x User Guide Rev. D 

page 5-4 

5.2 Codewright Projects 

Projects within Codewright allow you to have general options that apply to all files (with 
settings in cwright.ini) along with project specific options contained in your various project 
file. A sample project file was copied over in the previous steps and contains default 
settings for the Greenhills tools and eclipse source files. With this project file you can 
launch the compiler to compile the file you are working on, have the error parser examine 
the results of the compile (in the output window), and place the cursor at the first error in 
the file. This error parsing feature also works with the results of a full build of the code. To 
enable these feature you need to load the project file by selecting (Project I Open) and 
entering the path c: \eclipse \src\eclipse. pj t. 

5.2.1 Changing Project Settings 
The default project file is configured to build code for the E15B AT A platform using the 
Windows 95 version of the configuration builder. At some point you may which to change 
the default platform that Codewright uses when it runs the compiler. To make such 
changes, open a ".c" source file (Codewright makes certain dialog box decisions based on 
the type of the currently opened file). From the Codewright menu select (Project I 
Properties), from the Project dialog box select the (Tools) tab and then the (Compiler) 
button. If all went well you should see the following dialog box: 

.•.a 

. •j 

.850 

.a 

.asm 

.atd 

.cob 

.cpp 

Quantum Proprietary 12/08/97 



DPSG V85x User Guide Rev. D Chapter 5 Codewright 

If you need to switch from the Windows 95 to the Windows 3.1 builder, simply change the 
\ win95\ above to\ win\. To change platforms to the El.5 SCSI (for example), change the 
ElB_ATA=l above to E15_SCSI=1. In the above example the "debug compile" entry 
doesn't have the NOPVCS=l option so it will fetch newer files from the network if 
necessary. The "compile" entry is a purely local compile, which is the more likely case for 
single file compiles from within Codewright. 

If you also wish to change the platform for full builds spawned from within Codewrite, 
open a ".c" source file (Codewright makes certain dialog box decisions based on the type of 
the currently opened file). From the Codewright menu select (Project I Properties), from 
the Project dialog box select the (Tools) tab and then select the Build entry in the Tool 
Selection window. Hopefully you will see the following dialog box: 

If you need to switch from the Window 95 to the Windows 3.1 builder, simply change the 
\ win95\ above to\ win\. To change platforms to the E3.5 SCSI (for example), change the 
ElB_ATA=l above to E35_SCSI=1. 

Quantum Proprietary 12/08/97 page5-5 



Chapter 5 Codewright DPSG V85x User Guide Rev. D 

page 5-6 

5.2.2 Changing Codewright Fonts 
If you choose to modify the default Codewright font (a good idea) select (Document I 
Preferences) from the main Codewright menu. Next select the "Font" tab and once the 
dialog box is up, make sure that the "Change Defaults" box is selected. Select the font you 
wish from the ones presented as in the following example: 

You may limit the list of fonts to only fixed point ones by checking the (Fixed Pitch Only) 
box. If left unchecked you will see both fixed and proportionally spaced fonts. 

Quantum Proprietary 12/08/97 



DPSG VBSx User Guide Rev. D Chapter 6 Make 

Chapter 6 Make 

6.1 Introduction 

The Eclipse make file was designed to be run by a Windows (95 or NT) based make 
processor (generally the Intersolv Configuration Builder version 5.1 or greater) and can not 
be run in a Dos environment. The primary tools (compiler, assembler, linker, and some post 
processors) invoked by this file are likewise Windows applications from GreenHills 
Software. There are, however, a few Dos based utilities that are invoked to perform various 
simple tasks (like deleting files, or checking for differences between files). 

Each supported platform that the make file can build is uniquely identified by a single 
define string. This define string is passed into the make on the command line and is then 
passed to the compiler for each file compiled. This define string must match an entry in the 
r_coddef.h file which is included by each module. This necessitates that changes in the 
make file definition section must be matched by changes in r_coddef.h. 

In order to encourage as much commonality as possible, a single source directory can be 
used to build code for multiple different platforms without conflict. By default, the builder 
will create an AT or SCSI subdirectory below the source directory depending on the 
interface specified by the user. These subdirectories will contain the following 
programmatically generated files: object, list, debug, coff, upd, asmsym, config page 
binaries, selfscan script binaries, and cpg files. The user can override the default sub 
directories with command line options allowing for an infinite (ok, a bunch) of different 
builds all created from a single source directory. 

6.2 Invocation 

The builder can be launched via the command line, through an icon within Windows, or 
via a project specific menu entry in Codewright. The Codewright method is the preferred 
as Codewright can parse the output of this make run and look for errors. The textual output 
of the tools run by this make file are collected into a file named "proj.err" created in the 
working directory where the configuration builder was run. The information in this file is 
parsed by a utility program (projerr.exe) and extraneous output is filtered out, leaving only 
error information which is displayed at the end of the make run. 

As described above the invocation must contain the unique define required to specify the 
platform and interface, along with any builder options. For example, to build code for an 
AT A interface at build level El the following icon command line would be used: 

P:\CB\ WIN95\BUILD El_ATA=l OBJ=ElAT-scripteclipse.mak makeall 

The El_AT A is the top level define that matches an entry in r_coddef.h, while the "-script 
eclipse.mak" specifies the make file to use. The "makeall" is the "first target" for the make 
and specifies which target within the make file to build. This example is for the Windows 
95 version of the Intersolv configuration builder as indicated by the path specified. The 
resulting files would be created in a subdirectory named ElAT under the source directory. 

Quantum Proprietary 12/15/97 page 6-1 



Chapter 6 Make DPSG V85x User Guide Rev. D 

6.3 Dependencies 

In the past, it was up to the individual firmware engineers to keep the dependency section 
of the make file up to date (this section indicates which include files a source file is 
dependent on). This make file has a separate DEPEND.MAK that is programmatically 
generated by an Intersolv utility program call Scandeps. This utility is passed a wildcard 
pattern for the source files in the users directory (generally *.c and *.850 files). From these 
inputs, Scandeps builds dependency lists of all the .H and .I files used by the sources. 
These dependency lists are used to determine when specific modules must be rebuilt 
because of include file changes {nested includes are supported automatically). It is the 
responsibility of the individual firmware engineers to run Scandeps against the make file 
whenever they add new source or include files. 

6.4 Targets 

The make file contains a number of "top level" targets that are passed in via the command 
line and indicates what part of the code the user wants built. · 

6.4.1 Makeall 
This is the default target used if the user fails to specify one on the command line. 
This targetwill build the ROM and the RAM (diskware) code as two separate units 
and link the results together. This target will detect when a ROM file is being 
rebuilt during a diskware phase and will generate an error. 

6.4.2 Getall 
This target will retrieve all the necessary files to build a particular platform. The 
make file is capable of fetching the files on demand, but this method is much faster. 

6.4.3 Rom 
This target will compile/ assemble only those files that are required for the ROM. 
The result of this build will be a "library module" that represents the ROM code. 
This library module can be linked with the objects generated in a RAM build, to 
create a complete code set. 

6.4.4 Ram 
This target relies on a previous ROM build to create a complete set code set. Only 
RAM modules will be recompiled prior to the link phase. This is of course the 
normal build used after a ROM freeze. 

6.4.5 Filename.a 
This target is used primarily for single file compiles from within Codewright. In 
order to insure that the correct build parameters are used, we invoke the build and 
specify only a single object file be built. 

6.4.6 Filename.ler 
This target request that the builder run Lint against the specified file name and 
create the indicated Lint output file. Once again this target is primarily intended for 
invocation from within Codewright. 

page 6-2 Quantum Proprietary 12/1.5/97 



DPSG VBSx User Guide Rev. D Chapter 6 Make 

6.4.7 1'JelVrel 
This target lVill stamp a version label on all files in the archive and is generally 
done when a new release of the code is made. 

6.5 Build Options 

There are a number of options that effect the build behavior and can be applied to any top
level target. These options are passed to the build on the command line. 

6.5.1 LOCAL=l 
This option affects the behavior of the Intersolv "get " utility in that it prevents the 
retrieval of any new files from the network. If the file does not exist in the user's 
directory, then the file will be retrieved, otherwise the user will be notified that a 
newer file exists on the network. 

6.5.2 1'JOPVCS=1 
This option prevents the builder from even looking at the network. This is 
therefore the fastest possible build, but the user will never know that newer files 
exist on the network. Since this option prevents the builder from retrieving any 
files, it is up to the user to insure that all the required files are already on his/her 
machine. 

6.5.3 SBR=l 
This option will cause the builder to invoke the Microsoft C compiler in order to 
generate "Source Browser " files. These files are combined to create a BSC 
database that is used by Codewright to browse the source files. 

6.6.4 NOLINT=l 
This option prevents the builder from invoking Gimpel's Lint utility on each "C" 
source file. The Lint option is left as a "default on" flag in order to encourage the 
user to cleanup any errors/warnings found by Lint. 

6.5.5 OBJ=AE1B 
This option overrides the default object directory that will contain the 
programmatically generated files. Using this option allows the user complete 
(within the constraints of the Dos file system) freedom to specify subdirectories to 
contain their particular build files. In the above example, if the users source file 
was in the directory c:\eclipse\src there would be an object directory created with 
the path c:\ eclipse\src\aelb that would contain the files necessary for either the 
debugger or a prom burner. 

6.5.6 VERS101'J = "AOt.0000" 
The version string determines the file revision retrieved from the archives during a 
build or "getall" operation, and sets the version label to be associated with the tip 
during target "newrel". VERSION assignment is m!!-ndatory for "newrel", optional 
for other targets. When undefined, the makefile will retrieve from the tip, 
depending upon the setting of LOCAL and the source directory's contents. The 
version string also determines the ROM and RAM version strings that will be built 
into the resulting code, except that when LOCAL is defined the RAM value will be 
overwritten with "@@@@". When the user intends to make modification from the 

Quantum Proprietary 12/1.5/97 page 6-3 



Chapter 6 Make DPSG V85x User Guide Rev. D 

current tip, they should use the 'getall' target without a VERSION argument, then 
build (currently, with "makeall") with an appropriate version string. 

6.6 Utilities 

The make files requires a number of utility programs to do its job. Some of these utilities 
are supplied by Greenhills, while the rest were created internally. 

6.6.1 Asmsym ( assembly symbol generator) 
This Quantum-generated utility maintains synchronization between "C" and 
assembly language files. Normally, when both an assembly module and a C 
routine need to access a C based data structure, the assembly routine would need 
manually generated offsets to the individual elements of the data structure. 
Asmsym parses the compiler-generated list files and builds two include files. The 
asmsym.i file is used by assembly language routines while the asmsym.h is 
included by C routines. The asmsym.h file provides symbolic identifiers for 
individual bits within C defined bit field structures. 

6.6.2 Gover 
This is a Greenhills-provided utility that extracts user specified sections out of the 
linker-generated COFF file and creates individual files for the grouped sections. 
This provides a method of extracting code and/ or data from the linker output file 
for use by post-processors. This approach allows extraction of initialized data from 
the firmware along with downloadable code fragments. These extracted files are 
used as input to Makeprom as part of the upd/ cpg file generation. 

6.6.3 CoffROM 
This Greenhills-supplied utility gives us the ability to move sections of memory. 
This is used to move initialized data from its required position in memory to the 
end of the ROM. Since the majority of our data is in the ZDA section we have to be 
able to bootstrap initialized data out of ROM and into its desired position. This 
bootstrap operation is provided by the _Start function in R_CRTO.C which expects 
a sequence of initialized data to exist at the end of the ROM after the special section 
". shadow". 

6.6.4 Blderr 
This Quantum-generated utility creates all the internal and external error files 
using a single data file (errort.dat) as input. This guarantees that the following 
built files will always be in sync: errort.c, errort.h, r_errort.h, errort.i, and 
eclipse.err. The first 4 files are compiled as part of the code and the last is the Diag 
error file. 

