
SCO® UNIX®
Operating System

User's Reference

sco®UNIX®
Operating System
User's Reference

© 1983-1993 The Santa Cruz Operation, Inc.
© 1980-1993 Microsoft Corporation.
© 1989-1993 UNIX System Laboratories, Inc.
All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into any
human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual, or otherwise, without the prior written permission of the copyright owner, The Santa Cruz Operation,
Inc., 400 Encinal, Santa Cruz, California, 95060, U.S.A. Copyright infringement is a serious matter under the
United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use in strict accor­
dance with the End User License Agreement, which should be read carefully before commencing use of the soft­
ware. Information in this document is subject to change without notice and does not represent a commitment on
the part of The Santa Cruz Operation, Inc.

SCO UNIX Software is commercial computer software and, together with any related documentation, is subject to
the restrictions on U.S. Government use as set forth below.

If this procurement is for a DOD agency, the following DFAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set
forth in subpararaph (c)(l)(ii) of rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Contractor /Manufacturer is The Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, CA 95060.

If this procurement is for a civilian government agency, the following FAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: This computer software is submitted with restricted rights under Government
Contract No. (and Subcontract No. ~ if appropriate). It may not be used, reproduced, or dis­
closed by the Government except as provided in Paragraph (g)(3)(i) of FAR Clause 52.227-14 or as otherwise
expressly stated in the contract. Contractor /Manufacturer is The Santa Cruz Operation, Inc., 400 Encinal Street,
Santa Cruz, CA 95060.

SCO, Open Desktop, The Santa Cruz Operation, the Open Desktop logo, and the SCO logo are registered trade­
marks of The Santa Cruz Operation, Inc. in the USA and other countries.

All other brand and product names are or may be trademarks of, and are used to identify products or services of,
their respective owners.

Date: 1February1993
Document Version: 3.2.4D

Preface xiii
UNIX Reference manual sections ... xiii
Alphabetized list .. xv

Commands (C)

Intro(C) .. 1
300(C) .. 5
4014(C) .. 8
450(C) .. 9
assign(C) .. 11
at(C) ... 13
auths(C) .. 17
awk(C) .. 19
banner(C) ... 36
basename(C) ... 37
bc(C) .. 38
bdiff(C) .. 54
bfs(C) .. 55
cal(C) ... 59
calendar(C) .. 60
cancel(C) .. 61
cat(C) ... 62
cd(C) .. 64
checkmail(C) ... : 65
chgrp(C) .. 66
chmod(C) ... 67
chown(C) .. 71
clear(C) ... 72
cmp(C) .. 73
col(C) ... 74
comm(C) ... 76
compress(C) .. 77
copy(C) ... 79
corex(C) .. 81
cp(C) .. 82
cpio(C) .. 83
cpset(C) ... 90
cron(C) .. 92

Table of contents v

crontab(C) .. 93
crypt(Cl ... 97
csh(C) .. 99
csplit(C) .. 122
ct(C) ... 125
ctags(C) ... 127
ctags(C) ... 129
cu(C) .. 131
cut(C) .. 137
date(C) .. 139
dc(C) .. 143
dd(C) ... 146
devnm(C) ... 149
df(C) .. 150
dfspace(C) .. 152
diff(C) .. 153
diff3(C) .. 155
dircmp(C) ... 157
dimame(C) .. 158
disable(C) .. 159
diskcp(C) .. 161
doscmd(C) ... 163
dtox(C) .. 170
dtype(C) ... 171
du(C) ... 173
echo(C) ... 175
ed(C) .. 177
enable(C) .. 189
env(C) ... 190
ex(C) .. 191
expr(C) .. 193
factor(C) ... 197
false(C) ... 198
file(C) .. 199
find(C) ... 200
finger(C) ... 204
fixhdr(C) ~ ... 206
format(C) .. 208
getopt(C) .. 210
getopts(C) .. 212
gets(C) ... 215

vi

getsemo(C) .. 216
greek(C) .. 217
grep(C) .. 218
hd(C) ... 221
head(C) ... 223
hello(C) ... 224
hp(C) ... 226
hwconfig(C) ... 228
i286emul(C) ... 232
id(C) .. 234
ismpx(C) ... 235
join(C) ... 236
jterm(C) .. 239
jwin(C) ... 240
kill(C) .. 241
ksh(C) ... 242
last(C) 282
layers(C) ... 283
line(C) .. , 286
ln(C) .. 287
lock(C) .. 289
logname(C) .. 291
lp(C) .. 292
lprint(C) ... 298
lpstat(C) .. 299
ls(C) ... 302
machid(C) .. 307
mail(C) .. 308
man(C) .. 323
mcart(C) .. 328
mesg(C) .. 332
mkdir(C) ... 333
mkfifo(C) .. 335
mknod(C) ... 336
mnt(C) ... 337
more(C) ... 341
mv(C) .. 345
newform(C) ... 347
newgrp(C) .. 352
news(C) .. 354
nice(C) .. 356

Table of contents vii

nl(C) .. 357
nohup(C) .. 359
od(C) ... 360
pack(C) ... 361
passwd(C) .. 364
paste(C) .. 372
pax(C) .. 374
pcpio(C) .. 380
pg(C) ... 384
pr(C) .. 388
prwam(C) .. 391
ps(C) .. 392
pstat(C) ... 397
ptar(C) ... 402
purge(C) ... 405
pwd(C) .. 408
quot(C) .. 409
random(C) .. 411
rcp(C) .. 412
rcvalert(C) .. 414
rcvfile(C) .. 416
rcvprint(C) ... 418
rcvtrip(C) .. 419
remote(Cl ... 422
resend(C) .. 424
rlpcmd(C) ... 425
rm(C) ... 426
rmdir(C) ... 428
rsh(C) .. 429
scosh(C) .. 430
sddate(C) .. 435
sdiff(C) .. 437
sed(C) .. 439
setcolor(C) ... 444
setkey(C) .. 446
sg(C)' .. 449
sh(C) .. , 452
shl(C) .. 467
sleep(Cl .. 470
slot(C) ... 471
sort(C) ... 473

viii

spell(C) ... 477
spline(C) ... , .. 481
split(C) .. 482
strings(C) ... 483
stty(C) ... 484
su(C) .. 490
sum(C) .. 493
swconfig(C) ... 494
tabs(C) .. 496
tail (C) 500
tape(C) .. 501
tapecntl(C) ... 507
tapedump(C) ... 509
tar(C) ... 511
tee(C) ... 517
test(C) ... 518
tic(C) .. 521
time(C) .. 526
touch(C) .. ,.,. 527
tput(C) .. 528
tr(C) ... 532
translate(C) .. 534
true(C) ... 536
tset(C) ... 537
tty(C) ... 540
umask(C) .. 541
uname(C) ... c .. ••••••••••••••••••••••• 543
uniq(C) ... 545
units(C) ... 546
uptime(C) ... 547
usemouse(C) ... 548
uucp(C) ... 552
uuencode(C) .. 556
uustat(C) .. 559
uuto(C) .. 562
uux(C) ... 564
vi(C) ... 567
vidi(C) ... 604
vmstat(C) ... 606
w(C) ... 609
wait(C) .. 611

Table of contents ix

wc(C) ... 612
what(C) ... 613
who(C) .. 614
whodo(C) ... 617
write(C) .. 618
x286emul(C) .. 620
xargs(C) .. 621
xtod(C) .. 624
xtract(C) .. 625
yes(C) .. 626

Miscellaneous (M)

Intro(M) .. 629
aio(M) ... 630
ascii(M) .. 634
chrtbl(M) .. 636
done(M) ... 639
coltbl(M) .. 640
console(M) ... 642
daemon.mn(M) ... 643
environ(M) .. 645
error(M) .. 649
fcntl(M) .. 651
getdk(M) ... 653
getty(M) .. 654
idas(M) ... 658
idld(M) ... 660
init(M) .. 664
isverify(M) .. 669
jagent(M) ... 671
layers(M) .. 672
locale(M) .. 675
log(M) ... 677
login(M) ... 680
mapchan(M) .. 687
mapkey(M) .. 692
math(M) ... 695
messages(M) ... 697
mestbl(M) .. 741

x

montbl(M) ... 743
motd(M) ... 745
mscreen(M) ... 747
multiscreen(M) ... 751
numtbl(M) ... 753
prof(M) ... 755
profile(M) ... 757
ptmx(M) ... 758
rmb(M) ... 759
scanon(M) .. 760
streamio(M) ... 761
string(M) .. 771
subsystem(M) ... 772
sxt(M) .. 789
systty(M) .. 791
term(M) 792
terminals(M) ... 796
terminfo(M) .. 806
termio(M) .. : 861
termios(M) ... 876
timod(M) .. 878
timtbl(M) ... 880
tirdwr(M) ... 883
trchan(M) ... 885
tty(M) .. 887
tz(M) .. 888
undocumented(M) ... 890
values(M) ... :... 892
xtproto(M) 894

Table of contents xi

xii

Preface

The User's Reference is one of a two-volume set that includes manual pages for
the entire SCO UNIX System V Operating System, including sections (C), (M),
(ADM), (F) and (HW).

This volume contains a complete set of the section (C) and (M) manual pages,
in that order.

The manual pages for section (C) contain comprehensive descriptions of user
commands.

The manual pages for section (M) contain miscellaneous information used for
access to devices, system maintenance and communication.

All of these manual pages are accessible online by using the man command.

UNIX Reference manual sections
The complete UNIX Reference is actually divided into parts and distributed as
individual reference sections in the various volumes of the Operating and De­
velopment Systems. The following table lists the name, content, and location
of each reference section.

xiii

Preface

xiv

Section

ADM

c

CP

DOS

F

FP

HW

K

M

s

XNX

Description

Administrative Commands - used for
system administration

Commands - used with the Operating
System

Programming Commands - used with the
Development System

MS-DOS and OS/2 library routines - used
with the Development System

File Formats - description of various sys­
tem files used with the Operating System

Programming File Formats - used with
the Development System.

Hardware device manual pages - used
with the Operating System

Kernel routines - used for writing device
drivers

Miscellaneous - information used for
accessing devices, performing system
maintenance, and handling communi­
cations

System Calls and Library Routines - used
for C and assembly language programming
in the Development System

XENIX cross development manual pages -
used with the Development System

Volume

System
Administrator's
Reference

User's Reference

Programmer's
Reference Manual

Programmer's
Reference Manual

System
Administrator's
Reference

Programmer's
Reference Manual

System
Administrator's
Reference

Device Driver
Writer's Guide

User's Reference

Programmer's
Reference Manual

Programmer's
Reference Manual

The Permuted Index for Reference Manuals, which is distributed with the Operat­
ing System documentation set, is useful in matching a desired task with the
manual page that describes it.

Certain pages in the Operating System distribution make reference to include
files that are part of the Development System.

The alphabetized list given on the following pages is a complete listing of all
UNIX commands, system calls, library routines, and file formats.

User's Reference

Alphabetized list
Commands, syslem calls, library routines, and file fonnats

[................................. test (C) adf_gtxcd tam (S)
300 300(C) adjmsg adjmsg (K)
300s 300 (C) admin admin (CP)
4014 4014 (C) advance regexp (S)
450 450(C) agetcommand authcap (S)
80387 80387 (HW) agetdefault authcap (S)
86rel 86rel (FP) agetfile authcap (S)
a641•................... a641 (S) agetflag authcap (S)
abort abort (S) agetstr authcap (S)
abs abs(S) agettty authcap (S)
accept accept (ADM) agetuser authcap (S)
acceptable_password accept_pw (S) aio aio(F)
access access (S) aio aio(M)
acct acct (ADM) aioinfo aioinfo (ADM)
acct acct (FP) aiolkinit aiolkinit (ADM)
acct acct (S) aiomemlock aiomemlock (F)
acctcms acctcms (ADM) alarm alarm (S)
acctcom acctcom (ADM) ale ale (ADM)
acctcon acctcon (ADM) all_io all_io (K)
acctconl acctcon (ADM) allocb allocb (K)
acctcon2 acctcon (ADM) allocldptr ldptr (S)
acctdisk acct (ADM) altzone ctime (S)
acctdusg acct (ADM) a.out. a.out (FP)
acctmerg acctmerg (ADM) ap ap(ADM)
accton acct (ADM) ar ar(CP)
accton accton (ADM) ar , ._ ar(FP)
acctprc acctprc (ADM) ar ar(XNX)
acctprcl. acctprc (ADM) arc plot (S)
acctprc2 acctprc (ADM) archive archive (F)
acctsh acctsh (ADM) archtobus archtobus (K)
acctwtmp acct (ADM) as as (CP)
acos trig (S) asa undocumented (M)
adb adb (CP) ascii ascii (M)
addch curses (S) asctime ctime (S)
addch tam (S) asetdefaults authcap (S)
addch terminfo (S)
add_intr_handler add_intr_handler (K)

asin trig (S)
asktime asktime (ADM)

addkey curses (S) asktimer asktime (ADM)
addkey terminfo (S) asroot asroot (ADM)
addstr curses (S) assert assert (S)
addstr tam (S)
addstr terminfo (S)

assign assign (C)
at at(C)

addxusers addxusers (ADM)
adf_gttok tam (S)
adf_gtwrd tam (S)

atan trig (S)
atan2 trig (S)
atcronsh atcronsh (ADM)

xt>

atexit. atexit (S) bcheckrc bcheckrc (ADM)
atof. atof (S)
atoi. atof (S)

bcopy bcopy (K)
bdiff bdiff (C)

atol atof (S) bdistributed bdistributed (K)
attroff curses (S) beep curses (5)
attroff tam (S) beep tam (S)
attroff terminfo (S) beep terminfo (S)
attron curses (S) bessel bessel (5)
attron tam (S) bfs bfs (C)
attron terminfo (S) bigcrypt getpasswd (5)
attrset curses (S) bigcryptmax getpasswd (5)
attrset terminfo (S) boot boot (HW)
audit audit (HW) Bottom libwindows (5)
audit_adjust_mask authaudit (S) bottom_panel panel (5)
audit_auth_entry authaudit (S) box curses (5)
audit_close audit (S) box plot (5)
auditcmd auditcmd (ADM) box terminfo (5)
auditd auditd (ADM) brand undocumented (M)
audit_lax_file authaudit (S) brelse brelse (K)
audit_lock authaudit (S) brk brk(5)
audit_login authaudit (S) brkctl brkctl (5)
audit_no_resource authaudit (S) bsearch bsearch (5)
audit_open audit (S) btld btld (F)
audit_passwd authaudit (S) btldinstall btldinstall (ADM)
audit_read audit (S) btoc btoc (K)
audit_security_failure authaudit (S) bufcall bufcall (K)
auditsh auditsh (ADM) bzero bzero (K)
audit_subsystem authaudit (S) cal cal(C)
authaudit authaudit (S) calendar calendar (C)
authcap authcap (F) calloc malloc (5)
authcap authcap (5) cancel cancel (C)
authck authck (ADM) can_change_color curses (S)
authckrc tcbck (ADM) can_change_color terminfo (5)
authorize authorize (F) can_doio can_doio (K)
authorized_user subsystems (5)
auths auths (C)

canon canon (K)
canput canput (K)

authsh authsh (ADM) captoinfo captoinfo (ADM)
autoboot autoboot (ADM) cat cat(C)
awk awk(C)
backq backq (K)
backup backup (ADM)
backupsh backupsh (ADM)
badtrk badtrk (ADM)
banner banner (C)

catclose catopen (5)
catget~ catgets (5)
catopen catopen (5)
cb cb(CP)
cbackup cbackup (ADM)
cbreak curses (5)

basename basename(C)
batch at (C)
baudrate curses (S)
baudrate tam (5)
baudrate terminfo (5)
be bc(C)
BC termcap (5)

cbreak tam (S)
cbreak terminfo (5)
cc cc(CP)
cd cd(C)
cdc cdc (CP)
cdistributed cdistributed (K)
cdrom cdrom (HW)

xvi User's Reference

ceil floor (S) closepl plot (S)
cfgetispeed cfspeed (S)
cfgetospeed cfspeed (5)
cfgstart getbsvalue (K)
cflow cflow (CP)

clrbuf clrbuf (K)
clri clri (ADM)
clrtobot curses (S)
clrtobot tam (S)

cfree malloc (S) clrtobot terminfo (S)
cfsetispeed cfspeed (S)
cfsetospeed cfspeed (S)
cfspeed cfspeed (5)

clrtoeol curses (S)
clrtoeol tam (S)
clrtoeol terminfo (S)

chargefee acctsh (ADM) cmn_err cmn_err (K)
chdir chdir (S) cmos cmos (HW}
checkaddr checkaddr (ADM) cmp cmp(C)
check_auth_parameters identity (S) cnvtmbox cnvtmbox (ADM)
checkeq undocumented (M) codeview codeview (CP)
checklist checklist (F) col col(C)
checkmail checkmail (C) color_content curses (S)
checkque checkque (ADM} color_content terminfo (S)
checkup checkup (ADM} coltbl coltbl (M)
chg__audit chg_audit (ADM} comb comb (CP)
chgrp chgrp (C) comm comm(C)
chkshlib chkshlib (CP} compile regexp (S)
chmod chmod (C) compress compress (C)
chmod chmod (S) compver compver (F}
chown chown (C) configure configure (ADM)
chown chown (S) console console (M)
chroot chroot (ADM) consoleprint consoleprint (ADM)
chroot chroot (S) cont plot (S)
chrtbl chrtbl (M) conv conv (CP)
chsize chsize (S) convert convert (CP)
chtype unretire (ADM) convkey mapkey (M)
circf. regexp (5) copy copy (C)
circle plot (S} copyb : copyb (K)
ckbupscd undocumented (M) copydvagent getdvagent (S)
ckpacct acctsh (ADM} copyin copyin (K)
cksum cksum (C) copyio copyio (K)
cleanque cleanque (ADM) copymsg copymsg(K)
cleantmp cleantmp (ADM} copyout copyin (K)
cleanup undocumented (M) copyright copyright (F)
clear clear (C) copywin curses (S)
clear curses (S} copywin terminfo (5)
clear tam (S) core core (FP)
clear terminfo (S) corex corex (C)
clearerr ferror (S) cos trig (S)
clearok curses (S) cosh sinh (S)
clearok tam (S) cp cp(C)
clearok terminfo (S) cpass cpass (K)
clock clock (F) cpio cpio (C)
clock clock (S)
clone clone (M)
close close (S)
closedir directory (S)

cpio cpio (F)
cpp cpp (CP)
cprs cprs (CP)
cps fixmog (ADM)

cpset cpset (C)
crash crash (ADM)
creat creat (S)
create_file_securely ... create_file_securely (S)
creatsem creatsem (S)
crmode curses (S)

de dc(C)
dcopy dcopy (ADM)
dd dd(C)
deassign assign (C)
debrand undocumented (M)
default default (F)

crmode tam (S) defaults defaults (F)
crmode terminfo (S) defopen defopen (5)
cron cron (C) def_prog_mode curses (5)
crontab crontab (C) def_prog_mode terminfo (5)
crypt crypt (C) defread defopen (5)
crypt crypt (S) def_shell_mode curses (5)
crypt_close crypt (5) def_shell_mode terminfo (S)
cryptopen crypt (5) delay delay (K)
cscope cscope (CP) delay _output curses (S)
csh csh(C) delay _output terminfo (5)
csplit csplit (C) delch curses (5)
ct ct(C) delch tam (5)
ctags ctags (C) delch terminfo (S)
ctermid ctermid (5) del_curtenn curses (S)
ctime clime (S) del_curtenn terminfo (S)
ctob btoc (K) delete dbm (5)
ctrace ctrace (CP) Delete libwindows (S)
ctype ctype (5) deleteln curses (5)
cu cu(C) deleteln tam (5)
curoff curses (5) deleteln terminfo (5)
curoff terminfo (5) deliver deliver (ADM)
curon curses (S) del_panel panel (5)
curon terminfo (S) delta delta (CP)
Current libwindows (5) delwin curses (S)
current_field form (S) de I win terminfo (S)
current_item menu (S) depend depend (F)
curses curses (S) des_crypt crypt (5)
curs_set curses (S) des_encrypt crypt (S)
curs_set terminfo (S) des_setkey crypt (S)
curtbl montbl (M) devassign devassign (F)
cuserid cuserid (5) deverr deverr (K)
custom custom (ADM) devices devices (F)
cut cut(C) devnm devnm (C)

cv codeview (CP) devreg devreg (K)
cxref cxref (CP) df df(C)
dat dat (HW) dfsck fsck (ADM)

datamsg datamsg (K)
date date (C)

dfspace dfspace (C)
dial dial (ADM)

daylight ctirne (5)
dblock dblock (S)

dial dial (5)
dialcodes dialcodes (F)

dbm dbm(5)
dbmbuild dbmbuild (ADM)
dbmedit dbmedit (ADM)
dbminit dbm (S)
dbXtra dbXtra (CP)

dialers dialers (F)
diff diff (C)
diff3 diff3 (C)
difftime difftime (5)
dir dir (FP)

xviii User's Reference

dircmp dircmp (C)
directory directory (5)
dirent dirent (FP)

eccd ecc (ADM)
echo curses (5)
echo echo (C)

dirname dimame (C) echo tam (5)
dis dis (CP) echo terminfo (5)
disable disable (C) echochar curses (5)
diskcmp diskcp (C) echochar terminfo (5)
diskcp diskcp (C) ecvt ecvt (5)
disksort disksort (K) ed ed(C)

diskusg diskusg (ADM) edata end (5)
DISPLAYED video (K) edit ex (C)

displaypkg displaypkg (ADM) egrep grep (C)
div div(5) eisa eisa (ADM)
divvy divvy (ADM) emactovi undocumented (M)

dkinit dparam (ADM) emajor emajor (K)
dlvr_audit dlvr_audit (ADM) emdupmap emdupmap (K)
dmesg dmesg (ADM) eminor emajor (K)

dmp_win curses (5) emunmap emunmap (K)
dodisk acctsh (ADM) enable enable (C)
doscat doscmd (C) enableok enableok (K)

doscmd doscmd (C) encrypt crypt (5)
doscp doscmd (C) end end (5)
dosdir doscmd (C) enddvagent getdvagent (5)
dosformat doscmd (C) endgrent getgrent (5)
dosld dosld (CP) endprdfent getprdfent (5)
dosls doscmd (C) endprfient getprfient (5)
dosmkdir doscmd (C) endprpwent getprpwent (5)
dosrm doscmd (C) endprtcent getprtcent (5)
dosrmdir doscmd (C) endpwent getpwent (5)
doupdate curses (5) endspent getspent (5)
doupdate terminfo (5) endutent getut (5)
dparam dparam (ADM) endwin · curses (5)
draino curses (5) endwin tam (5)
draino terminfo (5) endwin terminfo (5)
drand48 drand48 (5) enter_quiet_zone dblock (5)
dsconfig undocumented (M) env env(C)
dtox dtox (C) environ environ (M)
dtype dtype (C) erand48 drand48 (5)
du du(C) erase curses (5)
dump dump (CP) erase plot (5)
dumpmsg dumpmsg (CP) erase tam (5)
dumpwin terminfo (5) erase terminfo (5)
dup dup(5)
dup2 dup2 (5)

erasechar curses (5)
erasechar terminfo (S)

dupb dupb (K) erf erf(5)
dup_field field (5) erfc erf (5)
dupmsg dupmsg (K)
dupwin curses (5)

errno perror (5)
error error (M)

dupwin terminfo (5) ERROR regexp (5)
eaccess access (5) etext end (5)
ecc ecc (ADM) ev _block ev _block (5)

xix

ev _close ev _close (S) fgetgrent getgrent (S)
ev_count ev_count (S)
ev_flush ev_flush(S)
ev_getdev ev_getdev (S)

fgetpasswd getpasswd (S)
fgetpos fgetpos (S)
fgetpwent getpwent (S)

ev _getemask ev _getemask (S) fgets gets (S)
ev_gindev ev_gindev (S) fgetspent getspent (S)
ev_init ev_init(S)
ev_initf ev_init (S)

fgrep grep (C)
field field (S)

ev _open ev _open (S) field_arg field (S)
ev_pop ev_pop (S) field_back field (S)
ev_read ev_read(S) field_buffer field (S)
ev_resume ev_resume(S) field_count form (S)
ev_setemask ev_setemask (S) field_fore field (S)
ev_suspend ev_suspend(S) field_index form (S)
ex ex(C) field_info field (S)
exec exec (S) field_init form (S)
exec! exec (S) field_just field (S)
execle exec (S) field_opts field (S)
execlp exec (S) field_opts_off field (S)
execseg execseg (S) field_opts_on field (S)
execv exec (S) field_pad field (S)
execve exec (S) fields fields (S)
execvp exec (S) field_status field (S)
exhelp tam (S) field_term form (S)
_exit exit (S) field_type field (S)
Exit libwindows (S) fieldtype fieldtype (S)
exit_quiet_zone dblock (S) field_userptr field (S)
exp exp(S) file file (C)
expand expand (C) filehdr filehdr (FP)
expr expr (C) fileno ferror(S)
fabs floor (S) files files (F)
factor factor (C) filesys filesys (F)
false false (C) filesystem filesystem (FP)
fclose fclose (S) filter curses (S)
fcntl fcntl (M) filter terminfo (S)
fcntl fcntl (S) find find (C)
fcvt ecvt (S) findstr findstr (CP)
fd fd(HW) finger finger (C)

FD_CLR select(S) firstkey dbm (S)
fdisk fdisk (ADM) fixhdr fixhdr (C)
FD_ISSET select(S) fixmog fixmog (ADM)
fdopen fopen (S)
FD_SET select(S)

fixperm fixperm (ADM)
fixshlib undocumented (M)

fdswap fdswap (ADM)
FD_ZERO select(S)
feof ferror (S)
ferror ferror (S)
fetch dbm (S)
ff ff(ADM)
fflush fclose (S)
fgetc getc (S)

fixterm curses (S)
fixterm tam (S)
flash curses (S)
flash tam (S)
flash terminfo (S)
floor floor (S)
flushinp curses (S)
flushinp tam (S)

xx User's Reference

flushinp terminfo (5)
flushq flushq (K)
flushtlb flushtlb (K)

fsetpos fsetpos (5)
fsname fsname (ADM)
fspec fspec (F)

fmod floor (5) fsphoto fsphoto (ADM)
fold fold (C) fsstat. fsstat (ADM)
fopen fopen (5) _fst undocumented (M)
fork fork (5) fstat stat (5)
form form (5) fstatfs statfs (5)
form tam (5) fstyp fstyp (ADM)
format format (C) fsync fsync (5)
form_driver form (5) ftell fseek (5)
form_fields form (5) ftime time (5)
form_init form (5) ftok ftok (5)
form_opts form (5) ftw ftw (5)
form_opts_off form (5) fubyte fubyte (K)
form_opts_on form (5) fuser fuser (ADM)
form_page form (5) fuword fuword (K)
form_sub form (5) £write fread (5)
form_term form (5) fwtmp fwtrnp (ADM)
form_userptr form (5) fxlist xlist (5)
form_win form(5) gamma , gamma (5)
fpathconf pathconf (5) garbagedlines curses (5)
fpgetmask fpgetround (5) garbagedlines terminfo (5)
fpgetround fpgetround (5) gcvt ecvt (5)
fpgetsticky fpgetround (5) gencat gencat (CP)
fprintf printf (5) gencc gencc (CP)
fpsetmask fpgetround (5) get get(CP)
fpsetround fpgetround (5) getablk geteblk (K)
fpsetsticky fpgetround (5) getbegyx curses (5)
fputc putc (5) getbegyx terminfo (5)
fputs puts (5) getbsflag getbsvalue (K)
fread fread (5) getbsvalue getbsvalue (K)
free undocumented (M) getc getc (K)
free malloc (5) getc getc (5)
freeb freeb (K) GETC regexp (5)
free_field field (5) getcb getc (K)
free_fieldtype fieldtype (5) getcbp getc (K)
free_form form (5)
free_item item (5)

getcf getc (K)
getcfgline getbsvalue (K)

freeldptr ldptr (5) getch curses (5)
free_menu menu (5)
freemsg freemsg (K)
£reopen fopen (5)
frexp frexp (5)
fsanck undocumented (M)
fsave fsave (ADM)
fsba undocumented (M)
fscanf scanf (5)
fsck fsck (ADM)
fsdb fsdb (ADM)
fseek fseek (5)

getch tam (5)
getch terminfo (5)
getchar getc (5)
getchar getchar (K)
getclk getclk (M)
getconf getconf (C)
getcwd getcwd (5)
getdents getdents (5)
getdim curses (5)
getdim terminfo (5)
getdvagent getdvagent (5)

xxi

getdvagnam getdvagent (5)
geteblk geteblk (K)

getstr curses (5)
getstr terminfo (5)

getegid getuid (5) getsyx curses (5)
getenv getenv (5) getsyx terminfo (5)
geteuid getuid (5) gettmode curses (5)
getgid getuid (5) getty getty (M)
getgrent getgrent (5) gettydefs gettydefs (F)
getgrgid getgrent (5) getuid getuid (5)
getgmam getgrent(5) getut getut (5)
getgroups getgroups (5)
gethz gethz (5)

getutent getut (5)
getutid .. .' getut (5)

getitimer getitimer (5) getutline getut (5)
getlogin getlogin (5) getw getc (5)
getluid getluid (5) getyx curses (5)
getmaxyx curses (5) getyx tam (5)
getmaxyx terminfo (5) getyx terminfo (5)
getmsg getmsg (5) gmtime clime (5)
getopt getopt (C) goodpw goodpw (ADM)
getopt getopt (5) graph graph (ADM)
getoptcvt getopts (C) greek greek (C)
getopts getopts (C) grep grep(C)
getorg curses (5) gr_idtoname pw_nametoid (5)
getorg terminfo (5) gr_nametoid pw _nametoid (5)
getpass getpass (5) group group (F)
getpasswd getpasswd (5) grpck grpck (ADM)
getpgrp getpid (5) gsignal : ssignal (5)
getpid getpid (5) halfdelay curses (5)
getpkgflag getbsvalue (K) halfdelay terminfo (5)
getpkgvalue getbsvalue (K) haltsys haltsys (ADM)
getppid getpid (5) has_colors curses (5)
getprdfent getprdfent (5) has_colors terminfo (5)
getprdfnam getprdfent (5) hashcheck spell (C)
getprfient getprfient (5)
getprfinam getprfient (5)
getpriv getpriv (5)
getprpwent getprpwent (5)
getprpwnam getprpwent (5)
getprpwuid getprpwent (5)
getprtcent getprtcent (5)
getprtcnam getprtcent (5)
getpw getpw (5)
getpwent getpwent (5)
getpwnam getpwent (5)
getpwuid getpwent (5)
getq getq (K)
gets , gets (C)
gets gets (5)
get_seed seed (5)
getserno getsemo (C)
getspent getspent (5)
getspnam getspent (5)

hashmake spell (C)
has_ic curses (5)
has_ic terminfo (5)
has_il curses (5)
has_il terminfo (5)
hcreate hsearch (5)
hd hd(C)
hd hd(HW)
hdestroy hsearch (5)
hdr hdr (XNX)
head , head (C)
hello hello (C)
help help (CP)
hide_panel. panel (5)

~~ .. :::::::::::::::::::::::::::::::: .hts ~~~
hsearch hsearch (5)
hwconfig hwconfig (C)
hypot hypot (5)

xxii User's Reference

i286 machid (C) insertln curses (S)
i286emul i286emul (C) insertln tam (S)
i286emul i286emul (CP) insertln terminfo (S)
i386 machid (C) insertmsg insertmsg (CP)
i486 machid (C) insq insq (K)
iAPX286 machid (C) install install (ADM)

ibmlpopt undocumented (M)
iconv iconv (CP)

installf installf (ADM)
installpkg installpkg (ADM)

id id(C) integrity integrity (ADM)

idaddld idaddld (ADM) intralloc intralloc (K)
idas idas (M) intrallocs intralloc (K)
idbuild idbuild (ADM) intrftush curses (S)
idcheck idcheck (ADM) intrftush terminfo (S)
idconfig idbuild (ADM) Intro Intro (ADM)

identity identity (S) Intro Intro (C)
idinstall idinstall (ADM) Intro Intro (CP)
idld idld (M) Intro Intro (F)
idleout idleout (ADM) Intro Intro (FP)
idlok curses (S) Intro Intro (HW)
idlok terminfo (S) Intro Intro (K)
idmkenv idbuild (ADM) 1ntro Intro (M)
idmkinit idmkinit (ADM) Intro : Intro (S)
idmknod , idmknod (ADM) Intro Intro (XNX)
idmkunix idbuild (ADM) inw inw(K)
idscsi idbuild (ADM) ioctl ioctl (S)
idspace idspace (ADM) iodone iodone (K)
idtune idtune (ADM) iomove iomove (K)
idvidi idbuild (ADM) iowait iowait (K)
inb inb(K) ipcrm ipcrm (ADM)
inch curses (5) ipcs ipcs (ADM)
inch terminfo (S) isaddindex " ... isaddindex (S)
ind ind(K) isalnum ctype (S)
infocmp infocmp (ADM) isalpha ctype (S)
inipcrm undocumented (M) isascii ctype (S)
init init (M) isatty ttyname (S)
INIT . · regexp (S) isbuild isbuild (S)
init.base inittab (F) isclose isclose (S)
init_color curses (5) iscntrl ctype (S)
init_color terminfo (S) isconv isconv (5)
~n~tcon~ initcond (ADM)
1mt_pair curses (S)

isdelcurr isdelcurr (S)
isdelete isdelete (S)

