
Virtual Me'mory Operating System
(VMOS)

System Management
Reference Manua~

May 1972
DP-005-2-00

Series 70 Publications
Building 214-1
Cinnaminson, N,J. 08077

The information contained herein is subject
to change without notice. Revisions may be
issued to advise of such changes and/or
additions.

First Printing: May 1972 (DP-005-2-00)

© 1972 - SPERR.Y RAND CORPORATION

GENERAL

PREFACE

The VMOS System Management Reference Manual provides systems
personnel with the information necessary to manage the throughput of work
run under the Virtual Memory Operating System (VMOS). This publication
contains the information necessary to use the control system command and
macro language (the Command Language) for task, file, and device
management.

No attempt is made to prescribe the duties of those systems personnel who
will need to use the information presented herein, for it is assumed that the
material in this book will frequently be necessary for programming functions
as well as system analysis. Also, the areas of source program input, object
code generation, the use of diagnostic routines, etc., which relate to program
preparation, have been omitted. These subjects are covered in detail in the
VMOS Programmer's Reference Manual.

The VMOS System Managelnent Reference Manual has been organized as
follows:

Part 1. VMOS System Management. A two-section discussion
of the design concepts and the operational characteristics of
VMOS as they affect system management comprises this part.
Such details are provided by an overview of VMOS, and of
the three major VMOS Control Program components which
most affect system management.

Part 2. Control Program Usage Concepts. The five sections of
this part provide details pertaining to VMOS control program
usage in the area of system management. The Introduction
section describes certain VMOS concepts relating to program
classes, tasks, files, devices, and the use of volumes, that are
basic to the effective use of this system. This is followed by a
description of the facilities made available for task and
program initiation, regulation, and termination; and a
discussion of process interruption, program to program
communication, remote batch processing, procedure file
construction, and checkpoint-restart.

In addition, the concept of VMOS files and access methods;
the presentation for device and space allocation, regulation,
and deallocation; and information pertaining to
communication facilities offered by VMOS are included in
this part.

iii

Part 3. Control System Commands and Macros. The four
sectic,ns that constitute this part contain definitive
descr: ptions of the control system commands and macros
relati:lg to system management, including those pertaining to
the w;e of Communications Access Method (CAM).

The VMOS System lv1anagement Reference Manual also includes appendices
which may be referred to for related material, detailed point
description/explanaton, extensive test data, tabulations, etc.

REQUISITE READING

The user of this;Jublication is assumed to be a programmer having
knowledge of third generation computing equipment and Assembly
Language programming. In addition, the reader should familiarize himself
with the material in the following publications:

Assembler System Reference Manual,

VMOS Service Routines Manual, and/or

VMOS Programmer's Reference Manual.

iv

PART 1. VMOS SYSTEM MANAGEMENT

1. VMOS STRUCTURAL CONCEPTS

General
Control Program

The Central Control System (Executive) .
The Data Management System (DMS)
Language Systems Support (LSS) .

Software-Supplied Programs ..
VMOS Service Routines
Language Processors ..

2. VMOS CONTROL PROGRAM CHARACTERISTICS

General ...
Job Control .
Spoo1out ..
Stacks
Virtual Memory Organization
Intercomputer Communication

PART 2. CONTROIL PROGRAM USAGE CONCEPTS

1. USAGE CONCEPTS

General
Command Language
Tasks

Primary Task
Secondary Task

Program Classification .

Files

Class I Programs .
ClilSS II Programs

System Files . . .
System Task Library (T ASK LIB)

Devices
Public Devices .
Private Devices

Volumes
File/Volume Relationship
Public and Private Volumes

v

CONTENTS

Page

1-3

1-3
1-3
1-3
1-4
1-5
1-5
1-5
1-8

1-11

1-11
1-11
1-12
1-12
1-12
1-13

2-3

2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-7
2-7
2-7
2-8
2-8
2-8
2-9

File Space 0:1 Public Volumes
TOS Volume
System Voh;me
Volume Characteristics .

2. TASK AND PROGRAM MANAGEMENT

General
Task and Program Initiation

Task Initiation
Program Initiation .

Task Regulation anc. Program Direction
Task Regulation
Program Dirl~ction

Task and Program Termination
Task Termination ...
Program Termination ..

Process Interruption
Task and Program Interruption
Program Interruption Processing Control

Program-to-Program Communication
Communication from Command Stream
Communicadon from within a Program

Procedure Files . .
Enter Files
DO Files
Multiple Procedures

Remote Batch Processing ..
Remote Job Initiation
Remote Job Regulation
Remote Job Termination

Checkpoint/Restart Facilities
Message Ger.eration
Consideratic·ns for Use ..
Checkpoint/Restart Optimization
System Support of Checkpoint/Restart

3. FILE MANAGEMENT

General
Filenames
File Groups and Renaming Tapes
Linkname ..
File Security
File Retrieval
Catalog Block Structure

File Creation
Software-Supplied Routines
Background Card Input ..
User-Writter. Program Operation

File Maintenance and Disposition .
Software-Supplied Routines .. .
Utility Routines
Command language Instructions

vi

Page:

2-9
2-1 CI
2-10
2-10

2-19

2-19
2-19
2-19
2-20
2-20
2-21
2-21
2-24
2-24
2-24
2-25
2-25
2-26
2-26
2-26
2-27
2-28
2-28
2-30
2-37
2-40
2-4]
2-41
2-42
2-43
2-4L:~

2-44
2-46
2-51

2-53

2-53
2-53
2-55
2-56
2-56
2-58
2-59
2-61
2-61
2-61
2-62
2-98
2-98
2-98
2-98

File Reconstruction System
Introduction
File Reconstruction (After Images) .
File Resetting (Before Images)
Move Mode (SAM, ISAM)
Locate Mode (SAM, ISAM)
Locate Mode (User PAM)
FRS Tape Record (LOGTAPE) Formats.
Description of FRS Printout

4. DEVICE AND SPACE MANAGEMENT

Introduction
System Device Allocation Component
System Device Accounting
System Device Control Optimization.
Operator Interaction
Multichannel Switch

Device Acquisition
Device Identification
Obtaining Devices . .
Device Assignment .

Space Acquisition
Device and Space Regulation

System Input Files .
Device and Space Deallocation

5. COMMUNICATIONS ACCESS METHOD (CAM)

General "
Program and Terminal Identification
Message Processing
Transmission and Buffer Control
Multistation Line Usage

PART 3. CONTROL SYSTEM COMMANDS AND MACROS

Page

2-100
2-100
2-101
2-101
2-103
2-103
2-104
2-105
2-108

2-113

2-113
2-113
2-113
2-114
2-114
2-115
2-115
2-116
2-116
2-117
2-117
2-118
2-118
2-119

2-121

2-121
2-121
2-121
2-122
2-122

1. TASK/PROGRAM MANAGEMENT COMMANDS AND MACROS 3-3

General" . 3-3
Task Initiation Commands and Macros Summary .. 3-3
Program Initiation Commands and Macros Summary 3-3
Task Regulation Commands and Macros Summary . 3-4
Program Direction Commands and Macros Summary 3-4
Task Ternlination Commands and Macros Summary 3-6
Program Termination Commands and Macros Summary 3-6
Process Interruption Commands and Macros Summary . 3-6
Task/Program Management Command and Macro Description 3-8

vii

2. FILE MANAGEMENT AND ACCESS METHOD DEFINITION
COMMAND AND MACROS

General
File Management Cornmands and Macros Summaries
File Creation Commands and Macros ..
File Maintenance Cornmands and Macros ..
File Disposition Com mands and Macros
File Reconstruction Commands and Macros
File Management Coromand and Macro Descriptions
Access Method Definition Macros Summaries ...

Basic Tape Access Method (BT AM) Macros .
Evanescent Access Method (EAM) Macros . .
Indexed Sequential Access Method (lSAM) Macros
Primitive Access Method (PAM) Macros .
Sequential Access Method (SAM) Macros

Access Method Definition Macro Descriptions
ISAM Action Macros
P AM Action Macro
SAM Action Macros

3. DEVICE AND SPACE MANAGE1VlENT COMMANDS AND MACROS

General
Device (Space) Allocation Commands and Macros Summary ..
Device (Space) Regu:ation Commands and Macros Summary .
Device (Space) Deall,,)cation Commands and Macros Summary
Device (Space) Management Command and Macro Descriptions

4. COMMUNICATIONS ACCESS METHOD (CAM) COMMANDS AND MACROS.

APPENDICES

General
Program and Terminal Identification

Command and Macro Summary
Message Processing Iv[acros Summary
Transmission and Btiffer Control Macros Summary
Multistation Line Usage Macro Summaries
Communication Acc,~ss Method

Command and Macro Descriptions

A. Macros Supportin,~ Physical Level I/O
and Run Time Parameters

B. Miscellaneous Task and File (Data) Management
Commands and Macros (Class I Programs)

C. Macro Instruction Editing Options
D. VMOS Support of TOS Tables
E. Macro SVC Identi fication
F. VMOS General Service File Management Macros
G. File Management DSECTS
H. Device Management Control Tables
J. Command/Macro Notation Conventions . . .
K. Volume Table of Contents (VTOC) Formats
L. File Management Error Message Concepts

and Code StrLlcture

viii

Page

3-89

3-89
3-89
3-89
3-90
3-90
3-91
3-91
3-126
3-126
3-126
3-126
3-127
3-127
3-128
3-139
3-154
3-157

3-165

3-165
3-165
3-16:5
3-166
3-166

3-1 7:5

3-1 7:5

3-1 7:5
3-1 7:5
3-176
3-176

3-176

A-I

B-1
C-l
D-l
E-l
F-l
G-l
H-l

. J-l
K-l

L-l

Figure No.

1-1.
1-2.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
3-1.
3-2.
D-1.
F-1.

Virtual Memory Class Division
VMOS-DXC-RMOS Message Flow
DO File Procedures
Single Serial File
Single Checkpoint
Alternating Checkpoint
Major and Minor Checkpoints
Catalog File Block Structure .
File Definition Entry, Links, and Task File Table
Access Method Relationships to Privileged PAM
ISAM File Index/Data Structure
Format of FRS Log Tape
Example - (Erase Command)
Control Byte and 7··Level Control Codes
TOS Communication Area (TCA) Blocks
Base Register Initialization for IDFCB

ix/x

LIST OF ILLUSTRATIONS

Page

1-12
1-15
2-38
2-47
2-48
2-49
2-50
2-60
2-67
2-69
2-88
2-106
3-99
3-103
D-2
F-15

Table No.

1-1.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.
2-12.
2-13.
2-14.
2-15.
3-1.
3-2.
B-1.
F-1.
F-2.

F-3.
G-1.
B-1.
J-1.
K-1.
K-2.

VMOS-DXC~RMOS Message Flow Operations
Guide to System :Management Directive Tables.
Summary of Vo1urne Characteristics
System Management Process Initiation Directives
System Management Processing Control Directives
System Management Process Termination Directives
Procedure Files
Password Requirenrlents
Access Methods, Record Types, and Device Types
PAM Block Control Field
Logical Record Types and Access Methods
PAM Macro Options versus OPEN Type . .
SAM Action Macros versus OPEN Type . .
ISAM Action Macros versus OPEN Type .
Summary of ISAM Pointer Rules for Action Macros .
BTAM Action Macros versus OPEN Type .. .
MFCB Table Definition
MFCB Operation Codes versus Fields Used ..
Summary of the Use of the Contingency Exits
Positioning of Tape Volumes for Options of the CLOSE Macro
Summary of FCB lMacro Instruction Parameters
Allowed for Each Access Method

Permissible OPEN Values for Access Method
File Management DSECTS of General Interest to User Programs
Defines the Three Sense Bytes for Various Peripheral Devices

Macro Conventions Operand Forms
VTOC Format for All VMOS Direct Access Volumes
Format 5 Half-Page Contents

xi/xii

LIST OF TABLES

Page

1-15
2-2
2-11
2-12
2-13
2-17
2-40
2-58
2-69
2-70
2-72
2-75
2-78
2-81
2-92
2-96
3-132
3-133
B-23
F-3

F-5
F-14
G-2
H-2

. J-6
K-1
K-2

GENERAL

Part 1
VMOS System Management

The management of work performed using the Virtual Memory Operating
System (VMOS) is the function of the operating system's Control Program.
The various modules which constitute the Control Program have been
collected into three functional categories: the Central Control System
(Executive), the Data Management System (DMS), and the Language
Systems Support (LSS). The processing of work within VMOS is
implemented through com:munication with the Control Program and the
medium for this communication is the Command Language.

The terms Executive, DMS, and LSS, while useful as collective terms to
describe the functions of modules they comprise, are not easily relatable to
the functilons a programmer performs in the context of system management.
They are used in this manual only as a means of introducing the reader to
the Design Concepts of VMOS. In Parts 2 and 3 of this manual the terms
task management, file management, and device management are used instead
since they more nearly describe the scope of system management. Moreover,
these tenns are not component oriented but serve to tie together the
functions of various components.

The two sections constituting this part provide the user with an overview of
the systerns, both from a structural point of view and from the standpoint of
the operation of the control program. The first section describes the two
principle constituents of VMOS: The Control Program and
Software-Supplied Programs. Here, the functions of the Executive, DMS, and
LSS are described along with the Software-Supplied Service Routines,
Language Processors, and Interactive Facilities.

Section 2 describes the functions of the Control Program that most affect
system Inanagement activities, that is, spoolout, remote terminal
input-output, program management, and the operation of the data
management system.

1,·1/1-2

GENERAL

SECTION 1
VMOSSTRUCTURALCONCEPTS

Structurally, VMOS can be viewed as consisting of two functionally different
facilities: the Control Program and Software-Supplied Processing Routines.
The Control Program operates in the privileged modes of the processor and
cannot be directly accessed by the user-programmer. VMOS, through the
medium of a Command Language, provides a programmer with the means of
communicating with the control program.

The Software-Supplied Programs run in the non privileged mode of the
processor, and are directed by the Control Program to interface with the
various users of the system. These routines are called into service by the
programmer using the Comlnand Language.

CONTROL PROGRAM

The VMOS Control Program consists of the Central Control System
(Executive), Data Management System (DMS), and Language Systems
Support (LSS) functional categories. Although these classes are discussed as
independent entities, they are interdependent and function as an integrated
unit in the processing environment. Descriptions of these functional
categories are given below.

The Central Control System (Executive)

The VMOS Executive manages the total operating system environment. It
serves as the interface among all users of the system, the computer hardware,
and all remaining system software. As far as the user is concerned, the
Executive appears to be an integral part of the computer.

The Executive's most frequently used components are permanently resident
in physical memory. Other routines are quickly available from the paging
druIn. The Executive's locations are not· addressable by other programs, it
executes in the privileged mode and is not generally time-sliced.

The Executive receives interrupts, interprets them, sorts them as to type and
function, and initiates the appropriate routines to respond to each. It spools
all tasks introduced to the processor to a common task queue.

By .means of the time slicing, it provides rapid and complete service for all
these tasks, up to the maximum system resource level. The Executive
routines control command language processing, system error analysis and
recovery functions, job control and system file management, task and
memory m.anagement, Central Processing Unit (CPU) time, the console and
the paging drum, and peripheral device error recovery.

1-3

To facilitate scheduling in the system and to ensure optimum processor
utilization, a task schedule queue structure has been established consisting of
thirteen separate queues. Tasks are placed in appropriate queues according to
their needs and conditions and moved among the queues according to the
algorithm of the task schedules.

The Executive controls the allocation and utilization of virtual memory,
physical memory, and the paging drum backing memory. Although most of
this memory management is invisible to the user, it provides the facilities.
which allow each Class II task in the system to operate as if it had at its.
disposal up to 256 pages (1,048,576 bytes) of core memory. These pages are
contiguously addressl~d so that the Virtual Memory of each user contains
address 0 to 1,048,575.

The upper limit of this virtual memory is dynamically adjusted by the
Executive during each task's execution depending on the memory
requirements of the task. The information contained in each user's virtual
memory is automatically placed into and removed from core storage as
needed by the Exe:;utive paging algorithm without user knowledge or
in terven tion.

The Executive collee ts over 20 categories of accounting statistics for each
task during its execution. This accounting file is maintained on an on-line
disc which may be interrogated by all users of the system.

The Data Management System (DMS)

DMS is the component of the Control Program that performs input/output
for the Control Program and user programs. DMS also controls the creation
of and access to all data files maintained "on-line" within the system.

The File Management portion of DMS is concerned with cataloging and
managing files. File cataloging and management facilities provide the means
for identifying files, for storing and retrieving them, for sharing them among
users, and for defining their existence and use in the system. File
management comma:lds (a subset of the VMOS command language) make
the file cataloging a:ld management facilities available to a conversational
user or a batch job. These same facilities are available to a user progralI:l
through the use of file management macros.

The Data Management portion of DMS provides for the actual transfer of
data to and from programs that are being processed. Data Managemen1t
provides several acceiS methods. These access methods provide a simple and
efficient means to 01 ganize data into a logical structure and then to transfer
data between an input/output device and main memory.

Device Management lS the I/O dispatcher or device driver for VMOS Device
management also provides for the allocation of all I/O devices, with the
exception of remot~ terminals, maintains a list of the devices that are
currently available to the system, and provides tasks with these devices as
required for I/O processing. Tasks acquire devices for files through the
Executive SECURE (ommand the DMS FILE command.

DMS also provides a facility for processing a set of TOS commands and
macros. This facility supports file processing and device management for
TOS/TDOS (Class I) programs.

1-4

Language Systems Support (LSS)

The third major component of the Control Program, Language Systems
Support (LSS), contains the systems message processing logic, the system
loaders, Desk Calculator Logic, and the Interactive Debuggging Aids (IDA)
component.

The VMOS system loaders are the Static Loader and the Dynamic Linking
Loader. One or the other is invoked when a programmer calls for a program
to be loaded and/or executed. The system chooses the correct loader based
on the characteristics of the modules to be processed. These loaders are
discussed in detail in the VMOS Service Routines Manual.

The VMOS Message Processing Routine makes it possible for the
programnaer to create and update a dictionary of encoded messages. These
messages can then be called by code number using assembly language
programs and sent to the operator or the user. Message processing is
discussed in detail in the VMOS Service Routines Manual.

The VMOS Desk Calculator facility enables the programmer to operate his
interactive terminal as if it were an electro-mechanical calculator. This
facility does not require that the user have programming experience. A full
discussion of the Desk Calculator Facility is contained in the VMOS
Interactive Language Manual - Desk Calculator.

The VMOS Interactive Debugging Aid (IDA) provides the programmer with
the capability to debug object modules either interactively or in the
background. IDA permits programmers to check the progress of programs
during execution, modify them, and localize trouble areas. A complete
discussion of this facility is found in the VMOS Interactive Language Manual
- IDA.

SOFTWARE-SUPPLIED PROGRAMS

The second of the two major VMOS facilities, Software-Supplied Programs,
comprises the System's Service Routines, the Language Processors, and the
Interactive Routines. These are programs which provide a major portion of
the system's operational flexibility.

VMOS Service Routines

The VMOS Service Routines comprise a set of Library Utilities, Loading
Utilities, Processing Utilities, Display Utilities, and Peripheral to Peripheral
Utilities. These utilities are d,escribed in detail in the VMOS Service Routines
Manual.

Library Utilities

The VMOS Library Utilities provide the user with the capability to create,
store, and update source programs, object modules, program load files and
macro libraries. They also provide the user with the ability to reformat a
complete library or extract a portion thereof in such a manner that the
reformated program may be used by TOS or VMOS. The library utilities
consist of eight routines as follows:

The Library Maintenance Routine (LMR) creates and maintains object
module llibraries. LMR operates as a Class II program which may be executed
in either the conversational or nonconversational mode.

1-5

,
The Macro Library Update (MLU) routine creates and maintains Assembly
language macros. MLU operates as a Class II program.

The TOS Load Module Transcriber routine (TOSLMTP) transcribes load
modules of specified programs from the program system load library tape
(PLLT/SLLT) of TOS to the program system load library of VMOS.
TOSLMTP does this in such a way that the transcribed programs can be used
directly by VMOS as Class I programs.

The VMOS Load Module Transcriber routine transcribes files of specified
programs residing on elisc to the format of the program load library of TOS
(on tape) in such a manner that the transcribed programs may be used
directly by TOS.

The VMOS COBOL Library to TOS COBOL Library Conversion routine
converts a VMOS COBOL library to a TOS COBOL library.

The VMOS OML to CLT Conversion Routine conv~rts a library from VMOS
Library Maintenance Routine (LMR) format to TOS Call Library (CLT)
format.

The VMOS Assembler Source Language Update facility is an extension of the
Assembler that provides the programmer with the capability for storing and
maintaining assembly language source programs on magnetic tape and disc.

The COBOL Library Update Routine consists of 12 commands which enable
the user to develop and maintain a COBOL library.

Loading Utilities

The Loading utilities comprise the VMOS Linkage Editor Routine and the
VMOS Loaders. These routines prepare and load programs for execution by
the user. Note that the loaders operate under direct control of the Control
Program. They are slmmarized in the Control Program portion of this
chapter.

The VMOS Linkage Editor routine is a program that forms part of the
processing of source programs that follows compilation or assembly. Using
the object modules generated by the language translators (Assembler,
COBOL, or FORTRAN compilers), the Linkage Editor routine prepares
loadable programs (also called load modules) which are in a format suitable
for execution. The Linkage Editor routine may be executed either
conversationally or nOJlconversationally.

Processing Utilities

VMOS contains two Processing Utilities: the Message Processing routine and
the Sort/Merge routine. The Message Processing facility operates under direct
control of the Control Program and is summarized in the Control Program
portion of this section. The Sort/Merge routine is a generalized system which
runs as either a foreground or background task. Its primary objective is the
efficient processing o:~ files stored on direct access devices. Its secondary
objective is the processing of magnetic tape files for conventional batch
processing applications.

1-6

Display Utilities

VMOS supplies its users with two display utilities: the Spoolout routine and
the DPAGE routine. The Spoolout routine operates under direct control of
the Control Program and is summarized under Job Control in this section.

DPAGE is a general-purpose utility routine that provides the VMOS user
with the facility to display or print files or volumes, and to manipulate data
in a page or in the 16-byte key. It may be used as a conversational or
non conversational task. Display output data is dispatched to the the user's
terminal in conversational mode, or to the printer in non conversational
mode. The print facility is normally for large-volume output and the output
is always sent to the printer.

Peripheral to Peripheral Utilities

VMOS provides utility programs that will transcribe data directly from one
peripheral device to another. There are ten such programs.

The Card-to-Tape routine (CDTP) transcribes 80-column card records or
paper tape to magnetic tape in standard Series 70 format. The output tape
file contains standard Series 70 labels and may be single or multivolume.

The Selective Card-to-Printer and/or Punch routine (CDPR) transcribes
80··columm card records or paper tape to punched cards or paper tape and/or
to the printer. Card files are punched in EBCDIC and the final card contains
/* in the first two columns to signify the end of the file. Printed output may
be in character mode (EBCDIC graphics) or hexadecimal mode (two digits
per character); the print format may be List or Display.

The Card-to-Random Access routine (CDRA) transcribes 80-column card
records or paper tape to a random access file. Input cards are punched in
EBCDIC format, with the fJinal card containing /* in the first two columns to
signify the end of the file.

The Selective Tape-to-Printer and/or Punch routine (TPPR) transcribes data
from magnetic tape to punched card and/or to the Printer. The input volume
may be labeled or unlabeled. If labels are used, a multivolume input file may
be processed. Card output files are punched in EBCDIC with the final card
containing /* in the first two columns to signify the end of file. Printed
output may be in character mode (EBCDIC graphics) or hexadecimal mode
(two digits per character); the print format may be List or Display.

The Tape-to-Tape routine (TPTP) transcribes data from one magnetic tape to
another. The input and output tape blocks can range in size from 12 to 4096
characters, and can contain fixed-length records, variable-length records, or
records of undefined size. Except for records of undefined size, records can
be blocked or unblocked. In the case of fixed-length records, input fields can
be field-selected, packed, or unpacked during the copying process. Tape
volumes 1uay be labeled or unlabeled, single or multivolume.

1-7

The Tape-to-Random Access routine (TPRA) transcribes data from magnetic
tape to a random access file. Input tape blocks can range in size from 12 to
4096 characters and may contain fixed-length records, variable-length
records, or records of undefined size. Except for records of undefined size,
records may be block~d or unblocked.

The Random Access-to-Printer and/or Punch (RAPR) routine transcribes
data from a random ;lccess file to punched cards or paper tape and/or to the
printer. Card output files are punched in EBCDIC with the final card
containing /* in the first two columns to signify the end of file. Printed
output may be in character mode (EBCDIC graphics) or hexadecimal mode
(two digits per character); the print format may be List or Display.

The Random Access-to-Tape routine (RATP) transcribes data from a random
access file to a magnetic tape. Output tape blocks can range in size from 12
to 4096 characters, and may contain fixed-length records, variable-length
records, or records of undefined size. In the case of fixed-length records,
records may be bloc:ked or unblocked. Tape volumes may be labeled or
unlabeled, single or multivolume.

The Tape Edit routine (TPEDIT) displays all, or selected portions, of a
magnetic tape on the on-line printer. The contents of the tape may be
displayed in Character mode (EBCDIC graphics), hexadecimal mode (two
digits per character), or both. At end-of-job, the programmer can terminate
the routine or enter additional parameters. In this way, different portions of
the same tape (or another tape) can be edited.

The Tape Compare Routine (TPCOMP) is a diagnostic aid used to compare
information recorded on one magnetic tape with that of a second magnetic
tape. Output from this routine consists of a listing of all portions of the two
tapes that did not march.

Language Processors

VMOS provides the programmer with a full range of language processors: an
assembler, standard COBOL and ANSI COBOL compilers, Report Program
Generator compiler, c.nd a FORTRAN compiler. The detailed description of
the use of these processors is contained in the VMOS Programmer's
Reference Manual.

COBOL Background Compiler

The VMOS COBOL Background Compiler accepts programs written in the
same COBOL language available on other Series 70 systems. Except for
minor source language differences, the COBOL Background Compiler is
functionally identical to the ANSI COBOL compiler.

1-8

ANSI COBOL Background Compiler

The ANSI COBOL Background Compiler accepts COBOL source programs
written in the USA Standard COBOL. The ANSI COBOL compiler is an
enhanceInent to the Background COBOL compiler. The compiler provides
the user with the following capabilities:

Source input can be retrieved from a cataloged file on disc, from a card deck,
from a remote terminal, or from a disc-resident COBOL source-library file.

The compiler generates either Class I or Class II programs, depending upon a
user-suppllied parameter.

The generated object module is written on disc.

The compiler is disc-oriented in that it uses temporary EAM disc files for
intermediate work space.

Requested listings can be written on temporary files for automatic printing
at task termination, or on cataloged files so that the user may optionally
request pIinting after task termination.

Report Program Generator Compiler

The VMOS Report Progralll Generator (RPG) Compiler accepts programs
wriUen in the same RPG language available on other Series 70 systems. It is
used to produce a printed report without requiring a detailed knowledge of
machine coding. Common report features such as input data selection,
editing, calculating, summarizing, control breaks, and file updating are
provided.

FORTRAN IV Background Compiler

The VMOS FORTRAN IV Background Compiler accepts programs written
in the saIne FORTRAN language available on other Series 70 systems. The
conlpiler generates highly optimized object coding for use as both
production programs and subprograms.

VMOS Assembler

The VMOS Assembler provides a machine-oriented, symbolic programming
language for use by machine language programmers. This symbolic
programming language supports three general types of programming
statements.

Assembly instruction statements are a one-for-one symbolic representation
of actual machine instructions. The Assembler produces an equivalent
machine ilnstruction in the object program for each assembly instruction
statement in the source program.

Assembly control statements provide auxiliary functions that assist the
programmer in checking and documenting his programs, in controlling the
assignment of storage addresses, in program sectioning and linking, in
defining data and storage fields, and in controlling the Assembly System
itself. Assembly control statements specify the auxiliary functions to be
performed by the assembler, and, with a few exceptions, do not result in the
generation of any machine language code during the assembly.

1-9

VMOS Interactive Routines

VMOS provides its users with a comprehensive set of interactive routines for
program preparation, using FORTRAN and COBOL, BASIC language
programming and file editing. The routines are described in full in a set of
eight VMOS Interactive Languages Reference Manuals.

Conversational FAST FORTRAN

FAST FORTRAN was designed to produce very fast problem solutions.
Programs to solve su,~h problems are generally of the one-shot variety. FAST
FORTRAN provides (1) very fast compilation time, (2) good diagnostic
capability, (3) minimum system overhead, and (4) gives the nonprofessional
programmer who needs an immediate answer an easy-to-use, fast,
conversational systenl that accepts FORTRAN input.

COBOL Program Development Subsystem (CODE)

BASIC

The COBOL Prograln Development Subsystem (CODE) is a facility that
supervises and assists a user in preparing, editing, debugging, compiling, and
executing a COBOL program. To facilitate these actions, CODE accepts
free-form input, allc·ws the user to define shorthand abbreviations, offers
text editing, has silnplified compilation and execution commands, and
maintains a file of compilation diagnostic messages that may be interrogated
during editing.

VMOS BASIC provides a fast, complete program preparation and execution
facility for the easy-10-use BASIC language. BASIC provides comprehensive
editing facilities that permit the user to create, modify, list, execute; save,
and reload his source program. BASIC also incudes extensive syntax
checking for both sin gle statement and global type errors.

VM as Editor (EDT)

}lile Editor

The VMOS Editor (EDT) is an interactive text editor that allows a user to
create, delete, copy, compare, and concatenate files and to add, delete, and
modify text within a file. It is a short, fast, easy-to-use editor containing
those facilities that are most commonly used and most often needed. It may
be executed either conversationally or nonconversationally, and may be
either sharable or nonsharable.

The File Editor may be used either conversationally or nonconversationally
in order to create, edit, and display files. The basic File Editor commands
carry a rich and detailed snytax. This richness offers the user the ability to
adapt each command to a great variety of different editing operations. Thus,
a typical editing corrmand may operate on a single line, a part of a line, on a
single character, or upon particular syllables in a whole succession of lines.

1-10

GENERAL

SECTION 2
VMOS CONTROL PROGRAM CHARACTERISTICS

This section discusses certain features of the Control Program, with which a
programmer operating in a system management environment should be
familiar. These features are job control and spoolout. Although the
programmer can exert limited control over their operation, a knowledge of
the way in which they function will enable the programmer to better manage
system throughput. In addition, VMOS memory organization and the
function of stacks are also described.

JOB CONTROL

This Control/Program component manages those system functions which are
(with some exceptions as will be noted) non conversational in nature. The
Job Controller monitors non conversational tasks. System Accounting
maintains disc based accounting information, and System File Management
establishes the environment for processing "SYS" type files used by the Job
Controller~, Spoolout, and Accounting.

The Job Controller is a collection of routines that govern the actual
processing of non conversational jobs. These routines have exclusive control
over all non conversational system input/output and scheduling functions.
The Job Controller allocates system resources, schedules work and provides
for the disposition of system output. In addition, it provides for the
optimum scheduling of batch jobs in the system based on priority, estimated
CPU time, and device requirements.

The system accounting routine maintains a file of task accounting
information that can be written to tape at system shutdown time. The
records are written in sequence according to task termination time and not
by task sequence number (TSN).

System fHe management is closely related to spoolout and has as its main
purpose the most efficient use of the task assigned system output devices.

1-11

SPOOLOUT

STACKS

Spoolout is the Control Program routine which performs the printing and
punching of files under VMOS. The routine can be activated by the user (see
VMOS Service Routines Manual), and is automatically activated, when
necessary, by the system when a task is terminated.

Spoolout jobs are m2intained on Spoolout queues. If there are jobs waiting
to be spooled out and if the device is available, the first job in the queue is
activated; and any PRINT or PUNCH jobs or new terminating jobs requiring
Spoolout are placed on the queue. When a Spoolout task is completed, any
temporary direct accl~ss space occupied by the output file is restored to the
system. Output file Examples would be assembly listings, object decks, and
system output Inessages. A Spoolout job not completed during a VMOS:
session may be reCOVE red in the next.

Associated with each task are three or more storage areas called stacks.
Stacks normally reside in Class 3 memory (core resident, nonpagable) and
their primary PUrpOSI~ is to provide an area for register storage when a task is
interrupted. The system dynamically generates stacks for each user-written
program and for each active system routine associated with that task.

A task running in processor state-l (PI), initially has two stacks: a P2 stack
and a PI stack. Thesl~ stacks are allocated at task initiation time, and the PI
stack is attached to the task at execution. These two stacks exist for the
task's duration. The P2 stack is called the permanent P2 stack.

A special type task, called Interrupt Driven, is allocated a P2 stack only.
Such tasks (Spoolin and Spoolout, for example) do not operate in processor
state Pl. Another task type, called Permanent System, also has only a P2
stack.

VIRTUAL MEMORY ORGANIZAT[ON

To regulate and simplify its control by VMOS memory management, a
virtual memory is divided into six classes as depicted in figure 1-1.

VIRTUAL
MEMORY 0
PAGES

255

256

511

CLASS 6

CLASS 5

CLASS 1

CLASS 2

CLASS 3 & 4

""'\

>

1-<

550K

) 450K

FIGURE 1-1. VIRTUAL MEMORY CLASS DIVISION

1-12

EACH USER
lOOOK VI RTUAL MEMORY

SYSTEM

lOOOK VIRTUAL MEMORY

The six virtual memory classes and their contents are:

Class 1

Class 2

Class 3

Class 4

the resident control program, privileged and nonpagable.

which is occupied by the nonresident portions of the control
program, privileged, and pagable.

is occupied by dynamically acquired resident portions of the
control system, privileged, and nonpagable. This memory is
used for task control blocks, terminal I/O buffers, and certain
system work space.

is occupied by the nonresident work space dynamically
acquired by the control program and by shared code called
by the users of the ~ystem. All Class 4 pages are pagable and
have drum images. The pages utilized by the control program
are privileged but those utilized by the user are not.

Classes 1 through 4 constitute the system's virtual memory and are
contained within the one-million bytes of address space available to the
system.

Class 5

Class 6

is occupied 1by dynamically allocated pagable areas acquired
for the specific user by the control program. This class is used
for task-dependent virtual memory tables, protected file
control blocks, program loader data, data maintained by the
interactive debugging language, and I/O buffers acquired for
the task by the system.

is occupied by dynamically allocated pages acquired by the
user for code and work areas. These are under control of the
user task.

Classes 5 and 6 constitute the users virtual memory and are limited to
one,·million bytes of address space per user.

INTERCOMPUTER COM[MUNICATION

VMOS facilitates computer-to-computer communication through support of
the Data Exchange Control (DXC). The DXC is a hardware device through
which messages can be channeled between two processors. The joining of a
real memory operating system (RMOS) with VMOS, in an auxiliary capacity,
greatly increases the number of interactive terminals available to VMOS as
input devices.

1-13

VMOS exchanges Inessages with the auxiliary real memory system on an
inquiry response ba:;is. VMOS reads messages initiated by a terminal based
user, processed by the auxiliary computer and, upon completion of its
reading function, transmits the appropriate response to user via the auxiliary
processor. This proc~ss is transparent where processing requests are initiated
by the user, who is communicated with by the system as if the operations
were in standard VMOS interactive environment.

In the VMOS processor, all message receptions (reads) and transmissions
(writes) are consolidated and distributed by the Control Program. There are
two categories of reads and writes: one for the Control Program (privileged)
and the other for user-written programs and software-supplied routines.
VMOS receives read~; (from RMOS as interrupts) which the Control Prograrn
analyzes and passes to supporting DXC software. The DXC software verifies
the transmission, decodes it, and transfers the request back to the Control
Program for processing by VMOS software. When processing is complete, the
Control Program-DXC software interaction is renewed resulting in the
transmission of a response to RMOS.

The operation of a leal memory system in the processing of transmissions to
and from the DXC h analogous to complementary operations in VMOS. The
only difference relates to the processing of messages received by the Control
Program. In the real memory processor, messages are verified, decoded, and
passed between the user and the Control Program by Communications
Oriented Software (COS). Thus, any real memory system used in an
auxiliary capacity Vvith VMOS in conjunction with the DXC must contain
COS as part of its operating system. The portion of COS which performs the
bulk of message pro ~essing is the Communication User Program (CUP). It is
the responsibility of real memory system progralnming personnel to prepare
an appropriate CUP. A general description of CUP function and use may be
found in the COS Fu nctional Description Manual.

The conjunction of VMOS and RMOS via the DXC does not restrict the
normal operation of either system. Real memory batch processing and other
COS operations may be undertaken without regard to the resources used fOir
VMOS-RMOS messa.~e processing. Similarily, VMOS will continue to process
local and remote batch task, tasks entered from terminals attached directly
to the system, and CAM programs. However, CAM programs cannot be
activated by users communicating with VMOS from the auxiliary processor.
Also, the output generated by PRINT and PUNCH commands will occur at
the VMOS facility, not the RMOS facility.

Figure 1-2 diagrams the message flow between a Virtual Memory System and
a Real Memory System across a DXC and table 1-1 lists the message flow
operations.

1-14

VI RTUAL MEMORY
PROCESSOR

VMOS

®
@

CONTROL PROGRAM

DXC "l
MODULE~

M
U
L
T
I
P
L
E
X
o
R

o
----~

I
I

r--L-,
I I
I CCM I

L,'Tn~~ .J
I " \ \ \ , f , , \, ~

r - - - .L..£.,L._ ~"i

I INTERACTIVE I
I TERMINALS I L _______ J

®
@
"t-----I

M
U
L
T

P
L
E
X
o
R

REAL MEMORY
PROCESSOR

RMOS
CONTROL PROGRAM

0)
@

®
@

NOTE: REFER TO TABLE 1-1 FOR REFERENCED MESSAGE FLOW OPERATIONS

FIGURE 1-2. VMOS-DXC-RMOS MESSAGE FLOW

TABLE 1-1. VMOS-DXC-RMOS MESSAGE FLOW OPERATIONS

VMOS Operation

@ Operator loads virtual
memory and activates DXC
interface (/START DXC, X'da'
command). /2A) DXC
portion of Co¥rol Program
transmits initialization message~
to DXC.

(-j) VMOS accepts trans­
mission.
(~ Control program analyzes
resulting interrupt and passes
control to DXC software.

DXC Operation

® DXC received the trans­
mission and checks to ensure
that VMOS is prepared to accept
the transmission.

RMOS Operation

CD Operator loads real memory
operating system including com­
munication oriented software (COS).
@ COS notifies DXC that it is

ready to read initialization message
from VMOS.

@ User initiates request for
VMOS processing~
@ Control program analyzes
resulting interrupt and passes con­
trol to COS.
® COS processes transmission
from terminal and transfers it to
DXC.

,---(Continued)

1-15

TABLE 1-1. VMOS-DXC-RMOS MESSAGI~ FLOW OPERATIONS (Continued)

VMOS Operation

® DXC software analyzes
transmission and passes proc­
essing request portion to
Control Program.
@ Control Program initi­

ates required processing, and
upon completion of proces­
sing passes control to DXC
software.
@ DXC software formats

proCiessing information for
transmission to RMOS, and
passes transmission to DXC.

DXC Operation

@ DXC receives the trans­
mission and checks to ensure
that RIVIOS is prepared to
accept the transmission.

Note: See figure 1-2 for message flow chart.

1-16

RMOS Operation

(3) RMOS accepts transmission.
Q!) Control program analyzes

resulting interrupt and passes con­
t~to COS.
® COS processes transmission

and passes it to user's terminal.
(f6) User receives processing
i~rmation in response to his
request @.

GENERAL

Part 2
Control Program Usage Concepts

The VMOS Control Program, as described in Section 1, provides
comprehensive facilities for managing the system's processing environment.
These facilities relate to the functions of Task, File, and Device Management,
and are accessible to the programmer through the system's Command
Language.

VMOS also supplies the user with a basic communications capability, the
Communications Access Method (CAM), and the facility for implementing
computer-to-computer communication via DXC (Data Exchange Control -
see Section 1). The programmer also manages these functions through
facilities of the control program.

The sections constituting this part describe the facilities available under
VMOS for Task, File, and Device Management, and the implementation of
CAM and DXC. The initial section discusses the basic concepts relative to
Tasks, Files, and Devices, and to the function of the VMOS Command
Language. It also contains four decision-oriented tables relating various
directives made available by the Command Language to the process of
managing work through the system. Table 2-1 provides a guide to the use of
the three decision tables based on the function the programmer wishes to
perform, e.g., task or program initiation, file maintenance, device
disposition, etc.

2-1

TABLE 2-1. GUIDE TO SYSTEM MANAGEMENT DIRECTIVE TABLES

Process Processing Process
Initiation Control Termination

Programming Function (Table 2-3) (Table 2-4) (Table 2-5)

ACCESS METHOD MANAGEMENT X

DEVICE (SPACE) ALLOCATION X

DEVICE (SPACE) DEALLOCATION X

DEVICE (SPACE) REGULATION X

FILE CREATION X

FI LE DISPOSITION X

FI LE MAl NTENANCE X

PROGRAM DIRECTION X

PROGRAM INITIATION X

PROGRAM~TO-PROGRAM COMMUNICATION X

PROGRAM TERMINATION X

HEMOTE JOB INITIATION X

HEMOTE JOB REGULATION X

REMOTE JOB TERMINATION X

TASK INITIATION X

TASK REGULATION X

TASK INTERRUPTION X

TASK TERMINATION X

2-2

GENERAL

SECTION 1
USAGE CONCEPTS

The performance of system management functions requires a foreknowledge
of certain basic concepts. These are the function of the VMOS Command
Language; the way in which VMOS perceives Tasks, Files, and Devices; the
concept of volumes; and the relationship among these three elements.

COMMAND LANGUAGE

TASKS

The principal means of communication between the user and control
program is the system's Command Language. This language comprises a set
of commands and macros (directions) designed to facilitate the management
of systeml facilities.

The commands contained within the Command Language constitute the
primary facility for direct communication with the system for the
performance of work. These directives are the means by which the
programnler causes the execution of both system routines and user problem
programs ..

Command Language commands can be used in the conversational
(interactive) or nonconversational (background) mode. When operating in
the conversational mode, the programmer uses Command Language
commands to maintain a dialogue with the system while it performs desired
work. When used in the nonconversational mode, the commands are
analogous to a Job Control language because the instructions are submitted
in prepared form and are not monitored by the programmer.

Macro directives supplied by the Command Language enable a programmer
to incorporate features of the Command Language into Assembly language
programs. This permits the programmer to establish communication between
a probleml program and the system.

Within context of VMOS processing, the term task denotes definite
relationship between the programmer and the system. Basically, this
relationship defines a task as encompassing the work undertaken by the
system in response to Command Language directives issued by the
programmler. VMOS differentiates this work into primary and secondary
tasks. The system makes reference to each task by a 4-digit number called a
task sequence number (TSN).

2-3

Prinlary Task

The term primary task identifies the extent of a programming session, that
is, the span of activity beginning with system's recognition of the
programmer and tenninating when the programmer severs the connection.
The system recognizes a programmer when it receives his LOGON command.
The programmer seyers the connection by issuing a LOGOFF command.
When reduced to sirlplest terms, a primary task is the work performed by
the system during the period between a programmer's LOGON and
LOGOFF commands.

LOGOFF Processing

When the user temlinates a programming session (logs off), the systerrl
initiates the procedures necessary to return resources (required by the
processing demands of the primary task) to the system. This is known as
LOGOFF processing, the logic of which provides the system with a list of
any files created by the system to handle the program's output. If these files
are printed, they are considered to be part of the programmer's primary task,
and associated with .t by the primary task number. This is the task sequence
number (TSN) assigr.ed to the session when it was initiated. If the file is to
be punched into cards, the punching process is regarded by the system as a
new task, and as such is identified by a new task number.

Secondary Task

Secondary task is the term applied to any processing initiated within a
programming session that is identified by a task number other than the TSN
associated with the primary task. The punching of a file onto cards as
described above (under LOGOFF processing) is an example of a secondary
task.

Two other processing conditions generate secondary task. The first is the use
of Command Language directions by a user program or by a system routine:,
that call for the creation of printed or punched output. The second is the
execution of an ENTER file (refer to Procedure Files discussion).

All secondary tasks ,;reated as the result of print or punch operations carry
the same priority as the primary task in which these operations were
initiated. However, the secondary task associated with execution of an
ENTER file may carry lower priority than the initiation task because
ENTER files are al\\<ays processed in the background (nonconversationally).

PROGRAM CLASSIFICATION

VMOS differentiate:; between programs that make use of virtual memory
(pagable programs) and programs that reside wholly in main memory
(nonpagable progranls). Pagable programs are referred to as Class I programs;
nonpagable as Class 1I programs.

2-4

Class I Pro grams

Class I programs are restricted to the physical memory addressing capacity of
the systenl. These programs must reside in physical memory throughout
their execution and require that physical memory be assigned to them on a
contiguous basis.

Class II Programs

FILES

System Files

Class II programs do not require contiguous main memory for their
execution and may reside in the system's virtual memory. These programs
are broken into pages (4096 bytes), use the system's Virtual Address Mode,
and are normally passed on a page basis between the system drum and main
memory.

In VMOS, a file is the principal processing medium and is defined as any
named collection of related records. All information entering, leaving, and
contained within the system resides in a file. The term file, therefore, not
only refers to collections of source program statements, object program
code, and data created by the programmer but also encompasses the routines
supplied for the programmer's use by the system. In addition, VMOS has
designated files set of input/output media common to all users. This latter
category of files are the System Files and the System's Task Library.

The term system files defines a set of system-supported input/output streams
supplied in common for all users by VMOS. At task initiation time, these
files are automatically created for, and associated with, each task. When a
task is ternlinated, the systerll files created for it are erased.

The names of system files are as follows:

SYSCMD

SYSDTA

SYSIPT

SYSLST

SYSOPT

SYSOUT

The first three listed above are input files, and the last three are output files.
All six reside on direct access devices for duration of the task for which they
were created.

2-5

SYSCMD

SYSDTA

SYSIPT

SYSLST

SYSOUT

The SYSCMD file is supplied by the system to contain programmer's control
language commands, and is read for him by the System Command Language
Processor. For tas:(s operating in the interactive mode, VMOS assigns
SYSCMD to the us~r's terminal. For background mode tasks, SYSCMD is
read from the spoolln stream associated with the card reader, a remote batch
terminal, or a cataloged procedure file. A programmer can neither change the
assignment of SYSCMD nor have his problem program read from it.

SYSDT A is the file created by the system to contain data (as opposed to
Control Language ~ommands) being read into the system. Most system
components read their input from this file, and a programmer may designate
that his problem program read its input from SYSDT A. At task initiation,
SYSDTA is assigned to the same sources as those described for SYSCMD.
However, a programmer may direct SYSDTA away from its primary
assignment to a direct-access-resident, to a cataloged file or to the card
reader. Subsequently, the programmer may direct SYSDTA back to its
primary source. The discussion of the SYSFILE command (Part 3, Section
2) describes the manipulation of SYSDTA.

The SYSIPT file, ~imilar to the SYSDTA file, is supported to supply
compatibility with the Tape and Tape/Disc Operating Systems (TOS and
TDOS). For background tasks, the primary assignment of SYSIPT is the
same as that for SYSDTA. However, for conversational tasks, the systelm
does not create a SYSIPT file at task initiation. Neveretheless a programmer
can define a SYSIPT file while operating in conversational or background
modes (see SYSFILE command). Whether it is defined by the programmmer
or assigned by the :;ystem, the programmer can direct SYSIPT to the same
secondary sources a~, SYSDT A.

The SYSLST file is the system-created vehicle for printer-destined
information. VMOS system-supplied programs automatically use this file to
handle substantial output such as program listing, dumps, etc. Programmers
should use it similarily for the output of their problem programs. The systelm
accumulates record~, in the SYSLST file until user logs off, and then sends
the entire file to the printer. After being sent to the printer, SYSLST is
erased. SYSLST cannot be directed to a secondary source by the
programmer.

The SYSOUT file i~ maintained by the system so that output of generallly
smaller quantity can be distinguished from large volume SYSLST output.
VMOS uses SYSOUr as a vehicle for diagnostic messages, response messages,
etc., and programmers should use it similarly for small quantity output frolm
their problem programs. When a task is operating in the interactive mode,
the system directs SYSOUT to the user's terminal. For background tasks, the
system implements SYSOUT in the same manner as SYSLST. SYSOUT
cannot be directed to a different output device by the programmer.

2-6

SYSOPT

The SYSOPT file is supported primarily to supply compatibility with the
Tape and Tape/Disc Operating Systems (TOS and TDOS) for the creation of
punched output. When records are directed to SYSOPT, by system
components or by user's problem program, the system collects them in a
temporary disc file, and has them punched on cards at a task termination.
The user cannot direct SYSOPT to a different output device.

System Task Library (TASKLIB)

DEVICES

Public Devices

The System Task Library (T ASKLIB) is a file containing most of the
VMOS-provided software products that are not in load module form. The
TASKLIB is, then, the system's object module library (OML). This file is
used by the Dynamic Linking Loader (DLL) and Linkage Editor to satisfy
unresolved external references. In other words, these routines search the
T ASKLIB directory in an attempt to locate entry points or csect-names
which match those of the unresolved EXTRNS. Search methods employed
by the Linkage Editor and DLL are described in the VMOS Service Routines
Manual.

VMOS recognizes two basic classifications of devices: public and private. The
nature of a device, or the data medium it supports, determines whether or
not a device is public or private. Public devices provide for concurrent
control by more than one task. Conversely, private devices are restricted to
the control of one task at a time.

In VMOS, a public device must be a direct (random) access device. The
following list shows the general classification of public (direct access) devices
supported by VMOS:

Disc Drives,

Mass Storage Unit (MSU),

Drum Unit, and

Control Units with multichannel switch features.

These direct-access devices, although generally considered public devices,
may be designated private by the user. VMOS does not restrict them to
public classification.

2-7

Private Devices

VOLUMES

Unit Record (UR) devices and Sequential Access (SA) devices constitute
VMOS private devices. The following UR devices are supported by VMOS:

Card Readers,

Printl~rs (132 and 160 column),

Bill Feed Printer,

Card Punches, and

Paper Tape Reader/Punch.

The remaining private devices supported by VMOS are the following SA
devices:

Magnetic Tape Units (7- and 9-level tapes),

Magnetic Tape Units (9-level phase encoding), and

Control Units configurations with 7-level tape features.

VMOS uses the concept of a volulne as the bridge between the file and the
device used to acce;s it. A volume is the data medium portion of a device
configuration: the medium within which files reside. The term volume refers,
therefore, to disc p,lcks, MSU magazines, and tape reels. Because the data
storage portion of H drum cannot be separated from the remainder of the
device, drums may be considered as either volumes or devices.

As it is impractical to use UR devices as data storage media, and because
these devices cannc t be directly referenced during execution of Class 11
programs, VMOS d:>es not associate the concept of volumes with theIn.
Although UR device s may be directly accessed by Class I programs, frequent
use in this manner is discouraged since it leads to inefficient use of the
sfstem.

File/Volume Relationship

A file is said to be stored in the system if it resides on one or more
direct-access or magnetic tape volumes, and if the identification of these
volumes (volume selial number) is available in the system catalog. In VMOS,
a volume may be a removable disk pack, a reel of magazine tape, or a mass
storage unit magazine. For direct-access volumes, more than one file may be
contained on a volume. For magnetic tape files, however, only one file can
be contained on a v:>lume (that is, multifile reels are not allowed); however,
a tape file can be on more than one volume.

2-8

Public and Private Volumes

As in the case of devices, a volume may be classified as public or private. A
public volume is a direct-access volume and must be mounted and be on-lin'e
during the entire period of system operation. A public volume may be used
for lnany tasks concurrently. A private volume need not be mounted during
the entire period of system operation. Its use is restricted to one task at a
time and it needs to be mounted only when the, task refers to it. A
direct-access volume may be a private volume, while magnetic tape volumes
are always classified as private volumes.

Note: All volumes of a direct-access file must be mounted in
order to access the file.

Use of Public and Private Volumes

Files to be cataloged can be stored on public or private volumes. The system
assumes that a file is to be stored on a public volume unless the programmer
specifically asks for its storage on a private volume. Programmers generally
make the most effective use of the system by storing their files on public
volu:mes. Since public voluITles are always on-line, files stored on them are
always available for access to a user's task. The user can allocate space for
this files on public volumes within the limits of public space allocation
established for him by the system controller. The programmer may also
specify that a file be contained on specific public volumes (refer to FILE
command, VOLUME=parameter - Part 3, Section 2). However, if volumes
specified by the programmer do not contain sufficient space for the file, the
program will be terminated.

If a programmer employs private or TOS volumes, he may need to wait for a
device on which to mount the volume since the system must determine
whether or not it can honor the request. Note that the SECURE command
should be used to obtain all necessary private volume devices. The securing
of devices is described in Section 4, under Device and Spare Management.

File Space on Public V olulnes

If the programmer's public space allotment is exhausted in the prucess of
inserting or adding records to a file, the system transfers control to Ute exit
address of the problem program. The program can then take appropriate
action: for example, make space available by deleting an old file.

System workfiles created on behalf of a programmer by software-supplied
programs (for example, work files created when executing the VMOS
Assembler) are stored on public volumes, but the space is not charged to the
programmer's public space allotment, since the Evanescent Access Method
(EAM) is typically employed. EAM description is given in Section 3;
however, it is pertinent to note here that EAM provides for processing of
temporary direct access files.

2-9

filie Space Allocation

TOS Volume

The programmer may specify the primary space requirements for files on
direct access volume~i, and may also specify the amount of secondary space
to be allocated when the primary area is full. This can be accomplished by
the FILE command (see Part 3, Section 2). Additionally, this specification
may be defaulted, in which case the installation standard space allocation
established at systelTI generation time is used. (Check with the Systenl
Controller for this default value.)

The system also obtdns additional space dynamically (that is, while the file
is opened) whenever this is required. For files which reside on public
volumes, the system first attempts to obtain lTIOre space on the last volume
which contains the file. If no space is available on that volume, the systenl
chooses the public volume which has the most available space. However, if
space exhaustion occurs for files that reside on private volumes, the systenl
transfers control to an address specified in the exit parameter of the problem
program.

VMOS supports a tLird type of volume: the TOS volume. A TOS volume
need not be mounted during the entire period of system operation. Its use is
restricted to one task at a time and it need only be mounted when the task
refers to it. Since TOS I/O processing is allowed, file protection is not
guaranteed.

VMOS access to TOS tape volumes is provided through the sequential access
method (SAM) and the basic tape access method (BTAM) provided that
physical tape block:; do not exceed 4096 bytes. VMOS access to TOS
direct-access volumes is not provided. Note that Class I programs, however,
can freely access TOS direct-access volumes. In other words, Class I progranl
compatibility is fully lTIaintained.

System Volume

The VMOS System Volume is a VMOS private direct-access volume that may
be shared and is so cefined by the operator's SETUP command (see VMOS
Operations Managem\~nt Reference Manual).

Volume Characteristics

The salient characteristics of VMOS volumes are outlined in table 2-2. Table
2-3 lists the Command Language commands and macros relating to process
initiation; table 2-4 to processing control; and table 2-5 for process
termination.

2-10

TABLE 2-2. SUMMARY OF VOLUME CHARACTERISTICS

Volume
Characteristics

Storage media

Number of tasks which
may concurrently use
the volume.

File Protection

Processing methods
allowed

Label support

Volume serial number

Volume is mounted.

Volume is dismounted.

Space dynamically
acquired while exe­
cuting the problem
program.

SECURE command
required.

Public

Direct-access devices

Any number

Private

Direct-access devices

Magnetic tape

Any number if volume
resides on a system
direct access device.

TOS

Direct-access devices

Magnetic tape

1

Full VMOS file protection (see File Security in
Section 3).

None.

VI\IIOS OMS access methods. VMOS I/O macros
which process system files. TOS monitor macros
which process TOS system files.

TOS FCP and physical
level I/O.

Standard file labels
but no user labels.

6-c:haracter alphanumer­
ic field; first 3 charac­
ters must be PUB.

At start of time-sharing
session.

Only at termination of
time-sharing session
(i.E~., never at task
termination).

Yes

No

For direct-access de- Same as TOS.
vices, standard labels;
no user labels supported.

For magnetic tape,
labels may be standard
or omitted. Additionally,
user header and trailer
labels are supported on
magnetic tape.

6-character or less alphanumeric field; first 3 char­
acters must not be PUB.

When requested or required by a task.

When requested or
requ ired by the task.
If a system volume,
dismount is effected
by the SETUP command.

Yes

When disconnect is
requested or required by
a task.

No

Yes, unless user wishes to risk being aborted if no
I/O device is available.

System volumes require SETUP command.

2-11

TABLE 2-3. SYSTEM MANAGEMENT PF.OCESS INITIATION 01 RECTIVES

Applicable Task
Com ma nd/Macro Initiation

CA TALOG Command

CATAL Macro

DATA Command

DO Command

ENTER Command TM

EXECUTE Command

IFCB Macro

IFI LE Command/Macro

iDFCB Macro

LOAD Command

LOGON Command TM

OPEN Macro

PASSWORD Command

PROCEDURE Statement

REQM Macro

RLOGON Command

RST ART Command

SECURE Command

LEGEND

OM - DEVICE MANAGEMENT
[Part 3, Section 3-
Command/Macro Descriptions]

FM -- FILE MANAGEMENT
[Part 3, Section 2
Command/Macro Descriptions]

TM -- TASK MANAGEMENT
[Part 3, Section 1
Command/Macro Descriptions]

Remote Job Program File
Initiation Initiation Creation

FM

FM

FM

TM

TM

TM

FM

FM

FM

TM

FM

FM

TM

TM

2-12

Device (Space)1
Allocation

OM

OM

OM

OM

N
I

..j:::..

TABLE 2-4. SYSTEM MANAGEMENT PROCESSING CONTROL 01 RECTIVES (Continued)

Applicable
Command/Macro

GET Macro

GETFL Macro

GETKY Macro

GETR Macro

GETSW Macro

HOLD Command

INSRT Macro

LOADM Macro

LOG Macro

LPOV Macro

OPEN Macro

PAM Macro

PARAMETER Command

PASS Macro

PROUT Macro

PUT Macro

PUTX Macro

RDATA Macro

RDCRD Macro

Task
Regulation

Device
Remote Job Program File (Space)
Regulation Direction Maintenance Regulation

TM

FM OM

TM

TM

FM

TM

TM

TM

TM

TM

Access
I nterprogram Method File
Communication Definition Reconstruction

FM

FM

FM

FM

TM

FM

FM

TM

FM

TM

FM

FM

FM

FM

---(Continued)

TABLE 2-4. SYSTEM MANAGEMENT PROCESS!NG CONTROL D! RECT!VES {Continued}

Device Access
Applicable Task Remote Job Program File (Space) I nterprogram Method File
Command/Macro Regulation Regulation Direction Maintenance Regulation Communication Definition Reconstruction

RECON Command/Macro FM

RELEASE Command FM FM

REL Macro FM

RELSE Macro FM

RESET Command FM

RESTART Command TM

RESUME Command TM

N
RETRN Macro TM TM

I -VI RJOB Command TM

RMSG Command TM

ROUT Command TM

RSTATUS Command TM

SAVE Macro TM

SETL Macro FM

SETSW Command/Macro TM TM TM

SKIP Command TM TM TM

STA TUS Command TM

STEP Command TM TM

STORE Macro FM
(Continued)

N
I

TABLE 2-4. SYSTEM MANAGEMENT PROCESSING CONTROL DIRECTIVES (Continued)

Applicable
Command/Macro

SYSFI LE Command

TMODE Macro

TOCOM Macro

YPASS Macro

WRLST Macro

WROUT Macro

WRTOT Macro

WRTRD Macro

LEGEND

Task
Regulation

TM

OM - DEVICE MANAGEMENT
[Part 3, Section 3
Command/Macro Descriptions]

FM - FILE MANAGEMENT
[Part 3, Section 2
Command/Macro Descriptions]

TM - TASK MANAGEMENT
[Part 3, Section 1
Command/Macro Descriptions]

Remote Job
Regulation

Program
Direction

TM

TM

TM

TM

TM

TM

File
Maintenance

Device
(Space)
Regulation

OM

I nterprogram
Communication

TM

Access
Method
Definition

File
Reconstruction

TABLE 2-5. SYSTEM MAN/\GEMENT PROCESS TERMINATION DIRECTIVES

Remote Device
Task Job Program File (Space) Process

Applicable Termi- Termi- Termi- Dispo- Deallo- I nter-
Com ma nd/Macro nation nation nation sition cation ruption

ABEND Command TM

BREAK Command TM

CANCEL Command TM

CLOSE Macro FM

ENDP Statement TM

ERASE Command/Macro FM

EXIT Macro TM

EXITP Macro TM

EXLST Macro FM

FI LE Command/Macro FM OM

INTR Command TM

LOGOFF Command TM

PAUSE Command TM

RELEASE Command FM OM

REL Macro OM

RELM Macro OM

RESUME Command TM

RLOGOFF Command TM

RSTOP Command OM

SETIC Macro TM

SPEXT Macro TM

STXIT Macro TM

SYSFI LE Command FM

TERM Macro TM

TERMD Macro TM

TERMJ Macro TM

LEGEND

DM - DEVICE MANAGEMENT FM - FILE MANAGEMENT T M - TASK MANAG EM ENT
[Part 3, Section 3 [Part 3, Section 2 [Part 3, Section 1
Command Macro Descriptions] Command Macro Descriptions] Command Macro Descriptions]

2-17

It is important to note that public volumes have been given attributes which
tend to make them appear more as an extension of core storage rather than
as conventional I/O devices. Their major attributes are summarized below:

1. The public volume is the normal (or default) type of volume.

2. A given file may be contained on any number of public volumes without
the user's knowledge; in particular, it is the only type of volume on which a
file can be automatkally extended across volumes during execution of the
problem program. V)lumes associated with multivolume private files must
be identified and provided for by the user.

3. Full file security and integrity are provided, yet the volume may be used
concurrently by any number of tasks.

2-18

GENERAL

SECTION 2
TASK AND PROGRAM MANAGEMENT

As pointed out in the preceding section, all user-initiated processing under
VMOS takes place within the context of a task. Optimal use of the system's
facilities by the programmer is, therefore, a function of his ability to control
the task environment. The purpose of this section is to describe to the
programmer those Command Language directives which provide for such
control.

Although the control of processing takes place within the context of a task,
not all Command Language directives relate to the control of the task itself.
At the macro level in partkular, the Command Language provides various
program oriented instructions. As a result, it is necessary to discuss the
control of processing from the standpoint of task and program management.
In contrast to task and program, the term job has no special meaning in
VMOS except in the context of remote batch processing. Use of the term in
this document has, therefore, been restricted to discussions of this area of
processing.

Unless the reader is directed to another manual or an appendix of this
manual, all commands and lmacros referred in this section are fully described
in the Task Management Section in Part 3 of this publication.

TASK AND PROGRAM INITIATION

Task Initiation

As noted in the previous section, VMOS has established a hierarchy between
tasks and programs by viewing the latter as a subset of the former. The
conlmands supplied by the Command Language for initiating tasks and
programs are, as a result, identified exclusively with one or the other. These
conlmands are the means by which this system differentiates between a task
and the programs processed within it.

The programmer initiates a task when he successfully identifies himself to
the systerll as a user. LOGON is the command provided by the Command
Language for establishing this identification. A programmer cannot
undertake any processing until the system has accepted his LOGON
statement.

The information associated with the programmer's userid, as required in the
LOGON statement, is checked against his JOIN Table entry when the
programmer attempts to LOGON. If any discrepancy is noted as a result of
this comparison, the interactive user is notified of the condition at his
terminal; the background user is aborted.

2-19

The LOGON command, in addition to establishing the initial bounds of a
task, also permits the programmer to exercise a degree of control over the
task's environment. This control relates to task priority, alteration of
nlessage structure, buffer size stipulation, and CPU time requirements.

Task initiation of a limited nature is also provided for by the ENTER
command. This command causes the execution of a file the contents of
which define a task. However, like all other execution statements, the
ENTER command must be issued from within an existing task. A complete
description of ENTER files and the ENTER command is given under
Procedure Files of this Section.

Program Initiation

Program initiation occurs when a user causes the loading and/or execution of
a problem program such as: a user-written program, a software-supplied
routine, or an application package. The commands that provide this facility
are EXECUTE, LOAD, and DO.

The EXECUTE com mand enables the programmer to place a load module
into memory and initiate immediate execution at the program's initial entry
point. The program may be loaded from a file, an object module library~,
EAM space, or from SYSDTA. In addition, the EXECUTE command permits
the programmer to specify the amount of additional memory required for
his program and the rnaximum CPU time the program may use.

The LOAD command is functionally a subset of the EXECUTE command. It
supplies the programmer with the same facility as does EXECUTE, with one
exception. LOAD only places the specified load module into memory. To
initiate execution of the program, the user must issue a RESUME command.

The DO command enables the programmer to call for the execution of a file
which may itself contain one or more processing systems. A complete
description of DO fi]es and the DO command is given under Procedure Files
of this section.

TASK REGULATION AND PROGRAM DIRECTION

VMOS, through Conlmand Language facilities, provides a programmer with
the ability to control task performance and direct the processing operations
of user"'written programs. The commands and macros which supply the
means of implementing these facilities relate primarily to the functions of
input-output procesdng, process monitoring, and the manipulation of the
processing environmE nt.

2-20

Task Regulation

Process regulation of the task level, within VMOS, is primarily a function oJ
the way in which a programmer has structured his processing environment
prior to task initiation. In essence, task regulation is equivalent to task
managem.ent. In particular, however, the facilities provided for task
regulation reside in the use of procedure files, the system's process
interruption features, and LOGON-associated resource specification options,
all of which are discussed separately elsewhere in this section. Nevertheless,
the Command Language contains specific instructions for task monitoring
and the specification of options applicable to the operation of language
processors.

The programmer is able to monitor tasks using either the STATUS command
or the TMODE macro. The STATUS command enables the programmer to
have printed, at his terminal, information concerning the processing of tasks
he has introduced. The programmer may obtain this information for all tasks
bearing his userid or for a task identified by a specific task serial number.
The STATUS command can only be issued in the interactive mode. The
TMODE macro permits the programmer to have stored, in his user-written
program, certain information about his task. The information which TMODE
gathers relates to task type, terminal type (interactive tasks), task priority,
task sequence number, the userid of the task initiator, the account number
against which the task is charged, the CPU time used by the task, and the
privilege code of the task. The programmer cannot obtain userid and
accounting information for tasks not associated with his userid.

The PARAMETER command enables the programmer to specify
source-input device options, output device options, work tape utilization,
and debugging aid implementation for the various language processors
available to him. A detailed explanation of this command is contained in the
VMOS Programmer's Reference Manual.

Program Direction

In VMOS, the control of processing environment at user-written program
level resides primarily in programmer's use of Command Language to write
input-output directives, manipulate the processing environment, and bring
about program-to-program communication. The Command Language
instructions relating to input-output processing and process environment
manipulation are presented in the following paragraphs; program-to-program
communication is discussed separately later in this section.

Input Processing

The Cornmand Language supplies the programmer with a pair of macro
instructions for reading input from SYSDTA or SYSIPT, and a command to
implement end-of-file processing. These instructions are the RDAT A and
RDCRD macros and the EOF command.

2-21

The RDATA macro provides the ability to retrieve data records from a task's
SYSDTA file, i.e., th{: user's terminal, the system card reader, or a cataloged
file on a direct access device. This instruction can also be configured to alert
a user-written prograJn that the assignment of SYSDT A has been changed.
RDAT A processes aL data records as if they are variable format records.
When RDATA is reading from a terminal and a break key interrupt occurs,
the system returns control to the macro after the interrupt is processed.

The RDCRD macro has been supplied to provide TOS compatibility support
and enables the programmer to retrieve data records from a task's SYSIPT
file. SYSIPT may be the system card reader or a cataloged file on a direct
access device. RDCRD expects the data record it reads to be in card image
format and, it will truncate records greater than 80-bytes in length or
blank-fill records less than 80-bytes long.

The EOF command is used in conjunction with the RDATA and RDCRD
macros to provide end-of-file processing control. When SYSDTA or SYSIPT
is not pointed to the same source as the task's SYSCMD file and RDAT A or
RDCRD reads a /EOF record, control is passed to the program's end-of-file
routine. If SYSDTA or SYSIPT have the same source as SYSCMD, any
command statement encountered by RDATA or RDCRD will cause control
to pass to the progr.lm's end-of-file address. The only exception to this
occurs when RDATA reads a /BREAK command: control is then returned to
the next statement in the program after a /RESUME command is issued. The
programmer is cautioned that once control has been passed to a program's
end-of-file address, any subsequent reads to SYSDTA or SYSIPT from the
program will also be directed to the end-of-file address. The EOF command
may be used from a terminal in conjunction with the "BREAK" Key to
transfer out of an interactive task loop. The VMOS EOF command supports
the /* for TOS/TDOS compatibility.

Output Processing

The Command Language contains a set of five macro directives for the
generation of system files and terminal destined output. Four of these
directives (PROUT, WRLST, WRTOT, and WROUT) enable the programmer
to write to the systeITl output files; the remaining macro (WRTRD) provides
the means for terminal to program communications.

WRLST and PROUT lnacros perform essentially the same function: enable a
program to write records to the task's SYSLST file. In both cases, control is
returned to the user-written program at normal termination of each write.
When the execution of a PROUT results in a nonrecoverable error, the
program is terminated, and control passes to the next STEP Command in the
task or, if no STEP exists, to the task's LOGOFF command. (See
Program-to-Program Communication for STEP command discussion.)
Nonrecoverable errors associated with WRLST execution produce an error
code for use by the program's error recovery routine. The PROUT and
WRLST generated records are contained in SYSLST as V-type records.
However, PROUT accepts records in fixed-length format which are then
converted to variable-length format by the system; WRLST accepts
variable-length record~;. The SYSLST file, containing the output, is spooled
to the printer at task termination unless destined for a remote work station.
After processing, the SYSLST file is erased. The PROUT macro has been
provided primarily for TOS and TDOS compatibility.

2-22

User-written programs can write to a task's SYSOUT file through facilities of
the WROUT macro. The SYSOUT file may be either a terminal or system
work file. WROUT requires V-type records. If an interrupt occurs when
WROUT is writing to a tenninal, the system returns control to the macro so
that the rnessage can be rewritten. Normal termination returns control to the
user-written program at the instruction following the macro. When a
nonrecoverable error occurs, control is passed to the program at its error
address. If SYSOUT is directed to a terminal and WROUT produces a record
whose length exceeds the size of the terminal buffer, the message will be
written to the terminal but the excess characters will be lost.

Records are written to the SYSOPT file using the WRTOT macro. Records
acceptable to WRTOT cannot exceed 80 characters in length and must be in
fixed length format. The task's SYSOPT file is spooled to the system card
punch at task termination unless deferred for remote batch processing.
Normal termination of WRTOT processing causes control to be returned to
the program at the next instruction following the macro. An unrecoverable
error causes program termination and control passes to the task's next STEP
command or, if none exists, the task's LOGOFF command. The WRTOT
macro is supplied primarily for TOS and TDOS compatibility.

Program-terminal intercommunication is supplied by the WRTRD macro.
This macro enables a user-written program running as part of an interactive
task to send messages to, and receive the required response from, the user's
terminal. WRTRD processes only V-type records. Normal termination of
WRTRD execution causes control to be passed to the next program
instruction following the macro. A nonrecoverable error causes control to be
passed to the program's error address. When WRTRD processing is
interrupted, the system will cause the macro to be reexecuted.

Processing Environment .Manipulation

Manipulation of the processing environment from within a user-written
program is accomplished through use of the PASS, VPASS, and CST AT
macros. These macros enable the programmer to relinquish processor time
and change the status of program pages.

The programmer relinquishes processing time by use of the PASS or VP ASS
macro. The principle difference between the two is the degree of control
that a programmer is able to exercise. The VPASS macro enables the
programnler to specify the period of time a task will relinquish its processor
time. A time slice relinquished by the PASS macro is restored at system
discretion.

The status of anyone or all of the pages of a Qass II may be changed using
the CSTAT macro. This instruction enables a programmer to change the
read-write access of the pages of a user-written program and also to designate
program pages as nonresident (pagable) or resident. CST A T cannot be used
in a Class I program.

2-23

TASK AND PROGRAM TERMINATION

Similar to all other facets of task and program management, the termination
of tasks and progrants may be accomplished while operating in either the
interactive or background environment. Furthermore, the facilities available
to both modes of operation provide a programmer with the ability to halt
the processing cycle prior to task or program completion, so that unexpected
or undesirable conditions can be controlled.

Task Termination

In the normal course of events, the programmer terminates a task using the
LOGOFF command. When the system receives LOGOFF, it causes.
processing for the associated task to cease, and returns the task's resources to
the system. When 0 perating in the interactive mode, a programmer can
specify that a task be terminated but that the terminal remain attached to
the system by using the BUT option of LOGOFF. This option allows the
programmer to LOGON, and create a new task, without again dialing into
the system.

The LOGOFF command, through use of the TAPE operand, provides the
programmer with facility for having SYSLST, SYSOUT, and SYSOPT files
written to tape. SYSLST and SYSOUT are written to the same tape;
SYSOPT is written te, its own tape. All these files are SAM files with variable
length records. Subsequent to being spooled to tape, the files may be printed
or punched as is appropriate to their origin.

Secondary tasks, SUC:1 as those created by ENTER file processing, may be
removed from the ~;ystem prior to, or during, processing by using the
CANCEL command. Primary tasks, however, cannot be terminated using
CANCEL. This command also supplies a dump generating option. See
Section I of this part for explantion of primary and secondary tasks.

The user can force a task to terminate abnormally by using the ABEND
command. This comlnand automatically forces a program dump of class 5
and 6 memory. ABEND terminates a task as if a LOGOFF had been issued.
Like LOGOFF, terminal disconnect can be circumvented by using the BUT
operand.

Program Termination

In addition to tho~e commands which enable a programmer to halt
processing at the task level, the Command Language contains a set of macro
directives to facilitate program termination. These are TERM, TERMD, and
TERMJ.

The TERM macro indicates the termination of the user's program. When a
TERM macro is executed, the system deallocates all devices and memory
associated with the program and returns control to the task's command
stream. TERMD caus'~s the occurrence of the same events as TERM, except
that a program dump is also generated and written to the SYSLST file.

2-24

The TERMJ macro is provided to allow a programmer to indicate the
termination of a step within a task. If the program containing TERMJ is
contained within a background task, the next step in the task sequence
(indicated by a STEP command) is initiated. However, if no more steps are
to be run in the background task, TERMJ will cause the task to be
terminated and control will be returned to the system. A TERMJ contained
in a program running in a conversational task will cause the next command
of task's command stream to be executed.

PROCESS INTERRUPTION

The VMOS Command Language contains command directives that enable
the programmer to interrupt a task's processing environment at task level or
at progra1TI level. The Conlmand Language also contains a set of macro
directives which provide for the control of task interruption processing.
Since certain phases of task interrliption are often related to interprogram
communication, refer to the discussion of Program-to-Program
Communication for more insight into VMOS' process interruption. The
following discussion pertains only to direct program-to-system
cOll1munkation.

Task and Program Interruption

Task interruption is provided through use of the PAUSE command or the
INTR (Interrupt) command. The PAUSE command enables a programmer to
cOll1munkate with the operator either from an interactive or background
task to have him perform some operation (put a card deck in a specified
reader, mount a tape on a specific drive, etc.). PAUSE differs from the TYPE
command (refer to Appendix B), which also can be used to communicate
with the operator. This PAUSE command causes the user's task to be pended
until the operator performs the requested operation. The operator reinitiates
processing of the task.

The INTR command which can be entered either conversationally or
nonconversationally, causes transfer to be passed to the operator's interrupt
routine. This routine must be specified in the user's program through the use
of a STX][T macro. Interactive tasks are interrupted by using an INTR at the
terminal. Background tasks are interrupted by the operator issuing an INTR
frorn his terminal along with the related task sequence number (TSN).

