H-79-0347

TM

reonic

COMPUTER GRAPHICS
DISPLAY SYSTEM

PACKAGE [FSP]
USER’'S MANUAL

FORTRAN SUPPORT

SANDERS

ASSOCIATES, INC. DANIEL WEBSTER HIGHWAY, SOUTH-NASHUA, NEW HAMPSHIRE 03061

Copyright 1979, Sanders Associates, Inc.
GRAPHIC 7 is a trademark of Sanders Associates, Inc.

Sanders Associates, Inc., reserves the right to modify the products described
in this manual and to make corrections or alterations to this manual at any time
without notice.

Reprint = October 1980 - 100 Copies

Reprint-February 1981-100 Copies

Paragraph
1.1

1.2
1.3
1.4
1.5

TABLE OF CONTENTS

Section 1
Introduction
Subroutine Concept
Host Computers
Structure
;FSB/QCP%:Link Control
Error Detection/Receiving
Section 2

Features of FSP

Section 3

FSP Distributed Processing .

Section 4

FSP Subroutine Library

Section 5

Hardware Configurations Supported

Section 6

Paging Concept

Section 7

Coordinate System

Section 8

Use of Labelled Common

Paragraph
9.1

9.2
9.3
9.4
9.5
9.6
9.7
9.8

10.1
10.2
10.3
10.4
10.5
10.6

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

TABLE OF CONTENTS (Cont)

Section 9

Setup Routines

GSS4 Initialize the Terminal to FSP Mode

LAYOUT Define FSP Memory Layout in the Graphic 7 Terminal
SCALE Define User Coordinate System

ENBBOX Turn Border Display On

DSABOX Turn Border Display Off

ENBERR Turn Error Display On

DSAERR Turn Error Display Off

THEEND Terminate FSP Mode

.- Section 10
Image Generation Routines

MOVE Move Beam to the Position Specified
DRAW Draw a Line
TEXT Display Text Characters
POINT Display a Point
CIRCLE Draw a Circle
REFDAT Transfer a Block of Predefined Graphic Orders

Section 11
Page Management Routines
ADDREF Open Page for Adding Refresh Data
UPDATE Open Page for Editing Refresh Data

 ERASEP Erase frbm Page Mark to End of Page

PICTUR Graphic Subroutine Call
REQMRK Request the Present Page Mark
GETMRK Get Mark Request Information
MOVEIM Move a Block of Graphic Orders
COPYIM Copy a Block of Graphic Orders

ii

10-9

10-2

10-4
10-6 :

10-7
10-8

11-15
11-15
11-16
11-16
11-17
11-17
11-18
11-20

Paragraph
12.1

12.2
12.3
12.4
12.5
12.6

13.1

14.1
14.2
14.3
14.4

15.1
15.2
15.3
15.4

16.1
16.2
16.3
16.4

TABLE OF CONTENTS (Cont)

Section 12

Status Routines

CPARM Set Character Parameters
DPARM Set Display Parameters
STATUS Set Display Status
LAMPON Turn Keyboard Lamp On
LAMPOF Turn Keyboard Lamp Off
COLOR Set Display Color

Section 13
Event Routine

EVENT Péii‘Terminal for Event or Request Response

Section 14
Alphanumeric Keyboard Routines
ENBPAD Enable Alphanumeric, Scratch Pad
DSAPAD Disable Alphanumeric Scratch Pad
GETTXT Get Text Event Information
GETKEY Get Function Key Event Information

Section 15
Photopen Item Routines
ENBPEN Enable Global Photopen Sensitization
DSAPEN Disable Global Photopen Sensitization
ITEM Define a Graphic Item
GETPEN Get Photopen Event Information

Section 16
Photopen Scan Routines
ENBPXY Enter Photopen Scan Mode
DSAPXY Terminate Photopen Scan Mode
REQPXY Request Photopen Scan
GETPXY Get Photopen Scan Event Information

iii

Page
12-2
12-3
12-4
12-5
12-6
12-7

13-2

14-2
14-3
14-3

14-4

15-4
15-4
15-5
15-6

16-2
16-2
16-3
16-4

Paragraph
17.

17.
17.
17.
17.
17.
17.

18.
18.
18.
18.

19.
19.
19.
19.

20.
20.
20.
20.

B~ LW N = S~ N e ~N oY Ut BN

S LN

TABLE OF CONTENTS (Cont)

Section 17

Trackball/Forcestick/Data Tablet Routines

TBALL Enable PED Events

DISTB Disable PED Events

DTINIT Assign PED as a Data Tablet
DTMODE Select Data Tablet Operating Mode
PED Programming Examples

REQTB Request PED X, Y

GETTB Get PED Request Information

Section 18
Miscellaneous Routines
HCOPY Initiate Hard Copy
REQIM Request Refresh Image
GETIM Get Refresh Image
GETERR Get Error Information

Section 19
Packed Vector Mode
ENBPMD Enable Packed Vector Mode
PMOVE Packed Vector Move
PDRAW Packed Vector Draw
DSAPMD Disable Packed Vector Mode

Section 20
Coordinate Converter Routines
CCINIT Initialize Coordinate Converter
CCVAL Activate the Coordinate Converter with Specific Values
CCON Turn On the Coordinate Converter
CCOFF Turn Off the Coordinate Converﬁer

iv

18-2
18-3
18-4
18-5

19-2
19-3
19-4
19-5

20-7
20-8
20-9
20-9

Paragraph
21.1

21.2

22.1
22.2
22.3
22.4

TABLE OF CONTENTS (Cont)

Section 21

Image Control Routines

CLIP Remove Off-Screen Data
SMOOTH Smooth Displayed Lines

Section 22
FSP Input/Output
G7INIT Initialize Host/Graphic 7 I/0 Driver
G7TERM Terminate Host/Graphic 7 I/0 Driver
MSGOUT Output Message to Graphic 7 Terminal
MSGIN Input Message from Graphic 7 Terminal

Section 23

Deliverable Items

Section 24

Installation Procedure

Section 25

Startup Procedure

APPENDICES

ATLPHABETICAL SUMMARY OF SUBROUTINES
ASCII CODES

ERROR CODES

MEMORY USAGE

PROGRAMMING EXAMPLES

PRODUCT PERFORMANCE REPORT

H H O Q W >

22-2
22-3
22-4

22-5

SECTION 1

INTRODUCTION

This Programmers Reference Manual for the Fortran Support Package (FSP) is pro-

vided by Sanders in support of its GRAPHICS 7 interactive display terminal.

1.1

1.2

1.3

1.4

SUBROUTINE CONCEPT

FSP is a collection of 62 Fortran-callable subroutines. The routines
require little knowledge of the GRAPHIC 7 terminal, yet allow the user
maximum utilization of its interactive capabilities.

HOST COMPUTERS

FSP is designed to run in any host computer which supports Fortran and has
a minimum word length'of 16 bits. The actual hardware method by which the
GRAPHIC 7 terminal is connected to the host is of no concern to FSP since it is
1/0 independent. I/0 considerations such as parallel or serial interfaces, half
or full-duplex, selector or multiplexer channels, etc., are incorporated in the
customer-supplied I/0 driver and hardware interface, leaving FSP computer
independent. Depending on the host computer, Sanders, by special request, will
supply the I/0 driver (software).