~n~t_pair terminfo (S)
~n~tscr curses (S)
m1tscr tam (S)

isdelindex isdelindex (S)
isdelrec isdelrec (S)
isdigit ctype (S)

initscr terminfo (S) isendwin curses (S)
initscript initscript (ADM)
inittab inittab (F)

isendwin terminfo (S)
iserase iserase (S)

inode inode (FP)
insch curses (S)

isgraph ctype (S)
isindexinfo isindexinfo (S)

insch tam (S) islock islock (S)
insch terminfo (S) islower ctype (S)

xxiii

ismpx ismpx (C)
isnan isnan (5)

jwin jwin (C)
kbmode kbmode(ADM)

isnand isnan (5)
isnanf isnan (5)

kcodemap tam (5)
keyboard keyboard(H~)

isopen isopen (5) keyname curses (5)
isprint ctype (5) keyname terminfo (5)
ispunct ctype (5) keypad curses (5)
isread isread (5) keypad tam (5)
isrelease isrelease (5) keypad : terminfo (5)
isrename isrename (5) kill kill (C)
isrewcurr isrewcurr (5) kill kill(5)
isrewrec isrewrec (5) killall killall (ADM)
isrewrite isrewrite (5) killchar curses (5)
issetunique issetunique (5) killchar terminfo (5)
isspace ctype (5) kmem mem (FP)
isstart isstart (5) ksh ksh(C)
is_starting_egid identity (5) ktop ptok (K)
is_starting_euid identity (5) I ls(C)
is_starting_luid identity (5) l3tol. 13tol (5)
is_starting_rgid identity (5) 164a a641 (5)
is_starting_ruid identity (5) label plot (5)
issue issue (F) labelit labelit (ADM)
isuniqueid isuniqueid (5) labs labs (5)
isunlock isunlock (5) langinfo langinfo (FP)
isupper ctype (5) last last (C)
isverify isverify (M) lastlogin acctsh (ADM)
iswind tam (5) layers layers (C)
iswrcurr iswrcurr (5) layers layers (M)
iswrite iswrite (5) le ls (C)
isxdigit ctype (5) lckpwdf getspent (5)
item item (5) lcong48 drand48 (5)
item_count item (5) lconv lconv (FP)
item_description item (5) Id ld(CP)
item_index menu (5) Id ld(XNX)
item_init menu (5) ldaclose ldclose (5)
item_name item (5) ldahread ldahread (5)
item_opts item (5) ldaopen ldopen (5)
item_opts_off item (5) ldclose ldclose (5)
item_opts_on item (5) lddbl isconv (5)
item_term menu (5) ldexp frexp (5)
item_userptr item (5)
item_ value item (5)

ldfcn ldfcn (FP)
ldfhread ldfhread (5)

item_visible item(5) ldfloat isconv (5)
itimer getitimer (5)
jO bessel (5)
jl. bessel (5)
jagent jagent (M)
jn bessel (5)
join join (C)
jrand48 drand48 (5)
jterm jterm (C)

ldgetname ldgetname (5)
ldint isconv (5)
ldiv !div (5)
ldlinit ldlread (5)
ldlitem ldlread (5)
ldlong isconv (5)
ldlread ldlread (S)
ldlseek Idlseek (5)

xxiv User's Reference

Idnlseek ldlseek (S) lock lock (C)
ldnrseek ldrseek (S) lock lock (S)
tdnshread ldshread (S) lockb lockb (K)
ldnsseek ldsseek (S) locked_out fields (5)

ldohseek ldohseek(S) lockf lockf (5)

ldopen ldopen (S) locking locking (S)
ldrseek ldrseek (S) locs regexp (S)
ldshread ldshread (S) log exp(S)
ldsseek ldsseek (S) log log (HW)
ldsysdump ldsysdump (ADM) log log(M)
ldtbindex ldtbindex (S) logtO exp (S)
ldtbread ldtbread (S) login login (M)
ldtbseek ldtbseek (S) logname logname (C)
leaveok curses (S) logname logname (S)
leaveok tam (S) logs logs (F)
leaveok terminfo (S) longjmp longjmp (K)
lex lex (CP) longjmp setjmp (S)
If ls(C) longname curses (S)
!find !search (S) longname terminfo (S)
!gamma gamma (S) lorder lorder(CP)
libwindows libwindows (S) Ip lp(C)
limits limits (FP) lp lp(HW)
line line (C) lpO lp(HW)
line plot (S) lpt. lp(HW)
linemod plot (S) lp2 lp(HW)
linenum linenum (FP) lpadmin lpadmin (ADM)
link link (ADM) lpfilter lpfilter (ADM)
link link (S) lpforms lpforms (ADM)
linkb linkb (K) lpmove lpmove (ADM)
link_field field (S) lpr lp(C)
link_fieldtype field type (S) lprint•... _ !print (C)
link_unix link_unix (ADM) lprof lprof(CP)
lint lint (CP) lpsched lpsched (ADM)
list list (ADM) lpsh lpsh (ADM)
list list (CP) lpshut lpsched (ADM)
ll_close llog (S) lpstat lpstat (C)
ll_err llog (S) lpusers lpusers (ADM)
ll_hdinit llog (S) Ir ls(C)
ll_init llog (S)
ll_log llog (S)
llog llog (S)
ll_open llog (S)

lrand48 drand48 (S)
ls ls(C)
lsearch !search (S)
!seek !seek (S)

In ln(C) !stat stat (S)
_loct regcmp (S)
loct regexp (S)
loc2 regexp (S)
locale locale (C)

ltol3 13tol (5)
Ix ls(C)
m4 m4(CP)
machid machid (C)

locale locale (M) mail mail (C)
localeconv localeconv (S)
localedef localedef (C)

maildelivery maildelivery (F)
mailx mail (C)

localtime clime (S) major major (K)

XXl'

majorsinuse majorsinuse (ADM) menu_mark menu (5)
make make(CP)
makedev major (K)

menumerge menumerge (ADM)
menu_opts menu(5)

makekey makekey (ADM) menu_opts_off menu (5)
make_transition_files dblock (5) menu_opts_on menu (5)
mallinfo mallinfo (FP) menu_pad menu (5)
mallinfo malloc (5) menu_pattem menu (5)
malloc malloc (5) menu_sub menu (5)
mallopt. malloc (5) menu_term menu (5)
man man(C) menu_userptr menu (5)
mapchan mapchan (F) menu_win menu(5)
mapchan mapchan (M) mesg mesg(C)
mapkey mapkey (M) message tam (5)
mapscm mapkey (M) message undocumented (M)
mapstr mapkey (M) messages messages (M)
mar mar(CP) mestbl mestbl (M)
masm masm (CP) meta curses (5)
math math (M) meta terminfo (5)
matherr matherr (5) mfsys mfsys (FP)
maxuuscheds maxuuscheds (F) minor major (K)
maxuuxqts maxuuxqts (F) mkdev mkdev (ADM)
mblen mblen (5) mkdir mkdir(C)
mbstowcs mblen (5) mkdir mkdir(5)
mbtowc mblen (5) mkfifo mkfifo (C)
mc68k machid (C) mkfifo mkfifo (5)
mcart mcart (C) mkfs mkfs (ADM)
mcconfig mcconfig (F) mknod mknod (C)
mcdaemon mcconfig (F) mknod mknod (5)
mes mes (CP) mkshlib mkshlib (CP)
mdevice mdevice (F) mkstr mkstr (CP)
mem mem (FP) mktemp mktemp (5)
memccpy memory (5) mktime mktime (5)
memchr memory (5)
memcmp memory (5)

ml_ladr ml_send (5)
ml_adr ml_send (5)

memcpy memory (5)
memget memget (K)
memmove memmove (5)

ml_aend ml_send (5)
ml_cc ml_send (5)
ml_end ml_send (5)

memory memory (5)
memset memory (5)
memsize memsize (ADM)

ml_file ml_send (5)
ml_init ml_send (5)
mlist undocumented (M)

menu menu (5) ml_send ml_send (5)
menu tam (5) ml_tinit ml_send (5)
menu_add undocumented (M)
menu_back menu (5)
menu_del undocumented (M)
menu_driver menu (5)
menu_fore menu (5)
menu_format menu (5)
menu_grey menu (5)
menu_init menu (5)
menu_items menu (5)

ml_to ml_send (5)
mUxt ml_send (5)
mmdf mmdf (ADM)
mmdf mmdf (5)
mmdfalias mmdfalias (ADM)
mmdftailor mmdftailor (F)
mm end mmdf (5)
mm -init mmdf (5)
mm=pkend mmdf (5)

xxvi User's Reference

mm_pkinit mmdf (S)
mm radr mmdf (S)
mm - rinit mmdf (S)
mm - rrec mmdf (S)
mm=rrply mmdf (S)
mm rstm mmdf (S)
mm - rtxt. mmdf (S)
mm - sbend mmdf (S)
mm - sbinit mmdf (S)
mm=wadr mmdf (S)

mvaddch tam (S)
mvaddch terminfo (S)
mvaddstr curses (S)
mvaddstr tam (S)
mvaddstr terminfo (SJ
mvcur curses (S)
mvcur terminfo (S)
mvdelch curses (S)
mvdelch terminfo (S)
mvdevice mvdevice (F)

mm_waend mmdf (S) mvdir mvdir (ADM)
mm_winit mmdf(S) mvgetch curses (S)
mm_wrec mmdf(S) mvgetch terminfo (S)
mm_wrply mmdf (S) mvgetstr curses (S)
mm_wstm mmdf (S) mvgetstr terminfo (S)
mm_wtend mmdf(S) mvinch curses (S)
mm_wtxt mmdf (S) mvinch tam (S)
mnlist mnlist (ADM) mvinch terminfo (S)
mnt mnt(C) mvinsch curses (S)
mnttab mnttab (F) mvinsch terminfo (S)
modf frexp (S) mvprintw curses (S)
monacct acctsh (ADM) mvprintw terminfo (S)
monitor monitor (S) mvscanw curses (S)
montbl montbl (M) mvscanw terminfo (S)
more more(C) mvwaddch curses (S)
mount mount (ADM) mvwaddch terminfo (S)
mount mount (S) mvwaddstr curses (S)
mountall mountall (ADM) mvwaddstr terminfo (5)
mouse mouse (HW) mvwdelch curses (S)
move curses (S) mvwdelch terminfo (S)
Move libwindows (S) mvwgetch curses (S)
move plot (S) mvwgetch terminfo (5)
move tam (S) mvwgetstr curses (5)
move terminfo (S) mvwgetstr terminfo (S)
move_field field (S) mvwin curses IS)
move_panel panel (S) mvwin terminfo (S)
mrand48 drand48 (S) mvwinch curses (S)
mscreen mscreen (M) mvwinch terminfo (5)
mscsi. mscsi (F) mvwinsch curses (S)
msg msg (FP) mvwinsch terminfo (S)
msgctl msgctl (S) mvwprintw curses (S)
msgdsize msgdsize (K) mvwprintw terminfo (S)
msgget msgget (S) mvwscanw curses (5)
msgop msgop (S) mvwscanw terminfo (S)
msgrcv msgop (S) nap nap(S)
msgsnd msgop (S) napms curses (S)
mt undocumented (M) napms terminfo (S)
mtune mtune (F) nawk awk (C)
multiscreen multiscreen (M) nbra regexp (S)
mv mv(C) nbwaitsem waitsem (S)
mvaddch curses (S) ncheck ncheck (ADM)

xxvii

netbuf netbuf (FP)
nelconfig netconfig (ADM)

nocrmode curses (S)
nocrmode tam (S)

netutil netutil (ADM) nocrmode terminfo (S)
New libwindows (S) nodelay curses (S)
new _field field (S) nodelay tam (S)
new _fieldtype fieldtype (S) nodelay terminfo (S)
new_form form (S) noecho curses (S)
newform newform (C) noecho tam (S)
newgrp newgrp (C) noecho terminfo (S)
new_item item (S) noenable noenable (K)
Newlayer libwindows (S) nohup nohup (C)
newmail undocumented (M) nonl curses (S)
new_menu menu(S) non! tam (S)
newpad curses (S) nonl terminfo (S)
newpad terminfo (S) noraw curses (S)
new_page form(S) noraw terminfo (S)
new_panel panel (S) notimeout curses (S)
news news (C) notimeout. terminfo (S)
newterm curses (S) nrand48 drand48 (S)
newterm terminfo (S) nssend nssend (FP)
newwin curses (S) null null (F)
newwin terminfo(S) null null (FP)
_nextchoice fieldtype (S) nulladm acctsh (ADM)
nextkey dbm (S) numtbl numtbl (M)
nice nice (C) oawk awk (C)
nice nice (S) od od(C)
nictable nictable (ADM) open open (S)
nl curses (S) openagent libwindows (S)
nl nl(C) openchan libwindows (S)
nl tam(S) opendir directory (S)
nl terminfo (S) openpl. plot (S)
nl_ascxtime nl_cxtime (S) opensem opensem (S)
nl_cxtime nl_cxtime (S) optarg getopt (S)
nl_fprintf nl_printf (S) opterr getopt (S)
nl_fscanf nl_scanf (S) optind getopt (S)
nl_init nl_init (S) os2ld os2ld (CP)
nlist nlist (S) ospeed termcap (S)
nl_langinfo nl_langinfo (S) OTHERQ OTHERQ (K)
nl_printf nl_printf (S) outb inb (K)
nlsadmin nlsadmin (ADM) outd ind (K)
nl_scanf. nl_scanf (S) outw inw (K)

nl_sprintf nl_printf (S)
nl_sscanf nl_scanf (S)

overlay curses (S)
overlay terminfo (S)

nl_strcmp nl_strcmp (S)
nl_stmcmp nl_strcmp (S)
nl_types nl_types (FP)
nm nm(CP)
nm nm(XNX)
nocbreak curses (S)
nocbreak tam (S)
nocbreak terminfo (S)

overwrite curses (S)
overwrite terminfo (5)
paccess paccess (5)
pack pack (C)
page more (C)
pair_content ,curses (5)
pair_content. terminfo (S)
panel panel (S)

xxviii User's Reference

panel_above panel (5)
panel_below panel (5)
panel_hidden panel (5)
panel_userptr panel (5)
panel_ window panel (5)
panic panic (K)
parallel. parallel (HW)
passc cpass (K)
passlen passlen (5)
passwd passwd (C)

pkginfo pkginfo (F)
pkgmap pkgmap (F)
pkgmk pkgmk (ADM)
pkgparam pkgparam (ADM)
pkgproto pkgproto (ADM)
pkgrm pkgrm (ADM)
pkgtrans pkgtrans (ADM)
plock plock (5)
plot plot (FP)
plot plot (5)

passwd passwd (F) pnch pnch (FP)
passwd passwd (FP) pnoutrefresh curses (5)
paste paste (C) pnoutrefresh terminfo (5)
pathchk pathchk (C) point plot (5)
pathconf pathconf (5) Poll poll (F)
pause pause (5) poll poll (5)
pax pax(C) Poll.day poll (F)
pb_check tam (5) Poll.hour poll (F)
pb_empty tam (5) popen popen (5)
pb__gbuf tam (5) pos_form_cursor form (5)
pb__gets tam (5) pos_menu_cursor menu (5)
pb_name tam (5) post_form form (5)
pb_open tam (5) post_menu menu (5)
pb_puts•................. tam (5) pow exp(5)
pb_seek tam (5) pr pr(C)
pb_weof tam (5) prctmp acctsh (ADM)
PC termcap (5) prdaily acctsh (ADM)
peat pack (C) prefresh curses (5)
pclose popen (5) prefresh terminfo (5)
pcpio pcpio (C) _prevchoice fieldtype (5)
pdpll machid (C)
pechochar curses (5)

prf prf (HW)
prfdc : .. profiler (ADM)

pechochar terminfo (5) prftd profiler (ADM)
PEEKC regexp (5) prfpr profiler (ADM)
permissions permissions (F) prfsnap profiler (ADM)
perms perms (F) prfstat profiler (ADM)
perror perror (5) primary _auth subsystems (5)
pg pg(C) primary _of_secondary _auth
phs phs(5) subsystems (5)
phs__get phs (5) printcfg printcfg (K)
phs_msg phs (5) printenv env (C)
phs_note phs (5) printf printf (K)
physck physio (K)
physio physio (K)

printf printf (5)
pr_intr_adderr pr_intr_adderr (K)

pio_breakup pio_breakup (K)
pipe pipe (ADM)

pr_intr_rmerr pr_intr_rmerr(K)
printw curses (5)

pipe pipe (5) printw tam (5)
pkgadd pkgadd (ADM)
pkgask pkgask (ADM)
pkgchk pkgchk (ADM)
pkginfo pkginfo (ADM)

printw terminfo (5)
proc proc (FP)
proctl proctl (5)
prof. prof (CP)

xxix

prof prof (M)
prof prof (XNX)

pwd pwd(C)
pwdmenu undocumented (M)

profit profit (5)
profile profile (M)
profiler profiler (ADM)

pw_idtoname pw_nametoid (5)
pw_nametoid pw_nametoid (5)
pwunconv pwconv (ADM)

proto proto (F) qenable qenable (K)
prototype prototype (F) qreply qreply (K)
prpw prpw (F) qsize qsize (K)
prs prs (CP) qsort qsort (5)
prtacct. acctsh (ADM) queue queue (F)
prwam prwarn (C) queuedefs queuedefs (F)
ps ps(C) quot quot(C)
psignal psignal (K) raise raise (5)
pstat pstat (C) ramdisk ramdisk (HW)
ptar ptar (C) rand rand (5)
ptmx ptmx (M) random random (C)
ptok ptok (K) randomword randomword (5)
ptrace ptrace (5) ranlib ranlib (XNX)
pts??? ptmx (M) raw curses (5)
pullupmsg pullupmsg (K) raw terminfo (5)
purge purge(C) rcO rcO (ADM)

purge purge (F) rc2 rc2 (ADM)
putbc putc(K) rec rec (CP)
putbq putbq (K) rcflow rcflow (CP)
pule pule (K) rep rcp(C)
pule pule (5) rcvalert rcvalert (C)
putcb pule (K) rcvfile rcvfile (C)
putcbp pule (K) rcvprint rcvprint (C)
putcf pule (K) rcvtrip rcvtrip (C)
putchar pule (5) rcxref rcxref (CP)
putchar putchar (K) RD RD(K)
putctl putctl (K) rdchk rdchk (5)
putctll putctll (K) read read (5)
putdvagnam getdvagent (5) readdir directory (5)
putenv putenv (5) readlink readlink (5)
putmsg putmsg (5) read_pw_fields fields (5)
putnext putnext (K)
pulp curses (5)

read_tc_fields fields (5)
realloc malloc (5)

pulp terminfo (5)
putprdfnam getprdfent (5)
putprfinam getprfient (5)
putprpwnam getprpwent (5)
putprtcnam getprtcent (5)
putpwent putpwent (5)
putq putq (K)
puts puts (5)
putspent putspent (5)
pututline getut (5)
putw pule (5)
pwck pwck (ADM)
pwconv pwconv (ADM)

reboot haltsys (ADM)
red ed(C)
reduce reduce (ADM)
refresh curses (5)
refresh tam (5)
refresh terminfo (5)
regcmp regcmp (CP)
regcmp regcmp (5)
regex regcmp (5)
regexp regexp (5)
reject accept (ADM)
relax relax (ADM)
reloc reloc (FP)

xxx User's Reference

relogin relogin (ADM)
remote remote (C)

nnpasswd rmuser(ADM)
nnuser rmuser (ADM)

remove remove (5) nnvb rmvb (K)
remove£ removef (ADM) nnvq rmvq (K)
remove_intr_handler Routines Routines (DOS)

.............. remove_intr_handler (K) Routines Routines (5)
removepkg removepkg (ADM) rsh rsh(C)
rename rename (5) rstab undocumented (M)
repackman repackman (ADM) rte rte (HW)
repins repins (K) runacct acctsh (ADM)
repinsb repins (K) runacct runacct (ADM)
repinsd repins (K) run_crypt crypt (5)
repinsw repins (K) Runlayer libwindows (5)
replace_file dblock (5) run_setkey crypt (5)
replace_panel panel (5) sat sar (ADM)
repout repins (K) sa2 sar (ADM)
repoutsb repins (K) sact sact (CP)
repoutsd repins (K) sadc sar (ADM)
repoutsw repins (K) sag sag (ADM)
resend resend (C) sar sar (ADM)
reset_prog__mode curses (5) savetenn curses (5)
reset_prog__mode terminfo (5) savetty c;urses (5)
reset_shell_mode curses (5) savetty tam (5)
reset_shell_mode terminfo (5) savetty terrninfo (5)
resettenn curses (5) sbrk brk (5)
reset_tty curses (5) scale_forrn form (5)
reset_tty tam (5) scale_menu menu (5)
reset_tty terrninfo (5) scancode scancode (HW)
resetty curses (5) scanf scanf (5)
resetty tam (5) scanoff scanon {M)
resetty terminfo (5) scanon scanon (M)
Reshape libwindows (5) scanw curses (5)
restarttenn curses (5) scanw terminfo (5)
restarttenn terminfo (5) sc_copyscstate sc_raw (5)
restore restore (ADM) sccsdi ff sccsdiff (CP)
RETURN regexp {5) sccsfile sccsfile (FP)
rewind fseek (5) sc_exit sc_init (5)
~win~dir directory (5)
npofflme curses (5)

sc_getfkeystr sc_init (5)
sc_getinfo sc_raw (S)

ripoffline terminfo (5) sc_getkbmap sc_init (S)
rksh ksh(C)
rlint rlint {CP)
rlpcmd rlpcmd {C)
rlpstat lpstat (C)

sc_getkeymap sc_init (5)
sc_getled sc_init (S)
sc_getscreenswitch sc_raw (5)
schedule schedule (ADM)

nn rrn(C) sc_init sc_init (5)
rmail rmail {ADM)
nnb rrnb {M)
nndel rrndel {CP)
nndir rrndir{C)
nndir rrndir{5)

sc_kb2mapcode sc_readkb (5)
sc_mapcode2kb sc_readkb (5)
sc_mapcode2str sc_readkb (5)
sc_mapin sc_readkb (5)
sc_mapinit sc_init (5)

nngroup nnuser(ADM) sc_mapout sc_readkb (5)

xx xi

scnhdr scnhdr (FP) sdleave sdenter (5)
_scoinfo _scoinfo (5)
scosh scosh (C)

sdwaitv sdgetv (5)
secondary _auth subsystems (5)

sc_raw sc_raw (5)
scr_dump curses (5)

sed regexp (5)
sed sed(C)

scr_dump scr_dump (FP) seed seed (5)
scr_dump terminfo (5) seed48 drand48 (5)
sc_readkb sc_readkb (5) seekdir directory (5)
sc_readmapcode sc_readkb (5) select select (K)
sc_readstr sc_readkb (5) select select (5)
sc_receive_kb sc_init (5) selfailure select (K)
screen screen (HW) selsuccess select (K)
scr_init curses (5) selwakeup select (K)
scr_init terminfo (5) sem sem (FP)
scroll curses (5) semctl semctl (5)
scroll terminfo (5) semget semget (5)
scrollok curses (5) semop semop (5)
scrollok terminfo (5) serial serial (HW)
scr_restore curses (5) set_auth_parameters identity (5)
scr_restore terminfo (5) setbuf setbuf (5)
sc_setfkeystr sc_init (5) setclk undocumented (M)
sc_setinfo sc_raw (5) setclock setclock (ADM)
sc_setkeymap sc_init (5) setcolor setcolor (C)
sc_setled sc_init (5) setcolour setcolor (C)
sc_setscreenswitch sc_raw (5) set_current_field form (5)
scsi · scsi (HW) set_current_item menu (5)
scsi scsi (K) set_curterm curses (5)
scsibadblk scsibadblk (ADM) set_curterm terminfo (5)
scsi_deverr scsi (K) setdvagent getdvagent (5)
scsi_distributed scsi_distributed (K) seterror seterror (K)
scsi_getdev scsi (K) set_field_back field (5)
scsi_get_gen_cmd scsi (K) set_field_buffer field (5)
scsi_mkadr3 scsi (K) set_field_fore field (5)
scsi_s2tos scsi (K) set_field_init form (5)
scsi_s3tol scsi (K) set_field_just field (5)
scsi_stok scsi (K) set_field_opts field (5)
scsi_stol scsi (K) set_field_pad field (5)
scsi_swap4 scsi (K)
sc_str2kb sc_readkb (5)

set_field_status field (5)
set_field_term form (5)

sc_unraw sc_raw (5) set_field_type field (5)
sd sd(ADM) set_fieldtype_arg fieldtype (5)
sdb sdb (CP)
sdd sd (ADM)
sddate sddate (C)
sdenter sdenter (5)
sdevice sdevice (F)
Sdevregister devreg (K)
sdfree sdget (5)
sdget sdget (5)
sdgetv sdgetv (5)
sdiff sdiff(C)

set_fieldtype_choice field type (5)
set_field_userptr field (5)
set form fields form (5)
set-form-init form(5)
set=form=opts form (5)
set_form_page form (5)
set form sub form (5)
set-form -term form (5)
set=form=userptr form (5)
set_form_win form(5)

xxxii User's Reference

setgid setuid (5)
setgrent getgrent (5)
setgroups setgroups (5)
set_item_init menu (5)

set_tty terminfo (5)
setuid setuid (5)
setuplerm curses (5)
setupterm terminfo (5)

set_item_opts item (5) setutenl getut (5)
set_item_term menu (5) setvbuf setbuf (5)
set_item_userptr item (5) sfml sfmt (ADM)
set_item_value item (5) sfsys sfsys (FP)

setitimer getitimer (5) sg sg(C)
setjmp setjmp (5) sgetl sputl (5)
setkey crypt (5) sh sh(C)
setkey set key (C) shadow shadow (F)
setlocale setlocale (5) Sharegister devreg (K)
setluid setluid (5) shl shl(C)
set_menu_back menu (5) shm shm (FP)
set_menu_fore menu (5) shmat shmop (5)
set_menu_format menu (5) shmctl shmctl (5)
set_menu_grey menu (5) shmdt shmop (5)
set_menu_init menu (5) shmget shmget (5)
set_menu_items menu (5) shmop shmop (5)
set_menu_mark menu (5) show_panel panel (5)
set_menu_opts menu (5)
set_menu_pad menu (5)

shutacct acctsh (ADM)
shutdn shutdn (5)

set_menu_pattern menu (5) shutdown shutdown (ADM)
set_menu_sub menu (5) sigaction sigaction (5)
set_menu_term menu (5) sigaddset sigset (5)
set_menu_userptr menu (5) sigdelset sigset (5)
set_menu_win menu (5) sigemptyset. sigset (5)
setmnt setmnt (ADM) sigfillset sigset (5)
set_new_page form(5) sighold sigsetv (5)
set_panel_userptr panel (5) sigignore sigsetv (5)
setpgid setpgid (5) sigismember sigset (5)
setpgrp setpgrp (5) siglongjmp sigsetjmp (5)
setprdfent getprdfent (5) signal signal (K)
setprfient getprfient (5) signal signal (5)
setpriv setpriv (5) signgam gamma (5)
setprpwent getprpwent (5) sigpause sigsetv (5)
setprtcent getprtcent (5) sigpending sigpending (5)
setpwent getpwent (5) sigprocmask sigprocmask (5)
setscrreg curses (5) sigrelse sigsetv (5)
setscrreg terminfo (5) sigsem sigsem (5)
set_seed seed (5) sigset sigset (5)
setsid setsid (5) sigset sigsetv (5)
setspent getspent (5) sigsetjmp sigsetjmp (5)
setsyx curses (5) sigsuspend sigsuspend (5)
setsyx terminfo (5) sin trig (5)
setterm curses (5) sinh sinh (5)
set_term terminfo (5) S_ISBLK stat (5)
settime settime (ADM) S_ISCHR stat (5)
set_top_row menu(5) S_ISDIR stat (5)
set_tty curses (5) S_ISFIFO stat (5)

xxxiii

S_ISNAM stat (S)
S_ISREG stat (S)
size size (CP)
size size (XNX)

sptfree sptfree (K)
sputl sputl (S)
sqrt exp (S)
srand rand (S)

sleep sleep (C) srand48 drand48 (S)
sleep sleep (K) sscanf scanf (S)
sleep sleep (S) ssignal ssignal (S)
slk_clear curses (S) standend curses (S)
slk_clear terminfo (S) standend terminfo (S)
slk_init curses (5) standout curses (S)
slk_init terminfo (S) standout terminfo (S)
slk_label curses (S) start_color curses (S)
slk_label terminfo (5) start_color terminfo (S)
slk_noutrefresh curses (S) starting_egid identity (S)
slk_noutrefresh terminfo (S) starting_euid identity (S)
slk_refresh curses (S) starting_luid identity (S)
slk_refresh terminfo (S) starting_rgid identity (S)
slk_restore curses (S) starting_ruid identity (5)
slk_restore terminfo (S) startio startio (K)
slk_set curses (S) startup acctsh (ADM)
slk_set terminfo (S) stat stat (FP)
slk_touch curses (S) stat stat (S)
slk_touch terminfo (S) statfs statfs (S)
slot slot (C) statlstat stat (S)
smmck tcbck (ADM) stdarg varargs (S)
sort sort (C) stdbl isconv (S)
space plot (S) stderr stdio (S)
space space (F) stdin. stdio (S)
spell spell (C) stdio stdio (S)
spellin spell (C) stdout stdio (5)
spl spl(K) step regexp (S)
splO spl (K)
spll spl (K)
spl2 spl (K)

stfloat isconv (S)
stime stirne (S)
stint isconv (S)

spl3 spl (K)
spl4 spl (K)
splS spl (K)
spl6 spl (K)
spl7 spl (K)
splbuf spl (K)
splcli spl (K)
splhi spl (K)
spline spline (C)
split split (C)
splni spl (K)
splpp spl (K)
splstr splstr (K)
spltty spl (K)
splx spl (K)
sprintf printf (S)
sptalloc sptalloc (K)

stlong isconv (5)
stopio stopio (S)
store dbm (S)
store_pw _fields fields (S)
store_tc_fields fields (S)
strace strace (ADM)
strcat. string (S)
strchr string (5)
strclean strclean (ADM)
strcmp string (S)
strcoll strcoll (S)
strcpy string (S)
strcspn string (S)
strdup string (S)
streamio streamio (M)
strerr strerr (ADM)
strerror strerror (S)

xxxiv User's Reference

strftime ctime (5) sys_errlist perror (5)
strftime strftime (5) sysfiles sysfiles (F)
string string (M)
string string (5)
strings strings (C)
strip strip (CP)
strip strip (XNX)

sysfs sysfs (5)
sysi86 sysi86 (5)
sys_nerr perror (5)
system system (5)
systemid systemid (F)

strlen string (5) systems systems (F)
strlog strlog (K) systty systty (M)
stmcat string (5) tables tables (F)
stmcmp string (5) tabs tabs (C)
stmcoll strcoll (5) t_accept t_accept (5)
stmcpy string (5) tai_end tai (5)
stmxfrm strcoll (5) tai_get tai (5)
strpbrk string (5) tai_init tai (5)
strrchr string (5) tail tail (C)
strspn string (5) t_alloc t_alloc (5)
strstr string (5) tam tam(5)
strtod strtod (5) tan trig (5)
strtok string (5) tanh sinh (5)
strtol strtol (5) tape tape (C)
strtoul strtoul (5) tape tape (HW)
strxfrm strcoll (5) tapecntl tapecntl (C)
STTY stty (C) tapedump tapedump (C)
stune stune (F) tar tar(C)
SU •.••..•••••.•.•••••••••.•..•.•.•• su(C) tar tar(F)
submit. submit (ADM) t_bind t_bind (5)
subpad curses (5) tcbck tcbck (ADM)
subpad terminfo (5) tcdrain tcflow (5)
subsystem subsystem (M) tcflow : tcflow (5)
subsystems subsystems (5) tcflush tcflow (5)
subwin curses (5) tcgetattr : tcattr (5)
subwin terminfo (5) tcgetpgrp tcpgrp (5)
subyte subyte (K) tel tel (C)
sulogin sulogin (ADM) t_dose t_close (5)
sum sum(C) t_connect t_connect (5)
suser suser (K) tcsendbreak tcflow (5)
suword suword (K) tcsetattr tcattr (5)
swab swab (5) tcsetpgrp tcpgrp (5)
swap swap (ADM) tdelete tsearch (5)
swconfig swconfig (C) tee tee (C)
sxt sxt(M) telinit init (M)
symlink symlink (5) telldir directory (5)
syms syms (FP) tempnam tmpnam (5)
sync sync (ADM) term term (M)
sync sync (5) termcap termcap (F)
sysadmcolor sysadmcolor (F)
sysadmmenu sysadmmenu (F)

termcap termcap (5)
terminal terminal (HW)

sysadmsh sysadmsh (ADM) terminals terminals (M)
sysconf sysconf (5)
sysdef sysdef (ADM)

terminfo terminfo (F)
terminfo terminfo (M)

xx xv

terminfo terminfo (S)
termio termio (M)

toasc~~ ctype (S)
toascn toascii (S)

termios termios (M) todigit toascii (S)
termupd ttyupd (ADM) toint. toascii (S)
t_errlist. !_error (S)
t_errno !_error (S)

_tolower ctype (S)
tolower toascii (S)

