Laroow T

I o A

- SAPDERS,
GRAPHIC 7 MONITOR

PRELIMINARY USER’S GUIDE

S'th Printing, May 1979 cory



Lo P ES———— o T~ T -

—

.

e——



SECTION
1.

w

10.
11.

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

APPENDIX F

0

GRAPHIC 7 MONITOR
PRELIMINARY USER'S GUIDE

TABLE OF CONTENTS

PAGE
INTRODUCTION
MONITOR SUPERVISOR
MEMORY MANAGEMENT
TASK MANAGEMENT
DISPLAY ELEMENT MANAGEMENT
DISPLAY SCHEDULING
INPUT/OUTPUT PROCESSING
TIMING SERVICES
DATA TRANSFER SERVICES
MONITOR SERVICES
PHOTOPEN SERVICES

MEMORY ADDRESSING
SYSTEM GENERATION
QUERY/RESPONSE AID
OPERATOR COMMUNICATIONS
DISPLAY DATA SUPPORT

DEVICE HANDLER DESIGN






ooy

GRAPHIC 7 MONITOR

1.0 INTRODUCTION

The Graphic 7 Monitor provides support for multi-task
application problems within the Graphic 7 Display Processor.
The monitor supplies most of those functions commonly associated
with 2 real-time system while emphasizing facilities associated
with display creation and management. Figure 1.0-1 presents the
overall monitor structure.

Fundamental to any monitor capability is the management of
system resources, with memory being perhaps the most important.
In the Graphic 7 monitor, memory must be shared among user tasks,
refresh code and the monitor itself. - In addition, the utilization
of the memory management hardware is left to the monitor. This
entails initialization of the mapping hardware prior to passing
control to -a user task.

Within the Graphic 7 monitor, user tasks represent demands
for various system resources. As in most real-time systems, each
task 1s assigned a priority which reflects its need for CPU
time in relation to other tasks. Once in execution, tasks may
issue requests for monitor services in the areas of I/0, display
management, timing, etc. These monitor services provide many
functions which would normally be left to the host machine or
application programmer.



.',. -\

Figure 1.0-1

GRAPHIC 7 MONLTOR FUNCTIONAL AREAS

MONITOR
SUPERVESOR
| INTTTALTZATTON, PARAMETERS
MEMORY TASK TIMING
HANAGEMENT MANAGEMENT SERVICES
/
' B DISPLAY
1/0 DATA TRANSFER ELEMENT MONITOR
CONTROL SERVICES ANAGEMENT SERVICES
| N
| DISPLAY
{ pEVICGE SCHEDULTNC
ZHANDLERS v
. | PHOTOPEN
CONTROL




0f these services, the Display Management area represents an
important advance over traditional implementations. Within Display
Management are the three functions of Display Element Maintenance,
Display Scheduling and Photopen servicing. Let us address these
individually. A Display Element consists of a set of refresh
instructions which define a particular display entity. Within the
monitor, these Display Elements are assigned a separate memory
area managed by the Monitor. Services within this domain include
Element Creation, deletion, enable and disable. In general,
Display Elements may be either passed from a user task area or
loaded directly from an external medium. Once defined to the
system, Display Elements mav be brought into the current image
via the Display Scheduler.

The Display Scheduler assumes responsibility for managing the
Graphic Controller. This consists of displaying all the currently
scheduled Elements according to attributes supplied by the user
tasks. These attributes consist of, for example, position, color,
intensity and line structure. Selective enable/disable of
individual schedule table entries is also provided. The Display
-Scheduler thus provides for considerable flexibility in the final
image with minimal refresh code manipulation.

The Photopen capability is included within the Display Manage-
" ment facilities because of the close association with the

display schedule table. In particular, users may selectively
sensitize individual display elements to be responsive to the
photopen. Furthermore, photopen input may be done in either wait

or no-wait mode. Thus, user tasks may, at their discretion, provide
for the typical photopen applications of object specification,

list selection, image editing, etc.



The last major monitor functional area comprises those functions
associated with data input-output. These activities include task/
display-element loading, data input, operator interaction and
any host communications. As in most computer operating systems, '
these functions consist principally of the various device handlers.
With respect to the Graphic 7 monitor, it should be noted that
considerable flexibility has been left to the individual device
handlers due to minimal centralized I/0 activities. 1In other
words, most of the processing associated with a user I/0 request
is done within the handler rather than having some functions
provided within an I/0 nucleus. The advantage of this approach
is maximum flexibility to the driver and relative ease of system
adaption to configuration changes. One possible disadvantage is I
greater memory usage. With regard to user task I/0, the approach
is fairly conventional with a standard control block structure |
and the usual transfer optiomns.

In summary, the Graphic 7 Monitor provides many of the functions
relevant to the real-time graphics problem. These capabilities
have the effect of relieving the host machine of burden-some
terminal management responsibilities and improving response

|
[
I.
|
l
|
|

to operator demands. ,
4

—

S
, e



GRAPHIC 7 MONITOR

MONITOR SUPERVISOR

2.0 MONITOR SUPERVISOR

2.1 SUPERVISOR 'IMPLEMENTATION



2.0 MONITOR SUPERVISOR

The Monitor Supervisor will be principally concerned with
coordinating the CPU resource. This includes selecting the
appropriate task for execution and fielding user-task-originated
requests for monitor functions. The communication medium
between the monitor and user tasks is the EMT instruction. This
instruction allows for passing an 8-bit variable code in the
instruction word to the EMT trap handler. Thi$ trap handler
represents the heart of the Monitor Supervisor.

The 8-bit variable field is utilized in two sections as
follows: The high order four bits indicate a particular monitor
functional area. Current assignments'for these four bits (i.e.
the major monitor functional areas) are listed in Figure 2.0-1.
The low order four bits of the EMT instruction word indicate
the particular sub-function (i;e. entry point) within the
indicated functional area. The Supervisor will simply pass this

entry code to the functional area where decisions regarding such

are handled on a localized basis. Specific sub-functions for
gach monitor functional area are outlined within the individual
functional area descriptions.

Many monitor functions require the specification of a list
of parameters which indicate the location of relevant data or
details regarding the service to be performed. This parameter
list, when required, will be supplied via a pointer in general
. register one. Thus, prior to executing the EMT instruction,
the user will typically load a parameter block address into
register one. Particular parameter'blbck structures are
indicated with each sub-function description.

The user may ascertain the success or failure of any
monitor request by testing the status return code which resides
in the task header (TSMRST). Success is generally indicated by
a zero in this byte. Non-zero return codes indicate an error




[— ]

lg EMT INSTRUCTION CODE: 104000 — 104377 (octal)

T CODE (HEX) MONITOR FUNCTION
o 0x | Reserved
1x Monitor Services
,1» Zx Memory Management
“ﬁ 3x Task Management
j‘ 4x Display Element Management
Sx Display Management
'J - 6x PHOTOPEN Services
: 7x I1/0
J“ 8x Timing Services
3 ox Data Transfer Services
. Ax Unused*
J. Bx Unused®
: Cx Unused*
J, Dx Unused*
' Ex Unused*
_5 Fx Unused*
B
J *Reserved for future expansion

; :
FIGURE 2.0-1 MONITOR CALL CODES

-



in the parameter specifications or the unavailability of a

necessary system resource. Particular codes relevant to each

sub-function are listed with the function description.

The Monitor-Task communications mechanism is depicted in
Figure 2.0-2.

: N
e




R |

L—-— e ‘.L-—’:‘-

L~ L

=

[V

USER
e TASK

EMT xy ~

FIGURE 2.0-2

SUPERVISOR

N4

SAVE CALLING
TASK STATUS

v

PICK UP
FUNCTION CODE

3

CALL
FUNCTION X

-
L
—

SELECT HIGHEST
PRIORITY, NON-
SUSPENDED TASK
FOR CPU ALLO~-

CATION
¥

SURRENDER
CONTROL

S~

MONITOR
FUNCTION x

’SUBFUNCIIONQ

SUBFUNCTIONl

W - oo o O

EUBFUNCTION |
L e e o e e e e o pol}

TASK «-> MONITOR COMMUNICATIONS



2.1 SUPERVISOR IMPLEMENTATION
The Supervisor module includes the following components:

a) System constants and parameters
b) System initializaticn
- ¢c) EMT servicing -
d) InterTupt save-state/restore-state

The constants and parameters section includes those
quantities which describe the current system state. Some of
the parameters may require adjustment during system generation.
The system initialization section receives control when the
monitor image is initially loaded. In addition, this routine
Teceives control when no other task is active. The EMT
service routine will intercept monitor requests issued by
user tasks and direct them to the~appropriate monitor functional
area. During I/0 operations the respective interrupt handlers
will use the save/restore subroutines to record the system state
prior to interrupt servicing, and then restore that state after
servicing is completed. Inherent in these subroutines is the
CPU allocation algorithm which operates on the basis of task
priority and other task status conditions.

10




GRAPHIC 7 MONITOR

MEMORY MANAGEMENT

3.1 Memory Management Overview

w
.
[N

“Task Memory Management

3.3 Displéy Element Memory Management
3.4 Schedule Table Space

3.5 Global Common'Allocation

3.6 -System Generation Comnsiderations

<

1l



3.1 MEMORY MANAGEMENT OVERVIEW

The Memory Management section of the Graphic 7 Monitor
is responsible for maintaining the current status of the memory
resource. For this system, the memory resource is divided
into several classifications, with a management scheme tailored
to each. An important aspect of the memory structure is the
hardware memory management. The allocation of available
memory space is heavily dependent on the hardware flexibilities
provided. First, the resident monitor code must reside in
non-relocated (direct address) space as shown in Figure 3.1-1.

"This includes addresses 100000 thru 157777 (octal). The

remaining memory space is then divided into three distinct
regions as follows: Task space will include all 4K blocks in
relocated memory space, normally above octal address 160000.
Display Element memory space will ﬁormally-encompass-octal
addresses 20000 through 77777. This is indirect address space
dedicated to Graphic Controller refresh code. The remaining
4K block, addresses 0 through 17777, will bBe used for the
schedule table. This direct address space will be used to

control the display operation per directives issued from user

tasks. The following sections address each of the memory areas
in more detail and discuss the various monitor services available
for communicating with the memory management services. Users
should note that these services are available only via other

-monitor functions, i.e., user tasks do not directly issue

MemoTy management requests.

12

-~ g"; = -

TN



4K Block

| scrEpuLE TaBLE 0
1
- © DISPLAY -
ELEMENTS :
P : : —
3
4
MONITOR 5
6
7
8
TASK ?
- SPACE -
< <
n-1
n

Figure 3.1-1 Memory Allocation

13



3.2 TASK MEMORY MANAGEMENT

Task memory space will be allocated in 4K (words) sections
with up to three blocks per task. This limitation 1s based on
the hardware memory management scheme which provides three
relocation registers. For task memory then, the allocation
algorithm simply looks for available 4K blocks without regard
to continuity or actual location. As with the other memory
areas, the monitor routines are principally concerned with
available space rather than maintaining a list of allocated
space. The implication is that the space requestor 1s responsible
for returning the space when it is no longer rtequired. In the
case of task memory space, the status 1s maintained via a simple
bit map. Thus each 4K block has a corresponding bit which is
zero if the block is available. The initial bit map value is
determined at system generation time by setting bits corresponding
to those 4K blocks which are taken up by the other data types,
the monitor or global common blocks. The Bit map approach is
highly efficient and simple to implement but, of course, the 4K
block granularity results in some inefficiencies in allocation,
Readers expecting to use this system should also consult the
Appendix which discusses the hardware memory management scheme.*
Following are the monitor subfunctions associated with task
memory management,

#= In particular, note that user tasks should begin at address
20000 (octal) in order to properly activate the relocation
feature,




3.2.1 Allocate Task Memory Space

This service will be used by the Task Management area to
fetch memory space prior to task load. The requested area

length is rounded up to include whole 4K (word) blocks. Up

to three such blocks will be provided. The blocks are not
guaranteed to be contiguous.

EMT Code: 21 (Hex)
Parameter Block:

WORD CONTENTS

0 Start Address (returned)*®
1 - Reguired Length (bytes)
2 ' ‘Relocation Register 1 & 2
3 Relocation Register 3

Status Return Codes:

0 - Request satisfied
2 - Insufficient memory

* The Start Address 1s basically meaningless - it is always set
to the constant 20000 (8). The area start is effectively the
beginning of the 4K block pointed to by relocation register one.



3.2.2 Deallocate Tasktscace

Upon task exit or abort, the corresponding 4K blocks are
returned to the system pool. Respective bits in the allocation
map are cleared, The parameter block is of the same structure
as that used in the Allocate service, however, the first two
words are ignored. This service is employed only by the Task
Management monitor area.

EMT Code: 22 (Hex)

Parameter Block:

WORD CONTENTS
0 Ignored
1 Ignored
2 Relocation Register 1 & 2
3 Relocation Register 3

(A zero wvalue for a Relocation Register entry implies
no memory was associated with that offset, i.e., the
task image did not require all threse registers).

Status Return Codes:

0 - Reguest éatisfied

16

K




3.3 DISPLAY ELEMENT MEMORY MANAGEMENT

Display Elements represent jobs which are presented to
the Graphic Controller. These data blocks are stored together
in a common memory region managed by this monitor section.
Display element lengths can vary widely, thus these routines
must be able to optimize the allocation to achieve reasonable
memory usage. On deallocation, these routines will concatenate
adjacent areas when possible; Due to addressing complications,
allocated areas are prevented from crossing 4K (word) memory
boundaries. Available space in the display element area is
maintained by a 1list of free areas and a pointer to the next
available open space. On allocation, the list of free areas
is first searched to determine if an available space exists.
Otherwise, 'the space is taken in the open area. The list
of free areas 1s maintained via forward pointers and length
.fields, as depicted in Figure 3.3-1. Note that indirect
addressing will generally be necessary throughout the display
element area. The following two sections discuss the .relevant
Memory Management entry points.

17



. Address
I Low
_OPEN SPACE
— - — _ DETOP
ELEMENT n+1
e _ _ —
R A f
T T ELEMENT n e
“FREE 2.~
~ - -ELEMENT 2 -
— i o —_ i DELST
FREE 1
ELEMENT 1 )
HIGH

Figure 3.3-1 Display Element Space Inventory

12




b dda

3.3.1 Allocate Display Element Space

This entry will be used by the Display Element Management
section to fetch space for element storage. The provided area
will be rounded up to include an even number of 4-word allo-
cation units. In addition, the routine will ensure that the
area does not cross a 4K memory block boundary. If available
"slots'" exist in the element region, such will be searched
for that which yields minimum residue.

EMT Code: 23 (Hex)

Parameter Block:

Start Address (returned)*

WORD CONTENTS
0
1 Required length (bytes)

Status Return Codes:

0 - Request satisfied
2 - Insufficient memory

* As per Figure 3.1-1, this is the actual physical address since

this area lies within the first 32K of core.



3.2.2 Deallccate Display Element Space

The Display Element Management monitor services will use
this entry to release display element space. Released space
will be combined with other "holes' to the extent possible
while prohibiting 4K boundary spans. Users should delete
display elements as soon as they are no longer required so
as to free space for other tasks' elements.

EMT Code: 24 (Hex)

Parameter Block:
WORD. e CONTENTS

Start Address
Length (bytes)

Status Return Codes:

0 - Request satisfied

20




3.4 SCHEDULE TABLE SPACE

The Schedule Table is used to control the operation of
the Graphic Controller Processor. This table is managed by
the Display Scheduler monitor services with calls to this and
the following subfunctions for fetch/releazse of table space.
The inventory of Schedule Table memory space is simplified
by the allocation of fixed length (12 word) blocks. As in the
other memory areas, the Memory Management function only
maintains the inventory of un-allocated space. This free
space 1s recorded by a linked list of free blocks and a pointer
tc the beginning of the open area. No attempt at concatenating
adjacent blocks is necessary since allocations are always -of
the same size. The system design assumes that the schedule
table space is contained within a direct addressing area, in
this case, octal addresses 1000 through 17777. Usage of the
direct .addressing area will allow more efficient schedule
table monitor services while also allowing users direct access
to their table entries, if desired. As shown in Figure 3.1-1,
the schedule table and the display elements build against each
other but, of course, the schedule table is not allowed to grow
out of the first 4K block. (Recall also that interrupt vectors
occupy the beginning of said 4K block.) The following two
monitor services provide for allocation/release of the schedule
table space.

21



3.4.1 Allocate Schedule Table Space

The Display Scheduler monitor service will use this entry
to fetch a 12-word block for construction of a new schedule
table entry. Since the length is fixed, only the start address
need be returned in the caller parameter block.

EMT Code: 25 (Hex)

Parameter Block:

WORD CONTENTS
0 Start Address (returned)

Status Return Codes:

0 - Request satisfied
2 - No space available

3.4.2 Deallocate Schedule Table Spacse

This service will be utilized when the user deletes a schedule
table entry. As with allocation, this entry is generally only
called by the Display Scheduler monitor services.

EMT Code: 26 (Hex)

Parameter Block:

WQORD CONTENTS
0 Start Address

(The length is assumed to be a fixed 12 words.)

Status Return Codes:

0 - Request satisfied

22




3.5 GLOBAL COMMON ALLOCATION

During system generation, up to four, 4K blocks may be
set aside as system global common areas. Depending on their
length, user tasks may have access to either one or two of
the four areas. Generally, the global common blocks will be
taken directly from available task space. However, if
demand on display element space 1s lax then it will be
possible to use a 4K block from this area.* In any case, user
tasks will need to indirectly map into the global common
area and thus cannot be using all three relocation registers
for task execution. The usage or format of the global common
area is entirely left to the particular applicational require-

ments. Obtaining access to a2 global common area, from within

a2 user task, is discussed in the Task Management section.

* It will not be possible to specify block 0 (zero).

23



e e e e e

5.6 MEMORY MANAGEMENT SYSTEM GENERATION CONSIDERATIONS

At system generation time the user may wish to tailor
the.membry'configuration to fit a particular application
requirement. Normally, the configuration shown in Figure 3.1-1
will be provided, with users specifying global common blocks
as necessary. However, users may wish to restrict the display
element space or schedule table space via manipulation of
-the associated bounds contained within the routine. In any
case, the bit map initial value (BMASK) will need to be
adjusted to account for which 4K blocks are available for task
execution. In particular, bits must be set to correspond
to those blocks which have been specified for global common
areas . (GBLCOM).

24




e~

N
GRAPHIC 7 MONITOR
TASK MANAGEMENT
4.0 Graphic 7 Task Definition
4.1 Task Memory Allocation
o -4.2 'Task-Mopitor Communication

4.2 Task Header Format
4.4 Task Loading
4.5 Task Management Monitor Services

4.6 Task Error Monitoring

oo

25



J

4.0 GRAPHIC 7 TASK DEFINITION

Within the Graphic 7 Operating System, user problems will

generally be solved by a group of inter-related "tasks''. To the
Monitor, a task represents the smallest entity which can be
allocated - the CPU resource. Beyond this and certain memory

allocation restrictions, the definition of '"tasks' is left entirely
up to the particular user application. Also, there is no maximum
number of tasks other than as restricted by the memory size.

The Task Management monitor section is responsible for
maintaining the current system status with respect to the task
population. In general, any activity which requires a task to
either enter or exit the system must be coordinated by this
Monitor section. In addition, should a task wish to suspend it-
self (timed or indefinite) the appropriate Task Management entry
will be employed. SR

Current system task status is maintained by means of a
linked list with pointers contained in the task headers. (Since
all task headers start on a 4K boundary, the pointers are simply
relocation register 1 values.) The task list is maintained in
priority order so that the highest priority task capable of
execution may easily be located. The task list header will be
located in monitor global variable TSKLST. Allocation of task
memory space with implications for system design is discussed
in the fcllowing.

26

T p—,

_«




S 4.1 TASK MEMORY ALLOCATION

As discussed under the Memory Management section, alloca-
tion of task space is in 4K word blocks. Furthermore, since
only three of eight 4K blocks within the 16 bit address space
are relocatable, task size is limited to 12K words.® This
restriction may make 1t necessary to divide tasks which would
otherwise be a logical, unified application area.

In addition to task execution space, it may also be
necessary to access a global common area or the Display Element
storage region.** For these actions, it will be necessary to
have available one of the three relocation registers to point to
the particular 4K block under consideration.*** Given that such
additional addressing is necessary, it is clear that user task
length will need to be held to 8K words. (Actually somewhat less
due to stack space requirements.)

The above discussed limitations will obviously make it
necessary to give careful consideration to task definition during
system design.

‘*For additional clarification on this point, please see the
Appendix which discusses the Memory Management hardware.

**Access to a global common area may be provided automatically
on task load. References into the Display Element reglon
must be arranged by the user.

*%**Relocation Register 1 may never be used for other than address-
ing into the first 4K block of task space.

27



(N

4.2 TASK-MONITOR COMMUNICATION

User tasks may issue a variety of requests to the
Graphic 7 Monitor. Such requests are communicated to the
Monitor by an EMT instructicn which contains a function code
in the -low order byte. The Monitor interprets this byte as
two hexadecimal digits, the first specifying the monitor
functional area and the second a particular subfunction.
Along with the EMT insStruction, most Monitor functions require
a list of parameters against which the function is applied.
The user supplies this parameter list by placing the start
address of such in Register 1 prior to the EMT.

Successful completion of the user request is indicated
by returning a status code to a dedicated location in the task
header. Generally, user tasks will need to check the status
code to verify pfoper command performance. Particular status
codes for each Monitor functiom are listed with the function
description. Normally, a zero status indicates successful
completion.

On issuing an EMT to the Monitor, the current task status
is saved either in the task header or on the user stack. Except
for I/0 operations which may be either wait or no-wait, the
user task 1s suspended while the request is satisfied.b On
Teturn from the subject Monitor functional area, the system
supervisor will normally perform a task scan to allocate the CPU
resource to the current highest priority task. Thus, as the
system environment changes, the various tasks can all have an
opportunity for execution.

28

i,

il :'i‘\_, iz‘if“"‘“ - ﬂ



4.3 TASK HEADER FORMAT

Most of the information concerning a task's current
status is contained in the task header. This data block, out-
lined in Figure 4.3-1, will be pre-allocated by the user at
assembly time. Some of the parameters must be initialized at
assembly time while others are strictly reserved for Monitor
usage. The following sections address each of the individual
parameters. The various fields will normally be referred to
via their offset names which are of the form T$xxxx. Usage of
the offset definitions is recommended since some re-arrangement
of the header structure may be necessary as the system definition
matures. |

4.3.1 Task ID (T$ID)

The Task ID byte will contain the unique identification
for the task. Each task to be entered into the system must
have a unique ID to be used in conjunction with operator
communication or task-task/task-monitor data exchange. Generally,
this field will be-rteferred to as two hexadecimal digits. The
Task ID should be inserted at assembly time. User task ID's
are restricted to the range 10,¢ to FF16.

29



Word

[{>S

O 0 3 o W

10

11

12
13
14

13

16
17
18

19
20

22
23

24
25
26
27
28
29
30
31

Qffset

10

14
16
20
22

24

- 26

30
32
34
36

40
42
44

46
30
52
54
56
60
62
64
66
70
72
74

76

Forward Link TSFLNK

Byte 1 Byte 0
Priority TSPR _ID 731D
Status T3ST
Monitor Req.
Status TSMRST
Task List '

Relocation Reg.

Relocation Reg.