STRUCTURE

FSP employs the distributed processing approach, because it requires and
makes extensive use of the Graphic Control Program Enhanced (GCP+), which is
resident in read-only memory in the GRAPHIC 7.

Figure 1-1 shows that the application program uses FSP by making calls to
the various subroutines. FSP formats GCP+-compatible messages and transmits
them to the GRAPHIC 7 terminal via the MSGOUT subroutine (provided by the cus-
tomer). GCP+ in the GRAPHIC 7 processes the message to produce the desired
results.

FSP also receives and interprets messages from GCP+ in response to a POLL
request. These messages contain PHOTOPEN, keyboard, and PED* information.

FSP/GCP+ LINK CONTROL

As mentioned above, GCP+ sends messages to FSP only when polled. Each
message (input or output) contains a header word to identify the message, then
the remainder of the message. FSP may send a message to the GCP+ at any time.

*# — PED = position entry device

1-1

1.5

1-2

ERROR DETECTION/RECEIVING

Errors generated in running FSP are detected and an error code is displayed
in the upper left corner of the display screen. This error display area can be
turned on or off (displayed or not displayed) by user calls to routines ENBERR,
to turn error display on, or DSAERR to turn error display off. See Section 9
for a more detailed description of these routines.

Error detection is also available under program control. When the user
calls to EVENT, the routine which polls the terminal for an event or request
response, the routine sends back an event code indicating an error has been
detected. The user can now call subroutine GETERR to retrieve the error code.
See Section 18 for a detailed description of the GETERR routines.

Error codes are defined in Appendix C.

s

1-3

1-1 2an3Tt4
MANOLSND A9 (AAIAOEd , | SIATHA on
NIOSK “
IN09SH WALSAS
LINI/D INILVIAIO
WIdL.D
A
(SYIANVS A9 QINIAAd IONANOAS HNITIVD) —
MAROISND A9 (IATAONd —I
WIXdOD HAOWLA AXJINT
LINIDO WIAAOK IINIIC
MVIad avdavsa WALT TVADD
om0 Nagvsa wimray msbed (N195H) (100951) (1181£9) (RAELLO)
WHAVSA NAdONT MWIAD MIROTY UNILNOY NLLOOY ANTLOOY ANILNOY
TEINT 4ISId AXdIED SOLVIS INdNT 10dLao dZITVILINI ALVNINGAL
X04vsd 41149 WIOMM WIVda AY £5 to £9
X0g9Nd TIVEL INIAT WIVdD i
AdODH A0dWVT ¥NIOId dASvYd * ’
N0DD NOJWV'L INIOd 41vadn -
11000 ATALAD ATIOWID AT9qav
IVaATd IXL1IE9 IXAL ANTTHL
HIOOKWS NAdLI) Mvaa ATVDS
dI10 aWdvsa HAOW LNOAVT ﬁ
A INT AXdVSa AAORJ 7SS9
H4OVAIVd (SEANILNO¥ENS dSd
SYHANVS A9 dAdIAOYd ' ANTIINO¥INS g ——P 0l STIVD SAANTIONI)
dsd WV990¥d NOILVOITddv

" Sp— —— — mp— Sm—

SECTION 2

FEATURES OF FSP

The standard features of FSP are specified below:
1. Fortran-callable subroutines.

2. Distributed processing: Some features are performed in the host computer,
others in the GRAPHIC 7 terminal.

3. FSP is machine independent.

4, Refresh paging mechanism for organizing refresh data. This includes refresh
subroutine capability.

5. Windowing of user data including:

a. Data scaling: The conversion of user coordinates to refresh coordin-
ates and vice versa.

b. Image scissoring: Truncating portions of a display that extend be-
yond the screen boundaries.

6. Modifying images presently displayed (selective updating).

7. Each copy of FSP in the host supports one GRAPHIC 7 controller with four
CRT indicators, two keyboards, two trackballs or data tablets, two
PHOTOPENs, conic generator, and 2D coordinate converter.

8. - Operator interactions with application program:

a. Alphanumeric keyboard
b. Function keys
c. Trackball, forcestick, or data tablet

d. PHOTOPEN

9. Generation of all refresh instructions including image generation commands
(MOVE, DRAW, CIRCLE, POINT, TEXT).

10. Smoothing of user data to minimize the number of coordinates necessary for
presenting a continuous line.

11. Local PED operation pé£f6fméd étithé téfmiﬁai.

a. PED symbol locally updated at the terminal.

2-1

12.

13.

14.

15.

16.

17.

18.

19.

b. Symbol may be user defined or the default symbol.

Local keyboard manipulations performed at the terminal.

a. Characters typed directly into a refresh scratchpad.

b. Scratchpad area can be edited from the keyboard.

Local PHOTOPEN operations performed at the terminal.

a. PHOTOPEN finder - The position of the PHOTOPEN on the screen is

' determined by the GCP+, by flashing a grid pattern locating the
PHOTOPEN position.

Mass transfer of existing refresh data to the terminal. This allows for

off line generated refresh code to be passed directly to the GRAPHIC 7

terminal and inserted into the refresh memory without any additional

processing.

All floating point arithmetic processing of FSP is done in the host com~
puter. The GRAPHIC 7 GCP+ performs fixed point arithmetic.

For inserting refresh code, two modes of operation exist:
a. Initial or additional data.
b. Editing data (selective updating).

Hard copy capability. The application program can request that the image
on the screen be hard copied on the Sanders 570 Hard Copy Unit.

Displayed images can be rotated and translated on the CRT. Four subrou-
tines exist for manipulating the 2D coordinate converter hardware option.

All position data transmitted between host and GRAPHIC 7 is in screen
coordinates.

host

3.1

3.2

This

SECTION 3

FSP DISTRIBUTED PROCESSING

section describes how graphics tasks are distributed between FSP in the

and GCP+ in the terminal.

FSP Processing

1.

All floating point conversion.

a) Scaling: conversion of user floating point coordinates to display
coordinates.

b) Windowing: zooming and offsetting.

Scissoring: the clipping of off screen data.

Smoothing: the removing of unneeded points in defining a continuous line.
Formatting and transmitting the message to the GRAPHIC 7 terminal.
Receiving and converting all messages from the GRAHPIC 7 terminal to a
manageable form for Fortran. This includes converting screen coordinates
to floating point user coordinates.

Controls refresh file management, LAYOUT.

Processing

Receives messages from the host computer.
Processes messages from the host computer.
Handles PED manipulations and,symbol{

Finds the PHOTOPEN position on a blank screen.

Displays alphanumeric keyboard inputs on the screen in a predefined
scratch pad area.

Handles editing of text displayed in the scratch pad.
Formats all messages to the host computer.

Services all display interrupts.

Services all display peripheral devices.

Performs validation test and diagnostics.

3-1

SECTION 4

FSP SUBROUTINE LIBRARY

The FSP subroutines can be categorized as follows:

A.