!_error !_error (S) Top libwindows (S)
test test (C) top top (F)
testb testb (K) t_open t_open (S)
tfind !search (S) top.next top (F)
t_free !_free (S) top_panel panel (S)
tgetent curses (S) top_row menu (S)
tgetent termcap (S) t_optmgmt t_optmgmt (S)
tgetent terminfo (S) total_auths subsystems (S)
tgetflag curses (S) touch touch (C)
tgetflag termcap (S) touchline curses (S)
tgetflag terminfo (S) touchline terminfo (S)
t_getinfo t_getinfo (S) touchwin curses (S)
tgetnum curses (S) touchwin terminfo (S)
tgetnum termcap (S) _toupper ctype (S)
tgetnum terminfo (S) _toupper toascii (S)
t_getstate t_getstate (S) tparm curses (S)
tgetstr curses (S) tparm terminfo (S)
tgetstr termcap (S) tplot. tplot (ADM)
tgetstr terminfo (S) tput tput (C)
tgoto curses (S) tputs curses (S)
tgoto termcap (S) tputs termcap (S)
tgoto terminfo (S) tputs terminfo (S)
tic tic (C) tr tr(C)
tigetflag curses (S) traceoff curses (S)
tigetflag terminfo (S) traceoff terminfo (S)
tigetnum curses (S) traceon curses (S)
tigetnum terminfo (S) traceon terminfo (S)
tigetstr curses (S) track tam (S)
tigetstr. terminfo (S) translate translate (C)
time time (C) trchan trchan (M)
time time (5) t_rcv t_rcv (S)
timeout timeout (K) t_rcvconnect t_rcvconnect (S)
times times (S) t_rcvdis t_rcvdis (S)
timex timex (ADM) t_rcvrel t_rcvrel (S)
timezone clime (S)
timezone timezone (F)

t rcvudata t_rcvudata (S)
t=rcvuderr t_rcvuderr (S)

timod timod (M)
timtbl timtbl (M)

trig trig (S)
true true (C)

t_info !_info (FP) tsearch !search (S)
tirdwr tirdwr (M)
!_listen !_listen (S)
!_look t_look (S)
tmpfile tmpfile (S)
tmpnam tmpnam (S)
t_nerr !_error (S)

tset tset (C)
t snd t_snd (S)
t-snddis t_snddis (S)
t-sndrel t_sndrel (S)
t-sndudata t_sndudata (S)
bort tsort (CP)

xx xvi User's Reference

t_sync t_sync (5)
ttclose tty (K)

umount umount (5)
umountall mountall (ADM)

ttin tty (K) uname uname(C)
ttinit tty (K) uname uname (5)

ttiocom ttiocom (K) uncompress compress (C)
ttioctl tty (K) unctrl curses (5)

ttiwake tty (K) unctrl terminfo (5)

ttopen tty (K) undial dial (5)

ttout tty (K) undocumented undocumented (M)

ttowake tty (K) unexecseg execseg (5)
ttrdchk tty (K) unexpand expand(C)
ttread tty (K) unget unget (CP)
ttrstrt tty (K) UNG ETC regexp (5)
ttselect tty (K) ungetc ungetc (5)

tttimeo tty (K) ungetch curses (5)
ttwrite tty (K) ungetch terminfo (5)

ttxput tty (K) uniq uniq (C)
tty tty (C) unistd unistd (FP)
tty tty {K) units units (C)
tty tty (M) unlink link (ADM)

ttyl[A-Hl serial(HW) unlink unlink (5)
tty2[A-H] serial(HW) unlinkb unlinkb (K)
ttyflush tty (K) unlockb lockb (K)
ttyname ttyname (5) unpack pack (C)
ttys ttys (F) unpost_form form (5)
ttyslot ttyslot (5) unpost_menu menu (5)
ttytype ttytype (F) unretire unretire (ADM)
ttyupd ttyupd (ADM) untimeout timeout (K)
ttywait tty (K) UP termcap (5)
t_unbind t_unbind (5) update undocumented (M)
tumacct acctsh (ADM) update_panels panel (5)
twalk tsearch (5) uptime · uptime (C)
typeahead curses (5) usemouse usemouse(C)
typeahead terminfo (5) ustat ustat (5)
types types (FP) utime utime (S)
tz tz(M) utmp ' utmp (F)
tzname ctime (5) utmp_getty undocumented (M)
tzset ctime (5) utmpname getut (S)
u370 machid (C) uuchat. dial (ADM)
u3b machid (C) uucheck uucheck (ADM)
u3b15 machid (C) uucico uucico (ADM)
u3b2 machid (C) uuclean uuclean (ADM)
u3b5) machid (C) uucp uucp (C)
uadmin uadmin (ADM) uudecode uuencode (C)
uadmin uadmin (5) uudemon uudemon (ADM)
ukkpwdf getspent (5) uudemon.admin uudemon (ADM)
ulimit. ulimit (5) uudemon.clean uudemon (ADM)
umask umask(C) uudemon.hour uudemon (ADM)
umask umask (5) uudemon.poll uudemon (ADM)
umnt mnt (C) uudemon.poll2 uudemon (ADM)
umount mount (ADM) uuencode uuencode (C)

xx xvii

uugetty getty (M)
uuinstall uuinstall (ADM)
uulist uulist (ADM)

vtop vtop (K)
vwprintw curses (S)
vwprintw terminfo (S)

uulog uucp (C) vwscanw curses (S)
uuname uucp (C) vwscanw terminfo (S)
uupick uuto (C) w w(C)
uusched uusched (ADM) waddch curses (S)
uustat uustat (C) waddch terminfo (S)
uuto uuto (C) waddstr curses (S)
uutry uutry (ADM) waddstr terminfo (S)
uux uux(C) wait wait (C)
uuxqt uuxqt (ADM) wait wait (S)
va_alist varargs (S) waitpid wait (S)
va_arg varargs (S) waitsem waitsem (S)
va_dcl varargs (S) wakeup wakeup (K)
va_end varargs (S) wall wall (ADM)
val val (CP) wattroff curses (S)
va_list varargs (S) wattroff terminfo (S)
values values (M) wattron curses (S)
varargs varargs (S) wattron terminfo (S)
vas vas(K) wattrset curses (S)
vasbind vas (K) wattrset terminfo (S)
vasmalloc vas (K) wc wc(C)
vasmapped vas (K) wclear curses (S)
va_start varargs (S) wclear terminfo (S)
vasunbind vas (K) wclrtobot curses (S)
vax machid (C) wclrtobot terminfo (S)
VC ••••••••••••••••••••••••••.••••• vc(CP) wclrtoeol curses (S)
vectorsinuse vectorsinuse (ADM) wclrtoeol terminfo (S)
vedit vi (C) wcmd tam (S)
vfprintf vprintf (S) wcreate tam (S)
vi vi(C) wcstombs mblen (S)
vidattr curses (S) wctomb mblen (S)
vidattr terminfo (S) wdelch curses (S)
viddoio video (K) wdelch terminfo (S)
video video (K) wdelete tam (S)
vidi vidi (C) wdeleteln curses (S)
vidinitscreen video (K) wdeleteln terminfo (S)
vidmap video (K)
vidputs curses (S)
vidputs terminfo (S)
vidresscreen video (K)
vidsavscreen video (K)

wechochar curses (S)
wechochar terminfo (S)
werase curses (S)
werase terminfo (S)
wexit tam (S)

vidumapinit video (K)
vidunmap video (K)
view vi(C)
vldldptr ldptr (S)
vmstat vmstat (C)
volcopy volcopy (ADM)
vprintf vprintf (S)
vsprintf vprintf (S)

wgetc tam (S)
wgetch curses (S)
wgetch terminfo (S)
wgetmouse tam (S)
wgetpos tam (S)
wgetsel tam (S)
wgetstat tam (S)
wgetstr curses (S)

xxxviii User's Reference

wgetstr terminfo (5)
wgoto tam (5)
what what (C)

wstandend terminfo (5)
wstandout curses (5)
wstandout terminfo (5)

what what (CP) wtinit wtinit (ADM)
who who(C) wtmp utmp (F)
whodo whodo (C) wtmpfix fwtmp (ADM)
wicoff tam(5) wuser tam (5)
wicon tam (5) x286emul x286emul(C)
widest_auth subsystems (5) x286emul x286emul (CP)
winch curses (5) xargs xargs (C)
winch terminfo (5) xbackup xbackup (ADM)
wind tam (5) xbackup xbackup (F)
winit tam (5) xdump xbackup (ADM)
winsch curses (5) xdumpdir xdumpdir (ADM)
winsch terminfo (5) xinstall xinstall (ADM)
winsertln curses (5) xlist xlist (5)
winsertln terminfo (5) x.out x.out (FP)
wlabel tam (5) xrestor xrestore (ADM)
wmove curses(5) xrestore xrestore (ADM)
wmove terminfo (5) xstr xstr (CP)
wndelay tam (5) xt xt(HW)
wnl tam(5) xtd xtd (ADM)
wnoutrefresh curses (5) xtil xtil (CP)
wnoutrefresh terminfo (5) xtod xtod (C)
wpostwait tam (S) xtproto xtproto (M)
wprexec tam (5) xtract xtract (C)
wprintf tam (5) xts xts (ADM)
wprintw curses (S) xtt xtt (ADM)
wprintw terminfo (S) yo bessel (5)
wprompt tam (5) yl bessel (5)
wputc tam (5) yacc yacc (CP)
wputs tam(5) yes : yes(C)
WR WR(K) yn bessel (S)
wrastop tam (5) zcat compress (C)
wreadmouse tam (5)
wrefresh curses (5)
wrefresh tam (5)
wrefresh terminfo (5)
write write (C)
write write (S)
write_authorizations subsystems (5)
wscanw curses (5)
wscanw terminfo (5)
wselect tam (5)
wserver wserver (C)
wsetmouse tam (5)
wsetscrreg. curses (5)
wsetscrreg terminfo (5)
wsetstat tam (5)
wslk tam (5)
wstandend curses (5)

Commands (C)

Intro(CJ

Intro
introduces UNIX commands

Syntax
Unless otherwise noted, commands described in the "Syntax" section of a
manual page accept options and other arguments according to the following
syntax and should be interpreted as explained below.

name [-option ...] [cmdarg ...]

where:

[] Surrounds an option or cmdarg that is not mandatory.

Indicates multiple occurrences of the option or cmdarg.

name The name of an executable file.

option This is always preceded by a "-" and may be in one of the two
following forms:

noargletter A single letter representing an option without an
option-argument. Note that more than one noargletter
option can be grouped after one "-" (Rule 5 in the fol­
lowing text).

argletter A single letter representing an option requiring an
option-argument.

optarg An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter[must
be separated by commas or separated by white space and quoted
(Rule 8 below).

cmdarg Pathname (or other command argument) not beginning with"-", or
"-"by itself indicating the standard input.

I February 1993

lntro(C)

2

Command syntax standard: rules
These command syntax rules are not followed by all current commands, but
all new commands ~~e them. getopts(C) should be used by all shell pro­
cedures to parse pos1honal parameters and to check for legal options. It sup­
ports rules 3-10 below. The enforcement of the other rules must be done by
the command itself.

1. Command names (name above) must be between two and nine charac-
ters long.

2. Command names must include only lowercase letters and digits.

3. Option names (option above) must be one character long.

4. All options must be preceded by"-".

5. Options with no arguments may be grouped after a single"-".

6. The first option-argument (optarg above) following an option must be
preceded by white space.

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (for exam­
ple, -o xxx,z,yy or -o ''xxx z yy").

9. All options must precede operands (cmdarg above) on the command line.

10. "--" may be used to indicate the end of the options.

11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their signi­
ficance in ways determined by the command with which they appear.

13. "-" preceded and followed by white space should only be used to mean
standard input.

1 February 1993

lntro(C)

Description
This section describes the use of the individual commands available in the
UNIX Operating System. Each command in this section is labeled with a C
(Command) for easy reference from other volumes. (Commands labeled with
the letters "CP" (Programming commands) are documented as part of the
Development System. The Development System is an optional supplemental
package to the standard Operating System.)

For example, date(C) indicates a reference to a discussion of the date com­
mand in the C section; cc(CP) indicates a reference to a discussion of the cc
command in the Development System.

The "ADM" (Administration) section contains descriptions of the commands
used to maintain and administer the operating system. Other reference sec­
tions include the "M" (Miscellaneous) section, the "S" (System services) sec­
tion, the "HW" (Hardware) section, and the "F" (File format) section.

Exit values

Upon termination, a command exits and returns a value to the calling shell.
This exit value is used within shell scripts to determine whether the command
completed successfully.

A command normally returns 0 (zero) for normal termination with no error; a
non-zero exit value indicates problems such as incorrect parameters, and bad
or missing data.

An exit value may sometimes be referred to as "exit code," "exit status," or
"return value." Exit values are described only where special conventions are
involved.

Diagnostics

Warning

This section describes the likely cause of error or information messages that
may be output by a command. This section does not document system service
messages which arise because of the failure of an underlying system call (see
messages(M) for details of system service messages).

This section warns of the possible adverse consequences of using the com­
mand if certain precautions are not taken. These consequences may include
loss of data, extended system down time, degradation of system performance,
or damage to hardware.

1 February 1993 3

Intro(CJ

Limitati.ons

This section details aspects of usage, or limits of applicability of a command
that a user should note. There may be reasons in the software or hardware
why a command will fail in certain circumstances. These reasons may include
internal limits on table size or number of temporary variables.

Authorizati.on

See also

4

This section documents if a command, normally only usable by the super
user, may be invoked by trusted users if this is allowed by the authorize(F) file.

authorize(F), exit(S), getopt(S), getopts(C), messages(M), wait(S)

1 February 1993

300(C)

300,3005
handle special functions of DASI 300 and 300s terminals

Syntax
300 [+12 J l -n I [-dt,l,c I

300s [+12 I [-n I [-dt,l,c I

Description
The 300 command supports special functions and optimizes the use of the
DASI 300 (GSI 300 or DTC 300) terminal; 300s performs the same functions for
the DASI 300s (GSI 300s or DTC 300s) terminal. It converts half-line forward,
half-line reverse, and full-line reverse motions to the correct vertical motions.
In the following discussion of the 300 command, it should be noted that
unless your system contains the text processing software, references to certain
commands (for example, nroff, neqn, eqn, etc.) will not work. It also
attempts to draw Greek letters and other special symbols. It permits con­
venient use of 12-pitch text. It also reduces printing time by between 5% and
70%. The 300 command can be used to print equations neatly, in the
sequence:

neqnfile ... I nroff I 300

The behavior of 300 can be modified by the optional flag arguments to handle
12-pitch text, fractional line spacings, messages, and delays.

+12

-n

1 February 1993

permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor­
mally allow only two combinations: 10-pitch, 6 lines/inch, or 12-
pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch combina­
tion, the user should turn the PITCH switch to 12, and use the +12
option.

controls the size of half-line spacing. A half-line is, by default, equal
to 4 vertical plot increments. Because each increment equals 1/48 of
an inch, a 10-pitch line-feed requires 8 increments, while a 12-pitch
line-feed needs only 6. The first digit of n overrides the default
value, thus allowing for individual taste in the appearance of sub­
scripts and superscripts. For example, nroff half-lines could be
made to act as quarter-lines by using -2. The user could also obtain
appropriate half-lines for 12-pitch, 8 lines/inch mode by using the
option -3 alone, having set the PITCH switch to 12-pitch.

5

300(C)

Warning

6

-dt,l,c controls delay factors. The default setting is -d3,90,30. DASI 300 ter­
minals sometimes produce peculiar output when faced with very
long lines, too many tab characters, or long strings of blankless, non­
identical characters. One null (delay) character is inserted in a line
for every set of t tabs, and for every contiguous string of c non-blank,
non-tab characters. If a line is longer than l bytes, 1 +(total
length)/20 nulls are inserted at the end of that line. Items can be
omitted from the end of the list, implying use of the default values.
Also, a value of zero for t (c) results in two null bytes per tab (char­
acter). The former may be needed for C programs, the latter for files
like /etc/passwd. Because terminal behavior varies according to the
specific characters printed and the load on a system, the user may
have to experiment with these values to get correct output. The -d
option exists only as a last resort for those few cases that do not
otherwise print properly. For example, the file /etc/passwd may be
printed using -d3,30,5. The value -d0,1 is a good one to use for c
programs that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing car­
riage return and line-feed delays. The stty(C) modes nlO cr2 or nlO
cr3 are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests, when it is
necessary to insert paper manually or change fonts in the middle of a docu­
ment. Instead of hitting the Return key in these cases, you must use the line­
feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files . . . and nroff files . . . I 300
nroff-T300-12files ... and nroff files ... I 300 +12

The use of 300 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of
300 may produce better aligned output.

If your terminal has a PLOT switch, make sure it is turned on before 300 is
used.

1 February 1993

300(C)

Limitations

See also

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter
has a tendency to slip when reversing direction, distorting Greek characters
and misaligning the first line of text after one or more reverse line-feeds.

4SO(C), mesg(C), graph(ADM), stty(C), tabs(C), tplot(ADM)

1 February 1993 7

4014(C)

4014
paginator for the TEKTRONIX 4014 terminal

Syntax
4014 [-t I [-n I I -cN I I -pL I (file I

Description

See also

8

The output of 4014 is intended for a TEKTRONIX 4014 terminal; 4014 arranges
for 66 lines to fit on the screen, divides the screen into N columns, and contri­
butes an eight-space page offset in the (default) single-column case. Tabs,
spaces, and backspaces are collected and plotted when necessary. TELETYPE
Model 37 half- and reverse-line sequences are interpreted and plotted. At the
end of each page, 4014 waits for a new-line (empty line) from the keyboard
before continuing on to the next page. In this wait state, the command !cmd
will send the cmd to the shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the screen.

-cN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and l (lines);
default is lines.

pr(C)

1 February 1993

450(C)

450
handle special functions of the DASI 450 terminal

Syntax
450(-f]

Descripti.on

The 450 command supports special functions of, and optimizes the use of, the
DASI 450 terminal, or any terminal that is functionally identical, such as the
Diablo 1620 or Xerox 1700. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to
draw Greek letters and other special symbols in the same manner as 300(C).

The -f option sets up fast (1200 baud) output using the ETX/ ACK protocol.
The following errors are possible when using -f:

• Standard output is not a terminal.

• Error when opening output terminal for read.

• Output terminal did not respond to ETX.

• Output terminal did not respond with ACK.

It should be noted that, unless your system contains text processing softw,ire,
certain commands (for example, eqn, nroff, tbl, etc.) will not work. Use 45tl to
print equations neatly, in the sequence:

neqn file ... I nroff I 450

Use 450 with the nroff -s flag or .rd requests when it is necessary to insert
paper manually or change fonts in the middle of a document. Instead of hit­
ting the RETURN key in these cases, you must use the LINE-FEED key to get
any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of
the following:

nroff-T450 files ...
or

nroff-T450-12files ...

1 February 1993 9

450(CJ

Warning

The use of 450 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of
450 may produce better aligned output.

Make sure that the PLOT switch on your terminal is ON before 450 is used.
The SPACING switch should be put in the desired position (either 10- or 12-
pitch). In either case, vertical spacing is 6 lines/inch, unless dynamically
changed to 8 lines per inch by an appropriate escape sequence.

Limitations

See also

10

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter
has a tendency to slip when reversing direction, distorting Greek characters
and misaligning the first line of text after one or more reverse line-feeds.

graph(ADM), tplot(ADM), 300(C), mesg(C), stty(C), tabs(C)

1 February 1993

assign(C)

assign, deassign
assign and deassign devices

Syntax
assign [-u] [-v] [-d] [device I ...

deassign [-u I [-v I [device] ...

Description
The assign command attempts to assign device to the current user. The de­
vice argument must be an assignable device that is not currently assigned. An
assign command without an argument prints a list of assignable devices
along with the name of the user to whom they are assigned.

The deassign command is used to "deassign" devices. Without any argu­
ments, deassign will deassign all devices assigned to the user. With argu­
ments, an attempt is made to deassign each device given as an argument.

With these commands you can exclusively use a device, such as a tape drive
or floppy drive. This keeps other users from using the device. They have a
similar effect to chown(C) and chmod(C), although they only act on devices in
/dev. Other aspects are discussed further on.

Available options include:

-d Performs the action of deassign. The -d option can be embedded in device
names to assign some devices and deassign others.

-v Gives verbose output.

-u Suppresses assignment or deassignment, but performs error checking.

The assign command will not assign any assignable devices if it cannot assign
all of them. deassign gives no diagnostic if the device cannot be deassigned.
Devices can be automatically deassigned at logout, but this is not guaranteed.
Device names can be just the beginning of the device required. For example,

assign fd

should be used to assign all floppy disk devices. Raw versions of device will
also be assigned, for example, the raw floppy disk devices /dev/rfd? would be
assigned in the above example.

1 February 1993 11

assign(C)

Note that in many installations the assignable devices such as floppy disks
have general read and write access, so the assign command may not be neces­
sary. This is particularly true on single-user systems. Devices supposed to be
assignable with this command should be owned by the user asg. The direc­
tory /dev should be owned by bin and have mode 755. The assign command
(after checking for use by someone else) will then make the device owned by
whoever invokes the command, without changing the access permissions.
This allows the system administrator to set up individual devices that are
freely available, assignable (owned by asg), or nonassignable and restricted
(not owned by asg and with some restricted mode).

Note that the first time assign is invoked, it builds the assignable devices
table /etc/atab. This table is used in subsequent invocations to save repeated
searches of the /dev directory. If one of the devices in /dev is changed to be
assignable or unassignable (that is, owned by asg), then /etc/atab should be
removed (by the superuser) so that a correct list will be built the next time the
command is invoked.

Exit Values

Exit code 0 returned if successful, 1 if problems, 2 if device cannot be assigned.

Limitations

Files

12

Although it should never happen, if assign is aborted before completion (via
kill -9, a power failure, etc.), the Jock file /dev/asglock may need to be removed
by root.

/etc/a tab
/dev/asglock

table of assignable devices
file to prevent concurrent access

1 Febmary 1993

at(C)

at, batch
execute commands at a later time

Syntax

at time [date] [increment I

at -rjob-id .. .

at -l[job-id ...]

at -qletter time [date I [increment]

batch

Description

The at and batch commands both accept one or more commands from the
standard input to be executed at a later time. at and batch differ in the way
the set of commands, or job, is scheduled: at allows you to specify a time
when the job should be executed, while batch executes the job when the sys­
tem load level permits. After a job is queued with either command, the pro­
gram writes a job identifier (a number and a letter), along with the time the
job will execute, to standard error.

at takes the following arguments:

time

date

I February I 993

The time can be specified as 1, 2, or 4 digits. One- and two­
digit numbers are taken to be hours, four digits to be hours and
minutes. The time can alternately be specified as two numbers
separated by a colon, meaning hour:minute. A suffix am or pm
can be appended; otherwise a 24-hour clock time is under­
stood. The suffix zulu can be used to indicate Greenwich
Mean Time (GMT). The special names noon, midnight, and
now are also recognized.

An optional date can be specified as either a month name fol­
lowed by a day number (and possibly year number preceded
by an optional comma) or a day of the week (spelt in full or
abbreviated to three characters). Two special udays,u today
and tomorrow, are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less. If the given month is less
than the current month (and no year is given), next year is
assumed.

13

at(C)

14

increment The time and optional date arguments can be modified with an
increment argument of the form +n units, where n is an integer
and units is one of the following: minutes, hours, days, weeks,
months, or years. The singular form is also accepted, and + 1
11nit can also be written next 11nit. Thus, legitimate commands
include:

at 0815am Jan 24
at 8:15am Jan 24
at now+ 1 day
at 5 pm Friday next week

-r job-id . . . Removes the specified job or jobs previously scheduled by the
at or batch command. job-id is a job identifier returned by at or
batch. Unless you are the superuser, you can only remove
your own jobs.

-1 [job-id .. . I Lists schedule times of specified jobs. If no job-ids· are speci­
fied, lists all jobs currently scheduled for the invoking user.
Unless you are the super user, you can only list your own jobs.

-qletter Places the specified job in a queue denoted by letter, where
letter is any lowercase letter from • a • to • z ". The queue letter
is appended to the job identifier. The following letters have
special significance:

a atqueue
b batch queue
c cronqueue

For more information on the use of different queues, see the queuedefs(F)
manual page.

batch takes no arguments; it submits a job for immediate execution at lower
priority than an ordinary at job.

at and batch jobs are executed using sh(C). Standard output and standard
error output are mailed to the user unless they are redirected elsewhere. The
shell environment variables, current directory, umask, and ulimit are retained
when the commands are executed. Open file descriptors, traps, and priorities
are lost.

Users are permitted to use at and batch if their usernames (logins) appear in
the file /usr/lib/cron/at.a/low. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if a given user should be den_ied
access to at and batch. If neither file exists, only root is allowed to submit a
job. If only the at.deny file exists, and it is empty, global usage is permitted.
The allow /deny files consist of one user name per line.

1 February 1993

at(CJ

If the system is installed with C2 security (this is the default, unless the sys­
tem administrator has relaxed the security), the user will also need the
chmodsuid kernel authorization. For more information about system security
and kernel authorizations, see the User's Guide and the System Administrator's
Guide.

Exit values
at and batch return 0 on succesful completion, or 1 if an error occurs.

Diagnostics

Examples

Files

Complains about syntax errors and times out of range.

The simplest way to use at is to place a series of commands in a file, one per
line, and execute these commands at a specified time with the following com­
mand:

at time <file

The following sequence can be used at a terminal to format the file infile using
the text formatter nroff(CT), and place the output in the file outfile.

batch
nroff infile > outfile
(Ctrl}d

The next example demonstrates redirecting standard error to a pipe (I), which
is useful in a shell procedure. The file infile is formatted and the output
placed in outfile, with any errors generated being mailed to user (output
redirection is covered on the sh(C) manual page).

batch<<!
nroff infile2 > &1 > outfile I mail user
!

To have a job reschedule itself, invoke at from within the job. For example, if
you want shellfile to run every Thursday, executing a series of commands
and then rescheduling itself for the next Thursday, you can include code simi­
lar to the following within shellfile:

echo "sh shellfile" I at 1900 thursday next week

/usr/lib/cron
/usr/lib/cron/at.allow
/usr/lib/cron/at.deny
/usr/lib/cron/queuedefs
/usr/spool/cron/atjobs

main cron directory
list of allowed users
list of denied users
scheduling information
spool area

I February 1993 15

at(C)

See also

cron(C), kill(C), mail(C), nice(C), ps(C), queuedefs(F), sh(C)

Standards confonnance

at and batch are conformant with:

AT&:TSVID Issue 2;
X/Open Portability Guide, Issue 3, 1989.

16 1February1993

auths(CJ

auths
list and/or restrict kernel authorizations

Syntax
auths [-v) [-a authlist) [-r authlist I [-c command I

Description
The auths command performs actions associated with system privilege mani­
pulation. With no arguments, auths returns the kernel authorizations associ­
ated with the current process. All other uses of auths are discussed below.

Either of the -a or -r options allow the user to alter the kernel authorizations in
order to run a shell or a single command. The -a option requires a list of
comma-separated authorizations, which become the absolute set of kernel
authorizations for the new process. This new set must be a subset of the ker­
nel authorizations of the invoking process. To start a process with a null set of
kernel authorizations, use the empty string""). The -r option also takes, .as an
argument, a comma-separated list of authorizations. These are removed from
the authorization set of the invoking process when forming the kernel author­
izations for the new process.

The argument to the -c option is passed to the user's shell as specified in the
user's /etclpasswd entry which is run as a single command. The user's shell
must support the -c command syntax similar to sh(C). When the argument is
absent (and -a or -r is specified), the user's shell is invoked as a process with
adjusted authorizations. Exiting that shell will resume execution in the previ­
ous shell and the original kernel authorizations will be in effect. This option
may be used to run a command with restricted authorizations, that is, fewer
than those allowed the user in the Protected Password Database entry.

The -v option lists the new kernel authorizations before the new command or
shell is run. It also warns with the -a option when more authorizations are
attempted to be set than already exist or with the -r option when more author­
izations are attempted to be removed than already exist.

The kernel authorizations are:

execsuid allows the running of SUID programs
writeaudit process can write directly to the audit trail
configaudit process can change audit subsystem parameters
suspendaudit process is not audited by the kernel
chmodsugid process can set SUID and GJD bits on files
chown process can change ownership of files it owns

1 February 1993 17

auths(C)

Examples

See also

To execute a shell without the execsuid kernel authorization:
auths -r execsuid

To list the current kernel authorizations:
auths

To execute yourprog with no kernel authorizations:
auths -a 1111 -c yourprog

To execute myprog with chmodsugid and execsuid:

auths -a chmodsugid,execsuid -c myprog

sh(C), getpriv(S), getprwent(S), setpriv(S)

"Using a secure system" chapter in the User's Guide

Standards conformance

18

auths is not part of any currently supported standard; it is an extension of
AT&T System V provided by The Santa Cruz Operation, Inc.

1 February 1993

awk(C)

awk: awk, oawk, nawk
pattern scanning and processing language

Syntax
awk [-Fsep] [[-el 'prog] ... [-f progfile] ... [[-v) var=value ...] [file ...]

Description

awk is an interpreted pattern-matching language with a wide range of appli­
cations. See the chapter on awk in the User's Guide for a complete discussion
of its use. (nawk and oawk are alternative versions of awk. awk should be
used in preference to nawk or oawk. See "Limitations" below for more
details.)

You can enter an awk program (prog) directly from the command-line, enclos­
ing it in single quotes to prevent interpretation by the shell. The -e flag
preceding prog is optional. For longer awk programs, it may be more con­
venient to fetch them from a file (progfile); this is done with the -f option. You
can specify multiple -e programs and -f files; they are concatenated together
(with intervening newlines) to form the program that is executed. (This is like
the -e and-£ options in sed(C).)

Input files are read in order. If no files are given on the command line, the
standard input is used.

You can change the awk field separator on the command line with the -Fsep
option, where the regular expression sep is the new delimiter. You can also
specify the field separator as a single character; this sets the fie1d separator to
be that character. awk -Ft is a special case that sets the field separator to a tab.
(The field separator can also be changed within an awk program using the
variable FS.)

You can set the value of variables you are going to use in the awk program
from the command line using var=value, where var is the variable and value
is its initial value. This can be preceded with an optional -v.

What awk does with your program
After awk checks the syntax of your program, it reads each record (generally,
each line) of the input and attempts to match it against the patterns specified
in the program. For each pattern in the program, there may be an associated
action performed when an input record matches the pattern. Actions can be
made up of a single action statement, like print, or of a combination of state­
ments.

1 February 1993 19

awk(C)

20

A pattern-action statement has the form:
pattern I action }

Either pattern or action may be omitted. If there is no action with a pattern,
the matching line is printed. If there is no pattern with an action, the action is
performed on every input line.

Programming conventions
Pattern-action statements, and individual statements within actions, generally
begin on a new line.

The opening brace (I) must be on the same line as the pattern for which the
actions should be performed. Multiple action statements may appear on a
single line if they are separated by semicolons(;).

A newline can be hidden with a backslash (\), so you can use backslash­
newline to continue a long line.

Comments in awk are introduced by a number sign (#) and end with the end
of the line. Comments can appear anywhere in a line.

Blank lines and whitespace (blanks and tabs) in an awk program are ignored.

Fields, records, and built-in variables
awk presumes that each field in a record is separated by whitespace, and that
each record consists of one line of input. Both of these defaults can be modi­
fied.

You can change the field separator on the command line, as discussed earlier,
using the -Fsep option. You can also reset the value of the input field separa­
tor variable FS from within your awk program. FS can be set to any regular
expression. The following action is a special case that resets FS to its default
behavior:

BEGIN (FS = " ")
The BEGIN in this example is a special pattern that matches before the first
record is read; this is the mechanism awk provides for doing introductory
processing.

Setting FS to a single blank is equivalent to:
BEGIN { FS = '[It)+" }

That is, setting FS to a single blank tells awk to regard any combination of
blanks and tabs (any whitespace) as a field separator. Note that once.you set
the input field separator to something other than a single blank (t~at 1s, to all
whitespace), leading whitespace (before the first field) is no longer ignored.

awk is designed to consider each line of input as a complete record, but you
can get awk to recognize multiline records by resetting the variable RS.

1 February 1993

awk(C)

To get awk to recognize multiline records, set RS to the null string:
BEG IN (RS = " ' }

Now, awk will presume that records are separated by one or more blank lines.
When you reset RS like this to use multiline records, newline is always con­
sidered a field separator, no matter what the value of FS is. To restore the
default record separator, reset RS to a newline:

(RS = '\n' l

You can address any field in the input record using the syntax $1, $2, etc.,
where $1 is the first field in a record, $2 is the second field, and so on. The
entire record is referred to as $0.

Fields can also be referred to in relation to the built-in field variables, for
example, for a five-field record:

$INF - 21

would refer to the third field. The NF in this example is a built-in variable
awk provides that counts the number of fields in a current record. (Thus, $NF
refers to the last field in the current record.)

The following list shows all the built-in variables in awk:

Variable

ARGC

ARGV

ENVIRON

FILENAME

FNR

FS

NF

NR

OFMT

OFS

ORS

RS

RSTART

RLENGTH

SUBSEP

1February1993

Meaning

number of command-line arguments plus 1

array of command-line arguments (ARGV[O ... ARGC-1])

array of environment variables, indexed by the name of
the variable

name of current input file

input record number in current file

input field separator (default: any whitespace)

number of fields in current input record

number of records read so far

output format for numbers (default: "%.6g"; see
printf(S))

output field separator (default: blank)

output record separator (default: newline)

input record separator (default: newline)

index of first character matched by match()

length of string matched by match()

separates multiple subscripts in array elements (default:
"\034")

21

awk(C)

22

Patterns
Patterns can be any of the following:

BEGIN
END
/expr/
relational expression
pattern && pattern
pattern I I pattern
(pattern)
!pattern
pattern1,pattern2

BEGIN and END match before the first line is read, and after the last line has
been read, respectively.

All other patterns can contain extended regular expressions, like in egrep. See
grep(C) and ed(C) for the pattern-matching syntax of extended regular
expressions. (In the following discussion, extended regular expressions will
be referred to simply as regular expressions.)

You can create a string matching pattern using a regular expression in one of
three ways:

/regexpr/ This will match the current record if regexpr is con­
tained anywhere in the current record.

expression - /regexpr I This will match if regexpr is contained anywhere in
the string value of expression.

expression!- /regexpr/ This will match if regexpr is not contained anywhere
in the string value of expression.

A relational expression is made up of two numeric or string expressions com­
pared with one of the following operators:

Operator

<
<=
>
>=

!=

Meaning

less than
less than or equal to
greater than
greater than or equal to
equal to
not equal to

When strings are compared using relational operators(<,<=,>,>=), they are
compared character by character using the sort order provided by the ma­
chine, which is usually the ASCII sort order. One string is less than another
string if it would appear earlier (before) the other in the sort order.

1 February 1993

awk(C)

When one operand in a relational expression is a string, the other operand is
converted to a string as well and they are compared using the method
described above.

Patterns can be joined using the logical operators && (AND) and I I (OR).
When patterns are joined like this, the pattern matches the current record if
the entire pattern evaluates to true (nonzero or nonnull). A pattern can be
negated using the ! logical NOT operator. Parentheses may be used for group­
ing patterns.

pattern && pattern matches a record when both the first pattern and the
second pattern match the record.

pattern I I pattern matches a record when either the first pattern or the second
pattern matches the record.

!pattern means "does not match pattern." That is, !pattern matches every
record that is not matched by pattern.

pattern1, pattern2 defines a matching range. The accompanying action is per­
formed for all records that match from the first occurrence of pattern1 to the
following occurence of pattern2, inclusive. (The action is performed for the
lines containing pattern1 and pattern2, as well as all the lines in between.)

Actions
The actual work your awk program does occurs in the action part of the
program.

Action statements can be made up of:

• expressions (numeric and string constants, variables, array references,
and so on)

• flow control statements (branches or loops)

• built-in arithmetic or string functions or functions you define yourself

Variables in awk are not explicitly declared; they simply spring into existence
when they are first used. awk determines from the context whether a variable
is numeric or string. Numeric variables are automatically initialized to O;
string variables are automatically initialized to the empty string (""). (See
"Number or string" below, and the chapter on awk in the User's Guide for
more information about variable types and type coercion in awk.)

Values are assigned to variables in the usual way in awk:
a = 100

creates a numeric variable a with the value "100". You can assign several vari­
ables in a single statement:

water = oil = •wet•

1 February 1993 23

awk(C)

24

This creates two string variables, water and oil, and sets them both to contain
the string "wet".

Assignment operators are evaluated from right to left.

The following assignment operators are available; the shorthand assignment
notation is borrowed from the C programming language:

Operator

a=b
a+=b
a-=b
a*=b

Meaning

set a equal to b
set a equal to a + b
set a equal to a - b
set a equal to a • b
set a equal to a I b a/=b

a%=b
a'=b

set a equal to a % b; a becomes the remainder of a divided by b
set a equal to a • b; a becomes ab

awk offers the usual arithmetic operators: "+" (add), " - " (subtract), "•"
(multiply), "I" (divide), "%" (modulo; divide and give remainder), "·"
(exponentiation; "••" is a synonym). The unary "+" (plus) and " - " (minus)
are also available.

All arithmetic in awk is done in floating point.

Relational expressions in action statements use the same operators as rela­
tional expressions in patterns; consult the relational operators table in "Pat­
terns" above.

The logical AND and logical OR (&&and I I) are also available, as well as the
logical NOT (!, as in !expr).

There is also a conditional operator:"?":

expressionl ? expression2 : expression3

expression is evaluated, and if it is non-empty and non-zero, then the expres­
sion has the value of expression2. Otherwise, it has the value of expression3.

Variables can be incremented using prefix or postfix notation, as in C. x++ and
++x are both equivalent to x = x + 1, and x-- and --x both are equivalent to x =
x-1. The difference between prefix (++x) and postfix (x++) is when x assumes
its new value. In prefix notation, x is immediately incremented; in postfix
notation, the current value of xis used and then xis incremented.

Parentheses can be used to alter the order of evaluation in arithmetic and rela­
tional expressions.

1 February 1993

awk(C)

The following table of precedence shows all the available action statement
operators and the order in which they are evaluated. The table is in decreas­
ing order of precedence; operators higher in the table are evaluated before
operators lower in the table.

Operator

$
++

+ -
•I%
+ -
(no explicit operator)
< <= > >= != ==
- r
in
&&
11

?:
= += -= ·= I= %= '=

Meaning

field
increment, decrement (prefix and postfix)
exponentiation (.. is a synonym)
logical negation
unary plus, unary minus
multiply, divide, mod
add, subtract
string concatenation
relationals
regular expression match, negated match
array membership
logical AND
logical OR
conditional expression
assignment

All of these operators are evaluated from left to right (they are left associa­
tive), except for the assignment operators, the conditional expression opera­
tor, and exponentiation, which are evaluated from right to left (they are right
associative).

Arrays
One-dimensional arrays are available in awk. Like other variables in awk,
arrays and array elements do not need to be declared; they come into
existence upon their first use.

awk allows you to use strings as array subscripts; arrays that do this are
called associative arrays. This lets you group together data quite simply.

Say we have a data file listing employee names, department names, and the
number of sick days the employee has taken:

Steve Engineering
Chris Engineering
Susannah Documentation
Vipin Sales
Connie Marketing
Matt Documentation
Nancy Sales
Nigel Documentation

The first field, $1, contains the employee name; the second field, $2, contains
the department, and the third field, $3, contains the number of sick days for
that employee.

1 February 1993 25

awk(C)

26

To accumulate the number of sick days in each department:
(sickness[S2i -= $3 }

This creates the array sickness, which uses the values in the second field
(uEng.ineering", uD~cui:nentation", uSales", and uMarketing") as its subscripts.
The sick day totals m field three are then collected under the appropriate sub­
script.

The construct:

for (i in arr) statement

does statement for every subscript i in the array arr. Subscripts are looped
over in a random order. If the value of i is changed within statement,
unpredictable results may occur.

The split function splits input into subscripts in an array. It takes the form:
split(string,arr,fs)

where string is the string you want to split, arr is the array into which you
want to split it, and /s is the field separator on which you want to split. The
first component of string is stored in arr[l), the second in arr[2) and so on.
The return value is the number of fields.