Two Save One Save TS$RR
Mémory Relocation Reg.
Extension TSEXTR Three Save
Stack Pointer Save | T$REG
Allocation Save TSALLC
Start Address T$STRT
Global Common Requests T§COM
Display Element Control |
Block List Header: ‘ T$ELS
Display Schedule Control '
Block List Header : T$SLS
Photopen Control o
Block List Header TSPPEN
Task Suspension T TSTIM
" " Control
- Private Timer T$PTI
Control
Logical Device 1 T$DEV
Logical Device 2 |
| Ingical Device J
logical Device 4
Logical Device §
Logical Device 6
Logical Device 7
Logical Device 8

Figure 4,3-1 Task

2a

Header‘Layouf

—
b




% da

4.3.2 Task Priority (T$PR)

The Task Priority will indicate the particular task's
requirements for CPU. time with respect to other tasks in the
system. The task list will be maintained in decreasing priority

order. Priority should be a positive integer between 1 (lowest)
and 127. This field should be defined at assembly time.

4.3.3 Task Status (T$ST)

The Task Status bits will indicate the current state of
the task with respect to various system-task interfaces. The low
order eight bits of the status word will be modifiable by other
tasks. The definition of the individual bits is as follows:

Bit ' On Implies
158 Task Disabled
14 Task Suspended
13 _ I/0 Wait
12 Timed Suspension
11 Photopen Wait

18 Waiting for Data

8
7-0 User Defined

(Externally Modifiable)

The user will normally set this word to zero at assembly
time, however, the Disable or Suspend bits may be used to effect
a particular initial task state. With regard to bits 0-7, user
tasks will usually establish usage conventions during system
design.

31



4.3.4 Monitor Request Status (T$MRST)

The Monitor Requeét Status Byte is used to return a
status code tc the user task following a.fequest for a monitor
service. Zero generally indicates successful request satis-
faction with other numbers defined :for each individual sub-
function. Initialization of this parameter is not necessary
however, of course, space allocation 1s necessary at assembly
time.

4,3.5 Task,List.Forward Link (T$PLNK)

The Forward Link simply serves to point to the next

‘lower priority task. If this is the lowest priority task, then

this parameter will be zero. This parameter is maintained by
the operating system and will generally be of no concern to the
user. (The actual contents will simply be relocation register
one of the next task.) (Backward links in the task list are not
currently being used.) ’

32




4.3.6 Relocation Register Save Area (T$RR)

The three bytes in this area will be used to store the
task relocation registers whenever control 1s passed to the
operating system. The user will not generally be concerned with
these entries. (These values must be saved on interrupt since
some tasks may use the relocation registers to access global
common areas or display element space.)

4.3.7 Extended Memory Allocation (T$EXTR)

A user task may request an additional memory allocation
above that required by the loaded task image. The extension
quantity, expressed at offset T$EXTR (byte), is in units of 256
bytes. Such memory .space is located at the end of the task
image. Remember that task space is normally allocated in 4K word
blocks so the memory extension may not actually Tesult in any
additional memory being :allocated. The purpose of this service
is to allow tasks to set aside space for data bases or other
usages without having to define this space at assembly time; the
result being a smdller load file.

33



4.3.8 Stack Pointer Save (TSREG)

This word will be used to save the task stack pointer
whenever the task surrenders control. Other general registers
will be saved on the stack. Note that the task relocation
registers will, in general, need to be installed to access stack
entries. The stack pointer save word need not be initialized by
the user at assembly time since the operating system will auto-

matically point R6 to the last word in the last 4K block allocated.

(In allocating space for the user task, the system will request
32 words greater than the task length.)

4.3.9 Allocation Save (TSALLC)

The Allocation Save word will be used to record the initial
values of the task relocation registers. This serves to indicate
which 4K memory blocks were allocated so that such can be de-
allocated on task exit. This pafameter»is of no concern to user
tasks but, of course, space must be allocated for the word at
assembly time.

34




4.3.10 Start Address (T$STRT)

The Start Address word will contain the desired start
address for user task execution. This will be defined at assembly
time; typically the first word following the task header.

4.3.11 Giobal Common Requests (T$COM)

User tasks which do not require all three relocation
registers for execution addressing may access one or two global
common areas. The operating system may have defined to it, at
system generation time, up to four 4K blocks to be used for global
common areas. For user tasks of less than 8X words, the third
relocation register (RR3) may be used to reference one of the four
global common blocks. (Addresses would be of the form: 6xxxx
where 1/0xxxx is the offset into the 4K block.) This may be
indicated at assembly time by placing a binary 1-4 at T$COM.

The correct relocation register value, to correspond to -the
common block selected, will be inserted at task load time.
Similarly, -~for user tasks of less than 4K words, relocation
register two may be pointed to a global common area by placing a
binary 1-4 at T§CPM+1. (Clearly it would not make much sense to
have the same number in both T$COM bytes.) If global common
access is not desired, then these bytes should be set to zero at
assembly time. Inability to satisfy global common requests will
result in task load failure.

4.%3.12 Display Element Contral Block List Header (T$ELS)

A linked list of Display Element Control Blocks is main-
tained within each user task. This list is updated whenever the
user task references the Display Element Management monitor
services. Subject word is simply the list header (i.e., pointer
to first entry). Users should set this word to zero at assembly
time.

35



<:>

4,3;13 SchedulevControl Block List Header (T$SLS)

User Schedule Control Blocks are maintzined on a linked
list for -which T$§SLS is the list header. This list is updated
by the Display Scheduler Monitor sub-functions. Users should
set this word to zero at assembly time.

4.3.14 Photopen Control Block List Header (TSPPEN)

Requests for Photopen input will be linked together within
each user task. This word serves as the linked list header. The
Photopen monitor services maintain the control block list. Users
should set this word to zero at assembly time.

4.3.15 Task Suspension Control (TS$TIM)

Words at T$TIM and T$TIM+2 will be used to maintain the
task'suspension,timer on timed suspension. .The first word is used

for linking with the second wordAcontaining_the actual timer value.

These words are manipulated only by. the operating system. They
should be set to zero at assembly time.

4.3.16 Private Timer Control (T$PTI)

Users issuing private timer requests will have such main-
tained on linked lists within their task areas. The two words at
TSPTI are used for linking. The first word essentially links the
various tasks currently having outstanding private timers. The
second word is the list header for the individual task's timers.
These words are maintained by the Timing Services monitor section
and are not manipulated by the user task. Both words .should be
set to zero at assembly time.

36




- el

4.3.17 Logical Device Association (T$DEV)

The eight words at T§DEV will serve to connect the user
specified logical devices (1-8) with any eight physical device/
unit combinations. The logical device specification (contained
in the second word of the I/0 control block) will simply serve
as an index into this table. The low order byte should contain
the physical device number (1- ) with the high order byte the
unit number. These specifications will normally be made at
assembly time. All eight entries must be defined; unused entries
set to zero. The correspondence between physical device number
and respective handler will be set up during system generation.

37



TN

4.4 TASK LOADING

Tasks will generally be brought into the system from some
external, bulk storage medium. The task load monitor request
allows for the specification of a file name to be communicated to
the host or external medium contreoller. The load process involves
first issuing a "File Query' to the subject handler. This request
specifies the target file name and should return the file length.
The length information is then used to allocate task space. After
the memory space has been successfully allocated, the task image
is input using a standard read request.*

Two points should be emphasized regarding the above
described procedure. First, the specified handler must be able to
accept a "File Query' request, as described in the I/0 section.

Secondly, when building user task images on the host storage medium, -

the length information must be made readily available. For paper
tape oriented input, this information is already included in the
absolute load format. '

Following the task image input, the task is linked into
the current task list and made eligible for execution beginning
at the user specified start address.

*Note that contiguous 4K memory blocks are not guaranteed by
the memory allocation section. This has possible implications
for DMA transfers.

38

v



.

4.5 TASK MANAGEMENT MONITOR SERVICES

User tasks will access the various Task Management
monitor functions via EMT codes of the form 3x (Hex). The
services available are as follows:

4.5.1 Load Task

This service will be used to bring a new task into the
system. Specified input device (logical unit number) must
be able to accept a "File Query" request.

EMT Code: 31 (Hex)

Parameter Block:

Word Contents
0 Task ID (low order byte)
1 . Logical Device Number"
2-6 Source File Name

(ASCTI, terminated by a null)

Status Return Codes:

0 - Request Satisfied

2 - Insufficient Memory
32 - I/0 Failure
33 - Invalid Device Code
34 - Task ID Mis-Match
35 - Device Unavailable

36 - File Not Found
37 - Unable to Satisfy Global Common Requests

4.5.2 Load Overlay

This service is not currently supported.

39



R

4.5.3 Enable Task

This entry may be used to reset the task disabled bit
and thus make the task eligible for execution. The Enable/
Disable services should not normally be used on an inter-task
basis. -

EMT Code: 33 (Hex)

Parameter Block:

Word Contents
0] Task ID (low order byte)

Status Return Codes:

0 - Request Satisfied
32 - No Such Task Found

4.5.4 Disable Task

This service will set the Disabled bit in the task header

status bits (T$ST). Task is then ineligible for execution.

EMT Code: 34 (Hex)

Parameter Block:

Word Contents

0 Task ID (low order byte)

Status Return Codes:

0 - Request Satisfied
32 - No Such Task Found




e e A e s

{ ‘ 4.5.5 Task Suspend

This service may be used to suspend the calling task for
a timed or indefinite interval. If timed, then the Timing
Services section will be notified to set up a2 timer. Tasks can
: only suspend themselves.

EMT Code: 35 (Hex)

Parameter Block:

Word Contents
0 Time Qut Value in 1/10 Seconds,

Zero implies indefinite suspension

Status Return Codes:

— 0 - Request Satisfied

V‘s ~4,5.6 Task Continue

Continue will remove a task from a timed or indefinite
suspension state. This service may be directed from/to .any task
in the system.

EMT Code: 36 (Hex)

Parameter Block:

Word ' Contents
r 0 Task ID (low order byte)

Status Return Codes:

0 - Request Satisfied
32 - No Such Task Found

41



4.5.7 Task Exit

A task leaves the system and thereby relinquishes system
resources by issuing the Exit EMT. All I/0 must have been completed 1
prior to issuing this request. It is also recommended, though
not necessary, to delete all schedule table entries, display
elements and private timers.

EMT Code: 37 (Hex)
Parameter Block: Nome (Only the calling task may Exit)

Status Return Codes: N/A

4.5.8 Fetch Tésk Status

The current task status is maintained in word T$ST in the
task header. This service will allow any task to check the status
- of any other task. ‘

EMT Code: 38 (Hex)

Parameter Block:

Word : Contents
0 Task ID (low order byte)
1 , Returned Task Status

Status Return Codes:

0 - Request Satisfied
32 - No Such Task

42




4.5.9 Update Task Status

This service allows for the modification of bit 0-7
in the subject task's status word. The supplied bits are logically
ored with the current status word contents. Users may wish to
Testrict, by definition, some of these bits to be read or write
only.

EMT Code: 39 (Hex)

Parameter Block:

Word Contents
0 Task ID (low order byte)
1 New Status Bits (Byte Q)

Status Return Codes:

0 - Request Satisfied
32 - No Such Task



4,5.10 Abort Task

The Abort entry may be used to cause the involuntary.
termination of a user task. This entry is included primarily
for operator communications usage.

EMT Code: 3A (Hex)
Parameter Block:

Word Contents
0 Task ID (Low Order Byte)

Status Return Codes:

0 - Request satisfied
32 - No such task found

4,5.,11 Search for Task

The Search function will allow the caller to locate the
beginning of any user task in the system. The returned value is
essentially the 4K block number which becomes the relocation
register value if access to the subject task is required.

EMT Code: 3B (Hex)
Parameter Block:

Word Contents

Task ID (low order byte)
1 4X block number (returned)

Status Return Codes:

0 - Request satisfied
32 - No such task found




4.5.12 Continue Task & Suspend

Inter-task execution control may be aided by the
ability to, in 2 single monitor request, continue a2 given
task and suspend oneself. The suspension provided by this
service is non-timed.

EMT Code: 3C (Hex)
Parameter Block:

Word ' Contents
0 Task ID of task to be continued

(low order byte)

Status Return Codes:

0 - Request satisfied
32 - No such task found

45



4.6 TASX ERROR MONITORING

The monitor generally performs no error processing for
user tasks. Thus, mistakes in the preparation of the various
control blocks or other programming oversights will generally
result in £atal system errcrs. Little advice can be offered
in such circumstances above the usual debug techniques of examin-
ing the various task variables, status indicators and stack.

This examination may be performed through the ROM resident
debug capability. The appropriate 4k block number for the task
in question will need to be inserted in the relocation register
before attempting to display task-memory contents.

One exception to the above 1s the case of the bus
time-out error. The monitor supervisor will intercept this
interrupt and, if currently executing within a user task, will
mark the task disabled and notify operator communications
(assuming OPCOM is installed) .

— A geews_ . mewmm s . s




5.

5&

S.

5.

2

3

GRAPHIC 7 MONITOR
DISPLAY ELEMENT MANAGEMENT

Display Element Management Overview

Standard Element Control Block

‘Display Element Storage Format

Display Element :Monitor Services

47



5.0 DISPLAY ELEMENT MANAGEMENT OVERVIEW

Construction of the graphic image will entail the
definition of various picture elements and the scheduling of
these elements to suit the particular application requirement. 1
Display Elemént Management includes those services which are
used to define picture elements to the Graphic 7 monitor.
Scheduling of‘picturé elements is covered in a separate monitor
functional area. Within the Graphic 7 Operating System structure,
display elements are stored in a dedicated memory area, separate
from task image areas. The picture elements (refresh code
blocks) are processed directly from this dedicated memory area
by the Graphic Controller. Three methods exist for presenting
display elements to the monitor. First, the user task may
"pass' an element directly from his task image. This procedure
would generally apply to small, fairly static picture elements.
Secondly, the user may request to have a display element loaded

from an external medium. For this case, the user must, obviously,
"specify a file name or other external data source identifier. I
The external medium approach will normally Be used for large,
static display elements. Finally, user tasks may allocate L
display element space and dynamically build the refresh block [
as, for example, real time data is received. This approach |
yields maximum flexibility but can be rather expensive to l
implement.

Once the display element has been defined, the user task i
may cause it to be displayed via the Display Scheduler. Temporary .
removal of the element from the current image can be done via l

the Element Disable Service. Elements which are no longer needed
should be discarded via the Element Delete Service. .




WORD CONTENTS

0 Reserved (Link Field)
Required 1 Element Start Address*®
2 Flags/Status
3 Length (Bytes)
4 Start Address or Input Device**
Optional 5-9 File Name***
STATUS BITS FLAG BITS
0 g 1 Position Absolute®***
1 9 1 Size Absolute****
2 10
3 11
4 ' 12
S 13
6 1 Control block in wuse 14
7 0 Enabled, 1 Disabled 15

* Address in monitor storage area (returned).
*% Start Address in user task for '"PASS" service,
Input Device for "LOAD" service.
*%*%* File Name relevant only for "LOAD"; must be
terminated by Null character.
¥%%%* These bits are not currently used by the monitor.

Figure 5.1-1 Display Element Control Block Format

49



()

5.1 STANDARD ELEMENT CONTROL BLOCK

Display Elements always have an associated control block
within the task which requested their definition. This control -
block, ocutlined in Figure 5.1-1, contains all the parameters [
necessary to the various Monitor functions. This block is

important because the Monitor doces not maintain any internal
linventory of Display Elements or associated memory space.
_Thus, whenever a user task issues a monitor request relating

to a display element, the associated parameter (control) block
address must be specified. Within the user task image, the
Display Element Control Blocks are maintained on a linked list.
This is. a simple, singly linked list with  the list header at
TSELS within the task header. Maintenance of this list is
done entirely by the Monitor routines and will generally be

of no concern to the application task developer. In summary,
the Display Element Control Block is the parameter block for

mechanism for monitoring the current display element configuration.

The individual fields within the element control block
are defined as follows: word zeroc is used for control block list
linking and is generally of no concern to the user. Word one
contains the element start address within the monitor storage
area. This address is the actual physical address since the .
display elements are stored within the first 32K of memory. 'i
Note also that this address actually points to word zero as shown “I
in Figure 5.2-1, thus the user code will normally start at 4
bytes past the given start add:ess. The third control block word [
contains status and flag bits as outlined in Figure 5.1-1.
Next comes the element length in bytes. This length does not ‘1'
include the six control bytes which are added to each element.
Words 4 through 9 are defined only for certain element services
as described in Sectiom 5.3.

user requests to monitor service and also the inventory ‘ 'l,

50




WORD

FLAGS TASK ID

—— o p——— S —— — G ————— —— 2 — QG —{———— — —

IZPR or BETU%N
A

o

— -

i

_ELEMENT REFRESH CODE

© W W 9o Ve W N

,,,,, N )
;f 11
12 .
, = e =
n-1  |______ y —
s RETURN

Figure 5.2-1 Display Element Storage Format

51



5.2 DISPLAY ELEMENT STORAGE FORMAT

Display Elements are of variable length and packed within
the reserved system storage area. (Generally this will be
some or all of 4K pages 1, 2 and 3.) The length of the
allocated space 1is six bytes greater than that specified by
word three of the Element Control block. The three extra
words are accounted for by two control words at the beginning
of the element and a "RETURN" instruction as the last word.*
Qf the first two words, the initial contains the Flags byte
(direct from word 2 of the réspective element control block)
and the parent task ID. The second word will contain either
an IZPR instruction (if the element is enabled) or a RETURN
instruction (for the case of a disabled element). The Element
Storage format is portrayed in Figure 5.2-1. The maximum
element ‘length, including control words, is 4K words.

¥ Recall that the elements are executed as subroutines from
related Schedule Table entries.

52

—_ m—

.

o pmee ee—



5.3 DISPLAY ELEMENT MONITOR SERVICES

The following sections detail the basic monitor services
related to Display Element manipulation within the Monitor.
Note that the first four words of all parameter blocks
are common, as presented in Figure 5.1-1.

5.3.1 Load Display Element

The Load service will be used to fetch a display element
from an external medium. The input device specification should
be a logical device number, relative to the calling task.

The source file identifier should be an ASCII string terminated

by a-null.

EMT Code: 41 (Hex)

Parameter Block:

JNORD .CONTENTS

0-3 (standard)

4 Logical Input Device
5-9 Source File Identifier

Status Return Codes:
0 - Request satisfied
2 - Insufficient Memory
32 - I/0 failure
35 - Device unavailable
36 - File not found

53 7



5.3.2 Pass Display Element

The Pass service may be used to transfer a display element

image from user task space to monitor space. Display elements,

i.e., refresh code blocks, are always assumed to begin on word

boundaries.
EMT Code: 42 (Hex)
Parameter Block:
WORD
0-3

4

Status Return Codes:

CONTENTS

(standard)

Element start address
within user task

0 - Request satisfied

2 - Insufficient memory

54




5.3.3 ‘Update Display Element

Update may be used to provide a revised copy of a display
element which was previously defined via the PASS function. The
length of the element may not be changed. The user task is
responsible for avoiding conflicts with the Graphic Controller in
the case of updating an active (enabled) display element. This
service is oriented toward fixed format refresh elements such as
textual tables.

EMT Code: 43 (Hex)

Parameter Block:

Standard Element Control Block
(words 0-4)

Status Return Codes:

0 - Request satisfied

55



5.3.4 Fetch Element Space

There may be instances where the user task must construct
the display element according to data received during execution.
For this circumstance, the system allows the user task to
allocate display element space via the Fetch service. Obviocusly,
the element should beé fully defined (including the ending
RETURN instruction) prior to being scheduled. Access to this
element area will Be via one of the relocation registers and,
thus, the user task will generally need to Be less than 8K
in length. Comnstruction of the required relocation register
bias is left up to the user task. - This may Be done by isolating
the three high order bits in the element address (returned
in word 2 of the parameter block); moving these three Bits
to relocation register three and then replacing them by 011.

The effect is to force mapping through relocation registér
three, into the target 4K Block. (Caution: The address con-
tained in word two of the parameter Block should Be considered
"read only'" to the user task.)*®.

EMT Code: 44 (Hex)

.

_.

Parameter Block:

- Standard Element Control Block =~

Status Return Codes:

0 - Request satisfied
2 - Insufficient memory

* Remember that user refresh code should start at
bytes past the given start address.

56

four

 —

ﬁ_ ) g ‘ o



,,,,,

5.3.5 Delete Display Element

The Delete function should be employed after the particular
element is no longer required by the user task. This service
will free the associated display element memory space and
remove the control block from the user task control block list.

IMPORTANT: All schedule table entries referencing said
element should be deleted prior to element removal.
The system will not check for this error.

EMT Code: 45 (Hex)

Parameter Block:

= Standard Element Control Block -

'.Status Retufn Codes:

0 - Request satisfied
33-- No such element*

¥ This error would normally occur when the user fails to set Rl
to point to subject parameter block prior to the Delete EMT.

57



-

5.3.6 Enable Display Element

The second word within the element space will determine
the Enabled/Disabled element state. The Enable service simply
inserts. an IZPR instruction into this word.

EMT Code: 46 (Hex)

Parameter Block:

-~ Standard Element Control Block -

Status Return Codes:

0 - Request satisfied

S.3.7 Disable Display Element
> The Disable service will insert a return in word two of
the element space. (Users should note the differences in
efficiency between disable of the element and disable of the
“associated schedule table entry or entries.)
EMT Code: 47 (Hex)
Parameter Block:

- Standard Element Control Block -

Status Return Codes:

0 - Request satisfied

58

il— —

|




5.3.8 Purge Display Elements

On task exit, users should ensure that all display elements
and schedule table entries have been removed from the system.
This service may be used to eliminate all display elements.
(Clearly the complementary Scheduler service should be
exercised first.)

EMT Code: 48 (Hex)
Parameter Block: N/ZA

f (The elements are found by scanning the
user's element control block list.)

-?%j Status Return Codes:
0 - Request satisfied

(The absence of any element is not
considered an error.)

59



5.3.9 Revise Display Element

The Revise service may be used to replace an existing display

element with a new version. This differs from Update in that the new

element is installed in an area distinct from the old element, any o
referent schedule entries are adjusted and then the old element is i
deleted. Revise is oriented toward non-fixed-format elements which.
typically, reflect real time varying data.

EMT Code: 4B (Hex)

Parameter Block:

{

WORD CONTENTS
0 Pointer to Control Block for

current element version

1 Start address of new element P
version ‘
k]
2 Length of new element version /-
(bytes)

Status Return Codes:

0 - Request Satisfied
2 - Insufficient Memory

b :

60

‘ ,




GRAPHIC 7 MONITOR
DISPLAY SCHEDULER

Display Scheduling Overview
Standard Scheduler CoﬁfroliB}ock
Schedﬁle Tabie Structure

Display Scheduler Monitor Requests
Display Error Handling

Monochrome Scheduler

61



6.0 DISPLAY SCHEDULING OQVERVIEW

The Display Scheduler monitor functions will be used
to cause a Display Element to be presented in the CRT image.
Various parameters, provided during scheduling, will control
the actual element characteristics. These characteristics
are, for example, screen position, intensity and color. The
job of the Display Scheduler is tc process all such display
Tequests and cause the Graphic Controller to sequence through
each of the Display Elements selected. This is affected by
constructing, for each display request, a start-up block cf
refresh code containing the parameter initialization instruc-
tions and a call to the selected display element code. These
start-up code blocks must then be linked together according
to color and user-supplied priority.

- Alomg with the basic scheduling capability, the monitor

also allows enable/disable, delete and modify of .selected
scheduler control blocks. These capabilities will allow the

user to tailor the display to fit a changing rezl-time environ-
ment. In summary them, display scheduling represents the second

step in image creation, following display element definition.
These twe monitor functional areas will hopefully provide
sufficient flexibility for most display creation/manipulation
tasks.