6.6.5 Bldvec 
This Quantum generated utility reads in a data file (vectbl.dat) and builds both the 
ROM and RAM vector tables. It generates the following files: r_romvec.850, 
dwvec.850, and vectort.h. The first two files are the actual vector tables while the 
last is the include file used by any module referencing a vector table entry. 

page 6-4 Quantum Proprietary 12/15/97 



DPSG V85x User Guide Rev. D Chapter 6 Make 

6.6.6 Projerr 
This Quantum generated utility reads in the file created during a build run that 
may contain compiler error information. This file (proj.err) will generally contain 
the compiler banner line along with information about files retrieved from the 
network. This utility filters out these extraneous lines and if there is any compiler 
error information left, it will be displayed. This program is run at the end of the 
build session, and if it doesn't find any errors it will display nothing. The input file 
(proj.err) is still available to the user for perusal and is parsed by the Codewright 
error parser. 

6.6.7 Makeprom 
This Quantum generated utility takes files from the Gover utility to create output 
files that are used on the drive. Makeprom loads the files that Gover outputs, 
checks the files for validity, updates the headers in each file and checksums each 
file. Using the validated files, Makeprom builds a .hex file (ROM image file, used 
to generate the ROM), a .upd file (diskware image file, used to Ramware or 
Diskware the drive) and several Self Scan files (Self Scan files are used to self test 
the drive). Makeprom also compresses the ROM vector table and updates the 
emulator download file with the compressed ROM vector table. 

Quantum Proprietary 1'2/15/97 page6-5 



Chapter 6 Make DPSG V85x User Guide Rev. D 

(This page was intentionally left blank.) 

page6-6 Quantum Proprietary 12/15/97 



Build error 

[ errort.dat ~ table 
r_errort.h ... 

blderr.exe errort.c 

Build dwvec.850 .. 
vectbl .dat ~ vector 

--. 

[ 
r_romvec.850 .. 

table 
--. 

vectort.h 
-+ 

"1111 
bldvec.exe 

build r_vrsion.h ... 
l eclipse.ma~ 

(makefile) customer.h 

version.h 
... 

~ build.axe I--

.. 
[ * c· * h· * 850· * 1· ., ., . '. 

Servo 
files 

svoinit.i _.. ... 

+ 

~ 
r_asic.i 

r_disk.i 
..... 

... . 

~ 
.~ 

'1111111 

[ *.m ~ 
,j hda_geom.h _.. r xfrmon.i 

L.. -

matlab 
.. 

+ r_svutls.i 

-t. ... 
itfdefs.bin ... .. -. 

Compile 
-> pre-processor 
->compile 
->assemble 

ghs.exe; cc850; 
as850 

Convert C 
structures 

into 
assembly 

Process 
test 

UPT.EXE 

Errors & 
r+ warnings 

projerr .exe 

proj.err 

l 
* o· . ' *.1st 

+ 

~ 
1J 
'1111111 

CON: ... 

link 

Ix 

I 
ecliat.map 

l 

Eclipse firmware build process 
Bob Condie 12Jul96 

Symbolic ecliatgh.sym .. Emulator 
... information 

ecliat.sym 
mtrans .... ... --

Multi .. 
r 850ice32 

ecliatgh.rom 

·I 
PROM I I 
burner 

ecliat.hex 

Errors & CON: .---. warnings ... - .. 
projerr .exe 

COFF to 
.---. s-records i--, 

(14 files) 
coff2sr 

proj.err 

~ JJ Cont ig lliii 
~· ~ page binder 1--. -~ 
••e•c•I i•a•t.lliupild•• .. 'J eel 1at.cpg 

"1111 

Makeprom 

ecliatgh. • 

--~~~~g-r-e7-_~--~-ill-s~~--------'~ 
ec Ii at ecliatgh.rom ecliat.ouf' 
.... ~1J 1J 

"1111 '1111111 

gov er mkeclips.exe cfg_bind5.exe 

ecliat.mi itfdefs.bin memory 
info. ... ... Diag & UPT 

mapinfo.exe 

(eclitf .bin) itfdefs.bin 

~ 
r 

1 .... -
rr 

nec850.i 
asmsym.exe 

r_asic.lst 

r_disk.lst 

r_xfrmon.lst 

r _svutls. lst 

_nec850.lst 
-1' ID-less 

r.--R-o_y_Z_e_i-~j track to rm at f-------ec_l_itf_.id_I ______ ...... Eclipse config 
-~~~~-~ pages eclitf .txt ... 

cp10.bin 

cp17.bin 

eclitf.h; eclitf .c 
t 

L.._ 

....,. ghs.lnt 

lint <filename>.ler 
.. -. 

---*.c; *.h 
.,.. lint.axe 

Browser 
ecliat.bsc 

*.c; *.h 

cl.exe 
<filename>.sbr ... 

r-------1, 
*.c; *.h J Scan file l.w't------

.__ ______ ...,~I dependencies l eclipse.mak 
I scandeps.exe I~.".., ___ lililllllll 
vzc.,-:T:2!'.:c;l,.-c~ 

... 

"1111 itf .exe eclipse. reg_ .4 
UI egencp.exe --- cp25.bin 

.,.. not used! 

J ecliat.csv 

J 
Excel 

eclipse.sss~ Binary 
*.sso 

Codewright compiler 
- ... bincomp.exe 

... Microsoft I 
Visual C++ 

svocnfg.m ~ servo config cp18*; cp21; cp23 
pages 

_.. .. 
matlab 



Chapter 7 Using the V851 In-Circuit Emulator 

Figure 7-1. Emulator, Pod, and Target Disk Drive 

7.1 Introduction 

The V851 emulator is a dramatic step forward in firmware debugging. It provides some 
very powerful features that Quantum has never had before in an emulator: 

• Source code level debugging in 'C'. 
• Windows GUI Interface. 
• Symbolic viewing and editing of all data structures down to the bit level. 
• The ability to stop the firmware at a breakpoint while servo interrupts and motor 

continues to execute. 
• Point-and-click setting of breakpoints while the firmware runs (a momentary halt 

which does not affect servo occurs). 
• Advanced trace filtering, dump, section, and search features. 
• More hardware bus events (BRAs --1-8) and instruction execution events (BRSs --1-16). 

Note: The NEC manual tells you that you have 16 BRSs. However, 4 are reserved 
for various debugger functions. 

• Overlay debugging support. 
• Very small packaging. 

In this section we will explore more than just the emulator itself, although the focus will be 
on the emulator. We will also briefly touch on some of the other requirements for setting 
up a debugging environment, such as the computer for running Diag software and building 
the required object and binary files. However, these subjects will not be covered in full 
detail. This will leave you with some questions when you get to details such as 
understanding what files are used by the emulator and where they are retrieved from. 
Some of this information can be found in the 'build' documentation. In other cases you'll 
have to dig just a little deeper into the tools themselves. 

Quantum Proprietary 12108197 page 7-1 



Chapter 7 Using the V851 In-Circuit Emulator DPSG V85x User Guide Rev. D 

page 7-2 

7.2 Emulator Resources 

• 33 MHz Processor 
• 512KROM 
• 28K Internal RAM 
• 2 MB Emulation Memory 

7.3 Hardware Requirements 

7.3.1 Emulator Hardware 

• NEC V851Version3.0 Emulator 
• NEC V851Version3.0 Emulator 'pod' 
• Emulator interface Card for your PC 

(the same card used for the K7) 
• NEC V851 Emulator Interface cable 
• NEC V851 Emulator Power Supply 
• Emulator 'probe' clips (optional). 
• Overlay Manager Board and external trigger pin connecting wires (optional). 

7.3.2 Target Hardware 

• An appropriately socketed target drive. 
Note: Guideposts can be used in the socket to ease the attachment of the pod. 

• A computer for running Diag software, connected to the target via its host (e.g., 
AT or SCSI) interface. 

7.3.3 Computer 

• · Pentium 90 or better (the more power the better) 
• 32 Meg RAM or better (the more the better) 

7.4 Software Requirements 

• Windows 95 OS 
• NEC 850 Ice Emulator Software (see "Software Tools Installation - Setup & 

Configuration") 
• Emulator Icon on your desktop 
• Diag program 
• ITF Program for Your Project 
• Resource ("re") files: 

These files are controlled under PVCS for your project. They are retrieved into your 
object file directory. They provide various emulator functions. 

1. project.re (i.e., ecliat.rc or ecliscsi.rc) - Green Hills project specific startup script 
responsible for emulator initialization, download of code and definition of custom 
buttons for the debugger. 
Note: project.re is executed by 'Multi' on startup based on the command line 

environment variable that you supply to the debugger icon's command line. 
For instance, the Eclipse AT project supplies the environment variable 
ECLIAT, so ecliat.rc is looked up in the 'start in' directory and executed. 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 7 Using the V851 ln-Circuit Emulator 

2. multi.re - Greenhills debugger global startup script file. 
3. user.re -- A personalized configuration file. It is invoked using a 'configure' 

command in project.re. It currently specifies the font used in the debugger. 
Note: Configure files are different from other 're' files in that you can't execute the 

same kinds of commands in them, although there is some overlap. They 
have a different purpose; defining how your emulator windows look. 

7.5 Object and Binary File Components 

When you do a 'build', the appropriate files are generated for emulation. In addition, other 
files required to make the drive read and write will be retrieved from PVCS by the build 
process into your object file directory. The files are as follows: 

7.5.1 ROM Object File for Emulator Download 
A successful build produces a file named after your project: for Eclipse AT the file is called 
ECLIATGH.ROM. This file will be downloaded into the emulator's ROM address space 
when you start the emulator. 

7.5.2 Ramware 'UPD' File 
A successful build also produces a file named after your project: for Eclipse AT the file is 
called ECLIAT. UPD. This, of course, is if you have reached the point in your development 
cycle in which you can download ramware or diskware. It is your responsibility to transfer 
this file to your Diag station for download. 

7.5.3 Channel Parameters File 
The channel parameters are in configuration page 17. This is binary data used to program 
the channel registers for all the zones on the disk. Further refining is done by 'channel 
training'. The file 'CP17.BIN' contains the channel parameters. It is your responsibility to 
transfer this file to your Diag station for download. 

7.5.4 ITF Sector Descriptor Binary File 
At least one person in your project is responsible for the Idless Track Format. If you are 
working with the 'Dilbert' or earlier ASIC, then 'sector descriptors' are required for 
read/write to work in your drive. If you are working with the 'Rebel' or later ASIC then 
there is a' calculator' which replaces the sector descriptors. However, you still need an ITF 
binary file for parameters within the Idless formatter. For Eclipse, this file is called 
'ITFDEFS.BIN'. 

A note on ITF: Using the ITF program and its binary file output allows firmware engineers 
to tune the read/write parameters of the drive without having to spin-down the drive, re
build the firmware, and restart the emulator with each experiment. Your firmware should 
have no hard-coded values for programming into the formatter that you code yourself. 
Your team should work with the tools group (which maintains ITF for your project) to get 
the required parameters for your drive. 

It is your responsibility to transfer this file to your Diag station for download. 

Quantum Proprietary 12108197 page 7-3 



Chapter 7 Using the V851 Jn-Circuit Emulator DPSG V85x User Guide Rev. D 

7.5.5 Configuration Pages Binary Files 
The files 'CP*.BIN', (where'*' is a wild card) contain configuration page data to download 
into your drive. These will drive many of the algorithms in the firmware and will be 
needed for initialization of your target. It is your responsibility to transfer these files to 
your Diag station for download. 