Setup Routines

1. GSS4

2. LAYOUT
3. SCALE

4. ENBBOX
5. DSABOX
6. ENBERR
7. DSAERR
8. THEEND

Image Generation Routines

1. MOVE

2. DRAW

3. TEXT

4, POINT

5. CIRCLE

6. REFDAT

Page Management Routines
1, ADDREF

2. UPDATE

3. ERASEP ’
4, PICTUR

5. REQMRK

6. GETMRK

7. MOVEIM

8. COPYIM

Status Routines

1. CPARM
2. DPARM
3. STATUS
4. LAMPON
5. LAMPOF
6. COLOR

Event Routine

1. EVENT

Alphanumeric/Function Keyboard Routines

ENBPAD
DSAPAD
GETTXT
GETKEY

B BOVIN NI

Photopen Item Routines

ENBPEN
DSAPEN
ITEM

GETPEN

SO

Photopen Scan Routines

ENBPXY
DSAPXY
REQPXY
GETPXY

LN

Trackball/Forcestick/Data Tablet Routines

. TBALL
DISTB
DTINIT
DTMODE
. REQTB
GETTB

[oX RN 0, I S B OV RN o6 B

Miscellaneous Routines

HCOPY
REQIM
GETIM
GETERR

ES OV Sl
e o o

Packed Vector Routines

ENBPMD
PDRAW
PMOVE
DSAPMD

SN

Coordinate Converter Routines

1. CCINIT

2. CCVAL
3. CCON
4, CCOFF

Image Control Routines

1. CLIP
2. SMOOTH

SECTION 5
HARDWARE CONFIGURATIONS SUPPORTED

FSP supports either one or two display stations. A display station may have
the following equipment:

. Monitor

. Slave monitor

] PHOTOPEN

. Trackball or forcestick or data tablet

° Alphanumeric/function keyboard

° Hardcopy

The basic FSP supports the following hardware in the terminal controller:

° Memory configurations up to 128K
o Character generator

o Vector/position generator

° Conic generator

° 2D coordinate converter

5-1

SECTION 6

PAGING CONCEPT

A GRAPHIC 7 may be configured to have up to four 32K banks of memory for a total
of 128K of memory.

GCP+ and the memory required to support it occupies approximately 9K of space in
memory bank 0 and leaves approximately 23K of space for the user's refresh program.
The entire 32K in memory banks 1, 2, and 3 is available for refresh. The approximate
total useable refresh space in a 128K system therefore is 119K. The following chart
summarizes the amount of user refresh program space available for the various memory
configurations:

TOTAL MEMORY USER REFRESH SPACE

8K 5K* *These memory configurations are exceptions to
16K , 11K* the above paragraph. For 8K systems, 2K of
32K 23K memory is set aside to support options. For
64K 55K 16K systems, 4K of memory is set aside to
80K 71K support options. On systems where no present
96K 87K or future option support is needed, modifica-
128K 119K tions can be made to FSP to increase user

' refresh space to 7K or 15K in 8K or 16K memory
systems.

FSP uses a paging and mark approach wherein the following definitions are used:

"Page' Definition

° A page is a contiguous block of memory locationms.
° A éége may range in size from 4 memory locations to 32K-4 memory locations.
[A maximum of 255 pages may be defined.
° A page is referred to by a numeric value which ranges from 1 to 255.
° A page normally contains refresh commands generated by the various calls
to FSP.

] Pages are defined by a call to LAYOUT in the host but physically exist in
the memory of the GRAPHIC 7. .

° A page may not cross bank boundaries.
® Page 1 exists entirely in memory bank O.
° Page 1 is always refreshed and can be thought of as the "mainline" refresh

program.

. Pages 2 and above are not always refreshed and may be thought of as refresh
subroutines.

"Mark' Definition

. A mark is a relative pointer into a page.
° Each page has a corresponding mark pointer associated with it.
° Mark values range from 0 to 32K-4

e.g.

A mark value of 4 refers to the 5th memory location
relative to the start of a page.

° The length of a page is defined in terms of 16:bi£ words.

The LAYOUT call (see paragraph 9.2) allows the caller to define Graphic pages

(divide memory into sections).

The page and mark combination allows any memory location to be addressed by the

FSP routines.

6-2

| —— ——

— _ — - .

SECTION 7

COORDINATE SYSTEM

The user can define the limits of the coordinate system he will use by calling
subroutine SCALE with parameters defining the lower left and the upper right coordin-
ates of the screen. FSP converts these floating point coordinates to integer display
coordinates as the various FSP routines are called. It is the display coordinates
that are passed to the GCP+ program. Without a call to SCALE, the user coordinate
system is the same resolution as the display coordinate system. The lower left point
is defined as (0., 0.) and the upper right point as (+1023.,+1023.). See paragraph
9.3 for a detailed description of subroutine SCALE.

7-1

SECTION 8
USE OF LABELLED COMMON
FSP uses labelled common. The user should be careful not to use these common

block names within his program. These common blocks and their dimensions are as
follows:

Common Block Name Common Block Length (Words)
TERMB 279
COORD 9
PVMD 9
LAYOT 516
MAST 5
PERIPH 6

__PER2 2
PEN 1
LMEM 1

Total 838

8-1

SECTION 9

SETUP ROUTINES

The following subroutines are described in this section:

GSS4 - 1Initialize the terminal to FSP mode.

LAYOUT - Define FSP memory layout in the GRAPHIC 7 terminal.
SCALE - Define user coordinate system.

ENDBOX - Turn border display on.

DSABOX - Turn border display off.

ENBERR - - Turn error display on.

DSAERR - Turn error display off.

THEEND - Terminate FSP mode.

The purpose of the routines in this section is to set up and define the general
characteristics of the GRAPHIC 7. The GRAPHIC 7 is notified that it will be com-
municating with a host application program that is using the Fortran support package
(FSP) and is placed in FSP mode by the user's call to GSS4. The GRAPHIC 7 memory is
allocated according to the specifications defined by the user in the call to LAYOUT.
The wviewable area or boundary (commonly called window) that the user specifies
(by the call to SCALE) maps the user's coordinates to display coordinates and deter-
mines what image generation routines are called. Only objects with coordinates
withhin this user defined viewing area are displayped.

The status of FSP's error message area and border are controlled by the user's
call s to ENBERR and ENBBOX, which enable them to be displayable, and calls to DSABOX
and DSAERR to turn them off.

When the host application program has completed its task, it must call THEEND

to rotify the GRAPHIC 7 that it is no longer communicating with a FSP host applica-
tiom and to place it in teletypewriter emulation mode.

9-1

SINILNOY IDVINI/INLIS

9,1 INITIALIZE THE TERMINAL TO FSP MODE

NAME: GSS4

FUNCTION: Initializes FSP. This must be the first FSP routine called.
CALLING FORMAT: CALL GSS4 (IUNIT, IDUM, IFACE)

DESCRIPTION OF PARAMETERS: 1

Integer variable containing the logical unit # assigned to the
GRAPHIC 7 I/0 driver. This value is supplied as an argument to e
subsequent G7INIT, G7TERM, MSGOUT, and MSGIN subroutine calls
(see Section 22 for a more detailed description of these
subroutines).