62

- ;q“ﬂ—




6.1 STANDARD SCHEDULER CONTROL'BLDCK

As in all task-monitor communications, a parameter
block must accompany each monitor request. The address (user
task relative) of such block is always supplied in register 1.
Figure 6.1-1 outlines the parameter list which is standard for
all Display Scheduler requests. Only the last word is optional.
This parameter block supplies several important quantities.
First, the linkage to the target display element is provided
in word 3 as a pointer to the respective Element Control Block.
This mechanism allows for assembly-time definition of the
requested element. Second, the parameter block contains the
various attributes relevant to this incidence of the selected
element. Table 6.1-1 shows possible values for each of the
attributes. Associated with each schedule request block, the
monitor will build a companion Schedule Table entry as described
in Section 6.2. It is important to remember that this
association (between the request parameter block and the Schedule
Table entry) must be mazintained until the user task specifically
requests the schedule entry be deleted. This is necessary since,
as in Display Element Management, the monitor does not maintain
any internal inventory of the current schedule table status.

The user may directly reference his Schedule Table entry
via the address contained in word one of his request block.
This should be an un-mapped address. The first word of the
request block is a link field used to maintain all Scheduler
Tequest blocks belonging to this task on a2 linked list. The
list header is at T$SLS within the user task header. This list
is maintained by the monitor and will generally be of no
interest to the user. |

63



~ WORD 15 S0
0o 0 Reserved (Link Field)

2 1 Schedule Entry Address |

4 2 Flags  iStatus

6 3 Element Control Bigc—l-;gcfd;és—s‘
woe TR T Temeny
125 Color  |Intemsity

14 6 Tine Structure Téhé:? acter Size|
16 7 X Starc T 7T o
20 38 Y start T T T
229 [T T TTTTTT T T Modify Control
STATUS 3ITS . (ELAG BITS

~N Oy B NP Oo

8 Photopen Enable (CRT 1)
9 Photopen Enable (CRT 2)
100 Character Rotate
GC Status Pending 11

Sch.Entry Caused Halt 12

Sch.Ent.Caused Qut-of- 13 Blink
Bounds

Parameter Block in use 14

1= Disabled

Figure 6.1;1 Standard Display Scheduler Parameter Block




ATTRIBUTE
CRT's

Priority

Color

Intensity

Line Structure

Character Size
X Start

Y Start

Table 6.1-1

OFFSET (8 SIZE

11 Byte
10 Byte
13 Byte
12 Byte
15 Byte
14 Byte
16 Word
20 Word

POSSIBLE VALUES

0 (No CRT's)
1 CRT 1

2 CRT 2

3 CRT 1§ 2

1= 127

0 - Red

1 - Orange
2 - Yellow
3 - Green

0= 7

0 - Solid
1l - Dotted

2 - Dashed

3 - Center Line

0= 3

-1023- +1023 (Decimal)
<1023 +1023 (Decimal)

Schedule Request Attribute Values

65



- color and priority. Then, when constructing the Graphic Con-

6.2 SCHEDULE TABLE STRUCTURE lﬁ

The Schedule Table is a linked list of Graphic Con-
troller initiation blocks. Space for the construction of these ‘{

blocks is allocated by the Memory Management services. Within
each block are links for both scheduler management functions -
and Graphic Controller execution. In particular, Figure 6.2-1
shows the overall Schedule Table layout. You will note that
each color has its own linked list of blocks. This structure
provides for a minimum of color changes and also allows for the

priority implementation discussed below. .,
Figure 6.2-2 shows the layout of the individual l
schedule table blocks.
The various refresh instructions, LDDZ, LDDP, etc. are l
constructed based on the attributes provided in the parameter "~

‘block in the user task. The element start address is retrieved

from the element control block contained within the user task.
The "forward link" and ''backward link" fields serve to doubly
link (in circular fashion) all existing schedule table blocks.
These linked lists, one for each color, are maintained in

priority order. _ ' LN

The priority specification may be used to indicate the

relative importance of this display request, and as such, help |
in avoiding image clutter and Graphic Controller overload. The ~’
implementation of the priority scheme is quite simple. First, :
when a new display request is received, the generated table entry ;{'
is linked into. the existing structure according tc the indicated

troller execution links (words 10 & 11), the routine will first iﬂ

66




INITIATE
BLOCK

| CALLS JUMP (S)

I -

L7

RED |
SCHED. SCHED. » |
START || ENTRY |—|ENTRY |——-% !

¢y BLOCK o + 1 Lo e

> oo o ae o o w e

ORANGE ; |
START | —_—
BLOCK

- =0 b

-

4

YELLOW
START
BLOCK

GREEN
START
BLOCK

S - N PR L

"Figure 6.2-1 Schedule Table Structure

67



WORD _ QFFSET(8) _
0 0 |PRIORITY _____ ITASK ID_
1 2 |FORWARD LINK
2 4 BACKWARD LINK ..
3 6 LD o o
4 0 \LDDP ..
5 12 T ___
6 14 LDXA
7 e MVYA
8 o eQ gCALL .
9 22 é%%.-§2§¥§§?.€923?§§ ___________
10 24 gm0
11 26 |JUMP (LINK) ADDRESS
LDDZ -  LOAD DISPLAY Z REGISTER
LDDP -  LOAD DISPLAY PARAMETER REGISTER
LDTI -  LOAD TEXT INCREMENT REGISTER
LDXA - LOAD X ABSOLUTE
MYYA -  MOVE Y ABSOLUTE

Figur

e 6.2-2 Schedule Entry Structure

63

-

m‘ o S— _ A‘.{ V.




6.2 SCHEDULE TABLE STRUCTURE (CONTINUED)

scan the existing table to find the highest enabled priority
(ignoring priority 127). Any blocks with priorities less than
highest-3 are then excluded from the current image. Finally,
those blocks with sufficiently high priority are linked to-
gether using the Graphic Controller jump address contained in
word 11. In summary, the Schedule Table represents the
Graphic Controller command mechanism and also the Display
Scheduler monitoring scheme. Normally this structure will be
completely transparent to the user tasks.

69



6.3 DISPLAY SCHEDULER MONITOR REQUESTS

User tasks will communicate with the Display Scheduler
via the EMT monitor calls discussed below. The parameter block
is the same for all calls, as discussed in Section 6.1.

6.3.1 Schedule Element

This service will be used to bring a display element
into the current image, subject to the given priority. (Priority
127 may be used if the element is to be displayed regardless of
the current highest priority schedule entry.) The associated
schedule table entry address is returned in Word 1 of the
parameter block.

EMT Code: S1 (Hex)

Parameter Block:

-~ Standard Scheduler Control)Block
Status Return Codes:*

0 - Request Satisfied
2 - Schedule Table Space Exhausted

*Parameter limit checks are not performed. All parameters are
masked to ensure a valid value for the respective Graphic
Controller instructions.

70




6.3.2 Delete Schedule Table Entry

Delete will remove a schedule table block and deallocate
the associated memory space. Note that all schedule table
entries referencing a particular display element should be
deleted prior to deleting the element.

EMT Code: 52 (Hex)

Parameter Block:
- Standard Scheduler Control Block

Status Return Codes:
0 - Request Satisfied
32 - Control Block Not Found

6.3.3 Enable Schedule‘Table Entry

Enable will allow the current display of a table entry
subject to its relative priority. The enable/disable state 1is
indicated by the sign of the priority state. The respective
flag in the user parameter block is also updated. '

EMT Code: 53 (Hex)

Parameter Block:
- Standard Scheduler Control Block

Status Return Codes:
0 - Request Satisfied

71



5

6.3.4 Disable Schedule Table Entry

Disable will remove a schedule table entry from the
Graphic Controller execution list. This is indicated by making
the priority field negative. With regard to the priority
scheme, disabled entries are effectively non-existent.

EMT Code: 54 (Hex)

Parameter Block:
- Standard Scheduler Control Block

Status Return Codes:
0 - Request Satisfied

e

72




6.3.5 Modify Schedule Table Entry

The Modify service will allow for efficient update
of selected schedule entry attributes. Modify attributes are
selected by the bits of word 9 in the parameter block as
follows:

jos]
—
-3

ON IMPLIES

Update CRT Assignments
Change Intensity

Change Line Structure
Change Character Size
Change Character Rotate
Change Blimnk

Change X-Start

Change Y-Start

\JO\M‘PMNF—'OI

The new values for any modify requests are simply taken
from the assigned parameter block locations. Note that changes
to any paraﬁeters not .listed above (color, priority, etc.) must
be done via a delete/re-insert sequence.

EMT Code: 55 (Hex)

Parameter Block:
- Standard Scheduler Control Block

Status Return Codes:

0 - Request Satisfied

73



6.3.6 Purge Schedule Table

The Purge entry may be used to delete all schedule
table entries belonging to the calling task. This, for
example, should be done prior to task exit.

EMT Code: 56 (Hex)

Parameter Block: N/A

Status Return Codes:
0 - Request Satisfied




€.3.7 Graphic Controller Status (7)

The Status entry may be used to determine the X,Y beam
coordinates at any point in a refresh file. This service
operates by replacing the specified location by a halt in-
struction and then fetching the X,Y¥ coordinates when the halt
interrupt occurs. Thus, the X,Y position will not include
the effects of the word at the specified display element offset.*

EMT Code: 57 (Hex)

Parameter Block:

This service operates through an extension
to the standard scheduler contreol block, .as

-follows: **

WORD USAGE
10 Reserved
1l Element offset
12 X coordinate (returned)
13 . Y ecoordinate (returned)

Status Return Codes:

0 - Request satisfied
32 - Block not active

Status bit three will be used to indicate the service is
busy. Users will need to monitor this bit to ascertain reguest
completion. ©Note also that words 12 and 13 are used by the
monitor while the status regquest is active.

s

* The offset includes the element control words.
** Register one should, as always, point to word zero.



6.4 DISPLAY ERROR HANDLING

The two display interrupts corresponding to display halt
and display out-of-bounds are serviced by the Display Scheduler.*
If either of these events occur, the following procedure is
followed:

a, The parent schedule table entry is located by an
examination of the Graphic Controller Stack Pointer.

b. The element call is '"nulled out' and appropriate
status bits are set in the user's Schedule Control
Block. '

Cc. The Graphic Controller is restarted. The user task
will need to delete the associated schedule table
entry - enable will not be effective.

®* Photopen handling is discussed in a separate monitor section.

76




6.5 MONOCHROME SCHEDULER

A second version of the Display Scheduler has been
generated to provide for the monochrome display situation.
The monochrome scheduler is similar to the color version in
most respects. The major difference is in the area of
scheduling priority. In the color case, a single priority
scheme applies to all current entries, i.e., the priority
is not independent for each color or CRT. For the
monochrome case we have taken the l1ist structure depicted
in Figure 6.2-1 and used a separate list for each CRT.
| The priority value (specified in your parameter block) is
' - now applied to the particular list indicated by your CRT
specification. For the case of multiple CRT's specified for
one schedule entry a default list assignment must be made.
'The list assignments for each possible CRT combination are
given by Table 6.5-1.

Other special characteristics of the monochrome scheduler
are as follows.

a) The CRT assignment byte in the calleT parameter
block 1is now extended to include 4 CRT's:

3

BI SET YIELDS ..
0 CRT 1
1 CRT 2
2 CRT 3
3 CRT 4

b) The Color byte in the caller parameter block 45 - -

ignored,

77



¢) There are no parameter limit checks (associated status
return cocdes are not used),

d) "Modify" not supported for CRT assignments byte.

EXECUTION LIST
CRT BYTE (binary) ASSIGNMENT
0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

|

—

| e -—-l

~ ﬁ- -

e T L T T S T S Y U S N S R X S oo B SO S
-~ Mo, | e———

(In other words, the schedule request is assigned to 1
the list of the lowest numbered CRT selected.)

TABLE 6.5-1 EXECUTION LIST ASSIGNMENTS .j

78




GRAPHIC 7 MONITOR

INPUT-OUTPUT SERVICES

7.0 I/0 System Structure
7.1 User Task I/0 Communication
7.2 I/0 Monitor Services

7.3 Standard Graphic 7 Device Handlers

“ da

79



7.0 I1/0 SYSTEM STRUCTURE

Input/output processing generally represents one of the
more difficult areas of computer operating system endeavors.
This difficulty arises from the diversity of devices and re-
quired .operating modes. The current system implementation
is no different in this regard; however, the assumption of
mostly dedicated applications will permit some simplifying as-
sumptions. One of these assumptions is that the number of
peripheral devices is relatively small, thus allowing a rather
de-centralized approach to device handler design. An addi-
tional assumption is that there will generally be little de-
vice sharing between tasks. This assumption and the lack of
any local mass storage releases us from any serious I/0
queueing requirement. The Monitor I/0 structure is depicted
in Figure 7.0-1.

It is likely that users will want to add specialized de-
vices/interfaces to the existing monitor configuration. For
this reason we present, in the following, a discussion of
the basic I/0 monitor functional area. As mentioned above,
our approach has been to de-centralize the I/0 requirements,
thus leaving .considerable freedom to the individual device
drivers. In fact, all the central I/Q section does is deter-
mine which handler is to receive the request and then transfer
control to such. Within the individual handlers, we have de-
fined some standardized procedures which will make life easier
for application task developers. In particular, a standard
set of entry point assignments has been defined. Also, some
attempt has been made tc be consistent with respect to status
bit assignments and error return codes. These standards are
listed in the next section. '

Users wishing to implement their own device handlers
will be advised to follow the conventions which have been es-
tablished even though the overall Monitor operation is little
affected by your decisions. Addition of device handlers to
the Graphic 7 Monitor is discussed in Appendix B.

A~

—— A——

o

oo -



USER

TASK
EMT 7x
I/0 CONTROL
BLOCK
m
™| I/0 BUFFER |
| |
; z \
, ’ MONITOR
| SUPERVISOR
! ; ,
l 1
: ;”'“':»\/
| 1 1/0
: l SUPERVISOR
i |
1 !
|
| |
| |
| ’ DEVICE A—
L - - ""'—; HANDLER == 1
{
{
|
{
Ny
r°°$“~~ﬁ
CONTROL gPERIPHERAL I
{  DEVICE 1
------ DATA (U

FIGURE 7.0-1. G7 MONITOR I/O STRUCTURE

81



7.1 USER TASK I/0

With respect to I/0 from application tasks, users will
find the facilities relatively conventional and easy to mani-
pulate. I/0 may be issued in either wait or no-wait mode with
appropriate bits to indicate current I/O transfer status. The
Standard I/0 Control Block, discussed below, will be used to
communicate all I/0 requests to the monitor. Thé address of
the parameter block should be placed in register one prior to
the EMT instruction, the same as in other monitor calls. Spe-
cific EMT codes are discussed in Section 7.2.

7.1.1 Standard I/0 Control Blo;k

Figure 7.1.1-1 outlines the I/0 Control Block structure.
The first word (word Q) is reserved for monitor usage and should
never be utilized by the application task. Other fields in
the I/0 block are discussed below. Keep in mind that the speci-
fic I/0 operation desired is encoded in the EMT instruction.
| Thus, fof Somé gperatiods THE WHo1é I/0 block is dot needsd
although it will generally encompass a full eight words. Note
that an I/0 control block is dedicated to a particular data
transfer as long as such transfer is in progress.

7.1.1.1 I/0 Control Block, Word 1

Word 1 will contain the device specifier. This is in
the form of a logical unit number which is used as an index
into the I/0 table in the task header. (See Section 4.3).
The logical unit number should be an integer in the
range one to eight. The high order byte of word 1 is not
currently used (check individual device handler).

7.1.1.2 1I/0 Control Block, Word 2

The user buffer address should be placed in word two
of the I/0 block. Note that some devices require a buffer
which is of fixed length or slightly larger than the expected
transfer.

82




“

-— -

WORD BYTE 1 BYTE 0
0 RESERVED
| LOGICAL UNIT
1 UNUSED | NUMBER
2 BUFFER START ADDRESS
3 TRANSFER LENGTH (Bytes).
TRANSFER . |-  STATUS
4 FLAGS - ! FLAGS
5 ERROR RETURN ADDRESS
i st
|
' TIME oUT
¢ _UNUSED i (SECONDS). __
7 DEVICE SPECIFIC
FIGURE 7.1.1-1. 1I/0 CONTROL BLOCK

- —— e m———— e b s et e o

STRUCTURE



e

7.1.1.3 1I/0 Control Block, Word 3

The expected number of bytes to be transferred should be
placed in Word 3. OQbviously, the buffer address specified in
Word 2 should point to an area of sufficient capacity to al-
low the expected transfer. This should normally be specified
as a byte count even though some devices may transfer only

words.

7.1.1.4 1I/0Q Control Block, Word 4

The various status bits controlling the I/0 transfer

and completicn code reside in Word 4. The low order byte is
used for device status returns (when requested). The high

order byte is used to indicate the desired type of transfer LR
‘and resultant transfer execution status. The bit assignments
are as follows: , y

o ‘
Transfer Flags Device Status Flags ,
On Implies | On_Implies | '
15 No-wait -7 l
14 Busy* 6 '
13 Device 5 ?
2
12 Dependent 4 'lj
11 Transfer Options 3 Busy N
10 2 Attached l ‘
Completion 1 Allocated
Code 0 On/Qff line **

* Used for no-wait transfers only.
*#%* This information is not always available.

[4



7.1.1.5 I/0 Control Block, Word 5

An optional error return address may be provided in Word
5. This has meaning for wait I/0 mode only. If the error
return point is exercised, the user may query the completion
code to determine the specific fault. One should note that
this optional error return applies only to the data transfer
itself and not to possible rejection of the I/0 request.

7.1.1.6 I/0 Control Block, Word 6

An optional time out value, in seconds, may be placed
in the low order byte of Word 6. This is considered to be a
positive number from one to 255%., If time out is not de-
sired, then a zero should be placed in said byte. The high
order byte is currently unused. :

7.1.1.7 1/0 Control Block, Word 7

Word 7 1s reserved for device-specific usage. For some
devices, it 1s not needed at all; others may only use it for
certain operations. Check the individual device descriptions
in Section 7.3 ’

7.1.2 Standard Status Return Codes

Every monitor function returns a status code to in-
dicate the monitor's response to the user task's request.
For I/0 operations, this status code only indicates whether
or not the request was accepted. Proper completion of the
I/0 transfer must be verified by examining the completion code

* The accuracy of the time interval is zero to minus one second.

85



[

in Word 4 of the I/0 Control Block. With regard to device
handler design, the following standard return codes should
be used whenever possible:

Status Return Code (decimal) ___Meaning

0 Request accepted.

% %equesgég function not available.
0 suc vic

33 ﬁevfce nog avgilable oT
device busy.

34 Device not allocated/attached
to calling task.

3s I/0 operation completed prior
to receipt of cancel re-
quest.

36 Resource Exhaustion.

Standard I/0 completion codes (contained in bits 8, 9, 10
of Word 4 of I/0 block) are as follows:

Comp;etion Code . Meaning
-0 Successful I/0 transfer.
1 Buffer overflow.
2 Transmission error.
3
4 I/0 was cancelled.
5
6 Time out.
7

86




«

7.2 MONITOR I/O SERVICES

A group of standard monitor services has been defined
which will correspond to entry points available in each de-
vice handler. As with other monitor functions, the desired
service is encoded in the EMT instruction as the sub-function
number. Some handlers may not support all of the services
listed below due to logical or physical constraints. How-
ever, adherence to the standard entry numbers when designing
new device handlers will improve the overall system image.

In addition and of more practical significance, switching be-
tween devices via the logical unit numbers will be greatly
simplified if all handlers use the same function codes. One
may also note that several additional codes are available

for use with specialized devices or for other user-specific
requirements.

7.2.1 Allocate Device

The allocate service may be used to assign control of a
device to 2 particular user application task. This service
is used when the user wishes to issue monitor-independent I/0.
Any interrupts received by the monitor while the device 1is
allocated are ignored. The only way in which the device can
be returned to general monitor usage is to have the task issue
a de-allocate request.

EMT Code: 71 (Hex)

Parameter Block:

Standard I/0 Control Block;
only the logical unit number is relevant.

Status Return Codes:
0 - Request satisfied
4 - Function not supported
33 - Device not available



7.2.2 Deallocate Device

The deallocate service should be used when the task has
completed its operations. Devices should not be kept in the
allocated state when not needed.

EMT Code: 72 (Hex)
Parameter Block:
Standard I/0 Control Block;

only the logical unit number
is relevant.

‘Status Return Codes:

0 - Request satisfied
4 - Function not supported

34 -~ Device not allocated or not
allocated to the calling task.

7.2.3 Attach Device

The attach service will be used when an application task
wants to reserve a device for its exclusive use. This differs
from allocate in that attach implies usage of standard monitor

I/0. Attach will be used when a task wishes to guarantee access

to a device for a period of time, spanning several I/0 cpera-
tions.

EMT Code: 73 (Hex)
Parameter Block:

Standard I/0 Control Block;
only the logical unit number
is relevant. '

Status Return Codes:
0 - Request satisfied
4 - Function not supported
33 - Device not available

83

e~



+ ea

7.2.4 Detach Device

Detach will be issued when the application task wishes to
relinguish control of the subject device. This makes the device
available for use by other tasks.

EMT Code: 74 (Hex)
Paramater Block:
Standard I/0 Control Block;

only the logical unit number is
relevant. :

Status Return Codes:
0 - Reguest satisfied
4 - Punction not supported
33
34 = You're very mixed up

Device busy

7.2.5 Read Data

The Read service will be used to transfer data from an
external device to a program—local sbuffer. The amount of data
transferred is determined by the transfer count in word 3 of
the I/0 control bleck. Check the particular device handler
description in Section 7.3 for the exact functioning of this
servie.

EMT Code: 75 (Hex)
Paramter Block:
Standard I/0 Control Block

Status Return Codes:
0 - Reguest satisfied
4 - Function not supported
33 - Device not available

89



7.2.6 Write Data

Write will transfer data from a user buffer area to an
external device. There will commonly be a variety of device-
specific‘charactersitics in relation to this service.

EMT Code: 76 (Hex)
Parameter Block:
Standard I/0 Contrel Block
'Status Return Codes:
0 - Regquest satisfied
4 - Function not supported
33 - Device not available

7.2.7 Control Device

The Control service would be provided with devices which
reguire setup prior to data transfer. Some devices,.such as
programmable switches, may support only the Control function.

EMT Code: 77 (Hex)

Parameter Block:

Standard I/0 Control Block

Status Return Codes:
0 - Reguest satisfied
4 - Function not supported
33 - Device not availabls

7.2.8 Fetch Device Status

This service will return the current device/handler status to
the low order byte of word 4 in the specified I/0 control block.
Standard bit assignments ars given in Section 7.1.2. Other bits

may vary between devices.
EMT Code: 78 (Eex)
Parameter Block:
Standard I/0 Control Block
Status Return Ccdes:
None

90




7.2.9 Cancel I/0

Cancel may be used to prematurely terminate an I/¢ transfer.
EMT Code: 79 (Hex)
Parameter Block:

The I/0 block related to the
transfer to be cancellead.

Status Return Codes:
0 - Reguest satisfied
35 - I/0 has already completed

7.2.10 I/0 Purge

The Purge entry will be used by the Graphic/7 Monitor to
ensure that a task which is being aborted (or is doing a veoluntary
exit) does not have any outstanding I/0 in process. If the
handler is doing I/0 for the subject task, it is cancelled. 1In
addition, any attach or allocate conditions, if relevant to the
subject task, are erased. This entry will normally be of no
.(‘ interest to user tasks.

EMT Code: 7E (Hex)
Parameter Block: N/A

(RR1 is assumed to point to
the task being aborted.)