Elements can be deleted from an array with the delete statement:

delete arr [subscript]

After this is done, arr [subscript] no longer exists.

awk does not support multi-dimensional arrays, but this can be simulated by
using a list of subscripts; see the User's Guide for details.

Flow of control
awk uses branching and looping statements borrowed from the C program­
ming language. In all the following constructs, a single statement can be
replaced by a statement list enclosed in {braces }.

Each statement in a statement list should begin on a new line or after a semi­
colon.

The following constructs are available:
if (expression) statementl else statement2

If expression is non-zero and non-empty, do statement1; otherwis_e, do state­
ment2. The uelse statement2" is optional. If there are several ifs together
with an else, the else belongs with the nearest preceding if.

while (expression) statement
While expression is non-zero and non-empty, statement is executed.

for (expression1; expression; expression2) statement

This is a generalized form of the while statement.

1 February 1993

The for statement is the same as:

expression1
while (expression2) (

statement
expression3

All three expressions are optional.

awk(CJ

This is often used to go through a loop based on the value of a counter, where
expression1 is used to initialize a counter; expression is the test; and expres­
sion2 increments the counter. While expression is non-empty and non-zero,
statement is executed.

do statement while (expression)

statement is repeatedly executed until expression becomes null or zero.

The break, continue, and next statements can be used to break out of loops
that would otherwise keep going. break drops out of the innermost while,
for, or do loop. continue causes the next iteration of the loop to begin. Execu­
tion will go to the test expression in a while or do loop, and to expression3 in
a for loop. next reads the next record and starts the main input loop again.

exit will go straight to the END statements, if there are any. If exit occurs in
an END statement, the program itself exits. If a numeric expression is given
after exit, this expression is taken as the exit status for the awk program.

Output
The print and print£ statements are used to write output in awk.

print expr1,expr2, .. . ,exprn

will print the string value of each expression separated by the output field
separator, followed by the output record separator. Without the commas, the
expressions are concatenated.

print by itself is an abbreviation for print $0.

To print an empty line use:
print ""

The print£ function in awk is like printf(S} in C:

print£ format, expr1, expr2, ... , expn

format can be made up of regular characters, which are printed as-is, escaped
special characters, such as Tab (\t) or Newline (\n), and format keyletters that
specify how to print the expressions following the format. Format keyletters
begin with a "%" and can be preceded with a width specification, a precision
statement, and/or an instruction to left-justify an expression in its field. The
first expression replaces the first formatting keyletter, and so on.

1 February 1993 27

awk(C)

28

If a print or printf statement includes an expression with the greater-than
operator (>), this expression should be enclosed in parentheses to avoid con­
fusion between the greater-than operator and redirection into a file. For
example:

{ print SO S2 > S3)

This statement says "print the record and then field 2 into a file named by
field 3," while:

{ print SO 1$2 > $31)

says "print the record, followed by a 1 if field 2 is greater than field 3, or a 0 it
is not."

printf keyletters are:

Keyletter

%c

%d
%e
%f
%g

%0
%s
%x
%%

Prints expr as

the ASCII character referred to by the least significant 8
bits of the numeric value of expr; truncates expr to the
nearest integer
a decimal integer; truncates expr to the nearest integer
scientific notation using the form [-]d.ddddddE[+-]dd
scientific notation using the form [-)ddd.dddddd
the shorter of e or f conversion, with nonsignificant zeros
suppressed
an unsigned octal number
a string
unsigned hexadecimal number
prints a"%", no argument is converted

The following escape sequences are recognized within regular expressions
and strings:

Escape sequence Meaning

\b Backspace
\f Formfeed
\n Newline
\r Carriage return
\t Tab
\ddd octal value ddd

Output can be redirected into files using:

>filename
and

>>filename
Files are opened only once using the redirection operator .. The first f?rm will
overwrite whatever is in filename, if filename already exists, and ~ill create
filename if it does not exist. The second form will append output to filename.

1 February 1993

awk(C)

To send output to a pipe, use:
I command-line

where command-line is the command line to which you want to send the out­
put. Filenames and command lines can be expressions, variables, or literal
filenames or command lines. If you want to use a literal filename or com­
mand line, you must enclose it in double quotes, otherwise, awk will treat it
as a variable.

There is a limit to how many files and pipes you can open in an awk program
(see "Limits" below). Use the close statement to close files or pipes:

close(filename)
close(command-line)

where filename or command-line is the open file or pipe.

Input
awk provides the getline function to read in successive lines of input from a
file or a pipe.

getline getline by itself takes the next record of input as $0
and sets NF, NR, and FNR.

getline <file The next record from file becomes $0; NF is set.

getline var The next record of input is placed in var; NR and
FNR are set.

getline var <file The next record in file is placed in var.

command I getline The output of command is piped to getline. $0 and
NF are set.

command I getline var The output of command is piped to getline and
stored in var.

All forms of getline return 1 for successful input, 0 for end of file, and -1 for
an error.

To read input from a file until the file runs out, use:
while ((getline x < file J > OJ { ...)

The"> O" is needed so that the test catches a -1 error returned from getline.
Otherwise, the while loop would read -1 as true, since it is non-zero.

1 February 1993 29

awk(C)

30

Functions
The following arithmetic functions are built into awk:

Function

atan2(y,x)
cos(x)
exp(x)
int(x)
log(x)
rand()
sin(x)
sqrt(x)
srand()
srand(x)

Returns

arctangent of y /x in the range -lt to n
cosine of x, with x in radians
exponential function of x, e'
integer part of x; truncated toward 0 when x > 0
natural (base e) logarithm of x

random number r, where 0 <= r < 1
sine of x, with x in radians
square root of x

set the seed for rand() from the time of day
x is new seed for rand()

The string functions are:

gsub(r,s,t)

index(s,t)

length(s)

match(s,re)

split(s,a/s)

globally substitutes the string s for the regular expression r in
the string t. If t is omitted, substitutions are made in the
current record ($0). The number of substitutions is returned.

returns the position in string s where string t first occurs, or 0
if it does not occur at all.

returns the length of its argument taken as a string, or of the
whole record if there is no argument.

returns the position in string s where the regular expression
re occurs, or 0 if it does not occur at all. RSTART is set to the
starting position (which is the same as the returned value),
and RLENGTH is set to the length of the matched string.

splits the string s into array elements a[l], a[2], a[n], and
returns n. The separation is done with the regular expression
fs or with the field separator FS if /s is not given.

sprintf(format, expr,expr, ...)
formats the expressions according to the printf format and
returns the resulting string.

sub(r,s,t) substitutes the strings in place of the first instance of the rel?­
ular expression r in string t and returns the number of substi­
tutions. If t is omitted, awk substitutes in the current record
($0).

1 February 1993

awk(C)

returns the suffix of s starting at position p. substr(s,p)

substr(s,p,n)

toupper(s)

returns the n-character substring of s that begins at position p.

returns a copy of the string s with lowercase letters converted
to uppercase.

tolower(s) returns a copy of the strings with uppercase letters converted
to lowercase.

awk provides the system function for running commands:

system(command-line)
executes command-line and returns its exit status.

You can define your own functions in awk. The syntax for this is:

function name(parameter-list) I
statements

name is the name of the function, parameter-list is a comma-separated list of
variable names, which, within the function refer to the arguments with which
the function was called, and statements are action statements that make up
the body of the function.

Function definitions can appear anywhere a pattern-action statement can
appear. Recursion is permitted within user-defined functions; that is, a func­
tion may call itself directly or indirectly.

Variables passed to functions (as arguments) are copied and a copy of the
variable is manipulated by the function; that is, these variables are passed by
value. The exception to this in awk is arrays, which are passed by reference,
that is, the actual array elements are manipulated by the function, so array
elements can be permanently altered, created, or deleted within a function.

Missing function arguments are set to null; extra arguments are ignored.

To define a return value for your function, you must include a statement

return expression
where expression is the value you want your function to return. expression
here is optional; if you leave it out, control will be returned to the caller of the
function, but the return value will be undefined. The return statement itself is
optional as well.

The formal parameters of a function (the argument list) are local to that func­
tion, but any other variables are global. You can use the argument list as a
way of creating variables local only to the function; like other variables in awk
these will be automatically initialized with null values.

1 Febrnary 1993 31

awk(C)

32

Number or string?
In awk, variables come into being when they are used; there is no declaration
of a variable, and, therefore, you do not declare the type of a variable as a
string or a number. Instead, awk assumes the type of a variable from its con­
text.

In an assignment statement, such as v=e, the type of v becomes the type of e.
When the context is ambiguous, awk determines the types when the program
runs.

In comparisons, if both operands are numeric, they are compared as numbers;
otherwise, they are compared as strings. (A string is greater than another
string if it comes later in the sort sequence, and less than another string if it
comes earlier in the sort sequence.)

All field variables are of type string; in addition, each field can be considered
to have a numeric value (that is, the numeric value of a string). The numeric
value of a string is the value of the longest prefix of a string that looks
numeric. For example, if a field contains the string "123abc", the numeric
value of this would be 123.

The value of a variable in awk is initially 0 or the string "".

You can force a variable of one type to become another type; this is known as
type coercion. To force a number to a string:

number""

(Concatenate the null string to number.)

To force a string to a number:

string+ 0
For more information about variable types, see the chapter on awk in the
User's Guide.

Limits
The following limits exist in this implementation of awk:

100 fields
3000 characters per input record
3000 characters per output record
3000 characters per field
3000 characters per printf string
400 characters per literal string or regular expression
250 characters per character class
55 open files or pipes
double precision floating point

Numbers are limited to what can be represented on your machine; numbers
outside this range will have string values only.

1 February 1993

Examples

awk(C)

The following examples are all individual awk programs; to try them out, you
will need to put them in a file and call the file with awk -f, or enclose them in
single quotes on the awk command line.

Print lines longer than 72 characters:
length > 72

Print only the first two fields in opposite order:
(print $2, $1 J

Same, with input fields separated by comma and/or blanks and tabs:
BEG IN (FS = " , [\ t) * I [\ t I +")

(print $2, $1)

Add up the first column, print sum and average:
(s += $1)

END {if (NR > 0) print "sum is", s, " average is", s/NR J

Print fields in reverse order (on separate lines):
{ for Ii =NF; i > O; --ii print Si)

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev (print; prev = $1 }

Simulate echo(C):
BEGIN {

for Ii = 1; i < ARGC; i++)
printf "%s "' ARGV[i]

printf "\n"
exit
)

Simple env(C):
BEGIN {

for le in ENVIRON)
print e "=" ENVIRON[e)

Limitations

Input whitespace is not preserved on output if fields are involved.

func is an obsolete synonym for function.

This version of awk is the so-called "new awk" described in The A WK Pro­
gramming Language (referenced above). It is mostly compatible with an older
version of awk still in common use. On some systems, the "new awk" is
called nawk, the older one is oawk, and awk may be linked to either version.

1February1993 33

awk(C)

See also

34

The nawk and oawk names do not exist on all systems, and even when they
do exist, are not reliable. Only the name awk should be used.

Known incompatibilities between this version of awk and older awks include:

• The definition of "what constitutes a number" is slightly different. In the
old awk, a string had a numeric value only if the entire string looked
numeric. In the new awk, a string has a numeric value if a prefix of the
string looks numeric, and the numeric value is the value of the longest such
prefix.

For example, the string:
123foo

does not have a numeric value in the old awk (and is treated as 0), but has
the value 123 in the new awk.

• Assigning to a nonexistent field in the new awk changes $0 to include that
field, whereas, in the old awk, $0 did not change. Thus, the program:

($2 = $1; print }

produces different output if the input has only one field.

• The new awk allows user-defined functions; these are not recognized in the
oldawk.

• There are several new reserved words in the new awk which could be used
as variable names in the old awk.

• In addition, the parsing has changed, which may result in some
ambiguous-looking expressions that were legal in the old awk failing with
thenewawk.

For example, in regular expressions, the character class:
[/]

is not legal in the new awk, but was in the old. The equivalent character
class for the new awk is:

[\ /]

However, this character class, when used with the old awk, is not
equivalent to the original expression.

ed(C), grep(C), lex(CP), printf(S), sed(C)

"Simple programming with awk" chapter in the User's Guide

Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger,
Tiie AWK Programming Language, Addison-Wesley, 1988,

1 February 1993

awk(C)

Standards conformance
awk is conformant with:

AT&TSVID Issue 2;
X/Open Portability Guide, Issue 3, 1989.

1 February 1993 35

banner(CJ

banner
print large letters

Syntax
banner strings

Description

See also

The banner command prints its arguments (each up to 10 characters long) in
large letters on the standard output. This is useful for printing names at the
front of printouts.

echo(C)

Standards confonnance

banner is conformant with:

AT&T SVID Issue 2;
X/Open Portability Guide, Issue 3, 1989.

36 1 February 1993

basename(C)

basename
remove directory names from pathnames

Syntax
basename string [suffix I

Description

Examples

See also

The basename command deletes any prefix ending in " I " and the suffix (if
present in string) from string, and prints the result on the standard output.
The result is the "base" name of the file, that is, the filename without any
preceding directory path and without an extension. It is used inside substitu­
tion marks (' ') in shell procedures to construct new filenames.

The related command dimame deletes the last level from string and prints the
resulting path on the standard output.

The following command displays the filename memos on the standard output:

basename /usr/johnh/memos.old .old

The following shell procedure, when invoked with the argument
/usr/src/cmd/cat.c, compiles the named file and moves the output to a file
named cat in the current directory:

cc $1
mv a.out 'basename $1 .c'

dirname(C),sh(C)

Standards conformance

basename is conformant with X/Open Portability Guide, Issue 3, 1989.

1 February 1993 37

be(CJ

be
invoke a calculator

Syntax
be [-e I [-1 I [file ...]

Description

38

be is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then reads
the standard input. The -1 argument stands for the name of an arbitrary preci­
sion math library.

be acts as a preprocessor for de, a calculator which operates on Reverse Polish
Notation input. (be is easier to use than de.) Although substantial programs
can be written with be, it is often used as an interactive tool for performing
calculator-like computations. The language supports a complete set of con­
trol structures and functions that can be defined and saved for later execution.
The syntax of be has been deliberately selected to agree with the C language.
A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Common uses for be are:

• Computation with large integers.
• Computations accurate to many decimal places.
• Conversions of numbers from one base to another base.

There is a scaling provision that permits the use of decimal point notation.
Provision is made for input and output in bases other than decimal. Numbers
can be converted from decimal to octal simply by setting the output base
equal to 8.

The actual limit on the number of digits that can be handled depends on the
amount of storage available on the machine, so manipulation of numbers with
many hundreds of digits is possible.

1 February 1993

be(CJ

Tasks
This section describes how to perform common be tasks.

Computing with integers
The simplest kind of statement is an arithmetic expression on a line by itself.
For instance, the expression:

142857 + 285714

when evaluated, responds immediately with the line:

428571

Other operators can also be used. The complete list includes:

+-"/%"
They indicate addition, subtraction, multiplication, division, modulo
(remaindering), and exponentiation, respectively. Division of integers pro­
duces an integer result truncated toward zero. Division by zero produces an
error message.

Any term in an expression can be prefixed with a minus sign to indicate that it
is to be negated (this is the •unary" minus sign). For example, the expression:

7 +-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are
interpreted just as in FORTRAN, with exponentiation(") performed first, then
multiplication("), division(/), modulo(%), and finally, addition(+), and sub­
traction(-). The contents of parentheses are evaluated before expressions out­
side the parentheses. All of the above operations are performed from left to
right, except exponentiation, which is performed from right to left.

Thus the following two expressions:
a·b·c and a"(b"c)

are equivalent, as are the two expressions:
a"b"e and (a"b)"e

be shares with FORTRAN and C the convention that a/b*c is equivalent to
(a/b)*c.

Internal storage registers to hold numbers have single lowercase letter names.
The value of an expression can be assigned to a register in the usual way, thus
the statement:

x=x+3
has the effect of increasing by 3 the value of the contents of the register named
x. When, as in this case, the outermost operator is the assignment operator
(=), then the assignment is performed but the result is not printed. There are
26 available named storage registers, one for each Jetter of the alphabet.

1February1993 39

bc(C)

40

There is also a built-in square root function whose result is truncated to an
integer (see also Scaling, below). For example, the lines:

x = sqrt(191)
x

produce the printed result:
13

Specifying input and output bases
There are special internal quantities in be, called ibase (or base) and obase.
base and ibase can be used interchangeably. ibase is initially set to 10, and
determines the base used for interpreting numbers that are read in to be. For
example, the lines:

ibase = 8
11

produce the output line:
9

and sets up be to do octal to decimal conversions. Beware of trying to change
the input base back to decimal by entering:

ibase = 10
Because the number 10 is interpreted as octal, this statement has no effect. For
those who deal in hexadecimal notation, the uppercase characters A-Fare per­
mitted in numbers (no matter what base is in effect) and are interpreted as
digits having values 10-15, respectively. These characters must be uppercase
and not lowercase.

The statement:
ibase =A

changes back to decimal input base no matter what the current input base is.
Negative and large positive input bases are permitted; however no mecha­
nism has been provided for the input of arbitrary numbers in bases less than 1
and greater than 16.

obase is used as the base for output numbers. The value of obase is initially
set to a decimal 10. The lines:

obase =16
1000

produce the output line:
3EB

This is interpreted as a three-digit hexadecimal number. Very large output
bases are permitted. For example, large numbers can be output in groups of
five digits by setting obase to 100000. Even strange output bases, such as
negative bases, and 1and0, are handled correctly.

1 Febmary 1993

bc(C)

Very large numbers are split across lines with seventy characters per line. A
split line that continues on the next line ends with a backslash (\). Decimal
output conversion is fast, but output of very large numbers (that is, more than
100 digits) with other bases is rather slow.

The values of ibase and obase do not affect the course of internal computa­
tion or the evaluation of expressions; they only affect input and output
conversion.

Scaling quantities
A special internal quantity called scale is used to determine the scale of calcu­
lated quantities. Numbers can have up to 99 decimal digits after the decimal
point. This fractional part is retained in further computations. We refer to the
number of digits after the decimal point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic
operations, the result has a scale determined by the following rules:

Addition, subtraction
The scale of the result is the larger of the scales of the two operands. There
is never any truncation of the result.

Multiplication
The scale of the result is never less than the maximum of the two scales of
the operands, never more than the sum of the scales of the operands, and
subject to those two restrictions, the scale of the result is set equal to the
contents of the internal quantity, scale.

Division
The scale of a quotient is the contents of the internal quantity, scale.

Modulo
The scale of a remainder is the sum of the scales of the quotient and the
divisor.

Exponentiation
The result of an exponentiation is scaled as if the implied multiplications
were performed. An exponent must be an integer.

Square Root
The scale of a square root is set to the maximum of the scale of the argu­
ment and the contents of scale.

All of the internal operations are actually carried out in terms of integers, with
digits being discarded when necessary. In every case where digits are dis­
carded truncation is performed without rounding.

The contents of scale must be no greater than 99 and no less than 0. It is ini­
tially set to 0.

1 February 1993 41

be(CJ

42

The internal quantities scale, ibase, and base can be used in expressions just
like other variables. The line:

scale = scale + 1

increases the value of scale by one, and the line:
scale

causes the current value of scale to be printed.

The value of scale retains its meaning as a number of decimal digits to be
retained in internal computation even when ibase or obase are not equal to
10. The internal computations (which are still conducted in decimal, regard­
less of the bases) are performed to the specified number of decimal digits,
never hexadecimal or octal or any other kind of digits.

Using functions
The name of a function is a single lowercase letter. Function names are per­
mitted to use the same letters as simple variable names. Twenty-six different
defined functions are permitted in addition to the twenty-six variable names.

The line:
define a(x){

begins the definition of a function with one argument. This line must be fol­
lowed by one or more statements, which make up the body of the function,
ending with a right brace (}). Return of control from a function occurs when
a return statement is executed or when the end of the function is reached.

The return statement can take either of the two forms:

return
return(x)

In the first case, the returned value of the function is O; in the second, it is the
value of the expression in parentheses.

Variables used in functions can be declared as automatic by a statement of the
form:

autox,y,z
There can be only one auto statement in a function and it must be the first
statement in the definition. These automatic variables are allocated space and
initialized to zero on entry to the function and thrown away on return. The
values of any variables with the same names outside the function are not dis­
turbed. Functions can be called recursively and the automatic variables at
each call level are protected. The parameters named in a function ~efiniti~m
are treated in the same way as the automatic variables of that funch~n, with
the single exception that they are given a value on entry to the function. An
example of a function definition follows:

1 February 1993

define a(x,yl{
auto z
z = x*y
return(z)

be(CJ

The value of this function, when called, will be the product of its two argu­
ments.

A function is called by the appearance of its name, followed by a string of
arguments enclosed in parentheses and separated by commas. The result is
unpredictable if the wrong number of arguments is used.

If the function do_something is defined as shown above, then the line:

do_something(7,3.14)

would print the result:
21. 98

Similarly, the line:
x = do_something(so_something(3,4),5)

would cause the value of x to become 60.

Functions can require no arguments, but still perform some useful operation
or return a useful result. Such functions are defined and called using
parentheses with nothing between them. For example:

b ()

calls the function named b.

