Virtual Memory Operatlng System
(VMOS)

System Management
Reference Manual

May 1972
DP-005-2-00

Series 70 Publications
Building 214-1
Cinnaminson, N.J, 08077

SERIES 70

The information contained herein is subject
to change without notice. Revisions may be
issued to advise of such changes and/or
additions.

First Printing: May 1972 (DP-005-2-00)

© 1972 — SPERRY RAND CORPORATION

GENERAL

PREFACE

The VMOS System Management Reference Manual provides systems
personnel with the information necessary to manage the throughput of work
run under the Virtual Memory Operating System (VMOS). This publication
contains the information necessary to use the control system command and
macro language (the Command Language) for task, file, and device
management. :

No attempt is made to prescribe the duties of those systems personnel who
will need to use the information presented herein, for it is assumed that the
material in this book will frequently be necessary for programming functions
as well as system analysis. Also, the arcas of source program input, object
code generation, the use of diagnostic routines, etc., which relate to program
preparation, have been omitted. These subjects are covered in detail in the
VMOS Programmer’s Reference Manual.

The VMOS System Management Reference Manual has been organized as
follows:

Part 1. VMOS System Management. A two-section discussion
of the design concepts and the operational characteristics of
VMOS as they affect system management comprises this part.
Such details are provided by an overview of VMOS, and of
the three major VMOS Control Program components which
most affect system management.

Part 2. Control Program Usage Concepts. The five sections of
this part provide details pertaining to VMOS control program
usage in the area of system management. The Introduction
section describes certain VMOS concepts relating to program
classes, tasks, files, devices, and the use of volumes, that are
basic to the effective use of this system. This is followed by a
description of the facilities made available for task and
program initiation, regulation, and termination; and a
discussion of process interruption, program to program
communication, remote batch processing, procedure file
construction, and checkpoint-restart.

In addition, the concept of VMOS files and access methods;
the presentation for device and space allocation, regulation,
and deallocation; and information pertaining to
communication facilities offered by VMOS are included in
this part.

iii

Part 3. Control System Commands and Macros. The four
secticns that constitute this part contain definitive
descr:ptions of the control system commands and macros
relatiag to system management, including those pertaining to
the use of Communications Access Method (CAM).

The VMOS System Management Reference Manual also includes appendices
which may be referred to for related material, detailed point
description/explanat.on, extensive test data, tabulations, etc.
REQUISITE READING
The user of this opublication is assumed to be a programmer having
knowledge of third generation computing equipment and Assembly
Language programming. In addition, the reader should familiarize himself
with the material in the following publications:
Assernbler System Reference Manual,

VMOS Service Routines Manual, and/or

VMOS Programmer’s Reference Manual.

v

CONTENTS

Page
PART 1. VMOS SYSTEM MANAGEMENT
1. VMOS STRUCTURAL CONCEPTS i 1-3
General e 1-3
Control Program 1-3
The Central Control System (Executive) 1-3
The Data Management System (DMS) 1-4
Language Systems Support (LSS) 1-5
Software-Supplied Programs 1-5
VMOS Service Routines 1-5
Language Processors 1-8
2. VMOS CONTROL PROGRAM CHARACTERISTICS 1-11
General e 1-11
JobControl 1-11
Spoolout e 1-12
Stacks . . . o e 1-12
Virtual Memory Organization 1-12
Intercomputer Communication 1-13
PART 2. CONTROL PROGRAM USAGE CONCEPTS
1. USAGE CONCEPTS e e e e e e 2-3
General e 2-3
Command Language 2-3
Tasks e e e 2-3
Primary Task 2-4
Secondary Task, 2-4
Program Classification 2-4
ClassIPrograms 2-5
ClassII Programs 2-5
Files e e 2-5
System Files 2-5
System Task Library (TASKLIB) 2-7
Devices e e 2-7
PublicDevices 2-7
Private Devices, 2-8
Volumes e e e e 2-8
File/Volume Relationship 2-8

Public and Private Volumes 2-9

File Space 0.1 Public Volumes 2-9
TOSVolume it 2-10
System Volume 2-10
Volume Characteristics 2-10
2. TASK AND PROGRAM MANAGEMENT 2-19
General L e e e e e 2-19
Task and Program Initiation 2-19
Task Initiation 2-19
Program Initiation 2-20
Task Regulation anc. Program Direction 2-20
Task Regulation 2-21
Program Direction 2-21
Task and Program Termination 2-24
Task Termination 2-24
Program Termination 2-24
Process Interruption 2-25
Task and Program Interruption 2-25
Program Interruption Processing Control 2-26
Program-to-Program Communication 2-26
Communication from Command Stream 2-26
Communication from within a Program 2-27
Procedure Files e 2-28
EnterFiles, 2-28
DOFiles e, 2-30
Multiple Procedures 2-37
Remote Batch Processing 2-40
Remote Job Initiation 2-41
Remote Job Regulation 2-41
Remote Job Termination 2-42
Checkpoint/Restart Facilities 2-43
Message Gereration 2-44
ConsideraticnsforUse 2-44
Checkpoint/Restart Optimization 2-46
System Support of Checkpoint/Restart 2-51
3. FILE MANAGEMENT e e e e e 2-53
General e e 2-53
Filenames 2-53
File Groups and Renaming Tapes 2-55
Linkname 2-56
File Security 2-56
File Retrieval, 2-58
Catalog Block Structure 2-59
File Creation e 2-61
Software-Supplied Routines 2-61
Background Card Input 2-61
User-Writter. Program Operation 2-62
File Maintenance and Disposition 2-98
Software-Supplied Routines 2-98
Utility Routines 2-98
Command Language Instructions 2-98

vi

File Reconstruction System 2-100
Introduction, 2-100

File Reconstruction (After Images) 2-101

File Resetting (Before Images) 2-101

Move Mode (SAM, ISAM) 2-103

Locate Mode (SAM, ISAM) 2-103

Locate Mode (UserPAM) 2-104

FRS Tape Record (LOGTAPE) Formats 2-105
Description of FRS Printout 2-108

4. DEVICE AND SPACE MANAGEMENT 2-113
Introduction e 2-113
System Device Allocation Component 2-113
System Device Accounting 2-113
System Device Control Optimization 2-114
Operator Interaction 2-114
Multichannel Switch 2-115

Device Acquisition L. e 2-115
Device Identification 2-116
Obtaining Devices i i 2-116

Device Assignmento, 2-117

Space Acquisition e 2-117
Device and Space Regulation 2-118
System Input Files 2-118

Device and Space Deallocation 2-119
5. COMMUNICATIONS ACCESS METHOD (CAM) 2-121
General e e e 2-121
Program and Terminal Identification 2-121
Message Processingo e e 2-121
Transmission and Buffer Control 2-122
Multistation Line Usage, 2-122

PART 3. CONTROL SYSTEM COMMANDS AND MACROS

1. TASK/PROGRAM MANAGEMENT COMMANDS AND MACROS 3-3
General L e e e e e e 3-3
Task Initiation Commands and Macros Summary 3-3
Program Initiation Commands and Macros Summary33
Task Regulation Commands and Macros Summary 3-4
Program Direction Commands and Macros Summary 3-4
Task Termination Commands and Macros Summary 3-6
Program Termination Commands and Macros Summary 3-6
Process Interruption Commands and Macros Summary 3-6

Task/Program Management Command and Macro Description 3-8

vii

2. FILE MANAGEMENT AND ACCESS METHOD DEFINITION
COMMAND AND MACROS e

General
File Management Cornmands and Macros Summaries
File Creation Commands and Macros
File Maintenance Cornmands and Macros
File Disposition Commands and Macros
File Reconstruction Commands and Macros
File Management Cornmand and Macro Descriptions
Access Method Definition Macros Summaries

Basic Tape Access Method (BTAM) Macros

Evanescent Access Method (EAM) Macros

Indexed Sequential Access Method (ISAM) Macros

Primitive Access Method (PAM) Macros

Sequential Access Method (SAM) Macros
Access Method Definition Macro Descriptions
ISAM Action Macros
PAM Action Macro e
SAM ActionMacros e

3. DEVICE AND SPACE MANAGEMENT COMMANDS AND MACROS

General e e
Device (Space) Allocation Commands and Macros Summary
Device (Space) Regu ation Commands and Macros Summary

Device (Space) Deallocation Commands and Macros Summary .
Device (Space) Management Command and Macro Descriptions . . .

4. COMMUNICATIONS ACCESS METHOD (CAM) COMMANDS AND MACROS .

APPENDICES

General e
Program and Terminal Identification

Command and Macro Summary
Message Processing Macros Summary
Transmission and Buffer Control Macros Summary
Multistation Line Usage Macro Summaries
Communication Acczass Method

Command and Macro Descriptions

A. Macros Supporting Physical Level I/O

and Run Time Parameters
B. Miscellaneous Task and File (Data) Management

Commands and Macros (Class I Programs)
C. Macro Instruction Editing Options
D. VMOS Support of TOS Tables
E. Macro SVC Identification
F. VMOS General Service File Management Macros
G. File Management DSECTS
H. Device Management Control Tables
J. Command/Macro Notation Conventions
K. Volume Table of Contents (VTOC) Formats
L. File Management Srror Message Concepts

and Code Structure

viii

LIST OF ILLUSTRATIONS

Figure No. Page
1-1. Virtual Memory Class Division 1-12
1-2. VMOS-DXC-RMOS Message Flow 1-15
2-1. DOFileProcedures, 2-38
2-2. Single Serial File e 2-47
2-3. Single Checkpoint 2-48
2-4. Alternating Checkpoint 2-49
2-5. Major and Minor Checkpoints 2-50
2-6. Catalog File Block Structure 2-60
2-7. File Definition Entry, Links, and Task File Table 2-67
2-8. Access Method Relationships to Privileged PAM 2-69
2-9. ISAM File Index/Data Structure it 2-88
2-10. Formatof FRSLog Tape 2-106
3-1. Example — (Erase Command) 3-99
3-2. Control Byte and 7-Level Control Codes 3-103
D-1. TOS Communication Area (TCA)Blocks D-2
F-1. Base Register Initialization for IDFCB F-15

ix/x

LIST OF TABLES

Table No. Page
1-1. VMOS-DXC-RMOS Message Flow Operations 1-15
2-1. Guide to System Management Directive Tables 2-2
2-2. Summary of Volume Characteristics 2-11
2-3. System Management Process Initiation Directives 2-12
2-4. System Management Processing Control Directives 2-13
2-5. System Management Process Termination Directives 2-17
2-6. Procedure Files e 2-40
2-7. Password Requirements 0 i i i i e 2-58
2-8. Access Methods, Record Types, and Device Types 2-69
2:9. PAMBlock Control Field 2-70
2-10. Logical Record Types and Access Methods 2-72
2-11. PAM Macro OptionsversusOPENType 2-75
2-12. SAM Action Macrosversus OPEN Type 2-78
2-13. ISAM Action Macros versus OPEN Type 2-81
2-14. Summary of ISAM Pointer Rules for ActionMacros 2-92
2-15. BTAM Action Macrosversus OPEN Type 2-96
3-1. MFCB Table Definition, 3-132
3-2. MFCB Operation Codes versus Fields Used 3-133
B-1. Summary of the Use of the Contingency Exits B-23
F-1. Positioning of Tape Volumes for Options of the CLOSE Macro F-3
F-2. Summary of FCB Macro Instruction Parameters

Allowed for Each AccessMethod F-5
F-3. Permissible OPEN Values for Access Method F-14
G-1. File Management DSECTS of General Interest to User Programs G-2
H-1. Defines the Three Sense Bytes for Various Peripheral Devices H-2
J-1. Macro Conventions Operand Forms J-6
K-1. VTOC Format for All VMOS Direct Access Volumes K-1
K-2. Format 5 Half-Page Contents, K-2

Xi/xii

GENERAL

Part 1
VMOS System Management

The management of work performed using the Virtual Memory Operating
System (VMOS) is the function of the operating system’s Control Program.
The various modules which constitute the Control Program have been
collected into three functional categories: the Central Control System
(Executive), the Data Management System (DMS), and the Language
Systems Support (L.SS). The processing of work within VMOS is
implemented through communication with the Control Program and the
medium for this communication is the Command Language.

The terms Executive, DMS, and LSS, while useful as collective terms to
describe the functions of modules they comprise, are not easily relatable to
the functions a programmer performs in the context of system management.
They are used in this manual only as a means of introducing the reader to
the Design Concepts of VMOS. In Parts 2 and 3 of this manual the terms
task management, file management, and device management are used instead
since they more nearly describe the scope of system management. Moreover,
these terms are not component oriented but serve to tie together the
functions of various components.

The two sections constituting this part provide the user with an overview of
the systems, both from a structural point of view and from the standpoint of
the operation of the control program. The first section describes the two
principle constituents of VMOS: The Control Program and
Software-Supplied Programs. Here, the functions of the Executive, DMS, and
LSS are described along with the Software-Supplied Service Routines,
Language Processors, and Interactive Facilities.

Section 2 describes the functions of the Control Program that most affect
system management activities, that 1is, spoolout, remote terminal
input-output, program management, and the operation of the data
management system.

1-1/1-2

GENERAL

SECTION 1
VMOS STRUCTURAL CONCEPTS

Structurally, VMOS can be viewed as consisting of two functionally different
facilities: the Control Program and Software-Supplied Processing Routines.
The Control Program operates in the privileged modes of the processor and
cannot be directly accessed by the user-programmer. VMOS, through the
medium of a Command Language, provides a programmer with the means of
communicating with the control program.

The Software-Supplied Programs run in the nonprivileged mode of the
processor, and are directed by the Control Program to interface with the
various users of the system. These routines are called into service by the
programmer using the Command Language.

CONTROL PROGRAM

The VMOS Control Program consists of the Central Control System
(Executive), Data Management System (DMS), and Language Systems
Support (LLSS) functional categories. Although these classes are discussed as
independent entities, they are interdependent and function as an integrated
unit in the processing environment. Descriptions of these functional
categories are given below.

The Central Control System (Executive)

The VMOS Executive manages the total operating system environment. It
serves as the interface among all users of the system, the computer hardware,
and all remaining system software. As far as the user is concerned, the
Executive appears to be an integral part of the computer.

The Executive’s most frequently used components are permanently resident
in physical memory. Other routines are quickly available from the paging
drum. The Executive’s locations are not- addressable by other programs, it
executes in the privileged mode and is not generally time-sliced.

The Executive receives interrupts, interprets them, sorts them as to type and
function, and initiates the appropriate routines to respond to each. It spools
all tasks introduced to the processor to a common task queue.

By means of the time slicing, it provides rapid and complete service for all
these tasks, up to the maximum system resource level. The Executive
routines control command language processing, system error analysis and
recovery functions, job control and system file management, task and
memory management, Central Processing Unit (CPU) time, the console and
the paging drum, and peripheral device error recovery.

1-3

To facilitate scheduling in the system and to ensure optimum processor
utilization, a task schzdule queue structure has been established consisting of
thirteen separate queues. Tasks are placed in appropriate queues according to
their needs and conclitions and moved among the queues according to the
algorithm of the task schedules.

The Executive controls the allocation and utilization of virtual memory,
physical memory, and the paging drum backing memory. Although most of
this memory management is invisible to the user, it provides the facilities
which allow each Class II task in the system to operate as if it had at its
disposal up to 256 pages (1,048,576 bytes) of core memory. These pages are
contiguously addressed so that the Virtual Memory of each user contains
address 0 to 1,048,575.

The upper limit of this virtual memory is dynamically adjusted by the
Executive during each task’s execution depending on the memory
requirements of the task. The information contained in each user’s virtual
memory is automatically placed into and removed from core storage as
needed by the Executive paging algorithm without user knowledge or
intervention.

The Executive collects over 20 categories of accounting statistics for each
task during its execution. This accounting file is maintained on an on-line
disc which may be interrogated by all users of the system.

The Data Management System (DMS)

DMS is the component of the Control Program that performs input/output
for the Control Program and user programs. DMS also controls the creation
of and access to all data files maintained “on-line’” within the system.

The File Management portion of DMS is concerned with cataloging and
managing files. File cataloging and management facilities provide the means
for identifying files, for storing and retrieving them, for sharing them among
users, and for defining their existence and use in the system. File
management commanids (a subset of the VMOS command language) make
the file cataloging aad management facilities available to a conversational
user or a batch job. These same facilities are available to a user program
through the use of file management macros.

The Data Management portion of DMS provides for the actual transfer of
data to and from programs that are being processed. Data Management
provides several access methods. These access methods provide a simple and
efficient means to organize data into a logical structure and then to transfer
data between an input/output device and main memory.

Device Management is the I/O dispatcher or device driver for VMOS Device
management also provides for the allocation of all I/O devices, with the
exception of remot: terminals, maintains a list of the devices that are
currently available to the system, and provides tasks with these devices as
required for I/O processing. Tasks acquire devices for files through the
Executive SECURE command the DMS FILE command.

DMS also provides a facility for processing a set of TOS commands and
macros. This facility supports file processing and device management for
TOS/TDOS (Class 1) programs.

Language Systems Support (LSS)

The third major component of the Control Program, Language Systems
Support (LSS), contains the systems message processing logic, the system
loaders, Desk Calculator Logic, and the Interactive Debuggging Aids (IDA)
component.

The VMOS system loaders are the Static Loader and the Dynamic Linking
Loader. One or the other is invoked when a programmer calls for a program
to be loaded and/or executed. The system chooses the correct loader based
on the characteristics of the modules to be processed. These loaders are
discussed in detail in the VMOS Service Routines Manual.

The VMOS Message Processing Routine makes it possible for the
programmer to create and update a dictionary of encoded messages. These
messages can then be called by code number using assembly language
programs and sent to the operator or the user. Message processing is
discussed in detail in the VMOS Service Routines Manual.

The VMOS Desk Calculator facility enables the programmer to operate his
interactive terminal as if it were an electro-mechanical calculator. This
facility does not require that the user have programming experience. A full
discussion of the Desk Calculator Facility is contained in the VMOS
Interactive Language Manual — Desk Calculator.

The VMOS Interactive Debugging Aid (IDA) provides the programmer with
the capability to debug object modules either interactively or in the
background. IDA permits programmers to check the progress of programs
during execution, modify them, and localize trouble areas. A complete
discussion of this facility is found in the VMOS Interactive Language Manual
— IDA.

SOFTWARE-SUPPLIED PROGRAMS

The second of the two major VMOS facilities, Software-Supplied Programs,
comprises the System’s Service Routines, the Language Processors, and the
Interactive Routines. These are programs which provide a major portion of
the system’s operational flexibility.

VMOS Service Routines

The VMOS Service Routines comprise a set of Library Utilities, Loading
Utilities, Processing Utilities, Display Utilities, and Peripheral to Peripheral
Utilities. These utilities are described in detail in the VMOS Service Routines
Manual.

Library Utilities

The VMOS Library Utilities provide the user with the capability to create,
store, and update source programs, object modules, program load files and
macro libraries. They also provide the user with the ability to reformat a
complete library or extract a portion thereof in such a manner that the
reformated program may be used by TOS or VMOS. The library utilities
consist of eight routines as follows:

The Library Maintenance Routine (LMR) creates and maintains object
module libraries. LMR operates as a Class 1l program which may be executed
in either the conversational or nonconversational mode.

1-5

The Macro Library Update (MLU) roﬂtine creates and maintains Assembly
language macros. MLU operates as a Class II program.

The TOS Load Module Transcriber routine (TOSLMTP) transcribes load
modules of specified programs from the program system load library tape
(PLLT/SLLT) of TOS to the program system load library of VMOS.
TOSLMTP does this in such a way that the transcribed programs can be used
directly by VMOS as Class I programs.

The VMOS Load Module Transcriber routine transcribes files of specified
programs residing on disc to the format of the program load library of TOS
(on tape) in such a manner that the transcribed programs may be used
directly by TOS.

The VMOS COBOL Library to TOS COBOL Library Conversion routine
converts a VMOS COBOL library to a TOS COBOL library.

The VMOS OML to CLT Conversion Routine converts a library from VMOS
Library Maintenance Routine (LMR) format to TOS Call Library (CLT)
format.

The VMOS Assembler Source Language Update facilityis an extension of the
Assembler that providzs the programmer with the capability for storing and
maintaining assembly language source programs on magnetic tape and disc.

The COBOL Library Update Routine consists of 12 commands which enable
the user to develop and maintain a COBOL library.

Loading Utilities

The Loading utilities comprise the VMOS Linkage Editor Routine and the
VMOS Loaders. These routines prepare and load programs for execution by
the user. Note that the loaders operate under direct control of the Control
Program. They are sammarized in the Control Program portion of this
chapter.

The VMOS Linkage Editor routine is a program that forms part of the
processing of source programs that follows compilation or assembly. Using
the object modules generated by the language translators (Assembler,
COBOL, or FORTRAN compilers), the Linkage Editor routine prepares
loadable programs (also called load modules) which are in a format suitable
for execution. The Linkage Editor routine may be executed either
conversationally or nonconversationally.

Processing Utilities

VMOS contains two Processing Utilities: the Message Processing routine and
the Sort/Merge routine. The Message Processing facility operates under direct
control of the Control Program and is summarized in the Control Program
portion of this section. The Sort/Merge routine is a generalized system which
runs as either a foreground or background task. Its primary objective is the
efficient processing o: files stored on direct access devices. Its secondary
objective is the processing of magnetic tape files for conventional batch
processing applications.

1-6

Display Utilities

VMOS supplies its users with two display utilities: the Spoolout routine and
the DPAGE routine. The Spoolout routine operates under direct control of
the Control Program and is summarized under Job Control in this section.

DPAGE is a general-purpose utility routine that provides the VMOS user
with the facility to display or print files or volumes, and to manipulate data
in a page or in the 16-byte key. It may be used as a conversational or
nonconversational task. Display output data is dispatched to the the user’s
terminal in conversational mode, or to the printer in nonconversational
mode. The print facility is normally for large-volume output and the output
is always sent to the printer.

Peripheral to Peripheral Utilities

VMOS provides utility programs that will transcribe data directly from one
peripheral device to another. There are ten such programs.

The Card-to-Tape routine (CDTP) transcribes 80-column card records or
paper tape to magnetic tape in standard Series 70 format. The output tape
file contains standard Series 70 labels and may be single or multivolume.

The Selective Card-to-Printer and/or Punch routine (CDPR) transcribes
80-column card records or paper tape to punched cards or paper tape and/or
to the printer. Card files are punched in EBCDIC and the final card contains
/* in the first two columns to signify the end of the file. Printed output may
be in character mode (EBCDIC graphics) or hexadecimal mode (two digits
per character); the print format may be List or Display.

The Card-to-Random Access routine (CDRA) transcribes 80-column card
records or paper tape to a random access file. Input cards are punched in
EBCDIC format, with the final card containing /* in the first two columns to
signify the end of the file.

The Selective Tape-to-Printer and/or Punch routine (TPPR) transcribes data
from magnetic tape to punched card and/or to the Printer. The input volume
may be labeled or unlabeled. If labels are used, a multivolume input file may
be processed. Card output files are punched in EBCDIC with the final card
containing /* in the first two columns to signify the end of file. Printed
output may be in character mode (EBCDIC graphics) or hexadecimal mode
(two digits per character); the print format may be List or Display.

The Tape-to-Tape routine (TPTP) transcribes data from one magnetic tape to
another. The input and output tape blocks can range in size from 12 to 4096
characters, and can contain fixed-length records, variable-length records, or
records of undefined size. Except for records of undefined size, records can
be blocked or unblocked. In the case of fixed-length records, input fields can
be field-selected, packed, or unpacked during the copying process. Tape
volumes may be labeled or unlabeled, single or multivolume.

The Tape-to-Random Access routine (TPRA) transcribes data from magnetic
tape to a random access file. Input tape blocks can range in size from 12 to
4096 characters and may contain fixed-length records, variable-length
records, or records of undefined size. Except for records of undefined size,
records may be blockzd or unblocked.

The Random Access-to-Printer and/or Punch (RAPR) routine transcribes
data from a random access file to punched cards or paper tape and/or to the
printer. Card output files are punched in EBCDIC with the final card
containing /* in the first two columns to signify the end of file. Printed
output may be in character mode (EBCDIC graphics) or hexadecimal mode
(two digits per character); the print format may be List or Display.

The Random Access-to-Tape routine (RATP) transcribes data from a random
access file to a magnetic tape. Output tape blocks can range in size from 12
to 4096 characters, and may contain fixed-length records, variable-length
records, or records of undefined size. In the case of fixed-length records,
records may be blocked or unblocked. Tape volumes may be labeled or
unlabeled, single or multivolume.

The Tape Edit routine (TPEDIT) displays all, or selected portions, of a
magnetic tape on the on-line printer. The contents of the tape may be
displayed in Character mode (EBCDIC graphics), hexadecimal mode (two
digits per character), or both. At end-of-job, the programmer can terminate
the routine or enter additional parameters. In this way, different portions of
the same tape (or another tape) can be edited.

The Tape Compare Routine (TPCOMP) is a diagnostic aid used to compare
information recorded on one magnetic tape with that of a second magnetic
tape. Output from this routine consists of a listing of all portions of the two
tapes that did not march.

Language Processors

VMOS provides the programmer with a full range of language processors: an
assembler, standard COBOL and ANSI COBOL compilers, Report Program
Generator compiler, :tnd a FORTRAN compiler. The detailed description of
the use of these processors is contained in the VMOS Programmer’s
Reference Manual.

COBOL Buackground Compiler

The VMOS COBOL Background Compiler accepts programs written in the
same COBOL language available on other Series 70 systems. Except for
minor source language differences, the COBOL Background Compiler is
functionally identical to the ANSI COBOL compiler.

1-8

ANSI COBOL Background Compiler

The ANSI COBOL Background Compiler accepts COBOL source programs
written in the USA Standard COBOL. The ANSI COBOL compiler is an
enhancement to the Background COBOL compiler. The compiler provides
the user with the following capabilities:

Source input can be retrieved from a cataloged file on disc, from a card deck,
from a remote terminal, or from a disc-resident COBOL source-library file.

The compiler generates either Class I or Class II programs, depending upon a
user-supplied parameter.

The generated object module is written on disc.

The compiler is disc-oriented in that it uses temporary EAM disc files for
intermediate work space.

Requested listings can be written on temporary files for automatic printing
at task termination, or on cataloged files so that the user may optionally
request printing after task termination.

Report Program Generator Compiler

The VMOS Report Program Generator (RPG) Compiler accepts programs
written in the same RPG language available on other Series 70 systems. It is
used to produce a printed report without requiring a detailed knowledge of
machine coding. Common report features such as input data selection,
editing, calculating, summarizing, control breaks, and file updating are
provided. :

FORTRAN IV Background Compiler

The VMOS FORTRAN IV Background Compiler accepts programs written
in the same FORTRAN language available on other Series 70 systems. The
compiler generates highly optimized object coding for use as both
production programs and subprograms.

VMOS Assembler

The VMOS Assembler provides a machine-oriented, symbolic programming
language for use by machine language programmers. This symbolic
programming language supports three general types of programming
statements.

Assembly instruction statements are a one-for-one symbolic representation
of actual machine instructions. The Assembler produces an equivalent
machine instruction in the object program for each assembly instruction
statement in the source program.

Assembly control statements provide auxiliary functions that assist the
programmer in checking and documenting his programs, in controlling the
assignment of storage addresses, in program sectioning and linking, in
defining data and storage fields, and in controlling the Assembly System
itself. Assembly control statements specify the auxiliary functions to be
performed by the assembler, and, with a few exceptions, do not result in the
generation of any machine language code during the assembly.

1-9

VMOS Interactive Routines

VMOS provides its users with a comprehensive set of interactive routines for
program preparation, using FORTRAN and COBOL, BASIC language
programming and file editing. The routines are described in full in a set of
eight VMOS Interactive Languages Reference Manuals.

Conversational FAST FORTRAN

FAST FORTRAN was designed to produce very fast problem solutions.
Programs to solve such problems are generally of the one-shot variety. FAST
FORTRAN provides (1) very fast compilation time, (2) good diagnostic
capability, (3) minimum system overhead, and (4) gives the nonprofessional
programmer who mneeds an immediate answer an easy-to-use, fast,
conversational system that accepts FORTRAN input.

COBOL Program Development Subsystem (CODE)

BASIC

The COBOL Prograin Development Subsystem (CODE) is a facility that
supervises and assists a user in preparing, editing, debugging, compiling, and
executing a COBOL program. To facilitate these actions, CODE accepts
free-form input, allcws the user to define shorthand abbreviations, offers
text editing, has simplified compilation and execution commands, and
maintains a file of compilation diagnostic messages that may be interrogated
during editing.

VMOS BASIC provides a fast, complete program preparation and execution
facility for the easy-10-use BASIC language. BASIC provides comprehensive
editing facilities that permit the user to create, modify, list, execute, save,
and reload his source program. BASIC also incudes extensive syntax
checking for both single statement and global type errors.

VMOS Editor (EDT)

File Editor

The VMOS Editor (EDT) is an interactive text editor that allows a user to
create, delete, copy, compare, and concatenate files and to add, delete, and
modify text within a file. It is a short, fast, easy-to-use editor containing
those facilities that are most commonly used and most often needed. It may
be executed either conversationally or nonconversationally, and may be
either sharable or nonsharable.

The File Editor may be used either conversationally or nonconversationally
in order to create, edit, and display files. The basic File Editor commands
carry a rich and detailed snytax. This richness offers the user the ability to
adapt each command to a great variety of different editing operations. Thus,
a typical editing command may operate on a single line, a part of a line, on a
single character, or upon particular syllables in a whole succession of lines.

GENERAL

' SECTION 2
VMOS CONTROL PROGRAM CHARACTERISTICS

This section discusses certain features of the Control Program, with which a
programmer operating in a system management environment should be
familiar. These features are job control and spoolout. Although the
programmer can exert limited control over their operation, a knowledge of
the way in which they function will enable the programmer to better manage
system throughput. In addition, VMOS memory organization and the
function of stacks are also described.

JOB CONTROL

This Control/Program component manages those system functions which are
(with some exceptions as will be noted) nonconversational in nature. The
Job Controller monitors nonconversational tasks. System Accounting
maintains disc based accounting information, and System File Management
establishes the environment for processing “SYS” type files used by the Job
Controller, Spoolout, and Accounting.

The Job Controller is a collection of routines that govern the actual
processing of nonconversational jobs. These routines have exclusive control
over all nonconversational system input/output and scheduling functions.
The Job Controller allocates system resources, schedules work and provides
for the disposition of system output. In addition, it provides for the
optimum scheduling of batch jobs in the system based on priority, estimated
CPU time, and device requirements.

The system accounting routine maintains a file of task accounting
information that can be written to tape at system shutdown time. The
records are written in sequence according to task termination time and not
by task sequence number (TSN).

System file management is closely related to spoolout and has as its main
purpose the most efficient use of the task assigned system output devices.

SPOOLOUT

Spoolout is the Conirol Program routine which performs the printing and
punching of files under VMOS. The routine can be activated by the user (see
VMOS Service Routines Manual), and is automatically activated, when
necessary, by the system when a task is terminated.

Spoolout jobs are maintained on Spoolout queues. If there are jobs waiting
to be spooled out and if the device is available, the first job in the queue is
activated; and any PRINT or PUNCH jobs or new terminating jobs requiring
Spoolout are placed on the queue. When a Spoolout task is completed, any
temporary direct access space occupied by the output file is restored to the
system. Output file examples would be assembly listings, object decks, and
system output messages. A Spoolout job not completed during a VMOS
session may be recovered in the next.

STACKS

Associated with each task are three or more storage areas called stacks.
Stacks normally reside in Class 3 memory (core resident, nonpagable) and
their primary purpose is to provide an area for register storage when a task is
interrupted. The system dynamically generates stacks for each user-written
program and for each active system routine associated with that task.

A task running in processor state-1 (P1), initially has two stacks: a P2 stack
and a Pl stack. Thes: stacks are allocated at task initiation time, and the P1
stack is attached to the task at execution. These two stacks exist for the
task’s duration. The F'2 stack is called the permanent P2 stack.

A special type task, called Interrupt Driven, is allocated a P2 stack only.
Such tasks (Spoolin and Spoolout, for example) do not operate in processor
state P1. Another task type, called Permanent System, also has only a P2
stack.

VIRTUAL MEMORY ORGANIZATION

To regulate and simplify its control by VMOS memory management, a
virtual memory is divided into six classes as depicted in figure 1-1.

VIRTUAL
MEMORY 0
PAGES
CLASS 6
EACH USER
1000K VIRTUAL MEMORY
CLASS 5
255
256 CLASS 1
550K
CLASS 2 SYSTEM
1000K VIRTUAL MEMORY
CLASS 3 & 4 450K
511

FIGURE 1-1. VIRTUAL MEMORY CLASS DIVISION

The six virtual memory classes and their contents are:
Class 1 the resident control program, privileged and nonpagable.

Class 2 which is occupied by the nonresident portions of the control
. program, privileged, and pagable.

Class 3 is occupied by dynamically acquired resident portions of the
control system, privileged, and nonpagable. This memory is
used for task control blocks, terminal I/O buffers, and certain
system work space.