7.5.6 Diag Macro File 
A file for Diag is usually provided by someone in your team which contains some handy 
macros for starting up your target. Here are some typical macros: 

• rw - Loads Ramware (diskware that's not yet written to system sectors). 
• dw - Loads Diskware (same as ramware except it is written to system sectors, 

which can be loaded next time the drive spins up). 
• loadcp10 - Loads configuration page 10. 
• loadcp17 - Loads configuration page 17, which are the channel parameters. 
• loadcp23 - Loads configuration page 23. 
• wrddsk - Writes ITF sector descriptors to system sectors. 
• init - Writes configuration pages and sector descriptors to the target. This is 

your full-function initialization. 
• getchb - Reads all channel registers. 
• putchb - Writes all channel registers. 
• getch - Reads one channel register with prompt. 
• putch - Writes one channel register with prompt. 
• w2w - writes wedge-to-wedge. 
• rw2w - Reads Wedge-to-wedge. 
• Andmore ... 

For eclipse AT, this file is called ECLIPSE.ATD. 

7.6 Setting Everything Up 

You've gone on your scavenger hunt and collected all the required hardware and software 
to get started. Here is a checklist to help you make sure you've got everything set up. 

7.6.1 Emulator Connections 

• First connect the emulator 'pod' to the target drive. The drive' s processor has 
presumably been socketed with guide posts to help you attach the pod. Align 
the notches on the pod and drive processor sockets! 
Note: If you intend to debug in overlays then you need an' overlay manager' 

board. Connect this board in the CPU socket between the pod and the 
target drive. Also, connect the four wires between the overlay manager 
board and the emulator's external trigger pin inputs. 

• Connect the emulator interface cable between the emulator and the interface 
card in your computer. 

• Make sure the emulator's power switch is off. Then connect the emulator 
power supply. 

• Make sure the target drive's power supply switch is off. Then connect the 
target drive's power supply. 

• Connect the interface cable between the Diag station and the target drive. 

page 7-4 Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 7 Using the V851 In-Circuit Emulator 

7.6.2 The Emulator Shortcut (Desktop Icon) 
This Icon is also documented in your software tools installation. Here are the settings 
required to make it work: 

• Target: C:\green\multi.exe -nosplash ECLIAT 
• C:\green\multi.exe executes the 'Multi' program. 'Multi' starts the 'QBox' 

server software. 
• -nosplash is an option that prevents a silly Green Hills logo from appearing, 

wasting startup time. 
• ECLIAT is an environment variable for the Eclipse AT project. Everywhere 

you see 'project' in this document, 'ecliat' is substituted. 
• Start in: c:\eclipse\src\at 

7.6.3 Safely Applying Power to the Emulator and Target 

1. Apply power to the emulator. 
2. Apply power to the target drive. 

7.6.4 Safely Turning Off Power From the Emulator and Target 

1. Power off the target drive. 
2. Power off the emulator. 

7.7 Starting the Emulator 

Double click on the emulator shortcut to multi.exe (icon) on your desktop. Two emulator 
software windows will appear on your screen. There are two parts to the emulation 
package; a 'server' produced by NEC called the 'QBox', and a 'client', which is part of the 
'Multi' environment produced by Green Hills. 

Note: The user interface to these windows is not 'windows standard'. Many of the 
normal mouse and keyboard activities you expect will work differently or not at 
all. 

Quantum Proprietary 12116197 page 7-5 



Chapter 7 Using the V851 In-Circuit Emulator DPSG V85x User Guide Rev. D 

page 7-6 

7.7.1 '850ice' - QBox window: 

>clrl 3, OxflOO[rO] 
c09f00f 1 

Ox0048FA: F1009FCO clrl 
>re ti 

e0074001 

3, OxFlOO[zero] 

Ox0048FE: 489AC620 movea Ox489A, zero, r24 

Emulation CPU is reset 

Figure 7-2. 'QBox' Server. 

This is the software that communicates directly with the emulator hardware. This is where 
you will typically do trace captures and dumps, memory dumps and changes, assembly 
and disassembly, and setting hardware breakpoints. NEC provides a manual on this 
software called the '850ice Specification'. 

The user interface in this window is very similar to the K7 emulator. However, there are 
some syntax differences for you to get used to. You enter a command line in the command 
line window at the bottom and see your results in the display window above. 
Note: You can press the up and down arrow keys to re-use your command history. 

This window displays code and variables in assembly language and memory dump 
formats. This is different from the 'Multi' window which displays in the source code 
format. 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 7 Using the V851 In-Circuit Emulator 

7.7.2 'Multi' Debugger Window 

168 
169 
170 
171 

• 
• 
• 

sac 
sst.h 
jmp 

16, 
cegSecvoTemp6, 
[cegSecvoTemp4] 

cegSecvoTempB 
cegSecvoTemp8 II OUT4 = 
tdaoff(estNoise)[ep] 

172 II 'Ibese two halfwocds pcovide foe debug capabilities in the emulatoc 
173 II scopeTciggecs contains a numl:lec of bits, which when set, cause the 
174 II emulatocFlags contains a numl:lec of bits, which when set, altecs the fl 
175 II Examples ace: emulatoc if set causes the checksum to be skipped. noHda 
176 II Please examine svodef.h foe the definition of the bits in these vaciab 
177 II 
178 ~.offset Ox3A 
179 .glob! _scopeTciggecs,_emulatocFlags II 
180 • _scopeTciggecs: .hwocd m_scopeTciggecs_intCCl3 II See 
!Bl • _emulatocFlags: .hwocd O II 
182 
183 .offset Ox3E 
184 II 

II 'Ibe following code (actually, it's just a 16-bit pointec) MUST begin 
II location, Ox00003E. 
II 

Downloading pcogcam to emulatoc. Please ~ait •.• 
Download complete. 
cunning 'ECLIAT' 
O: movea OxffffeOfc, zero, sp 
I 

Figure 7-3. 'Multi' Debugger Window. 

The 'Multi' debugger window shown in figure 7-3 allows you point-and-click debugging at 
the source code level. This tool does its work by communicating with the 'server'. Notice 
that it is divided into two panels. The upper panel shows the source code at location Ox3A, 
where the PC register currently sits (the current execution address). We will call this the 
source code panel. Green Hills provides a manual called the 'MULTI Software 
Development Environment User's Guide' for this software. This manual also covers their 
software development tools, such as their 'builder', which we don't use. 

The lower panel is the 'input panel. It shows the messages which appeared when the code 
was downloaded and allows you to enter commands later. The initialization and 
download occurred when the 'multi' software executed the file 'ecliat.rc' (project.re). This 
window gives you a command line interface that lets you request the display of source code 
files, variables, and structures. 

The buttons at the bottom of the window give you point-and-click control over execution 
and breakpoint setting. There are default buttons and customized buttons. The buttons 

Quantum Proprietary 12108197 page 7-7 



Chapter 7 Using the V851 In-Circuit Emulator DPSG V85x User Guide Rev. D 

page 7-8 

that are customized have all uppercase characters. The default buttons are all lowercase 
and are documented in the Green Hills manual. 

7.7.3 'Custom Buttons 
The custom buttons were designed to allow you to safely start and stop the target drive. 
They do the following: 

IDLEHALT 

RESET 

PARK 

EXIT 

This button executes a batch file which temporarily sets a breakpoint 
at the point in the background task where it halts the processor. 
When the processor gets there (it normally will when all tasks run out 
of work) the batch file sets the breakpoint back to its normal place 
(in the assertion 'trap'). This provides a safe way to stop the task code 
without halting in the middle of a servo ISR. 

This button executes a batch file which performs a hard reset on the 
target drive. First it stops the emulator. Then it sets various registers 
to first turn off servo interrupts, sets the VCM in Park mode, disables 
the spindle, sets the buffer clock to basic ( 40inhz ), and issues a soft 
reset to the spindle motor. It then resets the emulator, re-enables NMI, 
and sets 'combo' breaks. Don't click this button unless you have 

previously clicked 'PARK'. 

This button executes a batch file which safely parks the read/write 
head. Because you may not have textured media, if the disk stops with 
out moving the head over a textured landing zone, the head may stick 
on the disk or be damaged the next time you spin up. Always park the 
heads before resetting or exiting the emulator. The batch file first 
stops the emulator, sets the VCM in Park mode, sets the spindle 
in brake mode, does a seven second delay, disables the spindle, resets 
the display length to 16 bytes, turns off servo interrupts, and sets some 
sfr's. 

This button executes a batch file which gracefully exits the emulator. 
It stops the emulator, disables NMI generation, disables the spindle, 
sets the buffer clock to basic, issues a soft reset to the spindle motor 
block, resets the emulation cpu, disconnects from the 'QBox' software, 
and then quits the debugger. Don't click this button unless you have 
previously clicked 'PARK'. 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 7 Using the V851 In-Circuit Emulator 

7.7.4 Defining Your Own Custom Buttons 
The project.re file can be modified to create your own custom buttons. Be aware, however, 
that this file is retrieved via PVCS and could be overwritten if you do a 'get'. To create a 
button, follow the example in the file and add a line as follows: 

button <BUITONNAME> (target cbatch/ilename.str} 

• 'button' is a keyword indicating a button creation. 
• <BUTTONNAME> is the text that will appear in your button. Make it 

uppercase, to distinguish it from default buttons. 
• Open brace, '{' indicates a string command follows. 
• 'target' indicates to Multi that the text which follows is a command for the 

'QBox' server. 
• 'cbatch' is an QBox server command to execute a batch file. 
• filename.str is the name of the batch file to execute. 
• Close brace, '}' ends the string command. 

An alternative method is as follows: 

button <BUITONNAME> <filename.btn 

• 'button' is a keyword indicating a button creation. 
• <BUTTONNAME> is the text that will appear in your button. Make it 

uppercase, to distinguish it from default buttons. 
• The character'<' indicates that 'multi' will get the command input from a file. 
• filename.btn is the command filename to execute. 

7.7.5 The User Configuration File 
At the end of the project.re file, you will see the command 'configure user.re'. This tells 
'Multi' to execute 'user.re' as a configuration file. This is different from the project.re file in 
that only configuration commands can be executed. See the 'MULTI Software 
Development Environment User's Guide' for more information on configuration files. 

7.7.6 'Spinning' up the drive 
From the initial download point, you can start the code executing by clicking once on the 
'go' button. Now is the time to listen for spin-up (if your firmware is ready for that). 

Look at the input panel. It should indicate that your firmware is 'running': 

Quantum Proprietary 12108197 

820 
821 

RUNNING 
~unninq 1ECLIAT 1 

fil 

O: movea Oxffffe 

Figure 7-4. Confirmation that Your Firmware is running. 

page 7-9 



Chapter 7 Using the V851 In-Circuit Emulator DPSG V85x User Guide Rev. D 

7.8 Troubleshooting 

7.8.1 "No Remote Connection Established" 
When you try to start the emulator, you may see the following dialog box: 

Figure 7-5. No Remote Connection Message 

This is usually caused by one of the following: 

• The emulator is not connected to your computer via its interface cable. 
• The emulator is not powered up. 
• The target drive is not powered up. 
• A software problem has caused the 850ice server from starting up. One cause 

may be failure to configure your project.re file with the following line: 

remote 850ice32 

The switch from Windows 3.1 tools to Win95 tools required this line to change from 
'850ice' to '850ice32', so you may not have done this edit. 

7.9 'Combo' Mode 

In order to allow the firmware to stop at a breakpoint without stalling the servo, NEC has 
implemented this mode of operation. 'Combo' mode allows any interrupts that are of a 
higher priority than the code at which the firmware is stopped to execute, maintaining the 
integrity of the interrupt hierarchy. Combo mode is documented in the NEC 850ice 
manual. To verify that servo is being serviced while the firmware is stopped, you can see 
the status line in the 'QBox' window flickering from 'Running' to 'Break'. 

One of the features of the emulator, 'software' breakpoints, is not allowed when Combo 
mode is enabled. 