Using subscripted variables
A single lowercase letter variable name followed by an express_ion in brackets
is called a subscripted variable and indicates an array element. The variable
name is the name of the array and the expression in brackets is called the sub­
script. Only one-dimensional arrays are permitted in be. The names of arrays
are permitted to collide with the names of simple variables and function
names. Any fractional part of a subscript is discarded before use. Subscripts
~~~~~m~~~~~~m~~~ 

Subscripted variables can be freely used in expressions, in function calls and 
in return statements. 

An array name can be used as an argument to a function, as in: 
f(a[]) 

Array names can also be declared as automatic in a function definition with 
the use of empty brackets: 

define f(a[ JI 
auto a[ J 

When an array name is so used, the entire contents of the array are copied for 
the use of the function, then thrown away on exit from the function. Array 
names that refer to whole arrays cannot be used in any other context. 

l February 1993 43 



bc(C) 

44 

Using control statements: if, while and for 
The if, while, and for statements are used to alter the flow within programs or 
to cause iteration. The range of each of these statements is a following state­
ment or compound statement consisting of a collection of statements enclosed 
in braces. They are written as follows: 

if (relation) statement 
while (relation) statement 
for ( expression1 ; relation; expression2) statement 

A relation in one of the control statements is an expression of the form: 
expression1 rel-op expression2 

where the two expressions are related by one of the six relational operators: 

< > <= >= == != 
Note that a double equal sign(==) stands for "equal td' and an exclamation­
equal sign (!=) stands for "not equal to." The meaning of the remaining rela­
tional operators is their normal arithmetic and logical meaning. 

Beware of using a single equal sign(=) instead of the double equal sign(==) in 
a relational. Both of these symbols are legal, so no diagnostic message is pro­
duced. However, the operation will not perform the intended comparison. 

The if statement causes execution of its range if and only if the relation is true. 
Then control passes to the next statement in the sequence. 

The while statement causes repeated execution of its range as long as the rela­
tion is true. The relation is tested before each execution of its range and if the 
relation is false, control passes to the next statement beyond the range of the 
while statement. 

The for statement begins by executing expression1. Then the relation is tested 
and, if true, the statements in the range of the for statement are executed. 
Then expression2 is executed. The relation is tested, and so on. The typical 
use of the for statement is for a controlled iteration, as in the statement: 

for (i=l; i<=lO; i=i+l) 
which will print the integers from 1 to 10. 

The following are some examples of the use of the control statements: 
define f In) { 

The line: 
f (a) 

auto i, x 
X=l 
forli=l; i<=n; i=i+ll x=x*i 
return (xi 

prints a factorial if a is a positive integer. 

1 Febnmry 1993 



bc(C) 

The following is the definition of a function that computes values of the bino­
mial coefficient (m and n are assumed to be positive integers): 

define b(n,m){ 
auto x, j 
X=l 
for{j=l; i<=m; i=i+ll X=X'(n-j+l)/j 
return(x) 

The following function computes values of the exponential function by sum­
ming the appropriate series without regard to possible truncation errors: 

scale = 20 
define elxl { 

auto a, b, c, d, n 
a = 1 
b = 1 
c = 1 
d = 0 
n = 1 
while 11==1 I 

a = a*x 
b = b'n 
c = c + a/b 
n = n + 1 
if (c==dl return(c) 
d = c 

Using other language features 
Language features which are less frequently used but still essential to know 
about are listed below. 

• Normally, statements are entered one to a line. It is also permissible to 
enter several statements on a line if they are separated by semicolons. 

• If an assignment statement is placed in parentheses, it then has a value 
and can be used anywhere that an expression can. For example, the line: 

I February I 993 

(x=y+17) 

not only makes the indicated assignment, but also prints the resulting 
value. The following is an example of a use of the value of an assignment 
statement even when it is not placed in parentheses: 
x = a[i=i+l) 

This causes a value to be assigned to "x" and also increments "i" before it 
is used as a subscript. 

45 



bc(C) 

46 

• The following constructions work in be in exactly the same manner as they 
do in the C language: 

Construction Equivalent 

x=y=z x =(y=z) 
x =+y x =x+y 
x =-y x = x-y 
x =·y x = x•y 
x =/ y x=x/y 
x=%y x=x%y 
x ='y x =x'y 
x++ (x=x+l)-1 
x-- (x=x-1)+1 
++x x=x+l 
--x x = x-1 

If one of these constructions is used inadvertently, it is possible for some­
thing legal but unexpected to happen. Some of these constructs are case­
sensitive. There is a real difference between x=-y and x= -y. The first 
replaces x by x-y and the second by -y. 

• The comment convention is identical to the C comment convention. Com­
ments begin with I* and end with * /. 

• There is a library of math functions that can be obtained by entering: 
be-I 

when be is invoked. This command loads the library functions sine, 
cosine, arctangent, natural logarithm, exponential, and Bessel functions of 
integer order. These are named s, u, a, I, e, and j(n,x) respectively. This 
library sets scale to 20 by default. 

• If be is loaded with: 

be file ... 
be will read and execute the named file or files before accepting com­
mands from the keyboard. In this way, user programs and function defini­
tions can be loaded. 

Language reference 
This section is a comprehensive reference to the be language. It contains a 
more concise description of the features mentioned in earlier sections. 

1 February 1993 



be( CJ 

Tokens 
Tokens are keywords, identifiers, constants, operators, and separators. Token 
separators can be blanks, tabs or comments. Newline characters or semi­
colons separate statements. 

Comments 
Comments are introduced by the characters/* and are terminated by*/. 

Identifiers 
There are three kinds of identifiers: ordinary identifiers, array identifiers 
and function identifiers. All three types consist of single lowercase letters. 
Array identifiers are followed by square brackets, enclosing an optional 
expression describing a subscript. Arrays are singly dimensioned and can 
contain up to 2048 elements. Indexing begins at 0 so an array can be 
indexed from 0 to 2047. Subscripts are truncated to integers. Function 
identifiers are followed by parentheses, enclosing optional arguments. 
The three types of identifiers do not conflict; a program can have a vari­
able named x, an array named x, and a function named x, all of which are 
separate and distinct. 

Keywords 
The following are reserved keywords: 
base if sqrt auto 
obase break length return 
scale define while quit 
for 

Constants 
Constants are arbitrarily long numbers with an optional decimal point. 
The hexadecimal digits A-F are also recognized as digits with decimal 
values 10-15, respectively. 

Expressions 
All expressions can be evaluated to a value. The value of an expression is 
always printed unless the main operator is an assignment. The precedence of 
expressions (that is, the order in which they are evaluated) is as follows: 
Function calls 
Unary operators 
Multiplicative operators 
Additive operators 
Assignment operators 
Relational operators 

1February1993 47 



bc(C) 

48 

There are several types of expressions: 

Named expressions 
Named expres~ions are places where v~lues are stored. Simply stated, 
named expressions are legal on the left side of an assignment. The value· 
of a named expression is the value stored in the place named. 

identifiers 
Simple identifiers are named expressions. They have an initial value of 
zero. 

array-name [expression ] 
Array elements are named expressions. They have an initial value of 
zero. 

scale, ibase and obase 
The internal registers scale, ibase, and obase are all named expres­
sions. scale is the number of digits after the decimal point to be 
retained in arithmetic operations and has an initial value of zero. ibase 
and obase are the input and output number radixes respectively. Both 
ibase and obase have initial values of 10. 

Constants 
Constants are primitive expressions that evaluate to themselves. 

Parenthetic Expressions 
An expression surrounded by parentheses is a primitive expression. The 
parentheses are used to alter normal operator precedence. 

Function Calls 
Function calls are expressions that return values. They are discussed in 
the next section. 

Function calls 
A function call consists of a function name followed by parentheses contain­
ing a comma-separated list of expressions, which are the function arguments. 
The syntax is as follows: 

function-name ( [expression [ , expression ... 11 ) 
A whole array passed as an argument is specified by the array name followed 
by empty square brackets. All function arguments are passed by value. As a 
result, changes made to the formal parameters have no effect on the actual 
arguments. If the function terminates by executing a return statement, the 
value of the function is the value of the expression in the parentheses of the 
return statement, or 0 if no expression is provided or if there is no return state­
ment. Three built-in functions are listed below: 

sqrt(expr) 
The result is the square root of the expression and is truncated in the least 
significant decimal place. The scale of the result is the scale of the expres­
sion or the value of scale, whichever is larger. 

1February1993 



be( CJ 

length ( expr) 
The result is the total number of significant decimal digits in the expres­
sion. The scale of the result is zero. 

scale ( expr ) 
The result is the scale of the expression. The scale of the result is zero. 

Unary operators 
The unary operators bind right to left. 

-expr 
The result is the negative of the expression. 

++ named_expr 
The named expression is incremented by one. The result is the value of 
the named expression after incrementing. 

-- named_expr 
The named expression is decremented by one. The result is the value of 
the named expression after decrementing. 

named_expr ++ 
The named expression is incremented by one. The result is the value of 
the named expression before incrementing. 

named_expr--
The named expression is decremented by one. The result is the value of 
the named expression before decrementing. 

Multiplicative operators 
The multiplicative operators(•,/, and%) bind from left to right: 

expr*expr 
The result is the product of the two expressions. If "a" and "b" are the 
scales of the two expressions, then the scale of the result is: 
min (a+b,max( scale, a, b)) 

expr/expr 
The result is the quotient of the two expressions. The scale of the result is 
the value of scale. 

expr"loexpr 

I February 1993 

The modulo operator(%) produces the remainder of the division of the 
two expressions. More precisely, a"lob is a-a/b*b. The scale of the result is 
the sum of the scale of the divisor and the value of scale. 

49 



be( CJ 

50 

expr'expr 
The exponentiation operator binds right to left. The result is the first 
expression raised to the power of the second expression. The second 
expression must be an integer. If "a" is the scale of the left expression and 
"b" is the absolute value of the right expression, then the scale of the result 
is: 
min ( a•b, max (scale, a)) 

Additive operators 
The additive operators bind left to right. 

expr+expr 
The result is the sum of the two expressions. The scale of the result is the 
maximum of the scales of the expressions. 

expr-expr 
The result is the difference of the two expressions. The scale of the result 
is the maximum of the scales of the expressions. 

Assignment operators 
The assignment operators listed below assign values to the named expression 
on the left side. 

named_expr = expr 
This expression results in assigning the value of the expression on the 
right to the named expression on the left. 

named_expr =+ expr 
The result of this expression is equivalent to: 
named_expr = named_expr + expr. 

named_expr =- expr 
The result of this expression is equivalent to: 
named_expr = named_expr- expr. 

named_expr =• expr 
The result of this expression is equivalent to 
named_expr = named_expr • expr. 

named_expr=/ expr 
The result of this expression is equivalent to: 
named_expr=named_expr I expr. 

named_expr =% expr 
The result of this expression is equivalent to: 
named_expr = named_expr % expr. 

named_expr =" expr 
The result of this expression is equivalent to: 
named_expr = named_expr' expr. 

1 February 1993 



be( CJ 

Relational operators 
Unlike other operators, the relational operators are only valid as the object of 
an if or while statement, or inside a for statement. 

These operators are listed below: 

expr<expr 
expr> expr 
expr<=expr 
expr>=expr 
expr== expr 
expr!= expr 

Storage classes 
There are only two storage classes in be: global and automatic (local). Only 
identifiers that are to be local to a function need to be declared with the auto 
command. The arguments to a function are local to the function. All other 
identifiers are assumed to be global and available to all functions. 

All identifiers, global and local, have initial values of zero. Identifiers 
declared as auto are allocated on entry to the function and released on return­
ing from the function. They, therefore, do not retain values between function 
calls. Note that auto arrays are specified by the array namer, followed by 
empty square brackets. 

Automatic variables in be do not work the same way as in C. On entry to a 
function, the old values of the names that appear as parameters and as 
automatic variables are pushed onto a stack. Until return is made from the 
function, reference to these names refers only to the new values. 

Statements 
Statements must be separated by a semicolon or a newline. Except where 
altered by control statements, execution is sequential. There are four types of 
statements: expression statements, compound statements, quoted string 
statements, and built-in statements. Each kind of statement is discussed 
below: 

Expression statements 
When a statement is an expression, unless the main operator is an assign­
ment, the value of the expression is printed, followed by a newline 
character. 

Compound statements 

1 February 1993 

Statements can be grouped together and used when one statement is 
expected by surrounding them with curly braces (I and ) ). 

51 



bc(C) 

Quoted string statements 
For example "string'' prints the string inside the quotation marks. 

Built-in statements 
Built-in statements include auto, break, define, for, if, quit, return, and 
while. 

The syntax for each built-in statement is given below: 

Auto statement 
The auto statement causes the values of the identifiers to be pushed 
down. The identifiers can be ordinary identifiers or array identifiers. 
Array identifiers are specified by following the array name by empty 
square brackets. The auto statement must be the first statement in a 
function definition. Syntax of the auto statement is: 
auto identifier [, identifier] 

Break statement 
The break statement causes termination of a for or while statement. 
Syntax for the break statement is: 

break 

Define statement 
The define statement defines a function; parameters to the function 
can be ordinary identifiers or array names. Array names must be fol­
lowed by empty square brackets. The syntax of the define statement 
is: 
define ([parameter [,parameter ... ))) (statements} 

For statement 
The for statement is the same as: 

first-expression 
while ( relation ) { 

statement 
last-expression 

All three expressions must be present. Syntax of the for statement is: 

for (expression; relation; expression) statement 

If statement 
The statement is executed if the relation is true. The syntax is as fol­
lows: 
if (relation) statement 

52 1 February 1993 



bc(CJ 

Quit statement 
The quit statement stops execution of a be program and returns control 
to the Operating System when it is first encountered. Because it is not 
treated as an executable statement, it cannot be used in a function 
definition or in an if, for, or while statement. Note that entering a 
{Ctrl}d at the keyboard is the same as entering "quit". The syntax of the 
quit statement is as follows: 

quit 

Return statement 
The return statement terminates a function, pops its auto variables off 
the stack, and specifies the result of the function. The result of the 
function is the result of the expression in parentheses. The first form is 
equivalent to "return(O)". The syntax of the return statement is as 
follows: 

retum(expr) 

While statement 
The statement is executed while the relation is true. The test occurs 
before each execution of the statement. The syntax of the while state­
ment is as follows: 

while (relation) statement 

Limitations 

Files 

See also 

A for statement must have all three E's. 

quit is interpreted when read, not when executed. 

Trigonometric values should be given in radians. 

/usr/lib/lib.bc 
/usr/bin/dc 

dc{C) 

mathematical library 
desk calculator proper 

1February1993 53 



bdif/(CJ 

bdiff 
compare files too large for diff(C) 

Syntax 
bdifffile1file2 [ n) [ -s) 

Description 

The bdiff command compares two files, finds Jines that are different, and 
prints them on the standard output. It allows processing of files that are too 
large for diff. bdiff splits each file into n-line segments, beginning with the 
first non-matching Jines, and invokes diff upon the corresponding segments. 
The arguments are: 

n The number of lines bdiff splits each file into for processing. The default 
value is 3500. This is useful when 3500-Jine segments are too large for diff. 

-s Suppresses printing of bdiff diagnostics. Note that this does not suppress 
printing of diagnostics from diff. 

lfJile1 (orfile2) is a dash(-), the standard input is read. 

The output of bdiff is exactly that of diff. Line numbers are adjusted to 
account for the segmenting of the files, and the output looks as if the files had 
been processed whole. 

Limitations 

Files 

See also 

54 

Because of the segmenting of the files, bdiff does not necessarily find a small­
est sufficient set of file differences. 

Specify the maximum number of Jines if the first difference is too far down in 
the file for diff and an error is received. 

/tmp/bd????? 

diff(C) 

1 February 1993 



bfs(C) 

bfs 
scan big files 

Syntax 
bfs [-I name 

Description 
bfs is like ed(C) except that it is read-only and processes much larger files. 
Files can be up to 1024K bytes and 32K lines, with up to 255 characters per 
line. bfs is usually more efficient than ed for scanning a file, since the file is 
not copied fo a buffer. It is most useful for identifying sections of a large file 
where csplit(C) can be used to divide it into more manageable pieces for 
editing. 

Normally, the size of the file being scanned is printed, in the same way as the 
size of any file written with thew command. The optional dash(-) suppresses 
printing of sizes. Input is prompted for with an asterisk (*) when "P" and 
(Return) are typed. The "P" acts as a toggle, so prompting can be turned off 
again by entering another "P" and (Return). Note that messages are given in 
response to errors only if promptiRg is turned on. 

All address expressions described under ed are supported. In addition, regu­
lar expressions may be surrounded with two symbols other than the standard 
slash(/) and"?": A greater-than sign(>) indicates downward search without 
wraparound, and a less-than sign (<) indicates upward search without wra­
paround. Note that parentheses and curly braces are special and need to be 
escaped with a backslash (\). Since bfs uses a different regular expression­
matching routine from ed, the regular expressions accepted are slightly wider 
in scope (see regex(S)). Differences between ed and bfs are listed below: 

+ A regular expression followed by"+" means "one or more times". 
For example, [0-9)+ is equivalent to [0-9)[0-9]*. 

\{m\} \{m,\} \{m,u\} 

( ... )$n 

1 February 1993 

Integer values enclosed in \{ \} indicate the number of times the 
preceding regular expression is to be applied. m is the minimum 
number and u is a number, Jess than 256, which is the maximum. 
If only m is present (for example, \{m\}), it indicates the exact 
number of times the regular expression is to be applied. \{m, \} is 
analogous to \{m,infinity\}. The plus(+) and star(*) operations 
are equivalent to \(1, \}and \(0, \}respectively. 

The value of the enclosed regular expression is to be returned. The 
value will be stored in the (n+l)th argument following the subject 
argument. At most ten enclosed regular expressions are allowed. 
regex makes its assignments unconditionally. 

55 



bfs(C> 

56 

( ... ) Parentheses are used for grouping. An operator, for example*,+, 
\{ and \),can work on a single character or a regular expression 
enclosed in parentheses. For example, 

3 \(a*\ (cb+\ )*\ )$0. 

There is also a slight difference in mark names: only the letters "a" through "z" 
may be used, and all 26 marks are remembered. 

The e, g, v, k, p, q, w, =, ! and null commands operate as described under ed 
except that e does not remember filenames and g and v, when given no argu­
ments, return the line after the line you were on. Commands such as ---, 
+++-, +++=, -12, and +4p are accepted. Note that 1,lOp and 1,10 will both 
print the first ten lines. The f command only prints the name of the file being 
scanned; there is no remembered filename. The w command is independent 
of output diversion, truncation, or crunching (see the xo, xt and xc commands, 
below). The following additional commands are available: 

xf file Further commands are taken from the named file. When an end­
of-file is reached or an interrupt signal is received, or an error 
occurs, reading resumes with the file containing the xf. xf com­
mands may be nested to a depth of 10. 

xo [file) Further output from the p and null commands is diverted to the 
named file. If file is missing, output is diverted to the standard 
output. Note that each diversion causes truncation or creation of 
the file. 

: label This positions a label in a command file. The label is terminated 
by a newline, and blanks between the • : " and the start of the label 
are ignored. This command may also be used to insert comments 
into a command file, since labels need not be referenced. 

( • , • )xb /regular expression/ label 
A jump (either upward or downward) is made to label if the com­
mand succeeds. It fails under any of the following conditions: 

• Either address is not between 1 and " $ ". 

• The second address is less than the first. 

• The regular expression does not match at least one line in the 
specified range, including the first and last lines. 

1 February 1993 



bfs(C) 

On success, dot(.) is set to the line matched and a jump is made to 
label. This command is the only one that does not issue an error 
message on bad addresses, so it may be used to test whether 
addresses are bad before other commands are executed. Note that 
the command xbrt label is an unconditional jump. 

The xb command is allowed only if it is read from somewhere 
other than a terminal. If it is read from a pipe only a downward 
jump is possible. 

xt m1mber Output from the p and null commands is truncated to a maximum 
of number characters. The initial number is 255. 

xv[ digit I [ spaces I [ value I 

1February1993 

The variable name is the specified digit following the xv. xv5100 
or xv5 100 both assign the value 100 to the variable 5. xv61,100p 
assigns the value l,lOOp to the variable 6. To reference a variable, 
put a "%" in front of the variable name. For example, using the 
above assignments for variables 5 and 6: 

1,%5p 
1,%5 
%6 
prints the first 100 lines. 

g/%5/p 

globally searches for the characters "100" and prints each line con­
taining a match. To escape the special meaning of " % ", a " & " 
must precede it. For example, 
g/''. *[cds)/p 

could be used to match and list lines containing printf characters, 
decimal integers, or strings. 

Another feature of the xv command is that the first line of output 
from a UNIX command can be stored into a variable. The only 
requirement is that the first character of value be a " ! ". For 
example, 

xv5!cat junk 
!rm junk 
!echo "%5" 
xv6!expr %6 + 1 

puts the current line in variable 5, prints it, and increments the 
variable 6 by l. To escape the special meaning of " ! " as the first 
character of value, precede it with a"\ ". For example, 
xv7date 

stores the value !date into variable 7. 

57 



bfs(CJ 

xbz label 
xbn label These two commands test the last saved return code from the 

execution of a UNIX command !command) or nonzero value, 
respectively, and jump to the specified label. The two examples 
below search for the next five lines containing the string size: 
xv55 
:1 
/size/ 
xv5!expr %5 - 1 
!if 0%5 != 0 exit 2 
xbnl 
xv45 
:1 
/size/ 
xv4!expr %4 - 1 
!if 0%4 = 0 exit 2 
xbz 1 

xc [ switch I If switch is 1, output from the p and null commands is 
crunched; if switch is 0, it is not. Without an argument, xc rev­
erses switch. Initially switch is set for no crunching. Crunched 
output has strings of tabs and blanks reduced to one blank and 
blank lines suppressed. 

Diagnostics 

See also 

58 

" ? " for errors in commands if prompting is turned off. Self-explanatory error 
messages when prompting is on. 

csplit(C), ed(C), umask(C) 

1 February 1993 



ca/(C) 

cal 
print a calendar 

Syntax 
cal [ [ month I year] 

Description 
The cal command prints a calendar for the specified year. If a month is also 
specified, a calendar for that month only is printed. If no arguments are speci­
fied, the current, previous, and following months are printed, along with the 
current date and time. The year must be a number between 1 and 9999; 
month must be a number between 1 and 12 or enough characters to specify a 
particular month. For example, May must be given to distinguish it from 
March, but Sis sufficient to specify September. If only a month string is given, 
only that month of the current year is printed. 

Limitations 

Note that "cal 84" refers to the year 84, not 1984. 

The calendar produced is the Gregorian calendar from September 14 1752 
onward. Dates up to and including September 2 1752 use the Julian calendar. 
(England and her colonies switched from the Julian to the Gregorian calendar 
in September 1752, at which time eleven days were excised from the year. To 
see the result of this switch, try cal 91752.) 

Standards conformance 

cal is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

l February 1993 59 



calendar( CJ 

calendar 
invoke a reminder service 

Syntax 

calendar [ - I 

Description 

calendar consults the file calendar in the user's current directory and mails the 
user lines that contain today's or tomorrow's date. Most reasonable month­
day dates, such as Sep. 14, september 14, and 9/14, are recognized, but not 14 
September, or 14/9. 

On weekends, "tomorrow" extends through Monday. Lines that contain the 
date of a Monday will be sent to the user on the previous Friday. This is not 
true for holidays. 

When an argument is present, calendar does its job for every user who has a 
file calendar in his login directory. Normally this is done daily, in the early 
morning, under the control of cron(C). 

Limitations 

Files 

See also 

To get reminder service, a user's calendar file must have read permission for 
all. 

calendar 
/usr/lib/calprog to calculate today's and tomorrow's dates 
/etc/passwd 
/tmp/cal* 

cron(C}, mail(C) 

Standards conformance 

calendar is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

60 1 February 1993 



cancel(C) 

cancel 
cancel requests to lineprinter 

Syn.tax 
cancel [ request-ids ) [ printers I 

Descripti.on 

See also 

The cancel command cancels printer requests that were made by the lp(C) 
shell command. The shell command line arguments may be either request-ids 
(as returned by lp(C)) or printer names (for a complete list, use lpstat(C)). 
Specifying a request-id cancels the associated request even if it is currently 
printing. Specifying a printer cancels the request that is currently printing on 
that printer. In either case, the cancellation of a request that is currently print­
ing frees the printer to print its next available request. 

lp(C), lpstat(C) 

Standards conformance 

cancel is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 61 



cat(C) 

cat 
concatenate and display files 

Syntax 

cat I -u I I -s I I -v I I -t I I -e I file ... 

Description 

Examples 

62 

cat reads each file in sequence and writes it on the standard output. If no 
input file is given, or if a single dash(-) is given, cat reads from the standard 
input. The options are: 

-s Suppresses warnings about nonexistent files. 

-u Causes the output to be unbuffered. 

-v Causes non-printing characters (with the exception of tabs, newlines, and 
form feeds) to be displayed. Control characters are displayed as ·x 
((Ctrl)x), where X is the key pressed with the (Ctr!) key (for example, 
(Ctrl)m is displayed as ·M). The (Del) character (octal 0177) is printed as 
·?. Non-ASCII characters (with the high bit set) are printed as M-x, where 
xis the character specified by the seven low order bits. 

-t Causes tabs to be printed as ·1 and form feeds as ·L. This option is 
ignored if the -v option is not specified. 

-e Causes a " $ " character to be printed at the end of each line (prior to the 
new-line). This option is ignored if the -v option is not set. 

No input file may have the same name as the output file unless it is a special 
file. 

The following example displays file on the standard output: 

cat file 
The following example concatenates ft/el and file2 and places the result in 
file3: 

cat filel file2 >file3 
The following example concatenates ft/el and appends it to file2: 

cat filel » file2 

l February 1993 



Warning 
Command lines such as: 

cat filel file2 > filel 

cat( CJ 

will cause the original data in file I to be lost; therefore, you must be careful 
when using special shell characters. 

See also 

cp(C), pr(C) 

Standards confonnance 

cat is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 63 



cd(C) 

cd 
change working directory 

Syntax 

cd [ directory I 

Description 

If specified, directory becomes the new working directory; otherwise the 
value of the shell parameter $HOME is used. The process must have search 
(execute) permission in all directories (components) specified in the full path­
name of directory. 

Because a new process is created to execute each command, cd would be inef­
fective if it were written as a normal command; therefore, it is recognized and 
executed by the shell. 

If the shell is reading its commands from a terminal, and the specified direc­
tory does not exist (or some component cannot be searched), spelling correc­
tion is applied to each component of directory, in a search for the "correct" 
name. The shell then asks whether or not to try and change directory to the 
corrected directory name; an answer of n means "no," and anything else is 
taken as "yes." 

The KornShell command, ksh, has extensions to the syntax for ed. Please refer 
to ksh(C) for more information. 

Limitations 

See also 

64 

Wildcard designators will work with the cd command. 

Both ksh(C) and csh(C) recognize cd - to mean change to the home directory, 
as set by $HOME. 

pwd(C), sh(C), chdir(S) 

1 February 1993 



checkmai/(CJ 

checkmail 
check for mail which has been submitted but not delivered 

Syntax 
checkmail [ -a I [ -f I [ -m I 

Description 

See also 

checkmail checks the mail queue on the local machine for messages which 
have been sent by the invoker. If invoked without any arguments, the "Sub­
ject:" of each message found is given along with a list of addressees who have 
not yet received the message. Usually, messages are still in the queue because 
the addressee's host machine is down. 

The -a (all addresses) option causes all addresses to be shown (both delivered 
and undelivered). Some delivered addresses may not appear since some sites 
remove already delivered addresses from the address list files for efficiency. 
The -f (fast) option suppresses the printing of the "Subject" line. The -m (all 
messages) option causes checkmail to check all messages in the mail queue, 
not just those of the invoker. This is only useful for mail system maintainers 
who wish to find obstinate hosts. 

deliver(ADM), mmdf(ADM) 

Standards conformance 

MMDF is not part of any currently supported standard; it was developed at 
the University of Delaware and is used with permission. 

1 February 1993 65 



chgrp(C) 

chgrp 
change group ID 

Syntax 

chgrp gro11p file ... 

Descripti.on 

chgrp changes the group ID of each file to group. A group may be specified 
by either its name or its ID (a decimal number). The names and corresponding 
IDs of each group may be founc· in the file /etc/group (for more details, refer to 
the group(F) manual page). 

Limitati.ons 

Only the owner or the super user can change the group ID of a file. 

Files 

/etc/group 

See also 

chown(C), group(F), passwd(F), chown(S) 

Standards confonnance 

66 

chgrp is conformant with: 

AT&T SVID Issue 2; 
NIST FIPS 151-1; 
X/Open Portability Guide, Issue 3, 1989. 

1 Febmary 1993 



chmod(C) 

ch mod 
change the access permissions of a file or directory 

Syntax 
chmod [who] [+1-1=] [mode ... ]file ... 

chmod mode file ... 

Description 

The chmod command changes the access permissions (or mode) of a specified 
file or directory. It is used to control file and directory access by users other 
than the super user. mode may be an expression composed of letters and 
operators (called "symbolic mode"), or a number (called "absolute mode"). 

Symbolic mode 
A chmod command using symbolic mode has the form: 

chmod [who][+ 1-1 =][mode ... ]file ... 

In place of wl10 you can use any one, or a combination, of the following 
letters: 

a Stands for "all users." If who is not indicated on the command line, a is the 
default. 

g Stands for "group," all users who have the same group ID as the owner of 
the file or directory. 

o Stands for "others," all users on the system. 

u Stands for "user," the owner of the file or directory. 

The operators are: 

+ Adds permission. 

Removes permission. 

Assigns the indicated permission and removes all other permissions (if 
any) for that variable. If no permission is assigned, existing permissions 
are removed. 

l February 1993 67 



chmod(C) 

68 

Permissions are set using any combination of the following letters for mode: 

x Execute (sets search permission for directories). 

r Read. 

w Write. 

s Sets owner or group ID on execution of the file to that of the owner of the 
file. The mode "u+s" sets the user ID bit for the file. The mode "g+s" sets 
the group ID bit. Other combinations have no effect. When the group ID 
bit is set on a directory, all files created under it subsequently receive the 
group ID of that directory. When the group ID bit is not set, files are creat­
ed with the group ID of the creating process/user. 

This is known as the "sticky bit" (see chmod(S}}. Only the mode "u+t" sets 
the sticky bit. All other combinations have no effect. When this bit is set 
on a directory, files within the directory cannot be removed by anyone but 
the owner or the super user. Only the super user can set the sticky bit. 

Mandatory locking will occur during access. 

Multiple symbolic modes may be given, separated by commas, on a single 
command line. See the following "Examples" section for sample permission 
settings. 

Mandatory file and record locking refers to a file having locked reading or 
writing permissions while a program is accessing that file. A file cannot have 
group execution permission and be able to be locked on execution. In addi­
tion, it is not possible to turn on the set-group-ID and enable a file to be locked 
on execution at the same time. The following examples show illegal uses of 
chmod and will generate error messages: 

chmod g+x,+lfilename 

chmod g+s,+lfilename 

Absolute mode 
A chmod command using absolute mode has the form: 

chmod mode filename 
where mode is an octal number constructed by combining the following flags 
using logical OR: 

4000 

20#0 

1000 

Set user ID on execution 

Set group ID on execution if "#" is 7, 5, 3, or 1; enable mandatory 
locking if " # " is 6, 4, 2, or 0 

Sets the sticky bit (see chmod(S}} 

1 Febmary 1993 



Examples 

0400 

0200 

0100 

0040 

0020 

0010 

0004 

0002 

0001 

0000 

Read by owner 

Write by owner 

Execute (search in directory) by owner 

Read by group 

Write by group 

Execute (search in directory) by group 

Read by others 

Write by others 

Execute (search in directory) by others 

No permissions 

Symbolic mode 
The following command gives all users execute permission for file: 

chmod +x file 

chmod(C) 

The following command removes read and write permission for group and 
others from file: 

chmod go-rw file 

The following command gives other users read and write permission for file: 
chmod o+rw file 

The following command gives read permission to group and others: 

chmod g+r,o+r file 

The following example causes the mandatory locking of file on access: 

chmod +I file 

Absolute mode 
The following command gives all users read, write and execute permission for 
file: 

chmod 0777 file 

1 February 1993 69 



chmod(CJ 

The following command gives read and write permission to all users for file: 
chmod 0666 file 

The following command gives read and write permission to the owner of file 
only: 

chmod 0600 file 

Limitations 

The setuid, setgid and sticky bit settings have no effect on shell scripts. 

See also 

chmod(S), ls(C) 

Standards conformance 

chmod is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

70 1 February 1993 



chown(CJ 

ch own 
change owner ID 

Syntax 
chown owner file ... 

Description 
The chown command changes the owner ID of each file to the user ID speci­
fied by owner. The owner may be either a decimal user ID or a login name 
found in the file /etc!passwd. 

Authorization 

Files 

See also 

Use of this utility is governed by the chown kernel authorization. If this 
authorization is not granted, ownership of files can only be changed by root. 
Restricted chown is required for NIST FIPS 151-1 conformance. The chown 
authorization should not be assigned to users if you wish to conform to these 
requirements. 

/etc!passwd 
/etc/group 

chgrp(C), chown(S}, group(F), passwd(F} 

Standards conformance 

chown is conformant with: 

AT&T SVID Issue 2; 
NIST FIPS 151-1; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 71 



clear( CJ 

clear 
clear a terminal screen 

Syntax 

clear [ term I 

Description 

The clear command clears the screen. If term is not specified, the terminal 
type is obtained from the TERM environment variable. 

Standard output may be redirected to another terminal to clear its screen. You 
must have write permission on the other terminal for the command to take 
effect. The term parameter must be supplied if the terminal is of a different 
type than the one from which the command is issued. 

If a video terminal does not have a clear screen capability, newlines are out­
put to scroll the screen clear. If the standard output is a hardcopy, the paper 
is advanced to the top of the next page. 

Diagnostics 

If the standard output is not a terminal, clear issues an error message. 

Files 

/etc/termcap 

See also 

environ(M), termcap(F), tput(C) 



cmp(C) 

cmp 
compare two files 

Syntax 
cmp [ -I ] [ -s I filel file2 

Description 

See also 

cmp compares two files and, if they are different, displays the byte and line 
number of the differences. If file1 is " - ",the standard input is used. 

The options are: 

-1 Prints the byte number (decimal) and the differing bytes (octal) for each 
difference. 

-s Returns an exit code only, 0 for identical files, 1 for different files, and 2 for 
inaccessible or missing files. 

This command should be used to compare binary files; use diff(C) or diff3(C) 
to compare text files. 

comm(C), diff(C), diff3(C) 

Standards conformance 

cmp is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 73 



col( CJ 

col 
filter reverse linefeeds 

Syntax 

col [ -bfxp I 

Descripti.on 

74 

col prepares output from processes, such as the text formatter nroff(CT), for 
output on devices that limit or do not allow reverse or half-line motions. col 
is typically used to process nroff output text that contains tables generated by 
the tbl program. A typical command line might be: 

tblfile I nroff I col I lpr 

col takes the following options: 

-b Assumes the output device in use is not capable of backspacing. If two 
or more characters appear in the same place, col outputs the last charac­
ter read. 

-f Allows forward half linefeeds. If not given, col accepts half line motions 
in its input, but text that would appear between lines is moved down to 
the next full line. Reverse full and half linefeeds are never allowed with 
this option. 

-x Prevents conversion of whitespace to tabs on output. col normally con­
verts whitespace to tabs wherever possible to shorten printing time. 

-p Causes col to ignore unknown escape sequences found in its input and 
pass them to the output as regular characters. Because these characters 
are subject to overprinting from reverse line motions, the use of this 
option is discouraged unless the user is fully aware of the position of the 
escape sequences. 

col assumes that the ASCII control characters SO (octal 016) and SI (octal 017) 
start and end text in an alternate character set. If you have a reverse linefeed 
(ESC 7), reverse half linefeed (ESC 8), or forward half linefeed (ESC 9), within 
an SI-SO sequence, the ESC 7, 8 and 9 are still recognized as line motions. 

On input, the only control characters col accepts are Space, Backspace, Tab, 
Return, Newline, reverse linefeed (ESC 7), reverse half linefeed (ESC 8), for­
ward half linefeed (ESC 9), alternate character start(SI), alternate character end 
(SO), and vertical tag (VT). (The VT character is an alternate form of fu_ll 
reverse linefeed, included for compatibility with some earlier programs of this 
type.) All other non-printing characters are ignored. 

1February1993 



col( CJ 

Limitations 
col cannot back up more than 128 lines. 

col allows at most 800 characters, including backspaces, on a line. 

Vertical motions that would back up over the first line of the document are 
ignored. Therefore, the first line must not contain any superscripts. 

See also 
nroff(CT), tbl(CT) 

Standards confonnance 

col is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 75 



comm(C) 

comm 
select or reject lines common to two sorted files 

Syntax 
comm [ -123 ]file1file2 

Description 

See also 

comm reads file1 and file2, which should be ordered according to the collat­
ing sequence defined by the current locale (see sort(C)), and produces a three­
column output: lines only in file1; lines only in file2; and lines in both files. 
The filename " - " means the standard input. 

Flags l, 2, or 3 suppress printing of the corresponding column. Thus 
comm -12 prints only the lines common to the two files; comm -23 prints only 
lines in the first file but not in the second; comm -123 is a no-op (does 
nothing). 

cmp(C), diff(C), sort(C), uniq(C) 

Standards conformance 

comm is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

76 1 February 1993 



compress(C) 

compress, uncompress, zcat 
compress data for storage, uncompress and display compressed files 

Syntax 
compress [ -cdfFqv] [ -H I -b bits ]file 

compress -P fd 

uncompress [ -fqcFv ] file 

uncompress [ -P fd] 

zcatfile 

Description 
The compress command takes a file and compresses it to a smaller size 
(without loss of information), creates a compressed output file, and removes 
the original file unless the -c option is present. Compression is achieved by 
encoding common strings within the file. 

uncompress restores a previously compressed file to its uncompressed state 
and removes the compressed version. 

zcat uncompresses and displays a file on the standard output. 

If the -P fd option is specified, compress reads a list of filenames from the pipe 
associated with the file descriptor fd. One filename is read from each succes­
sive lK block of data in the pipe. Each filename is null terminated. File 
names are read until a null character is encountered at the beginning of a 
block or the pipe is closed. Each file is then compressed. The output files 
have the same name as, and overwrite, the original files. This option can also 
be used with uncompress. 

If no file is specified on the command line, input is taken from the standard 
input and the output is directed to the standard output. Output defaults to a 
file with the same filename as the input file with the suffix ".Z" or it can be 
directed through the standard output. The output files have the same permis­
sions and ownership as the corresponding input files or the user's standard 
permissions if output is directed through the standard output. 

If no space is saved by compression, the output file is not written unless the -F 
flag is present on the command line. 

If you attempt to compress a symbolic link, the link will be broken and a 
compressed copy of the file to which the symbolic link pointed will be created 
locally. compress will fail on a file with hard (non-symbolic) links. 

l February 1993 77 



compress( CJ 

Options 
The following options are available from the command line: 

-b bits Specifies the maximum number of bits to use in encoding. 

-c Writes output on the standard output and does not remove original 
file. 

-d Decompresses a compressed file. 

-f Overwrites previous output file. 

-F Writes output file even if compression saves no space. 