Class 4 is occupied by the nonresident work space dynamically
acquired by the control program and by shared code called
by the users of the system. All Class 4 pages are pagable and
have drum images. The pages utilized by the control program
are privileged but those utilized by the user are not.

Classes 1 through 4 constitute the system’s virtual memory and are
contained within the one-million bytes of address space available to the
system.

Class 5 is occupied by dynamically allocated pagable areas acquired
for the specific user by the control program. This class is used
for task-dependent virtual memory tables, protected file
control blocks, program loader data, data maintained by the
interactive debugging language, and I/O buffers acquired for
the task by the system.

Class 6 is occupied by dynamically allocated pages acquired by the
user for code and work areas. These are under control of the
user task.

Classes 5 and 6 constitute the users virtual memory and are limited to
one-million bytes of address space per user.

INTERCOMPUTER COMMUNICATION

VMOS facilitates computer-to-computer communication through support of
the Data Exchange Control (DXC). The DXC is a hardware device through
which messages can be channeled between two processors. The joining of a
real memory operating system (RMOS) with VMOS, in an auxiliary capacity,
greatly increases the number of interactive terminals available to VMOS as
input devices.

VMOS exchanges messages with the auxiliary real memory system on an
inquiry response basis. VMOS reads messages initiated by a terminal based
user, processed by the auxiliary computer and, upon completion of its
reading function, transmits the appropriate response to user via the auxiliary
processor. This proczss is transparent where processing requests are initiated
by the user, who is communicated with by the system as if the operations
were in standard VMOS interactive environment.

In the VMOS processor, all message receptions (reads) and transmissions
(writes) are consolidated and distributed by the Control Program. There are
two categories of reiads and writes: one for the Control Program (privileged)
and the other for user-written programs and software-supplied routines.
VMOS receives reads (from RMOS as interrupts) which the Control Program
analyzes and passes to supporting DXC software. The DXC software verifies
the transmission, decodes it, and transfers the request back to the Control
Program for processing by VMOS software. When processing is complete, the
Control Program-DXC software interaction is renewed resulting in the
transmission of a response to RMOS.

The operation of a 1eal memory system in the processing of transmissions to
and from the DXC is analogous to complementary operations in VMOS. The
only difference relates to the processing of messages received by the Control
Program. In the real memory processor, messages are verified, decoded, and
passed between the user and the Control Program by Communications
Oriented Software (COS). Thus, any real memory system used in an
auxiliary capacity with VMOS in conjunction with the DXC must contain
COS as part of its operating system. The portion of COS which performs the
bulk of message pro:essing is the Communication User Program (CUP). It is
the responsibility of real memory system programming personnel to prepare
an appropriate CUP. A general description of CUP function and use may be
found in the COS Functional Description Manual.

The conjunction of VMOS and RMOS via the DXC does not restrict the
normal operation of either system. Real memory batch processing and other
COS operations may be undertaken without regard to the resources used for
VMOS-RMOS messaze processing. Similarily, VMOS will continue to process
local and remote batch task, tasks entered from terminals attached directly
to the system, and CAM programs. However, CAM programs cannot be
activated by users communicating with VMOS from the auxiliary processor.
Also, the output gerierated by PRINT and PUNCH commands will occur at
the VMOS facility, not the RMOS facility.

Figure 1-2 diagrams the message flow between a Virtual Memory System and
a Real Memory System across a DXC and table 1-1 lists the message flow
operations.

®

©)

VIRTUAL MEMORY REAL MEMORY
PROCESSOR CONSOLE CONSOLE PROCESSOR
M M ®
U U
L L
vMOS T T [RMOS
CONTROL PROGRAM | DXC I | CONTROL PROGRAM
P P
P @ ® P
DXC @ E @ @ E @
MODULES X e — X cos
@ |9 l o
° | ° ®
[
r-t-q
I CCM cc™m
LI‘T"\T‘\'J
/P AN // \\
YAV AN
r—_——- Lt .A._‘ @
| INTERACTIVE | INTERACTIVE
| TERMINALS : TERMINALS

NOTE: REFER TO TABLE 1-1 FOR REFERENCED MESSAGE FLOW OPERATIONS

FIGURE 1-2. VMOS-DXC-RMOS MESSAGE FLOW

TABLE 1-1. VMOS-DXC-RMOS MESSAGE FLOW OPERATIONS

VMOS Operation DXC Operation

RMOS Operation

@ Operator loads virtual
memory and activates DXC
interface (/START DXC, X'da’
command). @ DXC
portion of Control Program
transmits initialization message
to DXC.

@ DXC received the trans-
mission and checks to ensure

@ Operator loads real memory
operating system including com-
munication oriented software (COS).

COS notifies DXC that it is
ready to read initialization message
from VMOS.

@ User initiates request for
VMOS processing. :

Control program analyzes
resulting interrupt and passes con-
trol to COS.

COS processes transmission
from terminal and transfers it to
DXC.

that VMOS is prepared to accept

the transmission.

@ VMOS accepts trans-
mission.

@ Control program analyzes
resulting interrupt and passes
control to DXC software.

(Continued)

TABLE 1-1. VMOS-DXC-RMOS MESSAGI:z FLOW OPERATIONS (Continued)

VMOS Operation

DXC Cperation

RMOS Operation

@ DXC software analyzes
transmission and passes proc-
essing request portion to
Control Program.

Control Program initi-
ates required processing, and
upon completion of proces-
sing passes control to DXC
software.

DXC software formats
processing information for
transmission to RMOS, and
passes transmission to DXC.

1D2XC receives the trans-
mission and checks to ensure

that RIMOS is prepared to
accept the transmission.

Note: See figure 1-2 for message flow chart.

RMOS accepts transmission.
{{4) Control program analyzes

resulting interrupt and passes con-
tro| to COS.

COS processes transmission
and passes it to user’s terminal.

User receives processing
information in response to his
request

GENERAL

Part 2
Control Program Usage Concepts

The VMOS Control Program, as described in Section 1, provides
comprehensive facilities for managing the system’s processing environment.
These facilities relate to the functions of Task, File, and Device Management,
and are accessible to the programmer through the system’s Command
Language.

VMOS also supplies the user with a basic communications capability, the
Communications Access Method (CAM), and the facility for implementing
computer-to-computer communication via DXC (Data Exchange Control —
see Section 1). The programmer also manages these functions through
facilities of the control program.

The sections constituting this part describe the facilities available under
VMOS for Task, File, and Device Management, and the implementation of
CAM and DXC. The initial section discusses the basic concepts relative to
Tasks, Files, and Devices, and to the function of the VMOS Command
Language. It also contains four decision-oriented tables relating various
directives made available by the Command Language to the process of
managing work through the system. Table 2-1 provides a guide to the use of
the three decision tables based on the function the programmer wishes to
perform, e.g., task or program initiation, file maintenance, device
disposition, etc.

2-1

TABLE 2-1. GUIDE TO SYSTEM MANAGEMENT DIRECTIVE TABLES

Process Processing Process
Initiation Control Termination
Programming Function (Table 2-3) (Table 2-4) (Table 2-5)
ACCESS METHOD MANAGEMENT X
DEVICE (SPACE) ALLOCATION X
DEVICE (SPACE) DEALLOCATION X
DEVICE (SPACE) REGULATION X
FILE CREATION X
FILE DISPOSITION X
FILE MAINTENANCE X
PROGRAM DIRECTION X
PROGRAM INITIATION X
PROGRAM-TO-PROGRAM COMMUNICATION X
PROGRAM TERMINATION X
REMOTE JOB INITIATION X
REMOTE JOB REGULATION X
REMOTE JOB TERMINATION X
TASK INITIATION X
TASK REGULATION X
TASK INTERRUPTION X
TASK TERMINATION X

2-2

GENERAL

SECTION 1
USAGE CONCEPTS

The performance of system management functions requires a foreknowledge
of certain basic concepts. These are the function of the VMOS Command
Language; the way in which VMOS perceives Tasks, Files, and Devices; the
concept of volumes; and the relationship among these three elements.

COMMAND LANGUAGE

TASKS

The principal means of communication between the user and control
program is the system’s Command Language. This language comprises a set
of commands and macros (directions) designed to facilitate the management
of system facilities.

The commands contained within the Command Language constitute the
primary facility for direct communication with the system for the
performance of work. These directives are the means by which the
programmer causes the execution of both system routines and user problem
programs.

Command Language commands can be used in the conversational
(interactive) or nonconversational (background) mode. When operating in
the conversational mode, the programmer uses Command Language
commands to maintain a dialogue with the system while it performs desired
work. When used in the nonconversational mode, the commands are
analogous to a Job Control language because the instructions are submitted
in prepared form and are not monitored by the programmer.

Macro directives supplied by the Command Language enable a programmer
to incorporate features of the Command Language into Assembly language
programs. This permits the programmer to establish communication between
a problem program and the system.

Within context of VMOS processing, the term task denotes definite
relationship between the programmer and the system. Basically, this
relationship defines a task as encompassing the work undertaken by the
system in response to Command Language directives issued by the
programmer. VMOS differentiates this work into primary and secondary
tasks. The system makes reference to each task by a 4-digit number called a
task sequence number (TSN).

2-3

Primary Task

The term primary task identifies the extent of a programming session, that
is, the span of activity beginning with system’s recognition of the
programmer and terminating when the programmer severs the connection.
The system recognizes a programmer when it receives his LOGON command.
The programmer severs the connection by issuing a LOGOFF command.
When reduced to siraplest terms, a primary task is the work performed by
the system during the period between a programmer’s LOGON and
LOGOFF commands.

LOGOFF Processing

When the user terminates a programming session (logs off), the system
initiates the procedures necessary to return resources (required by the
processing demands of the primary task) to the system. This is known as
LOGOFF processing, the logic of which provides the system with a list of
any files created by the system to handle the program’s output. If these files
are printed, they are considered to be part of the programmer’s primary task,
and associated with 't by the primary task number. This is the task sequence
number (TSN) assigr.ed to the session when it was initiated. If the file is to
be punched into cards, the punching process is regarded by the system as a
new task, and as such is identified by a new task number.

Secondary Task

Secondary task is the term applied to any processing initiated within a
programming session that is identified by a task number other than the TSN
associated with the primary task. The punching of a file onto cards as
described above (under LOGOFF processing) is an example of a secondary
task.

Two other processing conditions generate secondary task. The first is the use
of Command Language directions by a user program or by a system routine,
that call for the creation of printed or punched output. The second is the
execution of an ENTER file (refer to Procedure Files discussion).

All secondary tasks created as the result of print or punch operations carry
the same priority as the primary task in which these operations were
initiated. However, the secondary task associated with execution of an
ENTER file may carry lower priority than the initiation task because
ENTER files are always processed in the background (nonconversationally).

PROGRAM CLASSIFICATION

VMOS differentiates; between programs that make use of virtual memory
(pagable programs) and programs that reside wholly in main memory
(nonpagable programs). Pagable programs are referred to as Class I programs;
nonpagable as Class /1 programs.

2-4

Class I Programs

Class I programs are restricted to the physical memory addressing capacity of
the system. These programs must reside in physical memory throughout
their execution and require that physical memory be assigned to them on a
contiguous basis.

Class II Programs

FILES

Systerh Files

Class II programs do not require contiguous main memory for their
execution and may reside in the system’s virtual memory. These programs
are broken into pages (4096 bytes), use the system’s Virtual Address Mode,
and are normally passed on a page basis between the system drum and main
memory.

In VMOS, a file is the principal processing medium and is defined as any
named collection of related records. All information entering, leaving, and
contained within the system resides in a file. The term file, therefore, not
only refers to collections of source program statements, object program
code, and data created by the programmer but also encompasses the routines
supplied for the programmer’s use by the system. In addition, VMOS has
designated files set of input/output media common to all users. This latter
category of files are the System Files and the System’s Task Library.

The term system files defines a set of system-supported input/output streams
supplied in common for all users by VMOS. At task initiation time, these
files are automatically created for, and associated with, each task. When a
task is terminated, the system files created for it are erased.
The names of system files are as follows:

SYSCMD

SYSDTA

SYSIPT

SYSLST

SYSOPT

SYSOUT
The first three listed above are input files, and the last three are output filcs.

All six reside on direct access devices for duration of the task for which they
were created.

2-5

SYSCMD

SYSDTA

SYSIPT

SYSLST

SYSsour

The SYSCMD file is supplied by the system to contain programmer’s control
language commands, and is read for him by the System Command Language
Processor. For tasks operating in the interactive mode, VMOS assigns
SYSCMD to the uszr’s terminal. For background mode tasks, SYSCMD is
read from the spoolin stream associated with the card reader, a remote batch
terminal, or a cataloged procedure file. A programmer can neither change the
assignment of SYSCMD nor have his problem program read from it.

SYSDTA is the file created by the system to contain data (as opposed to
Control Language commands) being read into the system. Most system
components read their input from this file, and a programmer may designate
that his problem program read its input from SYSDTA. At task initiation,
SYSDTA is assigned to the same sources as those described for SYSCMD.
However, a programmer may direct SYSDTA away from its primary
assignment to a direct-access-resident, to a cataloged file or to the card
reader. Subsequently, the programmer may direct SYSDTA back to its
primary source. The discussion of the SYSFILE command (Part 3, Section
2) describes the maripulation of SYSDTA.

The SYSIPT file, similar to the SYSDTA file, is supported to supply
compatibility with the Tape and Tape/Disc Operating Systems (TOS and
TDOS). For background tasks, the primary assignment of SYSIPT is the
same as that for S'WSDTA. However, for conversational tasks, the system
does not create a S'YSIPT file at task initiation. Neveretheless a programmer
can define a SYSIPT file while operating in conversational or background
modes (see SYSFILE command). Whether it is defined by the programmmer
or assigned by the system, the programmer can direct SYSIPT to the same
secondary sources as. SYSDTA.

The SYSLST file is the system-created vehicle for printer-destined
information. VMOS system-supplied programs automatically use this file to
handle substantial output such as program listing, dumps, etc. Programmers
should use it similarily for the output of their problem programs. The system
accumulates records in the SYSLST file until user logs off, and then sends
the entire file to the printer. After being sent to the printer, SYSLST is
erased. SYSLST cannot be directed to a secondary source by the
programmer.

The SYSOUT file is maintained by the system so that output of generally
smaller quantity can be distinguished from large volume SYSLST output.
VMOS uses SYSOUT as a vehicle for diagnostic messages, response messages,
etc., and programmers should use it similarly for small quantity output from
their problem programs. When a task is operating in the interactive mode,
the system directs SYSOUT to the user’s terminal. For background tasks, the
system implements SYSOUT in the same manner as SYSLST. SYSOUT
cannot be directed to a different output device by the programmer.

2-6

SYSOPT

The SYSOPT file is supported primarily to supply compatibility with the
Tape and Tape/Disc Operating Systems (TOS and TDOS) for the creation of
punched output. When records are directed to SYSOPT, by system
components or by user’s problem program, the system collects them in a
temporary disc file, and has them punched on cards at a task termination.
The user cannot direct SYSOPT to a different output device.

System Task Library (TASKLIB)

The System Task Library (TASKLIB) is a file containing most of the
VMOS-provided software products that are not in load module form. The
TASKLIB is, then, the system’s object module library (OML). This file is
used by the Dynamic Linking Loader (DLL) and Linkage Editor to satisfy
unresolved external references. In other words, these routines search the
TASKLIB directory in an attempt to locate entry points or csect-names
which match those of the unresolved EXTRNS. Search methods employed
by the Linkage Editor and DLL are described in the VMOS Service Routines
Manual.

DEVICES

VMOS recognizes two basic classifications of devices: public and private. The
nature of a device, or the data medium it supports, determines whether or
not a device is public or private. Public devices provide for concurrent
control by more than one task. Conversely, private devices are restricted to
the control of one task at a time.

Public Devices

In VMOS, a public device must be a direct (random) access device. The
following list shows the general classification of public (direct access) devices
supported by VMOS:

Disc Drives,

Mass Storage Unit (MSU),

Drum Unit, and

Control Units with multichannel switch features.

These direct-access devices, although generally considered public devices,
may be designated private by the user. VMOS does not restrict them to
public classification.

2-7

Private Devices

VOLUMES

Unit Record (UR) devices and Sequential Access (SA) devices constitute
VMOS private devices. The following UR devices are supported by VMOS:

Card Readers,

Printers (132 and 160 column),
Bill Feed Printer,

Card Punches, and

Paper Tape Reader/Punch.

The remaining private devices supported by VMOS are the following SA
devices:

Magnetic Tape Units (7- and 9-level tapes),
Magnetic Tape Units (9-level phase encoding), and

Control Units configurations with 7-level tape features.

VMOS uses the concept of a volume as the bridge between the file and the
device used to access it. A volume is the data medium portion of a device
configuration: the medium within which files reside. The term volume refers,
therefore, to disc picks, MSU magazines, and tape reels. Because the data
storage portion of & drum cannot be separated from the remainder of the
device, drums may be considered as either volumes or devices.

As it is impractical to use UR devices as data storage media, and because
these devices cannct be directly referenced during execution of Class II
programs, VMOS does not associate the concept of volumes with them.
Although UR devices may be directly accessed by Class [programs, frequent
use in this manner is discouraged since it leads to inefficient use of the
system.

File/Volume Relationship

A file is said to be stored in the system if it resides on one or more
direct-access or magnetic tape volumes, and if the identification of these
volumes (volume serial number) is available in the system catalog. In VMOS,
a volume may be a removable disk pack, a reel of magazine tape, or a mass
storage unit magazine. For direct-access volumes, more than one file may be
contained on a volume. For magnetic tape files, however, only one file can
be contained on a volume (that is, multifile reels are not allowed); however,
a tape file can be on more than one volume.

2-8

Public and Private Volumes

As in the case of devices, a volume may be classified as public or private. A
public volume is a direct-access volume and must be mounted and be on-line
during the entire period of system operation. A public volume may be used
for many tasks concurrently. A private volume need not be mounted during
the entire period of system operation. Its use is restricted to one task at a
time and it needs to be mounted only when the task refers to it. A
direct-access volume may be a private volume, while magnetic tape volumes
are always classified as private volumes.

Note: All volumes of a direct-access file must be mounted in
order to access the file.

Use of Public and Private Volumes

Files to be cataloged can be stored on public or private volumes. The system
assumes that a file is to be stored on a public volume unless the programmer
specifically asks for its storage on a private volume. Programmers generally
make the most effective use of the system by storing their files on public
volumes. Since public volumes are always on-line, files stored on them are
always available for access to a user’s task. The user can allocate space for
this files on public volumes within the limits of public space allocation
established for him by the system controller. The programmer may also
specify that a file be contained on specific public volumes (refer to FILE
command, VOLUME=parameter — Part 3, Section 2). However, if volumes
specified by the programmer do not contain sufficient space for the file, the
program will be terminated.

If a programmer employs private or TOS volumes, he may need to wait for a
device on which to mount the volume since the system must determine
whether or not it can honor the request. Note that the SECURE command
should be used to obtain all necessary private volume devices. The securing
of devices is described in Section 4, under Device and Spare Management.

File Space on Public Volumes

If the programmer’s public space allotment is exhausted in the prucess of
inserting or adding records to a file, the system transfers control to the exit
address of the problem program. The program can then take appropriate
action: for example, make space available by deleting an old file.

System workfiles created on behalf of a programmer by software-supplied
programs (for example, workfiles created when executing the VMOS
Assembler) are stored on public volumes, but the space is not charged to the
programmer’s public space allotment, since the Evanescent Access Method
(EAM) is typically employed. EAM description is given in Section 3;
however, it is pertinent to note here that EAM provides for processing of
temporary direct access files.

File Space Allocation

TOS Volume

The programmer may specify the primary space requirements for files on
direct access volumes, and may also specify the amount of secondary space
to be allocated wher the primary area is full. This can be accomplished by
the FILE command (see Part 3, Section 2). Additionally, this specification
may be defaulted, in which case the installation standard space allocation
established at system generation time is used. (Check with the System
Controller for this default value.)

The system also obtzins additional space dynamically (that is, while the file
is opened) whenever this is required. For files which reside on public
volumes, the system first attempts to obtain more space on the last volume
which contains the file. If no space is available on that volume, the system
chooses the public volume which has the most available space. However, if
space exhaustion occurs for files that reside on private volumes, the system
transfers control to an address specified in the exit parameter of the problem
program.

VMOS supports a third type of volume: the TOS volume. A TOS volume
need not be mounted during the entire period of system operation. Its use is
restricted to one task at a time and it need only be mounted when the task
refers to it. Since TOS I/O processing is allowed, file protection is not
guaranteed.

VMOS access to TOS tape volumes is provided through the sequential access
method (SAM) and the basic tape access method (BTAM) provided that
physical tape blocks do not exceed 4096 bytes. VMOS access to TOS
direct-access volumes is not provided. Note that Class I programs, however,
can freely access TOS direct-access volumes. In other words, Class I program
compatibility is fully maintained.

System Volume

The VMOS System Volume is a VMOS private direct-access volume that may
be shared and is so cefined by the operator’s SETUP command (see VMOS
Operations Management Reference Manual).

Volume Characteristics

The salient characteristics of VMOS volumes are outlined in table 2-2. Table
2-3 lists the Command Language commands and macros relating to process
initiation; table 2-4 to processing control; and table 2-5 for process
termination.

2-10

TABLE 2-2. SUMMARY OF VOLUME CHARACTERISTICS

Volume
Characteristics

Public Private

TOS

Storage media

Number of tasks which
may concurrently use
the volume.

File Protection

Processing methods
allowed

l_abel support

Volume serial number

Voiume is mounted.

Volume is dismounted.

Space dynamically
acquired while exe-
cuting the problem
program.

SECURE command
required.

Direct-access devices Direct-access devices

Magnetic tape

Any number 1
Any number if volume
resides on a system
direct access device.

Full VMOS file protection (see File Security in
Section 3).

VMOS DMS access methods. VMOS 1/0 macros
which process system files. TOS monitor macros
which process TOS system files.

For direct-access de-
vices, standard labels;

Standard file labels
but no user labels.

no user labels supported.

For magnetic tape,
labels may be standard

or omitted. Additionally,

user header and trailer
labels are supported on
magnetic tape.

6-character alphanumer-
ic field; first 3 charac-
ters must be PUB.

At start of time-sharing
session,

When requested or
required by the task.

Only at termination of
time-sharing session

Direct-access devices
Magnetic tape

1

None.

TOS FCP and physical
level 1/0.

Same as TOS.

6-character or less alphanumeric field; first 3 char-
acters must not be PUB.

When requested or required by a task.

When disconnect is

requested or required by

(i.e., never at task If a system volume, a task.
termination). dismount is effected
by the SETUP command.
Yes Yes No
No Yes, unless user wishes to risk being aborted if no

1/O device is available.

System volumes require SETUP command.

TABLE 2-3. SYSTEM MANAGEMENT PF.OCESS INITIATION DIRECTIVES

Applicable Task Remote Job Program File Device (Space)
Command/Macro Initiation Initiation Initiation Creation Allocation
CATALOG Command FM

CATAL Macro FM

DATA Command FM

DO Command ™

ENTER Command ™ ™

EXECUTE Command ™

FCB Macro FM

FILE Command/Macro FM DM
IDFCB Macro FM

LOAD Command ™

LOGON Command ™

OPEN Macro Fm

PASSWORD Command FM

PROCEDURE Statement ™

REQM Macro DM
RLOGON Command ™

RSTART Command DM
SECURE Command DM
LEGEND

DM — DEVICE MANAGEMENT
[Part 3, Section 3-
Command/Macro Descriptions]

FM — FILE MANAGEMENT
[Part 3, Section 2
Command/Macro Descriptions]

TM — TASK MANAGEMENT
[Part 3, Section 1
Command/Macro Descriptions]

2-12

€1-C

TABLE 2-4. SYSTEM MANAGEMENT PROCESSING CONTROL DIRECTIVES

Device Access
Applicable Task Remote Job Program File (Space) Interprogram Method File
Command/Macro Regulation Regulation Direction Maintenance Regulation Communication Definition Reconstruction
BTAM Macro FM
CALL Macro ™ ™
CATALOG Command FM
CATAL Macro Fivi
CHANGE Command FM DM FM
CHNGE Macro FM DM FM
CHKPT Macro ™
CLOSE Macro FM FM
COPY Command/Macro FM
CSTAT Macro ™
DROP Command FM DM FM
EAM Macro FM
ELIM Macro FM
EOF Command ™
EXCOM Macro ™ ™
EXECM Macro ™ ™
FEOV Macro FM
FSTATUS Command FM
FSTAT Macro FM

(Continued)

174 e

TABLE 2-4. SYSTEM MANAGEMENT PROCESSING CONTROL DIRECTIVES (Continued)

Device Access
Applicable Task Remote Job Program File (Space) Interprogram Method File
Command/Macro Regulation Regulation Direction Maintenance Regulation Communication Definition Reconstruction
GET Macro FM
GETFL Macro FM
GETKY Macro FM
GETR Macro FM
GETSW Macro ™ ™
HOLD Command FM DM FM
INSRT Macro FM
LOADM Macro ™ ™
LOG Macro FM
LPOV Macro ™ ™
OPEN Macro FM FM
PAM Macro FM
PARAMETER Command ™
PASS Macro ™
PROUT Macro ™
PUT Macro FM
PUTX Macro FM
RDATA Macro ™
RDCRD Macro ™

{Continued)

S1-C

Applicable
Command/Macro

Task
Regulation

Remote Job Program
Regulation

Direction

File
Maintenance

Device
(Space)
Regulation

Interprogram
Communication

Access
Method
Definition

File
Reconstruction

RECON Command/Macro
RELEASE Command
REL Macro

RELSE Macro

RESET Command
RESTART Command
RESUME Command
RETRN Macro

RJOB Command

RMSG Command

ROUT Command
RSTATUS Command
SAVE Macro

SETL Macro

SETSW Command/Macro
SKIP Command
STATUS Command
STEP Command

STORE Macro

™

™

™

™

™

™

™

™

™

™

™

™

™

FM

FM

FM

™

™

™

™

™

FM

FM

FM

FM

(Continued)

91-C

TABLE 2-4. SYSTEM MANAGEMENT PROCESSING CONTROL DIRECTIVES (Continued)

Device Access
Applicable Task Remote Job Program File {Space) Interprogram Method File
Command/Macro Regulation Direction Maintenance Regulation Communication Definition Reconstruction
SYSFILE Command DM
TMODE Macro ™
TOCOM Macro ™ ™
YPASS Macro ™
WRLST Macro ™
WROUT Macro ™
WRTOT Macro ™
WRTRD Macro ™

LEGEND

DM — DEVICE MANAGEMENT
[Part 3, Section 3
Command/Macro Descriptions]

FM — FILE MANAGEMENT
[Part 3, Section 2
Command/Macro Descriptions]

TM — TASK MANAGEMENT
[Part 3, Section 1
Command/Macro Descriptions]

TABLE 2-5. SYSTEM MANAGEMENT PROCESS TERMINATION DIRECTIVES

Remote Device

Task Job Program File (Space) Process
Applicable Termi- Termi- Termi- Dispo- Deallo- Inter-
Command/Macro nation nation nation sition cation ruption
ABEND Command ™
BREAK Command ™
CANCEL Command ™
CLOSE Macro FM
ENDP Statement ™
ERASE Command/Macro FM
EXIT Macro ™
EXITP Macro | ’ ™
EXLST Macro FM
FILE Command/Macro FM DM
INTR Command ™
LOGOFF Command ™
PAUSE Command ™
RELEASE Command FM DM
REL Macro ' DM
RELM Macro DM
RESUME Command ™
RLOGOFF Command ™
RSTOP Command DM
SETIC Macro ™
SPEXT Macro ™
STXIT Macro ™
SYSFILE Command FM
TERM Macro ™
TERMD Macro ™
TERMJ Macro ™
LLEGEND
DM — DEVICE MANAGEMENT FM — FILE MANAGEMENT TM — TASK MANAGEMENT
[Part 3, Section 3 [Part 3, Section 2 [Part 3, Section 1
Command Macro Descriptions] Command Macro Descriptions] Command Macro Descriptions]

It is important to note that public volumes have been given attributes which
tend to make them appear more as an extension of core storage rather than
as conventional I/O devices. Their major attributes are summarized below:

1. The public volume is the normal (or default) type of volume.

2. A given file may be contained on any number of public volumes without
the user’s knowledge; in particular, it is the only type of volume on which a
file can be automatically extended across volumes during execution of the
problem program. Volumes associated with multivolume private files must
be identified and provided for by the user.

3. Full file security and integrity are provided, yet the volume may be used
concurrently by any number of tasks.

2-18

GENERAL

SECTION 2
TASK AND PROGRAM MANAGEMENT

As pointed out in the preceding section, all user-initiated processing under
VMOS takes place within the context of a task. Optimal use of the system’s
facilities by the programmer is, therefore, a function of his ability to control
the task environment. The purpose of this section is to describe to the
programmer those Command Language dircctives which provide for such
control.

Although the control of processing takes place within the context of a task,
not all Command Language directives relate to the control of the task itself.
At the macro level in particular, the Command Language provides various
program oriented instructions. As a result, it is necessary to discuss the
control of processing from the standpoint of task and program management.
In contrast to task and program, the term job has no special meaning in
VMOS except in the context of remote batch processing. Use of the term in
this document has, thercfore, been restricted to discussions of this area of
processing.

Unless the reader is directed to another manual or an appendix of this
manual, all commands and macros referred in this section are fully described
in the Task Management Section in Part 3 of this publication.

TASK AND PROGRAM INITIATION

Task Initiation

As noted in the previous section, VMOS has established a hierarchy between
tasks and programs by viewing the latter as a subset of the former. The
commands supplied by the Command Language for initiating tasks and
programs are, as a result, identified exclusively with one or the other. These
commands are the means by which this system differentiates between a task
and the programs processed within it.

The programmer initiates a task when he successfully identifies himself to
the system as a user. LOGON is the command provided by the Command
Language for establishing this identification. A programmer cannot
undertake any processing until the system has accepted his LOGON
statement.

The information associated with the programmer’s userid, as required in the
LOGON statement, is checked against his JOIN Table entry when the
programmer attempts to LOGON. If any discrepancy is noted as a result of
this comparison, the interactive user is notified of the condition at his
terminal; the background user is aborted.

2-19

The LOGON command, in addition to establishing the initial bounds of a
task, also permits the programmer to exercise a degree of control over the
task’s environment. This control relates to task priority, alteration of
message structure, buffer size stipulation, and CPU time requirements.

Task initiation of a limited nature is also provided for by the ENTER
command. This command causes the execution of a file the contents of
which define a task. However, like all other execution statements, the
ENTER command must be issued from within an existing task. A complete
description of ENTER files and the ENTER command is given under
Procedure Files of this Section.

Program Initiation

Program initiation occurs when a user causes the loading and/or execution of
a problem program such as: a user-written program, a software-supplied
routine, or an application package. The commands that provide this facility
are EXECUTE, LOAD, and DO.

The EXECUTE command enables the programmer to place a load module
into memory and initiate immediate execution at the program’s initial entry
point. The program may be loaded from a file, an object module library,
EAM space, or from SYSDTA. In addition, the EXECUTE command permits
the programmer to specify the amount of additional memory required for
his program and the rnaximum CPU time the program may use.

The LOAD command is functionally a subset of the EXECUTE command. It
supplies the programmer with the same facility as does EXECUTE, with one
exception. LOAD only places the specified load module into memory. To
initiate execution of the program, the user must issue a RESUME command.

The DO command enables the programmer to call for the execution of a file
which may itself contain one or more processing systems. A complete
description of DO files and the DO command is given under Procedure Files
of this section.

TASK REGULATION AND PROGRAM DIRECTION

VMOS, through Command Language facilities, provides a programmer with
the ability to control task performance and direct the processing operations
of user-written programs. The commands and macros which supply the
means of implementing these facilities relate primarily to the functions of
input-output processing, process monitoring, and the manipulation of the
processing environme nt.

2-20

Task Regulation

Process regulation of the task level, within VMOS, is primarily a function of
the way in which a programmer has structured his processing environment
prior to task initiation. In essence, task regulation is equivalent to task
management. In particular, however, the facilities provided for task
regulation reside in the use of procedure files, the system’s process
interruption features, and LOGON-associated resource specification options,
all of which are discussed separately elsewhere in this section. Nevertheless,
the Command Language contains specific instructions for task monitoring
and the specification of options applicable to the operation of language
processors.

The programmer is able to monitor tasks using either the STATUS command
or the TMODE macro. The STATUS command enables the programmer to
have printed, at his terminal, information concerning the processing of tasks
he has introduced. The programmer may obtain this information for all tasks
bearing his userid or for a task identified by a specific task serial number.
The STATUS command can only be issued in the interactive mode. The
TMODE macro permits the programmer to have stored, in his user-written
program, certain information about his task. The information which TMODE
gathers relates to task type, terminal type (interactive tasks), task priority,
task sequence number, the userid of the task initiator, the account number
against which the task is charged, the CPU time used by the task, and the
privilege code of the task. The programmer cannot obtain userid and
accounting information for tasks not associated with his userid.