7.10 Special Accommodation for the Multi-Stack Kernel 

page 7-10 

A special problem for breakpointing was introduced by the multi-stack kernel (see the 
"Multi-Stack Kernel" documentation). In the multi-stack kernel's method of operation, 
when an interrupt occurs the kernel is entered, it executes the interrupt service routine 
which could post an event, and then the scheduler is executed which could switch 
'contexts' (all your registers will be changed to the values for a different task), all in one 
interrupt. 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 7 Using the V851 In-Circuit Emulator 

You don't want this happening when you are stopped at a breakpoint because it could 
change the values of your registers while you are stopped. So, 'Combo' mode was 
qualified with a special accommodation. The following structure of interrupt masking is 
implemented (masked means the interrupt will NOT be serviced and not masked means 
that it WILL be serviced): 

This allows essential NMI and timer (for the motor) interrupts to execute and keep the disk 
spinning but not interrupts such as host commands, which could cause a context switch. 

Interrupts that are NOT masked must NOT post events and those which are masked may 
post events. 

7.11 Setting Breakpoints 

There are two ways to set breakpoints in the firmware; in the 'Multi' window, clicking on a 
green button, and in the 'QBox' window via event breakpoints. 
You can set 'Multi' window breakpoints in the firmware without stopping the drive; sort of. 
The firmware really stops briefly (it prompts you with a dialog box before it stops the 
firmware to make sure it's OK), sets the breakpoint, and then resumes the firmware. This is 
normally OK because 'Combo' mode keeps the servo running the whole time. 

Figure 7-6. Setting Breakpoints While Running. 

Quantum Proprietary 12108197 page 7-11 



Chapter 7 Using the V851 In-Circuit Emulator DPSG V85x User Guide Rev. D 

page 7-12 

The breakpoint will be seen as a red stop sign over the point where the green button was: 

P" 
968 #endif 
969 
970 
971 .... 

I* Check cache allocation */ 
if ( !psCSeq) 
{ 972 

973 
974 • 

I* No cache seg:m.ent has been allocated yet; 
if (psCmdQE->uDiskCommand.bit.lonqCmd) 

975 { 

Figure 7-7. A Set Breakpoint in the Multi Debugger Window 

7.12 Warning! Setting Too Many Breakpoints! 

Each time you set a breakpoint by clicking on a green button in the source code panel, you 
use one of the instruction execution events (There is a feature for software breakpoints but 
this is disabled because of the requirement for combo breaks). Since there are only 12 
instruction execution events available, you can exhaust them. 

The problem is that the Multi debugger won't tell you when you run out of breakpoints! 
Instead, a message will appear in the 'QBox' window indicating that you have used all the 
hardware breakpoints. This message does not appear until the code runs, however, so if 
you are stopped the message won't appear until you click 'go'. 

The red 'stop sign' will still appear in the Multi source code panel. 

rea pain s are in use - can se e rea pain 
breakpoints are in use - can't set the breakpoint 
breakpoints are in use - can't set the breakpoint 
breakpoints are in use - can't set the breakpoint 

Figure 7-8. Too Many Breakpoints Set Error Messages 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 7 Using the V851 In-Circuit Emulator 

7.13 Viewing Data 

You can view data structures symbolically using the 'Multi' window. In order to do this 
the firmware must be stopped. There are three methods for viewing data: 

7.13.1 'View' Method 
To view the 'sDisk' structure enter 'view sdisk' (not case sensitive) while the firmware is 
stopped: 

STOPPED Cile: r_atkrnl. BSOproc 

: break by he.rc!Ve.re breakpoint con 
viev sdisk 

Figure 7-9. Enter 'view sdisk' 

'Multi' will display the following: 

Figure 7-10. Symbolic Display of sDisk 

7.13.2 Double Click Method 
If you double click on a structure within this window, it will be displayed symbolically: 

lastReqCount O 
:cemainingCon1 O 
sChs {0,0,0) 
defectlJedgel -1 
defectlJedge2 -1 
nextDefectlJec O 
nextDefectlJec 0 
uStatus {'\0' .•• ) 

Figure 7-11. The sCommand Structure within sDisk. 

You can keep double clicking on all the structures down to the bit definition level. 

7.13.3 Highlighting a Data Structure Method 
If you wish to see the contents of a data structure more quickly, you can use the mouse to 
highlight a data structure displayed in the Multi source code window. The data structure 
and its contents will be displayed in the Multi input window. 

Quantum Proprietary 12108197 page 7-13 



Chapter 7 Using the V851 Jn-Circuit Emulator DPSG V85x User Guide Rev. D 

7.14 Changing the Data Display from Decimal to Hex (and other forms) 

page 7-14 

The data displays default to signed decimal, which is very inconvenient for firmware 
engineers. You can change the form of data display by clicking on the inverted triangle on 
the data display' s menu bar and then clicking on 'Hex': 

tota!Xtei::Cow O 
lastReqCount O 
i::em.ainingCon1 O 
sCh8 {O,O,O) 
defectTledgel -1 
defectTledge2 -1 
nextDefectTlec O 
nextDefectliJec O 

,uStatus {'\0' ... ) 

Oct 
OnlyAltei::nate 
•ExpandValue 
ReEvaluate 
•ReEvalinGlobal 
ReEvalContext 
U:seAddi::e:s:s 

m.akeDefault 
•openPointei:: 

•Foi::m.atted 
Mem.oi::y 
Type 
Infinite 
Refi::e:sh 
-ShowChange:s 

Figure 7-12. Data Display Format Change Menu 

You may then click on 'Hex' and 'Only Alternate' and you get a display like the one below: 

ClldCount OxO 
tota!Xfei::Cow OxO 
la:stReqCount OxO 
i::eJ1.ainingCon1 OxO 
:sCh:s {OxO,OxO,OxO} 
defectTledgel Oxffff 
defectli1edge2 Oxffff 
next.Def ectWec OxO 
next.DefectWec OxO 
UStatus OxO ••• } 

Figure 7-13. Hex/OnJ:yAlternate Data Display 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 7 Using the V851 In-Circuit Emulator 

7.15 Making Hex the Default Display 

It's really inconvenient to see your data in decimal mode but Green Hills won't change that 
because their other customers prefer this default. However, you can ensure that your data 
comes up with a hex display by entering the following configuration command in your 
project.re file: 

configure viewdef=Altemate Hex ExpandValue 

7.16 Viewing a Source Code Module 

You can bring any function in a source code module into view in the 'Multi' window so that 
you can set breakpoints or view assembly code by typing 'e functionname': 

963 
964 
965 
966 
967 
968 

69 
970 
971 ... 
972 
973 

74 • 
975 
976 • 
977 
978 
979 
980 
981 

STOPPED 

• 

view sdisk 

view sdisk 

Quantum Proprietary 12108197 

sDisk.sCuccentDiskOp.uContcol.bit.noHostRequest z 'IRUE; 
sDisk.sCuccentDiskOp.uStatus.bit.intecnalActive = 'IRUE; 

/* seek to tacget if changed */ 
StactSeekToTcackR~ (psCmdQE->sStactChs.cylindec, psCmdQE->sStactChs.head, 

#endif 

/* Check cache allocation */ 
if ( !psCSeg) 
{ 

/* No cache segment has been allocated yet; allocate a cache segment 
if (psCmdQE->uDiskCommand.bit.longCmd) 
{ 

sectocs++; // Long commands cequice one mace cache sectoc. 

#if (INTERFACE == ATA_INTF) //Temp foe SCSI code build 

sAtic.INTMSKH.bit.eocNeedsSecvice = 'IRUE; //Enable EVENT_INTF ge 
#endif 

file: c_cdwc.c pcoc: Common~citeExec() tacget: C:\gceen\850ic 

Figure 7-14. Viewing a Function in a Source Code Module 

page 7-15 



Chapter 7 Using the V851 In-Circuit Emulator DPSG V85x User Guide Rev. D 

By using the syntax 'e functionname', you instruct Multi to display the function source code 
and to allow you to work in debugging mode; you will see breakpoint buttons, you can see 
assembly language, etc. 

Another syntax is to type 'e filename.c'. This will display the source code file in an editing 
mode. You will not see breakpoint buttons. However, you can click on the 'assem' button 
to see assembly language. This will switch you to the debugging mode. 

7.17 Viewing Assembly Language Code 

page 7-16 

You can view the assembly language produced by the compiler and running in the 
emulator within the source code module by clicking on the 'assem' button: 

963 
964 
965 
966 
967 
968 
969 
970 

971 

972 
973 
974 

.. 

STOPPED 

• 
• 
• 
• 
• 
• 
• 
• 

view sdisk 

/* seek to tacqet if chllllqed */ 
StactSeekToTcackRW (psCmdQE->sStactChs.cylindec, psCmdQE->sStactChs.head, 

#endif 

I* Check cache allocation */ 
Ox9ab6 CommonWciteExec: jacl ApplePaqeData+Oxl74 (Ox968), clO 
Ox9aba CommonWciteExec+Ox4: mov c6, c29 

if ( !psCSeq) 
Ox9abc CommonWciteExec+Ox6: ld.h Oxlc[i::29], i::26 
Ox9ac0 CommonWciteExec+Oxa: ld.TJ Oxl8[c29], c7 
Ox9ac4 CommonWciteExec+Oxe: ld.TJ 8[c29], i::28 
Ox9ac8 CommonWciteExec+Oxl2: mov c7, c27 
Ox9aca CommonWciteExec+Oxl4: cmp zeco, c28 
Ox9acc CommonWciteExec+Oxl6: bne CommonWciteExec+Ox48 (Ox9afe) 

{ 
/* No cache segment has been allocated yet; allocate a cache segment 
if (psCmdQE->uDiskCommlllld.bit.lonqCmd) 

file: c_cdwc.c pcoc: CommonWciteExec() tacqet: 

e CommonWciteExec 

Figure 7-15. Click on the 'assem' Button to See Assembly Language Code 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 7 Using the V851 In-Circuit Emulator 

You may now set breakpoints and step through the code at the assembly language level. It 
is important that you work at this level when you get into the detail level of debugging. 
The code optimizer will move the assembly instructions to unexpected locations relative to 
your source code. In order to fully understand what's really going on in your code when 
you get to the source of your bug, you need to understand the assembly language and the 
results of the compiler. You will often find your bugs in this area. 

To return to source code level debugging click on 'assem' again. 

7.18 The 'Multi' Menu Bar 

The 'Multi' menu bar provides some new tools. Here we will overview a couple of useful 
features. The menu bar appears as follows: 

7.18.1 ~ontrol 

QuitAll 

7.18.2 Display 

UpStack 

DownStack 

Display PC 

7.18.3 ~onfig 

This selection allows you to exit the emulator. A safer method, 
however, is to use the EXIT button. 

This allows you to display the path that called the code you are 
currently displaying. You can repeatedly click UpStack, going 
further and further back into the calls that have occurred. 

If you had previously done UpStack, you can click this to back 
down the calls until you get to the code that is currently 
executing. 

This allows you to display the code at the current PC location. 
It's a good way to get back to where you are executing after you 
have done many UpStack operations. 

This allows you to configure your debugger in ways too numerous to mention. Check it 
out. 