Program interruption can be accomplished using the BREAK command. This
cOll1mand can be entered as part of the command stream of a
nonconversational task initiated from a terminal, or from the procedure of a
DO file which has been initiated from an interactive task. When the system
receives a BREAK command, control is transferred from the user's program
to the system. The program:mer may then enter command statements for the
system to process. The programmer reactivates the execution of his program
or procedure using the RESUME command. The RESUME command
pennits the user to resunle processing at the point where the BREAK
occurred or at a specified location within the processing stream.

2-25

ProgralTI Interruption Processing Control

Control, by the user, of the processing of program interruptions is supplied
through a series of macros which relate primarily to the use of exit and
contingency routine~,. These macros are EXIT, EXITP, SETIC, STXIT, and
SPEXT. In the following discussion, interrupt routine and contingency
routine are used interchangeably, since the programmer cannot control
interrupts resulting flam system operation.

EXIT and EXITP macros are concerned with the user's exit from, and return
to, an interrupt 01 contingency routine. The EXIT macro enables a
programmer to retufl an interrupt routine to the point in his main prograrrl
at which the interrupt occurred. The EXITP macro enables the programmer
to supply the information which will be used by the system to perform the
functions that will p'~rmit a contingency routine to be reentered at the next
applicable interrupt.

The SPEXT, SETIC, and STXIT macros relate to the construction of
contingency or intenupt routines. SPEXT enables the programmer to have a
Class II program ob1ain a status block containing information required by
those interrupt routines available to the program. The SETIC macro allows
the user to simulate an interval timer interrupt, and is used in conjunction
with the STXIT macro. Finally, the STXIT macro enables the programmer
to specify, within hi~ program, the address of program interrupt routines for
use by the system.

PROGRAM-TO-PROGRAM COMMUNICATION

Inter-program comnlUnication can be defined as the ability to pass
information or contIol from one program to another during processing of
programs or at completion of their processing sequences. The structure and
use of procedure file~i, as discussed elsewhere in this section, describes one of
the methods of program-to-program communication at the task level as a
function of process control predefinition. The following discussion will
center on those cOlllmands, relative to inter-program communication, that
can be entered into the job stream independently or as sets, and on the
macro directives that facilitate program-to-program communication froml
within the user's proJlem program. The perceptive reader will recognize that
many of the commands discussed herein could be contained in a procedure
file as well as a single-entry job stream.

Communication from Command Stnam

The commands facilitating inter-program communication fall into two
distinct sets: those that facilitate the passing of information from one
program to another and those that pass control between programs. The
commands that enhance a programmer's capability to pass information froml
program to program revolve around the use of CHANGE command.

The CHANGE command (CHNGE macro) enables the programmer to change
the linkname of a fib definition so that FILE command definitions can be
passed from program to program within a task without changing the link
symbols specified in the program's FCB. Thus, for example, a programmer
can use the output file of one program as input to another without copying
the file or changing its name. Further control is provided by DROP, HOLD:,
and RELEASE cOlTlmands. The function of these latter commands is
discussed in the File ~1anagemen t section.

2-26

The SETSW, SKIP, and STEP commands enable a programmer to pass
control between programs. SETSW (and its equivalent macro) enables the
programmer to set, reset, and invert the task switches provided by the
system for conditional control of a task. By using SETSW in conjunction
with the SKIP command, which provides the ability to test the settings of
these task switches, the programmer can specify and control branching
conditions within his program. The STEP command provides for logical
subdivision of a task, and enables a programmer to control the effects of
abnormal termination. When a program terminates abnormally, the system
will pass control to the first command following the next STEP in the
command input stream. If no STEP is encountered, control is passed to the
task's LOGOFF command. If the programmer wishes to use a STEP
command in an interactive task, it must be contained in a DO initiated
procedure file.

Communication from within a Program

The macro directives relative :to program-to-program communication enable
the programmer to pass control between programs and to control their
processing. The programmer can structure a user-written program so that it
can read to and write from a common data area, call subroutines and load
program overlays, manipulate task switches, and specify the loading and
execution of other programs.

The EXCOM and TOCOM macros provide the means to access a common
data area. EXCOM enables the programmer to have data from a common
data area :rnoved into a user·-written program. TOCOM performs the reverse
function. The common data area may be accessed by Class I and/or Class II
programs. Data moved into the common data area will remain in the area for
the duration of a session or until overwritten by another TOCOM. The
common data area comprises 4096 bytes.

The CALL, LPOV, and RETRN macros provide the means of branching and
performing overlaying operations from within a program's execution stream.
The CALL macro enables a programmer to branch to a subroutine contained
in the salrne load program. The RETRN macro provides the means of
restoring the values of a program's registers prior to branching back from the
subroutine to the main program. The values of the program registers should
be retained prior to branching by use of the SAVE macro. LPOV enables the
programmer to load a program overlay (in load module form) during
program execution. If an LlPOV is issued in a Class I program and an error
results, the system terminates the task. In a Class II program, an LPOV
associated error causes the system to place an error code in Register 15 and
return control to the user's program at the instruction following the LPOV.

The Comrnand Language provides for the manipulation of 32 task switches
from within a user written program through use of the SETSW macro. This
macro provides the same capabilities as the SETSW command, and is used in
conjunction with a SKIP ~ommand entered as a part of a background task's
command stream. In addition, the programmer has the ability to retrieve the
settings of those switches using the SETSW macro.

2-27

The ability to initiate the loading or execution of a new load program (as
opposed to a subroutine of the same load program) from within another is
provided by the LOADM and EXECM macros, respectively. Both of these
macros cause the pr')gram from which they are issued to terminate upon
processing of the macro. After processing a LOADM, the system returns
control to the task's command stream, from which a RESUME command
must be issued in order for execution of the newly loaded program to begin.
In all other respects, LOADM and EXECM macros provide the same facilities
as do the LOAD and EXECUTE commands.

PROCEDURE FILES

Enter Files

VMOS provides thf: programmer with the ability to store Command
Language commands in a file and have them executed as a set of instructions
by calling for the processing of the file. Files so constituted are called
procedure files. Th,~ principle benefit to be derived from the use of
procedure files is that they enable a programmer to define repetitively-used
operations in a way that eliminates the necessity of entering each command
separately as it is called for by the requirements of the processing function.

In addition to commands, a procedure file may also contain data relevant to
the processing activity defined within the file. For instance, a procedure file
which contains the commands necessary for the execution of a prograrn
could also contain tLe input for the program. Conversely, the input required
for a procedure may reside in a file other than the procedure file and be
referenced from wi thin the procedure file.

The programmer may create a procedure file as a DO file or as an ENTER
file. The terms DO ,:llld ENTER are the names of the Command Language
commands used to activate the file. The DO and ENTER commands are
described in detail in Part 3, Section 1.

Procedure files may be created interactively using one of the VMOS File
Editing Routines o~ by batch card input using the DATA command.
Conventions relating to the use of File Editing routines are contained in the
VMOS Programmer'~; Reference Manual as well as card input conventions
(enumerated in Appf:ndix D of the same manual). Other than the commands
used to activate theIn, the principal differences between DO and ENTER
files are the task and file delimiters peculiar to their structure, and the mode
in which execution takes place. These and other salient features of DO and
ENTER files are contained in table 2-6.

The ENTER file i~; a procedure file which, when activated, places a
background task into the system's processing pool. ENTER files enable the
programmer to initi:;.te background tasks while operating in the interactive
mode. After an ENTER file is activated, control is returned to the initiating
task, thereby enabling the programmer to continue processing without
waiting for that ENT ER file to complete its procedure.

2-28

An ENTER file must contaiin all the commands necessary for the execution
of a background task. The tIrst record must be a LOGON statement and the
last a LOGOFF statement. Because of independent processing, no
communication is possible between the initiating task and the related
ENTER file. When an ENTER file is activated, the system creates a separate,
background task to be processed when resources become available. The
sequence number for that task (TSN) is sent to the initiating task's SYSOUT
file.

Similar to all VMOS files, ENTER tIles can be password protected at the file
level. The read and write passwords (RDPASS, WRP ASS) may be used to
qualify file accessibility. Also, the processing of a file can be protected
(ACCESS parameter of CATALOG command). If a file is read-password
protected, the password (PASSWORD command) must be given before the
file can be processed.

The programmer notitIes the system when file processing is desired by giving
an ENTER command and the filename of the related ENTER file; that is,
/ENTER filename. When the ENTER command is issued, the user may also
append tQi the filename all information generally associated with a LOGON
command (userid, password, etc.). This information will then override all
equivalent information associated with the LOGON command in the ENTER
tIle. If no LOGON-associated information appears in the ENTER command,
the systern will use information from LOGON statement associated with
primary task to override the equivalent information associated with LOGON
command in the ENTER file. In effect, the user may specify that the
processing of an ENTER be charged against a userid or account number
other than the one associated with the primary task; by specifying the
proper LOGON-associated information when he issues the ENTER
command.. However, if a userid is specified in the ENTER command, the
programmer must also specify any other LOGON-associ ted information
relating to that userid. If the programmer fails to supply this information,
the systern will not be able to find the proper JOIN Table entry, and the
ENTER file will not be processed.

ENTER Fil~ Example

This examlple illustrates the operation and execution of an ENTER file from
within an interactive task. The VMOS File Editor facility was used to create
the file. Note that when the ENTER command was issued to activate the
file, the programmer specified LOGON-associated information that was
different from that associated with the ENTER file's LOGON statement. As
a result, the charge for processing the ENTER file would be assigned to
USERB, not USERA.

Initial LOGON and final LOGOFF statements define the extent of task
(TSN) 6763. This includes the creation of file TJ.FILE and its activation by
the ENTER command. The LOGON and LOGOFF statements of lines 100
and 1000, respectively, define the extent of processing of file TJ .FILE; that
is, TSN 1093.

2-29

DO Files

/LOGON USERA"C'123'
%C E223 LOGON ACCEPTED AT 1601 ON 08/12/71, TSN 6763 ASSIGNED'.
/EXEC (EDIT)
%P001 - DLL V-2A

VERSe 0014 OF FILE ED~TOR READY
*OPEN TJ.FILE

%C T219 OPENED TJ.FILE AS NEW V-TYPEFILE.
*TEXT

100.
200.
300.
400.
500.
600.
700.
800.
900.

1000.
1100.

''(HALT

<0>
<0>
<0>
<0>
<0>
<0>
<0>
<0>
<0>
<0>
<0>

/LOGON USERA"C'123'
/PARAM LIST=YESS,DEBUG=YES,ERRFIL=YES
/SYSFILE SYSDTA=DATA.FILE.JIM
/EXEC BGFOR
/SYSFILE SYSDTA=(PRIMARY)
/EXEC TSOSLNK
PROGNAME MC~.TST

INCLUDE *
END
/LOGOFF
#END

/ENTER TJ.FILE,USERB"c ' 456'
% TSN=1093

/LOGOFF

DO file is a procedur~ file which, when activated, initiates the processing of a
foreground (interactjve) job. Unlike ENTER file processing, the system does
not process the DO file as a separate task. The procedure is executed
immediately upon being called, and additional processing within the calling
task is suspended until the procedure has been completed. Therefore, when a
DO file is initiated flom an interactive task, the terminal remains attached to
the task but control does not return to programmer until the procedure has
finished processing. A DO file may only be a SAM file or ISAM file. The
choice of SAM or ISAM depends upon the conventions of the medium used
to create the file (FH~ Editing Routines, DATA Command).

When a DO file is activated, it becomes the task's temporary SYSCMD file.
The SYSDTA file runains directed to the initiating task unless directed to
another source from within the procedure file. SYSDTA (or SYSIPT) may
be directed to any ~,ource available to the SYSFILE command (see Part 3,
Section 2). If SYSDTA is directed to SYSCMD, its source will be the
procedure file; not 1he source associated with the initiating task. To cause
SYSDTA to take its input from the source associated with the originating
task, SYSDTA must be directed to PRIMARY. When the procedure
terminates, SYSDTA (SYSIPT) and SYSCMD are redirected by the system,
to the sources associated with the initiating task.

2-30

The first entry in a DO file must be a procedure statement (jPROCEDURE)
and the last, an end statement (jENDP). The remaining entries may be any
commands acceptable to the system with the exception of LOGON,
LOGOFF, and SECURE. LOGON, LOGOFF, and SECURE are considered
task associated commands and a DO file cannot be constituted as a task.
When one of these three cornmands is encountered in a DO file, the system
sends a diagnostic message to the task's SYSOUT file, and continues
processing with the next valid command in the procedure.

PROCEDURE Statement

The PROCEDURE statement supplies the user with a choice of printing
options for the output resulting from the processing of the procedure, and
enables him to relate symbolic parameters (entered with a DO command) to
the processing of the procedure. Only one PROCEDURE statement is
permitted in a DO file. A DO file may, however, contain calls to other DO
files. Therefore, although a DO file may contain only one procedure, the
procedure may reference other DO files. A more complete explanation of
this phenomenon is contained in the description of Multiple Procedures. A
PROCEDURE statement rnust be preceded by a slash. However, a
PROCEDURE statement will not be recognized by the system when
SYSCMD is receiving input directly from the task. In, other words, the
system only recognizes PROCEDURE statements in the context of DO files.

The format of a PROCEDURE statement and its operands are described and
defined as follows:

Name

A

C

D

N

Operation Operand

IPROCEDUREI [AJ PROC C
~ ,[(symbolic parameter-character, ...)]

specifies that all records on the PROC file are to be written
to the SYSOUT file as they are processed.

specifies that only command records on the PROC file are to
be written to the SYSOUT file.

specifies that only data records on the PROC file are to be
written to the SYSOUT file.

specifies that no records on the PROC file are to be written
to the SYSOUT file. This is the default operand.

2-31

Symbolic parameter

ENDP Statement

an anlpersand (&) sign followed by an alphabetic character,
followed by zero to six alphanumeric characters. In order to
repre~,ent a single ampersand sign within a character constant,
two lmpersand signs must be written. Any number of
symbolic parameters may be combined in a given VMOS
comrrtand. When a symbolic parameter is followed by a
period, an alphabetic character or a numeric character, a
period must separate the symbolic parameter from the
charal;ter that follows. When a symbolic parameter is
followed by a single period, the period is ignored. Symbolic
pararrleters which appear in the comments field are ignored.
Symbolic parameters are separated by commas and enclosed
in parentheses.

Notes:

1. If -:he writing option (A, C, D, or N) is not specified and
symbolic parameters are used, a comma must precede the
first symbolic character.

2. For symbolic parameter processing, the PROCEDURE
comrrland is the analog of the DO command. Each positional
pararrleter supplied in the DO command will be substituted
for the corresponding symbolic parameter in the
PROCEDURE command. The PROCEDURE command must
contain at least as many positional parameters as are specified
in the DO command. Keyword parameters supplied in the
DO command are substituted for the corresponding keyword
symbolic parameter. All keywords specified in the DO
comrrland must be present in the PROCEDURE command.
Symbolic replacement occurs only in SYSCMD statements.

The ENDP statement returns control from a DO command initiated
procedure file to the primary, command-input file. There may be, however,
any number of ENDP statements in a DO file. This particular feature is
covered in detail in the Multiple Procedures area of this Section. END}>
statements must be preceded by a slash and contain no operand field. Similar
to the PROCEDURE statement, the ENDP will not be recognized by the
system unless it is contained in a procedure file.

The same effect as the ENDP command can be created by the user by
pressing the "Break" key at the terminal while an interactive task in the
procedure mode is processing. However, in this case, the system prompts the
user to verify that the "Break" key has not been pressed by mistake. After
the User's action has been verified and the system has acknowledge the
"Break" key, the procedure file cannot be resumed.

2-32

DO File Example

The following is an example of a DO file created using the VMOS Fi~e
Editor. In this example, SYSDTA was directed sequentially to three
different sources. At line 200, SYSDTA was redirected to a file containing a
COBOL source program as an input source to the COBOL Background
Conlpiler (BGCOB). Prior to this, SYSDTA was associated with the
programmer's terminal. At line 400, SYSDTA was directed away from the
COBOL source file to the procedure file (the task's temporary SYSCMD file)
in order that the remaining commands in the file could be executed. Finally,
at line 900, SYSDTA was directed to the terminal (its PRIMARY source) so
that the COBOL load program (MCGRAW) could read its input from the
ternlinal.

%C E222 PLEASE LOGON.
/LOGON USER-I 0
%C E223 LOGON ACCEPTED AT 1452 ON 08/13/71, TSN 6871 ASSIGNED.
/EXEC (EDIT)
%P001 - DLL V-2A

VERSe 0014 OF FILE EDITOR READY
*OPEN TJ.T'EST

%C T219 OPENED TJ.TEST AS NEW V-TYPEFILE.
*TEXT

100. <0> /PROC C
200. <0> /SYSFILE SYSDTA=TJCODE
300. <0> /EXEC BGCOB
400. <0> /SYSFI LE SYSDTA=(SYSCMD)
500. <0> /EXEC TSOSLNK
600. <0> PROGRAM MCGRAW
700. <0> INCLUDE *
800. <0> END
900. <0> /SYSFI LE SYSDTA=(PRH1ARY)

1000. <0> /EXEC MCGRAW
1100. <0> /ENDP
1200. <0> #END

)'cHALT

2-33

Upon issuing the HllLT command, the programmer was released from File
Editor and control was returned to the operating system. When the systerrl
typed a slash at his terminal, the programmer activated the file TJ.TEST by
issuing a DO conlmarld. The execution of this procedure file follows:

100 TJ.TEST
%/PROC C
%00000200/SYSFI U: STSDTA=T JCODE
%00000300/EXEC BGCOB
% LOO 1 PROGRAM LOJ'D I NG

32AO COMPILATION INITIATED (BGCOB VERSION=038A)
32AA COMP I LAT I atl COMPLETE 0

%EBOOl SPOOLOUT INITIATED FOR TSN=6880 ID=HPBLS8S7
% PRINT FILE=00008
%00000400/SYSFI U: SYSDTA=(SYSCMD)
%OOOOOSOO/EXEC T~iOSLNK
%P56D LOADING

VERSe 008 OF TSOS LINKAGE EDITOR READY
LIST? (Y, N)N
PROGRAM BOUND
PROGRAM FILE WRITTEN: MCGRAW

NUMBER PAM PAGE~i USED: 6
%00000900/SYSFI LE SYSDTA=(PRIMARY)
%00001000/EXEC MCGRAW
%P56D LOADING

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE 0<N<330
*101

THE NUMBER ENTEnED WAS ••• 101
PLEASE REPLY \/ITH A 3 DIGIT NU~~BER IN THE RANGE 0<N<330

'':102
THE NUMBER ENTE ItE D WAS ••• 102
PLEASE REPLY \~ITH A 3 DIGIT NUMBER IN THE RANGE 0<N<330

'':103
THE NUMBER ENTEftED WAS ••• 103
PLEASE REPLY WI1:"H A 3 DIGIT NUMBER IN THE RANGE 0<N<330

'':104
THE NUMBER ENTEItED WAS ••• 104
PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE O<N<330

*105
THE NUHBER ENTEItED WAS ••• 105

%00001100/ENDP

ILOGOFF

Note: Because the file was created using File Editor, it is an
ISAM file.

2-34

Symbolic Parameters (DO File)

When constructing a DO file, the programmer need not be restricted to a
single input scheme for execution of the commands contained within the
procedure. Through use of symbolic parameters, the programmer can alter
the processing of individual commands within the procedure by varying the
input to them. In this way, a single procedure may be used to perform a
variety of similar operations depending on the command input criteria
specified when the file is activated. The ability to control the processing of a
single procedure eliminates the need to construct separate procedures to
perform functionally equivalent operations.

To construct a procedure that will accept symbolic parameters, the
programnler must identify them in a PROCEDURE statement and in the
command statements to which they apply. The character strings constituting
symbolic parameters must be identical in both instances. The system
correlates PROCEDURE statement entries with the parameter in command
statements on the basis of their content; not according to their position in
the paranleter stream. Subsequently, when calling for execution of the file,
the programmer enters, with the DO command, the input parameters desired
to be associated with the symbolic entries in the file's PROCEDURE
statement:. The way in which symbolic parameters are constructed is covered
in the discussion of the PROCEDURE statement.

The following illustrates one of the ways symbolic parameters may be used
to generallize a procedure. This illustration is based on the previous DO file
example in which a COBOL source program was compiled, linked, and then
executed.

/lOGON
%C E223 lOGON ACCEPTED AT 1130 ON 08/16/71, TSN 6956 ASSIGNED.
/EXEC (ED~T)
%POO 1 - Dl.L V-2A

VERSe 0014 OF FilE EDITOR READY
*OPEN TJ.TEST

%C T219 OPENED TJ.TEST AS NEW V-TYPEFllE.

~':TEXT

100 .. <0> /PROC C,(&A01,&B02)
200 .. <0> /SYSFI lE SYSDTA=&AOI
300., <0> /EXEC &B02
400., <0> /SYSFI lE SYSDTA=(SYSCHD)
500 .. <0> /EXEC TSOSlNK
600 .. <0> PROGRAM MCGRAW
700., <0> INCLUDE ,,:
800 •. <0> END
900 .. <0> /SYSFllE SYSDTA={PRIMARY)

1000 .. <0> /EXEC MCGRAH
1100 •. <0> /ENDP
1200 .. <0> #END

*HAlT

2-35

As in the previous Clse, the procedure file was created using File Editor.
However, this time, ,ymbolic parameters were entered as operands of the
SYSFILE command (line 2000), the EXEC command (line 300), and the
PROCEDURE statenlent. In the SYSFILE and EXEC commands, these:
parameters replaced the name of the COBOL source file and the name of the:
background compiler, respectively. The symbolic parameters must appear in
the PROCEDURE statement to supply the link to the DO command. The:
procedure was executed as follows:

/00 TJ.TEST,(TJCODE,BGCOB)
%/PROC C,(&A01,&B02)
%00000200/SYSFILE SYSDTA=&A01
%00000300/EXEC &B02
%LOO 1 PROGRAM LOP,DI NG

32AO COMPILATION INITIATED (BGCOB VERSION-038A)
32AA COMPILATION COMPLETED

%EB001 SPOOLOUT INITIATED FOR TSN=6983 ID=HPBLS8S7
% PRINT FILEaOOOOS
%00000400'/SYSFI LE SYSDTA=(SYSCMD)
%OOOOOSOO/EXEC TSOSLNK
%PS6D LOADING

VERSe 008 OF TS(lS LINKAGE EDITOR READY
LIST? (Y, N)N
PROGRAM BOUND
PROGRAM FILE WRITTEN: MCGRAW

NUMBER PAM PAGE~; USED: 4
%00000900/SYSFI LE: SYSDTA=(PRI MARY)
%00001000/EXEC &(:03
%PS6D LOADING

PLEASE REPLY \'/ITH A 3 DIGIT NUMBER IN THE
*101

THE NUMBER ENTEHED WAS ••• 101
PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE

~~1 02
THE NUMBER ENTEHED WAS ••• 102
PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE

*103
TH E NUMB ERE NT E HE 0 WAS ••• 1 03
PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE

*104
THE NUMBER ENTEHED WAS ••• 104
PLEASE REPLY \.JlrH A 3 01 GIT NUHBER IN THE

*105
THE NUMBER ENTEI~ED WAS ••• 105

%00001100/ENDP

2-36

RANGE 0<N<330

RANGE 0<N<330

RANGE 0<N<330

RANGE 0<N<330

RANGE 0<N<330

Note that had the programmer entered the name of a properly constructed
ANSI COBOL program and the name of the ANSI COBOL compiler in lieu
of TJCODE and BGCOB, the execution of the procedure would not have
been altered. In this case, the symbolic parameters related to what was
executed, not the sequence of execution.

This example was not intended to be definitive, but to introduce the reader
to the use of symbolic parameters in a DO file.

Multiple Procedures

In a DO File

VMOS does not restrict the programmer to DO files using symbolic
parameters as the only means of altering the execution of a procedure. The
system permits the construction of procedure files which, in tum, call for
the activation of other procedure files. This facility is not restricted by file
type: for example, an ENTER file may contain calls to DO files as well as to
other ENTER files. The same holds true for DO files. In addition, the
number of additional procedures which can be entered from the initial
procedure file is functionally limitless. Both DO and ENTER files can
contain DO and ENTER files which, in turn, contain DO and ENTER files,
and so on.

Any DO file may contain, within its procedure, calls to other DO files or
ENTER files. This is true whether the file containing the call is the initial
procedure file or a subsequent procedure file activated from within the
initial file. As an illustration, consider the following generalized example of a
DO file which calls one of two other DO files, the last of which calls, in turn,
an ENTER file. Each of the three files are constructed separately as follows:

DO File
OUTER

/PROC C,(&D02)

/DO &D02

/ENDP

DO File
INNERI

/PROCC

/ENDP

DO File
INNER2

/PROC C

/ENTER BACKGRD

/ENDP

ENTER File
BACKGRD

/LOGON Userid

/LOGOFF

Note that each of the preceding files meets the criteria of a self-contained
procedure: the DO files start with PROC statements and terminate with
ENDP statements; the ENTER file starts with a LOGON command and
terminates with a LOGOFF.

The order and choice of execution for each procedure is displayed on figure
2-1. As shown, the preceding flow of execution illustrates three important
features rellative to the construction and processing of multiple procedures:
the use of symbolic parameters, the termination of the procedures, and the
subsequent transfer of control.

2-37

PRIMARY TASK ENVIRONMENT

ILOGON USEH ID

100 OUTER, (INNER 1)

~TERDDFILE
IPROC C (&002)

100 & 002

~ FILE INNER 1

I PROC C

lEND P

100 OUTER, (INNER 2)

/ < OUTER DO FILE

ILOGOFF

~ I PROC C (&002)

100 & 002

,/
~OFILE INNER 2

IPROC C

IENTER BACKG RO

(SEPARATE TASK
INITIATED)

FIGURE 2-1. DO FI LE PROCEDURES

2-38

SECONDARY TASK ENVIRONMENT

ILOGOFF

The use of symbolic parameters permitted the construction of a procedure
(OUTER DO File), from within which one of two other procedures
(lNNERI and INNER2) cou1d be called. The choice, relating to which of
these inner procedures is to be executed, is made by the user when the outer
procedure is called (DO OUTER, symbolic parameter).

Each of the three DO file procedures terminate in one of two ways: by an
ENDP comlmand or by a call to another procedure. This is the only way in
which DO file procedures may terminate in a normal fashion. The procedure
in a DO file will terminate at an ENDP statement unless a call to another
procedure (DO or ENTER command is encountered prior to the ENDP).
None the less, an ENDP statement must always be the last entry in a DO file
procedure when the procedure is constructed, regardless of how the
procedure is expected to terminate.

The termination of a DO file procedure by a call to another DO file causes
control to pass from the calling procedure to the called procedure. The
termination of a procedure by an ENDP statement causes control to pass to
the initiating task regardless of whether or not the procedure was called from
within another DO file procedure. Control can never be returned to a
preceding DO file procedure by a subsequent DO file procedure. Note,
however, that the initiation of an ENTER file from within a DO file
procedure does not cause any transfer of control. The system sets up a
separate background task to process the ENTER file procedure but control
remains with the DO file procedure which called the ENTER file.

In an ENTER File

As in the case of DO file processing, both DO and ENTER files can be called
from within an ENTER file. However, the processing sequence is less
complex. Because the initiation of an ENTER file always creates a separate
background task, the advantages of initiating a DO file reside primarily in the
user's ability to specify a tangential procedure, rather than in his ability to
effect optional procedure selection, since he cannot control execution using
symbolic parameters. Nevertheless, an ENTER file is never terminated by a
call to another procedure. If the called procedure is a DO file, or a series of
successively called DO files, control will return to the ENTER file which
initiated the first call to a DO file when the last ENDP statement is
processed. An ENTER file procedure may also call another ENTER file. In
this instance, however, control remains with the calling procedure and
processing continues as soon as the system has set up the background task to
process the second ENTER file.

Table 2-6 lists the salient features of the DO and Enter files.

2··39

TABLE 2-6. PROCEDURE FILES

File Activation

Procedure file treated as
separate task?

File delimiters

Task delim iters

Can be ini tiated from an
ENTER file?

Can be initiated from a
terminal?

Can be initiated from a
DO file?

If the procedure is initiated
from a terminal, does the
terminal remain connected to
the procedure?

Action that occurs due to
terminal initiation.

ENTER File

The ENTER (filename)
command

Yes

LOGON command
LOGOFF command

LOGON, LOGOFF commands
in thE! procedure file.

Yes

Yes

Yes, hut control remains with
the c,lIling DO file and proces­
sing continues after system
creatE!s the background task to
process the ENTER file.

No

The s'{stem types TSN of
background task and retu rns a
slash ':0 the terminal. User can
then LOGOFF if desired, thus
savin~ telephone charges, while
the task processes in background.

REMOTE BATCH PROCESSING

DO File

The DO (filename) command

No

PROC command
ENDP command

LOGON, LOGOFF commands in
the initiating task.

Yes

Yes

Yes, but when the ENDP command
is encountered, control returns to
original initiating task.

Yes

Initiated procedure is part of the
initiating task. The system returns
a slash when procedure is complet1ad.

The VMOS Rem::>te Batch Processing (RBP) System provides the
programmer, at a remote terminal, with the ability to use the full
batch-processing potential of the operating system. The programmer using
the RBP system can enter card-input jobs into the system, monitor their
progress, cancel them~ and redirect the output of a finished job at task
termination. With the exception of the RJOB, RSTATUS, and RMSG
commands, all cOlTllnands controlling RBP may be entered only from,~
remote work station (terminal); if entered from the control card reader, they
will be rejected by tle system.

2-40

Remote Job InitiatJlon

Once a re1TIote work station has been physically attached to VMOS, the RBP
system willI place the device in the inactive state and begin monitoring it for
input. The user logically attaches the work station to an RBP system by
issuing the RSTART command. RSTART must be the first command issued
a t the beginning of each remote batch session, as it identifies the remote
work station to the RBP system. After an RSTART is received and validated
by the RBP system, the work station is considered to be in the active state.

Work stations in the active mode are ready to receive RBP input. The
programmer begins the processing session by issuing an RLOGON command.
RLOGON functions in the RBP environment the same way LOGON
functions in the local batch and interactive environment. The RLOGON
command, like the LOGON command, defines the beginning of a task, and
must precede all processing input. The information supplied with RLOGON
command is checked against the user's Join Table entry by the RBP system,
and must agree before the RBP system will accept the user's program input.
The RLOGON command relnains in effect until an RLOGOFF, RSTOP, or
subsequent RLOGON is received by the RPB system from the work station.
If a valid RLOGON is received from a work station with a session in
progress, the current user is logged off and a new user is logged on.

Remote Job Regulation

The RJOB command enables an RBP system user to identify jobs within his
task. By using the RJOB command, the programmer has the ability to defer
job output until it is explicitly requested (see ROUT command) and to
designate an alternate output recipient.

When a job identified by the RJOB command has finished executing, the
submitter and alternate output recipient (if one exists) are automatically
notified of the completion. Deferred job output may then be retrieved at
any time. If the user does not identify his input using an RJOB command,
the RBP system will supply a jobname and direct output to the submitter
after job completion.

The RJOB command may also be used to define RBP for jobs submitted
from a central installation card reader. This provides the programmer with
ability to direct output froIn centrally submitted jobs to user's at remote
work stations.

The ROUT command allows the RBP user to retrieve deferred job output
(see RJOB, DEFER option) for which he is a valid recipient. If the ROUT
com:mand is issued and the job specified is not completed, the command is
ignored and a message is sent by the RBP system to the requestor noting that
the job is not completed. The ROUT command must then be reentered at
completion of the task. If a ROUT command is issued for a specific job
where the user is not a valid recipient or for a job which is no longer in the
system, the RBP will return a message to that effect.

2-41

The ROUT command also allows the user to retrieve output that was.
discontinued due to user intervention or by equipment failure. When
interrupted output i:: pending for a work station, no output is returned tOi
the work station until a ROUT command determines disposition of the:
interrupted job. However, the system will continue to accept input from
that work station. If the work station has output pending and is logically
detached from the :;ystem (via RSTOP command), the next time a user
attaches that station (via RSTART command), the job output will be:
returned for startinE: at the point it was interrupted. If the output was:
interruped by a tran~,mission failure, the user must reattach the work station
via the RSTART command.

In addition, the ROUT command enables a user to delete jobs from the RBP
system without receiving a copy of the job output. The user can delete only
those jobs that have been submitted and are still currently in the system"
The system will retlJrn an invalid request response if the user attempts tOi
delete jobs that do not belong to him.

Finally, it should be noted that if a ROUT is entered without modifying
parameters, the system will resume output for any job, submitted from that
specific work station, that is in a discontinued state. If job output is not in a
discontinued state, this form of the ROUT command merely resets the work
station to a state capable of receiving output.

The RMSG command enables a user to send messages to another user, the~
console operator, or an RBP work station. Such messages will be rejected if
they are directed to inactive users (see RLOGON command) and/or work
stations not logically attached to the system (see RSTART command).

The RSTATUS comrland provides the user with the ability to determine the:
status of RBP jobs for which he is a valid output recipient. RSTATUS
enables the user to ·)btain the status of a specific job, the status of jobs
submitted by a specified user, or for all current jobs submitted from a work
station. The RBP system returns the status of only those jobs that are in the
system when the c(lmmand is processed. The information a programmer
receives in response to an RSTATUS comprises the jobname, submitting
userid, submitting terminal id, alternate user, and whether the job is
executing, complete, or not in the system.

Rerrlote Job Termination

The RLOGOFF command is the last command contained in a remote batch
processing task. The programmer enters RLOGOFF to indicate that he has
completed the processing session. After the receipt of an RLOGOFF, the
RBP system will not accept input from the user's work station until a new
session is begun (RLOGON command). However, the work station, because
it is still logically attached to the RBP system, will continue to monitor the
system for output.

2-42

The RSTOP command enables the programmer to detach a work station
fronl the RBP system. When this command is entered, the RBP system
transmits all queued messages to the terminal that is being detached prior to
the actual detachment. However, no job output will be returned to the work
station after the RSTOP command is processed. The last message
transmitted by the RBP systepl will indicate that the work station is
detached from the system. No further communication occurs until the work
station resumes RBP activity with an RSTART command. If the work
station is connected to VMOS via a dialed connection, the connection is
broken.

CHECKPOINT /RESTAR 1l FACILITIES

The VMOS Checkpoint/Restart Facilities enable the batch programmer to
specify points within a program at which the system environment and
program status are to be captured, and then to have execution resumed at
these points. The user designates and maintains control of the file to which
these checkpoints are written, thus allowing the best combination of file
space economy and restart capability that will meet particular needs. Insofar
as is practical, restarting is flexible: both as to mode of invocation and to the
ease of program modification prior to reexecution.

Checkpoint/Restart operates under control of the VMOS Control Program
and is initiated using directives supplied by the Command Language. The
Checkpoint facility is invoked by an SVC generated when the programmer
enters the CHKPT macro (see Part 3, Section I). This feature monitors the
system environment in relation to the program as the environment exists
when the program processes the CHKPT.

The programmer invokes the restart facility by issuing the REST ART
command (see Part 3; Section I) from a terminal or as part of a spooled-in
job streaml. This facility causes the program to be reloaded and execution to
begin frOITI the location at which the specified checkpoint was taken.
Execution of the program can, however, be suppressed by the programmer.

The inform.ation required to restart a program may either be specified by the
user or obtained from a log created by the system when the checkpoint is
taken. The system creates the checkpoint file to contain this information as
a Primary Access Method (PAM) file. This file provides the medium wherein
the program and its environment, as recorded by the checkpoint operation,
is retained for use by the restart facility.

Public or private volumes may be used to contain the checkp'oint file. If
private volumes are used, the programmer must assume that device on which
they are contained is supported by PAM. In other words, paper tape cannot
be used as. a medium for the checkpoint file; magnetic tape and direct access
devices can, as they are supported by PAM.

2-43

Message Generation

Checkpoint writes one message to SYSOUT, to log a successful checkpoint:

CE301 CKPT: mm/cld/yy hh tt xxxxxx.1HFPG=p

mm/dd/yy

hh tt

xxxxxx

p

is th(! current date

is th(! time (hours and minutes)

is th(! checkpoint ID

is the page number on which the checkpoint header is
writt~n

The *ime message is also written to the operator's console
for n on conversational tasks.

RESTAR T may write one, two, or three of thirteen possible messages to
SYSOUT. These messages are contained in the VMOS Messages Reference
Manual.

Considerations for Use

The following considerations comprise usage conventions and restrictions
imposed by either the Operating System or the Checkpoint/Restart facilities
themselves. The user is advised, therefore, to pay particular attention to
these points.

Stack Management

The Checkpoint/Re~.tart philosophy assumes that the program issuing the
checkpoint SVC is]unning with just one PI stack (its own), one P2 stack
(Command Language Processor), and was given control as the result of a
/EXECUTE, /RESUME, or /RESTART command. Consequently, a
checkpoint taken in any other environment will probably be unusable as
input to the restart process. Note that this also applies to subsequent
checkpoints taken by a restarted program. For this and other reasons, the
/RESTART command must not have been issued from a more complex
environment. In partlcular, it may not be issued from a Procedure File.

This restriction does not concern temporary system stacks (Break or
BROADCAST stackf:, for example) but rather is a constraint on the user's
design.

2-44

~File Management

file Integrity

EAM Files

BTAM Files

The user rnust be extremely careful that the file to which checkpoints are t,o
be taken is opened in such mode as will achieve the desired results. In effect,
by the frequency of the opens and closes and by the mode in which a file is
opened, the user specifies how often (if at all) checkpoints are to be
overwritten and when retained. It should be noted, also, that failure to allow
secondary allocation would cause one or more checkpoints to be aborted, if
there is not sufficient file space remaining to contain it.

Although every effort will be made to assure the integrity of the checkpoint
file, the user is advised not to use it for any other purpose; that is, it should
be a dedicated file. Interspersing data-records with checkpoints on the same
file is not recommended. Data files opened OUTPUT or OUTIN cannot be
saved by Restart.

Evanescent Access Method (EAM) files, including SYSLST, SYSOPT, and
SYSOUT, are not checkpointed and cannot be reconstructed at restart time.

BT AM files are not repositioned in Restart.

Restart Environment

If a /RESTART command is issued while a program is already loaded in the
user~s virtual memory space (for example, from a previous /LOAD command
or a /EXEC followed by a BREAK), the user program will be terminated
automatically before restarting commences.

The /RESTART command may not be issued from a PROCEDURE file.

A /RESTART command may not be issued while SYSDTA is redirected to a
secondary file.

A /RESTART command may not be issued while SYSIPT is redirected to a
secondary file.

2-45

Secondary SYSFILE Assignment

A checkpoint, taken while SYSCMD, is under secondary assignment to the
Card Reader cannot be restarted.

Checkpoint/Restart Optimization

The primary area of control which the user has over the time consumed in
taking a checkpoint is in the allocation of file space for the checkpoint file.
The number of PAM pages used for a single checkpoint may be
approximately calculated by the formula: P = 2n + 6 where n is the
number of pages of virtual memory currently (at checkpoint time)
allocated to the program.

If possible, the ChE ckpoint should be taken at a point in the progralll
where the amount cf class 5 and class 6 memory allocated to the progranl
is minimized. For example, if memory is requested and released in a
program on a frequent and dynamic basis, the user is best advised to
checkpoint when the requested memory is at a minimum.

The second considEration involves making the initial allocation of file
space large enough to accommodate all expected checkpoints, thus
avoiding secondary allocations. If this is not feasible, as is often the case,
the next best alte::native is to be sure that the secondary allocation
specified equals or exceeds the requirements of anyone checkpoint as
calculated by the above formula. In order to inhibit allocation of class 5
and class 6 memor;1 while a checkpoint is being taken, the checkpoint
module will force secondary allocations (sufficient to contain the
checkpoint) by dUlomy writes in advance of the checkpointing writes.
Since one write accompanies each allocation, a minimum secondary
allocation (3 PAM pages) can be expensive.

By choosing the m,lnner and timing of the way in which he opens and
closes his checkpoint files, the user may accomplish his particular
objectives within minimum file space. The examples on figure 2-2 through
2-5 are intended to be illustrative, but not exhaustive. The reader will
doubtless be able to devise many other schemes.

On figure 2-2, all checkpoints are written consecutively to a single file:.
Restart may be accomplished from anyone of them, but a great deal of
file space may be used.

In figure 2-3, the file space is minimized, but only the last checkpoint is
ever available and even that would be destroyed in case of a malfunction
during the last checkpoint.

2-46

(03.05)
LOOP

*(03.03)
CLOSE -

OPEN
CHECKPOINT
FILE
'OUTIN'

~CESSING
03

01

02

04

~77)
~CKPOINT

LOOP

CLOSE
CHECKPOINT
FILE

06

FIGURE 2·2. SINGLE SERIAL FILE

2-47

YES

(04.06)
LOOP ------+1

~OCESSING
02

OPEN
CHECKPOINT
FILE
'OUTIN'

~/C77)
LIECKPOINT

[}

L.OSE
CHECKPOINT
FI_E

06

LOOP

FIGURE 2-3. SINGLE CHt::CKPOINT

2-48

01

04

05

The illustration given in figure 2-4 will ensure that at least one checkpoint
is always on file.

01

OPENF:]RST
CHECKPOINT
FILE
'OUTIN'

(05.00) ____ -+1

LOOP
02

PROCESSING I

04

(SVC77):]
CHECKPOINT
TO OPEN
FILE

CLOSE OPEN
CHECKPOINT
FILE AND
OPEN THE
OTHER
CHECKPOINT
FILE 'OUTIN'

LOOP

05

FIGURE 2-4. ALTERNATING CHECKPOINT

2-49

YES

(06.11)
MAJOR

(06.05)
MINOR

The contents of figure 2-5 would allow restarting at either one of the last 'n'
checkpoints (end of volume, etc.) or at any of a series of major checkpoints.
This allows restart in case of malfunction or for file reconstruction purposes
at less than maximu m file allocation.

:;.
01

OPEN MINOR
CHECKPOINT
FILE 'OUTIN'

~

02

PROCESSING

03

(5VC77)
CHECKPOINT TO
MINOR FILE

05

MINOR

MAJOR

MAJOR

CLOSE MINOR
CHECKPOINT
FILE

OPEN MAJOR
CHECKPOINT
FILE'INOUT'

06

09

(SVC77)
CHECKPOINT TO
MAJOR FILE

CLOSE MAJOR
CHECKPOINT
FILE

11

MAJOR

10

FIGURE 2-5. MAJOR PND MINOR CHECKPOINTS

2-50

System Support of Checkpoint/Restart

The VMOS Checkpoint/Restart logic subsumes both Class I and Class II
programs. However, some Class I programs may be TOS programs and
require that checkpoints be taken by issuing a TOS CKPT macro (SVC 14).
The purpose of this section is to describe the steps necessary to interface
such a supervisor call with the logic for VMOS checkpoints. It should be
noted that no additional logic is necessary for restart since TOS/VMOS
program differences are not significant in restart. Note that the user must
supply restart file pointers in Class I checkpoint.

Prior to executing a TOS Program which issues the CKPT SVC, a VMOS user
must define the checkpoint file by using a FILE command with a LINK
nanle of CKPTFILE. The device, if specified, may be any for which PAM is
supported. The FCBTYPE and OPEN parameters should not be specified.

The space allocated is subject to the same restraints as for VMOS
checkpoints, with one exception. If secondary allocation is not allowed, that
is, SPACE=(n,O) has been specified, and if the primary allocation is great
enough to accommodate at least the largest checkpoint, no error will be
returned. If sufficient space is not available to accommodate all checkpoints,
checkpoints will be rewritten starting from the beginning of the file.

When a CKPT SVC is issued by a Class I program, the TFT entry is located,
an FCB is created and opened, and a VMOS CHKPT parameter list is built.
The VMOS checkpoint logic is then executed. TFT and FCB are explained in
the File Management Section which follows.

On subsequent CKPT SVC's, the FCB is located, parameter updating done as
required, and a rough check for sufficient remaining space is made. Any
necessary provision for space is made before joining the CHKPT logic.

At program termination, the checkpoint file will automatically be closed.
This allows the user to issue commands between programs affecting the file
or TFT entry. This allows reuse of the file for succeeding checkpoint files or
reuse of the link name for writing checkpoints from a successor program to a
different file.

2-51/2-52

GENERAL

Filenames

SECTION 3
FILE MANAGEMENT

The scope of those facilities supplied by the VMOS Control Program enables
the programmer to create, modify, and dispose of program files, and to
manipulate certain of the System Logical files. Before exploring these areas
of file nlanagement, the basic principles - relating to file naming, file
security, file retrieval, and the structure of catalog blocks - require
explanation.

Unless the reader is directed to another manual, all commands and macros
referred to in this section are fully described under File Management
Commands in Section 2 of Part 3 of this publication.

All names of user files created under VMOS must conform to the following
format:

[$userid.] name [.name ...] [(group)]

The programmer, when he names a file, is responsible for the

name[.name ...] [(group)]

portion of the full filename. The $userid is supplied by VMOS automatically
at file creation, and corresponds to the user identification of the file's
creator. By prefixing filenames with the userid of their creators, VMOS
assures that all references to a file will be directed to that portion of the
system catalog associated with the correct user.

The entire filename (including $userid) may contain no more than 54
characters. The programnler-supplied portion, name[.name ...] [(group)] ,
may not exceed 44 characters. Description of each of the filename
components is as follows:

userid

Specifies the programmer's identification code. The
maximum size is 10 characters including the period and
dollar sign.

2-53

name

(group)

Ji'ilename Qualification

SpeciLes a simple configuration of one or more characters.
The characters may be alphanumeric or hyphens, but neithe,r
the first nor last character can be a hyphen. However, a
simple name may contain more than one hyphen. Simple
filenanles, not part of a compound name, may contain more
than 8 characters.

Compound names may be formed by connecting one or more
simple names using periods (for example,
PAYROLL.MASTER, PAYROLL.MASTER.JIM, etc.). The
rules for forming the component of a compound name are
the saIne as those applying to simple names. The first simple
name in a compound name may not exceed a length of 8
charac ters.

Specifies the identification of a member of a set of
histori:ally related files. This identification may consist of a
simple name or a compound name, and the aforementioned
rules for forming names apply. Note, however, that group
identification must be enclosed in parentheses.

The ability to append qualifiers to the "name" portion of a filename supplies
the VMOS user with ,1 convenient method for grouping files into meaningful
categories. Thus, all the payroll files for a particular application could be
grouped together under the basic name PAYROLL as follows:
PAYROLL.MASTER,PAYROLL.TRANSACTIONS,
PAYROLL.UPDATE(l), etc. This facility results from the implementation
in VMOS of the concept of partially and fully qualified filenames.

The filename as specified when the catalog entry is created is the fully
qualified filename, and can be a simple or compound name. If a filename is
compound, it may be identified by omitting the rightmost simple name or
names. The remaining name (simple or compound) plus a trailing period is
the partially qualified filename. For example, MATH.TRIG. is the partially
qualified filename identifying the filename MATH.TRIG.COSINE. As
mentioned previously, a partially qualified filename, such as PAYROLL., can
be used to identify a group of related files, such as PAYROLL.MASTER and
PAYROLL. TRANSACTIONS. The partially qualified filenames are accepted
by the system for processing as parameters of the FSTATUS (file status) and
ERASE instructions.

Because VMOS associltes all filenanles with the userid of a programmer who
created the catalog entry, only that programmer can reference the catalog
entry using the fully qualified or partially qualified filename. Any
programmer, not identified to the system by the userid of one who created
the filename, must enter the fully qualified filename prefixed by userid of
the creator. In other words, userid I cannot access filename XYZ created by
userid 2 unless he identifies the filename as userid2.XYZ. Use rid 2 must also
have created file XYZ as sharable (see File Security description).

2-54

Examples

Userid 1 created the following files as sharable:
A.B.C,A.B.D,A.E,X.Y,X.Y.Z, and ENCYCLOPEDIA. User 2 may specify
anyone of them by prefixing the name with useridl: for instance,
Useridl.A.B.C.

The following partial to full filename correspondence is also true.

A. specifies the files A.B.C,A.B.D, and A.E

A.B. spedfies the files A.B.C and A.B.D

A.B.C specifies only filename A.B.C

A.B.C. specifies none of the named files, as no 4-character filenames
beginning with A.B.C. exist.

A specifies none of the files (A* A.)

X. Y specifies file X. Y

X.Y. specifies file X.Y.Z (not X.Y)

File Groups and Renaming Tapes

Examples

The VMOS facilities nornlally invoked for renaming direct access files
associated through the use of the (group) entry in the filename (see
CATALOG command) do not suffice for tape files. The renaming of tape
files requires the modification of the file label, and the nature of tapes is
such that the rewriting of a block in effect destroys all blocks beyond it.
Therefore:, if a tape label was rewritten, all the remaining data on the tape
would be functionally destroyed.

In order to circumvent this problem, the following convention has been
established. If the name of a tape file contains a left parenthesis, the left
parenthesis and all subsequent characters in the name are not output in the
tape label. Typically, the user would suffix the character string (integer) to
the filename.

Example 1

Filename

,PAYROLL
PAYROLL(1)
P AYROLL.A(1)
PAYROLL.(l)

Name in catalog.
Name used to reference
the file in commands,
macros, FCB.

PAYROLL
PAYROLL(1)
PAYROLL.A(l)
Illegal

2-55

Name in the label
of the tape volume.

PAYROLL
PAYROLL
PAYROLL.A

Linknarrle

File Security

When a tape file is processed and the name of the file in the catalog contains
a left parenthesis, the left parenthesis and all subsequent characters are
ignored in the tape label comparison for that fi1,e.

Example 2

Assume two copies of a payroll file entitled:

PAYROLL (current vE:fsion),volume serial number (vsn)35
PA YROLL(l) (backup) , vsn 50.

The user wishes to create a new version of the PAYROLL file and to cause
the current version to become the backup version. The following commands
could be used:

CATALOG PAYROLL(I),DUMMY,STATE=UPDATE
CATALOG PAYROLL,PAYROLL(1),STATE=UPDATE
CATALOG DUMMY,I'AYROLL,STATE=UPDATE

These commands could, of course, be retained in a procedure file to
facilitate use of this renaming procedure. In the first command example,
PAYROLL(1) is terr..porarily changed to DUMMY, since in the next
command a new PA YROLL(1) is defined. After execution of these
commands, PAYROLL references the tape with a vsn of 50, and
PAYROLL(1) referen(:es the tape with a vsn of 35.

Linkname is the ternl applied to the file reference variable that provides
connection between the File Control Block (FCB) macro and the Data
Management System's Job Control Language. The linkname ties together the
programmer's FILE command, the file itself, the FCB, and the Task File
Table (TFT). The operating system performs all input/output in terms of
linknames; therefore, a linkname must be included on the FCB for a file. At
execution, the linknarre becomes a parameter to the executing program.

For discussion on the uses of linknames in specific operating environments,
see VMOS Programmer's Reference Manual.

When a user creates a file, he is recognized as its owner. No other user can
obtain access to the file unless the owner catalogs it with the SI;IARE=YES
parameter of the CATALOG command or the CAT AL macro.

File access to both the owner and to the sharer is also controlled by
password options. Two passwords can be associated with the file: a read
password and a write password, thus facilitating two levels of file sharing.
The ACCESS parameter of the CATALOG command or the CAT AL macro
may be used to limit tbe file read access.

2-56

Examples

A file, marked as sharable, can be accessed by any user who can provide the
identification code of the owner, the filename, and the appropriate password
(if required).

If a file is being read by one or more tasks, and a subsequent task attempts
to open the file for output (for example, UPDATE, OUTPUT), the system
rejects the OPEN request. For ISAM files opened SHARUPD=YES,
concurrent reading and writing of the same file is allowed. Competing tasks
are essentially locked out at the PAM page level. If an attempt is made to
read or write a file (that is, non-ISAM or SHARUPD=NO) currently opened
for output, the system refuses to honor the OPEN request. The requesting
program nlay choose to process another file or perform some other useful
work.

User DOE catalogs the following files:

Exarnple I. CATALOG FI ,SHARE=NO,ACCESS=READ
Exarnple 2. CATALOG F2,SHARE=YES,ACCESS=READ
Exarnple 3. CATALOG F3,SHARE=YES,WRPASS=C'0007'

Exarnple I. User SMITH cannot access F I since DOE specified that the file
cannot be shared. Note that even DOE, the owner, cannot write to the file.

Exarnple 2. Smith, and in fact all other users, can read (but not write to) F2.
Smith specifies the file as $DOE.F2; no password is required.

Exarnple 3. Smith, and in fact all other users, can read and/or write F3 by
specifying the name $DOE.F3 and the password 0007. Note that the default
value for the ACCESS operand is WRITE.

Passwords required to gain access to protected files may be supplied in the
PASSWORD command; they can also be specified in the file control block
(FCB) which will be used to OPEN the file.

Password Requirements

Table 2-7 defines the password requirements for pertinent file management
macros and commands. Note the following important points:

I. If a file has both a READ and a WRITE password, the WRITE password
may be used to satisfy the requirements for the READ password; that is, the
WRITE password allows reading and/or writing to a file.

2. If the file has no WRITE password, but has a READ password and if the
chart specifies a WRITE password, then the READ password must be
supplied.

2-57

TABLE 2-7. PASSWORD REQUIREMENTS

Password Requ ired

Command (or Macro) READ WRITE Comments

OPEN INPUT X

OPEN REVERSE X

OPEN other types X

CATALOG X Update mode only.

COpy X X READ password for input
file; WR ITE password for
output fi Ie.

ERASE X

FILE X Required for a previously
cataloged file if the SPACE
parameter is specified.

FSTATUS None required.

System Controller and File Security

File Retrieval

The system contro lIer can access any file in the system: that is, he cam
employ any file rna tlagement command (macro) or access method consistent
with the properties of the file. He has the same accessibility as owner of a
file - but not more. For example, the controller must supply appropriate
password (except when issuing the FSTATUS command or macro) to access
the file. He cannot write to a file which is defined as read only (recall that
neither can the owner). In other words, the controller is viewed as a coowner
of every file.

When a file is initially accessed, the system searches the owner's (the user
who is logged-on) portion of the catalog for the specified file unless a $user:id
prefix is specified with the filename. In the latter case, the portion of the
catalog of the user with the specified id is searched.

Typically, VMOS system files are cataloged under the system controller's id.
To access the systenl's assembler, for example, the user would specify

$Controller-id.ASSEMBLER;

Since this notation is a bit verbose, the special id of null may be used 1to
designate the syst~!m controller files. Accordingly, the user could write
$ASSEMBLER to axess the assembler.

2-58

Example

User Catalog DOE

PAYROLL
FORTRAN
ALGOL

File Referenced by DOE

PAYROLL
$SMITH.PA YROLL
FORTRAN

$FORTRAN
$Controller-id.ASSEMBLER
$ASSEMBLER
$SMITH.ACCOUNT

$ALGOL

User Catalog SMITH

INVENTORY
PAYROLL

Action

Controller's
(system) Catalog

ASSEMBLER
FORTRAN
ACCOUNT

DOE's PAYROLL file accessed.
Smith's PAYROLL file accessed.
DOE's "private" FORTRAN file
accessed.
System's FORTRAN compiler accessed.
System's assembler accessed.
System's assembler accessed.
Error. Smith has no file called
ACCOUNT.
Error. The file is not in the
system controller's catalog.

Programming Note

If the controller's file contains more than one simple name, the
$Controller-id prefix must be used. For example, File A.B., if referenced as
$A.B., would imply file B of user A.

Catalog Block Structure

When joined to the system, each user (including system controller) is
assigned a primary catalog block of 2048 bytes, and the identification
number of the block is stored in the system's join table. This block is the
first block within the catalog file to which catalog entries (filenames) for the
user are written.

Only catalog entries for a single user are contained in a given block.
However, if the size of his catalog necessitates it, a user can own more than
one block. All entries within a block refer to valid files and contain all the
required information about the file.

The blocks within the catalog file are structured as shown in figure 2-6.

Entries are made in a catalog block on a first-come, first-served basis from
left to right. If an entry is removed, the block's space counter is adjusted
accordingly. If an entry other than the current last entry is removed, the
entries are left justified.

When an entry cannot be contained in a block, a new block is obtained for
this user. A block that has a successor contains the next block number in its
control field. If an entry for other than the first block is removed, causing
this block to become empty, the block is automatically returned to the
system for reassignment. Entries are never moved from block i+ I to block i
when an entry is removed from block i.

2-59

FIEL.D

NAME

SIZE

CD ® 0 0 ® 6

TOTAL NO. BINARY NO. I
OF UNUSED

USERID OF ENTRY 1 ENTRY 2
BYTES IN SUCCESSOR (BLOCK BLOCK

2 8 2 4 VARIABLE VARIABLE 7
FIELD DESCRIPTIONS:

CD
o
o

2-BYTE BINARY COUNT NDICATING TOTAL NUMBER OF UNUSED BYTES IN THIS BLOCK.
THE INITIAL VALUE OF THIS FIELD IS 2032.

8-BYTE USER IDENTIFIC'\TION CODE.

BINARY NUMBER INDIC/)'TING THE LOGICAL BLOCK NUMBER OF THE BLOCK WITHIN
THE CATALOG FILE WHICH SUCCEEDS THE CURRENT BLOCK OF THIS USER. IF NO
SUCCESSOR BLOCK EXISTS, THIS FIELD IS O.

NOT USED; RESERVED FOR FUTURE USE.

CATALOG ENTRY WHICH DESCRIBES A USER FILE.

FIGURE 2-6. CATALOG FILE BLOCK STRUCTURE

Example

Assume that a user hlock can contain four entries. The user performs the
following operations:

USER OPERATION CATALOG STRUCTURE

CATALOG A.B A.B

CATALOG X A.B X

CATALOG Y A.B x Y

ERASE X A.B Y

CATALOG D A.B Y D

CATALOG E.Y.Z A.B Y D E.Y.Z

~
A.B

R

Y D CATALOG R E.Y.Z

~
A.B

R

ERASE Y D E.Y.Z

c; A.B

R

CATALOG T D E.Y.Z T

ERASE R A.B D E.Y.Z T

2-60

FILE CREATION

The facilities supplied by VMOS support three methods of file creation: the
use of software-supplied routines, card input in the background mode, and
the operation of the user-written program. Each of these methods imposes
its own conditions and requirements on the programmer, either as a result of
routine operation or because of information the user's program is expected
to contain.

Software-Supplied Routines

Software-supplied routines supplied with VMOS enable the programmer to
create data files, source program files, and object program files while
operating in the conversational mode. The use of these routines permits a
programmer to circumvent much of the work associated with file
preparation for processing. Most required, usually, is to specify the access
method to be applied to the file. Oren and close processing are accomplished
by the routine.

Data files created by text editing routines can be used as input to
user-written programs. The user is then required to supply correct open
processing and access method application information. Open processing and
access method application are discussed later in this section.

The several language processing and text editing routines are described in the
VMOS Programmer's Reference Manual.

Background Card Input

The Command Language eomnland, DATA, enables the programmer to
catalog a file on a direct-access device and to insert data into it. If the file has
been previously defined using the FILE or CATALOG commands, the
DATA cOlmmand can be used simply to insert data into the file. The DATA
command can only be used to create SAM or ISAM files. The system assigns
the following characteristics to the file: standard labels, variable length
format records, and 2048-byte blocks. Labeling conventions are described in
the VMOS Programmer's Reference Manual. Record formats are discussed in
the Access Method portion of this section.

The programmer is not restricted to the creation of one file at a time when
using card input. More than one file may be created during a card reading
session using multiple DATA commands. The first DATA command must
follow a LOGON command (see Task and Program Management - Section 2,
Part 2). Each subsequent DATA command may follow the data cards
associated with the preceding DATA command, or an END command. An
END com:mand must follow the last data card associated with the last DATA
command in the card stream. A LOGOFF command must follow the last
END comlnand.

The DATA command may be used to create a file to contain any
information from source language statements through raw data. However,
VMOS considers the contents of the file to be data. The operating system
does not differentiate among source language statements, data, and
procedures. The contents of the file are stored but not processed when read
in. The programmer must initiate processing during a different programming
session.

2-61

User-Written Program Operation

The processing and creation of files by a user-written program require that
the programmer supply the information necessary to identify the file, the
format of its contents, and the way it is to be managed.

The basic set of in:;tructional facilities supplied by the VMOS Command
Language for identifying files and specifying the manner in which they are to
be processed comprise the following: the FILE command (macro); the FCB
(IDFCB) macro, OPEN macro, and CLOSE macro; and the macros associated
with the various acce ss methods.

File Identification and Operation of FILE Command

The FILE command (or macro) provides the facility to place a file's name in
a catalog, allocate space for the file, assign devices to process the file, and
complete or modify the File Control Block (FCB) - (see VMOS General
Service File Management Macros discussion in the appendices). This
command provides the link between user's program and the system, and
provides the control program with information on how the user-written
program intends to create or process the file.

Input and output files to be processed by a program must be identified tlO
the system when the program is executed. The programmer may use the
FILE command or its corresponding macro for this purpose. A FILE
command may be entered conversationally or as part of a background
initiated task; the FILE macro can only be used in the background mode and
must be contained as part of the user-written program.

The FILE command provides a logical link between the user-written prograrn
and the files it is ':0 process. For all files (input and output), the FILE
command (macro) causes an entry to be placed in the Task File Table (see
FCB discussion) and completes the File Control Block (FCB) if the file has
not been previously cataloged. The FILE command (macro) also creates an
entry in the catalog and provides for the allocation of space to contain the
file. The FILE comrnand (macro) is described in detail in Part 3, Section 2.

FC13 Definition and Formation

In VMOS, the File Control Block (FCB) is the principal area of
communication for all input/output operations associated with cataloged
files. The FCB is the repository for all the information' a program needs
about a file in order to use the file. FCB contents depend upon the access
method to be apphed to the associated file and the type of processing
(input/output) the file is to undergo. Regardless of the associated access
method, FCBs exhlbit common characteristics: same size for all access
methods, and comnlon fields within different FCBs are the same size and
reside at same relative locations.

2-62

FeB SOURCE INFORMATION

FeB COMPLETION

Each file to be processed requires an FCB. The information necessary to
construct it can be supplied from five different sources.

1. FeB macro instruction: When a program is assembled or compiled, an
FCB may be created using the FCB macro. The FCB macro reserves space for
a file control block, and may be used to supply information to the FCB and
reserve space to contain the logical routines needed to process the file. Note
that the logical routines for which the FCB reserves space are not considered
part of the FCB. The FCB macro is discussed in detail under "VMOS General
Service Fill~ Management Macros" in the Appendices. The FCB formats for
various access methods are described in Part 3, Section 2.

2. User Program: The user-written program may complete or alter any or all
fields of :an FCB during program execution after the FCB has been
completed but prior to the opening bf the file.

3. FILE Command (or macro directive): Any fields, even if specified from
sources 1 and 2 and for which the FILE command is a valid source, are
completed at OPEN time. The FCB macro instruction parameters for each
access method are summarized under the reference given in source I above.

4. User-program modification of the FCB when the file is opened through an
open contingency exit using the OPEN parameter of the OPEN macro or File
comlnand.

5. The Catalog: Any fields not specified from the above sources, and for
which the catalog entry is a valid source, are also completed when the file is
opened.

The sequence of events significant to the processing of an FCB are
summarized in chronological order below:

1. FeB macro: assembly (or compile) time.

2. User program object-time modifications prior to issuance of the OPEN
macro.

3. OPEN time: FCB construction.

a. FILE comrrland (or macro)

b. Catalog entry (regardless of OPEN mode)

c. User program modifications at OPEN time through the
contingency exit.

At this point, the FCB is considered complete. It is important to note that
OPEN processing will not complete (or default) any unspecified fields. In
other words, although OPEN processing accepts FCB parameters from a
variety of sources, it does not validate, after having utilized these sources,
that an FCB field is unspecified.

2-63

Open Processing and Function of OPEN Macro

Before applying an access method to a file, the programmer must request
that an FCB be cOlllpleted as a logical connection between the file and the
problem program. The programmer issues an OPEN macro instruction that
completes the FCB fields, verifies or creates file labels, positions volumes to
the first record to bE processed, and allocates buffer areas as required.

Additionally, the OPEN routine ensures that needed access routines are
loaded and address relations are completed. The selection of access routines
is governed by choic~s in file organization, buffering technique, input/output
unit characteristics, and other factors.

In operation, some access routines are treated as part of the user's prograrn
and are entered directly rather than through a supervisor-call (SYC)
interruption. These routines block and deblock records, control the buffers,
and call the input/o Lltput supervisor when a request for data input or output
is needed. Other routines, treated as part of the I/O supervisor and therefore
executed in the privileged mode, perform error checks, prepare user-oriented
completion codes, post interruptions, and bridge discontinuities in the
storage areas assigned to a file.

OPEN also constructs a P2 (privileged) FCB, logically a protected extension
of the FCB. This block contains a description of the extent (devices and
boundaries) of the file. The privileged FCB is normally located via the FCB.

After operations on the file have been completed, the programmer logically
disconnects the file from the problem program by issuing a CLOSE macro
instruction. After ar FCB has been closed, it may be reused. Furthermore, iit
is set to the same contents it had prior to issuance of the OPEN macro
instruction.

The OPEN macro i~; discussed in detail under "YMOS General Service File
Management Macros" in the appendices. Open processing options that are
available are describtd in the Access Methods discussion of this section.

SEQUENCE OF EVENTS IN OPEN PROCESSI \lG

The user's Catalog entry for a file contains more information that can be
created or changed by File Management commands. This additional
information is gathered from various sources, such as: the user's FILlE
command; the FCB. File labels; and the chain of elements called the Task
File Table (TFT).

The user has the option to create an incomplete FCB in his program and/or
to modify his FCB prior to Opening a file. If an incomplete FCB refers to an
input file that is aln:ady cataloged and a FILE command is not presented to
the system, the FCB is completed from existing catalog entries. Input label
and retention period information is always taken directly from the catalog.

Foreign input tape label information is taken from the label itself, if the
labels are standard and from the FILE command if nonstandard, and placed
into the catalog prior to FCB completion. For output files, the information
(traits) is taken from the FCB and placed into the catalog.

2-64

The central chain of elements that reflects all files and devices in use by a
task is the TFT. In cases where the TFT was not created by the user's OPEN
macro (that is, the referenced file is in HOLD status), the FCB is updated
directly with the information in the existing TFT for that file.

The detailed sequence of events in OPEN processing is described below:

1. Search TFT entries for current linkname. (See also FILE C;ommand and
OPEN relationship under the OPEN macro.)

If linknanle is not found, build TFT entry.

If linknarne is found, update the user's FCB from the TFT (note, the TFT
contains the FCB information presented by a previous FILE command).
Remember, a linkname of spaces (binary zeros) will be treated as a special
case. (See FCB explanation.)

2. Read catalog entry for the specified file. Complete unspecified fields in
the FCB from the catalog, if possible.

Note: This function is not performed for a foreign tape file.

3. Mount necessary private volumes.

4. Branch to OPENX contingency exit.

5. Move traits from FCB to the catalog entry and then enter user's OPENZ
contingency exit of the EXLST macro. (These functions are performed only
if the OPEN type is OUTIN or OUTPUT.)

6. Validate passwords (not performed for foreign tape file at this time).

7. Allocate I/O buffers and validate buffer addresses, if necessary.

8. Process tape labels.

For foreign tape files, the following is now performed:

a. Move traits from catalog entry to FCB.

b. User program modifications through the OPENX
contingency exit.

c. Validate passwords.

Notes:

1. Since the OPENX contingency exit for foreign tape files is
taken relatively late in OPEN processing, certain fields within
the FCB may not be modified.

2. Foreign tape files cannot be opened OUTIN or OUTPUT.

2-65

9. Access method OPEN processing constructs logical file processing
routines if applicable.

10. Update catalog entry if foreign tape file is being processed, or if the file
is being opened OUTPUT or OUTIN.

CAUT [ON: Technically speaking, a file does not exist in the
sense of containing data until the file has been Opened
OUTp:JT or OUTIN, and CLOSED. At CLOSE time, the
file's creation date and expiration date (and last half page
pointe r for ISAM, PAM, and SAM) are inserted into the
catalog.

FILE COMMAND (MACRO) AND OPEN MACRO RELATIONSHIP

Although an FCB must be associated with each file to be processed, another
unit of control inforrlation is used to process files. This unit of information
is called the File Definition Entry and includes the linkname. Although its
creation and usage are not explicitly affected by the user program, a basic
understanding of this entry is desirable.

The link name (or logi:;al filename) is a file-reference variable usually declared
in the user program. [t provides the link between the user's FILE command,
the file itself, the FCB, and the TFT. It may be assigned references to files or
devices and become:; a parameter to the executing program; although,
strictly speaking, VMOS is file-oriented, not device-oriented. Some
linknames belong to -:he system and are preinitialized, such as COBLIB (for
the COBOL Source Library) and ERRFIL (for the post compilation
diagnostic file).

DMS performs all file I/O in terms of linknames and the LINK parameter
must be included in the FCB for a file. When this parameter is not specified,
a default value of spaces is assumed.

The linkname also supplies the link for qualified filenames. For instance,
COBOL conventions do not allow the use of qualified filenames, as the
period has special meanings for COBOL. Thus, a COBOL program wishing to
read a file called PA YROLL.A would identify a file called INPUTFIL and
the user would supply the FILE command as /FILE PAYROLL.A,
LINK=INPUTFIL, eSl:ablishing the link between the two names.

The RELEASE comnland removes the association of a linkname with a file
(or device). If the linkname reference was to a device, it will be relinquished
(unless there was a KEEP parameter).

When a File Definitic,n Entry is created, it is placed in a table called the Task
File Table (TFT). The TFT is a chain of elements that is built by the OPEN
(and the FILE or HOLD command) and reflects all files and devices in use
by a task. The first ,~lement of the TFT is pointed to by the Task Controll
Block (TCB). Each element is identified as to creator, active or inactive, type
(TOS or VMOS), and the length of the volume element. The DSECT IDTFT
is used to referenc~ the fields in the TFT. Figure 2-7 illustrates the
relationship between the various commands, linknames, and TFT.

2-66

WHEN

1-

CD FILE
ISSUED

l
...

-=:. 0

-=---._--- ... 2.

0
,.

HOLD
-~ ISSUED n ...

3.
.,

-~

OPEN

CD ISSUED
---.:~

(FIRST
SEARCHES
FOR
LlNKNAME) 0

.---

POINTS TO

'(TFT

0 0 0 0 0 0 0

FILE INFO

(INCLUDING

LlNKNAME)

LlNKNAME

A

LlNKNAME

(NOT REMOVED

AT CLOSE)

0 0 0 0 0 0 0

""'-
"'

~
~

TCB

ETCBFIL

OPEN
LlNKNAME

A

!:::!.Q!..Q
STATUS FOUND

DROP
R"E'SET H 0 L 0
INDICATOR

RELEASE
DELETE
FOE FROM
TFT

FIGURE 2-7'. FILE DEFINITION ENTRY, LINKS, AND TASK FILE TABLE

The File Definition Entry can be created in one of three ways:

1. A FILE command (macro) is issued. Note that a FILE command is
mandatory for a new file. All pertinent information specified in a FILE
command is encoded and placed in this entry. Most of this encoded
information is subsequently used by OPEN. The entry contains the symbolic
linkname which makes the connection to other commands (for example,
RELEASE) as well as to the FCB.

2. A HOLD command is issued for a file definition which has not yet been
created. This is a trivial case, since nothing more than a skeleton entry is in
the TFT.

3. An OPEN macro instruction is issued. OPEN searches the TFT for an
entry with the linkname specified in the FCB. If one is found, information in
that TFT entry is used by OPEN to complete its processing (for example, to
complete and/or change FCB parameters).

If no TFT entry is found, then, OPEN creates one. If a TFT entry is created
by OPEN, file characteristics are not moved from the associated FCB to the
TFT. Note that when the file is CLOSED, this entry is not removed.
Similarly, for example, a HOLD or RELEASE command could be issued for
this TFT entry by specifying the linkname.

2-67

Filename and OPEN Macro Relationship

When a specified file, not prefixed by $userid, is to be Opened and is not
found in the user's catalog, the controller's catalog is automatically searched.
If such a file is found in the controller's catalog, and if the file is marked
sharable, that file will be processed. Of course, password and access
restrictions will still he obeyed.

CAUTION: The automatic searching is performed by OPEN
but not by the DMS commands of CATALOG, ERASE,
FILE, and FSTATUS, although the FILE command passes on
the filename to the FCB.

CLOSE Processing and Function of CLOSE Macro

Any file that has been Opened must be Closed to indicate that file processing
is complete. At program termination, all files not closed by the program are
closed by the system.

CLOSE processing consists of the following functions:

1. Releasing buffer areas automatically attained by the system and any other
system-acquired control areas.

2. Performing all lahel verification and creation as specified by the label
type. Refer to "Peripheral Conversion Routine" of the VMOS Service
Routines Manual for complete details.

3. Updating the cata10g entry if necessary.

4. Ensuring that penciing write operations are completed.

5. Performing volUfle positioning as indicated in the CLOSE macro
instruction.

6. Restoring the FeB to its original state (that is, as it was prior to the
issuance of the OPEN macro-instruction).

7. Unlocking any data block the user has locked in closing the file.

The CLOSE macro is described in detail under "VMOS General Service File
Management Macros" in the appendices of this manual.

Access Methods

The Access Method~; supported in VMOS by its Data Management Systenl
allow the programmer to define his data formats and the method used to
access this data. ThL~ user combines the FCB, OPEN, and CLOSE macros
with a particular aCI:;ess method and the action macros associated with the
performance of data handling operations. Table 2-8 summarizes the various
access methods in terms of: record formats and device types associated with
each, and the files c}~eated by other access methods which may also be used
as input.

2-68

TABL.E 2-8. ,ACCESS METHODS, RECORD TYPES, AND DEVICE TYPES

Access
Method

Record
Formats

Device
Types

Other Access Method
Files Allowed as
Input

PAM

SAM

ISAM

BTAM

EAM

ACCESS METHOD RELATIONSHIPS

Fixed

I
Fixed

Variable

Undefined

{

Fixed

Variable

{
Fixed

Undefined

Fixed

Direct-access
Tape (single
reel, standard
blocks)

Direct-access

Tape

Direct-access

Tape

Direct-access

SAM

ISAM

PAM

PAM

PAM

SAM

The privileged version of Prilnitive (or Primary) Access Method (PAM), used
by various access methods (as well as privileged users), is summarized in
figure 2-8.

S~T EAM 2
ACCESS r -- ----,

USER
PAM

TAPE L ________ : PRIVILEGEDtE:: L~ __

~
MM I

STANDARD BLOCK SIZE ~ I

L_-_if_-_.J
NONSTANDARD I
BLOCK SIZE I

j
I r------,
I I I
L I PRIVILEGED I
-----I USERS I

I
I

~-------I EXCP

FIGURE 2-8. ACCESS METHOD RELATIONSHIPS TO PRIVILEGED PAM

BTAM

" EXCP

Note that BTAM never uses PAM and that SAM (tape) need not use it.
Accordingly, tape formats can be controlled as the user desires.

2-69

The most significant point concerning PAM is that all direct access volumes
are assumed to be preformatted. PAM assumes - except for tape - that the
file has been formatted into physical blocks of 2048 bytes (VMOS half-page
or PAM Page), and that logically, each volume is partitioned into blocks c)f
2048 bytes. The nUlnber of such blocks will depend upon the device:

8564 (Disc Unit)

Each 8564 disc pack contains physical half-pages numbered 1 through 3046.
The device is partitioned with each even numbered track containing one full
half-page and the first half of another half-page. Each odd numbered track
contains the second half of the split half-page from the preceding track and
another full half-page. Each extent of a file must contain an even number of
contiguous tracks on each cylinder (this does not imply that files have a
cylinder orientation) of which the file is comprised. Furthermore, the disc
drive must have the track overflow special feature.