The PARAMETER command enables the programmer to specify
source-input device options, output device options, work tape utilization,
and debugging aid implementation for the various language processors
available to him. A detailed explanation of this command is contained in the
VMOS Programmer’s Reference Manual.

Program Direction

In VMOS, the control of processing environment at user-written program
level resides primarily in programmer’s use of Command Language to write
input-output directives, manipulate the processing environment, and bring
about program-to-program communication. The Command Language
instructions relating to input-output processing and process environment
manipulation are presented in the following paragraphs; program-to-program
communication is discussed separately later in this section.

Input Processing

The Command Language supplies the programmer with a pair of macro
instructions for reading input from SYSDTA or SYSIPT, and a command to
implement end-of-file processing. These instructions are the RDATA and
RDCRD macros and the EOF command.

2-21

The RDATA macro provides the ability to retrieve data records from a task’s
SYSDTA file, i.e., the user’s terminal, the system card reader, or a cataloged
file on a direct access device. This instruction can also be configured to alert
a user-written program that the assignment of SYSDTA has been changed.
RDATA processes al. data records as if they are variable format records.
When RDATA is reading from a terminal and a break key interrupt occurs,
the system returns control to the macro after the interrupt is processed.

The RDCRD macro has been supplied to provide TOS compatibility support
and enables the programmer to retrieve data records from a task’s SYSIPT
file. SYSIPT may be the system card reader or a cataloged file on a direct
access device. RDCRD expects the data record it reads to be in card image
format and, it will truncate records greater than 80-bytes in length or
blank-fill records less than 80-bytes long.

The EOF command is used in conjunction with the RDATA and RDCRD
macros to provide end-of-file processing control. When SYSDTA or SYSIPT
is not pointed to the same source as the task’s SYSCMD file and RDATA or
RDCRD reads a /EOF record, control is passed to the program’s end-of-file
routine. If SYSDTA or SYSIPT have the same source as SYSCMD, any
command statement encountered by RDATA or RDCRD will cause control
to pass to the program’s end-of-file address. The only exception to this
occurs when RDATA reads a /BREAK command: control is then returned to
the next statement in the program after a /RESUME command is issued. The
programmer is cautioned that once control has been passed to a program’s
end-of-file address, ariy subsequent reads to SYSDTA or SYSIPT from the
program will also be directed to the end-of-file address. The EOF command
may be used from a terminal in conjunction with the “BREAK” Key to
transfer out of an interactive task loop. The VMOS EOF command supports
the /* for TOS/TDOS compatibility.

Output Processing

The Command Language contains a set of five macro directives for the
generation of system files and terminal destined output. Four of these
directives (PROUT, WRLST, WRTOT, and WROUT) enable the programmer
to write to the system output files; the remaining macro (WRTRD) provides
the means for terminal to program communications.

WRLST and PROUT macros perform essentially the same function: enable a
program to write records to the task’s SYSLST file. In both cases, control is
returned to the user-written program at normal termination of each write.
When the execution of a PROUT results in a nonrecoverable error, the
program is terminated, and control passes to the next STEP Command in the
task or, if no STEP exists, to the task’s LOGOFF command. (See
Program-to-Program Communication for STEP command discussion.)
Nonrecoverable errors associated with WRLST execution produce an error
code for use by the program’s error recovery routine. The PROUT and
WRLST generated records are contained in SYSLST as V-type records.
However, PROUT accepts records in fixed-length format which are then
converted to variable-length format by the system; WRLST accepts
variable-length records. The SYSLST file, containing the output, is spooled
to the printer at task termination unless destined for a remote work station.
After processing, the SYSLST file is erased. The PROUT macro has been
provided primarily for TOS and TDOS compatibility.

2-22

User-written programs can write to a task’s SYSOUT file through facilities of
the WROUT macro. The SYSOUT file may be either a terminal or system
work file. WROUT requires V-type records. If an interrupt occurs when
WROUT is writing to a terminal, the system returns control to the macro so
that the message can be rewritten. Normal termination returns control to the
user-written program at the instruction following the macro. When a
nonrecoverable error occurs, control is passed to the program at its error
address. If SYSOUT is directed to a terminal and WROUT produces a record
whose length exceeds the size of the terminal buffer, the message will be
written to the terminal but the excess characters will be lost.

Records are written to the SYSOPT file using the WRTOT macro. Records
acceptable to WRTOT cannot exceed 80 characters in length and must be in
fixed length format. The task’s SYSOPT file is spooled to the system card
punch at task termination unless deferred for remote batch processing.
Normal termination of WRTOT processing causes control to be returned to
the program at the next instruction following the macro. An unrecoverable
error causes program termination and control passes to the task’s next STEP
command or, if none exists, the task’s LOGOFF command. The WRTOT
macro is supplied primarily for TOS and TDOS compatibility.

Program-terminal intercommunication is supplied by the WRTRD macro.
This macro enables a user-written program running as part of an interactive
task to send messages to, and receive the required response from, the user’s
terminal. WRTRD processes only V-type records. Normal termination of
WRTRD execution causes control to be passed to the next program
instruction following the macro. A nonrecoverable error causes control to be
passed to the program’s error address. When WRTRD processing is
interrupted, the system will cause the macro to be reexecuted.

Processing Environment Manipulation

Manipulation of the processing environment from within a user-written
program is accomplished through use of the PASS, VPASS, and CSTAT
macros. These macros enable the programmer to relinquish processor time
and change the status of program pages.

The programmer relinquishes processing time by use of the PASS or VPASS
macro. The principle difference between the two is the degree of control
that a programmer is able to exercise. The VPASS macro enables the
programmer to specify the period of time a task will relinquish its processor
time. A time slice relinquished by the PASS macro is restored at system
discretion.

The status of any one or all of the pages of a Class Il may be changed using
the CSTAT macro. This instruction enables a programmer to change the
read-write access of the pages of a user-written program and also to designate
program pages as nonresident (pagable) or resident. CSTAT cannot be used
in a Class I program.

2-23

TASK AND PROGRAM TERMINATION

Similar to all other facets of task and program management, the termination
of tasks and programs may be accomplished while operating in either the
interactive or background environment. Furthermore, the facilities available
to both modes of operation provide a programmer with the ability to halt
the processing cycle prior to task or program completion, so that unexpected
or undesirable conditions can be controlled.

Task Termination

In the normal course of events, the programmer terminates a task using the
LOGOFF command. When the system receives LOGOFF, it causes
processing for the associated task to cease, and returns the task’s resources to
the system. When operating in the interactive mode, a programmer can
specify that a task be terminated but that the terminal remain attached to
the system by using the BUT option of LOGOFF. This option allows the
programmer to LOGON, and create a new task, without again dialing into
the system.

The LOGOFF command, through use of the TAPE operand, provides the
programmer with facility for having SYSLST, SYSOUT, and SYSOPT files
written to tape. SYSLST and SYSOUT are written to the same tape;
SYSOPT is written tc its own tape. All these files are SAM files with variable
Iength records. Subsejuent to being spooled to tape, the files may be printed
or punched as is appropriate to their origin.

Secondary tasks, suci as those created by ENTER file processing, may be
removed from the system prior to, or during, processing by using the
CANCEL command. Primary tasks, however, cannot be terminated using
CANCEL. This command also supplies a dump generating option. See
Section 1 of this part for explantion of primary and secondary tasks.

The user can force a task to terminate abnormally by using the ABEND
command. This command automatically forces a program dump of class 5
and 6 memory. ABEND terminates a task as if a LOGOFF had been issued.
Like LOGOFF, terminal disconnect can be circumvented by using the BUT
operand.

Program Termination

In addition to those commands which enable a programmer to halt
processing at the task level, the Command Language contains a set of macro
directives to facilitate program termination. These are TERM, TERMD, and
TERMIJ.

The TERM macro indicates the termination of the user’s program. When a
TERM macro is executed, the system deallocates all devices and memory
associated with the program and returns control to the task’s command
stream. TERMD causzs the occurrence of the same events as TERM, except
that a program dump is also generated and written to the SYSLST file.

2-24

The TERMIJ macro is provided to allow a programmer to indicate the
termination of a step within a task. If the program containing TERMJ is
contained within a background task, the next step in the task sequence
(indicated by a STEP command) is initiated. However, if no more steps are
to be run in the background task, TERMJ will cause the task to be
terminated and control will be returned to the system. A TERMJ contained
in a program running in a conversational task will cause the next command
of task’s command stream to be executed.

PROCESS INTERRUPTION

The VMOS Command Language contains command directives that enable
the programmer to interrupt a task’s processing environment at task level or
at program level. The Command Language also contains a set of macro
directives which provide for the control of task interruption processing.
Since certain phases of task interruption are often related to interprogram
communication, refer to the discussion of Program-to-Program
Communication for more insight into VMOS’ process interruption. The
following discussion pertains only to direct program-to-system
communication.

Task and Program Interruption

Task interruption is provided through use of the PAUSE command or the
INTR (Interrupt) command. The PAUSE command enables a programmer to
communicate with the operator either from an interactive or background
task to have him perform some operation (put a card deck in a specified
reader, mount a tape on a specific drive, etc.). PAUSE differs from the TYPE
command (refer to Appendix B), which also can be used to communicate
with the operator. This PAUSE command causes the user’s task to be pended
until the operator performs the requested operation. The operator reinitiates
processing of the task.

The INTR command which can be entered either conversationally or
nonconversationally, causes transfer to be passed to the operator’s interrupt
routine. This routine must be specified in the user’s program through the use
of a STXIT macro. Interactive tasks are interrupted by using an INTR at the
terminal. Background tasks are interrupted by the operator issuing an INTR
from his terminal along with the related task sequence number (TSN).

Program interruption can be accomplished using the BREAK command. This
command can be entered as part of the command stream of a
nonconversational task initiated from a terminal, or from the procedure of a
DO file which has been initiated from an interactive task. When the system
receives a BREAK command, control is transferred from the user’s program
to the system. The programmer may then enter command statements for the
system to process. The programmer reactivates the execution of his program
or procedure using the RESUME command. The RESUME command
permits the user to resume processing at the point where the BREAK
occurred or at a specified location within the processing stream.

2-25

Program Interruption Processing Coritrol

Control, by the user. of the processing of program interruptions is supplied
through a series of macros which relate primarily to the use of exit and
contingency routines. These macros are EXIT, EXITP, SETIC, STXIT, and
SPEXT. In the following discussion, interrupt routine and contingency
routine are used interchangeably, since the programmer cannot control
interrupts resulting from system operation.

EXIT and EXITP macros are concerned with the user’s exit from, and return
to, an interrupt or contingency routine. The EXIT macro enables a
programmer to retura an interrupt routine to the point in his main program
at which the interrupt occurred. The EXITP macro enables the programmer
to supply the information which will be used by the system to perform the
functions that will p2rmit a contingency routine to be reentered at the next
applicable interrupt.

The SPEXT, SETIC, and STXIT macros relate to the construction of
contingency or interrupt routines. SPEXT enables the programmer to have a
Class II program obtain a status block containing information required by
those interrupt routines available to the program. The SETIC macro allows
the user to simulate an interval timer interrupt, and is used in conjunction
with the STXIT macro. Finally, the STXIT macro enables the programmer
to specify, within his program, the address of program interrupt routines for
use by the system.

PROGRAM-TO-PROGRAM COMMUNICATION

Inter-program communication can be defined as the ability to pass
information or contiol from one program to another during processing of
programs or at completion of their processing sequences. The structure and
use of procedure files, as discussed elsewhere in this section, describes one of
the methods of program-to-program communication at the task level as a
function of process control predefinition. The following discussion will
center on those commands, relative to inter-program communication, that
can be entered into the job stream independently or as sets, and on the
macro directives that facilitate program-to-program communication from
within the user’s proslem program. The perceptive reader will recognize that
many of the commands discussed herein could be contained in a procedure
file as well as a single-entry job stream.

Communication from Command Stream

The commands facilitating inter-program communication fall into two
distinct sets: those that facilitate the passing of information from one
program to another and those that pass control between programs. The
commands that enhance a programmer’s capability to pass information from
program to program revolve around the use of CHANGE command.

The CHANGE command (CHNGE macro) enables the programmer to change
the linkname of a filz definition so that FILE command definitions can be
passed from program to program within a task without changing the link
symbols specified in the program’s FCB. Thus, for example, a programmer
can use the output file of one program as input to another without copying
the file or changing its name. Further control is provided by DROP, HOLD,
and RELEASE commands. The function of these latter commands is
discussed in the File Management section.

2-26

The SETSW, SKIP, and STEP commands enable a programmer to pass
control between programs. SETSW (and its equivalent macro) enables the
programmer to set, reset, and invert the task switches provided by the
system for conditional control of a task. By using SETSW in conjunction
with the SKIP command, which provides the ability to test the settings of
these task switches, the programmer can specify and control branching
conditions within his program. The STEP command provides for logical
subdivision of a task, and cnables a programmer to control the effects of
abnormal termination. When a program terminates abnormally, the system
will pass control to the first command following the next STEP in the
command input stream. If no STEP is encountered, control is passed to the
task’s LOGOFF command. If the programmer wishes to use a STEP
command in an interactive task, it must be contained in a DO initiated
procedure file.

Communication from within a Program

The macro directives relative:to program-to-program communication enable
the programmer to pass control between programs and to control their
processing. The programmer can structure a user-written program so that it
can read to and write from a common data area, call subroutines and load
program overlays, manipulate task switches, and specify the loading and
execution of other programs.

The EXCOM and TOCOM macros provide the means to access a common
data area. EXCOM enables the programmer to have data from a common
data area moved into a user-written program. TOCOM performs the reverse
function. The common data area may be accessed by Class I and/or Class II
programs. Data moved into the common data area will remain in the area for
the duration of a session or until overwritten by another TOCOM. The
common data area comprises 4096 bytes.

The CALL, LPOV, and RETRN macros provide the means of branching and
performing overlaying operations from within a program’s execution stream.
The CALL macro enables a programmer to branch to a subroutine contained
in the same load program. The RETRN macro provides the means of
restoring the values of a program’s registers prior to branching back from the
subroutine to the main program. The values of the program registers should
be retained prior to branching by use of the SAVE macro. LPOV enables the
programmer to load a program overlay (in load module form) during
program execution. If an LPOV is issued in a Class I program and an error
results, the system terminates the task. In a Class II program, an LPOV
associated error causes the system to place an error code in Register 15 and
return control to the user’s program at the instruction following the LPOV.

The Command Language provides for the manipulation of 32 task switches
from within a user written program through use of the SETSW macro. This
macro provides the same capabilities as the SETSW command, and is used in
conjunction with a SKIP command entered as a part of a background task’s
command stream. In addition, the programmer has the ability to retrieve the
settings of those switches using the SETSW macro.

2-27

The ability to initiate the loading or execution of a new load program (as
opposed to a subroutine of the same load program) from within another is
provided by the LOADM and EXECM macros, respectively. Both of these
macros cause the program from which they are issued to terminate upon
processing of the macro. After processing a LOADM, the system returns
control to the task’s command stream, from which a RESUME command
must be issued in order for execution of the newly loaded program to begin.
In all other respects, LOADM and EXECM macros provide the same facilities
as do the LOAD and EXECUTE commands.

PROCEDURE FILES

Enter Files

VMOS provides the programmer with the ability to store Command
Language commands in a file and have them executed as a set of instructions
by calling for the processing of the file. Files so constituted are callec
procedure files. Th> principle benefit to be derived from the use of
procedure files is that they enable a programmer to define repetitively-used
operations in a way that eliminates the necessity of entering each command
separately as it is called for by the requirements of the processing function.

In addition to commands, a procedure file may also contain data relevant to
the processing activity defined within the file. For instance, a procedure file
which contains the commands necessary for the execution of a program
could also contain tt.e input for the program. Conversely, the input required
for a procedure may reside in a file other than the procedure file and be
referenced from within the procedure file.

The programmer may create a procedure file as a DO file or as an ENTER
file. The terms DO and ENTER are the names of the Command Language
commands used to activate the file. The DO and ENTER commands are
described in detail in Part 3, Section 1.

Procedure files may be created interactively using one of the VMOS File
Editing Routines o: by batch card input using the DATA command.
Conventions relating to the use of File Editing routines are contained in the
VMOS Programmer’s Reference Manual as well as card input conventions
(enumerated in Appendix D of the same manual). Other than the commands
used to activate them, the principal differences between DO and ENTER
files are the task and file delimiters peculiar to their structure, and the mode
in which execution takes place. These and other salient features of DO and
ENTER files are contained in table 2-6.

The ENTER file is a procedure file which, when activated, places a
background task into the system’s processing pool. ENTER files enable the
programmer to initicte background tasks while operating in the interactive
mode. After an ENTER file is activated, control is returned to the initiating
task, thereby enabling the programmer to continue processing without
waiting for that ENTER file to complete its procedure.

2-28

An ENTER file must contain all the commands necessary for the execution
of a background task. The first record must be a LOGON statement and the
last a LOGOFF statement. Because of independent processing, no
communication is possible between the initiating task and the related
ENTER file. When an ENTER file is activated, the system creates a separate,
background task to be processed when resources become available. The
sequence number for that task (TSN)is sent to the initiating task’s SYSOUT
file.

Similar to all VMOS files, ENTER files can be password protected at the file
level. The read and write passwords (RDPASS, WRPASS) may be used to
qualify file accessibility. Also, the processing of a file can be protected
(ACCESS parameter of CATALOG command). If a file is read-password
protected, the password (PASSWORD command) must be given before the
file can be processed.

<

The programmer notifies the system when file processing is desired by giving
an ENTER command and the filename of the related ENTER file; that is,
/ENTER filename. When the ENTER command is issued, the user may also
append to the filename all information generally associated with a LOGON
command (userid, password, etc.). This information will then override all
equivalent information associated with the LOGON command in the ENTER
file. If no LOGON-associated information appears in the ENTER command,
the system will use information from LOGON statement associated with
primary task to override the equivalent information associated with LOGON
command in the ENTER file. In effect, the user may specify that the
processing of an ENTER be charged against a userid or account number
other than the one associated with the primary task; by specifying the
proper LOGON-associated information when he issues the ENTER
command. However, if a userid is specified in the ENTER command, the
programmer must also specify any other LOGON-associted information
relating to that userid. If the programmer fails to supply this information,
the systern will not be able to find the proper JOIN Table entry, and the
ENTER file will not be processed.

ENTER File Example

This example illustrates the operation and execution of an ENTER file from
within an interactive task. The VMOS File Editor facility was used to create
the file. Note that when the ENTER command was issued to activate the
file, the programmer specified LOGON-associated information that was
different from that associated with the ENTER file’s LOGON statement. As
a result, the charge for processing the ENTER file would be assigned to
USERB, not USERA.

Initial LOGON and final LOGOFF statements define the extent of task
(TSN) 6763. This includes the creation of file TI.FILE and its activation by
the ENTER command. The LOGON and LOGOFF statements of lines 100
and 1000, respectively, define the extent of processing of file TI.FILE; that
is, TSN 1093.

2-29

/LOGON USERA,,C'123!
%C E223 LOGON ACCEPTED AT 1601 ON 08/12/71, TSN 6763 ASSIGNED.
JEXEC (EDIT)
ZP001 - DLL V=2A
VERS. 0014 OF FILE EDITOR READY
*0PEN TJ.FILE
%ZC T219 OPENED TJ.FILE AS NEW V=-TYPEFILE.
*TEXT
100. <0> /LOGON USERA,,C'123!
200, <0> /PARAM LIST=YESS,DEBUG=YES ,ERRFIL=YES
300. <0> /SYSFILE SYSDTA=DATA.FILE.JIM
4oo. <0> /EXEC BGFOR
- 500. <0> /SYSFILE SYSDTA=(PRIMARY)
600. <0> JEXEC TSOSLNK
700. <0> PROGNAME MCG.TST
800, <0> INCLUDE *
900, <0> END
1000. <0> /LOGOFF
1100. <0> #END
*HALT
/ENTER TJ.FILE,USERB,,C"' 456"
% TSN=1093
/LOGOFF

DO Files

DO file is a procedur: file which, when activated, initiates the processing of a
foreground (interactive) job. Unlike ENTER file processing, the system does
not process the DO file as a separate task. The procedure is executed
immediately upon being called, and additional processing within the calling
task is suspended until the procedure has been completed. Therefore, when a
DO file is initiated from an interactive task, the terminal remains attached to
the task but control does not return to programmer until the procedure has
finished processing. A DO file may only be a SAM file or ISAM file. The
choice of SAM or ISAM depends upon the conventions of the medium used
to create the file (File Editing Routines, DATA Command).

When a DO file is activated, it becomes the task’s temporary SYSCMD file.
The SYSDTA file remains directed to the initiating task unless directed to
another source from within the procedure file. SYSDTA (or SYSIPT) may
be directed to any source available to the SYSFILE command (see Part 3,
Section 2). If SYSDTA is directed to SYSCMD, its source will be the
procedure file; not the source associated with the initiating task. To cause
SYSDTA to take its input from the source associated with the originating
task, SYSDTA must be directed to PRIMARY. When the procedure
terminates, SYSDTA (SYSIPT) and SYSCMD are redirected by the system,
to the sources associated with the initiating task.

2-30

The first entry in a DO file must be a procedure statement (/PROCEDURE)
and the last, an end statement (/ENDP). The remaining entries may be any
commands acceptable to the system with the exception of LOGON,
LOGOFF, and SECURE. LOGON, LOGOFF, and SECURE are considered
task associated commands and a DO file cannot be constituted as a task.
When one of these three commands is encountered in a DO file, the system
sends a diagnostic message to the task’s SYSOUT file, and continues
processing with the next valid command in the procedure.

PROCEDURE Statement

The PROCEDURE statement supplies the user with a choice of printing
options for the output resulting from the processing of the procedure, and
enables him to relate symbolic parameters (entered with a DO command) to
the processing of the procedure. Only one PROCEDURE statement is
permitted in a DO file. A DO file may, however, contain calls to other DO
files. Therefore, although a DO file may contain only one procedure, the
procedure may reference other DO files. A more complete explanation of
this phenomenon is contained in the description of Multiple Procedures. A
PROCEDURE statement must be preceded by a slash. However, a
PROCEDURE statement will not be recognized by the system when
SYSCMD is receiving input directly from the task. In.other words, the
system only recognizes PROCEDURE statements in the context of DO files.

The format of a PROCEDURE statement and its operands are described and
defined as follows:

Name Operation Operand

PROCEDURE| [A

PROC C
D|,[(symbolic parameter-character,...)]
N

specifies that all records on the PROC file are to be written
to the SYSOUT file as they are processed.

specifies that only command records on the PROC file are to
be written to the SYSOUT file.

specifies that only data records on the PROC file are to be
written to the SYSOUT file.

specifies that no records on the PROC file are to be written
to the SYSOUT file. This is the default operand.

2-31

Symbolic parameter

an ampersand (&) sign followed by an alphabetic character,
followed by zero to six alphanumeric characters. In order to
represent a single ampersand sign within a character constant,
two ampersand signs must be written. Any number of
symbolic parameters may be combined in a given VMOS
command. When a symbolic parameter is followed by a
period, an alphabetic character or a numeric character, a
period must separate the symbolic parameter from the
character that follows. When a symbolic parameter is
followed by a single period, the period is ignored. Symbolic
parameters which appear in the comments field are ignored.
Symbolic parameters are separated by commas and enclosed
in parentheses.

Notes:

1. If ~he writing option (A, C, D, or N) is not specified and
symbolic parameters are used, a comma must precede the
first symbolic character.

2. For symbolic parameter processing, the PROCEDURE
commiand is the analog of the DO command. Each positional
parameter supplied in the DO command will be substituted
for the corresponding symbolic parameter in the
PROCEDURE command. The PROCEDURE command must
contain at least as many positional parameters as are specified
in the DO command. Keyword parameters supplied in the
DO command are substituted for the corresponding keyword
symbolic parameter. All keywords specified in the DO
command must be present in the PROCEDURE command.
Symbolic replacement occurs only in SYSCMD statements.

ENDP Statement

The ENDP statement returns control from a DO command initiated
procedure file to the primary, command-input file. There may be, however,
any number of ENDP statements in a DO file. This particular feature is
covered in detail in the Multiple Procedures area of this Section. ENDP
statements must be preceded by a slash and contain no operand field. Similar
to the PROCEDURE statement, the ENDP will not be recognized by the
system unless it is contained in a procedure file.

The same effect as the ENDP command can be created by the user by
pressing the “Break’ key at the terminal while an interactive task in the
procedure mode is processing. However, in this case, the system prompts the
user to verify that the “Break’ key has not been pressed by mistake. After
the User’s action has been verified and the system has acknowledge the
“Break” key, the procedure file cannot be resumed.

2-32

DO File Example

The following is an example of a DO file created using the VMOS File
Editor. In this example, SYSDTA was directed sequentially to three
different sources. At line 200, SYSDTA was redirected to a file containing a
COBOL source program as an input source to the COBOL Background
Compiler (BGCOB). Prior to this, SYSDTA was associated with the
programmer’s terminal. At line 400, SYSDTA was directed away from the
COBOL source file to the procedure file (the task’s temporary SYSCMD file)
in order that the remaining commands in the file could be executed. Finally,
at line 900, SYSDTA was directed to the terminal (its PRIMARY source) so
that the COBOL load program (MCGRAW) could read its input from the

terminal.

%C E222 PLEASE LOGON,.

/LOGON USER-1D

%C E223 LOGON ACCEPTED AT 1452 ON 08/13/71, TSN 6871 ASSIGNED.,

JEXEC (EDIT)
%P0O01 - DLL V-2A

VERS. 0014 OF FILE EDITOR READY

*QPEN TJ.TEST

%C T219 OPENED TJ.TEST AS NEW V-TYPEFILE.

*TEXT
100, <0>
200. <0>
300. <0>
L4oo, <0>
500. <0>
600. <0>
700, <0>
800, <0>
900. <0>
1000. <0>
1100, <0>
1200, <0>

*HALT

/PROC C

/SYSFILE SYSDTA=TJCODE
/EXEC BGCOB

/SYSFILE SYSDTA=(SYSCMD)
/EXEC TSOSLNK

PROGRAM MCGRAW

INCLUDE *

END

/SYSFILE SYSDTA=(PRIMARY)
/EXEC MCGRAW

/ENDP

#END

2-33

Upon issuing the HALT command, the programmer was released from File
Editor and control was returned to the operating system. When the system
typed a slash at his terminal, the programmer activated the file TI.TEST by
issuing a DO commard. The execution of this procedure file follows:

/D0 TJ.TEST
%/PROC C
%00000200/SYSFILE STSDTA=TJCODE
%00000300/EXEC BGCOB
%L001 PROGRAM LOADING
32A0 COMPILATIOM INITIATED (BGCOB VERSI10N=038A)
32AA COMPILATIOM COMPLETED
%EBOO1 SPOOLOUT INITIATED FOR TSN=6880 |D=HPBLS857
% PRINT FILE=00008
%00000400/SYSFILE SYSDTA=(SYSCMD)
%00000500/EXEC TSOSLNK
%P56D LOADING
VERS., 008 OF T$0S LINKAGE EDITOR READY
LIST? (Y, N)N
PROGRAM BOUND
PROGRAM FILE WRITTEN: MCGRAW

NUMBER PAM PAGES USED: 6
%00000900/SYSFILE SYSDTA=(PRIMARY)

%0000 1000/EXEC MCGRAW

%P56D LOADING

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE 0<N<330
*101

THE NUMBER ENTERED WAS,..l101

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE 0<N<330
*102

THE NUMBER ENTERED WAS...102

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE.O0<N<330
*103

THE NUMBER ENTERED WAS...103

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE 0<N<330
*104

THE NUMBER ENTERED WAS...104

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE 0<N<330
*105

THE NUMBER ENTERED WAS...105
%00001100/ENDP

/LOGOFF

Note: Because the file was created using File Editor, it is an
ISAM file.

2-34

Symbolic Parameters (DO File)

When constructing a DO file, the programmer need not be restricted to a
single input scheme for execution of the commands contained within the
procedure. Through use of symbolic parameters, the programmer can alter
the processing of individual commands within the procedure by varying the
input to them. In this way, a single procedure may be used to perform a
variety of similar operations depending on the command input criteria
specified when the file is activated. The ability to control the processing of a
single procedure eliminates the need to construct separate procedures to
perform functionally equivalent operations.

To construct a procedure that will accept symbolic parameters, the
programmer must identify them in a PROCEDURE statement and in the
command statements to which they apply. The character strings constituting
symbolic parameters must be identical in both instances. The system
correlates PROCEDURE statement entries with the parameter in command
statements on the basis of their content; not according to their position in
the parameter stream. Subsequently, when calling for execution of the file,
the programmer enters, with the DO command, the input parameters desired
to be associated with the symbolic entries in the file’s PROCEDURE
statement. The way in which symbolic parameters are constructed is covered
in the discussion of the PROCEDURE statement.

The following illustrates one of the ways symbolic parameters may be used
to generalize a procedure. This illustration is based on the previous DO file
example in which a COBOL source program was compiled, linked, and then
executed.

/LOGON

%C E223 LOGON ACCEPTED AT 1130 ON 08/16/71, TSN 6956 ASSIGNED,
/EXEC (EDIT)

%P001 - DLL V-2A
VERS. 0014 OF FILE EDITOR READY

*OPEN TJ.TEST

%C T219 OPENED TJ.TEST AS NEW V-TYPEFILE.

STEXT v
100. <0> /PROC C,(&A01,8B02)
200, <0> /SYSFILE SYSDTA=8§A01
300, <0> /EXEC &B02
Loo, <0> /SYSFILE SYSDTA=(SYSCMD)
500. <0> JEXEC TSOSLNK
600. <0> PROGRAM MCGRAW
700, <0> INCLUDE =*
800. <0> END
900. <0> /SYSFILE SYSDTA=(PRIMARY)
1000. <0> /EXEC MCGRAW
1100. <0> /ENDP
1200, <0> #END
*HALT

2-35

As in the previous case, the procedure file was created using File Editor.
However, this time, symbolic parameters were entered as operands of the
SYSFILE command (line 2000), the EXEC command (line 300), and the
PROCEDURE statement. In the SYSFILE and EXEC commands, these
parameters replaced the name of the COBOL source file and the name of the
background compiler, respectively. The symbolic parameters must appear in
the PROCEDURE statement to supply the link to the DO command. The
procedure was executed as follows:

/D0 TJ.TEST, (TJCODE,BGCOB)
%/PROC C,(8A01,8B02)
%00000200/SYSFILE SYSDTA=gAO]
%00000300/EXEC &B02
%L001 PROGRAM LOADING
32A0 COMPILATION INITIATED (BGCOB VERSION=038A)
32AA COMPILATION COMPLETED
%EBOO1 SPOOLOUT INITIATED FOR TSN=6983 ID=HPBLS857
% PRINT FILE=00005
%00000400/SYSFILE SYSDTA=(SYSCMD)
%00000500/EXEC TSOSLNK
%P56D LOADING
VERS. 008 OF TS(S LINKAGE EDITOR READY
LIST? (Y, N)N
PROGRAM BOUND
PROGRAM FILE WRITTEN: MCGRAW

NUMBER PAM PAGES USED: b
%00000900/SYSFILE SYSDTA=(PRIMARY)
%00001000/EXEC &(:03

%P56D LOADING

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE 0<N<330
*101

THE NUMBER ENTERED WAS...101

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE 0<N<330
*102

THE NUMBER ENTERED WAS...102

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE 0<N<330
*103

THE NUMBER ENTERED WAS...103

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE 0<N<330
*104

THE NUMBER ENTERED WAS...104

PLEASE REPLY WITH A 3 DIGIT NUMBER IN THE RANGE O0<N<330
*105

THE NUMBER ENTERED WAS...105
%00001100/ENDP

2-36

Note that had the programmer entered the name of a properly constructed
ANSI COBOL program and the name of the ANSI COBOL compiler in lieu
of TICODE and BGCOB, the execution of the procedure would not have
been altered. In this case, the symbolic parameters related to what was
executed, not the sequence of execution.

This example was not intended to be definitive, but to introduce the reader
to the use of symbolic parameters in a DO file.

Multiple Procedures

Ina DO File

VMOS does not restrict the programmer to DO files using symbolic
parameters as the only means of altering the execution of a procedure. The
system permits the construction of procedure files which, in turn, call for
the activation of other procedure files. This facility is not restricted by file
type: for example, an ENTER file may contain calls to DO files as well as to
other ENTER files. The same holds true for DO files. In addition, the
number of additional procedures which can be entered from the initial
procedure file is functionally limitless. Both DO and ENTER files can
contain DO and ENTER files which, in turn, contain DO and ENTER files,
and so on.

Any DO file may contain, within its procedure, calls to other DO files or
ENTER files. This is true whether the file containing the call is the initial
procedure file or a subsequent procedure file activated from within the
initial file. As an illustration, consider the following generalized example of a
DO file which calls one of two other DO files, the last of which calls, in turn,
an ENTER file. Each of the three files are constructed separately as follows:

DO File DO File DO File ENTER File
OUTER INNERI1 INNER?2 BACKGRD
/PROC C,(&D0O2) /PROCC /PROCC /LOGON Userid
/DO &DO2 . /ENTER BACKGRD

/ENDP /ENDP /ENDP /LOGOFF

Note that each of the preceding files meets the criteria of a self-contained
procedure: the DO files start with PROC statements and terminate with
ENDP statements; the ENTER file starts with a LOGON command and
terminates with a LOGOFF.