-H Compresses a file by approximately a further 20% using the LZH 
algorithm. uncompress(C) automatically detects when files have 
been compressed with this option and processes them accordingly. 

-q Generates no output except error messages, if any. 

-v Prints the name of the file being compressed, and the percentage of 
compression achieved. With uncompress, the name of the 
uncompressed file is printed. 

Limitations 

See also 

The -P option is provided for internal use by tar(C). 

The -v option is not compatible with the -c option. 

cat(C), pack(C), tar(C) 

Standards confonnance 

78 

compress, uncompress and zcat are not part of any currently supported stan­
dard; they are extensions of AT&T System V provided by The Santa Cruz 
Operation, Inc. 

1February1993 



copy( CJ 

copy 
copy groups of files 

Syntax 
copy [ opHon ] . . . source ... dest 

Descripti.on 

The copy command copies the contents of directories to another directory. It 
is possible to copy whole file systems since directories are made when 
needed. 

If files, directories, or special files do not exist at the destination, then they are 
created with the same modes and flags as the source. In addition, the 
superuser may set the user and group ID. The owner and mode are not 
changed if the destination file exists. 

Note that there may be more than one source directory. If so, the effect is the 
same as if the copy command had been issued for each source directory with 
the same destination directory for each copy. 

Options do not have to be given ·as separate arguments, and may appear in 
any order, even after the other arguments. The options are: 

-a 

-1 

-n 

-o 

-m 

-r 

1 February 1993 

Asks the user before attempting a copy. If the response does not 
begin with a "y ", then a copy is not done. When used together with 
the -v option, it overrides the verbose option so that messages 
regarding the copy action are not displayed. · 

Uses links instead whenever they can be used. Otherwise a copy is 
made. Note that links are never made for special files or directories. 

Requires the destination file to be new. If not, then the copy com­
mand does not change the destination file. The -n flag is meaning­
less for directories. For special files a -n flag is assumed (that is, the 
destination of a special file must not exist). 

If set, then every file copied has its owner and group set to those of 
the source. If not set, then the file's owner is the user who invoked 
the program. 

If set, then every file copied has its modification time and access time 
set to that of the source. If not set, then the modification time is set 
to the time of the copy. 

If set, then every directory is recursively examined as it is encoun­
tered. If not set then any directories that are found are ignored. 

79 



copy( CJ 

Examples 

-ad Asks the user whether a -r flag applies when a directory is discover­
ed. If the answer does not begin with a n y ", then the directory is 
ignored. 

-v Messages are printed that reveal what the program is doing. If used 
with the -a option, the -a option is given priority so that it overrides 
the verbose option, and the copy action message is not displayed. 

Arguments to copy are: 

source This may be a file, directory or special file. It must exist. If it is not a 
directory, then the results of the command are the same as for the cp 
command. 

dest The destination must be either a file or directory name that is dif­
ferent from the source. 

If the source and destination are anything but directories, then copy acts just 
like a cp command. If both are directories, then copy copies each file into the 
destination directory according to the flags that have been set. 

This command line verbosely copies all files in the current directory to 
/tmplfood: 

copy -v . /tmp/food 
The next command line copies all files, except for those that begin with a 
dot(.), and copies the immediate contents of any child directories: 

copy * /tmpflogic 
This command is the same as the previous one, except that it recursively 
examines all subdirectories, and it sets group and ownership permissions on 
the destination files to be the same as the source files: 

copy -ro * /tmpflogic 

Limitations 

80 

Special device files can be copied. When they are copied, any data associated 
with the specified device is not copied. 

1 February 1993 



corex(C) 

corex 
convert new-style core image dumps to old-style 

Syntax 
corex [ input [ output II 

Description 
The Operating System writes a core(FP) dump of a terminated process when 
various errors occur; the most common are a user-generated QUIT signal (typ­
ically the(Ctrl)\ key) and program logic mistakes. The format of the core file 
dumped has changed; the corex command converts new-style to old-style. 

The optional input argument is the name of the new-style core file to convert; 
output is the name of the converted core file. The default input is "core" and 
the default output is input with a ".old" suffix appended. The output file can 
be specified only if an input file is specified; the input and output files must 
not refer to the same file. 

Limitations 

See also 

The new-style core files should work with most debuggers, including those 
which only have knowledge of the old-style. Since the new-style contains 
additional information and uses a slightly different arrangement, in some cir­
cumstances such debuggers may not work properly with a new-style core file. 
When such a debugger does not seem to be working, converting the new-style 
core file to an old-style using corex should solve the problem. 

However, converted core files are indistinguishable from genuine old-style 
ones so in some circumstances such conversion may not solve the problem. 
An updated debugger should then be procured. 

adb(CP), codeview(CP), core(FP), dbxtra(CP), dbXtra(CP), sdb(CP), 
sigaction(S), stty(C), tennio(M) 

1 February 1993 81 



cp(CJ 

cp 
copy files 

Syntax 
cp file1 file2 

cp files directory 

Descripti.on 

There are two ways to use the cp command. With the first way, file1 is copied 
to file2. Under no circumstance can file1 and file2 be identical. With the 
second way, directory is the location of a directory into which one or more 
files are copied. This directory must exist prior to the execution of the cp 
command. 

cp follows symbolic links given as arguments. 

Limitati.ons 

See also 

Special device files can be copied. If the file is a named pipe, then the data in 
the pipe is copied to a standard file. Similarly, if the file is a device, then the 
file is read until the end-of-file is reached, and that data is copied to a stan­
dard file. It is not possible to copy a directory to a file. 

copy(C), chmod(S), cpio(C), ln(C), mv(C), rm(C) 

Standards conformance 

cp is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

82 1 February 1993 



cpio(C) 

cpio 
copy file archives in and out 

Syntax 
cpio -o [ aBcLUvV] [ -Cbufsize I [[ -Ofile I [ -Kvolumesize I [ -Mmessage II 

cpio -i [ AbBcdkmrtTuvVfsS6] [ -Cbufsize I [[ -lfile I [ -Mmessage II 
[pattern ... ] 

cpio -p [ adlLmuvV] directory 

Description 
cpio -o (copy out) reads the standard input to obtain a list of pathnames and 
copies those files onto the standard output together with pathname and status 
information. Output is padded to a 512-byte boundary by default. 

cpio -i (copy in) extracts files from the standard input, which is assumed t.o be 
the product of a previous cpio -o. Only files with names that match patterns 
are selected. patterns are regular expressions given in the filename­
generating notation of sh(C). In patterns, metacharacters ?, *, and [ ... ] 
match the slash(/) character, all;d backslash(\) is an escape character. A"!" 
metacharacter means not. (For example, the !abc" pattern would exclude all 
files that begin with abc.) Multiple patterns may be specified and if no pat­
terns are specified, the default for patterns is " *" (that is, select all files). Each 
pattern must be enclosed in double quotes; otherwise, the name of a file in the 
current directory is used. Extracted files are conditionally created and copied 
into the current directory tree based upon the options described below. If 
cpio is used to copy files by a process without appropriate privileges, the 
access permissions are set in the same fashion that creat() would have set 
them when given the mode argument, matching the file permissions supplied 
by the c_rnode field of the cpio format. The owner and group of the files will 
be that of the current user unless the user is super user, which causes cpio to 
retain the owner and group of the files of the previous cpio -o. 

NOTE: If cpio -i tries to create a file that already exists and the existing file is 
the same age or newer, cpio will output a warning message and not replace 
the file. (The -u option can be used to unconditionally overwrite the existing 
file.) 

cpio -p (pass) reads the standard input to obtain a list of path names of files 
that are conditionally created and copied into the destination directory tree 
based upon the options described below. Archives of text files created by 
cpio are portable between implementations of UNIX System V. 

1 February 1993 83 



cpio(C) 

84 

The meanings of the available options are: 

-a Reset access times of input files after they have been copied. Access 
times are not reset for linked files when cpio -pla is specified. 

-A Suppresses absolute filenames. A leading • I • character is removed 
from the filename during copy-in. If :a pattern is provided, it should 
match the relative (rather than the absolute) pathname. 

-b Reverse the order of the bytes within each word. Use only with the -i 
option. 

-8 Input/output is to be blocked 5,120 bytes to the record. The default 
buffer size is 512 bytes when this and the -C options are not used. (-8 
does not apply to the pass option; -8 is meaningful only with data 
directed to or from a character-special device, for example, 
/dev/rdsklfDq15dt.) 

-c Write header information in ASCII character form for portability. 
Always use this option when origin and destination machines are dif­
ferent types. 

-Cbufsize 
Input/output is to be blocked bu/size bytes to the record, where bu/­
size is replaced by a positive integer. The default buffer size is 512 
bytes when this and-8 options are not used. (-C does not apply to the 
pass option; -C is meaningful only with data directed to or from a 
character-special device, for example, /dev/rmt/cOsO.) When used with 
the -K option, bu/size is forced to be a lK multiple. 

-d Directories are to be created as needed. 

-f Copy in all files except those in patterns. (See the paragraph on cpio -i 
for a description of patterns.) 

-lfile Read the contents of file as input. If file is a character-special device, 
when the first medium is full, replace the medium and type a carriage 
return to continue to the next medium. Use only with the -i option. 

-k Attempt to skip corrupted file headers and 1/0 errors that may be 
encountered. If you want to copy files from a medium that is cor­
rupted or out of sequence, this option Jets you read only those .files 
with good headers. (For cpio archives that contain other cpio archives, 
if an error is encountered, cpio may terminate prematurely. cpio will 
find the next good header, which may be one for a smaller archive, and 
terminate when the smaller archive's trailer is encountered.) Used only 
with the -i option. 

1 February 1993 



cpio(C) 

-Kvolumesize 
Specifies the size of the media volume. Must be in lK blocks. For 
example, a l.2M floppy disk has a volumesize of 1200. Must include 
the -C option with a bufsize multiple of lK. If you specify an incorrect 
size with -K, the command executes without error, but cpio generates 
the message "out of sync: bad magic" when the volume is read. (-K is 
not available with cpio -i.) 

-I Whenever possible, link files rather than copying them. Usable only 
with the -p option. 

-L Follow symbolic links. 

-m Retain previous file modification time. This option is ineffective on 
directories that are being copied. 

-Mmessage 
Define a message to use when switching media. When you use the -0 
or -I options and specify a character-special device, you can use this 
option to define the message that is printed when you reach the end of 
the medium. One "lod can be placed in the message to print the 
sequence number of the next medium needed to continue. 

-Ofile Direct the output of cpio to file. If file is a character-special device, 
when the first medium is full, replace the medium and type a carriage 
return to continue to the. next medium. Use only with the -o option. 

-r 

-s 

-s 

-T 

-t 

-u 

-U 

-v 

-V 

l February 1993 

Interactively rename files. If the user types a null line, the file is 
skipped. If the user types a ". ", the original pathname will be copied. 
(Not available with cpio -p.) 

Swap bytes within each half word. Use only with the -i option. 

Swap halfwords within each word. Use only with the -i option. 

Truncate long filenames to 14 characters. Use only with the -i option. 

Print a table of contents of the input. No files are created. 

Copy unconditionally (normally, an older file will not replace a newer 
file with the same name). 

Inform cpio that you are using a SCSI device. You do not need to use 
the -K option to specify the volume size. 

Verbose: causes a list of filenames to be printed. When used with the -t 
option, the table of contents looks like the output of an ls -1 command 
(see ls(C)). 

Special Verbose: print a dot for each file seen. Useful to assure the user 
that cpio is working without printing out all filenames. 

85 



cpio(C) 

86 

-6 Process an old (that is, UNIX System Sixth Edition format) file. Use 
only with the -i option. 

Note that cpio assumes 4-byte words. 

Files may be archived with relative or absolute pathnames. Absolute path­
names specify the location of a file in relation to the root directory (/); relative 
pathnames specify the location of a file relative to the current working direc­
tory. As an example, consider the following cpio commands, as executed from 
the directory /11/bulls: 

ls /u/bulls/eye I cpio -ocv > arcfilel 
ls eye I cpio -ocv > arcfile2 

The first command archives the file /u/bulls/eye, including its absolute path­
name, as arcfilel. The second command archives eye as arcfile2, without storing 
any information about the path. 

If you restore from arcfilel, eye will be written back to the directory /u/bulls no 
matter what your working directory. Restoring from arcfile2 will write eye to 
your current directory. In either case, you are not allowed to restore the file to 
a directory if you do not have write permission on that directory. 

When making a cpio archive, consider whether you will always want to 
restore the files with absolute pathnames. You can extract files archived with 
absolute pathnames into their original directory, whatever your current work­
ing directory. If necessary, you can specify the -A option to suppress the abso­
lute pathname, and extract files into a different path. 

If you opt to archive files using relative pathnames, you will have to change 
directory to the one where the archive was created in order to extract the files 
with their original paths. 

If cpio reaches end of medium (end of a diskette for example) when writing to 
(-o) or reading from (-i) a character-special device, and -0 and -I are not used, 
cpio will print the message: 

If you want to go on, type device/filename 
when ready. 

To continue, you must replace the medium and type the character-special de­
vice name (/dev/rdsk/j0q15dt for example) and a carriage return. You ma}'. want 
to continue by directing cpio to use a different device. For example, 1f you 
have two floppy drives, you may want to switch between them so cpio can 
proceed while you are changing the floppies. (A carriage return alone causes 
the cpio process to exit.) 

1 February 1993 



Examples 

cpio(C) 

The following examples show cpio being used to create, verify and read 
archives, and to copy a complete directory structure. 

The first example demonstrates the creation of an archive, as a file, or on a de­
vice such as a floppy drive. The filenames output by ls(C) are directed 
through a pipe to cpio -o. These files are grouped and directed (>) to a single 
file ( .. /newfile). The -c option ensures that the file will be portable to other ma­
chines. Instead of ls(C), you could use find(C}, echo(C), cat(C), and so on, to 
pipe a list of names to cpio. 

ls I cpio -ocv > .. /newfile 
The -v option is used to output a list of filenames as they are extracted. 

You can also direct the output to a device instead of a file (here specifying a 
blocking factor using the -B option): 

ls I cpio -ocvB -O/dev/rfd096ds15 

These files are stored with pathnames relative to the current directory. In this 
way, they can be extracted into any desired destination directory. 

If you use find with cpio, you can place conditions on which files are to be 
archived. For example, you can choose to archive: 

• Files of a given size (using the -size option of find). 

• Files which have had their contents accessed (-atime), or modified 
(-mtime) in a given time period. 

• Files which have had details such as their ownership, type, number of 
links, or file size changed in a given time period (-ctime). 

• Files with certain permissions, such as executable files (-perm). 

• Files owned by certain users (-user) or groups (-group). 

It is important to use the -depth. option of find to generate pathnames for 
cpio. This eliminates problems cpio could have trying to copy files from 
read-only directories. 

You can create a multivolume archive of the entire filesystem on floppies 
using the -0 option of cpio: 

find/ -depth -print I cpio -ovcBK 1200 -O/dev/rfd096ds15 

This archive stores the files with absolute pathnames. When extracted, they 
will be put in exactly the same places in the directory structure. (If necessary, 
you can suppress the leading I of absolute pathnames, using the -A option, to 
change them to relative ones.) 

1February1993 87 



cpio(C) 

88 

To archive using relative pathnames, change directory to the one to be 
archived (for example /u), and specify a relative path(.), instead of an absolute 
one (/u), to find: 

cd/u 
find . -depth -print I cpio -ocvB -0/dev/rctO 

The -mount option of find limits the archive to the mounted filesystem where 
the search starts. For example, you might want to archive just those files on 
the filesystem (/), omitting any in filesystems mounted below I (depending on 
the way your system was installed, this may include /usr or /u): 

find . -depth -mount -print I cpio -ocvB -0/dev/rctO 

To limit the archive to just those files modified within the last seven days, use 
the -mtime option of find: 

find. -depth -mount-mtime -7 -print I cpio -ocvB -0/dev/rctO 

The next example uses cpio -i to reverse the action of cpio -o, and extract files 
stored with relative pathnames in an archive. 

cat newfile I cpio -icvd ''memo/al" "infolb*" 
Files that match the patterns memo/al and info/b• are extracted from the 
archive file, newfile. (If no patterns were given, all files from newfile would be 
extracted.) The -d option creates the directories, memo and info, below the 
current directory if they are not already present, and places the extracted files 
in the appropriate directories. If an archive has been created using absolute 
pathnames, the files to be read have to be specified with their original path­
names. The files would then be extracted into the same directories. 

If the archive had been written to a floppy drive, you might use: 

cpio -icdv -1/dev/rctO ''memo/al" ''memolb*" 

The -d option will cause cpio to create directories as needed. 

If you specify the -t option as well as -i, the archive will be read but not 
extracted. This combination is used for verifying the contents of an archive. 
When combined with option -v, the output list of contents looks like that from 
the command ls -1: 

cpio -icvt -1/dev/rctO 
In the final example, cpio -p takes the filenames piped to it and copies or links 
(-1 option) those files to another directory ( .. /newdir), keeping the modification 
time of the copied files (-m option). 

find . -depth -print I cpio -pdlmv .Jnewdir 

1 February 1993 



Limitations 

Pathnames are restricted to 255 characters. 

Only the super user can copy special files. 

Blocks are reported in 512-byte quantities. 

cpio(C) 

If a file has 000 permissions, contains more than 0 characters of data, and the 
user is not root, the file will not be saved or restored. 

When find is used in conjunction with cpio, if the -L flag is used with cpio 
(follow symbolic links), then the -follow expression must be used with find. 

See also 

cat(C), echo(C), find(C), ls(C), tar(C), cpio(F) 

Standards confonnance 

cpio is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

I February 1993 89 



cpset(CJ 

cpset 
install object files in binary directories 

Syntax 
cpset [-o] object directory [mode owner group] 

Description 

Examples 

90 

cpset is used to install the specified object file, object in the directory, direc­
tory. The mode, owner, and group of the file, object, may be specified on the 
command line. If these parameters are omitted, there are two possible results: 

• If cpset is run by a user who has administrative permissions, (that is, the 
user's numerical ID is less than 100), the following defaults are provided: 

- mode-0755 

- owner-bin 

- group-bin 

• If the user does not have administrator permissions, the default, owner, 
and group of the destination file will be those of the user. 

The -o argument forces cpset to move object to OLDobject in the destination 
directory before installing the new object file. 

The environment variable ROOT is used to locate the destination file (in the 
form $ROOT/usr/src/destinations). This is necessary in cases where cross gen­
eration is being done on a production system. 

cpset echo /bin 0755 bin bin 

cpset echo /bin 

cpset echo /bin/echo 

All the examples above have the same effect (assuming the user is an 
administrator). The file echo will be copied into /bin and will be given 0755, 
bin, bin as the mode, owner, and group, respectively. 

1Febmary1993 



See also 

cpset(C) 

cpset utilizes the file /usr/src/destinations to determine the final destination of a 
file. The locations file contains pairs of pathnames separated by spaces or 
tabs. The first name is the "official" destination (for example: /bin/echo). The 
second name is the new destination. For example, if echo is moved from /bin 
to /usr/bin, the entry in /usr/src/destinations would be: 

/bin/echo /usr/bin/echo 

When the actual installation occurs, cpset verifies that the "old" pathname 
does not exist. If a file exists at that location, cpset issues a warning and con­
tinues. This file does not exist on a distribution tape; it is used by sites to 
track local command movement. The procedures used to build the source 
will be responsible for defining the "official" locations of the source. 

install(ADM), make(CP) 

Standards conformance 

cpset is conformant with AT&TSVID Issue 2. 

1 February 1993 91 



cron(C) 

cron 
execute commands scheduled by at, batch, and crontab 

Syntax 
/etdcron 

Description 

The cron command is the clock daemon that executes commands at specified 
dates and times. cron processes jobs submitted with at(C), batch(C), and 
crontab(C). cron never exits; the cron command usually appears in the /etc/rc2 
scripts to be invoked by init(M) when the system is brought up in multiuser 
mode. 

Diagnostics 

A history of all actions by cron can be recorded in /usr/lib/cron/log. This log­
ging occurs only if the variable CRONLOG is set to YES in /etc/default/cron. By 
default this value is set to NO and no logging occurs. If logging is turned on, 
be sure to check the size of the log file regularly. 

Limitations 

cron will set the supplemental group list to that of the user requesting the job. 

Files 

/etc/default/cron cron logging default information 
/usr/lib/cron main cron directory 
/usr/lib/cron/atjobs at directory 
/usr/spool/cron/crontabs crontab directory 
/usr/lib/cron/log accounting information 
/usr/lib/cron/queuedefs cron data file 
/usr/lib/cron/.proto cron environment information 

See also 
at(C), crontab(C), queuedefs(F), sg(C), sh(C) 

Standards conformance 

cron is conformant with AT&T SVID Issue 2. 

92 1 February 1993 



crontab(C) 

crontab 
schedule commands to be executed at regular intervals 

Syntax 
crontab [file I 

crontab-r 

crontab-1 

crontab -u user -r 

crontab -u user -l 

Description 

The crontab command can be used to schedule commands to be executed at 
regular intervals. These commands are stored in the usei-'s crontab file, 
/usr/spool/cron/crontabs/username. Any output or errors generated by the com­
mands are mailed to the user. 

If called with no options, crontab copies the specified file, or standard input if 
no file is specified, into t.he crontabs directory (if the user has a previous 
cron tab file, it is rep laced). 

crontab with the -r option removes the user's crontab file from the crontabs 
directory. 

crontab with the -1 option lists the contents of the user's crontab file. 

The -u option allows crontab to maniplulate a different crontab file from 
invoking users. If crontab is used from an su session then crontab by default 
will manipulate the su'ed users crontab file. The -u option may be used to 
direct crontab to manipulate the original login user's crontab file instead. The 
super user (root) can also use the -u option to manipulate any users crontab 
file. 

If the file /usr/lib/cron/cron.a/low exists, only the users listed in that file are 
allowed to use crontab. If cron.a/low does not exist, and the file 
/usr/lib/cron/cron.deny does, then all users not listed in cron.deny are allowed 
access to crontab, with an empty cron.deny allowing global usage. If neither 
file exists, only the super user is allowed to submit a job. The allow /deny files 
consist of one user name per line. 

1 February 1993 93 



crontab(C) 

The crontabs files consist of lines of six fields each. The fields are separated by 1 

spaces or tabs. The first five are integer patterns that specify the minutei 
(0-59), hour (0-23), day of the month (1-31), month of the year (1-12), and day 
of the week (0-6, with O=Sunday). Each of these patterns may contain: 

• a number in the (respective) range indicated above 

• two numbers separated by a minus (indicating an inclusive range) 

• a list of numbers separated by commas (meaning all of these numbers) 

• an asterisk (meaning all legal values) 

Note that the specification of days may be made by two fields (day of the 
month and day of the week). If both are specified as a list of elements, both 
are adhered to. For example, 0 0 1,15 * 1 would run a command on the first 
and fifteenth of each month, as well as on every Monday. To specify days by 
only one field, the other field should be set to u * " (for example, O O * * 1 
would run a command only on Mondays). 

The sixth field is a string that is executed by the shell at the specified time(S). 
A u % u in this field is translated into a newline character. Only the first line 
(up to a u % u or end-of-line) of the command field is executed by the shell. 
The other lines are made available to the command as standard input. 

The shell is invoked from your $HOME directory with an argO of sh. Users 
who desire to have their .profile executed must explicitly do so in the crontab 
file. cron supplies a default environment for every shell, defining HOME, 
LOGNAME, SHELL (=/bin/sh), and PATH(=/bin:/usr/bin:). 

Exit values 

Examples 

94 

crontab exits and returns a value of 55 if it cannot allocate enough memory. If 
it exits for any other reason, it returns a value of 1. 

If the user (of -u user) does not exist, crontab returns a value of 1 and an error 
message. 

An example crontabs file follows: 
0 4 * * * calendar -
15 4 * find /usr/preserve -mtime +7 -exec rm -f (} : 
30 4 * 1 /usr/lib/uucp/uuclean 
40 4 • • • find / -name '#*' -atime +3 -exec rm -f {} 
1,21,41 * (echo -n ' '; date; echo } >/dev/console 

1 February 1993 



crontab(C) 

The lines in this example do the following: run the calendar program every 
night at 4:00 am, clear old files from the /etc/preserve directory every night at 
4:15 am, clean up the uucp spool directory every Monday and the first of 
every month at 4:30 am, find and remove any old files with names beginning 
with "#" every night at 4:40 am, and echo the current date and time to the 
console three times an hour at one minute, 21 minutes, and 41 minutes past 
the hour. 

Limitati.ons 
crontab commands are executed by cron(C). cron reads the files in the cron­
tabs directory only on startup or when a new crontab is submitted with the 
crontab command, so changes made to these files by hand will not take effect 
until the system is rebooted. Changes submitted with the crontab command 
will take effect as soon as cron is free to read them (that is, when cron is not in 
the process of running a scheduled job or reading another newly submitted 
at(C) or crontab job). 

Users who do not wish to have output from their commands mailed to them 
may want to redirect it to a file: 

0 * * * * who » /tmp/whofile 2> /dev/null 

The example above would append the output of the who(C) command to a 
file, and throw away any errors generated. For more details on output 
redirection, see the sh(C) manual page. 

Users should remember to redirect the standard output and standard error of 
their commands, otherwise any generated output or errors will be mailed to 
the user. 

crontab will overwrite any previous crontab submitted by the same user. 

Care should be taken when scheduling commands to run during time zone 
changes from the standard time to the daylight savings time. This is because 
when the clocks go forward, certain times cease to exist. For example, when 
the clocks go forward an hour at 2 am, all times between 2 am and 3 am 
(including 2 am) cease to exist. If commands are scheduled to run in this time 
period, then cron will still execute them at their scheduled time in the stan­
dard time zone, which will be later than expected in the local time zone. cron 
will warn the user of this by mail and give the exact local time that the com­
mand will be executed. It is then the user's responsibility to reschedule the 
job if required. 

1February1993 95 



crontab(C) 

Files 

See also 

/usr/lib/cron main cron directory 
/usr/spool/cron/crontabs crontab directory 
/usr/lib/cron/cron.al/ow list of allowed users 
/usr/lib/cron/cron.deny list of denied users 
/usr/lib/cron/.proto cron environment information 
/usr/lib/cron/queuedefs cron data file 

at(C), cron(C), sh(C) 

Standards conformance 
crontab is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

96 1 February 199~ 



crypt 
encode/decode 

Syntax 
crypt [ password ] 

crypt [ -k] 

crypt( CJ 

Description 

The crypt command reads from the standard input and writes to the standard 
output. The password is a key that selects a particular transformation. If no 
argument is given, crypt demands a key from the terminal and turns off print­
ing to the screen while the key is being typed in. If the -k option is used, crypt 
will use the key assigned to the environment variable CrYpTkEy. The crypt 
command encrypts and decrypts with the same key: see "Examples" section 
below. 

Files encrypted by crypt are compatible with those treated by the editors 
ed(C), ex(C), and vi(C) in encryption mode. 

The security of encrypted files depends on three factors: the fundamental 
method must be hard to .solve; direct search of the key space must be infeasi­
ble; "sneak paths" by which keys or clear text can become visible must be 
minimized. 

The crypt command implements a one-rotor machine designed along the lines 
of the German Enigma, but with a 256-element rotor. Methods of attack on 
such machines are known, but not widely; moreover the amount of work 
required is likely to be large. 

The transformation of a key into the internal settings of the machine is deli­
berately designed to be expensive, that is, to take a substantial fraction of a 
second to compute. However, if keys are restricted to (say) three lower-case 
letters, then encrypted files can be read by expending only a substantial frac­
tion of five minutes of machine time. 

If the key is an argument to the crypt command, it is potentially visible to 
users executing ps(C) or a derivative. To minimize this possibility, crypt takes 
care to destroy any record of the key immediately upon entry. The choice of 
keys and key security are the most vulnerable aspect of crypt. 

l February 1993 97 



crypt( CJ 

Examples 

The following example encrypts the file top_secret using the key password· 
creating an encrypted file gibberish: ' 

crypt password< top_secret >gibberish 

When the file gibberish is unencrypted, crypt demands the key (password) 
from the user if it is not given on the command line. The output may be writ­
ten to the terminal: 

crypt < gibberish 
to the printer: 

crypt < gibberish I Ip 
or to a file: 

crypt< gibberish> confidential 

You can use crypt as the basis of a password mechanism by testing whether 
the unencrypted file (confidential) and the original file (top_secret) are the same: 

cmp -s top_secret confidential 
if I $? = o I 
then 

echo "Password verified - Welcome" 
else 

echo "Password incorrect! 11 

f i 

Limitations 

. Files 

See also 

98 

If two or more files encrypted with the same key are concatenated and an 
attempt is made to decrypt the result, only the contents of the first of the origi­
nal files will be decrypted correctly. 

Distribution of the crypt libraries and utilities is regulated by the U.S. Govern­
ment and they are not available to sites outside of the United States and its 
territories. Because we cannot control the destination of the software, these 
utilities are not included in the standard product. If your site is within the 
U.S. or its territories, you can obtain the crypt software through your product 
distributor or reseller . 

/dev/tty for typed key 

ed(C), ex(C), makekey(ADM), ps(C), stty(C), vi(C) 

1 February 1993 



csh(C) 

csh 
invoke a shell command interpreter with C·like syntax 

Syntax 
csh [ -cefinstvVxX I [ arg . . . I 

Descripti.on 
csh is a command language interpreter. When it is first invoked, csh executes 
commands from the file .cshrc, located in the home directory of the user. If it 
is a login shell, it then executes commands from the file .login (in the same 
directory). Subsequently, if it is running in interactive mode, csh reads com­
mands from the terminal, prompting the user for each new line by printing a 
"% ". Arguments to the shell, and the use of the shell to process files contain­
ing command scripts, will be described later. 

The shell repeatedly performs the following actions: a line of command input 
is read and broken into words. This sequence of words is placed on the com­
mand history list and then parsed. Finally, each command in the current line 
is executed. 

When a login shell terminates, it executes commands from the file .logout in 
the user's home directory. 

Lexical structure 
The shell splits input lines into words at blanks and tabs with the following 
exceptions. The characters & I ; < > ( and ) are treated as separate words. 
Some of these characters can be paired up; the following pairs&&, 11, <<, >> 
are treated as single words. In order to use these metacharacters within other 
words, their special meaning must be suppressed by preceding them with a 
backslash(\). A newline preceded by a"\" is equivalent to a blank. 

In addition, strings enclosed in matched pairs of quotations, (', · or "), form 
parts of a word; metacharacters in these strings, including blanks and tabs, are 
not treated as separate words. The semantics of quoted strings are described 
below. Within quoted strings delimited by pairs of(') or(") characters, a new­
line preceded by a"\" gives a true newline character. 

If the shell reads the character "#" in its input, it treats the rest of the current 
line (that is, all the text to the right of the "# ") as a comment, and ignores it. 
The "#" character loses this special meaning if it is preceded by a backslash 
character(\) or placed inside quotation marks(',', or"). 

1 February 1993 99 



csh(C) 

100 

Commands 
A simple command is a sequence of words, the first of which specifies the 
command to be executed. A simple command or a sequence of simple com­
mands separated by " I " characters (pipes) forms a pipeline. The output from 
each command in a pipeline is used as the input to the next command. 
Sequences of pipelines may be separated by semi-colons (;); the elements of 
such a sequence are executed sequentially. A sequence of pipelines may be 
executed without waiting for it to terminate by ending the command line with 
an ampersand character (&). Such a sequence is protected from termination 
by hangup signals sent by the shell; the nohup command need not be used. 

Any of the above commands may be placed in parentheses to form a new sim­
ple command (which in tum may be used as a component of a pipeline or 
some other more complex command.) It is also possible to separate pipelines 
with the " && " or " I I " expressions: these stand for logical-OR and logical­
AND respectively. (Due to an historical bug, csh assigns these symbols the 
opposite meaning to that assumed by the "C" programming language and 
other UNIX utilities.) Use of these expressions makes the execution of the 
second pipeline conditional upon the success (logical-AND) or failure 
(logical-OR) of the first. (See "Expressions" for more information.) 

Substitutions 
The following sections describe the various transformations the shell per­
forms on the input in the order in which they are carried out. 

History substitutions 
History substitutions can be used to reintroduce sequences of words from 
previous commands, possibly altering them in the process. Thus, history sub­
stitutions provide a general redo facility. 

History substitutions begin with the character " ! " and may begin anywhere 
in the input stream unless a history substitution is already in progress. A "!" 
preceded by a backslash (\), or followed by a space, tab, newline, ". =" or " ( ", 
is treated as a literal "! " and its special meaning is suppressed. History sub­
stitutions may also occur when an input line begins with "· ". This special 
abbreviation will be described later. 

The text of any input line containing a history substitution is echoed on the 
terminal after the substitution has been carried out, so that the user can see 
the literal command that is being executed. 

Commands entered at the terminal and consisting of one or more words are 
saved on the history list, the size of which is controlled by the history. vari­
able. The previous command is always retained. Commands are assigned 
numbers incrementally, starting with" 1 " (the first command executed under 
the current csh). 

1 February 1993 



csh(C) 

For example, enter the command: 

history 
This internal command causes csh to print a list of the commands stored on 
the history list, along with their event numbers. Now, consider the following 
(sample) output from the history command: 

9 write michael 
10 ex write.c 
11 cat oldwrite.c 
12 diff •write.c 

It is not usually necessary to use event numbers, but the current event number 
can be made part of the prompt by placing a n ! n in the prompt string. 

If the current event (the current command line) is 13, we can refer to previous 
command lines in several ways: 

By event number: 

!11 

to re-run cat oldwrite.c 

By relative event number: 

!-2 

to go back two events; this will also re-run cat oldwrite.c 

By part of a command: 

!d 

will re-run the most recent command starting with a nd", in this case diff 
•write.c, while: 

!?mic? 

will re-run the most recent command containing the string nmic"; write 
michael 

These forms simply reproduce the words of the specified event, each 
separated by a single blank. The special case n !! n refers to the previous com­
mand; thus the history substitution"!!" means nrepeat the last command." 
The form " !#" references the current command (the one being entered on the 
current line). It allows a word to be selected from further left in the line, for 
example to avoid retyping a long name, as in" !#:1 ". 

l February 1993 101 



csh(C) 

102 

To select words fr?m an event, we ~an follow the event specification by a 
colon (:) and a designator for the desired words. The words of an input line 
are numbered from 0, the first (usually command) word being 0, the second 
word (first argument) being 1, and so on. The basic word designators are: 

0 First (command) word 

n nth argument 

First argument, that is, 1 

$ Last argument 

% Word matched by (immediately preceding) ?s? search 

x-y Range of words 

-y Abbreviates 0-y 

* Abbreviates'-$, or nothing if only 1 word in event 

X* Abbreviates x-$ 

x- Like X* but omitting word $ 

The ":" separating the event specification from the word designator can be 
omitted if the argument selector begins with a·,$,*, - or%. After the optional 
word designator, a sequence of modifiers can be placed, each preceded by a 
colon. The following modifiers are defined: 

h 

r 

e 

s/l/r/ 

Removes a trailing pathname component 

Removes a trailing .xxx component 

Returns the trailing .xxx pathname component 

Substitutes r for l 

Removes all leading pathname components 

& Repeats the previous substitution 

g Applies the change globally, prefixing the above 

p Prints the new command but does not execute it 

q Quotes the substituted words, preventing substitutions 

x Like q, but breaks into words at blanks, tabs, and newlines 

Unless preceded by a "g ", the modification is applied only to the first modifi­
able word. In any case it is an error for no word to be applicable. 

1 February 1993 



csh(C) 

The left sides of substitutions are not regular expressions like those recog­
nized by the editors, but rather strings. Any character may be used as the de­
limiter instead of"/"; if it is necessary to include an instance of the delimiter 
character within one of the substitution strings, its special meaning may be 
removed by preceding it with a "\ ". An ampersand character(&) in the right 
side of a substitution is replaced by the text from the left side of the substitu­
tion. An ampersand preceded by a backslash (\&) is treated as a literal 
ampersand (&) with no special meaning. A null l uses the previous string 
either from an l or from a contextual scan strings in "!?s?". The trailing de­
limiter in the substitution may be omitted if a newline follows immediately, 
as may the trailing " ? " in a contextual scan. 

A history reference may be given without an event specification (for example, 
!$). It is assumed that the reference is to the previous command unless a his­
tory substitution precedes it on the same line, in which case it is assumed to 
refer to the last event substitution. Thus !?foor!$ gives the first and last argu­
ments from the command matching ?foo?. 

A special abbreviation of a history reference occurs when the first nonblank 
character of an input line is a "· ". This is equivalent to !:s·, providing a con­
venient shorthand for substitutions on the text of the previous line. Thus 
·1b·lib fixes the spelling of lib in the previous command. Finally, a history 
substitution may be surrounded with " ( " and "}" if necessary to insulate it 
from the characters that follow. Thus, after ls -Id -paul we might do !{l}a to 
do ls -Id -paula, while !la would look for a command starting la. 

Quotations with ' and " 
Quoted (') or double quoted (") strings are exempt from some or all of the sub­
stitutions. Strings enclosed in single quotes are not subject to interpretation. 
Strings enclosed in double quotes are subject to variable and command 
expansion. Since history (!) substitution occurs within all quotes, you must 
escape "!"with a backslash(\) even within quotes if you want to prevent his­
tory substitution. 

In both cases, the resulting text becomes (all or part of) a single word; only in 
one special case (see "Command substitution" below) does a double quoted 
string yield parts of more than one word; single quoted strings never do. 

Alias substitution 
The shell maintains a list of aliases which can be established, displayed and 
modified by the alias and unalias commands. After a command line is 
scanned, it is parsed into distinct commands and the first word of each com­
mand, left-to-right, is checked to see if it has an alias. If it does, then the text 
of the alias for that command is reread, and the history mechanism is applied 
to it as though that command were the previous input line. The resulting 
words replace the command and argument list. If no reference is made to the 
history list, then the argument list is left unchanged. 

1 February 1993 103 



csh(C) 

104 

Thus, if the alias for uls" is "ls -I", the command "ls /usr" would map to 
uls -I /usr". Similarly if the alias for "lookupu was ugrep \!" /etc/passwd" 
then "lookup bill" would map to ugrep bill /etc/passwd". ' 

If an alias !s ~ound, the word. transfo.rmation of the input text is performed 
and the ahasmg process begins agam on the newly generated input line. 
Looping is prevented by flagging the first word of the old text; if the first 
word of the new text is the same, further aliasing is prevented. Other loops 
are detected and cause an error. 

Note that the mechanism allows aliases to introduce parser metasyntax. Thus 
we can say: 

alias print 'pr : • I lpr' 

to make a command that paginates its arguments to the lineprinter. 

There are four csh aliases distributed. These are pushd, popd, swapd, and 
flipd. These aliases maintain a directory stack. 

pushd dir Pushes the current directory onto the top of the directory stack, 
then changes to the directory dir. 

po pd 

swapd 

flipd 

Changes to the directory at the top of the stack, then removes 