IUNIT

IDUM = Dummy argument (for expansion)
IFACE = Integer variable containing the type of hardware interface between
the host and the GRAPHIC 7 terminal.
1 = Parallel
2 = Serial

DETAILED DESCRIPTION:

Tn addition to reinitializing internal FSP variables, the following visuals
can be observed: '

e The screen is cleared. The GSS4 roﬁtine causes the customer-
supplied G7INIT routine described in paragraph 22.1 to be called
as follows:

CALL G7INIT (IUNIT)

This subroutine is responsible for activating the system mode of 1
GCP+.
e A full screen border is placed on the screen to outline the dis-

playable area.

® A two digit "error message' is displayed in the upper left corner
of the screen. A successful call results in "00" being displayed.

9.2 DEFINE FSP MEMORY LAYQOUT IN THE GRAPHIC 7 TERMINAL .

NAME: LAYOUT

FUNCTION: Partitions the memory in the GRAPHIC 7 into pages. This routine
must be the second FSP routine called (GSS4 is the first).

CALLING FORMAT: CALL LAYOUT (NPAGES, LNGARY)

DESCRIPTION OF PARAMETERS:

Three distinct functions can be performed by LAYOUT depending on the
value of the NPAGES.

NPAGES = 1 to 255 ... User specifies memory layout
=0 ... FSP automatically performs memory layout
= -1 .+. User requests a description of how FSP would

allocate memory but no allocation is made.

USER ALLOCATION

NPAGES = An integer variable supplied by the caller indicating the number
of graphic pages desired. Each element of the length array
(LNGARY) contains the length in words of the corresponding
graphic page.
1 < NPAGES < 255
LNGARY = An integer array supplied by the caller whose length is equal to

NPAGES. Each element of the array must be filled in by the
caller with the length in "words" of the corresponding page, i.e.

LNGARY (1) = Length of page 1
LNGARY(2) = Length of page 2
LNGARY (NPAGES) = Length of page NPAGES

The maximum size of page 1 is 23720 words; the maximum size of all other pages
is 32763 words.

AUTOMATIC ALLOCATION

NPAGES = 0 (Supplied by caller and indicates automatic allocation
requested.)
LNGARY = A four word integer array supplied by the caller and filled in by

LAYOUT. TLAYOUT automatically creates 1 to 4 graphic pages,
depending on the installed memory configuration. The mark length
values returned in LNGARY are as follows:

9-3

e B8K,16K,32K systems LNGARY(l) = Length of page 1

LNGARY(2) = -1 (no page 2 defined)
LNGARY(3) = -1 (no page 3 defined)
LNGARY(4) = -1 (no page 4 defined)
e 64K systems LNGARY (1) = Length of page 1
LNGARY(2) = Length of page 2
LNGARY(3) = -1 (no page 3)
LNGARY (4) = -1 (no page 4)
e 80K, 96K systems LNGARY (1) = Length of page 1 ?
' LNGARY (2) = Length of page 2
LNGARY(3) = Length of page 3
LNGARY(4) = -1 (no page 4)
e 128K systems LNGARY (1) = Length of page 1
LNGARY (2) = Length of page 2
LNGARY(3) = Length of page 3
LNGARY (4) = Length of page 4
CONFIGURATION
NPAGES = -1 (Supplied by caller and indicates configuration request;
no pages allocated.) '
LNGARY =

by LAYOUT. No pages are allocated and the data returned is the
same as for the automatic allocation.

DETAILED DESCRIPTION

The memory of the GRAPHIC 7 must be divided into graphic pages by
using the LAYOUT subroutine before the subroutines described in the
remaining sections can be used. User pages are numbered starting at 1.
Page 1 is the "mainline refresh" page and all graphic orders in it are
displayed. Graphic orders in pages 2 through 255 are displayed only
through calling the PICTUR subroutine (see paragraph 11.5). The mark
values for each graphic page created by this call are set to zero. Pages
are allocated starting at the lowest memory allowable location of the first
32K memory bank and work upwards. A page is not allowed to cross 32K
memory banks and LAYOUT will assign memory accordingly. If the user at
some later time wishes to reallocate his pages, he must reinitialize the
graphics package by calling GSS4, followed by a call LAYOUT.

f
!
{
|
¥

A four word integer array supplied by the caller and filled in ,l

Example

c

C ALLOCATE 20,200 WORDS OF THE

C GRAPHIC 7 MEMORY

c INTO 7 PAGES USING LAYOUT

c WHERE

c PAGE 1 = 10,000 WORDS

C PAGE 2 = 2,000 WORDS

c PAGE 3 = 200 WORDS

c PAGE 4 = 1,500 WORDS

C PAGE 5 = 1,500 WORDS

C PAGE 6 = 3,000 WORDS

C PAGE 7 = 2,000 WORDS
LNGARY (1) = 10000
LNGARY (2) = 2000
LNGARY (3) = 200
LNGARY (4) = 1500
LNGARY (5) = 1500
LNGARY (6) = 3000
LNGARY (7) = 2000

C

C CALL LAYOUT FOR 7 PAGES

C
CALL LAYOUT (7, LNGARY)

C

C

9.3

9-6

DEFINE USER COORDINATE SYSTEM

NAME: SCALE

FUNCTION: Allows the caller to define the X, Y coordinates (in floating point)
of the lower left and upper right coordinates of the screen. FSP
maps these user coordinates to display coordinates as the various
FSP routines are called.

CALLING FORMAT: CALL SCALE (XL, YL, XU, YU)

DESCRIPTION OF PARAMETERS:

(XL, YL) = Floating point variables containing the X and Y values to be
assigned to the lower left corner of the displayable area.
(XU, YU) = Floating point variables containing the X and Y values to be

assigned to the upper right corner of the displayable area.
DETAILED DESCRIPTION:

All calls to FSP subroutines in which X, Y coordinates are supplied
convert the floating point user coordinate into an integer display
coordinate. It is the display coordinate which is then placed in the
currently opened page.

Without a call to SCALE, the user coordinate system is equal to the
default display coordinate system, i.e.,

XL, YL = 0.,0.
XU, YU = +1023.,+1023.

P—

— _ " A J—

—
-

9.4 TURN BORDER DISPLAY ON

NAME :

ENBBOX

FUNCTION: Allows the caller to display a rectangular border around the

displayable area on the selected indicators.

CALLING FORMAT: CALL ENBBOX (IND)

DESCRIPTION OF PARAMETERS:

IND - An integer variable indicating which of the four possible indicators
the border is to be presented on.

0 - none - 8 - #1

1 - #4 9 - #1 & 4

2 - #3 10 - #1 & 3

3 - #3 & 4 11 - #1, 3, & 4

4 - #2 12 - #1 & 2

5-1#2 & 4 13 - #1, 2, & 4

6 - #2 & 3 14 - #1, 2, & 3

7 - #2, 3 & 4 15 - #1, 2, 3, & 4 (default)

DETAILED DESCRIPTION

This routine allows the caller to selectively display the border on any
or all indicators. The default condition for FSP is to have the borders
displayed on all indicators.

TURN BORDER DISPLAY OFF

NAME:

DSABOX

FUNCTION: Allows the caller to remove the rectangular border from selected

indicators

CALLING FORMAT: CALL DSABOX (IND)

DESCRIPTION OF PARAMETERS:

IND = An integer variable indicating which of the four possible border
indicators to remove. See ENBBOX for the associated indicators
values.