The order and choice of execution for each procedure is displayed on figure
2-1. As shown, the preceding flow of execution illustrates three important
features relative to the construction and processing of multiple procedures:
the use of symbolic parameters, the termination of the procedures, and the
subsequent transfer of control.

2-37

PRIMARY TASK ENVIRONMENT SECONDARY TASK ENVIRONMENT

/LOGON USER ID

AN

/DO OUTER, (INNER 1) /DO OUTER, (INNER 2)
/PROC C (&D02) N /PROC C (&D02)
/DO & D02 /DO & D02
<
DO FILE INNER 1 DOFILE INNER 2 ENTER FILE BACKGRD
/ PROC C /PROC C

/ LOGON USER ID

/ENTER BACKGRD

(SEPARATE TASK
INITIATED)

I
|
I
I
I
I
I
I
I
I
|
OUTER DO FILE OUTER DO FILE :
I
I
|
|
|
I
I
|
I
|
I

/END P .
/END P

e e e s 0 s 00

|
|
| /LOGOFF
|
|
[
/ |
|
|
|
|
|
I

/LOGOFF

FIGURE 2-1. DO FILE PROCEDURES

2-38

The use of symbolic parameters permitted the construction of a procedure
(OUTER DO File), from within which one of two other procedures
(INNER1 and INNER2) could be called. The choice, relating to which of
these inner procedures is to be executed, is made by the user when the outer
procedure is called (DO OUTER, symbolic parameter).

Each of the three DO file procedures terminate in one of two ways: by an
ENDP command or by a call to another procedure. This is the only way in
which DO file procedures may terminate in a normal fashion. The procedure
in a DO file will terminate at an ENDP statement unless a call to another
procedure (DO or ENTER command is encountered prior to the ENDP).
None the less, an ENDP statement must always be the last entry in a DO file
procedure when the procedure is constructed, regardless of how the
procedure is expected to terminate.

The termination of a DO file procedure by a call to another DO file causes
control to pass from the calling procedure to the called procedure. The
termination of a procedure by an ENDP statement causes control to pass to
the initiating task regardless of whether or not the procedure was called from
within another DO file procedure. Control can never be returned to a
preceding DO file procedure by a subsequent DO file procedure. Note,
however, that the initiation of an ENTER file from within a DO file
procedure does not cause any transfer of control. The system sets up a
separate background task to process the ENTER file procedure but control
remains with the DO file procedure which called the ENTER file.

Inan ENTER File

As in the case of DO file processing, both DO and ENTER files can be called
from within an ENTER file. However, the processing sequence is less
complex. Because the initiation of an ENTER file always creates a separate
background task, the advantages of initiating a DO file reside primarily in the
user’s ability to specify a tangential procedure, rather than in his ability to
effect optional procedure selection, since he cannot control execution using
symbolic parameters. Nevertheless, an ENTER file is never terminated by a
call to another procedure. If the called procedure is a DO file, or a series of
successively called DO files, control will return to the ENTER file which
initiated the first call to a DO file when the last ENDP statement is
processed. An ENTER file procedure may also call another ENTER file. In
this instance, however, control remains with the calling procedure and
processing continues as soon as the system has set up the background task to
process the second ENTER file.

Table 2-6 lists the salient features of the DO and Enter files.

2-39

TABLE 2-6. PROCEDURE FILES

File Activation
Procedure file treated as
separate task?

File delimiters
Task delimiters

Can be initiated from an
ENTER file?

Can be initiated from a
terminal?

Can be initiated from a
DO file?

If the procedure is initiated
from a terminal, does the
terminal remain connected to
the procedure?

Action that occurs due to
terminal initiation.

ENTIER File

The ENTER (filename)
command

Yes

LOG®ON command
LLOGOFF command

LOGON, LOGOFF commands
in the: procedure file.

Yes

Yes

Yes, but control remains with
the calling DO file and proces-
sing continues after system
creates the background task to
process the ENTER file.

No

The system types TSN of
background task and returns a
slash o the terminal. User can
then ILOGOFF if desired, thus
saving telephone charges, while

DO File

The DO (filename) command
No
PROC command

ENDP command

LOGON, LOGOFF commands in
the initiating task.

Yes
Yes

Yes, but when the ENDP command
is encountered, control returns to
original initiating task.

Yes

Initiated procedure is part of the
initiating task. The system returns
a slash when procedure is completed.

the task processes in background.

REMOTE BATCH PROCESSING

The VMOS Remote Batch Processing (RBP) System provides the
programmer, at a remote terminal, with the ability to use the full
batch-processing potential of the operating system. The programmer using
the RBP system can enter card-input jobs into the system, monitor their
progress, cancel them, and redirect the output of a finished job at task
termination. With the exception of the RJOB, RSTATUS, and RMSG
commands, all commands controlling RBP may be entered only from a
remote work statior: (terminal); if entered from the control card reader, they
will be rejected by tae system.

2-40

Remote Job Initiation

Once a remote work station has been physically attached to VMOS, the RBP
system will place the device in the inactive state and begin monitoring it for
input. The user logically attaches the work station to an RBP system by
issuing the RSTART command. RSTART must be the first command issued
at the beginning of each remote batch session, as it identifies the remote
work station to the RBP system. After an RSTART is received and validated
by the RBP system, the work station is considered to be in the active state.

Work stations in the active mode are ready to receive RBP input. The
programmer begins the processing session by issuing an RLOGON command.
RLOGON functions in the RBP environment the same way LOGON
functions in the local batch and interactive environment. The RLOGON
command, like the LOGON command, defines the beginning of a task, and
must precede all processing input. The information supplied with RLOGON
command is checked against the user’s Join Table entry by the RBP system,
and must agree before the RBP system will accept the user’s program input.
The RLOGON command remains in effect until an RLOGOFF, RSTOP, or
subsequent RLOGON is received by the RPB system from the work station.
If a valid RLOGON is received from a work station with a session in
progress, the current user is logged off and a new user is logged on.

Remote Job Regulation

The RJOB command enables an RBP system user to identify jobs within his
task. By using the RJOB command, the programmer has the ability to defer
job output until it is explicitly requested (see ROUT command) and to
designate an alternate output recipient.

When a job identified by the RIOB command has finished executing, the
submitter and alternate output recipient (if one exists) are automatically
notified of the completion. Deferred job output may then be retrieved at
any time. If the user does not identify his input using an RJOB command,
the RBP system will supply a jobname and direct output to the submitter
after job completion.

The RJOB command may also be used to define RBP for jobs submitted
from a central installation card reader. This provides the programmer with
ability to direct output from centrally submitted jobs to user’s at remote
work stations.

The ROUT command allows the RBP user to retrieve deferred job output
(see RJOB, DEFER option) for which he is a valid recipient. If the ROUT
command is issued and the job specified is not completed, the command is
ignored and a message is sent by the RBP system to the requestor noting that
the job is not completed. The ROUT command must then be reentered at
completion of the task. If a ROUT command is issued for a specific job
where the user is not a valid recipient or for a job which is no longer in the
system, the RBP will return a message to that effect.

2-41

The ROUT command also allows the user to retrieve output that was
discontinued due to user intervention or by equipment failure. When
interrupted output is pending for a work station, no output is returned to
the work station until a ROUT command determines disposition of the
interrupted job. Hovwever, the system will continue to accept input from
that work station. If' the work station has output pending and is logically
detached from the system (via RSTOP command), the next time a user
attaches that station (via RSTART command), the job output will be
returned for starting, at the point it was interrupted. If the output was
interruped by a transmission failure, the user must reattach the work station
via the RSTART command.

In addition, the ROUT command enables a user to delete jobs from the RBP
system without receiving a copy of the job output. The user can delete only
those jobs that have been submitted and are still currently in the system.
The system will return an invalid request response if the user attempts to
delete jobs that do not belong to him.

Finally, it should be noted that if a ROUT is entered without modifying
parameters, the system will resume output for any job, submitted from that
specific work station, that is in a discontinued state. If job output is not in a
discontinued state, this form of the ROUT command merely resets the work
station to a state capable of receiving output.

The RMSG command enables a user to send messages to another user, the
console operator, or an RBP work station. Such messages will be rejected if
they are directed to inactive users (see RLOGON command) and/or work
stations not logically attached to the system (see RSTART command).

The RSTATUS comraand provides the user with the ability to determine the
status of RBP jobs for which he is a valid output recipient. RSTATUS
enables the user to obtain the status of a specific job, the status of jobs
submitted by a specified user, or for all current jobs submitted from a work
station. The RBP system returns the status of only those jobs that are in the
system when the command is processed. The information a programmer
receives in response to an RSTATUS comprises the jobname, submitting
userid, submitting ferminal id, alternate user, and whether the job is
executing, complete, or not in the system.

Remote Job Termination

The RLOGOFF command is the last command contained in a remote batch
processing task. The programmer enters RLOGOFF to indicate that he has
completed the processing session. After the receipt of an RLOGOFF, the
RBP system will not accept input from the user’s work station until a new
session is begun (RLOGON command). However, the work station, because
it is still logically attached to the RBP system, will continue to monitor the
system for output.

2-42

The RSTOP command enables the programmer to detach a work station
from the RBP system. When this command is entered, the RBP system
transmits all queued messages to the terminal that is being detached prior to
the actual detachment. However, no job output will be returned to the work
station after the RSTOP command is processed. The last message
transmitted by the RBP system will indicate that the work station is
detached from the system. No further communication occurs until the work
station resumes RBP activity with an RSTART command. If the work
station is connected to VMOS via a dialed connection, the connection is
broken.

CHECKPOINT/RESTART FACILITIES

The VMOS Checkpoint/Restart Facilities enable the batch programmer to
specify points within a program at which the system environment and
program status are to be captured, and then to have execution resumed at
these points. The user designates and maintains control of the file to which
these checkpoints are written, thus allowing the best combination of file
space economy and restart capability that will meet particular needs. Insofar
as is practical, restarting is flexible: both as to mode of invocation and to the
ease of program modification prior to reexecution.

Checkpoint/Restart operates under control of the VMOS Control Program
and is initiated using directives supplied by the Command Language. The
Checkpoint facility is invoked by an SVC generated when the programmer
enters the CHKPT macro (see Part 3, Section 1). This feature monitors the
system environment in relation to the program as the environment exists
when the program processes the CHKPT.

The programmer invokes the restart facility by issuing the RESTART
command (see Part 3, Section 1) from a terminal or as part of a spooled-in
job stream. This facility causes the program to be reloaded and execution to
begin from the location at which the specified checkpoint was taken.
Execution of the program can, however, be suppressed by the programmer.

The information required to restart a program may either be specified by the
user or obtained from a log created by the system when the checkpoint is
taken. The system creates the checkpoint file to contain this information as
a Primary Access Method (PAM) file. This file provides the medium wherein
the program and its environment, as recorded by the checkpoint operation,
is retained for use by the restart facility.

Public or private volumes may be used to contain the checkpoint file. If
private volumes are used, the programmer must assume that device on which
they are contained is supported by PAM. In other words, paper tape cannot
be used as a medium for the checkpoint file; magnetic tape and direct access
devices can, as they are supported by PAM.

2-43

Message Generation
Checkpoint writes one message to SYSOUT, to log a successful checkpoint:
CE301 CKPT: mm/cld/yy hh tt xxxxxxAHFPG=p

mm/dd/yy is the current date

hh tt is the time (hours and minutes)

XXXXXX is the: checkpoint ID

p is the page number on which the checkpoint header is
writtzn

The same message is also written to the operator’s console
for nonconversational tasks.

RESTART may write one, two, or three of thirteen possible messages to
SYSOUT. These messages are contained in the VMOS Messages Reference
Manual.

Considerations for Use

The following considerations comprise usage conventions and restrictions
imposed by either the Operating System or the Checkpoint/Restart facilities
themselves. The user is advised, therefore, to pay particular attention to
these points.

Stack Management

The Checkpoint/Restart philosophy assumes that the program issuing the
checkpoint SVC is running with just one P1 stack (its own), one P2 stack
(Command Language Processor), and was given control as the result of a
/EXECUTE, /RESUME, or /RESTART command. Consequently, a
checkpoint taken in any other environment will probably be unusable as
input to the restart process. Note that this also applies to subsequent
checkpoints taken by a restarted program. For this and other reasons, the
/RESTART command must not have been issued from a more complex
environment. In particular, it may not be issued from a Procedure File.

This restriction does not concern temporary system stacks (Break or
BROADCAST stacks, for example) but rather is a constraint on the user’s
design.

2-44

File Management

File Integrity

EAM Files

BTAM Files

The user must be extremely careful that the file to which checkpoints are to
be taken is opened in such mode as will achieve the desired results. In effect,
by the frequency of the opens and closes and by the mode in which a file is
opened, the user specifies how often (if at all) checkpoints are to be
overwritten and when retained. It should be noted, also, that failure to allow
secondary allocation would cause one or more checkpoints to be aborted, if
there is not sufficient file space remaining to contain it.

Although every effort will be made to assure the integrity of the checkpoint
file, the user is advised not to use it for any other purpose; that is, it should
be a dedicated file. Interspersing data-records with checkpoints on the same
file is not recommended. Data files opened OUTPUT or OUTIN cannot be
saved by Restart.

11

Evanescent Access Method (EAM) files, including SYSLST, SYSOPT, and
SYSOUT, are not checkpointed and cannot be reconstructed at restart time.

BTAM files are not repositioned in Restart.

Restart Environment

If a /RESTART command is issued while a program is already loaded in the
user’s virtual memory space (for example, from a previous /LOAD command
or a /EXEC followed by a BREAK), the user program will be terminated
automatically before restarting commences.

The /RESTART command may not be issued from a PROCEDURE file.

A /RESTART command may not be issued while SYSDTA is redirected to a
secondary file.

A /RESTART command may not be issued while SYSIPT is redirected to a
secondary file.

2-45

Secondary SYSFILE Assignment

A checkpoint, taken while SYSCMD, is under secondary assignment to the
Card Reader cannot be restarted.

Checkpoint/Restart Optimization

The primary area of control which the user has over the time consumed in
taking a checkpoint is in the allocation of file space for the checkpoint file.
The number of PAM pages used for a single checkpoint may be
approximately calculated by the formula: P = 2n + 6 where n is the
number of pages of virtual memory currently (at checkpoint time)
allocated to the program.

If possible, the checkpoint should be taken at a point in the program
where the amount cf class 5 and class 6 memory allocated to the program
is minimized. For sxample, if memory is requested and released in a
program on a frequent and dynamic basis, the user is best advised to
checkpoint when the requested memory is at a minimum.

The second consideration involves making the initial allocation of file
space large enough to accommodate all expected checkpoints, thus
avoiding secondary allocations. If this is not feasible, as is often the case,
the next best alternative is to be sure that the secondary allocation
specified equals or exceeds the requirements of any one checkpoint as
calculated by the above formula. In order to inhibit allocation of class 5
and class 6 memory while a checkpoint is being taken, the checkpoint
module will force secondary allocations (sufficient to contain the
checkpoint) by dumnmy writes in advance of the checkpointing writes.
Since one write accompanies each allocation, a minimum secondary
allocation (3 PAM pages) can be expensive.

By choosing the manner and timing of the way in which he opens and
closes his checkpoint files, the user may accomplish his particular
objectives within minimum file space. The examples on figure 2-2 through
2-5 are intended to be illustrative, but not exhaustive. The reader will
doubtless be able to devise many other schemes.

On figure 2-2, all checkpoints are written consecutively to a single file.
Restart may be accomplished from any one of them, but a great deal of
file space may be used.

In figure 2-3, the file space is minimized, but only the last checkpoint is
ever available and even that would be destroyed in case of a malfunction
during the last checkpoint.

2-46

l 01
OPEN

CHECKPOINT
FILE
‘OUTIN’

(03.05)
LOOP -

02

PROCESSING

03

YES

DONE?

04

(scv77)
CHECKPOINT

03.02

LOoP
*(03.03)

CLOSE —> | <

CLOSE
CHECKPOINT
FILE

07

EXIT

FIGURE 2-2. SINGLE SERIAL FILE

2-47

(04.06)
LOoOP

01

PROCESSING

OPEN
CHECKPOINT
Fil.E

‘OUTIN'

04

(8V/C77)

CHECKPOINT

\

05

CL.OSE
CHECKPOINT
Fl.E

06

(04.01

LOOP

FIGURE 2-3. SINGLE CHIECKPOINT

2-48

The illustration given in figure 2-4 will ensure that at least one checkpoint
is always on file.

01
OPEN FIRST
CHECKPOINT
FILE
‘OUTIN'
(05.00)
—
L P
00 02
Y

PROCESSING

ALL
PROCESSING
FINISHED ?

YES

EXIT

(SVC77)
CHECKPOINT
TO OPEN
FILE

A 4 05
CL.OSE OPEN
CHECKPOINT
FILE AND
OPEN THE
OTHER
CHECKPOINT
FILE 'OUTIN'

06

LOOP

FIGURE 2-4. ALTERNATING CHECKPOINT

2-49

The contents of figure 2-5 would allow restarting at either one of the last ‘n’
checkpoints (end of volume, etc.) or at any of a series of major checkpoints.
This allows restart in case of malfunction or for file reconstruction purposes
at less than maximum file allocation.

(06.11)
—_—
MAJOR
A 01 MAJOR 06

OPEN MINOR CLOSE MINOR
CHECKPOINT CHECKPOINT
FILE ‘OUTIN’ FILE

(06.05)

MINOR 3

A 02 ‘ A

ALL
PROCESSING
FINISHED

PROCESSING

CHECKPOINT MAJOR
TYPE? OPEN MAJOR
CHECKPOINT
FILE "INOUT’
09
(SVC77) (SVC77)
CHECKPOINT TO CHECKPOINT TO
MINOR FILE MAJOR FILE
05 ! 10

CLOSE MAJOR
CHECKPOINT
FILE

MINOR

MAJOR

FIGURE 2-5. MAJOR AND MINOR CHECKPOINTS

2-50

System Support of Checkpoint/Restart

The VMOS Checkpoint/Restart logic subsumes both Class I and Class II
programs. However, some Class I programs may be TOS programs and
require that checkpoints be taken by issuing a TOS CKPT macro (SVC 14).
The purpose of this section is to describe the steps necessary to interface
such a supervisor call with the logic for VMOS checkpoints. It should be
noted that no additional logic is necessary for restart since TOS/VMOS
program differences are not significant in restart. Note that the user must
supply restart file pointers in Class I checkpoint.

Prior to executing a TOS Program which issues the CKPT SVC, a VMOS user
must define the checkpoint file by using a FILE command with a LINK
name of CKPTFILE. The device, if specified, may be any for which PAM is
supported. The FCBTYPE and OPEN parameters should not be specified.

The space allocated is subject to the same restraints as for VMOS
checkpoints, with one exception. If secondary allocation is not allowed, that
is, SPACE=(n,0) has been specified, and if the primary allocation is great
enough to accommodate at least the largest checkpoint, no error will be
returned. If sufficiernt space is not available to accommodate all checkpoints,
checkpoints will be rewritten starting from the beginning of the file.

When a CKPT SVC is issued by a Class I program, the TFT entry is located,
an FCB is created and opened, and a VMOS CHKPT parameter list is built.
The VMOS checkpoint logic is then executed. TFT and FCB are explained in
the File Management Section which follows.

On subsequent CKPT SVC’s, the FCB is located, parameter updating done as
required, and a rough check for sufficient remaining space is made. Any
necessary provision for space is made before joining the CHKPT logic.

At program termination, the checkpoint file will automatically be closed.
This allows the user to issue commands between programs affecting the file
or TFT entry. This allows reuse of the file for succeeding checkpoint files or
reuse of the link name for writing checkpoints from a successor program to a
different file. ' -

2-51/2-52

GENERAL

Filenames

SECTION 3
FILE MANAGEMENT

The scope of those facilities supplied by the VMOS Control Program enables
the programmer to create, modify, and dispose of program files, and to
manipulate certain of the System Logical files. Before exploring these areas
of file management, the basic principles — relating to file naming, file
security, file retrieval, and the structure of catalog blocks — require
explanation.

Unless the reader is directed to another manual, all commands and macros
referred to in this section are fully described under File Management
Commands in Section 2 of Part 3 of this publication.

All names of user files created under VMOS must conform to the following
format:

[$userid.]name[.name...] [(group)]
The programmer, when he names a file, is responsible for the
name[.name...] [(group)]

portion of the full filename. The $userid is supplied by VMOS automatically
at file creation, and corresponds to the user identification of the file’s
creator. By prefixing filenames with the userid of their creators, VMOS
assures that all references to a file will be directed to that portion of the
system catalog associated with the correct user.

The entire filename (including $userid) may contain no more than 54
characters. The programmer-supplied portion, name[.name...][(group)],
may not exceed 44 characters. Description of each of the filename
components is as follows:

userid

Specifies the programmer’s identification code. The
maximum size is 10 characters including the period and
dollar sign.

2-53

name

Specifies a simple configuration of one or more characters.
The characters may be alphanumeric or hyphens, but neither
the first nor last character can be a hyphen. However, a
simple name may contain more than one hyphen. Simple
filenames, not part of a compound name, may contain more
than 8 characters.

Compound names may be formed by connecting one or more
simple names wusing periods (for example,
PAYROLL.MASTER, PAYROLL.MASTER.JIM, etc.). The
rules for forming the component of a compound name are
the same as those applying to simple names. The first simple
name in a compound name may not exceed a length of 8
characters.

(group)

Specifies the identification of a member of a set of
historically related files. This identification may consist of a
simple name or a compound name, and the aforementioned
rules for forming names apply. Note, however, that group
identification must be enclosed in parentheses.

Filename Qualification

The ability to append qualifiers to the “name” portion of a filename supplies
the VMOS user with a convenient method for grouping files into meaningful
categories. Thus, all the payroll files for a particular application could be
grouped together wunder the basic name PAYROLL as follows:
PAYROLL. MASTER,PAYROLL. TRANSACTIONS,
PAYROLL.UPDATE(1), etc. This facility results from the implementation
in VMOS of the concept of partially and fully qualified filenames.

The filename as specified when the catalog entry is created is the fully
qualified filename, and can be a simple or compound name. If a filename is
compound, it may be identified by omitting the rightmost simple name or
names. The remaining name (simple or compound) plus a trailing period is
the partially qualified filename. For example, MATH.TRIG. is the partially
qualified filename identifying the filename MATH.TRIG.COSINE. As
mentioned previously, a partially qualified filename, such as PAYROLL., can
be used to identify a group of related files, such as PAYROLL.MASTER and
PAYROLL.TRANSACTIONS. The partially qualified filenames are accepted
by the system for processing as parameters of the FSTATUS (file status) and
ERASE instructions.

Because VMOS associates all filenames with the userid of a programmer who
created the catalog entry, only that programmer can reference the catalog
entry using the fully qualified or partially qualified filename. Any
programmer, not identified to the system by the userid of one who created
the filename, must enter the fully qualified filename prefixed by userid of
the creator. In other words, userid 1 cannot access filename XYZ created by
userid 2 unless he identifies the filename as userid2.XYZ. Userid 2 must also
have created file XYZ as sharable (see File Security description).

2-54

Examples

Userid 1 <created the following files as sharable:
A.B.C,A.B.D,A.E X.Y,X.Y.Z, and ENCYCLOPEDIA. User 2 may specify
any one of them by prefixing the name with useridl: for instance,
Userid1.A.B.C.

The following partial to full filename correspondence is also true.

A. specifies the files A.B.C,A.B.D, and A.E

A.B. specifies the files A.B.C and A.B.D

A.B.C specifies only filename A.B.C

A.B.C. specifies none of the named files, as no 4-character filenames
beginning with A.B.C. exist.

A specifies none of the files (A#A.)
X.Y specifies file X.Y

X.Y. specifies file X.Y.Z (not X.Y)

File Groups and Renaming Tapes

Examples

The VMOS facilities normally invoked for renaming direct access files
associated through the use of the (group) entry in the filename (see
CATALOG command) do not suffice for tape files. The renaming of tape
files requires the modification of the file label, and the nature of tapes is
such that the rewriting of a block in effect destroys all blocks beyond it.
Therefore, if a tape label was rewritten, all the remaining data on the tape
would be functionally destroyed.

In order to circumvent this problem, the following convention has been
established. If the name of a tape file contains a left parenthesis, the left
parenthesis and all subsequent characters in the name are not output in the
tape label. Typically, the user would suffix the character string (integer) to
the filename.

Example 1

Name in catalog.

Name used to reference

the file in commands, Name in the label
Filename macros, FCB. of the tape volume.

.PAYROLL PAYROLL PAYROLL

PAYROLL(1) PAYROLIL(1) PAYROLL
PAYROLL.A(1) PAYROLL.A(1) PAYROLL.A
PAYROLL.(1) Illegal

2-55

Linkname

File Security

When a tape file is processed and the name of the file in the catalog contains
a left parenthesis, the left parenthesis and all subsequent characters are
ignored in the tape label comparison for that fi'e.

Example 2
Assume two copies of a payroll file entitled:

PAYROLL (current version),volume serial number (vsn)35
PAYROLIL(1) (backup) , vsn 50.

The user wishes to create a new version of the PAYROLL file and to cause
the current version to become the backup version. The following commands
could be used:

CATALOG PAYROLIL(1),DUMMY,STATE=UPDATE
CATALOG PAYROLIL,PAYROLL(1),STATE=UPDATE
CATALOG DUMMY,FPAYROLL,STATE=UPDATE

These commands could, of course, be retained in a procedure file to
facilitate use of this renaming procedure. In the first command example,
PAYROLL(1) is temporarily changed to DUMMY, since in the next
command a new PAYROLL(1) is defined. After execution of these
commands, PAYROLL references the tape with a vsn of 50, and
PAYROLL(1) references the tape with a vsn of 35.

Linkname is the term applied to the file reference variable that provides
connection between the File Control Block (FCB) macro and the Data
Management System’s Job Control Language. The linkname ties together the
programmer’s FILE command, the file itself, the FCB, and the Task File
Table (TFT). The operating system performs all input/output in terms of
linknames; therefore, a linkname must be included on the FCB for a file. At
execution, the linknam.e becomes a parameter to the executing program.

For discussion on the uses of linknames in specific operating environments,
see VMOS Programmei’s Reference Manual.

When a user creates a file, he is recognized as its owner. No other user can
obtain access to the file unless the owner catalogs it with the SHARE=YES
parameter of the CATALOG command or the CATAL macro.

File access to both the owner and to the sharer is also controlled by
password options. Two passwords can be associated with the file: a read
password and a write password, thus facilitating two levels of file sharing.
The ACCESS parameter of the CATALOG command or the CATAL macro
may be used to limit tte file read access.

2-56

Examples

A file, marked as sharable, can be accessed by any user who can provide the
identification code of the owner, the filename, and the appropriate password
(if required).

If a file is being read by one or more tasks, and a subsequent task attempts
to open the file for output (for example, UPDATE, OUTPUT), the system
rejects the OPEN request. For ISAM files opened SHARUPD=YES,
concurrent reading and writing of the same file is allowed. Competing tasks
are essentially locked out at the PAM page level. If an attempt is made to
read or write a file (that is, non-ISAM or SHARUPD=NO) currently opened
for output, the system refuses to honor the OPEN request. The requesting
program may choose to process another file or perform some other useful
work.

User DOE catalogs the following files:

Example 1. CATALOG F1,SHARE=NO,ACCESS=READ
Example 2. CATALOG F2,SHARE=YES,ACCESS=READ
Example 3. CATALOG F3,SHARE=YES,WRPASS=C’0007’

Example 1. User SMITH cannot access F1 since DOE specified that the file
cannot be shared. Note that even DOE, the owner, cannot write to the file.

Example 2. Smith, and in fact all other users, can read (but not write to) F2.
Smith specifies the file as $DOE.F2; no password is required.

Example 3. Smith, and in fact all other users, can read and/or write F3 by
specifying the name $DOE.F3 and the password 0007. Note that the default
value for the ACCESS operand is WRITE.

Passwords required to gain access to protected files may be supplied in the
PASSWORD command; they can also be specified in the file control block
(FCB) which will be used to OPEN the file.

Password Requirements

Table 2-7 defines the password requirements for pertinent file management
macros and commands. Note the following important points:

1. If a file has both a READ and a WRITE password, the WRITE password
may be used to satisfy the requirements for the READ password; that is, the
WRITE password allows reading and/or writing to a file.

2. If the file has no WRITE password, but has a READ password and if the
chart specifies a WRITE password, then the READ password must be
supplied.

2-57

TABLE 2-7. PASSWORI REQUIREMENTS

Password Required

Command (or Macro) READ WRITE Comments

OPEN INPUT X

OPEN REVERSE X

OPEN other types X

CATALOG X Update mode only.

COPY X X READ password for input
file; WRITE password for
output file.

ERASE X

FILE X Required for a previously

cataloged file if the SPACE
parameter is specified.

FSTATUS None required.

System Controller and File Security

File Retrieval

The system controller can access any file in the system: that is, he can
employ any file management command (macro) or access method consistent
with the properties of the file. He has the same accessibility as owner of a
file — but not more. For example, the controller must supply appropriate
password (except when issuing the FSTATUS command or macro) to access
the file. He cannot write to a file which is defined as read only (recall that
neither can the owner). In other words, the controller is viewed as a coowner
of every file.

When a file is initially accessed, the system searches the owner’s (the user
who is logged-on) portion of the catalog for the specified file unless a $userid
prefix is specified with the filename. In the latter case, the portion of the
catalog of the user with the specified id is searched.

Typically, VMOS system files are cataloged under the system controller’s id.
To access the system’s assembler, for example, the user would specify

$Controller-id. ASSEMBLER;

Since this notation is a bit verbose, the special id of null may be used to
designate the system controller files. Accordingly, the user could write
SASSEMBLER to access the assembler.

2-58

Example

Controller’s

User Catalog DOE User Catalog SMITH (system) Catalog
PAYROLL INVENTORY ASSEMBLER
FORTRAN PAYROLL FORTRAN
ALGOL ACCOUNT
File Referenced by DOE Action
PAYROLL DOE’s PAYROLL file accessed.
$SMITH.PAYROLL Smith’s PAYROLL file accessed.
FORTRAN DOE’s “private” FORTRAN file

accessed.
$FORTRAN System’s FORTRAN compiler accessed.
$Controller-id. ASSEMBLER System’s assembler accessed.
$ASSEMBLER System’s assembler accessed.
$SMITH.ACCOUNT Error. Smith has no file called

ACCOUNT.
$ALGOL Error. The file is not in the

system controller’s catalog.

Programming Note

If the controller’s file contains more than one simple name, the
$Controller-id prefix must be used. For example, File A.B., if referenced as
$A.B., would imply file B of user A.

Catalog Block Structure

When joined to the system, each user (including system controller) is
assigned a primary catalog block of 2048 bytes, and the identification
number of the block is stored in the system’s join table. This block is the
first block within the catalog file to which catalog entries (filenames) for the
user are written.

Only catalog entries for a single user are contained in a given block.
However, if the size of his catalog necessitates it, a user can own more than
one block. All entries within a block refer to valid files and contain all the
required information about the file.

The blocks within the catalog file are structured as shown in figure 2-6.

Entries are made in a catalog block on a first-come, first-served basis from
left to right. If an entry is removed, the block’s space counter is adjusted
accordingly. If an entry other than the current last entry is removed, the
entries are left justified.

When an entry cannot be contained in a block, a new block is obtained for
this user. A block that has a successor contains the next block number in its
control field. If an entry for other than the first block is removed, causing
this block to become empty, the block is automatically returned to the
system for reassignment. Entries are never moved from block i+1 to block i
when an entry is removed from block i.

2-59

1

el ® | @ | ®@ |®] 6))

TOTAL NO. BINARY NO.

OF UNUSED OF

ENTRY 1 ENTRY 2 | ... ENTRY M

NAME BYTES IN USERID SUCCESSOR

BLOCK BLOCK
SIZE 2 8 2 4 VARIABLE VARIABLE ; Z VARIABLE

FIELD DESCRIPTIONS:

2-BYTE BINARY COUNT NDICATING TOTAL NUMBER OF UNUSED BYTES IN THIS BLOCK.
THE INITIAL VALUE OF THIS FIELD IS 2032.

8-BYTE USER IDENTIFICATION CODE.

BINARY NUMBER INDICATING THE LOGICAL BLOCK NUMBER OF THE BLOCK WITHIN
THE CATALOG FILE WHICH SUCCEEDS THE CURRENT BLOCK OF THIS USER. IF NO
SUCCESSOR BLOCK EXISTS, THIS FIELD IS 0.

NOT USED; RESERVED FOR FUTURE USE.

CATALOG ENTRY WHICH DESCRIBES A USER FILE.