8590 (Disc Unit)

Each 8590 disc pack contains physical half-pages numbered 1 through
12180. Each track contains three half-pages.

8568 (Mass Storage Unit)

Each magazine contains physical half-pages numbered 1 through 3276,g.
Each track contains one half-page.

Magnetic Tape

Each reel contains n physical half-pages, limited only by reel length. Each
half-page comprises one physical block on the tape.

In addition to data, each physical block of a PAM file contains a control
field of 16 bytes structured as shown in table 2-9.

TABLE 2-9. PAM BLOCK CONTROL FIELD

coded file
name

No. of
Bytes: 4

file
ver;ion
number

logical
half-page
number

3

Available to user if utilizing
PAM directly. Access methods
(ISAM, SAM, EAM) use this
field for coded information.

8

On direct access devices, this PAM block control field is recorded as the
hardware key field. On magnetic tape devices, it is prefixed to the data, using
the data chaining fl~ature. Note that the key field makes the physical tape
block 2064 bytes. Since the block is a multiple of 3, reverse processing is
also available with 7 ·level tapes.

2-70

RElcord and Block Formats

logical Records

A block is defined as the unit of transfer to or from an I/O device. For
example, it is the data between two gaps on a magnetic tape.

A standard block is a physical block (PAM page, VMOS half page) which
consists of 2048 data bytes and 16 bytes of key. That is to say, it is the unit
of transfer for PAM as described previously. Accordingly, any file (except a
BTAM file) which is composed of standard blocks is always processed by
PAM. All direct access files are composed of standard blocks.

A nonstandard block is a block of data (other than a PAM page) on magnetic
tape which may be of any size less than or equal to 4096 bytes. There may
be other size restrictions appropriate to the kind of tape drive employed (for
example, a minimum block size of 12 bytes, a block size which is a multiple
of 3 to allow reverse processing on 7-level tapes). Note that each
nonstandard block in a file need not be the same size. No block can exceed
the nlaximum size (specified in the BLKSIZE parameter in FCB).

Tape files processed by SAM may be composed of standard or nonstandard
blocks. Of course, a given file cannot contain both kinds of blocks. When
nonstandard block files are processed (either by SAM or BTAM), processing
is effected by utilizing the physical level I/O macros (for example, EXCP)
rather than PAM.

A buffer is defined as a contiguous area of memory. It is a portion of main
storage into which data is read or from which it is written. If a block is
nonstandard, then block and buffer are essentially equivalent. If a block is
standard, the buffer must be a multiple of block size (that is, 2048, 4096, ...)
and rnay have a maximum value of 65,536.

The system supports three types of logical record formats:

I. Fixed length - format-F (all access methods).

2. Variable length - format-V (SAM, ISAM).

3. Undefined length - format-U (SAM, BT AM).

A fixed-length record is specified for files whose logical records all contain
exactly the same number of bytes.

A variable-length record is specified for files containing logical records which
vary in length and which contain user-supplied information that gives the
length of the record. The first four bytes of each record is in the form lIb b,
where 11 contains a binary number specifying the length of the record, in
bytes; bb are two characters reserved for use by DMS and should not be
utilized by the user. The b b portion of a record being added to a file may be
modified by the access method processing logic during the action of moving
the record into the file.

2-71

An undefined recol d is specified if the logical records in a file are neither
format-F (fixed) nor format-V (variable). A fornlat-U record is identical to a
buffer. Accordingly, such records are a multiple of 2048 when standard
blocks are specified.

It is important to note two points:.

1. A logical record cannot exceed buffer size.

2. A logical record can exceed block size provided the file is composed of
standard blocks.

The logical record types supported by the access methods are summarized in
table 2-10.

TABLE 2-10. LOGICA,_ RECORD TYPES AND ACCESS METHODS

Logical Record Type

Access Method F V U Comment

PAM X Assumes 2048-byte block.

SAM X X X

ISAM X X

BTAM X X* X Assumes one record per block.

EAM X Assumes 2048-byte block.

*Treated as undefined.

Examples of Record/Buffer/Block Relationships in SAM and ISAM

I. Assume:

Format-F records of 100 bytes
Standard blocks
Buffer size=2 blocks=4096 bytes.

The buffer is composed of 40 logical records; the rightmost 96 bytes of the
buffer are unused; revertheless, two 2048-byte blocks are written. Note that
record 21 of the buffer is contained in two blocks; the first 48 bytes are in
block 1, the last 52 bytes are in block 2.

2. Assume:

Format-F records of 100 bytes
Nonstandard block (tape only)
Buffer size=2020 (o~.tensible block size).

The buffer is composed of 2020 bytes; since only 20 records can fit into the
buffer, a 2000-byte block is written.

2-72

3. Assume:

Fonnat-F records of 1500 bytes
Standard blocks
Buffer size= 1 b1ock=2048 bytes.

This is a bad choice since 548 bytes are wasted. A desirable buffer size would
be three blocks (6144 bytes). Now the buffer will contain four records, and
6000 bytes are utilized. Three blocks, each of 2048 bytes, are written.

4. Assume:

Format-V records with the following sizes:

100,500,300,800,200,400,700,50,100

Nonstandard blocks (tape only) and BLKSIZE= 1 000.

The following blocks are created:

BLOCK SIZE 900 1000 400 850

~1_00 ____ 5_00 ___ ~ 800 200 8 700 50 100

5. Assume:

Format-F records of 8192 bytes
Standard blocks
Buffer size==8 blocks= 1684 bytes.

Each buffer contains two logical records; each logical record requires four
blocks.

BUFFER C 16384 I
C RECORDl

I

I
LOGICAL I RECORD 2
RECORDS I

I

BLOCKS [J2 I 3 I 4 : 5 I 6 I 7 8 I

2-73

PrimitiJJe Access Method (PAM)

The Primitive (or PIimary) Access Method (PAM) provides the user with
efficient means to ac ;;ess and create standard blocks in a random fashion. A
block may be read from any portion of the file at any time. Similarly, blocks
nlay be written to a tly portion of the file. PAM does not support logical
record processing; blocking and deblocking must be accomplished by the
user. Overlapped I/O Jperations are possible, if desired by the user.

The PAM macro instructions are as follows:

1. All general service lnacro instructions (for example, OPEN).

2. PAM which includes the following operations:

RD/RDWT - read dlta into core storage and optionally wait for 1/01
completion.

WR T /WR TWT - write data from core storage and optionally wait for 1/01
completion.

WT - ensure completion of an I/O operation.

CHK - determine completion status of an I/O operation.

P AM may be used to process any direct access file and any single reel tape
file created with sta ndard blocks. PAM may freely read SAM or ISAM:
direct-access files.

Logical file properties are placed in the FCB (for example, BLKSIZE:,
RECSIZE, RECFORJVl) so that the user program can perform appropriate
functions (for example, deblocking). Regardless of the file's properties, PAM:
nlerely reads and/or writes one block at a time.

CAUl10N: In general, the user program cannot effectively
proce~.s an ISAM file using PAM, since the complex
relationship between ISAM logical records and indices is not
apparent. However, PAM could be used to copy an ISAM file
to tape (on a block-by-block basis). Similarly, a file created
by P l .. M can be processed by other access methods. It is
strictI:1 the user's responsibility to construct a file in the
exact format required by the access method (for example, no
unused or missing blocks if processed by SAM; proper
construction of the key field; construction of ISAM indices),
Again: it is emphasized that such esoteric applications are
beyond the requirements of most users.

2-74

PAM RECORD FORMATS

PAM supports one record format:

Fixed length - format-F

Although short records may be read or written on direct-access volumes, the
physical data blocks are always 2048 bytes in length. PAM assumes that
there is exactly one record per block (or buffer, which for PAM is
equivalent).

Opening a PAM File:

The file ll1lay be opened in the following ways:

1. INPUT: Retrieve records from an existing file.

2. OUTIN: Create a new file and retrieve records from the file. Note that
labels are created since a new file is being generated.

3. INOUT: Retrieve records from an existing file and add and/or replace
records. Note that labels are not created since the file is assumed to exist.

Table 2-11 defines the macro options which may be used with each type of
OPEN.

TABLE 2-11. PAM MACRO OPTIONS VERSUS OPEN TYPE

PAM
Macro Options INPUT OUTIN INOUT

RD X X X

RDWT X X X

WRT X X

WRTWT X X

CHK X X X

WT X X X

The PAM macro is described in detail in Section 2 of Part 3.

Sequential Access Method (SAM)

The Sequential Access Method (SAM) provides a means for accessing records
sequentially beginning at a specified point. This organization is most useful
for making a sweep through the records of a file, including (for direct-access
files) getting a record, updating it, and returning it to the file. Records can
also be added to the file. Unlike ISAM, no additional space is required other
than that needed by the logical records.

SAM automatically performs all blocking, deblocking, and buffering for the
user. If the user requests the system to utilize only one I/O area (buffer), no
buffering (overlap) can be performed.

2-75

Logical records are retrieved by use of the GET macro instruction. SAM[
anticipates the need for records based on their sequential order (the order in
which they are written) and normally will have the desired record in storage,
ready for use. Logical records are designated for output by use of the PUT
macro. The prograra can continue as if the data record was written
immediately, although the access ·method's routines may perform blocking
with other logical rl~cords and delay the actual writing until the output
buffer has been filled. Buffers are automatically scheduled by the system ..
SAM is, for the mDst part, device independent and allows files to be
processed on magnetic tape and direct-access devices.

Transmission of data to and from the file may employ either of two modes:

Move mode. - The user specifies the location of the record in his program,
and the system is responsible for transferring it to or from the buffers.

Locate mode. - The user requests the location in the buffer area of the
current record. The user is responsible for transferring data to or from the
buffers.

The following action macros are available in SAM to control file processing:

GET

PUT

RELSE

SETL

FEOV

PUTX

Retrieves the next record from the file in physically
seque atial order.

Place~. a logical record in the file.

Causes any remaining logical records in a buffer to be
bypassed for input. For output, the next logical record
created is written as the first record of a new buffer.

SpecL'ies the position from which subsequent file processing
is to take place.

Advances the system to the next (tape) volume of a file
befor[~ the end of the current volume is reached.

RetuIns an updated logical record to the file (direct-access
volunles only).

For files opened OUTPUT or EXTEND, SAM interprets each PUT or SETL
Inacro instruction as an end-of-file indicator. The last PUT or SEtL prior to
CLOSE for a file thus automatically defines an end-of-file indicator for the
system. If the user wishes to delete all records beyond a given record, he can
use the SETL macro instruction to position the desired file point, and then
issue a CLOSE ll1acrC I instruction.

2-76

For files created with standard blocks, a retrieval address is made available to
the user. The format of this address is described in detail at the end of this
macro instruction under FCB retrieval address. When a logical record is
stored (by execution of a PUT macro instruction), its retrieval address is
made available in the FCB. The user can, if desired, construct another file
from this retrieval address data and thereby establish a basis for subsequent
nonsequential processing of the original file being created. Note that this
retrieval address is also available in the FCB after the execution of the GET
macro instruction. Accordingly, if the user did not create the file entered
into the system, he can still create a secondary file from the GET retrieval
addresses to facilitate nonsequential processing of the original file.

SAM RECORD FORMATS

SAM supports three record formats, as follows:

1. Fixed length - format-F

2. Variable length - format-V

3. Undefined length - format-U

CAUTION: For format-U, SAM places one logical record per
physical block (buffer). The user who specifies standard
blocks (2048 bytes) and outputs 48-byte logical records
would waste 2000 bytes.

The size of logical record cannot exceed the buffer size (refer to BLKSIZE
parameter).

For OUTPUT files, SAM requires initial space allocation of at least one
buffer length, plus an additional one buffer length if the user wishes to
process in 1uove mode.

Note that a record format other than that used to create the file can be
specified when an existing file is opened INPUT or REVERSE. For example,
a file which was created as a set of format-F records can subsequently be
retrieved as a set of format-·U records. Thus, the system would, in effect,
return to the problem program a set of logical records (namely, all those in a
buffer) for each GET macro instruction issued.

The following rules apply to 7-level magnetic tapes:

1. The physical block size (reference BLKSIZE parameter) must be a
multiple of 3 if reverse processing is anticipated. It is not necessary that
format-V or format-F logical records be a multiple of 3.

2. Format-U records must be a multiple of 3.

2-77

OPENING A SAM FILE

The file may be opened in the following ways:

INPUT

REVERSE

OUTPUT

EXTEND

UPDATE

Retrieve records from an existing file in forward direction.

Retrieve records from an existing file in reverse direction.
Multivolume tape files cannot be opened REVERSE.

Create a new file or replace an existing file.

Add records to the end of an existing file.

Retrieve and replace records in an existing file. The PUTX
macro is used in locate mode to rewrite logical records. Each
record, however, must be first retrieved by a GET macro
using locate mode. The user may not change the length of the
record involved. This option is restricted to files on direct
access devices.

Table 2-12 defines the action macros which may be used with each type of
OPEN.

TABLE 2-12. SAM ACTION MACROS VERSUS OPEN TYPE

OPEN INPUT OUTPUT EXTEND UPDATE REVERSE

GET X X X

PUT X X

PUT X X

SETL X X X X X

RELSE X X X X X

FEOV X X X

Other action macros lnaintain the retrieval address as follows:

GET

PUT

RELSE

FEOV

If the specified record causes a new buffer to be retrieved:,
bbbbbb is set to designate the buffer number for the record:,
and IT is reset to 00.

If the specified record causes the existing buffer to be
written, bbbbbb is set to designate the buffer number for the
recore, and IT is reset to 00. That is, it is set to the number of
the bvffer in which the record will be placed.

If the file is opened OUTPUT or EXTEND, bbbbbb is set to
the number of the buffer in which the next record will be
placeCl, and IT is set to 00.

For tape, the retrieval address field is set to 00000100.

2-78

Programming Notes

This field is only supported for tape files which are created with standard
blocks.

It is important to note that bbbbbb is buffer oriented.

Example:

Assume BLKSIZE= (STD,2)

RECFORM= F

RECSIZE= 51 2

The retrieval address for the 10th record is 00000202; and 00000304 for
20th record.

Note that the system never increments the rr field beyond a single buffer. It
is reset, as previously described, to zero when a new buffer is to be
processed. The user can increment the rr field, if preferred, to maintain
retrieval address information for each logical record.

USE OF PAM KEY IN SAM

The format of the rightmost eight bytes of the PAM Key in SAM files is:
BBBXLLXX, where BBB is the buffer number in binary, X is unused and LL
is the length of useful data in the buffer. Note that the first X byte (byte 4)
is reserved for future system use .

. Indexed Sequential Access Method (ISAM)

The Indexed Sequential Access Method (ISAM) processes logical records in
an indexed-sequential file. It may be used to:

1. Create an indexed-sequential file in sequential or nonsequential manner.

2. Retrieve logical records of the file in sequential or nonsequential manner.

3. Update records in sequential or nonsequential manner.

4. Insert new records in proper logical sequence within the file.

5. Delete selected records from the file.

6. Retrieve the next sequential record in the file which contains requested
flags.

Transmission of data to and from the files employs either of two modes:

Move mode. - The user specifies the location of the record in his program,
and the system is responsible for transferring data to and from the buffers.

Locate ITlOde. - The user requests the location in the buffer area of the
current record, and is responsible for transferring data to or from the
buffers.

2-79

The following action macros are available in ISAM to control file processing:

GET

GETR

GETFL

GETKY

PUT

PUTX

INSRT

STORE

ELIM

SETL

ISAM RECORD FORMATS

Retrieves the next logical record in the file in ascending
sequential order of the record keys.

Retrieves the next logical record in the file in descending
sequential order of-the record keys.

Retrieves the next logical record satisfying the flag criteria.

Retrie ves the logical record with a specified record key.

Adds a logical record to the file. PUT is normally used to
initially create the file by recording logical records in
ascending sequential order according to their record keys.

Replaces a record; retrieved by GET, GETR, GETFL, or
GETKY.

Places a new record in the file in the position determined by
its rec,)rd key.

Places a new record or replaces an old record in the file in the
position determined by its record key.

Elimin ates a record from the file.

Specifies the location in the file from which subsequent
processing is to take place. The beginning of the file, the end
of the file, or the location of a record with the designated
key may be specified.

ISAM supports two fE cord formats, as follows:

1. Fixed length -- fonnat-F

2. Variable length - fJrmat-V

Only standard blocks are allowed; however, buffer size may range from 2048
to 65,536 bytes. The key must be contained within the record at a fixed
position and be the same size for each record in the file.

OPENING AN ISAM FILE

When an indexed-sequential file is Opened, any of the following optional
types of processing m IY be specified:

INPUT

OUTPUT

EXTEND

INOUT

Retrie ves records from an existing file (sequentially and/or
randomly).

Creates a new file.

Adds records to the end of an existing file.

Retrie ves, deletes, replaces, and inserts records in an existing
file. Additionally, records may be added to the end of the
file.

2-80

OUTIN Retrieves, deletes, replaces, inserts, and stores records in a
new file. Any information initially in the file is lost.

Table 2-1.3 summarizes the ISAM processing applicable to each type of
OPEN.

TABLE 2-13. ISAM ACTION MACROS VERSUS OPEN TYPE

Action
Macro INPUT OUTPUT

GET B

BETR B

GETFL B

GETKY B

PUT B

PUT X

INSRT

STORE

ELiM

SETL X

Legend:

M - action macro functions in move mode only.
B -- action macro functions in move mode or locate mode.
X -- action allowed.
A - blank (entry specifies that the action is not allowed.

EXTEND

B

INOUT
OUTIN

B

B

B

B

M

B

M

M

X

X

Note: Only the Move Mode is permitted for the PUT macro
w hen the file is Opened IN 0 UT or 0 UTIN .

Buffering (overlap) of I/O operations is supported for all modes of OPEN.
Buffering ils optional for the GET and GETR action macros.

Note that these macros do not require the supervisor call (SVC) instruction
until all logical records in the current buffer have been processed.

If look-ahead buffering is not desired, the programmer should specifically
omit the OVERLAP FCB parameter. When buffering is specified and the
program switches from forward to reverse processing, or from random to
sequential processing, the I/O to bring in the next sequential buffer is
initiated irnmediately. Unless processing is strictly sequential, this can result
in inefficient operation because of the system resources required to input
data which is never accessed.

Note that PUT operations are always overlapped.

2-81

If padding factor is specified, space is reserved only during the sequential
creation of the file 'via the PUT action macros. The INSERT and STORE
action macros will attempt to use all the space available in a data block.

FLAGGED ISAM FILES

Flags are a method (If limiting sequential searches on ISAM files. There are
two types of flags: a value flag (such as tickler or date flag in TDOS ISAM)
and a logical flag. Flagged ISAM files may contain value flags or logical flags,
or both. The flag is part of the user's logical record; the value flag
immediately follows the key and the logical flag immediately follows the
value flag (or the key, if there is no value flag).

User Record:

DATA

I
I
I

KEY VALUE FLAG LOGICAL FLAG

\. ---------_ ------------)1 V

I FLAG AREA I
I I

~~------.---------------- ----------------) 'V

INDEX AREA

DATA 1

The only constraint:; on key length, value length, and logical length is that
their sum must not exceed 255 and the key length must be at least 1.

Flag Information is propogated upwards through all levels of the ISA~,f
index.

Value Information is propagated by either a MAX or a MIN function as
specified by the user. If the (MAX, MIN) function is specified, each Index
entry will contain the (highest, lowest) value flag of the next lower level
block (data or index) to which it points. The method of value 'flag
propagation used is a function of the data in the file and how the file lis
normally going to be searched. Logical flags are propagated by OR'ing
together all the flags of the next lower block. Note that this destroys zeros;
therefore, if a file is to be searched for males on one occasion and females on
another, two bits are required to indicate sex.

Flags limit searching of ISAM files at the highest index level possible.

Opening a Flagged ISAM File:

If either V ALLEN or LOGLEN is unequal to zero, the file is assumed to be
flagged. If the file previously exists (OPEN type is INPUT, INOUT, or
EXTEND), the catalog values of VALPROP, VALLEN, and LOGLEN may
be defaulted, but they cannot be changed by the FeB macro or FILE
command.

2-82

ISAM SHARED FILE UPDATE

The ISAM: shared file update facility permits two or more users to open the
same ISA1v1 file simultaneously for the purpose of updating it. The facility is
designed around two basic concepts:

The attribute of file sharability is defined by the user when the file is
Opened.

To avoid conflicts between two or more programs in attempting to access
and update the same data records, a locking and unlocking mechanism is
available to the user at the data block level. Where lock/no lock options are
superfluous and locking must be accomplished, ISAM provides automatic
locking of the data block.

Shared update facilities available to the user are described below in detail.

OPENING AN ISAM SHARED FILE

The first user to open an ISAM file may open it with any combination of
values for OPEN and SHARUPD. The following chart indicates (by an X
which OPEN/SHARUPD combination will be permitted when user B tries to
open the same file user A has already opened. If more than one user has
already opened the file, the OPEN/SHARUPD combination of user B will be
compared against the OPEN/SHARUPD combination of every user who has
opened the file; user B can open the file only if each such comparison
perrnits him to do so.

USER
I-~

S
H
1\

Ft
U

P'
[)

=
Y
E

5

S
H

I-~

H

LJ
p

D

--
N

0

INPUT

INOUT

EXTEND

OUTIN

OUTPUT

INPUT

INOUT

EXTEND

OUTIN

OUTPUT

SHARUPD=YES

I I E 0
N N X U
P 0 T T
U U E I
T T N N

D

X X X

X X

X X

X X

X X

X

2-83

USER B

SHARUPD=NO

0 I I E 0 0
U N N X U U
T P 0 T T T
P U U E I P
U T T N N U
T D T

X

X

PROCESSING AN ISAM SHARED FI LE

When more than one user is updating the same file, it is necessary to lock
portions of the file triefIy in order to prevent two users from attempting to
update the same record simultaneously. This locking is done at the data
block level. Sonle of the ISAM action macros (i.e., PUT, STORE, INSRT,
and ELIM (KEY)) are "self-contained," that is, one macro locks, updates:,
and unlocks the neCE ssary block. Others require two macros to perform the
entire sequence: a GET, GETR, GETKY, or GETFL to lock the block and a
PUTX or ELIM (no KEY) to update and unlock the block. As a
consequence, an optional LOCKjNOLOCK parameter may be specified for a
GET, GETR, GETKY, or GETFL macro.

If a data block has bt::en locked by a GET, GETR, GETKY, or GETFL which
specified LOCK, then other users can read the block (Le., can refer to a
record in the block with a SETL or with a GET, GETR, GETKY, or GETFL
which specifies NO LOCK), but other users cannot update the block (Le.,
cannot issue a PUT, STORE, INSRT, ELIM, or PUTX which will update the
block) or lock it with a macro specifying LOCK. If NOLOCK is specified,
then other users can read, lock, or update the block.

If SHARUPD = NC, then the LOCK parameter is ignored in the GET,
GETR, GETKY, or GETFL macro processing and no locking occurs.

USE OF LOCK/NOLOCK PARAMETER WHEN SHARUPD=YES

A data block locked by one user can be read but not updated by other users,
and it is not pos~ible for two users to lock the same data block
simultaneously. On the other hand, a user who is reading a data block but
has not locked it pennits other users to read or update the block. Thus, the
use of NOLOCK in the GET, GETR, GETKY, and GETFL macros increases
the degree of data block sharability. However, LOCK must be specified if the
data block is to be updated via a PUTX or ELIM (no KEY) or if the user
wants to ensure that no other user will update the data block while he is
reading it.

Lock ing Data Blocks

User may have more than one ISAM file opened with SHARUPD = YES, but
can only have one data block locked at a time.

Conceptually, the first step of every ISAM action macro which will lock a
data block is to unlock any data block this user has locked in any file. Also,
every ISAM action 11acro will unlock any locked data block in the file to
which the macro is issued. (GET, GETR, and PUT will not actually unlock a
data block if the same data block would be relocked later in the macro
processing, and PUTX and ELIM (no KEY) do not unlock the data block
until the updating is completed.)

2-84

Implicit Locking and Unlocking of Data Blocks

In addition to the explicit locking done by GET, GETR, GETKY, and
GETFL and the explicit unlocking done by PUTX and ELIM (no KEY), each
ISAM action macro can cause certain data blocks to be locked or unlocked.

If SHARUPD = YES, a PUT will lock the last data block in the file and leave
it locked at the end of the macro. Also, if SHARUPD = YES, a STORE,
INSRT, or ELIM (KEY) will lock the affected data block before the update
and will unlock it when the updating has been completed.

In order to avoid a deadlock situation, each user can have at most one data
block locked at one time, regardless of how many files he has opened. To
ensure this, when a user issues an ISAM macro which will lock a data block
(i.e., SHARUPD = YES for the file and the macro is a STORE, INSRT,
ELIM (KEY), or PUT or is a GET, GETR, GETKY, or GETFL specifying
LOCK), any data block that user has previously locked (in any of his files)
will be unlocked. If a locked data block is in the file to which the macro
refers, it will be unlocked even if the macro will not lock a data block
(except that the data block will not be unlocked if the macro is a GET,
GETR, or PUT which will relock the same page).

When a PUT is issued for a file opened in locate mode, IOREG is updated
and the appropriate data block is locked. The user must move the record to
or build the record at the location specified by IOREG before the data block
is unlocked (i.e., before execution of another ISAM action macro).

Updating a Data Block

Before a data block can be updated, that block and all associated index pages
must be llocked.

If an index page is split during the update, one of the two resultant pages
will be kept in the buffer at that level and one will be written out.

When the update is complete, all index pages and the data block are
unlocked.

CONTINGENCY EXITS

LOCK Exit

USERERR Exit

Control is given to the user at this LOCK exit whenever he is unable to
OPEN his file due to a conflict between his OPENjSHARUPD specifications
and those of the users who have already Opened the file.

In addition to other uses of the USERERR exit, if the file is opened with
SHARUPD = YES, the user will be given control at this exit if he issues a
PUTX or ELIM (no KEY) without first locking the data block or if he issues
a' GET, GETR, or GETFL after taking his PGLOCK exit without first
repositioning his file (as described in the PGLOCK Section below).

2-85

PGLOCK Exit

This exit is meaningflll only if the file was opened with SHARUPD = YES.
Control will be given to the user at this exit whenever a data block (or index
page), which must be :referenced in the course of processing an action macro,
is inaccessable because of the manner in which another user is accessing it.
(For example, if one lser has locked a data block and a second user tries to
lock it, the second user will be given control at his PGLOCK exit.)

It is possible for any :11acro issued for a file op~ned with SHARUPD = YES
to cause control to be passed to this exit. Unless caused by a PUTX or an
ELIM (no KEY), the "internal pointer" will be invalid when the PGLOCK
exit is taken. Thus, it is necessary to reposition this pointer before issuing a
macro which assumes that it is valid (i.e., GET, GETR, and GETFL). The
pointer can be repositioned by issuing the RETRY macro or one of the
following ISAM action macros: GETKY, SETL, PUT, STORE, INSRT, or
ELIM (KEY). If a GET, GETR, or GETRL is issued before the pointer is
repositioned, control will be passed to the USERERR exit. If the macro
which caused the PGLOCK exit to be taken was a PUTX or an ELIM (no
KEY), the data block will still be locked at the PGLOCK exit and no
repositioning is necessiiry.

CONSIDERATIONS IN USING SHARED UPDA1E FACILITIES

When to Use ISAM Shared Update

Specifying SHARUPD = YES for a file causes detailed tables to be set up in
class 4 memory, while SHARUPD = NO only causes the creation of one or
possibly two table entries. In addition, the detailed tables created by
SHARUPD = YES mu~t be maintained at every ISAM macro, while the entry
created for SHARUPD = NO is only updated at OPEN/CLOSE time. Thus, in
order to save time and class 4 memory, SHARUPD = YES should be
specified only when i1 is known that more than one user will be opening the
file at the same time, and that at least one of the users will be updating it
(Le., will have OPEN = INOUT, OUTIN, OUTPUT, or EXTEND).

Opening and Closing an ISAM Shared Update File

When a file is opened with SHARUPD = YES, detailed tables are created in
class 4 memory. These tables must be checked and maintained by all users of
ISAM. In general, to avoid unnecessary overhead, a user should not open a
file until ready to process it, and should close it as soon as its processing is
finished.

CLOSE processing will unlock any data block the user has locked in the file
being closed.

Locking and Unlocking Data Blocks

Issuing macros which alternately lock and unlock data blocks can cause
unnecessary overhead. [n some situations, this overhead is unavoidable, as in
the case of the GET/PUTX sequence, where the GET must lock the data
clock if SHARUPD = YES and the PUTX must unlock it. However, through
careful program design, the user may be able to avoid such situations as
issuing GETs which specify LOCK alternately to two or more files or issuing
GETs which alternately specify LOCK and NOLOCK to the same file. This is
especially important where GET, GETR, and PUT are concerned, because
locking and unlocking require an SVC, while GET, GETR, and PUT can
usually be processed b:{ PI code.

2-86

Use of Duplicate Keys with a Shared Update File

When a user is reading a file sequentially (i.e., is issuing GETs, GETRs, and
GETFLs) and the file is opened with SHARUPD = YES, he must be careful
if there are duplicate keys in the file. If another user had modified an index
page associated with the data block this user is reading, it may be necessary
for I SAM: to reposition the user in the file based on the modified index
pages. (in effect, ISAM issues a SETL KEY to reposition the user.) However,
if the key involved is one of a sequence of duplicate keys, the user may be
positioned at an unexpected record in the sequence. It is the user's
responsibility to keep track of which records in the sequence he has
processed.

The RETRY macro may cause the same unexpected positioning for a file
with duplicate keys. This condition is described in detail under the section
devoted 1to the RETRY macro.

Fi Ie Reconstruction RESET Command

When more than one user opens an ISAM file with SHARUPD = YES and
OPEN = INPUT, the File Reconstruction System notes only the first OPEN
and the last CLOSE (ignoring any nested or overlapped OPENs and CLOSEs)
and uses this outermost OPEN/CLOSE pair in the OPEN count. Using the
COUNT parameter in a RESET command for such a file may give
unexpected results (i.e., the file may be reset to an earlier OPEN than the
user expects). Thus, for these files, the TIME parameter should be used
instead of the COUNT parameter in requesting the resetting of the file.

ISAM FILE STRUCTURE

An I SAM: file is made up of data blocks (2048 bytes) and index blocks.
Entries in the data blocks contain the user's logical records. Entries in the
index blocks contain pointers to either lower level index blocks or, in the
case of 1the lowest level index block, to data blocks. Specifically, for each
data block in the file, there exists at the lowest level an index entry of size
KL + 4 where KL is key length [+LOGLEN+VALLEN].

The data blocks, which are also describable as level 0 blocks, have their
records ordered by record key. Moreover, the records in data block i all have
keys greater than or equal to those in data block i-I. Similarly, the records in
data block i all have keys less than or equal to those in data block i + 1.

One should note that an ISAM file is logically structured as a multilevel tree,
as illustrated in figure 2-9.

2-87

Size of ISAM Files

FIGURE 2-9. ISAM FILE INDEX/DATA STRUCTURE

HIGHEST LEVEL
INDEX (IN THIS
CASE: LEVEL +)

INDEX
LEVEL2

LOWEST
LEVEL
INDEX
LEVELl

INTER­
MEDIATE
LEVEL
INDICES

DATA, LEVEL 0

The highest level index block is always present in the file (even if the file is
null, i.e., contains no data blocks). In addition to containing pointers, this
index block contains 36 bytes of ISAM label information which is used
internally by ISAM. Trrerefore, in the calculations that follow, the size of the
highest level index block is effectively 2012 bytes rather than 2048 bytes.

For modest sized files there are no intermediate level index blocks. The
highest level block, being at levell, would therefore contain pointers to
data.

Whenever a file grow:; so large that the highest level index block does not
have enough space to contain pointers to all of the blocks on the next lower
level, that block is split in half and a new highest level index block is created,
one level higher than the old and containing two pointers, one to each half
of the split block.

Because of the many I)ptions which a user can exercise in the creation of an
ISAM file, it is, in general, not simple to calculate the size of the file, the
number of index blocks, or the number of levels of index. The following
formulae are provided as approximations only.

Data Blocks:

RDB = FLOOR (BS/RS)

NDB = CEIL (NR/RDB)

where:

FLOOR =

CEIL =

the greatest integer less than.

the smallest integer greater than.

2-88

RDB=

BS ==

Records per Data Block.

Block Size.

(a) Blocksize = 2048 times the number of half-pages specified
in the BLKSIZE parameter.

(b) If the file is created sequentially by means of the PUT
action macro, BLOCKSIZE must be adjust~d by being
multiplied by (1 OO-PAD)/ 1 00 (note, the default value of
PAD is 15),

(c) If the file is created either sequentially or randomly by
means of the STORE or INSERT action macros, the file is
(to the first approximation) densely packed. Therefore the
value of BLOCKSIZE given in (a) above should be used
regardless of any PAD specification.

RS = Record size,

(a) For F-type records (RECFORM=F), add 4 to the value
specified in RECSIZE,

(b) For V-type records, use the average record length.

NDB = Number of Data Blocks.

NR = Nunlber of Records.

Index Blocks:

NBi = CEIL (NBi-l *(KL+4))
Size

where:

NBi =

NBi =
KL=

Size =

Number of blocks at level i.

Number of blocks at level i-I (note NBo NDB).

Key /flag length as specified as the sum of KEY LEN ,
LOGLEN, and V ALLEN parameters.

The effective size of the index block at level i.

(a) If level i is the highest level Size=20 12 bytes, otherwise
Size=2048 bytes.

(b) If the file is created sequentially, either by the PUT,
STORE, or INSERT action macros, the Size given in (a)

. above must be adjusted by multiplying by .5 except when i is
the highest level index.

(c) If the file is created completely randomly, the value given
in (a) above is approximately correct.

(d) If the file is created with random sets of sequential PUTs,
STOREs, or INSERTs, some adjustment factor between .5
and 1.0 should be used.

2-89

Examples:

Assume:

STD blocks
1000 80-byte records
KEYLEN = 8
LOGLEN = 2
VALLEN = 2
RECFORM = F
PAD:: 10
File created sequentially with the PUT action macro.

RDB = FLOOR (2040*.9/(80+4)) = 21

Each data block ther<~fore contains 21 records.

NDB = CEIL (1 OOO/:~ 1) = 48

There are 48 data blclcks in the file.

NBi = CEIL (48 * (8+4),\= 1
201:~)

Thus, only one index block is required; the total number of half-pages in the
file is 49.

Assume:

STD blocks
100,000 100-byte records (average)
KEYLEN = 5
LOGLEN = 1
VALLEN = 0
RECFORM=V
File created sequentially with the STORE action macro.

RDB = FLOOR (2048/100) = 20

Each data block ther!~fore contains approximately 20 records.

NDB = CEIL (100000/20) = 5000

there are approximately 5000 data blocks in the file.

NBi = CEIL (5000*(6+4)) = 49
(204~,*.5)

Thus there are approlCimately 49 level-l index blocks in the file.

NB2 = CEIL ~m2(6.±lli = 1

The highest level index block in the file is therefore level 2. It can be seen,
from the above equation, that the file would have to contain more than 4
times the specified number of data records before a third level of index
would be required. The total number of half-pages required by the file as
originally specified would be approximately 5000+49+ 1 =5050.

2-90

Data Block Splitting

If a record does not fit where the index indicates it should be, the data block
is "split" such that approximately one-half of the data records are moved
from the original block into a new, empty block.

Example of Splitting Data Blocks

Assume the following file exists:

Block 1 - I ndE!X Block

Entry 1

Key 7
Block 2

Block 2 - Data Block

~rdwlth
L~L

Bloc~< 3 - Oat,,, Block

~'dwith
L~lO

Key 20
Block 3

Record with
Key 3

Record with
Key 15

Record with
Key 7

Record with
Key 20

The user now specifies that a record with a key of 5 is to be inserted. Since
no room exists in block 2, which is the logical block that the record should
be retained in, block 2 is split and the file now has the following structure:

Block 1 - Index Block

[Key 3
Block 4

Block 2 - Data Block

[Record with
Key 5

Block 3 - Data Block

~:ordwith
L-'-:Y10
Block 4 - Data Block

Key 7
Block 2

Record with
Key 7

Record with
Key 15

Key 20
Block 3

Record with
Key 20

~_:_~d __ W_it_h ______ -L _______ ~_:_~O_~_d_W_i_th ________ ~~~~~~~"~u_se~d~~_L-~-4

2-91

ISAM POINTER RUL.ES

[SAM action macros (including OPEN) can be described in terms of two
components:

1. Move an internal pl<Jinter to a specified record.

2. Perform the desired action on the record now pointed to.

It is important to not~ that:

a. The pointer is moved before the action is performed.

b. Certain macros may not require that the pointer be moved
or may specify that only the pointer is to be affected and no
other action be performed.

Table 2-14 summarizes ISAM macros in these regards.

TABLE 2-14. SUMMARY OF ISAM POINTER RULES FOR ACTION MACROS

ISAM
/ktion
Macro Pointer Action Comments

OPEN Positions the pointer to OPEN is listed here only to
an imaginary record specify the pointer result. The
just before the first action resulting from an OPEN
record in the file. is described elsewhere.

GET Moves the pointer Retrieves the record 1. If the pOinter is moved beyond
forward one record. pointed to. the current end of the file, the

user is given control at his
EOFADDR address.

2. If the previous macro was a
SETL or ELiM to a record with
a specified key, the pointer is
not moved before the record is
retrieved.

GETR Moves the pointer Retrieves the record 1. If the pointer is moved beyond
backward one record. pointed to. the current beginning of the file,

the user is given control at his
EOF ADD R address.

2. See GET, comment No.2.

PUT Moves the poi nter to Places the record in the
just beyond the current file at the position
end of the file, if not pointed to.
already there.

GETKY Moves the poi nter to Retrieves the record For the sake of describing the
record with the speci- pointed to, if it exists. pOinter placement only, one can
fied key, or to the consider a GETKY of a non-
position in the file existing record to be equivalent
where such a record to a GETKY of a record of
would exist, if a length 0 in between two existing
matching key is not records. Thus, a succeeding GET
found. or GETR will work correctly.

------ (Continued}

2-92

TABLE 2-14. SUMMARY OF ISAM POINTER RULES FOR ACTION MACROS (Continued)

IISAM
Action
Macro

PUT X

INSRT

STORE

ELiM

SETL

GETFL

Pointer

Pointer not moved.

Moves the pointer to the
position specified by the
record key.

Moves the pointer to the
position specified by the
record key.

If KEY is specified, moves
the pointer to the (first)
record with thEl given key.
Otherwise the pointer is
unmoved.

Move the pointer to 1.
An imaginary record just
prior to the first record
in the file (if B is speci­
fied).

2. An imaginary record
just after the last record
in the file (if E is speci­
fied).

3. The (first) reicord with
the given key, or the
place in the file: where
such a record would exist.

Moves the pOinter to the
record retrieved. If no
record is retrieved, the
file is positioned such
that a subsequent GET
(GETR) will retrieve the
record with a key greater
than (less than) or equal
to the key specified as a
limit, or result iin an
End-of-File.

Action

Places the record in the
file at the position con­
currently pointed to.

I nserts the record at the
location pointed to.

Stores the record at the
desired location.

Eliminates the record
from the file.

No action takes place.

Retrieve the next sequen­
tial record which satisfies
the flag criteria.

2-93

Comments

Note that additional checks are
made to ensure that a successfu I
GET, GETR, GETFL, or GETKY
has been issued just prior to a
PUTX. Thus, the fact that the
pointer is not moved cannot
cause inadvertent errors.

This record will not be inserted
if a record already exists with
the given key. However, the
pointer will still point to the
place in the file where the record
should have gone. This record
can be described as a record of 0
length - therefore a GET fol­
lowing an unsuccessful INSRT
will retrieve the duplicate record.

If a record(s) with the given key
already exists in the file, the
pointer is set to the position
immediately beyond the dupli­
cate(s). Then the record is
stored.

Note that ELI M can be described
as (a Ithough it is not) a left-sh ift
operation of that portion of the
file to the right of the given
record. 'Therefore, successive
ELI M's need not (conceptually)
move the pointer.

1. Use of a SETL effectively
nullifies the pointer movement
associated with the next suc­
ceeding GET or GETR.

2. For the purpose of clarifying
the pointer placement for a suc­
cessive GET or GETR, a SETL to
a nonexistent record can be con­
sidered as a SETL to a record of
o length in the correct position,
with the pointer action of the
next succeeding GET or GETR
not nullified.

The record which would have
been retrieved by a correspond­
ing GET or GETR is the first
record investigated for satisfying
the flag criteria when a GETFL
is issued.

USE OF PAM KEY IN ISAM

The rightmost eight bytes of the PAM key in ISAM files is:

LLPPUUFF,

where:

LL is the page length (that is, the highest byte position used in the page).

PP is a pointer to tlle first logical record in a data page; if this is an index
page, the value is O.

UU is only meaning::ul while the page is in memory. It contains the location
of the most recently used record.

FF is a pointer to the first sector of free space in the page. If there is no free
space, FF points to the end of the page. If this is an index page, the value ils
O.

Note that ISAM records within a data block are chained (linked); record i
points to record i+ 1 ; the last record points to record 1.

Basic Tape Access Method (BTAM)

The Basic Tape Access Method (BT AM) provides the programmer with an
efficient and flexible means for storing and retrieving the blocks of a
sequentially organized tape file.

Macro instructions of BTAM may be used in a device-dependent manner,
allowing the programmer to gain access to data in other than strictly
sequential order. In addition, control of I/O devices is provided: for
example, positionin~~ tape volumes.

A major BTAM feature is that the program may read and/or write data
blocks and change direction without requiring intervening CLOSE
operations.

BTAM macro instrudions are as follows:

All general service m aero instructions (for example, OPEN).

BTAM - which incllldes the following operations:

RD/RDWT - read data into core storage and optionally wait for I/O
completion.

REV /REVWT - read data reverse into core storage and optionally wait for
I/O completion.

WRT/WRTWT - write data from core storage and optionally wait for I/O
completion.

WT - ensure completion of an I/O operation.

CHK - determine completion status of an I/O operation.

A set of control codes to position tape volumes and write tape marks.

2-94

BTAM RECORD FORMATS

BTAM supports two record formats:

1. Fixed length - format-F

2. Undefined length - format-U (format V is treated as format U)

In either format, BT AM assumes there is exactly one record per physical
tape block (or buffer, for which BTAM is equivalent).

Thus, in a real sense, these are not logical records. The format-F type merely
conveys to BT AM that the block size specified in the FCB parameter
BLKSIZE is to be used unless the count field is specified in the action macro
instructions. The format-U type conveys that the block size is contained in
the register specified in FCB paratl}eter RECSIZE, unless the count field is
specified in the action macro instructions. Note that the minimum length
record that can be written to a magnetic tape is 12 bytes long.

An existing file, created by SAM, can be processed by BTAM. The user is
cautioned that files created by SAM are his responsibility to deblock and
properly process. This processing can be particularly erudite where the file,
created by SAM, was created with buffers which were two or more standard
blocks. The complexity arises since logical records may "straddle" physical
blocks.

OPENING A BTAM FILE

The file may be opened in the following ways:

INPUT

REVERSE

OUTPUT

INOUT

OUTIN

SINOUT

Retrieves records from an existing file.

Same as INPUT except tape is positioned to the end of the
file at OPEN time. Multivolume files cannot be opened
reverse.

Creates a new file.

Retrieves records from an existing file and adds and/or
replaces records. Note that header labels are not created since
the file is assumed to exist.

Creates a new file and/or retrieves records from the file. Note
that labels are created since a new file is being generated.

Same as INOUT except that the tape is not positioned (that
is, OPEN in-place). This option is not allowed if the tape is at
BT.

Table 2-15 defines the action macros which may be used with each type of
OPEN.

2-95

TABLE 2-15. BTAM ACTION MACROS VERSUS OPEN TYPE

INOUT
OUTIN

Operations INPUT REVERSE OUTPUT SINOUT Comments

RolRDWTIREVIREVWT X X X

WRTIWRTWT

WT

CHK

Control

X = allowed

Programming Notes

X X

X X

See See
Comments Comments

X

X

X

X

X

X

X

X Output
Control
functions
are
prohibited.

The only difference between INPUT and REVERSE is that of positioning
the file at OPEN tine. Thus, an RD or RDWT operation, if a file is opened
REVERSE, does not implicitly specify that a block is to be read in a reverse
direction. Note that a file opened INPUT can be read in the forward and/or
reverse direction.

Evanescent Access Method (EAM)

EAM is a specialized access method designed primarily to process temporary
files in an optimum manner. Thus, the acronym may suggest the Efficiency
Access Method or the Evanescent (temporary) Access Method.

Efficiency is achievej in the following ways:

EAM files are not cataloged.

VTOC operations rdating to space assignment and label processing are not
performed.

Opening of an EAM file requires zero disc pUlls.

FILE card processing, FCB completion, and device assignment operations are
not performed.

The counterpart to the above operations are not performed at CLOSE or
ERASE time.

Fetching of data, with the action macros, utilizes less CPU time.

Processing areas (f.Jr example, FCB, logical routines) required for file
operations are con:dderably smaller than those for the standard access
methods (lSAM, SAM, etc.).

2-96

This efficiency is achieved by specializing and limiting the functions which
EAM will support. Illustrative restrictions demonstrate this:

An EAM file is temporary.

It cannot be shared. In particular, the file cannot be multiply opened (that
is, if a particular EAM file is open, another program (routine) cannot open
it). Note that a task may concurrently process different EAM files.

No user storage allocation, device assignment, or label processing is
permitted.

Users can only transfer 2048-byte blocks of data.

An EAM file always resides on a public volume(s).

An EAM file is not supported by the Checkpoint/Restart components of the
system.

EAM SPACE UTILIZATION

The system controller for an installation defines a file named SYSEAM. This
is a normal, cataloged PAM file. It is the file which EAM uses to retain the
various EAM files in the system.

At the very first session, the SYSGEN process allocates 24 PAM pages for
EAM files. When EAM requires additional space, it requests a block of 144
PAM pages each time from the system allocator. If the request is granted, a
message is printed on the console reporting the total number of PAM pages
allocated to EAM. In this case, the message will read

EAM SPACE = 168 PAGES

However, if the request of 144 pages is only partially granted; say, only 100
pages are allocated, then the message will read, in this case

EAM SPACE = 124 PAGES

EAM space increases in this manner up to a maximum of 16384 PAM pages
as long as system space is available.

On the other hand, EAM space decreases when EAM files are erased. Space is
returned to the system in blocks of 24 pages when they are free. It is noted
that EAM maintains a minimum space of 600 pages. In other words, EAM
space does not decrease when total EAM space is less then the minimum.
There is no message to the console for red1Jction of EAM space.

At an abnormal termination of a session, EAM saves all files required to be
saved. In the meantime, the total EAM space allocated at that time is
recorded in the system. Therefore, when the system is reloaded, whether it is
a cold or a warm start, the same amount of space is given back to EAM and
may be much higher than the designed minimum (600 pages). Due to the
fact that the reduction of EAM space occurs when an EAM file is erased, the
process of reducing EAM space will occur when the first EAM 'ERASE' is
issued, such as at the end of printing or punching an EAM file. Therefore, for
a warm start, EAM space win be reduced when saved spoolout from the last
session is completed. However, for a cold start, EAM space will not be
reduced until someone creates and then erases an EAM file.

2-97

Lastly, if EAM is ullable to acquire more space (which implies that the
public volumes are sHturated) the operator is informed that EAM space is
exhausted. The affected task will then be passed for 90 seconds if the
operator so chooses. When control is regained by the task, the operation is
repeated. Note that this procedure is continued indefinitely, and that control
is not returned to the user program when space is exhausted.

FILE MAINTENANCE AND DISPOSITION

The facilities provided by VMOS for the maintenance and disposition of files
reside in three functional areas. These areas encompass software-supplied
program preparation and text editing routines, utility routines, and
command language in 5tructions.

Software-Supplied Routines

VMOS contains a va~iety of system resident program preparation and text
editing routines that contain functions enabling the programmer to perform
the following:

1. Alter the name of H source program or data file.

2. Copy a source pro~;ram or data file from one file to another.

3. Erase all or part of program associated files (source, object, and data).

4. List the contents of a source program or data file.

The use of these routines is discussed in the VMOS Programmer's Reference
Manual.

Utility Routines

The utility routines ~.upported by VMOS enable the programmer to perform
the following file maintenance functions:

1. Display and print PAM-formatted files, and manipulate the data and keys
contained in such files.

2. Copy files from one medium to another: for example, card to tape, tape
to tape, card to ran10m access, random access to random access, randonl
access to tape, and random access to printer or punch.

The descriptions of the routines that provide these facilities are contained in
the VMOS Service Routines Manual.

Command Language Instructions

Through Command Language, VMOS supplies the programmer with the
ability to perform a variety of file maintenance operations, and the
instructional facilitie 5 for the disposition of files.

The sum of these opt!rations encompass the following:

1. Catalog Entry Altt!ration,

2. File Definition Mc,dification/Deletion, and

3. File Reproduction and Status Monitoring.

In addition, the prcgrammer has the ability to manipulate certain system
files.

2-98

Catalog Entry Alteration

VMOS supplies the programmer with two instructional sets for· the
maintenance of catalog entries: the CATALOG command (CAT AL macro)
and the ERASE command (macro). The CATALOG command and its
associated macro enable the programmer to alter a file's catalog entry as
follows:

1. Change: the file's filename:.

2. Specify a new catalog entry.

3. Associate read or write passwords with the file.

4. Specify the manner in which a file is to be processed.

5. Specify whether or not a file is sharable.

6. Specify a file's retention period.

A progranlmer may only alter files to which he has access.

The ERASE command pennits the programmer to make the file logically
empty, deallocate the space associated with the file, and remove the file's
entry frorn the catalog. A programmer may only ERASE files created under
his userid.

File Definition Modification/Deletion

The operating system supplies a set of four commands (macros) relative to
the modit1cation and deletion of a file definition: the CHANGE command
(CHNGEmacro), the RELEASE command (REL macro), DROP command,
and HOLD command. These instructions affect only the definition of the
file as related to program processing. The catalog entry for the file is not
affected.

The CHANGE command and its related macro permits the programmer to
change the link name or symbolic device name associated with a previously
defined fille. This enables the programmer to pass FILE command definitions
between programs within a task without changing the link symbols specified
in the program's FCB's.

Note: The CHANGE instructions operate through use of the
file's linkname. Therefore, the instruction applies only to the
last file definition preceding the CHANGE instruction.

The RELEASE command (REL macro), HOLD command, and DROP
command enable the programmer to suspend the processing of, or delete, file
definitions in a discretionary manner. The RELEASE command and its
related macro permits the programmer to delete a file definition and, if he
wishes, the devices associated with it. The HOLD command allows the
programmer to temporarily remove a file definition from processing status.
When used prior to a RELEASE directive, HOLD suspends the RELEASE.
The DROP command removes a file definition from hold status. If a
previously issued RELEASE directive for the file definition had been pended
by a HOLD, the file definition would be released when a DROP is issued.
Note that these three instructions operate, as did CHANGE, through the use
of the linkname. They apply therefore to the file definition in effect at their
issuance.

2-99

File Reporduction and Status Monitoring

The Command LangLlage supplies the programmer with a COpy command
and macro for the reproduction of files. These two directives copy files on 2l

one to one basis. Th~ COPY directives cannot be used to create a file with
characteristics that are different than the file being copied. Also, these
directives cannot be used to cause a file to overwrite itself. The use of the
copy facilities are not restricted to files residing on like devices, that is,
direct access files m;lY be copied to tape as well as to other direct access
devices. Tape to tape copying is not supported with this command (see
Utility Routines discussion).

The FST ATUS comrnand (FST AT macro) enables the programmer to obtain
a variety of information concerning the status of his file. The directive
accepts either fully or partially qualified filenames. These directives permit
the user to obtain information concerning the type of file, type of volume,
space allocation, page utilization, security, file and volume characteristics,
and password information.

System File and Task Library Reassignment

VMOS supplies the programmer with the ability to direct SYSDT A and
SYSIPT files to different sources. These two input files normally have the
same source as the SYSCMD file. However, using the SYSFILE command,
the programmer can direct SYSDT A or SYSIPT to a cataloged file, a specific
device, their primary source, or back to the SYSCMD file.

The SYSFILE comnland also enables the user to designate a file other than
the system's TASK library as the TASK Library (TASKLIB) for the current
task. The specified file must be an object module library created by the
Library Maintenance Routine (see VMOS Service Routines Manual). This file
will be used by the Linkage Editor and Dynamic Linking Loader to satisfy
unresolved external references. If the programmer does not specify a
TASKLIB file, the o)erating system assumes that none exists for the task.

FILE RECONSTRUCTION SYSTEM:

Introduction

The VMOS File Reconstruction System supplies the programmer, in
conjunction with the system controller, with two distinct functions for
ensuring file integrity. The first function provides file reconstruction (via
portion) following nedia damage. The second relates to software errors. If a
file is updated with wrong information due to invalid data or erroneous
processing by a user program, it may be necessary to undo the .damage by
resetting the file to its state at a time prior to the introduction of the error.

The function in the former case is referred to as file reconstruction; in the
latter case as file re~ietting. File reconstruction requires a log of after images,
that is, a copy of each record after it has been updated but just before it is
written to the file. File resetting requires a log of before images, that is, a
copy of each record just before it is modified or updated.

2-100

File Reconstruction (After Images)

If an atterrlpt is made to read a record and the hardware detects an I/O error,
it is necessary to reconstruct that record. A copy of that record must have
been previously saved, or the file itself must be recreated from the original
transaction data. The latter technique is appropriate and sufficient for most
small files.

The File Reconstruction System (FRS) contains facilities using the former
technique; that is, it maintains a copy, on tape, of all records output to the
file; it creates an index to effect the rapid retrieval from tape of necessary
record(s); and it places the copy of the record back into the file.

In order to maintain the copy, FRS (in conjunction with the access methods
and Privileged PAM) will log to tape every PAM page written to the file. This
service will be provided automatically to every file which has requested
reconstruction copies through its Catalog Entry, that is, the system
controller has issued an FRS command for the file, with the RECON=YES
parameter.

If reconstruction services are requested after the file has been created, the
entire file is logged to tape when it is next Opened. These after images are
also generated automatically by FRS whenever needed.

A disc index is built and maintained by FRS to identify the log tape which
contains each after image. When a record is modified (creating a new after
image), references to any earlier after image of that page are ignored. A
cleanup routine is supplied to the system controller to delete old after
images frOlTI the log tape.

File Resetting (Before Images)

When a user program malfunctions, or invalid transactions are used to update
a file, the file itself may become unusable. In order to reset the file to its
state prior to the introduction of the error, FRS maintains a historical log of
P AM pages in the file as they looked just prior to any modifications. These
before images can be sequentially returned to the file, in effect, resetting the
file backward in time.

It is not possible to reset just a portion of a file. For example, in ISAM each
data page has specific relationship to the index pages, such that when one is
reset, the other must be appropriately reset. In general, any file which
contains e:mbedded pointers must be reset consistently throughout the file.

Since I SAM: and other access methods may delay the actual writing of index
blocks beyond the time when the data pages themselves has been written,
resetting a file requires that the reset operation continue until the index
blocks do reflect the data pages. The only point at which this is guaranteed is
at OPEN time. Thus, resetting a file to any given date/time requires that the
file be reset to the first OPEN prior to that date/time.

2-101

Since the FRS is independent of specific access method characteristics, this
requirement applies to all files, not just ISAM files. The FRS will locate the
appropriate stopping poin~ automatically, given a date/time (or OPEN
count) by the user (~)ee the RESET command).

If resetting services were requested after the file has been created, the file is
assumed to have always previously been in that state. A reset request to an
earlier date/time is ef(ectively a reset request to the earliest OPEN tirrle
known to FRS.

When a before image log record becomes too old to be of any use to the file
owner, as determined by him and the system controller, FRS will
automatically disca:~d it by deleting all reference to it in the disc index.
Because of the requirement that the historical log be maintained through file
OPEN time, all log records between an OPEN record (generated
automatically) determined to be 'too old', and the subsequent CLOSE
record are discarded. (The CLOSE record is also generated automatically by
FRS.)

Log Image Tapes

User Interface

The log file consist~, of a set of system tapes, referred to by unique VSN's,
and a cataloged dis;; file which contains pointers to sets of log records on
each tape.

The tapes on which all log records are placed are assigned to the FRS, not to
the user. They are not known as files to the VMOS catalog management
system, either individually or collectively. The log tapes are chained to each
other in LIFO sequence, the most recently logged to tape pointing to its
predecessor, and so on.

The FRS log tapes contain log records belonging to all users of FRS services.
They may contain security-critical information, and certainly contain
information which each user (and system controller) asserts is critical to the
integrity of his data files. The FRS tapes should be handled carefully and
safely stored.

Most interfaces between the user, or user program, and FRS are between the
user and Data Mana!:ement System components, which validate and reformat
the request for FRS processing.

No user is charged for services he does not require. The FRS command must
be issued by the system controller before a file may use any FRS services,
including the generation of log records on FRS log tapes.

Generating After Images

The generation of after images is automatic for any file for which the systelll
controller has issuec an FRS command with RECON=YES. No user or user
program intervention is required, and no modifications need be made to
existing user prograns.

2-102

Whenever the access method attempts to write a PAM page to a file requiring
after images, the write operation is 'intercepted' by FRS and the log tak:en.

If an already existing file is authorized for after image logging, the entire file
will 1be logged to tape at the time it is opened, before control is returned to
the user program.

After images will also be generated automatically for any CAT ALOG
command/lmacro, FILE cOlnmand/macro, and ERASE command/macro
issued for the file.

Generating Before Images

Although all after images necessary for reconstruction will be generated
auto:matically (as far as the user program is concerned), before images
necessary for file resetting may require the cooperation of the user program.
This is a function of the access method used to process the file, as well as the
mode in which it is opened.

Move Mode (SAM,ISAM)

If a file is opened in move mode, the access method assumes full control over
the file's I/O areas, or buffers. (To be precise, the access method has control
over the placement of logical records into the buffers. The buffers
themselves may be independently accessible to the user program.) Only SAM
and lSAM permit this mode of OPEN.

Since the access method 'intercepts' each output-type operation, it can easily
detect that a PAM page (or block of pages) is about to be modified. At this
time, before the modification is permitted, the access method requests a
before image from FRS. The page can then be modified.

Before images for SAM or ISAM files operating in move mode are produced
automatically without requiring user program concern.

Before images will also be generated automatically at the time the file is
opened and closed. These special before images are used during reset
operation to control the starting and stopping points of the reset.

Locate Mode (SAM, ISAM:)

If a file is opened in a locate mode, the access method provides only the
location, within a buffer or I/O area, where the user program may modify
the logical record. Both SAM and ISAM permit this mode of OPEN. The
access method, and FRS, are unaware of any independent action the user
program may already have undertaken to modify the buffer.

The user program must therefore undertake to provide the indication of
intention to modify, by use of the LOG macro.

2-103

Locate Mode (User PAM)

User PAM functions only in locate mode. The user program informs the
access method (and FRS) that it intends to modify an already retrieved PA~v1
half-page, using a PAM action macro with the LOG operand.

Considerations for Generation of Bl.fore Images

Although the genention of before images is automatic for move mode, and
essentially straightforward for locate mode, the user should be aware of
actions taken for hin by the access method under certain conditions.

In the case of SAM and ISAM file, before images will be taken of the entire
buffer, not just the individual PAM page being modified. However, the access
method will inhibit multiple logs of the same PAM page, even though the
user may read and then modify the page more than once while the file is
OPEN.

An additional anomaly occurs in the case of SAM files. When a SETL action
macro is issued to reposition the file, and the file is opened OUTPUT or
EXTEND, all PAM pages between the current end of the file and the new
position are logged as before images. This action is automatic.

Guaranteeing Before Images for Sharable Files

File reconstruction and resetting services can be provided automatically,
without program ch:lllges, for any file opened in move mode. If locate mode
is specified, user macros will have to be added to guarantee accurate reset
logs (that is, before images).

What is critical is that the owner of a file has little control over the manner
in which authorized users access his file. The owner cannot therefore
guarantee that, no rnatter who uses the file, his before image logs are correct.

The MODE param~ter of the FRS command (see VMOS Installation
Management Manual) will provide greater assurance of accurate resetting.

MODE =
(

MOVE }
LOCATE

If MOVE is specified, the file can only be opened in move mode by any
authorized user. If LOCATE is specified (or defaulted), the file can be
opened in either mO'Te or locate mode.

The user is then able to opt for an accurate backup, at the expense of
preventing locate mode access to the file (with SAM and ISAM), and by
preventing the use of user PAM completely.

Inserting User Information in Log Images

Each before or after image log record contains a 16-byte field for
user-specified infoflnation (see below). This field will not be used by FRS at
any time, although installation-dependent routines (which might require this
information) may be written to read and use the log tapes.

2-104

User Options for Unrecoverable I/O Errors

When an unrecoverable I/O error occurs, the access method and privileged
P AM will place into privileged extension of the FCB a range of logical PAM
pages which need to be reconstructed.

If FRS services have been requested for the file, the access method will give
control to the user at his RECON exit. This is in addition to other EXLST
macro parameters. (See EXLST macro.)

At this timle, the user can issue a RECON macro, or continue processing.

If the RECON exit of the EXLST macro is NO or defaulted, control is
passed to the ERRADDR exit. The RECON exit is not used if FRS services
are not req[uested for the file"

Restrictions Resulting from Use of FRS

Once the system controller has authorized reconstruction or resetting
services to be made available for a file, the user is not allowed to ERASE the
file or to open the file OUTPUT or OUTIN. It is reasoned that a user does
not wish to destroy too easily that which he has carefully prepared.

Therefore, in order to ERASE a file for which FRS services are used, or to
reopen it OUTPUT or OUTIN, the Catalog Entry must first be changed by
the system controller with:

/FRS filename,RECON=NO,RESET=NO

It is impossible to recover the file with FRS if it is destroyed in this manner.

Note that the first OPEN OUTPUT or OUTIN is allowed, so that the file
may be created.

FRS Tape Record (LOG TAPE) Formats

Figure 2-10 illustrates the format of the FRS Log Tapes.

The standard volume label (SVL) is the initial record on each log tape. The
volume label number is always one.

The standard file header label number is also always one. The file-identifier
always contains the name SYSLOG.TAPE. The volume sequence number,
file sequence number, generation number, and version number are also
always one.

The volume serial number in the SVL and the file serial number in the HDR 1
label are always the same and should be the same as the external surface
number of the tape for visual identification.

The expiration date is always the same as the creation date.

The block count field in the EOV label contains the number of data blocks
between the header label group and the trailer label, excluding tape marks
(TM). The field is in zoned-decimal form.

2-105

@T~NDAR
VOLUME
LABEL

0 HDRl
LABEL
FILE 10=
SVSLOG TAPE

-

LINK RECORD
T
M

(Contains VSN
of previous
LOG Tape)

Data Records
(58 byte field + T EOFl T T

PAM page) M EoVi M M

FIGURE 2-10. FORMAT OF FRS LOG TI~PE

Linkage Record (80 bytes)

The Initial data record on the log tape is a linkage record used only by the
FRS. It is, however, counted in the tape's block count. The format of the
linkage record is shown below.

Field Bytes Length

1-4 4

2 5-10 6

3 11-80 70

Before and After Image Records (21 Q6 bytes)

Field Bytes Length

1-13 13

2 14

3 15-18 4

2-106

Description

Label identifier. Contains
LNK 1 to indicate that this is a
linkage record.

Predecessor volume serial
number. This field contains
the volume serial number of
the log tape which preceded
this log tape. When the curren1t
log tape is the initial one in
the series, this field is set to
binary zeros.

Not used. This field is set to
blanks.

Description

Date-time stamp. This field is
in the form as follows:
YYMMDDHHMMSSS, i.e.,
date, followed by time of day.

Log record control byte. This
field indicates the type of log
record. A byte of X'IC'
indicates a Before Image; a
byte of X'20', an After Image.

Task sequence number. This
field contains the TSN of the
task which requested that the
log record be created.

Field

4 19-26

5 27-42

6 43-58

7 59-2106

Catalog Entry Image Records (2106 bytes)

Length

8

16

16

2048

Description

User I D. Userid of the
requestor is contained in this
field.

User information. This field
con tains any information
which the requestor wishes to
add to the log record. If
nothing is added, this field is
set to blanks.

P AM key. This field contains
the key portion of the
half-page being logged.

P AM half-page. This field
contains the PAM half-page
being logged.

These records are the same in format as the Before and After Image records
with the following exceptions:

Field Bytes

2 14

5 27-42

6 43-58

7 59-2106

Length

16

16

1048

Description

Control Byte. Refer to Log
Record Control Byte.

Not used. This field is always
set to blanks.

Coded File Id. Only the first
four (4) bytes of this field are
meaningful. They contain the
coded file Id assigned to the
file by the DMS. The last 12
bytes are binary zeros.

Catalog Entry. This field
contains the catalog entry of
the file, left-justified with
trailing X'OO's.

The last log record is followed by a tape mark.

The EOF Standard Tape File Label follows this tape mark. The EOF label is
followed by two tape marks.

2-107

Description of FRS Printout

There are four type~; of printouts to inform the user of the action taken by
the recon-reset or cle anup processor.

TYPE I - Parameter File of Oper~tions

At the beginning of ,:he recon-reset or cleanup process and at the end of each
log-tape, all operations are listed with their status.

TYPE 2 - Records cf Action

Each time an outPLt operation is initiated, a concise record of the action
taken is listed.

TYPE 3 - Record tctals by LOG-TAPE

At the end of each LOG-TAPE, totals are listed as to the number and type of
records used both input and output.

TYPE 4 - Error Messages

When an error is er.countered, a message is listed to notify the user of the
specific error type and the operation is marked so that the status will reflect
an error condition.

TYPE 1 - Parameter File of Operaft'ons

HEADING LINES:

This printout may be subdivided into three general categories:

1. Heading lines
2. First line of operations
3. Succeeding lines of operations

The parameter file list begins at the top of a page with the first line
identifying the date~ time, type of process being performed (e.g., reset-recon
or cleanup), and H.e point within the job being performed (e.g., before
processing, end of V:SN x, etc.).

The second line of header identifies the data fields in the first data line (e.g.,
Password, User ID, etc.).

FIRST LINE OF OPERATION

The first data line consists of five fields

STATM.# - This field is a sequential number assigned by the program tiQ
each operation. This statement number is referenced by Error Messages and
Records of actions.

2-108

Type of operation being performed. There are five operations currently
supported.

RECON-Reset Processing:

RESET= Reset a file to a specific open-close time

RECON= Reconstruct a specific frame

RECONALL= Reconstruct a complete file

Clean-Up Processing:

CLUP-AFT= Cleanup after image by deleting all after images from
log-tapes. Then take an initial copy of all files requesting
reconstruction services.

CLUP-BEF= Cleanup before images, saving all records between
appropriate OPEN-CLOSE pairs in the index.

The file PASSWORD is printed in hexadecimal format.

User Identification and filename.

The CODED-FILE-ID that was assigned to the file when initially cataloged is
printed in hexadecimal format.

Status of Operation:

NOT COMPLETE = The operation is not complete

COMPLETE= The operation is complete

The following may appear with either of the above, under special conditions:

ERR=

DUPL=

OPEN=

An error was encountered when processing this operation.
The specific type of error that occurred is documented by a
TYPE 4 error message.

The parameter file is specifying, for a given log-tape, a
duplicate operation to be performed for a specific frame.

This specifies a RESET or CLEAN-UP-BEFORE operation
has begun on this file but the OPEN or CLOSE log-record
(depending on the operation) has not been encountered to
signify its error free completion. (Example - if a read error
was encountered on an OPEN record (and bypassed) which
was needed to complete the reset operation, the OPEN flag
would be printed.)

2··109

SUCCEEDING LINES OF OPERATIONS:

The contents of the second and succeeding lines depend on the type of
operation to be performed.

RESET

RECON

RECON-ALL

The second line of a reset operation is as follows:

CLOSE DATE mm/dd TIME hh/mm OPEN DATE
mm/dd TIME hh/mm

The third and succeeding lines are lists of all VSN's
which will be processed for this operation. The
second and succeeding lines define the VSN's to be
processed and the specific frames within the VSN.
Preceding each frame number and separated from it
by a comma, the status of the frame is printed.

N = NOT COMPLETE
L=COMPLETE
D = DUPLICATE
E = ERROR

The second line of a reconstruct all frames is as follows:

LOW-FRAME = n HIGH-FRAME = n
FRAMES NOT COMPLETE = n

where n = I to 7 digit count

The third and succeeding lines specify the VSN's to be
processed for this operation.

CLEAN-UP BEFORE The format is the same as the RESET format.

CLEAN-UP AFTER Each line of this operation identifies files that are to
be initially copied. It specifies its User ID and
filename, password and status.

TYPE 2 - Records of Action

Before each output operation is performed, a record of the operation is
listed. This record contains the number of the statement (STM,#=n) which
called for the action, followed by the frame to be written (FRAME=n). The
frame number is a (i-digit hexadecimal field specifying the half-page to be
updated. If the actio:1 is to update the file catalog entry, the word 'OPEN' or
'CLOSE' is substituted for the frame number. To minimize the number of
pages of printout, up to five records of action are listed on one printer line.

Note: If an output operation is not successful, an error
message will follow the Record of Action specifying the type
of error.

2-110

TYPE 3 - RECOR.D Totals by LOG-TAPE

At the end of a LOG-TAPE, totals are listed as to the number and type of
records, both read and write, along with the number of input and output
errors.

The types of totals accumulated are:

1. Total number of records read from the LOG-TAPE
2. /CAT = Catalog commands/macros
3. /FILE = File commands/macros
4. /ERASE = Erase commands/macros
5. OPEN-A = Open after images
6. OPEN-H = Open before images
7. CLOSE-A = Close after images
8. CLOSE-B = Close before images
9. OPEN-FRS = Reserved

10. CLOSE-FRS = Reserved
11. LOG-B = Log records.of before images
12. LOG-A = Log records of after images
13. ERRORS = The number of errors encountered

All of the above totals are accumulated and printed for input. Only types 6,
8,11,12, and 13 are accumulated for output.

Note: If all operations are complete for a given VSN before
the end of tape is reached, the end of VSN is forced and a
special heading is printed before the totals.

TYPE 4 - Error Messages

LOG-TAPE INPUT ERRORS

OUTPUT ERRORS:

When an input error is encountered, the operator is informed of the DMS
error code. If he retltms control to the program and the error is a read error,
the record is bypassed and printed. All other errors cause a message to be
typed to the operator, if batch, and to the terminal, if interactive. It specifies
the type of error (DMS error) and gives the option to Retry (R) or
Tenninate (T).

There are three basic phrases printed when an error condition is
encountered.

"DMS ERROR v v WHEN PROC.STM# z"

where:

x= DMS error code (IDEMS)

y= 'blank' normal writing mode (only that record lost)

= 'ALLOCAT' while allocating (Reset operation not processed)

2-111

=

=

=

=

=

=

=

z=

'FSTATUS' while performing FSTATUS (Reset operation
not processed)

'OPEN' while opening a file for clean-up after (operation not
proce~~sed)

'CLOSE' closing a file for clean-up after (operation may be:
OK)

'$RDCT')

'$FRDT'> *

'$WTCT')

'$AQ1R')

Statement number

"FILE-NAME = Filename"

The filename is appended to the first message when processing clean up
after.

"RECORD WAS NOT OUTPUT SUCCESSFULLY"

This message is appended to the first message when a data record (frame)
cannot be output.

*When updating a catalog entry while processing a reset - (catalog entry may contain invalid last page
number or last record poin-:er).

2-112

INTRODUCTION

SECTION 4
DEVICE AND SPACE MANAGEMENT

The VMOS Command Language supplies a programmer with the ability to
aoquire private devices for his task, to assign memory areas for his
programnLing to regulate the use of devices, and to deallocate the devices and
memory he has acquired.

The system, throll:gn the operation of its control program or in conjunction
with the operator, p'erforms certain functions and imposes conditions with
which the: programmer should be familiar. These have been outlined for the
reader prior to the discussions of device and space allocation, regulation, and
disposition.

AU VMOS directives refened to in this section are described in detail in
Section 3 of Part 3. Refer to the appendices for parameters and I/O features
(under ';"IvIacros Supporting Physical Level I/O and Run Time Parameters")
and/or TOS Commands an<\ Macros (under "Miscellaneous Task and File
(Data) Managem,ent Commands and Macros ").

System Device Allocation Component

The function of the system's device allocation (DA) component is to provide
tasks with the devices required for I/O processing. The allocation of
peripheral devices is under direct control of this VMOS component rather
than under system operator control. The console typewriter is not controlled
by device allocation. The console is a system resource and is considered to be
available to any task.

Device allocation maintains a list of the devices which are currently available
to the system. The maintenance responsibility for this list, in certain
circumstances, extends beyond the DA component, as in the case of
multireel tape files. DA processing routines are nonresident system routines
which are function attached by their calling tasks. The various control tables
required by the DA component reside in system memory.

System Device Accounting

The systern maintains the number of requests for input/output service in the
task's TCB (task control block). This is a running total and reflects, at any
time, the number of I/O requests made by the task. This value includes I/O
service for purposes of error recovery.

The systelll also accounts for the total number of minutes a device was
assigned to a task. Only private devices are included in this accounting. The
system maintains this information in the task's TDT (task device table).

2·-113

System Device Control Optimization

Through operation of its device control activities, the system ensures that all
direct access seek operations are performed off-line. If the seek operation
was the initial command in the chain, the system automatically initiates the
remainder of the chain after the seek has been completed. If the seek was the
only command in thl~ chain, no further action is taken by the system when
the seek completes.

If a user's random access chain does not begin with a seek, the systerrl
executes the commar.ds in his chain in-line; that is, if any seek commands are
in the chain, they dCI not proceed off-line, but rather, keep the control unit
busy until the seek operation completes. Note that all Control Program and
P AM random access command chains begin with a seek; the exception would
be Class I problem programs utilizing TOS volumes.

In addition to ensu ring that seek operations are performed off-line, the
system manages the movement of seeking mechanisms (arms) for public
volumes to minimize: their seek times. The arms traverse the volume from
lowest to highest cylinder and then return. The volume is viewed as a series
of contiguous sectors, each sector being composed of eight cylinders. A
request falls into one of 26 sections and is processed on a FIFO basis within
its sector. This strat ~gy ensures that, once in a particular sector, the worst
case arm movement will involve 7 positions. A sector is serviced for n
requests. Any remaining requests are processed on the return pass. This
prevents the sectors 2t either extremity of the disc from being penalized.

The processing of off-line-seeks takes precedence over the transfer of data as
long as there is a unit which requires off-line-seek service. Once all arms,
which should be, an: seeking, the transfer of data will begin as soon as the
first seek-complete interrupt is recevied.

Operator Interaction

When a file residing on private volumes requires a device, the system sends a
Inount message to the operator. This message specifies the VSN of the
volume to be mounted and suggests a specific device (and bin number for an
MSU) 011 which to nlount the volume. The operator can honor the request,
decline the request, or specify a different device (and bin number for an
\1SU) on which to nlount the volume. If the operator specifies a device (and
bin number for an ~[SU) which is available and which is of the same device
type, the system accepts the recommendation. Otherwise, the operator's
request is rejected and he is again prompted to mount the volume.

The system does not necessarily issue mounting instructions in every case.
Since VSN's of the volumes currently on line are known by the system,
acquisition of these volumes can occur without operator assistance. Note
that when a tape d{:vice is deallocated (for example, at LOGOFF, via the
RELEASE command) the VSN is removed from the system's VSN table.

For TOS volumes, the operator is asked to mount SYMDEV= (symbolic
device) on a device (and bin for an MSU). Again, the operator can honor the
request or decline the request. If he specifies a device (and bin number for an
MSU) which is not aYailable, another mounting message is issued.

2-114

Multichannel Switch

Note: When a mass storage volume is being directed to a
particular MSU device, the operator replies in the form
NN(b) where NN is the name of the device and b is the bin
number. The bin number can range from 0 to 7.