DETAILED DESCRIPTION:

Removes outline around the displayable area on selected indicators.

9.6 TURN ERROR DISPLAY ON

9.7

NAME: ENBERR

FUNCTION: Allows the caller to turn on the error display area .
CALLING FORMAT: . CALL ENBERR (IND)

DESCRIPTION OF PARAMETERS:

IND = An integer variable indicating which of the four possible error
displays to present. See ENBBOX for the associated indicators
values.

DETAILED DESCRIPTION:

The error display is two digits in the upper left hand corner of the

display. The initial value displayed is "@@". If an error condition

is detected, the error number is both displayed and an error event is
created. The error numbers are listed in Appendix C.

TURN ERROR DISPLAY OFF

NAME: DSAERR

FUNCTION: Allows the caller to remove the error display area from the
selected indicator.

CALLING FORMAT: CALL DSAERR (IND)
DESCRIPTION OF PARAMETERS:
IND = An integer variable indicating which of the four possible error
displays to remove. See ENBBOX for a list of the values for
IND and the associated indicators.

DETAILED DESCRIPTION:

Removes the error display from the requested indicators. Error events
are still generated regardless of the status of the error display.

an

—

9.8 TERMINATE FSP MODE

NAME: THEEND

FUNCTION: Causes the GRAPHIC 7 terminal to return to the teletypewriter

emulation mode of GCP+. All screens are cleared before FSP
is terminated.

CALLING FORMAT: CALL THEEND

DETAILED DESCRIPTION:

When the host application program is through with its FSP processing
requirements, it must issue the THEEND call to notify the GRAPHIC 7

terminal that it is no longer communicating with FSP and ‘to place it
in teletypewriter emulation mode. In the emulator mode, the display
operator could then cause another graphics job to be run which would

issue a GSS4 call to put the terminal back into the FSP mode of
operation.

9-9

SECTION 10

IMAGE GENERATION ROUTINES

The subroutines described in this section permit the application programmer to
describe objects in user coordinates. The actual appearance of the objects on the
GRAPHIC 7 display is determined by the following:

[The‘gfaphic ordéféicreétéalb§”tﬁéWEalls”tdrEﬂé image generation

routines described in this section.

MOVE -- Move Beam to the position specified
DRAW ~-- Draw a line

TEXT -- Display text characters

POINT -- Display a point

CIRCLE -- Draw a circle
REFDAT -- Transfer a block of predefined graphic orders.

° The current value of display parameters which have been previously set
by calls to the status subroutines:

CPARM =-- Character size, spacing, and orientation.
DPARM -~ Drawing and refresh rates

STATUS -- Blinking, intensity, line type, and display CRT usage

COLOR -- Color selection when applicable (red, yellow, green and
orange)
° The current pages and areas of pages being displayed which have been

defined by previous calls to page management routines.

PICTUR -- Select pages to be displayed

-

ERASEP —-- Select area within page which is to be erased.
Examples in Appendix E illustrate various display images generated by calls to

routines in this section and the effects that display parameter settings and page
management activities have on these images.

10-1

10.1

10-2

MOVE BEAM TO THE POSITION SPECIFIED

NAME: MOVE

FUNCTION: Generates either an absolute or relative move graphic order and
places it at the mark position of the currently opened page.

CALLING FORMAT: CALL MOVE (X, Y, MODE)
DESCRIPTION OF PARAMETERS:

Absolute mode (MODE = 0, 2, or 3)

Absolute X, Y coordinate of the desired beam position.
The coordinate is in the user coordinate system.

X, ¥ = Relative mode (MODE = 1)

Relative X, Y coordinate (deltas) to be moved from the
current beam position. These relative values are also
in the user coordinate system.

MODE

An integer variable supplied by the caller which identifies
the type of graphic orders to be generated.

0 = X, Y supplied is absolute and absolute graphic orders
are to be generated

1 =X, Y supplied is relative and relative graphic orders
are to be generated

2=X,%Y sup@lied is absolute but relative graphic orders
are to be generated relative to the last absolute co-
ordinate with MODE = 3

3 =X, Y supplied is absolute and absolute graphic order
is to be generated (similar to MODE = 0). It is expected,
however, that subsequent calls to MOVE or DRAW will have
MODE = 2.

DETAILED DESCRIPTION:
Mode = 2 and MODE = 3 are provided to allow a user whose data base

contains only absolute X, Y coordinates to produce relative graphic
orders without calculating the deltas.

| — f—

Avvm— — A——

PRESSS == - =

-

— ‘,A

‘”‘/'

R

o

e, ., e, SRR, ie—.
S~

—

Example:

aaan

[eNeNeNe!

c

The following call produces an absolute graphic order
which moves the beam to (1,1)

CALL MOVE (1.,1.,3)
The following call produces a relative graphic order
which draws the beam from absolute (1,1) to absolute
(3,3). The deltas computed are (2,2).

CALL DRAW (3.,3.,2)
The following call produces another relative graphic
order
which draws the beam from absolute (3,3) to absolute(6,7)
The deltas computed are (3,4).

CALL DRAW (6.,7.,2)

The end result of the above example is that absolute coordinates were
used to create a relative entity (entity consisting of an absolute
move and two relative vectors). The TBALL routine described in
paragraph 17.1 can be used to link to the absolute move and to locally
move the entity around under control of the PED.

Example

a)
b)
c)
d)

e)

current position

.\\
CALL MOVE (5.,6.,0) 1ABS Tl
CALL MOVE (-3.,-3.,1) !REL »© ‘\glﬁi)
‘ 0,5

CALL MOVE (2.,2.,3) !ABS T 0.4 —
CALL MOVE (3.,3.,2) !REL Y 0,3 (b)q!""' =

0,2 R
CALL MOVE (3.,2.,2) !REL ’ o

0,1 (c) (e)

0,0 1,0 2,0 3,0 4,0 5,0
X —»

® Beam Position After Move
———————— Absolute Move

........ Relative Move

10-3

10.2 DRAW A LINE

NAME: DRAW

FUNCTION: Generates either an absolute or relative draw graphic order

and places it at the mark
page.

position of the currently opened

CALLING FORMAT: CALL DRAW (X, Y, MODE)

DESCRIPTION OF PARAMETERS:

(Absolute mode (MODE = 0, 2)

ordinate system.

< Relative mode (MODE =

Absolute X, Y coordinate of the end point of a line
to be drawn. The coordinate is in the user co-

1)

\ system.

MODE

Relative X, Y coordinate to be used in drawing a line
from the current beam position to a new position.
These relative values are also in the user coordinate

An integer variable supplied by the caller which identifies

the type of graphic orders to be generated

0

X, Y supplied is
graphic order is

1 =X, Y supplied is
graphic order is

2 =X, Y supplied is
graphic order is

DETAILED DESCRIPTION:

The behavior of this routine is
except that DRAW graphic orders
graphic orders. Note, however,
DRAW routine.

absolute and an absolute draw
to be generated

relative and a relative draw
to be generated

absolute but a relative draw
to be generated

almost identical to the MOVE subroutine
are produced rather than MOVE
that MODE = 3 .is not allowed for the

The attributes of the line drawn as a result of this call are deter-

mined by previous user calls to

the STATUS routine which sets up

(1) the type of line (solid, dotted, dashed, dot-dashed), (2) blink
or no blink, (3) intensity level and (4) the drawing rate. For color
displays, a previous call to COLOR determines the color of the line.