@O OO O

FIGURE 2-6. CATALOG FILE BLOCK STRUCTURE

Example

Assume that a user block can contain four entries. The user performs the
following operations:

USER OPERATION CATALOG STRUCTURE
CATALOG A.B | As | | | |
CATALOG X | A.B | x [[]
CATALOG Y L\ AB | x [v [|
ERASE X [A.B | v | | 1
CATALOG D | AB | Y | D | |
CATALOG E.Y.Z | A.B | % | D [Eevz
CATALOG R r--| AB | v [D [Evz]
—>] R | | I]
ERASE Y F—I AB | D [evz]]
—{ R | I il
CATALOG T — A.B | D [evz | T
—>| R | I l |
ERASE R [A.B [D [Eevz] T |

2-60

FILE CREATION

The facilities supplied by VMOS support three methods of file creation: the
use of software-supplied routines, card input in the background mode, and
the operation of the user-written program. Fach of these methods imposes
its own conditions and requirements on the programmer, either as a result of
routine operation or because of information the user’s program is expected
to contain.

Software-Supplied Routines

Software-supplied routines supplied with VMOS enable the programmer to
create data files, source program files, and object program files while
operating in the conversational mode. The use of these routines permits a
programmer to circumvent much of the work associated with file
preparation for processing. Most required, usually, is to specify the access
method to be applied to the file. Open and close processing are accomplished
by the routine.

Data files created by text editing routines can be used as input to
user-written programs. The user is then required to supply correct open
processing and access method application information. Open processing and
access method application are discussed later in this section.

The several language processing and text editing routines are described in the
VMOS Programmer’s Reference Manual.

Background Card Input

The Command Language command, DATA, enables the programmer to
catalog a file on a direct-access device and to insert data into it. If the file has
been previously defined using the FILE or CATALOG commands, the
DATA command can be used simply to insert data into the file. The DATA
command can only be used to crcate SAM or ISAM files. The system assigns
the following characteristics to the file: standard labels, variable length
format records, and 2048-byte blocks. Labeling conventions are described in
the VMOS Programmer’s Reference Manual. Record formats are discussed in
the Access Method portion of this section.

The programmer is not restricted to the creation of one file at a time when
using card input. More than one file may be created during a card reading
session using multiple DATA commands. The first DATA command must
follow a LOGON command (see Task and Program Management — Section 2,
Part 2). Each subsequent DATA command may follow the data cards
associated with the preceding DATA command, or an END command. An
END command must follow the last data card associated with the last DATA
command in the card stream. A LOGOFF command must follow the last
END command.

The DATA command may be used to create a file to contain any
information from source language statements through raw data. However,
VMOS considers the contents of the file to be data. The operating system
does not differentiate among source language statements, data, and
procedures. The contents of the file are stored but not processed when read
in. The programmer must initiate processing during a different programming
session.

User-Written Program Operation

The processing and creation of files by a user-written program require that
the programmer supply the information necessary to identify the file, the
format of its contents, and the way it is to be managed.

The basic set of instructional facilities supplied by the VMOS Command
Language for identifving files and specifying the manner in which they are to
be processed comprise the following: the FILE command (macro); the FCB
(IDFCB) macro, OPEN macro, and CLOSE macro; and the macros associated
with the various access methods.

File Identification and Operation of FILE Command

The FILE command (or macro) provides the facility to place a file’s name in
a catalog, allocate space for the file, assign devices to process the file, and
complete or modify the File Control Block (FCB) — (see VMOS General
Service File Management Macros discussion in the appendices). This
command provides the link between user’s program and the system, and
provides the control program with information on how the user-written
program intends to create or process the file.

Input and output files to be processed by a program must be identified to
the system when the program is executed. The programmer may use the
FILE command or its corresponding macro for this purpose. A FILE
command may be entered conversationally or as part of a background
initiated task; the FILE macro can only be used in the background mode and
must be contained as part of the user-written program.

The FILE command provides a logical link between the user-written program
and the files it is 0 process. For all files (input and output), the FILE
command (macro) causes an entry to be placed in the Task File Table (see
FCB discussion) and completes the File Control Block (FCB) if the file has
not been previously cataloged. The FILE command (macro) also creates an
entry in the catalog and provides for the allocation of space to contain the
file. The FILE cominand (macro) is described in detail in Part 3, Section 2.

FCB Definition and Formation

In VMOS, the File Control Block (FCB) is the principal area of
communication for all input/output operations associated with cataloged
files. The FCB is the repository for all the information a program needs
about a file in order to use the file. FCB contents depend upon the access
method to be applied to the associated file and the type of processing
(input/output) the file is to undergo. Regardless of the associated access
method, FCBs exhibit common characteristics: same size for all access
methods, and common fields within different FCBs are the same size and
reside at same relative locations.

2-62

FCB SOURCE INFORMATION

Each file to be processed requires an FCB. The information necessary to
construct it can be supplied from five different sources.

1. FCB macro instruction: When a program is assembled or compiled, an
FCB may be created using the FCB macro. The FCB macro reserves space for
a file control block, and may be used to supply information to the FCB and
reserve space to contain the logical routines needed to process the file. Note
that the logical routines for which the FCB reserves space are not considered
part of the FCB. The FCB macro is discussed in detail under “VMOS General
Service File Management Macros™ in the Appendices. The FCB formats for
various access methods are described in Part 3, Section 2.

2. User Program: The user-written program may complete or alter any or all
fields of an FCB during program execution after the FCB has been
completed but prior to the opening of the file.

3. FILE Command (or macro directive): Any fields, even if specified from
sources 1 and 2 and for which the FILE command is a valid source, are
completed at OPEN time. The FCB macro instruction parameters for each
access method are summarized under the reference given in source 1 above.

4. User-program modification of the FCB when the file is opened through an
open contingency exit using the OPEN parameter of the OPEN macro or File
command.

5. The Catalog: Any fields not specified from the above sources, and for
which the catalog entry is a valid source, are also completed when the file is
opened.

FCB COMPLETION

The sequence of events significant to the processing of an FCB are
summarized in chronological order below:

1. FCB macro: assembly (or compile) time.

2. User program object-time modifications prior to issuance of the OPEN
macro.

3. OPEN time: FCB construction.
a. FILE command (or macro)
b. Catalog entry (regardless of OPEN mode)

c. User program modifications at OPEN time through the
contingency exit.

At this point, the FCB is considered complete. It is important to note that
OPEN processing will not complete (or default) any unspecified fields. In
other words, although OPEN processing accepts FCB parameters from a
variety of sources, it does not validate, after having utilized these sources,
that an FCB field is unspecified.

2-63

Open Processing and Function of OPEN Macro

Before applying an access method to a file, the programmer must request
that an FCB be completed as a logical connection between the file and the
problem program. The programmer issues an OPEN macro instruction that
completes the FCB fields, verifies or creates file labels, positions volumes to
the first record to be processed, and allocates buffer areas as required.

Additionally, the CPEN routine ensures that needed access routines are
loaded and address relations are completed. The selection of access routines
is governed by choiczs in file organization, buffering technique, input/output
unit characteristics, and other factors.

In operation, some access routines are treated as part of the user’s program
and are entered directly rather than through a supervisor-call (SVC)
interruption. These routines block and deblock records, control the buffers,
and call the input/output supervisor when a request for data input or output
is needed. Other routines, treated as part of the I/O supervisor and therefore
executed in the privileged mode, perform error checks, prepare user-oriented
completion codes, post interruptions, and bridge discontinuities in the
storage areas assigned to a file.

OPEN also constructs a P2 (privileged) FCB, logically a protected extension
of the FCB. This block contains a description of the extent (devices and
boundaries) of the file. The privileged FCB is normally located via the FCB.

After operations on the file have been completed, the programmer logically
disconnects the file from the problem program by issuing a CLOSE macro
instruction. After ar. FCB has been closed, it may be reused. Furthermore, it
is set to the same contents it had prior to issuance of the OPEN macro
instruction.

The OPEN macro is discussed in detail under “VMOS General Service File
Management Macros” in the appendices. Open processing options that are
available are described in the Access Methods discussion of this section.

SEQUENCE OF EVENTS IN OPEN PROCESSING

The user’s Catalog entry for a file contains more information that can be
created or changed by File Management commands. This additional
information is gathered from various sources, such as: the user’s FILE
command; the FCB. File labels; and the chain of elements called the Task
File Table (TFT).

The user has the option to create an incomplete FCB in his program and/or
to modify his FCB prior to Opening a file. If an incomplete FCB refers to an
input file that is already cataloged and a FILE command is not presented to
the system, the FCB is completed from existing catalog entries. Input label
and retention period information is always taken directly from the catalog.

Foreign input tape label information is taken from the label itself, if the
labels are standard and from the FILE command if nonstandard, and placed
into the catalog prior to FCB completion. For output files, the information
(traits) is taken from the FCB and placed into the catalog.

2-64

The central chain of elements that reflects all files and devices in use by a
task is the TFT. In cases where the TFT was not created by the user’s OPEN
macro (that is, the referenced file is in HOLD status), the FCB is updated
directly with the information in the existing TFT for that file.

The detailed sequence of events in OPEN processing is described below:

1. Search TFT entries for current linkname. (See also FILE Command and
OPEN relationship under the OPEN macro.)

If linkname is not found, build TFT entry.

If linkname is found, update the user’s FCB from the TFT (note, the TFT
contains the FCB information presented by a previous FILE command).
Remember, a linkname of spaces (binary zeros) will be treated as a special
case. (See FCB explanation.)

2. Read catalog entry for the specified file. Complete unspecified fields in
the FCB from the catalog, if possible.

Note: This function is not performed for a foreign tape file.

3. Mount necessary private volumes.

4. Branch to OPENX contingency exit.

5. Move traits from FCB to the catalog entry and then enter user’s OPENZ
contingency exit of the EXLST macro. (These functions are performed only
if the OPEN type is OUTIN or OUTPUT.)

6. Validate passwords (not performed for foreign tape file at this time).

7. Allocate 1/O buffers and validate buffer addresses, if necessary.

8. Process tape labels.

For foreign tape files, the following is now performed:

a. Move traits from catalog entry to FCB.

b. User program modifications through the OPENX
contingency exit.

¢. Validate passwords.

Notes:

1. Since the OPENX contingency exit for foreign tape files is
taken relatively late in OPEN processing, certain fields within

the FCB may not be modified.

2. Foreign tape files cannot be opened OUTIN or OUTPUT.

2-65

9. Access method OPEN processing constructs logical file processing
routines if applicable.

10. Update catalog entry if foreign tape file is being processed, or if the fite
is being opened OUTPUT or OUTIN.

CAUTION: Technically speaking, a file does not exist in the
sense of containing data until the file has been Opened
OUTPUT or OUTIN, and CLOSED. At CLOSE time, the
file’s creation date and expiration date (and last half page
pointer for ISAM, PAM, and SAM) are inserted into the
catalog,.

FILE COMMAND (MACRO) AND OPEN MACRO RELATIONSHIP

Although an FCB must be associated with each file to be processed, another
unit of control inforraation is used to process files. This unit of information
is called the File Definition Entry and includes the linkname. Although its
creation and usage are not explicitly affected by the user program, a basic
understanding of this entry is desirable.

The linkname (or logi:al filename) is a file-reference variable usually declared
in the user program. [t provides the link between the user’s FILE command,
the file itself, the FCB, and the TFT. It may be assigned references to files or
devices and become; a parameter to the executing program; although,
strictly speaking, VMOS is file-oriented, not device-oriented. Some
linknames belong to “he system and arc preinitialized, such as COBLIB (for
the COBOL Source Library) and ERRFIL (for the post compilation
diagnostic file).

DMS performs all file I/O in terms of linknames and the LINK parameter
must be included in the FCB for a file. When this parameter is not specified,
a default value of spaces is assumed.

The linkname also supplies the link for qualified filenames. For instance,
COBOL conventions do not allow the use of qualified filenames, as the
period has special meanings for COBOL. Thus, a COBOL program wishing to
read a file called PAYROLL.A would identify a file called INPUTFIL and
the wuser would supply the FILE command as /FILE PAYROLL.A,
LINK=INPUTFIL, es:ablishing the link between the two names.

The RELEASE command removes the association of a linkname with a file
(or device). If the linkname reference was to a device, it will be relinquished
(unless there was a KEEP parameter).

When a File Definition Entry is created, it is placed in a table called the Task
File Table (TFT). The TFT is a chain of elements that is built by the OPEN
(and the FILE or HOLD command) and reflects all files and devices in use
by a task. The first :zlement of the TFT is pointed to by the Task Control
Block (TCB). Each element is identified as to creator, active or inactive, type
(TOS or VMOS), and the length of the volume element. The DSECT IDTFT
is used to referenc: the fields in the TFT. Figure 2-7 illustrates the
relationship between the various commands, linknames, and TFT.

2-66

TCcB
POINTS TO ETCBFIL
WHEN
1.
FILE @ TET
ISSUED
0O 0 0 0 0 0 0 O
2. @ FILE INFO
HOLD (INCLUDING
ISSUED >
LINKNAME)
3 LINKNAME
> A
OPEN
I1SSUED @ LINKNAME
3 (NOT REMOVED
(FIRST OPEN
SEARCHES AT CLOSE) LINKNAME
FOR A
LINKNAME) 00000000
HOLD

STATUS FOUND

DROP
RESET HOL.D
INDICATOR

RELEASE
DELETE
FDE FROM
TFT

FIGURE 2-7. FILE DEFINITION ENTRY, LINKS, AND TASK FILE TABLE

The File Definition Entry can be created in one of three ways:

1. A FILE command (macro) is issued. Note that a FILE command is
mandatory for a new file. All pertinent information specified in a FILE
command is encoded and placed in this entry. Most of this encoded
information is subsequently used by OPEN. The entry contains the symbolic
linkname which makes the connection to other commands (for example,
RELEASE) as well as to the FCB.

2. A HOLD command is issued for a file definition which has not yet been
created. This is a trivial case, since nothing more than a skeleton entry is in
the TFT.

3. An OPEN macro instruction is issued. OPEN searches the TFT for an
entry with the linkname specified in the FCB. If one is found, information in
that TFT entry is used by OPEN to complete its processing (for example, to
complete and/or change FCB parameters).

If no TFT entry is found, then, OPEN creates one. If a TFT entry is created
by OPEN, file characteristics are not moved from the associated FCB to the
TFT. Note that when the file is CLOSED, this entry is not removed.
Similarly, for example, a HOLD or RELEASE command could be issued for
this TFT entry by specifying the linkname.

2-67

Filename and OPEN Macro Relationship

When a specified filz, not prefixed by $userid, is to be Opened and is not
found in the user’s catalog, the controller’s catalog is automatically searched.
If such a file is found in the controller’s catalog, and if the file is marked
sharable, that file will be processed. Of course, password and access
restrictions will still be obeyed.

CAUTION: The automatic searching is performed by OPEN
but not by the DMS commands of CATALOG, ERASE,
FILE, and FSTATUS, although the FILE command passes on
the filename to the FCB.

CLOSE Processing and Function of CLOSE Macro

Any file that has been Opened must be Closed to indicate that file processing
is complete. At program termination, all files not closed by the program are
closed by the system.

CLOSE processing consists of the following functions:

1. Releasing buffer areas automatically attained by the system and any other
system-acquired conirol areas.

2. Performing all label verification and creation as specified by the label
type. Refer to ‘““Peripheral Conversion Routine” of the VMOS Service
Routines Manual for complete details.

3. Updating the catalog entry if necessary.
4. Ensuring that pending write operations are completed.

5. Performing volurae positioning as indicated in the CLOSE macro
instruction.

6. Restoring the FCB to its original state (that is, as it was prior to the
issuance of the OPEN macro-instruction).

7. Unlocking any data block the user has locked in closing the file.

The CLOSE macro is described in detail under “VMOS General Service File
Management Macros’ in the appendices of this manual.

Access Methods

The Access Methods supported in VMOS by its Data Management System
allow the programmer to define his data formats and the method used to
access this data. The user combines the FCB, OPEN, and CLOSE macros
with a particular ac:ess method and the action macros associated with the
performance of data handling operations. Table 2-8 summarizes the various
access methods in terms of: record formats and device types associated with
each, and the files created by other access methods which may also be used
as input.

2-68

TABLE 2-8. ACCESS METHODS, RECORD TYPES, AND DEVICE TYPES

Other Access Method

Access Record Device Files Allowed as
Method Formats Types Input
Direct-access
Tape (single SAM
PAM Fixed reel, standard
blocks) ISAM
Fixed Direct-access
SAM Variable Tape PAM
Undefined
Fixed
ISAM Variable Direct-access PAM
Fixed PAM
BTAM Undefined Tape SAM
EAM Fixed Direct-access

ACCESS METHOD RELATIONSHIPS

The privileged version of Primitive (or Primary) Access Method (PAM), used
by various access methods (as well as privileged users), is summarized in

figure 2-8.
USER
SAM EAM ISAM PAM BTAM
DIRECT —— AIL —_———
ACCESS ~ a
— ! EXCP
TAPE 5| PRI\QA_SGED e
STANDARD BLOCK SIZE :
Lol
e e e e —
ry
NONSTANDARD I
BLOCK SIZE |
I r———=-—-- T
(! !
L ! PRIVILEGED |
—_———— USERS |
! 1
! 1
EXCP e e e -

FIGURE 2-8. ACCESS METHOD RELATIONSHIPS TO PRIVILEGED PAM

Note that BTAM never uses PAM and that SAM (tape) need not use it.
Accordingly, tape formats can be controlled as the user desires.

2-69

The most significant point concerning PAM is that all direct access volumes
are assumed to be preformatted. PAM assumes — except for tape — that the
file has been formarted into physical blocks of 2048 bytes (VMOS half-page
or PAM Page), and that logically, each volume is partitioned into blocks of
2048 bytes. The number of such blocks will depend upon the device:

8564 (Disc Unit)

Each 8564 disc pack contains physical half-pages numbered 1 through 3046.
The device is partitioned with each even numbered track containing one full
half-page and the first half of another half-page. Each odd numbered track
contains the second half of the split half-page from the preceding track and
another full half-page. Each extent of a file must contain an even number of
contiguous tracks on each cylinder (this does not imply that files have a
cylinder orientation) of which the file is comprised. Furthermore, the disc
drive must have the track overflow special feature.

8590 (Disc Unit)

Each 8590 disc pack contains physical half-pages numbered 1 through
12180. Each track contains three half-pages.

8568 (Mass Storage Unit)

Each magazine contains physical half-pages numbered 1 through 32768.
Each track contains one half-page.

Magnetic Tape

Each reel contains n physical half-pages, limited only by reel length. Each
half-page comprises one physical block on the tape.

In addition to data, each physical block of a PAM file contains a control
field of 16 bytes structured as shown in table 2-9.

TABLE 2-9. PAM BLOCK CONTROL FIELD

coded file file logical Available to user if utilizing
name version half-page PAM directly. Access methods
number number (ISAM, SAM, EAM) use this
field for coded information.
No. of
Bytes: 4 1 3 8

On direct access devices, this PAM block control field is recorded as the
hardware key field. On magnetic tape devices, it is prefixed to the data, using
the data chaining fieature. Note that the key field makes the physical tape
block 2064 bytes. Since the block is a multiple of 3, reverse processing is
also available with 7-level tapes.

2-70

Record and Block Formats

Logical Records

A block is defined as the unit of transfer to or from an 1/O device. For
example, it is the data between two gaps on a magnetic tape.

A standard block is a physical block (PAM page, VMOS half page) which
consists of 2048 data bytes and 16 bytes of key. That is to say, it is the unit
of transfer for PAM as described previously. Accordingly, any file (except a
BTAM file) which is composed of standard blocks is always processed by
PAM. All direct access files are composed of standard blocks.

A nonstandard block is a block of data (other than a PAM page) on magnetic
tape which may be of any size less than or equal to 4096 bytes. There may
be other size restrictions appropriate to the kind of tape drive employed (for
example, a minimum block size of 12 bytes, a block size which is a multiple
of 3 to allow reverse processing on 7-level tapes). Note that each
nonstandard block in a file need not be the same size. No block can exceed
the maximum size (specified in the BLKSIZE parameter in FCB).

Tape files processed by SAM may be composed of standard or nonstandard
blocks. Of course, a given file cannot contain both kinds of blocks. When
nonstandard block files are processed (either by SAM or BTAM), processing
is effected by utilizing the physical level I/O macros (for example, EXCP)
rather than PAM.

A buffer is defined as a contiguous area of memory. It is a portion of main
storage into which data is read or from which it is written. If a block is
nonstandard, then block and buffer are essentially equivalent. If a block is
standard, the buffer must be a multiple of block size (that is, 2048, 4096,...)
and may have a maximum value of 65,536.

The system supports three types of logical record formats:
1. Fixed length — format-F (all access methods).

2. Variable length — format-V (SAM, [SAM).

3. Undefined length — format-U (SAM, BTAM).

A fixed-length record is specified for files whose logical records all contain
exactly the same number of bytes.

A variable-length record is specified for files containing logical records which
vary in length and which contain user-supplied information that gives the
length of the record. The first four bytes of each record is in the form llbb,
where 1l contains a binary number specifying the length of the record, in
bytes; bb are two characters reserved for use by DMS and should not be
utilized by the user. The bb portion of a record being added to a file may be
modified by the access method processing logic during the action of moving
the record into the file.

2-71

An undefined record is specified if the logical records in a file are neither
format-F (fixed) nor format-V (variable). A format-U record is identical to a
buffer. Accordingly, such records are a multiple of 2048 when standard
blocks are specified.

It is important to ncte two points:.

1. A logical record cannot exceed buffer size.

2. A logical record can exceed block size provided the file is composed of
standard blocks.

The logical record types supported by the access methods are summarized in
table 2-10.

TABLE 2-10. LOGICAI_ RECORD TYPES AND ACCESS METHODS

Logical Record Type

Access Method F \% U Comment

PAM X Assumes 2048-byte block.
SAM X X X

ISAM X X

BTAM X X* X Assumes one record per block.
EAM X Assumes 2048-byte block.

*Treated as undefined.

Examples of Record/Buffer/Block Relationships in SAM and ISAM
1. Assume:

Format-F records of 100 bytes
Standard blocks
Buffer size=2 blocks=4096 bytes.

The buffer is composed of 40 logical records; the rightmost 96 bytes of the
buffer are unused; revertheless, two 2048-byte blocks are written. Note that
record 21 of the buffer is contained in two blocks; the first 48 bytes are in
block 1, the last 52 bytes are in block 2.

2. Assume:

Format-F records of 100 bytes
Nonstandard block (tape only)

Buffer size=2020 (ostensible block size).

The buffer is composed of 2020 bytes; since only 20 records can fit into the
buffer, a 2000-byte block is written.

2-72

3. Assume:

Format-F records of 1500 bytes
Standard blocks
Buffer size=1 block=2048 bytes.

This is a bad choice since 548 bytes are wasted. A desirable buffer size would
be three blocks (6144 bytes). Now the buffer will contain four records, and

6000 bytes are utilized. Three blocks, each of 2048 bytes, are written.

4. Assume:

Format-V records with the following sizes:

100, 500, 300, 800, 200, 400, 700, 50, 100
Nonstandard blocks (tape only) and BLKSIZE=1000.

The following blocks are created:

BLOCK SIZE 900 1000 400 850

100 500 300 800 200 400 700 50

100

5. Assume:

Format-F records of 8192 bytes
Standard blocks
Buffer size=8 blocks=1684 bytes.

Each buffer contains two logical records; each logical record requires four

blocks.
BUFFER 16384
4!;
LOGICAL RECORD 1 | RECORD 2
RECORDS |
[
1
BLOCKS 1 2 3 4 |L 5 6 7

2-73

Primitive Access Method (PAM)

The Primitive (or Primary) Access Method (PAM) provides the user with,
efficient means to access and create standard blocks in a random fashion. A
block may be read from any portion of the file at any time. Similarly, blocks
may be written to any portion of the file. PAM does not support logical
record processing; blocking and deblocking must be accomplished by the
user. Overlapped I/O operations are possible, if desired by the user.

The PAM macro instructions are as follows:
1. All general service macro instructions (for example, OPEN),
2. PAM which includes the following operations:

RD/RDWT — read data into core storage and optionally wait for I/O
completion.

WRT/WRTWT — write data from core storage and optionally wait for I/O
completion.

WT — ensure completion of an I/O operation.
CHK — determine completion status of an I/O operation.

PAM may be used to process any direct access file and any single reel tape
file created with standard blocks. PAM may freely read SAM or ISAM
direct-access files.

Logical file properties are placed in the FCB (for example, BLKSIZE,
RECSIZE, RECFORM) so that the user program can perform appropriate
functions (for example, deblocking). Regardless of the file’s properties, PAM
merely reads and/or writes one block at a time.

CAUTION: In general, the user program cannot effectively
process an ISAM file using PAM, since the complex
relationship between ISAM logical records and indices is not
apparent. However, PAM could be used to copy an ISAM file
to tape (on a block-by-block basis). Similarly, a file created
by PAM can be processed by other access methods. It is
strictly the user’s responsibility to construct a file in the
exact format required by the access method (for example, no
unused or missing blocks if processed by SAM; proper
construction of the key field; construction of ISAM indices).
Again, it is emphasized that such esoteric applications are
beyond the requirements of most users.

2-74

PAM RECORD FORMATS
PAM supports one record format:
Fixed length — format-F

Although short records may be read or written on direct-access volumes, the
physical data blocks are always 2048 bytes in length. PAM assumes that
there is exactly one record per block (or buffer, which for PAM is
equivalent),

Opening a PAM File:
The file may be opened in the following ways:
1. INPUT: Retrieve records from an existing file.

2. OUTIN: Create a new file and retrieve records from the file. Note that
labels are created since a new file is being generated.

3. INOUT: Retrieve records from an existing file and add and/or replace
records. Note that labels are not created since the file is assumed to exist.

Table 2-11 defines the macro options which may be used with each type of
OPEN.

TABLE 2-11. PAM MACRO OPTIONS VERSUS OPEN TYPE

PAM

Macro Options INPUT OUTIN INOUT
RD X X X
RDWT X X X
WRT X X
WRTWT X X
CHK X X X

WT X X X

The PAM macro is described in detail in Section 2 of Part 3.
Sequential Access Method (SAM)

The Sequential Access Method (SAM) provides a means for accessing records
sequentially beginning at a specified point. This organization is most useful
for making a sweep through the records of a file, including (for direct-access
files) getting a record, updating it, and returning it to the file. Records can
also be added to the file. Unlike ISAM, no additional space is required other
than that needed by the logical records.

SAM automatically performs all blocking, deblocking, and buffering for the
user. If the user requests the system to utilize only one I/O area (buffer), no
buffering (overlap) can be performed.

2-75

Logical records are retrieved by use of the GET macro instruction. SAM
anticipates the need for records based on their sequential order (the order in
which they are written) and normally will have the desired record in storage,
ready for use. Logical records are designated for output by use of the PUT
macro. The prograrn can continue as if the data record was written
immediately, although the access .method’s routines may perform blocking
with other logical records and delay the actual writing until the output
buffer has been filled. Buffers are automatically scheduled by the system.
SAM is, for the most part, device independent and allows files to be
processed on magnetic tape and direct-access devices.

Transmission of data to and from the file may employ either of two modes:

Move mode. — The user specifies the location of the record in his program,
and the system is responsible for transferring it to or from the buffers.

Locate mode. — The user requests the location in the buffer area of the
current record. The user is responsible for transferring data to or from the
buffers.

The following action macros are available in SAM to control file processing:

GET Retricves the next record from the file in physically
sequential order.

PUT Places. a logical record in the file.

RELSE Causes any remaining logical records in a buffer to be
bypassed for input. For output, the next logical record
created is written as the first record of a new buffer.

SETL SpeciTies the position from which subsequent file processing
is to take place.

FEOV Advances the system to the next (tape) volume of a file
before the end of the current volume is reached.

PUTX Returns an updated logical record to the file (direct-access
volumies only).

For files opened OUTPUT or EXTEND, SAM interprets each PUT or SETL
macro instruction as an end-of-file indicator. The last PUT or SETL prior to
CLOSE for a file thus automatically defines an end-of-file indicator for the
system. If the user wishes to delete all records beyond a given record, he can
use the SETL macro instruction to position the desired file point, and then
issue a CLOSE macrc instruction.

2-76

For files created with standard blocks, a retrieval address is made available to
the user. The format of this address is described in detail at the end of this
macro instruction under FCB retrieval address. When a logical record is
stored (by execution of a PUT macro instruction), its retrieval address is
made available in the FCB. The user can, if desired, construct another file
from this retrieval address data and thereby establish a basis for subsequent
nonsequential processing of the original file being created. Note that this
retrieval address is also available in the FCB after the execution of the GET
macro instruction. Accordingly, if the user did not create the file entered
into the system, he can still create a secondary file from the GET retrieval
addresses to facilitate nonsequential processing of the original file.

SAM RECORD FORMATS

SAM supports three record formats, as follows:
1. Fixed length — format-F
2. Variable length — format-V

3. Undefined length — format-U

CAUTION: For format-U, SAM places one logical record per
physical block (buffer). The user who specifies standard
blocks (2048 bytes) and outputs 48-byte logical records
would waste 2000 bytes.

The size of logical record cannot exceed the buffer size (refer to BLKSIZE
parameter).

For OUTPUT files, SAM requires initial space allocation of at least one
buffer length, plus an additional one buffer length if the user wishes to
process in move mode.

Note that a record format other than that used to create the file can be
specified when an existing file is opened INPUT or REVERSE. For example,
a file which was created as a set of format-F records can subsequently be
retrieved as a set of format-U records. Thus, the system would, in effect,
return to the problem program a set of logical records (namely, all those in a
buffer) for each GET macro instruction issued.

The following rules apply to 7-level magnetic tapes:

1. The physical block size (reference BLKSIZE parameter) must be a
multiple of 3 if reverse processing is anticipated. It is not necessary that
format-V or format-F logical records be a multiple of 3.

2. Format-U records must be a multiple of 3.

2-77

OPENING A SAM FILE
The file may be opened in the following ways:
INPUT Retrieve records from an existing file in forward direction.

REVERSE Retrieve records from an existing file in reverse direction.
Multivolume tape files cannot be opened REVERSE.,

OUTPUT Create a new file or replace an existing file.
EXTEND Add records to the end of an existing file.

UPDATE Retrieve and replace records in an existing file. The PUTX
macro is used in locate mode to rewrite logical records. Each
record, however, must be first retrieved by a GET macro
using locate mode. The user may not change the length of the
record involved. This option is restricted to files on direct
access devices.

Table 2-12 defines the action macros which may be used with each type of
OPEN.

TABLE 2-12. SAM ACTION MACROS VERSUS OPEN TYPE

OPEN INPUT OUTPUT EXTEND UPDATE REVERSE
GET X X X

PUT X X

PUTX X

SETL X X X X X

RELSE X X X X X

FEOV X X X

Other action macros maintain the retrieval address as follows:

GET If the specified record causes a new buffer to be retrieved,
bbbbtb is set to designate the buffer number for the record,
and rr is reset to 00.

PUT If the specified record causes the existing buffer to be
written, bbbbbb is set to designate the buffer number for the
record, and rr is reset to 00. That is, it is set to the number of
the buffer in which the record will be placed.

RELSE If the file is opened OUTPUT or EXTEND, bbbbbb is set to
the number of the buffer in which the next record will be
placec, and rr is set to 00.

FEOV For tape, the retrieval address field is set to 00000100.

2-78

Programming Notes

This field is only supported for tape files which are created with standard
blocks.

It is important to note that bbbbbb is buffer oriented.
Example:
Assume BLKSIZE= (STD,2)

RECFORM=F

RECSIZE= 512

The retrieval address for the 10th record is 00000202; and 00000304 for
20th record.

Note that the system never increments the rr field beyond a single buffer. It
is reset, as previously described, to zero when a new buffer is to be
processed. The user can increment the rr field, if preferred, to maintain
retrieval address information for each logical record.

USE OF PAM KEY IN SAM

The format of the rightmost eight bytes of the PAM Key in SAM files is:
BBBXLLXX, where BBB is the buffer number in binary, X is unused and LL
is the length of useful data in the buffer. Note that the first X byte (byte 4)
is reserved for future system use.

Indexed Sequential Access Method (ISAM)

The Indexed Sequential Access Method (ISAM) processes logical records in
an indexed-sequential file. It may be used to:

1. Create an indexed-sequential file in sequential or nonsequential manner.
2. Retrieve logical records of the file in sequential or nonsequential manner.
3. Update records in sequential or nonsequential manner.

4. Insert new records in proper logical sequence within the file.

5. Delete selected records from the file.

6. Retrieve the next sequential record in the file which contains requested
flags.

Transmission of data to and from the files employs either of two modes:

Move mode. — The user specifies the location of the record in his program,
and the system is responsible for transferring data to and from the buffers.

Locate mode. — The user requests the location in the buffer area of the

current record, and is responsible for transferring data to or from the
buffers.

2-79

The following action macros are available in ISAM to control file processing:

GET

GETR

GETFL

GETKY

PUT

PUTX

INSRT

STORE

ELIM
SETL

ISAM RECORD FORMATS

Retrieves the next logical record in the file in ascending
sequential order of the record keys.

Retrieves the next logical record in the file in descending
sequential order of -the record keys.