(pops) the top directory from the stack, and announces the current 
directory. 

Swaps the top two directories on the stack. The directory on the 
top becomes the second to the top, and the second to the top direc­
tory becomes the top directory. 

Flips between two directories, the current directory and the top 
directory on the stack. If you are currently in dir1, and dir2 is on 
the top of the stack, when flipd is invoked you change to dir2 and 
dir1 is replaced as the top directory on the stack. When flipd is 
again invoked, you change to dir1 and dir2 is again the top direc­
tory on the stack. 

Variable substitution 
The shell maintains a set of variables, each of which has a list of zero or more 
words as its value. Some of these variables are set by the shell or referred to 
by it. For instance, the argv variable is an image of the shell's argument list, 
and words of this variable's value are referred to in special ways. 

The values of variables may be displayed and changed by using the set and 
unset commands. Of the variables referred to by the shell a number are tog­
gles; the shell does not care what their value is, only whether they are set or 
not. For instance, the verbose variable is a toggle which causes command 
input to be echoed. The setting of this variable results from the -v command 
line option. 

1 February 1993 



csh(C) 

Other operations treat variables numerically. The at-sign (@) command per­
mits numeric calculations to be performed and the result assigned to a vari­
able. However, variable values are always represented as (zero or more) 
strings. For the purposes of numeric operations, the null string is considered 
to be zero, and the second and subsequent words of multiword values are 
ignored. , 
After the input line is aliased and parsed, and before each command is exe­
cuted, variable substitution is performed, keyed by dollar sign ($) characters. 
This expansion can be prevented by preceding the dollar sign with a 
backslash (\) except within double quotation marks (") where it always 
occurs, and within single quotation marks ( ') where it never occurs. Strings 
quoted by back quotation marks (') are interpreted later (see "Command sub­
stitution" below) so dollar sign substitution does not occur there until later, if 
at all. A dollar sign is passed unchanged if followed by a blank, tab, or end­
of-line. 

Input and output redirections are recognized before variable expansion, and 
are expanded separately. Otherwise, the command name and entire argu­
ment list are expanded together. It is thus possible for the first (command) 
word to generate more than one word, the first of which becomes the com­
mand name, and the rest of which become arguments. 

Unless enclosed in double quotation marks or given the :q modifier, the 
results of variable substitution may eventually be subject to command and 
filename substitution. Within double quotation marks ("), a variable whose 
value consists of multiple words expands to a portion of a single word, with 
the words of the variable's value separated by blanks. When the :q modifier is 
applied to a substitution, the variable expands to multiple words with each 
word separated by a blank and quoted to prevent later command or filename 
substitution. 

The following sequences are provided for introducing variable values into the 
shell input. Except as noted, it is an error to reference a variable which is not 
set. 

$name 
${name} 

1February1993 

Are replaced by the words of the value of variable name, each 
separated by a blank. Braces insulate name from following charac­
t~rs which would otherwise be part of it. Shell variables have 
names consisting of up to 20 letters, digits, and underscores. 

If name is not a shell variable, but is set in the environment, then 
that value is returned (but : modifiers and the other forms given 
below are not available in this case). 

105 



csh(C) 

106 

$name[ selector) 
${name[ selector)) 

$#name 

May be used to select only some of the words from the value of 
name. The selector is subjected to $ substitution and may consist 
of a single number or two numbers separated by a "-". The first 
word of a variable's value is numbered 1. If the first number of a 
range is. omitted it defaults to 1. If the last member of a range is 
omitted it defaults to $#name. The selector "*" selects all words. 
It is not an error for a range to be empty if the second argument is 
omitted or in range. 

${#name} Gives the number of words in the variable. This is useful for later 
use in a [selector). 

$0 Substitutes the name of the file from which command input is 
being read. An error occurs if the name is not known. 

$number 
$(number} Equivalent to $argv[number). 

$* Equivalent to $argv[ * ). 

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions above as 
may :gh, :gt and :gr. If braces (( and }) appear in the command form then the 
modifiers must appear within the braces. Only one ":" modifier is allowed on 
each " $ " expansion. 

The following substitutions may not be modified with " : " modifiers. 

$?name 
${?name} Substitutes the string 1 if name is set, 0 if it is not. 

$?0 Substitutes 1 if the current input filename is known, 0 if it is not. 

$$ Substitutes the (decimal) process number of the (parent) shell. 

Command and filename substitution 
Command and filename substitution are applied selectively to the arguments 
of built-in commands. This means that portions of expressions which are not 
evaluated are not subjected to these expansions. For commands which are 
not internal to the shell, the command name is substituted separately from the 
argument list. This occurs very late, after input-output redirection is per­
formed, and in a child of the main shell. 

1 February 1993 



csh(C) 

Command substitution 
Command substitution is indicated by a command enclosed in back quotation 
marks ('). The output from such a command is normally broken into separate 
words at blanks, tabs and newlines, with null words being discarded. This 
text then replaces the original string. Within double quotation marks, only 
newlines force new words; blanks and tabs are preserved. 

In any case, the single final newline does not force a new word. Note that it is 
possible for a command substitution to yield only part of a word, even if the 
command outputs a complete line. 

Filename substitution 
If a word contains any of the characters * ? [ I or begins with the character " - ", 
then that word is a candidate for filename substitution, also known as glob­
bing. This word is then regarded as a pattern, and is replaced with an alpha­
betically sorted list of filenames which match the pattern. In a list of words 
specifying filename substitution it is an error for no pattern to match an exist­
ing filename, but it is not required for each pattern to match. Only the meta­
characters "* ", "? ", and " [" imply pattern matching. The characters " - " and 
" I " are more akin to abbreviations. 

In matching filenames, the character "." at the beginning of a filename or 
immediately following a " I ", as well as the character " I " must be matched 
explicitly. The character "*" matches any string of characters, including the 
null string. The character "?" matches any single character. The sequence 
within square brackets ([ and ]) matches any one of the characters enclosed. 
Within square brackets, a pair of characters separated by " - " matches any 
character lexically between the two. 

The character " - " at the beginning of a filename is used to refer to home direc­
tories. Standing alone, it expands to the invoker's home directory contained 
in the variable HOME. When " - " is followed by a name consisting of letters, 
digits, and underscore characters (like_this), the shell searches for a user with 
that name and substitutes their home directory; thus "Ken might expand to 
/usr/ken and ""ken/chmach to /usr/ken/chmach. If the character " - " is followed 
by a character other than a letter or " I ", or if it does not appear at the begin­
ning of a word, it is left unchanged. 

The metanotation a(b,c,d}e is a shorthand for abe ace ade. Left to right order 
is preserved, with results of matches being sorted separately at a low level to 
preserve this order. Thus -source/sl/{oldls,ls}.c expands to 
/11sr/so11rce/sl/oldls.c /11sr/so11rce/sl/ls.c, whether or not these files exist, assuming 
that the home directory for source is /usr/source. Similarly . .l(memo,*box} 
might expand to . ./memo .. /box . ./mbox. (Note "'that memo was not sorted with 
the results of matching *box.) As a special case " ( ", "} " and " (} " are passed 
unchanged. This construct can be nested. 

1 February 1993 107 



csh(C) 

108 

Spelling checker 
If the local variable cdspell has been set, the shell checks spelling whenever 
you use cd to change directories. For example, if you change to a different 
directory using cd and misspell the directory name, the shell responds with an 
alternative spelling of an existing directory. Enter "y" and press (Return} (or 
just press (Return}) to change to the offered directory. If the offered spelling is 
incorrect, enter "n", then retype the command line. In this example the csh 
response is boldfaced: 

% cd /usr/spol/uucp 
/usr/spool/uucp? y 
ok 

Input/output 
The standard input and standard output of a command may be redirected 
with the following syntax: 

<name Opens file name (after variable, command and filename expan­
sion) as the standard input. 

<< word Reads the shell input up to a line which is identical to word. word 
is not subjected to variable, filename or command substitution, 
and each input line is compared to word before any substitutions 
are done on this input line. Unless a quoting backslash, double, or 
single quotation mark, or a back quotation mark appears in word, 
variable and command substitution is performed on the interven­
ing lines, allowing • \ " to quote • $ ", " \ " and •' •. Commands 
which are substituted have all blanks, tabs, and newlines 
preserved, except for the final newline which is dropped. The 
resulting text is placed in an anonymous temporary file which is 
given to the command as standard input. 

>name 
>!name 
>&name 
>&! name The file name is used as standard output. If the file does not exist, 

then it is created; if the file exists, it is overwritten. 

If the variable noclobber is set, then an error results if the file 
already exists or if it is not a character special file (for example, a 
terminal or /dev/null). This helps prevent accidental destruction of 
files. In this case, the " ! " forms can be used to suppress this check. 

The forms involving • & " route the standard e~ror into the ~peci­
fied file as well as the standard output. name 1s expanded m the 
same way as "<" input filenames are. 

1 Febmary 1993 



>>name 
>>&name 
>>!name 
>>&!name 

csh(C) 

Uses file name as standard output like ">" but places output at 
the end of the file. If the variable noclobber is set, then it is an 
error for the file not to exist unless one of the " ! " forms is given. 
Otherwise similar to "> ". 

If a command is run in the background (followed by " & ") then the default 
standard input for the command is the empty file /dev/null. Otherwise, the 
command receives the input and output parameters from its parent shell. 
Thus, unlike some previous shells, commands run from a file of shell com­
mands have no access to the text of the commands by default; rather they 
receive the original standard input of the shell. The <<mechanism should be 
used to present inline data. This permits shell command scripts to function as 
components of pipelines and allows the shell to block read its input. 

The standard error may be directed through a pipe with the standard output. 
Simply use the form " I & " rather than just " I ". 

Expressions 
A number of the built-in commands (to be described later) take expressions, 
in which the operators are similar to those of C, with the same precedence. 
These expressions appear in the @, exit, if, and while commands. The follow­
ing operators are available: 

11 && I • & == != .<= >= < > << >> 
+-*/%!-() 

Here the precedence increases to the right,== and !=, <=, >=,<,and>,<< and 
>>, + and -, * I and % being, in groups, at the same level. The == and != 
operators compare their arguments as strings, all others operate on numbers. 
Strings which begin with "O" are considered octal numbers. Null or missing 
arguments are considered 0. The result of all expressions are strings, which 
represent decimal numbers. Note that no two components of an expression 
can appear in the same word unless the word is adjacent to components of 
expressions that are syntactically significant to the parser (& I < > ( )). These 
components should be surrounded by spaces. 

I February 1993 109 



csh(C) 

Also available in expressions as primitive operands are command executions 
enclosed in • I • and • l " and file enquiries of the form -l name where l is one 
of: 

r Read access 
w Write access 
x Execute access 
e Existence 
o Ownership 
z Zero size 
f Plain file 
d Directory 

Command and filename expansion is applied to the specified name, then the 
result is tested to see if it has the specified relationship to the real user. If the 
file does not exist or is inaccessible then all enquiries return false, that is O. 
Command executions succeed, returning true, that is 1, if the command exits 
with status 0, otherwise they fail, returning false, that is 0. 

If more detailed status information is required then the command should be 
executed outside of an expression and the variable status examined. 

Control flow 
The shell contains a number of commands which can be used to regulate the 
flow of control in command files (shell scripts) and (in limited but useful 
ways) from terminal input. Due to the implementation, some restrictions are 
placed on the word placement for the foreach, switch, and while statements, 
as well as the if-then-else form of the if statement. Please pay careful atten­
tion to these restrictions in the descriptions in the next section. 

If the shell's input is not seekable, the shell buffers up input whenever a loop 
is being read and performs seeks in this internal buffer to accomplish the 
rereading implied by the loop. (To the extent that this allows, backward goto 
commands will succeed on nonseekable inputs.) 

Built-in commands 
Built-in commands are executed within the shell. If a built-in command 
occurs as any component of a pipeline except the last, then it is executed in a 
subshell. 

alias 
alias name 
alias name wordlist 

The first form prints all aliases. The second form prints the alias 
for name. The final form assigns the specified wordlist as the alias 
of name. wordlist is the command; filename substitution may be 
applied to wordlist. name is not allowed to be alias or unalias. 

break Causes execution to resume after the end of the nearest enclosing 
foreach or while statement. The remaining commands on the 
current line are executed. Multilevel breaks are thus possible by 
writing them all on one line. 

breaksw Causes a break from a switch, resuming after the endsw. 

110 1 February 1993 



csh(C) 

case label: This is part of the switch statement discussed below. 
cd 
cdname 
chdir 
chdirname 

Changes the shell's working directory to directory name. If no 
argument is given, it then changes to the home directory of the 
user. If name is not found as a subdirectory of the current direc­
tory (and does not begin with "/", "./", or " .. /"), then each com­
ponent of the variable cdpath is checked to see if it has a subdirec­
tory name. Finally, if all else fails but name is a shell variable 
whose value begins with "/", then this is tried to see if it is a 
directory. 
If cdspell has been set, the shell runs a spelling check as follows. If 
the shell is reading its commands from a terminal, and the speci­
fied directory does not exist (or some component cannot be 
searched), spelling correction is applied to each component of 
directory in a search for the "correct" name. The shell then asks 
whether or not to try and change the directory to the corrected 
directory name; an answer of n means "no," and anything else is 
taken as "yes." 

continue Continues execution of the nearest enclosing while or foreach. 
The rest of the commands on the current line are executed. 

default: Labels the default case in a switch statement. The default should 
come after all case labels. 

echo wordlist 

else 
end 
endif 
endsw 

The specified words are written to the shell's standard output. A 
" \c" causes the echo to complete without printing a newline. A 
" \n" in wordlist causes a newline to be printed. Otherwise the 
words are echoed, separated by spaces. 

See the description of the foreach, if, switch, and while statements 
below. 

exec command 
The specified command is executed in place of the current shell. 

exit 
exit (expr) The shell exits either with the value of the status variable (first 

form) or with the value of the specified expr (second form). 

1 February 1993 111 



csh(C) 

112 

foreach name (wordlist) 

end The variable name is successively set to each member of wordlist 
and the sequence of commands between this command and the 
matching end are executed. (Both foreach name (wordlist) and 
end must appear alone on separate lines.) 

The built-in command continue may be used to continue the loop 
prematurely and the built-in command break to terminate it 
prematurely. When this command is read from the terminal, the 
contents of the loop are read by prompting with "?" until end is 
typed before any statements in the loop are executed. 

glob wordlist 
Like echo but no " \ " escapes are recognized and words are delim­
ited by null characters in the output. Useful for programs which 
wish to use the shell to apply filename expansion to a list of 
words. 

goto word Filename and command expansion is applied to the specified 
word to yield a string of the form label:. The shell rewinds its 
input as much as possible and searches for a line of the form label: 
possibly preceded by blanks or tabs. Execution continues after the 
specified line. 

history Displays the history event list. 

if (expr) command 
If the specified expression evaluates true, then the single command 
with arguments is executed. Variable substitution on command 
happens early, at the same time it does for the rest of the if com­
mand. command must be a simple command, not a pipeline, a 
command list, or a parenthesized command list. Input/output 
redirection occurs even if expr is false, and command is not 
executed. 

if (expr) then 

else if (expr2) then 

else 

endif 

logout 

If the specified expr is true then the commands before the first else 
are executed; else if expr2 is true then the commands after the 
second then and before the second else are executed, etc. Any 
number of else-if pairs are possible; only one endif is need~d. The 
else part is likewise optional. (The words else and end1f must 
appear at the beginning of input lines; the if (expr) then must 
appear alone on its input line or after an else.) 

Terminates a login shell. Use this if ignoreeof is set. 

1 February 1993 



csh(C) 

nice 
nice +number 
nice command 
nice +number command 

nohup 

The first form sets the nice for this shell to 4. By default, com­
mands run under C-Shell have a "nice value'' of 0. The second 
form sets the nice to the given number. The final two forms run 
command at priority 4 and number respectively. The super user 
may specify negative niceness by using "nice -number .... " The 
command is always executed in a subshell, and the restrictions 
placed on commands in simple if statements apply. 

nohup command 
The first form can be used in shell scripts to cause hangups to be 
ignored for the remainder of the script. The second form causes 
the specified command to be run with hangups ignored. Unless 
the shell is running in the background, nohup has no effect. All 
processes running in the background with " & " are automatically 
nohuped. 

onintr 
onintr­
onintr label 

rehash 

Controls the action of the shell on interrupts. The first form 
restores the default action of the shell on interrupts which is to ter­
minate shell scripts or to return to the terminal command input 
level. The second form, onintr -, causes all interrupts to be 
ignored. The final form causes the shell to execute a goto label 
when an interrupt is received or a child process terminates 
because it was interrupted. 

In any case, if the shell is running in the background, interrupts are 
ignored whether any form of onintr is present or not. 

Causes the internal hash table of the contents of the directories in 
the path variable to be recomputed. This is needed if new com­
mands are added ~o directories in the path while you are logged 
in. 

repeat count command 

1February1993 

The specified command, which is subject to the same restrictions 
as the command in the simple if statement above, is executed 
count times. l/0 redirection occurs exactly once, even if count is 0. 

113 



csh(CJ 

114 

set 
set name 
set name=word 
set name[indexJ=word 
set name=(wordlist) 

The first form of the command shows the value of all shell vari­
ables. Variables which have other than a single word as value 
print as a parenthesized word list. The second form sets name to 
the null string. The third form sets name to the single word. The 
fourth form sets the indexth component of name to word; this 
component must already exist. The final form sets name to the list 
of words in wordlist. Command and filename expansion is 
applied in all cases. 

These arguments may be repeated to set multiple values in a sin­
gle set command. Note however, that variable expansion happens 
for all arguments before any setting occurs. 

setenv name value 

shift 

Sets the value of the environment variable name to be value, 
which must be a single string. Two useful environment variables 
are TERM, the type of your terminal and SHELL, the shell you are 
using. 

shift variable 
In the first form, the members of argv are shifted to the left, dis­
carding argv[l). It is an error for argv not to be set or to have less 
than one word as a value. The second form performs the same 
function on the specified variable. 

source name 
The shell reads commands from name. Source commands may be 
nested, but if they are nested too deeply, the shell may run out of 
file descriptors. An error in a source at any level terminates all 
nested source commands, including the csh process from which 
source was called. If source is called from the login shell, it is 
logged out. Input during source commands is never placed on the 
history list. 

1 February 1993 



csh(C) 

switch (string) 
case str1: 

breaksw 

default: 

breaksw 
endsw Command and filename substitution is applied to string; each case 

label is then successively matched against the result. Variable 
expansion is also applied to the case labels, so the file metacharac­
ters "* ","?",and"[ ... ]" can be used. If none of the labels match 
before a default label is found, then the execution begins after the 
default label. Each case label and the default label must appear at 
the beginning of a line. The command breaksw causes execution 
to continue after the endsw. Otherwise control may fall through 
case labels and default labels, as in C. If no label matches and 
there is no default, execution continues after the endsw. 

time 
time command 

With no argument, a summary of CPU time used by this shell and 
its children is printed. If arguments are given, the specified simple 
command is timed and a time summary as described under the 
time variable is printed. If necessary, an extra shell is created to 
print the time statistic when the command completes. command 
has the same restrictions as the simple if statement described 
above. 

um ask 
umaskvalue 

The file creation mask is displayed (no arguments) or set to the 
specified value (one argument). The mask is given in-octal. Com­
mon values for the mask are 002 giving all access to the group and 
read and execute access to others, or 022 giving read and execute 
access to users in the group and all other users. 

unalias pattern 
All aliases whose names match the specified pattern are discarded. 
Thus, all aliases are removed by unalias *· It is not an error for 
nothing to be unaliased. 

unhash Use of the internal hash table to speed location of executed pro­
grams is disabled. 

unset pattern 
All variables whose names match the specified pattern are 
removed. Thus, all variables are removed by unset*; use this with 
care. It is not an error for nothing to be unset. 

wait All child processes are waited for. If the shell is interactive, then 
an interrupt can disrupt the wait, at which time the shell prints 
names and process numbers of all children known to be 
outstanding. 

1 February 1993 115 



csli(CJ 

116 

while (expr) 

end While the specified expression evaluates nonzero, the commands 
between the while and the matching end are evaluated. break 
and continue may be used to terminate or continue the loop 
prematurely. (The while (expr) and end must appear alone on 
their input lines.) Prompting occurs here the first time through the 
loop as for the foreach statement if the input is a terminal. 

@ 

@name =expr 
@ name[index] = expr 

The first form prints the values of all the shell variables. The 
second form sets the specified name to the value of expr. If the 
expression contains <, >, & or I then at least this part of the 
expression must be placed within ( ). The third form assigns the 
value of expr to the indexth argument of name. Both name and its 
indexth component must already exist. 
The operators*=,+=, etc. are available as in C. The space separat­
ing the name from the assignment operator is optional. Spaces are 
mandatory in separating components of expr which would other­
wise be single words. The space between " @ " and name is also 
mandatory. · 
Special postfix ++ and -- operators increment and decrement name 
respectively, that is @ i++. 

Predefined variables 
The following variables have special meaning to the shell. Of these, argv, 
child, home, path, prompt, shell and status are always set by the shell. 
Except for child and status this setting occurs only at initialization; these vari­
ables will not be modified unless done explicitly by the user. 
The shell copies the environment variable PATH into the variable path, and 
copies the value back into the environment whenever path is set. Thus it is 
not necessary to worry about its setting other than in the file .login since infe­
rior csh processes will import the definition of path from the environment. 
argv Set to the arguments to the shell, it is from this variable that 

positional parameters are substituted, that is, $1 is replaced 
by argv[l], etc. argv[O] is not defined, but $0 is. 

cdpath Gives a list of alternate directories searched to find subdirec­
tories in cd commands. 

child The process number of the last command forked with " & ". 
This variable is unset when this process terminates. 

echo Set when the -x command line option is given. Causes each 
command and its arguments to be echoed just before it is 
executed. For nonbuilt-in commands all expansions occur 
before echoing. Built-in commands are echoed ~efo~e com­
mand and filename substitution, since these substitutions are 
then done selectively. 

1 February 1993 



histchars 

history 

home 

ignoreeof 

mail 

noclobber 

noglob 

nonomatch 

csh(C) 

Can be assigned a two-character string. The first character is 
used as a history character in place of u ! u, the second charac­
ter is used in place of the u • u substitution mechanism. For 
example, set histchars=",;" will cause the history characters 
to be comma and semicolon. 
Can be given a numeric value to control the size of the his­
tory list. Any command which has been referenced in this 
many events will not be discarded. A history that is too 
large may run the shell out of memory. The last executed 
command is always saved on the history list. 
The home directory of the invoker, initialized from the 
environment. The filename expansion of u - u refers to this 
variable. 
If set, the shell ignores end-of-file from input devices that are 
terminals. This prevents a shell from accidentally being ter­
minated by pressing(Ctrl)d. 
The files where the shell checks for mail. This check is exe­
cuted after each command completion. The shell responds 
with, uYou have new mailu if the file exists with an access 
time not greater than its modify time. 
If the first word of the value of mail is numeric, it specifies a 
different mail checking interval: in seconds, rather than the 
default, which is 10 minutes. 
If multiple mail files are specified, then the shell responds 
with "New mail in name", when there is mail in the file 
name. 
As described in the section "Input/output", restrictions are 
placed on output redirection to insure that files are not 
accidentally destroyed, and that >> redirections refer to 
existing files. 
If set, filename expansion is inhibited. This is most useful in 
shell scripts which are not dealing with filenames, or after a 
list of filenames has been obtained and further expansions 
are not desirable. 
If set, it is not an error for a filename expansion to not match 
any existing files; rather, the primitive pattern is returned. It 
is still an error for the primitive pattern to be malformed, 
that is, echo [still gives an error. 

I 



csh(C) 

118 

path 

prompt 

shell 

status 

time 

verbose 

Each word of the path variable specifies a directory in which 
commands are to be sought for execution. A null word 
specifies the current directory. If there is no path variable, 
then only full pathnames will execute. The usual search path 
is /bin, /usr/bin, and ., but this may vary from system to sys­
tem. For the super-user, the default search path is /etc, /bin 
and /usr/bin. A shell which is given neither the -c nor the -t 
option will normally hash the contents of the directories in 
the path variable after reading .cshrc, and each time the path 
variable is reset. If new commands are added to these direc­
tories while the shell is active, it may be necessary to give the 
rehash command, or the commands may not be found. 

The string which is printed before reading each command 
from an interactive terminal input. If a • ! • appears in the 
string, it will be replaced by the current event number unless 
a preceding • \ • is given. Default is • % ", or • #" for the 
super user. 

The file in which the shell resides. This is used in forking 
shells to interpret files which have execute bits set, but 
which are not executable by the system. (See the description 
of "Nonbuilt-in command execution" below.) Initialized to 
the home of the shell. 

The status returned by the last command. If it terminated 
abnormally, then 0200 is added to the status. Built-in com­
mands which fail return exit status l, otherwise these com­
mands set status to 0. 

Controls automatic timing of commands. If set, then any 
command which takes more than this many cpu seconds will 
cause a line to be sent to the screen displaying user time, sys­
tem time, real time, and a utilization percentage which is the 
ratio of user plus system times to real time. 

Set by the -v command line option, causes the words of each 
command to be printed after history substitution. 

Nonbuilt-in command execution 
When a command to be executed is found to not be a built-in csh command, 
the shell attempts to execute the command via exec(S). Each word in the vari­
able path names a directory from which the shell will attempt to execute the 
command. If it is given neither a -c nor a -t option, the shell will hash the 
names in these directories into an internal table so that it will only try an exec 
in a directory if there is a possibility that the command resides there. This 
greatly speeds command location when a large number of directories a~ 
present in the search path. If this mechanism has been turned ?ff (via 
unhash), or if the shell was given a -c or -t argument, and for each directory 
component of path which does not begin with a" I", the shell concatenates 
each directory component of path with the given command name to form a 
pathname of a file which it then attempts to execute. 

1 February 1993 



Parenthesized commands are always executed in a subshell. Thus 
led; pwd); pwd 

prints the home directory but leaves you in the original directory, while 
cd; pwd 

moves you to the home directory. 

csh(C) 

If the file has execute permissions but is not an executable binary to the sys­
tem, then it is assumed to be a file containing shell commands and a new shell 
is spawned to read it. 

If there is an alias for shell then the words of the alias are prepended to the 
argument list to form the shell command. The first word of the alias should 
be the full pathname of the shell (for example, $shell). Note that this is a spe­
cial, late occurring, case of alias substitution, and only allows words to be 
prepended to the argument list without modification. 

Argument list processing 
If argument 0 to the shell is " - " then this is a login shell. The flag arguments 
are interpreted as follows: 

-c Commands are read from the (single) following argument which must be 
present. Any remaining arguments are placed in argv. 

-e The shell exits if any invoked command terminates abnormally or yields a 
nonzero exit status. 

-f The shell will start faster, because it will neither search for nor execute 
commands from the file .cshrc in the invoker's home directory. 

-i The shell is interactive and prompts for its top-level input, even if it 
appears to not be a terminal. Shells are interactive without this option if 
their input and output are terminals. 

-n Commands are parsed, but not executed. This may aid in syntactic check­
ing of shell scripts. 

-s Command input is taken from the standard input. 

-t A single line of input is read and executed. A " \ " may be used to escape 
the newline at the end of this line and continue onto another line. 

-v Causes the verbose variable to be set, with the effect that command input 
is echoed after history substitution. 

-x Causes the echo variable to be set, so that commands are echoed immedi­
ately before execution. 

-V Causes the verbose variable to be set even before .cshrc is executed. 

-X Causes the echo variable to be set even before .cshrc is executed. 

1 February 1993 119 



csh(C) 

After processing the flag arguments, if arguments remain but none of the -c, -
i, -s, or -t options were given, the first argument is taken as the name of a file 
of commands to be executed. The shell opens this file, and saves its name for 
possible resubstitution by $0. On a typical system, most shell scripts are writ­
ten for the standard shell (see sh(C)). The C shell will execute such a standard 
shell if the first character of the script is not a • # • (that is, if the script does not 
start with a comment). Remaining arguments initialize the variable argv. 

Signal handling 
The shell normally ignores quit signals. The interrupt and quit signals are 
ignored for an invoked command if the command is followed by" & ";other­
wise the signals have the values which the shell inherited from its parent. The 
shell's handling of interrupts can be controlled by onintr. By default, login 
shells catch the terminate signal; otherwise this signal is passed on to children 
from the state in the shell's parent. In no case are interrupts allowed when a 
login shell is reading the file .logout. 

Limitations 

120 

Built-in control structure commands like foreach and while cannot be used 
with " I ", " & " or";". 

Commands within loops, prompted for by "? ", are not placed in the history 
list. 

It is not possible to use the colon (:) modifiers on the output of command 
substitutions. 

The C-shell has many built-in commands with the same name and func­
tionality as Bourne shell commands. However, the syntax of these C-shell and 
Bourne shell commands often differs. Two examples are the nice and echo 
commands. Be sure to use the correct syntax when working with these built­
in C-shell commands. 

When a C-shell user logs in, the system reads and executes commands in 
/etc/csl1rc before executing commands in the user's $HOME/.cshrc and 
$HOME/.login. You can, therefore, modify the default C-shell environment for 
all users on the system by editing /etc/cshrc. 

During intervals of heavy system load, pressing the delete key while at a C­
shell prompt(%) may cause the shell to exit. If csh is the login shell, the user 
is logged out. 

csh attempts to import and export the PATH variable for use with ~gular 
shell scripts. This only works for simple cases, where the PATH contams no 
command characters. 

The 11 and && operators are reversed in this implementation. 

1 February 1993 



Files 

See also 

csh(C) 

Words can be no longer than 512 characters. The number of arguments to a 
command which involves filename expansion is limited to 1/6 the number of 
characters allowed in an argument list, which is 5120, less the characters in the 
environment. The length of any argument of a command after filename 
expansion cannot exceed 159 characters. Also, command substitutions may 
substitute no more characters than are allowed in an argument list. 

To detect looping, the shell restricts the number of alias substitutions on a 
single line to 20. 

-;.cshrc read by each shell at the beginning of execution 
/etc/cshrc systemwide default cshrc file for login C-shells 
-;.login read by login shell, after .cshrc at login 
-;.logout read by login shell, at logout 
/bin/sh shell for scripts not starting with a "#" 
/tmp/sh* temporary file for << 
/dev/null source of empty file 
/etc!passwd source of home directories for -username 

access(S), environ(M), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S) 

User's Guide 

Standards conformance 
This utility is not part of any currently supported standard; it was developed 
at the University of California at Berkeley and is used with permission. 

1 February 1993 121 



csplit(C) 

csplit 
split files according to context 

Syntax 
esp lit [ -s I [ -k I [ -fprefix ] file arg1 [ ... argn ] 

Description 

122 

The csplit command reads file and separates it into n+ 1 sections, defined by 
the arguments arg1 ... argn. By default the sections are placed in files xxOO ... 
xxn (n may not be greater than 99). These sections get the following pieces of 
file: 

00: From the start of file up to (but not including) the line referenced by 
argl. 

01: From the line referenced by arg1 up to the line referenced by arg2. 

n+l: From the line referenced by argn to the end of file. 

The options to csplit are: 

-s csplit normally prints the character counts for each file created. If 
the -s option is present, csplit suppresses the printing of all character 
counts. 

-k csplit normally removes created files if an error occurs. If the -k 
option is present, csplit leaves previously created files intact. 

-fprefix If the -f option is used, the created files are named prefixOO ... 
prefixn. The default is xxOO ... xxn. 

The arguments (arg1 ... argn) to csplit can be a combination of the following: 

/rexp/ A file is to be created for the section from the current line down to 
(but not including) the line containing the regular expression rexp. 
The current line becomes the line containing rexp. This argument 
may be followed by an optional " + " or " - " some number of lines 
(for example, /Page/-5). 

1 February 1993 



csplit(C) 

%rexp% This argument is the same as /rexp/, except that no file is created for 
the section. 

lnno A file is to be created from the current line down to (but not includ­
ing) lnno. The current line becomes lnno. 

{num) Repeat argument. This argument may follow any of the above argu­
ments. If it follows an rexp-type argument, that argument is applied 
num more times. If it follows lnno, the file will be split every lnno 
lines (num times) from that point. 

Enclose all rexp-type arguments that contain blanks or other characters mean­
ingful to the shell in the appropriate quotation marks. Regular expressions 
may not contain embedded newlines. csplit does not affect the original file; it 
is the user's responsibility to remove it. 

Diagnostics 

Examples 

Self-explanatory except for: 
arg - out of range 

which means that the given argument did not reference a line between the 
current position and the end of the file. 

csplit -f cobol file '/procedure division/' '/pars.r '/par16./' 
This example creates four files, cobo/00 ... cobo/03. After editing the "split" 
files, they can be recombined as follows: 

cat cobol0[0-3] > file 
Note that this example overwrites the original file. 

csplit -k file 100 {99) 
This example would split the file at every 100 lines, up to 10,000 lines. The -k 
option causes the created files to be retained if there are less than 10,000 lines; 
however, an error message would still be printed. 

csplit -k prog.c '%main(%' 'r}/+1' {20) 
Assuming that prog.c follows the normal C coding convention of ending rou­
tines with a I at the beginning of the line, and that main() is the first function 
in prog.c, this example will create a file for each separate C routine, up to 21 
routines. 

1February1993 123 



csplit(C) 

See also 
ed(C), regex(S), sh(C) 

Standards confonnance 

csplit is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1?A. 1 February 1993 



ct 
spawn getty to a remote terminal 

Syntax 
ct [ -wn ] [ -xn ] [ -h ] [ -v I [ -sspeed I telno ... 

Description 
The ct command dials the telephone number of a modem that is attached to a 
terminal, and spawns a getty process to that terminal. telno is a telephone 
number, with equal signs for secondary dial tones and minus signs for delays 
at appropriate places. The set of legal characters for telno is 0 through 9, -, =, 
*,and#. The maximum length telno is 58 characters. If more than one tele­
phone number is specified, ct will try each in succession until one answers; 
this is useful for specifying alternate dialing paths. 

ct will try each ACU line listed in the file /usr/lib/uucp/Devices until it finds an 
available line with appropriate attributes or runs out of entries. If there are no 
free lines, ct will ask if it should wait for one, and if so, for how many minutes 
it should wait before it gives up. ct will continue to try to open the dialers at 
one-minute intervals until the specified limit is exceeded. This value can also 
be set on the command line by specifying the -wn option, where n is the max­
imum number of minutes that ct is to wait for a line. 

The -xn option is used for debugging. It produces a detailed output of the 
program execution pn stderr. The debugging level, n, is a single digit; -x9 pro­
duces the most detailed output. If the -v option is used, ct will send a running 
narrative to the standard error output stream. 

Normally, ct will hang up the current line, so the line can answer the incom­
ing call. The -h option will prevent this action. The -h option will also wait 
for the termination of the specified ct process before returning control to the 
user's terminal. 

The data rate may be set with the -s option, where speed is expressed in baud. 
The default rate is 1200. 

After the user on the destination terminal logs out, ct prompts, Reconnect? If 
the response does not begin with the letter y, the line will be dropped; other­
wise, getty will be started again and the login: prompt will be printed. 

To log out properly, the user must type (Ctrl)d. 

(Of course, the destination terminal must be attached to a modem that can 
answer the telephone.) 

l February 1993 125 



ct(C) 

Whenever ct makes a successful connection, it writes a log file, /usr/adm/ctlog. 
This log file contains the login name of the user who invoked ct, the speed of 
the connection, the date and time of the connection, the length of the connec­
tion, and the telephone number that was dialed. The time of the connection is 
shown as minutes:seconds or as hours:minutes:seconds, depending on how 
long the call lasted. 

For example: 
root I 1200) Mon Sept 16 14:55 1:25 264 

In this example, the ctlog shows that root invoked ct at 1200 baud on Monday, 
September 16 at 2:55. The connection lasted 1 minute and 25 seconds and the 
telephone number dialed was 264. 

Limitati.ons 

Files 

See also 

126 

In hangup mode (-h not specified), when a suitable dialer has been allocated, 
ct prompts Proceed to hang-up? If the response does not begin with the 
letter y, the program simply exits. If you are logged in on a computer through 
a local terminal and you want to connect a remote terminal to the computer, 
you should use nohup with ct to accomplish this: 

nohup ct -h -sspeed phone 

After the command is executed, a login prompt is displayed on the remote ter­
minal. The user can then log in and work on the computer just as on a local 
terminal. 

/usr/lib/uucp/Devices 
/usr/lib/uucp/LCK.. (tty-device) 
/usr/adm/ctlog 

cu(C), getty(M), login(M), uucp(C) 

1 February 1993 



ctags(CJ 

eta gs 
create a tags file 

Syntax 
ctags [-a] [ -u] [ -v] [ -w] [ -x] [file ... ] 

Description 

Files 

The ctags command makes a tags file for vi(C) from the specified C or FOR­
TRAN sources. A tags file gives the locations of specified objects (in this case, 
functions) in a group of files. Each line of the tags file contains the function 
name, the file in which it is defined, and a scanning pattern used to find the 
function definition. These are given in separate fields on the line, separated 
by blanks or tabs. Using the tags file, vi can quickly find function definitions. 

-a Append new values for the specified files to tags. 

-u Update the specified files in tags; that is, all references to them are 
deleted, and the new values are appended to the file. (This can be slow; it 
is usually faster to simply rebuild the tags file.) 

-v Produce a list of function names, the filename in which each function is 
declared, and the function's line number. This list prints on the standard 