Status Return Codes: None

91



7.2.11 File Query

The status of a data file may be determined wvia the File
Query entry point. This entry may not be supported by some
device handers or may be supported in modified form. For the
entry, the user buffer arsa has the following specific format:

Word Contents
Q File Status/File Type
1 ' File Length (Records)*
2 Record Length (Bytes)
3 -7 File Name (ASCII, terminated
by null)

The exact meaning of the above parameters is dependent
on the particular device and handler implementation.

EMT Code: 7F (Hex)
Parameter Block:
Standard I/0 Control Block
Status Return Codes:
0 - Reguest satisfied
33 - Device not available

* Por task images and display elements, the number of records
should be one with the number of bytes equal to the total
amount of data.

92

)

i

mma metie

. o~



7.3 Graphic/7 Device Handlers

Following sections outline specific capabilities of each
device driver. Users should note particular characteristics
of each device in regard to entry points, transfer options
and completion codes. Entry points listed for each handler
do not include 0 (initialization) and 14 (I/0 Purge) since
these must be provided for all handlers.

93



7.3.1 Alphanumeric Kevboard

The keyboard will be us
and function key reguests.

EMT
71
72
73
74
75
78
79
The following transfer
Read function:
Bit
11
12
13
Status bits related to
are:

(8]
,-J.
w B

With regard to the user buffer area, the following points

should be noted:

ed to input alphanumeric data

The entry points supported are:

Function

Allocate

Deallocate

Attach

Detach

Read

Fetch status

Cancel I/0

options are supported with the

Usagé
Accept only function key input
Mask out parity bit
Accept only alphanumeric input
the keyboard device handler

On Implies
Allocated
Attached
Busy

a) The count of the number of characters input (not

including the carriage return) is placed in word 7

of the user I/@ control block.
b) Except in cases of buffer overflow, the carriage

return will always

94

appear in the user buffer.

: ;-ﬁq.._\,

o m—



FHE A

7.3.2 POSITION ENTRY DEVICE (PED)

The PED handler will service either a trackball or
joystick device. The handler i1s set up to be used in
conjunction with a cursor or other screen-position-relevant
entity. Thus, the handler uses the delta x, deltz y values
returned by the device to update virtual x,y position
coordinates. These coordinates may be given to the user
task as binary integers or in the form of LOAD-X/MOVE-Y
refresh instructions. Furthermore, the data may be provided
on 2 "one-time" basis or via the notify service (discussed
below ). Finally, the actual PED x,y delta values may be
supplied by choosing one of. the option bits listed below.

The handler entry points supported are:

EMT FUNCTIONS
71 Allocate
72 Deallocate
75 Return current X,Y position
76 Set current X,Y position
77 Set X,Y to 0,0
78 Fetch status
7A Define notify requirement
7B Cancel notify -

95



The following transfer options are supported:

BIT

13

12

USAGE

Setting this bit will cause the
X,Y coordinates toc be returned as
LOAD-X,MOVE-Y (absclute) refresh
instructions.

This bit will be set by the handler
whenever new x,y values are supplied
by the notify service.

Setting this bit will cause the actual
x,y delta values to be returned as
received from the PED. These are
signed integer words. This option is
only relevant to the notify service.

Status bits felatéd to the PED handler are:

BIT

—

96

ON_IMPLIES

Allocated

Notify Active

4

l

—— L p—

L



Several points should be noted in regard to the PED device/

handler:

a.

The notify service will return the new X,Y position

each time new coordinates are received from the PED
device. As with entry 5, these coordinates may be
binary integers or refresh (load X, move Y) instructiomns.
Bit 12 in the user I/@ transfer flags will be set
whenever new X,Y values are supplied. The user may

also, optionally, specify a subroutine address in word 7
of his I/0 control block. This subroutine will be
called (JSR PC,XXXX) whenever a new PED X,Y is supplied.
The subroutine will need to be kept reasonably short.
Furthermore, any registers used must be saved/restored
and no monitor services may be employed. I1f the optional
subroutine is not desired, then a zero should be placed
in word 7 of the I/0 control block.

The data buffer used with the PED device should be exactly
two words in length and begin on a word boundary (X in
first word, Y in "the second).

All transfers related to the PED handler are satisfied
immediately, thus, the wait/no-wait transfer flag is
ignored.

Entry points 6 & 7 assume 16 bit binary X,Y values.

Time out and optional error return specifications are
not supported.

97



£.

0Q

Bytes 0, 1 and.3° of the user I/0 control block
are used for PED notify linking.

On calling the user specified subroutine, the following
rTegister situation will exist:

1)
2)
3)
4)
5)
6)

User relocaticn registers are installed
RO,Rl contain binary X,Y

R2,R3 contain LPADX,M@VEY

R4 points to user I/0 control block

RS points to user subroutine.

R6 - system stack pointer

Again we emphasize that this state must be
preserved across the call.

98




7.3.3 Paper Tape Reader

The Paper Tape handler is configured for reading task images
or other data in file format. The handler is not a general purpose
Capability. The expected file format is that employed in standard
PDP paper tape load images. The general form is:

héader block
data block(s)

séart block

The header block has format: .

byte contents (octal)
0 : 1
1 0
2 32 (block length)*
3 0
4, 5 Start Address (typically the same as
the program load point)
6 1
7 7
10, 11 Program load point
12, 13 Total program length (bytes)

*In all cases, the block length includes everything except the
checksum byte. The checksum is the negative of the accumulated
preceding bytes in the block.

99



byte contents (octal)

14, 15 Program Transfer Address
16-31 Unused

32 Checksum

Data blocks have the general form:

byte contents
0 1
1 0
2, 3 block length (n)
4, S load address
6 data bytes
n - checksum

The trailer block is a data block with no data bytes, the
program transfer address as the load address and a block length
of six. Tasks to be loaded by the GRAPHIC 7 monitor should not
have a specified transfer address (argument in the .END statement)
since this specification is obtained from the task header. In this
case the transfer address in the start block appears as unity.**

k21 ekamining a paper tape recall that the low order byte of
a word (the "right'" byte) comes first on the tape.

100

——— n'—vv.




The

All
and I/0

1/0

NOTES:

entry points supported by the paper tape handler are:

EMT Function
75 Read
7F File Query

transfers are assumed to be binary data. Wait/No-Wait
time-out are supported in the normal manner.

status returns of the paper tape handler are:

- I/0 success

- Checksum error
Transmission error
- Invalid file format

IR N TUN RN TR O
T

- Time out

For task loads, the target address is taken from the
data block on the tape. This is necessary since the
tape image does not typically/refbect space allocated
by .BLKB or .BLKW directives. For this reason, all
task images must be linked to start at 20000 (octal).

For data input, the user generally wants the informa-
tion deposited at an address which he specifies in his
I/0 control block. To accomplish this, have the header
punched with a zero in bytes 10, 11. This flag causes
the handler to load successive data bytes into successive
locations in the user buffer.

101



7.3.4 4923 Cassette Handler

The Tektronix 4923 cassette drive 1s a general purpose data
storage device utilizing the 3M DC-300 data cartridge. This device
is ASCII oriented with all data stored as ASCII characters and .
several device control functions activated by character codes. The
monitor cassette handler is a minimal facility allowing recording
and fetching of task images or data files.

All data stored on the cassette cartridge is in the form of a
file. Multiple files may be stored on the same cartridge. The
basic file format employed is:

character contents‘
0 M
1 §)
2,3,4,5 Data load address, stored as

four ASCII, hex digits; most
significant 4 bits first,

-6,7,8,9 - File length as 4 ASCII hex
digits, this is total data
words - :

10,11,12,13 Data Word 1
14,15,16,17 Data Word 2
etc.

Files are generally terminated by a STOP character, octal 23.
This causes the cassette to pause until receiving a START character,
octal 21, from the device handler.

Entry points supported by the cassette handler are:

EMT Function

75 Read

76 Write

7F File-Query

102




All date retrieved from the cassette must be via a file query
followed by a file read. The write entry supports the following
options: (word 4 of the I/O block)

Bit On Implies
13 Data words are output as 4 ASCII

hex digits. Otherwise data words
are output directly as two bytes,
assumed to be valid ASCII characters.

I/0 status returns for the cassette handler are:

0 - I/O completed successfully
2 - Transmission error

3 - Invalid file format

6 - Time out

NOTES:
a. The I/0 count for the cassette must be an even
number of bytes.

b. I/0 time-out and Wait/no-wait options supported
in normal manner. Optional error return (word
5 of I/0 block) is not implemented.

c. There is no checksum in the file format, however
valid ASCII hex codes are ensured on reads.

d. A small delay may be necessary between the reads
of successive files.

103



104

GRAPHIC 7 MONITOR
TIMING SERVICES .

"Timing Services Qverview

Task Suspension Timing
I1/0 Suspension Timing
Private Timers

Monitor Timing Services




8.0 TIMING SERVICES OVERVIEW

The maintenance of current real time is always
an important, though usually transparent, feature of com-
puter operating systems. Current time is useful in many
applications for providing a reference frame for various
ongoing activities. Also, the clock is used to measure
timed intervals for application task functions. On the
Graphic 7, the fundamental clock pulse originates from the
60 cycle power source and thus the timing precision is to
the nearest 1/60 second. The interrupt handler for the
basic clock pulse will be contained within the Timing Ser-
vices module. This handler will update the current stored
time-of-day and adjust any timers currently outstanding.
There are three distinct types of timers as discussed
-in the following sections.

105



8.1 TASKX SUSPENSION TIMERS

User tasks may request timed suspension for periods
up to 53 minutes. These requests, submitted to the Task
Management section, will be specified in 1/10 second units.*
The Timing Services section will maintain a linked list of
all tasks currently under timed suspension. On each 1/10
second boundary, the suspension list is scanned and all asso-
ciated counters decremented. Whgn a counter reaches zero,
the respective task is removed from the timer control list
and again made aVailable for execution. Timing services re-
lated to task suspension are normally employed only by other
monitor functions.

*The accuracy of these timers is plus zero to minus one
1/10 second.

106




- a

8.2 I/0 SUSPENSION TIMING

The problem of an un-responsive external device is -
typically handled by allowing a certein maximum time interval
for an I/0 transfer. Timers used for this problem are updated,
on a one second basis, by the timer interrupt handler.* All
I/0 timers are maintained on a linked 1list, with individual
nodes within the various device handlers. It should be noted
that such timers are assumed to be within the direct address

space of the monitor.

*The accuracy of these timers is plus zero to minus one second.

107



8.3 PRIVATE TIMERS

It is sometimes necessary for an application task
to perform a function on a timed interval basis. This capability
is provided by defining a private timer which is updated on a
1/10 second interval.*

Such private timers are maintained on a linked list
within the user task space. Another 1ist is then used to link
all tasks which currently have outstanding private timers.

| As an option with the private timer service, users
may specify a subroutine which will be executed on timer expiration.
This subroutine will be executed as an extension of the clock
interrupt handler. Several restrictions must be placed on such
a routine as a result of the execution context. Thus, such a
subroutine must be kept very short (less than 100 usec execution
time), cannot reference any monitor sérvices, and will save/ restore
any registers used. Obviously, excessive use of this service could
potentially degrade system performance.

Private timers are re-settable within the opticnal user
subroutine. Thus, if the user places a non-zero walue in the timer
entfy before returning to the clock handlef,'then the timer is not
deleted. This mechanism can be used to ensure that a particular
event occurs at a fixed repetition rate. \

* The accuracy of these timers is plus zero to minus one 1/10 second.

108

—— . —

S p—_

 —

i
O——



8.4 MONITOR TIMING SERVICES

Timing services subfunctions are discussed in the

following sectioms.

8.4.1 Set Date/Time

This service may be used to initialize the current
date and time. The Operator Communications module will use
this entry when processing the related operator command.

EMT Code: 81 (Hex)

Parameter Block:

Word Contents
0 Hours/Minutes (binary)
1 Seconds / ‘Month (binary)
2 Day/Year (binary)

Status Return Codes:

0 = Request satisfied
(The validity of the .supplied values
is not checked).

8.4.2 Fetch Date/Time

The Fetch service will return the current date and
time to the caller parameter block.

EMT Code: 82 (Hex)

Parameter Block:

Word Contents
0 Hours/Minutes (binary, returned)
1 Seconds/Month
2 Day/Year
Status Return Codes:
0 Request satisfied

109



8.4.3 Define Task Suspension Timer

This service is used by the Task Management module
to set up for timed task suspension. The words at TITIM and
T$TIM+2 within the task header are used to maintain the task
suspension timer.

EMT Code: 83 (Hex)
Parameter Block: N/A

Status Return Codes: None

8§.4.4 Cancel Task Suspension Timer

Cancel will be used by Task Management when a
"Continue' request is received for a task which is currently
in timed suspensiomn.

EMT Code: 84 (Hex)

Parameter Block:  N/A

Status Return Codes: None

110

e | e | ueeeam e A— —— — —— — —




8.4.5 Define I/0 Timer

This entry will be used by device handlers when the
user task specifies & time-out value in his I/0 control block.
The parameter block is assumed to reside in direct address
memory space. The second word in the parameter block should
peint to the handler entry point which will be called on
timer expiration. The call, at priority seven, will be of the
form JSR  PC,xxxx. The handler's Resume entry shall not
destroy registers 4 and §S.

EMT Code: 85 (Hex)

Parameter Block:

Word Contents
0 Reserved (used for linking)
1 Resume Entry Address
2 Time-out Value (seconds)

Status Return Codes:
0 = Request satisfied

8.4.6 Cancel I/0 Timer

Cancel should be used by I/0 handlers when an I/0
operation is completed prior to expiration of the time-out
value.

EMT Code: 86 (Hex)

Parameter Block:
- Same as used for EMT 85

Status Return Codes:

0 = Request satisfied



8§.4.7 Define Private Timer

User tasks may set up a timed interval via this Timing
Service entry. The time interval value should be a positive
binary number in 1/10 second units. The second parameter is
an optional user subroutine address which is called when the
timer expires. This subroutine may not reference any monitor
services and must save/restore any registers used. Total
execution time of this optional subroutine should be held to
100 usec. If the subroutine call is not desired, then a zero
should appear in the second parameter. Note that the timer
value is destroyed; however, it may be reset within the optional
user subroutine. v

EMT Code : 87 (Hex)

Parameter Block:

Word Conteﬁts

0 Reserved (Linking)
1 Optional Subroutine Address*
A Timer Value (1/10 seconds)

Status Return Codes:

0 = Request satisfied

*Tne call 1s of the form: JSR PC,xxxx.

112




8.4.8 (Cancel Private Timer

If 2 private timer is no longer required, then it
should be deleted with this service. The specified parameter
block should be exactly the same as that used in the definition
call to EMT 87.

EMT Code: 88 (Hex)

Parameter Block:
- Same as used for EMT 87

Status Return Codes

Request satisfied
No such timer found

(2]
N o
]

8.4.9 Purge Task Timers

The purge service will be used by Task Management
to ensure that all private timers are eliminated on task exit.
A user task could use this entry to remove all currently de-
fined private timers.

EMT Code:. 89 (Hex)
Parameter Block: N/A

Status Return Codes: None



9‘
9.
9.

0
1

2

-

GRAPHIC 7 MONITOR
DATA TRANSFER SERVICES

Data Transfer Introduction-
Data Transfer Control Block

Entry Points

114

-

- ‘

-~



8.0 DATA TRANSFER INTRODUCTION

The efficient manipulation of data within the real t:.

system is, naturally, a prime objective of the Graphic 7

monitor. Within the context of the monitor there exists

three fundamental mechanisms for the transmission of int
task data. (Input/output functions are used to transmit

accept data to/from an external medium). The simplest £ -

of inter-task data exchange is based on the task status -

contained in the task header. These status bits and ass

ciated manipulative services are discussed in the Task M.
ment area. Generally, the status bits will prove satisf .

for those situations which require the notification of ¢

states or operating conditions. The second form of inte -

task data exchange may be set up on the basis of a globa
mon data area. Such areas are valuable when several tas
must have frequent access to the same information. An e
would be the.system data base which typically contains t
various parameters and data defining the current operat:

situation. The third form of inter-task data communicat

is the subject of the monitor service described in the f{
lowing.

The Data Transfer Services will allow for the trans
of variable length data blocks between task memory areac
Specification of the desired transfer is done via a star
format parameter block, similar to an I/0 control block.
In order for a transfer to take place, there must be a1
ing sender/receiver pair. For the Teceive entry, the us
may indicate a specific sender task or allow for accept:
from "any sender". Senders must specify a particular re
task (i.e., no "broadcast" mode is supported). If no me
ing transfer is pending, the user may elect to have his
quest queued or stacked. Separate send and receive queu
are maintained: queueing results in attachment of the r
to the end of the list; stacking results in attachment t

115



beginning of the list. In addition, users may, as in I/0
operations, specify wait or no-wait transfer mode. If wait
" mode (the default) is used, then the requesting task is sus-
pended until the transfer is completed.

The actual data transfer is performed, byte-by-byte,
from the sender task area to the receiver task area. The
receiver buffer must be large enough'to accommodate the
sending task's requirement. Insufficient buffer space re-
sults in setting status bit zero in the sender if the re-
ceiver request was already pending. Conversely, if the
send request was already pending, then the erTor status is
returned to the receiver on inadequate receiver buffer
length. An error code will also be returned if neither
queueing nor stacking is specified and no matching trans-
fer is.pending‘ Potential data receivefs may query the send
queue to determine if any outstanding transfers are pending.
The sender task ID and transfer length are returned. -The
standard Data Transfer parameter block is discussed in the
following section. L B

116




8.1 DATA TRANSFER CONTROL BLOCK

All requests for inter-task data transfer will be accom-
panied by a pointer (in register one) to a standard parameter
block as shown in Figure 9.1-1. Users will note the similarity
of this structure and the I/0 control block discussed in
Section 7.1. In particular, note that the transfer may be
performed in either wait or no-wait mode. In no-wait mode,
users will need to be careful to ensure that the transfer
has been completed before disturbing the control block or
the data buffer.

Let us briefly review the individual words in the con-
trol block. Word 0 and byte 1 of word 1 are used for send/
receive queueing and are of no concern to the application
programmer. Byte 0 of word 1 should contain the destination
task ID for send or the source task ID on receive. Addi-
tionally, the user may set this byte to zero for Treceives to
indicate that any sender is acceptable. In this case, the
monitor will place the sending task ID into this byte when
a transfer occurs. Word 2 should contain the data buffer
address. The transfer count, as a number of bytes, will
appear in word three. Obviously, the maximum transfer length
is effectively determined by the maximum task extent.* The
Flags/Status bits are outlined in Figure 9.1-1. Clearly
the Queue/Stack bits are mutually exclusive. The count of
the number of bytes actually moved is placed in word S.

This word is only required for receivers.

*The Data Transfer mechanism does not detect departure
from the task space. Such errors will generally be
fatal. :

117



- e g e e : b e ! : : —-e .___..X:__ :_. ._,......_......_ [T S, 14_. - ‘-f“ : . - : -
: i ! : H ; : ; ! i i : ; . | : ; i ; ‘
[V e : T - : ; T ; B ; T ; ; : ! i ' ( k
| L R R - R | |
T T T T | .'
- R R e B
— SSAPSNRS SASEN TS\ MY UVNFRNONS SNPUY FPRPS SN S SRR SO S S ; h—-t o , L
TSRS N JL S O O O LA A S OO A A e I R S AL A
: : ; ] i , K : T : ! . : s ' : ' : T
L I R L R L S R o :f L
A I T ! C - ? g
T T T T T
o "~ WORD | | BYIE L o sBYTE 0 f
' ’ o ? i C | i R
f 0" : - REsETVEdT ' ( -
! : i : i i ' :
T : : : T T DE
A N B L : ' b R N R R . e
I " I g T ReseTVEdT [ R - - R 3 : [
1 B ' ; i ) | i i : | B ! i ‘ { s . . : . J
; X — ) - ; : - - ; : T
RNV S I L S z i :
R Bufffer Address =, : ‘ -
T N O T B A T I R | |
Lo 3 § TransferlCcunt Bytes) | ' '
IR | N T R I ! ' J
- h T HORS M - | 7 T e . ¥ i : S nmet i ; 7 T
: ool ! . R 1 “
i ! T N N S A S S L E t
TS g  Bytes Transferred Count| b
T T - (
P ? Blag Blts : P | Status Blts L : A_(
o (set implies) | | 4 . .l (set 1mp11es)‘ P : :
%ii$§‘722§;i?i;;;f‘5§ |
? 13 No-~wait, . & = | LT Lo o
f N AT o s i- A - :
: : i ; : i ' ; i ; ; ] : L |
P .13 Queus’ oo ; R - N R i
B . 12 Stack. | T, . o TraT ; b
} I . . : . I 1 H ! s i b ! H ) i \
: T L i T A ' j I i
; P 1a ol ; : 2 Request was cancelled '
N ; T ; 1 ~No& sender/receiver | |
— e ——§ ; R —G ;ﬁ&éeqaa%embﬁﬁéer—&eﬂsth-:w
! ! ; ! i ! i ; i i : ' : i . i ' . ¢
! ' i . ] \ ! . |
L : L N A b r 1!
R N RIS U DR i _'
! : ; X " T i ; : i : i i i i -
IS S U O A S o IR |
{]
1 1 1 .| FIGURE §.I7l DATA TRANSFER corlq TROL "BLOCK. | | .
ool R R A R | S ‘ :
N ; } - i ’ H ! ; ] : : . ' i ! i ; ; . r
i Lo R I N R D T e R |
Lo o o b R R b TN ! L
i i i ; . i : ‘ i i . ; : ! : ; : . L -4 -
e T [T T i ‘
; b ; 1 i R R R R Lo ;
N ! : 1 ! i ! { i : : . i A
o T ; a i ; i - T o ' ~{ »
FRERE A St e S B S ] T 'T""i""'"’?""’_ T b B
. L : 118 ’ ', L Lo Ly
[ S S At i ‘“ ; - 5 T l



9.2 DATA TRANSFER ENTRY POINTS

The various services provided under the heading of
Data Transfer are discussed in the following sections. As
with all monitor functions, the address of the applicable
parameter block should be placed in register one prior to
the EMT. With regard to these services, users should care-
fully note the difference between the monitor call status
return and the completion codes returned in the status byte
of the parameter block. These considerations are identical
to the related I/0 control functions in that the monitor
request status (in byte T$MRST of the task header) only
indicates acceptance of the request and does not imply suc-
cessful data transfer.

119



9.2.1 Receive Query

The Receiver Query entry may be used by a prospective
receiver task to determine if any outstanding send requests
exist. The task ID (byte 0 of word 1) may specify a parti-
cular sending task or may be zerc to indicate that any
sender is acceptable. Discovered sender task ID is placed
in this byte.® Sender transfer length is placed in word S.

EMT Code: - 94 (Hex)
Parameter Block:

Standard Data Transfer control block.
(Words 2 & 3 are ignored).

Status Return Codes:
0 - Request Satisfied

* Note carefully that, if said byte was given as zero, then
this action results in somewhat destructlve modification
of your parameter block.

9.2.2 Receive Data

Receive will be used to accept data from another appli-
cation task. If no send is pending, then the user may have
his request placed on the receive queue. The no-wait bit
may then be used to have control returned to the calling task.*
The count of the number of bytes transferred is placed in
word 5. Sender task ID is placed in byte 0 of word 1.

EMT Code: 95 (Hex) '

Parameter Block:

Standard Data Transfer control block.

Status Return Codes:

0 - Request Satisfied.

* If neither queueing nor stacking is requested the
wait/no-wait specification is ineffectual.