Quantum Proprietary I 2108197 page 7-17 



Chapter 7 Using the V851 In-Circuit Emulator DPSG V85x User Guide Rev. D 

7.19 Trace Dumps 

page 7-18 

I PROBE I PC OPCODE I PSW ADDRESS 
--------------------------- -------------------------------------------------

-14 1 OxOO Ox0000494C E5957720 Ne It RD OxFFFFE594 
-13 1 OxOO Ox00004950 ES916F20 Ne It RD OxFFFFE590 
-12 1 OxOO Ox00004954 E58DD720 Ne It RD OxFFFFESBC 
-11 1 OxOO Ox00004958 E589CF20 Ne It RD OxFFFFE588 
-10 1 OxOO Ox000049SC E585C720 Ne It RD OxFFFFES84 

-9 1 OxOO Ox00004960 ES81BF20 Ne It RD OxFFFFESBO 
-8 1 OxOO Ox00004964 FSSC Ne It RD OxFFFFESSO 
-7 1 OxOO Ox00004966 E631A760 Ne It WR OxFFFFE630 
-6 1 OxOO Ox0000496A E635AF60 Ne It WR OxFFFFE634 
-5 1 OxOO Ox0000496E OOFFA680 Ne It 
-4 1 OxOO Ox00004972 FFFFAEBO Ne It 
-3 3 OxOO Ox00004976 F1009FCO Ne It RD OxFFFFFlOO 
-2 5 OxOO Ox00004976 F1009FCO Ne It WR OxFFFFFlOO 
-1 1 OxOO Ox0000497A 014007EO Ne It 

Figure 7-16. A typical Trace Dump Using the QBox. 

There are a variety of trace dumps, filters, and sections. Note that the 'QBox' is used for 
trace and memory dumps. These are documented in the NEC 850serv manual. 

7.19.1 New Sectional Trace Method 
One interesting addition is the ability to do sectional traces by two methods. One method is 
familiar to you. It is a sectional trace which has a start and end: 

brs 1 a=Ox4910 
brs 2 a=Ox5910 
t s= brs1 e= brs2 

This kind of trace is triggered when the starting point is executed and turned off when the 
ending point is executed. The advantage to this is that it includes all calls and ISRs. The 
disadvantage of this is that it can be cluttered with servo interrupts and such. 

The new method is tracing within one or more ranges; 

brs 1 a=Ox4910-0x5910 
brs 2 a=Ox6645-0x7700 
t q=brs1 I brs2 

The above trace is 'qualified' by the two address ranges specified by brsl and brs2 

Quantum Proprietary 12108197 



DPSG V85x User Guide Rev. D Chapter 7 Using the V851 In-Circuit Emulator 

Note: You must declare brs's with a space between their name and number. The qualify 
syntax requires a Boolean 'or' operator (I). 

This trace will not include any code that is not within the given ranges. The starting and 
ending points need not be executed to trigger the trace; they need only be within the range. 
This will exclude any called code outside the range, such as servo and ISRs. 

7.19.2 Trace Searches 
Another handy new feature is the ability to search your trace buffer for a particular 
address. This will display every occurrence of an instruction executed at that address. This 
is a good way to find out how many times a particular function or instruction is executed at 
a given point in time. The syntax is: 

tsearch a=Oxnnnn 

7.20 Assertion Traps 

A good coding practice is to lace your code with 'assert' statements. An example would be 
assert (Iba >= O); The expression in parentheses must be non-zero or the emulator stops at a 
place called 'trap'. Upon start-up, brsll is set to break on 'trap'. 

Another way to get to the 'trap' is to place the macro 'SHOULDNT_GET_HERE' at strategic 
places in your code. 

If (or should I say when) your code stops in an assertion trap, your first desire will be to 
find out how you got there. Click on the Multi tool bar entry, Display and then select 
UpStack from the pull down menu. This displays the 'caller' of the assertion trap to you. 

7.21 Experiment! 

This document gives you an overview of some of the features of this emulator. There are 
many, many features and capabilities to explore. The NEC 850ice manual is 
comprehensive. However, there is scant Green Hills documentation on the 'Multi' 
debugger window for Win95. Start experimenting and read your manuals! 

7.22 Starting Diag 

The following description is an example only. Every debugging environment is different. 
Typically, you will have a directory in your Diag station with a batch file that looks 
something like this: 

diag -ata -s ediat.atd 

The' atd' file is a Diag macro file that you have retrieved from PVCS for your project. Once 
Diag is started, typically you will load ramware as follows: 

>>rw 

Quantum Proprietary 12108197 page 7-19 



Chapter 7 Using the V851 In-Circuit Emulator DPSG V85x User Guide Rev. D 

You then may then write sector descriptors, channel parameters, and configuration pages 
using a macro like this: 

>> init 

In any case, your drive should be spun up and as ready to debug as it can be. 

7.23 Overlay Management 

page 7-20 

A strategy has been developed to support debugging of overlays. It allows you to set 
breakpoints in overlays and allow the debugger to differentiate addresses that may be at 
exactly the same place in external RAM but be part of different overlays. 

We do this by placing overlays in RAM sections ('sections' are set up by the linker) that are 
'mirrors' of external RAM (see 'Eclipse Hardware and Firmware Memory Map'). These 
mirror sections have values in the high order bits of their addresses that are ignored by the 
actual drive hardware so they load into the same external RAM locations addressed by the 
low order bits. Here are the address ranges in question: 

• External RAM is at locations OxlOOOOO - Ox13ffff. 
• Overlay sections are at locations Ox1100000 - OxflOOOOO. 

So, bits 24-27 of the address are the overlay number. When the overlay loader tries to load 
an overlay at location Ox1100000, it really loads at location OxlOOOOO in RAM. 

The new problem becomes how to use hardware instruction execution events (which are 
necessary instead of software breakpoints because of Combo mode) to stop at breakpoints 
in overlays. 

We solve this problem by placing bits 24-27 of the address on the external trigger pins of 
the emulator. We invented a board that does this (the overlay manager board). It goes 
between the emulator pod and the microprocessor. 

When an overlay is loaded, the overlay manager firmware writes the values that are to be 
in bits 24-27 to a special array located in a place recognized by the overlay manager board. 
It then latches the appropriate value onto the four pin connections. These pin connections 
are wired to the external pin connections of the emulator. 

We can then set an instruction execution event for our example overlay as follows: 

brs 1 a=OxlOOOOO P=Ox01 

When the PC reaches Ox0100000, and the overlay address is 1 the emulator will stop. 

7.23.1 Multi Support For Overlay Breakpoints 

The Multi Debugger allows you to click on a green dot to set a breakpoint in an overlay just 
as you would set a breakpoint anywhere else. It does this by sending an instruction 
execution event to the 'QBox' server just like the one above. The overlay manager does a 
read to one of 16 consecutive addresses. When the overlay board decodes the upper 20 bits 
of address, it latches the low 4 bits as the overlay number. 

Quantum Proprietary 12108197 



Chapter 8 Eclipse Memory Map (Hardware and Firmware) 

8.1 Overview 

This document will describe both the Eclipse AT product's hardware memory map and the 
way in which the firmware has allocated memory resources. This document also covers the 
memory sections found in the firmware link map. 

FFFFFFFF 

01000000 

FFF400 

FFFOOO 

FFE800 

FFEOOO 

FF8400 

FF8000 

FOOOOO 

900000 

8FEOOO 

8F8400 

8F8000 

800000 

140000 

13A400 

100000 

010000 

oocooo 

008000 

1 MB - 32K Unma ed 

7 Mirrors of 800000 - 900000 

8KUnma ed 

23K Mirror of DRAM at FF8400 

1K Mirror of ASIC at FF8000 

1 MB - 32K Unma ed 
27 Mirrors of DRAM 
from 100000 - 140000 

32K ZDA 
(SFR, RAM, ASIC) 

l2s6K DRAMI 

I 16K ROM Non-ZDA I 
l 32K ROM ZDA I 

0 Figure 8-1. Eclipse Hardware Memory Map 
(Refer to link file from SRC directory for latest updates on the memory map.) 

Quantum Proprietary 12/16/97 page 8-1 



Chapter 8 Eclipse Memory Map DPSG V85x User Guide Rev. D 

pageB-2 

8.2 'ZDA' - Zero Data Area Access Method 

The Green Hills compiler uses this method of data access to reduce the size of instructions 
necessary to read and write memory. These instructions contain a sign-extended 16-bit 
offset from a register also specified in the instruction, providing a range of+/ - 321< relative 
to the register. The processor contains a hard-wired register, rO, which always contains 
zero. 

The compiler can take advantage of the 16-bit offset in the instruction and the register, 
which it does not have to initialize to access a range of data that is + /- 321< from zero. This 
isZDA. 

The Eclipse architecture takes advantage of this efficiency by placing most of ROM (for 
table access), all of internal RAM, some external RAM, and the ASIC all within this range 
(See Figure 8-1. Eclipse Hardware Memory Map). 

Notice that a range of external RAM (the topmost 231<) also decodes into the ZDA space. 
This is where external RAM variables and tables are stored. 

Memory not accessed via ZDA must be accessed by using two instructions to initialize a 
register pointer followed by the actual access based on a 16-bit (typical) offset. 

8.3 'TOA' - Tiny Data Area Access Method 

The microprocessor allows for even more compact instructions using a method similar to 
ZDA except that the offset in the instruction varies from 0 - 127 bytes to 0 - 255 for words 
and halfwords and the base register always must be the 'ep' (R30). This has no effect on 
the hardware map and is mentioned here only to help explain 'IDA' references later in this 
document. There is more discussion on this subject in 'C Coding Efficiency'. 

8.4 Hardware Memory Components 

8.4.1 ASIC 
The ASIC registers are described in the Rainier-A or -S manual provided by the 
ASIC group. Individual blocks within the ASIC are referenced by structures named 
after them and assigned individual sections in the linker. (see the link map section 
of this document). They are accessible via the ZDA method. 

8.4.2 Internal RAM 
This 2K of RAM is internal to the V851 microprocessor. Access to this RAM is 
extremely f,.ct; one cycle with one pipeline delay (see 'V851 Microprocessor'). 
Critical variables, stacks, and contexts (see 'Multi-Stack Kernel') are stored there. 

Internal RAM is assigned many sections in the linker. Most of internal RAM is 
dedicated to the Multi-Stack Kernel's stacks and contexts. Other sections are used 
for critical variables (via ZDA) and Servo, and are only accessed in IDA mode by 
the assembly-language servo code. The IDA option is not used by the C code. 

Quantum Proprietary 12/08/97 



DPSG V85x User Guide Rev. D Chapter 8 Eclipse Memory Map 

8.4.3 SFRs 
These are Special Function Registers defined by the V851 microprocessor (see 
NEC's 'V851 Microprocessor' manual). They are accessible via the ZDA method. 

8.4.4 ROM 
ROM is where we keep power-up and performance code and tables. For constant 
access, only the first 32K can be accessed via the ZDA method. NOTE: An attempt 
to access a constant via ZDA outside the 32K range could be the cause of a linker 
error. 

8.4.5 External RAM 
The Eclipse platform provides for 256K of external RAM. This RAM is very slow to 
access (approximately 1 microsecond per byte when the disk and host are running) 
because access to it must be multiplexed with the disk and host channels. 

23K of external RAM decodes into the 'ZDA' range, so this is where most of the 
global variables are stored. This is the topmost decoded RAM. This is where non
critical variables are kept. 

8.4.6 Mirrors 
Internal RAM and ROM have 'mirror' decodes which are caused by ignored 
address bits. Normally, these areas are not referenced by the firmware. However, a 
mirroring strategy is used by the overlay manager. Sections into which overlays 
will be loaded are defined in a range that mirrors external RAM. This allows the 
linker to define code that has overlapping addresses without reporting an error. 

8.4.7 Unmapped 
Unmapped areas have no hardware component at all and should never be 
referenced by the firmware. 

8.5 Overview of Linker Sections 

The following table contains addresses that could change frequently. It was taken from one 
snapshot of the Eclipse map file. Refer to your own link map to be certain of a particular 
section's location and size. However, this document will give you a general idea of the 
locations of important sections along with their descriptions. 