10-4

gy, A— So—— —

Example

c
C
C

DRAW

CALL
CALL
CALL
CALL

DRAW

CALL
CALL
CALL
CALL

A TRIANGLE USING ABSOLUTE COORDINATES

MOVE (1.,1.,0) (a)
DRAW (3.,4.,0) (b)
DRAW (5.,1.,0) (c)
DRAW (1.,1.,0) (d)

THE SAME TRIANGLE USING RELATIVE COORDINATES

MOVE (1.,1.,0) (a)
DRAW (2.,3.,1) (b)
DRAW (2.,-3.,1) (c)
DRAW (-4.0,0.,1)(d)

(d)

(a)

(b)

(c)

10-5

10.3

10-6

DISPLAY TEXT CHARACTERS

NAME: TEXT

FUNCTIONS: Generates text graphic orders and places them starting at the
mark position of the currently opened page.

CALLING FORMAT: CALL TEXT (N, IARRAY)

DESCRIPTION OF PARAMETERS:

N = An integer variable supplied by the caller indicating the
number of text characters to be displayed.
1 <N<386
TARRAY = An integer ‘array supplied by the caller in which each element

of the array contains an 8 bit ASCII character code right
adjusted in the element (see Appendix B for character codes).

DETAILED DESCRIPTION:

If N is odd, a®null character is stored as the last text character.

When the currently opened page is displayed, the GRAPHIC 7 displays

text starting at the current position of the beam in either a horizontal
or vertical direction with character size and spacing determined by a
previous user call to CPARM:. The text intensity, blink or no blink,

and color (color displays only) has also been determined by calls to
other FSP routines. The current beam position after the text is
displayed is located at the location of the last text character drawn
(blanks included)

C
C NON-ROTATED TEXT
C THIS IS TEXT
CALL MOVE (1.,1.,0)
sles bef ft
CALL TEXT (12, TARRAY) erore atter
Beam Position
=
c £
C ROTATED TEXT &
C % After
vp]
CALL MOVE (l.,1.,0) o
CALL TEXT (12,IARRAY) &
Before

Beam Position

~« o

10.4

DISPLAY A POINT

NAME: POINT

FUNCTION: Generates a '"point" graphic order and places it at the mark
position of the currently opened page.

CALLING FORMAT: CALL POINT
DETAILED DESCRIPTION:

This call does not change the position of the beam but simply causes
a point to appear at the current position of the beam.

Example: C Plot 3 horizontal points starting

C at (512,512) along the positive X

C axis with the spacing between points = 5
CALL MOVE (512.,512.,0)
CALL POINT
CALL MOVE (5.,0.,1)
CALL POINT
CALL MOVE (5.,0.,1)
CALL POINT

10-7

10.5 DRAW A CIRCLE

NAME:

FUNCTION:

CALLING FORMAT:

DESCRIPTION
RADIUS
IQUAD
IQUAD
0 1

CIRCLE

OF PARAMETERS:
where:
§ = turn
1 = turn
2 = turn
3 = turn
4 = turn
5 = turn
6 = turn
7 = turn
8 = turn
9 = turn
10 = turn
11 = turn
12 = turn
13 = turn
14 = turn
2

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

CALL CIRCLE (RADIUS, IQUAD)

all quadrants
quadrant 4 only
quadrant 3 only

quadrants

3 and

quadrant 2 only

quadrants

2 and

quadrants-2 and

quadrants

2, 3’

quadrant 1 only

quadrants
quadrants
quadrants
quadrants
quadrants
quadrants

1 and
1 and
1, 3,
1 and
1, 2,
1, 2,

Radius of the circle in user coordinates.

4 only

4 only
3 only
and 4 only

4 only
3 only
and 4 only
2 only
and 4 only
and 3 only

Ja

Which quadrants of the circle are to be displayed.

(o))

Allows the caller to display specified quadrants of a circle
centered around the current position of the beam.

N

{lu

(T

10-8

ENVARN
//

—

3

AR VAR
/

DETAILED DESCRIPTION:

This routine places a '"draw circle" or "draw quadrant(s)" graphic order
at the mark position of the currently opened page. When the currently
opened page is displayed, the GRAPHIC 7 displays a circle or a series of
quadrants (see description of IQUAD) at a distance equal to RADIUS around
the current position of the beam. The current position of the beam re-
mains unchanged.

10.6 TRANSFER A BLOCK OF PREDEFINED GRAPHIC ORDERS

NAME: REFDAT

FUNCTION: Allows the caller to transfer and display a block of predefined
graphic orders (MOVE, DRAW, TEXT, POINT, CIRCLE)

CALLING FORMAT: CALL REFDAT (IARRAY, N)

DESCRIPTION OF PARAMETERS:

IARRAY = An integer array containing graphic orders right
adjusted in the right-most 16 bits of each element.
N = An integer variable containing the number of elements in

the array.
1 <N<20
DETAILED DESCRIPTION

This routine takes the lower 16 bits (right-most) of the first N elements
found in the array IARRAY and places them at the mark position of the
currently opened page.

The contents of the array IARRAY must be predefined graphic orders.

The image generated by the transferred contents of the array IARRAY
are displayed when the currently opened page is displayed.

10-9

SECTION 11

PAGE MANAGEMENT ROUTINES

The page management routines are used to select the memory address in the
GRAPHIC 7 that will be used to store the next graphic instruction. The GRAPHIC 7
memory address is calculated internally in FSP based on the current page selected
and the current mark position. Each time the application program calls one of the
image generation routines (MOVE, DRAW, TEXT, POINT, CIRCLE, REFDAT), FSP generates
the equivalent graphic controller instructions which are sent to the GRAPHIC 7 and
stored in the GRAPHIC 7 memory.

The page management routines comnsist of the following subroutines:

ADDREF - Open page for adding refresh data.
UPDATE - Open page for editing refresh data.
ERASEP - Erase from page mark to end of page.
PICTUR - Graphic subroutine call.

REQMRK - Request the present page mark.
GETﬁRK - Get mark request information.
MOVEIM - Move a block of graphic orders
COPYIM - Copy a block of graphic orders

Refresh data refers to the block (or group) of graphic controller instructionsg
that are used to display the desired image on the CRT indicator. :

When the application program calls the LAYOUT subroutine, the GRAPHIC 7
memory is sectioned into pages. For example, if 3 pages were selected and page 1
length was 2000, page 2 length was 1000, and page 3 length was 500, then the
GRAPHIC 7 memory would look as follows:

11-1

ADDRESS GRAPHIC 7 MEMORY

0
Memory space used
by GCP+
3000 Start of Page 1
5000 Start of Page 2
6000 Start of Page 3
6500 End of memory for
use by FSP

These addresses were selected for illustrative purposes and may not be the
same memory addresses that would be used by an FSP program. Note that in this
example all addresses above 6500 are unassigned and would be unavailable for storage
of refresh data.