When a VMOS system is generated, random access devices which are to be
shared by two processors are marked as such in the Physical Device Table.
Whenever I/O is to be performed for these devices, Device Control attempts
to reserve the device for its processor. If the multichannel switch is being
used by the other processor, Device Control notes this fact and prepares for
the reception of an interrupt from the switch when the other processor's
operation completes. Once the switch is available to the requesting
processor, the attempt to reserve the device is made. If the device is reserved
by the other processor, error recovery is invoked, and a retry is made at a
later time. Refer to "Device Management Control Tables" in the Appendices
for further information.

Once the switch and device are both available, the off-line seek operation is
initiated. When the seek operation is completed, Device Control initiates the
data transfer operation. This command chain is preceded by a 'release'
cOIllmand, which, at the completion of the channel operation, leaves the
device free to be utilized by the other processor.

Note that the processor is expected to release the device when it is no longer
needed. This is always done by VMOS, as noted above. If the processor is
operating under a system which fails to do this, the other processor is unable
to access the device.

The reservation and releasing of devices takes place on each input/output
operation. This level of support, therefore, does not permit one processor to
retain control of a particular device through a series of I/O operations. Once
an I/O operation is completed, the controlled device is available for
reservation by the processor which asks for it first. Some DMS functions,
such as Cataloging, and Allocating space, require the execution of multiple
I/O operations to complete their function. During these processes, the data
being manipulated must not be accessed by another processor, or the state of
that data will become indeterminate. The level of support for the MCS does
not guarantee the lockout of a device across a series of I/O operations.

DEVICE ACQUISITION

Public devices, those identified as being accessable concurrently to all users,
cannot be restricted by the programmer to the use of his task alone. A
programmler may require only private devices, that is, devices for files not on
public volumes. The acquisition process constitutes identifying and obtaining
the device and associating it with a file.

2-115

Device Identification

In order to acquire a peripheral device to be used by his task, a programmer
must identify the device to the system. Functionally, device identification
operates on three levels: unit, family, and type. The programmer may, then~1
acquire a specific device unit by specifying the installation mnemonic for the:
device, or he may acquire a device of a specific family or type. The risk:
factor associated with successful device acquisition varies directly with the:
degree of specificaticn. Acquisition by device mnemonic carries the greatest
risk of failure; acquisj tion by device type, the least.

The association of a device with a file (FILE command) can only be done at
the family and type level. For example, a programmer can associate a file:
with a non-return-to-zero 9-level tape or with any 9-level tape. However, the:
acquisition of device~; for a task (SECURE command) may be accomplished
at all three levels of identification. It is the programmer's responsibility to
assure that proper device-file association is maintained, for unles otherwise:
directed the system assigns devices to files sequentially. In other words, the
first file identified to the system gets the first device secured unless
instructions to the contrary have been issued.

Obtaining Devices

Devices are obtained through use of the SECURE command. This command
enables the programmer, as a prerequisite of task scheduling, to reserve the
resources that a task will require for its execution. These resources remain in
possession of the t.:lsk until it is terminated, or until the programmer
explicitly releases them. Using the SECURE command, a programmer may
reserve either specific device units or devices belonging to a given family. If
an additional SECURE is issued while a previous SECURE is still in effect,
the task will be terminated by the system.

Unsuccessful attempts to secure devices are resolved in one of two ways
depending on whether the task is conversational or background. An
unsuccessful attempt to obtain devices for a conversational task will cause a
message to that effect to be sent to the user's terminal.

The programmer may then issue another SECURE command for a differen1t
device or allow the operator to assign whatever device of the required type is
available when the device is called for during program execution.

If an unsuccessful SECURE occurs in a background task, a message to that
effect is sent to the task's diagnostic file, the command is ignored, and the
operator will assign a device of the type required during program execution.
It is therefore advisable not to attempt to secure specific device units fOJ[
background tasks, since an unsuccessful attempt could result in an
unacceptable device heing assigned to a task.

The SECURE comrrand may be used for tasks processing either Class I OJ[
Class II programs. A programmer may also request specific devices for TOS
files by using the TOS FILE command. Similar to the processing of
unsuccessful SECURE commands, the system will alert the operator to
assign another devict:, of proper type, if the one specified by the TOS FILE
command is unavaila:>le.

2-116

Remote Batch Work Stations

Remote batch work stations are logically attached to the Remote Batch
Processing (RBP) system by the RSTART command. This command
identifies the work station and defines its hardware configuration.

Device Assignment

Device assignment in VMOS is the term applied to the ass'ociation of a
private device with a file. For all Class II programs and most Class I
programs, device assignment is accomplished by use of the FILE command.
This command enables the programmer to assign devices of the family or
type level for his files. If no device assignment is indicated to the system, the
system associates the file with public volume devices. If no FILE command
is present, the logic used by the system's OPEN processing will request
device assignment.

The programmer is cautioned to secure all devices required for his task prior
to attempting to perform device assignment, because the system will suspend
the processing of a task when no more devices are available during
processing. In other words, the system will attempt to assign devices as they
are requested, but will suspend the requesting task when no more devices are
available. The suspension will remain in effect until the requested device
becomes available. This situation could result in poor turnaround time for
tasks requiring several devices.

Class I tasks may also request assignment during task execution, via TOS
ASSGN lnacro instruction for TOS files. This same macro is also used by
TOS logical level I/O dynamic assignment. For files processed at the physical
level, device acquisition is performed when the first EXCP macro instruction
is execut(~d.

SPACE ACQUISITION

When a programmer initiates the processing of a program, the operating
system automatically allocates the task enough memory to begin processing.
Additional space will be allocated to the program as required within the
limits imposed by the system.

A programmer may impose certain conditions on the allocation ,of space for
the processing of his program within the limits imposed by the system. Using
the REQM macro, the programmer can request, in multiples of one page,
that contiguous memory be obtained for his program. REQM cannot be used
to preallocate space; it is issued during program execution, and, unless the
program contains an instruction (RELM macro) explicitly releasing the
space, it is returned to the system at program termination. Class I programs
are allocated physical memory; Class II programs obtain virtual memory.

The programmer may also, when calling for the execution of his program,
alert the system that the program will require a certain amount of space.
This is accomplished using the CLASS parameter of the EXECUTE
command, and enables the programmer to indicate the minimum and
maximurn memory requirements for a program. This instruction does not
however acquire space; it only indicates the memory requirements, within
the limits of the space available to the user, that a program may require.

2-117

The maximum public file space (direct access storage space) available to a
user is specified when the user is joined to the system. This public space limit
is not extended dynamically by the system. If a program attempts to create a
file in public space larger than the space available to the user, the system will
notify the program with an appropriate error code, and terminate the task if
the program contains no contingency routine to deal with the situation.

Prior to program execution, the programmer can make more space available
for his files by requesting extra space from the system controller, or by
erasing existing files no longer needed (ERASE command). File space can
also be freed during program processing, either from the command stream
(ERASE command) or as a part of the program's execution logic (ERASE
macro).

Within the limits of tle space available to him, the programmer may allocate
direct access space for a file using the FILE command or macro. The SPACE
parameter of this in;truction enables the user to declare the number of
half-pages to be initially assigned to his file, the number of additional
half-pages to be assigned when the initial allocation has been exhausted, the
total number of half·pages required without regard to initial or secondary
allocation, and to specify that a volume be allocated completely to file (ABS
parameter). Absolute allocation on public volumes can only be one by the
System Controller; the programmer is restricted to private volumes for
absolute allocation. The programmer may, of course, not call for space in
excess of the remairing space available to him. If this is attempted, the
system will terminate the directive, and so notify the user. If the directive is
entered in a backgro Jnd task, the request will be defaulted to the system
standard.

DEVICE AND SPACE REGULATIO\l

Except for the manipulation of the system input files, device and space
regulation is a funcLon of how the device and space acquisition and file
management instructions described earlier are employed. For instance, the
assigning of devices secured for a task (SECURE command) to specific files
(FILE command) nIaY be considered device regulation. For, if the
device-to-file association were not specified, the devices would be assigned to
the various files according to the order in which the devices were secured and
the sequence in whic:l the files were accessed. In other words, the first file
for which a FILE command was issued would be assigned the first device
secured. Similarily, ~pace regulation may be viewed as the operation
performed by the REQM macro because the programmer is designating both
the amount of space he wants acquired and the way in which he wants it
structured. The samt: analogy can be drawn for the use of the CLASS
parameter of the EXECUTE command.

System Input Files

In addition to directing SYSDT A or SYSIPT to a cataloged file or the
command stream, the SYSFILE command can be used to assign these input
files to a specific dEvice. The device can be any system supported input
device as identified by its installation mnemonic. The card reader may also
be indicated by the CARD option of the command.

2-118

DEVICE AND SPACE DEALLOCATION

As devices are assigned to a file only for the duration of the task in which
assignment is requested, device deallocation always occurs as a result of task
ter:mination. However, the programmer can explicitly disassociate private
devices from a task during program processing. This occurs when the
programnl1er deletes a file definition using the RELEASE command or REL
macro. These instructions permit the programmer to either release the device
for furth(~r use by his task even though the file definition is deleted.

The user's Class II problem program may release devices when a file is closed
via the DISCON parameter of the CLOSE macro. Devices assigned to Class I
tasks may be released by the program's issuance of the TOS DDEV macro
instruction, TOS Close logic, or VMOS Close logic.

Re:mote batch work stations are logically detached from the RBP system by
the RSTOP command. Prior to detachment, all queued messages to the work
station are transmitted, and the last message transmitted indicates that the
work station has been detached. Subsequently, no output will be returned to
the work station until it is once more attached to the RBP system.

File space on direct access devices may be deallocated using the SPACE
parameter of the FILE command. To accomplish the reduction of space
allocated to a file to the actual space occupied by the file, the programmer
can issue a FILE command against the file and specify a negative primary
space allocation equal to the difference between the actual file size and the
original primary allocation figure, and a secondary allocation of zero. The
actual space occupied by the file can be ascertained using the FST ATUS
cornmand. The programmer should bear in mind that the system always
rounds space requests (positive or negative) to the nearest multiple of 3
pages. Therefore, it is possible to unwittingly erase data when calling for the
deallocation of file space using the SPACE parameter of the FILE command.
For exanlple, if the programmer specified an initial primary space allocation
of seven pages, nine pages would be allocated by the system. Conversely, if
the file actually occupied only four of the nine pages, a FILE command to
delete five pages SPACE=(--5,0) would result not in a file of four pages but
rather in a file of three pages. Hence, a loss of data.

Processing space (virtual or physical memory) is returned to the system when
task ternlinates. The user may, however, release space during processing by
using the RELM macro. This macro enables the user to release contiguous
areas of real or virtual memory, depending on the type of program (CLASS I
or II) in operation. Although, this macro is functionally the obverse of the
REQM macro, it may be used to release memory allocated to a program that
was not obtained by user-initiated REQM. For instance, a RELM macro may
be issued to release memory obtained by a program in excess of that which
was required for initialization. Finally, a RELM may be used to release
memory obtained by more than one REQM provided the separate memory
areas are contiguous.

2-119/2-120

GENERAL

SECTION '5
COMMUNICATIONS ACC.ESSMETHOO(CAM)

VMOS supplies an interactive user the ability to communicate with one or
more ternlinals through use of the Communications Access Method (CAM).
CAM is a set of routines residing within the Control Program and is designed
to facilitate the implementation of inquiry/response programs. Programs
making use of the facilities of CAM are written using the macros described in
this section. These programs reside within the VMOS task environment and
may be executed conversationally or nonconversationally. CAM programs,
therefore, have access to all VMOS facilities including the use of system files.
Furthermore, the subroutines which constitute the CAM facility are
reentrant, and thus support concurrent execution of CAM programs.

The tenninals supported by CAM are the 8752 and 7522 Video Data
Terminals, the AT&T 33, 35, and 37 Teletypes, and the IBM 2741
Communications Terminal. The 8750 Video Data System is also supported
for polled terminal applications.

PROGRAM AND TERMINAL IDENTIFICATION

The facilities for identifying terminals and programs to the CAM subsystem
are supplied by the CONNECT command and PRIME macro. The
CONNECT command enables a terminal-based user to converse with a
program utilizing CAM. CONNECT performs the same function in respect to
CAM programs as does LOGON in respect to normal interactive operation.
The CONNECT command also provides the user with the ability to detach
his progra:m from CAM and return control to VMOS. In addition, CONNECT
enables the user to transfer from one CAM program to another.

The PRIME macro is the directive used to specify the name by which the
user identifies his program to CAM. This is the first indication to the system
that a program is to run under CAM. The name which the user specifies with
PRIME is the name that must be used by the terminal-based user when he
enters the CONNECT comnland. A CAM program may be identified by only
one name, that is, only one PRIME macro may be issued from a program.
This macro also enables the programmer to define the size and number of
entries to be created in the program's buffer pool.

MESSAGE PROCESSING

The processing of messages to and from CAM is accomplished using two sets
of macros. The FETCH and SEND macros supply the means for message
transmission. The FORM, NOLNS, and LNTYP macros define the message
structure.

2-121

Messages are received by CAM from terminals via the FETCH macro. FETCH
first ascertains whetLer an input message exists. If a message has been sent to
the program, FETCH places it into a buffer specified by the program. If no
Inessage exists, control is returned to the CAM program. SEND is the macro
employed to transmit messages to terminals. SEND operates in conjunction
with the Event Control Block which, in addition to other functions, enables
the user to select transmission options. These options permit the user to have
a read issued to a line after a write is completed and/or free the buffer
containing the messa;~e.

The FORM macro is used to format a message to be transmitted by SEND
into the buffer acquired from the buffer pool. The NOLNS macro counts the
number of lines (renlote terminals) connected to a CAM user program. Since
a connected line may be active or inactive, the number of lines recognized by
NOLNS reflects both the number of active lines and the total number of
lines connected to CAM. The LNTYP macro supplies the user with the
device type code of any number of specific lines or a complete list of line
numbers and their associated device type codes, and a count of the number
of connected lines as supplied by NOLNS.

TRANSMISSION AND BUFFER CONTROL

Transmission and buffer control are supplied by a set of six macros. FBUF
and GBUF are used to release and obtain buffers. WAITM, CAMRD,
WREND, and SHUT~,1 control message transmission.

The GBUF macro is used to provide buffer space from the buffer pool.
FBUF provides the neans to return buffers to the pool. When FBUF is used,
the buffers must be released in the same order as they were obtained by
GBUF.

The WAITM macro is used to pend a task until input is supplied from one of
the terminals. WAITM should be used when the program is unable to receive
further input. CAM RD is used to put up a read to a specified terminal.
CAMRD does not accept data from the terminal, it only notifies the terminal
that CAM expects H.e terminal to send a message. The SHUTM macro, like
WAITM, is used to hhibit further input. However, SHUTM does permit the
CAM program to send messages to the terminal. SHUTM should be used
when the program h preparing to terminate. The WREND macro provides
the user with the ab:Jity to stop processing until the SEND he initiated has
completed. After the SEND is complete, control is returned to the user.

MULTISTATION LINE USAGE

The SPSEQ, ACT, and DEACT macros supply the user with the ability to
use multistation lines with his program. SPSEQ is used to specify to CA~I
the multistation lines to be connected to the program and to supply CA~[
with the desired poning sequence for those lines. ACT and DEACT enable
the user to activate or deactivate specific lines connected to this program.
Specifically, DEACT is used to exclude a line from having data transmitted
over it or to prevent any terminal from sending or receiving data. ACT is
provided to restore inactivated lines (terminals) to the state of being able to
receive or transmit data.

2-122

GENERAL

Part 3
Cc)ntrol System Commands and Macros

The four sections constituting this Part provide detailed descriptions of the
commands and macros available for task, file, and device management along
with the instructions necessary to implement the use of the VMOS
communications facilities. The task, file, and device management sections
have been individually prefaced with summaries relating groups of
commands/macros to more selective functional areas such as task initiation,
file creation, and device allocation. These summaries correspond to
categories presented in the decision tables of Part 2.

This Part is intended to be used as a reference work in conjunction with the
generalized discussions of task, file, and device management contained in
Part 2. Each command/macro is treated as a separate entity, and, except for
those instruction sets which are wholly independent, the description of each
conlmand/macro relates only to the function it performs.

3-1/3-2

GENERAL

SECTION 1
TASK/PROGRAM MANAGEMENT COMMANDS AND MACROS

The infoDmation contained in this section defines the explicit instructions
provided by VMOS for programmer control of the task and program
environment. The following summaries group the commands and macros
into functional sets: task initiation, program initiation, task regulation,
program direction, task termination, program termination, and process
interruption.

Conlmands relative to remote job (Remote Batch System) initiation and
ternlination are included in the corresponding task command summaries.
Where commands or macros apply to both the task and program
environments, they will be listed in all related summaries.

TASK INITIATION COMMANDS AND MACROS SUMMARY

COIllm.and/Macro

DO

ENTER Command/Macro

LOGON

RLOGON

RJOB

Function

Execute a procedure file.

Initiate a nonconversational task
conversationally.

Initiate primary task.

Identify user to RBP system.

Identify and define processing for jobs
submitted to the RBP system.

PROGRAM INITIATION COMMANDS AND MACROS SUMMARY

Conlmand/Macro

DO

ENTER Command/Macro

EXECUTE Command/Macro

LOAD Co:mmand/Macro

PROCEDURE Statement

3-3

Function

Execute a procedure file.

Initiate a nonconversational task
conversationally.

Load a program into memory and call for
its execution.

Load a program into memory.

The first entry in a PROC file. Indicates
printing options.

TASK REGULATION COMMANDS AND MACROS SUMMARY

Command/Macro

RSTATUS Command

SETSW Command

SKIP Command

STATUS Command

STEP Command

TMODEMacro

Function

Determine status of one or more
remotely submitted jobs.

Set, reset, and invert task switches.

Test task switches.

Determine the progress through the
system of tasks being processed.

Define logical subdivisions of a task.

Provide task information.

PROGRAM DIRECTION COMMANDS AND MACROS SUMMARY

Command/Macro

CALL Macro

CHKPTMacro

CSTAT Command

EOF Command

EXCOM Macro

EXECM Macro

GETSW Macro

LOADM Macro

LPOV Macro

3-4

Function

Branch from main program to subroutine.

Permit user to specify node points at
which system environment and program
status are to be noted.

Change status of pages owned by a Class
II program.

Pass control to programs end-of-file
address. Transfer out of a conversational
task loop.

Get data from Common Data Area.

Terminate a program and initiate execu-'
tion of another.

Store settings of the 32 program task
switches.

Terminate a program and load. a new
program.

Cause a load module to be loaded during
program execution. See Linkage Editor
Description in VMOS Service Routines
Manual.

Comlnand/1v1acro

PARAMETER Command

PASS Macro

PROUT Macro

RDATAMacro

RDCRD Macro

REMARK Command

RESTART Command

RETRN Macro

RMSG Comlmand

SAVE Macro

SETSW Macro

TOCOM Macro

VPASS Macro

WRLST Macro

WROUTMacro

WRTOTMacro

WRTRDMacro

3-5

Function

Indica te options available to language
processors. See VMOS Program Manage­
ment Manual.

Relinquish remainder of time slice.

Cause a record to be written to the
SYSLST file. (TOS Support.)

Retrieve next record from SYSDT A.

Get an input record from SYSIPT.
(TOS support.)

Allows user to output remarks to
SYSOUT file.

Reload a program interrupted by a
checkpoint at the point at which the
checkpoint was taken.

Return control to a calling program from
a called program.

Send a message to another RBP user,
the central operator, or an RBP work
station.

Store the contents of general registers.

Set, reset~ and invert task switches.

Move data to Common Data Area.

Relinquish control of the processor.

Cause a record to be written to SYSLST.

Send a message from a program to
SYSOUT.

Write a record to SYSOPT (TOS support).

Send a message to a terminal and accept
a response from a terminal.

TASK TERMINATION COMMANDS AND MACROS SUMMARY

Command/Macro

ABEND

CANCEL

ENDP

LOGOFF Command/Macro

RLOGOFF

ROUT

Function

Force abnormal task termination, obtain
a PDUMP of class 5 and 6 memory, and
be automatically logged-off.

Cease processing a secondary task.
Transfer out of a conversational task
loop.

Return control from a procedure file to
the primary command input stream.

Terminate primary task.

Indicate completion of an RBP session.

Retrieve deferred or discontinued remote
job output (RBP).

PROGRAM TERMINATION COMMA-~DS AND MACROS SUMMARY

Command/Macro

ENDP Command

TERM Macro

TERMD Macro

TERMJ Macro

Function

Return control from a procedure file to
the primary command input stream.

Terminate a program.

Terminate a program and obtain a prograrrl
dump.

Termlna te a job wi thin a task.

PROCESS INTERRUPTION COMMANDS AND MACROS SUMMARY

Command/Macro

BREAK Command

EXIT Macro

3-6

Function

Temporarily pass control from a procedure
or program to the control system.

Return from end-of-program interrupt
routine to interruption point.

EXITP Macro

INTR Com1nand

PAUSE COlnmand

RESUME Command

SETIC Macro

SPEXT Macro

STXIT Macro

3-7

Function

Permit control system to perform
operations to allow reentry to program
contingency routine.

Pass control to operators communication
routine.

Temporily halt a task until operator
performs some action.

Resume object program execution or alter
its order.

Simulate an interval timer interrupt.

Obtain a Status Block which contains
information required by user's interrupt
routine.

Specify addresses for executive
interrupt routine.

TASK/PROGRAM MANAGEMENT COMMAND AND MACRO DESCRIPTIONS

The following material describes each of the task and program management
commands and ma,;;ros. The descriptions include instruction format,
programming considerations, and, where illustrative information is necessary,
examples of the use of the instruction. The commands and macros are
presented in alphabetical order without regard to functional classification.

ABEND Command

ABEND forces abnormal task termination. A PDUMP of Class 5 and Class 6
memory is taken and LOGOFF occurs automatically unless inhibited by the
presence of the BU1 operand. The operation of this command is effectively
the save as CANCEL DUMP.

Name

BUT

BREAK Command

Open.tion Operand

ABEND [BUT]

Specifies that the terminal not be disconnected. The use of
this operand causes the system to issue a PLEASE LOGON
message to the user's terminal.

BREAK allows the programmer to temporarily transfer control from either a
procedure file or nonconversational program to the operating system. If the
operating system is already in control when the BREAK command is
received, the BREAK command is ignored.

Name Operation Operand

BREAK

Programming Notes

The BREAK command must be contained in either a non conversational task
or a PROCEDURE file specified in a conversational task. The BREAK
command is read during program execution when SYSDTA is the same file
as SYSCMD. A RESUME command must be issued to return control to the
procedure file or nonconversational program.

3-8

CALL Macro

The CAL1L macro provides the programmer with a single statement entry for
branching from a main program to subroutines contained within the same
load program.

Name Operation

CALL

Operand

symbol

CANCEL Command

CANCEL is used to cancel a task. If the task to be canceled is waiting for
task scheduling, it is eliminated from the task scheduling queue and any
input parameters relating to it are bypassed.

If the task to be canceled is being executed, the devices and pages of storage
reserved for its use are returned to the system.

If the task to be canceled has already been completed, the CANCEL
command is rejected.

Nanle

tsn

DUMP

Programming Notes

Operation

} CANCEL}
lCAN

Operand

tsn[,DUMP]

Specifies the task sequence number of the non conversational
task to be canceled. The number consists of a maximum of
four decimal digits.

Specifies that the program being run at the time the
CANCEL cornlnand is received is to be dumped to the task's
SYSLST file.

A progranlmer cannot cancel a task identified by a LOGON associated task
number. The programmer nlay only cancel tasks whose task numbers have
been generated within a main task, such as ENTER files.

Users other than the System Controller may only cancel tasks generated
under their userid as defined at LOGON time.

The CANCEL command can be issued only in the conversational mode.

The CANCEL command cannot cancel a spoolout task which is executing or
in the spoolout queue.

The administrator will be prompted by the system to ensure that he wants to
cancel the indicated task.

Remote Batch Processor task cannot be canceled.

CAM tasks cannot be canceled.

3-9

Example I

Example 2

leAN 1234,DUMP

Task sequence number 1234 is canceled. The program running in task
number 1234 when this command is issued is dumped to the SYSLST file.

%C E222 PLEASE LOGON.
/LOGON USER-ID
%C E223 LOGON ACCEPTED AT 1024 ON 06/22/70, TSN-1392 ASSIGNEO.
/EXEC (EDIT)
%LOOI DYNAMIC LOA[ER INVOKED

VERSe 0011 OF FILE EDITOR READY
*OPEN ISAM.FILE,OLD

OPENED ISAM.FILE AS OLD V-TYPE FILE.
*TEXT

3000. <0>
*/LOGON CLARTEST

3100. <0>
'':/PARAM L I ST=YES, ['EBUG=YES, ERRF I L=YES

3200. <0>
*/SYSFI LE SYSDTA=[,ATA. FI LE.SAM

3300. <0>
*/EXEC BGFOR

3400. <0>
*/SYSF1LE SYSDTA=(PRIMARY)

3500. <0>
*/EXEC TSOSLNK

3600. <0>
*PROG NAME

3700. <0>
*INCLUDE *c

3800. <0>
• '':END

3900.
*/LOGOFF

4000.
*#END
*HALT
/ENTER SAM.FILE

%0 E172 TSN=1397.
/CANCEL 1397
/CANCEL 1392

<0>

<0>

%CANNOT CANCEL OWN TASK
/LOGOFF

}

%C E420 LOGOFF AT 1035 ON 06/22/70, FOR TSN
%C E421 CPU T I ME lISED: 004.9756 SECONDS.

3-10

1392.

CHKPTMacro

Notes:

<D User canceled task associated with the processing of
SAM.FILE. TSN 1397 identifies the ENTER file task
generated within the main task.

<V User attem.pted to cancel the task identified by the
primary task number. TSN 1392 identifies the programming
session associated with the user's LOGON statement.

The CHKPT (Checkpoint) 1nacro is that half of the checkpoint restart
combination that permits a programmer to specify node points at which
system environment and program status are to be noted. These checkpoints
can then be used, by way of RESTART command, to resume the execution
of aborted programs.

Name

fcb-addr

error-addr

resta:rt-addr

id-char

MF=L

MF=E,(I)

Operation Operand

CHKPT fcb-addr ,error-addr ,restart-addr,

CHKPT ,MF=D

The address of a PI FCB which has been used to open the
PAM file to be used for checkpointing.

An address in the user's program to which control is to be
transferred if an error occurs during checkpoint.

An address in the user's program to which control is to be
transferred after a restart, from the checkpoint, has been
accomplished.

A 6-byte character string identifying the checkpoint.

The inline parameter list (fcb-addr through id-char) is to be
generated but not executed.

The execution of an external parameter list, containing the
same information as would have been supplied in the inline
parameter list, the address of which is contained in register 1.

3-11

MF=E,addr

MF=D

The execution of an external parameter list, containing the
same information as would have been supplied in the in-line
parameter list, the address of which is explicitly given.

A DSECT is to be generated describing the parameter list by
tagg ~d items.

Upon being invoked, the checkpoint routine validates the parameter lilst
supplied to it by tt.c user. The routine then quiets any outstanding 10's and
determines where in the file the checkpoint is to be written. The checkpoint
comprises identification information, program status, related system status,
and virtual memory contents all of which, when combined, provide the
means of restarting the program. logically at the checkpoint.

When the checkpoint has been successfully completed, a message is logged
on SYSOUT for use at restart time. If errors prevent completion of the
checkpoints, the u;er is given control at a specified error address and is
passed a code specifying the nature of the error.

The primary direct Jutput of the checkpoint process is a series of PAM pages
of identifying information, necessary control blocks, information required
for file reopening, and the contents of virtual memory. The checkpoint
process also directs a message to SYSOUT when a successful checkpoint has
been completed. This message associates the specified ID with a half-page
number for subsequent use in restarting.

Programming Notes

The user can reduce the amount of time consumed by the checkpoint
process by controlling the allocation of the file space for the checkpoint file.
The approximate number of PAM pages used for a single checkpoint may be
calculated using the formula

P=2n+6

where n is the number of pages of virtual memory allocated to the progralm
at checkpoint time.

It follows, therefore, that the checkpoint should be taken at a point in the
program where the amount of Class 5 and Class 6 memory allocated to the
program is at a mininum.

Furthermore, the initial allocation of file space should be large enough to
accommodate all anticipated checkpoints, thus avoiding secondary
allocations. If this i~; not feasible, the next best alternative is to ensure that
the secondary allocations equals or exceeds the requirements of anyone
checkpoint.

3-12

Cautions and Errors

-,-----
CSTATMacro

If the checkpoint process is aborted, an error code is passed to the user in
the low order byte of register 15. The register 15 codes are as follows.

X'OO' Checkpoint processed successfully.

X'04' Unable to REQM Class 5 checkpoint workspace.

X'08' Error in parameter list supplied by caller.

X'OC' Checkpoint file not opened.

X'lO' No secondary allocation or illegal write.

X'14' FCB not PAM, or OPEN not INOUT or OUTIN.

X'18' Unrecoverable error returned by DMS.

X'IC' Catalog Management error.

The preceding codes are in addition to the error exit byte and error code
that may be in the FCB for codes X'OC', X' I 0', and X' 18'. Control is
returned to the caller's error address whenever an error is detected.

The CSTAT (Change Status) macro instruction changes the status of a
specified page or all of the pages owned by a Class II program. This macro
also accepts the MF parameter.

Name

PGNUM =value

PGNUM=ALL

Operation Operand

CSTAT PGNUM= I valuel [,ACCESS= I READ l]
ALL WRITE

[
,p AGE= I YES 1 [,MF= { L }]

NO (E,list)
(E,(l))

Specifies the page number of the page whose status is to be
changed.

Specifies that all pages currently held by the program are to
have their status changed.

ACCESS=READ

Specifies that the page is to be made read-only.

3-13

ACCESS=WRITE

PAGE=YES

PAGE=NO

MF=

Programming Notes

Speclfies that the page can be both read from and written to.

Speclfies that the page is to be made pageable (nonresident).

Speclfies that the page is to be made nonpageable (resident).

Refer to the explanation, "Type of Macro Instructions", in
"Command/Macro Notation Conventions" of the
Appendices.

CSTAT cannot be u:;ed in a Class I program.

PGNUM=ALL may not be used when ACCESS parameter is specified.

When ACCESS parameter is omitted, no change is made to the read/write
status of the page.

When PAGE parameter is omitted, no change is made to pageable status of
the page.

Cautions and Errors

The General Register 15 Return Codes follow:

X'OO'

X'04'

X'OC'

X'IO'

Request was processed successfully.

Page specified is not owned by the program.

An invalid request was encountered.

The program has attempted to make more pages resident
than were reserved for it at execution time.

3-14

DO Command

The DO command enables a programmer to execute a procedure (PROC)
file. This command corresponds to the macro call in the assembly language.
Following the PROC filename in the operand field of the DO command, the
programme~r may specify the operands which are to be inserted in place of
the symbolic parameters. Positional and keyword operands may be mixed in
the operand field of the DO command.

Name

filename

parameters

Operation Operand

DO filename [,(parameter-alphanum , ...)]

The filename of the cataloged file which is to become the
temporary command input file (SYSCMD).

The filename is a set of up to 54 alphanumeric characters in
the following form:

[$user-id.] nmne [.name ...] [(group)]

Userid is optional and consists of from one to eight
characters, the first of which must be alphabetic.

N arne is required. Extra .names can be specified.

The length of the name [.name ...] field cannot exceed 44
characters.

Positionals and keywords which are to be inserted in place of
the symbolic parameters in commands in the named
procedure file. A comma must separate the positional or
keyword operands from the file name. The positional or
keyword operands are enclosed in parentheses and are
separated by commas. If the default symbolic operands are
desired, then the left and right parentheses must be used: for
example, IDO filename, ().

Programming Notes

Example

Positional operands must correspond to the positional symbolic parameters
in the PROCEDURE statement. Keyword operands present as symbolic
para:meters in the PROCEDURE command may be omitted in the DO
command, as default values can be specified. Additionally, any operand
specified in the PROCEDURE statement may be omitted in the DO
com:mand. Refer to the PROCEDURE statement discussion for further
information on procedure file definition.

See Section 2, Part 2, for the discussion of use and structure of procedure
files.

An example of the use of the DO command is contained in the procedure
file discussion of Section 2, Part 2.

3-15

ENTER Command/Macro

The ENTER comma:ld provides the programmer with a method for initiating
a non conversational background task from a remote terminal or from within
a nonconversational task. The non conversational task is independent of the
conversational task that issued the ENTER command and is identified by its
own task sequence number.

Name

filename

userid

accountno

password

PRIORITY=n

Operation Operand ----
filename,[userid] ,[accountno] ,[password]

[,PRIORITY=n] [MSG= I ~ I IHl]
[,PRIV A TE= I ~~S I] [, TIME=t]

Specifies the name of cataloged file which will become the
SYSCMD, SYSDT A, and SYSIPT of the non conversational
task. Filename must be a valid filename as described in the
FILE command discussion. See Section 2 of this part.

Specifies the user's identification and may consist of fronll
one -:0 eight alphanumeric characters. The first character
must be alphabetic.

Specifies the account to be charged for the computer time
used. The account number may consist of from one to eight
alphanumeric characters.

May :onsist of from one to eight bytes written as either a
chara :ter constant or a hexadecimal constant.

Examples: C'%()*B2' and X'AOBOCO'.

The password consists of the information contained between
the pair of single quotes.

One digit in the range 1 to 9 specifying the priority for the
task.

3-16

MSG=

PRIVATE=

TIME=

Programming Notes

Indicates how much of system messages is to be typed. F
indicates that full system messages are desired. C indicates
that only the code and variable portion of system messages
are to be printed. If the MSG operand is not specified, the
standard specified during system generation is used. H
indicates that hard copy is desired and that, all terminal
input/output is to be written to the SYSLST file.

Specifies whether the ENTER file is on a private device
(YES) or not (NO). NO is the default case.

Specifies the number (a decimal integer) of minutes of CPU
time allowed for this ENTER file.

Entered files cannot be password protected. Therefore, RDPASS and
WRPASS' passwords cannot be honored. The task entered is independent of
the conversational task in which the ENTER command was issued. The
system assigns a task sequence number of the entered task and types this
number on the user's terminal immediately after receiving the ENTER
command.

The entered file must have as its first and last commands LOGON and
LOGOFF, respectively. However, the optional parameters, userid, account
number, priority, and message, when specified by the user in the ENTER
command, override any of these parameters found in the file itself.

3-17

EOF Command

EOF is used within a program in conjunction with the RDAT A macro to
pass control to a program's end-of-file address.

EOF can also be u:;ed independent of the program to transfer out of a
conversational task loop.

Name Operation Operand

EOF

Programnling Notes

ERFLG Macro

One of the operands of the RDAT A macro is the end-of-file address. When
the RDA TA macro is executed, it requests a record from the SYSDT A file.
(The device involvec. can be the user's terminal, a disc cataloged file, or a
system card reader.) On normal reads, control is returned to the user's
program at the location following the RDATA macro. When the record thus
read is an EOF cOITlmand, control is returned to the user's program at the
end-of-file address.

To effect the transfer out of a conversational task loop, the programmer
enters the EOF cOITlmand at the terminal and then activates the terminal's
Break Key.

The ERFLG macro (Set Error Flag) is issued by system programs which wish
to prohibit loading and executing of other programs within the step. This
macro requests the TSOS Executive to set an error flag in the task's Monitor
Table and Task Con":rol Block (TCB) which prohibits loading and execution
of programs encountered within the step. Control is returned to the user.

Name Operation Operand

ERFLG blank

Programnling Notes

The ERFLG macro i:; provided for TOS compatibility only.

3-18

EXECUTE Command/Macro

EXECUTE causes a progranl to be loaded into memory and to be executed
starting at its initial entry point. EXECUTE can be issued either
conversationally or nonconversationally.

Nanle

program

*

module

filename

CLASS 1=

(max,min)

Operation

{EXECUTE}
1 EXEC

Operand

(

program I
~mOdUle [,filename 1)

rf ,CLASSI = (max,min) }]
U,CLASSII = (max,min,p)

[,TIME=t] [,IDA=YES]

Specifies the~ name of the cataloged file containing the
program.

Specifies the current object module file (EAM file). The
module must be Class II.

Specifies the name of the object module or an entry point in
the object module. (The module name consists of one to
eight characters and the module trtUst be Class II.)

Specifies the file name of an object module library which
contains the specified module.

Specifies that the object module is within the SYSDTA input
stream.

Indicates that the parameters given are memory requirements
for a CLASS I program. (This operand is only significant if
the "program" option is used.)

Specifies the additional maximum and mInImum resident
pages requested by the user for his program; (max,min) are
decimal integers in the range 0-254.

3-19

CLASS 11=

(max,min,p)

TIME=

t

IDA=YES

Indicates that the parameters given are memory requirements
for a Class II program. (This operand is only significant if the
"program" option is used.)

Specifies the maximum and mInImum resident pages
requested for this program and, p, the total number of pages
required. (max,min,p) are decimal integers in the range
1-254. If the core requirements are omitted, the default
conditions are found in the header record for the program.
This I(leanS the file must be opened so that the core
requirement can be obtained.

Indica1es that an amount, t, of CPU time is specified for this
program. If omitted, the system obtains this time from the
system standard specified during system generation. When
the program has exceeded its allotted time, the system
notifie) the user. The system then reinitializes the original
allotted time.

The CPU time, in minutes, as a decimal integer ranging from
one te· the system standard maximum which is allotted to
this program.

Permit s the use of the Interactive Debugging Aid for on-line
monitoring of the execution of his program.

Programming Notes

Examples

If the program to be executed is a TOS program and the loading of TOS
programs is currently being prohibited, the program will not be loaded, and
the system will skip to the next STEP command or LOGOFF command in
the task stream.

For further information on program loading, see the description of TSOS
Loaders in the VMOS Service Routines Manual.

jEXECUTE TRANS99.JAN31-68, CLASSI=(5,1)

jEXEC (FILE7.DATA),CLASSII=(5,2,15)

jEXEC (Zl Y2X3.A9B8),TIME=25,CLASSI=(3,3)

jEXEC *,TIME=15

3-20

CD The program contained in the cataloged file, TRANS99.JAN3l-68, is to
be loaded and executed. This CLASSI program needs a minimum of one
resident page and can use up to five resident pages. The CPU time allowed is
taken froml the system standard.

Q) The program contained in the cataloged file, FILE7.DATA, is to be
loaded and executed. This Class II program needs a minimum of two resident
pages and can use up to five resident pages. The program needs a total of 15
pages of virtual storage. Maximum CPU time is taken from the system
standard.

® The program contained in the cataloged file, Zl Y2X3.A9B8, is to be
loaded and executed, starting at its initial entry point. This Class I program
needs 3 resident pages and is allowed to run for a total of 25 minutes of CPU
time.

@ The current object module file (EAM file) is loaded and executed. This
must be a Class II module and is allowed to run for a total of 15 minutes of
CPU time.

EXCOM Macro

EXCOM is used to get data from the Common Data Area into a program.
The Comnlon Data Area is a 4096-byte area maintained by the Executive.
This area is common to all Class I and Class II programs.

Name

location

data

length

Operation Operand

EXCOM location,data[,length]

Is a decimal number indicating the location relative to the
first byte of the Common Data Area from which the first
byte of data is to be moved. The positions in the Common
Data Area are counted from 110 •

Is the symbolic address in the user's program into which the
data from the Common Data Area is to be moved.

Is the decimal number of bytes to be moved. If length is
omitted, the implied length associated with the symbolic tag
of the receiving field specified in the data operand is used.

3-21

Examples

Example I

Name

AREA

Example 2

Name

AREA

Operation Operand

EXCOM 4,AREA,5

DS CL5

Operation Operand

EXCOM IO,AREA

DS CL6

Note: Six bytes, starting with the 10th byte of the Common
Data Area, are moved to location AREA in the user's
program. Because the length operand is not stated, the
inlplie j length of the receiving field, AREA, is used.

3-22

EXECM Macro

EXECM (Execute User Programs) enables the programmer to have a program
ternlinate itself and initiate the execution of another program.

Nanle

program

*

module

filename

Operation

EXECM

Operand

,{program }

~mOdUle [,fiIename 1)

[1 ,CLAssI=(max,min) IJ
. ,CLASSII=(max,min,p)

[,TIME=minutes] "

Specifies the name of the cataloged file containing the
program.

Specifies the current object module file (EAM file). The
module must be a Class II program.

Specifies the name of the object module or an entry point in
the object module. The specified module must be Class II.

Specifies the filename of an object module library which
contains the specified module.

Specifies that the object module is within the SYSDTA
input.

CLASSI=(Inax,min)

Specifies the additional maximum and mInImum resident
pages requested by the user for his Class I program.

(max,min) are integers in the range 010 - 2541 0 .

This operand is only significant if the "program" option is
used.

CLASSII=(max,min,p)

Specifies the maximum and minimum resident pages
requested for the Class II program and, p, the total number
of virtual memory pages required.

(max,min,p) are integers in the range 01 0 - 25410 •

This operand is only significant if the "program" option is
used.

3-23

TIME=

The 1naximum CPU time, as an integer, allowed for this
program. If omitted, this command will assign the allotted
time which is obtained from the system standard (systerrl
generation). When. the allotted time is exceeded, the operator
is not tfied and the original allocated time is reinitialized.

Programming Notes

EXIT Macro

The entire operand jeld must be enclosed in quotes. After an EXECM has
been issued, the issuing program cannot be reentered during the run.

EXIT (Exit from Ccntingency Routine) permits the programmer to supply
information at the ~nd of a program's interrupt routine that enables the
executive to return control to the point in the program at which the
interrupt occurred.

Name

PR

TR

CR

Operation Operand

EXIT

Indicates return from the program's program check routine.

Indicates return from the program's timer routine.

Indicates return from the program's operator communication
routine.

Programrrling 1\.J"otes

Contingency routines which are terminated by the EXIT macro handle the
following interrupts:

1. program check int'~rrupt,

2. program timer intE:rrupt, and

3. operator communkation interrupt.

The macro expansion contains the SVC code associated with the referenced
interrupt.

3-24

EXITP Macro

EXITP (Exit Provided by User) allows the programmer to supply
information within a contingency routine that will allow the Executive to
perform the necessary functions so that the contingency routine may be
reentered on the next applicable interrupt.

Name
--lo

PR

TR

CR

UR

ER

Operation Operand

EXITP

{~i }
Indicates return from the user's program check routine.

Indicates return from the user's timer routine.

Indicates return from the user's operator communication
routine.

Indicates return from the user's unrecoverable error routine.

Indicates return from user's program-time-runout routine.

Programming Notes

It is the programmer's responsibility to restore General Registers 10 and 11,
if so desired, by obtaining their contents with a SPEXT macro in a Class II
program or with an ADEXT Inacro in a Class I program.

After execution of this macro, the Executive returns control to the
instruction following the macro expansion.

3-25

GETSW Macro

GETSW (Get Switch) permits the programmer to store in General Register
o the settings of th~ 32 task switches for the task containing the progrann
in which the GETSVv is issued.

Name Operation Operand

GET~;W

Programming Notes

The task switches are 32 bits maintained (for each task) by the Executive.
The 32 bits are initially set to O. Through the use of the SETSW (Set
Switch) macro, the user can selectively set, and optionally reset, the bits
to a value of 1.

Bit 2° of General Register 0 corresponds to task switch 0, bit 21 corresponds
to task switch 1, and so on.

The task switches art! a mechanism of communication from job to job within
a task. For example, a program might communicate to a successor prograrn
the presence or absence of an output file which is optional input to the
successor program.

INTR Command

The INTR (interrupt) command permits the programmer to cause control to
be transferred from the program to the operator communication routine as
specified in the program's STXIT macro.

Name

blank

tsn

Programming Notes

Oper;ltion Operand

INTR
{

blank I
tsn

The operand field is left blank when the INTR command its
used in the conversational mode.

When the INTR command is used in the non conversational
mode, the task sequence number of the task is given as the
operand.

To pass control from conversational tasks, the programmer interrupts the
operation of the program by pressing the BREAK key, then types the INTR
command.

The passing of control from a nonconversational task requires operator
intervention as desctibed in the VMOS Operations Management Manual.

3-26

LOAD Command/Macro'

The LOAD command enables a programmer to specify that an object
module be loaded into melTIOry. The execution of the program is not begun,
however, until the user explicitly indicates so (see RESUME command).
Subsequent to the LOAD command and prior to the call for execution, the
programrner may enter other commands without affecting the status of the
loaded program.

Name

program

*

module

filename

CLASS I

Operation

LOAD

Operand

J program I
1 ~module [,filename 1)

nl ,CLASS 1= (max,min) }] U ,CLASS II = (max,min,p)

[,TIME=t] [,IDA=YES]

Specifies the name of the cataloged file containing the
program.

Specifies the current object module file (EAM). The module
must be in Class II.

Specifies the name of the object module or an entry point in
the object tnodule. The module name consists of one to eight
characters and the module must be in Class II.

Specifies the filename of an object module library which
contains the specified module.

Indicates that the object module is within the SYSDTA
Input.

Indicates that the parameters given are memory requirements
for a Class I program. (This operand is only significant if the
"PROGRAM" option is used.)

3-27

CLASS II

(max,min,p)

TIME=

t

IDA=YES

Indicates that the parameters given are memory requirelnents
for a Class II program. (This operand is significant only if the
"PROGRAM" option is used.)

Specin~s the maximum and mInImum resident pages
requested for this program and, p, the total number of pages
required. (max,min,p) are decimal integers in the range
0-254.

Indicat~s that an amount, t, of CPU time is specified for this
program. If omitted, the system obtains this time from the
system standard specified during system generation. When
the pr)gram has exceeded its allotted time, the system
notifie5 the user. The system then reinitializes the original
allottee time.

The CPU time, in minutes, a decimal integer ranging from
one to -:he system standard maximum.

Permits the use of the Interactive Debugging Aid for on-line
debugging.

Note:]f memory requirements are omitted (the Class I and
Class II parameters) in this macro, the system expects to find
the mt:mory requirements in the header record of the
progranl.

Programming Notes

Examples

If the program to be executed is a TOS program and the loading of TOS
programs is currently being prohibited, the program will not be loaded, and
the system will skip to the next STEP co~rnmand or LOGOFF comrnand in
the task stream.

F or further information on program loading, see the description of TSOS
Loaders in the VMOS Service Routines Manual.

/LOAD PROG I CD
/LOAD (FILE.NAME),TIME=10,CLASSII=(6,4,6) @

/LOAD (FILENAME.A),CLASSI=(lO,I),TIME=20 Q)

3-28

CD The program contained in the cataloged file, PROG I, is loaded. Execution
is not begun until a RESUME command is issued. Memory requirements for
this program are taken fronl the file's header record. Allowed CPU time for
this program is taken from the system standard.

@ The program contained in the cataloged file, FILE.NAME, is loaded.
Execution is delayed. The program is authorized to use 10 minutes CPU
time. This Classll program needs a total of six pages of virtual storage, four
of which :must be resident.

® The program contained in the cataloged file, FILENAME.A, is loaded.

LOADM Macro

This ClassI program is allowed to use 20 minutes of CPU time and requires a
minimum of one resident page. Up to 10 pages can be made resident for this
program.

LOADM macro enables the program to terminate itself and to load a new
user program, but control is passed to the SYSCMD file instead of the called
program. The calling program is no longer available.

Name

program

*

module

filename

Operation

LOADM

Operand

"I program I
~mOdUle [,filename))

[
f ,CLASSI=(max,min) }]
1,CLASSII=(max,min,p)

[,TIME=minutes] "

Specifies the name of the cataloged file containing the
program.

Specifies the current object module file (EAM). The module
must be Class II.

Specifies the name of the object module or any entry point
in the object module. The module name consists of one to
eight characters and the module must be Class II.

Specifies the filename of an object module library which
contains the specified module.

3-29

Indicates that the object module is within the SYSDTA
input.

CLASS I=(max,min)

Specifles the additional maximum and mInImum resident
pages requested by the user for his Class I program.

(max,lnin) are integers in the range 010 - 25410

This operand is only significant if the "program" option is
used.

CLASS II=(max,min,p)

TIME=

Cautions and Errors

Specifies the maximum and mInImum resident pages
requested for the Class II program, and, p, the total number
of virtual memory pages required.

(maX,Tlin,p) are integers in the range 010 - 25410 •

This operand is only significant if the "program" option is
used.

The rraximum CPU time, as an integer, allowed for this
prograln. If omitted, the command will assign the allotted
time. The allotted time is obtained from the system standard
(systenl generation). When the allotted time is exceeded, the
operator is notified and the original allotted time is
reini tialized.

1. The entire operand must be enclosed in quotes.

2. If memory requirenlents are omitted (the Class I and Class II parameters)
in this macro, the sy~:tem expects to find the memory requirements in the
header record of the p:·ogram.

3-30

LOGOFF Command/Macro

The user ends a task with a LOGOFF command; therefore, LOGOFF must
be the last command in every task. LOGOFF causes the TSOS Executive to
remove the task from the system and return to the system the virtual storage
and any input/output devices used by the task. The BUT option allows the
conversational user to LOGON again without the terminal being
disconnected.

Name

BUT

TAPE

Programming Notes

Operation

LOGOFF

Operand

[I BUT[,TAPE] lJ
_ TAPE[,BUT]

This operand pertains only to conversational users and is
ignored in the non conversational mode. When employed, the
conversational user will be requested to LOGON after present
task has been destroyed. When omitted, the conversational
user's terminal is disconnected prior to task destruction.

This operand requests the system files to be spooled out to
tape.

The SYSLST and/or SYSOUT files will be written to the
same tape. The filename will be TAPE.TSNnnnn, where nnnn
is the task sequence number of the task which created these
files.

The SYSOPT file will be written to a separate tape. It will
also have a fillename of TAPE.TSNnnnn, but the nnnn will be
a new task sequence number which is assigned to the task
which will spool out this file to tape. The user will be
notified of this TSN in his SYSOUT file.

All files which are spooled out to tape are cataloged SAM files. They are
variable length records and the first data character is a machine code control
character. The maximum block size is 2064 bytes. The first 16 bytes contain
the key. The remaining 2048 bytes are a record in the standard variable
fornlat.

The file nlay be printed by using a PRINT command with the SPACE=E
option, or punched via a PUNCH command with the STARTNO=2 option,
to by pass the control character.

3-31

LOGON Command

The LOGON command identifies the user to the system. A user cannot
communicate with th.e system until he has successfully logged on and his
user's credentials (id and password) are verified.

The sever bit in the JOIN table entry is checked to ensure that this user can
LOGON. Only the userid operand is mandatory. If no account number or an
incorrect account number is provided in the LOGON command statement,
the first one in the JOIN table entry is used. If a password is in the JOIN
table, yet is omitted or incorrect in the LOGON command, the user in the
conversational mode is not logged on, the user in the nonconversational
mode is aborted. In general for illegal operands, the conversational user is
prompted, the nonconversational user is aborted.

Name

userid

accountno

password

Operation

LOGON

Operand

userid, [accountno] ,
[password] [,PRIORITY=n]

[MSGI ~~ll [,BUFFER=integer 1

[PRIV ATE= I ~~S l] [,TIME=sec 1

Is from one to eight alphanumeric characters (the first of
which must be alphabetic) used to identify the user to the
systerl. This is the only mandatory operand in the LOGON
comlY.and. Imbedded blanks in the userid are not allowed.

From one to eight alphanumeric characters (no blanks)
indicating the account to be charged for the computer time
used. If no account number is specified, the first one in the
Join Table entry is used. If an account number is specified
but i~; not in the Join Table entry, the system types a
prompting message.

From one to eight characters specifying the user password
stated in character or hexadecimal constant format.
C'%O:!cB2' and X'AOBOCO' are two valid examples of
passw Jrds. Terminal control characters cannot be used for
passw'Jrd characters.

If the Join Table entry for this user contains a password and
the LOGON operand contains a different password (or no
password), the system types a prompting message.

3-32

PRIORITY=

MSC=

BUFFER=

PRIVATE::

TIME=

Programming Notes

A I-digit numeric code in the range 1-9 which specifies the
priority for this task (1 is highest priority, 9 is lowest); n
cannot exceed the priority indicated in the Join Table entry.
If PRIORITY= is omitted, the installation standard specified
at system generation is used.

Controls the length of a systems message to be typed. A
I-character code, F or C must be specified. F indicates that
full system messages are to be typed. C indicates that only
the code and variable portion of a system message are to be
printed. If the MSG operand is not specified, the installation
standard is used.

FH and CH permit the user to specify the hard copy option.
When the user exercises this option, both the system message
reads/writes and user message writes/reads are written to the
SYSLST file which is spooled out when the user logs off. The
FH and CH entries indicate the same message lengths and
formats as F and C, respectively.

Allows the user to request an arbitrarily large terminal input
buffer. Mininlum buffer size is 80 bytes. Maximum buffer
size is 1024 bytes. If this operand is omitted, a buffer of 80
bytes is allocated.

YES indicates that the user requires private devices. NO
indicates that the user does not require any private devices.
The default condition is YES (for private devices).

If the user has indicated he requires no private devices, but in
the subsequent execution of the job stream requires a private
device, the task will be abnormally terminated. This operand
is only significant for nonconversational tasks.

Requirement in minutes for CPU time. If omitted, the time is
obtained fronl the system standard (system generation). This
operand is only significant for nonconversational tasks. If the
value given or defaulted is greater than that amount
remaining for the account, no LOGON is permitted. If the
value is greater than/BIAS time limit, the job remains on
queue.

The password in the nonconversational LOGON statement will be cleared to
spaces before the record is written to SYSOUT.

3-33

Examples

LPOV Macro

Example 1

%C E222 PLEASE LOGON
/LOGON DDD
%C E223 LOGON ACCEPTED AT 0930 ON 12/23/69, TSN
0876 ASSIGNED

Example 2

%C E222 PLEASE LOGON
/LOGON DDD" PRIORITY=3,MSG=C,BUFFER=500
%C E223 LOGON ACCEPTED AT 0938 ON 12/23/69,TSN
0887 ASSIGNED

The userid of DDD i~i submitted for validation. A priority of 3 is specified.

A coded typeout of all system messages is requested and an input buffer size
of 500 characters is requested.

LPOV (Load Program Overlay) causes a load module to be loaded during
execution of the user program.

Name

module

address

Operation Operand

LPOV module [,address]

Specifies the symbolic name of the module to be loaded. This
symb 01 can be 1-6 alphanumeric characters.

Specifies the symbolic name of the location in the user
progrclm to which control is given after the module has been
loaded. If this operand is omitted, control is given to the
instruction following the macro expansion.

The program is waited until the module is loaded.

Programnling Notes

When errors occur during loading of a Class I overlay load module, the
Executive terminates the task.

When errors occur during loading of a Class II overlay load module, the
Executive does the following:

1. places an error code (listed below) in PIG R 15.

2. returns control to the user program at the instruction following the LPOV
Inacro expansion.

3-34

Cautions and Errors

-,-----
PASS Macro

General Register 15 Return Codes:

X'OO'

X'04'

X'08'

X'OC'

X'IO'

X'14'

X'18'

The load was successful.

The text record that was read extends over a page boundary,
or there is a problem in the linkage editor, or the loader
routine cannot be loaded.

The format of the text modifier index record for this load
module is illegal.

The name in the load module index record does not
correspond to the name in the text modifier index record.

The requested load module cannot be found.

There is insufficient memory available to load this module.

An error occurred when reading a record from a random
access device.

P ASS causes the task to relinquish the remainder of its current time slice.
The task is rescheduled in the next cycle, and its times slice is reinitialized.

Name Operation Operand

PASS

Programming Notes

The PASS macro is commonly issued by a CAM program when there is no
line activity.

P ASS can be issued by a task when requested system facilities are not
available.

3-35

PAUSE Command

Examples

The PAUSE cOITlmand causes the task (either conversational or
nonconversational) to be temporarily halted until the operator has
performed some action. A message is sent to the operator's console and the
operator resumes execution of the. task by responding to the message.

Name

message

Operation Operand

PAUSE message

specifies the message to be typed on the operator's console
typewriter. The message cannot exceed 72 characters.

/PAUSE OPERATOR ---- MOUNT PACK #538 CD

/PAUSE PUT CARD DECK IN READER @

CD The message "OPERATOR MOUNT PACK #538" is typed on the
operator's console typewriter. When the operator has done so, he responds
to the message. Con-:rol is then returned to the task.

@ The luessage "PUT CARD DECK IN READER" is typed on the operator's
typewriter. When the operator has readied the card reader, he responds to
the message. Control is then returned to the user task.

3-36

PROUT Macro

PROUT (Write Print Line Image) causes a record to be written to the
SYSLST file.

Name

address

length

Operation Operand

PROUT address [,length]

Specifies the symbolic address in the user's program of the
record to be written to SYSLST.

The first character must be a print control character.

Specifies the length of the output message, including the
printer control character. This record is in fixed length
format. If the length parameter is omitted, the length
attribute of the area (including the control byte) is taken to
be the length of the record.

The Executive converts the user's records to V-type records prior to writing
thenl to SYSLST. Unless a WRLST was previously issued, a SYSLST EAM
file is created by the Executive when the first PROUT for a task is issued.
With the exception of those instances when the output is destined for a
remote station, SYSLST is spooled out onto a line printer at job
termination. After spooling, the SYSLST file is erased.

If a nonrecoverable error occurs during execution of the PROUT macro, the
program is terminated, and control is given to the next STEP or LOGOFF
command in the command input stream.

Programming Notes

The print control character is one byte of control information specifying the
type of paper advance desired when SYSLST is spooled out to the printer.

3-37

RDATAMacro

RDATA (Read Data from SYSDTA) enables the user program to retrieve the
next data record flom the SYSDT A file. The device associated with the
SYSDTA file can be the user's terminal, a system card reader, or (a cataloged
file on) a disc. The user designates the area in his program into which the
system places the record. The System enters the record as a variable format
record.

The user can formulate his own parameter area and lead its address into
General Register 1. In this case, he uses the second format of the macro
instruction.

Name

inarea

erraddr

length

edit

Operltion Operand ----
RDATA inarea ,erraddr [,length]

[,edit 1 [,A 1 [KE YO UT= I ~ IJ [,MF= 1

[,EOF=end-of-file address]

[,KEYPOS= l~lJ [KEYLEN= I ~ IJ
RDATA (1)

Specifies the symbolic address in the user program into which
the next record from SYSDT A is to be read.

Specifies the address in the user's program to which control is
given when an error occurs or an assignment change is made
(including initial assignments) and notification was requested.

Spec~fies the size of the user's "inarea." This area must be
four bytes larger than the largest record expected because
V-type format records require an initial 4-byte field which
indicates the actual number of bytes read.

If the length parameter is omitted, the length attribute of
"inarea" is assumed to be the length of the record to be read.

Spec:fies the editing option for a record to be read from the
user':; terminal, or sent to the user's terminal. The edit
pararneter is required only when a nonstandard translation is
required from the terminal. The options are as follows:

3-38

x'OO'

Translation from ASCII to EBCDIC and deletion of line feed
and carriage return characters from the text.

x'04'

SYSDTA is a sequential file.

x'08'

SYSDTA is an indexed-sequential file.

x'OC'

SYSDT A received from a card reader in the central
computing center.

x'IO'

SYSDTA received from a remote card reader (e.g., 8741).

x'14'

SYSDTA received from a terminal.

KEYOUT:= Y

MF==

Indicates a desire to have the ISAM KEY stripped from the
record being processed before the record is passed to the
user's specified read area. The Flag Table byte in the
parameter table is set to x'80.'

N

Indicates that the ISAM KEYS are not to be stripped from
records. This is the default case.

Indicates a desire to have the RDATA macro expanded
according to the system standard conventions defined for this
option. Refer to "Command/Macro Notation Conventions"
in the appendices.

EOF = end-of-file address

Causes the Flag Table byte to be set to x '40' and control to
be passed to the indicated address when an EOF, End-of-File,
is processed. The user is cautioned that this option generates
an extra word at the end of the RDAT A parameter list. If
this option is not specified, an EOF causes control to be
passed to the user's error exit.

3-39

KEYPOS= Y

Cause s the Flag Table byte to be set to x '20' and the ISA~1
KEY position value to be returned in the right hand portion
of the user's register zero.

N

The Flag Table byte is not set to x'20' and the ISAM KEY
position value is not entered in register zero. This is the
default option.

KEYLEN= Y

(1)

Cause s the Flag Table byte to be set to x '10' and the ISA~f
KEY LENGTH value to be returned to the right-hand portion
of the user's register zero.

N

The Flag Table byte is not set to x' 10' and the ISAM KEY
LENGTH is not entered in register zero. This is the default
option.

Indicates that the operands are found in a parameter table
whosl~ address has been loaded in register 1.

The Control Prograln places the parameters specified in the operand in a
parameter area and loads the starting address of this area into the General
Register.

The contents of the parameter area are as follows:

Item Byte Form

Edit Option 0 Binary

Address of read input area 1-3 Binary

Reserved 4-5 Binary

Length of read 6-7 Binary

Assignment change indicator 8 Binary

Address of user's error routine 9-11 Binary

Reserved 12 Binary

End-of-File Address <optional word 13-15 Binary
generated for EOF p:uameter)

3-40

If the assignment option is requested, an x'O l' is set in the assignment
change indicator in the parameter table. When the assignment option is
omitted, an x'OO' is set in the indicator.

Programming Notes

If the user has specified the "A" option and receives control at his
"erraddr," General Register 15 contains one or both of the following:

1. Assignment code in left-hand byte.

2. Error code in right-hand byte.

General Register 14 will contain the address of the instruction in the user
prograrn following the macro expansion.

When issued during a DXC session, the RDATA macro will cause an MT=6
Message Type to be transmitted to the auxiliary processor. MT=6 causes the
auxiliary processor to write an asterisk on a new line at the user's terminal
and be prepared to read a record from the terminal.

If both the KEYPOS and KEYLEN parameters are used, the right-hand byte
of register zero contains the key length and the next two bytes following it
contain the key position.

Cautions and Errors

General Register 15 Error Return Codes:

x'OO' Normal termination

x'04' Nonrecoverable error

x'08' Parameter error

x'OC' Read truncation

x'IO' End of file

A nonrecoverable error is a consistent hardware malfunction. A parameter
. error is an error in one of the user specified operands. Read truncation is an
error in which the record being read is larger than was specified in the length
operand of the macro instruction. The actual record is truncated to fit in the
size specified, minus four bytes for the length field. (If the record is shorter
than specified, the system pllaces it in the area left justified with no space fill
and executes a normal return to the user.) The end of file condition, though
not an error condition, causes control to be transferred to the user's error
address. The end of file condition can occur in the following ways:

terminal

By pressing the break key when a read is requested and
keying in the EOF and RESUME commands.

3-41

Example

other devices

Name

AREA

(1) When the SYSDT A file and the SYSCMD file are the
same and a command (other than the BREAK command) is
read.

(2) When the SYSDT A file and the SYSCMD file are not the
same and a IEOF is detected in columns 1-4 of the record.

Operation Operand

LA 1 ,AREA

RDATA (1)

DS CLl2

Note' The user loads the address of his parameter area into
General Register 1 before issuing the RDATA macro.

The parameters have been stored at location AREA according to the format
outlined in the introductory description.

3-42

RDCRDMacro

RDCRD (Read Record from SYSIPT) instructs the Executive to get an input
record fr01TI the SYSIPT file. The SYSIPT file can be a cataloged data file or
a system card reader.

Name

area

address

Operation Operand

RDCRD area ,address

Specifies the symbolic address in the user's program of the
area into which the input from SYSIPT is to be placed. This
record is in fixed length format.

Specifies the symbolic address in the user's program to which
control is given when the end of file condition is detected. A
command statement (record with / in column I) causes an
end of file condition except when SYSIPT is the same as
SYSCMD and a /BREAK command is read.

Programming Notes

All data records thus read from SYSIPT are 80 bytes in length. Longer
records an~ truncated to 80 bytes and shorter records are blank-(40)1 6 -filled
to make an 80-byte record. The records read are placed in a location
designated by the user. An end-of-file condition is caused by a command
statement being read from SYSIPT. Then control is passed to the user's end
of file address specified in the macro operand.

When SYSIPT is an ISAM File, an 80-byte record is provided to the
requestor. The 8-byte key is placed into positions 73 and 80 of the record. If
records are less than 72 bytes long, spaces are placed from the end of data up
to the 73r<1 position of the record.

Data records are placed in the user designated area and control is returned to
the user at the location following the macro expansion.

In Class I programs, if a RDCRD to a cataloged file results in a /* record, the
record is passed to the user program.

Command statements cause an end of file condition and the user receives
control at his end of file indicated address.

A nonrecoverable error causes the program to be terminated. Subsequent
commands are ignored until a STEP or LOGOFF is encountered.

3-43

REMARK Command

REMARK allows the user to output remarks to the SYSOUT file. For a
conversational user who is not in the PROC mode, remarks are not written.

Remarks cannot be contained .on multiple lines, but any number of
REMARK commancls can be issued.

Name

remarks

Operation Operand

REMARK remarks

Any desired remarks can be entered. A remark should not
exceed 72 characters in length.

Programlning Notes

Examples

If the REMARK c(llnmand is used in a procedure file, the command print
option in the PROCEDURE command must be exercised for the remark to
be written to the SYSOUT file.

IREMARK THIS GOES TO SYSOUT

The remark "THIS GOES TO SYSOUT" is output to the SYSOUT file. If
SYSOUT is the user's terminal, the remark is not written.

I.NAME REMARK REMARKS

This command has a name field. The remark "REMARKS" is output to the
SYSOUT file.

3-44

RESUME Command

The RESUME command resumes object program execution or to alter the
normal order of object execution.

Name

instloc

Default:

Programming Notes

Operation Operand

[instloc]

Specifies the instruction location at which execution is to be
started.

Execution resumes at the point the object module was
interrupted.

The operand of the RESUME command may be a hexadecimal instruction
location, a register with the indirect indicator set, or a symbol with or
without an offset. The instruction location must be on a halfword boundary.
If no errors are detected, control is transferred to the object program at the
specified instruction location.

The general rule concerning RESUME and STOP cornmands is the following:
When these appear in AT statements they are always executed when the AT
statement becomes effective; at all other times they are executed
immediately or when a qualifying IF command calls for their execution.

3-45

RESTART Command

The RESTART command causes a program interrupted by a checkpoint (via
the CHKPT macro) to be reloaded from the point at which the checkpoint
was taken. Unless ~:uppressed by the LOAD option, RESTART will also
begin reexecution of the program at that point. The information required to
restart the program can be specified when the REST ART is given by the user
or obtained by the system from a log created when the checkpoint occurredl.
The RESTART c01nmand may be issued interactively (from the user's
terminal) or in the background as a part of a spooled in job stream. However,
this command cannot be issued from the operator's console.

Name

filename

trailerpage

LOAD

Programming Notes

Operation Operand ----
RESTART filename, trailerpage [,LOAD]

The] D of the file from which the checkpoint records are to
be taken.

The half-page on which the checkpoint is delimited. It is the
last record of the checkpoint and contains the information
necessary to reestablish the system and files as of that
checkpoint.

The means of indicating that control is to be returned to
SYSCMD after the program has been reloaded, and execution
is to be suppressed.

The task under which restart is put into effect will reacquire the same user
memory which the checkpointed task had when the checkpoint went into
effect. However, thl~ task will operate in the mode (non conversational or
conversational) as thlt from which RESTART was initiated.

The LOAD option provides the user with the same advantages that the
LOAD command affords for program initiation, for example, the use of IDA
to correct a program error that made restarting necessary.

The output, or result, of the restart process is the original user program in
the same status as it was when the checkpoint took place.

3-46

RETRNMacro

RETRN (Return to a Program), when issued in a called program, returns
control fro:m a "called" program to a "calling" program if the called program
follows the standard linkage conventions. In addition, it can be used to
restore the contents of any General Registers which have been saved for the
calling program by the called program.

The called program may use the SAVE routine to save the calling program's
General R~~gisters. The calling program must have previously defined a
"save" area into which the registers may be stored.

Thus, the SAVE and RETRN macros provide a standardized method of
establishing linkage into and out of a subroutine.

Name

T

Operation Operand

RETRN

Specifies one or a range of registers whose contents are to be
restored from the save area of a calling program.

The rn are decimal integers in the range 0-12, 14, and 15.
Register 13 is not stored but is used by the calling program to
transmit the address of the save area. Register 13 must be
preserved by the called program.

The entire range of registers can be specified by the notation
(14,12). This will store registers 14, 15, and 0 through 12.

The save area is a 72-byte area (18 words). Words 4 and 5 of
the save area are used to store the contents of Registers 14
and 15. Words 6 through 18 are used to store the contents of
registers 0 through 12.

Specifies that a (1) is set in the low-order bit of the forward
link, word 3, in the save area defined by the calling program.
This action occurs after completion of the register reloading
specified by the first operand. The bit is set to stop the
forward chain ..

This parameter is supplied to facilitate tracing (i.e., checking program flow).
There is no training in TSOS; this parameter is provided for TOS
compatibility with language translators (that is, when DEBUG = YES).

3-47

RC =rc

RC=(15)

A cede to be placed in the 12 rightmost bits of General
Regi~,ter 15. rc must be a decimal integer which is a multiple
of 4 and in the range 0-4092. The rc operand can also be an
absolute expression as defined in the Assembly Reference
Manual.

Indicates that the user has loaded the return code into the 12
rightmost bits of General Register 15 before executing the
RETRN macro.

Note: The return code is used by agreement between the
calling program and called program to communicate events
occurring during the execution of the called program.

Programming Notes

Example

The expansion of the RETRN macro does not contain a Supervisor Call but
utilizes an LM instruction to restore specified registers.

The user (in called program) must either load General Register 14 correctly
before issuing the RETRN or he must restore the contents of of General
Register 14 by use of the first operand of the RETRN macro. (Register 14 :is
the "return register" containing the return address to the user's calling
program.)

Name

AREA

SUBRTN

Operltion

LA
BAL

DS

SAVE

Operand

13,AREA
14,SUBRTN

18F

(14,12)

3-48

Calling
Program

RJOB Command

The RJOB command is used to identify jobs submitted to the RBP system.
The comnland marks the beginning of a job entry and is in effect only for
the job which immediately succeeds it. The user has the capability to defer
job output until it is requested by command and to designate an alternate
output recipient.

The user submitting the job is notified of its entry into the system after the
Spoolin process is complete. When the job has finished executing, the user
and alternate output recipient, if one exists, are automatically notified of job
completion. Deferred job output may be retrieved any time after receipt of
the job cOJnpletion message.

This comnland may be used to define processing for jobs submitted from a
central installation card reader. This provides the capability of directing
output from centrally submitted jobs to remote users.

RJOB is an optional command. If it is omitted, the system will supply a
unique jobname and will direct job output to the submitting user
immediately after job completion.

Name

jobname

CENTRAL

DEFER

Operation Operand

RJOB jobname-alphanum

[
,JCENTRAL }]
\ DEFER[,userid-alphanum]

Identifies the job entry to the systenl. This allows the user to
request and receive job output and job information by
jobname. RBP operation requires individual jobnames. A
subsequent job will be rejected if it is submitted with the
name of a job currently in the system. The jobname consists
of one to eight alphanumeric characters.

Specifies that job output is to be directed to a central
installation line printer immediately after job completion.
The job output will not be available to the remote user
submitting the job.

Specifies deferred remote job output. The user must retrieve
the output using the ROUT command. This parameter
applies only to remote work station output and has no effect
on output destined for a central line printer.

3-49

DEFER,userid

RLOGOFF Command

If this parameter is missing, the output will be sent to the
work station submitting the job immediately after job
completion. If this work station is inactive, the output is held
until either the work station is logically attached or the user
logs on at another work station. In this case, REP advises the
central operator that output is available for an inactive work
station.

Specifies that job output is deferred and that another remote
user, identified by the userid, is a valid job output recipient.
Only one copy of the job output is available and REP returns
it to the first valid recipient requesting it. The userid
paranleter can only be used with the DEFER option.

With the RLOGOFF command, the user indicates that he has completed his
session. REP rejects input from the work station until another RLOGON
command is submitted. However, the work station can continue to monitor
the system for outp"Jt, or the user can issue an RSTOP command to detach
the station from the system.

If the central system receives a valid RLOGON command from a work
station with a sessio n in progress, the central system logs off the current user
and logs on the new user. If the central system receives an RSTOP command
from a work station with a session in progress, it logs off the user and
logically detaches th~ work station.

Name Oper:ttion Operand ----
RLOGOFF blank

3-50

RLOGON Command

The RLOGON command identifies a user to RBP. The system validates the
userid, account number, and password and, if accepted, grants access to the
system. At this point, the user can begin requesting use of RBP facilities.

The RLOGON command relnains in effect until another RLOGON, an
RLOGOFF, or an RSTOP command is issued.

A user cannot be logged on at more than one RBP work station at a time. If
a user desires to change work stations, he must log off at his old work station
before logging on at the new work station.

Name Operation Operand

RLOGON (standard LOGON operands)

Only the userid, accountno, password, and priority operands are used in the
RBP logon process. The msg and buffer operands are ignored.

RMSG Command

The RMSG command allows a user to send a message to another user, the
central operator, or a work station attached to the RBP system. Messages are
rejected if they are directed to inactive user, or if they are directed to work
stations that are not attached to the system. An active user is one who is
currently logged on, or was the last user logged en at a currently attached
work station. If the user specifies that a message is to be sent to both a user
and a work station, RBP first tries to send the message to the user. If he is
not active, the system tries to send the message to the specified work station.
The message will be rejected if it cannot be sent to either one.

Name

M=C'text'

U=userid

T=termid

Operation

RMSG

Operand

M=C'text' [,U=userid-alphanum]
[, T=termid -al phanum]

Specifies the message text to be sent. The text must be
framed by apostrophes and is limited to a maximum of 40
printable characters and blanks.

Specifies the user that is to receive the message. The message
is rejected if the user is not active. A userid of TSOS.OPR
will direct the message to the central operator console.

Specifies a work station that is to receive the message. The
message is rejected if the work station is not currently
attached to the system. A termid of TSOS.CTR will direct
the message to the central operator console.

3··51

-
ROUT Conlmand

The ROUT command allows the remote user to retrieve deferred job output
for which he is a valid recipient. If the job is not complete when the:
command is processed, RBP returns a message indicating this, and the:
command must be re:mbmitted after the job has completed. The RBP systeml
returns an invalid request response if the user is not a valid recipient or if the:
job is not in the sY:item. A user is automatically a valid recipient of job
output if he submitted the job.

This command also allows the user to retrieve output that was discontinued
due to user intervention or equipment failure. When interrupted output is
pending for a work station, no output is returned to the work station until
an ROUT command determines the disposition of the interrupted job. The
system continues to accept input from the work station, however. If the user
submits an RSTOP command, transmission of the discontinued output win
resume from the pobt it was discontinued, when the user submits his next
RSTART command. If the discontinue state was the result of a transmission
failure, the user mus-: reattach his work station with an RSTART command.

Additionally, the ROUT command allows the user to delete jobs from the
system without receiving a copy of the job output. The user can delete only
jobs which he submltted and which are currently in the system. The RBP
system returns an invalid request response if the user attempts to delete jobs
that do not belong to him. Jobs may be deleted anytime after they are
submitted. The ROUT command has no effect if the job output has already
been returned since ::he system would have deleted all reference to the job.

Name Operand

[I J=jobname=aIPhanuml '{CONTINUE}]
U=userid-alphanum BEGIN

DELETE

ROUT

J=jobname

U=userid

U=ALL

'[I CONTINUE lJ BEGIN
ROUT U=ALL

Indicates that the request is for the specific job named in the
paranleter.

Indicates that the request pertains only to the jobs submitted
by the named user. If the user gives his own userid, he
recehes or deletes all output from jobs submitted by the
named user which designate the requesting user as a valid
recipient.

Indic,ltes that the request is for all output in the system for
which the user is a valid recipient. The user receives alll
availa ble output of jobs submitted by him and of jobs
submitted by other users which named him as a valid
recipient.