Hardware Name Start End Size Descri_.£.tion 
ROM intvecs OxOOOOOOOO Ox00000153 Ox00000154 Interru~ Vectors 
ROM romrozda Ox00000154 Ox000006a3 Ox00000550 Tables accessible via ZDA 
ROM . text Ox000006a4 Ox00000c7f Ox000005dc Green Hills Lib~ Functions lNote if 
ROM romtext Ox00000c80 Ox00009833 Ox00008bb4 Power-1:!£_ and Performance Code 
ROM com_E._vec OxOOOObefO OxOOOObfef Ox00000100 Com...Eessed VectorTable_Q:i_ote ~ 
ROM ROMHdata OxOOOObffO OxOOOObfff Ox00000010 Default diskware download header{Note 3) 
SFR _E._inmask OxOOOfOOOO OxOOOfOOOO OxOOOOOOOO Emulator Control Mask 
EXRAM DWVHdata Ox01100000 OxOllOOOlf Ox00000020 Diskware Vector Table Header lNote 4) 
ID<RAM romvec Ox00100020 Ox001000a7 Ox00000088 Un-Com,.Eessed Vector TablelNote 2.) 
ID<RAM dwvec Ox01100020 Ox011007ff Ox000007e0 Diskware Vector Table ]'Jote-!}_ 
EXRAM RESHdata Ox00100800 Ox0010081f Ox00000020 Diskware Resident Code Header 
EXRAM res text Ox00100820 Ox00105e07 Ox000055e8 Resident Diskware 
EXRAM OvlyHdr Ox00107400 Ox00107400 OxOOOOOOOO Place Holder for Over~ Header ]Note~ 

Quantum Proprietary 12/08/97 page 8-3 



Chapter 8 Eclipse Memory Map DPSG V85x User Guide Rev. D 

EXRAM Ov!Y_Text Ox00107420 Ox00107420 OxOOOOOOOO Place Holder for Overlai Code :INote Sl 
EXRAM OvllHdr Ox01107400 Ox0110741f Ox00000020 OverlllY_ 1 Header:INote 61 
EXRAM OvllText Ox01107420 Ox01107b0b Ox000006ec Overhiyl Code :INote I[ 
EXRAM Ovl2Hdr Ox02107400 Ox0210741f Ox00000020 Overlay 2 Header:INote ~ 
EXRAM Ovl2Text Ox02107420 Ox02107927 Ox00000508 Overlay 2 CodeJNote ~ 
EX RAM Ovl3Hdr Ox03107400 Ox0310741f Ox00000020 Over!~ 3 HeaderJ:Note ~ 
EXRAM Ovl3Text Ox03107420 Ox03107673 Ox00000254 Overla_.Y. 3 CodeJ:Note t?1. 
EXRAM Ovl4Hdr Ox04107400 Ox0410741f Ox00000020 Over!~ 4 HeaderJNote ~ 
EXRAM Ovl4Text Ox04107420 Ox0410781f Ox00000400 Over!~ 4 Codeffeote t?1. 
EXRAM Ovl5Hdr Ox05107400 Ox0510741f Ox00000020 Over!~ 5 Header ffeote ~ 
EXRAM Ovl5Text Ox05107420 Ox0510786b Ox0000044c Over!~ 5 CodeJ_Note ~ 
EXRAM WList Ox00107c00 Ox00109bff Ox00002000 'W' LlstJ_Defect Lls!}_ 
EXRAM Buffer Ox00109c00 Ox0010a400 Ox00000800 'Tem_E'. BufferJ_Note_Zl 
EXRAM BfrCache Ox0010a400 Ox0013a3ff Ox00030000 Read/Write Cache 
EXRAM ZdaBase Ox0013a400 Ox0013ffff Ox00005c00 External RAM Mirrored in ZDA :INote 8)" 
EXRAM FSDHdata Ox04108000 Ox0410801f Ox00000020 File System Header :INotes 4, 9 & lQl 
EXRAM FSDir Ox04108020 Ox04108063 Ox00000044 File ~tern Direct~otes 4, 9 & 1<[ 
EXRAM DWLHdata Ox0410a400 Ox0410a41f Ox00000020 Diskware Download Header J...Notes 4, 11 & 1~ 
EXRAM DWLtext Ox0410a420 Ox0410a70f Ox000002f0 Diskware Download Code J...Notes 4, 11 & 1~ 
EXRAM DWLbss Ox0410a710 Ox0410a75f Ox00000050 Diskware Download Vars._ill_otes 4, 11 & 1:[ 
EXRAM BBLHdata Ox05110000 Ox0511001f Ox00000020 Boot Loader HeaderJ_Notes 4, 12, & 13[ 
EXRAM BBLtext Ox05110020 Ox05110203 Ox000001e4 Boot Loader Code :INotes 4, 12, & 13} 
EXRAM BBLbss Ox05110204 Ox05110204 OxOOOOOOOO Boot Loader Variables J:Notes 4, 12, & 1::[ 
EXRAM SSLHdata Ox0610a400 Ox0610a41f Ox00000020 Selfscan Loader HeaderJ:Notes 4, 10, & 1~ 
EXRAM SSLtext Ox0610a420 Ox0610a553 Ox00000134 Selfscan Loader Code J...Notes 4, 10, & l'!l_ 
EXRAM SSLbss Ox0610a554 Ox0610a554 OxOOOOOOOO Selfscan Loader Variables J...Notes 4, 10, & 1'!2_ 
EXRAM ModeD Ox0010d400 Ox0010d46b Ox0000006c Mode P~ DefaultsJ_Note 1~ 
EXRAM ConfP Ox0010d800 Ox0010ef47 Ox00001748 Configuration P~e Defaults J_Note 1~ 
EXRAM SSRCHder Ox00110400 Ox0011041f Ox00000020 Selfscan Resident Code Header _frJote 1~ 
EX RAM SSRCtext Ox00110420 Ox00111637 Ox00001218 Selfscan Resident Code J...Note 1~ 
EXRAM SSOlHder OxOOlllcOO OxOOlllclf Ox00000020 Selfscan Code Overla_.Y. 1 Header JN ote 1~ 
EXRAM SSOltext Ox00111c20 Ox001149f7 Ox00002dd8 Selfscan Code OverlllY_ 1 Code J...Note 1~ 
EXRAM SSOldata Ox001149f8 Ox00114a2f Ox00000038 Selfscan Code OverlllY_ 1Data_frJote1~ 
EXRAM SSOlbss Ox00114a30 Ox00114a63 Ox00000034 Selfscan Code Overlay 1 V ariables1Note 1~ 
EXRAM SS02Hder OxOllllcOO OxOllllclf Ox00000020 Selfscan Code Over!~ 2 Header J:Notes 4 & 1~ 
EXRAM SS02text Ox011llc20 Ox01113b67 Ox00001f48 Selfscan Code Overla_.Y. 2 Code 1Notes 4 & 1~ 
EX RAM SS02data Ox01113b68 Ox01113bab Ox00000044 Selfscan Code Overl~ 2 DataJ..Notes 4 & 1~ 
EXRAM SS02bss Ox01113bac Ox01113c17 Ox0000006c Selfscan Code Overl~ 2 Vars._frJotes 4 & 1~ 
EXRAM SS03Hder Ox02111c00 OxOllllclf Ox00000020 Selfscan Code OverlllY_ 3 Header jNotes 4 & 1~ 

EXRAM SS03text Ox02111c20 Ox0211229b Ox0000067c Selfscan Code Overlay_ 3 Code]Notes 4 & 1~ 
EX RAM SS03data Ox0211229c Ox0211229c OxOOOOOOOO Selfscan Code Overlay 3 Data ]Notes 4 & 12f 
EXRAM SS03bss Ox0211229c Ox021122a8 OxOOOOOOOc Selfscan Code Overla_.Y. 3 Vars.INotes 4 & 1~ 
EXRAM SSRDHder Ox00115c00 Ox00115clf Ox00000020 Selfscan Resident Data HeaderJ_Note 1~ 
EXRAM SSRDdata Ox00115c20 Ox00115cf7 Ox000000d8 Selfscan Resident DataJ_Note 1~ 
EXRAM SSRDbss Ox00115cf8 Ox00115d54 Ox0000005c Selfscan Resident Variables J_Note 1~ 
EXRAM SSCMDRST Ox00115e00 Ox00116200 Ox00000400 Selfscan Command & Result Overl'!Yl_Note 1~ 
EX RAM SSCMDHTR Ox00116200 Ox001163ff Ox00000200 Selfscan Command HistO!Y_ Buffer:INote 1:[ 
EXRAM SSDOv!Y_A Ox00116400 Ox001173ff Ox00001000 Selfscan 'scri_JJ_t' Buffer]Note 1'.[ 

EX RAM SSDOv!Y_B Ox00117400 Ox001193ff Ox00002000 Selfscan 'result' Buffer:INote 1~ 
EXRAM SSDOv!Y_2 Ox01116400 Ox011193ff Ox00003000 Selfscan 'hard defect list'lNotes 4 & 1~ 
EXRAM SSDOv!Y_C Ox01119400 Ox0111a3ff Ox00001000 Selfscan 'soft/servo error lists/tables' 
EXRA.M SSDOv!u3 Ox02116400 Ox021199ff Ox00003600 Se!fscan 'data tables cverla_y' 1r-.!ctes 4 & 121 
OVMGR ov!Y_m....s!._ Oxf783f0 Oxf783ff Ox00000010 Overlay_ Mana_g_er ArrilYlNote 11[ 
IRAM .sdata OxfffefcOO OxfffefcOO OxOOOOOOOO Small Data Area is Unused 