When refresh data is to be added to GRAPHIC 7 memory, the address is selected
by adding the start address of the current page to the current mark. The following
table indicates the GRAPHIC 7 memory address that would be selected, based on the
current page and current mark.

CURRENT CURRENT START ADDRESS GRAPHIC 7 MEMORY
PAGE MARK OF PAGE ADDRESS

1 0 3000 3000

1 5 3000 3005

2 0 5000 5000

2 876 5000 5876

3 0 6000 6000

3 499 6000 6499

3 500 6000 *

*A mark selection of 500 would result in an error code being generated because the
length of page 3 was only 500 and valid marks would be in the range of @ to 499,

11-2

To illustrate the principles involved when using the page management routines,
a simple FSP program will be reviewed in the areas related to page management. The
program is given below; the image that would be displayed on a CRT for this program

is shown in figure 11-1.

NOTE

Please read the subroutine descriptions for ADDREF,
UPDATE, ERASEP, PICTUR, REQMRK and GETMRK before
continuing.

An FSP program which generates the display image in figure 11-1 is given

below:

LINE NO.

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call
Call

GSS4 (3, 0, 2)
LAYOUT (3, LPAGES)
SCALE (0.0, 0.0, 12.0, 12.0)
ADDREF (1)

MOVE (6.0, 6.0,0)
DRAW (7.0, 5.5, 0)
DRAW (8.0, 5.5, 0)
TEXT (8, ITEXT)
ADDREF (2)

MOVE (-.5, -.5, 1)
DRAW (1.0, 0., 1)
DRAW (0., 1.0, 1)
DRAW (-1.0, 0., 1)
DRAW (0., -1.0, 1)
ADDREF (3)

MOVE (-.5, 0., 1)
DRAW (1.0, 0., 1)
MOVE (-.5, -.5, 1)
DRAW (0, 1.0, 1)

ADDREF (1)

MOVE (1.5, 10.5, 0)
PICTUR (2)

MOVE (10.5, 10.5,0)
PICTUR (2)

MOVE (10.5, 1.5, 0)
PICTUR (2)

MOVE (1.5, 1.5, 0)

PICTUR (2)

MOVE (6.0, 8.0, 0)

PICTUR (3)

MOVE (6.0, 4.0, 0)

PICTUR (3)

The call to GSS4 (line 10) initializes the FSP program and a full screen box
and an error code value of "00" are displayed on the CRT indicator.

11-3

X~AXTS P

5”

6” 7” 8" 9”].O” 11”

I I

121!

+

\; TEST ONE

l

12"

__11”

—10H

—3|1

L 2”

11-4

FIGURE 11-1

Dk 4 ——

The call to LAYOUT (line 20) sections GRAPHIC 7 memory into three pages.
The first word of each page (i.e., mark @) is set up to contain an end of page
mark. The end of page mark is equivalent to a return statement in a subroutine.

The call to SCALE (line 30) sets up FSP to map all values in the range of "0"
to '"12" into the equivalent CRT coordinate system. The user coordinate system
defines the lower left corner of the CRT as 0", 0" and the upper right hand corner
as 12", 12". TFor the CRT coordinate system the lower left corner is always -512,-512
and the upper right corner is always +511, +511 This is always true regardless of
which values are specified in the call to SCALE.

The call to ADDREF (line 40) opens up page 1 in the add mode. In the add mode,
an end of page mark (EPM) is added after each refresh data word is stored in page 1.
This call also sets up a GRAPHIC 7 memory address pointer to point to the first word
(mark @) in page 1. After the call to ADDREF, page 1 looks as follows:

Page 1 EPM 1\———Mark pointing here
> Undefined
/

After the call to MOVE (line 50), page 1 looks as follows:

Page 1 MOVE . -
‘ ' EPM [Mark pointing here

Undefined

Note that after the call to MOVE, the mark value points to the new address
in which the EPM is stored.

11-5

After the two calls to DRAW (lines 60 and 70) and the call to TEXT (line 80),
page 1 looks as follows: :

Page 1 MOVE

DRAW

DRAW

TEXT ('TEST ONE')

EPM ¢— Mark

At this point the following is displayed on the CRT indicator.

\\\——————— TEST ONE

The call to ADDREF (2) (line 90) opens up page 2 in the add mode. This call
also sets up a GRAPHIC 7 memory address pointer to point to the first word (mark @)
in page 2. It also saves the last mark value associated with page 1.

After the call to MOVE (line 100) and the 4 calls to DRAW (lines 110 to 140),
page 2 looks as follows:

Page 2 MOVE

DRAW

DRAW

DRAW

DRAW

EPM €—Mark

At this point nothing in page 2 is displayed on the CRT indicator since a
call to PICTUR has not been made. Page 1 is always displayed.

11-6

The call to ADDREF (3) (line 150) opens up page 3 in the add mode. This call
also sets up a GRAPHIC 7 memory address pointer to point to the first word (mark @)
in page 3. It also saves the last mark value associated with page 2.

After the calls to MOVE, DRAW, MOVE, DRAW (lines 160 to 190), page 3 looks as

follows:

Page 3 MOVE

DRAW

MOVE

DRAW

EPM

§———— Mark

At this point nothing in page 3 is displayed on the CRT indicator since a call

to PICTUR has not been made.

The call to ADDREF (1) at line 200 re-opens page 1 in the add mode. This call
also sets up a GRAPHIC 7 memory address pointer to point to the last word in page 1
that contains the EPM. It also saves the last mark value associated with page 3.

After the calls to MOVE and PICTUR (2) at lines 210 and 220, page 1 looks as

follows:

Page 1 MOVE

DRAW

DRAW

TEXT

MOVE

PICTUR(2)

EPM

§——Mark

11-7

At this point a box is displayed at the top left side of the CRT indicator.
The call to PICTUR (2) causes a subroutine call to be made to page 2. This causes
the instructions in page 2 to be executed. When the EPM is executed in page 2,
program control is returned back to page 1 (i.e., the EPM in page 1).

After the remaining statements in the FSP program (i.e., lines 230 to 320)
are executed, the GRAPHIC 7 memory looks as follows:

Page 1 MOVE

DRAW

DRAW These 1nst?uct10ns are
executed first

TEXT

MOVE

PICTUR(2) |@¢——All instructions in page 2
executed

MOVE 44— This instruction executed

after page 2
PICTUR(2) |€—— All instructions in page 2
are executed again.

MOVE

PICTUR(2)

MOVE

PICTUR(2)

MOVE

PICTUR(3) |@4——All instructions in page 3

executed
MOVE
PICTUR(3)
EPM ——Mark
Undefined

11-8

Page 2 MOVE

DRAW

DRAW

DRAW

DRAW

EPM

} Undefined

Page 3 MOVE

DRAW

MOVE

DRAW

EPM

} Undefined

At this point the image shown in figure 11-1 is displayed on the CRT indicator.
NOTE

The page 1 instructions are the only instructions
that are directly executed. All instructions in
pages 2 and 3 are executed indirectly via the PICTUR
subroutine linkage.