Retrieves the next logical record satisfying the flag criteria.
Retrieves the logical record with a specified record key.

Adds a logical record to the file. PUT is normally used to
initially create the file by recording logical records in
ascending sequential order according to their record keys.

Replaces a record; retrieved by GET, GETR, GETFL, or
GETKY.

Places a new record in the file in the position determined by
its record key.

Places a new record or replaces an old record in the file in the
position determined by its record key.

Eliminates a record from the file.

Specifies the location in the file from which subsequent
processing is to take place. The beginning of the file, the end
of the file, or the location of a record with the designated
key may be specified.

ISAM supports two rccord formats, as follows:

1. Fixed length — format-F

2. Variable length — format-V

Only standard blocks are allowed; however, buffer size may range from 2048
to 65,536 bytes. The key must be contained within the record at a fixed
position and be the same size for each record in the file.

OPENING AN ISAM FILE

When an indexed-sequential file is Opened, any of the following optional
types of processing may be specified:

INPUT

OUTPUT
EXTEND
INOUT

Retrieves records from an existing file (sequentially and/or
randomly).

Creates a new file.
Adds records to the end of an existing file.

Retrieves, deletes, replaces, and inserts records in an existing
file. Additionally, records may be added to the end of the
file.

2-80

OUTIN Retrieves, deletes, replaces, inserts, and stores records in a
new file. Any information initially in the file is lost.

Table 2-13 summarizes the ISAM processing applicable to each type of
OPEN.

TABLE 2-13. ISAM ACTION MACROS VERSUS OPEN TYPE

Action INOUT
Macro INPUT OUTPUT EXTEND OUTIN

GET B B

w

BETR B

GETFL B

GETKY B

PUT B B
PUTX

INSRT

STORE

ELIM

X X g2 £ ®w £ o @

SETL X

Legend:

M — action macro functions in move mode only.

B — action macro functions in move mode or locate mode.
X — action allowed.

A — blank entry specifies that the action is not allowed.

Note: Only the Move Mode is permitted for the PUT macro
when the file is Opened INOUT or OUTIN.

Buffering (overlap) of I/O operations is supported for all modes of OPEN.
Buffering is optional for the GET and GETR action macros.

Note that these macros do not require the supervisor call (SVC) instruction
until all logical records in the current buffer have been processed.

If look-ahead buffering is not desired, the programmer should specifically
omit the OVERLAP FCB parameter. When buffering is specified and the
program switches from forward to reverse processing, or from random to
sequential processing, the I/O to bring in the next sequential buffer is
initiated immmediately. Unless processing is strictly sequential, this can result
in inefficient operation because of the system resources required to input
data which is never accessed.

Note that PUT operations are always overlapped.

2-81

If padding factor is specified, space is reserved only during the sequential
creation of the file via the PUT action macros. The INSERT and STORE
action macros will attempt to use all the space available in a data block.

FLAGGED ISAM FILES

Flags are a method of limiting sequential searches on ISAM files. There are
two types of flags: a value flag (such as tickler or date flag in TDOS ISAM)
and a logical flag. Flagged ISAM files may contain value flags or logical flags,
or both. The flag is part of the user’s logical record; the value flag
immediately follows the key and the logical flag immediately follows the
value flag (or the key, if there is no value flag).

User Record:

DATA KEY VALUE FLAG LOGICAL FLAG DATA

—~

FLAG AREA

e
N —

-~

INDEX AREA

The only constraints on key length, value length, and logical length is that
their sum must not exceed 255 and the key length must be at least 1.

Flag Information is propogated upwards through all levels of the ISAM
index.

Value Information is propagated by either a MAX or a MIN function as
specified by the user. If the (MAX, MIN) function is specified, each Index
entry will contain the (highest, lowest) value flag of the next lower level
block (data or index) to which it points. The method of value Tlag
propagation used is a function of the data in the file and how the fiie is
normally going to be searched. Logical flags are propagated by OR’ing
together all the flags of the next lower block. Note that this destroys zeros;
therefore, if a file is to be searched for males on one occasion and females on
another, two bits are required to indicate sex.

Flags limit searching of ISAM files at the highest index level possible.
Opening a Flagged ISAM File:

If either VALLEN or LOGLEN is unequal to zero, the file is assumed to be
flagged. If the file previously exists (OPEN type is INPUT, INOUT, or
EXTEND), the catalog values of VALPROP, VALLEN, and LOGLEN may

be defaulted, but they cannot be changed by the FCB macro or FILE
command.

2-82

ISAM SHARED FILE UPDATE

The ISAM shared file update facility permits two or more users to open the
same ISAM file simultaneously for the purpose of updating it. The facility is
designed around two basic concepts:

The attribute of file sharability is defined by the user when the file is
Opened.

To avoid conflicts between two or more programs in attempting to access
and update the same data records, a locking and unlocking mechanism is
available to the user at the data block level. Where lock/no lock options are
superfluous and locking must be accomplished, ISAM provides automatic
locking of the data block.

Shared update facilities available to the user are described below in detail.

OPENING AN ISAM SHARED FILE

The first user to open an ISAM file may open it with any combination of
values for OPEN and SHARUPD. The following chart indicates (by an X
which OPEN/SHARUPD combination will be permitted when user B tries to
open the same file user A has already opened. If more than one user has
already opened the file, the OPEN/SHARUPD combination of user B will be
compared against the OPEN/SHARUPD combination of every user who has
opened the file; user B can open the file only if each such comparison
permits him to do so.

USER B
SHARUPD=YES SHARUPD=NO
I ! E o o 1 ! E o o
N N X V] V] N N X U u
P o T T T P o T T T
U U E 1 P U U E | P
T T N N U T T N N U
D T D T
s | INPUT X X X X
H
A | INOUT X X
R
U | EXTEND X X
P
D | ouTIN % X
Y | outPuT X X
E
user | %
A
s | INPUT X X
H
A | 1NOUT
R
U | EXTEND
F)
D | ouTiNn
N [ouTPUT
o

2-83

PROCESSING AN ISAM SHARED FILE

When more than one user is updating the same file, it is necessary to lock
portions of the file triefly in order to prevent two users from attempting to
update the same record simultaneously. This locking is done at the data
block level. Some of the ISAM dction macros (i.e., PUT, STORE, INSRT,
and ELIM (KEY)) are ‘“‘self-contained,” that is, one macro locks, updates,
and unlocks the necessary block. Others require two macros to perform the
entire sequence: a GEZT, GETR, GETKY, or GETFL to lock the block and a
PUTX or ELIM (no KEY) to update and unlock the block. As a
consequence, an optional LOCK/NOLOCK parameter may be specified for a
GET, GETR, GETKY, or GETFL macro.

If a data block has been locked by a GET, GETR, GETKY, or GETFL which
specified LOCK, then other users can read the block (i.e., can refer to a
record in the block with a SETL or with a GET, GETR, GETKY, or GETFL
which specifies NO LOCK), but other users cannot update the block (.e.,
cannot issue a PUT, STORE, INSRT, ELIM, or PUTX which will update the
block) or lock it with a macro specifying LOCK. If NOLOCK is specified,
then other users can read, lock, or update the block.

If SHARUPD = NC, then the LOCK parameter is ignored in the GET,
GETR, GETKY, or GETFL macro processing and no locking occurs.

USE OF LOCK/NOLOCK PARAMETER WHEN SHARUPD=YES

A data block locked by one user can be read but not updated by other users,
and it is not possible for two users to lock the same data block
simultaneously. On the other hand, a user who is reading a data block but
has not locked it permits other users to read or update the block. Thus, the
use of NOLOCK in the GET, GETR, GETKY, and GETFL macros increases
the degree of data block sharability. However, LOCK must be specified if the
data block is to be updated via a PUTX or ELIM (no KEY) or if the user
wants to ensure that no other user will update the data block while he is
reading it.

Locking Data Blocks

User may have more than one ISAM file opened with SHARUPD = YES, but
can only have one data block locked at a time.

Conceptually, the first step of every ISAM action macro which will lock a
data block is to unlock any data block this user has locked in any file. Also,
every ISAM action macro will unlock any locked data block in the file to
which the macro is issued. (GET, GETR, and PUT will not actually unlock a
data block if the same data block would be relocked later in the macro
processing, and PUTX and ELIM (no KEY) do not unlock the data block
until the updating is completed.)

2-84

Implicit Locking and Unlocking of Data Blocks

In addition to the explicit locking done by GET, GETR, GETKY, and
GETFL and the explicit unlocking done by PUTX and ELIM (no KEY), each
ISAM action macro can cause certain data blocks to be locked or unlocked.

If SHARUPD = YES, a PUT will lock the last data block in the file and leave
it locked at the end of the macro. Also, if SHARUPD = YES, a STORE,
INSRT, or ELIM (KEY) will lock the affected data block before the update
and will unlock it when the updating has been completed.

In order to avoid a deadlock situation, each user can have at most one data
block locked at one time, regardless of how many files he has opened. To
ensure this, when a user issues an ISAM macro which will lock a data block
(i.e., SHARUPD = YES for the file and the macro is a STORE, INSRT,
ELIM (KEY), or PUT or is a GET, GETR, GETKY, or GETFL specifying
LOCK), any data block that user has previously locked (in any of his files)
will be unlocked. If a locked data block is in the file to which the macro
refers, it will be unlocked even if the macro will not lock a data block
(except that the data block will not be unlocked if the macro is a GET,
GETR, or PUT which will relock the same page).

When a PUT is issued for a file opened in locate mode, IOREG is updated
and the appropriate data block is locked. The user must move the record to
or build the record at the location specified by IOREG before the data block
is unlocked (i.e., before execution of another ISAM action macro).

Updating a Data Block

Before a data block can be updated, that block and all associated index pages
must be locked.

If an index page is split during the update, one of the two resultant pages
will be kept in the buffer at that level and one will be written out.

When the update is complete, all index pages and the data block are
unlocked.

CONTINGENCY EXITS

LOCK Exit

USERERR Exit

Control is given to the user at this LOCK exit whenever he is unable to
OPEN his file due to a conflict between his OPEN/SHARUPD specifications
and those of the users who have already Opened the file.

In addition to other uses of the USERERR exit, if the file is opened with
SHARUPD = YES, the user will be given control at this exit if he issues a
PUTX or ELIM (no KEY) without first locking the data block or if he issues
a GET, GETR, or GETFL after taking his PGLOCK exit without first
repositioning his file (as described in the PGLOCK Section below).

2-85

PGLOCK Exit

This exit is meaningful only if the file was opened with SHARUPD = YES.
Control will be given to the user at this exit whenever a data block (or index
page), which must be referenced in the course of processing an action macro,
is inaccessable because of the manner in which another user is accessing it.
(For example, if one iser has locked a data block and a second user tries to
lock it, the second user will be given control at his PGLOCK exit.)

It is possible for any macro issued for a file opened with SHARUPD = YES
to cause control to be passed to this exit. Unless caused by a PUTX or an
ELIM (no KEY), the “internal pointer’” will be invalid when the PGLOCK
exit is taken. Thus, it is necessary to reposition this pointer before issuing a
macro which assumes that it is valid (i.e., GET, GETR, and GETFL). The
pointer can be repositioned by issuing the RETRY macro or one of the
following ISAM action macros: GETKY, SETL, PUT, STORE, INSRT, or
ELIM (KEY). If a GET, GETR, or GETRL is issued before the pointer is
repositioned, control will be passed to the USERERR exit. If the macro
which caused the PGLOCK exit to be taken was a PUTX or an ELIM (no
KEY), the data block will still be locked at the PGLOCK exit and no
repositioning is necessiry.

CONSIDERATIONS IN USING SHARED UPDATE FACILITIES

When to Use ISAM Shared Update

Specifying SHARUPD = YES for a file causes detailed tables to be set up in
class 4 memory, while SHARUPD = NO only causes the creation of one or
possibly two table entries. In addition, the detailed tables created by
SHARUPD = YES must be maintained at every ISAM macro, while the entry
created for SHARUPD = NO is only updated at OPEN/CLOSE time. Thus, in
order to save time and class 4 memory, SHARUPD = YES should be
specified only when it is known that more than one user will be opening the
file at the same time, and that at least one of the users will be updating it
(i.e., will have OPEN = INOUT, OUTIN, OUTPUT, or EXTEND).

Opening and Closing an ISAM Shared Update File

When a file is opened with SHARUPD = YES, detailed tables are created in
class 4 memory. These tables must be checked and maintained by all users of
ISAM. In general, to avoid unnecessary overhead, a user should not open a
file until ready to process it, and should close it as soon as its processing is
finished.

CLOSE processing will unlock any data block the user has locked in the file
being closed.

Locking and Unlocking Data Blocks

Issuing macros which alternately lock and unlock data blocks can cause
unnecessary overhead. In some situations, this overhead is unavoidable, as in
the case of the GET/PUTX sequence, where the GET must lock the data
clock if SHARUPD = YES and the PUTX must unlock it. However, through
careful program design, the user may be able to avoid such situations as
issuing GETs which specify LOCK alternately to two or more files or issuing
GETs which alternately specify LOCK and NOLOCK to the same file. This is
especially important where GET, GETR, and PUT are concerned, because
locking and unlocking require an SVC, while GET, GETR, and PUT can
usually be processed by P1 code.

2-86

Use of Duplicate Keys with a Shared Update File

When a user is reading a file sequentially (i.e., is issuing GETs, GETRs, and
GETFLs) and the file is opened with SHARUPD = YES, he must be careful
if there are duplicate keys in the file. If another user had modified an index
page associated with the data block this user is reading, it may be necessary
for ISAM to reposition the user in the file based on the modified index
pages. (in effect, ISAM issues a SETL KEY to reposition the user.) However,
if the key involved is one of a sequence of duplicate keys, the user may be
positioned at an unexpected record in the sequence. It is the user’s
responsibility to keep track of which records in the sequence he has
processed.

The RETRY macro may cause the same unexpected positioning for a file
with duplicate keys. This condition is described in detail under the section
devoted to the RETRY macro.

File Reconstruction RESET Command

When more than one user opens an ISAM file with SHARUPD = YES and
OPEN = INPUT, the File Reconstruction System notes only the first OPEN
and the last CLOSE (ignoring any nested or overlapped OPENs and CLOSEs)
and uses this outermost OPEN/CLOSE pair in the OPEN count. Using the
COUNT parameter in a RESET command for such a file may give
unexpected results (i.e., the file may be reset to an earlier OPEN than the
user expects). Thus, for these files, the TIME parameter should be used
instead of the COUNT parameter in requesting the resetting of the file.

ISAM FILE STRUCTURE

An ISAM file is made up of data blocks (2048 bytes) and index blocks.
Entries in the data blocks contain the user’s logical records. Entries in the
index blocks contain pointers to either lower level index blocks or, in the
case of the lowest level index block, to data blocks. Specifically, for each
data block in the file, there exists at the lowest level an index entry of size
KL + 4 where KL is key length [+LOGLEN+VALLEN].

The data blocks, which are also describable as level O blocks, have their
records ordered by record key. Moreover, the records in data block i all have
keys greater than or equal to those in data block i-1. Similarly, the records in
data block i all have keys less than or equal to those in data block i+ 1.

One should note that an ISAM file is logically structured as a multilevel tree,
as illustrated in figure 2-9.

2-87

Size of ISAM Files

HIGHEST LEVEL
INDEX (IN THIS
CASE: LEVEL +)

\ :

INDEX
LEVEL2

INTER-
MEDIATE
F LEVEL.
\ INDICES

LOWEST
LEVEL
INDEX

-Te s -T== LEVEL1
~/

DATA,; LEVEL 0

FIGURE 2-9. ISAM FILE INDEX/DATA STRUCTURE

The highest level index block is always present in the file (even if the file is
null, i.e., contains no data blocks). In addition to containing pointers, this
index block contains 36 bytes of ISAM label information which is used
internally by ISAM. Therefore, in the calculations that follow, the size of the
highest level index block is effectively 2012 bytes rather than 2048 bytes.

For modest sized files there are no intermediate level index blocks. The
highest level block, being at level 1, would therefore contain pointers to
data.

Whenever a file grow; so large that the highest level index block does not
have enough space to contain pointers to all of the blocks on the next lower
level, that block is split in half and a new highest level index block is created,
one level higher than the old and containing two pointers, one to each half
of the split block.

Because of the many options which a user can exercise in the creation of an
ISAM file, it is, in general, not simple to calculate the size of the file, the
number of index blocks, or the number of levels of index. The following
formulae are provided as approximations only.

Data Blocks:
RDB = FLOOR (BS/RS)
NDB = CEIL (NR/RDB)

where:
FLOOR = the greatest integer less than.
CEIL = the smsllest integer greater than.

2-88

RDB =
BS =

Records per Data Block.
Block Size.

(a) Blocksize = 2048 times the number of half-pages specified
in the BLKSIZE parameter.

(b) If the file is created sequentially by means of the PUT
action macro, BLOCKSIZE must be adjusted by being
multiplied by (100-PAD)/100 (note, the default value of
PAD is 15).

(c) If the file is created either sequentially or randomly by
means of the STORE or INSERT action macros, the file is
(to the first approximation) densely packed. Therefore the
value of BLOCKSIZE given in (a) above should be used
regardless of any PAD specification.

RS = Record size.

(a) For F-type records (RECFORM=F), add 4 to the value
specified in RECSIZE.

(b) For V-type records, use the average record length.

NDB = Number of Data Blocks.
NR = Number of Records.

Index Blocks:
NB; = CEIL (

where:
NB; =
NB; =
KL =

Size =

NB;. *(KL+4))
Size

Number of blocks at level i.
Number of blocks at level i-1 (note NB, NDB).

Key/flag length as specified as the sum of KEYLEN,
LOGLEN, and VALLEN parameters.

The effective size of the index block at level i.

(a) If level i is the highest level Size=2012 bytes, otherwise
Size=2048 bytes.

(b) If the file is created sequentially, either by the PUT,
STORE, or INSERT action macros, the Size given in (a)

-above must be adjusted by multiplying by .5 except when i is

the highest level index.

(¢) If the file is created completely randomly, the value given
in (a) above is approximately correct.

(d) If the file is created with random sets of sequential PUTs,
STOREs, or INSERTSs, some adjustment factor between .5
and 1.0 should be used.

2-89

Examples:
Assume:

STD blocks

1000 80-byte records

KEYLEN =8

LOGLEN =2

VALLEN =2

RECFORM =F

PAD =10

File created sequentially with the PUT action macro.

RDB = FLOOR (2040*.9/(80+4)) = 21

Each data block therzfore contains 21 records.
NDB = CEIL (1000/21) = 48

There are 48 data blocks in the file.

NB;j = CEIL [(48 * (8+4))\= 1
010

Thus, only one index block is required; the total number of half-pages in the
file is 49.

Assume:

STD blocks

100,000 100-byte records (average)

KEYLEN =5

LOGLEN =1

VALLEN =0

RECFORM =V

File created sequentially with the STORE action macro.

RDB = FLOOR (2048/100) = 20

Each data block therefore contains approximately 20 records.
NDB = CEIL (100009/20) = 5000

there are approximately 5000 data blocks in the file.

NB;=CEIL (5000*(6+4)) = 49
(204&*.5)

Thus there are approximately 49 level-1 index blocks in the file.

NB, = CEIL %49*§6+4!! =1

The highest level index block in the file is therefore level 2. It can be seen,
from the above equation, that the file would have to contain more than 4
times the specified number of data records before a third level of index
would be required. The total number of half-pages required by the file as
originally specified would be approximately 5000+49+1=5050.

2-90

Data Block Splitting
If a record does not fit where the index indicates it should be, the data block
is “split” such that approximately one-half of the data records are moved
from the original block into a new, empty block.
Example of Splitting Data Blocks
Assume the following file exists:

Block 1 - Index Block

Entry 1

o | wen V77577

Block 2 - Data Block

Record with Record with Record with
Key 1 Key 3 Key 7

Block 3 - Data Block

Record with Record with Record with
Key 10 Key 15 Key 20

The user now specifies that a record with a key of 5 is to be inserted. Since
no room exists in block 2, which is the logical block that the record should
be retained in, block 2 is split and the file now has the following structure:

Block 1 - Index Block

Key 3 Key 7 Key 203 7/ 4usé//
Block 4 Block 2 Block
PN

Block 2 - Data Block

’Fiecogd with iec;/o;d with // U/nﬁg/
ey e
L/ 4

Block 3 - Data Block

Record with Record with Record with
Key 10 Key 15 Key 20

Block 4 - Data Block

f /7
Record with Record with / Unused%
e R JIIIIS /

291

ISAM POINTER RULES

ISAM action macros (including OPEN) can be described in terms of two

components:

1. Move an internal pointer to a specified record.

2. Perform the desired action on the record now pointed to.

It is important to notz that:

a. The pointer is moved before the action is performed.

b. Certain macros may not require that the pointer be moved
or may specify that only the pointer is to be affected and no
other action be performed.

Table 2-14 summarizes ISAM macros in these regards.

TABLE 2-14. SUMMARY OF ISAM POINTER RULES FOR ACTION MACROS

ISAM
Action
Macro Pointer Action Comments
OPEN Positions the pointer to OPEN is listed here only to
an imaginary record specify the pointer result. The
just before the first action resulting from an OPEN
record in the file. is described elsewhere.
GET Moves the pointer Retrieves the record 1. If the pointer is moved beyond
forward one record. pointed to. the current end of the file, the
user is given control at his
EOFADDR address.
2. If the previous macro was a
SETL or ELIM to a record with
a specified key, the pointer is
not moved before the record is
retrieved.
GETR Moves the pointer Retrieves the record 1. If the pointer is moved beyond
backward one record. pointed to. the current beginning of the file,
the user is given control at his
EOFADDR address.
2. See GET, comment No. 2.
PUT Moves the pointer to Places the record in the
just beyond the current file at the position
end of the file, if not pointed to.
already there.
GETKY Moves the pointer to Retrieves the record For the sake of describing the

record with the speci-
fied key, or to the
position in the file
where such a record
would exist, if a
matching key is not
found.

pointed to, if it exists.

pointer placement only, one can
consider a GETKY of a non-
existing record to be equivalent
to a GETKY of a record of
length O in between two existing
records. Thus, a succeeding GET
or GETR will work correctly.

2-92

(Continued)

TABLE 2-14. SUMMARY OF ISAM POINTER RULES FOR ACTION MACROS (Continued)

ISAM

Action

Macro Pointer Action Comments

PUTX Pointer not moved. Places the record in the Note that additional checks are

file at the position con- made to ensure that a successful

currently pointed to. GET, GETR, GETFL, or GETKY
has been issued just prior to a
PUTX. Thus, the fact that the
pointer is not moved cannot
cause inadvertent errors.

INSRT Moves the pointer to the Inserts the record at the This record will not be inserted
position specified by the location pointed to. if a record already exists with
record key. the given key. However, the

pointer will still point to the
place in the file where the record
. should have gone. This record
can be described as a record of O
length — therefore a GET fol-
lowing an unsuccessful INSRT
will retrieve the duplicate record.

STORE Moves the pointer to the Stores the record at the If a record(s) with the given key
position specified by the desired location. already exists in the file, the
record key. pointer is set to the position

immediately beyond the dupli-
cate(s). Then the record is
stored.

ELIM If KEY is specified, moves Eliminates the record Note that ELIM can be described
the pointer to the (first) from the file. as (although it is not) a left-shift
record with the given key. operation of that portion of the
Otherwise the pointer is file to the right of the given
unmoved. record. Therefore, successive

ELIM’s need not (conceptually)
move the pointer.

SETL Move the pointer to 1. No action takes place. 1. Use of a SETL effectively
An imaginary record just nullifies the pointer movement
prior to the first record associated with the next suc-
in the file (if B is speci- ceeding GET or GETR.
fied).

2. For the purpose of clarifying
2. An imaginary record the pointer placement for a suc-
just after the last record cessive GET or GETR, a SETL to
in the file (if E is speci- a honexistent record can be con-
fied). sidered as a SETL to a record of
0 length in the correct position,
3. The (first) record with with the pointer action of the
the given key, or the next succeeding GET or GETR
place in the file where not nullified.
such a record would exist.
GETFL Moves the pointer to the Retrieve the next sequen- The record which would have

record retrieved. If no
record is retrieved, the
file is positioned such
that a subsequent GET
(GETR) will retrieve the
record with a key greater
than (less than) or equal
to the key specified as a
limit, or result in an
End-of-File.

tial record which satisfies

the flag criteria.

been retrieved by a correspond-
ing GET or GETR is the first
record investigated for satisfying
the flag criteria when a GETFL .
is issued.

2-93

USE OF PAM KEY IN ISAM
The rightmost eight bytes of the PAM key in ISAM files is:
LLPPUUFF,
where:
LL is the page length (that is, the highest byte position used in the page).

PP is a pointer to the first logical record in a data page; if this is an index
page, the value is O.

UU is only meaning’ul while the page is in memory. It contains the location
of the most recently used record.

FF is a pointer to the first sector of free space in the page. If there is no free
space, FF points to the end of the page. If this is an index page, the value is
0.

Note that ISAM records within a data block are chained (linked); record i
points to record i+1; the last record points to record 1.

Basic Tape Access Method (BTAM)

The Basic Tape Access Method (BTAM) provides the programmer with an
efficient and flexitle means for storing and retrieving the blocks of a
sequentially organized tape file.

Macro instructions 2f BTAM may be used in a device-dependent manner,
allowing the programmer to gain access to data in other than strictly
sequential order. In addition, control of I/O devices is provided: for
example, positioning tape volumes.

A major BTAM feature is that the program may read and/or write data
blocks and change direction without requiring intervening CLOSE
operations.

BTAM macro instructions are as follows:
All general service macro instructions (for example, OPEN).
BTAM — which includes the following operations:

RD/RDWT — read data into core storage and optionally wait for I/O
completion.

REV/REVWT — read data reverse into core storage and optionally wait for
I/O completion.

WRT/WRTWT — write data from core storage and optionally wait for I/O
completion.

WT — ensure completion of an I/O operation.
CHK — determine completion status of an I/O operation.

A set of control codes to position tape volumes and write tape marks.

2-94

BTAM RECORD FORMATS
BTAM supports two record formats:
1. Fixed length — format-F
2. Undefined length — format-U (format V is treated as format U)

In either format, BTAM assumes there is exactly one record per physical
tape block (or buffer, for which BTAM is equivalent).

Thus, in a real sense, these are not logical records. The format-F type merely
conveys to BTAM that the block size specified in the FCB parameter
BLKSIZE is to be used unless the count field is specified in the action macro
instructions. The format-U type conveys that the block size is contained in
the register specified in FCB parameter RECSIZE, unless the count field is
specified in the action macro instructions. Note that the minimum length
record that can be written to a magnetic tape is 12 bytes long.

An existing file, created by SAM, can be processed by BTAM. The user is
cautioned that files created by SAM are his responsibility to deblock and
properly process. This processing can be particularly erudite where the file,
created by SAM, was created with buffers which were two or more standard
blocks. The complexity arises since logical records may “straddle’ physical
blocks.

OPENING A BTAM FILE
The file may be opened in the following ways:
INPUT Retrieves records from an existing file.

REVERSE Same as INPUT except tape is positioned to the end of the
file at OPEN time. Multivolume files cannot be opened
reverse.

OUTPUT Creates a new file.

INOUT Retrieves records from an existing file and adds and/or
replaces records. Note that header labels are not created since
the file is assumed to exist.

OUTIN Creates a new file and/or retrieves records from the file. Note
that labels are created since a new file is being generated.

SINOUT Same as INOUT except that the tape is not positioned (that
is, OPEN in-place). This option is not allowed if the tape is at
BT.

Table 2-15 defines the action macros which may be used with each type of
OPEN.

2-95

TABLE 2-15. BTAM ACTION MACROS VERSUS OPEN TYPE

INOUT
OUTIN
Operations INPUT REVERSE OUTPUT SINOUT Comments
RDIRDWT|REV|REVWT X X X
WRT[WRTWT X X
WT X X X X
CHK X X X X
Control See See X X Output
Comments Comments Control
functions
are
prohibited.

X = allowed

Programming Notes

The only difference between INPUT and REVERSE is that of positioning
the file at OPEN tirae. Thus, an RD or RDWT operation, if a file is opened
REVERSE, does not implicitly specify that a block is to be read in a reverse
direction. Note that a file opened INPUT can be read in the forward and/or
reverse direction.

Evanescent Access Method (EAM)

EAM is a specialized access method designed primarily to process temporary
files in an optimum manner. Thus, the acronym may suggest the Efficiency
Access Method or the Evanescent (temporary) Access Method.

Efficiency is achieved in the following ways:

EAM files are not cataloged.

VTOC operations relating to space assignment and label processing are not
performed.

Opening of an EAM file requires zero disc pulls.

FILE card processing, FCB completion, and device assignment operations are
not performed.

The counterpart to the above operations are not performed at CLOSE or
ERASE time.

Fetching of data, with the action macros, utilizes less CPU time.
Processing areas (for example, FCB, logical routines) required for file

operations are considerably smaller than those for the standard access
methods (ISAM, SAM, etc.).

2-96

This efficiency is achieved by specializing and limiting the functions which
EAM will support. Illustrative restrictions demonstrate this:

An EAM file is temporary.

It cannot be shared. In particular, the file cannot be multiply opened (that
is, if a particular EAM file is open, another program (routine) cannot open
it). Note that a task may concurrently process different EAM files.

No wuser storage allocation, device assignment, or label processing is
permitted.

Users can only transfer 2048-byte blocks of data.
An EAM file always resides on a public volume(s).

An EAM file is not supported by the Checkpoint/Restart components of the
system.

EAM SPACE UTILIZATION

The system controller for an installation defines a file named SYSEAM. This
is a normal, cataloged PAM file. It is the file which EAM uses to retain the
various EAM files in the system.

At the very first session, the SYSGEN process allocates 24 PAM pages for
EAM files. When EAM requires additional space, it requests a block of 144
PAM pages each time from the system allocator. If the request is granted, a
message is printed on the console reporting the total number of PAM pages
allocated to EAM. In this case, the message will read

EAM SPACE = 168 PAGES

However, if the request of 144 pages is only partially granted; say, only 100
pages are allocated, then the message will read, in this case

EAM SPACE = 124 PAGES

EAM space increases in this manner up to a maximum of 16384 PAM pages
as long as system space is available.

On the other hand, EAM space decreases when EAM files are erased. Space is
returned to the system in blocks of 24 pages when they are free. It is noted
that EAM maintains a minimum space of 600 pages. In other words, EAM
space does not decrease when total EAM space is less then the minimum.
There is no message to the console for reduction of EAM space.

At an abnormal termination of a session, EAM saves all files required to be
saved. In the meantime, the total EAM space allocated at that time is
recorded in the system. Therefore, when the system is reloaded, whether it is
a cold or a warm start, the same amount of space is given back to EAM and
may be much higher than the designed minimum (600 pages). Due to the
fact that the reduction of EAM space occurs when an EAM file is erased, the
process of reducing EAM space will occur when the first EAM ‘ERASE’ is
issued, such as at the end of printing or punching an EAM file. Therefore, for
a warm start, EAM space will be reduced when saved spoolout from the last
session is completed. However, for a cold start, EAM space will not be
reduced until someone creates and then erases an EAM file.

297

Lastly, if EAM is unable to acquire more space (which implies that the
public volumes are saturated) the operator is informed that EAM space is
exhausted. The affected task will then be passed for 90 seconds if the
operator so chooses. When control is regained by the task, the operation is
repeated. Note that this procedure is continued indefinitely, and that control
is not returned to the user program when space is exhausted.

FILE MAINTENANCE AND DISPOSITION

The facilities provided by VMOS for the maintenance and disposition of files
reside in three functional areas. These areas encompass software-supplied
program preparation and text editing routines, utility routines, and
command language instructions.

Software-Supplied Routines

VMOS contains a variety of system resident program preparation and text
editing routines that contain functions enabling the programmer to perform
the following:

1. Alter the name of a source program or data file.

2. Copy a source program or data file from one file to another.

3. Erase all or part of program associated files (source, object, and data).
4. List the contents of a source program or data file.

The use of these routines is discussed in the VMOS Programmer’s Reference
Manual.

Utility Routines

The utility routines supported by VMOS enable the programmer to perform
the following file maintenance functions:

1. Display and print PAM-formatted files, and manipulate the data and keys
contained in such files.

2. Copy files from one medium to another: for example, card to tape, tape
to tape, card to random access, random access to random access, random
access to tape, and random access to printer or punch.

The descriptions of 1the routines that provide these facilities are contained in
the VMOS Service Routines Manual.

Command Language Instructions

Through Command Language, VMOS supplies the programmer with the
ability to perform a variety of file maintenance operations, and the
instructional facilities for the disposition of files.

The sum of these operations encompass the following:
1. Catalog Entry Alteration,

2. File Definition Mcdification/Deletion, and

3. File Reproduction and Status Monitoring.

In addition, the programmer has the ability to manipulate certain system
files.