ASIC bcb Oxffff8000 Oxffff803b Ox0000003c Buffer Controller ASIC Block 

ASIC sser Oxffff80a8 Oxffff80ab Ox00000004 Serial ASIC Block 

ASIC s~oc Oxffff80b0 Oxffff80bf Ox00000010 Micr~ocessor Interface ASIC Block 

ASIC fmtr Oxffff8100 Oxffff813f Ox00000040 Formatter ASIC Block 

ASIC ~lll Oxffff8140 Oxffff8143 Ox00000004 APLL ASIC Block #1 

ASIC ~112 Oxffff8148 Oxffff814b Ox00000004 APLL ASIC Block #1 

pageB-4 Quantum Proprietary 12/08/97 



DPSG V85x User Guide Rev. D Chapter 8 Eclipse Memory Map 

ASIC sadc Oxffff8150 Oxffff8157 Ox00000008 AtoD Converter ASIC Block 
ASIC smotor Oxffff8160 Oxffff8173 Ox00000014 Motor Control ASIC Block 
ASIC ati.c Oxffff8180 Oxffff81e7 Ox00000068 AT Interface ASIC Block 
ASIC sthermal Oxffff8200 Oxffff820f Ox00000010 Thermal As__p_er_!!y_ ASIC Block 
ASIC stuna Oxffff8240 Oxffff828f Ox00000050 TNA ASIC Block 
ASIC secc Oxffff8300 Oxffff832f Ox00000030 ECC ASIC Block 
EXRAM svdata Oxffffa400 Oxffffa4eb OxOOOOOOec Servo Data 
EXRAM svbss Oxffffa4ec Oxffffadff Ox00000914 Servo Variables 
EXRAM romzdata OxffffaeOO Oxffffaf4b Ox0000014c Initialized Global ZDA Tables & Vars ffiote "!.?}. 
EXRAM romzbss Oxffffaf4c Oxffffcf03 Ox00001fb8 Uninitialized Global ZDA Variables ,iNote 1~ 
EXRAM CVecdata Oxffffd200 Oxffffd30f Ox00000110 Command Decode Tables 
EXRAM resrozda Oxffffd310 Oxffffd363 Ox00000054 Resident Diskware' s Global TablesJNote 1 '1 
EXRAM reszdata Oxffffd364 Oxffffd737 Ox000003d4 Resident Diskware's Global Data lNote 2~ 
EXRAM reszbss Oxffffd738 Oxffffd8c7 Ox00000190 Resident Diskware' s Global Variables 
EXRAM b2tbtm Oxffffdd80 ffffdd80 OxOOOOOOOO Back~ound Task Stack Bottom ffeote 2Jl 
EXRAM bR1tto...P_ OxffffdfOO Oxffffdf03 Ox00000004 Back_.8!'.?und Task Stack TmNote 2Jl 
EXRAM excstbtm Oxffffdf04 Oxffffdf04 OxOOOOOOOO Exci:£_tion Task Stack Bottoml_Note 2'!:1 
EXRAM excsttol' Oxffffdf80 Oxffffdf83 Ox00000004 Ex~tion Task Stack T<?tlNote 2ll 
EXRAM cmdstbtm Oxffffdf84 Oxffffdf84 OxOOOOOOOO Command Task Stack Bottom INote 2'IT 
IRAM cmdstto__p_ OxffffelOO Oxffffe103 Ox00000004 Command Task Stack T~ote 2'!.}: 
IRAM __p_restbtm Oxffffe104 Oxffffe104 OxOOOOOOOO Pre-Processor Task Stack Bottom lNote 2IT 
IRAM ~estto__p_ Oxffffe180 Oxffffe183 Ox00000004 Pre-Processor Task Stack TmNote 2!1 
IRAM isrstbtm Oxffffe184 Oxffffe184 OxOOOOOOOO ISR Stack Bottom ~ote 2!1 
IRAM isrstt<>i>_ Oxffffelf8 Oxffffelfc Ox00000004 ISR Task Stack T~ote 2Jl 
IRAM irdata Oxffffelfc Oxffffe48f Ox00000294 Internal Global Variables INote 22} 
IRAM .tdata Oxffffe490 Oxffffe577 Ox000000e8 TDA Servo Variables ~te 23_1 
IRAM .tidata Oxffffe578 Oxffffe637 OxOOOOOOcO TDA Servo Variables INote 241 
IRAM sv~atch Oxffffe700 Oxffffe6ff Ox00000100 Servo Code Patch Area 
SFR atlas OxfffffOOO Oxfffff3ff Ox00000400 V851 Micro}'Jl'ocessor Control Registers 

8.6 Hardware Legend 

• ROM 

• SFR 

• EXRAM 

• OVMGR 

• IRAM 

• ASIC 

Quantum Proprietary 12/08/97 

Internal to the V851, 48K Read-only memory. 

Special function Registers, associated with V851 functions. 

External DRAM, 256K. Slow access, located on logic board and accessed 
via ASIC decode. 

A block of addresses used by the overlay board. (See Note 16.) 

Internal to the V851, 2K Fast-access RAM. 

The drive's main ASIC. 

page 8-5 



Chapter 8 Eclipse Memory Map DPSG V85x User Guide Rev. D 

pageB-6 

8.6 Notes 

1. We want to avoid using Green Hills Library Routines. This is a default section which 
we do not name ourselves, but in which library functions go if they are invoked by the 
compiler. One objective is to eliminate this section. 

2. This is a compressed vector table that is created by the build process 'makeprom' 
program. It compensates for a bug in the Green Hills compiler which cannot create a 
defined halfword containing the address of a function. Instead, we create a table of 
'jump relatives' to the functions which is defined in external RAM in the location of the 
default vector table. This allocates the needed space in RAM (section 'romvec') but we 
don't want to use up that much space in ROM. So makeprom compresses it (strips of 
the jump relative part, leaving the offset) and makes it load into the smaller ROM 
space, 'compvec'. On power-up, it is decompressed (adding the jump relatives and 
adjusting the offsets) back into 'romvec'. 

3. This header field is required as part of the diskware download process and must 
always appear at the beginning of each code element. The makeprom utility will 
modify some of these fields. 

4. These sections are defined in a range that mirrors external RAM. This allows the linker 
to define code that has overlapping addresses without reporting an error. 

5. The overlay system uses overlapping mirrored sections (see Note 4). These sections are 
place holders for this system. They allocate no space. 

6. These are the actual overlays. They load into the same physical location in RAM, vary 
in size according to their code content, and vary in header content (see Notes 4 & 5). 

7. This is a buffer area that can be used by functions to read/write into, etc. without any 
cache functions being in place. 

8. This section of external DRAM is seen in two places. It appears at the top of the 256K of 
external RAM and it decodes to the range accessible via ZDA. 

9. This is the main directory for the file system .. This data structure is removed from the 
final output file by gover and used to build the diskware upd file. 

10. Note that this section overlaps with the W-list. There should be no need for them both 
in memory at the same time. 

11. Diskware loader firmware that will be downloaded to the drive and executed to load 
ramware or diskware. 

12. Note that this section overlaps with the Read/Write Cache buffer. There should be no 
need for them both in memory at the same time. 

13. This is the intermediate loader that is read up by the rom base boot loader. This loader 
is in memory only temporarily and is responsible for reading up diskware, the defect 
lists, the primary overlay, and the vector table. 

14. Selfscan firmware loader that will be downloaded to the drive and executed to load 
Selfscan modules. 

Quantum Proprietary 12/08/97 



DPSG V85x User Guide Rev. D Chapter 8 Eclipse Memory Map 

15. The object for these values is extracted from the object file by 'Gover' and inserted into 
the 'scd' file (this contains the configuration page values). For this reason, the location 
of this section is meaningless. 

16. This is a region decoded by the overlay manager board. When there is a memory read 
in the region, the overlay board laches the 4 low order address bits which encode the 
overlay number. Pins are connected by wires to the emulator's external probe pins, 
enabling debugging of overlay code. 

17. These are tables and variables that are initialized in various places in the 'C' code. The 
initial values are collected into ROM and on power-up, copied to the external RAM 
locations. 

18. These are variables that start with an initial value of zero. This is a standard in 'C'. So, 
you can declare any 'bss' variable uninitialized and assume that its starting value (on 
power-up). 

19. These are ZDA accessible Read Only global tables and values that would be ordinarily 
ROM tables except that they are part of diskware, so they are loaded into external 
RAM. 

20. These are ZDA accessible read/write global tables and values. 

21. The size of the stacks is not seen based on a 'size' in the linker map. You can determine 
a stack size by subtracting its bottom from its top (normally, you would subtract the 
top from the bottom but, since the stacks are in the ZDA space in a negative direction 
from zero, we subtract a more negative number from a less negative number). A stack 
can even cross sections. For example, the command stack can grow from internal RAM 
into external RAM. Each of these stacks belong to the Multi-Stack Kernel. (See 'Multi
Stack Kernel'). 

22. These are uninitialized Global ZDA accessible variables kept in internal RAM for fast 
access. 

23. These are initialized TDA accessible Servo Variables. 

24. These are initialized TDA accessible Servo Variables. 

Quantum Proprietary 12/08/97 pageB-7 



Chqpter 8 Eclipse Memory Map DPSG V85x User Guide Rev. D 

(This page is intentionally left blank.) 

pageB-8 Quantum Proprietary 12/08/97 



DPSG V85x User Guide Rev. D Chapter 9 System Cylinder 

Chapter 9 System Cylinders 

9.1 Introduction 
"N" tracks after physical cylinder 0 on all drives are reserved for servo, firmware and test 
usage. This creates a logical cylinder 0 that starts after these reserved cylinders. These 
reserved cylinders contain both executable code and drive data. Customers cannot access 
these cylinders; they are only accessible with physical or file system commands, which are 
protected diagnostic commands. 

9.2 File System 

The "File System" name is used to emphasize the attempt to produce a layer of abstraction 
between the main firmware and the system cylinders (rather than to describe a true file 
system). This abstraction relieves the firmware of any specific knowledge regarding the 
location and number of the copies of a file within the file system. The file system also masks 
the differences between the files used to boot up the system and the rest of the files in the 
system. Firmware is not completely oblivious to the nature of files within the file system, 
primarily due to the requirement that all files have a header. This header exists at the 
beginning of each file and consumes 16 bytes for boot (ROM header only) and 32 bytes (ROM 
+ diskware header) for normal files of the available data space. It is used during diskware 
download to validated individual elements (files) and whenever a file is read up from the 
system cylinders it is validated using the data contained within the header. 

ROM Header 
Byte Contents Example 

1 File Identifier OxEO 
2 Product Code OxlF 

3-5 ROM Version A6K 
6 File Length in Sectors 6 

7-8 ROM Checksum Ox940C 
9-12 Execution Address Ox0010E820 
13 Flash Count 0 
14 Fl~ Ox OB 

15-16 File Checksum Ox98Fl 

Diskware Header 
B te Contents Exam le 
1-4 Load Address Ox0010E800 
2-6 Diskware Version 0200 
7-11 Reserved 0 

12-16 Reserved 0 

The nature of a drive with diskware demands that the static code in ROM know as little about 
the frequently changed diskware as possible. This is achieved by having the ROM load a 
small section of code from a well-defined place on disk and allowing that code to bring up 
the remaining diskware. This small section of code is part of the boot files that are treated 
differently from the normal files in the file system. This difference is due to the different 
capabilities of the system when only ROM code is available. 

Quantum Proprietary 12/16/97 page 9-1 



Chapter 9 System Cylinders DPSG V85x User Guide Rev. D 

page 9-2 

The files within the file system reside on heads 0 and 1, on logical cylinders -2 through -11; 
this provides sufficient space for four copies of the boot files and the normal files. The choice 
of four copies of each normal file is arbitrary and could be two or three with a minor 
algorithmic change. 

9.2.1 Boot Files 

The boot files together represent the subset of files (3 files) that are read in prior to loading 
diskware and as such can depend only on the ROM for support routines. The ROM loader is 
the one part of ROM code that has to know where files are found in the file system. An 
algorithm that knows the range of file system cylinders and the location of the boot files 
within each track provides this knowledge. The starting location of each copy of the boot file 
group is shown in the following table: 

C linder Head Sector 
-2 0 0 
-3 0 0 
-2 1 0 
-3 1 0 

This table represents the starting locations of each copy of the boot loader, which is the first 
of the three files in the boot block. The remaining boot files are abutted to the end of each 
copy of the boot loader. The following table illustrates the layout of one copy of the three 
boot files: 

9.2.1.1 Directory 

This boot file contains the directory for all normal (non-boot) files in the file system. The 
ROM firmware does not directly read up this file (it's loaded by the disk based boot 
loader), so its format can be changed whenever diskware changes merit it. The directory is 
currently defined to fit within a single sector and is implemented as an array as depicted 
below: 

Type (1 byte) Length (1 byte) Valid Copy Count (1 
byte) 

RESIDENT 64 4 
VECTOR TABLE 4 4 
CONFIG_PAGES 32 4 
PUST 8 4 
SelfScan Results 16 2 

. . . 
- - -.--. --.-·~ I NUl_A flLb 0 0 

The preceding array can support 160 files (array size plus header equals 512 bytes) in 
addition to the three boot files supported by the boot directory. The type field identifies the 
file that this entry describes and is used when the directory is searched for a particular file. 
The length field contains the file length in sectors. The "Valid Copy Count'' field indicates 
how many copies of a file must be successfully written during the test process and drive 

Quantum Proprietary 12/16/97 



DPSG V85x User Guide Rev. D Chapter 9 System Cylinder 

initialization. The last entry in the above table is an unused one as indicated by the 
NOT_A_FILE entry for the file type. 

As can be seen in the above directory example, there is no location information for the files. 
Maintaining a starting CHS (or two) for each file would greatly increase the size of the 
directory and also becomes a maintenance issue, as an increase in the size of a file would 
require the update of numerous directory entries. The firmware determines on the fly 
where a file resides within the system cylinder area. The file system area is divided into 
four areas (one for each copy of a file) that consist of the files abutted together based on 
their order within the directory. The firmware merely adds up the size of each file as it's 
scanning the directory until it finds the desired file. Naturally it has to handle wrapping 
files at the end of a track (files are not allowed to span tracks, so if a file won't fit on the end 
of a track it starts at the beginning of the next track). Along with reserving space at the end 
of each track for inline sparing in the system cylinder area. 