120

"‘- . — 4 f

R

v‘u.;h;; i —



9.2.3 Send Data

Transfer of data from the calling task to a receiving
task may be accomplished by the Send Data entry. The sending
task must specify a target receiver task ID. If no receive
is pending, then attachment of this request to the send queue
may be specified. Again, wait or no-wait mode may be em-

plovyed.

EMT Code: 96 (Hex)

Parameter Block:
Standard Data Transfer control block.

Status Return Codes:
0 - Request satisfied

121



9.2.4 Cancel Receive
Cancel may be used to terminate a pending receive request
belonging to the calling task.
EMT Code: 97 (Hex)
Parameter Block:
The receive to be cancelled.

Status Return Codes:
0 - Request satisfied
32 - No such request in existence

9.2.5 Cancel Send

| The Cancel Send entry may be used to remove a pending

send request which was previously defined by the calling task.
EMT Code: 98 (Hex)

Parameter Block:
The send to be cancelled

Status Return Codes:
0 - Request satisfied
32 - No such request in existence

122

,,_



8.2.6 Purge Receive Requests

All Receive requests belonging to the calling task are
removed from the Receive queue.

EMT Code: 99 (Hex)

Parameter Block: None

Status Return Codes:
0 - Request Satisfied

9.2.7 Purge Send Requests

All Send requests belonging to the calling task are
removed from the Send queue.

EMT Code: 9A (Hex)
Parameter Block: None
‘Status Return Codes:

0 - Request Satisfied

123



9.2.8 Purge Requests

All Send § Receive requests belonging to the calling
task are removed from the respective queues. This entry
is exercised by Task Management on task exit or abort.

EMT CODE: 9E (Hex)

Parameter Block: None

Status Return Codes:

0 - Request Satisfied

124

.

—— — - — — — | — ——_

n-:- - -—““A e

o

—‘v - . ) . ! - — -

Tao~






10.0
10.1
10.2
10.3

GRAPHIC 7 MONITOR

MONITOR SERVICES

MONITOR SERVICES INTRODUCTION
QUERY BUFFER ALLOCATION
ALPHANUMERIC DECODE SERVICE
DISPLAY DATA SUPPORT

125

-

~—
i

—— s - h . . — Sve— —  — A . M/

e, i, |




10.0 MONITOR SERVICES INTRODUCTION

The Monitor Services consist of a set of generally useful
facilities which may be employed from user tasks. The exact
content of this monitor functional area will depend on the
particular application requirements and availability of monitor
memory space. The various sub-functions within Monitor Services
are easily accessed viaz the standard EMT calling sequence in
combination with the appropriate parameter block.

10.1 Quervy Buffer Allocation

There arise circumstances in which the availability of direct-
address-space memory is highly desireable. One such instance is
the need for a buffer area for issuing a query/response sequence
via the display. Direct address space 1s necessary here since
such area must be accessible by all of the graphic controller,
the user task and the keyboard device handler. The Query Buffer
Allocation service is intended to satisfy this need by providing
for the allocation, within the monitor memory -area, of 128 byte
working areas. These areas will typically be used with the Query/
Response service discussed in Appendix C, however, other uses aTsz
possible. Users should be careful to release these buffers when
they are no longer required. The following monitor call is used _
for both allocate and deallocate of a Query Buffer.*

EMT Code: 11 (Hex)
Parameter Block:

Word Contents
0 If zero then the buffer starting address is

returned. If non-zero, then dezllocation of
the associated buffer is assumed. On deallo-
cation, this word is zeroed prior to return.

Status Return Codes:

0 - Request satisfied
32 - No buffers available

*Users may also want to note that small direct-access working areas
may be provided via the schedule table space in memory block zero.
Allocation/deallocation of this space, in fixed 1Z-word units, may be
accomplished via Memory Management entry points 5 and 6. As with the
Query buffers, users should be careful to deallocate this space when
no longer needed.

126



10.2 Alphanumeric Decode Servics

The conversion of text inputs to numeric values is a common
requirement for problems involving operator interaction. The
Decode service will provide for variable length conversions of octal,
decimal and hexadecimal quantities. Specifications to this service
consist of:

.* Argument count
. Format string address
. Source string address

a

b

c

d. Error return address
e E@F return address

£

. Variable addresses

The format stfing.is of the form:

item,item,...,item/null

shoufd be terminated with & zero byte.

The source string should be standard ASCII characters with the
high order (parity) bit zero. If the first source string character
is a carriage return, then the EPF return address is taken. If
invalid characters are encountered, the error return address is
employed.

The numeric variables may be either single or double words.
If a double word qualtity, then preceed the respective format item
with the letter "D".

Alphanumeric (A?) strings will be terminated with a null
(zero) byte.

.

127

ll;:'
|
where "item" is one of: D?,H?.I?;Aﬁ;;;fhé?féfﬁéﬁ:ﬁgziégl;f;; lé
i
1



A count of the number of characters processed in the source

string is returned in byte 1 (i.e., the second byte) of the

parameter block.

The total number of arguments should appear as the first byte

of the parameter block.

As an
be used to

EMT Code: 12 (Hex)
Parameter Block:

Word Contents
0 No. of arguments
1 Format address
2 Source-string address
3 Error return address
4 EPF return address
g

Variable arguments

n

Status Return Codes:

0 - Request satisfied
32 - Invalid format syntax or format/argument
list mis-match

example of the Decode service, the following code may
extract the first argument in string INPUT.

INPUT: CASCII /12,58/

FORMAT: .ASCIZ /1?/

DBLK: .WORD 5,FQRMAT, INPUT ,ERR@R,EQF ,ARGL
ARG1: -WPRD 0

M@V #DBLK,R1

G7CALL 1,2
(ARGl should equal 12, on Teturn.)

Note that the input string fields should be separated
by commas and/or blanks and (typically) terminated
by a carriage return.

128



10.3 DISPLAY DATA SUPPORT'

Display Data Support allows for conversion of display
elements from standard format to refresh format. This facility,
accessed as a standard monitor service, is discussed in
Appendix E.

129

e, pam A

—— . m—







11.

11.

11.

0

1

2

GRAPHIC 7 MONITOR
PHOTOPEN SERVICES

Photopen Services Introduction
Standard Photopen Control Block

Photopen Monitor Services

130

o M. ——




11.0 PHOTOPEN SERVICES INTRODUCTION

The Graphic 7 PHOTOPEN may be used for list selection,
display element editing and task control functions. One or
two PHOTOPENS may be connected to the basic Graphic 7 mainframe.
The Monitor PHOTOPEN Services will make this hardware resource
available to user tasks for the various above mentioned usages.
PHOTOPEN requests will bear a close relationship to schedule
table entries as depicted in Figure 11.0-1.

To employ the PHOTOPEN, the user task must first have
specified PHOTOPEN sensitivity in his schedule table control
block (see Section 6.1). After scheduling, the PHOTOPEN
request is made known via the "Define" service discussed below.
This request may be issued in either wait or no-wait mode,
similar to an I/0 function. TIf issued in wait mode, then the
relevant task status bit is set and task execution is suspended
until the PHOTOPEN strike is received. In no-wait mode, the
user will need to monitor the request status bits to ascertain
request completion.

The functioning of the PHOTOPEN interrupt handler is as
follows: On receiving the interrupt, the handler will search for
the related schedule table entry by examining the Graphic
Controller stack. The associated user Schedule Table Control
Block is located via a scan of the task list and then a search
of the parent task's Schedule Table Control Block list. A search
is then made of the currently outstanding PHOTOPEN requests
belonging to the subject task. If an associated PHOTOPEN control
block is not found, then the interrupt is ignored. Assuming
a control block does exist, the appropriate status bits will be
set (corresponding to the CRT's activated) and the element
offset is computed and placed in the user's PHOTOPEN control

131



q
USER TASK
TASK HEADER
» T3PPEN TISLS TSELS
| | )
c. Disp. Li}
Control > Control .
Block Block

|

Sch, fe———9p{Disp.E1]
Control Control
Block {Block
Sch. | l
Control 7 LA
Block L
v T
]
L]
)
v,
i {
| \
| !

Figure 11.0-1 ~ Display Control Block Associations

132

a.

S . _

e

P
L



block. The Graphic Controller is then restarted. If the user
has selected wait mode PHOTOPEN operation, then his task is
again made eligible for CPU time.

The standard parameter block used with all PHOTOPEN
monitor requests is outlined in the following sectionm.
Prospective users should carefully note the definitions of
the various fields and operation of the PHOTOPEN related
monitor functions.

133



11.1 STANDARD PHOTOPEN CONTROL BLOCK

All parameter blocks used with the PHOTOPEN services will
assume the format shown in Figure 11.1-1. The first word is
used for linking of outstanding PHOTOPEN control blocks. The
second word should contain a pointer to the relevant schedule
entry control block. (The PHOTOPEN routines assume the
subject display has been scheduled. Note also that Display
Scheduler functions have no deliberate effect on possibly
related PHOTOPEN requests.) Word two of the PHOTOPEN control
block contains flags and status conditioms as cutlined in
Figure 11.1-1. Note in particular, the high order bit (15)
which should be set to enable no-wait mode. The following
difference between wait and no-wait mode must be Temembered:
In wait mode the user request (i.e. the PHOTOPEN control block)
is automatically deleted from his list on receiving the
PHOTOPEN input. In no-wait mode, the user is responsible for .
deleting the request via the PHOTOPEN delete service.

The actual PHOTOPEN input information consists of the
offset (bytes) within the subject display element. This offset,
which is with respect to the start address stored in the
second word of the element control block*, is placed in word
‘three of the PHOTOPEN control block. The offset will be odd
if bit S of the Graphic Controller sense register was set.

*E.G. - includes the control words.

'

-



byte 1 byte 0

WORD
0 reserved
1l Sch. Control Block Pointer
|
2 Flags ! Status
S
3 Element Offset (Returned)
Flag Bits ' Status Bits
- 15 No wait 7 Parameter Blk in Use
14 6
13 5
12 4
11 3
10 2
9 1l Strike (PP 2)
8 0 Strike (PP 1)

Figure 1l.1-1 Standard PHOTOPEN Control Block

135



11.2 PHOTOPEN MONITOR SERVICES

The varicus PHOTOPEN functions are accessed via the entry
points discussed below. As customary for Monitor functions,
the address of the applicable parameter block should be placed
in register one prior to the EMT.

11.2.1 Define PHOTOPEN Request

The Define function will serve to place a PHOTOPEN request
block on the user's PHOTOPEN request list. If wait mode (the
default) is used, the request block will be deleted when the
Tequest is satisfied. When the strike occurs, the Display
Element offset is placed in word three of the parameter block.

EMT Code: 61. (Hex) v

Parameter Block:
Standard PHOTOPEN Request Block

Status. Return Codes:*
0 - Request satisfied

*As in I/0 operations, the Status Return Code only indicates
acceptance or rejection of the monitor request; availability of
the relevant data is not implied.

136

o —

~

—— — —



11.2.2 Delete PHOTOPEN Request

An outstanding PHOTOPEN request may be cancelled via the
Delete entry. This entry (or the following Purge entry) will
need to be used for elimination of no-wait requests.

EMT Code: 62 (Hex)

Parameter Block:
Standard PHOTOPEN Control Block

Status Return Codes:

0 - Request Satisfied
32 - No such request found

11.2.3 Purge PHOTOPEN Request

The Purge service mey be used to erase all outstanding
PHOTOPEN requests.*

EMT Code: 63 (Hex)
Parameter Block: N/A

Status Return Codes:
0 - Request satisfied

*The absence of any such request is not considered an error.

137



APPENDIX A

GRAPHIC 7 MEMORY MANAGEMENT

Al THE ADDRESSING PROBLEM

Being a 16 bit machine, the basic Graphic 7 has a direct
addressing capability of 32K words. The evasion of this limi-
tation has proved to Be a major objective of similar machines
and is currently the aim of the Graphic 7 Memory Management
option. This hardware will allow users to address up to 128K
words, or, effectively, an 18 bit address space. In as much
as the basic word size (16 bits) has not changed, a function
must exist for mapping a 16 Bit address into an 18 bit realm.
Obviocusly, the twe extra Bits must be supplied somewhere between
the operand address and an actual memory reference. In the case
at hand, processor re-design was ruled ocut, thus leaving the
mapping function to the memory itself.

In addition to providing access to a greater volume of
memory, mapping functions are also sometimes used to solve the
problem of code relocation. In this role, the relocation "value"
not only provides the additional addressing Bits But also yields
an address base. This results in all program-local addresses
being just an offset with respect to the base value. Finally,
the combination of address relocation and extension is sometimes
central to the system protect mechanism.

A.2  GRAPHIC 7 MEMORY MANAGEMENT

Memory expansion will be accomplished on the Graphic 7
by supplying relocation registers within the memory logic. First,

138

V
———

o~ - ——— 'm‘

— - p—C



S

o~

the 128K (word) maximum address space will Be supplied as two
64K modules which are identical. Each module will contain
three relocation registers which can bBe addressed as regular
device registers. In order to understand the usage of the
relocation function, we consider a sample 16 BIt address.

Figure A.2-1 depicts the 16 bit address as presented
to the memory management logic. The three high order bits
(labeled "Key £field") will indicate, as shown, whether or
not relocation is to be used and which register will be
applied. The relocation registers are five bits long, with
the final physical address determined as indicated in
Figure A.2-2. It is important to note that the offset portion
of the address remains the same in the final physical address.
The result is that the mapping function can point to any
particular 4K (word) block with user access to the entire block.

In summary, the 32K (words), 16-bit address space has
been divided into 8, 4K blocks. Three of the Blocks can be
mapped into any of the 32, 4K blocks in a 128K word, 18 bit
memory space. The four blocks of 0~4K, 16-20K, 20-24K and
24-28K will continue to reference respective physical memory
areas. Finally, the device register addresses continue to occupy
the highest 4X block.

A3 OPERATING SYSTEM IMPLICATIONS

The performance of the relocation function is usually

left to the operating system. This involves inserting the relevant

values into the relocation registers prior to giving control to
the user task. User tasks generally do not concern themselves'

139



VIRTUAL ADDRESS >

I
f15 %14 [f1a [*12 ] f1af *10f %9 | % %7 | % |2 |2 |2 2% |21 |%
) B I : '
Key Field : ‘ : : : Offset
. ﬁ i
, :
0} 0 0 0O 'DLrect Addressing
1 : 0O 06 1 Combine Offsen with Relocation Register 1
2 %, 6 1 o Combine Offset wlth Relocation Register 2
o 31 0 1 1 Combine Offaeﬁ with Relocation Register 3
3 ! :
¥3 41 1 0 0 Direct Addrﬁsaing :
541 1 0 1 Direct Addressging j t ;
i ) - . H ’ |
6 { 1 1 o Direct Addressing
l ) N H Y
7 i 1 171 Device Registers
| | L
- P
: ;
| i
i
FIGURE A.2-1 MEHOR¥ ADDRESSING
" - w— . — . pl—_ ~/~ e BARRY W——

*j i-ﬁﬁ,¢ ‘h—é --ﬁ M Py



'

is] e P13 fr2f P11l P10 f ®o [ % %7 % |%5 |2 |?3 2 | 0
e A\Vel
Key : ODffset
a ] . ’ 4
1 LU RO I N :
4 | "3 2 1 0 001 '
2 2 2 2 2 ‘ ;
r r r r r o
4 3 2 1 0 010 @
o b H
~ a )
0 0 '
; 2]
3 3 3 3 3
Y "3 Y2 | 1 | Yo 011
Y L ?
¥ ¥
AN ~, AN ' ~
[pl Pr6 | Pis | Pra [ P13 | P12 | P11 [ P10 P9 |Ps |P7 |Pe |P5 P4 |P3 Py | Py | Py

PIUYSICAL ADPDRESS

'
i
1

FIGURE A.2-2 PUHYSICAL ADDRESS CONSTRUCTION



with the relocation problem thus allowing independence from
actual physical load-point comnsiderations. The proposed
Graphic 7 operating system will satisfy this requirement by
storing the user relocation values in the task header.

Several aspects of the particular Graphic 7 memory
management facility result in operating system constraints.
One such restriction is the 12K task size limit, based on
the existence of only three relocation registers. Also, due

to the rather coarse discrimination of the relocation values,

the allocation of core will tend to be somewhat inefficient.

These limitations can probably be accepted for most applications.

Once in execution a task will generally be ignorant of

its actual physical memory location. However, the monitor must
be able to access. the task areas as well as itself. For this
reason the monitor will need to execute in direct address space,

leaving the relocation registers free for references to user

program space.* This requirement is reflected in our decision

to place the monitor in the direct address area of 16-23K.**

Most monitor functicnal areas may thus assume that the calling

task's relocation registers are currently installed.

Recording of task relative addresses either by the monitor
or by other user tasks is generally accomplished by saving the
16 bit task-relative address and the task RR1l value. The RRI
value provides a pointer to the task header, hence access to the
task'sbrelocation registers. Thus, saving the RR1 value yields

in effect, addressing to the entire task image.

* There are implications with respect to interrupt vectors also.
*%* The problem of collision with dedicated ROM space in this area

is yet to be addressed.

142

Bt



As an example of address manipulation within the memory
mapping mechanism we present the code necessary to provide
access to a display element. The display element address re-
turned by the monitor is 2 16 bit physical memory address. For
the user task to gain access to the element storage area it is
necessary to construct a relocation register value and z modified
16 bit address which will be mapped through the relocation register.
The following code assumes the display element address has been
loaded into general register one and relocation register three is
not needed for task execution.

Load Element Addr. Into R1

CLR RO

- ASHC #3,R0 ;Isolate 4X Block Number
MOV RO,8#RR3I ;Set Relocation Value
'BEQ .+6 ST
MOV #6,R0 sForce Mapping Through R3

ASHC #-3,R0 ;Create Revised Address .in R1.

A4 GRAPHIC CONTROLLER MEMORY ACCESS

The Graphic Controller has an 18 bit address capability,
however, only the low order 16 bits are "active." Effectively
this amounts to dividing a 128K (word) memory into 4 , 32K blocks
which, during a continuous refresh cycle, the CGraphic Controller
is restriced to one. This mechanism realistically pfohibits
users from having refresh code within their task areas.

143



W o w w W w

APPENDIX B

SYSTEM GENERATION

Introduction

Memory Configuration Adjustment
Monitor Function Selection
Device Handler Selection
Monitor Services

Miscellaneous Considerations

_ Summary

o S W— f— —

h‘»—« :

—

—

— ,--l — S - W—_

oo— -



B.0 SYSTEM GENERATION - INTRODUCTION

System generation includes those activities necessary
to tailor the monitor to a particular user application.
This involves the specification of a memory configuration
and inclusion of the required monitor functional areas.
For the case of the I/0 function, the user will also specify
the device handlers required by the expected peripheral/
interface population.

The following discussion assumes the user has available
a2 cross assembler/taskbuilder to be applied once the necessary
source file modifications have been made.



B.1 MEMORY CONFIGURATION ADJUSTMENT

The basic memory allocation is discussed in Section
3.1. The user has some latitude in the actual assignments
made to the various basic memory areas. All of the param-
eters effecting memory allocation are within task MMGMT.MAC.
Users should review the normal parameter values and make
adjustments as necessary. MMGMT should be re-assembled
following adjustment of the allocation parameters. The
adjustable points are:

B.1.1 Refresh Space Allocation

The normal allocation for refresh space is 4K blocks
1, 2 and 3. This is indicated by parameter REFBGN and by
the pre-setting of appropriate BMASK bits (to indicate these
blocks are not available for task space allocation). The
user may, depending on the particular application requirements,
restrict the refresh space to only block 1 or blocks 1 and 2.
(Refresh space must be adjacent to schedule tablé, block zero.)
Any change to the refresh allocation is easily accomplished
by adjusting parameter REFBGN and clearing respective BMASK
bits.

B.1.2 Monitor Space Allocation

The monitor image 1s assembled to begin at octal 100000
and occupy 4K blocks 4 and 5. The scaling services, if used,
occupy block 6. These blocks are reserved by the setting
of the respective BMASK bits. If the scaling services are
not required or the monitor image needs only one 4K block,
then the appropriate 4K block bits in BMASK should be reset
(thus making these blocks available for task space allocation).

146

———

L — e A— uﬁw

— . —

[



A word concerning the monitor stack. The stack area
used by the monitor routines is normally located at the top
of 4K block 5. The initial stack value is specified by
parameter SYSR6 in module MNTRSP.MAC. Obviously this value
must be adjusted if you restrict the monitor to block 4.
Also, the stack pointer initial value may be adjusted to
allow for a (small, typically) global common area within
the direct address space of blocks 4 & 5. Such an area,
assuming the overall monitor memory requirement permits,
can be particularly convenient in light of its direct-address
nature and consequent ease of access by all user tasks.
(This is independent of the global common discussed below.)

B.1.3 Global Common Allocation

During system generation the user may reserve up to
4 4X blocks as global common space. This is accomplished
by placing the block numbers in array GBLCOM and then adjust-
ing the respective BMASK bits (see also section 3.5).

B.1.4 Task Space Allocation

Any 4K blocks not .consumed by the above requirements
.may be employed by user tasks. For this purpose, all 4K
blocks are identical and are assigned on an as-needed basis
by the appropriate MMGMT entry points.

The maximum memory size is indicated bf parameter
MAXBLK which is typically set to either 16 (64K memory) or
32 (128K memory). The initial state of all 4K blocks
(allocated or unallocated) 1s indicated by BMASK.



3.2  MONITOR FUNCTION SELECTION

Inclusion of -the basic monitor functions is generally
dependent on the user configuration and available monitor
memory space. Some of the functional areas are rather basic
to the overall monitor structure and must be included
(memory management, task management, etc.).

Qther functions may be included at the option of the
user. Thosé which are easily excluded are photopen services
and data transfer services. Display management involves Display
Element Management and the Display Scheduler. These two
elements generally need to be included or excluded together.
In summary, the system generation activity should include a
review of each functional area with a decision to either
include or exclude each from the final system image.

These decisions result in modifications to the function
access table, FUNTBL, in the supervisor module, MNTRSP.
Appropriate adjustments to the GLOBAL declarations in MNTRSP
will also need to be made so that the selected modules are
included at task build time.?®

B.2.1 Display Scheduler Selection

Two versions of the Display Scheduler are available;
one for color (SCHDLR) and one for monochrome (MSCHDL).
Users should include the one appropriate to their situation.
This may be done during system task build.

*Note that entries in FUNTBL are position dependent.
Unused entries may be employed by individual users
for specialized monitor functions.

148

h'- — —— .-x_‘ — »“,y




~ 2a

B.3 DEVICE HANDLER SELECTION

The monitor I/0 functional area consists of an I/0
supervisor, module IOSPVR, and a variable number of device
handlers. Access to a particular device handler, by a
user task, is on the basis of a "physical"* device number
contained in one of the eight entries of the user task
header. This physical device number is simply used to index
the table of device driver addresses, DEVADR, contained in
the supervisor module, MNTRSP. Table DEVADR should be
adjusted by the user, at system generation time, to reflect
the actual device drivers required. Each entry will also
have a companion GLOBAL declaration. Parameter NUMDEV should
reflect the number of device handlers in the final system
image. Entries in DEVADR have positionzl significance in
that user tasks expect a particular device to be associated
with a unique positive integer which is used -to index into
the table.

*We use the term physical in order to distinguish
this quantity from the "logical' device number
contained in the user I/0 control blocks.