3-52

CONTINUE

BEGIN

DELETE

Specifies that job output is to resume with the record that
was being written when the output was discontinued. If job
output is not in a discontinued state, this parameter has no
effect since output will begin with the first record in the
output file.

Specifies that job output is to begin with the first record in
the output file, even if the output is in a discontinued state.

Specifies:

1. That the named job (J=jobname) is to be deleted from the
system. The job must belong to the user who is currently
logged on at the work station.

2. That all current jobs submitted by the named user
(U=userid) are to be deleted from the system. The only valid
user is the one who is currently logged on at the work
station. The system returns a message which specifies the
name of each deleted job.

When both parameters are omitted, the system will resume
output for a job that is in a discontinued state. If job output
is not in a discontinued state, this form of the command
merely resets the work station output device status to an
enabled state.

3-53

RSTATUS Command

The RST ATUS command allows a user to determine the status of one or
more remotely subrrlitted jobs. RBP returns the status of only current jobs
for which the requestor is a valid recipient. The user may request status for a
specific job, for job) submitted by a specific user for which he is a valid
recipient, or for all current jobs that were submitted by this work station.
RBP returns the status of only those jobs that are in the system at the time
the command is processed.

The user receives a response for each job that satisfies the command. Each
response contains the jobname, submitting user-id, submitting termid,
alternate userid, and one of the following indications:

1. Job is executing.

2. Job is complete - output available - normal or abnormal termination.

3. Job is complete - output reserved by alternate or submitter - normal or
abnormal termination.

4. Job is not in the system.

5. Invalid request (the user is not a valid recipient).

Name

J=jobname

U=userid

T=termid

Operation Operand

RSTATUS U=userid-alphanum
{

J=jobname-alphanum }

T=termid-al phanum

Indic,ltes that the request is for the specified jobname. If the
user issuing the request is not a valid recipient, the request is
denied.

Indicltes that the request is for the status of all current jobs
submitted by the user identified with the userid for which
the requesting user is a valid recipient. If the user specifies his
own Llserid, he receives the status of all jobs in the system for
which he is a valid recipient.

Indicates that the request is for all current jobs in the systern
that were submitted from this work station. A report is made
for aJ jobs in this category regardless of the submitting user.

3-54

SAVE Macro

SAVE permits the user to store the contents of specified general registers.
SAVE is normally written at the entry point of a called program. The save
area is defined by the calling program. The SAVE macro in conjunction with
the RETRN macro provides a means for a called program to save the register
contents of the calling program, restore them before returning to the calling
program, and identify itself to the calling program.

Natne

r 1 ,f2

Operation Operand

SAVE

Specifies the range of general registers whose contents are to
be stored in a save area. The save area has been defined for
this, the called program, by the calling program. The address
of the save area has been loaded into General Register 13 by
the calling program. The rn are decimal integers in the range
0-15 (but not 13). This operand can be specified as one
integer or as two integers separated by a comma. The range is
usually stated as from 14 to 12, that is 14,15, and 0 through
12 (as used in the STM Assembler language instruction).

When a register is in the range specified by this operand, its
contents are always saved in a particular word in the save
area. The contents of General Register 14 and 15 (if in the
range specified) are saved in words 4 and 5 of the save area.
The contents of General Registers 0 through 12 (if in the
range specified) are saved in words 6 through 18 of the saved
area. When a register is not in the range specified by this
operand, its save word in the save area remains unmolested.

The range of registers specified must not contain Register 13. If the called
routine is to use register 13, it must save its contents and restore the
contents before issuing the RETRN macro (or terminating the program).
(SAVE cannot be used to save the contents of General Register 13.)

T

entry

Specifies that the contents of registers 14 and 15 are to be
saved in words 4 and 5 of the save area, if not already saved
by the r1 and r2 operands. If the T and r2 operands are
present and fl operand is 14, 15,0,1, or 2, the contents of
all registers from 14 through the r2 value are saved.

Specifies the identifier of the entry point at which the SAVE
macro is loaded. Entry can contain up to 155 characters;
commas and blanks are not allowed. This operand can be a
complex name, for example a combination of a file and
program name ..

3-55

The Assembler places this entry point identifier in the macro
expansion, starting at a halfword preceding the entry point,
and p'Jsitioned so that one or two bytes separate its end froml
the b,~ginning of the entry point. If the separation is two
bytes, the Assembler places a blank character (40)1 6 in the
leftmost byte. The assembler places the byte count (the size)
of the entry point identifier in the byte immediately
preceding the entry point. This count includes the size of the
identifier plus one byte for the blank character (if one has
been inserted) plus one byte for the byte containing the byte
count.

Written in place of an identifier when the name field of this
macro instruction is to be used as the entry point identifier.
If the name field is blank then the name of the controll
section containiJ?g the SAVE macro instruction is used.

Programming Notes

Examples

The expansion of the SAVE macro does not contain a Supervisor Call (SVC)
instruction. All of the functions of SAVE can be performed by the user by
programming techniques available to him in the Assembly language.
However, the SAVE and RETRN macros provides a standardized method of
establishing linkage into and out of a subroutine.

Example I

Name Operation Operand ----
EXI SAVE (2, I 0),T,F4RTNA 7B99

DC OH

DC CLII 'F4RTNA7B99', Macro
FLl'12' Expansion

EX2 STM 14,10,12(13)

Here, EX 1 saves the contents of registers 14 through 10. The contents of
registers 14, 15, 0, a1d 1 are saved because the T operand was written. The
~ntry point identifier is F4RTNA7B99.

Example 2

Name Operation Operand ----
EX3 SAVE (3,4)" *

DC OH } Macro
DC CL3'EX3',FLI '4' Expansion

EX4 STM 3,4,32(13)

In this example, EX3 saves register 3 and 4. The entry point identifer is EX3.

3-56

SETBF Macro

The SETBF (Set Buffer) rrtacro instruction is issued in a user's program to
change the size of the terminal buffer. The buffer size may range from 80 to
1024 bytes.

Natne

size

N

(1)

Operation Operand

SETBF
{

size [,N] I
(1)

An integer between 80 and 1024 which defines the size of
the terminal buffer desired.

Indicates no change is to be made in the buffer size if the
requested size (size defined above) is at least as large as the
current buffer size.

Indicates the user has loaded General Register 1 with the size
of the buffer desired before issuing the SETBF macro.

Programming Notes

If the program using the SETBF macro is in the nonconversational mode, no
action will be taken because the SYSIN and SYSOUT files will handle a
record up to 1020 bytes.

Cautions and Errors

General Register 15 Return Codes

x'OO' Requested buffer obtained.

x'04' Invalid buffer size provided.

x'08' New buffer could not be obtained.

3-57

SETIC (Set Time Block) is used in conjunction with the STXIT macro to
simulate an interval timer interrupt.

Name

time

Operation Operand

SETIC time

The symbolic name of the leftmost byte of the six-byte area
in the user's program that contains the time interval.

The time interval must be in zoned decimal format as.
hhmrr..ss, where:

hh = hours (two bytes)
mm = minutes (two bytes), and
ss = seconds (two bytes).

When the macro is issued, the Executive sets the timer to the specified
interval. Decrementing of this value begins immediately. When the interval
expires (clocks dowr. to zero) control is given to the user's interval timer
contingency routine lpecified in the STXIT macro and the Executive resets
the timer to this interval again.

The user can change the time interval by issuing this macro again with a new
value specified. If the user specifies a zero or negative value, the timer is
turned off.

The first (leftmost) digit of the value specified for the interval is ignored. For
example, the maximum allowable interval is n9 99 99, which equals 10
hours, 40 minutes and 39 seconds.

The clock used for measuring the time interval is incremented only when the
task loses control of the CPU. The difference between the given interval and
the effective interval can be plus 1/2 of a time slice at most.

Progranlming Notes

Example

If the user program has not specified a timer routine when issuing the STXIT
macro, the program is terminated when the elapsed time clock interrupt
occurs.

Name

INTRVL

Operation Operand

SETIC INTRVL

DC X'FOF I FOFOFOFO'

Note: The time interval, one hour, is set in the timer to cause
an elapsed time clock interrupt every hour.

3-58

SETSW Command

SETSW provides the user with the ability to set, reset, and invert the 32 task
switches that he has at his disposal. SETSW can be issued either in the
conversational or nonconversational mode. The 32 switches are 0-31.

Narne

ON=nl, n2, ...

Operation Operand

SETSW [ON=(nl,n2, ...)]
[,OFF=(nl ,n3, ...] [,INVERT=(nl,n2, ...)]

Indicates that the named switches are to be set to a one bit
("on" condition).

OFF=nl, n2, ...

Indicates that the named switches are to be set to a zero bit
("off' condition).

INVERT==n I, n2, ...

nl, n2, ...

Indicates that the named switches are to be set on if off or
off if on.

The numbers of the task switches to be set, reset, or inverted.
There are 32 task switches numbered decimally from 0 to 31.

Programming Notes

Examples

The system sets all 32 switches off when it initiates a task. The system sets
switches 16-31 off when it encounters a STEP command.

If no operands are given, those task switches which are on will be noted on
SYSOUT.

I.NAME SETSW ON=(l,3,31) CD

I SETSW OFF=(2,4,30) ~

ISETSW INVERT=(7,9, I I) G)

ISETSW OFF=(I), INVERT=(2),ON=(0) @)

CD In this named command, the user sets his task switches I, 3, and 31 on.

~ The user sets his task switches 2, 4, and 30 off.

G) The user inverts the settings of his task switches 7, 9, and II. If any
switch is on, it is turned off. If off, it is turned on.

@) The user sets his task switch I off, switch 0 on, and switch 2 to the
opposite of its setting.

3-59

SETSW Macro

SETSW sets, resets, and inverts task switches.

The task switches are 32 bits maintained for each task by the Executive. The
32 bits are initially set to o. The user can set, reset, or invert any named task
switches or specify the setting for all 32 task switches.

Name Operation Operand

SETS'N

{
ON } OFF
INVERT

=(n)l , ...)

blank

ON, OFF, INVERT

n, ...

blank

Indicate that the named switches are all to be set (on, 1) reset
(off, C), or inverted (reversed).

The number of the task switches to be set, reset, or inverted.
The nk are decimal integers in the range 0-31. Any number
(up to 32) of the task switches may be thus specified,
separated by commas and enclosed in parentheses. The
switches can be specified in any order. Two ascending
numbers separated by a hyphen will indicate the range of
switches to be set, e.g., 5-8.

If no operand is specified then the user has loaded General
Register 0 with the new settings that he desires. The system
stores the contents of General Register 0 as the new settings
of all 32 task switches.

Programming Notes

1. All task switches are automatically set to 0 (off) when a task is initiated.

2. Switches 16 through 31 are set to 0 (off) each time a STEP command is
processed.

3. The GETSW macrcl is used to store the task switches into General Register
O.

3-60

Examples

Example

Name

Example :2

Narne

Operation

SETSW
SETSW
SETSW

Notes:

Operand

ON=(l7,19) CD
INVERT-(7 ,11) (6)
OFF=(S,3l) ®

CD Task switches 17 and 19 are set on (1).

(6) Task switches 7 and 11 are inverted.

® Task switches 5 and 31 are set off (0).

Operation Operand

SETSW

Note: The user has loaded General Register 0 with the
desired switch settings for bits 0-31.

SKIP Command

This com:mand tests the task's 32 (0-31) task switches. If conditions are met,
the next command executed is that specified in the operand. The SKIP
direction is forward only. This command is used primarily in the
nonconversational mode, but if entered from a terminal, the conditions are
noted (that is, whether met or not met) but no shipping takes place.

NatTIe

.nalme

ON=nl,n2, ...

Operation Operand

SKIP .name [,ON=nl,n2, ...)] [,OFF=(nl ,n2, ...)]

Specifies the name of the command to be executed next if
the indicated switch settings are met as stated in the
command. This is a required entry. However, if the SKIP
command is entered from a terminal, no skipping is done.

Indicates that the switches indicated by number are to be
tested for a one bit ("on" condition).

3-61

OFF=nl ,n2, ...

nl,n2, .,.

Indicates that the switches indicated by number are to be
tested for a zero bit ("off' condition).

The numbers of the switches to be tested. These are decimal
integers in the range 0-31.

Progranlming Notes

Examples

When the system receives the SKIP command, it types the setting of the
switches that the user has requested to be tested. If the user has entered the
SKIP command frorn any device type other than a terminal and if the
switches are set and/or reset as stated in the command, the system passes
over all commands in the command input stream until the command named
in the SKIP is reachtd. The system then accepts this named command as its
next command.

If the user enters the SKIP command from a tenninal, the system does not:
"skip." It accepts the next command in the command input stream after
having typed the settings of the requested switches.

I.NAME SKIP .NEXSTEP,ON=(O),OFF=(I) CD

ISKIP .NAME, OFF=(2, 1),ON=(3, 15,17) (1)

CD This named command causes the system to bypass all following
commands until the command whose name field is .NEXSTEP is:
encountered, if task :,witch 0 is on and task switch 1 is off. If the switches.
are not set as stated, 1he command following this one is executed.

(1) The system tests this task's switches. If No.1 and No.2 are off and if No.
3, No. 15, and No. 17 are on, it finds the command whose name field is
.NAME. This command is then executed next. If the switches are not so set,
the system executes l:he next command following the SKIP command. If the
system skips and fails to find a command named .NAME, it will find the
LOGOFF command and terminate the task.

3-62

SPEXT Macro

SPEXT (Supply Executive Table) enables a Class II program to obtain a
Status Block which contains information required by the user's interrupt
routines. SPEXT is used within a user's contingency routine. Class I
programs have the equivalent of the SPEXT macro in the ADEXT macro,
which supplies the address of the TOS Executive Communication Area and
the address of the program table entry.

Na1TIe

address

(1)

Operation

SPEXT

Operand

I address I
l(l)

Specifies the symbolic address of a 13-byte area in the user's
program into which the system is to place the Status Block.

Indicates that General Register I has been loaded with the
address of the area into which the system is to place the
Status Block.

Programming Notes

1. The contents of the Status Block are described in the following table.

Byte Contents

0-3 The program counter (P I setting at the time of interrupt.

4-7 The contents of General Register 10 at the time of interrupt.

8-11 The contents of General Register 11 the time of interrupt.

12 The weight code associated with the specific interrupt.

2. SPEXT is ignored in a Class I program.

3-63

-
STA TUS Command

STATUS enables the user to detennine the status of tasks being processed.
The facility is provided to obtain the status of one or all user tasks. The:
status report is typec. on the user's terminal, or, if entered by the operator~,
his console typewriter.

Eight kinds of statu:; reports can be requested, using STATUS. Only one
kind can be requested at a time; therefore, only one of the three operands
(SUMMARY, LIST, TSN) can be used in one STATUS command.

Name

SUMMARY

userid

Operation

STATUS

Operand

SUMMARY [,userid]
LIST[,userid] [,TYPE=]
PROG[,userid] [,TYPE=n]
TSN[,ITN] [,TIME] [,PROG]
SATQ
DVQ
BIAS
ITN
MSG
RJOB
no operand

ProviC.es a summary of the number of each of the following
eight types of tasks:

Type 1: tasks in the job pool.

Type 2: nonconversational tasks running.

Type 3: conversational tasks running.

Type 4: tasks queued for spooling out.

Type 5: tasks being spooled out.

Type 5: remote batch tasks being spooled out.

Type 7: DXC tasks being spooled out.

Type 3 : remote batch tenninals.

Used when the summary information is requested for a.
particJiar user. Userid consists of from one to eight
alphanumeric characters. The first character must be
alphabetic.

3-64

LIST

userid

TYPE=

n

TSN=

Provides the following information for all tasks being
processed:

1. task sequence number

2. priority

3. type (1-5, as defined under SUMMARY above)

4. terminal (buffer) number

5. CPT time used for all tasks being processed.

LIST cannot be used if SUMMARY or TSN is used.

Used when the list information is requested for a particular
user. Userid consists of from 1 to 8 alphanumeric characters.

Used to restrict the LIST information to one task type
instead of all tasks being processed.

This is one digit ranging from 1 to 5, as defined SUMMARY.

Provides the following information for the task whose task
sequence number is specified:

1. time that the task was spooled in.

2. time that the LOGON command was processed.

3. time that the LOGOFF command was processed.

4. time that the task was spooled out.

5. CPU time used by the task.

6. task priority

7. task type (as defined under SUMMARY above).

3-65

tsn

SATQ

DVQ

BIAS

ITN

MSG

RJOB

no operand

Pro~1amming Note

Task sequence number for which the information listedl
under TSN is requested; tsn consists of four decimal digits in
the ra nge 0000-9999.

Provicles a list of TSN's on the five system saturation queue~;
_. core overflow, core hold, drum overflow for backgroundl
tasks, drum overflow for interactive tasks, and drum hold
queue.

Lists background TSN's awaiting completion of SECURE
command device reservation and the actual devices required
for ea::h TSN.

Provices current core bias allowed, current number of active:
terminals allowed, current number of background tasks
allow(:d, current drum bias allowed, and current maximum
time each task is allowed to run.

Allows the system controller to obtain the TSN of a task
using 'Jnly its internal task number.

Lists rSN's having console messages pending. The message
will te listed with each TSN. This is only an operator
command.

Provid es the console operator with TSN, userid, station-id,
line number, and disposition of remote batch tasks.

Provides the user with his TSN, current time, logon time, and
buffer number.

This command can only be issued in the conversational mode.

3-66

Examples

1. /STATUS SUMMARY

%0.165546
%0. 165546

TYPE1 TYPE2 TYPE3 TYPE4 TYPE5 TYPE6 TYPE7 TYPE8
0000 0000 0002 0000 0000 0000 0000 0000

2. /STATUS LIST

%0.161556
%0.161556
%0.161556
%0. 161556
%0. 161603
%0. 161608

.3. /ST ATUS PROG

%0.161800
%0. 161800
%0. 161800
%0. 161800
%0. 161807
%0.161813
%0. 161820

4. /STATUS BIAS

%0. 161857
%0. 161857

~). /STATUS DVQ

TSN
0171
01172
0173
0174
0175

TYPE
2.
2:
2:
2:
2.
2,

PRI TYPE TERM
09 2
09 2
09 2
09 2
09 2

CPU-TIME
0000.0901
0000. 1253
0000. 1662
0000. 1764
0000. 1301

PRI
09
09
09
09
09
09

CURR-CMD PROG
EDT
BASI C
BASIC

SIZE
001
002
001
003
001
002

FI LE EDT
ASMDOS
ASMDOS

CORE TERM NC DRUM TIME
0024 0010 0010 0062 655.00

USERID
TSOS
TSOS
TSOS
TSOS
TSOS

CLASS
2
2
2
2
2
2

%0.161137 0172
%0.161137 0174
%0.161137 0175
T9P= 01 ,Ll ,TO

T9 N= 03,WORK=05,Ll ,TO,Tl,T2,
T9 N= 03,WORK=05,Ll ,TO,Tl ,T2
T9 N= 01,T7= 01,T7 0C=01,D564=01,WORK=02,D590=01,

%0. 16 1137 0 1 76
T9P= 01, L 1 , TO

6. /STATUS 234,PROG

T9 N= 01 ,T7== 01 ,T70C=01 ,0564=01 ,\JORK=02, 0590=0 1 ,

% TYPE PRI CURR-CMD PROG SIZE CLASS
% 3 09 EDT 002 2

7. /STATUS 234,ITN

% ITN VIR-ADDR PEND QUE#
% 10 ICADEO 2 12

8. /STATUS 234,TIME

% TYPE SPOOLIN LOGON LOGOFF CPU-TIME
% 3 1101 1103 0000 0010,3444

3-67

9. /STATUS SATQ

%0.165645 S~JQ1=0
%0. 165645 SP,TQ2=0
%0.165645 SP~Q3=0
%0.165645 SPJQ4=0
%0.165648 SATQ5=0

10. /STATUS MSG

%1234 THIS IS A TEST

/STATUS RJOB

% TSN ST~IT-ID USER-ID
% 234 A1078 TSOS

11 • /STATUS ITN=:X£lOA'

% 234

12. /STATUS

% TSN CPU-TIME LOGON
% 234 0(106.1523 1543

LINE DISPOS
25 RCA 740

BUFF
37

STEP Command

STEP defines a logical subdivision of a task. When a program has terminated
abnormally, the system automatically SKIPs (see SKIP Command) to the
next STEP command in the command input stream (or, if there is no STEP
command following, to the LOGOFF command). STEP is used for
nonconversational tasks or for conversational tasks in the PROC mode and
resets the Monitor Table (refer to "YMOS Support of TOS Tables" in the
appendices) and task switches 16-31.

Name Operation Operand

STEP

Progralnming Notes

Examples

The system resets task switches 16-31 to zero when it encounters a STEP
command.

I.NAME STEP CD

ISTEP (1)

CD This STEP comn-land has a name field, for possible use with the SKIP
command.

(1) The Monitor Tabb is reset and task switches 16-31 are set off.

3-68

STXIT Macro

The STXIT macro (Set Contingency Address) instruction enables a Class I or
Class II program to specify addresses of from one to four interrupt routines
to which the VMOS Executive gives control when any of the specified
interrupts occur.

The four interrupts are:

1 . progranil check,

2. interval timer,

3. operator communication, and

4. unrecoverable program enor.

The STXIT should be one of the first instructions executed within the
program. When the STXIT is exe4cuted, the VMOS Executive stores the
address of any specified routines. When one of the given conditions occurs,
the Executive transfers control to the associated contingency routine.

If the user does not specify one of the routines, the address stored by a
previous STXIT is assumed. If a previous STXIT was not issued, the ABORT
or CLOSE operand (as explained below) is assumed.

Name

R

prochk

Operation Operand

STXIT [R],~{prOChk }] CLOSE timer
ABORT '~cLOSEIJ,

fJloprtn In [{ error 11 [I runout IJ
~CLOSE~' CLOSE~' CLOSE

This operand is included for source language compatibility.
This entry is ignored by VMOS, but note that the comma
following it is required.

Specifies the symbolic address in the user's program of the
routine to handle a program check interrupt. The following
conditions cause a program check interrupt:

1. Operation Code Trap

2. Illegal SVC (or parameter error)

3. Exponent Overflow

4. Device Error

5. Significance Error

6. Exponent Underflow

3-69

timer

error

ABORT

CLOSE

error

run out

Programming Notes

7. Decimal Overflow

8. Fixed Point Overflow

9. Da1 a Error

Specifies the symbolic address in the user's program of the
routire to handle the interval timer interrupt. The interval
timer can be set with the SETIC macro.

Specifies the symbolic address in the user's program of the
routine to handle an unrecoverable program error interrupt.
The ::ollowing conditions cause an unrecoverable prograrrl
error interrupt:

I. pri'/ileged operation

2. address error

3. pa~:ing error

Applicable only to the program check interrupt, ABORT has
the same meaning as CLOSE.

Causes the program to be aborted if the specified error
occurs, except for an operator communication interrupt
which is ignored. The next job is then initiated.

Specifies the address of the user's operator interrupt routine
or the word CLOSE.

Specifies the address of the user's program-time-runout
routile. Nonconversational tasks are guaranteed a 30-second
cleanup period.

Program Check Intelfupt

When a program check interrupt occurs, the Executive does
one of the following:

I . If the program h,.s not specified an address of a program check routine or
if the keywords CLOSE or ABORT were specified, a message is typed to the
operator indicating the error, and the job is terminated. The operator is given
the option of dumping the progranl before it is terminated.

3-70

2. If the program has specified an address of a program check routine:

a. The Executive stores the PI counter in the program's
Executive Storage Area.

b. The Executive stores the contents of General Registers 10
and 11 in the program's Executive Storage Area. These
registers are available for the program check routine to use.

c. The interrupt weight code (indicating the specific interrupt
that occurred) is stored in the program's Executive Storage
Area (bytes 116-119). One of the following weight codes is
stored:

Weight Code
(Hexadecimal) Meaning

00000050 Supervisor Call

00000058 Operation Code Trap

00000064 Exponent Overflow

0000006C Significance Error

00000070 Exponent Underflow

00000074 Decimal Overflow

00000078 Fixed-Point Overflow

00000060 Data Error

d. Control is transferred to the program check routine
address specified.

Note: The program check routine must terminate with an
EXIT or an EXITP macro containing a PR operand entry.
This causes the PI counter and General Registers 10 and 11
to be restored to the values previously stored in the
Executive Storage Area.

Interval Timer Interrupt - When an interval timer interrupt occurs, the
Executive does one of the folllowing:

1. If the program has not specified an address of an interval timer routine or
the keyword CLOSE was specified, a message is typed to the operator
indicating the error, and the job is terminated. The operator is given the
option of dumping the program before it is terminated.

2. If the program has specified an address of an interval timer routine:

a. The Executive stores the PI-Counter in the program's
Executive Storage Area.

b. The Executive stores the contents of General Registers 10
and 11 in the program's Executive Storage Area. These
registers are available for the interval timer routine to use.

3-71

c. Control is transferred to the terminal routine address
specified.

Note: The interval timer routine must terminate with an
EXIT or an 'EXITP macro containing a TR operand. This
cause~; the P I-Counter and General Registers 10 and 11 to be
restored to the values previously stored in the Executive
Storage Area.

Operator Communication Interrupt - When an operator communication
interrupt occurs, (the user executes the INTR command), the Executive does
one of the following:

1. If the program ha~; not specified an address of an operator-communication
routine or the keyword CLOSE was specified, the interrupt is ignored.

2. If the program has specified an address of an operator communication
routine:

a. Thl~ Executive stores the PI-Counter in the program's
Executive Storage Area.

h. The Executive stores the contents of General Registers 10
and 11 in the program's Executive Storage Area. These
registers are available for the operator-communication
routine.

c. Control is transferred to the operator communication
routi:1e address as specified.

Note:,:

L. The TYPE or the TYPIO macro can be used to
communicate betwecn the program and the operator.

2. Tile operator-communication routine must terminate with
an EXIT or an EXITP macro containing a CR operand. This
caUSES the P I-Coun ter and General Registers 10 and 11 to be
restored to the values previously stored in the Executive
Ston.ge Area.

3. If the operator attempts to interrupt a program that is
alreajy servicing an operator communication (an EXIT-CR
macro has not been issued), the interrupt is ignored.

Unrecoverable Error Interrupt - The following conditions cause an
unrecoverable error interrupt to occur:

PrivLeged Operation

Addrcss Error

Paging Error

3-72

Example

When an unrecoverable error interrupt occurs, the Executive does one of the
following:

1. If the program has not specified an address of an unrecoverable error
interrupt routine or the keyword CLOSE was specified, a message is typed to
the operator indicating the error, and the job is terminated. The operator has
the option of dumping the program before it is terminated.

2. If the progranl has specified the address of an unrecoverable error routine:

Name

a. The Executive stores the PI-Counter in the program's
Executive Storage Area.

b. The Executive stores the contents of General Registers 10
and 11 in the program's Executive Storage Area. These
registers are available for the unrecoverable error routine to
use.

c. The interrupt weight code (indicating the specific interrupt
that occurred) is stored in the program's Executive Storage
Area (bytes 116-119). One of the following weight codes is
stored:

Weight Code
(He xadecimal)

00000054

0000005C

Meaning

Privileged Operation

Address Error

d. Control is transferred to the unrecoverable error routine
address specified.

Note: The unrecoverable error routine must end with an
EXITP macro (or a TERM or TERMD macro) containing a
UR operand.

Operation Operand

STXIT ,PCERR,CLOSE"UNREC

The STXIT in this example indicates that,

1. If a program check error occurs, control is to be given at a routine
PCERR,

2. If a timer interrupt occurs, the program is to be aborted, and

3. If an unrecoverable error occurs, control is to be given to the routine,
UNREC.

3--73

TERM Macro

TERMD Macro

TERM macro is issu~d to terminate a program. All input/output operations
initiated by the program before the execution of the macro are completed
prior to program tennination.

Name Operation Operand

TERhl

When this macro is executed, the following occurs:

1. All devices assigned to the program are deallocated.

2. Memory assigned to the program is deallocated.

3. The TOS Operation List and TOS Program Table entries are marked
unassign ed.

4. The operator is notified of the termination.

Device List - Bytes 8-30 for each deallocated device are cleared.

Operation List - The first byte is made (FF)l 6 .

Program Table Entry - Program base address (four bytes) is set to zeros.

TERMD macro is issued to terminate a program and obtain a program dump
at termination. All input/output operations initiated by the program prior to
the execution of the macro are completed.

Name Operation Operand

TERMD

When this macro is (~xecuted, the following occurs:

1. Scratch-Pad meIllory, the TOS Executive, the program's TOS Program
Table and Device List entries, and the program including its Executive
Storage Area and Run Time Parameter Area (if any) are dumped to the
SYSLST file.

2. The program is terminated as follows:

a. An devices assigned to the program are deallocated.

b. Memory assigned to the program is deallocated.

c. The Operation List and Program Table entries are marked
unassigned.

d. Tle operator is notified of the termination.

Device List - Bytes 8-30 for each deallocated device are cleared.

Operation List - The first byte is made (FF)l 6 •

Program Table Entry - Program base address (four bytes) is set to zeros.

3-74

TERMJ Macro

TERMJ macro is issued to terminate a job within a task.

Name Operation Operand

TERMJ

Programming Notes

TMODE Macro

If TERMJ is issued by a program running in a nonconversational task,
control is passed to the first STEP or LOGOFF command encountered in the
command input stream. If a LOGOFF command is encountered, control is
passed to the job scheduler for the selection of the next job to be processed.

If the program was running in a conversational task when the TERMJ macro
was issued:. the next command is read.

TMODE (Task Mode) provides the user with information about his task. The
specified data provided are named and described below. The user specifies a
location in his program where the information is to be stored.

Name

area

length

Operation

TMODE

Operand

area [,length]

Specifies the symbolic address of the area in the user's
program in which the system is to store the task information.

Specifies the size of the area in which the task information is
to be stored. If the length operand is omitted, the length
attribute of the area is used. If, in either case, the length is
less than the number of bytes of information described
below, the data is truncated by the difference, the last named
data being dropped first.

The following information is stored in the user's area:

Byte

o

Symbolic
Name

TSKTYPE

Description

Task type, and if conversational, terminal
type.

If the byte is zero, the task is
non conversational. Otherwise, the value in the
byte corresponds to a terminal device type, as
follows:

X'O I' - Teletype model 33

X'02' - Teletype model 35

X'03' - Teletype model 37

3-75

Example

Byte

1·-2

3

4-7

8-15

16-23

24-27

28

Name

Symtolic
Namt:: Descri ption

X'04' - 8752 Video Data Terminal

X'05' - IBM 2741 Communications Terminal

X'IO' - DCT 2000 Data Communications
Terminal

X'll' - 8740-41 Remote Batch Terminal

TSKBUFSZ Task buffer size for conversational tasks. The
size of the input buffer which has been
allocated at LOGON, or changed by SETBF.

TSKPRI

TSK~lSN

TSKlJSER

TSKACCT

TSKTIM

TSKPRV

Operation

TMODE

(T S KBUFSZ is not applicable tlO
nonconversational tasks.) TSKBUFSZ is
specified during LOGON and is stored as a
binary number.

Task priority. TSKPRI is stored as a binary
number.

Task sequence number. TSKTSN is stored as a
zoned decimal number.

The user identification code as supplied at
LOGON.

The 8-byte account number to which this task
is charged. The account number is in
EBCDIC, left justified, and space filled when
necessary.

The amount of CPU time used by this task up
to the present time. TSKTIM is stored as a
binary number, in units of hundreds of
microseconds.

The privilege code of the task. The codes are:

(01)16 - System Administrator.
(02)16 - User.

Operand

TASKINFO

TASKINFO DS CL24

Note: The length attribute of TASKINFO, 2410 , is used to
detennine the amount of data to be stored at location
T ASKINFO. Bytes 0-23 are stored.

3-76

TOCOM Macro

TOCOM mloves data to the Common Data Area from the user program. This
area is maintained by the Executive and is common to all Class I and Class II
programs. Data moved into the Common Area remains in this area until
system shutdown or until replaced by data moved in by another issuance of
the TOCOM: Macro.

Name

location

data

length

Operation Operand

TOCOM location,data[,length]

A decimal number indicating the location relative to the first
(designated by I) byte of the Common Data Area into which
the first byte of data is to be moved.

The symbolic address in the user program of the first byte to
be moved to the Common Data Area.

The number (as a decimal) of bytes to be moved. If length is
omitted the implied length of the data operand is used.

If an addressing error occurs because the user did not specify at SYSGEN
time that a Common Data Area was to be used or because the location plus
the length attribute exceeds the bounds of the Common Data Area, return is
made to the program check routine (if one was specified by issuance of a
STXIT macro) indicating an illegal SVC. If no STXIT has been issued, and an
addressing error occurs, the program is terminated with an illegal SVC
indication.

3-77

VPASS Macro

VPASS (Variable L'~ngth Pass) is used to relinquish control of the processor
for one or more seconds.

Name

seconds

Operation Operand

VPASS f secondsj
1 (1)

Specifies the number of seconds to relinquish control of the
proc~ssor. The value must lie in the range 1 ~ seconds :~
21599.

Programming Notes

WRLSTMacro

If the value specified in Register l is less than 1, a 1 second VP ASS will be
executed; if greater than 21599 (5 hours, 59 minutes, 59 seconds), 21599 is
used.

WRLST macro (Write Print Line) causes a record to be written to SYSLST.
The Executive creates a temporary SYSLST EAM file upon receiving the
first WRLST instr11ction from the user, unless a PROUT macro was
previously issued. Tllereafter, each WRLST instruction in the user's prograln
causes one record to be written to the SYSLST file. The user specifies the
address of the record and the address of an error routine to which the
Executive transfers control when an error occurs during execution of the
WRLST macro.

Name

record

Operation Operand -----
WRIST f record ,error)

1 (1)

Spec:fies the symbolic address of the V-type record to be
written to SYSLST. A V-type record has as its first four
byte~, a count field that contains the size in bytes of the
record plus 4, i.e., the count field appears as

3-78

error

The first character of the record proper must contain a print
control character. The print control character is one byte of
control information that specifies the type of paper advance
desired when the SYSLST file is spooled out to the printer.
The entire record looks like

CONTROL
CHAR. DATA

The valid print control bytes are listed below:

Space immediately n lines. The range of n is O-F representing
0-15 lines skipped. Setting n=O causes space suppression.

Space n lines after the next print. The rules for n are as
described below.

Skip immediately to channel n on the carriage control loop.
The range of n is I-B, excluding 9.

Skip to channel n on the carriage control loop after the next
print. The range of n is I-B excluding 9.

Specifies the symbolic address of the routine in the user's
program to which the Executive gives control when one of
the following errors occurs during execution of the WRLST
macro:

nonrecoverable error

parameter error

truncation error (the record is greater than 1020 bytes.)

(The Executive loads General Register 15 with a return code
before transferring control to the error routine.)

3-79

(1)

Cautions and Errors

Indicates that the user has loaded General Register 1 with the
address of a parameter table which contains the addresses of
the record to be written to SYSLST and the error routine.

The contents of this parameter table are as follows:

o

1-3

4

5-7

Parameter

Reserved

Address of the V-type record to be written to
SYSLST.

Reserved

Address of the error routine in the user's
program.

General Register 15 Return Codes:

X'04'

X'08'

X'OC'

Programming Notes

nonrecoverable error

paranleter error

write truncation (the V-type record less five bytes, four for
the count field, one for the print control character, is too
large for the device buffer.)

1. On normal termination, control is returned to the user at the location
following the maCfr). When a nonrecoverable error, parameter error, or
truncation occurs, control is passed to the error address with the return code
loaded into register' 5. Since Spoolout (see VMOS Service Routines Manual)
uses the default condition of 132 characters in spooling out the SYSLST file,
truncation occurs when the length of the record exceeds 137 bytes (4-byte
length field + I-byte print control + 132 characters) and no record is written.
Register 14 will contain the address which follows the macro, so error
processing routines can return to in-line processing. Register 15 is unchanged
when no error occur:;.

2. SYSLST is spooled out onto a line printer at task termination (except
when the output h destined for a remote station). After spooling, the
SYSLST file is erased.

3-80

WROUTMacro

WROUT (Write Records to SYSOUT) sends a message from a program to the
SYSOUT EAM file. SYSOUT may be a terminal or a system work file. The
user specifies the address of the message to be written to SYSOUT, the
address of the error routine to which the Executive transfers control when
an error occurs during execution of the WROUT macro, and optionally, a
choJlce of edit controls for the terminal. The user can formulate his own
parameter area and load its address into General Register 1. In this case, he
then uses the second format of the macro instruction.

Nanle

message

Operation Operand

WROUT
{

message,error[,edit] l
(1) J

Specifies the symbolic address in the user's program of the
message to be written to SYSOUT.

The message must be a V-type record. A count field
containing the size in bytes of the physical record plus 4,
must precede the first four bytes of the record. The count
field appears as

The first character of the record proper must contain a print
control character. The print control character is one byte of
control infonnation that specifies the type of paper advance
desired when the SYSLST file is spooled out to the printer.
The entire record looks like

CONTROL
CHAR. DATA

The valid print control bytes are listed below:

Space immediately n lines. The range of n is O-F representing
0-15 lines skipped. Setting n=O causes space suppression.

Space n lines after the next print. The rules for n are as
described above.

3-81

error

edit

(1)

Skip immediately to channel n on the carriage control loop.
The range of n is I-B, excluding 9.

Specifies the symbolic address of the routine in the user's
program to which the Executive gives control when one of
the following errors occurs during execution of the WROUT
macro:

1. nonrecoverable error

2. paIameter error

3. write truncation

4. break

The Executive loads an error return code into General
Register 15 before returning control to the error routine.
General Register 14 contains the address of the first byte
which follows the macro expansion.

Specifies the editing option for the record to be written to
the tE rminal. The options are:

Tran5lation from EBCDIC to ASCII and insertion of line feed
and carriage return characters into the output text.

Insertion of line feed and carriage return characters into the
output text.

Trandation from EBCDIC to ASCII.

No editing is done.

The t:dit option is ignored if SYSOUT is not a terminal.

Indicates that the user has loaded General Register 1 with the
addn:ss of a parameter table which contains the address of
the message to SYSOUT, the address of the error routine,
and the edit option code.

3-82

Programming Notes

The format of this parameter table is as follows:

Byte

o

1-3

4

5-7

Parameter

Edit option c04e.

Address of the V-type record to be written to
SYSOUT.

Reserved.

Address of the error routine in the user's
program.

When issued during a DXC session, the WROUT macro will cause an MT=7
Message Type to be transmitted to the auxiliary processor. MT=7 causes the
auxiliary processor to write the record as it is received.

Cautions and Errors

General Register 15 Return Codes:

X'04~

X'08'

X'OC'

X'IO'

Nonrecoverable error.

Parameter error.

Write truncation (the length of the V-type record, less five
bytes, four for the count field, one for the print control
character, is greater than the terminal buffer size.) The excess
characters are not written. The other characters are written.

Break. The user has pressed the break key during execution
of the WROUT macro.

3-83

WRTOTMacro

WR TOT (a TOS Monitor Macro) is used to write system output (a record to
SYSOPT). If the SYSOPT device has not been allocated, the first WRTOT
received by the Vl\fOS Executive causes the allocation of a temporary
SYSOPT work file for this task. SYSOPT is spooled out at task termination.

The system converts the user's output records to V-type records by prefixing
a 4-byte count field to the record before writing them to SYSOPT.

Name

address

length

Opention Operand

WRTOT address[,length]

Specifies the symbolic address in the user's program of the
record to be written to SYSOPT.

Specifies the decimal number of characters to be written. The
maxitnum length is 80 bytes. If the length operand is
omitted, the length attribute of the area is taken as the
length.

Cautions and Errors

If a nonrecoverable I~rror occurs during execution of the WRTOT macro, the
program is terminated and control passes to the next STEP or LOGOFF
command.

3-84

WRTRDMacro

The WRTRD macro (Terminal Tandem Write/Read) instruction is used by
programs in the conversational mode to:

1. Send a Inessage to the terminal, and

2. Accept a response from the terminal.

A typical use for the WR TRD macro is to prompt the conversational user
and receive a response from him.

The user ean formulate his own parameter area and load its address into
General Register 1. In this case, he uses the second format of the macro
instruction.

Name

message 1

edit 1

message2

Operation

WRTRD

WRTRD

Operand

message 1 ,[edi t 1] ,message2
, [edit2] ,[length] ,error
(1)

Specifies the symbolic address in the user's program of the
message to be written to the terminal. The message must be a
V-type record (the first four bytes contain the length of the
record). The next byte following the 4-byte count field is
reserved. The message proper follows these five bytes. The
count field appears as

This operand specifies the editing option for the record to be
written. Refer to "Macro Instruction Editing Options" in the
appendices for further information.

If this operand is omitted, 03 is assumed.

Specifies the symbolic address in the user's program into
which the message from the terminal is to be placed. The
Executive puts the input message into the message2 area as a
standard V-type record (for example, first four bytes contain
a count of the number of bytes in the entire record followed
by . the data). This area may be the same as the output
message area, message 1.

3-85

edit2

length

error

(1)

Specifies the editing option for the record to be read. Refer
to "Macro Instruction Editing Options" in the appendices for
furtht::r information.

SpeciHes the size of the input area to receive the message
from the terminal. This size must include four bytes for the
V-type record length field. If this operand is omitted, the
systerl assumes the length attribute of the area to be the
lengtt. of the message.

This operand specifies the symbolic address of the routine in
the wIer's program to which the Executive gives control when
one of the following errors occur during execution of the
WRTRD macro:

1. nonrecoverable error

2. parameter error

3. read truncation

4. write truncation

5. non conversational mode

6. enc of file

Befor(! returning control to the user, the Executive loads
Genelal Register 15 with an error return code. General
Register 14 contains the address of the first byte following
the macro expansion.

This operand indicates that the user has loaded General
Register 1 with the address of a parameter table which
conta ins the following information:

Byte

o

1-3

4

Parameter

Edit option of the message to be written.

Address in the user program of the message to
be written.

Edit option of the response message from the
terminal.

3-86

Programming Notes

Byte

5-7

8-9

10-11

12

13-15

Parameter

Address in the user program of the response
message from the terminal.

Reserved.

Length of the message to be read.

Reserved.

Address in the user program of the error
routines.

When a break occurs during the write/read operation, automatic rollback
occurs. Automatic rollback is the resetting of the user's P-counter back to
the macro, so that after the break interrupt is processed the macro is
repeated.

When issued during a DXC session, the WRTRD macro will cause an MT=8
Message Type to be transmitted to the auxiliary processor. MT=8 causes the
auxiliary processor to write the record as it is received and be prepared to
read a record from the terminal.

Cautions and Errors

1. General Register 15 Return Codes:

X'04'

X'08'

X'OC'

X'10'

X'14'

nonrecoverable error.

parameter error.

read truncation. The size of the record exceeds the
designated length (after allowing four bytes for the length
field). The last part of the record is dropped.

write truncation. The length of the record written (after
allowing four bytes for the length field) exceeds the terminal
buffer size (normally 72 bytes). The excess characters are not
printed.

nonconversational mode. The WRTRD macro has been issued
in the nonconversational mode.

2. If the length of the record written (less four bytes for the length field and
one byte f()r the reserved byte) exceeds the terminal buffer size, the record is
truncated (the excess characters are not written). The user receives control at
the error address with the appropriate error code in Register 15 (for
example, X' 10').

3. If the size of a record read exceeds the designated length (minus four
bytes for the length field), the record is truncated to the size specified in the
length field (less four). The user receives control at the error address with the
appropriate error code in Register 15 (for example, X' 1 0').

3-87

Example

Name

MSGI

editl

MSG2

edit2

60

ERR

Operction Operand

WRTRD MSG I "MSG2,,60,ERR

The symbolic tag in the user program specifying the record to
be output to the terminal.

An omitted operand. (03)1 6 is assumed and no editing is
performed.

The symbolic tag in the user program associated with the area
into which a message from the terminal is to be placed.

An ornitted operand. No editing is performed.

The size of the input area to receive the message from the
terminal.

The Llg associated with the user's error contingency routine.

3-88

GENERAL

SECTION 2
FILE MANAGEMENT AND ACCESS METHOD

DEFINITION COMMANDS AND MACROS

The information contained in this section defines the explicit instructions
provided by VMOS for programmer control of file processing. For
convenience of use, the section has been divided into two areas: the first of
which contains those commands and macros applicable to the processing of
any program file, while the latter section discusses the macros specifically
applicable to the various file access methods.

FILE MANAGEMENT COMMANDS AND MACROS SUMMARIES

The file management cornmands and macros constitute those VMOS
instructional entities facilitating the creation, maintenance, and disposition
of program files by the user. The following are summaries by functional
category of these commands and macros. Several commands and macros will
appear in more than one category. This occurs as a result of the scope of the
instruction, and does not imply the existence of more than one instruction
with the same name.

FILE CREATION COMIvlANDS AND MACROS

Command/Macro

CATALOG Command
CATALMacro

DATA Command

FCB Macro

FILE Conllmand/Macro

IDFCB Macro

OPEN Macro

PASSWORD Command

Function

Create a catalog entry.

Allocate, create, and catalog a file using
the spoolin facilities.

Define a File Control Block. See FILE
command description.

Catalog a file and define its characteristics.

Provide symbolic name for an FCB. See
"YMOS General Service File Management
Macros" in the appendices.

Establish a logical connection between a file
and the problem program, complete the file
control block fields, verify or create file
labels, position volumes to the first record
to be processed, and allocate buffer areas as
required. See appendix referred to above for
the discussion of the user of this macro.

Supply a file password.

3-89

FILE MAINTENANCE COMMANDS AND MACROS

Command/Macro

CATALOG Comm::.nd
CATALMacro

CHANGE Command
CHNGEMacro

COPY Command/Jv[acro

DROP Command

FSTATUS Command
FSTAT Macro

HOLD Command

RELEASE Command

Function

Alter a catalog entry.

Alter or replace a file's linkname.

Copy a file.

Remove a file definition from HOLD status.

Furnish information on the status of a file.

Temporarily prevent the release of a file
definition.

Delete a file definition.

FILE DISPOSITION COMMANDS AND MACROS

Command/Macro

CLOSE Macro

END Command

ERASE Command/Macro

FILE Command/Macro

RELEASE Command
REL Macro

SYSFILE Command

Function

Indicates that file processing is complete,
replaces automatically-acquired buffer
areas, performs label verification and
creation, updates catalog entries, ensures
that pending write operations are completed,
and positions volumes as indicated. See
"VMOS General Service File Management
Macros" in the appendices for the discussion
of the use of this macro.

Terminate a DATA file.

Delete a file's entry from the catalog
deallocate space, or make the file appear
logically empty (NULL).

Deallocate random access space.

Release a file definition and its associated
private devices.

Reassign SYSIPT, SYSDTA, or TASK LIB
files to another file.

3-90

FILE RECONSTRUCTION COMMANDS AND MACROS

Command/Macro Function

LOG Macro Inform access method of intention to modify
a record.

RECON Command/Macro Request reconstruction of a specified file.

RESET Command Request resetting of a specified file.

FILE MANAGEMENT COMMAND AND MACRO DESCRIPTIONS

The following material describes each of the file management commands and
macros. The descriptions include instruction format, programming
considerations, and, where illustrative information is necessary, examples of
the use of the instruction. The commands and macros are presented in
alphabetical order without regard to functional classification.

CATALOG Command
CATAL Macro

Both the CATALOG comlnand or CA TAL macro create or alter a catalog
entry for a file. (To allocate space for a file, see File command.)

Name

filename 1

filename2

Operation

{
CATALOG}
CAT

CATAL

Operand

filename I-name, [filename2-name]
[,STATE=NEWIUPDATE]
[,ACCESS=READIWRITE]

[,SHARE=YESINO]
[,RDPASS=NONElspecial]
[,WRP ASS=NONElspecial]
[,RETPD=days-integer]

Specifies fully qualified name of the file to be cataloged.
Only the controller may specify the $ userid prefix.

Specifies the new name for the file. The userid prefix cannot
be specified, since this would imply a change of file
own ership. This parameter is ignored unless
ST ATE=UPDATE.

3-91

STATE=

ACCESS=

SHARE=

RDPASS=

Specifles the function to be performed.

NEW

Specifles that a new catalog entry is to be created for a file
that does not yet exist.

UPDATE

Specifles that an existing catalog entry is to be modified.

Note: There is no default case for omitted parameters in the
updat~: mode. A field in the catalog entry will not be
modified unless an explicit parameter is supplied.

Specif~es the manner in which the file may be processed.

READ

SpeciLes read only access to the file.

WRITE

SpeciLes read and/or write access to the file.

SpeciLes whether or not the owner of the file will allow it to
be accl~ssed by other users.

YES

SpeciLes that the file may be shared.

NO

Specifies that the file is not sharable; thus it may be accessed
only by the owner (or the controller).

NONE

Specifi'es that no password is required to read the file.

special

S pecifi es the password required to read the file. The
password must be a 1- or 4-byte decimal, hexadecimal, or
chara :;ter self-defining term. A read password of
X'OOOOOOOO' is ignored.

3-92

WRPASS=

RETPD=

Programming Notes

NONE

Specifies that no password is required to write to the file.

special

Specifies the password required to write to the file. The
password must be a 1- or 4-byte decimal, hexadecimal, or
chara cter self-defining term. A write password of
X'OOOOOOOO' is ignored. Note that read access will be
permitted when the write password is supplied (even if the
file has a read password).

Specifies the retention period for the file. This parameter is
ignored unless STATE=UPDATE. Note that this parameter is
only applicable to existing files being overwritten or updated.

The retention period and filename can be changed for tape files. These
changes are only made to the catalog and not to the actual labels on the tape
reel.

When the tape file is opened in a mode which allows write operations, a
retention period check is luade against the value specified in the catalog if
the file already exists. If the file does not exist (not an overwrite or update),
the retention period on the reel is used. The filename, however, is checked or
verified against the name contained on the tape reel. The user is cautioned
that changing of the filename should follow the left parenthesis (group)
convention as described in the section on file groups.

When the macro form is used, the return codes are set in register 15. 00
indicates successful completion of the operation. The codes for unsuccessful
completion are specified in the IDEMS macro. Refer to "File Management
Error Message Concepts and Code Structure" in the appendices.

3-93

CHANGE Command
CHNGE Macro

Both the CHANGE command or CHNGE macro change the linkname or
symbolic device nam~ of a previous file definition. No other parameters
introduced by the FILE command are changed.

Name Operation Operand

CHANGE [link-symbol] {,new link-Symbol}
,symdev-symbol

link -symbol

Specifies the file definition name.

Default: a linkname of spaces is assumed.

new link-symbol

symdev-symbol

Programming Notes

Specifies the linkname which is to replace the existing name.

Specifies the TOS symbolic device name that is to be
changed.

The CHANGE command is primarily intended to allow the user to pass FILE
command definitions from program to program within a task without
changing the link symbols specified in the programs' FCB's.

When the macro fornl is used, the return codes are set in register 15. 00
indicates successful completion of the operation. The codes for unsuccessful
completion are specified in the IDEMS macro. Refer to "File Management
Error Message Concep ts and Code Structure" in the appendices.

3-94

COPY Command
COPY Macro

Either the COpy command or COpy macro may be used to copy a file.

Nanle

filename I

filename 2

SAME

Operation Operand

COpy filename l-name,filename2-name [,SAME]

Specifies the fully qualified (up to 54 bytes) filename of the
file to be copied. This file is still unaltered after execution of
this command.

Specifies the fully qualified (up to 54 bytes) name of the file
to receive the: copy.

Specifies that filename2 is to have the same file security as
filename I (for example, same passwords, sharability,
retention period, and access).

Programming Notes

This comlmand cannot be used to create a file with different file
characteristics (for example, SAM to ISAM, fixed-length records to
variable-length records). This fact is more evident by noting that files are
copied on a half-page (2048 bytes) basis; that is, GET's and PUT's are not
used to read and write logical records, respectively.

Filename2 cannot be the same as filename I. If filename2 is not cataloged,
and if SAME is not specified, it is cataloged as a nonshared file with
read/write access. If no device has been specified for filename 2 , public
volumes are used. If no space has been specified for filename2, sufficient
primary space to contain the file is obtained. Note that device and space
assignments are obtained from the catalog entry for filename2. In this case,
the value assumed for secondary space allocation is the system default.

Only the controller can specify the $userid prefix for filename2, if filename2
is not yet cataloged.

Direct access files may be freely copied to tape or to other direct access
devices (for example: 8564 to 8568, 8568 to tape, 8590 to 8564). Tape to
direct access devices is supported for single volume tape files. Tape-to-tape
copy operations are not supported with this command. A utility program is
available to provide this facility but the user must then create the
appropriate catalog entry with a FILE command.

When the macro form is used, the return codes are set in register 15. 00
indicates successful completion of the operation. The codes for unsuccessful
completion are specified in the IDEMS macro. Refer to "File Management
Error Message Concepts and Code Structure" in the appendices.

3-95

DATA Command

The DATA command is used to allocate and catalog a file by means of the
spoolin (RCARD) procedure. All cards following a DATA command will be
placed in the file until an END command or subsequent DATA command is
encountered, at whic:l time the fue is closed.

Name

filename

file type

Programming Notes

Operation Operand ----
DATA filename [filetype = I ~~ I]

Specifies the name by which the DATA file will be cataloged.

Specifies the access method for the file. (SAM is assumed if
the operand is omitted.)

The DATA command must follow the LOGON statement initially, but then
it may follow an END command or data of a previous DATA command"
When a subsequent DATA command is encountered, the file is closed and 2l

new file is created. Diagnostic messages for errors will be given by the normall
spoolout procedure.

The DATA command creates files with variable length, blocked records, with
a block size of 2048 bytes.

[SAM file records are prefixed with an 8-digit key incremented from the:
right in increments c,f 100 beginning at zero. For example, the first record
would be 00000 100, the second 00000200, etc.

3-96

DROP Command

DROP command is used to remove the specified file definition from hold
status. (See examples I through 4 under the description of the HOLD
command,,) If an outstanding RELEASE command (macro) exists for the
definition:~ normal release processing occurs (that is, the file definition is
deleted and the appropriate private devices are released).

Name Operation Operand

DROP link-symbol

link-symbol

Specifies the file definition name.

Default: A link name of spaces is assumed.

END Command

END will terminate a file created by DATA command and cause the file to
be closed.

Name Operation Operand

END

Programming Notes

During the spoolin process, an END command will be assumed to be missing
if a LOGON card is encountered other than immediately after a DATA
command. When a subsequent DATA command is encountered, an END
cOlnmand is assumed.

3-97

ERASE Command

The ERASE command is used to make a file logically empty, to deallocate
the space assigned 10 a file, and/or to remove the file's entry from the
catalog. This command processes partially qualified filenames.

Name

filename

$userid.

*

DATA

SPACE

CATALOG

Operation Operand

{
filename-name} [,DATAl SP ACEICA T ALOG]
$userid.

*

Specifies the fully or partially qualified filename (up to 54
bytes). Only the controller may specify other than his own
$userid.

Specifies all files for the user. A user may only specify his
own user identification. The controller may specify any
user's identification.

Specifies the task's current (EAM) object module file.

Note: One of the above operands is mandatory in the ERASE
comm and. The omission of the following optional operands
cause~, space to be deallocated (SPACE) for the file and the:
file's entry removed (CATALOG) from the catalog entry
table.

Specifies that the file or files be made logically empty. The:
file 01 files remain cataloged and the space remains allocated.

Note: The file entry is identical to one for a file which had at

FILE command (and, optionally, a CATALOG command)
applied to it, but had not yet been opened.

Specifies that space assigned to a file is to be deallocated. The
file re:l1ains cataloged, but is considered to be logically empty
(that is, the DATA option is performed).

Specifies that the catalog entry for the file or files be
removed. This parameter is not allowed for files residing
(allocated) on PUBLIC volumes.

3-98

Programming Notes

Example

1. A user can only ERASE files that he owns.

2. Note that this command requires that all direct-access private volumes
associated with a single file must be concurrently mounted if space is being
deallocated. If the CATALOG option is specified, the associated private
volumes are not required. If the DATA option is specified, the first private
volume associated with each file is required.

3. If a set of files is specified (by way of a partially qualified filename), it is
not required to have volumes for all files in the set concurrently mounted.
Requirements in the previous paragraph apply.

4

Assume that file A.I is contained in two private volumes and file A.2 is
contained on three private volumes (see figure 3-1), then:

ERASEA.

requires three devices (not five) since A.2 takes 3 volumes and all of them
must be m.ounted simultaneously. In other words, the number of devices
necessary to ERASE a set of files is equal to the number of volumes of the
file distributed on the largest number of volumes.

DEVICES

FILES A.1 AND
A.2 ON PRIV,t),TE
VOLUMES

D D

FIGURE 3-1. EXAMPLE - (ERASE COMMAND)

D

If a file is erased from a private volume, the device on which the volume
resides will be acquired for the task. At completion of the ERASE process,
the device will be returned to the system.

3-99

FILE Cornmand/Macro

Name

The FILE commanc. is used to define a file and its characteristics to the
system. Every file, except those processed by EAM, must be defined by this
command. Typically, subsequent uses of a file do not require this command.,
since the file is cataloged and its properties are already known by the system,.

Although this comnland has a multitude of parameters, the user need not
specify anything more than the filename for public volume files. In many
cases, the use of thi:; ostensibly complex command is both simple and brief.

The FILE command performs the following major functions:

I . Catalogs a file
2. Allocates (and de~Lllocates) random access space
3. Assigns devices
4. Alerts the operatcr to mount private volumes
5. Completes or modifies the FCB (File Control Block).

Operation

FILE

Operand

{
filename }1.LlNK=symboIJ
*OUMMY

I .OEVICE=O 5641056810590lTAITAPEIT9NIT9PIT7cclWORK J

[MOUNT=
{

volume sequence number-integer}]
(vol. scq. no)

[

VOLUME= r ~~~~~ ~~rial number-alphnum }]

l (PRIV ATE.number of volumes-intcger)
(volume serial number-alphnum)

ePACE

=

[,STATE=

primary-integer I .secondary-integer)
primary-integer JJ
(t first pagC-integer.amount-integer.ABS})

FOREIGN)

I.FCBTYPE=SAMIISAMIPAMIBTAM)

[
RECFORM= { ([FIYIUJ,[AIMI~]) }]

FI~IU

[BLKSIZE=b>Jffcr size· I ~i~o.integcr) I] mteger

[.RECSIZE=record size-integer)

I .KEYPOS=displacement-integer)

I.OVERLAP::YES)

I .KEYLEN=key length-integer]

1,0UPEKY=YES)

[,PAO=perce Ilt of space-integer)

I ,LABEL=Sl 01 NSTO J

[.RETPO=da ys-integcr)

3-100

Name Operation

filename

Operand

(.OPEN=INPUTIOUTPUTI EXTENDI REVERSEI UPDA TEIOUTIN I INOUTI SINOUT]

(.LOGLEN=logical flag length-integer]

(,VALLEN=value nag length-integer]

[.VALPROP=MAXIMIN]

(,DDEVICE=D564ID568ID590]

{
primary-integer }

(,DSPACE= (primary-integer(,sccondary-integerl) J

{
volume serial numbcr-alphnum }

(,DVOLUME= (volume serial number-alphnum) J

(.SHARUPD=YESINOJ

[TVSN= {
volume serial number-alphnum }
(volume serial number-alphnum) J

Specifies the fully qualified filename. If the file is not
cataloged, it is cataloged as a nonshared file with read/write
access.

*DUMMY

LINK=

Specifies a special file. If one attempts to read this file,
control is passed to the end of the file address specified in the
exit list. If one attempts to write information in the file, the
information is lost (an infinite "garbage pail"). This special
file is useful during debugging and also provides a convenient
way to ignore some particular output.

Note: If this parameter is specified, the other parameters in
the command except LINK are totally ignored. Accordingly,
no device allocation, storage allocation, or cataloging takes
place for dummy files.

Specifies that the file parameters given in this command are
to be used to modify those in an FCB with the same
linkname. Note that if this parameter is omitted, a linkname
of spaces will be generated, and no FCB will be modified by
this file command. Note that LINK=, is not allowed.

If a FILE command has the same linkname as a previous file
definition, the new command replaces the old definition. The
processing is equivalent to the sequence:

File Command I FILE LINK = x
RELEASE LINK = x, KEEP

File Command II FILE LINK = x

3-101

DEVICE=

Note:;:

1. Ary private devices associated with FILE Command I are
returled to the task, not the system. This important property
allows one to reuse private devices.

2. The devices associated with FILE Command I are nOlt
attac.led (associated) with FILE Command II; they are
tnerey returned to the task.

3. The LINK name is the entry that establishes the
conn~ction between the FCB and the DMS Job Control
language.

CAUTION: A FILE command applies to every FCB with the
same linkname, and can in fact apply to many FCB:'s
concurrently. Note that the default linkname is "spaces" -­
not null and not ignored.

Specjfies the type of device.

D56L

Specifies an 8564 Disc.

D56~;

Spec: fies an 8568 Mass Storage Unit.

D590

Spec:Jies an 8590 Disc.

TA

Spec:Jies a 9-level tape or a 7-level tape with data convert.
The 7-level tape is assumed to have a control code (cc) of
(FO)] 6 ; that is, odd parity, pack/unpack, and no translate.

TAPE

SpecJies any type of 9-level tape.

T9N

Speccfies an NRZ (nonreturn to zero) 9-level tape.

T9P

Speclfies a phase-modulated 9-level tape.

T7cc

Speclfies a 7-level tape. The control code (cc) must specify
the ~,tandard write control byte required by 7-level devices.
See figure 3-2 for Control Byte and 7-level Control Codes.

3-102

WORK

Specifies a system work tape. The system attempts to acquire
a 9-level system work tape previously specified by the
operator (via the SETUP command). If no tape is available,
the parameter is equivalent to the TAPE parameter. If this
parameter is specified, the VOLUME parameter is ignored.
Note that the RETPD parameter is also ignored and is
assumed to be zero days.

Default: If no DEVICE parameter is specified, public volume
devices are assumed.

[=r---'-------L-~_O -,--0 -L---------I

0
L 1 = TRANSLATOR ON

o = TRANSLATOR OFF

1 = PACK/UNPACK ON
0= PACK/UNPACK OFF

1 = ODD PARITY
0= EVEN PARITY

01 = 200 CPI DENSITY
L-. ________________ . __________________ ~~ 10=556CPI DENSITY

11 = 800 CPI DENSITY

THERE ARE 15 POSSIBLE 7-LEVEL. MODES:

CONTROL BYTE PACK/UNPACK TRANSLATE
VALUE (I6) DENSITY PARITY MODE MODE

60 200 ODD OFF OFF
AO 556 ODD OFF OFF
EO 800 ODD OFF OFF

40 200 EVEN OFF OFF
80 556 EVEN OFF OFF
CO 800 EVEN OFF OFF

68 200 ODD OFF ON
AS 556 ODD OFF ON
E8 800 ODD OFF ON

48 200 EVEN OFF ON
88 556 EVEN OFF ON
C8 800 EVEN OFF ON

70 200 ODD ON OFF
BO 556 ODD ON OFF
FO 800 ODD ON OFF

FIGURE 3-2. CONTROL BYTE AND 7-LEVEL CONTROL CODES

3-103

MOUNT=

This parameter is only applicable to private volumes.

volunle-sequence number

Specifies the volume sequence number of the volume or
volunles to be mounted. If 0 (zero) is specified, no mounting
is performed.

Default for Tape: First volume is mounted.

Default for Direct Access: All volumes containing the file are
mounted.

The SPACE parameter is processed before this parameter.
For direct-access files, this parameter applies only to volumes
which actually have space allocated on them for the
associated file at the time the parameter is processed.

Exanlple 1:

Assu:me file JOE does not exist.

FILE JOE,SPACE=90,DEVICE=D5 64,VOLUME=(000 123,
000456,000789),MOUNT=(1,2)

[f all 90 pages can be allocated on volume 000123, the other
two :ierial numbers are not placed in the catalog. The mount
paralneter is then considered erroneous, since volume
sequence number 2 does not exist.

Exanlple 2:

Assume a 21-page file XRAY exists on volume serial number
000123 and the user wishes to add an additional 90 pages to
the file:

FILE XRAY ,SP ACE=90,VOLUME=(000456,000 123),
DEVICE=D564

Also, assume that 30 of the additional pages requested are
allocated on volume 000456 and the remaining 60 pages on
volmne 000123.

The catalog contains three volume entries:

entry 1 - VSN 000123 - 21 pages
entry 2 - VSN 000456 - 30 pages
entr;1 3 - VSN 000123 - 60 pages

3-104

VOLUME:=

Thus, volume sequence numbers I, 2, and 3 address volumes
000123, 000456, and 000123, respectively. If the command
is written as:

FILE XRAY,SPACE=90,DEVICE=D564,VOLUME=(000123,
000456)

and the first 60 additional pages are allocated on volume
000123 and the remaining 30 on 000456, the catalog would
contain two volume entries:

entry I - VSN 000123 - 81 pages
entry 2 - VSN 000456 - 30 pages

For tape files, the MOUNT parameter applies to the
combined set of volume serial numbers in the catalog prior to
issuance of this command plus those specified in the
VOLUME parameter.

PRIVATE

Specifies that volumes are to be allocated from the operator's
pool (for example, the tapes or disk available to the system
operator). Once assigned, the volume belongs to the
programmer.

number

Specifies the number of PRIVATE volumes desired (I ~
number~ 9).

The notation VOLUME=(PRIV ATE,2) does not necessarily
mean that 2 volumes will be mounted. The appropriate
MOUNT option must be used. In the example given, 2
volumes will be allocated from the operator's pool and a
MOUNT=(l,2) must be used so that the two volumes are
mounted on 2 drives. If the MOUNT is not used, only I
volume will be mounted and only I device will be used,
although 2 VSN's are known to the system.

vsn

Specifies the volume serial number identifying the volume.

Note: The reader should reference the description of the
SPACE paranleter to determine how vsn's for direct access
volumes are entered into the system.

For a new tape file, the volume serial numbers are placed in
the catalog in the order given. For an existing tape file, the
volume serial numbers are added to those already in the
catalog in the order given. Of course, these numbers cannot
duplicate those already in the catalog.

3-105

SPACE=

Specifies the direct-access storage allocation for the file. (See
examples under the MOUNT= parameter.) Although this
paranleter has several options, the parameter can be defaulted
for the user creating a new file (whether public or private).
Acco:~dingly, the primary and secondary space allocations
specified at system generation time are assigned.

primary

Specifies the number of half-pages (2048 bytes) to be
allocated for primary allocation. This number is rounded up,
if necessary, to a multiple of 3.

secondary

Specifies the number of half-pages (2048 bytes) to be
allocated whenever the file's space is exhausted and more
space is required. This number is rounded up, if necessary, to
a mu:tiple of 3. Negative values are not allowed.

first page

Specifies the physical half-page with which to begin
allocation. (The first half-page of a device is 1.) The value
must be I, 4, etc. (that is, first page/3 yields a remainder of
1).

amount

Spec~Jies the number of half-pages required. The value must
be a :nultiple of three.

ABS

Spec:lfies that absolute allocation is desired. If this is the
initial allocation for the file, the secondary allocation value is
set to o.

Notes:

1. For a file for which space has already been allocated,
prim uy may specify a negative number. This causes the
system to deallocate space. In this case, the VOLUME
paralneter is ignored. The system deallocated the space
beginning with the last volume specified in the catalog and
deallocates until the specified amount is removed or until a
half-)age which contains data (applicable to ISAM and SArYl)
is er.countered. In a sense, deallocation is an end-to-front
procl~ss; that is, space is only removed from the end of the
file's space.

2. It is permissible to change the secondary allocation
specification for a file.

3-106

3. The space specified is for the total file; that is, it is not on
a per volume basis. Moreover, if several volume serial
numbers are specified in the VOLUME parameter for a file
which is initially being allocated, the system attempts to
obtain all the space on the first volume. If successful, the
other vsn's are ignored and are not placed in the catalog.

4. If no vsn's are specified for a private volume file for
which allocation already exists, space is first obtained on the
last (most recently allocated) volume of the file. If sufficient
space does not exist on this volume, the system attempts to
allocate the space on the other volumes in the catalog. If
vsn's are specified, the space is only obtained from the
specified volumes as described above. If this space is
insufficient, a partial allocation will result; that is, space
existing on vsn's in the catalog but not specified in the
current FILE command will not be utilized.

5. For a public volume file for which space already exists,
space is first obtained on the last volume of the file. If the
space available: on that volume is insufficient, the system
selects the public volume which has the most space available.
(This is not exactly the case. The strategy is to select the
volume which has the highest percentage of free packets; a
packet is a set of 24 contiguous half-pages. In the appendices,
see "Volume 'Table of Contents (VTOC) Formats," for a
discussion of packets, etc.).

6. Only the controller may allocate on a specific public
volume or volumes or on specific public devices. In this case,
the space is only obtained from the specified volumes or
device types. As before, if vsn's are specified, the system
attempts to satisfy the space requirements on the first
volume specified before inspecting any others.

7. Only the controller may allocate absolutely (ABS) on
public volumes.

8. When allocating absolutely, either zero or all the space
specified is obtained. Contrary to the other rules, if a vsn is
specified, only the first vsn is used; that is, absolute
allocation is on one volume per command.

9. The user can force the spreading of allocation of space
over a set of n volumes by issuing this command n times.

10. It is permissible to allocate absolutely on one occasion
for a file, and to subsequently allocate nonabsolutely (and
vice versa).

11. Secondary allocation may be specified as 0 to prohibit
dynamic allocation. Note that subsequent allocations only
change the value for secondary when it is explicitly specified.

3-107

STATE=

12. The primary allocation for a file may be specified as O.
Th:;s is meaningful, for example, where the user only wishes
to change the value for secondary allocation and does not
wish more space.

13. Except when allocating absolutely, the system obtains all
the space requested or as much as possible. The typilcal
obstacle to allocation is that the specified volumes do not
have enough free space.

Note: The user cannot deallocate space not belonging to him.
Only the controller can specify a filename which begins with
the $ character if a negative SPACE value is given.

14. Deallocation of space from an ISAM file created with the
index location option will result in the removal of unused
pages from the data and/or index volumes depending on
which volume extents were last obtained. Space cannot be
selectively deallocated from a data or an index volume.

FOREIGN

Specifies that an existing, uncataloged, private volume file is
to be cataloged. Such a file might have been created on
another VMOS system, or it might have been previously
renloved from the system (via the ERASE command). Note
that a foreign direct-access file had to be created by version 6
or later versions of DMS (not, for example, by TOS).

For a tape file, all the vsn's of the file must be specified for
the file, and they must be specified in proper order. It is not
nee essary to have the tapes mounted and/or to have the
de\tices secured to accomplish this function.

The device must be specific, that is, T9N, not T A or TAPE.

If a foreign tape file has standard labels, the file
characteristics are moved from the label to the catalog at
OP EN time. If the foreign tape file has nonstandard labels,
the user must supply (by way of the FILE command) the file
characteristics normally contained in the HDR2 label. It is
the user's responsibility to ensure that the linkname used in
thi~; FILE command is equal to the linkname il,1 the FCB
wht~n the foreign file is opened, since the file characteristics
are not entered into the catalog until OPEN time.

If this is a direct access file, the first vsn of the file is
specified; only the first volume of the file need be mounted
to accomplish this function.

3-108

Note that if one or more files which begin on this volume have the same
name, even if the userids are different, the system will always assume that
the first file physically found in the format-l labels is the one to be used. A
warning message is issued to note this condition. The user could
subsequently remove the file (via the CATALOG command)to resolve the
problem in this specific instance.

It is essential that a FOREIGN file being introduced into a new system from
a private random access device be removed from the catalog ot the system in
which it is currently cataloged before FOREIGN volume processing is
invoked. A FOREIGN file is always cataloged as a read-only file.

Example:

File A.A is currently cataloged in system TSOSRIV. This file is to be
introduced into system TSOSEA as a FOREIGN file. An ERASE A.A,
CATALOG must be performed under system TSOSRIV. After this is
performed, A.A may be introduced into system TSOSEA as a FOREIGN
file.

If the user wishes to catalog a single-volumed foreign tape file without
specifying VSN, he may mount this volume on a secured tape drive and
specify device=work. It is the user's responsibility to mount the right volume
on the sec:ured work drive. DMS will record the VSN and all other
characteristics at open time. This facility is only applicable to single-volumed
foreign tape files.

DDEVICE, DVOLUME, DSPACE, SHARUPD

The DDEV][CE, DVOLUME, and DSPACE parameters are specified in the
same manner as the corresponding DEVICE, VOLUME, and SPACE
parameters with the exception that DDEVICE may only specify a random
access device and no default is assumed for DSPACE for a file that has not
been previously cataloged.

The DDEVICE, DVOLUME, and DSPACE parameters may only be specified
for an ISMI file, and may only refer to private volumes. If the user requires
anyone of these parameters and if the file does not yet have any space
allocated to it, all three must be specified. If space has been allocated for the
file, a FILE command can b,e issued to extend this space, in which case the
DSPACE parameter may occur without DDEVICE and DVOLUME
parameters.

When the three parameters (DDEVICE, DVOLUME, or DSPACE) are
specified for an ISAM file, the DEVICE, VOLUME, and SPACE parameters,
whether specified or defaulted, refer to the index portion of the ISAM file
while the DDEVICE, DVOLUME, and DSPACE parameters refer to the data
portion of 1the ISAM file. In this way, it is possible to create an ISAM file
which has, for example, all its data on 568 (MSU) volumes while all the
index pages reside on a set of 564 or 590 volumes.

Once an ISAM file is created in this way, it is not possible to get all the index
and data blocks on the same device type. The only way to achieve this is to
copy the ISAM file to a second ISAM file whose space has been allocated
without using the DDEVICE, DVOLUME, and DSPACE parameters.

3-109

TVSN

All of the volumes 'Jf such a split ISAM file must be private. It is not possible
to split an ISAM file between two different public device types or between
public and private devices.

The SHARUPD pa:rameter is used to indicate whether an ISAM file may be
shared among tasks for the purpose of updating.

Specifies the volullles to be processed in a given program. This parameter is
only applicable to cataloged tape input files. When this parameter is
specified, volume(:i) which already exist in the catalog are temporarHy
ignored for this program, and volumes specified by this parameter will be
used. Note that this does not alter the catalog. This command will be
terminated if both ·volume and TVSN are specified.

Programming Notes

The remaining parameters, which are used to complete an FCB, are discussed
in the FCB macro instruction. See VMOS General Service File Management
Macros instruction5:.

Each file command/macro causes a TFT (Task File Table) to be created.
Each TFT contains information about file characteristics and devicer(s)
acquired to this fil,~, and TFT's are identified by their link names. If another
file command/macro is issued bearing the same link name , the existing TFT
will be deleted and all devices, if any, will be deleted. A new TFT will be
created and new devices (if requested) will be acquired. In general, devices
attached to the new TFT will not be the same as those possessed by the
previous TFT. However, for a very special case, the devices will be retained.
When the following conditions all prevail, the devices are retained:

1. The previous TFT is created for a Class-I program.

2. The new TFT to be created is a VMOS file.

3. The device must be in the tape family and the device type must be the
same for the old and the new TFT's.

4. The number of devices requested in the new TFT must not exceed one.

3-110

FSTATUS Command

This comlmand furnishes the status information for a file. The command
processes partially qualified filenames.

Operation

IFSTATUSI
FSTAT

filename

$userid.

STANDARDIS

CATALOGIC

Operand

[filename-namel $userid.] [,ST ANDARDI S]
[,CATALOGICI [,TRAITSI.T] [,PASSWORDIP] [,ALL]

Specifies. the fully or partially qualified filename (up to 54
bytes).

Specifies all files for the user. If a user specifies another user's
identification, only information on shared files will be
displayed.

Default: The $userid of the user logged on is assumed.

If no option parameters are specified, the filename(s) and file
size are displayed.