The UPDATE and ERASEP subroutines are normally used in response to some
operator action. For example, the function keys on a keyboard could be programmed
to cause certain modifications to a display image. To illustrate the use of UPDATE
and ERASEP, let's say that it is now desired to perform the following actions in
response to function key responses from an operator.

FUNCTION KEY ACTION
16 Remove box display from 4 corners.
(Effectively delete or erase the

instructions stored in page 2.)

17 ~ Replace the 'TEST ONE' characters with
'"TEST TWO'.

11-9

All operator inputs from the GRAPHIC 7 are returned via the EVENT subroutine. [
This subroutine is described in Section 13. To avoid confusion, let's say that the
FSP program has been properly set up to detect function key responses.

When a function key 16 response is detected, the following FSP code could be
used to erase page 2: ' 1

CALL UPDATE (2,0)
CALL ERASEP

The call to UPDATE sets up the GRAPHIC 7 address pointer to point to the first 1
instruction in page 2. The call to ERASEP stores an EPM in page 2 which replaces

the first instruction.

Based on the previous example, page 2 would look as follows:

Page 2 EPM §——Mark
DRAW
DRAW | | |
o ° 1

DRAW These instructions won't
be executed

DRAW l

EPM 1
Undefined :

At this point the boxes are no longer displayed at the four corners. In [
page 1 there are four CALL PICTUR (2) instructions; but every time page 2 is executed |
now, the first instruction executed in page 2 is an EPM so program control returns
to page 1. (I.e., the four DRAWS and second EPM in page 2 will never get executed.)

NOTE

When an ERASEP is executed, the page is also re- (
opened. This has the same effect as executing another L
ADDREF(2). For example, if the FSP program were
coded in the following way in response to a function
key 16 response:

CALL UPDATE (2,0)
CALL ERASEP
CALL TEXT ()

then page 2 would look as follows after the TEXT l‘
instruction is executed: '

11-10

Page 2 TEXT

EPM §——Mark

DRAW

DRAW
Never executed

 DRAW

EPM

} Undefined

At this point the text contained in the TEXT array would be displayed.

In the previous example, if we want to replace the text 'TEST ONE' with
'"TEST TWO', we must know where the TEXT instruction is located in page 1. The
following code would have to be added to the previous example to determine the loca-
tion of the TEXT instruction in page 1.

LINE NO.
71 CALL REQMRK
72 10 CALL EVENT (IEVNT)
73 IF (IEVNT.NE.7) GOTO 10
74 CALL GETMRK (MARK)

The above code would be inserted between lines 70 and 80. The call to REQMRK
tells FSP to determine what the current mark value is. (Effectively, the mark
points to the EPM which is where the TEXT instruction is stored.) When FSP deter-
mines the current mark value, it sets up the EVENT table to contain a mark event
(i.e., event type 7). The event type 7 response indicates that the current mark
value is now stored in the EVENT table. The CALL to GETMRK retrieves the current
mark value from the event table. After the call to GETMRK, the variable MARK

contains the current mark value. MARK is saved for future updating.

Now we are ready to process function key 17 type responses. For a function
key 17 response, the following code would be added:

CALL UPDATE (1, MARK)
CALL TEXT ()

CALL ADDREF (1)

11-11

The call to UPDATE sets up the address pointer to point to the address where
the TEXT instruction ('TEST ONE') is located. The call to TEXT ('TEST TWO')
replaces the previous TEXT instruction. At this point the CRT indicator would dis-
play 'TEST TWO'. When UPDATE is executed, edit mode is entered. In this mode, no
EPM is inserted after the TEXT instruction is added. After the TEXT instruction is
executed, page 1 looks as follows:

Page 1 MOVE

DRAW

DRAW

‘ "TEST TWO' replaced
1 LAY
TEXT ('TEST TWO') —11pst oNE'

Mark (after TEXT instruc-
MOVE <—-—tion)

PICTUR (2)

MOVE

PICTUR (2)

MOVE

PICTUR (2)

MOVE

PICTUR (2)

MOVE

PICTUR (3)

MOVE

PICTUR (3)

EPM @—Mark (after ADDREF(1)
instruction)

Undefined

11-12

—

-

Note that after the TEXT instruction is replaced in GRAPHIC 7 memory, the
mark is pointing to the MOVE following the TEXT instruction. The call to ADDREF(1)
takes us out of edit mode and into add mode. After the call to ADDREF(l), the mark
is repositioned to the EPM. The call to ADDREF(l) is necessary so that all future
FSP subroutine calls made for page 1 will get added to the end of page 1. If no
call to ADDREF(l) is made, all future FSP subroutine calls made for page 1l would be

added following the TEXT instructions. In essence we would be destroying the refresh
data in page 1.

When UPDATE is used, care must be used to ensure that refresh data is not
destroyed. For example, when the 'TEST ONE' text was replaced, it was replaced with
a TEXT string consisting of exactly 8 characters (i.e., the same number of characters
as the original text string 'TEST ONE'). If a text string of more than 8 characters
were inserted in place of the 'TEST ONE' text string, then these additional char-
acters would be stored following the TEXT instruction. In this case the MOVE instruc-
tion would be destroyed. If the TEXT string were very large, the remaining instruc-
tions in page 1 could easily be over-written and destroyed. If the text string were
less than 8 characters, then the text string would have to be space filled to a
length of 8 characters.

The MOVEIM and COPYIM subroutines are intended for use by advanced FSP users.
It is strongly recommended that new FSP users get some experience writing FSP pro-
grams before attempting to use the MOVEIM and COPYIM subroutines.
NOTE

Please read the subroutine descriptions for MOVEIM
and COPYIM before continuing.

11-13

Normally a call MOVEIM is issued after the CALL COPYIM to remove the section of
data that has been copied.

STEP A Copy from MARKA to MARKB to end of page.

CALL COPYIM (MARKA, MARKB)

‘

STEP B Remove copied refresh

CALL MOVEIM (MARKB, MARKA)

STEP C Get new page mark

10 CALL EVENT (IEVENT)

IF (IEVENT EQ. 7) GO TO 20

OTHER PROCESSING

GO TO 10

C
C GET NEW PAGE MARK
C
20 CALL GETMRK (MARKC)
MARKA =P MARKA =P
/A/ A/ B
MARKB —pp < 2] ¥4 ///
B B A
A/

4— END OF PAGE

END OF PAGE I
Le L)) ¢~ END OF
PAGE
RESULTS OF STEP A RESULTS OF STEP B

11-14

11.1 OPEN PAGE FOR ADDING REFRESH DATA

NAME: ADDREF
FUNCTION: This routine opens the specified page and sets the mark to either
the beginning of the page, if it is empty, or directly following
the last data entered into the page.
CALLING FORMAT: CALL ADDREF (IPAGE)
DESCRIPTION OF PARAMETERS:
IPAGE = An integer variable containing the page number to be opened.
1 < IPAGE < 255
DETAILED DESCRIPTION:
This subroutine is used to set up a page for initial orders (if empty)
or for addition of graphics orders to the page. This subroutine does not

give the caller the ability to edit:.previous graphic orders as does the
UPDATE subroutine (see next descriptiomn).

11.2 OPEN PAGE FOR E<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>