149



B.4 MONITOR SERVICES SELECTION

The monitor functional area known as 'Monitor Services'
contains a variety of sub-modules which are of general interest
to many user application tasks. The system generator should
Teview the standard entries in this area and dispose of those
which are not required by this application. In addition,
users may add specialized services to this section as required
by particular situations.* Addition/Deletion of specific
services entails the following adjustments:**

a) adjust table SRVTBL in module MTRSRV
b) adjust GLOBAL declarations in MTRSRV

c) adjust the initialization entry (zero)
of MTRSRV to reflect any initialization
requirements of the added/dropped

services.

 *Users will frequently face decisions regarding
inclusion of certain functions as monitor
services or as user-task-resident subroutines.
There are no generally applicable rules here,
however, inclusion of new monitor services should
take into account the overhead inherent in the ‘
monitor call and expanded monitor memory requirements.

*#*Tn addition to adding sub-functions within the Monitor
Services section, users may also add new monitor
functicnal areas. This is easily accomplished by
adjustments to table FUNTBL in the supervisor module,
MNTRSP. It is advisable to review the EMT servicing
section of MNTRSP before proceeding with a functiocnal
area addition.

. N Ay emg,



B.5 MISCELLANEOUS CONSIDERATIONS

B.5.1 Initial Task Load

The standard monitor structure is set up to do a
task load as the last action of system initialization. The
usual task is OPCOM (task 01), from the paper tape reader.
The task and/or device may be changed by modifying the
LDTSK block in the supervisor module, MNTRSP.

B.5.2 Execution Status Monitor

The standard monitor displays a system identification
message at the top of the screen. This line contains an
execution indicator (alternating XO pattern) which can be of
value during system implementation/test to roughly judge CPU
load. Suppression of the monitor title line is accomplished
by changing the priority of the schedule entry or nulling-out
the schedule request. Reference MNTRSP, initialization
'section.

151



B.6 SYSTEM GENERATION SUMMARY

The overall sequence for generating a tailored monitor

image is then:

a)
b)
c)

d)

e)
£)

g)

Adjust memory layout

Select monitor functions

Select device drivers

Select monitor services

Edit necessary source modules
Assemble source modules *

Task build the system image to start
at octal 10000Q. Module MNTRSP
should be first in the loadAimagé;
ordering otherwise unimportant.

* Monitor source modules require, on assembly, the

inclusion of file HDROFF.MAC which contains the

task header offset definitions and the G7CALL macro.

152

e W s W—

pu—— _ a—— ___ W



-



APPENDIX C

QUERY/RESPONSE SUBROUTINE

C.0 Query/Rasponse Discussiocn

C.1l Query Subroutine Usage

153

I B H - H . v -

— . p—



C.0 Query/Response Discussion

The ability to display a guery to the operator and accept
his response is a common reguirement of real time processing
systems. To this end, the monitor provides the basic resources
necessary to implement the query capability with some of the
requirement left to the user application routine. The monitor
contribution to the guery problem consists of the necessary
display functions, keyboard handler and guery buffer resources.
The user is then responsible for combining these facilities in
such fashion as is necessary to satisfy the particular guery/
response reguirement.

As an example of the possible manipulation of these re-
sources, we present a somewhat generalized query/response sub-
routine which the user may link into his application routine.
.This routine will take a reasonably simple parameter block and
‘thus relieve the user of many details regarding the various
‘monitor services employed. While the routine discussed below
will serve a wide variety of query situations, it may need to
be modified or 'extended to suit partiecular application reguire-
ments. |

In addition to its usage here as a query subroutine, users
may also reference the included listing for examples of appli-
cation of the various monitor functions.

C.l. Query Subroutine Usage

The Query/Response subroutine (QRYRSP) may be used to dis-
play an alphanumeric guery line in the lower left corner of the
display and accept a response from the keyboard. Characters en-
tered on the keyboard are reflected in the display at the end
©of the guery line. The user response is always terminated with
a carriage return. Logical device zero is assumed to be the
relevant keyboard.

154



The call to this routine will consist of lcading the

address of a parameter block into register one and then executing:

JSR PC,QRYRSP

The parameter block is of the form:

Word Contents
Q Address of quezry line
1 Address of response buffer
2 Response length (byte 1)

Max. Response Length (byte 0)

The gquery line should be terminated with a null (zero) byte.
The response characters are returned with the parity (high order
bit) clearsd. The response will be terminated with a carriage
:eturn (octal 15); however, the count returned in byte § of the
parameter block does not include the carriage return character.

Users may modify this routine to suit their particular re-
qﬁirements. As an example, the schedule entry control block
may be adjusted to change the location, intensity, color, etc.
of the displayed query line. Time-cut on the response might
also be required in some instances.

The subroutine assambly listing is shown in Figure C.1-1.
One might also note that QRYRSP may be used to display non-
response messages by simply‘placing a zero in the response buffer
address parameter.

i e e



- wa

CR YR 8P

9st

N AV N e QQ DN S N

P e e Y

~
Qo

LYV VLY
B e N -

LN NN
QO @A~N> W

A N
Fold ) -

[C R VIR R v
QTN

N~
-

RV RV AV AV RN W N R I X}
WA S OD ™ AW WN

000000
000000

000002
000004

000006
000010

000012
000012
000016
000020
0000 24

000000

000001
000002

000003

000004
00000s

000006
000007

010046
010146
010246
010346
010102

012701

105737
001404

0p0252
020004

<

MACRG MIVI0 31-JUL-79 06322 PACE 3

+THTLE CRYRSP
oNLEST PBREXsKE

IZRERERRRERRRERENIRERERSNTRERERNLIEERE NIRRT NERERISRREYRIRRNT LRI NE Y]

1A

(R OUVERY/RESPONSE USER TASK SUBROUTINE.

Al

'l'nlﬂlnHN"IHI"HKH“WNIHNNV'*NNHI'NIIHHHWIHHIﬂNKlINN!llNINHHNNN!NIIHIII

’

; PROGRAMHERS M, FRY
) DATE:
1 .
9 PURPOSE! TO ALLOW A USER ROUTINE: 10 DISPLAY A QUERY LINE
’ AND ACCEPRT A RESPONSE VLA INPUT REFLECTED ON THE DISPLAY.
] . .
?  ENTRY CONDITIONSY .
) RY POINTS TO PARAHETER BLOCK OF THE FORM:
' VORD CONTENTS
. ————— e mm e .-
’ 0 CUERY BUFFER ADDRESS
’ 1 RESPONSE BUFFER ADDRESS
’ 2 NO. CHARS ENTERED/MAX CHMARS TO ACCEPT
]
$  NOTES: ,
’ - QUERY LINE SHOULD BE TERMINATED BY HULULCZERO BYTE):
’ - COMBINED LENGIWS OF OQUERY AND RESPONSE SHOULD BE NO
! GREATER THAN 726 BYYES (INCILUDING CARRIAGE RETURN),
' ~ SUBROUVINE WiLL USE TEMED SUSPENSION IF EITHER OF
’ QUERY BUFFER OR INPUT DEVICE 15 UNAVAILABLE.
’
+GLOBL QRYRSP
RO=X0
Ri=¥%1
R2=%2
R3=%3
R&=X%4
R5=%5
SP=X6
PC=%7
ORYRSPS . .
Hov RO~ ¢SP) # SAVE REGISTERS AS NEEDED
MoV R1»-(SP)
HOV R2s-(5P)
Hov R3,-(SP) )
Hov R1,R2 § SAVE PARH BLX POINTER
3
3 ALLDCATE A OUERY/RESPONSE BUFFER.
'
TRY2: B
Mov BORYBLK,RY ? POINT YO PARAKETER BLOCK
GTTALL 1,1 # REFERENCE HONITCR SERVICES
TST8  anTsHRST ) SUCCESSFUL ALLOCATION 7
BEO HAVEILT

FIGURE C.1-1

(Page 1 of 4 pages)



OR YR SP

LS1

55
56
57
58
59
60
61
62
63
b4
65
66
61
68

0000 26
600032
000034

000036
000036
000044

000050

69 -

70
71
12
73
74
15
76
17
18
79
80
81
82
a3
b4
85
86
a1
88
89
90
21
92
93
94
95
96
917
98
929
100
1461
102
163
104
105
106
107

000052
000054
000060
000060
000062
000064
000070
000072
000074
000074
000100
000104

000112
000112
000116
800120
0001 24
0001 26
000132
000134

000134
000136
000142

000144
000150

012701

0007466

016767
D12701

811200

016701

112003
001404
652703
110321
000772

112721

010167
116287

012701
105737
001404
012701

0600748

D12701

012701

000254

HACRO H1110

000210 000226

000256¢

000172
0200200

000240
000174
0006004

00274
020004

0002541

000314

000274

000170

FICHPF
ﬂi-nw~ ﬂ-i- n-- ii-~

31-00L-79 08123 PAGE 4

] ON FAHURE, SUSPEND FOR ONE SECONKD.
)

Hov
G7CALL
HBR

AVEIT:
Hov
Hov
G7CAtLL

ETHOUT SR Y
3,5
TRY2

ORYBLK,QBUF AD
BOECTLB,RY
4y2

)
1]

]
)
[}
]
]

REQUEST TINED SUSPENSIOGH
RETRY THE BUFFER ALLGCATJON -

DEFINE VHE DISPLAY ELEHENT FOR QUERY LINE EXPOSURE .

INSERT CALL ADDRo IN ELEMENT

POINT TO P ARAMETER BLOCK

PASS THE DISPLAY ELFKFERT

ME IGNORE THE POSSIBILITY Of
DISPLAY ELEHENT ALLGCATION fAlLUREo

. ‘
) HOVE QUERY LINE T0 BUFFER AREA.

Hav
HOV
GEYALL:
MHOVB
BEQ
815
Hove
BR
BUFENDS
Hovae
Hov
HOVB

)

§

3

ATHAGN:
HoV
G7CALL
1578
BEQ
Hov
G7CALL
BR.

)
) ]
1
SCHIT1
KOV
G7CALL

(R2) ;R0
ORYBLK,RT

(ROY#+,R]
BUFEND
#200,R3
R3,(R1)+
GETALL

0240,CR1)+
R1ILRESPI0+4
L(R2),RESP L0+6

ATTACH THE KEYBOAROD.

HRESPI0,R1
7,3

QL TSHRST °
SCHIT
#THOUT,RY
£ :
ATHAGH

SCHEDULE TYHE CUERY LINE,

HSCHBLKSRY
551

-

- e

-

3
3

PICK UP QUERY LINE START ADDRESS
PICK UP BUFFER START ADDR.

PICK UP A QUERY LINE CHARACTER

CHECK FGR NULL TERHINATION

HAKE INTO TEXV COHPATIBLE FORH .
PLACE CHAR IN CUERY BUFFER :

NEED BLANK BEFORE RESPONSE
SET RESPONSE AODR [N 1/0 BLOCK
SET EXPECTED LENGTH IN }/0 BLOCK

POINT TO THE 1/0 BLOCK

ISSUE ATTACH REQUESY

ATTACH ACCEPIED ?

CONYIMUE 1F ATTACH SUCCESS |

TIHE OUT FOR ONE SECOND ‘
REQUEST TIHED SUSPENSION

YRY ATTACH -AGAIN

POINT TO PARAMETER BLOCK
ALERT THE DISPLAY SCHEDULER

3 : . L
3 REQUEST INPUT FROH THE KEVBOARD.

HOV
G7CALL

c'1-1

BRESPIGs RY
7s5

(Pore 2z

o~ £

]
L]
)

POINT TO 1/0 CTL BLK
REQUEST KEYBOARD INPUT
POSSIBLE 1/0 ERROR IGNORED




8sl

OR YR SP

109
110
"
12
13
14
1s
116
117
118
1My
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
164
145
146
147
1.8
149
150
151
152
153

000152
000156

0001460 -

000164
000170
000172
000176
000176
000200
000204
000206

000210
000210

000214

000216
000222

0002 24
000230

000232
000236

000240
000242
0002484
000246
0002s0

016200
0014614
016701
110162

00520%
016703

112302

062702
110220

077105

012701

0127014

012701

0127014

012603
012602
612601
012600
oon2o07

000002

000126
000005

000102

000200

000274

000314

000256°

000252

HACRO KWITV0  31-40L-79 0B6¥23 PAGE §

]
? HOVE RESPONSE TO USER BUFFER.

oV 2(R2),R0
BEQ JENORE
Hov KESPIO+16,R1
HOVB R1s5(R2)
e R
~ Hov RESPIO+4,R3

HOVIT:
HOovB (R3)+;R2
BIC 1200,R2
HOVB R2: (RO
508 R1,HOVIT

?

’ DEVACH THE KEYBOARD.

14

IGNORE?
HOV HRESPIO, RY
G7CALL  7»4

] DELETE THE

Hov
G7CALL

HSCHBLKRT
522
] DELETE THE DISPLAY ELEMENT,

PDECTLE,RY
LS

Hov

C7CALL
[] RELEASE THE GUERY DUFFER.
’

HORYBLK,RY
11

MOV
G7CALL

RESVORE REGISTERS AND EXITVs

HOV (SP)+»R3
HOV (SP)+,R2
HOV (SPY+,R1
HOV (5P )+,R0
RTS PC

FIGURE C.1-1

s
]

j
’

- e we W

PICK UP RESPONSE BUFFER ADURS
IGKOGRE IF ZERO

PICK UP RESPOGNSE COUNT

INSERT IN CALLER PARAMETER BLOCK
ACCOUNT FOR CARRIAGE RETUKN

PICK UP STARY OF ENTERED TEXTY

PICK UP RESPONSE CHARACTER
ERASE PARKTY BIT

PLACE IN USER BUFFER

HOVE ALL RESPONSE CHARACTERS

POINT 10 1/0 BLOCK
ISSUE DETACH RECUEST

SCHEODULE TABLE ENTRY,

PO INT TO SCHe CONTROL DLOCK -
REFERENCE THE DISPLAY SCHEDULER

POINT TO ELEMENT CONTROL BLK
REFERENCE DISPLAY ELEMENT MGHT

POINT TO PARAMETER BLOCK
REFERENCED MONIYOR SERVICE :
WiLL ZERO ORYBLK SO AS 70 BE .
READY FOR THE NEXT ALLOCAVION. :

RETURN TO CALLER

(Page 3 of 4 pages)



-~ OR YR 5P HACRO H1110 31-JUL~79 06123 PIGE &

-
155 ]
156 [} STORAGE AND CONSTANYS FOR OUERY/RESPONSE SUBROUTINE.
157 [
- is8 ] PARAHETER BLOCK FOR OUERY BUFFER ALLOCAT IOk
159 [
_ }6? 000252 000000 ORYBLKS +MORD 0

6 )
162 ) PARAHETER BLOCK FOR 1 SECOND TASK SUSPENSION.
163 )
164 000254 000012 THOUTs L WORD 10. ) ) SECGND IN TENTH SECONDS
165 I . )
166 [ PARAMEYER BLOCK FOR DISPLAY ELEMENT DEFINITION.
167 : ] C
168 000256 000000 DECILBs +MORD 0 3. RESERVED MORD
169 006260 000000 +NORD 0 ) ELEHMENY STARY ADDRESSCREVURNED)
170 bo0262 000000 «MORD 0 ) ELEHENT FLAGS/STATUS .
171 000264 000004 «NORD [ 3 ELEMENT LENGTH '
172 000266 000270+ - «HORD ot2 ) POINT TO ELEPENY
173 000270 002100 «NORD 2100 ) CALL REFRESH SUBROUY INE
174 000272 000000 QBUF ADs JUORD 0 4 OUERY BUFFER ADDRY TO BE INSERTED
175 ; ’
1716 ] 170 BLOCK FOR KEYBOARD INPUT.
1717 ’ : .
178 000274 000800 RESP 108 «UORD 1] ) RESERVED
179 000276 000001 . +WORD 1 ) LOGICAL DEVICE ONE ASSURED
180 000300 000000 +WORD 1] ) RESPONSE BUFFER ADOR.
181 000302 000000 «MORD 0 ) RESPONSE EXPECYED LENGTH
182 000304 020000 +MORD 20000 ) IGNCRE FUNCYION KEYS .
183 00D306 000000 <MORD O 3 NO ERROR RETURN

o 184 000310 000000 : «WORD 0 3 NO TIHE-OUY
O 185 000312 000000 . «NORD 0 5 TRANSFER COUNI (RETURNED)
186 3
187 ’ ] SCHEDULE CONTROL BLOCK FOR QUERY LINE. ) . . .
188 ] ' e
189 0600314 000000 SCHBLKY «VORD 0 ) RESERVED ;
190 000316 000000 . +HORD 0 ) SCHEDULE ENTRY ADDRESS (REVTURNED) ,
191 000320 000000 +NORD 0 b STATUS AND FLAGS
192 000322 000254 «NORD DECTLB ) ELEMENY CTL BLK POINIER
193 000324 177 003 «BYTE 127423 3 PRIORITYS:CRYS
194 000326 0a7 003 +«BYTE 753 3 INTENSILTY, COLOR
195 000330 000 000 «BYTE ° 0,0 3 LINE STRUCTURE »CHAR SIZE
196 000332 177076 +HORD ~450. ¥ X START
197 000334 177045 JUORD  -475.. 1 Y START
198 3 HODIFY NOY NEEDED
199 000001 «END
_ FTGUP® . 1-1 . fPage A of A pap=c) : ‘

ver a






APPENDIX D
GRAPHIC 7 MONITOR
OPERATOR COMMUNICATIONS

OPERATOR COMMUNTICATIONS

OPERATOR COMMUNICATIONS IMPLEMENTATION
OPERATOR COMMANDS

BREAKPOINT SERVICES ‘

160

A e am—

—— . et S iy pe—






D.0 OPERATOR COMMUNICATIONS

Operating system interaction with the operator or applicatiecn
task programmer takes place through the Operator Communications
module. Typically, the system provides for monitoring task
execution, displaying task status and dumping/modifying memory.
This facility will normally be heavily used during application
system development and may or may not be actually present during
final system operation. The following section describes the
implementation of the Operator Communications module in the
Graphic 7 monitor.

D.1 OQOperator Communications Implementation

In the Graphic 7 monitor, the Operator Communications module
(herein after referred to as OPCPM) executes as an independent

task, the same as any application task. This configuration allows

for deleting the JPCOM module in the final system implementation
(and thus gaining an extra 4K block of memory space) while also
reducing requirements on resident monitor direct address space.
During system development the OPCPM task will be automatically
loaded during system initialization. @PCPM is then activated by
simply depressing Control/C on the system keybocard. Being at the
highest priority, the request prompt is immediately displayed.
@PCPM then utilizes the various standard monitor I/0 services

to satisfy the request.

161

—————_

. ein_ | samen p—

A



Commands to OPCOM take the following standard format:
verb argl, argl2,...., argn

Argument formats are dependent on the particular verb
and are discussed in Section D.2Z. The verb may be spelled
out completely or only to the extent necessary to distinguish
between the various commands. The following conventions
should be observed:

a. Task ID's are always specified as two hexadecimal
digits, (must be upper case).

b. .Addresses are specified in octal; up to six digits.
Task offsets are in the range 0-57776.

©. All inputs are terminated by a carriage return.
d. A carriage return must be entered to Telease OPCOM

in the event of .2 non-query message (i.e., an error
message, memory dump, etc.).

162



Error messages from OPCOM take the following general
form:

ERR@R: nn message

"nn'' is the status code returned by the particular monitor
function which was exercised. For example, the ""Disable Task'
command will use the respective Task Management entry point.

Any error returned from such would be reflected in the "nn"
field. This is a decimal number. The '"'message' field will serve
to indicate the command type which failed or the failure reasaqn.

D.2 Operator Commands

The variocus commands are outlined in the following sections.
Users are cautioned to pay particular attention to the argument
list and argument types which are expected to be specified with
each verb. If there is some doubt about the required argument
list, then just specify the verb and a separate query will be issued
for the arguments. |

D.2.1 Abort Task

Abort may be used to forcefully terminate task execution.

Syntax: ABQRT taskid

In order to be run>again, the task must be reloaded.

163 y

—— “-\‘



D.2.4.1 Task Memory Dump

It is often convenient to display memory relative to
a particular task area. This may be accomplished via the
subject task ID and the "TDUMP" command:

Syntax: TDUMP taskid, offset

Following display of the initial 128 word block, the
following three single character options are available:

a. Slash - step forward 64 words
b. Up arrow - step back 64 words

¢c. Carriage return - exit

164



D.2.2 Continue Task

A task which is currently suspended (indefinite or timed)
may be activated by the continue command. An optional task
offset may be specified if the resumption point is not to be
the current task execution location.® The offset is a 'zero-
relative' value which OPCOM will convert to a task address by
adding octal 20000. After possibly adjusting the saved PC
value, OPCOM utilizes the Task Management continue service
to awaken the task.

Syntax: CONTINUE taskid [,offset]

D.2.3 Disable Task

Disable may be used to cause a task to be ineligible for
execution. Activation of the task would not be possible until
an Enable was issued.

Syntax: DISABLE taskid

D.2.4 Dump Memory

The Mémory’Dump facility will cause a 128 word block of
memory to be displayed. The start address, to the nearest even
eight word boundary, is the only argument. Following display of
the initial 128 word block, the following three single character
options are available: '

oY

Slash - step forward 64 words

o

Up arrow - step back 64 words
c. Carriage return - exit

Syntax: DUMP address

*  One should exercise care in modifying the execution sequence
since, for obvious reasons, some task code 1s not re-executable.
For example, re-execution of display schedule requests or
display element requests would typically be unacceptable and
yield mystifying system behavior.

165 ’




D.2.5 Enable Task

Enable will erase the relevant task status bit, via the
associated Task Management entry. Depending on relative priorities
and other status conditions, the task will now be eligible for
CPU time.

Syntax: ENABLE taskid
D.2.6 Load Task
Load will be used to introduce mnew tasks to the system.
Syntax: L@AD taskid, device (,filename)
Notes: ‘
a) DEVICE should be & physical device number. (Physical device
numbers are determined during system generation.)
b) FILENAME is optional, depending on the medium. Maximum of

nine characters.

D.2.7 Patch Memory

The Patch service allows for modifying a single memory word
or a2 block of words. This command has two forms depending on
whether two or three arguments are specified. The two argument
form is:

Syntax: PATCH address, value
(VALUE is placed at ADDRESS)

The three argument form is:

Syntax: PATCH addrl, addr2, value
(VALUE is placed in locations ADDRI thru ADDR2.)

166



D.2.7.1 Patch Task Memory

Memory can be modified on a task relative basis byv
using the TPATCH command. This command, as in the normal ' '
PATCH, has two forms. For a single word patch: [

Syntax: TPATCH taskid, offset, wvalue -
("value" is placed at "offset") [

For a block of words:

Syntax: TPATCH taskid, offset 1, offset 2, value
("value" is placed in locations "offset 1"
thru "offset 2")

e

i

167 g

A—— . ——



D.2.8 Display Task Status

Task status includes the various parameters in the task
header and the general registers. The header parameters are
identified by their standard offset notatioms. For a description
of these entities, see the Task Management section.

Syntax: ~STATUS taskid

D.2.9 Suspend Task

Suspend may be used to inhibit task execution for a timed or
indefinite interval. The time argument, if supplied, should be
an integral value in 1/10 second units.

Syntax: SUSPEND taskid (, time)

D.2.10 Update Task Status

The update facility mey be used to- modlfy ‘the low order eight
blts in the subject task's status word. The associated Task
Management entry is exercised.

Syntax: UPDATE taskid, status

D.2.11 Display/Set Date/Time

The TIME command may be used to either enter the current time
or display the current time. The syntax for entering the current
time is: , ‘

. TIME HH:MM:SS %NM/DD/YY%

To display the current date/time simply issue the TIME command

with no arguments.