9.2.1.2 Boot Loader 

The boot block loader handles the transition from ROM based to diskware based code. The 
ROM loader reads this intermediate stage loader from a fixed place on disk into a fixed 
place in memory. The emphasis on a "fixed place" is to reinforce the fact that the ROM 
must know where this loader is on disk and where to place it in memory. This prevents any 
location or size changes to this file without a corresponding ROM turn. Fortunately this is 
not a significant restriction as the current loader only occupies less than a single sector of 
the two allocated, leaving plenty of room for additional features. 

After being loaded and validated, control is passed to this loader which first proceeds to 
read up the remaining boot files (the directory and the system defect list). Next the resident 
block, primary overlay, defect lists, and the vector table are read in. Control is then passed 
to the resident init function, which does the final initialization prior to enabling diskware. 

9.2.1.3 System Defect List 

This is a small fixed format defect list that covers the range of negative cylinders that the 
file system uses. This list provides support for all normal files within the file system, the 
boot files have no defect management support. This combined with single and double burst 
ECC correction in ROM, allow us to have only two copies of each normal file. The boot 
loader loads this list prior to reading up any normal file. As currently implemented, the 
lack of this list is not a fatal condition as the retry algorithm and ECC correction is sufficient 
to read the normal files. 

It is intended that UPT assay the system cylinders and initialize this defect list prior to the 
diskware download of the files in the file system. 

9.2.2 Normal Files 

The majority of files in the file system are "normal" files that are accessed via the main 
directory loaded by the boot loader. The normal files differ in that they don't have to be 
fixed ( diskware changes may well cause the files to move around), and they have the 
benefit of defect management. An additional distinction could exist if the number of copies 
of the normal files were to be changed. All normal files have the same file header as 
required of any diskware element (see the Quantum diskware download spec), consisting 
of both a ROM and diskware header. These headers provide for the same level of 
verification that exists during diskware download. This verification includes valid 

Quantum Proprietary 12/16/97 page9-3 



Chapter 9 System Cylinders DPSG V85x User Guide Rev. D 

page9-4 

checksum, correct product code, matching ROM checksum, and a matching ROM version 
stamp. 

9.2.2.1 Directory 

The directory of normal files is described in the previous section (Boot Files) as it is actually 
a boot file that must be read up prior to loading any normal file. The directory is written 
during diskware download time and is static from that point on. Specifically, this means 
that adding a file to the file system requires downloading a new directory and the 
associated file (generally this would also involve a new diskware build), there is no facility 
for firmware to modify the directory on the fly. 

9.2.2.2 File ID's 

Contained within the firmware is an enumerated type (C language syntax) list of file 
identifiers. This list is based on the Quantum diskware download specification, which 
assigned many of the file identifiers. The firmware interface to the file system exclusively 
uses file ids to uniquely specify which file to operate on. Please refer to the "Read Layout of 
Negative Cylinders" command in the Unified Firmware Manual for a complete list of file 
identifiers. 

9.2.3 File System Firmware 

The firmware that implements the file system is actually spread across four different parts 
of the firmware. The low level read routines are embedded in ROM and are used by all 
parts of the file system firmware (there is only one read function). The next level is the 
temporary boot loader code that replicates parts of the diskware file system routines as 
necessary until diskware is loaded. The file system API calls invoked by firmware exist 
with the resident firmware module. The last section is the file system superset command, 
which will ultimately reside in an overlay. 

Irregardless of file type or where the call originated, all file read request funnel through a 
single read routine that implements a version of the "Firmware Redundancy Algorithm" to 
nearly guarantee that a file can be read. The differences in file types are masked by a 
firmware data structure (named sFile) that the lower level file system routines use during 
file access. 

9.2.3.1 Firmware Redundancy Algorithm for Reads 

The firmware redundancy algorithm is an attempt to exhaustively use all copies of a file as 
necessary to guarantee a successful file read. The algorithm's success depends on errors 
being distributed at different places among the different copies of a file. The single failure 
mode occurs when the same sector is damaged in each copy of a file. Given the availability 
of ECC correction, defect management in the system cylinders, and redundant copies of 
files, this type of failure should be rare. The following "C" like pseudo code depicts the 

. nested retry loops that implement the firmware redundancy algorithm: 

Quantum Proprietary 12/16/97 



DPSG V85x User Guide Rev. D Chapter 9 System Cylinder 

for ( each copy of a file ) 
{ // start from the first sector of each file as necessary 

for (each copy of a file ) 
{ // start with the first unread sector 

for ( number of read retries ) 

} 

{ // retry read on same copy for channel training 
read from first unread sector to end of file; 
if (read was successful) break; 

} 
if (read was successful) break; 
else 
{ 

move to next file copy at same sector offset; 

if (read was successful) 
{ 

validate file; 
if (validation successful) return(NO_ERROR); 

} 
start over with next copy of file; 

The preceding algorithm can be further illustrated by the following example which depicts 
the different "chunks" of two copies of a file that were knitted together for a successful 
read. The dark areas represent valid sectors while the light areas indicate regions that start 
with an invalid sector (but may have valid sectors following). 

9.2.3.2 File Write Algorithm 
The algorithm used for writing files differs somewhat from the read algorithm in that an 
entire copy of a file is written and read back. The other difference is that not all copies need 
to be successfully written depending on the criteria for long term reliability of the drive. As 
part of the write retry loop we also delay a decaying amount of time in an attempt to 
circumvent vendors who attempt to diskware a drive while on a variable frequency "paint 
shaker" as part of their testing. 

Quantum Proprietary 12/16/97 page9-5 



Chapter 9 System Cylinders DPSG V85x User Guide Rev. D 

page9-6 

for (each copy of a file ) 

for { number of write retries ) 
{ 

write a single copy of the file; 
if { write was successful ) 
{ 

for { number of read retries 
{ 

read entire copy of the file; 
if { read successful ) break; 

} 
if {read successful) break; 

II Either the initial write failed or the read back 
failed: 

II wait for a little while (for the paint shaker to 
switch 

II to a benign frequency?), then try again. 
Delay4Usec{ attempts ); 

} 
if {read successful) 
{ 

increment copiesWritten; 

After completion a test is made to determine if the number of copies written exceeds the 
desired threshold. This is actually a far more stringent test than the read algorithm 
requires. The read algorithm has the luxury of reading up pieces from various copies of a 
file, while the read back after a write either reads a single copy up or not. Thus the actual 
loading up of files during power up could actually make it even if there was no single 
successfully written file copy. 

9.2.3.3 Current File Structure 

A common data structure is used to mask differences between the boot and normal files. 
This structure is filled in with file data whenever a successful search for a file id is 
conducted. The parts of the structure that assist in masking the file differences are the CHS 
structure and the variables: copy and maxCopy. During the call to the FindFile routine the 
CHS structure is filled in with the starting address of the desired copy of the file. The 
maxCopy field is also filled in with the desired number of copies, while the 
mfgCopiesRequired field contains the number of valid copies for a passing drive. The 
remaining routines use the copy and maxCopy values to determine which copy to work on 
and how many total copies there are. Finally the offset value is used to offset the starting 
sector value when we are attempting to read in pieces of a file from the different copies. 

The uFlags field is a 2-bit bitfield structure that currently indicates whether or not the 
directory and the system defect list have been successfully read. The sub structure 
fileSysVars buried within the parent structure sFile is only enabled during firmware 
development and serves as a place to collect error information for the current file operation. 
The first two fields are of particular interest as they indicate how difficult it was to read in 
the current file. The chunks field indicates how many separate pieces from among the 
various copies had to be knitted together for a successful read. The retries field is a count of 
the total number of read attempts required to read in all the chunks. The rest of the fields 

Quantum Proprietary 12/16/97 



DPSG VBSx User Guide Rev. D Chapter 9 System Cylinder 

are error return codes from various related structures and the next nested sub structure 
sFirstDiskErr is a snapshot of the values that existed when the first disk error occurred. The 
sFile structure definition follows: 

uword loadAddress; II buffer address for 
II read/write file 

sdaChs fileChs; II CHS value for current 
II copy of file 

errorident eErrorCode; II Firmware error code for 
II last file operation 

byte copy; II current copy number 
byte mfgCopiesRequired; II number of valid copies for 

II a passing drive 
byte maxCopy; II maximum number of file copies 
byte length; II length of file in sectors 
byte offset; II sector off set to add to chs value 
fileident eFileid; II enumerated file id 
union II status of various parts of 

byte all8; 
struct 
{ 

} bit; 
uFlags; 

byte directoryOK 

byte sdlOK 

II file system 

l; 

l; 

II normal directory 
II has been loaded 
II system defect list 
II has been loaded 

II debug mode only structure for logging file system errors. 
struct fileSysVars 
{ 

hword 

hword 

errorident 
errorident 

struct 

chunks; 

retries; 

eDiskError; 
eValidate; 

II pieces the had to be read 
II to get the whole file 
II the number of retries performed 
II on the current file 
II SDisk.errorCode copy 
II diskware element verify routine 
II return code 

II snap shot of the first reported 
II disk error 

errorident eDiskError; II SDisk.errorCode copy 
II file copy number byte copy; 

hword retries; II number of retries performed 
II to date 

chs sLocn; II CHS of last disk error 
union diskCmdType uOperation; 

sFirstDiskErr; 
sDebug; 

II disk op when the first disk 
II error occurred 

9.2.3.4 API Calls 

Since it is intended that the file system be accessed only through a few function calls, it 
seem appropriate to describe those functions. 

ROMBootLoader 

Quantum Proprietary 12/16/97 

This function is called by the power up task to initiate the first 
phase of diskware loading. It will load up a copy of the boot block 
loader if possible, validate the copy, and execute the function 
pointed to by the vector in the loaded diskware header. 

page 9-7 



Chapter 9 System Cylinders DPSG V85x User Guide Rev. D 

page 9-8 

RedundantReadFile This routine will attempt to read up either a boot file or a normal file 
from the file system. Prior to calling this routine the desired file 
information must be set in the sFile structure (typically done by the 
FindFile routine). The Firmware Redundancy Algorithm is used to 
exhaustively use all file copies as necessary to insure a successful 
load. 

PrepNextFileCopy When it's necessary to access the next copy of a file, this function 
updates the sFile data structure to reflect the change. The passed 
parameter is a sector offset that is added to the base sector value for 
the copy. This offset allows us to start from the failed point in the 
next copy of a file. 

PrepFileCopy This function copies the data contained in the sFile structure to 
both the sDisk and sSystemCSeg structures in preparation for a disk 
request. 

BootBlockLoader This is the intermediate loader that is read up by the ROM based 
boot loader. This loader is in memory only temporarily and is 
responsible for reading up diskware, the defect lists, the primary 
overlay, and the vector table. This routine can only use ROM based 
or local functions since diskware is not live when it runs. The final 
step in the load process is to invoke the resident init function from 
within the loaded diskware module. 

FindFile Scans the directory looking for a match on the passed fileld and if it 
is found the file details are moved to the global sFile data structure in 
anticipation of a file read/write operation. ReadFile and WriteFile 
call this function prior to the actual read/write operation. 

GenerateFileHeader Build a valid file header at the passed address. The resident header is 
used as a template to get the correct ROM versions and checksum. 

ReadFile 

WriteFile 

FileSize 

Read up a normal file (or one of the three boot files from the system 
data area into memory. File is validated using the checksum in the 
diskware header block at the beginning of each file. 

Write normal file (or one of the three boot files) from memory to the 
system data area. File checksum is computed and saved in the 
diskware header block at the beginning of each file. 

Scan the directory looking for the passed file id and return the size of 
the file in sectors if found. 

Quantum Proprietary 12/16/97 