2-98

Catalog Entry Alteration

VMOS supplies the programmer with two instructional sets for the
maintenance of catalog entries: the CATALOG command (CATAL macro)
and the ERASE command (macro). The CATALOG command and its
associated macro enable the programmer to alter a file’s catalog entry as
follows:

1. Change the file’s filename.

2. Specify a new catalog entry.

3. Associate read or write passwords with the file.

4. Specify the manner in which a file is to be processed.
5. Specify whether or not a file is sharable.

6. Specify a file’s retention period.

A programmer may only alter files to which he has access.

The ERASE command permits the programmer to make the file logically
empty, deallocate the space associated with the file, and remove the file’s
entry from the catalog. A programmer may only ERASE files created under
his userid.

File Definition Modification/Deletion

The operating system supplies a set of four commands (macros) relative to
the modification and deletion of a file definition: the CHANGE command
(CHNGE macro), the RELEASE command (REL macro), DROP command,
and HOLD command. These instructions affect only the definition of the
file as related to program processing. The catalog entry for the file is not
affected.

The CHANGE command and its related macro permits the programmer to
change the linkname or symbolic device name associated with a previously
defined file. This enables the programmer to pass FILE command definitions
between programs within a task without changing the link symbols specified
in the program’s FCB’s.

Note: The CHANGE instructions operate through use of the
file’s linkname. Therefore, the instruction applies only to the
last file definition preceding the CHANGE instruction.

The RELEASE command (REL macro), HOLD command, and DROP
command enable the programmer to suspend the processing of, or delete, file
definitions in a discretionary manner. The RELEASE command and its
related macro permits the programmer to delete a file definition and, if he
wishes, the devices associated with it. The HOLD command allows the
programmer to temporarily remove a file definition from processing status.
When used prior to a RELEASE directive, HOLD suspends the RELEASE.
The DROP command removes a file definition from hold status. If a
previously issued RELEASE directive for the file definition had been pended
by a HOLD, the file definition would be released when a DROP is issued.
Note that these three instructions operate, as did CHANGE, through the use
of the linkname. They apply therefore to the file definition in effect at their
issuance.

299

File Reporduction and Status Monitoring

The Command Language supplies the programmer with a COPY command
and macro for the reproduction of files. These two directives copy files on a
one to one basis. Thz COPY directives cannot be used to create a file with
characteristics that are different than the file being copied. Also, these
directives cannot be used to cause a file to overwrite itself. The use of the
copy facilities are not restricted to files residing on like devices, that is,
direct access files may be copied to tape as well as to other direct access
devices. Tape to tape copying is not supported with this command (see
Utility Routines discussion).

The FSTATUS comrnand (FSTAT macro) enables the programmer to obtain
a variety of information concerning the status of his file. The directive
accepts either fully or partially qualified filenames. These directives permit
the user to obtain information concerning the type of file, type of volume,
space allocation, page utilization, security, file and volume characteristics,
and password information.

System File and Task Library Reassignment

VMOS supplies the programmer with the ability to direct SYSDTA and
SYSIPT files to different sources. These two input files normally have the
same source as the SYSCMD file. However, using the SYSFILE command,
the programmer can direct SYSDTA or SYSIPT to a cataloged file, a specific
device, their primary source, or back to the SYSCMD file.

The SYSFILE command also enables the user to designate a file other than
the system’s TASK library as the TASK Library (TASKLIB) for the current
task. The specified file must be an object module library created by the
Library Maintenance Routine (see VMOS Service Routines Manual). This file
will be used by the Linkage Editor and Dynamic Linking Loader to satisfy
unresolved external references. If the programmer does not specify a
TASKLIB file, the o)erating system assumes that none exists for the task.

FILE RECONSTRUCTION SYSTEM

Introduction

The VMOS File Reconstruction System supplies the programmer, in
conjunction with the system controller, with two distinct functions for
ensuring file integrity. The first function provides file reconstruction (via
portion) following redia damage. The second relates to software errors. If a
file is updated with wrong information due to invalid data or erroneous
processing by a user program, it may be necessary to undo the damage by
resetting the file to its state at a time prior to the introduction of the error.

The function in the former case is referred to as file reconstruction; in the
latter case as file resetting. File reconstruction requires a log of after images,
that is, a copy of each record after it has been updated but just before it is
written to the file. File resetting requires a log of before images, that is, a
copy of each record just before it is modified or updated.

2-100

File Reconstruction (After Images)

If an attempt is made to read a record and the hardware detects an I/O error,
it is necessary to reconstruct that record. A copy of that record must have
been previously saved, or the file itself must be recreated from the original
transaction data. The latter technique is appropriate and sufficient for most
small files.

The File Reconstruction System (FRS) contains facilities using the former
technique; that is, it maintains a copy, on tape, of all records output to the
file; it creates an index to effect the rapid retrieval from tape of necessary
record(s); and it places the copy of the record back into the file.

In order to maintain the copy, FRS (in conjunction with the access methods
and Privileged PAM) will log to tape every PAM page written to the file. This
service will be provided automatically to every file which has requested
reconstruction copies through its Catalog Entry, that is, the system
controller has issued an FRS command for the file, with the RECON=YES
parameter.

If reconstruction services are requested after the file has been created, the
entire file is logged to tape when it is next Opened. These after images are
also generated automatically by FRS whenever needed.

A disc index is built and maintained by FRS to identify the log tape which
contains each after image. When a record is modified (creating a new after
image), references to any ecarlier after image of that page are ignored. A
cleanup routine is supplied to the system controller to delete old after
images from the log tape.

File Resetting (Before Images)

When a user program malfunctions, or invalid transactions are used to update
a file, the file itself may become unusable. In order to reset the file to its
state prior to the introduction of the error, FRS maintains a historical log of
PAM pages in the file as they looked just prior to any modifications. These
before images can be sequentially returned to the file, in effect, resetting the
file backward in time.

It is not possible to reset just a portion of a file. For example, in ISAM each
data page has specific relationship to the index pages, such that when one is
reset, the other must be appropriately reset. In general, any file which
contains embedded pointers must be reset consistently throughout the file.

Since ISAM and other access methods may delay the actual writing of index
blocks beyond the time when the data pages themselves has been written,
resetting a file requires that the reset operation continue until the index
blocks do reflect the data pages. The only point at which this is guaranteed is
at OPEN time. Thus, resetting a file to any given date/time requires that the
file be reset to the first OPEN prior to that date/time.

2-101

Since the FRS is independent of specific access method characteristics, this
requirement applies to all files, not just ISAM files. The FRS will locate the
appropriate stopping poin{ automatically, given a date/time (or OPEN
count) by the user (see the RESET command).

If resetting services were requested after the file has been created, the file is
assumed to have always previously been in that state. A reset request to an
earlier date/time is effectively a reset request to the earliest OPEN time
known to FRS.

When a before image log record becomes too old to be of any use to the file
owner, as determined by him and the system controller, FRS will
automatically disca-d it by deleting all reference to it in the disc index.
Because of the requirement that the historical log be maintained through file
OPEN time, all log records between an OPEN record (generated
automatically) determined to be ‘too old’, and the subsequent CLOSE
record are discarded. (The CLOSE record is also generated automatically by
FRS.)

Log Image Tapes

User Interface

The log file consists. of a set of system tapes, referred to by unique VSN’s,
and a cataloged disc file which contains pointers to sets of log records on
each tape.

The tapes on which all log records are placed are assigned to the FRS, not to
the user. They are not known as files to the VMOS catalog management
system, either individually or collectively. The log tapes are chained to each
other in LIFO sequence, the most recently logged to tape pointing to its
predecessor, and so on.

The FRS log tapes contain log records belonging to all users of FRS services.
They may contain security-critical information, and certainly contain
information which each user (and system controller) asserts is critical to the
integrity of his data files. The FRS tapes should be handled carefully and

- safely stored.

Most interfaces between the user, or user program, and FRS are between the
user and Data Management System components, which validate and reformat
the request for FRS processing.

No user is charged for services he does not require. The FRS command must
be issued by the system controller before a file may use any FRS services,
including the generation of log records on FRS log tapes.

Generating After Images

The generation of after images is automatic for any file for which the system
controller has issue¢ an FRS command with RECON=YES. No user or user
program intervention is required, and no modifications need be made to
existing user prograras.

2-102

Whenever the access method attempts to write a PAM page to a file requiring
after images, the write operation is ‘intercepted’ by FRS and the log taken.

If an already existing file is authorized for after image logging, the entire file
will be logged to tape at the time it is opened, before control is returned to
the user program.

After images will also be generated automatically for any CATALOG
command/macro, FILE command/macro, and ERASE command/macro
issued for the file.

Generating Before Images

Although all after images necessary for reconstruction will be generated
automatically (as far as the user program is concerned), before images
necessary for file resetting may require the cooperation of the user program.
This is a function of the access method used to process the file, as well as the
mode in which it is opened.

Move Mode (SAM,ISAM)

If a file is opened in move mode, the access method assumes full control over
the file’s I/O areas, or buffers. (To be precise, the access method has control
over the placement of logical records into the buffers. The buffers
themselves may be independently accessible to the user program.) Only SAM
and ISAM permit this mode of OPEN.

Since the access method ‘intercepts’ each output-type operation, it can easily
detect that a PAM page (or block of pages) is about to be modified. At this
time, before the modification is permitted, the access method requests a
before image from FRS. The page can then be modified.

Before images for SAM or ISAM files operating in move mode are produced
automatically without requiring user program concern.

Before images will also be generated automatically at the time the file is
opened and closed. These special before images are used during reset
operation to control the starting and stopping points of the reset.

Locate Mode (SAM, ISAM)

If a file is opened in a locate mode, the access method provides only the
location, within a buffer or I/O area, where the user program may modify
the logical record. Both SAM and ISAM permit this mode of OPEN. The
access method, and FRS, are unaware of any independent action the user
program may already have undertaken to modify the buffer.

The user program must therefore undertake to provide the indication of
intention to modify, by use of the LOG macro.

2-103

Locate Mode (User PAM)

User PAM functions only in locate mode. The user program informs the
access method (and FRS) that it intends to modify an already retrieved PAM
half-page, using a PAM action macro with the LOG operand.

Considerations for Generation of Before Images

Although the generztion of before images is automatic for move mode, and
essentially straightforward for locate mode, the user should be aware of
actions taken for hira by the access method under certain conditions.

In the case of SAM and ISAM file, before images will be taken of the entire
buffer, not just the individual PAM page being modified. However, the access
method will inhibit multiple logs of the same PAM page, even though the
user may read and then modify the page more than once while the file is
OPEN.

An additional anomaly occurs in the case of SAM files. When a SETL action
macro is issued to reposition the file, and the file is opened OUTPUT or
EXTEND, all PAM pages between the current end of the file and the new
position are logged as before images. This action is automatic.

Guaranteeing Before Images for Sharable Files

File reconstruction and resetting services can be provided automatically,
without program changes, for any file opened in move mode. If locate mode
is specified, user macros will have to be added to guarantee accurate reset
logs (that is, before images).

What is critical is that the owner of a file has little control over the manner
in which authorized users access his file. The owner cannot therefore
guarantee that, no matter who uses the file, his before image logs are correct.

The MODE paramzter of the FRS command (see VMOS Installation
Management Manual) will provide greater assurance of accurate resetting.

MODE = MOVE
LOCATE

If MOVE is specified, the file can only be opened in move mode by any
authorized user. If LOCATE is specified (or defaulted), the file can be
opened in either move or locate mode.

The user is then able to opt for an accurate backup, at the expense of
preventing locate mode access to the file (with SAM and ISAM), and by
preventing the use o user PAM completely.

Inserting User Information in Log Irages

Each before or after image log record contains a 16-byte field for
user-specified information (see below). This field will not be used by FRS at
any time, although installation-dependent routines (which might require this
information) may be written to read and use the log tapes.

2-104

User Options for Unrecoverable I/O Errors

When an unrecoverable I/O error occurs, the access method and privileged
PAM will place into privileged extension of the FCB a range of logical PAM
pages which need to be reconstructed.

If FRS services have been requested for the file, the access method will give
control to the user at his RECON exit. This is in addition to other EXLST
macro parameters. (See EXLST macro.)

At this time, the user can issue a RECON macro, or continue processing.

If the RECON exit of the EXLST macro is NO or defaulted, control is
passed to the ERRADDR exit. The RECON exit is not used if FRS services
are not requested for the file.

Restrictions Resulting from Use of FRS

Once the system controller has authorized reconstruction or resetting
services to be made available for a file, the user is not allowed to ERASE the
file or to open the file OUTPUT or OUTIN. It is reasoned that a user does
not wish to destroy too easily that which he has carefully prepared.

Therefore, in order to ERASE a file for which FRS services are used, or to
reopen it OUTPUT or OUTIN, the Catalog Entry must first be changed by
the system controller with:

/FRS filename , RECON=NO,RESET=NO
It is impossible to recover the file with FRS if it is destroyed in this manner.

Note that the first OPEN OUTPUT or OUTIN is allowed, so that the file
may be created.

FRS Tape Record (LOGTAPE) Formats
Figure 2-1Q illustrates the format of the FRS Log Tapes.

The standard volume label (SVL) is the initial record on each log tape. The
volume label number is always one.

The standard file header label number is also always one. The file-identifier
always contains the name SYSLOG.TAPE. The volume sequence number,
file sequence number, generation number, and version number are also
always one.

The volume serial number in the SVL and the file serial number in the HDR1
label are always the same and should be the same as the external surface
number of the tape for visual identification.

The expiration date is always the same as the creation date.

The block count field in the EQOV label contains the number of data blocks

between the header label group and the trailer label, excluding tape marks
(TM). The field is in zoned-decimal form.

2-105

STANDARD
VOLUME
LABEL

HDR1

LABEL

FILE ID=
SYSLOG TAPE

24

LINK RECORD
{Contains VSN
of previous

Data Records
(58 byte field +
PAM page)

g4
m
Q
<
-
24

24

LOG Tape)

FIGURE 2-10. FORMAT OF FRS LOG TAPE

Linkage Record (80 bytes)

The Initial data record on the log tape is a linkage record used only by the
FRS. It is, however, counted in the tape’s block count. The format of the
linkage record is shov/n below.

Field Bytes

Length Description

1 1-4 4 Label identifier. Contains
LNK1 to indicate that this is a

linkage record.

Predecessor volume serial
number. This field contains
the volume serial number of
the log tape which preceded
this log tape. When the current
log tape is the initial one in
the series, this field is set to
binary zeros.

3 11-80 70 Not used. This field is set to
blanks.

Before and After Image Records (2196 bytes)

Field Bytes Length Description

1 1-13 13 Date-time stamp. This field is
in the form as follows:

YYMMDDHHMMSSS, ie.,
date, followed by time of day.

Log record control byte. This
field indicates the type of log
record. A byte of X'IC’
indicates a Before Image; a
byte of X’20’, an After Image.
3 15-1& 4 Task sequence number. This
field contains the TSN of the
task which requested that the
log record be created.

2-106

Fielg Bytes

4 19-26
5 27-42
6 43-58
7 59-2106

Catalog Entry Image Records (2106 bytes)

Length

16

16

2048

Description

User ID. Userid of the
requestor is contained in this
field.

User information. This field
contains any information
which the requestor wishes to
add to the log record. If
nothing is added, this field is
set to blanks.

PAM key. This field contains
the key portion of the
half-page being logged.

PAM half-page. This field
contains the PAM half-page
being logged.

These records are the same in format as the Before and After Image records
with the following exceptions:

@c_l. Bytes

2 14

5 27-42

6 43-58

7 59-2106

Length
1

16

16

2048

Description

Control Byte. Refer to Log
Record Control Byte.

Not used. This field is always
set to blanks.

Coded File Id. Only the first
four (4) bytes of this field are
meaningful. They contain the
coded file Id assigned to the
file by the DMS. The last 12
bytes are binary zeros.

Catalog Entry. This field
contains the catalog entry of
the file, left-justified with
trailing X’00’s.

The last log record is followed by a tape mark.

The EOF Standard Tape File Label follows this tape mark. The EOF label is
followed by two tape marks.

2-107

Description of FRS Printout

There are four types of printouts to inform the user of the action taken by
the recon-reset or cleanup processor.

TYPE 1 — Parameter File of Operations

At the beginning of the recon-reset or cleanup process and at the end of each
log-tape, all operations are listed with their status.

TYPE 2 — Records cf Action

Each time an output operation is initiated, a concise record of the action
taken is listed.

TYPE 3 — Record tctals by LOG-TAPE

At the end of each LOG-TAPE, totals are listed as to the number and type of
records used both input and output.

TYPE 4 — Error Messages

When an error is ercountered, a message is listed to notify the user of the
specific error type and the operation is marked so that the status will reflect
an error condition.

TYPE | — Parameter File of Operations

HEADING LINES:

This printout may be subdivided into three general categories:

1. Heading lines
2. First line of operations
3. Succeeding lines of operations

The parameter file list begins at the top of a page with the first line
identifying the date, time, type of process being performed (e.g., reset-recon
or cleanup), and tke point within the job being performed (e.g., before
processing, end of V3N x, etc.).

The second line of header identifies the data fields in the first data line (e.g.,
Password, User ID, etc.).

FIRST LINE OF OPERATION

The first data line consists of five fields
STATM.# — This field is a sequential number assigned by the program to

each operation. This statement number is referenced by Error Messages and
Records of actions.

2-108

Type of operation being performed. There are five operations currently
supported.

RECON-Reset Processing:

RESET= Reset a file to a specific open-close time

RECON= Reconstruct a specific frame

RECONALL= Reconstruct a complete file

Clean-Up Processing:

CLUP-AFT= Cleanup after image by deleting all after images from
log-tapes. Then take an initial copy of all files requesting

reconstruction services.

CLUP-BEF= Cleanup before images, saving all records between
appropriate OPEN-CLOSE pairs in the index.

The file PASSWORD is printed in hexadecimal format.
User Identification and filename.

The CODED-FILE-ID that was assigned to the file when initially cataloged is
printed in hexadecimal format.

Status of Operation:

NOT COMPLETE = The operation is not complete

COMPLETE= The operation is complete

The following may appear with either of the above, under special conditions:

ERR= An error was encountered when processing this operation.
The specific type of error that occurred is documented by a
TYPE 4 error message.

DUPL= The parameter file is specifying, for a given log-tape, a
duplicate operation to be performed for a specific frame.

OPEN= This specifies a RESET or CLEAN-UP-BEFORE operation
has begun on this file but the OPEN or CLOSE log-record
(depending on the operation) has not been encountered to
signify its error free completion. (Example — if a read error
was encountered on an OPEN record (and bypassed) which
was needed to complete the reset operation, the OPEN flag
would be printed.)

2-109

SUCCEEDING LINES OF OPERATIONS:

The contents of the

second and succeeding lines depend on the type of

operation to be performed.

RESET

RECON

RECON-ALL

CLEAN-UP BEFORE,

CLEAN-UP AFTER

TYPE 2 — Records of Action

The second line of a reset operation is as follows:

CLOSE DATE mm/dd TIME hh/mm OPEN DATE
mm/dd TIME hh/mm

The third and succeeding lines are lists of all VSN’s
which will be processed for this operation. The
second and succeeding lines define the VSN’s to be
processed and the specific frames within the VSN.
Preceding each frame number and separated from it
by a comma, the status of the frame is printed.

N = NOT COMPLETE
L =COMPLETE

D = DUPLICATE

E = ERROR

The second line of a reconstruct all frames is as follows:

LOW-FRAME = n HIGH-FRAME =n
FRAMES NOT COMPLETE =n

where n = 1 to 7 digit count

The third and succeeding lines specify the VSN’s to be
processed for this operation.

The format is the same as the RESET format.
Each line of this operation identifies files that are to

be initially copied. It specifies its User ID and
filename, password and status.

Before each output operation is performed, a record of the operation is
listed. This record contains the number of the statement (STM,#=n) which
called for the action, followed by the frame to be written (FRAME=n). The
frame number is a 6-digit hexadecimal field specifying the half-page to be
updated. If the actioa is to update the file catalog entry, the word ‘OPEN’ or
‘CLOSE’ is substituted for the frame number. To minimize the number of
pages of printout, up to five records of action are listed on one printer line.

Note: If an output operation is not successful, an error
message will follow the Record of Action specifying the type
of error.

2-110

TYPE 3 — RECORD Totals by LOG-TAPE

At the end of a LOG-TAPE, totals are listed as to the number and type of
records, both read and write, along with the number of input and output
erTors.

The types of totals accumulated are:

. Total number of records read from the LOG-TAPE
. /CAT = Catalog commands/macros

. /FILE = File commands/macros

. JERASE = Erase commands/macros

. OPEN-A = Open after images

. OPEN-B = Open before images

. CLOSE-A = Close after images

. CLOSE-B = Close before images

. OPEN-FRS = Reserved

. CLOSE-FRS = Reserved

. LOG-B = Log records of before images

. LOG-A = Log records of after images

. ERRORS = The number of errors encountered

e e
W= O OVWOION NI WN—

All of the above totals are accumulated and printed for input. Only types 6,
8,11, 12, and 13 are accumulated for output.

Note: If all operations are complete for a given VSN before
the end of tape is reached, the end of VSN is forced and a
special heading is printed before the totals.

TYPE 4 — Error Messages
LOG-TAPE INPUT ERRORS

When an input error is encountered, the operator is informed of the DMS
error code. If he returns control to the program and the error is a read error,
the record is bypasséd and printed. All other errors cause a message to be
typed to the operator, if batch, and to the terminal, if interactive. It specifies
the type of error (DMS error) and gives the option to Retry (R) or
Terminate (T).

OUTPUT ERRORS:

There are three basic phrases printed when an error condition is
encountered.

“DMS ERROR v v WHEN PROC.STM# z”’

where:
X = DMS error code IDEMS)
y= ’blank’ normal writing mode (only that record lost)

= ’ALLOCAT’ while allocating (Reset operation not processed)

2-111

"FSTATUS’ while performing FSTATUS (Reset operation
not processed)

’OPEN’ while opening a file for clean-up after (operation not
processed)

’CLOSE’ closing a file for clean-up after (operation may be
OK)

*SRDCT’)
SFRDT> *
PSWTCT)
"$AQIR”)

Stateraent number

“FILE-NAME = Filer.ame”’

The filename is appended to the first message when processing clean up

after.

“RECORD WAS NOT OUTPUT SUCCESSFULLY”

This message is appended to the first message when a data record (frame)
cannot be output.

*When updating a catalog entry while processing a reset — (catalog entry may contain invalid last page
number or last record poin-er).

2-112

SECTION 4
DEVICE AND SPACE MANAGEMENT

INTRODUCTION

System Device

The VMOS Command Language supplies a programmer with the ability to
acquire private devices for his task, to assign memory areas for his
programming to regulate the use of devices, and to deallocate the devices and
memory he has acquired.

The system, through the operation of its control program or in conjunction
with the operator, performs certain functions and imposes conditions with
which the programmer should be familiar. These have been outlined for the
reader prior to the discussions of device and space allocation, regulation, and
disposition.

All VMOS directives referred to in this section are described in detail in
Section 3 of Part 3. Refer to the appendices for parameters and I/O features
{(under “Macros Supporting Physical Level I/O and Run Time Parameters’’)
and/or TOS Commands and Macros (under “Miscellaneous Task and File
{Data) Management Commands and Macros).

Allocation Component

The function of the system’s device allocation (DA) component is to provide
tasks with the devices required for I/O processing. The allocation of
peripheral devices is under direct control of this VMOS component rather
than under system operator control. The console typewriter is not controlled
by device allocation. The console is a system resource and is considered to be
available to any task.

Device allocation maintains a list of the devices which are currently available
to the system. The maintenance responsibility for this list, in certain
circumstances, extends beyond the DA component, as in the case of
multireel tape files. DA processing routines are nonresident system routines
which are function attached by their calling tasks. The various control tables
required by the DA component reside in system memory.

System Device Accounting

The system maintains the number of requests for input/output service in the
task’s TCB (task control block). This is a running total and reflects, at any
time, the number of 1/O requests made by the task. This value includes I/O
service for purposes of error recovery.

The system also accounts for the total number of minutes a device was
assigned to a task. Only private devices are included in this accounting. The

" system maintains this information in the task’s TDT (task device table).

2-113

System Device Control Optimization

Through operation of its device control activities, the system ensures that all
direct access seek operations are performed off-line. If the seek operation
was the initial command in the chain, the system automatically initiates the
remainder of the chain after the seek has been completed. If the seek was the
only command in the chain, no further action is taken by the system when
the seek completes.

If a user’s random access chain does not begin with a seek, the system
executes the commar.ds in his chain in-line; that is, if any seek commands are
in the chain, they dc not proceed off-line, but rather, keep the control unit
busy until the seek operation completes. Note that all Control Program and
PAM random access command chains begin with a seek; the exception would
be Class I problem programs utilizing TOS volumes.

In addition to ensuring that seek operations are performed off-line, the
system manages the movement of seeking mechanisms (arms) for public
volumes to minimize their seek times. The arms traverse the volume from
lowest to highest cylinder and then return. The volume is viewed as a series
of contiguous sectors, each sector being composed of eight cylinders. A
request falls into one of 26 sections and is processed on a FIFO basis within
its sector. This strat2gy ensures that, once in a particular sector, the worst
case arm movement will involve 7 positions. A sector is serviced for n
requests. Any remaining requests are processed on the return pass. This
prevents the sectors at either extremity of the disc from being penalized.

The processing of off-line-seeks takes precedence over the transfer of data as
long as there is a unit which requires off-line-seek service. Once all arms,
which should be, are seeking, the transfer of data will begin as soon as the
first seek-complete interrupt is recevied.

Operator Interaction

When a file residing on private volumes requires a device, the system sends a
mount message to the operator. This message specifies the VSN of the
volume to be mountad and suggests a specific device (and bin number for an
MSU) on which to mount the volume. The operator can honor the request,
decline the request, or specify a different device (and bin number for an
MSU) on which to mount the volume. If the operator specifies a device (and
bin number for an MSU) which is available and which is of the same device
type, the system accepts the recommendation. Otherwise, the operator’s
request is rejected and he is again prompted to mount the volume.

The system does not necessarily issue mounting instructions in every case.
Since VSN’s of the volumes currently on line are known by the system,
acquisition of these volumes can occur without operator assistance. Note
that when a tape device is deallocated (for example, at LOGOFF, via the
RELEASE command) the VSN is removed from the system’s VSN table.

For TOS volumes, the operator is asked to mount SYMDEV= (symbolic
device) on a device (and bin for an MSU). Again, the operator can honor the
request or decline the request. If he specifies a device (and bin number for an
MSU) which is not available, another mounting message is issued.

2-114

Note: When a mass storage volume is being directed to a
particular MSU device, the operator replies in the form
NN(b) where NN is the name of the device and b is the bin
number. The bin number can range from O to 7.

Multichannel Switch

When a VMOS system is gencrated, random access devices which are to be
shared by two processors are marked as such in the Physical Device Table.
Whenever I/O is to be performed for these devices, Device Control attempts
to reserve the device for its processor. If the multichannel switch is being
used by the other processor, Device Control notes this fact and prepares for
the reception of an interrupt from the switch when the other processor’s
operation completes. Once the switch is available to the requesting
processor, the attempt to reserve the device is made. If the device is reserved
by the other processor, error recovery is invoked, and a retry is made at a
later time. Refer to ““Device Management Control Tables’” in the Appendices
for further information.

Once the switch and device are both available, the off-line seek operation is
initiated. When the seek operation is completed, Device Control initiates the
data transfer operation. This command chain is preceded by a ‘release’
command, which, at the completion of the channel operation, leaves the
device free to be utilized by the other processor.

Note that the processor is expected to release the device when it is no longer
needed. This is always done by VMOS, as noted above. If the processor is
operating under a system which fails to do this, the other processor is unable
to access the device.

The reservation and releasing of devices takes place on each input/output
operation, This level of support, thercfore, does not permit one processor to
retain control of a particular device through a series of I/O operations. Once
an I/O operation is completed, the controlled device is available for
reservation by the processor which asks for it first. Some DMS functions,
such as Cataloging, and Allocating space, require the execution of multiple
I/O operations to complete their function. During these processes, the data
being manipulated must not be accessed by another processor, or the state of
that data will become indeterminate. The level of support for the MCS does
not guarantee the lockout of a device across a series of I/O operations.

DEVICE ACQUISITION

Public devices, those identified as being accessable concurrently to all users,
cannot be restricted by the programmer to the use of his task alone. A
programmer may require only private devices, that is, devices for files not on
public volumes. The acquisition process constitutes identifying and obtaining
the device and associating it with a file.

2-115

Device Identification

In order to acquire a peripheral device to be used by his task, a programmer
must identify the device to the system. Functionally, device identification
operates on three levels: unit, family, and type. The programmer may, then,
acquire a specific device unit by specifying the installation mnemonic for the
device, or he may acquire a device of a specific family or type. The risk
factor associated with successful device acquisition varies directly with the
degree of specificaticn. Acquisition by device mnemonic carries the greatest
risk of failure; acquisition by device type, the least.

The association of a device with a file (FILE command) can only be done at
the family and type level. For example, a programmer can associate a file
with a non-return-to-zero 9-level tape or with any 9-level tape. However, the
acquisition of devices for a task (SECURE command) may be accomplished
at all three levels of identification. It is the programmer’s responsibility to
assure that proper device-file association is maintained, for unles otherwise
directed the system assigns devices to files sequentially. In other words, the
first file identified to the system gets the first device secured unless
instructions to the contrary have been issued.

Obtaining Devices

Devices are obtained through use of the SECURE command. This command
enables the programiner, as a prerequisite of task scheduling, to reserve the
resources that a task will require for its execution. These resources remain in
possession of the task until it is terminated, or until the programmer
explicitly releases them. Using the SECURE command, a programmer may
reserve either specific device units or devices belonging to a given family. If
an additional SECURE is issued while a previous SECURE is still in effect,
the task will be terminated by the system.

Unsuccessful attempts to secure devices are resolved in one of two ways
depending on whether the task is conversational or background. An
unsuccessful attempt to obtain devices for a conversational task will cause a
message to that effect to be sent to the user’s terminal.

The programmer may then issue another SECURE command for a different
device or allow the operator to assign whatever device of the required type is
available when the device is called for during program execution.

If an unsuccessful SECURE occurs in a background task, a message to that
effect is sent to the task’s diagnostic file, the command is ignored, and the
operator will assign a device of the type required during program execution.
It is therefore advisable not to attempt to secure specific device units for
background tasks, since an unsuccessful attempt could result in an
unacceptable device being assigned to a task.

The SECURE commrand may be used for tasks processing either Class I or
Class II programs. A programmer may also request specific devices for TOS
files by using the TOS FILE command. Similar to the processing of
unsuccessful SECURE commands, the system will alert the operator to
assign another device, of proper type, if the one specified by the TOS FILE
command is unavailasle.

2-116

Remote Batch Work Stations

Remote batch work stations are logically attached to the Remote Batch
Processing (RBP) system by the RSTART command. This command
identifies the work station and defines its hardware configuration.

Device Assignment

Device assignment in VMOS is the term applied to the association of a
private device with a file. For all Class II programs and most Class I
programs, device assignment is accomplished by use of the FILE command.
This command enables the programmer to assign devices of the family or
type level for his files. If no device assignment is indicated to the system, the
system associates the file with public volume devices. If no FILE command
is present, the logic used by the system’s OPEN processing will request
device assignment.

The programmer is cautioned to secure all devices required for his task prior
to attempting to perform device assignment, because the system will suspend
the processing of a task when no more devices are available during
processing. In other words, the system will attempt to assign devices as they
are requested, but will suspend the requesting task when no more devices are
available. The suspension will remain in effect until the requested device
becomes available. This situation could result in poor turnaround time for
tasks requiring several devices.

Class I tasks may also request assignment during task execution, via TOS
ASSGN macro instruction for TOS files. This same macro is also used by
TOS logical level I/O dynamic assignment. For files processed at the physical
level, device acquisition is performed when the first EXCP macro instruction
is executed.

SPACE ACQUISITION

When a programmer initiates the processing of a program, the operating
system automatically allocates the task enough memory to begin processing.
Additional space will be allocated to the program as required within the
limits imposed by the system.

A programmer may impose certain conditions on the allocation-of space for
the processing of his program within the limits imposed by the system. Using
the REQM macro, the programmer can request, in multiples of one page,
that contiguous memory be obtained for his program. REQM cannot be used
to preallocate space; it is issued during program execution, and, unless the
program contains an instruction (RELM macro) explicitly releasing the
space, it is returned to the system at program termination. Class I programs
are allocated physical memory; Class II programs obtain virtual memory.

The programmer may also, when calling for the execution of his program,
alert the system that the program will require a certain amount of space.
This is accomplished using the CLASS parameter of the EXECUTE
command, and enables the programmer to indicate the minimum and
maximum memory requirements for a program. This instruction does not
however acquire space; it only indicates the memory requirements, within
the limits of the space available to the user, that a program may require.

2-117

The maximum public file space (direct access storage space) available to a
user is specified when the user is joined to the system. This public space limit
is not extended dynaraically by the system. If a program attempts to create a
file in public space larger than the space available to the user, the system will
notify the program with an appropriate error code, and terminate the task if
the program contains no contingency routine to deal with the situation.