The following parameters may be specified to obtain
additional information:

1. Type of file (that is, the access method used to create the
file).

2. Type of volumes on which the file resides (that is, public
or private volumes).

3. Secondary allocation value for the file.

4. Highest page utilized by the file (lSAM files and SAM files
with standard blocks).

Specifies that security-type information, typically entered via
the CATALOG command, is to be displayed. This includes
the following:

1. Sharability of the file.

2. Password req uirements (but not the passwords
themselves).

3. Access to the file (that is, READ only or READ and
WRITE).

3 .. 111

TRAITSIT

PASSWORDIP

ALL

Programming Notes

4. Cre.ltion date.

5. Expiration date.

6. Indicates whether FRS RECON and/or RESET services are
being used. If the status of FRS services has been changed
since rhe file was last accessed and at least one of the services.
is turned off, an asterisk will be placed following the NO
condition. When both RECON and RESET equal NO and the
asterisk is present, the user may reinitiate one or both of the
services turned off without loss of previous FRS support.

Specifies that detailed file and volume characteristics are tOi
be dis~;>layed, such as:

1. Record format and size.

2. Block size and type.

3. Key length and key position (ISAM files).

4. Volume serial number and device type of each volume on
which the file resides.

5. Lengths of logic and value flag fields for ISAM files.

Specifies that the passwords are to be presented. Only the
controller is given the actual passwords. The response to the
user is YES if passwords are used and NO if not. The user
who has forgotten his password must request the controller
to issue this command on his behalf.

The passwords are displayed in both character and
hexadecimal form, since the password might contain
unprintable characters.

Specifies that the information supplied by the STANDARD,
CATALOG, and TRAITS parameters is to be displayed.

Although the specification parameters are essentially considered as
positional, they may be written in any order.

Example:

FST ATUS JOE,ST ANDARD,CA T ALOG
FSTATUS JOE,CATALOG,STANDARD

The above examples ;lccomplish identical results.

3-112

Examples

The printing of STATUS information may be interrupted by depressing the
Break key. A slash is displayed and the next command may be issued.

Example 1 illustrates use of the FSTATUS command for a
password-protected File, TEXT. Example 2 illustrates the various options of
the FSTATUS command.

Example 1:: FSTATUS command for a password-protected file.

%BOOl PLEASE LOGON.
/LOGON RINGO
%B002 LOGON ACCEPTED AT 1122 ON 11/16/69, TSN 0062 ASSIGNED.
/FSTATUS
%0000042 SAMFILE
%0000012 SAMPUT
%0000012 ,MAC3 FILE
%00000421SAMFILE
%0000006 PAMFILE
/FILE TEST,SPACE-(12,3),DEVICE=D564,VOLUME-PUB200
/CAT TEST,STATE=UPDATE,RDPASS=1111,ACCESS=READ
/FSTATUS TEST,STANDARD,CATALOG
%FI LE STATUS NOT GIVEN FOR:
%NON-SHARABLE FILES-OOOOO PASSWORD PROTECTED FILES-OOOOl
/PASSWOR[~ 1111
/FST ATUS TEST
%0000012 TEST
%TOTAL PUBLIC PAGES ALLOCATED = 0000012
/FSTATUS TEST,STANDARD,CATALOG
%0000012 TEST
% FCBTYPE = NONE VSN TYPE= PUB
% 2ND ALLO- 000 LAST PG - 0000000
% SHARE - NO ACCESS - READ
% CR DATE - 00000 EX DATE = 00000
% RDPASS - YES \~RPASS = NO
%TOTAL PUBLIC PAGES ALLOCATED - 00000012
/LOGOFF
%B003 LOGOFF AT 1126 ON 11/16/69, FOR TSN 0062.
%B014 CUP TIME USED: 0000.6173 SECONDS.P

Example 2: Various options of the FST A TUS Command.

%B001 PLEASE lOGON.
/lOGON R II NGO
%B002 lOGON ACCEPTED AT 1002 ON 11/09/69, TSN 0228 ASSIGNED.
/F I LE VE F~006
/FSTATUS VE Ro06
%0000006 VERo06 < 0 defau 1 t space a 110cat ion
/FILE VER006,SPACE-3

3-113

/FSTATUS VERo06
%0000009 VERo06 ~--o space increased

/FSTATUS VER006,sTJ\NDARDE----------o3 FSTATUS
%0000009 VER006 options
% FCBTYPE = NONE
% 2ND ALLO= 003
/FSTATUS VER006, CAYALOG
%0000009 VERo06
% SHARE = NO
% CR DATE = 0000
% RDPASS = NO
IFS T ATUS VE R006 , T RJU TS
%0000009 VER006
% RECFORM = NONE
% BLK TYPE= NONE
% VSN/DEV = PUB2S]/D564

VSN TYPE- PUB
LAST PG == 0000000

ACCESS = WRITE
EX CATE = 00000
WRPASS == NO

RECSIZE == 00000
BLKSIZE == 000000

/FSTATUS VER006,STJ~NDARO,CATALOG,TRAITS~all 3 options in
%0000009 VER006 same command.
% FCBTYPE == NONE VSN TYPE= PUB /FSTATUS VE R006,
% 2ND ALLO= 003 LAST PG a 0000000 ALL yields the
% SHARE == NO ACCESS = WRITE same output. A
% CR DATE == 0000(1 EX DATE = 00000 short form for the~
% RDPASS = NO WRPASS == NO operands can also
% RECFORM = NONE RECSIZE = 00000 be used, e.g.
% BLK TYPE= NONE B LKS I ZE = 000000 /FSTATUS VE R006,
% VSN/DEV == PUB2!; I /0564 S, C, T
/ERASE VER006
/ FST ATUS VE R006

%0 0533 NO SUCH FI LE •• ~error message after ERASE
/LOGOFF
%BOO 3 LOGOFF AT 1006 ON 11/09/69, FO R TSN 0228.
%BOI4 CPU TIME USED: 0000.8251 SECONDS.

3-114

FSTAT Macro-Furnish File Status Information (S)

This macro is used to furnish status information for the specified file. The
macro may also process partially qualified filenames.

Natne

[symbol]

filename

$userid

area

size

SHORT

LONG

PASSWORD

Operation

FSTAT

Operand

[filename-namel $userid.]
,area-addr[,size-value]
[,SHORTILONG] [,PASSWORD]

Specifies the fully or partially qualified filename (up to 54
bytes).

Specifies all files for the user. A user may only specify his
user identification code. The controller may specify any
user's identification code.

Specifies the area (relexp) into which the information is to be
placed.

Specifies the: size (absexp) in bytes of the input area. If the
area is too small, the macro is terminated without any
movement of data.

Default: An area of 60 and 2048 bytes is assumed for
SHORT and LONG respectively.

Specifies that the fixed portion of the catalog entry
(currently 60 bytes) is to be placed in the user's area.

Specifies that the complete catalog entry is to be placed in
the user's area. (A complete entry is variable in size and has a
maximum size of 2032 bytes.)

Default: SHORT.

Specifies that the passwords are to be made available. Only
the controller may specify this parameter.

3-115

Programming Notes

Example

If a filename is fully qualified, the catalog entry (SHORT or LONG) for the
file is moved to the specified area. The password fields are set to binary a's,
unless the controller has issued this macro and has specified the PASSWORD
operand.

If the first operand specifies a partially qualified filename or the $userid, the
output of the macro is a set of filenames. The format of the output entry is:

Length Filename Length

1 byte ~44 bytes

Filename 00

1
byte

01
00

1
byte

Length specifies length of the corresponding filename (plus the length byte).
The list is terminated by (00)16' If the area cannot contain all of the
filenames, the termination byte is suffixed with a (0 1)16 ; otherwise, this
suffix byte is set to (00)1 6 •

04 JOE OF P A YROLL.MASTER 00 00

The following return (odes are set in register 15.

00 - request successfully completed.

The codes for nonsucc:essful execution are specified in the IDEMS macro.

3-116

HOLD Command

The HOLD command is used to set the file definition, specified by the
linkname, to a hold status. Thus, if a subsequent RELEASE command
(macro) is issued for the file definition, the release processing is deferred
unitl the DROP command is issued.

Name Operation Operand

HOLD [link-symbol] [,TOS]

link

Specifies the file definition name.

Default: a linkname of spaces is assumed.

TOS

Specifies that the file definition is for a TOS file.

Programming Notes

Examples

If the specified file definition does not exist, one is created. It is only for this
case that the TOS parameter need be specified. Note, therefore, that it is
permissible to issue a HOLD command before issuing a FILE command for
the specified file definition.

Example 1

HOLD X

FILE LINK=X

RELEASE X

DROP X

Example :2

FILE LINK=X

HOLD X

DROP X

RELEASE X

File definition entry X is created. The Hold
indicator is set.

This command places information in entry X.

The entry is not released since the HOLD
indicator is set. The release indicator is
set.

The entry is now released.

File definition entry X is created.

The Hold indicator is set.

The Hold indicator is reset; since no
release indicator has been set, no
other action occurs.

File definition entry X is released.

3-117

Example 3

SECURE T APE= I

FILE LINK=X,
DEVICE=T9N,
VOLUME=OOO 123

HOLD X

FILE LINK=X

FILE LINK=Q,
DEVICE=T9N,
VOLUME=OOO 124

Example 4

FILE LINK=X

HOLD X

CHANGEX,Y

DROP X

RELEASE Y

DROPY

File definition entry X is created. A
private tape device is acquired for vsn
000123.

The Hold indicator is set.

A new file definition entry is created even
though the Hold indicator is set. The Hold
indicator will now apply to the new definition
of X. The tape is returned to the task for
reuse.

The tape is now assigned to this file
definition entry.

The name of the entry is changed. The
Hold indicator applies to entry Y.

This is an error; there is no entry
with a linkname of X.

The entry is not released since the
Hold indicator is set.

Entry Y is now released; that is, the
old X is released.

3-118

LOG Macro

The user program informs the access method that it intends to modify a
record using the LOG macro.

Name

[synlbol]

fcb

Operation

LOG

Operand

I (fcb) I
(1)

Specifies the address of the FCB macro associated with the
file.

The LOG macro should be issued before a logical record is
modified, but after it has been retrieved by the access
method.

If before images are not required for the file, the LOG macro
functions as a no-oPe

See Part 2, Section 3 of this manual for more information on
the File Reconstruction System (FRS), with which this
macro functions.

PASSWORD Command

This command supplies file passwords for a task.

Name

password

Programming Notes

Operation Operand

PASSWORD password-speciall(password-special, ...)

Specifies a password or list of passwords needed to access a
file. The password must be a 1- to 4-byte decimal,
hexadecimal, or character self-defining term.

The commland creates a list of passwords, which may be added to by
subsequent password commands. When a password is required to access a
file, this list is searched unless the password already exists in the FCB used to
OPEN the file.

A password of X'OOOOOOOO' is ignored.

3-119

RECON Command

This command requests the reconstruction (of a portion) of the named file.

Name

filename

range

Operation Operand

RECON filename,(range, ...)

Spec:Jies the fully qualified filename of the file to be
reconstructed. This file must have previously requested
reconstruction services with a RECON parameter in the FRS
comlnand (see VMOS Systems Management Manual).

Spec:lfies the range of logical PAM pages which contain the
recold(s) to be reconstructed. Any number of ranges can be
specified, on any number of RECON commands. A range is
specified as follows:

page l : page2

(All PAM pages between page I and page2 will be scheduled
for reconstruction.)

page l

(Only the stated PAM page will be scheduled for
reconstruction.)

page l

(ALL PAM pages between page 1 and the end of the file will
be scheduled for reconstruction.)

The requested action will be delayed until the Systern
Controller authorizes it.

See Part 2, Section 3 of this manual for additional
information on the File Reconstruction System (FRS).

3-120

RECONMacro

This macro is the user program equivalent to the RECON command,
described TIl0re fully under DMS Commands.

Name

[symbol]

fcb

Operation Operand

RECON (fCbl
(1)

Specifies the address of the FCB macro associated with the
file.

If FRS services for this file have not been requested by the
System Controller, this action macro functions as a no-op.

See Part 2, Section 3 of this manual for more information on
the File Reconstruction System (FRS), with which this
macro functions.

RELEASE Command
RELMacro

Both the RELEASE command . or REL macro delete the specified file
definition. Any private devices associated with the file are optionally
released and become available to the system for reassignment.

Name

link -symbol

KEEP

Programming Notes

Operation

(
RELEASEI
REL

Operand

[link;.symbol] [,KEEP]

Specifies the linkname of the file definition.

Default: a link name of spaces is assumed.

Specifies that any private devices associated with the file are
not to be returned to the system; that is, they are available
for reuse by this task.

If there is m.ore than one active file on the private volume being released, the
device will not be actually released until a RELEASE command is issued for
every file on that volume.

The RELEASE command is ignored if the specified file definition is in hold
status (reference HOLD command). The release processing will be activated,
however, when the corresponding DROP command is issued.

3-121

The RELEASE command causes all tape volumes contained in the Task File
Table to be logically removed from the system.

When the macro form is used, the return codes are set in register 15. 010
indicates successful ;;ompletion of the operation. The codes for unsuccessful
completion are spedfied in the IDEMS macro. The use of this macro is
described in "File Management Error Message Concepts and Code Structure'"
in the appendices.

RESET Command

This command requ{~sts the resetting of the named file.

Name

filename

TIME=

Operation Operand

RESET filename

[,TIME=(date [,time])]

[,COUNT=

Specifies the fully qualified filename of the file to be rese1t.
This file must have previously requested reset services with a
RESET parameter in the FRS command (see VMOS Systern
Management Manual).

date

The date to which the file will be reset, in the form MMDD,
wher(~

MM:= the month of the year, 01-12
DD = the day of the month, 01-31

time

The time of the above date, in the form HHMM, where

HH = the hour of the day, 00-23 (01=1 A.M.)
MM :: the minute of the hour, 00-59

Notei

1. There is no default for the entire TIME parameter. If
omitted, the COUNT parameter is used.

2. The '(date,time)' unit corresponds to the date/time stamp
of th~ earliest record of interest. This need not be a date/time
when the file was actually OPEN. It is interpreted to mean
the date/time stamp of the first OPEN prior to '(date,time)"
if the file was then OPEN.

3-122

COUNT=

Specifies the number of OPENs back to which the file is to
be reset.

Default: 1, (that is, the file will be reset 1 OPEN.)

Note that if both COUNT and TIME are specified, the first
one satisfied will complete the request. The requested action
will be delayed until the system controller authorizes it.

Reset requests via the RESET command lock out any use of
the file until the request is satisfied. Since this command (like
the RECON command) can only be issued by the owner of
the file, this ensures not only the integrity of the data in his
file, but the integrity of reports generated by others from his
data.

A RESET command overrides any previously unsatisfied
RESET command. A RESET command with COUNT=O will
effectively delete any outstanding reset request and will
immediately unlock the file unless there are Recons
outstanding and the file is in allow status.

The number of OPENs saved by FRS is actually one greater
than the count specified in the FRS command. The user is
cautioned that OPEN INPUT and REVERSE do not count
for FRS purposes; they are not logged. Multiple OPENs
(using the ISAM Shared Update facility) count as one OPEN
for FRS RESET processing.

3-123

SYSFILE Command

SYSFILE allows the user to reassign the SYSIPT, SYSDTA, or the TASKLIB
files to another file.

Name

filename

(SYSCMD)

(mn)

(CARD)

(PRIMARY)

TASKLIB

Operation

SYSFILE

SYSFILE

Operand

I SYSIPT I { filename }
SYSDTA = (SYSCMD)

(mn)
(CARD)
(PRIMARY)

TASKLIB = I filename I
(NO)

Identifies the name of the cataloged file that is to replace the
named file. (The command is invalid if the filename has not
been cataloged.)

For SYSIPT and SYSDTA filename or anyone of the
followi:1g operands is permitted.

Change~ the SYSIPT or SYSDTA file to the same file to
which SYSCMD is currently assigned.

Specifks the 2-byte installation mnemonic of the device to
which 5,YSIPT or SYSDTA is to be assigned.

Indicates that SYSIPT or SYSDT A is to be assigned to the
card reader.

Indicatt::s that SYSIPT or SYSDT A is to be changed to its
primary assignment.

Refers to the name of a program library file to be used by the
Linking Loader or Linkage Editor. A (NO) option removes
the pre\rious task library filename.

3-124

Examples

I.NAME SYSFILE SYSIPTaAFILE849.MASTIN

ISYSFILE SYSIPT=(SYSCMD)

ISYSFILE SYSIPTa(Rl)

ISYSFI LIE SYSDTAa(PRIMARY)

CD The user has specified that the SYSIPT is to be replaced by the cataloged
file whose filename is AFILE849 .MASTIN.

@ The user requests that the SYSIPT be assigned to the same file to which
SYSCMD is currently assigned.

® The user requests that the SYSIPT device be made the 'device whose
installation mnemonic is R 1.

@) The user requests that the SYSDTA file be changed to its primary
assignment.

Note: If the parentheses are not present when SYSCMD,
PRIMAR Y, or CARD are specified, the system will consider
them as file names.

3-125

ACCESS METHOD DEFINITION MACROS SUMMARIES

Access method macr'JS constitute the VMOS instruction facilities which
enable the VMOS user to define the format of his data. The following
summaries classify these macros by access method. The programmer is
cautioned that althou;gh several macros have the same name, their use, with
the exception of OPEN, is unique to a particular access method; that is, each
is restricted to the aCCt~SS method with which it is identified.

Basic Tape Access Method (BTAM) Macros

Macro

BTAM

FCB

OPEN

Functi'Jn

Allow the user to request BT AM action to read, write, check,
wait control, or position tape files.

Define BT AM File Control Block.

Ensure that the BTAM access routine is loaded and that the
addres~: relations are completed. Refer to "VMOS General
Service File Management Macros" in the appendices for the
description of this macro.

Evanescent Access Method (EAM) Ma cros

Macro

EAM

FCB

Function

Allow the user to request EAM action to open, read, write,
check, erase, close, or wait temporary files.

Define EAM file control block.

Indexed Sequential Access Method (lSAM) Macros

Macro

ELIM

FCB

GET

GETFL

GETKY

GETR

INSRT

OPEN

Function

Eliminate a record from a file.

Define ISAM file control block.

Retrieye the next logical record in the file in ascending
sequential order by record key.

Retrieye the next logical record satisfying the flag criteria.

Retrieye a logical record having a specified record key.

Retrieye the next logical record in a file in descending
sequential order by record key.

Place a new record in a file in the position determined by its
record key.

Ensure that the ISAM access routine is loaded and that the
addres~, relations are completed. Refer to "VMOS General
Service File Management Macros" in the appendices for the
description of this macro.

3-126

Macro

PUT

PUTX

SETL

STORE

Function

Add a logical record to a file. PUT is normally used for initial
file creation by recording logical records in ascending
sequential order by record key.

Replace a record retrieved by GET, GETFL, GETKY, or
GETR.

Specify the location in the file from which subsequent
processing is to take place: the beginning of the file, the end
of the file, or at the location of a record with a designated
key.

Place a record in a file at the position determined by the
record's record key.

Primitive Access Method (PAM) Macros

Macro

FCB

OPEN

Function

Define a PAM file control block.

Ensure that the PAM access routine is loaded and that the
address relations are completed. Refer to "VMOS General
Service File Management Macros" in the appendices for the
description of this macro.

Sequential Access Method (SAM) Macros

Macro

FCB

FEOV

GET

OPEN

PUT

PUTX

RELSE

SETL

Function

Define SAM file control block.

Advance the system to the next (tape) volume of a file before
the end of the current volume is reached.

Retrieve the next record from a file in physically sequential
order.

Ensure that the SAM access routine is loaded and that the
address relations are completed. Refer to "VMOS General
Service File Management Macros" in the appendices for the
description of this macro.

Place a logical record on the file.

Return an updated logical record to the file (direct-access
volumes only).

Cause any remaining logical records in a buffer to be
bypassed for input. For output, the next logical record
created is written as the first record of a new buffer.

Specify the position from which subsequent file processing is
to take place.

3·,127

ACCESS METHOD DEFINITION :MACRO DESCRIPTIONS

The following material describes each of the access method definition
macros. The des(~riptions include instruction format, programming
considerations, and, where illustrative information is necessary, examples of
the use of the instruction. The macros are presented in alphabetical order by
access method.

BT AM Action Macro

BTAM - Read, Write, Check, Wait, Control, or Position(s).

All user requests for BT AM action are made via this macro.

Name

[symbol]

fcname-relexp

operation

Operation

BTAM

Operand

f cbname-relex p
[,operation-RDIRDWTIREVIREVWTI
WRTIWRTWTIWTICHKIFSFIBSFIWTMI
RUNIERGIFSRIBSRIREW]
[,LOC= 1I2lrelexp] [,LEN=absexp]

Spec:Lfies the address of the FCB associated with the file.

Spec:Jies the tape operation to be performed:

RD

Forward reading of a magnetic tape.

RD\\tT

For~ard reading of a magnetic tape and wait until the
openltion is completed before returning control to the
program.

REV

Reverse reading of a magnetic tape.

REVNT

Reve:~se reading of a magnetic tape and wait until the
operation is completed before returning control to the
program.

WRT

Writing of a magnetic tape.

3-128

WRTWT

Writing of a nlagnetic tape and wait until the operation is
completed before returning control to the program.

WT

Wait for the previous I/O operation to terminate. Control is
not returned to the user program until the operation has been
completed and any necessary error-recovery functions have
been performed.

CHK

Check for terrnination of previous I/O. If the I/O operation
has not terminated, control is passed to the address specified
in LOC. Otherwise, the operation is equivalent to WT.

FSF

Unwind the tape one tape mark.

BSF

Rewind the tape one tape mark.

WTM

Write a tape mark.

RUN

Rewind and unload a tape.

ERG

Cause an erase gap to be executed.

FSR

Unwind the tape one block.

BSR

Rewind the tape one block.

REW

Rewind the tape to BT.

Default: RDWT

Note: The Operations FSF, BSF, WTM, RUN, ERG, FSR,
BSR, and REW always return the 5 status bytes in the FCB.
The other operations only return these bytes if control is
transferred to the ERRADDR EXLST address.

3-129

LOC=

LEN=

Programming Notes

Typically specifies the area to be read or written.

Specifies 10AREAI address in the FCB.

2

Specifies IOAREA2 address in the FCB.

relexp:

Specifies a designated I/O area other than those given in the
FCB.

If the operation is CHK, the LOC parameter must be in the
form LOC= relexp. Control is passed to the location specified
in LOC if the "checked" operation has not yet terminated.

Default: The 10AREA address in the FCB is chosen as
follows: If the last address utilized was 10AREAI, then
IOAREA2 is used, and vice versa. Of course, if the IOAREA2
area does not exist, 10AREAI is used each time. The systelTI
maintains a field in the FCB which specifies the last 10AREA
used.

Specifies the number of bytes to be transmitted. If the
paralneter is omitted, the system obtains the count from the
BLKSIZE parameter for format-F records, and from the
regis~:er specified in RECSIZE for format-U records.

I. Misuse of FSF or FSR can cause the tape to run away.

2. For any unsucce~.sful entrance to BT AM, control will be returned to the
routine specified in the EXIT parameter of the FCB, with a code stored in
the FCB. The hexadecimal codes are listed in "File Management Error
Message Concepts and Code Structure" of the appendices (refer to the
IDEMS macro).

Note that if the user specifies format-F records, but reads records not of the
specified length, control is transferred to the ERRADDR EXLST address. l[f
the actual record exceeds the specified size, an abnormal termination bit :is
set in Executive flag byte and the sense byte "data greater than count" is set.
If the actual record is less than the specified size, an abnormal termination :is
set in the Executive flag byte; however, no sense byte or residual count is
returned.

3-130

3. It is not necessary for the user to issue waits explicitly. BTAM will
automatically do a wait before any read or write. If however, an error occurs
in this wait, the return code will be OC97 instead of OC98 and the current
read or write will not be executed.

4. Note that BTAM does not take an EOFADDR EXLST (end of file) exit. If
a tape mark is read by RD, RDWT, REV, or REVWT, control is transferred
to the ERRADDR EXLST· address. Similarly, control is transferred to
ERRADDR if one attempts to read reverse a tape already at BT.

5. If REV or REVWT is the operation mode, the first byte into which data is
read is the address specified in LOC (or pointed to by LOC) + LEN -1.

6. The SAJ\;I macro FEOV can be issued for the file opened by BTAM.

7. In BTMI, record size may not exceed 4096 bytes.

8. In the processing of multiple tape volumes, no more than two tape units
may be used.

FCB Macro Format, BT MI

Define An FCB For BTAM (0)

The following format indicates the parameter which may be supplied in the
FCB macro instruction, when BTAM is being used. These parameters are
described in detail in "VMOS General Service File Management Macros" of
the appendices.

Name Operation

[symbol] FCB

Operand

FCBTYPE= BT AM
[,LINK =1inkname-symbol]
[,FILE=filename-name]
[,P ASS=password-absexp]
[,RETPD=retention period-absexp]
[,RECFORM=(FIUI,Y,AIMIN)FIUIY]
[,RECSIZE=absexp]
[,BLKSIZE=absexp]
[,IOAREAl =NOlrelexp]
[,IOAREA2=NOlrelexp]
[,EXIT=(relexp)Irelexp]
[,LABEL=STDINSTD]
[,OPEN=INPUTIREVERSEIOUTPUTIINOUT
SINOUTIOUTIN]

3-131

EAM Macro

EAM Linkage

MFCB

There is only one SVC with which. to invoke EAM. The specific function to
be performed is dei1ned by the operation code in the Miniature File Control
Block (MFCB). The interface macro, which is of type R, is:

Name Operation Operand

[symbol] EMf I MFCB-address-addrx\
(1)

Specifies the addre~;s of the MFCB (miniature file control block). This table,
which is 20 bytes in length and must begin on a word boundary, is the user's
medium of commutlication with EAM. The table format is listed in table 3-1
and described below.

TABLE 3-1. MFCB TJ\BLE DEFINITION

Field Number Fielc Description

1 Operation Code
2 Opti,)n Code
3 Logkal Block Number
4 Filerame
5 Erro~' Byte
6 Status Bytes

Unu~,ed

7 Address of I/O Area 1
Unw,ed

8 Address of I/O Area 2

Field Size (in Bytes)

1
1
2
2
1
5
1
3
1
3

Total 20

Field Descriptions of the EAM MFCB Table

Operation Code

This field specifies the operation or function which EAM is to perfonn.
Table 3-2 lists the OP codes and the fields of the MFCB which are read (R),
set (S), or ignored (I). Before the functions of the operation code are
described, the remalning fields are defined.

3-132

TABLE 3-2. MFCB OPERATION CODES VERSUS FIELDS USED

Operation
OlPeration Code in Fields used from MFCB
Code Hexadecimal OPTION BLOCK ERROR NAME STATUS AREAl AREA2

OPEN 00 R 1* S 5* I R R
REOPEN 01 R S S R* I R R
READ 02 R R S R S I I
WRITE 03 R R S R S I I
CHECK 04 I I S R S I I
ERASE 05 I I S R I I I
CLOSE 06 I S S R S I I
rsvd 07
CHECKW 08 S R S
rsvd 09

*Note exceptions for the object module file described under programming notes.

Functions of EAM Operation Codes

OPEN (00)

REOPEN (01)

READ (02)

Example

Specifies that a new file is being defined. EAM assigns a filename (1 through
1023), creates certain entries in its own tables and retrieves and validates the
I/O addresses and the option byte. Note the exceptions for object module
files described in the programming notes.

Specifies that an existing, closed, file is to be opened. The I/O address and
the option byte are reprocessed at this time. Note that the logical block
number field can be set to point at either the beginning or the end of the
file.

Specifies that a block, as designated by the logical block number, is to be
read. The block number may be 0 to n, where n is the last block of the file.
Note that files may be read randomly. If the block number is 0, the next
block of the file is read.

Assume that the following read commands with the indicated block number
are specified:

READ 1
READ 5
READ 0
READ 0
READ 2
READ O.

BLOCKS 1, 5, 6, 7, 2, 3 would be read.

3-133

WRITE (03)

Examples

Cl-lECK (04)

Specifies that a block, as designated by the logical block number, is to be
written. The block number may be O. to n+ 1, where n is the last block of the
file. Note that existing blocks may be replaced, and new blocks can be added
to the end of the HIe. If the block number is 0, a block is added to the end
of the file.

Example I

Action

WRITE 1 Create block 1
WRITE 2 Create block 2
WRITE 3 Create block 3
WRITE 2 Replace block 2
WRITE 0 Create block 4
WRITE 0 Create block 5
WRITE 5 Replace block 5

Example 2

WRITE 1 Create block 1
WRITE 3 Error, EAM must create (add) new blocks

without gaps or holes.

Example 3

WRITE 0 Creates a file of n blocks;

WRITEn 0 Note that the user need not bother with block
numbers to create a sequential file.

Example 4

WRITE 1 Create block 1
WRITE 2 Create block 2
WRITE 3 Create block 3
READ 1 Read block 1
WRITE 0 Create block 4
READ 0 Error, end of file.

If the last operation was a READ or a WRITE, the status bytes from the
CCB are placed in the status area. If the I/O which is being checked has not
terminated, control is returned to the user and register 15 is set to
(00000008)16. If the I/O has terminated, this operation is identical with
CHECKW.

3-134

CHECKW(08)

ERASE (05)

CLOSE(06)

Option Code

If the previous call was a READ or WRITE, the status bytes are stored in the
caller's MFCB. If the I/O which is being CHECKWed has not terminated, the
caller is pended until the I/O is complete. (See programming notes.)

The file is erased (destroyed) whether it is open or not.

The file is closed, but it is not erased (destroyed). The highest block number
of the file is placed in the Logical Block Number field in the MFCB.

2° .- this bit is inspected during READ and WRITE operations.

2° = a specifies that I/O area 1 is to be used.

2° := 1 specifies that I/O area 2 is to be used.

21 - this bit is inspected during REOPEN operation.

21 = 1 specifies that the value (0000) is to be placed in the logical block
number field. EAM sets its internal block pointer to the beginning of the file.

21 = a specifies that the hi~hest block number of the file is to be placed in
the logical block number field. EAM sets its internal block pointer to the end
of the file.

22 .- 23 -- reserved.

24- this bit is inspected during the OPEN and REOPEN operations.

24 = 1 specifies that the task's object module file is being opened.

25
- this bit is inspected during OPEN and REOPEN operations issued by

privileged programs.

26
.- this bit is inspected during OPEN and REOPEN operations issued by

privileged programs.

Logical Block Number

Specifies the 2-byte binary number of the block to be processed when a
READ or WRITE op-code is invoked. The block number can range from a to
65,535. A block is the unit of information read or written; each block must
be 2048 bytes in size. Accordingly, the user regards an EAM file as one or
more blocks; if the block has a substructure, (for example, format
V-records), this structure is independent of and unknown to EAM.

3-135

File name

Error Byte

Specifies the 2-byte ::ilename, assigned (and placed in this field) by EAM at
OPEN time. A task can have any number of EAM files. The total number of
EAM files in the system (that is, for all tasks) cannot exceed 1023.

Specifies why the operation is unsuccessful. If an operation is successful,
register 15 is set to (00 00 00 00)16 and the error byte field is not set. If an
operation is not succl~ssful, register 15 is set to (00 00 00 04)1 6 and the field
stipula tes the error as follows:

Illegal operation

1. Op~ration code is invalid.

2. File is not open (READ, WRITE, CLOSE).

3. MFCB does not begin on word boundary.

Illegal filename

1. Fill~name = 0 (excludes OMF file) or filename greater than
or equal to I 024 (excludes OPEN).

2. Fih~ has not been created.

3. Fik does not belong to the caller.

Illega:. block number

1. Re,:td is attempted to an empty file and logical block
number is not zero (READ).

2. Update read or write is attempted and logical block
number exceeds the current highest block number of the file
(READ, WRITE).

Illegal I/O address

EAM space is not available.

1. No space has been allocated to EAM by the systenl
controller (OPEN operation only).

2. The number of existing EAM files has already reached the
limit Df 1023 (OPEN).

3. Updating of the Saved File Index (SF!) is not successful
for save option user (CLOSE, ERASE). Note that the bask
function of CLOSE/ERASE has been completed.

Nonprivileged program attempts to process a privileged file:.

3-136

Status Area

27

End of file

1. An attem.pt has been made to read a nonexistent block.
(Only when logical block number = 0 in MFCB).

2. Master EAM file - (SYSTFL) cannot be opened (OPEN).

I/O operation is not successful (READ, WRITE).

1. Hardware I/O error. The termination bytes in the status
area should be inspected to determine the cause of I/O error
which occurred on the previous READ or WRITE.

2. Software I/O error.

3. I/O initiation error, the last two bytes of the five status
bytes contain PAM initiation error code, while the first three
bytes are set to 'FF'.

Contains five bytes from the CCB which EAM used to process the file. These
bytes are CCB + 31 - 35, the Standard Device Byte, three Sense Bytes, and
the Executive Flag Byte. (Refer to "Device Management Control Tables" in
the appendices.)

The field is set only if (1) the last operation code was a READ or WRITE,
(2) the current operation code is valid, (3) the current operation code is
READ, \VRITE, CHECK, CHECKW, or CLOSE, and (4) unsuccessful I/O
operation.

Address of I/O Area No.1

Specifies the virtual address of the first position of this I/O area. For READ
operations, a block is read into this area, and for WRITE operations, a block
is written from this area. EAM requires that the specified address and the
specified address plus 2047 be in the same page.

Address of I/O Area No.2

The description is the same as that of area No.1. The two areas allow for
buffering or file processing simultaneity.

Programming Notes

Note: These I/O addresses are retrieved and validated at
OPEN and REOPEN time only. The I/O addresses may be the
same. Thus, the program does not need to have two I/O
areas. This, of course, prohibits I/O overlap (buffering).

When EAM receives a READ or WRITE operation, the user is given control
as soon as the operation is accepted, which clearly implies that the I/O
operation has not yet been completed.

Typically, a user would issue a READ followed (at the appropriate time) by
a CHECKW. This guarantees that the I/O operation was completed. If, at the
time CHECKW is issued, the last operation is not complete, the task is
pended (waited). CHECKW also sets the status area in the MFCB.

3-137

This conventional processing works in EAM. A gross process chart for
efficient reading of an EAM file is sketched.

SET 1=1
OPEN
READ BLOCK I
CHECKW

(Sort of preread)

STEP 1
READ BLOCK I
PROCESS BLOCK 1-:.
CHECKW (Overlap)
RETURN (to STEP I)

In EAM, CHECKW i~, not required. It is desirable to avoid CHECKW because
it requires an additional SVC. The CHECKW is obviated because READ is in
reality implemented as a CHECKW and READ; similarly, WRITE is in reality
CHECKW and WRITE. Note that with this type of implementation for
READ and WRITE, if an I/O error occurs (2 7 =1 in the Error byte), it applies.
to the previous I/O operation; the specified I/O operation is not performed.

Thus, the above process chart could be sketched as:

SET 1=1
OPEN
READ BLOCK I

STEP I
READ BLOCK I
PROCESS BLOCK 1- ...
RETURN (to STEP I)

If the task's object ITlodule file is OPENed (24 =1 in option byte), one of the
following actions occurs:

1. If the object module file does not exist, then one is created. Its name
(2-byte binary number) is placed in the MFCB; the logical block number
field in the MFCB is set to binary zeros.

2. If the object module file exists, its name is placed in the MFCB; the
highest block numbe:'~ of the file is placed in the Logical Block Number field
in the MFCB.

If the task's object Inodule file is REOPENed, then one of the following
actions occurs:

1. If the object module file does not exist, the command is aborted; the 21
bit in the error byte Held of the MFCB is set.

2. If the object module file exists, its name is placed in the MFCB; the
highest block number of the file is placed in the logical block field of the
MFCB.

When a file is created (that is, first OPENed) the leftmost four bits in the
option byte, the I/O area No.1 address and I/O area No.2 address specified
in the MFCB are sav,~d in the system memory. To change these fields, it is.
necessary to CLOSE and REOPEN the file. Changing them in the program's.
MFCB is not sufficien t.

3-138

ISAM ACTION MACROS

GET - Get a Record (R) -- Macro

The GET Inacro instruction retrieves the next sequential record of a file.

Name

[symbol]

fcb

area

LOCK

NOLOCK

Programming Notes

Operation

GET

Operand

I ~~~ -addrxl ~ I (~~a - addrx lJ

['I~~~cKIJ

Specifies the address of the FCB associated with,the file.

Specifies the address of the area into which the record is
moved.

Indicates that the data block containing this record is to be
locked when the record has been retrieved.

Indicates that the data block containing this record is not to
be locked following execution of this macro.

The area parameter is ignored if the IOREG parameter was specified in the
FCB. If a record beyond the end of the file is requested, the user is given
control at the EOFADDR (see EXLST macro). If the file contains duplicate
keys, they will be retrieved in first-in, first-out (FIFO) sequence.

3-139

GETR -- Get a Record Reverse (R) - Macro

The GETR macro instruction retrieves the next record in the file in reverse
order (that is, toward the beginning of the file).

Name

[symbol]

fcb

area

LOCK

NOLOCK

Programming Notes

Operation Operand

GETR w~-addrx I [' I ~~a-addrx lJ
[1~g<£~KIJ

Specifies the address of the FCB associated with the file
being processed.

Specifies the address of the area into which the record is
moved.

Indk~ates that the data block containing this record is to be
locked when the record has been retrieved.

Indi<;ates that the data block containing this record is not to
be locked following execution of this macro.

The area parameter is ignored if the IOREG parameter was specified in the
FCB. If a record beyond the beginning of the file is requested, the user is
given control at the EOFADDR address (see EXLST macro).

The program may switch from GET to GETR and vice versa at any tinlle.
There is no impliccltion that it is necessary to position at either end of the
file before changing direction. If a record with a key Kn is obtained by using
a GET macro, and if the next macro issued is a GETR, then a record with a
key of Kn-l would be obtained where the following relationship holds:

Kn-l ~ Kn

If the file contains duplicate keys, then the duplicates will be retrieved in a
sequence of "last in first out" (LIFO) when the GETR macro is issued.

3-140

GETKY - Get a Record with Specified Key (R) - Macro

The GETKY macro instruction randomly retrieves a record with the
specified key. Prior to execution of the macro instruction, the key of the
record must be stored at the address specified in the KEY ARG operand of
the FCB.

Name

[symbol]

feb

area

LOCK

NOLOCK

~rogramming Notes

Operation Operand

GETKY m~-addrx I [, I ~~a - addrx I]
[lt~~KIJ

Specifies the address of the FCB associated with the file
being processed.

Specifies the address of the user's work area into which the
record is moved.

Indicates that the data block containing this record is to be
locked when the record has been retrieved.

Indicates that the data block containing this record is not to
be locked following execution of this macro.

Default: locate mode is assumed. This macro instruction
places the address of the record in the register specified by
the 10 REG operand.

The area parameter is ignored if the IOREG parameter was specified in the
FCB. If a record with the specified key is not found within the file, the user
is given control at the NOFIND address (see EXLST macro).

After a GETKY macro is issued, the position indicator for GET and GETR
are set up as if a GET macro had been issued to obtain the record. If the
GETKY is unsuccessful, then a subsequent GET or GETR will obtain a
record whose key is higher or lower, respectively, than the "not found" key.
If duplicate keys exist in a file, then a GETKY macro will retrieve the record
that was first placed in the fih.~.

3-141

PUT - Write a Record (R) - Macrc

The PUT macro in~)truction presents a logical record to the system to be
included in the outrut file.

Name

[symbol]

fcb

area

Programming Notes

Operation Operand

PUT

Specifies the address of the FCB associated with the file
being processed.

Specifies the address of the logical record to be moved into
the output buffer.

The area parameter is ignored if the IOREG parameter (that is, the loca1te
mode) was specified in the FCB. The PUT action macro may only be used to
add records to the end of a file. If a file is opened INOUT or OUTIN and the
last action directed to the file was not a PUT, then PUT performs a SETL to
the end of the file b,~fore putting the record.

Issuing a PUT in locate mode results in two actions: (I) the previous record
built in the buffer is validated and actually added to the file, and (2) the
address at which th;~ next record is to be built is placed in IOREG. Since a
valid IOREG value must be obtained before a record can be constructed, a
dummy PUT must be issued prior to building the first record in the file.

Also, a valid record must be built after the last PUT prior to closing the file.
Otherwise a CLOSE error exit will occur or an erroneous record will be
appended to the file. For format-V records the value of the FCB field
D 1 RECS I must equal or exceed the size of the records PUT to the file. This
can be accomplished either (I) by specifying the FCB parameter RECSIZE
greater than or equal to the size of the largest record to be PUT or (2) by
placing in the FCB field D 1 RECS 1 before each PUT, the size of the next
record to be built. (Note that if RECSIZE is unspecified it defaults to the
value of BLKSIZE.)

This macro verifies that the key of any record transmitted is larger than or
equal to the largest key currently in the file. If the monotonic sequence of
keys is broken, the user is given control at the SEQCHK or DUPEKY address
(see EXLST macro).

3-142

PUTX - Replace a Record in the File (R) - Macro

The PUTX macro instruction returns a logical record to the file. The record
replaced is the last one retrieved by a GET, GETR, GETFL, or GETKY
macro instruction.

Name

[symbol]

fcb

area

Programming Notes

Operation Operand

PUTX I ~ ~~-addrx I ~ I ~)a-addrx I]

Specifies the address of the FCB associated with the file.

Specifies the address of the logical record to be moved into
the output buffer.

The recordl key cannot be changed during the update process. If the key is
changed, the user is given control at the SEQCHK address (see EXLST
macro). If during an update process (in Locate mode) the program
inadvertently modifies other portions of the data buffer, the results of
subsequent processing will be unpredictable. If the data buffer is altered so
that it can no longer be processed by ISAM, the user is given control at the
USERERR address (see EXLST macro).

The length of variable format records may be modified only if the user is
operating in Move mode.

No other ISAM action macro may be issued for the file between the PUTX
and the relevant GET, GETKY, GETFL, or GETR macro.

If a JPUTX is issued in Move Mode to a record within a sequence of records
having duplicate keys, the position of the record within the sequence may be
altered if the modification includes an increase to the original size.

3-143

lNSRT - Insert a New Record (R) -- Macro

The INSRT macro instruction obtains a logical record from the user's area
and places it in the file in the position determined by the value of its record
key.

Name

[symbol]

fcb

area

Operation Operand

INSRT
I
fCb;.addrxll,area-addrx I
(1) (0)

Speci;~ies the address of the FeB associated with the file.

Speci5es the address of the logical record to be stored in the
file.

Progralnming Notes

- -

If a record with the same key value already exists in the file, the INSRT
macro instruction will not record the new record (regardless of the DUPEKY
specification in the FeB). The user is given control at the DUPEKY address
(see EXLST macro).

STORE - Store a Record in the File (R) - Macro

The STORE macro instruction obtains a logical record from the user's area
and places it in the file in the position determined by the value of its key.

Name

[symbol]

fcb

area

Prograrnming Notes

Operation Operand

STORE I fcb-addrx II,area-addrxl
(1) (0)

Specifies the address of the FeB associated with the file.

Specifies the address of the logical record to be stored in the
file.

STORE functions in the same manner as the INSRT macro instruction. If,
however, a record is found in the file with the same record key, the new
record is stored in pIa ce of the old. No continegency exit to the user is made.
If DUPEKY=YES is specified in the FeB, duplicate keys are allowed. The
new record is placed in the file immediately after any other records with the
same key.

3-144

lELIM - Eliminate a Record in the File (R) - Macro

The ELIM macro eliminates records from a file.

Name

[symbol]

fcb

KEY

I>rogramming Notes

Operation Operand

ELIM·

Specifies the address of the FCB associated with the file.

Specifies that the key of the record to be eliminated will be
found at the address specified by the KEY ARG operand of
the FCB. If this parameter is not specified, the last record
retrieved by a GET, GETKY, GETFL, or GETR macro is
eliminated. If 0 is written, the KEY code is placed into the
register as follows:

Key Not Specified Address of FCB

Key Address of Key

Thus, if the register form is specified, and the programmer
does not wish to point to a key, he places the address of his
FCB in Register O. If he does wish to specify a key, he places
the address of this key in Register O.

No other ISAM action macro instruction can be executed between the
relevant GET, GETR, GETFL, or GETKY macro instruction and the ELIM
(NO KEY) action macro.

If the KEY parameter is specified and a record with the specified key cannot
be found, control is returned to the user at the NOFIND address (see EXLST
macro).

If duplicate keys exist in the file and if the KEY parameter is specified, the
record which was first placed into the file is eliminated. Although the ELIM
(NO KEY) must normally be preceded by a GET, GETR, GETFL, or
GETKY, it may be executed for the first record in the file if it follows an
OPEN and the state is INOUT.

3-145

SETL - Specify Position of Sequential Processing (R) - Macro

The SETL macro instruction enables positioning to the beginning or end of a
file or to any other location determined by a specified key.

Name

[symbol]

feb

position

Programnling Notes

Operation Operand

SETL m~-addrx I ~ I f3;ition-COde I]

Specifies the address of the FCB associated with the file.

B

Specifies the beginning of the file.

E

Specifies the end of the file.

KEY

Specifies that positioning should be to the key specified
through the KEY ARG parameter of the FCB. If 0 is written,
the position code is placed into the register as follows:

B
E
KEY

Default: B.

o
1
Address of KEYARG field in the FCB

If the KEY positio:l code is used and the specified key is nonexistent,
positioning will still occur, and no error will result.

If duplicate keys exist within the file, then the position indicators will be set
so that a GET macro will obtain the record which was first placed into the
file.

The operation SETL B to a null file causes control to be sent to the
EOF ADDR EXLST address.

3-146

GETFL - Get Next Record by Flag - Macro

The GETFL macro-instruction is used to get the next record (in forward or
reverse order) within specified limits whose flags satisfy the condition
specified by the macro.

Name

[symbol]

fcb

area

VALTEST=

Operation

GETFL

Operand

U ~~-addrx I ~ I (~)a-addrx I]
[,VALTEST=(GTIGEIEQINEILEILT)]
[,LOGTEST=(ANYIALL)]
[,LIMIT=(KEY ,END)] [,REVERSE=YES]

~lt~~KlJ -

Specifies the address of the FeB associated with the file
being processed.

Specifies the address of the area into which the record is
moved.

If this parameter is specified, only those records whose value
flag is in the given relationship to the information stored in
the value flag portion of the area pointed to by KEY ARG
will be retrieved.

The meanings of the relationship symbols shown in
parentheses are:

GT Grea ter than

GE Greater than or equal

EQ Equal

NE Not equal

LE Less than or equal

LT Less than

3-·147

LOGTEST=

LIMIT=

REVERSE=

LOCK

NOLOCK

Programming Notes

If thi:) parameter is specified, only those records whose
10gicaJ flag matches all or any of the bits of the mask stored
in the logical flag portion of the area pointed to by KEY ARG
will be retrieved. ·If LOGTEST=ALL, a record is retrieved
when all of the bits set in the mask have corresponding bits.
set in the record log field, though the record log field may
also hIve other bits set in addition to those indicated by the
mask.

The scan for the next record starts at the current position of
the fn~ (as established by SETL or GETKY, for example) and
proceeds to either the last record whose key is less than the
key slored in the key portion of the area pointed to by
KEY ARG or the end of the file depending on whether KEY
or END is specified. END is the default.

If this parameter is specified the scan will occur in the reverse
order.

Indicates that the data block containing this record is to be
locked when the record has been retrieved.

Indicates that the data block containing this record is not to
be locked following execution of this macro.

The area parameter i:; ignored if the IOREG parameter was specified in the
FCB, locate mode is c.ssumed.

[f a record is not fot:nd whose flag matches the request within the specified
limits, the NOFIND address (see EXLST macro) is given control.

If LIMIT is specified or defaulted to END, file scanning proceeds to the end
of the file if processing in a forward mode or to the beginning if in a reverse
mode. If file search conditions are not satisfied, the EOF will be taken.

If VAL TEST and LOGTEST are both specified, then both conditions must:
be met for the record to be retrieved.

3-148

If neither VAL TEST nor LOGTEST are specified, then all records are
retrieved until the limit occurs (at which a NOFIND exit is taken, if a Key
limit is specified, or an EOF exit if LIMIT=END). A GETFL macro with
KEY ARG pointing to a logic flag mask of all binary zeros will result in a
user-error exit. If processing is in the (forward, reverse) direction,
LIMIT=KEY and the Key portion of the area pointed to by KEY ARG is
(less, greater) than the key to which the file is currently positioned, then the
USERERR address of the EXLST macro will be given control.

Any attenllpt to direct the GETFL macro to a file created without flags, and
any attemlpt to output a record to a flagged file which is not large enough to
contain a full index (key, value flag, and logical flag) will result in the
USERERR address getting control.

For flagged files, KEYARG must point to a user area large enough to contain
the entire index area (key, value flag, and logical flag).

OSTAT - Receive Infornlation Regarding Users Who Have Opened a Given File - Macro

The OSTAT macro provides the user with information about the users who
have opened a given file. The information provided will be the total number
of users who have the file opened currently, who have the file opened as an
ISAM file with each possible OPEN/SHARUPD combination, and who have
opened the file with some other access method for input or for updating.

Name

[symbol]

fcb

I area

Programming Notes

Operation Operands

OSTAT I ~~~-addrx I [I (~~a-addrx I]

Specifies the address of the FCB associated with the file for
which the OPEN status is to be obtained.

Specifies the area into which the information is to be placed.

Default: The macro expansion will contain a DC (Define
Constant) for the area.

1. Upon completion of the macro, register 1 will contain the address of the
FCB and register 0 will contain the address of the area into which the
information was placed. The low-order byte of register 15 will contain zero
or an error code.

2. The user must have opened the file before issuing the OSTAT macro. The
user's OlPEN/SHARUPD combination is included in the information
obtained.

3. The area into which the information is placed is described by the DIOST
DSECT, which can be obtained by expanding the IDOST macro. (See "File
Management DSECTS" in the appendices.)

3-149

RETRY -- Reposition a Task in a File - Macro
. -

When a task receives control at the PGLOCK exit (of the EXLST macro), its
file pointers are invalid, unless the macro causing PGLOCK to be taken was a
PUTX or an ELIM (no KEY), that is, the task is no longer positioned in the
file. Certain ISAM macros (GET, GETR, and GETFL) require that the task
be positioned before issuing the macro. The RETRY macro is provided to
reposition the task in the file and, optionally, to reissue the ISAM macro
which caused control to be given to the PGLOCK exit.

Name

[symbol]

FAIL

ACTION

COUNT

Programming Notes

Operation

RETEY

Operand

FAIL=addrx [ACTION={~~~RY}J
[,COUNT=integer]

addrx specifies the location at which control is to be returned
to the user if RETRY fails.

Specifies the action to be taken by RETRY.

POS

Indic~tes that the task is to be repositioned in the file.

RETEY

Indic~tes that the task is to be repositioned in the file and the
ISAM macro is to be reissued.

Default: RETRY

Integer specifies the number of times the
positioning/reissuing is to be tried before passing control to
the FAIL address.

Default: 1

1. This macro should only be used at the PGLOCK exit. If it is used
elsewhere, a USERERR exit will be taken.

2. COUNT must be a decimal integer greater than 0 and less than 256.

3. If ACTION=POS :.S specified and the positioning is successful, control is
returned to the task at the instruction following the RETRY macro. If
ACTION=RETRY a:ld the positioning/reissuing is successful, control is
returned to the task at the instruction following the ISAM macro which was
reissued. If either ~.ction fails (after being retried the number of times
specified by COUNT), control is given to the task at the location specified
by the FAIL_parameter.

3-150

4. The task may use any register except general register 1 at the PGLOCK
exit. When control is returned to the task at the instruction following the
action macro as a result of RETRY reissuing the action macro, the task's
registers have the same contents they would have had if the action macro
had been successful originally.

5. If the last record successfully accessed prior to the PGLOCK exit is one of
a sequence of records with the same key, the repositioning will position the
task at the first record in the: sequence.

General ISAM Programming Notes

A file may be opened in OUTIN mode even though it contains no data. The
label information will be created every time a file is opened either OUTIN or
OUTPUT.

ISAM does not prohibit opening of a null file (that is, a file which previously
contained data but currently does not) if the OPEN type is other than
INPUT. If a null file is opened INPUT, control is passed to the OPENER exit
of EXLST. In the processing of a null file, an EOF exit is taken if an action
macro is executed, such as a get, which depends on the existence of data
records.

When creating a file with BLKSIZE=(STD,n) where n is greater than 2, the
user is required to allocate n+ 1 PAM pages prior to opening the file. Failure
to allocate sufficient space will result in an OPENER exit being taken.

Processing time required to insert new records is reduced if the user provides
a good estimate of future file expansion. This estimate is specified via the
PAD paraJneter. Although the ISAM routines attempt to split data blocks in
optimum fashion when new records enter the file, such splitting requires at
least one additional I/O and should be avoided.

When the action macros are being used, each of the ISAM action macros will
work with an internal pointer called the "current record pointer." Generally,
it is set to the record being acted upon, and modified only by the next
action macro. It may point to an "imaginary location" between records.

Care should be taken in determining the file PAD value. Should the user
select a PAD value which, together with the RECSIZE, exceeds the
BLKSIZE, ISAM will inhibit file opening. Error code "ODBC" is used to
indicate this error condition.

The current record pointer is discussed further at the end of the ISAM
section.

It is very important for ISAM users to be careful when using defaulted
parameters. For example, if an FCB is specified as follows:

FCB LINK=X,EXIT=Y,IOREG=9

the file will be, by default, ISAM with RECFORM=V and KEYPOS=5. These
defaults are applied at assembly time (macro expansion time) and can no
longer be defaulted. Therefore, if a user issues the following FILE command:

/FILE A,LINK=X,RECFORM=F,OPEN=OUTPUT

the RECFORM will indeed be changed to FIXED but KEYPOS will stay at
5.

3-151

A second example uses the same FCB and:

/FILE B,LINK=X,OPEN=OUTPUT

Since IOREG is spe :;ified in the FCB macro, the applicable ISAM macros
directed to the file~ once it is opened, will operate in LOCATE mode.
RECSIZE is not specified, therefore RECSIZE=BLKSIZE by default. But
PAD is not specified either. Therefore, 15% of the buffer will be reserved for
padding. Now if a user attempts to do a PUT (in locate mode) without
changing RECSIZE, RECSIZE will be greater than the area available in the
buffer for user records. A user error will result.

ISAM CODING EXAMPLE

SOURCE STATEMENT

I SAt1A

MAINl

MAIN2

TRM

TRMD
,'1SG

TYPE
KEYP
ADDER
RECAREAO

KEY

RECAREAl
EX
ISAHFllE

CSECT
MCALL OPEN,PUT,CLOSE,GET,TYPIO,TERM,TERMD,EXLST,FCB
PRINT NOGEN
BALR 2,0
USING *,2
LA 6,999
OPEN I SAt~F I LE, OUTPUT
AP KEYP,ADDER
UNPK KEY+S(3) ,KEYP
01 KEY+7,X ' FO'
PUT ISAMFILE,RECAREAO
BCT 6,MAINl
CLOSE ISAMFILE
OPEN I SAHF I LE , INPUT

SET ORT REC COUNTER TO 999 RECS

AOO 1 TO KEY -- INITIALLY 0
HOVE KEY TP RECORO
FORCE NUMERIC

LOOP 999 TIMES

GET ISAMFILE,RECA~EAl *RETRIEVE GENERATED RECS*
B MAIN2 *LOOP TILL EOF*
CLOSE ISAMFILE
WROUT MSG, TRMD
LA O,TYPE
SLL 0,8
IC 0,X'8'
SLR 1,1
TYPIO
TERM
TERMD
OX X'0000404001 '

JC C' I SAMA OK'
DC P'OO'
DC P t 1 '
os OCL76
DC X, 004c40 40'
DC 8C'0'
DC 64c'R'

OS CL76
EXLST EDFADDR=TRM
FCB RECSIZE=76,EXIT=EX
END

ISSUE OK MSG
SET UP FOR TYPIO
SET UP FOR TYPIO
SET UP FOR TYPIO
NO RESPONSE REQUIRED

END OF PROGRAM

3-152

- -
FCB Macro Format, ISA~I

Define an FCB for KSAM (0)

The following format indicates the parameters which may be supplied in the
FCB macro instruction when ISAM is being used. These parameters are
described in detail in "VMOS General Service File Management Macros" of
the appendices.

Name

[symbol]

Operation

FCB

Operand

[LINK-linkname-symbol]
[,FCBTYPE=ISAM]
[,FILE=filename-name]
[,P ASS=password-absexp]
[,RETPD=retention period-absexp]
[,RECFORM= FIV,AIMIID

FIV]
[,RECSIZE=absexp]
[,BLKSIZE=STDI(STD,absexp)]
[,IOAREAl =relexp]
[,IOAREA2=relexp]
[,EXIT=(relexp)Irelexp]
[,IOREG=reg number-absexp]
[,OVERLAP=YES]
[,KEY ARG=relexp] [,KEYLEN=absexp]
[,KEYPOS=absexp] [,P AD=absexp]
[,LOGLEN=absexp] LV ALLEN=absexp]
[,V ALPROP=MAXIMIN] [,DUPEKY=YES]
[,OPEN=INPUTIOUTPUTIEXTENDI
INOUTIOUTIN]
[,FORM=SHORT]

Note: The V ARBLD parameter is ignored. The table (of
referenced appendix) containing Summary of FCB
Parameters, etc., summarizes the parameters which may be
specified but are ignored depending on FCB TYPE.

3-153

PAM ACTION MACRO

PAM Macro Instruction - Read, Write, Check, or Wait a Block (S)

All user requests to DMS for a PAM action are made via this macro.

Name

[symbol]

fcbname

operation

HP=

Operation

PAM

Operand

fcbname-relexp
[,RDIWRTIWTICHKIRDWTIWRTWTILOG]
[,HP-absexp]
[,LOC=112Irelexp]
[,LEN=STDlabsexp]

Specifies the address of the FCB associated with the file.

Specifies the operation to be performed:

RD

Read data into memory.

WRT

Write data to the I/O device.

WT

Wait for the previous I/O to end.

CHK

Check to see if the previous I/O has terminated. If so, same as
WT. If not, continue processing user's program.

RDWT

Read and wait for the read to terminate.

WRTWT

Write and wait for the write to terminate.

LOG

Requests a before-image log of the page from FRS.

Default: RDWT

Specifies the half-page number to be read or written. The
first half-page of a file for PAM is page number 1. If not
present, then PAM will automatically increment the half-page
number by I for each read or write, thereby processing
sequentially.

3-154

LEN=

LOC=

Programming Notes

Specifies the length of the buffer to be read or written. This
value must not exceed 2048 bytes.

Specifies typically the area to be read or written.

I

Specifies 10AREAI address in the FCB.

2

Specifies IOAREA2 address in the FCB.

relexp

Specifies the area address in this macro.

Default: The 10AREA address in the FCB is chosen as
follows:

If the last address utilized was 10AREAI, then IOAREA2 is
used, and vice versa. Of course, if the IOAREA2 area does
not exit, 10AREAI is used each time.

If the operation is CHK, the LOC parameter must be specified and must be
in the form LOC=relexp. Control is passed to the location specified in the
LOC if the "checked" operation has not yet terminated.

A DSECT, generated by the macro IDPPL, which describes the format of the
P AM parameter list, is available.

For any unsuccessful entrance to PAM, control will be returned to the
routine specified in the EXIT parameter of the FCB, with a code stored in
the FCB. The three EXLST addresses used by PAM are:

ERRADDR = Hardware or abnormal I/O termination

USERERR = Incorrect program specification

EOFADDR = Attempt to read a dummy file

It is not necessary for the user to issue waits explicitly. PAM will
automatically do a wait before any read or write. If, however, an error
occurs in this wait, the return code will be 0997 instead of 0927 and the
current rlead or write will not be executed.

When control is returned to the user after a successful read operation for
which an explicit or implicit wait has been performed, the complete key is
placed into the FCB. A CHK given when the I/O has completed is equivalent
to a WT.

3-155

Before issuing a write operation, the program may place its own information
into the last eight bytes of the key area (in the FCB) if it cares to. The first
eight bytes will be constructed by PAM.

The address of the las-: buffer used is placed in the FCB at IDILWB.

For the RDWT operation, the key is returned in the FCB at ID 1 KEY2. For
all other read and write operations, IDIKEYI is used.

PAM performs (autonlatic) secondary allocations if, and only if, the program
attempts to write into page n+ 1 through n+K, where K is the number of
pages specified for secondary allocation and n is the current number of pages
in the file.

Note that, at OPEN time, the internal filename is placed in the leftmost four
bytes of the FCB field IDIKEYI. Thus, if the program reads a page not
previously written inl:0, the internal name in that page will not match the
internal filename obtained at OPEN time.

Exarnple, PAM Coding

SOURCE STATEMENT

USRPAM CSECT
MCALL OPEN ~IPAM, CLOSE, WROUT ,TERM, TERMD, FCB
PRINT NOGEU
BALR 2,0
USING *,2
OPEN PAMFlLE *FCB OPEN TYPE IS OUTIN*
MVC BLOCK(l) ,='1' *SET UP BLOCK 1*
PAM PAMFI LE ,WRTWT *GENERATE BLOCK 1 *
MVC BLOCt~(1) ,=12' *SET UP BLOCK 2*
PAM PAMFiLE,WRTWT *GENERATE BLOCK 2*
MVC BLOCK (1) ,= 13' "tSET UP BLOCK 3*
PAM PAMFI' LE ,WRTWT '':GENERATE BLOCK 3*
CLOSE PAMFI LE
OPEN PAMFI LE, INPUT)'rSTART SECOND PASS*
PAM PAMF" LE, RDWT *GET FI RST BLOCK''(
CLI BLOCK,11' *CHECK FOR BLOCK 1''r
BNE TRMD *DUMP IF NO CHECK*
CLOSE PAMF'LE
HROUT MSG, "-RMD)'rl SSUE OK MSG''r
TERM

TRMD TERMD
MSG DC X I 000E40400 I'

DC C'USHPAM OK'
PAMFILE FCB FCBTVPE=PAM,OPEN=OUTIN,IOAREA1=BLOCK,IOAREA2=NO

BLOCK
OS
OS

END

OF
8CL2!;6

3-156

WORD ALIGN FOR PAM BUFFER

FCB Macro Format, P AI\1

Define an FCB for PAM (0)

The following indicates the parameters which may be supplied in the FCB
macro instruction when using PAM. These parameters are described in detail
in "VMOS General Service File Management Macros" of the appendices.

Name

[symbol]

SAM ACTION MACROS

Operation

FCB

Operand

[LINK =linkname-symbol]
,FCBTYPE=PAM
[,FILE=filename-name]
[,PASS=password-absexp]
[,RETPD=retention period in days-absexp]
[,RECFORM=(FIYIU,AIMI~)

FIVIU]
[,RECSIZE=absexp]
[,BLKSIZE=STDI(STD,absexp)Iabsexp]
[,IOAREAl =NOlrelexp]
[,IOAREA2=NOlrelexp]
[,EXIT=(relexp)Irelexp]
[OPEN=INPUTIINOUTIOUTIN]

Note: RECFORM, RECSIZE, and BLKSIZE are accepted but
are ignored by PAM action macro instructions.

,--------
FEOV - Force End of Volume (R)- Macro

The FEOV macro instruction causes the system to advance to the next
(tape) volume of a file before the end of the current volume is reached.

Name

[symbol]

fcb

Programming Notes

Operation

FEOV

Operand

I fCb-addrxl
10)

Specifies the address of the FCB associated with the file
being processed.

This macro is ignored for files on direct access volumes and for tape files
opened REVERSE. If a successor volume does not exist, control is passed to
the EOFADDR EXLST address.

3-157

GET - Get a Record (R) - Macro

The GET macro instrlction retrieves the next sequential record of a file.

Name

[symbol]

fcb

area

Programming Notes

Operation Operand

GET m~-addrX I ['I ro)a-addrx 1J

Specifies the address of the FCB associated with the file
being processed.

Specifies the address of the area into which the record is.
moved if processing is in move mode.

The area parameter is ignored if the IOREG parameter was specified in the
FCB. If a record beyond the end of the file is requested, the user is given
control at EOFADDF~ (see EXLST macro). The area parameter is ignored for
files opened in updat{! mode.

PUT - Write a Record (R) - Macro

The PUT macro ins-:ruction presents a logical record to the system for
inclusion in the output file.

Name

[symbol]

fcb

area

Programming Notes

Opera~:ion Operand

PUT 1 ~ ~~-addrx I [I ~~)a-addrx I J
Specifles the address of the FCB associated with the file
being processed.

Specifles the address of the logical record to be moved in the
output buffer if processing is in move mode.

The area parameter is ignored if the IOREG parameter was specified in the
FCB. After issuance of this macro in locate mode, the system places the
address of the first available location in the output buffer in the register
specified in IOREG. The programmer should subsequently construct the
next record to be inccrporated into the output file at that address.

If format-V records are processed in locate mode, the system places in the
register specified by the V ARBLD operand, the amount of space remaining
in the output area after each PUT macro instruction is issued. It is the
problem program's responsibility to ensure that the next record will fit in
the available space, and to issue the RELSE macro instruction if the
remaining area is insufficient.

3-158

PUTX - Replace a Record (R) - Macro

The PUTX macro instruction is used to return an updated logical record to a
file. The user must not change the length of the record during the
replacement process.

[symbol]

fcb

Programming Notes

Operation

PUTX

Operand

J f cb-addrx}
\ (1)

Specifies the address of the FCB associated with the file
being processed.

The PUTX macro instruction can only replace a record that was located by a
locate mode GET macro instruction. The FCB must be opened UPDATE.

--------------------------------RELSE - Release a Buffer (R) - Macro

For input, the RELSE macro instruction causes any remaInIng logical
records in a buffer to be bypassed. For output, the macro causes the next
logical record to be written as the first record of a new block.

Nanle

[symbol]

fcb

Programming Notes

Operation

RELSE

Operand

I fCb-addrx}
(1)

Specifies the address of the fcb associated with the file being
processed.

1. If the file is opened INPUT, REVERSE, or UPDATE, the RELSE macro
instruction causes any logical records remaining in the buffer to be bypassed
when the next GET is issued.

2. If the file is opened OUTPUT or EXTEND, the RELSE macro instruction
. causes the next logical record to be written as the first record of a new
buffer when the next PUT is issued.

3. If the file is opened UPDATE and a PUTX has been issued, a RELSE will
cause the entire buffer to be rewritten.

4. If the last action macro issued was FEOV or RELSE, the RELSE macro is
ignored. Note that this rule overrides notes 1 and 2.

3-159

-
SETL - Specify Position of Seq uential Processing - Macro

The SETL macro ir.struction is used to specify the position from which
subsequent file processing is to take place.

Name

[symbol]

fcb

position

Operation Operand ----
SETL f fCb-addrx} [,position-BIEIR]

1 (1)

Specifies the address of the FCB associated with the file
being processed.

B

Specifies the beginning of the file.

E

Specifies the end of the file.

R

Specifies that the file position information is to be obtained
from the retrieval field in the FCB.

Progralnming Notes

Band E can be specified only for files on direct-access volumes or for files
on single tape volunles, R can be specified only for files which have standard
blocks.

For multireel (volume) tape files, the retrieval address is considered to be
volume relative - not file relative.

An illegal SETL operand causes control to be sent to the USERERR EXLST
address.

Example, SAM Coding

SOURCE STATEMENT

SAMA

MAIN 1

CSECT
MCALL OPEN,PU1,CLOSE,GET,TYPIO,TERM,EXLST,FCB
PRINT NOGEN
BALB 2,0
US I NG *,2
LA 6,999 *SET OPT REC COUNTER TO 999 RECS*
OPEN SAMFILE10UTPUT
PUT SAMFILE.RECAREAO *GENERATE A RECORD*

3-160

BCT 6,MAINl *LOOP 999 TIMES*
I:LOSE SAMF I LE
OPEN SAMFI LE, INPUT

MAIN2 GET SAMFILE,RECAREAl *RETRIEVE GENERATED RECORDS*
B MAIN2 *LOOP TILL EOF*

TRM CLOSE SAMFI LE
\~ROUT MSG, TRMD "t I SSUE OK MSG~~

LA O,TYPE *SET UP FOR TYPIO*
SLL 0,8 *SET UP FOR TYPIO*
I C 0,=X'7' *SET UP FOR TYPIO*
SLR 1 , 1 *NO RESPONSE REQUIRED*
TYPIO
TERM *END OF PROGRAM*

TRMS -rERMD
RECAREAO IDC 80C' R'

MSG I[)C X I 000c40400 1 •
TYPE I[)C C'SAMA OK'

RECAREAl I[)S CL80
EX EXLST EOFADDR=TRM
SAMF~ LE IFCB FCBTYPE=SAME, RECFORM= (F ,N) , RECS I ZE=80, EXIT-EX

lEND

------_.
FCB Macro Format, SAM

Define an FCB for SAM (0)

The following indicates the parameters which may be supplied in the FCB
macro instruction when using SAM. These parameters are described in detail
in "VMOS General Service File Management Macros" of the appendices.

Name Operation

[symbol] FCB

Operand

FCBTYPE=SAM
[,LINK=linkname-symbol]
[,FILE=filename-name]
[,PASS=password-absexp]
[,RETPD=retention period-absexp]
[,RECFORM =(FIYI U ,IAIMIN)

FIVIU]
[,RECSIZE=absexp]
[,BLKSIZE=STDI(STD,absexp)Iabsexp]
[,IOAREAl =relexp]
[,IOAREA2=NOlrelexp]
[,EXIT=(relexp)Irelexp]
[,IOREG=reg number-absexp]
[,VARBLD=reg number-absexp]
[,LABEL=STDINSTD]
[,OPEN=INPU'TIOUTPUTIEXTENDI
REVERSEIUPDATE]
[,FORM=SHORT]

3-161

FCB Retrieval Address

The FCB field IDRPTR (one word) contains the retrieval address in the forITl

(bbbbbbrr)16

where:

bbbbbb is the number of the buffer (not block) in the file and rr is the
number of the logicd record within the buffer. (For multireel tape files, the
retrieval address is considered to be volume relative, not file relative.) The
first record in the filE has a retrieval address of 00000101.

The retrieval address values after OPEN, SETL to Band E are set as follows:

OPEN Mode Initial Value SETL B SETLE

INPUT, UPDATE
OUTPUT
EXTEND
REVERSE

00000101
00000100
bbbbbbOO
bbbbbbOl

00000101
00000100
00000100
bbbbbbOI

bbbbbbOll
Error
Error
OOOOOIO]l

where bbbbbb is the highest buffer number plus I in the file.

The action macros mlintain the retrieval address as follows:

GET

PUT

RELSE

FEOV

If thE specified record causes a new buffer to be retrieved,
bbbbhb is set to designate the buffer number for the record
and n is reset to 00.

If th~ specified record causes the existing buffer to be
written, bbbbbb is set to designate the buffer number for the
record, and IT is reset to 00. That is, it is set to the number of
the buffer in which the record will be placed.

If the file is opened OUTPUT or EXTEND, bbbbbb is set to
the number of the buffer in which the next record will be
placed; rr is set to 00.

For t,:pe, the retrieval address field is set to 00000100.

3-162

Programming Notes

This field is only supported for tape files which are created with standard
blocks.

It is important to note that bbbbbb is buffer oriented.

Example:

Assume BLKSIZE=(STD,2)

RECFORM=F

RECSIZE=5 12

The retrieval address for the 10th t;ecord is 00000202. The retrieval address
for the 20th record is 00000304.

Note that the system never increments the IT field beyond a single buffer. It
is reset, as previously described, to zero when a new buffer is to be
processed. The user can increment the rr field, if he prefers, to maintain
retrieval address information for each logical record.

3-163/3-164

GENERAL

SECTION 3
DEVICE AND SPACE MANAGEMENT COMMANDS AND MACROS

The inforrnation contained in this section defines the explicit instructions
provided by VMOS for programmer control of devices at the logical level.
Refer to "Macros Supporting Physical Level I/O and Run Time Parameters"
in the appendices for information relating to device control.

The following summaries group the device management commands and
macros into functional sets: device (space) allocation, device (space)
regulation, and device (space) deallocation.

DEVICE (SPACE) ALLOCATION COMMANDS AND MACROS SUMMARY

Command/Macro

FILE Command/Macro

REQM Macro

RSTART Command

SECURE

Function

Define a file's device requirements.

Acquire a contiguous area of memory at
object time.

Logically attach a work station to the
RBP system.

Reserve private volume devices required
for task execution.

DEVICE (SPACE) REGULATION COMMANDS AND MACROS SUMMARY

Command/Macro

CHANGE Command
CHNGE Macro

DROP Command

FILE Command/Macro

HOLD Cornmand

SYSFILE Command

3··165

Function

Alter a symbolic device name.

Remove the hold status of private
devices. See preceding section, File
Management and Access Method
Definition Commands and Macros, for
discussion of this command.

Specify the mounting of private devices.

Temporarily suspend the release of
private devices. See section referred to
above for discussion of this command.

Reassign SYSDT A or SYSIPT.

DEVICE (SPACE) DEALLOCATION COMMANDS AND MACROS SUMMARY

Command/Macro

FILE Command/Macro

RELEASE Command
REL Macro

RELM Macro

RSTOP Command

Function

Deallocate random access space.

Release private devices associated with
a specific file. See previous ~ection,
File Management and Access Method
Definition Commands and Macros, for
discussion of these instructions.

Release a contiguous area of user
program memory at object time.

Logically detach a work station from the
RBP system.

DEVICE (SPACE) MANAGEMENT COMMAND AND MACRO DESCRIPTIONS

The following material describes each of the device and space management
commands and macros. The descriptions include instruction format,
programming consid(~rations, and, where illustrative information is necessary,
examples of the use of the instruction. The commands and macros are
presented in alphabetical order without regard to functional classification.

CHANGE Command
CHNGEMacro

The CHANGE comJiuand or CHNGE macro can be used, in the context of
device management, to change the symbolic device name of a previous file
definition. No other parameters introduced by the FILE command are
changed.

Name

link-symbol

symdev-symbol

Oper.ltion Operand

CHANGE [link-symbol] ,symdev-sym bol

Specifies the file definition name.

Defa~.Ilt: a linkname of spaces is assumed.

Spec:Jies the VMOS symbolic device name that is to be
changed.

3-166

FILE Command/Macro

In the context of device (space) management, the FILE instruction allocates
random access space, deallocates random access space,. assigns devices, and
alerts the operator to mount private volumes.

Name Operation

FILE

Operand

ffile-(filename l~[,LIN K=symbol]
L *DUMMY~

[,DEVICE=D564/D568/D590/TA/TAPE/T9N/T9P/T7cc/WORK]

r,MOUNT= (volume sequence number-integerl J
L (vol.seq.no, ...)

[

'VOLUME={ PRIVATE }]
volume serial number-alphnum

. (PRIV ATE,number of volumes-integer)
(volume serial number-alphnum ...)

[

,SPACEl primary integer I]
({

primary i~teger[,secondar.y integer]))
first page mteger amount mteger,ABS

[DDEVICE=D564/D568/D590]

[
,DSPACE= (primary-integer I]

(primary-integer[,secondary-integer])

f,DVOLUME= (volume serial number-alphnum 1] L (volume serial number-alphnum, ...)

The preceding FILE command parameters are discussed in the previous
section, Fille Management and Access Definition Commands and Macros.

3-167

RELM Macro

The RELM macro hstruction releases a contiguous area of memory in a
user's program at object time. Class I programs release physical memory;
Class II programs re]ease virtual memory. This macro also accepts the MF
parameters.

Name

number

page

MF=

Operation Operand

REL:tv[Inumber= {value IJ ~pageJ [MF={L . }] L 1 . (E,hst)
- (E,(l))

Specifies the number of pages to be released. If this
pararr~eter is omitted, one page is released.

Specifies the page number of the first page of the area to be
releas~d. This parameter must be specified by Class II
programs. This parameter cannot be specified by Class I
programs since memory is always released beginning with the
current last page. For example when a Class I progranl
occupying pages 1 to 10 does a RELM of 3 pages, pages 10,
9, and 8 are released. When a Class II program occupying
pages 1 to 12 does a RELM of 3 pages and specifies page 10,
pages 10, 11, and 12 are released.