168



D.2.12 S:ep-Thru-Memory

TSTEPM and STEPM allow a user to address and display a
memory word, step to and display the preceding or succeeding
word location, and optionally replace the value of the displayed
memory word. TSTEPM addresses the word relative to its location
within a task memory space, while STEPM addresses the word
directly or by its absolute location in memory . Command syntax
is:

TSTEPM taskid, offset (within task) (task relative)
STEPM address (direct)

where taskid is hex; address is: 16 bit octal for task relative
' 18 bit octal for direct.

Once the memory word is displayed the user may step to a
preceding or succeeding memory word by depressing the uparrow or
slash key, respectively.

The displayed memory word may be replace& by entering a
6-digit octal number, and depressing the slash, uparrow, or:
carriage return key. Carriage return will display the new value
at the presently displayed location, while slash and uparrow
conceal the change from the user because a different location is
next displayed.

Exit from the service is achieved by depressing the carriage
Teturn key when no new value is entered.

The TSTEPM/STEPM service 1s useful when several closely
located changes are to be made and the TPATCH and PATCH service
may be awkward.

169

—— w— T —— .




D.2.13 Device Register Display

The memory dump commands naturally reference theAmemory
block for addresses which cover the device register page. The
Register command may be used to examine any direct address in
the range 160000 to 177776. An error message is displayed if
the address is not within this range or the device is non-
responsive.

Syntax: REGISTER address

170



D.3 ~ BREAKPOINT SERVICES

The OPCOM breakpoint services allow a useT to interrupt
a task and examine task status or memory contents. This facility
will be valuable for determining the execution sequence or
intermediate results of user tasks during initial debug.

D.3.1 BREAKPOINT QPERATION

Task breakpoints are inserted by specifying the task
ID and an octal task offset (0-...). When the breakpoint is
encountered during task execution, the task is suspended and
OPCOM is notified. OPCOM displays a message indicating:
a. task ID (2 hexadecimal digits)
b. task offset (5 octal digits)
¢. Dbreakpoint number (decimal, 1-n)

The breakpoint will need to be deleted if the task is to be
continued at the given offset. The optional offset parameter
of the task continue directive may be used to cause execution
te resume at a different pcint.

D.3.2 BREAKPQINT SIDE EFFECTS

The bredkpoint capability is implemented using function
code zero of the standard EMT moniter call structure. The
sub-function bits are used to store the breakpoint number.
(Thus yielding a maximum of 16 breakpoints with OPCOM possibly
Testricted to less.) As a result of this implementation scheme
the following side effect should be noted: the T$MRST status
byte in the user's task header is cleared when the breakpoint
occurs.

D.3.3 BREAKXPOINT RESTRICTIONS

The breakpoint service cannot be used within the monitor
or any portion of a user task called as an appendage to the
monitor.

17N



D.3.4 OPCOM BREAKPOINT COMMANDS

The following command verbs may be used to manipulate
breakpoints.

D.3.4.1 Insert Breakpoint

The insert directive will place & breakpoint in the
indicated task, at the specified offset. Remember that task
offset values are always Telative to zero whereas task addresses
will typically be biased by octal 20000. The integral break-
point number is displayed following saving of the current offset
contents and insertion of the breakpoint instruction.

Syntax: BINSERT taskid, offset

D.3.4.2 Delete Breakpoint

Breakpoints are never automatically deleted by OPCOM.
The delete command, specifying the breakpoint .number, will be
used to eliminate previously defined break locations. The
action of the delete is to replace the break instruction with
the previous offset contents. If this is the current task
execution point then the task may now be continued in the
normal manner. (When the break -occurs the task PC is adjusted
to force re-execution of the break offset location.)

Syntax: BDELETE breakpoint-number

D.3.4.3 Purge Breakpoints

The purge command may be used to eliminate all currently
defined breakpoints. The purge request is advisable whenever
any task exists or aborts since the breakpoints are not
automatically eliminated. Purge takes no arguments.

Syntax: BPURGE

172



APPENDIX E

DISPLAY DATA SUPPORT

Introduction .
Coordinate Systems/Conversions
Standard Display Element Format

Display Data System Support Subroutines

173

.,‘ *!._ N *‘.-4.

3

—



E.0 DISPLAY DATA SUPPORT - INTRODUCTION

The objective of the Display Data Support facility is
to provide monitor based services relevant to general display
data manipulation. The following sections discuss a standard
display data format and associated support subroutines. The
standard display data format is intended to allow greater pre-
cision than a typical refresh instruction format as well as to
allow the user to supply graphic data independent of any par-
ticular machine code. The data format discussed herein will
provide all of the flexibility of a refresh representation
while being purposely tailored to geographic display elements.
The ‘subroutines associated with supporting the standard data
format will allow for converting to refresh code while apply-
ing coordinate transformations and scaling. These routines
will be callakle in the standard Graphic 7 monitor context al-
though not considered part of the resident monitor. Details
regarding the subroutines are covered in Section E.3. Before
proceeding to the standard display data format, we review the
assumptions behind the coordinate system used for specifica-

tion of the input display data.

174



E.1l COORDINATE SYSTEMS/COORDINATE CONVERSIONS

‘Inherent in the specification of a common display data
format is the definition of a global coordinate system.
This global coordinate system should allow for data descrip-
tion at precision levels consistent witﬁ the 16 bit word size
and system design objectives. Also, the global coordinate
system will allow for relating display entities from various
data scurces. Given the global coordinate system, a function
must then be provided for convertiﬁg to display coordinates.
This conversion involves the specification of the display
origin and a scale factor. In this area, we feel a careful
definition of terms is necessary to ensure consistency and
thus allow for the application of generalizedp.moﬁitor-based
services. | |

Qur view of the global coordinate system with respect
to a samplé display element is shown in Figure E.l1-1. The
overzll scheme is one of ;artesian coordinates.* A local
origin (Xo, Yo is defined for each display element in terms
of the global cocrdinates. This element origin is stored in
the display element header. Specifications relevant to a par-
ticulér display element (move to point X,¥; etc.) will then
be relative to the local element origin. A scale adjustment
may be made to the local coordinates via factors contained
in the element header. This adjustment may be necessary, for

example, if data are obtained from different library or real

* Other coordinate systems (polar, etc.) could be supported
on a special case basis. The important point is that we do
not expect £o support adjustments for earth curvature or other
map related transformations.

[ .. uﬁ‘n-\- dm_

— M—— . e—



max.
|
[}
{
(\/ Xc,yc
Lz
i
¢
f
) Y@
& min
Xmin XC
max
x& ,'x@  v& Y& | . Global coordinate

’

min max min max system boundaries

FIGURE E.1-1. Global Coordinate System

176



time socurces. At this point, the relationship between some
particular map point (for example, Xc, Yc in Figure E.l-1)
and the global coordinats system should be clesar. How then
do we establish this element/peint in a scresn image?

Several mechanisms exist for defining the relationship
between the global coordinates and a particular screen area.
For our expectad operating situation, it appears convenient
to specify the mapping function in terms of a display origin,
display boundary and a scale factor. Thus, in transformihq
a display element from the standard format, the user task will
need to indicate what point on the display corresponds to the
element origin (Xo, Yo in Figure E.l-1). A user supplied
scale and clipping boundary will also be applied during the
element transformation. The overall transformation is de-
picted in Figure E.l-2.

The steps involved in converting a display element
specification in standard format to an image component are
then:

(2) Apply the element origin and optional

scale factors to convert each element
point to the glcbal coordinats system.

(2) Apply the requeste& display origin and

display scale factor to arrive at screen—

relative coordinates.

(¢) Account for the specified clipping boundary.

177




DATA
SPACE

XpsYo0

zi—.clipping‘

boundary

FIGURE E.1-2 Display Element Transformation

178



E.2 STANDARD DISPLAY ELEMENT FORMAT

The Standard Display Element Format is depicted in
Figure E.2-1. The Element header will contain parameters
relevant to element identification, conversion and display.
These. attributes are outlined in Figure E. 2.1-1.

The data portion of the display element is composed
of a series of subsections which specify the various move,
draw, text, etc. image components. Each subsection is
composed of a mode (command) control word followed by a
group of parameters (typically x,y coordinates). The number
of such parametsrs may be, depending on the mode type, fixed,
adjustable, or wvariable. For variable modes, a terminator
must be specified prior to the next mode control.

Users will want to note the definition of each mode:
very carefully before proceeding to generate a standard data

file.

179



HEADER
(FIXED LENGTH)

—— e e W G T G S GhEme b S—

DATA

(VARIABRLE LENGTH)

FIGURE E.2-1 Standard Display Element Format

180



E.2.1 Display Elsment Headerxr

The Element Header contains parameters relevant to
the identification and orientation of the image component.
The variocus parameters are outlined in Figure E.2.1-1.
Reviewing the varicus fields:

Element ID: 8 ASCII characters

Length: total bytes including the header

Flags: TBD

Origin X,¥: element origin in global coordinate
sSystem units

X,¥ Conversion Factors: optiocnal factors for
converting from local units to
glokal units.

Color: 0, 1, 2 or 3*

Intensity: Q=7%

Line Structure: 0, 1, 2 oxr 3*

Character Size: 0, 1, 2 or 3*

Display Flags: Bit Usage

Character rotate*

Blink*

LAOAUTLEWN O

* These factors would, of course, only be recommendations,
i.e., not prohibiting the user routine from supplying its own
attributes. :

181

- .



WORD 13 0

0
1 ELEMENT
: ID
° —— i —— — ——  o—
‘ _Lemgzh (Bytes) _ _ _
S Flags
6 “origin X _ _ _ _
7 “Origin Y
8 _-i—E;;;— g;;-or* -
o _ ¥ conv. factor*  _ _
10 .
11 .
12 I
13 _ Display Flags __ _ _
14 —Golor | Inmtensity
15 Line Struct Char. Si:z

* The conversion factors have an assumed
binary point between bits 7 and 8.

Figure E.2.1-1 Display Element Header

182



E.2.2 Mode Definitions

The mode definitions consist of a mode identifier (ID)
and a list of applicable arguments. A new mode identifier
is assumed to follow the end of each subsection. The various
definitions are discussed on the following pages. Users will
want to study the available options so as to allow the most
efficient data representation possible. »

The mode numbers, placed in subsection byte 0 in each
case, are given in decimal. All x,y coordinates/deltas are
assumed to be signed binary integers.

The COUNT Byte, where applicabLe, is taken to be an un-

signed eight bit integer.

183

— e g paemsh, s e Y e W

i




MODE = 1, MOVE ARBSOLUTE

SUBSECTION STRUCTURE:

WORD CONTENTS
0* 1
1l : X COORDINATE
2 Y COORDINATE

(FIXED LENGTH SUBSECTION)

* High order byte ignored.

184



MODE = 2, MOVE RELATIVE (SHORT)

SUBSECTION STRUCTURE:

WORD CONTENTS

Q= . 2
1, byte 0 X delta
1, byte 1 ¥ delta

(FIXED LENGTH SUBSECTION)

* High order byte ignored.

185

a



MODE = 3, MOVE RELATIVE (LONG)

SUBSECTION STRUCTURE:

WORD CONTENTS
0% 3
1l X delta
2 Y delta

, (FIXED LENGTH SUBSECTION)

* High order byte ignored.

186 )



MODE = 4, DRAW ABSOLUTE

SUBSECTION STRUCTURE:

WORD CONTENTS

0, byte 0 4-

0, byte 1 Count of coordinate pairs
1 X coordinate

2 Y coordinate

The subsection lenqth‘is 2 + 4% COUNT bytes.

Count = 0 is an errorzx.

This mode yields a vector drawn between the current X,Y
position and the first X,Y coordinate pair. If more
than one coordinate pair is specified, then draws are
defined to each successive point.

187

.

— . < —— — — Si— —— A— —— T—

4
&




MCDE =5, DRAW RELATIVE (SHORT)

SUBSECTION STRUCTURE:

WORD CONTENTS
0, byte 0 5
0, byte 1 COUNT of delta pairs
l, byte 0 X delta
l, byte 1 Y delta

The subsection length 2 + 2* COUNT bytes.

If COUNT is zero, then the subsection length is variable
and the subsection must be terminated by a zero word.
Thus a draw relative with zero x,y delta is not allowed.

188



MODE = 6, DRAW RELATIVE

SUBSECTION STRUCTURE:

WORD
0, byte 0
Q, byte 1
1

(LONG)

CONTENTS

6
COUNT of coordinate pairs
X Coordinate

Y Coordinate

The subsection length is 2 + 4* COUNT bytes.

Variable length subsections of this mode (i.e., COUNT=0)
must be terminated with X,¥ = 0. ‘

18?,5

ﬂ-“ﬁ‘ — —— —— — o,

—

) 5 ) 'i —— ) ~...'.‘.ii -

. -.ﬁ.‘“‘ o




MODE = 10, POINT PLOT ABSOLUTE

SUBSECTION STRUCTURE:

WORD CONTENTS

0, byte 0 10

0, byte 1 COUNT of coordinate pairs
1 X Coordinate

2 Y Coordinate

The 'subsection length is .2 + 4% COUNT bytes.

COUNT = 0 is an error.

190



MODE = 11, POINT PLOT RELATIVE (SHORT)

SUBSECTION STRUCTURE:

WORD CONTENTS

0, byte 11

= o

0, byte COUNT of x,y delta pairs

X delta

o

1, byte

l
l
l
L byee t canes |
. ,’.
l
I

Subsection length is 2 + 2* COUNT bytes

If COUNT is zero, then the subsection length is variable
and the subsection must be terminated by a zero word. 1
Thus, a point plot relative with zero x,y delta is not ~1
allowed. ‘ '

|

191 . .

——___ ..



MODE = 12, POINT PLOT RELATIVE (LONG)

SUBSECTION STRUCTURE:

WORD CONTENTS
0, byte 0 12
0, byte 1 COUNT of x,y coordinate pairs
1 X coordinate
2 Y coordinate

Subsection length is 2 + 4* COUNT bytes.

If COUNT is zero, then the subsection length is variable
and the subsection must be terminated by a zero X,y coor-
dinate pair. Thus, a plot point relative at the current
beam position is not supported in a variable length sub-
section.

182



MODE = 20, SET TEXT INCREMENT

SUBSECTION STRUCTURE:

WORD CONTENTS
0, byte 0 20
0, byte 1 Text Increment

(FIXED LENGTH)

The usage of this mode if diséouraged since the systam
will supply a default text increment appropriate to the
particular scresen/character size being used.

The text increment 1is given in screen units.

193

n{“ '



MODE

21, SET LINE INCREMENT

SUBSECTION STRUCTURE:

WORD CONTENTS
0, bvyte 0 21
0, byte 1 Line Increment

(FIXED LENGTE SUBSECTION)

The usage of this mode is discouraged since the system
will supply a default line increment appropriate to
the particular screen/character size being used.

The line increment is given in screen units.

194



MODE = 22, SET CHARACTER SIZE ‘ "[;

SUBSECTICON STRUCTURE:

WORD CONTENTS
0, byte 0 22
0, byte 1 Character Size

(FIXED LENGTH SUBSECTION)

Usage of this mode is not recommended since it implies ’
the insertion of LDDP instructions within the generatad

refresh element. Specification of the character size

may be done in the element header.

: ﬁi__. ,ﬁ_._

195




MODE = 23, SET TEXT ORIENTATION

SUBSECTION STRUCTURE:

WORD CONTENTS

0, bvte 0 23

O} byte 1 Character Orientation
0 = horizontal
l = vertical

(FIXED .LENGTH SUBSECTION)

Usage of this mode is not recommended since it implies
the insertion of LDDP instructions within the generated
refresh element. Specification of the character orien-
tation may be done in the element header.

196



MODE = 24, TEXT

SUBSECTION STRUCTURE:

WORD CONTENTS

0, byte 0 24

0, byte 1 COUNT of TEXT bytes

1, byte 0 Text (ASCII) character

Subsection length 1is 2 + COUNT* bytes

If COUNT = 0, then the subsection must be terminated by
a zero byte. Carriage returns result in insertion of
Load ¥/Move Y instructions to effect normal CR/LF action.

* Rounded up to include whole words.

197

Muﬁn-.Q“-ﬁ-_h_-hi



MODE = 25, TEXT (Alternate Char. Set)

SUBSECTION STRUCTURE:

WORD CONTENTS

0, byte 0 25

0, byte 1 COUNT of TEXT bytes

l, byte 0 Text (ASCII) character

Subsection length is 2 + COUNT* bytes.

If COUNT = 0, then the subsection must be terminated by
a zero byte. Carriage returns result in insertion of
LOAD-X/MOVE~Y instructions to effect normal CR/LF

action. This mode is similar to normal TEXT but a shift-
in/shift-out segquence is implied.

* Rounded up to include whodie words.

198



MODE = 26, SINGLE CHARACTER

SUBSECTION STRUCTURE:

WORD CONTENTS
Q, byte 0 26
Q, byte 1 ASCII Character

(FIXED LENGTH SUBSECTION)

199

____ "



MODE = 27, SINGLE CHARACTER WITH BLINK

SUBSECTION STRUCTURE:

WORD CONTENTS
0, byte 0 27

0, byte 1 ASCII Character

(FIXED LENGTH SUBSECTION)

200



MODE = 28, SYMBOL

SUBSECTION STRUCTURE:

WORD CONTENTS
0, byte 0 283
0, byte 1 SYMBOL Code

(FIXED LENGTH SUBSECTION)

SYMBOIL 1s the same as "SINGLE CHARACTER" except that
- a shift-in/shift-out sequence is implied.

201




MODE = 28, SYMBOL WITH BLINK

SUBSECTION STRUCTURE:

WORD CONTENTS

0, byte 0 28
0, byte 1 SYMBOL CODE

(FIXED LENGTHE.SUBSECTION)

SYMBOL is the same as "SINGLE CHARACTER" except that
a shift-in/shift-out sequence is implied.

202



MODE = 30, SET INTENSITY

SUBSECTION STRUCTURE:

WORD CONTENTS

0, byte 0 30
0, byte 1 INTENSITY

(FIXED LENGTH SUBSECTION)‘

Usage of this mode is not recommended since it results
in insertion of LDDZ instructions within the refresh.
Intensity may be specified in the element header.

203

153




MODE = 31, SET BLINK

SUBSECTION STRUCTURE:

WORD CONTENTS
0, byte 0 31
0, byte 1 BLINK SPEC.
0 = no blink
1l = blink

(FIXED LENGTH .SUBSECTION)

Usage of this mode is not recommended since it results
in insertion of LDDZ instructions within the refresh
file. In addition, the application task will typically
want to have global control of this parameter.

204



MODE = 32, SET LINE STRUCTURE

SUBSECTION STRUCTURE:

WORD CONTENTS
0, byte 0 32
0, byte 1 LINE STRUCTURE

(FIXED LENGTE SUBSECTION)

Usage of this mode is not recommended since it results
in insertion of LDDZ instructions within the refresh.
Line structure may ke specified in the element header.

- — . p— . vy - . w—. e . S —

A—

e Gmemt. eSS, wmwesn i, Semewm  pemesm e



MODE = 40, CONICS

SUBSECTION STRUCTURE:

WORD CONTENTS
0, byte 0 40
0, byte 1 Quadrant inhibit bits

0 = inhibit guad.
1l = inhibit guad.
2 = inhibit quad.
3 = inhibit quad.
X radius
Y radius

(FIXED LENGTH SUBSECTION)

206

=W



MCODE

= 50, END-QF-FILE

SUBSECTION DEFINITION:

WORD CONTENTS
Q 50

This mode may be used to indicate end of the display
element data prior to the end of the data block
(as indicated by the byte count in the header).

207




MODE = 60, SWITCH TO SIZE ABSOLUTE

SUBSECTION STRUCTURE:

WORD CONTENTS
0 60

(FIXED LENGTH SUBSECTION)

This command will allow for inserting a fixed-size
cbject within an octherwise scalable display element.
This command will typically be feollowed, eventually,
by a mode 61. Code within a size-absolute section
will not ke effected when the operator reguests a
zoom operation.

208



MODE = 61, SWITCH TO SIZE RELATIVE

SUBSECTION STRUCTURE:

WORD CONTENTS
Q 6L

(FIXED LENGTH SUBSECTION)

This command will allow for returning to size relative
mode. after a previously issued mode 60. Size relative
is the default element type and need not be explicitly
specified unless a switch from absolute mode is neces-
sary. :

209

— . ——— _ fm—.  aimw g WSSl St

—

e, . Aemas e s Pewems ey e A e,



N

E.2.3 A Note on Text Usage

A caution with respect to text usage within a display
element must be noted. Data within a standard format
element is generally given in local coordinate system
units which are translatable to global system units via
the X, Y conversion factors given in the header. Text
however represents, effectively, data in display units
which may not be exactly represented in local system units,
Thus, following a string of text characters, the local
(virtual) beam position will not normally be equivalent
to the display beam position. For this reason, we
strongly encourage users to follow a text block with an
absolute move, This will ensure that subsequent relative
vectors are properly positioned.

210



E.3 Display Data System Support Subroutines

From the Monitor viewpoint, Display Data Support consists
of providing the necessary facilities for transforming a standard
format display element into refresh code. Associated with this
transformation is the application of the current display origin
and scale factor. The description of these services which follows
will need to be carefully considered by prospective users as the
control structure will seem somewhat complex at first glance.

As previously discussed, the display element support routine
will reside in a separate 4K memory block. Communication with
this facility will be via a standard Monitor Service call with the
usual parameter block pointer in Register 1. Execution within
the support subroutine will be indirect via Relocation Register 2.
The overall task-monitor relationship is depicted in Figure
E.3-1.* We proceed now to a discussion of the control blocks
necessary to utilize the support routiﬁe.

* Loading mechanism for the Display Element
support routine 1s TBD.

211

w...,




-

S ; E L o | L |
1 . 1 i
G7 Monitor b
Mem Blks 4 & 5) | 1w :
. . Display ,'
_ ;’_“""?_’__ MNTR_Services ___[~=======> Element
— : ! SR I | .__Support -
; (Mem Blk 6)
S ; - —— —_ - -
o—-s . G- . l — ~ - - . — B T —
T , )
Lot : P :
—-:A- — - ‘ v
R
T - T ' .» .
_ ; | , : ! !
- ; T : ’: i
| ; : : .
S P S —_ . ' - R
‘ ] ' '
i - '——i"”f"'“f”' .- e cToTmee '."—:'“"':—"""""' -
4| _._User Task _ 1o , — —.
! -
it i e B} S S S
| ' ’ : !
i - { , :
S S S S, _— e _ e e
i . TTTTT|_Disp. Elm. Reguest| . L SO

i ! '
T S U

o .

, .
: : .
H i

U -3 .
1
' . '



-~

E.3.1 Control Block Structures

Associated with a Display Element Support request is a /
parameter block which specifies the data to be acted upon and
the transformation parameters to be used. In this case, the
input data consists of a standard format display element.  The
transformation parameters provide the current screen origin,
scale factors and clipping boundary to be used in creating the
refresh code. The relationships among the various control
blocks are depicted in Figure E.3.1-1.

The primary parameter block contains three pointers as
depicted in Figure E.3.1-1. This block is outlined in Figure
E.3.1-2. The first word is a pointer to the relevant element
control block for the display element under consideration. The
element may or may not be currently scheduled.® The second word

contains a pointer to a conversion control block, discussed below.
The third word is 'a pointer to the standard format display element.