Prior to program execution, the programmer can make more space available
for his files by requesting extra space from the system controller, or by
erasing existing files no longer needed (ERASE command). File space can
also be freed during program processing, either from the command stream
(ERASE command) or as a part of the program’s execution logic (ERASE
macro).

Within the limits of tae space available to him, the programmer may allocate
direct access space for a file using the FILE command or macro. The SPACE
parameter of this instruction enables the user to declare the number of
half-pages to be initially assigned to his file, the number of additional
half-pages to be assigned when the initial allocation has been exhausted, the
total number of half-pages required without regard to initial or secondary
allocation, and to specify that a volume be allocated completely to file (ABS
parameter). Absolute allocation on public volumes can only be one by the
System Controller; the programmer is restricted to private volumes for
absolute allocation. The programmer may, of course, not call for space in
excess of the remairing space available to him. If this is attempted, the
system will terminate the directive, and so notify the user. If the directive is
entered in a backgroand task, the request will be defaulted to the system
standard.

DEVICE AND SPACE REGULATION

Except for the manipulation of the system input files, device and space
regulation is a funct.on of how the device and space acquisition and file
management instructions described earlier are employed. For instance, the
assigning of devices se¢cured for a task (SECURE command) to specific files
(FILE command) may be considered device regulation. For, if the
device-to-file association were not specified, the devices would be assigned to
the various files according to the order in which the devices were secured and
the sequence in whic the files were accessed. In other words, the first file
for which a FILE command was issued would be assigned the first device
secured. Similarily, space regulation may be viewed as the operation
performed by the REQM macro because the programmer is designating both
the amount of space he wants acquired and the way in which he wants it
structured. The same analogy can be drawn for the use of the CLASS
parameter of the EXECUTE command.

System Input Files

In addition to directing SYSDTA or SYSIPT to a cataloged file or the
command stream, the SYSFILE command can be used to assign these input
files to a specific device. The device can be any system supported input
device as identified by its installation mnemonic. The card reader may also
be indicated by the CARD option of the command.

2-118

DEVICE AND SPACE DEALLOCATION

As devices are assigned to a file only for the duration of the task in which
assignment is requested, device deallocation always occurs as a result of task
termination. However, the programmer can explicitly disassociate private
devices from a task during program processing. This occurs when the
programmer deletes a file definition using the RELEASE command or REL
macro. These instructions permit the programmer to either release the device
for further use by his task even though the file definition is deleted.

The user’s Class II problem program may release devices when a file is closed
via the DISCON parameter of the CLOSE macro. Devices assigned to Class 1
tasks may be released by the program’s issuance of the TOS DDEV macro
instruction, TOS Close logic, or VMOS Close logic.

Remote batch work stations are logically detached from the RBP system by
the RSTOP command. Prior to detachment, all queued messages to the work
station are transmitted, and the last message transmitted indicates that the
work station has been detached. Subsequently, no output will be returned to
the work station until it is once more attached to the RBP system.

File space on direct access devices may be deallocated using the SPACE
parameter of the FILE command. To accomplish the reduction of space
allocated to a file to the actual space occupied by the file, the programmer
can issue a FILE command against the file and specify a negative primary
space allocation equal to the difference between the actual file size and the
original primary allocation figure, and a secondary allocation of zero. The
actual space occupied by the file can be ascertained using the FSTATUS
command. The programmer should bear in mind that the system always
rounds space requests (positive or negative) to the nearest multiple of 3
pages. Therefore, it is possible to unwittingly erase data when calling for the
deallocation of file space using the SPACE parameter of the FILE command.
For example, if the programmer specified an initial primary space allocation
of seven pages, nine pages would be allocated by the system. Conversely, if
the file actually occupied only four of the nine pages, a FILE command to
delete five pages SPACE=(--5,0) would result not in a file of four pages but
rather in a file of three pages. Hence, a loss of data.

Processing space (virtual or physical memory) is returned to the system when
task terminates. The user may, however, release space during processing by
using the RELM macro. This macro enables the user to release contiguous
areas of real or virtual memory, depending on the type of program (CLASS I
or II) in operation. Although, this macro is functionally the obverse of the
REQM macro, it may be used to release memory allocated to a program that
was not obtained by user-initiated REQM. For instance, a RELM macro may
be issued to release memory obtained by a program in excess of that which
was required for initialization. Finally, a RELM may be used to release
memory obtained by more than one REQM provided the separate memory
areas are contiguous.

2-119/2-120

SECTION 5
COMMUNICATIONS ACCESS METHOD (CAM)

GENERAL

VMOS supplies an interactive user the ability to communicate with one or
more terminals through use of the Communications Access Method (CAM).
CAM is a set of routines residing within the Control Program and is designed
to facilitate the implementation of inquiry/response programs. Programs
making use of the facilities of CAM are written using the macros described in
this section. These programs reside within the VMOS task environment and
may be executed conversationally or nonconversationally. CAM programs,
therefore, have access to all VMOS facilities including the use of system files.
Furthermore, the subroutines which constitute the CAM facility are
reentrant, and thus support concurrent execution of CAM programs.

The terminals supported by CAM are the 8752 and 7522 Video Data
Terminals, the AT&T 33, 35, and 37 Teletypes, and the IBM 2741
Communications Terminal. The 8750 Video Data System is also supported
for polled terminal applications.

PROGRAM AND TERMINAL IDENTIFICATION

The facilities for identifying terminals and programs to the CAM subsystem
are supplied by the CONNECT command and PRIME macro. The
CONNECT command enables a terminal-based user to converse with a
program utilizing CAM. CONNECT performs the same function in respect to
CAM programs as does LOGON in respect to normal interactive operation.
The CONNECT command also provides the user with the ability to detach
his program from CAM and return control to VMOS. In addition, CONNECT
enables the user to transfer from one CAM program to another.

The PRIME macro is the directive used to specify the name by which the
user identifies his program to CAM. This is the first indication to the system
that a program is to run under CAM. The name which the user specifies with
PRIME is the name that must be used by the terminal-based user when he
enters the CONNECT command. A CAM program may be identified by only
one name, that is, only one PRIME macro may be issued from a program.
This macro also enables the programmer to define the size and number of
entries to be created in the program’s buffer pool.

MESSAGE PROCESSING
The processing of messages to and from CAM is accomplished using two sets
of macros. The FETCH and SEND macros supply the means for message

transmission. The FORM, NOLNS, and LNTYP macros define the message
structure.

2-121

Messages are received by CAM from terminals via the FETCH macro. FETCH
first ascertains whetter an input message exists. If a message has been sent to
the program, FETCE places it into a buffer specified by the program. If no
message exists, control is returned to the CAM program. SEND is the macro
employed to transmit messages to terminals. SEND operates in conjunction
with the Event Control Block which, in addition to other functions, enables
the user to select transmission options. These options permit the user to have
a read issued to a line after a write is completed and/or free the buffer
containing the messa:ze.

The FORM macro is used to format a message to be transmitted by SEND
into the buffer acquired from the buffer pool. The NOLNS macro counts the
number of lines (remote terminals) connected to a CAM user program. Since
a connected line may be active or inactive, the number of lines recognized by
NOLNS reflects both the number of active lines and the total number of
lines connected to AM. The LNTYP macro supplies the user with the
device type code of any number of specific lines or a complete list of line
numbers and their associated device type codes, and a count of the number
of connected lines as supplied by NOLNS.

TRANSMISSION AND BUFFER CONTROL

Transmission and buffer control are supplied by a set of six macros. FBUF
and GBUF are used to release and obtain buffers. WAITM, CAMRD,
WREND, and SHUTM control message transmission.

The GBUF macro is used to provide buffer space from the buffer pool.
FBUF provides the raeans to return buffers to the pool. When FBUF is used,
the buffers must be released in the same order as they were obtained by
GBUF.

The WAITM macro is used to pend a task until input is supplied from one of
the terminals. WAITM should be used when the program is unable to receive
further input. CAMRD is used to put up a read to a specified terminal.
CAMRD does not accept data from the terminal, it only notifies the terminal
that CAM expects the terminal to send a message. The SHUTM macro, like
WAITM, is used to inhibit further input. However, SHUTM does permit the
CAM program to send messages to the terminal. SHUTM should be used
when the program i3 preparing to terminate. The WREND macro provides
the user with the ab:lity to stop processing until the SEND he initiated has
completed. After the SEND is complete, control is returned to the user.

MULTISTATION LINE USAGE

The SPSEQ, ACT, and DEACT macros supply the user with the ability to
use multistation lines with his program. SPSEQ is used to specify to CAM
the multistation lines to be connected to the program and to supply CAM
with the desired polling sequence for those lines. ACT and DEACT enable
the user to activate or deactivate specific lines connected to this program.
Specifically, DEACT is used to exclude a line from having data transmitted
over it or to prevent any terminal from sending or receiving data. ACT is
provided to restore inactivated lines (terminals) to the state of being able to
receive or transmit data.

2-122

GENERAL

Part 3
Control System Commands and Macros

The four sections constituting this Part provide detailed descriptions of the
commands and macros available for task, file, and device management along
with the instructions necessary to implement the use of the VMOS
communications facilities. The task, file, and device management sections
have been individually prefaced with summaries relating groups of
commands/macros to more selective functional areas such as task initiation,
file creation, and device allocation. These summaries correspond to
categories presented in the decision tables of Part 2.

This Part is intended to be used as a reference work in conjunction with the
generalized discussions of task, file, and device management contained in
Part 2. Each command/macro is treated as a separate entity, and, except for
those instruction sets which are wholly independent, the description of each
command/macro relates only to the function it performs.

3-1/3-2

SECTION 1

TASK/PROGRAM MANAGEMENT COMMANDS AND MACROS

GENERAL

The information contained in this section defines the explicit instructions
provided by VMOS for programmer control of the task and program
environment. The following summaries group the commands and macros
into functional sets: task initiation, program initiation, task regulation,
program direction, task termination, program termination, and process

interruption.

Commands relative to remote job (Remote Batch System) initiation and
termination are included in the corresponding task command summaries.
Where commands or macros apply to both the task and program
environments, they will be listed in all related summaries.

TASK INITIATION COMMANDS AND MACROS SUMMARY

Command/Macro

DO
ENTER Command/Macro

LOGON
RLOGON
RJOB

Function

Execute a procedure file.

Initiate a nonconversational task
conversationally.

Initiate primary task.
Identify user to RBP system.

Identify and define processing for jobs
submitted to the RBP system.

PROGRAM INITIATION COMMANDS AND MACROS SUMMARY

Command/Macro

DO
ENTER Command/Macro

EXECUTE Command/Macro

LOAD Command/Macro
PROCEDURE Statement

3-3

Function

Execute a procedure file.

Initiate a nonconversational task
conversationally.

Load a program into memory and call for
its execution.

Load a program into memory.

The first entry in a PROC file. Indicates
printing options.

TASK REGULATION COMMANDS AND MACROS SUMMARY

Command/Macro

RSTATUS Command

SETSW Command
SKIP Command

STATUS Command

STEP Command

TMODE Macro

Function

Determine status of one or more
remotely submitted jobs.

Set, reset, and invert task switches.
Test task switches.

Determine the progress through the
system of tasks being processed.

Define logical subdivisions of a task.

Provide task information.

PROGRAM DIRECTION COMMANDS AND MACROS SUMMARY

Command/Macro

CALL Macro

CHKPT Macro

CSTAT Command

EOF Command

EXCOM Macro

EXECM Macro

GETSW Macro

LOADM Macro

LPOV Macro

34

Function
Branch from main program to subroutine.

Permit user to specify node points at
which system environment and program
status are to be noted.

Change status of pages owned by a Class
II program.

Pass control to programs end-of-file
address. Transfer out of a conversational
task loop.

Get data from Common Data Area.

Terminate a program and initiate execu-
tion of another. '

Store settings of the 32 program task
switches.

Terminate a program and load.a new
program.

Cause a load module to be loaded during
program execution. See Linkage Editor
Description in VMOS Service Routines
Manual.

Command/Macro

PARAMETER Command

PASS Macro

PROUT Macro

RDATA Macro

RDCRD Macro

REMARK Command

RESTART Command

RETRN Macro

RMSG Command

SAVE Macro

SETSW Macro

TOCOM Macro

VPASS Macro

WRLST Macro

WROUT Macro

WRTOT Macro

WRTRD Macro

3-5

Function

Indicate options available to language
processors. See VMOS Program Manage-
ment Manual.

Relinquish remainder of time slice.

Cause a record to be written to the
SYSLST file. (TOS Support.)

Retrieve next record from SYSDTA.

Get an input record from SYSIPT.
(TOS support.)

Allows user to output remarks to
SYSOUT file.

Reload a program interrupted by a
checkpoint at the point at which the
checkpoint was taken.

Return control to a calling program from
a called program.

Send a message to another RBP user,
the central operator, or an RBP work
station.

Store the contents of general registers.
Set, reset, and invert task switche;s.
Move. data to Common Data Area.
Relinquish control of the processor.
Cause a record to be written to SYSLST.

Send a message from a program to
SYSOUT.

Write a record to SYSOPT (TOS support).

Send a message to a terminal and accept
a response from a terminal.

TASK TERMINATION COMMANDS AND MACROS SUMMARY

Command/Macro Function

ABEND Force abnormal task termination, obtain
a PDUMP of class 5 and 6 memory, and
be automatically logged-off.

CANCEL Cease processing a secondary task.
Transfer out of a conversational task
loop.

ENDP Return control from a procedure file to

the primary command input stream.

LOGOFF Command/Macro Terminate primary task.
RLOGOFF Indicate completion of an RBP session.
ROUT Retrieve deferred or discontinued remote

job output (RBP).

PROGRAM TERMINATION COMMANDS AND MACROS SUMMARY

Command/Macro Function

ENDP Command Return control from a procedure file to
the primary command input stream.

TERM Macro’ Terminate a program.

TERMD Macro Terminate a program and obtain a program
dump.

TERMIJ Macro Terminate a job within a task.

PROCESS INTERRUPTION COMMANDS AND MACROS SUMMARY

Command/Macro Function

BREAK Command Temporarily pass control from a procedure
or program to the control system.

EXIT Macro Return from end-of-program interrupt
routine to interruption point.

Command/Macro

EXITP Macro

INTR Command

PAUSE Command

RESUME Command

SETIC Macro

SPEXT Macro

STXIT Macro

3-7

Function

Permit control system to perform
operations to allow reentry to program
contingency routine.

Pass control to operators communication
routine.

Temporily halt a task until operator
performs some action.

Resume object program execution or alter
its order.

Simulate an interval timer interrupt.

Obtain a Status Block which contains
information required by user’s interrupt
routine.

Specify addresses for executive
interrupt routine.

TASK/PROGRAM MANAGEMENT COMMAND AND MACRO DESCRIPTIONS

The following material describes each of the task and program management
commands and mac<ros. The descriptions include instruction format,
programming considerations, and, where illustrative information is necessary,
examples of the use of the instruction. The commands and macros are
presented in alphabetical order without regard to functional classification.

ABEND Command

ABEND forces abnormal task termination. A PDUMP of Class 5 and Class 6
memory is taken and LOGOFF occurs automatically unless inhibited by the

presence of the BUT operand. The operation of this command is effectively
the save as CANCEL DUMP.

Name Oper:tion Operand

ABEND [BUT]
BUT
Specifies that the terminal not be disconnected. The use of

this operand causes the system to issue a PLEASE LOGON
message to the user’s terminal.

BREAK Command

BREAK allows the programmer to temporarily transfer control from either a
procedure file or nonconversational program to the operating system. If the
operating system is already in control when the BREAK command is
received, the BREAK. command is ignored.

Name Operation Operand

BREAK
Programming Notes

The BREAK command must be contained in either a nonconversational task
or a PROCEDURE file specified in a conversational task. The BREAK
command is read during program execution when SYSDTA is the same file
as SYSCMD. A RESUME command must be issued to return control to the
procedure file or noriconversational program.

3-8

CALL Macro

The CALL macro provides the programmer with a single statement entry for
branching from a main program to subroutines contained within the same
load program.

Name Operation Operand

CALL symbol

CANCEL Command

CANCEL is used to cancel a task. If the task to be canceled is waiting for
task scheduling, it is eliminated from the task scheduling queue and any
input parameters relating to it are bypassed.

If the task to be canceled is being executed, the devices and pages of storage
reserved for its use are returned to the system.

If the task to be canceled has already been completed, the CANCEL
command is rejected.

Name Operation Operand
CANCEL tsn[,DUMP]
CAN

tsn

Specifies the task sequence number of the nonconversational
task to be canceled. The number consists of a maximum of
four decimal digits.

DUMP

Specifies that the program being run at the time the
CANCEL command is received is to be dumped to the task’s
SYSLST file.

Programming Notes

A programmer cannot cancel a task identified by a LOGON associated task
number. The programmer may only cancel tasks whose task numbers have
been generated within a main task, such as ENTER files.

Users other than the System Controller may only cancel tasks generated
under their userid as defined at LOGON time.

The CANCEL command can be issued only in the conversational mode.

The CANCEL command cannot cancel a spoolout task which is executing or
in the spoolout queue.

The administrator will be prompted by the system to ensure that he wants to
cancel the indicated task.

Remote Batch Processor task cannot be canceled.

CAM tasks cannot be canceled.

3-9

Example 1

Example 2

/CAN 1234 DUMP

Task sequence number 1234 is canceled. The program running in task
number 1234 when this command is issued is dumped to the SYSLST file.

%C E222 PLEASE LOGON,
/LOGON USER-1D
%C E223 LOGON ACCEPTED AT 1024 ON 06/22/70, TSN-=1392 ASSIGNED.
/EXEC (EDIT)
ZLOO1 DYNAMIC LOACER INVOKED
VERS. 0011 OF FILE EDITOR READY
*OPEN ISAM,.FILE,OLD
OPENED ISAM,FILE AS OLD V-TYPE FILE.

*TEXT

3000, <0>
*/LOGON CLARTEST

3100. <0>
*/PARAM LIST=YES,LEBUG=YES,ERRFIL=YES

3200. <0>
*/SYSFILE SYSDTA=[LATA.FILE.SAM

3300. <0>
*/EXEC BGFOR

3400, <0>
*/SYSFILE SYSDTA=(PRIMARY)

3500, <0>
*/EXEC TSOSLNK

3600. <0>
*PROG NAME

3700, <0>
*INCLUDE *C

3800. <0>
«*END

3900, <0>
*/LOGOFF

L4ooo. <0>
*#END
*HALT

/ENTER SAM.FILE
%D E172 TSN=1397,
/CANCEL 1397 %
/CANCEL 1392
%CANNOT CANCEL OWN TASK
/LOGOFF
%C EL420 LOGOFF AT 1035 ON 06/22/70, FOR TSN 1392.
%C EL2) CPU TIME USED: 004.9756 SECONDS.

3-10

CHKPT Macro

Notes:

@User canceled task associated with the processing of
SAM.FILE. TSN 1397 identifies the ENTER file task
generated within the main task.

Q@ User attempted to cancel the task identified by the
primary task number. TSN 1392 identifies the programming
session associated with the user’s LOGON statement.

The CHKPT (Checkpoint) macro is that half of the checkpoint restart
combination that permits a programmer to specify node points at which
system environment and program status are to be noted. These checkpoints
can then be used, by way of RESTART command, to resume the execution
of aborted programs.

Name

fcb-addr

error-addr

restart-addr

id-char

MF=L

MF=E,(1)

Operation Operand

CHKPT fcb-addr,error-addr restart-addr,
id-char [MF= !E,{ ¢)) }
L laddr
" CHKPT MF=D T 77 o

The address of a PIFCB which has been used to open the
PAM file to be used for checkpointing.

An address in the user’s program to which control is to be
transferred if an error occurs during checkpoint.

An address in the user’s program to which control is to be
transferred after a restart, from the checkpoint, has been
accomplished.

A 6-byte character string identifying the checkpoint.

The inline parameter list (fcb-addr through id-char) is to be
generated but not executed.

The execution of an external parameter list, containing the
same information as would have been supplied in the inline
parameter list, the address of which is contained in register 1.

3-11

MF=E, addr

The execution of an external parameter list, containing the
same information as would have been supplied in the in-line
parameter list, the address of which is explicitly given.

MF=D

A DSECT is to be generated describing the parameter list by
taggad items.

Upon being invoked, the checkpoint routine validates the parameter list
supplied to it by tke user. The routine then quiets any outstanding IO’s and
determines where in the file the checkpoint is to be written. The checkpoint
comprises identification information, program status, related system status,
and virtual memory contents all of which, when combined, provide the
means of restarting the program.logically at the checkpoint.

When the checkpoint has been successfully completed, a message is logged
on SYSOUT for use at restart time. If errors prevent completion of the
checkpoints, the user is given control at a specified error address and is
passed a code specifying the nature of the error.

The primary direct output of the checkpoint process is a series of PAM pages
of identifying information, necessary control blocks, information required
for file reopening, and the contents of virtual memory. The checkpoint
process also directs a message to SYSOUT when a successful checkpoint has
been completed. This message associates the specified ID with a half-page
number for subsequent use in restarting.

Programming Notes

The user can reduce the amount of time consumed by the checkpoint
process by controlling the allocation of the file space for the checkpoint file.
The approximate number of PAM pages used for a single checkpoint may be
calculated using the formula

P=21+6

where n is the number of pages of virtual memory allocated to the program
at checkpoint time.

It follows, therefore, that the checkpoint should be taken at a point in the
program where the amount of Class 5 and Class 6 memory allocated to the
program is at a mininum.

Furthermore, the initial allocation of file space should be large enough to
accommodate all anticipated checkpoints, thus avoiding secondary
allocations. If this is not feasible, the next best alternative is to ensure that
the secondary allocations equals or exceeds the requirements of any one
checkpoint.

3-12

Cautions and Errors

CSTAT Macro

If the checkpoint process is aborted, an error code is passed to the user in
the low order byte of register 15. The register 15 codes are as follows.

X000 Checkpoint processed successfully.

X004 Unable to REQM Class 5 checkpoint workspace.
X‘08 Error in parameter list supplied by caller.

X0 Checkpoint file not opened.

X100 No secondary allocation or illegal write.

X4 FCB not PAM, or OPEN not INOUT or OUTIN.
X118 Unrecoverable error returned by DMS.

X1C Catalog Management error.

The preceding codes are in addition to the error exit byte and error code
that may be in the FCB for codes X‘0C’, X‘10’, and X‘18’. Control is
returned to the caller’s error address whenever an error is detected.

The CSTAT (Change Status) macro instruction changes the status of a
specified page or all of the pages owned by a Class II program. This macro
also accepts the MF parameter.

Name Operation Operand

CSTAT PGNUM= [value ,LACCESS= lREAD
ALL WRITE

JPAGE= {YES MF= (L
NO { (E list)
(E, (1))
PGNUM-=value

Specifies the page number of the page whose status is to be
changed.

PGNUM=ALL

Specifies that all pages currently held by the program are to
have their status changed.

ACCESS=READ

Specifies that the page is to be made read-only.

3-13

ACCESS=WRITE

PAGE=YES

PAGE=NO

MF=

Programming Notes

Specifies that the page can be both read from and written to.

Specifies that the page is to be made pageable (nonresident).

Specifies that the page is to be made nonpageable (resident).

Refer to the explanation, “Type of Macro Instructions”, in
“Command/Macro Notation Conventions” of the
Appendices.

CSTAT cannot be used in a Class I program.

PGNUM=ALL may not be used when ACCESS parameter is specified.

When ACCESS parameter is omitted, no change is made to the read/write
status of the page.

When PAGE parameter is omitted, no change is made to pageable status of

the page.

Cautions and Errors

The General Register 15 Return Codes follow:

X000
X004
X‘oC

X110

Request was processed successfully.
Page specified is not owned by the program.
An invalid request was encountered.

The program has attempted to make more pages resident
than were reserved for it at execution time.

3-14

@O Command

The DO command enables a programmer to execute a procedure (PROC)
file. This command corresponds to the macro call in the assembly language.
Following the PROC filename in the operand field of the DO command, the
programmer may specify the operands which are to be inserted in place of
the symbolic parameters. Positional and keyword operands may be mixed in
the operand field of the DO command.

Name Operation Operand

DO filenamel[,(parameter-alphanum,...)]
filename

The filename of the cataloged file which is to become the
temporary command input file (SYSCMD).

The filename is a set of up to 54 alphanumeric characters in
the following form:

[$user-id. 1 name[.name...] [(group)]

Userid is optional and consists of from one to eight
characters, the first of which must be alphabetic.

Name is required. Extra .names can be specified.

The length of the name [.name...] field cannot exceed 44
characters.

parameters

Positionals and keywords which are to be inserted in place of
the symbolic parameters in commands in the named
procedure file. A comma must separate the positional or
keyword operands from the file name. The positional or
keyword operands are enclosed in parentheses and are
separated by commas. If the default symbolic operands are
desired, then the left and right parentheses must be used: for
example, /DO filename, ().

Programming Notes

Positional operands must correspond to the positional symbolic parameters
in the PROCEDURE statement. Keyword operands present as symbolic
parameters in the PROCEDURE command may be omitted in the DO
command, as default values can be specified. Additionally, any operand
specified in the PROCEDURE statement may be omitted in the DO
command. Refer to the PROCEDURE statement discussion for further
information on procedure file definition.

See Section 2, Part 2, for the discussion of use and structure of procedure
files.

Example

An example of the use of the DO command is contained in the procedure
file discussion of Section 2, Part 2.

3-15

ENTER Command/Macro

The ENTER command provides the programmer with a method for initiating
a nonconversational background task from a remote terminal or from within
a nonconversational task. The nonconversational task is independent of the
conversational task that issued the ENTER command and is identified by its
own task sequence number.

Name

filename

userid

accountno

password

PRIORITY=n

Operation Operand

{ ENTER} filename,[userid] ,[accountno] ,[password]
E
[PRIORITY=n] [,MSG= {(F:} [H]]

YES

[,PRIVATE= ‘N 0 1

[,TIME=t]

Specifies the name of cataloged file which will become the
SYSCMD, SYSDTA, and SYSIPT of the nonconversational
task. Filename must be a valid filename as described in the
FILE command discussion. See Section 2 of this part.

Specifies the user’s identification and may consist of from
one o eight alphanumeric characters. The first character
must be alphabetic.

Specifies the account to be charged for the computer time
used. The account number may consist of from one to eight
alphanumeric characters.

May consist of from one to eight bytes written as either a
character constant or a hexadecimal constant.

Examples: C*%()*B2’ and X*AOBOCO’.

The password consists of the information contained between
the pair of single quotes.

One digit in the range 1 to 9 specifying the priority for the
task.

3-16

MSG=

Indicates how much of system messages is to be typed. F
indicates that full system messages are desired. C indicates
that only the code and variable portion of system messages
are to be printed. If the MSG operand is not specified, the
standard specified during system generation is used. H
indicates that hard copy is desired and that all terminal
input/output is to be written to the SYSLST file.

PRIVATE=

Specifies whether the ENTER file is on a private device
(YES) or not (NO). NO is the default case.

TIME=

Specifies the number (a decimal integer) of minutes of CPU
time allowed for this ENTER file.

Programming Notes

Entered files cannot be password protected. Therefore, RDPASS and
WRPASS passwords cannot be honored. The task entered is independent of
the conversational task in which the ENTER command was issued. The
system assigns a task sequence number of the entered task and types this
number on the user’s terminal immediately after receiving the ENTER
command.

The entered file must have as its first and last commands LOGON and
LOGOFF, respectively. However, the optional parameters, userid, account
number, priority, and message, when specified by the user in the ENTER
command, override any of these parameters found in the file itself.

3-17

EOF Command

EOF is used within a program in conjunction with the RDATA macro to
pass control to a program’s end-of-file address.

EOF can also be used independent of the program to transfer out of a
conversational task loop.

Name Operation Operand

EOF
Programming Notes

One of the operands of the RDATA macro is the end-of-file address. When
the RDATA macro is executed, it requests a record from the SYSDTA file.
(The device involve¢ can be the user’s terminal, a disc cataloged file, or a
system card reader.) On normal reads, control is returned to the user’s
program at the location following the RDATA macro. When the record thus
read is an EOF command, control is returned to the user’s program at the
end-of-file address.

To effect the transfer out of a conversational task loop, the programmer
enters the EOF command at the terminal and then activates the terminal’s
Break Key.

ERFLG Macro

The ERFLG macro (Set Error Flag) is issued by system programs which wish
to prohibit loading and executing of other programs within the step. This
macro requests the TSOS Executive to set an error flag in the task’s Monitor
Table and Task Con:rol Block (TCB) which prohibits loading and execution
of programs encountzsred within the step. Control is returned to the user.

Name Operation Operand

ERFLG blank
Programming Notes

The ERFLG macro is provided for TOS compatibility only.

3-18

EXECUTE Command/Macro

EXECUTE causes a program to be loaded into memory and to be executed
starting at its initial entry point. EXECUTE can be issued -either
conversationally or nonconversationally.

Name Operation Operand

EXECUTE program
EXEC *

(module[filename])
A

,CLASSI = (max,min)
,CLASSII = (max,min,p)

[,TIME=t] [,IDA=YES]
program

Specifies the name of the cataloged file containing the
program.

Specifies the current object module file (EAM file). The
module must be Class II.

module

Specifies the name of the object module or an entry point in
the object module. (The module name consists of one to
eight characters and the module must be Class I1.)

filename

Specifies the file name of an object module library which
contains the specified module.

Specifies that the object module is within the SYSDTA input
stream.

CLASS I=

Indicates that the parameters given are memory requirements
for a CLASS I program. (This operand is only significant if
the “program” option is used.)

(max,min)

Specifies the additional maximum and minimum resident
pages requested by the user for his program; (max,min) are
decimal integers in the range 0-254.

CLASS II=

(max,min,p)

TIME=

IDA=YES

Programming Notes

Examples

Indicates that the parameters given are memory requirements
for a Class I program. (This operand is only significant if the
“program” option is used.)

Specifies the maximum and minimum resident pages
requested for this program and, p, the total number of pages
required. (max,min,p) are decimal integers in the range
1-254. If the core requirements are omitted, the default
conditions are found in the header record for the program.
This raoeans the file must be opened so that the core
requirement can be obtained.

Indicates that an amount, t, of CPU time is specified for this
program. If omitted, the system obtains this time from the
system standard specified during system generation. When
the program has exceeded its allotted time, the system
notifies the user. The system then reinitializes the original
allotted time.

The CPU time, in minutes, as a decimal integer ranging from
one tc the system standard maximum which is allotted to
this program.

Permits the use of the Interactive Debugging Aid for on-line
monitoring of the execution of his program.

If the program to be executed is a TOS program and the loading of TOS
programs is currently being prohibited, the program will not be loaded, and
the system will skip to the next STEP command or LOGOFF command in
the task stream.

For further information on program loading, see the description of TSOS
Loaders in the VMOS Service Routines Manual.

/EXECUTE TRANS99.JAN31-68, CLASSI=(5,1)
/EXEC (FILE7.DATA.)),CLASSII=(5,2,15)
J/EXEC (Z1Y2X3.A9E8),TIME=25 ,CLASSI=(3,3)

/EXEC * TIME=15

CHECRONC)

3-20

@The program contained in the cataloged file, TRANS99.JAN31-68, is to
be loaded and executed. This CLASSI program needs a minimum of one
resident page and can use up to five resident pages. The CPU time allowed is
taken from the system standard.

@The program contained in the cataloged file, FILE7.DATA, is to be
loaded and executed. This Class II program needs a minimum of two resident
pages and can use up to five resident pages. The program needs a total of 15
pages of virtual storage. Maximum CPU time is taken from the system
standard.

@The program contained in the cataloged file, Z1Y2X3.A9B8, is to be
loaded and executed, starting at its initial entry point. This Class I program
needs 3 resident pages and is allowed to run for a total of 25 minutes of CPU
time.

@The current object module file (EAM file) is loaded and executed. This
must be a Class II module and is allowed to run for a total of 15 minutes of
CPU time.

EXCOM Macro

EXCOM is used to get data from the Common Data Area into a program.
The Common Data Area is a 4096-byte areca maintained by the Executive.
This area is common to all Class I and Class II programs.

Name Operation Operand

EXCOM " location,data[length]

location
Is a decimal number indicating the location relative to the
first byte of the Common Data Area from which the first

byte of data is to be moved. The positions in the Common
Data Area are counted from 1,,.

data

Is the symbolic address in the user’s program into which the
data from the Common Data Area is to be moved.

length
Is the decimal number of bytes to be moved. If length is

omitted, the implied length associated with the symbolic tag
of the receiving field specified in the data operand is used.

3-21

Examples

Example 1

Name

AREA
Example 2

Name

AREA

Operation Operand
EXCCM 4,AREA.5
DS CL5
Operation Operand
EXCOM 10,AREA
DS CL6

Note: Six bytes, starting with the 10th byte of the Common
Data Area, are moved to location AREA in the user’s
program. Because the length operand is not stated, the
implied length of the receiving field, AREA, is used.

3-22

EXECM Macro

EXECM (Execute User Programs) enables the programmer to have a program
terminate itself and initiate the execution of another program.

Name Operation Operand
“(program
*
<
EXECM (module[,filename])