Refer to "Command/Macro Conventions" , in the appendices,
for a jescription of this operand.

Programnling Notes

1. It is permissible to release memory allocated to a program which was not
obtained by the user by a previous REQM macro. For example, the programl,
upon loading, required five pages. After completion of the program's
initialization phase, two unneeded pages can be released. (Note that loader
had in fact invoked the REQM macro instruction for the user program.)

2. Memory obtained by two or more previous REQM macro instructions can
be released by a single RELM, provided that these memory areas are
contiguous to each other.

Cautions and Errors

General Register 15 Return Codes:

X'OO'

Releclse processed successfully.

3-168

Examples

X'04'

X'OC'

Exa.mple 1:

Insufficient memory owned by the program to satisfy the
request (for example, page parameter specifying an
unallocated page or nonc1ass 6 memory page). The address of
the first byte of the page not released is returned in the
rightmost three bytes of register 1; the leftmost byte is set to
O.

Invalid request:

Page parameter omitted by a Class' II Task, page parameter
specified by a Class I task, etc.

Assume that the user program is a Class II program occupying pages 1-12.

Name Operation Operand

RELM 3,10

Note: Pages 10, 11, and 12 are released.

Example 2:

Assume that the user prograJTI is a Class I program occupying pages 1-10.

Nanle Operation Operand

RELM 3

Note: Pages 8, 9, and 10 are released.

Example 3:

Assume that the user program is a Class II program occupying pages 1-6.

Name Operation Operand

RELM ,5

Note: Only page 5 is released.

3-169

REQMMacro

REQM requests that a contiguous area of memory be assigned to the user's
program. The reque:~t is made at execution time and the memory thus
assigned is taken aW;lY at program termination (or can be released by the
user with the RELM macro). Memory is requested in multiples of one page.,
Class I programs are allocated physical memory. Class II programs are
allocated virtuallnerrory.

Name

n

first

MF==

Operation Operand

REQ?t1

[
MF== {L }] , (E,list)

(E,(1))

[n] [,first]

Specifies the number of pages requested. If this operand is
omitted, the systenl assumes one page. A Class II progranl
can request up to 64 pages in a single REQM. A Class I
progrlm can request up to 32 pages provided that sufficient
unallocated resident, reserved, pages physically contiguous to
the h~gh order page of the program exist.

The 11 operand can be a general register (2-12) enclosed in
parentheses. The n operand can also be an absolute
expression, as defined in the Assembly Reference Manual.

Specifies the first page number (0-254) at which allocation is
to begin. If this operand is omitted for a Class II program, the
first 'lnused area (the area with the lowest address) which can
accornmodate the request is allocated.

This I)perand is not allowed for Class I programs.

Refer to "Command/Macro Conventions", in the appendices,
for a description of this operand.

Cautions and Errors

General Register 15 Return Codes:

X'OO'

X'04'

The request has been processed successfully. The Executive
place s the memory addresses of the first byte of the first page
allocated in the rightmost three bytes of Register 1. The
LeftrlLost byte is set to zero.

There is not sufficient memory available to satisfy the
requ:!st. When this return code is given, no memory is
allocated.

3-170

Examples

X'08'

X'OC'

X'IO'

Example 1:

The request is honored, but the number of pages allocated
equals or exceeds the reservation limit. When this warning
code is returned, the user should avoid requesting additional
memory for this task.

An invalid request of one of the following two types:

1. A Class II program has requested more than 64 pages of
memory, or a page number greater than 254.

2. A Class I program has specified the page number operand.

The request is honored. However, the block of memory
allocated crossed a segment boundary. This error is applicable
only to Class II programs. This code is not returned if the
page parameter (n) was specified.

Assume the user program is a Class I program.

Name

Example 2:

Operation Operand

REQM

Note: One page is allocated provided it is physically
contiguous to the high order page of the requesting program.

Assume that the program is a Class II program.

Name Operation Operand

REQM 5,157

Note: Five pages beginning with virtual page number 157 are
allocated, if they are available.

3-171

RSTART Command

The RST AR T comntand logically attaches a work station to the RBP systenl.
Once attached, the work station can monitor the RBP system for output
directed to it, and users may gain access to the central system by logging Oltl.

Additionally, the R:5TART command identifies the work station and defines
its hardware configuration.

Name

termid

termcode

Programming Notes

Opelation Operand

RSTART termid-alphanum, termcode-alphanum

Specifies the work station name. It consists of one to eight
alphanumeric characters, the first of which must be
alphabetic. RBP operation requires unique work station
names. This command will be rejected if the system already
has an attached work station with this name.

Identifies the terminal device type and defines the terminal's
optional hardware features. It consists of two to eight
alphanumeric characters. If omitted, the standard terminal
device type for the line in use is assumed.

1. The RSTART command must be the first statement submitted at an
inactive work station. If the work station desires to resume RBP activity
after it has been logically detached from the system (after an RSTOP
command or a system failure), it must resubmit the RSTART command.

2. At present, the termcode field has no meaning. The device type is
determined from the system device tables established during system
genera tion.

3-172

RSTOP Command

The RSTOP command allows the user to logically detach a work station
from the system. Prior to detachment, all queued messages directed to the
work station are transmitted. No job output is returned to the work station
after the RSTOP command is processed. The last message transmitted
indicates that the work station is logically detached. No further
communication occurs until the work station resumes RBP activity with an
RSTART command.

If a work station is connected to the central system via a switched (dialed)
connection, the connection is broken.

Name Operation Operand

RSTOP blank

SECURE Command

This comnland is used to reserve the resources that the task execution will
require. The resources are devices for private volumes. These resources
remain in possession of the task until the task is terminated, unless otherwise
explicitly released. If a SECURE statement is received and the task already
possesses one or more private device, the task will be abnormally terminated.

Name

JT9N } =n
1 TAPE

T7DC=n

T7=n

Operation Operand

{ ~~gURE } [{i~E} =n]

[,T7DC=n]

[,T7=n]

[,D564=n]

[,D590=n]

[,UNIT=(mn, ...)]

[,WORK=n]

[T9P=n]

Indicates the number of 9-track nonphased tape devices to be
secured.

Indicates the number of 7-track tape devices with the data
converter feature to be secured.

Indicates the number of 7-track tape devices to be secured.

3-173

D564=n

D590=n

T9P=n

UNIT=

WORK=n

Programming Notes

Ind:~cates the number of model 8564 disc devices to be
secured.

Ind:.cates the number of model 8590 disc devices to be
secured.

Ind:.cates the number of 9-track phased tape devices to be
secured.

IndIcates the 2-byte installation mnemonic for the device to
be :;ecured. If more than one is used, commas separate the
mnemonics. A maximum sub list of 32 items is allowed.

Indjcates the number of work tape devices to be secured.

When the WORK option is specified, the system operator must alter the
required tape devic'~s to work status.

SYSFILE Command

This command enables the programmer to reassign SYSIPT or SYSDT A.

Name

mn

CARD

Operation Operand

SY5,FILE
{

SYSDTA} = {mn }
SYSIPT CARD

Spe :ifies the 2-byte installation mnemonic of the device to
whkh SYSIPT or SYSDTA is to be assigned.

Indjcates that SYSIPT or SYSDTA is to be assigned to the
care reader.

3-174

GENERAL

SECTION 4
COMMUNICATIONS ACCESS METHOD (CAM) COMMANDS AND MACROS

The inforrnation contained in this section defines the explicit instructions
provided by VMOS for programmer control of its Communications Access
Method (CAM). The following summary groups the commands and macros
into functional sets: program and terminal identification, message
processing, transmission and buffer control, and multistation line usage.

PROGRAM AND TERMINAL IDENTIFICATION COMMAND AND MACRO SUMMARY

Command/Macro --------
CONNECT Command

PRIME Macro

MESSAGE PROCESSING MACROS SUMMARY

Macro

FETCH

FORM

LNTYP

NOLNS

SEND

3-175

Function

Identifies a terminal to a CAM program.

Specifies the name of the program
operating under CAM.

Function

Determines if an input message exists for
a CAM program.

Formats a message into a specified
buffer space.

Supplies the identification of the lines
connected to a CAM program.

Determines the number of lines connected
to a CAM program.

Transmits messages from the processor to
a terminal.

TRANSMISSION AND BUFFER CONTROL MACROS SUMMARY

Macro

CAMRD

FBUF

GBUF

SHUTM

WAITM

WREND

Function

Puts a read up to a specified terminal.

Returns buffers to the buffer pool.

Obtains buffers space from the buffer
pool.

Inhibits further input from terminal.

Pends a task awaiting input.

Provides the means to stop the processing
activity.

MULTISTATION LINE USAGE MACRO SUMMARIES

Macro Function

ACT Activate a terminal.

DEACT Deactivate a terminal.

SPSEQ Specify polling sequence.

COMMUNICATION ACCESS METHOD COMMAND AND MACRO DESCRIPTIONS

The following matelial describes each of the CAM commands and macros.
The descriptions indude instruction format, programming considerations,
and, where illustrative information is necessary, examples of the use of the
instruction. The conlmands and macros are presented in alphabetical order
without regard to functional classification.

3-176

ACT Macro (SVC C21 6)

ACT (Activate a Line or Terminal) permits deactivated lines to again be data
transmission avenues, and deactivated terminals to again send or receive data.

The input required by ACT is a 3 ... byte field. The first byte of this field is a
line number, the second byte the video data generator identification code,
and the third the video data terminal identification code.

If the actllon is directed at a line, the second and third bytes of the byte field
should contain X'OO'. When the action is directed toward a terminal, the
latter two bytes will vary according to the terminal type as follows.

70/751

70/752

Nanle

(1)

saddr.

Cautions and Errors

The second byte contains the video data generator
identification code. The third byte contains the terminal
identification code.

The second byte contains X'OO'. The third byte contains the
terminal identification code.

Operation Operand

ACT
{

(1) }
saddr.

Specifies that the three input bytes are supplied in the lower
order three bytes of general register 1.

A symbolic pointer to the location of the 3-byte area.

General Register 15 Return Codes:

X'OO'

Request normally processed.

X'04'

Illegal line number of TSC (Transmission Start Code).

3-177

CAMRD Macro (SVC BCI 6)

CAMRD puts a read up to a specified terminal.

Name

addr

(1)

Cautions and Errors

Operation ---
CAMRD

Operand

/ addr}
, (1)

This entry specifies a I-byte area containing the logical line
number of the terminal.

Indicates that General Register I has been loaded with the
line number of the terminal in the low order byte.

If the data is supplied in a parameter area pointed to by
Register I, Register I points to the line number.

General Register 15 Return Codes:

X'OO'

Request processed normally.

X'04'

Line number invalid.

X'08'

There is already a read on that line.

X'OC'

The specified line is processing a send.

X'IO'

The specified line is disconnected.

X'14'

The specified line is deactivated.

X'18'

Unrecoverable hardware error.

X'IC'

A BREAK was received for this line.

3-178

CONNECT Command

CONNECT, a command to Attach Terminal to CAM Program, is issued
conversationally by a remote terminal operator in order to attach his task to
a CAM program. The conversational user must specify in the operand field of
the CONNECT command a name which is defined by a PRIME macro in a
CAM program. The CONNECT command is issued in lieu of a LOGON
conlmand. A terminal connected to a CAM program can transfer to the
VMOS command mode by issuing a CONNECT command with VMOS as the
operand.

CONNECT may also be used to attach a terminal to a different CAM
program. This takes place whenever a terminal attached to a CAM program is
asked by that program for additional information and this operand supplied
with the CONNECT command is the name associated with another CAM
program instead of VMOS. When this occurs, the terminal will be switched
to come under the control of the specified CAM program. This
cross-program terminal connection procedure may be accomplished at
LOGON time when the Comlnand Processor is in control, or anytime a read
has been issued to the terminal when the user's program is in control.

Name

name

VMOS

Caution and Errors

Operation Operand

CONNECT f name }
lVMOS

Identifies the CAM program to which the terminal is to be
connected. The name consists of one to eight alphanumeric
characters. If a CAM program with a PRIME macro
specifying the same name cannot be located, the command is
rejected.

Signifies that the issuing terminal which is already
communicating with a CAM program is to be transferred to
the VMOS command mode.

I t should be noted that a terminal is not really connected to the program,
but rather it is the telephone line number which is connected to the
program. Consequently, if the terminal operator disconnects his terminal by
hanging up, a subsequent dialing of the same telephone line number by
anyone will result in his being automatically attached to the CAM program
instead of normal VMOS mode.

It should also be noted that the BREAK and ESCAPE functions are not
supported in CAM. If either is issued from a single-station line, the terminal
will be disconnected. If either is issued from a multistation line, notification
of the error condition will occur when the program issues a FETCH or
CAMRD. A BREAK will stop the polling and the program will have to put
up a read to restart it.

3-179

DEACT Macro (SVC C21 6)

The DEACT macro (Deactivate a Line or Terminal) is used to exclude any
line from having data transmitted over it or any terminal from sending or
receiving data.

The input required by DEACT is a 3-byte field. The first byte of this field is.
a line number, the second byte the video data generator code, and the third
the video data terminal identification code.

If the action is directed to a line, the second and third bytes of the field
should contain X'OO', e.g.,

1st 2nd 3rd

08 00 00

When the action is directed toward a terminal, the latter two bytes will vary
according to the terminal type as follows.

70/751

70/752

Name

(1)

symbolic addr

Programming Notes

The ~econd byte contains the video data generator
identification code. The third byte contains the terminal
identification code.

The second byte contains X'OO'. The third byte contains the
termin al identification code.

Opera1:ion Operand ----
DEACT I (1) } l symbolic addr

The input data is in the low order three bytes of general
register 1.

The input data is in the three byte area pointed to by this
symbo lic address.

Since these multistation lines are dedicated, this facility can be used to stop
processing for lines Jr terminals that will not be used or have ceased to
participate.

3-180

Caution and Errors

General Re~gister 15 Return Codes:

X'OO'

Request normally processed.

X'04'

Line number or TSC illegal.

FBUF Macro (SVC BAI 6)

FBUF (Free Buffer Space) returns buffers to the buffer pool. Before issuing
the Inacro, the user program ml1st load General Register 1 with the starting
address of the first buffer in the string to be released. The link address in the
last buffer must be O.

A string of buffers must be released with the link information intact just as it
was received from the GBUF macro.

Name Operation Operand

FBUF

Cautions and Errors

General Register 15 Return Codes:

X'OO'

X'04'

X'08'

X'OC'

X'lO'

Request successfully processed.

At least one of the addresses provided is not within the
bounds of the buffer pool.

User attempted to return the same buffer more than once in
the same list.

User is trying to return a buffer he doesn't have.

One of the returning addresses is not that of a buffer
although it is an address within the buffer pool.

3·,181

FETCH Macro (SVC BBI 6)

FETCH (Read Terminal Input) determines if there is an input message for
the program. If a message exists, FETCH retrieves it and places it into a
program-specified buffer. If no message exists, control returns to the
program with an appr:>priate return code.

Name

addr

(1)

Programming Notes

Operation Operand

FETCH I addr}
(1)

Specifies the symbolic address of a buffer into which the
incommg message is to be placed.

Indicates that General Register 1 has been loaded with the
address of a buffer into which the incoming message is to be
placed.

1. If no message has been input for the program, the buffer is not affected.
When, however, a completed input message has been received, FETCH
updates the 5-byte ht:ader and places the message in the data portion of the
buffer. The link field, the first four bytes of the buffer, is not affected.

2. The header contains the following information:

Bytes Item

1-2

3-4

5

Count of message length including the 5-byte length of the
headeI itself.

X'4040' for messages received from terminal on single station
lines.

X'40' in byte 3 and terminal TSC (Transmit Start Code) in
byte 4 for 8752 on multistation line.

Video Data Generator identification code in byte 3 and
Terminal identification code in byte 4 for 70/751 on
multistation line.

The logical line number of the terminal from which the
messa~;e originated. The line number is assigned to the
terminal by CAM when it is initially connected to the CAM
program and the terminal retains the same number until it
detaches from the CAM program.

3-182

Cautions and Errors

General Register 15 Return Codes:

X'OO'

X'04'

X'08'

X'OC'

X'IO'

X'14'

X'18'

X'IC'

X'20'

Normal Termination. A message for the program has been
placed in the program-specified buffer.

No input message.

Invalid address in Register I.

The message has been placed in the buffer but exceeds the
buffer length. The message was truncated.

The message has been placed in the buffer, but an
unrecoverable hardware error was detected.

The line number in Register 0 has disconnected with a.read
up.

User issued a FETCH after a SHUTM and there were no
outstanding reads.

PRIME was not issued.

A BREAK was received from the line whose logical line
number is in Register O.

Note: Input data length is restricted to the size of one buffer,
as defined in the PRIME macro.

3-1.83

FORM Macro (SVC COl 6)

FORM (Format a Mh~ssage into Buffers for Send) takes a specified message
and formats it into buffers requested from the buffer pool.

Name

addr

(1)

Progniinming Notes

Operation

FORI\-[

Operand

J addr}
\ (1)

The symbolic address of the first byte of a message area. The
message area must be formatted as follows:

Byte

0-1

2-4

5-n

Contents

A count which is the actual message length
plus 5 for the V-field.

Reserved.

Message.

Indicates that General Register 1 has been loaded with the
addre~s of the first byte of a message area as described under
addr.

FORM uses the contents of byte 0-1 to calculate the number of buffers.
required to contain the message. FORM obtains the buffers and formats the
nlessage.

FORM returns to the user in General Register 0 the number of buffers used.

Register 1 contains the address of the first buffer.

Cautions and [rrors

General Register 15 Return Codes:

X'OO'

Request processed normally.

X'04'

Parameter error in GBUF.

3-184

X'08'

Buffer pool chains are destroyed.

X'IO'

Insufficient number of buffers in the pool.

X'14'

Message count is invalid.

X'18'

Invalid message address.

- ,

GBUF Macro (SVC B91 6)

GBUF obtains buffer space from the buffer pool. Before issuing the GBUF
(Get Buffer Space) macro, the user program must load General Register 1
with a nu:mber which indicates how many buffers are desired. GBUF will
return in Register 1 the starting address of the string of buffers being
provided. The first word of each buffer contains the address of the
succeeding buffer. The last buffer in the string contains zeros in the link
address.

Name Operation Operand

GBUF

Cautions and Errors

General Register 15 Return Codes:

X'OO'

X'04'

X'08'

X'IO'

Req uest processed successfully.

Parameter error.

Buffer pool chains are destroyed.

Insufficient number of buffers in the pool.

Note: A request for no buffers (0) is considered as a
parameter error.

3··185

LNTYP Macro (SVC COl 6)

The LNTYP macro (List Device Types for Specified Lines) supplies the user
with the device type code of any number of specific lines or a complete list
of line numbers and their associated device type codes, and a count of the
number of connected lines as supplied in NOLNS.

Name OpeIation

LNTYP

addr

Operand

f addr} l (1)

Specifies the symbolic address of a memory area organized
acco:rding to one of the following formats.

BYTE 0

(A)

(B)

SIZE OF
AREA

SIZE OF
AREA

1 2 3 2N

LN
1 I LN21 I LN n

00

I I I
If the area pointed to is formatted like (A), LNTYP will return control to
the user program with the device type code in byte 2i+ I for the terminal or
line number specified in byte 2i (i = 1,2, ... n). If a request is made for a
nonexistent line number, the macro will place X'FF' in the device type code
byte for that line.

In the event that the area pointed to is formatted like (B), the macro will
return control with a list of active line numbers in bytes 2i and their
corresponding device type codes in bytes 2i+ I (i = 1,2, ... n). This list will be
complete provided the designated area is large enough to contain all the
requested information. Should the area be too small to complete the list,
control will be returned to the user when the list is full with a return code of
X'08'.

The code returned for each device type supported under CAM is the same as
the codes used by the TMODE macro.

01 - Model 33 TTY

02 - Model 35 TTY

03 - Model 37 TTY

04 - 8752 VDT

05 - IBM 2741

3-186

Since any of the lines may be active or inactive (that is, the user hung up but
the line is still connected), the leftmost bit, 2' , of the device type code byte
is set to 1 for inactive lines and reset for active lines.

When control is returned to the user, Register 1 will contain two counts. The
leftmost halfword will be the count of the total number of lines connected
to the user's program, and the rightmost halfword will contain the number
of those lines which are still active.

(1)

Cautions and Errors

Indicates that General Register 1 contains the address of an
area formatted as either (A) or (B).

General Register 15 Return Codes:

X'OO'

X'04'

X'08'

X'OC'

Request processed normally.

There are no lines connected.

The designated area is not large enough for a complete list of
all the line numbers.

At least one request was made for an invalid line number.

3-187

NOLNSMacro (SVC cal 6)
NOLNS counts the number of lines still connected to the CAM program. A
connected line may be either active or inactive (the user hung up).

NOLNS loads General Register 1 with the following information:

Byte

0-1

2-3

Name

Cautions and Errors

Conterts

total count of connected lines.

total n~lmber of active lines.

Operation Operand

NOLN:~

General Register 15 Return Codes:

X'OO'

Reque~.t processed normally.

X'04'

There are no lines connected.

PRIIvlE Macro (SVC BF I 6)

PRIME is used to spe~ify CAM program identification (the name by which
the CAM program is identified). PRIME is also used to specify the size and
n umber of buffers to be created within the buffer pool.

Name

name

size

number

Operatlon Operand

PRIME name, size, number

PRIME (1)

Specifi,~s the name by which the CAM program is identified.
It may consist of from one to eight alphanumeric characters.

A terminal operator may attach his terminal to the CAM
program by specifying this name in a CONNECT command.

Specifi!~s the size of each buffer in the buffer pool. Each size
includes a 4-byte link field, a 5-byte header, and the data
field. The maximum size buffer is 2000 bytes.

Specifies the number of buffers to be created in the buffer
pool. The maximum number of buffers is 1000.

3-188

(1)

Programming Notes

Indicates that General Register 1 has been loaded with the
address of a parameter list formatted as follows:

Byte Item

0-1 Number of buffers

2-3 Buffer size

4-11 Name

The buffer pool is created in user-accessible memory. The buffers are linked
together by placing the successor buffer address into the first four bytes of
the preceding buffer. The buffer chain terminates when the first four bytes
are binary zeros. Each buffer string requested via the GBUF macro will be
chained in the same way. The buffer pool size will not be permitted to
exceed 64 pages.

Cautions and Errors

1. Only one PRIME macro can be issued in a CAM program.

2. General Register 15 Return Codes:

X'OO'

X'04'

X'08'

X'OC'

X'IO'

Request processed successfully.

Parameter list error.

Name exists in CAM already.

PRIME issued more than once.

Not enough memory available to create a buffer pool of the
desired size.

3-189

SEND Macro (SVC BDI 6)

SEND transmits to terminal a message from the processor and permits the
program to request additional input from the terminal. The message length
must exceed five bytes and may not be greater than 2000 bytes. However,
the message may be constructed in pieces occupying more than one buffer.

Name

addr

Operation Operand

SEND
(

addr}
(1)

Specifies the address of an Event Control Block (ECB) which
contains the following information:

Byte Contents

0 Logical line number

1-3 Address of message buffer

4 Editing options

5 Termination status

6 Special request

The editing options (byte 4) are defined in "Macro Instruction Editing
Options" of the appendices.

The termination status (byte 5) contains:

X'80'

Norma~ termination.

X'81'

BREAK received.

X'82'

Unrecoverable hardware error on read.

X'84'

Unrecoverable hardware error.

X'88'

Read issued to deactivated line.

3-190

The special request (byte 6) is set by the program and contains:

Bit

(1)

Programming Notes

=:0

J\fter SEND is complete, do not
put up a read to the line.

Do not free the buffer(s) after
transmission.

=1

After SEND is complete, put a
read up to this line.

Free the buffer(s) housing the
message after transmission.

Indicates that General Register 1 has been loaded with the
address of an Event Control Block as described under the
addr entry.

1. The ECB contains the information necessary to control message
transmission. More specifically, it contains the message address, the number
of the line to receive the message, edit options (refer to "Macro Instruction
Editing Options" in the Appendices), a transmission status byte, and a byte
for the user to select the desired options. The options available permit the
user to have a read issued to the line after the write is completed and/or free
the buffer containing the message at an appropriate time.

2. Messages which exceed one: buffer data length appear as:

~
link header I datal

link data2

0 data3 I
I

!

The header contains the length of the entire message, i.e., the number of
bytes for the header, plus datal, plus data2, plus data3. The actual message
in the last buffer need not go up to the end of buffer as is indicated by the
dotted line.

3. SEND initiates the I/O and returns control to the user program before the
I/O terminates. The user can now process but will not be allowed to use the
same line until I/O terminates. The information pertinent to I/O termination
is contained in the termination status byte.

3-191

Cautions and Errors

General Register 15 Return Codes:

X'OO'

X'04'

X'08'

X'OC'

X'lO'

X'18'

SHUTM Macro (SVC BEl 6)

Request has been successfully initiated.

ECB logical line number is invalid.

The line specified is no longer connected.

The li ne is already busy either reading or writing.

The nlessage to be transmitted has a count greater than 2000
bytes or less than 6 bytes.

EitheI the address of the ECB, the one it contains, or one of
the bLffer link addresses is invalid.

SHUTM inhibits further input (new reads from being put up to a terminal).
However, any reads ,)utstanding when SHUTM is issued will be honored if
data comes in and a FETCH is issued. SHUTM is issued when the program is.
preparing to terminat,~.

Control is returned to the program immediately following the macro.

Name Opera":ion Operand

SHUTM

3-192

--------------------SPSEQ Macro (SVC C 11 6)

SPSEQ (Specify Polling Sequence) is provided so the user can specify the
multistation lines to be connected to this program and the order in which
the terminals are to be polled.

Name Operation Operand

SPSEQ
(

(1) }
symbolic addr

Programming Notes

The operand provides the address of a linked list specifying the desired
polling sequence for each line. The address is either supplied in register 1 or
symbolically as illustrated above. The lines to be connected and their polling
sequences are provided through· a linked list whose sub lists contain a 4-byte
link, the line number, the terminal TSCs for one complete polling cycle; and
are terminated by a X'FF'. The last sublist is identified by a word of zeros in
the link field.

The link field is four bytes long and the line number field is one byte long.
The length of the TSC fields vary with the terminal type. TSC fields are one
byte long. The TSC is only used when the terminal is a 70/752. If the
terminal is a 70/751, the polling sequence is controlled by the hardware and
the first TSC entry will be X'FF'.

E
E

Line
No.

Line
No.

TSC TSC
11 12

TSC TSC
22 21

TSC TSC
13 11

TSC TSC
22 23

TSC
13

TSC
21

FF

FF

After learning which lines are to be connected to this program, SPSEQ will
initialize and/or create the Terminal Entry Table (TET), the Resident
Terminal Entry Table (TETR), and the Remote Terminal I/O buffer for the
mult:istation lines. However, the pointer to the poll train will not be placed
in the TET until the poll train is supplied. If the line number is supplied
without the poll train, CAM will generate a poll train for the line. This CAM
generated poll train will poll each terminal once before restarting the cycle,
thereby giving all terminals the same priority.

Additionally, SPSEQ will set up the appropriate Poll List entry for each
multistation line and begin polling.

The parameter list, as well as the beginning of each sublist, must be on a
word boundary.

3-193

Cautions and Errors

General Register 15 Return Codes:

X'OO'

X'04'

X'08'

X'IO'

X'20'

X'40'

Request normally processed.

At least one of the indicated lines is already connected to
another program.

At least one of the indicated line numbers is illegal.

At least one of the indicated lines is not a multi station line.

At least one TSC is incorrect.

Para]neter list or sublist not on word boundary.

Notes:

When the return code is X'04', X'08', or X'IO', the affected
line will be marked by an X'FF' in the first byte of the link
field. Otherwise this byte will be X'OO'.

Whe:l more than one of these errors occur in the same input
list, the error codes will be logically added together and
retu]ned.

3-194

W AITM Macro (SVC BCI 6)

WRENDMacro

WAITM (Vvait for Further Input) pends the CAM program until there is
input from one of the terminals. It is intended to be used when the program
cannot continue until it receives further input. Control is returned to the
program irnmediately following the WAITM when a message has been
received from a terminal.

Name Operation Operand

WAITM

The WREND macro (Wait for Write Termination) provides the user with
means to stop processing until the SEND he initiated out of the indicated
ECB has completed.

Name

ecbaddr

braddr

Operation Operand

WREND ecbaddr [,braddr]

The symbolic address of the ECB controlling the SEND.

An optional operand indicating the location to which control
should be transferred after the SEND completes. If it is
omitted, control will be returned to the location following
the macro.

Programming Notes

SEND initiates transmission to a remote terminal and then returns control to
the user, but this is no indication that the SEND is completed. When the
trans:mission to the terminal is complete, another routine called the Write
Terminator IS invoked to complete the SEND. It is at this time that the
completion bit is set in the ECB and the transmission is considered complete.
The WREND macro stops the user's processing until such time and then
returns to the user.

3-195/3-196

APPENDIX A
MACROS SUPPORTING PHYSICAL LEVEL I/O AND RUN TIME PARAMETERS

TOSMACROS

-,-----
ASSGN Macro

The following TOS macros, related to file processing and device
management, are available to Class I programs only. The TOS PCP macros
(not discussed in this document) are also available to Class I programs. Refer
to TOS/TDOS PCP and ExecutIve Communications Macros Reference
Manual for the description of the TOS PCP macros, as well as additional
information relating to the other TOS macros listed in this appendix.

Dynamic Assignment (0)

Name

[symbol]

ccb

Operation Operand

ASSGN ccb-relexp

Specifies the address of the CCB which contains the symbolic
device name of the device to be assigned.

A-I

CHECK Macro

Command Control Block (0)

Name Operation

symbol CCB

Operand

synibolic device-symbol,
ccw-relexp,
flags-absexp,
device type-absexp

symbolic device

ccw

flags

device type

Specifies the name of the symbolic device with which the
CCB is associated.

Specifies the address of the first CCW to be referenced by
this CCB.

Specifies the user flags.

Specifies the device type.

Check Completion of I/O Operation (0)

Name

[symbol]

ccb

address

Operation Operand

CHE;CK ccb-relexp,address-relexp

Specifies the address of the CCB to be checked.

Specifies the address to which control will be given if the
CCB indicates that the operation has not completed.

Con trol will be given to the instruction following the CHECK
macro if the operation has completed.

A-2

COMTYMacro

CPCI Macro

No Operation (0)

Name Operation Operand

[symbol] COMTY blank

This macro results in a no-op because it is unnecessary in VMOS to check for
completion of the TYPE macro instruction. When encountered in any
program, control is immediately passed to the instruction following the
macro expansion. This macro is processed in this manner because messages
are considered to be completed with the processing of the TYPE macro.

Check for Program Controlled Interrupt (0)

Natne

[symbol]

ccb

address

Operation Operand

CPCI ccb-relexp,address-relexp

Specifies the address of the CCB.

Specifies the address to which control will be given if the
CCB indicates that the PCI has not taken place.

Programming Notes

If the PCl has taken place, control will be given to the instruction following
the CPCI.

A-3

DDEVMacro

Deallocate a Device (0)

Name Operation Operand

[symbol]

sdn

DDEV sdn

Specifies the 6-byte symbolic device name of the device to be
releaBcd.

Programming Notes

DMODEMacro

If the specified symbolic device name is associated with a TOS FILE
command which is in the HOLD status, the device is not released. Of course,
when the associated file definition is dropped, the device is released.

Obtain 7-Level Write Control Byte (0)

Name

[symbol]

sdn

R

address

Operand

DMODE sdn ,R,address-relexp

Specifies the 6-byte symbolic device name.

This operand is ignored.

Specifies the address of a I-byte memory location into which
the current write control byte for the name device will be
stored.

A-4

EXCP Macro

EXCPWMacro

The EXClP - Execute Channel Program (0) - performs the same function as
the EXCPW except that control is returned to the user after the channel
program is initiated (or queued).

Name

[symbol]

ccb

Operation Operand

EXCP ccb-relexp

Specifies the name of the CCB indicating the I/O operation
to be initiated.

The functilon of the EXCPW macro - Execute Channel Program and Wait (0)
- the user's I/O channel program as specified by the CCW address in the
CCB. The user is then pended until the channel program is completed.

Nanle

[symbol]

ccb

Operation Operand

EXCPW ccb-relexp

Specifies the name of the CCB indicating the I/O operation
to be initiated.

A-S

QUIET Macro

SMODEMacro

SPRG Macro

The QUIET macro - Quiet Input/Output Devices (0) - waits the calling
program until its I/O activity is quieted.

Name Operation Operand

[symbol] QUIET blank

Set Write Control Mode (0)

Name

[symbol]

nl0de

Operation Operand

SMODE mode

Specifics a 2-digit hexadecimal self-defining term, written in
the form X'mm'. This operand specifies the write control
byte which is to be stored into some PDT element.

The SPRG macro causes the purge bit in the PDT element to be set. This is
reset when the device is released.

Name Operation Operand ----
[symbol] SPRG blank

A-6

TYPE Macro

Typewriter Requests (0)

Name

[symbol]

message

n

response

m

Operation

TYPE

Operand

message-relexp [,n-absexp]
[,response-relexp]
[,m-absexp]

Specifies the address of the message area.

Specifies the number of bytes in the message. If omitted, the
length attribute of the message area indicates the message
length. The length of a message may not exceed 127 bytes.

Specifies that a response to the message is required. This
operand is the address of the response area.

Specifies the maximum number of bytes permitted in the
response. If Olnitted, the length attribute of the response area
indicates the maximum number of bytes permitted in the
response. The length of a response may not exceed 72 bytes.

A-7

The WAIT macro - Wait for Completion of Channel Program (0) - is used
to pend (wait) the issuing task until termination of the I/O indicated in the
CCB has taken place.

Name

[symbol]

ccb

OperC"tion

WAIT

Operand

ccb-relexp

Specifies the name of the CCB indicating the I/O operation
whose completion is required.

'IOS RUN-TIME PARAMETERS (RTP)

The following TOS run-time parameters are supported in the VMOS
Command language. The commands are applicable to files processed by TOS
FCP or physical level I/O (that is, EXCP).

FILE (ASSGN) Command (R TP)

The TOS FILE comlnand replaces the TOS ASSGN run-time parameter. The
TOS form of the FILE command is defined below and it follows TOS
command syntax.

Operation Operand

FILE SYMDEV=symbolic device name-symbol[,LINK=symbol]
[,DEVICE=D564 D568 D590 TA Tape T7cc WORK T9N T9P]
[,MOUNT=mnemonic]

SYMDEV=

LINK=

Specifies that a TOS FILE command is being issued. This
pararrlcter specifies the 1- to 6-character symbolic device
name required by TOS.

Specifies the linkname. Although TOS programs do not make
use (if this parameter, it can still be used with other
comrriand (for example, HOLD, RELEASE). For example,
the RELEASE command can be used to release the private
devic~: associated with the TOS symbolic device name. If the
pararrlcter is omitted, a LINK name of "spaces" is assumed.
If a FILE command has the same linkname as a previous
FILE command, the new command replaces the old
definition. The processing is equivalent to the sequence:

FILE command I FILE LINK=X

RELEASE X,KEEP

FILE command II FILE LINK=X

A-8

DEVICE=

Note that any private devices associated with FILE command
I are returned to the task, not the system. This important
property allows the reuse of private devices. Note also that
the devices associated with FILE command I are not attached
(associated) with FILE command II; they are merely
returned to the task.

Specifies the type of device.

D564

Specifies a 8564 Disc.

D568

Specifies a 8568 Mass Storage Unit.

D590

Specifies a 8590 Disc.

TA

Specifies a 9-level or a 7-level tape with data convert. The
7-1evel tape is assumed to have a control code (cc) of (FO)1 6 ;

that is, odd parity, pack/unpack, and no translate.

TAPE

Specifies a 9-level tape.

T9N

Specifies a 9-level NRZ (non-return-to-zero) tape.

T9P

Specifies a 9-level phase-encoded tape.

T7cc

Specifies a 7-1evel tape. The control code (cc) must specify
the standard write control byte required by the 7-level device
(refer to table 3).

WORK

Specifies a system work tape. The system attempts to acquire
a 9-level system work tape, previously specified by the
operator (via the SETUP command). If no tape is available,
the parameter is equivalent to the TAPE parameter.

A-9

MOUNT=

FILES Command (RTP)

Default: If no device type is specified, TAPE is assumed.

Innemonic

Specifies the 2-character installation name of a particular
device. This allows the user to specify a preference for a
specified device. If the specified device is unavailable, the
system attempts to acquire a device of the same type. If this
fails, processing continues and a further attempt to acquire
the device is made when the problem program requires it. If
this parameter is specified, the DEVICE parameter is ignored
unless the mnemonic specifies a 7-level tape device. In this
case, the DEVICE parameter must be specified to define the
control code of the tape.

Defa1llt: The system selects an appropriate device according
to the device type specified in the DEVICE parameter.

This command allo·ws the user to position tape files.

Name

sdn

n

Operation Operand

FILES sdn,n

Specifies a 1- to 6-character TOS symbolic device name.

Specifies the number of tape marks to be skipped (from the
present position of the tape); this is a 1- to 4-digit decimal
field

A-IO

TPLAB Command (RTP)

This commland allows the user to supply file label information for tape label
checking and writing. It must immediately follow the VOL command.

Name

label

VDC Command (RTP)

Operation Operand

TPLAB 'label'

Specifies a string of nonblank characters between single
quotation marks.

This comrnand allows the user to specify the file identification and volume
serial numbers associated with a direct access file's DTF name.

Name

filename

matrix

identification

vsn

Operation Operand

VDC filename,matrix,identification,vsn, ...

Specifies the name used in the DTF macro to identify the
file.

Specifies the number of bytes to be reserved for the extent
matrix for this file. This parameter is 1- to 4-digit decimal
field. When created, this area is preceded by a 2-byte field
which contains the length in binary of this area. If this
parameter is omitted, this 2-byte field is set to zeros.

Specifies the name in the file label.

Specifies the volume serial number or numbers associated
with this file. Each vsn is a 6-character alphanumeric field.

A-II

VOL Cornmand (RTP)

This command allows the user to associate a TOS symbolic device namle
(sdn) with a filenarrle for checking or writing standard labels for tape files. If
this command follows a FILES command and the sdn's do not agree, the
command is rejected.

Name Operation Operand

VOL sdn ,filename

sdn

Specifies 1- to 6-character TOS symbolic device name.

filename

Specifies the filename associated with the DTF.

A-12

GENERAL

APPENDIX B
MISCELLANEOUS TASK AND FILE (DATA) MANAGEMENT

COMMANDS AND MACROS (CLASS I PROGRAMS)

The comrnands and macros listed in this appendix define operations available
to the user in the areas of Task and File Management. They have been
segregated from the general discussions of these areas as, although they
provide useful features, they are not requisite to Task and File Management.

VMOS TASK MANAGE~lENT COMMANDS AND MACROS

The following commands and macros may be used with Class I and Class II
programs.

ACCNT M~acro

ACCOUNT Command

ASCII Macro

BCNTRL Command

EBCD Macro

GDATE :Macro

GEPRT Macro

GETOD :Macro

GTMAP Ivlacro

REMARK Comn1and

SETBF Macro

TYPE C01nmand

B-1

Allows the user to add an identifier to
his accounting macros.

Allows user or System Administrator
to manage accounting files.

Allows the user to set the decimal code
for Processor state 1 to ASCII.

Control broadcast and message
transmission.

Allows the user to set the decimal code
for Processor state 1 to EBCDIC.

Allows the user to place the current
date in his program.

Allows the user to obtain the elapsed
CPU time for his task.

Allows the user to insert the time of
day into his program.

Allows the user to obtain a bit map of
a task's virtual memory.

Allows the user to output remarks to the
SYSOUT file.

Enables the user to change the size of
the terminal buffer.

Allows the user to send a message to the
operator's console.

ACCNTMacro

The ACCNT macro permits the user or administrator to add an 8-character
identifier to his accounting records.

Name

id-addr

(r)

Operation

ACCNT

Operand

J id-addr}
\ (r)

Spec:tfies the address of an 8-byte identification area.

Spec tfies the general register containing the address of an
8-byte identification area.

Cautions and Errors

General Register 15 Error Return Codes

X'OO'

Addition was successful.

X'04'

Invalid address supplied.

B-2

-----------------ACCOUNT Command

The ACCOUNT command enables the user and/or system administrator to
manage files of records containing information concerning task processing.
Among those management options provided by this command are renaming
and redirecting accounting files, monitoring CPU time for accounts,
communicating to the operator the names of user initiated programs, JOIN
File interrogation, and the insertion of identifiers into accounting records.

Name Operation Operand

ACCOUNT [CHANGE=filename] ,

[
RECORD= {ALL }]

userid
(userid, ...)

fID= J C'text' }] L 1 X'text'

CHAN GE==filename

User or System Administrator: specifies the new accounting
file to be opened. The current file will be automatically
closed. A maximum of 54 characters is allowed.

RECORD==ALL

System Administrator Only: requests the spooling out of a
list of all userids currently active in the JOIN File and such
related infornlation as mailing addresses, DMS page allocation
values, account number, maximum priorities, and CPU time
values.

RECO RD==userid

User: Displays accounting information and password
associa ted with the designated userid.

RECORD=:(userid, ...)

System Administrator: lists the accounting information and
password associated with the designated userid.

RECO RD=:(userid, ...)

ID=C'text'

System Administrator Only: lists all accounting information
and passwords for those userids listed.

User or System Administrator: inserts one to eight
alphanumeric characters expressed as a character constant
into all the user's accounting records.

B-3

ID=X'text'

User or System Administrator: inserts one to eight
alphanumeric characters, expressed as a hexadecimal
constant, into all the user's accounting records.

Programming Notes

ASCII Macro

Only one operand mly be specified in a given issuance of the ACCOUNT
command. To specify a new accounting file, display the user's ID, and insert
an identifying string into the user's accounting records by issuing the
following three commands.

ACCOUNT CHANGE=TJFILE
ACCOUNT ,RECORD=$TJREC
ACCOUNT "ID-X'1234'

The combination of any or all of these in one command statement is not
permitted.

The ASCII macro permits the user or administrator to set the ASCII mode.
Actually, ASCII is used to set the processor decimal code for Processor State
1 to ASCII for the task in which the program is running.

Name Operation Operand

ASCII

Programming Notes

The execution of thh macro causes the ASCII decimal code to be used in
determining the zone configuration when executing the decimal arithmetic
instruction set, the Edit instruction, and the Edit and Mark instruction.

The setting of this dedmal code does not affect any automatic translation of
data read into or written from the processor.

B-4

BCNTRL Command

Broadcasts and messages can be allowed or prohibited at the discretion of
the user. However, emergency messages as determined by the system will be
sent to SYSOUT; e.g., all shutdown messages.

Name

MES=

BCST=

Programming Notes

Operation Operands

Y

All text sent by the /MESSAGE command will be received on
SYSOUT.

N

All text sent by the /MESSAGE command will not be
received on SYSOUT.

Y

All text sent by the /BROADCAST command will be
received on SYSOUT.

N

All text sent by the /BROADCAST command will not be
received on SYSOUT.

Prior to the first use of this command, all text sent by the MESSAGE and
BROADCAST commands will be received.

B-5

EBCD Macro

EBCD enables the USt~r to set the EBCDIC mode. Actually, it is the setting of
the processor decimal code for Processor State I to EBCDIC for the task in
which the program is running.

Name Operation Operand

EBCD

Progranlming Notes

GDATE Macro

The execution of this macro causes the EBCDIC decimal code to be used in
determining the zonl~ configuration when executing the decimal arithmetic
instruction set, the EDIT instruction, and the Edit and Mark instruction.

The setting of this df:cimal code. does not affect any automatic translation of
data read into or written from the processor.

GDATE acquires the current date and places it in a location supplied by the
user.

Name

location

Operation

GDATE

Operand

{
lOcation}
(1)

Specifies the symbolic name of the 12-byte area in the user's
program into which the Executive is to place the curren1t
date.

The date is stored in zoned decimal format as mm/dd/yyjjjb
where:

nlm

nl0nth (two bytes),

dd

day of month (two bytes),

yy

year (two bytes),

jjj

day of the year (Julian date), (three bytes), and

B-6

Examples

(1)

Example ll:

b

blank character (X'40'), (one byte).

Note: The Executive stores slashes (/) in memory just as
shown in the above format.

General Register 1 which has been loaded by the user with
the address of the field to receive the current date.

A sample date is shown below (in hexadecimal notation) as it would appear
in the user-supplied area following the execution of GDATE.

Assume the current date to be 29 February 1968.

BYTE 0 1 2 3 4 5 6 7 a 9 10 11

HEX FO F2 61 F2 F9 61 F6 Fa FO F6 FO 40

CODe: m m /

DECIMAL 0 2 /
MONTH

Example 2:

Nanle

AREA

Operation

LA
GDATE

DS

d

2

d /

9 /
DAY

Operand

I ,AREA
(1)

CL12

y y b

6 a o 6 o
YEAR JULIAN DAY BLANK

®
CD The user loads General Register 1 with the address of the field to receive
the current date.

@ The GDATE macro is issued referencing General Register 1.

G) AREA is a 12-byte field reserved for receipt of the current date.

B-7

GEPRTMacro

Exalnp]es

GEPRT (Get Program. Time) acquires the task's elapsed CPU time.

Name

location

Example I:

Operation Operand

GEPRT location

The symbolic name of the leftmost byte of a 6-byte area in
the u~.er's program into which the amount of elapsed CPU
time currently used by this task is stored.

CPU time is stored in zoned decimal format as hhmmss
where:

hh

hours (two bytes),

mm

minutes (two bytes), and

ss

seconds (two bytes).

08 27 00 (8 hours an{ 27 minutes) would be stored as:

FOF8F2F7FOFO

Example 2:

Name Operand

GEPRT TIME

TIME DS CL6

The task's elapsed CPU time is stored in the user's program at location
TIME.

B-8

GETODMacro

GETOD (Get Time of Day) causes the Executive to store the current time of
day in a location specified by the user.

Name

location

(1)

Operation

GETOD

Operand

{
lOcation}
(1)

Specifies the symbolic address of the location into which the
Executive is to store the current time of day.

The time is stored in zoned decimal format as hhmmss
where:

hh

hours (two bytes),

mm

minutes (two bytes), and

ss

seconds (two bytes).

For example:: 13:09:27PM (27 seconds after 9 past I PM)
would appear as:

hh mm ss

FIF3FOF9F2F7

General Register I which has been loaded by the user with
the address of the field to receive the current time of day.

B-9

GTMAPMacro

GTMAP (Get Memory Map) is used to obtain a bit map of a task's virtual
memory and the nUlnber of the task's last virtual memory page.

The user must allocate 34 contiguous bytes for receipt of the information.
The first 32 bytes contain the bit map of the user's virtual memory. Each bit
represents a virtual page. A bit setting of 1 indicates an unallocated (free)
page.

The last two bytes of the 34-byte area will contain the number of the las1t
virtual memory page.

For example: if the last page is 2391 0 , the last two bytes of the GTMAP area
would be OOEF 1 6 •

Name

location

(1)

GTMAP

Operand

{
lOcation}
(1)

Specifies the symbolic address of a 34-byte area into which
the Executive is to store the user's virtual memory bit map.

Gene:l'al Register 1 which has been loaded by the user with
the symbolic address of the field to receive the virtual
memory map.

Cautions and Errors

General Register 15 Return Codes:

X'OO'

Request processed successfully.

X'04'

The user's receiving field address is not within user's memory.

X'08'

User Virtual Memory Table has not been allocated.

B-IO

REMARK Command

REMARK allows the user to output remarks to the SYSOUT file. For a
conversational user who is not in the PROC mode, remarks are not written.

Remarks cannot be contained on multiple lines, but any number of
REMARK commands can be issued.

Name

remarks

Operation Operand

REMARK remarks

Any desired remarks can be entered. A remark should not
exceed 71 characters in length.

Programming Notes

Examples

If the REMARK command is used in a procedure file, the command print
option in the PROCEDURE command must be exercised for the remark to
be written to the SYSOUT file.

Example 1:
1ft

/REMARK THIS GOES TO SYSOUT

The remark "THIS GOES TO SYSOUT" is output to the SYSOUT file. If
SYSOUT is the user's terminal, the remark is not written.

Example 2:

/ .NAME REMARK REMARKS

This corrlmand has a name field. The remark "REMARKS" is output to the
SYSOUT file.

B-ll

SETBF Macro

The SETBF (Set Buffer) macro instruction is issued in a user's program to
change the size of the terminal buffer. The buffer size may range from 80 to
1024 bytes.

Name

size

N

(1)

Operation Operand

SETBF
{

size [,N] }
(1)

An integer between 80 and 1024 which defines the size of
the tenninal buffer desired.

Indicat~s no change is to be made in the buffer size if the
requested size (size defined above) is at least as large as the
current buffer size.

Indicat~s the user has loaded General Register 1 with the size
of the buffer desired before issuing the SETBF macro.

Programming Notes

Error Codes

If the program using the SETBF macro is in the nonconversational mode, no
action will be taken because the S YSIN and SYSOUT files will handle a
record up to 1 020 bytL~s.

General Register 15 Return Codes

X'OO'

Requested buffer obtained.

X'04'

Invalid buffer size provided.

X'08'

New buffer could not be obtained.

B-12

TYPE Command

Examples

TYPE is issued by the user to cause a message to be printed on the system
operator's console typewriter.

TYPE can be issued in either the conversational or non conversational mode.

Name

msg

Operation Operand

TYPE msg

Specifies the message to be typed on the operator's console
typewriter. This message cannot exceed 72 characters in
length. Any characters that are on the typewriter keyboard
are acceptable.

I.NAME TYPE MESSAGE=HELLO, JOE CD
ITYPE OK CHARACTERS ARE A-Z,I-9,.#@'='A ~(%;-+I!$-C)*,.AND/. Q)

ITYPE 72 CHARACTERS MAX. "72 CHAR. MAX." ®
CD This naJmed command causes the message "MESSAGE = HELLO, JOE" to
be typed on the operator's console typewriter.

Q) This command does not have a continuation line. The 58 character
message shows all the characters acceptable in a TYPE command. These are
the letters A-Z, the digits 0-9, and the special characters as shown.

® The message "72 CHARACTERS MAX." is typed on the operators
console. This command has a comments field, which is not typed on the
operators console.

B-13

TOS TASK MANAGEMENT MACROS

ADEXTMacro

The following macros are restricted to use with Class I programs.

ADEXTMacro

FLOADMacro

MONTBMacro

Allows a user's Class I program to
.obtain the address of the Executive
Communication Region (ECR) and
Program Table (PT) entries for the
user program.

Allows a user's Class I program to load
in FCP overlay.

Allows the user to get the address of
the monitor table in order for his
program to interrogate the elements of
the table.

ADEXT macro (Address Executive Tables) is used in a Class I program to
obtain the address of the Executive Communication Region (ECR) and
Program Table (PT) entries for the user program. Portions of the Tape
Operating System ECR and PT are simulated in the VMOS to provide
intersystem compatibility. For description of the ECR and PT, refer to
"VMOS Support of TOS Tables" in the appendices.

Name Operation Operand

AD EXT

Programming Notes

After the macro is executed, the user program receives control at the
instruction following the macro expansion.

General Registers 14 and 15 contain the following:

Register 14

Register 15

Addre ~s of the first byte of the Executive Communication
Region.

Addre~s of the first byte of the user program's Program Table
Entry.

The address in bytes 24-27 of the Program Table can be used to obtain
information contained in the program's Executive Storage Area.

Cautions and Errors

ADEXT is ignored if it appears in a Class II program.

B-14

FLOAD Macro ..

FLOAD rnacro (Load FCP) enables a Class I program to load an FCP
overlay.

Nanle

symbol

laddr

raddr

Operation Operand

FLOAD symbol,laddr[,raddr]

Specifies the name of the FCP overlay to be loaded. The
symbol may be one to six characters in length.

Specifies the load address.

Specifies the address to return to alter the module has been
loaded. If this operand is omitted, control is returned to the
instruction following the macro expansion.

MONTBMacro

MONTB nlacro (Address Monitor Table) enables a system program to get the
address of the Monitor table in order for the program to interrogate the
elements of the table. The nlacro causes the VMOS Executive to provide the
user program with the address of the Monitor table. This address is in class 6
menlory in general register 15. Control is returned to the user.

Name Operation Operand

MONTB blank

blank

Indicates the absence of any operand designation.

TOS FILE MANAGEMENT MACROS

The following macros may be used with either Class I or Class II programs.

EXLST Macro

EXRTNMacro

TYPIO Macro

B-lS

Enables the user to provide the
operating system with an address to
which control may be given for a
contingency situation.

Enables the user to provide the
operating system with information upon
return from EXLST processing.

Enables the user to have his program
send and receive information to and from
the operators console.

EXLST Macro

During the opening (If a file or while processing is occurring, a situation may
arise which should be reported to the program. Such situations, Contingency
and Error Exits, may arise from an error on the part of the program or they
may be external to the program. The program is also notified when such
things as label processing must occur. The EXLST macro instruction is C3l

means whereby the~rogram provides DMS with an address (or addresses)
where control may be given when such a situation arises. The program may
use three techniques to inform DMS of its needs:

1. Provide the addres~. of one routine to process all conditions.

2. Provide the addres,es of routines to process any conditions relevant to the
program. Note that s::>me conditions will result in the program's termination
if no processing routine is provided.

3. Provide the addre3s (or addresses) of routine(s) to process a particular
condition as well a s the address of a routine to handle all possible
con tingencies.

No matter which technique is used, the following conventions obtain:

I. The address of the file's FCB is placed into register I before the program
is given control.

2. The address of the instruction where control would have passed is placed
into the FCB.

3. Each possible condition has an identifying number which will be stored in
the FCB before the program receives control.

If the program uses one routine to process all contingencies, its address
should be placed into the FCB. Otherwise, the address of an EXLST macro
instruction is placed into the FCB.

The EXLST Macro Instruction

Name Opera1ion

[SYMBOL] EXLST

Operand

[OPENX=relexpINO] [,OPENER=relexpINO]
[,PASSER=relexpINO]
[,LOCK=relexpINO] [,NODEV=relexpINO]
[OPENZ=relexpINO]
[,LABGN=relexpINO] [,LABEOV=relexpINO]
[,CLOSER=relexpINO] [.OPENER=relexp]
[,LABEND=relexpINO] [,EOVCTRL=relexpINO]
[,OPENV=relexpINO]
[,EOFADDR=relexpINO] [,ERRADDR=relexpINO]
[,ERROPT=nameIIGNOREISKIP]
[,WLRERR=nameINO] [,NOSPACE=relexpINO]
[,ISPERR=relexpINO] [,DUPEKY=relexpINO]
[,NOFIND=relexpINO] [,USERERR=relexpINO]
[,SEQCHK=relexp/NO] [RECON=relexpINO]
[,COMMON=relexp]
[,PGLOCK=relexp]

B-16

In all cases, the relexp operand is the address of a routine to handle the
associated condition. If the NO option is taken, the program is indicating
that it do(;~s not wish control upon occurrence of the corresponding event.
The COMIvION exit allows the program to provide one routine to handle all
conditions that do not require a tailored routine. In all cases where NO is an
option, this is also the default value. To nullify the default, it is necessary to
specify the keyword with a null operand.

A discussion of the LABGN, LABEOV, and the LABEND operands will be
found under "Tape Labels and Tape Label Processing", in the appendices of
the VMOS Programmer's Reference Manual, since these parameters are used
for the processing of either user labels or nonstandard labels.

OPENX=

OPENER=

PASSER=

LOCK=

NODEV=

The FCB has been modified by the information supplied
either in a FILE command (macro) or through the catalog.
The program may now ensure that all parameters are
consistent so that the OPEN can be completed with no
errors. If a new file is being created, then the FCB has been
modified by the FILE command, but the catalog entry has
not yet been written.

An error was encountered while attempting to OPEN the file
(for example, inconsistent FCB, no space allocated for the
file, or a null ISAM file opened INPUT). An error code
detailing the condition is stored in the FCB.

An invalid password was specified for a protected file.

For a non-ISAM file, the condition was encountered because
the program attempted to open a file in a mode other than
INPUT and it was already open by another user.
Alternatively, if the file is open currently by another user in a
mode other than INPUT and the program tries to open the
file INPUT, the same condition occurs. For a non-ISAM file,
the LOCK exit indicates that the OPENjSHARUPD
specifications conflict with the OPENjSHARUPD
specifications of other users who have already opened the
file.

No free device exists upon which the private volume may be
mounted; or, the private volume is presently being used by
another user. If the SECURE, HOLD, and DROP commands
are used properly, this condition should not arise.

B-17

OPENZ=

CLOSER=

PGLOCK=

EOVCTRL=

For a file being opened either OUTPUT or OUTIN, the
catalc,g processing has been completed by the time the exit is
taken; however, the remainder of the open process remains to
be done. The program may modify the FCB at this time so
that processing is done in a way convenient to it. For
exam pIe, the catalog might indicate that a file was SAM;
however, the user might want to process it using PAM.

An error was encountered while attempting to CLOSE the
file (for example, error encountered when attempting to
write labels). An error code detailing the condition is stored
in the FCB.

This parameter is applicable only if the file was opened with
SHARUPD=YES. Control will be given to the user at this exit
when"~ver a data block (or index page) which must be
referenced in the course of processing an action macro is
inaccessable because of the manner in which another user is
acces!iing it. (For example, if one user has locked a data block
and (L second user tries to lock it, the second user will be
given control at his PGLOCK exit.)

It is possible for any macro issued for a file opened with
SHARUPD=YES to cause control to be passed to this exit.
Unless caused by a PUTX or an ELIM (no KEY), the
"intelnal pointer" will be invalid when the PGLOCK exit is
taken. Thus, it is necessary to reposition this pointer before
issuing a macro which assumes that it is valid (such as GET,
GETR, and GETFL). The pointer can be repositioned by
issuing the RETRY macro or one of the following ISA]\I[
action macros: GETKY, SETL, PUT, STORE, INSRT, or
ELIM (KEY). If a GET, GETR, or GETFL is issued before
the pointer is repositioned, control will be passed to the
USERERR exit.

If the macro which caused the PGLOCK exit to be taken was
a PUTX or an ELIM (no KEY), the data block will still be
locked at the PGLOCK exit and no repositioning is required.

Label processing is completed after a new volume is
mounted. The FCB will contain the 6-digit Volume Serial
Number (VSN) of the new volume. Initially, the VSN of the
first volume will be stored in the FCB. This exit is only
activated if the file is on multiple reels.

B-18

OPENV=

EOFADDR=

ERRADDR=

ERROPT=:

This exit is taken when a tape volume with nonstandard
labels is encountered.

The end of file condition has occurred when a read was
attempted.

A hardware malfunction or an abnormal I/O termination
condition has occurred during the processing of the file.
Status bytes consisting of the standard device byte, the
executive flag byte, and the three sense bytes are stored into
the FeB. Note that SAM read errors use other exits.

~

This entry applies to SAM direct access or tape input files,
and it specifies functions to be performed for an error block.

If a parity error is detected when a block of records is read, the block is
reread a standard number of times before the block is considered an error
block. After this, the job is automatically terminated, unless the ERROPT
entry is included to specify other procedures to be followed on an error
condition. Either IGNORE, SKIP or the symbolic name of an error routine
can be specified. The functions of these three specifications are:

IGNORE

SKIP

name

The error condition is completely ignored, and the records
are made available to the user for processing.

No records in the error block are made avaible for processing.
The next block is read from the device and processing
continues with the first record of that block.

DMS branches to the user's routine where he can perform
whatever functions he desires, to process or make note of the
error condition. Register 0 contains the address of the block
in error.

In his error routine, the programmer must not issue any GET instructions for
the records in the error block. In this routine, the user may issue logical
(GET, PUT) macros to any file other than one in error. If the program
wishes to return to normal processing, the EXRTN macro must be issued. If
the register 0 contains X'OOOOOOO I', then the current block will be skipped,
and processing continues with the next block. Any other code indicates that
this block is to be processed as if no error occurred.

B-19

This entry does not apply for output files. The entry applies to wrong-length
records if the entry \VRLERR-name is not included.

WLRERR=

A wrong-length record was read from a tape file. Whenever
fixed-length blocked records or variable-length records are
specified, the machine check for wrong-length records is
suppressed, and DMS generates a program check of record
length. For fixed-length blocked records, record length is
considered incorrect if the physical tape record (gap-to-gap)
that is read is not a multiple of the logical record length
(specified in FCB entry RECSIZE), up to the maximU1TI
length of the block (specified in FCB entry BLKSIZE). This
permits the reading of short blocks of logical records without
a wrong-length record indication. For variable-length records,
record length is incorrect if the length of the tape or
direct-access record is not the same as the block length
specified in the block count control field.

When the program is given control, register 0 contains the address of the
block in error. The EXRTN macro may be issued to continue processing. If
register 0 contains X'OOOOOOOI', then the current block will be skipped and
processing continue:; using the next block. Any other code indicates that this
block is to be proce~;sed as if no error had occurred.

If the WLRERR en try is omitted and a wrong-length record is detected by
DMS, one of the foHowing occurs:

1. If the FCB entry ERROPT is specified for the file, the wrong-length
record is treated as an error block and processed according to the program's
specifications for an error.

2. If the FCB entries ERROPT and ERRADDR are not specified, the job is
terminated.

The WLRERR entry does not apply to undefined records. Undefined records
are not checked for incorrect record length.

NOSPACE=

ISPERR=

DUPEKY=

Insufficient space exists with which to perform secondary
allocation or extended output. If preassigned tape volumes
exist, then all volumes have been filled.

Insufficient space exists to expand the index of an ISAM file.
Note that an ISAM file may have to be extended to obtain
rOOITl either for data or index although it is one file.

A matching key exists in the file and the INSR Taction
macro was issued.

B-20

NOFIND:=

A record with the matching key could not be found when the
GETKY macro was issued or a record which matched the
GETFL criteria could not be found within the specified
range.

The user will be given control at this exit if the file is opened with
SHARUPD=YES and he issues a PUTX or ELIM (no KEY) without first
locking the data block or if he issues a GET, GETR, or GETFL after taking
his PGLOCK exit without first repositioning his file.

USERERR=

SEQCHK==

The program has tried to perform an illogical use of the
action macros or has issued an illegal action. Examples are
issuing a write mac;o to a file opened input or an improper
operation code in PAM.

A record being added to a file via the PUT macro in ISAM
has a key less than the highest key already present in the file
or a PUTX attempted to change the key.

The user will be given control at this exit if the file is opened with
SHARUPD=YES and he issues a PUTX or ELIM (no KEY) without first
locking the data block or if he issues a GET, GETR, or GETFL after taking
his PGLOCK exit without first repositioning his file.

COMMON=

Specifies that all exit conditions, except those noted below,
are to exit to the location specified by COMMON. If any
other conditions (that is, other parameters) are specified,
they are routed to their specified locations. In other words,
COMMON allows programming by exception.

Note that COMMON does not apply to the following label and/or OPEN
contingency exits:

OPENX OPENZ OPENV LABGN

LABEOV LABEND EOVCTRL ERROPT

WLRERR

B-21

EXRTNMacro

Name

[symbol]

fcb

disposition

Operation Operand

{
fcb-addrx} {,diSPosition-value}
(1) (0)

EXRTN

Specifies the address of the FCB of the file whose processing
result,,~d in the contingency exit.

o

Label verification (OPENV) was satisfactory. Continue OPEN
procelS.

Error discovered in label verification (OPENV). The OPEN
process will notify the operator.

Table B-1 summarizes the use of the contingency exits.

The TYPIO macro (Available to Class I and Class II Programs) (0) performs
the same function as the TOS TYPE macro instruction. However, it
facilitates the writing of reentrant programs because the operands are passed
in registers.

Name Operation Operand

[symbol] TYPIO blank

Programnling Notes

Parameters are pass,~d in registers. The leftmost three bytes of register 0
contain the address of the message to be output. The rightmost byte
contains the message length.

If a response to the message is not required, register 1 must contain zeros.
Otherwise, the leftmost three bytes of register I contain the address of the
area to receive the response; the rightmost byte contains the area size, which
thus specifies the nlaximum message size. Longer messages are truncated
without error notification.

If the input message is less than the input area size, the message is left
justified in the input area. In this case, a byte of binary zeros is appended tlO
the message.

B-22

TABLE B-l. SUMMARY OF THE USE OF THE CONTI NGENCY EXITS

User May Issue
Contingency STD NSTD EXTRN FCB Terminate
Exits SAM SAM ISAM PAM BTAM CLOSE or LBRET ACTION Macro Code (1) Comments

OPENX A A A A A A A N 4 N

OPENZ A A A A A A A N 24 N

OPENV A A N N A A A 28 N

OPENER A A A A A N N N 8 A Error code stored in FCB.

PASSER A A A A A N N N 12 A

LOCK A A A A A N N N 16 A

NODEV A A A A A N N N 20 A
t:x;
I
tv LABGN A A N A A X A A 36 N w

LABEOV A A N A A X A A 40 N

CLOSER A A A A A N N N 44 N File considered closed.

LABEND A A N A A X A A 48 N File considered closed.

EOVCTRL A A N N A A A N 52 N

EOFADDR A A A A A A N A 64 A

(Continued)

Legend:

A = Allowed
X = Not Allowed
N = Not Appl icable
(1)= Program is terminated if exit not specified and action occurs.

TABLE B-1. SUMMARY OF THE USE OF THE CONTI NGENCY EXITS (Continued)

User May Issue
Contingency STD NSTD EXTRN FCB Terminate
Exits SAM SAM ISAM PAM BTAM CLOSE or LBRET ACTION Macro Code (1) Comments

ERRADDR A A A A A A N A 68 A Error Code and/or termi-
nation bytes (PAM and
BTAM).

ERROPT A A N N N A A N 72 A Termination bytes stored
in FCB.

NOSPACE A N A N N A N N for SAM; 76 A
allowed otherwise.

ISPERR N N A N N A N A 80 A

DUPEKY N N A N N A N A 84 A
~

I NOFIND N N A N N A N A 88 A N
.,J:::..

USERERR A A A A A A N A 92 A Error code stored in FCB.

SEQCHK N N A N N A N A 96 A

WLRERR A A N N N A A N 100 N Termination bytes stored
in FCB.

Legend:

A Allowed
X Not Allowed
N Not Applicable
(lj= Program is terminated if exit not specified and action occurs.

APPENDIX C
MACRO INSTRUCTION EDITING OPTIONS

The following table lists the editing options available to the problem
program. These editing options are performed by the Remote Terminal
Input/Output (RTIO) routines on messages to or from a remote terminal.

Edit
Option Writes to Terminal Reads from Terminal

Translate output from EBCDIC Translate input to EBCDIC.
to appropriate output code.

No translation.

Insert line feed and carriage
return characters at the
beginning of text and every 72
character thereafter.

No insertion of line feed and
carriage return characters.

No translation.

Delete line feed and carriage
return characters.

No deletion of line feed and
carriage return characters.

Performs the backspace
operations.

Retain the backspace
characters and do not perform
the backspace operation.

Continue reading from the
normal source, i.e., if paper
tape was the previous input
source, read next record from
paper tape.

Reset from paper tape option
to manual (keyboard) control.
This facility is to be used
with paper tape so errors can
be corrected on the keyboard.

Messages are always outputted. Translate all lower case
alphabetic characters to upper
case EBCDIC alphabetics.

C-I

Edit
Option Writes to Terminal

If input is prepared (for
example, paper tape) do not
output this message.

Do not append print control
characters to message.

Put paper tape control
characters preceding message.
(This option is used to
prepare a paper tape for
subsequent reading by VMOS.)

Do n01 scan message for new
line character.

For 2741 only - scan message
for new line character and
insert -~he required number of
idle ch aracters. If the number
of characters between two new
line characters plus the
number of required idle
characters exceeds the 2741
type bar length, the message
is truncated. Also, if the
total number of characters
comprising the expanded
message exceeds the buffer
size, the message is truncated.

C-2

Reads from Terminal

True translation, i.e., lower
case alphabetics to lower case
EBCDIC alphabetics.

GENERAL

APPENDIX D
VMOS SUPPORT OF TOS TABLES

The VMOS Executive is supporting TOS programs by supplying the
Executive Communications Region (ECR), Program Table (PT), the
Executive Storage Area (ESA), and the Monitor Table. The ECR, PT, and
ESA are created in physical core adjacent to the Class I program at RUN
time" The area occupied by these blocks will hereafter be referred to as the
TOS Communication Area (TCA). The Job Control Block (JCB) has a
pointer to the TCA which is initialized to zero when the TCA has not been
created. When a Class I program is loaded, the program size parameter is
incremented to include the displacement of the TCA. Core is obtained, the
address of the TCA is placed in the TCA pointer in the JCB, and the blocks
are formatted. The TCA is released at job termination. Each Class I program
has a TCA from load time to termination.

Since the TOS Language Processors require Monitor support, the Monitor
Table is required. The Monitor Table is created the first time a
PARAMETER or an EXECUTE command statement for a Class I program is
encountered within a step and remains in physical core until step
termination. When a user program is loaded, the Monitor Table is placed in
Class 6 memory, preceding the loaded program. Changes to the Monitor
Table caused by macros (ERFLC, STUTI, STUT2) are made to the Monitor
Table in both Class 5 and Class 6 memory. Changes to the Monitor Table
caused by the PARAMETER command are made to the Class 5 Monitor
Table and to the Class 6 Monitor Table if a program is already loaded. The
JCB has a pointer to the Monitor Table. This pointer is initialized to zero
until the M:onitor Table is created. When the Monitor Table is to be put into
physical core, core is obtained, the address of the Monitor Table is placed in
the JCB pointer, and the standard options are initialized. The Monitor Table
is created only once during the step. At step termination, the Monitor Table
is released.

The schematic for TCA control blocks and their pointers is shown in figure
D-I. Although the TCA currently requires only 264 bytes, a total of 288
bytes is allocated to permit possible growth. This additional area is reserved
and may not be used by the 1'OS Processor.

D-I

VI RT'UAL MEMORY

TCB

02
~

JCB

MT -§ PTR PTR

§-PTR

~;] ~ESS

TOS
COMMUNICATION

AREA
(TCA)

-""

~
~

...:.. r

..=..

PHYSICAL MEMORY

M.T.

E.C. R.

P.T •

I PTR

E.S. A.

TOS
PROCESSOR

0

MONITOR TABLE -
32 BYTES

EXECUTIVE
COMMUNICATION
REGION - 16 BYTES

PROGRAM TABLE-
32 BYTES

EXECUTIVE STORAGE
AREA - 184 BYTES

~

FIGURE D-l. TOS COMMUNICATION AREA (TCA) BLOCKS

MONITOR TABLE

Information retained in Monitor memory and required by programs running
under Monitor control is found in the Monitor Table Area. The standard
setting of the "yes" or "no" options at step initialization time are underlined
in the table format.

The address of this area can be retrieved by using MONTB macro.

The inforrnation in this table is altered by the PARAMETER statement and
specific macro calls. See table format that follows.

D-2

Byte Bit Information Settings

0 27 PARAM TAPE option 0 NO
1 YES

26 PARAM CARD option 0 NO
1 YES

2s PARAM LIST option 0 NO
1 YES

24 PARAM MAP option 1 YES
0 NO

23 PARAM OBJLST option 0 NO
1 YES

22 PARAM DIAG option 1 YES
0 NO

21 PARAM XR EF option 0 NO
1 YES

2° PARAM DUPL option 0 NO
1 YES

1 27 PARAM DEBUG option 0 NO
1 YES

26- 5 PARAM CODE option 00= EBCDIC
01 = 7094
10= 3301

24 PARAM WORK option (*) 1 YES
0 NO

23 PARAM LI BRY option (*) 1 YES
0 NO

22 PARAM ERRLST option 1 YES
0 NO

21 PARAM ASMLST option 1 YES
0 NO

2° PARAM INPUT option (*) 0 SYSIPT
1 Alternate tape

2 27 PARAM OUTPUT option (*) 0 SYSUT1
1 Alternate tape

26 PARAM SOURCE option (*) 0 SYSUT5
1 Alternate tape

2s SYSUT1 indicator 0 No information ~resent
1 Information present

24 SYSUT2 indicator 0 No information ~resent
1 Information present

* I ndicates options that may be el iminated or modified as the system is developed.

D-3

Byte

3-8

9-14

15-20

21-26

27

Bit

23

22

2 1- 0

27

26

25

24--2

28

Information Settings ----
Subprocessor error flag 0 No errors

1 Errors

Linkage Editor Call Indicator 0 User Call
1 Monitor Call

Reserved

Alternate source input device (*) Symbolic

Alternate output device (*) Symbolic

Bound program load name (*) Symbolic

Alternate source output device (*) Symbolic

PARAM DISC option 1 YES
0 NO

PARAM ERRFIL option 0 NO
1 YES

PARAM SYMDIC option 0 NO
1 YES

PARAM SAVLST option

SAVLST NO 000

SAVLST ALL 111

SAVLST SOURCE 100

(or)

SAVLST OBJECT 010

(or)

SAVLST LOCMAP 001

PARAM FCPRTN option

FCPFtTN YES X'OO'

FCPFtTN NO X'FF'

FCPRTN nn X'nn'

Note: nn represents the hexadecimal value of the
COBOL FCP package to be included in the generated
COBOL object program.

*Indicates options that may be eliminated or modified as the system is developed.

D-4

EXECUTIVE COMMUNICATION REGION (ECR)

Byte Nrs.

0-8

9:27 _2 5

9:24

9:23

9:22

9:21 _20

10-11

12-114

PROGRAM TABLE (PT)

Byte Nrs.

o

1

2-7

8

9:27

9:26- 4

9:23- 0

10-15

16-19

20-23

24-27

28-31

Entry Conta i ns

Today's date MMDDYYDDD

Memory Size: always indicates 256K (101)

Memory Protection Option: always 1

System Timer Option: always 1

Direct Control Option: always 1

Processor: always indicates 70/46

(Device List Address: not supported in VMOS)

Not supported in VMOS

Entry Contains

Program Number

Reserved Space

Program Name

Program Priority

Monitor Subprocessor Entry Flag: always 1

Not supported in VMOS: always 0

Protection Key

Not supported in VMOS

Program Base Address

Program End Address

Address of ESA

Not supported in VMOS

])-5

EXECUTIVE STORAGE AREA (ESA)

Byte Nrs. Entry Contains

0-3 I nterrupt Mask Register

4-7 Interrupt Status Register

8-11 Program Counter

12-75 GRO PI through GR15 PI

76-107 FPRO, FPTR2, FPR4, FPR6

108-111 Prog. Base Address and Program size - 1

112-115 Not supported by VMOS: contains zeros.

116-119 I nterrupt Weight

120-123 Address of Program Check Routine *(STXIT)

124-127 PI P-ctr Stored on Program Check

128-135 GR10 PI, GR11 PI Stored on Program Check

136-139 Address of I nterval Timer Routine *(STXIT)

140-143 PI P-ctr stored on Interval Timer Interrupt

144-151 GR10 PI, GR11 PI stored on Interval Timer Interrupt

152-155 Address of Operator Communication Routine *(STXIT)

156-159 PI P-ctr Stored on Operator Interrupt

160-167 GR 10 PI, GR 11 PI stored on Operator Interrupt

168-171 Address of Unrecoverable Error Routine *(STXIT)

172-175 PI P-ctr Stored on Unrecoverable Error

176-183 GR10 PI, GR11 PI stored on Unrecoverable Error

172-183 (Status at CHKPT - not supported by VMOS)

*For VMOS, tlhese contingency routine addresses must be specified by using the STXIT
macro. VMOS Control System will update these addresses when a valid STXIT macro
(SVC) is iSSUE!d. When the VMOS Control System transfers to a user's contingency routine,
the PI P-ctr and GR 10 PI and GR 11 PI locations in ESA will be set by the VMOS
Control SystE!m in the same manner as in TOS.