# Several points may be noted here. If the element has not yet
been displayed, then the element control Block will essentially
be null. The important point is that the user must supply an
element control block area (4 words) which the transformation
routine will fill in when the refresh image is created. If a
version of the element already exists, the revise service
will be used to replace the existing element with the new ver-
sion. Consequently, any existing schedule entries are auto-
matically adjusted. )

213




DISPLAY

ELEMENT <--

(REFRESH FORMAT)

STD. FORMAT

DISPLAY <—

‘ELEMENT'

~ FIGURE'E.3.1-1

- w——— -

CONVERSION -
CONTROL.
BLOCK

ST
: ]
! |
oo

.
Vv

e e

ORIGIN | SCALE
BLOCK - BLOCK
'CONTROL. BLOCK RELATIONSHIPS

214



'
il —— 4o+ m—— weem s o _1..__._..__ -

__Conversion Control_Block .. | .. __

i - - . e o P Y - e e —_— — . ‘
ebe v o 4 o v ombrm i« 1S vl <+ 2o panes et 2o 4ot e i m - - . J S, o " . [ t
e o e - _ . e ' |
L - = T. - —— ; - _—.— - [ .
e e e e e e o e i et o+ e e R e e e e e < e enim e i wen mmmnmaneie '
Word '  !3
—. - -ge—--r~ | - Element Control Block e+ e e
) — ——— ——_Pointer_ . _—t |

Pointer A
e e , .- . e FIERE—
] e e e . N Std. Fmt Display. . . | e :
e e e e e e e e Element Start Address e et e
S, ..-..A,___.-.i-_ el emms e rin o bl e - maen 7 e S SOOI OV S A E S SO P
mr i e e e e e ¢ e e e s o — . =7 e et o e e 4 e e i
ST ; T i I T T T
i i e - ,- . .- .__-L, . o e f._._‘ - - !
- e e e e e R Ly e .
, . - |

.. Figure E.3.1-2. Moniter Call Pa

fameter Block.

*-_. - M—

e



The conversion control block contains parameters which are
used in transforming the standard format display element into
refresh format. This Block is outlined in Figure E.3.1-3.
Reviewing the entries in this block:

a) Word 0 - The origin block pointer is used to fetch the

" definition of the current display origim.

B) Word 1 - The scale block pointer locates the current
display scale factor.

c) Word 2 - The conversion factof is used to convert from
global system units to display units, at SCALE = 1.0.
For example, if the basic global system arez spans a
1024 X 1024 mile area and the raw data is in 1/4 mile
units, then a conversion factor of 1/8 would suffice to

' map the global area to the display area. The conversion

factor and scale factor are represented as fixed point
binary numbers with the binary point assumed between bits
7 and 8. Thus 1/8 would appear as 40 (octal). Generally,
the conversion factor would be fixed at system design
- - time.
d) Words 3, 4 - X min, X max define (in screen units) the X
clipping boundary.
e) Words §, 6 - Y min, Y max define (in screen units) the Y
clipping boundary.

The Origin Block serves to define the current display origin
in global system units. This block is outlined in Figure E.3.1-4.
The X, Y origin values are binary integers.

The Scale block, shown in Figure E.3.1-5, serves to.define
the current display scale factor. This quantity should imnitially
be 1.0 and then adjusted to reflect operator zoom requests. The

216 *



o
|
A— —

T ;«---'— ’ - ~ i ‘ ! l
t i : ! ' . :
| o 5 T
T e e e . : . « e o ' ; e — s e ‘ - .__' - s m——
(‘ i ; ' ! !
- T ‘! " : ‘ ! t ‘ t ) T ‘ i l
é ! i i ' ! : ' l
T R ] } i :
? P! O i ’ ‘ :
N * ; c ; i o
H 5 ' . i i . )
- IS - ‘ I
- : : R
. : o P01nter e OTl l
\ v . : .
: ’ - Block —_ ;
L L , P01nter to Scale : -
| Bleck - |
[ R D : o
- et :uOﬂV?F$+0ﬂ_FECtUT"* —
: ‘ — ; P ; m= ;—. . : l l,
- ; RE— ;Mifrrim"?&** st el e — -
- B i l
T T X ‘Maximum X** -
e ‘ i ' i ; : ' ' : ! - . 1
. R L L RN T B RN S o l
N R A : Minimum, Y** = oo ‘
- . - - - - : T - N
. o A S RS o "
R : ] ) f iMaximum Y** | | i ' Lo l
: ! ‘ e e —-
) : ! [ I . : !
; ] T D '
S R : ‘ :
' i [ ; [ b
i i - P ! !
i i i i i i :
! ' i i i i l :
: i ' :
: 1 i 1 : ‘ |
*Assumed~b%aaF%—pe%q%~be{wee&—bits—+—&—& e - — =
“*Screen Unlts DR R S A B M '—“"l‘
, T T N ‘ l
e El Gure E 4-3'-:—1 3 —€4:>nve ;-S'»lon— Control Bl—oc—k—--- = e s s e B
: ‘ Lo , . _.__-:,.__M..;E ,,,,.!___. ___'- ,;__- S A — — /
R I S '"?""';" Y e S S A j l
— e o - - - ‘ R T e I RS U : e e mer wwe———— - ——— - |
Ce i -- P 217 - - S - S R



- WO.F.a;.__..._ AP SO N — ———-
T 0 ‘ X Otigin™™ - B
—— e —— R e L__.. [T ——— ——— ———— — s e e -
T -1 pme—m— "'-‘_‘Y "D’i.ig 'ih"-‘l“""'f" AR T ST T T

e - ; ——--{(Global coordinate ... oo -

e e ey e S S e SYSTEM UNIES) e

e e o cm—— Gt o m—— = - S Semm. e o mies b+ Gmms = e m e Smieeimmm e W e e et s eem Be e e e mie G meieem e+ eee e s =
'
- = —— mmmare em e e ceme o ome Shetee e - e = te e 4 e

i e Bigure E.3.124. OTAZED BIOCK s i e

(;' ____...-‘...-_...,‘.....‘...... —— v & e e g g e __. s e e Sam w1 Gt . rmer + Wne e eeem— e e ma
T o Word o ’ )
) 0 o " Scale Factor
(Aséﬁméd‘binéry ébint4
between bits 7 & 8) g
Figure E.3.1-5 Scale Block

218



R

7N

Scale and Origin blocks have been made independent of the main
conversion control bleck so that multiple display elements may
easily reflect new screen orientations.

The. other control blocks shown in Figure E.3.1-1 (schedule,
element, etc.) are standard moniter structures. Mest of tﬁe
various blocks can be established at assembly time. |

E.3.2 Coordinate Conversions

In hopes of clarifying the operations involved in trans-
forming a display element to refresh code, we review the equations
used by the monitor service. Keep in mind that there are
essentially three domains which participate in the conversion
process., First, the display; second, the global system; and
third, the local system for the particular display element. We

define the following quantities:

X0, Y0 - Local element origin in global coordinate system
~units (words 6 § 7 of tBe element header)

CX, CY - Local X, Y conversion factors for transforming units
in the local element space to global coordinate
system units (words 8 & 9 of the element header)

DX0Q, DY0 - Display origin in global system units, i.e.,
point 0, 0 on the display (center screen)
corresponds to DX0, DYO in the gloBal coordinate
system (defined in the origin Block)

CG - Global coordinate system conversion factor, this simply
acts to convert units in the global space to screen units
at SCALE (CS) = 1.0. (from word 3 of the conversion
control block)

CS - The current system scale factor (from the scale block)

Then, given some point (x, y) in the local coordinate system,

the corresponding screen position (dx, dy) is determined by:

:—ﬁ! A— m,

M————

— R ..

. A—

. —

i

OV



6/7 Wowa‘(*a( MG\ALL@L( A‘QQCQ?‘IZ}@R

(\4 c(\u_u-_,( \ - 79-007

£.3.4 Mo‘"&s <COV\')C.B

@) The wuwler of Lineny places m
e sc,«\z o-‘& (o(Ju\ Covuelsiaw
'E'o@i‘ors S Sele_d‘ab%t ot CKS?QNLPL(
e /q&y.m'g‘v-se_v:}’ efﬁ" ‘(‘e\ese

m%‘{-w s viecessar i Cases '
L«o\»\e.ve_ ‘R\e Q,Qe.'@«'ahl‘l‘ 'se,\r.::x-?ow ((,Q{-Qeem o
(et 7 L 3) Qoes wet qu‘mﬂt '
ac&ezm';l Ayramie  Comge. The total
V\u.\a-L’N—Y‘ d'% (Av\av‘»r P\c«ce,'s tw the
scule Sacter despie) el e
g(obu( Convesrsion "g'acLof CCG’PLC\B

uns% e_zc.c.o.[ S x'(’etw .



dx
dy

- (CS.CG-CX) .x + (CS*CG)* (X0 - DX0O)
(CS.CG.CY) .y + (CsS-CG)- (YO - DYO)

[}

The various factors are combined in advance so that each co-
ordinate conversion consists of one multiplication and one
addition. (The clipping boundaries are converted to lecal
system units and applied prior to any coordinate conversion).

E.3.3 Monitor Interface

The Display Element support routine will operate as an entry
point within the Monitor services section. The external code
will simply be called in subroutine fashion from the monitor
area, after setting up relocation register two.

EMT Code: 13 (Hex)

Parameter Block:

Word Contents
0 Element Control Blk Ptr.
1 Conversion Control Blk Ptr,.
2 Std. Format Disp. Elmt Ptr.

Status Return Codes:
0 - Regquest satisfied
2 - Insufficient MemotTy
32 - Conversion Error

E.3.4 Notes
(a) The transformation routine does not effect the status of
_any schedule entries. Thus, if the element was scheduled
when the call was made, it will still be scheduled on
Teturn. R

(b) The standard element control Block will be filled in by the
transformation routine. Once the refresh image exists, the
display element (refresh form) may be manipulated (enable,
disable, etc.) via any of the standard monitor services.

(c) Display elements subject to scaling should be s;heduled
at x = 0, vy = 0, since the conversion routine Wl%l apply
any offset necessary to effect a new screen 0T1gln.

220

———




ez e B 5 B » |
(XIS I N =

APPENDIX F
DEVICE HANDLER DESIGN

Monitor I/0 Structure Review
Handler Entry Points
Interrupt Servicing
Inclusion of New Handlers

in System Image
Infer-processor Interfacing

224



F.0 MONITOR I/0 STRUCTURE REVIEW

The monitor I/Q structure consists of an I/0 supervisor
and a variable number of device handlers.. The I/0 supervisor
receives all user task I/0 requests and vectors the requests
to particular handlers. The specific handler is determined
by mépping the logical device number (contained in the user
specified I/0 control block) into the task header physical
device list. The physical device number is then used to
fetch a particular handler address from table DEVADR in the

monitor supervisor module, MNTRSP. All other decoding/process-

ing of I/0 control block entries is left to the handler.

The call to the handler is of the form "JSR PC, HNDLR";
thus an "RTS PC" should be used to exit the handler. On
entry to the handler the following register configuration
exists:

a) User task relocation registers are installed,

b) RO - Subfunction (entry) number, this is just
the low order hex digit of the EMT code,

c) R1 - User I/0 control block address,

d) RZ - Status rteturn code address (byte),

e) R3 - Unit number from the high order byte
of the user task header entry (of significance
only to multi-unit devices) -

The I/0 control block is the parameter block for I/0
requests. The control block entries are discussed in. Section
7.1.1. The I/0 supervisor expects the logical unit number to
be in byte 0 of the second word. Other entries are handler
dependent but, in order to avoid confusion, new handlers
should use the assigned entries to the extent possible.

222

— . p—_ a—_ s—



In summary, the I/0 supervisor only serves to direct
the user request to a specific handler. This structure
yields maximum independence for each handler and consequent
efficient real time data reception. The following discussion
of device handler composition is not intended as a tutorial
on handler design but rather as a summary of comnsiderations
relevant to existence in the monitor framework.

F.1  HANDLER ENTRY POINTS

The basic handler entry points are outlined in Section
7.2. 0Of the various possible entry points, the standard
monitor structure requires two; initialization (0) and I/0
purge (14). The initialization entry is used during monitor
initialization to prepare the handler and device for I/0
operations. The I/0 purge entry is uséd'by Task Management
on task exit or abort “to ensure that all-outstanding I/0
operations are complete or cancelled., If task loads are
to be done through the handler then the READ (5) and FILE
QUERY (15) entries are also required. Other handler entry
points may or may not be present depending on the particular
device requirements and user operating situationm.

The logic required for each handler entry is not
generally easy to characterize due to the wide diversity of
basic device types and operating modes. Typically, the
devices presented are either simple (keyboards, etc.) or complex
(host interface). The resulting handler structures must
ultimately reflect this range of hardware complexity. In
spite of obvious device-to-device differences it is possible
to outline the usual handler logic flow. Figure F.1-1
presents a typical handler control section (the main entry
point called by the I/0 supervisor). Figures F.1-2 thru
F.1-4 outline the basic logic necessary for several of the
standard entry points.

223



C ENTER >

MAKE TABLE INDEX OF
SUBFUNCTION CODE

CALL SUBFUNCTION
ENTRY POINT

4
&

' \/4
RETURN TO
I/0
‘SUPERVISOR

>~

Figure F.1-1 Handler Main Entry

224

Subfunction n




) (:: ENTER )

\;
CLEAR HANDLER

FLAGS

ESTABLISH INTERRUPT
VECTOR*

!

ENABLE
INTERRUPTS

>

*Set PSW to priority 7 (!).

Figure F.1-2 Handler Initialization

225



(:: ENTER j:)

HANDLER

Yes

(DEVICE UNAVAILABLE)

BUSY
?

'HANDLER

CURRENTLY

ATTACHED
?

No

RECORD GALLER
ID (RRL...)

\

MARK HANDLER
ATTACHED

\

=

| Yes’n».u.. -

226

SET ERROCR
STATUS RETURN
(TSMRST)

Figﬁre F.1-3 Attach Entry

§ e e —ane s e -




HANDLER Yes

D

SET ERROR

BUSY

?

HANDLER Yes

\ 2

STATUS RETURN
{TSMREST)

ATTACHED
TO CALLING

TASK
?

INITIATE 1/0
TRANSFER

TIME-OUT Yes

ESTABLISH

SPECIFIED
7

> I/0 TIMER

\

/

USER I/0 CONTROL

TET BUSY IN
BLOCK FLAGS

e

: MARK "TASK
WAITING-FOR-I/0

STATUS RIT

REQUEST TASK
LIST SCAN

MARK HANDLER
BUSY

()

Figure F.1-4 Read Entry

227

(DEVICE
UNAVAILABLE



F.2 INTERRUPT SERVICING

Interrupts indicate to the handler that an I/0 transfer
has completed. The job of the handler in the interrtupt
service routine is to check the final status of the transfer
and indicate I/0 completion to the user task. These activities
are reviewed in Figure F.2-1. The common requirements of
saving registers on interrupt are handled by two subroutines
in the supervisor module, MNTRSP.

On interrupt the handler service routine should
immediately call INTPSH to record the state of the interrupted
task. (JSR PC, INTPSH).* On return from INTPSH the processor
priority should be adjusted to allow, if appropriate, other
interrupts. Interrupt servicing should be terminated through
routine INTPOP. This is accomplished by: JMP @#INTPOP.

*There are some circumstances in which the call to INTPSH
may not be necessary. For example, if the transfer always
involves two words then the first interrupt can simply

save the first word in a temporary and then RTI. In any
case, the state of the interrupted process must be preserved.

228

" e D S =



( snTER )

\
CALL INTPSH

4

SET PROCESSOR
PRIORITY

HANDLER
BUSY

?

(Ignore Interrupt)

LOAD POINTERS

TO USER TASK
- AND I/0 CONTROL .
BLOCK '
—
»No
- SET ERROR ‘
y I1/0 COMPLETION ERROR RETURN
e N ERRORS CODE IN I/0 ADDRESS
. - CONTROL BLOCK SPECIFIED
' - <
Yes
\ It
" SET NORMAL : CORRUPT RETURN
I/0 COMPLETION : ADDRESS
CODE (ZERO) : ==

| Other device
{ Televant processing. R
|

Figure F.2-1 Interrupt Servicing

(Page 1 of 2 Pages)
229



Yes

CANCEL I/0
TIMER

No

_ RESET TASK
- STATUS "WAITING
FOR-I/0'" BIT.

REQUEST A
TASK LIST
__SCAN.

RESET BUSY BIT

IN I/O CONTROL
BLOCK

~

MARK HANDLER
NOT BUSY
B et

=
)

<::JMP @#iNTPOPj:>

Figure F.2-1 Interrupt Servicing
(Page Z of 2 Pages)

. gEemem —— . S



F.3 HANDLER INCLUSION IN SYSTEM IMAGE

New handlers are added tc the system image by adjusting
table DEVADR in the monitor supervisor, MNTRSP. Entries in
DEVADR are simply the transfer address (label) for the
handler main entry. The added label will also need to be
declared global in MNTRSP. User access to the new handler
(device) will be on the basis of its position in the DEVADR
table. (See also Section B.3.)

F.4 INTER-PROCESSOR INTERFACING

The foregoing comments on device handler implementation
are of critical importance in the design of the host computer

.interface and associated handler. The structure of the

interface and user task access will depend on the specific
data being processed. In particular, the datz volume and
display timeliness requirements will need to be carefully
considered in order that appropriate queueing/buffering/block-
ing decisions are reached. A sample approach to the host

interface problem is outlined in Figure F.4-1.

231



PARALLEL INTERFACE HANDLER

1.0 HANDLER DESIGN OVERVILW

The parallel interface to the host processor serves as the
primary medium for inter-processor exchange of programs, data, and
system status. This role results in the necessity for deflnlng a
handler structurz which goes somewhat beyond that required for the
garden-variety peripheral device. Several specific operational
characteristics yield requirements not gencrally encountered in
other device handlers. First, the interface is bi-directional.
This results in essentially two separate sections, one for input
and one for output. Secondly, the necessity of processing real
time data requires the provision of adequate buffering/queuing.
Third, inasmuch as the parallel interface is our access to host mass
storage, a means must be provided for accessing external files.
Finally, our handler de51cn provides.a basic message distribution
facility to ensure timely response to incident real time data. We
next discuss the handler melementatlon with regard to the overall
Graphic 7 Monitor framework.

2.0 USER ACCESS TO THE PARALLEL INTERFACE

In the interest of commonality and consequent ease of usage, the

communication mechanism between user tasks and the handler generally
follows. that described in Section 7 of the User's Guide., To be
exact, the same I[/0Q0 control block is being employed with some addi-
tions/amplifications as noted below. Also the standard entry point
assignments are maintained. Before proceedlnd to a discussion of
the specific input/output nechaqlsms a brief review of our data
transfer assumptions.

All data on the inter-processor communication medium is trans-
mitted in the form of a message. The standard message format to be
used T~ . T 1s shown in Figure 2.0-1. The important
feature 1s the mes=ave type code. This code is fundamental to the
handler design, as described below.

2.1 PARALLEL INTERFACE - DATA INPUT

All messages directed to the Graphic 7 will be accompanied by

a message type code. The type code, one byte, is divided into
message class/sub-class fields. The class field serves to direct
the message to a particular task. This is accomplished by having
each task indicate to the handler, via the "attach' entrv, which
messages are of interest to that task. Thus, in regard to input
data, the parallel interface may be employed by a multiplicity of
active tasks.

Figure F.4-1 Interface Discussion
(Page 1 of S Pages)

232

[
[
l
|
l
I
l
|
|
|
l
|
I
|
|
l
|
[
[

;f



Word

SENDER T MLSSAGE
-0 \ 1D . LENGTH
MESSAGE
1 TYPE CODE FLAGS
'MESSAGE
DATA

Figure 2.0-1 Message Format

Figure F.4-1 Interface Discussion
(Page 2 of 5 Pages)n

233



In addition to message distribution, the handler also provides
message queuing (in the event that the task does nct have a '"read"
outstanding) and pointer mode. Pointer mode, indicated by setting
bit 13 of word 4 of the I/0 control block before. the attach call,
allows the user task to process the message data directly [rom the
system buffer. In this mode the buffer pointer is placed in the
user's I/0 control block (word 2) instead of transferring che data
to a user-specificd buffer area. The pointer mode should yield
significant savings in the processing of real time message data.

We review the procedure for accepting data from the parallel
interface handler:

a. User selects his message class code* and places such
in byte 1 of word 6 of the [/0 control block. This
same I/0 control block must be used for subsequent l
read requests.

.b. User selects pointer mode, if desired, by setting bit
13 of word 4 in his I/0 centrol block. (Note that
this must be selected prior to the "attach'" call.)

c. The ATTACH entry (EMT 73} is used to assign the
selected message class to the user task.

. d. I/0 read requests (EMT 75) are issued to fetch
each successive message. These requests may
utilize the standard [/0 features of wait/no-wait
and time out. For each message relayed to the
user task, the length is placed in word 7 and the
type code is inserted in byte 1 of word 6 of the
I/0 control block.

e. If messages arrive for an attached class with ne
outstanding read request then they are automatically
queued to await the next read request.

f. The DETACH entry will be used to terminate the
acceptance of a particular message class. DETACH
should always bé employed before a user task
exits the system.

*Message class zero . ls a special case and cannot be attached.

-

Figure F.4-1 Interface Discussion
(Page 3 of S Fages)

FET
234 | | . {
) [



el

2.2 PARALLEL INTERFACE - DATA OUTPUT

Data (messages) directed to the host processor will be con-

veyed via the WRITE entry. With respect to output data, the

handler (parallel interface) represents z single device available
/to all tasks. Qucuing is provided to allow for normal interface

availability delays. Wait/No-Wait and time out are not honored on

output since the data is transferred to a system buffer and control

is immediately returned to the calling task. The following procedure

outlines the data output sequence:

a. User inserts message (data) length in word 3
and buffer pointer in word 2 of his I/O
control block. (Note: the length here does
not necessarily correspond to the final,
actual message length. This is simply the
data portion as depicted in Figure 2.0-1)

b. The message code for the receiving processor
is placed in word 7. This becomes the second
word of the message header (corresponding to
both the type code and flags byte).

¢. A& standard WRITE request (EMT 76) is issued to
the parallel -interface handler.

The handler output service cannot be attached
or allocated.

2.3 'PARALLEL INTERFACE - FILE ACCESS

It frequently becomes necessary to access data from the host
machine mass storage resource. Such data will typically include
task images, static display data or hardware diagnostics. The
Graphic 7 Monitor assumes that any device used for task loading is

/ capable of processing a "File Query" request. Thus, the parallel
interface handler has been designed to include this feature using
the standard entry point assignment. The procedure for loading an
external disc file consists of first issuing the FILE QUERY (EMT 7F)
and then a standard read request. The handler has been configured
to use message class zero for all file related transfers. Thus,
the procedure is:

a. User task configures a File Query block as
described in Section 7.2.11 of the monitor
user's guide. The File Query data block
is relaycd to the handler (EMT 7F) via an
I/0 control block specifying .the File Query
block as the I/0 buffer. Obviously, the
most important entry in the File Query is
the file name.

Figure F.4-1 Interface Discussion
(Page 4 of 5 Pages)

235

[



The handler outputs the file query block to the
host processor where the file status, length
are filled in.

The Query Block is relayed back to the Graphic 7.
The handler returns the data block tc the user
area.

If the user wishes to now input the file he issues
a standard read request for message class zeTo.
Sincé the file read mechanism must access the

File Query block we make the stipulation that the
File Query Block immediately follows the I/0
control block employed in the file read. Thus,
the read entry will assume the Query Block is at
the address in R1 plus 16 bytes.

3.0 USAGE NOTES

a.

All parallel interface transfers consist of an sven
number of bytes. User buffers should always begin on
a word boundry.

Error return address option (word 5 of standérd /0
control block) is not supportad in the parallel
interface handler.

Figure F.4-1 Interface Discussion

(Page S of 5 Pages)

236