D-6

SVC(lO)

I
2
3
4
5
6
7
8
9

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

56
57
58
59
_60
61
62
63

APPENDIX E
MACRO SVC IDENTIFICATION

This appendix lists the supervisory calls (SVC) for all user-available macros
applicable to VMOS processing for which such calls are generated. These
macros constitute the following three categories: VMOS Nonprivileged
Macros, TOS Compatible Macros, and CAM Macros.

Macros are listed in this appendix in ascending hexadecimal order by SVC.
The corresponding decimal equivalent for each SVC is also shown, as well as
the category identifying the generic classification of each macro.

SVC(16) Macro

1 TYPE
2 LPOV
3 ADEXT
4 STXIT
5 OMODE
6 OTYPE
7 COMTY
8 OOEV
9 TERM
B EXCPW
C EXCP
D WAIT
E CKPT
F
10 ASCII
11 EBCO
12 EXIT
13 EXIT
14 EXIT
15 SETIC
16 TERMO TOS Compatible
17 GETOO
18 GEPRT
19 FLOAO
lA SMOOE
IB SPRG
lC QUIET
10 ASSGN
IE
IF
20 TOCOM
21 EXCOM

38 STUT2
39 STUTI
3A PROUT
3B MONTB
3C ERFLG
210 WRTOT
21E ROCRO
3F TERMJ

--------------------------------(Continued)

E-l

SVC(l 0) SVC(16) Macro

66 42 ROATA
67 43 WROUT
68 44 WRTRO
69 45 WRLST
70 46 TMOOE
71 47 SETSW
72 48 GETSW
73 49 REQM
74 4A RELM
75 4B CSTAT
76 4C PASS
77 40 CKPT
78 4E SPEXT
80 50 GOATE
81 51 ENOT
82 52 EXITP
85 55 EXECM,LOAOM
86 56 SETFB
87 57 GTMAP
89 59 VPASS
90 5A POUMP
91 5B STOP
92 5C BKPT
93 50 MSG
94 5E ACCNT
95 5F
96 60 MSGNU

106 6A UNLOO
107 6B PRNT
108 6C PNCH
109 60 ITABL VMOS Nonprivileged
110 6E LINK
111 6F TABLE
147 93 FEOV
148 94 GET(SAM)
149 95 PUT(SAM)
150 96 TYPIO
151 97 GET(ISAM)
152 98 PUT(ISAM)
153 99 PUTX
154 9A SETL(ISAM)
155 9B STORE
156 9C OPEN
157 90 CATAL
158 9E ERASE
159 9F FILE
160 AO FSTAT
161 Al REL
162 A2 CLOSE
163 A3 GOTO
164 A4 GETFL
165 A5 FRS
166 A6 RECON
167 A7 LOG
169 A9 RELSE
173 AD INSRT
174 AE ELiM
175 AF GETKY
176 BO GETR (ISAM)
177 B1 EAM

(Continued)

E-2

SVC(l 0) SVCh 6) Macro

178 B2 EXRTN,LBRET

} VMOS Nonprivileged

179 B3 PAM
180 B4 PTAM
181 B5 CHNGE
182 B6 COpy
183 B7 READ,WRITE

185 B9 GBUF
186 BA FBUF
187 BB FETCH

CAMRD
188 BC WAITM
189 BD SEND CAM
190 BE SHUTM
191 BF PRIME
192 CO FORM

NOLNS
LNTYP

193 C1 SPSEQ
194 C2 ACT,DEACT

E-3/E-4

APPENDIX F
VMOS GENERAL SERVICE FILE MANAGEMENT MACROS

The four general service file management macro instructions available to the
VMOS user are the CLOSE Macro, the FCB Macro, the IDFCB Macro, and
the OPEN Macro.

CLOSE Macro

FCB Macro

IDFCB Macro

OPEN Macro

Indicates that file processing is complete and releases
automatically-acquired buffer areas, performs label
verification and creation, updates catalog entries (if
required), ensures that pending write operations are
completed, and positions volumes as indicated.

Defines a HIe control block. FCB reserves space for a file
control block and, optionally, supplies information to it. In
addition, this macro reserves space to contain the logical
routines needed to process the file.

Provides synlbolic name for an FCB. IDFCB is typically used
to generate a dummy control section (DSECT) to provide
symbolic naInes for the fields in an FCB.

Establishes a logical connection between a file and the
problem program, completes the file control fields, verifies or
creates file labels, positions volumes to the first record to be
processed, and allocates buffer areas as required.

Additionally, the OPEN logic ensures that needed access
routines are loaded and address relations are completed.

F-I

CLOSE Macro

The CLOSE 1nacro instruction is used to disconnect a file from the user's
prograln. During the execution of CLOSE, the user's trailer label routine will
be given control if one was specified by the user. All I/O buffers
automatically obtained by the system are also released. The FCB is reset to
the contents which it had before the OPEN macro instruction was issued.

Name

(symbol]

ALL

fcb

disposition

Operation Operand

CLOSE rLL

}

[diSPOSition- rEPOS

I] fcb-addrx (0) ~~~ON (1)
LEAVE

Specifies that all files for the task, except system related files
(for example, SYSLST), are to be closed. User EAM files are
also closed.

Specifies the address of the FCB associated with the file to be
closed.

Specifies volume disposition for tape files (it is ignored for
other devices).

REPOS

Positions the current volume to the beginning of the file.

RWD

Positions the current volume to BT.

DISCON

Rewinds the current volume to the disconnect point. Note
that the device still belongs to the task.

LEAVE

Positions the current volume to the logical end of the file just
processed.

Default: RWD

F-2

Programming Notes

1. For INOUT and OUTIN, if the last operation was not a WRT and WT or
WRTWT, the LABEND exit is not taken. Furthermore, the system will not
perform any label processing. This option is only applicable to BT AM.

2. If (0) is written, the hexadecimal disposition code is placed by the user in
the low order byte of the register, as follows:

LEAVE 00

DISCON 01

REPOS 10

RWD 11

3. If (1) is written, the ALL option is indicated by inserting FF in the high
order byte of the register.

4. Table F-l details volume positioning for the REPOS and LEAVE options.

TABLE F-L POSIT10NING OF TAPE VOLUMES FOR OPTIONS OF THE CLOSE MACRO

Position 1

Position 2 Labeled tape:

Unlabeled tape~

positions current volume to BT

following tape mark that terminates trailer label
group of file on current volume.

following tape mark that terminate~ last data block
of the portion of the file resident on the current
volume.

Positioning of Tape Votumes~

Position
OPEN TYPE

LEAVE REPOS

REVERSE 1 2

Other OPEN types 2 1

F-3

FCB Macro

The FCB rnacro - Define a Control Block (0) - instruction reserves space
for a file control block and, optionally, supplies information to it. In
addition, this macro optionally reserves space to contain the logical routines
needed to process the file. Table F-2 indicates which FCB macros are
allowed for each access method.

Name Operation ---
SYMBOL FCB

Operands

[LINK =linkname-symbol]

[,FCBTYPE=ISAMISAM PAMIBTAM]

[FILE=filename-name]

[,PASS=password-absexp]

[,RETPD=retention period in days-absexp]

f,RECFORM= J(FIYIU, AIMI~) 1]
L 1 FIYIU

[,RECSIZE=absexp]

[,BLKSIZE=STDI(STD,absexp) labsexp]

[,IOAREAI =NOlrelexp]

[,10AREA2=NOlrelexp]

[,EXIT=(relexp)Irelexp]

[,IOREG=reg number-absexp]

[,V ARBLD=reg number-absexp]
[,OVerlap=YES]

[,KEY ARG=relexp] [,KEYLEN=absexp]
[,KEYPOS=absexp]

[SHARUPD=YESINO]

[,LOGLEN=absexp] [,VALLEN=absexp]
[,VALPROP=MAXIMIN]

[,PAD=absexp] [,DUPEKY=YES]

[,LABEL=STDINSTD]

[,OPEN=INPUTIOUTPUTIEXTENDI
REVERSEIUPDATEIINOUTIOUTIN
ISINOUT]

[,LOGINFO=relexp]

[,FORM=SHORT]

F-4

TABLE F-2. SUMMARY OF FeB MACRO INSTRUCTION PARAMETERS ALLOWED FOR EACH
ACCESS METHOD

FCB
Parameters

LINK

FCBTYPE

FILE

PASS

RETPD

RECFORM

RECSIZE

BL.KSIZE

IOAREAl

EXIT

IOREG

VJ\RBLD

OVERLAP

KEYARG

KEY LEN

KEYPOS

SHARUPD

LOG LEN

VALLEN

VALPROP

PAD

DUPEKY

LABEL

OPEN

FORM

Legend:

NULL Parameters Allowed
Allowed SAM ISAM PAM BTAM on FILE Command

X X X X X X

X X X X X X

X X X X X

X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X

X X X X

X X

X

X X

X

X X X

X X X

X X X

X X X

X X X

X X X

X X

X X

X X X

X X X X X

X X

i-parameter accepted but ignored by action macros.
X - parameter may be specified.

Parameters that
may be supplied
from Catalog

X

X

X

X

X

X

X

X

X

Note: A n"ull parameter is not the same as an omitted parameter. For example, omitting the FCBTYPE
parameter will cause the macro to generate the default value for it, namely ISAM.

Wlhen the parameter is specified as null, (that is, FCBTYPE=,) the macro will be generated to request that
the value of the null parameter be supplied by a subsequent FI LE command/macro, or from the catalog
entry for the file.

F-S

LINK=

FCBTYPE=

FILE

PASS=

RETPD=

Specifies a symbolic name of up to eight characters. This
parameter provides the symbolic linkage by which data from
a file command/macro may be used to modify an FCB. Thus,
unique linkname(s) must be provided for the FCB(s) of a
program when it is intended that these FCB(s) be modified.

When the linkname of an FCB is omitted, a linkname of
spaces is generated. When LINK=, is specified, a linkname of
binary zeros is generated. When either of these options is
used, the FCB cannot be modified by a file command/macro.

Specifies the access method to be used to process the file:

ISAM:
SAA[
PM[
BTAM.

Default: ISAM

Specifies the fully qualified filename (up to 54 bytes).

Default: FCB name (that is, symbol in the name field).

Specifies the password required to access the file; the size of
the password is ultimately 4 bytes. Note that this field is
truncated or padded on the left in the manner which the
assembler processes address constants; that is, the expansion
is DC AL4 (password).

Example:

P ASS=C' ABC'

PASS=X'0I02'

PASS=C'ABCDEV'

Default: (00000000)16

yields a password of (OOC 1 C2C3)1 6

yields a password of (00000102)16

yields a password of (C3C4C5C6)1 6

Specifies the period, in days, that a file is to be retained. This
parameter stipulates when rewriting (or updating) of the file
is permitted, but in no way is used by the system to
automatically erase a file.

Default: 0 days, which allows for immediate rewriting or
updating.

F-6

RECFORM=

RECSIZE=

F

Specifies fixed-length records.

v

Specifies variable-length· records. This value is acceptable to
BT AM but is treated exactly as a U specification.

u

Specifies undefined records. This value is not acceptable to
ISAM.

Default: V

A

Specifies that the first data byte is an ASA print control
character.

M

Specifies that the first data byte is a machine code (EBCDIC)
control character. (Refer to Printer Reference Manual).

N

Specifies that no print control character is present.

Default: N

Although the PAM FCB accepts this parameter, it is ignored
by the PAM action macros. Passing the parmneter allows, for
example, a file created by PAM to be processed by SAM.
Note that SAM allows the user to specify a record format
different from that specified when the file was initially
created. For example, a file composed of format-F records
could subsequently be read with format-U records specified.
Consequently, a GET macro instruction would supply the set
of logical records which can be contained in the buffer.

Specifies the length in bytes of a logical record for format-F
and format-V records. If RECFORM=V, it is not necessary to
supply this parameter: record size is assumed to be
BLKSIZE. If the parameter is specified for format-V records,
it specifies the maxim urn size record.

F-7

BLKSIZE=

For format-U records, this parameter specifies the register (2
through 12) which will contain the length of each record.
Whenever an undefined record is read, OMS supplies the
length in this register. When an undefined record is to be
written, the user must place the length of the record in this
register.

Although the PAM FeB accepts this parameter, it is ignored
by the PAM action macros. Passing the parameter allows, for
example, a file, created by PAM to be processed by SAM.

Specifies the size of the file's buffer.

STD

Specifies that the buffer is one half-page (2048 bytes).

(STO, absexp)

Specifies that a buffer is the number of half-pages specified in
absexp. The maximum value of absexp is 32, which allows a
BLKSIZE of 65,536. For ISAM files, the maximum value of
absexp is 16, which allows a BLKSIZE of 32,768.

absexp

Specifies the size of a buffer in bytes. The maximum value is
4096.

Only BTAM and SAM (tape) may specify BLKSIZE=absexp;
in fact, BT AM requires it. However, tape files processed by
SAM can be specified with any form of the BLKSIZE
operand. The primary intent of supporting these operand
forms on tape is to provide real, yet reasonable, interchange
of file processing between direct-access devices and tape.

Notes:

I. When this parameter is used at OPEN time (for example,
to allocate buffers), BLKSIZE=STO is always assumed by the
P AM action macros.

2. No logical record can exceed BLKSIZE. (No ISAM
fixed-length logical record can exceed BLKSIZE-4.)

3. Strictly speaking, this parameter is buffer size (that is, the
amount of transfer to or from an I/O device).

Example:

BLKSIZE=(STO,3).

F-8

IOAREAl=

The buffer is (2048) X (3)=6144 bytes; the physical block
size is 2048 bytes. Note that a logical record can be up to
6144 bytes (which implies that logical records can cross
physical blocks).

There are two principal reasons why the user might specify
(STD,absexp) as contrasted to STD.

1. The logical record exceeds 2048 bytes.

2. The logical record size is inefficient for a block size of
2048. If the user had fixed length records of 1500 bytes and
if BLKSIZE=STD is specified, then 548 bytes of each block
is wasted. If the user specifies BLKSIZE=(STD,3) then 6000
bytes out of 6144 (that is, 2048 x 3) are used, which wastes
144 bytes per three blocks. Note that excessive concern with
wastage may tend to increase the paging rate. For example,
fixed-length records of 100 bytes waste 48 bytes per block,
and only 44 bytes in a three-block buffer (6144-6100). This
wastage is acceptable when the paging rate is considered.
Generally, 10 to 15 percent wastage is acceptable.

When specifying the standard forms of the operand
(BLKSIZE=STD or BLKSIZE=STD,absexp) the user does not
consider the key. The key is always read from or written into
the FeB.

Default: STD

No

Specifies that no buffer (area) is to be allocated by OPEN;
this value cannot be specified for SAM and ISAM.

relexp

Specifies the address of the buffer (area) to process the file.
If this area is less than or equal to a page (4096 bytes), it
must be fully contained on one page and must begin on a
word boundary. If this area is more than one page, it must:

1. Begin on a page boundary.

2. Be virtually contiguous.

3. Not cross a segment boundary.

Default: DMS dynamically acquires buffer space (class 5
memory) at OPEN time.

F-9

IOAREA2=

No

Specifies that no second buffer (area) is to be allocated by
OPEN. The user is cautioned that if this value is specified for
SAM, the system cannot buffer (overlap) I/O operations. The
value cannot be specified for ISAM.

relexp

Specifies the address of the buffer (area) to process the file.
If this area is less than or equal to a page (4096 bytes), it
nlust be fully contained on one page and must begin on a
word boundary. If this area is more than one page, it must:

1. Begin on a page boundary.

2. Be virtually contiguous.

3. Not cross a segment boundary.

Default: DMS dynamically acquires buffer space (class 5
nlemory) at OPEN time.

When a file is opened in a Class II program, the IOAREA
addresses are created (if necessary) and verified. They are
then moved to system memory. Accordingly, any change to
these addresses in the FCB is completely ignored. New
addresses can be effected only by closing the FCB and
reissuing the OPEN.

This rnanner of processing is done to minimize overhead; that
is, the system need not validate IOAREA addresses prior to
each .action nlacro call (on the assumption that they might
have gotten changed). PAM and BT AM also allow the user to
specify buffer areas in their action macros. These buffer
addresses are, of course, validated each time. Additionally,
PAM and BTAM allow the user to select IOAREAI and/or
IOAREA2 in their action macros.

During the period when a file is OPEN, the user must not
disturb the contents of IOAREA in any manner other than
that permitted in conjunction with the action macro
processing. When a file is opened in a Class I program,
IOAREAI and 2 must be specified as relexp or NO.

If a SAM file is opened UPDATE, the IOAREA2 buffer is not
used.

If NO is specified for IOAREAI, the value for IOAREA2
must also be NO. If IOAREAI is specified as relexp, the
value specified for IOAREA2 must be NO or relexp. If
IOAREAI is defaulted, then IOAREA2 must be also
defaulted or be specified with a value of NO.

F-IO

EXIT=

Specifies the address of an exit routine. If the value of this
parameter is enclosed in parentheses, the address is indeed
the address of the problem program's exit routine. If the
value of this parameter is not enclosed in parentheses, the
address is assumed to be the address of an EXLST macro
instruction's code (refer to "Miscellaneous Tasks and File
(Data) Management Commands and Macros" in the
appendices).

It should be noted that if the exit is taken, regardless of its
type, an indicator byte is set in the FCB so that the user
routine can determ.ine the specific exit condition. Moreover,
if the exit is taken because of a hardware I/O abnormality, a
5-byte area in the FCB is also set to contain the following
bytes from the CCB:

Standard device byte
Sense bytes 1, 2, 3
Executive flag byte

See table HI in appendix H for descriptions of the Sense
bytes.

The Executive flag byte and standard device byte are
depicted in the expansion of the CCB DSECT, IDCCB.

Although the aforementioned points are discussed in depth in
the EXLST macro instruction, two additional points are of
note:

1. The OPEN contingency exit requires the EXLST macro
instruction.

2. The COMMON parameter, supported by EXLST causes all
nonspecified conditions to exit to the location specified in
COMMON. If any other conditions (that is, other parameters)
are specified, they are routed to their specified locations. In
other words, COMMON allows programming by exception,
thus freeing the programmer from the chore of writing a
lengthy EXLST macro call and/or having the macro generate
a long exit table.

Example:

EXLST OPENX=LOC 1 ,COMMON=LOC

The OPENX condition causes control to be given to LOC 1.
All other conditions (for example, EOFADDR,DUPEKY)
cause control to be given to LOC.

Default: No exit address is created; consequently, any
abnormal conditions will cause abnormal program
termination.

F-II

10REG=

VARBLD=

OVERLAP=

KEYARG=

KEYLEN=

KEYPOS=

Specifies the register (2 through 12) which will contain the
address of the current record. This implies records are to be
processed in locate mode.

Default: Move mode is assumed.

Specifies the register (2 through 12) which is to contain the
amount of space remaining in the output area. This
specification is required for SAM files when format-V records
are created in locate mode.

Note: This parameter is ignored for ISAM.

Specifies that buffered or overlapped read operations are
desired when more than one data buffer exists. This applies
to the ISAM action macros GET and GETR.

Default: No anticipatory I/O is scheduled to provide overlap.

If this parameter is not specified, ISAM still uses IOAREA2.
It is not used to perform anticipatory I/O, but rather as a
work area.

Specifies the address of the key. This is applicable to certain
ISAM action macros (for example, GETKY, GETFL, ELIM).

Specifies the number of bytes in the record key. The key
must be the same length in every record. The key may be
fronl I to 255 bytes.

Default: 8

Specifies the position of the first character of the record key
within the record. The key must be located in the same
position of every record. The first byte of the record is 1. If
fornlat-V records are specified, the 4-byte length control
prefix is considered to be a part of the record.

Default: I if record format is fixed; 5 if record format is
variable.

F-12

SHARUPD=

LOGLEN=

VALLEN=

VALPROP=

PAD=

DUPEKY=

LABEL=

Specifies whether an ISAM file may be shared by more than
one task for the purpose of updating.

Default: NO

Specifies the length of the logical fl,,"g for a flagged ISAM file.

Default: 0

Specifies the length of the value flag for a flagged ISAM file.
KEYLEN+LOGLEN+V ALLEN must be less than or equal to
255 if LOG LEN or V ALLEN is specified.

Default: 0

Specifies how the value of flags in a flagged ISAM file are to
be propagated through the ISAM index structure.

Default: MIN

Specifies the percentage of the buffer to be reserved during
creation of the file for later insertion or expansion of records.

Default: Fifteen percent of the data space is reserved.

Specifies that duplicate keys are to be allowed.

Default: If duplicate keys are encountered, control is passed
to the user's EXIT address.

Specifies label characteristics.

STD

Specifies standard labels.

NSTD

Specifies no labels or nonstandard labels (allowed for files on
magnetic tape only).

Default: STD

All direct-access files must have standard labels. Moreover,
user header and user trailer labels are not supported for direct
access files.

F-13

OPEN=

Specifies how the fIle (FCB) is to be opened. Note that the
OPEN macro instruction can override this specification. The
permissible values are listed in table F-3.

TABLE F-3. PERMISSIBLE OPEN VALUES FOR ACCESS METHODS

OPEN Mode

INPUT

OUTPUT

EXTEND

REVERSE

UPDATE

INOUT

OUTIN

SINOUT

FORM=

Programming Notes

SAM ISAM BTAM PAM

X X X X

X X X

X X

X X

X

X X X

X X X

X

SHORT

Specifies that space for the appropriate logical routines is not
to be reserved.

Default: Space is reserved where necessary. Note that PAM
and BT AM never require logical routines in the user's
program; accordingly, this parameter is ignored for these
access methods.

CAUTION: The SHORT operand is for specialized use only.
An FCB with the SHORT parameter cannot be used for
actual ISAM and SAM processing. It is useful only as a
prototype.

When an FeB (file) is opened, most of the pertinent processing parameters
are moved into system memory (P2 FCB) after their creation and
verification. Any change to these parameters in the FCB may be ignored.
New values should be effected only by closing the FCB and reissuing the
OPEN. FCB changes to an opened file may cause abnormal termination or
unpredictable file processing.

Parameters specified as null, for example,

FCBTYPE=,

are not given the default value. This provides a mechanism to note from the
Assembly listing that a parameter is not completed at assembly time and
must be specified at object time.

F-14

IDFCB Macro

The IDFCB macro - Provide Symbolic Name for an FCB (0) - instruction is
typically used to generate a dummy control section (DSECT) which provides
symbolic names for the fields in an FCB. Thus, with proper initialization of a
base register, the user can access all fields of the FCB. (See figure F-l for a
method of accomplishing this base register initialization.)

Name

[sYlubol]

D

prefix

Operation Operand

IDFCB [01 [prefix -I ~etter I J

Specifies that a DSE~T card. is to be generated.

Default: No DSECT card is generated.

Specifies the letter with which each symbolic name is to
begin. If an asterisk is specified, then there is no prefix.

Default: Each name is prefixed with the letter I.

DFCBP 1 IOFCB

BEGIN BALR 2,0

USING * ,2

USING DFCBPl,l REG 1 COVERS IDFCB

OPEN FILOT,FILOT,UPDATE

FILOT FCB LlNK=PAY x

FILE=PAYFILEI X

END BEGIN

FIGURE F-l.. BASE REGISTER INITIALIZATION FOR IDFCB

F-15

OPEN Macro

To activate an FCB(R)

Name

[symbol]

fcbname

mode

Operation Operand

OPEN I ~~~narne-addrX} [rnode-I(g~e I]

Specifies the address of the file control block. (See figure F-l
for the use of this parameter.) If (1) is written, the address of
the FCB is placed in register 1.

Specifies the type of OPEN desired. If (0) is written
(indicating register 0), the mode code is placed in the
low-order byte of the register, as follows:

Not Specified (00)16

INPUT (01)1 6

REVERSE (02)16

OUTPUT (04)16

EXTEND (08)16

UPDATE (10)16

INOUT (20)16

OUTIN (40)16

SINOUT (80)16

Default: The type of OPEN is specified in the FCB.

Note: The characteristics of the various types of OPEN are
described under each applicable access method.

F-16

APPENDIX G
FILE MANAGEMENT DSECTS

DSECTS of file managements tables, parameter lists, FCB's and catalog
entries are available to user programs through macro calls. The labels and
alignment of the component fields are well defined; however, the
arrangement of the regions is subject to change. The macro name and a brief
description of each file management DSECT is given in table G 1. Only those
DSECTS of general interest to user (that is, nonprivileged) programs are
listed,

It is suggested that the user, interested in current expansion of any particular
DSECT, use the macro call with format as follows:

Name

[symbol]

D

Prefix

Operation Operands

Macro name [DJ ['prefix- { !ymbol } J

Specifies that the macro IS to generate the DSECT pseudo
instruction.

Default: The DSECT instruction is not generated.

Symbol

Specifies the single character prefix to be concatenated to the
beginning of all labels in the DSECT.

*

Specifies that no prefix is to be used.

Default: I

G-l

TABLE G-l. FILE MANAGEMENT DSECTS OF GENERAL INTEREST TO USER PROGRAMS

Macro Name

IDBPL

IDCAT

IDCE

IDCHA

IDCOP

IDEE

IDEMS

IDERS

IDFCB

IDFST

IDOST

IDPFL

IDPPL

IDREL

IDVT

DSECT Description

BT AM Palrameter List

CATALOG (CATAL) macro parameter list

Catalog entry

CHANGE (CHAN) macro parameter list

COpy ma-ero parameter list

Catalog Entry extent list

File Manaqement error messages

This macro generate!s a list of EQU's describing the error messages output by file
management modules. (See "File Management Error Message Concepts and Code
Structure" in the appendices.)

ERASE macro parameter list.

FCB (PI r,egion)

Note that the DSECT describes all forms of the FCB.

FSTATUS (FSTAT) macro parameter list

OPEN/SHARUPD information area

FILE macm parameter list

Nonprivileged PAM parameter list

RELEASE (REL) macro parameter list.

VOLUME table entry

G-2

PHYSICAL DEVICE TABLE (PDT)

APPENDIX H
DEVICE MANAGEMENT CONTROL TABLES

The Physical Device Table (PDT) resides in Class I system memory. It
consists of a series of physically contiguous elements, one element for each
peripheral device connected to the System. The elements are ordered
according to the VMOS device type code, in ascending sequence. The devices
connected to the multiplexor channel are therefore at the beginning of the
table. The System Drums(sJ is the last entry in the table. The Console
Typewriter and the remote terminal devices are not presented in this table.

The macro name for VMOS PDT is IDPDT.

CURRENT VOLUMES TABLE (CVT)

The Current Volume Table (CVT) also resides in Class I system memory. It
consists of a series of physically contiguous 12-byte elements, one element
for each volume which can be on-line to the system at anyone time. If a
device can support multiple volumes at the same time, the CVT elements for
that device's volume will be contiguous in the CVT. The PDT element for
that device will contain the address of the first CVT element in the table.

The prupose of the CVT is to reflect the Volume Serial Numbers of the
volumes currently on-line to the System. In addition, the status of each
volume is also maintained. If the volume is nonpublic, the task number of
the owner·task is also carried in the CVT element.

The macro name for VMOS CVT is IDCVT.

COMMAND CONTROL BLOCK (CCB)

The Comnland Control Block (CCB) causes an area of storage to be reserved.
This block is used by the programmer to provide the Executive routine with
information required to effect an input/output operation. After the I/O
operation has terminated, CCB is used by the Executive to report concerned
status inf.ormation. Refer to Table H-I for the three sense bytes definitions
for various: peripheral devices:.

The macro name for VMOS CCB is IDCCB.

H-I

TABLE H-l. DEFINES THE THREE SENSE BYTES FOR VARIOUS PERIPHERAL DEVICES

Sense Byte 1

Device Type Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22 Bit 21 Bit 20

Magnetic Read or raw Service re- *data block Transmission Magnetic *beginning *tape mark Illegal
Tape error quest not greater parity error tape alarm tape or end operation

honored than count tape

Card Reader Read error Service re- Invalid *stacker Illegal
quest not punch code select operation
honored late

Card Punch Punch Punch Memory Transmission Illegal
compare Parity Error parity error operation
error

Printer *channel *channel Print line Nonref End of Illegal
12 9 incomplete code forms operation

=r::
Random Read or Service re- Seek Transmission Track Automatic *end of Command I

tv
Access raw error quest not check parity error check head file code

honored switching reject
error

Sense Byte 2

Random Count Overflow Missing File *notfound Invalid *end of *track
Access field data incomplete address protected sequence cylinder end

error markers

Sense Byte 3

Random Missing
Access magazine

(8568)

Notes:

Those conditions not indicated by an asterisk result in setting of 27 and 25 of CCB byte 35.
Those conditions indicated by an asterisk result in setting of 27 and 26 of CCB byte 35.

GENERAL

APPENDIX J
COMMAND/MACRO NOTATION CONVENTIONS

A command constitutes an operation-oriented, system-supplied instructional
entity. The number of required text lines to express the instruction is
dependent on the number of operands constituting the command
configuration and the use of continuation lines.

If cards are used, each card is treated as a line. A slash (/) must be in the first
column of the first card of any set of cards comprising a command.
Continuation cards must also contain the beginning slash.

If tape is used, the records are blocked in V-type format (variable length
records). It is the user's responsibility to have this done. Maximum block size
is 1024 bytes. Each record is a command and must begin with a slash (/) in
its first position.

If commands are entered from a terminal, the user does not type a slash. The
slash is typed by the Control Program when a command is expected.
Continuation lines are entered by omitting the ETX at the end of the initial
line and moving the write head and paper advance using the terminal's
caniage return and line lead mechanisms.

Macro instructions are processed by the assembler using software-supplied
macro definitions. VMOS macros are written according to the conventions
described below; TOS macros do not normally follow these conventions
because of compatibility requirements.

The processing of a macro instruction by the assembler is called the
expansion of the macro instruction. The expansion results in fields of data
and executable instructions, called the macro expansion. The fields of data,
called parameters, specify the exact nature of the service to be performed
and are contained in either registers (parameter registers) or data areas
(parameter lists). If the parameters' are contained in registers, only registers 0
and 1 may be used. If the ,parameters are contained in a parameter list, the
address of that list is placed in register 1 and referred to by the called service
routine.

MACRO INSTRUCTION LANGUAGE FORMAT

Command and macro instructions, like assembler instructions, are written in
the following format:

Name Operation Operand

J-1

Name Field

The name field of the instruction may contain a symbol or be left blank.
Normally, this symbol is the name associated with either the first executable
instruction of the macro expansion, or in the case of commands, a locational
identifier.

Operation Field

Operand Field

The operation field contains the mnemonic operation code of the
instruction. This code may be a string of not more than eight alphanumeric
characters, the first of which is alphabetic. For user written macros, the
name should not begin with a $ since privileged system macros begin with
this character.

The operand field may contain no operands, or one or more operands
separated by commas. There are two types of operands: positional and
keyword.

Positional Operands

When three or fewer operands are required by an instruction, positional
operands are generaHy used. Positional operands must be written in a specific
order. For instance:

EXAMPLE A, B, C

The assembly-time processing of operands A, B, and C is determined by the
fact that they are the first, second, and third operands, respectively. If the
second operand (B) is omitted, the user must supply the second comma so as
to maintain the proper position for the third operand (C). Blanks may not be
embedded in the positional field.

EXAMPLE A"C

If the last positional operands are to be omitted, the delimiting commas need
not be written. For example, if the operands Band C are to be omitted, the
macro instruction could be written as follows:

EXAMPLE A

Keyword Operands

The keyword associated with a given keyword operand uniquely identifies
that operand to the system. Therefore, these operands can be written in any
order. A keyword operand is written as a keyword shown in each instruction
description, immediately followed by an equal sign and its value. For
instance:

EXAMPLE AREA =X,LENGTH=IOO

J-2

Mixed Operands

An operand field may contain both positional and keyword operands;
however, all positional operands must precede all keyword operands. For
Example:

EXAMPLE A,B,C, AREA=X,LENGTH=IOO

The rules for positional operand and keyword operand omissions apply to
mixed operand fields. For example, if the operands B, C, and AREA from
the above example are omitted:

EXAMPLE A,LENGTH=IOO

Operand Sublists (Macros Only)

A sub list consists: of one or more positional operands, each separated by
commas and the total list enclosed in parentheses. The entire sub list is

, considered to be one operand in the sense that it occupies a single position in
the operand field of is associated with a single keyword. The contents of the
sub list are proces&ed similarly to positional operands.

The following operands are sublists:

(A,B,C)
(A)

Note, that in the second exanlple, the sublist consists of only one operand.
When a macro instruction description shows that an operand is to be written
as a sublist, the enclosing parentheses must be written, even if there is only
one element in the sublist.

Notational Symbols

Notational Symbols in the operand field of instruction descriptions assist the
user in showing how, when, and where an operand should be written. The
notational symbols are:

Vertical Stroke, shown as I; Braces { }; Brackets[]; Ellipsis, shown as ... ;
and Underscore.

1. Vertical stroke means "exclusive or". For example, AlB means that either
the character A or the character B, but not both, may be written.
Alternatives are also indicated by operands being aligned vertically, as shown
in the next paragraph.

2. Braces denote .grouping. They are used most often to group alternative
operands. For instance, the following two operand descriptions are
equivalent:

{INPUT I OUTPUT}

{
INPUT }
OUTPUT

J-3

3. Brackets denote options. Information enclosed in brackets may either be
omitted or written in the macro instruction, depending on the service to be
performed.

In the foHowing case, the operand of the EXAMPLE macro instructions is
optional ,md need not be supplied. However, if the operand is supplied, it
must be one of the alternatives grouped in braces.

Name Operation Operand

[symbol] EXAMP [mode-{INPUT I OUTPUT} J
4. An und.erscore means that, if an operand is not specified, the underscored
option is assumed (is the DEFAULT option). The underscored word INPUT
in the above example indicates that, if the operand is omitted, INPUT is
assumed.

5. The ellipsis denotes the optional occurrence of the preceding syntactical
unit one or more times in succession. A syntactical unit is any combination
of operand representations, commas and notational symbols enclosed in
braces.

6. Upper-case (capital) letters indicate the portions which must be written
exactly as shown. For example the operation field and coded values in the
operand field must always be transcribed in upper-case letters.

7. COlnmas and parentheses must be written as shown in an operand field.
They are delimiters, not notational symbols.

Value Mnemonics

Value mnemonics help the user remember the forms a particular operand
may assurne. There are 11 value mnemonics used in this publication. They
are:

relexp
addr
addrx
addx
integer
absexp
value
text
code
symbol
characters

In the description of instructions in this publication, each positional operand
is specified by a meaningful name hyphenated with a mnemonic as
illustrated::

Name Operation Operand

[symbol] EXAMP name-value mnemonic

J-4

Each keyword operand is specified by the keyword, an equal sign, and a
value rnnemonic as illustrated:

Name Operation Operand

[symbol] EXAMP KEYWI=value mnemonic

Value Mnemonic Operand Forms (Macros Only)

For each value mnemonic, one or more operand forms may be substituted.
For example, the value mnemonic, relexp, denotes that a relocatable
expression :may be written as the operand form; whereas the value
mnemonic, addx, specifies that an explicit address or an implied address may
be written.

There is a total of 10 operand forms; they are:

relocatable expression
register notation
explicit address
implied address
symbol
decimal integer
absolute expression
code
text
character

Table J-l illustrates the value mnemonics and their permissible operand
forms. In the following text, each 9perand form is fully described.

Relocatable Expression

A relocatable expression is one whose value would change by n if the
program in which it appears is relocated n bytes away from its originally
assigned area of storage. All relocatable expressions must have a positive
value. A relocatable expression may be a relocatable term. A relocatable
expression may contain relocatable terms - alone or in combination with
absolute tenns - under the following conditions'

I. There must be an odd number of relocatable terms.

2. All relocatable terms but one must be paired. Paring is described in
"Absolute Expression."

3. The unpaired term must not be directly preceded by a minus sign.

4. A relocatable term must not enter into a multiply or divide operation.

A relocatable expression reduces to a single relocatable value. This value is
the value of the odd relocatable term, adjusted by the values represented by
the absolute terms and/or paired relocatable terms associated with it. The
relocatability attribute is that of the odd relocatable term.

J-5

TABLE J-l. MACRO CONVENTIONS OPERAND FORMS

VALUE MNEMONICS
Implied

Relocatable Register Expiicit Address Decimal Absolute
Expression Notation Address (Indexed) Symbol Integer Expression Code Text Characters

relexp X

absexp X

addr X X

addrx X X X

addx X X

integer X
t....t

I

value X X 0\

text X

code X

symbol X

characters X

Note: An X indicates that the operand form may be written.

In the follow.ing examples of relocatable expressions, SAM, JOE and
FRANK are in the same control section and are relocatable; PT is absolute.

SAM
SAM-JOE+FRANK
JOE-PT*5
SAM+3

Note that SAM-JOE is not relocatable, because the difference between two
relocatable addresses is constant.

Register Notation

Register notation is written as an absolute expression enclosed in
parentheses. The absolute expression, when evaluated, must be SOlne value 2
through 12, indicating the corresponding general purpose register.

In the following examples of register notation, SAM and JOE are relocatable
and PAL is absolute.

(5)
(SAM-JOE)
(PAL)
(PAL+3)

Explicit Address

indicates register 5

The explicit address is written in the same form as an assembler language
operand.

That is:

a (b, c)

• + t I I BASE REGISTER

I I~DEX REGISTER I
I
DISPLACEMENT

The following are examples of explicit addresses:

2(0,5)
0(2,4)

Implied Address (Indexed)

An implied address is written as a symbol, optionally indexed by a specified
index register.

The following are examples of implied addresses:

GUPOFF
ALPMAY (4)

J-7

Symbol

The operand is written as a string of up to eight alphanumeric characters, the
first of whkh is alphabetic. Embedded commas and blanks are not
permitted. Symbols beginning with the characters $ may not be used. The
symbols beginning with those characters are reserved for system use. The
following are examples of symbols:

LEE
MARGIE3
BILL8SAM
DEBDEB

Decimal Integer

The operand may be written as a whole decimal number of one to eight
digits, (for example, 5, 31, 127, etc.).

Absolute Expression

An absolute expression may be an absolute term or any arithmetic
combination of absolute terms. An absolute term may be an absolute symbol
or any of the self-defining terms. All arithmetic operations are permitted
between absolute terms.

An absolute expression may contain relocatable terms alone or in
combination with absolute terms under the following conditions:

1. There must be an even number of relocatable terms in the expression.

2. The relocatable terms must be paired. Each pair of tenns must have the
same relocatability attribute, for example, they appear in the same control
section of an assembly. Each pair must consist of terms with opposite signs.
The paired terms do not have to be contiguous, e.g., RT+AT-RT, where RT
is relocatable and AT is absolute .

.3. A relocatable term must not enter into a multiply or divide operation.

The pairing of relocatable terms (with opposite signs and the same
relocatability attribute) cancels the effect of relocation. The value
represented by the paired terms remains constant, regardless of program
relocation. For example, in the absolute expression A-Y+X, A is an absolute
term, and X and Yare relocatable terms with the same relocatability
attribute. If A equals 50, Y equals 25, and X equals 10, the value of the
expression would be 35. If X and Yare relocated by a factor of 100, their
values would then be 125 and 110. However, the expression would still
evaluate as 35 (50-125+ 110= 135).

An absolute expression reduces to a single absolute value.

J-8

Code

Text

Characters

In the following examples of absolute expressions, JOE and SAM are
relocatable and defined in the same control section, BERNY and DAVE are
absolute:

331
DAVE
BERNY+DAVE-83
JOE-SAM[
DAVE*4+BERNY

A code is written exactly as indicated in the description of a macro
instruction. For example:

Name Operation Operand

[symbol] FTBAL scores-code

scores specifies the desired action

TD - Touchdown
FG - Field goal
HT - Half time is called

The macro instruction could be written in a program:

SAM

DUME

FTBAL
FTBAL
FTBAL

TD
FG
HT

A text operand is written as a string of alphanumeric characters enclosed in
apostrophes. Embedded blanks and special characters are permitted. Two
apostrophes or two ampersands Inust be used to represent one apostrophe or
one ampersand in the character string. The text operand may not exceed 255
characters including the enclosing apostrophes. For example:

'AREA,PCB,132, ,1256'

The character operand is written as a character string. Embedded commas or
blanks are not permitted. Two apostrophes or two ampersands must be used
to represent one apostrophe or one ampersand in the character string. The
character string may not be enclosed in apostrophes. For example:

CUBTDAVE+HEINZ+JOHN*830PMOT

J-9

Oplist Operands (Macros Only)

In several macro instruction descriptions in this publication, the operand
field is specified as:

Operand

oplist- f text}
\addr

implying that a list of keyword and/or positional operands may be written as
fields of a character string and that the character string itself (enclosed in
apostrophes) or the address of the string may be written as the oplist
operand depending on whether the text or addr form of the operand is
chosen.

If oplist is presented as a character string, i.e., text operand form, the macro
expansion places it in the assembled program followed by an end-of-message
code, and loads a pointer to the string in register 1. If oplist is given as an
address; i.e., addr operand form, the expansion places that address in register
I. In this case, the programmer must define the operands elsewhere in the
program and provide an end-of-message code.

To reference and manipulate oplist macro instruction operands in coding,
the address option of the macro instruction is used, permitting the set-up of
the operand character string as a series of adjacent fields, each with its own
label.

The string must end with a hexadecimal 27, which serves as an
end-of-message code. Any unused space in each of the adjacent fields in the
string must be filled with blanks to the maximum size of that field. Unlike
other operand forms, all commas in an oplist operand must be written even
if parameters are defaulted. A typical operand string might be coded:

OPLIST
OPLISTI
OPLIST2

DC
DC
DC
DC

TYPE OF MACRO INSTRUCTIONS

R-Type Macro Instructions

C'first operand'
C', second operand'
C',n operand'
X'27'

Most system macro instructions are of two basic types: R-type (register) or
S-type (storage). The letter R (R) or (S) follows the name of each macro
instruction description in this publication to indicate its type. Macro
instructions which are neither R- nor S-type, referred to as other macro
instructions, are denoted by (0) in their descriptions.

Address operands in R-type macro instructions are always classified as addrx
or addx. This arrangement allows the user to employ indexing although the
addresses passed in R-type macro instructions must be properly covered; i.e.,
the base register used for the passed address must contain the proper value to
ensure that the address refers to the desired location in virtual storage.

J-I0

For example, assume there exists an R-type macro instruction RTYPE,
which expects an address "area" in register I and the "length" of that area in
register O. Its external macro description would be as follows:

Name Operation Operand

[syrnbol] RTYPE
{

area-addrx} ,{length-value}
(1) (0)

Special Register Notation

The user's problem program might be written so that one or both of the
parameters already exist in the proper parameter register when the macro
instruction is issued. In this case, (I) or (0) is written as the operand. The
notation (1) and (0) is referred to as special register notation. Register I and
o cannot be used in a macro instruction unless special register notation is
shown in the macro instruction description.

s-Type Macro Instructions

An S-type macro instruction is used when the number of parameters to be
passed to the called routine cannot be contained in the two parameter
registers. The parameters are placed in a parameter list whose address is
passed to the called routine in register 1.

There are three forms of the S-type macro instruction:

1. The Standard Form

2. The L-form (Parameter list only).

3. The E-form (Executable code only).

The S-Type/Standard Form

Note: All S-type macro instructions are provided with L- and
E-forms unless otherwise stated under the individual
descriptions.

The S-type/standard form rnacro instruction generates both the parameter
list required by the called routine and the linkage to that routine.

Address operands in S-type/standard form macro instruction are always
classified as addr. Hence, they may not be indexed, and the user's problem
program is not responsible for providing cover registers.

As an example, assume an S-type macro instruction STYPE, which expects
the address of two storage areas, "input" and "output" and the "length" of
those areas. Its external macro description might be as follows:

Name Operation

[symbol] STYPE

Operand

input-addr ,output-addr,
length-value

.I-II

The S-Type/L-Form

The L-form :macro instruction is used to create a parameter list. E-form
Inacro instructions are used to point to the parameter list that is generated
by the L-formt macro instruction.

The assembler recognizes an L-form macro instruction by the presence of the
keyword operand MF:=F in its operand field.

Because the L-form Inacro instruction generates only a parameter list, the
use of operand types which require executable code, such as register
notation, are prohibited.

There is an implied difference in the kinds of operands required in the
external macro description, when using the various forms of the S-type
lnacro instruction. 'Vhere the standard form indicates addr and value
operands (register notation is allowed for example), it is implicitly
understood that L-form macro instructions allow only relexp and absexp
operands (register notation is not allowed for example).

The exte:mal description of the L-form STYPE macro instruction, previously
described, becomes by inlplication:

Name Operation

symbol STYPE

Operand

input-relexp,output-relexp,
length-absexp, MF=L

Note that the name field is required on the L-form because it usually
becomes the label of the generated parameter list and is referred to by the
E-form.

The L-form Inacro instruction generates the parameter list at the place the
Inacro instruction is encountered. Because the L-form expansions contain no
executable instructions, they should be placed in the program so as not to
receive control; that is, among the DSs or Des.

The S-Type/E-Form

A parameter list created by an L-form macro instruction, or by any other
Ineans, may be referred to by an E-form macro instruction.

The assembler recognizes an E-form macro instruction by the presence of the
keyword operand:

MF=(E{ list-addrx})
(1)

in its operand field. List should specify the location of the parameter list to
be used by the E-fonn macro instruction. If (I) is written, register 1 should
be loaded with the address of the L-form parameter list before execution of
the macro instruction. The symbol in the name field of an L-form macro
instruction becomes the name of the parameter list.

J-12

The extelmal description of the E-form STYPE macro instruction, previously
described, becomes by implication:

Name Operation

symbol STYPE

Operand

MF=(E, {list-~ddrx})
(1)

Other Macro Instnlctions

Error Codes

Literals

Certain system macro instructions cannot be classified as either R-type or
S-type; they are referred to simply as other macro instructions, denoted (0)
in the macro instruction descriptions.

Macros, which return error codes in a register, must place the code in the low
order byte of register 15, the leftmost three bytes are cleared to zero.

Zero in the low order byte specifies that no error was encountered.
Otherwise, the error code is specified as a multiple of four (to facilitate
indexing).

Macros nlaY use (generate) literals; in macros where the user is responsible
for base-register coverage of operands, he too must generate literal coverage.
Conversely, where the user does not have to provide base-register coverage,
literals must be covered by the macros.

J-13/J-14

INTRODUCTION

APPENDIX K
VOLUME TABLE OF CONTENT (VTOC) FORMATS

This appendix describes the VTOC formats for all VMOS direct access
volunles. Although VMOS VTOC formats are different from those of
TOS/TDOS, some of the sanle terminology has been retained because the
functions provided are similar:

Format 5 - defines which half pages are allocated and which are available.
(See table K-2.)

Format I - (private volumes only) contains information describing the files
which begin on that volume.

The VTOC consists of standard 2048-byte half-pages and always begins in
the fourth half-page on the volume. The space that would be expected to
contain the first three half-pages is not preformatted and contains the
TOS/TDOS format IPL and SVL (Standard Volume Label).

The Format I labels contain an entry for each file that begins on the volume.
Format I entries are exact duplicates of their corresponding catalog entries.

Table K-I iHustrates the VTOC format for all VMOS direct access volumes.
Table K-2 illustrates the contents of the Format 5 half-page.

TABLE K-l. VTOC FORMAT FOR ALL VMOS DIRECT ACCESS VOLUMES

SYSRES volume
page 1:
page 2:
page 3:
pages 4-6:
pages 7-Max:

Public volume
page 1:--
page 2:
page 3:
page 4~Max:

Private volum.~
page 1: -
page 2:
page 3:
pages 4-N:
page N+1-Max:

Bootstrap
SVL
Format 5 label
IPL
Pu bl ic space

Dummy bootstrap
SVL
Format 5 label
Pu bl ic space

Dummy bootstrap
SVL
Format 5 label
Format 1 labels
Private space

K-I

TABLE K-2. FORMAT 5 HALF-PAGE CONTENTS

Field Size

1 2

2 2

3 2

4 2

5 2

6 2

7 2

8 2

9 2

10 2

Device Type Device Type

8564 8590 8568 8564 8590

11 128 508 1344 20 20

12 16 64 168 148 528

13 16 64 168 164 529

14 1868 1388 312 180 656

Disp. from
Beginning
of Page

0

2

4

6

8

10

12

14

16

18

8568

20

1364

1532

1700

Description

Displacement of units table.

Displacement of packet table.

Displacement of segment table.

Total number of units
available.

Total number of packets
available.

Total number of files beginning
on this volume.

Percentage of available packets.

Physical page number of the
Ihe page in the FMT 1 area
(always = 5).

Physical page number of the
rhe page in the FMT 1 area.
(Significant on private volumes
only.)

Number of bytes of significant
data in F5.

Units table

Packet table

Segment table

Reserved

FORMAT -5 HALF -PAGE FIELDS

Field I - This 2-byte field contains the displacement of the first byte in the
units table relative to the beginning of the page. Its value is the binary
equivalent of (20)1 0 •

Field 2 - displacement of the first byte in the map table relative to the
beginning of the page. Its value is the binary equivalent of:

(148)10 for 8564

(528)10 for 8590

(1364)10 for 8568

K-2

Field 3 - displacement of the first byte in the contiguous packet table
relative to the beginning of the page. Its value is the binary equivalent of:

16410 for 8564

59210 for 8590

156010 for 8568

Field 4 - 2-byte binary value which defines the total number of available
units on the volume. (1 unit = 3 half-pages)

Values are:

8564 = 101310

8590 = 40581 (I

8568 = 1092010

These values include room for 2 FMT I half-pages (5&6). If additional space
for FMT I's :is requested by the user at volume initialization time, these
values will be reduced accordingly.

Field 5 - 2-byte binary value defining the total number of completely
empty packets on this volume.

Values are:

8564= 12610

8590 = 50710

8568 =]l3641 ()

If additional FMTI space is requested at Volume initialization time, these
values may have to be reduced.

Field 6 - 2-byte binary count of the number of files beginning on this
volume. Initially set = 00 0016 •

Field 7 - 2-byte field containing the percentage of available packets on the
volume. Initially set to 00 001 6 •

Field 8 - 2-byte physical page number defining the Ihe of the FMT area. Its
value is 00 0416 , This value is present on both public and private volumes.

Field 9 - 2-byte physical page number defining the rhe of the FMT I area.

Field 10 - 2-byte field containing number of bytes in data portion of the
F5.

K-3

Field 11 - Units Table - the units table defines the status of each unit on the
volume (a unit is the smallest unit of allocation or 3 half-pages). A 1 bit
indicates that the corresponding unit is available. A 0 bit indicates that the
correspolt1ding unit has been allocated. The length of the units table is
dependent on the number of units on the volume. In all cases, however, the
table is expanded to an integral number of words in order to facilitate
searching.

8564 - There are 1015 possible units on the volume. The units table is 128
bytes long. Bits 0-1 are reset to 0 to indicate they are in use (1 PL,SVL and
VTOC). Bits 2-1013 are set to 1 to indicate they are not in use. Bits
1015-1023 are reset to 0 to indicate they are in use (they, in fact, do not
exist).

8590 - There are 4060 possible units on the volume. The units table is 508
bytes long.

Bits 0-1 are set to 0 to indicate they are in use. Bits 2-4059 are set to 1 to
indicate they are available. Bits 4060-4067 are reset to 0 because they
represent nonexisting units.

8568 - There are 10,922 possible units on the volume. The units table is
1368 bytes long. Bits 0-1 are reset to 0 to indicate they are not in use. Bits
2-10921 are set to 1 to indicate they are available. Bits 10922-10943 are
reset to 0 to indicate that they do not exist.

Notes:

Two important exceptions to the above definition are

1, If the user requests more than the minimum FMT I area at
initialization, the table must be adjusted accordingly.

2, The space assigned to the alternate track pool must be
marked as not available.

Field 12 - Packet table - defines the status of each packet (I packet = 8
units) on the volume. There is one bit for each possible packet (each 8 units)
on the volume. A 1 bit indicates that every unit in the corresponding packet
is available. A 0 bit indicates that at least one unit in the corresponding
packet has been allocated or is unavailable. The size of the packet table will
be approximately 1/8 that of its corresponding units table (the packet table
is rounded up to an integral number of full words).

Using the units tables defined above:

The map table for the 8564 would look like this:

Bit 0 = 0 (1 st two units are allocated)
Bit 1-124 = 1
Bit 126 =: 0 (last packet contains only seven units).
Bit 127 =: 0 (these packets do not exist).

K-4

Field 13 - Segment Table - defines the largest number of contiguous empty
packets in each segment (I segment = 8 packets). There is one byte for each
segment. The value of the byte will range between 0 and 8.

(0 means there are no completely empty packets in the segment - 8 means
that every packet in the segment (8) is available.) This table is derived from
the map table.

Example:

if the byte in
packet table is:

(0 I I I I I I 0)2

(OIIOIIIOh

(I 0 I 0 1 0 1 0)2

(II 1 00 1 1 1)2

the segment table
byte would be:

(03)16

The segment table for the 8564 would look as follows (assume the units and
map tables defined above):

Byte 1 = (7)1 6 - the first packet is not entirely available.

Bytes 2-15 == (8)1 6

Byte 16 = (6)16 - there are actually only 126 possible packets on an 8564.

K-5/K-6

APPENDIX L
FILE MANAGEMENT ERROR MESSAGE CONCEPTS AND CODE STRUCTURE

This appendix describes the conventions used by the file management
components in the identification of errors by hexadecimal codes.

STRUCTURE OF CODES

All error codes generated by the file management routines are bf the form

(ORM)16

where R is the major component code, M the minor component code, and N
the error number.

The major component code, (R) specifies the routine which last reported the
error (that is, returned the code to the problem program). The major
component codes are defined as follows:

2 - PAM: (PQP AM)

3 - Catalog (DKCMSE)

4 - Allocator

5 - Commands/Macros

6 - Commands/ No Macros

8 - RESERVED

9 - Nonprivileged PAM (DQNPAM)

A - ISAM

B- SAM

C - BTAM (PDBTAM)

D - OPEN

E - CLOSE

L-I

The minor component code (M) specifies the routine which originally
discovered the error. The minor component codes are defined as followed:

2-PAM

3 - Catalog

4 - Al1ocator

5 - Comlnands/Macros

6 - Comlnands/No Macros

9-F - Used by all other components

The error number (N) is a unique identifier associated with the error.

Note that if M<9, then the original discoverer of the error was M. If M~9,
the original discoverer of the error was R.

CONSTRUCTION OF ERROR CODES

If a routine receives an error code from another routine, it replaces the major
component code with its own; the rightmost two hexadecimal digits of the
message are unchanged..

If a routine discovers an error, then it will construct a message consisting of
its major component code, its minor component code, and a message
number from O-F.

NAMING OF MESSAGES

For ease of use, all messages are given a name which is equated to the error
code. The list of all such names is maintained in the IDEMS macro which is
described below. The names are of the following form:

DXY ,where
D is the letter D.
X is the prefix assigned to each DMS product.
Y is a I to 5 alphanumeric character name.

Name Operation

IDEMS

Operand

[,ALL=Y] [,FMTER=Y] [,PAM=Y]
[,CATAL=Y] [,ALLOC=Y] [,CMDMAC=Y]
[,CMDNMAC=Y] [,OPEN=Y] [,CLOSE=Y]
[,NPAM=Y] [,ISAM=Y] [,SAM=Y]
[,BTAM=Y] [,P=prefix-code] [,PTAM=Y]

Where ALL=Y specifies all error codes to be generated. P is the prefix to be
appended to each message. If not specified, I is used.

Each of the others specifies that the error codes for the indicated component
should be generated.

L-2

RETURN OF CODES

The error codes will be returned to the calling program in either register 15
or the halfword DIECB contained in the PI FCB. This will depend on the
linkage specified by the called routine.

Examples:

1. One level.

Suppose that a user calls nonprivileged PAM and the file is not open. Then
non privileged PAM will place the error code 0994 in the FCB and exit via
$GOTO to USERERR.

2. Two levels.

Suppose that a user calls nonprivileged PAM which in turn calls PAM which
encounters an I/O error. Then PAM will return error code 0227 to
non privileged PAM in register 15 and nonprivileged PAM will convert this to
0927, put it in the FCB and exit via $GOTO to ERRADDR.

3. Suppose that a user calls the allocator which calls $REQM and which calls
PAM which calls $REQM. Then, the user may see the following error
messages:

0444 $REQM returned error X'04' in register 15 to the allocator.

0424 $REQM returned error X'04' in register 15 to PAM which
returned error 0224 to the allocator.

L-3/L-4

Page

ABEND Command, use of 2-24
ABEND Command, format 3-8
ACCESS Methods 2-68
ACCESS Methods Relationships 2-69
ACCNT Macro, format B-2
ACCOUNT Command, format B-3
ACT Macro (CAM), use of 2-122
ACT Macro (CAM), format. 3-177
ADEXT Macro (TOS), format : B-14
Aher Images (FRS) 2-101,2-102
ANSI COBOL Background Compiler 1-13
ASCII Macro, format B-4
Assembler 1 -9
Assembler Source Library Update. 1-6
ASSGN Macro (TOS), use of " 2-117
ASSGN Macro (TOS), format •.................. A-1

BASIC 1-10
Basic Tape Access Method (BTAM) 2-94
BCNTR L Command B-5
Be·fore Images (FRS) 2-101,2-103,2-104
Block Format 2-71
BREAK Command, use of 2-25
BREAK Command, format 3-8
BTAM Files (Checkpoint/Restart) 2-45
BTAM Macro, format " 3-128
BTAM File, Opening 2-95
BT AM Record Formats. 2-95
Buffer Control (CAM) 2-122

CALL Macro, use of 2-27
CALL Macro, format 3-9
CAM , " 2-121
CAMRD Macro (CAM), use of ,• 2-122
CAMRD Macro (CAM), format , " 3-178
CANCEL Command, use of , 2-24
CANCEL Command, format , 3-9
Card-to-Random Access Routine 1-7
Card-to-Tape Routine , 1-7
CATAL Macro, use of , 2-99
CATAL Macro, format ,............ 3-91
Catalog Block Structure ,............ 2-59
CATALOG Command, use of , 2-99
CATALOG Command, format ... , 3-91
Catalog Entry ,............ 2-55
Catalog Entry Alteration. 2-99
Catalog Entry Image Records (FRS) ., " 2-103
CCB Macro, format (TOS) A-2
Central Control System (Executive)•.. 1-3
CHANGE Command, use of 2-26,2-99
CHANGE Command, format 3-94
CHECK Macro (TOS), format A-2

Z-l

INDEX

Page

Checkpoint/Restart, general 2-43
Checkpoint/Restart, system support. 2-51
CHKPT Macro, use of 2-43
CHKPT Macro, format 3-11
CHNGE Macro, use of ... , 2-26,2-99
CHNGE Macro, format. .. 3-94
Class 1 Memory , 1-13
Class 2 Memory .. 1-13
Class 3 Memory 1 -13
Class 4 Memory 1-13
Class 5 Memory , 1-13
Class 6 Memory. 1-13
Class I Program 2-5
Class II Program 2-5
CLOSE Macro, function of 2-68,2-119
CLOSE Macro, format F-2
Close Processing 2-68
COBOL Background Compiler 1-8
COBOL Library Update Routine 1-6
COBOL Program Development

Subsystem (CODE) 1-10
CODE. " 1-10
Command Language, general. 2-3
Common Data Area, access 2-27
Communication Access Method (CAM) 2-121
COMTY Macro (TOS), format A-3
CONNECT Command (CAM), use of 2-121
CONNECT Command (CAM), format " 3-179
Contingency Exists (lSAM) 2-85
COpy Command, use of 2-100
COPY Command, format 3-95
CPCI Macro (TOS), format A-3
CSTAT Macro, use of 2-23
CSTAT Macro, format 3-13

Data Block Splitting (ISAM) 2-91
DATA Command, use of 2-61
DATA Command, format 3-96
Data Exchange Controller (DXC) 1-13
Dat.a Management System (DMS) 1-4
DDEV Macro (TOS), format A-4
DEACT Macro (CAM), use of " 2-122
DEACT Macro (CAM), format 3-108
Desk Calculator. .. 1-5
Device Accounting 2-113
Device Acquisition 2-115
Device Allocation Component 2-113
Device Assignment 2-117
Device Control Optimization 2-114
Device Deallocation 2-119
Device, Definition , 2-7
Device Identification " 2-116

Page

Device, Obtaining 2-116
Device, private 2-8
Device, public .. 2-7
Device Regulation 2-118
DMODE Macro (TOS), format A-4
DO Command, use of 2-20,2-32
DO Command, format 3-15
DO File 2-30
DO File, multiple procedures 2-37
DO File, Example 2-33
DPAGE 1-7
DROP Command, use of 2-99
DROP Command, format 3-97
DXC 1-13
Dynamic Linking Loader 1-5

EAM 2-96
EAM Files (Checkpoint/Restart 2-45
EAM Macro, format 3-132
EAM Space Utilization 2-97
EBCD Macro, format B-6
Editor(EDT) 1-10
ELI M Macro, format ., .. 3-145
END Command, use of 2-61
END Command, format 3-97
ENDP Statement. 2-32
ENTER Command/Macro, use of 2-20,2-29
ENTER Command/Macro, format ' 3-16
Enter Files 2-28
Enter File, multiple procedures. 2-39
Enter File, Example 2-29
EOF Command, use of 2-22
EOF Command, format 3-18
ERASE Command, use of 2-99
ERASE Command, format 3-98
ERFLG Macro, format 3-18
Evanescent Access Method (EAM) 2-96
EXCOM Macro, use of 2-27
EXCOM Macro, format " 3-21
EXCP Macro (TOS), format ."................. A-5
EXCPW Macro (TOS), format A-5
EXECM Macro, use of 2-28
EXECM Macro, format. 3-23
EXECUTE Command/Macro, use of 2-20,2-117
EXECUTE Command/Macro, format 3-19
EXIT Macro, use of .. 2-21
EXIT Macro, format. .. 3-24
EXITP Macro, use of. .. 2-26
EXITP Macro, format " 3-25
EXLST Macro (TOS), format B-16
EXRTN Macro (TOS), format. B-22

FAST FORTRAN 1-10
FBUF Macro (CAM), use of 2-122
FBUF Macro (CAM), format 3-181
FCB Completion .. 2-63
FCB Formation. .. 2-62
FCB Macro, format -..... F-4
FCB Macro format, BTAM 3-131
FCB Macro format, ISAM 3-153
FCB Macro format, PAM 3-157
FCB Macro format, SAM 3-161

Z-2

Page

FCB, source information. 2-63
FEOV Macro, format 3-157
FETCH Macro (CAM), use of 2-121
FETCH Macro (CAM), format 3-182
FI LE Command/Macro, use of 2-62,2-116,2-118
FILE Command/Macro, format 3-100
FILE Command (TOS), use of 2-116
FILE (ASSGN) Command (TOS, RTP), format A-8
FILES Command (TOS, RTP), format ... , A-10
FILE Command, OPEN macro relationship 2-63
File Control Block (FCB) Formation 2-62
File Creation .. 2-61
File, Definition of , 2-5
File Definition, deletion 2-99
File Definition, modification 2-99
File Disposition .. 2-98
File Editor 1-10
File Groups. .. 2-55
File Identification .. 2-62
File Integrity (Checkpoint/Restart) 2-45
FI LE Macro, operation of 2-62
File Maintenance. .. 2-98
File Management (Checkpoint/Restart) 2-45
Filename .. 2-52
Filename Qualification 2-54
Filename, OPEN Macro relationship " 2-68
File Reconstruction System (FRS) 2-100
File Reproduction. .. 2-100
File Retrieval 2-58
File Security 2-56
File Security (System Controlled 2-58
File Space Allocation 2-10
File Space, public volumes 2-9
File/Volume Relationship. 2-8
F LOAD Macro (TOS), format B-1 5
FORM Macro (CAM), use of 2-122
FORM Macro (CAM), format 3-184
FORTRAN Background Compiler 1-9
FRS Printouts 2-108
FSTATMacro,useof 2-100
FST A T Macro, format 3-115
FSTATUS Command, use of 2-100
FSTATUS Command, format 3-111

GBUF Macro (CAM), use of 2-122
GBUF Macro (CAM), format 3-185
GDATE Macro, format , B-6
GEPRT Macro, format B-8
GET Macro (lSAM), format 3-139
GET Macro (SAM), format 3-158
GETFL Macro, format 3-147
GETKY Macro, format. 3-141
GETOD Macro, format .. B-9
GETR Macro, format 3-140
G ETSW Macro, format 3-26
GTMAP Macro, format , 3-10

HOLD Command, use of , 2-99
HOLD Command, format 3-117

I DFCB Macro, format , F-15
Indexed Sequential Access Method (lSAM) 2-79

Page

IFOR 1-10
Input Processing. .. 2-21
INSRT Macro, format , 3-144
Interactive Debuggi ng Aid .. 1-5
Interactive FORTRAN (lFOR) 1-10
Interactive Routi nes 1-10
Intercomputer Communication 1-13
I NTR Command, use of 2-25
I NTR Command, format. 3-26
ISAM 2-79
ISAM, use of PAM Key 2-94
ISAM File, flagged 2-82
ISAM File, opening. .. 2-80
ISAM File, size 2-88
ISAM File, structure 2-87
ISAM Record Formats 2-80
ISAM Shared Facilities, use considerations. 2-86
ISAM Shared File, opening 2-83
ISAM Shared File, processing 2-84
ISAM Shared File Update 2-83

Job Control. .. 1-11
Job Controller. .. 1-11

Language Processors 1-8
Language Support System (LSS) 1-5
Library Maintenance Routine 1-5
Library Utilities 1-5
Linkage Editor 1-6
Linkage Records (FRS) 2-106
Link Name 2-56
LNTYP Macro (CAM), use of 2-121
LNTYP Macro (CAM), format 3-186
LOAD Command/Macro, use of 2-20
LOAD Command/Macro, format 3-27
Loading Utilities 1-6
LOADM Macro, use of 2-28
LOADM Macro, format .. 3-29
Locate Modes (FRS) .. 2-103
Locking Data Blocks (lSAM) 2-86
Logical Records 2-76
LOG Macro (FRS), format 3-119
LOGOFF Command/Macro, use of 2-24
LOGOFF Command/Macro, format 3-31
LOGOFF Processing. .. 2-4
LOGON Command, format. 3-32
LOGON Statement. .. 3-19
LOGON-ENTER Command Relatic)nship 2-29
Log Tape Images (FRS) 2-102
LPOV Macro, use of 2-27
LPOV Macro, format 3-34

Macro Library Update Routine. 1-6
Memory Classes .. 1-13
Message Generation (Checkpoint/REtstart) 2-44
Message Processing (CAM) 2-121
Message Processing Routine 1-5,1-6
MONTB Macro (TOS), format B-15
Move Modes (FRS) 2-103
Multichannel Switch. .. 2-115
Multistation Line Usage (CAM) 2-122

Z-3

Page

NOLNS Macro, use of .. 2-122
NOLNS Macro, format 3-188

OML-to-CLT Conversion Routine. 1-6
OPEN Macro, FILE Command relationship 2-66
OPEN Macro, Filename relationship. 2-68
OPEN Macro, format F-16
OPEN Macro, function of 2-64
Open Processing 2-64
Open Processing, sequence of events 2-64
OSTAT Macro, format 3-149
Output Processing. .. 2-22

PAM 2-74
PAM Macro, format 3-154
PAM Record, format. .. 2-75
PAIilAMETER Command, use of 2-21
PASS Macro, use of .. 2-23
PASS Macro, format. .. 3-35
PASSWORD Command, format 3-119
PASSWORD Requirements. 2-57
PAUSE Command, use of 2-25
PAUSE Command, format 3-36
Peripheral-to-Peripheral Utilities. 1-7
Pointer Rules (lSAM) 2-92
Primary Task. .. 2-4
PRIME Macro (CAM), use of 2-121
PRIME Macro (CAM), format. 3-188
Primitive Access Method (PAM) 2-74
Procedure Files 2-28
Procedure Files, multiple procedures 2-37
PROCEDURE Statement 2-31
Processing Control, program interruption. 2-26
Processing Environment Manipulation 2-23
Program Classification .. 2-4
Program Direction .. 2-21
Program Identification (CAM) 2-121
Program Initiation. .. 2-20
Program Interruption 2-25
Program Termination 2-24
Program-to-Program Communication 2-26
PROUT Macro, use of .. 2-22
PROUT Macro, format 3-37
PUT Macro (I SAM), format 3-142
PUT Macro (SAM), format 3-158
PUTX Macro (lSAM), format 3-143
PUTX Macro (SAM), format 3-159

QUIET Macro nOS), format A-6

Random Access-to-Printer/Punch Routine 1-8
Random Access-to-Tape Routine 1-8
RDATA Macro, use of 2-21,2-22
RDATA Macro, format 3-38
RDCRD Macro, use of 2-21,2-22
RDCRD Macro, format. .. 3-43
RECON Command (FRS), format 3-120
RECON Macro (FRS), format. 3-121
Record Format. .. 2-71
REL Macro, use of 2-99,2-119
REL Macro, format. .. 3-121

Page

RELEASE Command, use of 2-99,2-119
RELEASE Command, format 3-121
RELM Macro, use of .. 2-119
RELM Macro, format 3-168
RELSE Macro (SAM), format 3-159
REMARK Command, format 3-44
Remote Batch Processing 2-40
Remote Job Initiation. .. 2-41
Remote Job Regulation 2-41
Remote Job Termination 2-42
REQM Macro, use of 2-117
REQM Macro, format " 3-170
RESET Command (FRS), format 3-122
R EST ART Command (Checkpoint/Restart),

use of 2-43
RESTART Command (Checkpoint/Restart),

format .. 3-46
Restart Environment (Checkpoint/IRestart) 2-45
RESUME Command, use of 2-25
RESUME Command, format 3-45
RETRN Macro, use of 2-27
RETRN Macro, format. .. 3-47
RETRY Macro, format. 3-150
RJOB Command, use of 2-41
RJOB Command, format 3-49
RLOGOFF Command, use of 2-42
RLOGOFF Command, format 3-50
RLOGON Command, use of 2-41
RLOGON Command, format 3-51
RMSG Command, use of .. 2-42
RMSG Command, format 3-51
ROUT Command, use of .. 2-41
ROUT Command, format 3-52
RST ART Command, use of 2-41, 2-117
RSTART Command, format 3-172
RSTATUS Command, use of 2-42
RSTATUS Command, format 3-54
RSTOP Command, use of .. , 2-43,2-119
RSTOP Command, format 3-173

SAM 2-75
SAM File, opening 2-78
SAM Record Format. .. 2-77
SAM, use of PAM Key 2-79
SAVE Macro, use of 2-27
SAVE Macro, format 3-55
Secondary SYSFILE Assignment

(Checkpoint/Restart) .. 2-46
Secondary Tasks 2-4
SECURE Command, use of 2-116
SECUR E Command, format 3-173
Selective Card-to-Printer/Punch ROI.Jtine 1-7
Selective Tape-to-Printer/Punch Routine 1-7
SEND Macro (CAM), use of 2-122
SEND Macro (CAM), format. 3-190
Sequential Access Method (SAM) 2-75
Service Routines. 1-5
SETBF Macro, format. 3-57
SETIC Macro, use of 2-26
SETIC Macro, format ".... 3-58
SETL Macro (I SAM), format " 3-146
SETL Macro (SAM}, format "... 3-160

Z-4

Page

SETSW Command, use of " 2-27
SETSW Command/Macro, format 3-59,3-60
SETSW Macro, use of 2-27
SHUTM Macro (CAM) use of 2-122
SHUTM Macro (CAM), format 3-192
SKIP Command, use of .. 2-27
SKIP Command,format .. 3-61
SMODE Macro (TOS), format. A-6
Sort/Merge Routine 1-6
Space Acquisition 2-117
Space Deallocation 2-119
Space Regulation 2-118
SPEXT Macro, use of 2-26
SPEXT Macro, format. .. 3-63
Spool out .. 1-12
SPRG Macro (TOS), format A-6
SPSEQ Macro (CAM), use of 2-122
SPSEQ Macro (CAM), format 3-193
Stack Management (Checkpoint/Restart) 2-44
Stacks .. 1-12
Static Loader 1 -5
STATUS Command, use of 2-21
STATUS Command, format 3-64
Status Monitoring, file 2-100
STEP Command, use of 2-27
STEP Command, format .. 3-68
STORE Macro (lSAM), format. 3-144
STX IT Macro, use of .. 2-26
STX IT Macro, format 3-69
Symbolic Parameter (DO File) 2-35
SYSCMD 2-6,2-30
SYSDT A .. 2-6, 2-30
SYSFILE Command, use of 2-100,2-118
SYSF I LE Command, format 3-124,3-174
SYSIPT 2-6,2-30
SYSLST 2-6
SYSOPT 2-7
SYSOUT 2-6
System Files 2-5
System File Reassignment. 2-100
System Volume. .. 2-10

Tape Compare Routine. .. 1-8
Tape Edit Routine 1-8
Tape Record Formats (FRS) 2-105
Tape Renaming'. .. 2-55
Tape-to-Random Access Routine 1-8
Tape-to-Tape Routine. .. 1-7
Task, Definition 2-3
Task, general information 2-3
Task Initiation 2-19
Task Interruption 2-25
TASKLIB 2-7
Task Library, general information. 2-7
Task Library, reassignment 2-100
Task Priority .. 2-4
Task Regulation 2-21
Task Switches, manipulation. 2-27
Task Termination 2-24
TERM Macro, use of .. 2-24
TERM Macro, format 3-74
TERMD Macro, use of 2-24

Page

TERMD Macro, format. .. 3-74
TERMJ Macro, use of .. 2-24
TERMJ Macro, format 3-75
Terminal Identification (CAM) 2-121
TMODE Macro, use of 2-21
TMODE Macro, format. .. 3-75
TOCOM Macro, use of 2-27
TOCOM Macro, format 3-77
TOS Load Module Transcriber 1-6
TOS Volume 2-10
TPLAB Command (TOS, RTP), format A-11
Transmission Control (CAM) 2-122
TYPE Command, format B-13
TYPE Macro (TOS), format A-7
TYPIO Macro (TOS), format B-22

Unlocking Data Blocks (lSAM) 2-85
Updating Data Blocks (lSAM) 2-85

VDC Command (TOS, RTP), format A-11
Virtual Memory Organization 1-12
VMOS COBOL Library to TOS COBOL

Library Conversion Routine 1-6
VMOS Load Module Transcriber. 1-6
VOL Command (TOS, RTP), format A-12

Page

Volume, definition 2-8
Volume/File Relationship. 2-15
Volume, file space. .. 2-9
Volume, general information 2-8
Volume, private 2-9
Volume, public .. 2-9
Volume, system 2-10
Volume, TOS 2-10
Volume, use of 2-9
VPASS Macro, use of 2-23
VPASS Macro, format. .. 3-78

WAIT Macro (TOS), format A-8
WAITM Macro (CAM) use of 2-122
WAITM Macro (CAM), format 3-195
WREND Macro (CAM), use of 2-122
WR.END Macro (CAM), format 3-195
WRLST Macro, use of .. 2-22
WRLST Macro, format 3-78
WROUT Macro, use of 2-23
WROUT Macro, format 3-81
WRTOT Macro, use of 2-23
WRTOT Macro, format 3-84
WRTRD Macro, use of 2-23
WRTRD Macro, format 3-85

Z-5/Z-6

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	3-159
	3-160
	3-161
	3-162
	3-163
	3-164
	3-165
	3-166
	3-167
	3-168
	3-169
	3-170
	3-171
	3-172
	3-173
	3-174
	3-175
	3-176
	3-177
	3-178
	3-179
	3-180
	3-181
	3-182
	3-183
	3-184
	3-185
	3-186
	3-187
	3-188
	3-189
	3-190
	3-191
	3-192
	3-193
	3-194
	3-195
	3-196
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	G-01
	G-02
	H-01
	H-02
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	J-14
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	L-01
	L-02
	L-03
	L-04
	Z-01
	Z-02
	Z-03
	Z-04
	Z-05