output, and no tags file is created. 

-w Suppress warning diagnostics. 

-x Produce a function index, printing the line in which each function is 
defined, along with the filename, function name, and line number. No 
tags file is created. 

Files whose names end in .c or .h are assumed to be C source files and are 
searched for C routine and macro definitions. Otherwise, the files are scanned 
for the FORTRAN keywords function, procedure, program, and subroutine. If 
any of these keywords is found, ctags assumes file is a FORTRAN file; other­
wise, it assumes it is a C file. 

The tag main is treated specially in C programs. The tag formed is created by 
prefixing M to the name of the file, with a trailing .c. Leading pathname com­
ponents are also removed. This makes use of ctags practical in directories 
with more than one program. 

tags output tags file 

1 February 1993 127 



ctags(C) 

See also 
ex(C), vi(C) 

Standards conformance 

128 

This utility is not part of any currently supported standard; it was developed 
at the University of California at Berkeley and is used with permission. 

1February1993 



ctags(C) 

eta gs 
create a tags file 

Syntax 
ctags [-a I [ -u I [ -v] [ -w I [ -x] (file ... ] 

Description 

Files 

The ctags command makes a tags file for vi(C) from the specified C or FOR­
TRAN sources. A tags file gives the locations of specified objects (in this case, 
functions) in a group of files. Each line of the tags file contains the function 
name, the file in which it is defined, and a scanning pattern used to find the 
function definition. These are given in separate fields on the line, separated 
by blanks or tabs. Using the tags file, vi can quickly find function definitions. 

-a Append new values for the specified files to tags. 

-u Update the specified files in tags; that is, all references to them are 
deleted, and the new values are appended to the file. (This can be slow; it 
is usually faster to simply rebuild the tags file.) 

-v Produce a list of function names, the filename in which each function is 
declared, and the function's line number. This list prints on the standard 
output, and no tags file is created. 

-w Suppress warning diagnostics. 

-x Produce a function index, printing the line in which each function is 
defined, along with the filename, function name, and line number. No 
tags file is created. 

Files whose names end in .c or .h are assumed to be C source files and are 
searched for C routine and macro definitions. Otherwise, the files are scanned 
for the FORTRAN keywords function, procedure, program, and subroutine. If 
any of these keywords is found, ctags assumes file is a FORTRAN file; other­
wise, it assumes it is a C file. 

The tag main is treated specially in C programs. The tag formed is created by 
prefixing M to the name of the file, with a trailing .c. Leading pathname com­
ponents are also removed. This makes use of ctags practical in directories 
with more than one program. 

tags output tags file 

1 February 1993 129 



ctags(C) 

See also 
ex(C), vi(C) 

Standards conformance 

130 

This utility is not part of any currently supported standard; it was developed 
at the University of California at Berkeley and is used with permission. 

1 February 1993 



cu(C) 

cu 
call another UNIX/XENIX system 

Syntax 
cu [ -s speed ] [ -l line ] [ -h ] [ -t ) [ -xn I [ -o I -e I -oe I [ -n I telno 

cu [ -s speed )[ -h ) [ -xn ] [ -o I -e I -oe ) -l line [ dir] 

cu [ -h ) [ -xn ] [ -o I -e I -oe ] systemname 

Description 
The cu command calls up another UNIX system, a terminal, or possibly a 
non-UNIX system. It manages an interactive conversation with possible 
transfers of ASCII files. 

The cu command accepts the following options and arguments: 

-sspeed Specifies the transmission speed (150, 300, 600, 1200, 2400, 4800, 
9600, 19200, 38400). The default value is "Any" speed which will 
depend on the order of the lines in the /usr/lib/uucp(Devices file. A 
speed range can also be specified (for example, -s1200-4800). 

-lline Specifies a device name to use as the communication line. This can 
be used to override the search that would otherwise take place for 
the first available line having the right speed. When the -1 option is 
used without the -s option, the speed of a line is taken from the De­
vices file. When the -1 and -s options are both used together, cu will 
search the Devices file to check if the requested speed for the 
requested line is available. If so, the connection will be made at the 
requested speed; otherwise, an error message will be printed and the 
call will not be made. The specified device is generally a directly con­
nected asynchronous line (for example, /dev/ttyab) in which case a 
telephone number (telno) is not required. The specified device need 
not be in the /dev directory. If the specified device is associated with 
an auto dialer, a telephone number must be provided. Use of this 
option with systemname rather than telno will not give the desired 
result (see systemname below). 

-h Emulates local echo, supporting calls to other computer systems 
which expect terminals to be set to half-duplex mode. 

-t Used to dial an ASCII terminal which has been set to auto answer. 
Appropriate mapping of carriage-return to carriage-return-line-feed 
pairs is set. 

l February 1993 131 



cu(C) 

132 

-xn Causes diagnostic traces to be printed; it produces a detailed output 
of the program execution on stderr. The debugging level, n, is a sin­
gle digit in the range 0 to 9; -x9 is the most useful value. 

-n For added security, -n will prompt the user to provide the telephone 
number to be dialed rather than taking it from the command line. 

telno When using an automatic dialer, the argument is the telephone num­
ber with equal signs for secondary dial tone or minus signs placed 
appropriately for delays of 4 seconds. 

systemname 
A UUCP system name may be used rather than a telephone number. 
In this case, cu will obtain an appropriate direct line or telephone 
number from /usr/lib/uucp/Systems. Note: the systemname option 
should not be used in conjunction with the -I and -s options as cu 
will connect to the first available line for the system name specified, 
ignoring the requested line and speed. 

dir The keyword dir can be used with cu -lline, in order to talk directly 
to a modem on that line, instead of talking to another system via that 
modem. This can be useful when debugging or checking modem 
operation. Note: only users with write access to the Devices file are 
permitted to use cu -lline dir. 

In addition, cu uses the following options to determine communications 
settings: 

-o If the remote system expects or sends 7-bits with odd parity. 

-e If the remote system expects or sends 7-bits with even parity. 

-oe If the remote system expects or sends 7-bits, ignoring parity and sends 
7-bits with either parity. 

By default, cu expects and sends 8-bit characters without parity. If the login 
prompt received appears to contain incorrect 8-bit characters, or a correct log­
in is rejected, use the 7-bit options described above. 

After making the connection, cu runs as two processes: the transmit process 
and the receive process. The transmit process reads data from standard input 
and, except for lines beginning with " - ", passes the data to the remote syst_em. 
The receive process accepts data from the remote system and, except for Imes 
beginning with " - ",passes the data to standard output. 

Normally, an automatic XON/XOFF protocol is used to control input from the 
remote system so the buffer is not overrun. 

Lines beginning with " - " have special meanings. 

1 February 1993 



cu(C) 

The transmit process interprets the following user-initiated commands: 

-Sctnd ... 

-+cmd ... 

Terminate the conversation. 

Escape to an interactive shell on the local system. 

Run cmd on the local system (via sh -c). 

Run cmd locally and send its output to the remote system. 

Run cmd on the local system but take standard input from the 
remote system. 

Change the directory on the local system. Note: -!cd will cause 
the command to be run by a sub-shell, probably not what was 
intended. 

-%take from [ to I 
Copy file from (on the remote system) to file to on the local sys­
tem. If to is omitted, the from argument is used in both places. 

-°loputfrom [to] 
Copy file from (on the local system) to file to on the remote sys­
tem. If to is omitted, the from argument is used in both places. 

For both -%take and -%put commands, as each block of the file 
is transferred, consecutive single digits are printed to the 
terminal. 

-line Send the line -une to the remote system. 

-%break Transmit a BREAK to the remote system (which can also be 
specified as -%b). 

-%debug Toggles the -x debugging level between 0 and 9 (which can also 
be specified as -<>/od). 

-t Prints the values of the termio structure variables for the user's 
terminal (useful for debugging). 

, Prints the values of the termio structure variables for the remote 
communication line (useful for debugging). 

-%nostop Toggles between XON/XOFF input control protocol and no input 
control. This is useful in case the remote system is one which 
does not respond properly to the XON and XOFF characters. 

The use of -%put requires stty(C} and cat(C} on the remote side. It also 
requires that the current erase and kill characters on the remote system be 
identical to these current control characters on the local system. Backslashes 
are inserted at appropriate places. 

1 February 1993 133 



cu(C) 

134 

The use of -%take requires the existence of echo(C) and cat(C) on the remote 
system. Also, tabs mode (see stty(C)) should be set on the remote system if 
tabs are to be copied without expansion to spaces. 

The receive process normally copies data from the remote system to its stan­
dard output. It may also direct output to local files. 

You can construct take and put commands that work between UNIX and 
non-UNIX systems by sending the appropriate characters to cu. To do this, 
you will need to know the equivalent of echo(C) and cat(C) on the non-UNIX 
system. 

For example, to transfer a file named fred from a remote non-UNIX system to 
the file /tmplfred on the local UNIX system, construct a command similar to the 
following: 

-% 
echo ·->':/tmp/fred 
cat fred 
echo , .. >' 

This creates a file /tmplfred on the local UNIX system, putting the characters 
• ->" into it, which tells cu to start receiving data into this file. The file fred is 
then sent to standard output on the remote machine, and cu therefore receives 
it. Finally, a "->" is echoed into the file; this is a signal to cu to stop receiving 
input. (Remember to replace echo and cat with the equivalent commands for 
the non-UNIX system.) 

You can also append the file from the remote machine to an existing file on 
the local system: 

-% 
echo ,->>':/tmp/fred 
cat fred 
echo ''"'>' 

This appends the remote file onto the end of the existing file /tmplfred. 

When cu is used on system1 to connect to system2 and subsequently used on 
system2 to connect to system3, commands on system2 can be executed by 
using " - ". Executing a tilde command reminds the user of the local system 
uname. For example, uname can be executed on systems 1, 2, and 3 as 
follows: 

uname 
system) 
... !uname 
systeml 
"''"' !uname 
system2 

In general, " - " causes the command to be executed on the original_ ma~hine, 
and " - " causes the command to be executed on the next machine m the 
chain. 

1 February 1993 



Fxit values 

Examples 

Warning 

Exit code is zero for normal exit, otherwise, one. 

To dial a system whose telephone number is 9 2015551212 using 1200 baud 
(where dialtone is expected after the 9): 

cu -s1200 9=12015551212 
If the speed is not specified, "Any" is the default value. 

To login to a system connected by a direct line: 
cu -1 /dev/ttyXX or cu -1 ttyXX 

To dial a system with the specific line and a specific speed: 

cu -s1200 -1 ttyXX 
To dial a system using a specific line associated with an auto dialer: 

cu -1 ttyXX 9=12015551212 

To call up a system named huey: 

cuhuey 
To talk directly to an ACU (connect directly with the modem and enter 
modem commands manually): 

cu -lttyXX dir 

The cu command does not do any integrity checking on data it tr~nsfers. Data 
fields with special cu characters may not be transmitted properly. 

Limitations 

Files 

There is an artificial slowing of transmission by cu during the %put operation 
so that loss of data is unlikely. Depending on the interconnection hardware, it 
may be necessary to use a "-." to terminate the conversion even if sttyO has 
been used. Non-printing characters are not dependably transmitted using 
either the "%put or -%take commands. cu between an IMBRl and a penril 
modem will not return a login prompt immediately upon connection. A car­
riage return will return the prompt. 

/usr/lib/uucp/Systems 
/usr/lib/uucp/Devices 
/usr/lib/uucp/LCK .. (tty-device) 

1 February 1993 135 



cu(C) 

See also 

cat(C), ct(C), echo(C), stty(C), uucp(C), uname(C) 

Standards conformance 

cu is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

136 1 February 1993 



cut(C) 

cut 
cut out selected fields of each line of a file 

Syntax 
cut -c list I file1 file2 ... I 

cut -f list I -d char I I -s I I file1 file2 ... I 

Description 

Use cut to cut out columns from a table or fields from each line of a file. The 
fields as specified by list can be fixed length, that is, character positions as on 
a punched card (-c option), or the length can vary from line to line and be 
marked with a field delimiter character like Tab (-f option). cut can be used as 
a filter. If no files are given, the standard input is used. 

The meanings of the options are: 

list A comma-separated list of integers (in increasing order), with an 
optional dash(-), indicates ranges, as in the -o option of nroff/troff 
for page ranges; for example, 1,4,7; 1-3,8; -5,10 (short for 1-5,10); or 3-
(short for third through last field). 

-c list The list following -c (no space) specifies character positions (for 
example, -ct-72 would keep the first 72 characters of each line). 

-f list The list following -f is a list of fields assumed to be separated in the 
file by a delimiter character (see -d); for example, -f1,7 copies the first 
and seventh field only. Lines with no field delimiters will be passed 
through intact (useful for table subheadings), unless-sis specified. 

-d char The character following -d is the field delimiter (-f option only). 
Default is Tab. Space or other characters with special meaning to the 
shell must be quoted. 

-s If the -f option is used, -s suppresses lines with no delimiter charac­
ters. Unless specified, lines with no delimiters will be passed 
through untouched. 

Either the -c or -f option must be specified. 

Diagnostics 

line too long 
A line can have no more than 511 characters or fields. 

1 February 1993 137 



cut(C) 

Examples 

bad list for c I f option 
Missing -c or -f option or incorrectly specified list. No error occurs if a 
line has fewer fields than the list calls for. 

no fields 
The list is empty. 

cut -d: -f 1,5 /etc/passwd Maps user !D's to names. 

name='who am i I cut -fl -d" "' Sets name to current login name. 

Limitations 

See also 

Use grep(C) to make horizontal ucuts" (by context) through a file, or paste(C) 
to put files together horizontally. To reorder columns in a table, use cut and 
paste. 

grep(C), paste(C) 

Standards confonnance 
cut is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

138 1 February 1993 



date( CJ 

date 
print and set the date 

Syntax 

date [ mmddhhmm[yy] I [ +fonnat I 

Description 
If no argument is given, or if the output fonnat is specified following +,the 
current date and time are printed as defined by the locale. Otherwise, you 
may set the date and time if you are the super user. 

date normally performs its calculations taking care of the conversion to and 
from local standard and daylight time. When setting the date and time, 
specify it in the form MMddhhmm[yyl where: 

MM is the month number 

dd is the day number in the month 

hh is the hour number (24-hour system) 

mm is the minute number 

yy are the last 2 digits of the year number (optional) 

For example, date 10080045 sets the date to Oct 8, and the time to 12:45 AM, if 
the local language is set to English. The current year is taken by default if no 
year is specified. -

If the argument begins with +,the output of date is under the control of the 
user. The format for the output is similar to that of the first argument to 
printf(S). All output fields are of fixed size (zero padded if necessary). Each 
field descriptor begins with a percent sign "%" and is replaced in the output 
by its corresponding value. A single percent sign may be output if it is quoted 
with another percent sign, that is, by specifying "%% ". All other characters 
are copied to the output without change. The string is always terminated 
with a newline character. Extra newlines may be produced using the descrip­
tor" 0/on ". 

1 February 1993 139 



date( CJ 

Field desctiptors 

%% Quoted percent sign 

%a Abbreviated weekday - Sun to Sat, as defined by the locale 

%A Full weekday name, as defined by the locale 

%b Abbreviated month name, as defined by the locale 

%B Full month name, as defined by the locale 

%c Current date and time, as defined by the locale 

%d Day of month - 01 to 31 

%D Date as mm/dd/yy 

%h Abbreviated month - Jan to Dec 

%H Hour - 00 to 23 

%1 Hour (12 hour clock) in the range 01 - 12 

%j Day of the year - 001 to 366 

%m Month of year - 01 to 12 

%M Minute - 00 to 59 

%n Inserts a newline character 

%p Equivalent of AM or PM for current locale 

%r Time in AM/PM notation 

%5 Second - 00 to 59 

%t Inserts a tab character 

% T Time as HH:MM:SS 

%U Week number of the year (Sunday as the first day of the week) as a 
decimal number in the range 00 to 53. 

%w Day of the week, with Sunday represented by 0 

% W Week number of the year (Monday as the first day of the week) as a 
decimal number in the range 00 to 53. 

%x Current date, as defined by the locale 

140 1 February 1993 



%X Current time, as defined by the locale 

"loy Last 2 digits of year - DD to 99 

% Y Year (including century), as decimal numbers 

%Z Timezone name, or no characters if no timezone exists 

Exit values 
date returns the following exit values: 

D Normal exit, no error 

2 Bad conversion, illegal option, or no permission 

10 Format conversion error 

Diagnostics 

-? illegal option 
The option specified is not known to date. 

bad conversion 
The date specified is syntactically incorrect. 

format conversion error 
The format string specified is invalid. 

no permission 
Only the super user may change the date. 

Examples 

date(C) 

The line date '+DATE: %m/%d/%y%nTIME: %H:%M:%S' generates output in 
the form: 

Files 

See also 

DATE: 08/01/90 
TIME: 14:45:05 

/bin/date date executable file 

locale(M), strftime(S) 

l February 1993 141 



date( CJ 

Standards confonnance 

date is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

142 
1 February 1993 



de( CJ 

de 
invoke an arbitrary precision calculator 

Syntax 
de [file] 

Description 
de is an arbitrary precision arithmetic package. Ordinarily it operates on 
decimal integers, but you may specify an input base, output base, and a num­
ber of fractional digits to be maintained. The overall structure of de is a stack­
ing (reverse Polish) calculator. If an argument is given, input is taken from 
that file until its end, then from the standard input. The following construc­
tions are recognized: 

number The value of the number is pushed on the stack. A number is an 
unbroken string of the digits 0-9. It may be preceded by an under­
score (_) to input a negative number. Numbers may contain decimal 
points. 

+-/*%" 
The top two values on the stack are added(+), subtracted (-),multi­
plied (*), divided (/), remaindered (%), or exponentiated n. The 
two entries are popped off the stack and the result pushed on the 
stack in their place. Any fractional part of an exponent is ignored. 

sx The top of the stack is popped and stored into a register named x, 
where x may be any character. If thesis capitalized, xis-treated as a 
stack and the value is pushed on it. 

Ix The value in register x is pushed on the stack. The register x is not 
altered. All registers start with zero value. If the I is capitalized, 
register x is treated as a stack and its top value is popped onto the 
main stack. 

d The top value on the stack is duplicated. 

p The top value on the stack is printed. The top value remains 
unchanged. 

f All values on the stack are printed. 

q Exits the program. If executing a string, the recursion level is 
popped by two. If q is capitalized, the top value on the stack is 
popped and the string execution level is popped by that value. 

x Treats the top element of the stack as a character string and executes 
it as a string of de commands. 

1 February 1993 143 



dc(C) 

X Replaces the number on the top of the stack with its scale factor. 

[ ... ] Puts the bracketed ASCII string onto the top of the stack. 

<X >X =x 
The top two elements of the stack are popped and compared. Regis­
ter xis evaluated if they obey the stated relation. 

v Replaces the top element on the stack by its square root. Any exist­
ing fractional part of the argument is taken into account, but other­
wise the scale factor is ignored. 

Interprets the rest of the line as a UNIX command. 

c All values on the stack are popped. 

0 

0 

k 

z 

z 

? 

The top value on the stack is popped and used as the number radix 
for further input. 

Pushes the input base on the top of the stack. 

The top value on the stack is popped and used as the number radix 
for further output. 

Pushes the output base on the top of the stack. 

The top of the stack is popped, and that value is used as a non­
negative scale factor; the appropriate number of places are printed 
on output, and maintained during multiplication, division, and 
exponentiation. The interaction of scale factor, input base, and out­
put base will be reasonable if all are changed together. 

The stack level is pushed onto the stack. 

Replaces the number on the top of the stack with its length. 

A line of input is taken from the input source (usually the terminal) 
and executed. 

Used by be for array operations. 

Diagnostics 

144 

x is unimplemented 
The octal number x corresponds to a character that is not implemented as 
a command. 

stack empty 
Not enough elements on the stack to do what was asked. 

1 February 1993 



Examples 

Out of space 
The free list is exhausted (too many digits). 

Out of headers 
Too many numbers being kept around. 

Out of pushdown 
Too many items on the stack. 

Nesting Depth 
Too many levels of nested execution. 

This example prints the first ten values of n!: 

[lal +dsa *plalO>y )sy 
Osal 
lyx 

dc(C) 

Limitations 

See also 

be is a preprocessor for de, providing infix notation and a C-like syntax which 
implements functions and reasonable control structures for programs. For 
interactive use, be is preferred to de. 

bc(C) 

1 February 1993 145 



dd(C) 

dd 
convert and copy a file 

Syntax 

dd [ option=value I ... 

Description 

146 

dd copies the specified input file to the specified output with possible conver­
sions. The standard input and output are used by default. The input and out­
put block size may be specified to take advantage of raw physical l/0. 

if=Jile Input filename; standard input is default. 

of=Jile Output filename; standard output is default. This option does not 
truncate an existing.file. 

ibs=n Input block size is n bytes (default is BSIZE block size). 

obs=n Output block size (default is BSIZE block size). 

bs=n Sets both input and output block size, superseding ibs and obs. If 
no conversion is specified, it is particularly efficient since no in­
core copy needs to be done. 

cbs=n Conversion buffer size. 

skip=n Skips n input records before starting copy. (The records are read 
but not output.) 

seek=n Seeks n records from beginning of output file before copying. 

lseek=n Same as skip, but seeks over the records (that is, uses lseek(S)) 
instead of reading them. 

oseek=n As for seek. 

files=n Specify the number of input files to concatenate. This option effec­
tively causes a sequence of n EOFs to be ignored. (It is generally 
only useful for tape.) 

conv=block 
Convert ASCII to unblocked ASCII. 

conv=unblock 
Convert unblocked ASCII to ASCII. 

1 February 1993 



dd(C) 

count=n Copies only n input records. 

conv=ascii 
Converts EBCDIC to ASCII. 

conv=ebcdic 
Converts ASCII to EBCDIC. 

conv=ibm Slightly different map of ASCII to EBCDIC. 

conv=lcase 
Maps alphabetic characters to lowercase. 

conv=ucase 
Maps alphabetic characters to uppercase. 

conv=swab 
Swaps every pair of bytes. 

conv=noerror 
Does not stop processing on an error. 

conv=sync 
Pads every input record to ibs. 

conv= ... , ... 
Several comma-separated conversions. 

Where sizes are specified, a number of bytes is expected. A number may end 
with k, b, or w to specify multiplication by 1024, 512, or 2 respectively; a pair of 
numbers may be separated by x to indicate a product. 

cbs is used only if ascii, ebcdic, or ibm conversion is specified. In the former 
case, cbs characters are placed into the conversion buffer, converted to ASCII, 
and trailing blanks trimmed and newline added before sending the line to the 
output. In the latter two cases, ASCII characters are read into the conversion 
buffer, converted to EBCDIC, and blanks added to make up an output record 
of size cbs. 

After completion, dd reports the number of whole and partial input and out­
put blocks. 

Diagnostics 

f+p records in (out) Numbers of full and partial records read (written). 

&amples 

The first example reads an EBCDIC tape, blocked ten 80-byte EBCDIC card 
images per record, into the ASCII file outfile: 

1 February 1993 147 



dd(C) 

dd if=/dev/rctO of=outfile ibs=800 cbs=80 conv=ascii,lcase 

Note the use of raw magtape. dd is especially suited to 1/0 on raw physical 
devices because it allows reading and writing in arbitrary record sizes. 

The next example shows how to copy the contents of one floppy disk to 
another, using /tmp as a temporary storage area. The source disk is inserted in 
the drive, and the following command entered: 

dd if=/dev/rfdO of=/tmp/tempfile 

Next the source disk is removed from the drive, and the destination disk 
inserted. The data in the temporary file, /tmp/tempfile, may now be copied to 
this disk: 

dd if=/tmp/tempfile of=/dev/rfdO 
Finally remove the temporary file: 

rm /tmp/tempfile 

Limitations 

See also 

The ASCII/EBCDIC conversion tables are taken from the 256-character stan­
dard in the CACM Nov, 1968. The ibm conversion corresponds better to cer­
tain IBM print train conventions. There is no universal solution. 

Newlines are inserted only on conversion to ASCII; padding is done only on 
conversion to EBCDIC. 

When using dd with a raw device, specify the block size as a multiple of lK. 
For example, to use a 9K block size, enter: 

dd if=file of=/dev/rctO bs=18b 

You could also enter: 

dd if=file of=/dev/rctO bs=9k 

copy(C), cp(C), tar(C) 

Standards conformance 

dd is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

148 1 February 1993 



devnm(C) 

devnm 
identify device name 

Syntax 
/etc/devnm [ name ... ) 

Description 

Examples 

Files 

See also 

The devnm command identifies the special file associated with the mounted 
filesystems name. 

If name is not specified no action will be performed. 

This command is used by the /etc/bcheckrc script to construct a mount table 
entry for the root device. 

Consider the following example: 
/etddevnm Ju 

If /dev/hdl is mounted on /11, this produces the output: 
/dev/hdl /u 

/dev/* device names 

setmnt(ADM) 

Standards conformance 

devnm is conformant with AT&T SVID Issue 2. 

1 February 1993 149 



dj(C) 

df 
report number of free disk blocks 

Syntax 

df [ -t] [ -f] [ -v -i] [filesystems ] 

Description 

df prints out the number of free blocks and free inodes available for on-line 
filesystems by examining the counts kept in the super-blocks; filesystems 
may be specified by device name (for example, /dev/root). If the filesystems 
argument is unspecified, the free space on all of the mounted filesystems is 
sent to the standard output. The list of mounted filesystems is given in 
/etc/mnttab. 

Options include: 

-t Causes total allocated block figures to be reported as well as number of 
free blocks. 

-f Reports only an actual count of the blocks in the free list (free inodes are 
not reported). With this option, df reports on raw devices. 

-v Reports the percent of blocks used as well as the number of blocks used 
and free. 

-i Reports the percent of inodes used as well as the number of inodes used 
and free. Use the -i option with the -v option to display counts of blocks 
and inodes free as well as the percentage of inodes and blocks used. 

The -v and -i options cannot be used with other df options. 

Limitations 

See nLimitations" under mount(ADM). 

This utility reports filesystem usage in 512-byte blocks. The filesystem, how­
ever, allocates blocks of size 1024 bytes to files. If a file of size 500 bytes is cre­
ated, df will report 2 blocks Jess free space (rather than 1 block), since the file­
system will allocate one 1024-byte block to the file. 

Authorization 

150 

The behavior of this utility is affected by assignment of the queryspa_ce 
authorization. Refer to the "Using a secure system" chapter of the User's G111de 
for more details. 

1 Febmary 1993 



Files 

See also 

/dev/* 
/etc/mn ttab 

du(C), fsck(ADM), mnttab(F), mount(ADM) 

Standards confonnance 

df is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 

df(C) 

151 



dfspace(C) 

dfspace 
report disk space 

Syntax 
/etddfspace [filesystem ... ] 

Description 

Examples 

See also 

152 

dfspace is a shell script interface to the df(C) command. 

/etc/dfspace with no arguments will report the disk space used for each 
mounted file system, along with the total disk space available for that file­
system, and the percentage of space currently used. Total disk space, total 
disk space available, and percentage used are also reported. Disk space is 
reported in megabytes. 

You can see disk space for a particular filesystem by supplying that filesystem 
as an argument to dfspace. You can specify filesystems by device name (for 
example, /dev/root) if you wish. 

dfspace is frequently used in the system startup files /etc/profile or /etc/cshrc. 

df(C) 

/etc/dfspace 

/u 
/z 
/w 

Disk space: 31.12 MB of 146.47 MB available 121.25%1. 
Disk space: 35.41 MB of 201.16 MB available 117.60%1. 
Disk space: 50.37 MB of 272.74 MB available 118.47%1. 
Disk space: 505.81 MB of 605.93 MB available 183.64%1. 

Total Disk Space: 623.72 MB of 1226.32 MB available 150.86%1. 

1 February 1993 



diff(CJ 

diff 
compare two text files 

Syntax 
diff [ -befh ]filel file2 

Descripti.on 
The diff command tells the user what lines must be changed in two files to 
bring them into agreement. If filel or file2 is a dash(-), the standard input is 
used. If filel or file2 is a directory, diffuses the file in that directory that has 
the same name as the file (file2 or filel respectively) it is compared to. For 
example: 

diff /tmp dog 
compares the file named dog that is in the /tmp directory, with the file dog in 
the current directory. 

The normal output contains lines of these forms: 

nl a n3,n4 
n1,n2 d n3 
n1,n2 c n3,n4 

These lines resemble ed commands to convert filel into file2. The numbers 
after the letters pertain to file2. In fact, by exchanging a for d and reading 
backward, one can find out in just the same way how to convert file2 into 
filel. As in ed, identical pairs where nl = n2 or n3 = n4 are abbreviated as a 
single number. 

Following each of these lines come all the lines that are affected in the first file 
flagged by"<", then all the lines that are affected in the second file flagged by 
">". 

The -b option causes trailing blanks (spaces and tabs) to be ignored and other 
strings of blanks to compare equal. 

The -e option produces a script of a, c and d commands for the editor ed, 
which will recreate file2 from filel. The -f option produces a similar script, 
not useful with ed, in the opposite order. In connection with -e, the following 
shell procedure helps maintain multiple versions of a file: 

(shift; cat S*; echo '1,$p') I ed - $1 

1 February 1993 153 



diff<C> 

This works by performing a set of editing operations on an original ancestral 
file. This is done by combining the sequence of ed scripts given as all com­
mand line arguments except the first. These scripts are presumed to have 
been created with diff in the order given on the command line. The set of 
editing operations is then piped as an editing script to ed where all editing 
operations are performed on the ancestral file given as the first argument on 
the command line. The final version of the file is then printed on the standard 
output. Only an ancestral file ($1) and a chain of version-to-version ed scripts 
($2,$3, ... ) made by diff need be on hand. 

Except in rare circumstances, diff finds the smallest sufficient set of file differ­
ences. 

The -h option does a fast, less-rigorous job. It works only when changed 
stretches are short and well separated, but the files can be of unlimited length. 
The -e and -f options cannot be used with the -h option. 

Exit Values 

Exit status is 0 for no differences, 1 for some differences, 2 for errors. 

Limitations 

Files 

See also 

Editing scripts produced under the -e or -f option do not always work 
correctly on lines consisting of a single dot (.). 

/tmp/d????? 
/usr/lib/diffh (executable used when -h option is specified) 

cmp(C), comm(C), ed(C) 

Standards conformance 

diff is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

154 l February 1993 



diff3<C> 

diff3 
compare three files 

Syntax 
diff3 [ -ex3 )file1 file2 file3 

Description 
diff3 compares three versions of a file, and publishes disagreeing ranges of 
text flagged with these codes: 

====l 
====2 
====3 

all three files differ 

file1 is different 

file2 is different 

file3 is different 

The type of change suffered in converting a given range of a given file to some 
other range is indicated in one of these ways: 

f: n1 a Text is to be appended after line number nl in file f, where f = 1, 
2,or3. 

f: n1 , n2 c Text is to be changed in the range line nl to line n2. If nl = n2, 
the range may be abbreviated to nl. 

The original contents of the range follow immediately after a c indication. 
When the contents of two files are identical, the contents of the lower-num­
bered file are suppressed. 

Options are: 

-e Publishes a script for the editor ed(C) that will incorporate into file1 all 
changes between file2 and file3, that is, the changes that normally 
would be flagged==== and ====3. 

-x Produces a script to incorporate changes flagged with====. 

-3 Produces a script to incorporate changes flagged with ====3. 

l February 1993 155 



diff3(C) 

The following command applies a resulting editing script to file1: 

(cat script; echo '1,$p') I ed - filel 

Limitations 

Files 

See also 

156 

None of the options work properly for lines consisting of a single period. The 
input file size limit is 64K bytes. 

/tmp/d3* 
/usr/lib/diff3prog 

diff(C), ed(C) 

1 February 1993 



dircmp(C) 

dircmp 
compare directories 

Syntax 
dircmp [ -d ] [ -s ] [ -wn I dir1 dir2 

Descripti.on 

See also 

The dircmp command examines dir1 and dir2 and generates tabulated infor­
mation about the contents of the directories. Listings of files that are unique to 
each directory are generated in addition to a list that indicates whether the 
files common to both directories have the same contents. 

There are three options available: 

-d Performs a full diff on each pair of like-named files if the contents of the 
files are not identical. 

-s Suppresses output of identical filenames. 

-wn Changes the width of the output line to n characters. The default width 
is72. 

cmp(C), diff(C) 

Standards confonnance 

dircmp is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 157 



dirname(C) 

dirname 
deliver directory part of pathname 

Syntax 

dimame string 

Description 

Examples 

See also 

The dimame command delivers all but the last component of the pathname in 
string and prints the result on the standard output. If there is only one com­
ponent in the pathname, only a "dot" is printed. It is normally used inside 
substitution marks (' ') within shell procedures. 

The companion command basename deletes any prefix ending in a slash(/) 
and the suffix (if present in string) from string, and prints the result on the 
standard output. 

The following example sets the shell variable NAME to /usr/src/cmd: 
NAME='dimame /usr/src/cmd/cat.c' 

This example prints /a/b/c on the standard output: 

dimame /a/b/c/d 
This example prints a "dot" on the standard output: 

dimame file.ext 
This example moves to the location of a file being searched for (lostfile): 

cd 'find. -name lostfile -exec dimame ;' 

basename(C), sh(C) 

Standards conformance 
dimame is conformant with X/Open Portability Guide, Issue 3, 1989. 

158 1 February 1993 



disable(C) 

disable 
turn off terminals and printers 

Syntax 
disable tty ... 

disable [ -c I -W I [ -r [ reason 11 printers 

Description 

Examples 

For terminals, this program manipulates the /etc/conf/cfd/init.base file and sig­
nals init to disallow logins on a particular terminal. 

Do not use this command to disable /dev/conso/e, as this may corrupt the 
/etc/inittab file. 

For printers, disable stops print requests from being sent to the named print­
er. The following options can be used: 

-c Cancels any requests that are currently printing. This option cannot be 
used with the -W option. 

-W Disables the specified printers when the print requests currently print­
ing have finished.· This option cannot be used with the -c option. 

-r [reason I 
Associates a reason with disabling the printer. The reason applies to all 
printers listed up to the next -r option. If the -r option is not present or 
the -r option is given without a reason, then a default reason is used. 
reason is reported by lpstat(C). 

In this example, a printer named linepr is disabled because of a paper jam: 

disable -r"paper jam" linepr 

Authorization 

Files 

The behavior of this utility is affected by assignment of the printerstat author­
ization, which is usually reserved for system administrators. Refer to the 
"Using a secure system'' chapter of the User's G11ide for more details. 

/dev/tty* 
/etc/conf!cfd/init.base 
/usr/spool/lp/* 

1 February 1993 159 



disable(C) 

See also 

login(M), enable(C), inittab(F), getty(M), init(M), lp(C), lpstat(C) 

160 1 February 1993 



diskcp(CJ 

diskcp, diskcmp 
copy or compare floppy disks 

Syntax 
diskcp [ -f ] [ -d ] [ -r ] [ -s I [ -u I [ -48ds9 I [ -96ds9 ] [ -96ds15 ] 
[ -135ds9] [ -135ds18] 

diskcmp [ -d] [ -s ] [ -48ds9] [ -96ds9] [ -96ds15] [ -135ds9] [ -135ds18] 

Description 

diskcp is used to make an image (exact copy) of a source floppy disk on a tar­
get floppy disk. On machines with one floppy drive, diskcp temporarily 
transfers the image to the hard disk until a target floppy is inserted into the 
floppy drive. On machines with two floppy drives, diskcp immediately 
places the image of the source floppy directly on the target floppy. 

diskcmp functions similarly to diskcp. It compares the contents of one 
floppy disk with the contents of a second floppy disk using the cmp utility. 

The options are: 

-f Format the target floppy disk before the image is copied (diskcp 
only). 

-d The computer has dual floppy drives. diskcp copies the image 
directly onto the target floppy. 

-s Uses sum(C) to compare the contents of the source arid target flop­
pies; gives an error message if the two do not match. 

-r Uses second floppy drive as source drive. 

-u Prints usage message. 

-48ds9 This setting is for low density 48tpi (360K) floppies. It is the 
default setting. 

-96ds9 This setting is for medium density 96tpi (720K) floppies. 

-96ds15 This setting is for high density 96tpi (1.2M) floppies. 

-135ds9 This setting is for low density 135tpi (720K) 3.5 inch floppies. 

-135dsl8 This setting is for high density 135tpi (l.44M) 3.5 inch floppies. 

1 February 1993 161 



diskcp(C) 

Examples 

When using the -96ds9 and -96ds15 options of diskcp without the -f option, il, 
the first target disk is unformatted, the program will note it, format it an~ 
make the copy. If another copy is requested and another unformatted targe~ 
disk is inserted, diskcp exits with a "System error". Quit, format the floppy, 
and reinvoke diskcp to make another copy. 

To make a copy of a floppy, place the source floppy in the drive and type: 
diskcp 

When diskcp has finished copying to the hard disk, it prompts you to insert 
the target floppy in the drive. If you specify the -f flag when you invoke 
diskcp, the program formats the target floppy. When the copy is finished, 
diskcp asks if you would like to make another copy of the same source disk. 
If you enter • n ",it asks if you would like to copy another source disk. 

Specify the -d flag on the command line if you have two floppy drives: 
diskcp-d 

Limitations 

Files 

See also 

If diskcp encounters a write error while copying the source image to the tar­
get disk, it formats the disk and tries to write the source image again. This 
happens most often when an unformatted floppy is used and the -f flag is not 
specified. 

/usr/bin/diskcp 
/usr/bin/diskcmp 
/tmp/disk???? 

cmp(C), dd(C), format(C), sum(C) 

Standards confonnance 

162 

diskcmp and diskcp are not part of any currently supported stand?rd; they 
are extensions of AT&T System V provided by The Santa Cruz Operation, Inc. 

1 Febrnary 1993 



doscmd(C) 

doscmd: doscat, doscp, dosdir, dosformat, 
dosmkdir, dosls, dosrm, dosrmdir 
manipulates DOS files and filesystems 

Syntax 
doscat [ -r I -c I -m ]file ... 

doscp [ -r I -c I -m ]filel file2 

doscp [ -r I -c I -m )file ... directory 

dosdir [ -c ) directory ... 

dosformat [ -fqv ) drive 

dosls [ -c ) directory ... 

dosrm [ -c I file ... 

dosmkdir [ -c ) directory .. . 

dosrmdir [ -c ) directory .. . 

Description 

The doscmd commands provide access to the files and directories on MS-DOS 
floppy disks and on DOS partitions of a hard disk. Note that in order to use 
these commands on a DOS 4.0 partition the DOS volume label must be non 
null and the DOS serial number must be set. In order to use these commands 
on a DOS 3 partition the DOS volume label must be non null. It is also possible 
to mount and access a DOS filesystem while operating from the UNIX system 
partition. 

The doscmd commands perform the following actions: 

doscat 

1 February 1993 

Copies one or more DOS files to the standard output. If -r is 
given, the files are copied without newline conversions. If -m is 
given, the files are copied with newline conversions (see 
"Conversions" below). If -c is given, execution halts immedi­
ately if a file on a mounted filesystem is encountered (see 
"Accessing UNIX system File Systems with DOS Utilities" 
below). 

163 



doscrnd(CJ 

164 

doscp Copies files between a DOS disk and a UNIX system filesystem. 
~f fi~el and file2 are giv:en, file1 is ~opied to file2. If a directory 
is given, one or more files are copied to that directory. If -r is 
given, the files are copied without newline conversions. If -m is 
given, the files are copied with newline conversions (see 
"Conversions" below). If -c is given, execution halts immedi­
ately if a file on a mounted filesystem is encountered. 

dosdir Lists DOS files in the standard DOS style directory format. If -c is 
given, execution halts immediately if a file on a mounted file­
system is encountered. 

dosformat Creates a DOS 2.0 formatted diskette. The drive may be speci­
fied in either DOS drive convention, using the default file 
/etc/defa11lt/msdos, or using the UNIX system special file name. 
dosformat cannot be used to format a hard disk. The -f option 
suppresses the interactive feature. The -q (quiet) option is used 
to suppress information normally displayed during dosformat. 
The -q option does not suppress the interactive feature. The -v 
option prompts the user for a volume label after the diskette has 
been formatted. The -c option causes execution to halt immedi­
ately if a file on a mounted filesystem is encountered. The max­
imum size of the volume label is 11 characters. 

dosls Lists DOS directories and files in a UNIX system format (see 
ls(C)) The -c option causes execution to halt at once if a file on a 
mounted filesystem is encountered. 

dosrm Removes files from a DOS disk. If -c is given, execution halts 
immediately if a file on a mounted filesystem is encountered. 

dosmkdir Creates a directory on a DOS disk. If -c is given, execution halts 
immediately if a file on a mounted filesystem is encountered. 

dosnndir Deletes a directory from a DOS disk. The -c option causes execu­
tion to stop if a file on a mounted filesystem is encountered. 

The file and directory arguments for DOS files and directories have the form: 

device:name 
where device is a UNIX system pathname for the special device file contain!ng 
the DOS disk, and name is a pathname to a file or directory on the DOS disk. 
The two components are separated by a colon (:). For example, the argument: 

/dev/fdO:/src/file.asm 
specifies the DOS file, file.asm, in the directory, /src, on the disk i~ the device 
file /devlfdO. Note that slashes (and not backslashes) are used as filename sep­
arators for DOS pathnames. Arguments without a device: are assumed to be 
UNIX system files. 

1 February 1993 



doscmd(C) 

For convenience, the user configurable default file, /etc/default/msdos, can 
define DOS drive names to be used in place of the special device file path­
names. It can contain lines with the following format: 

A=/devlfdO 
C=/dev/dsk/OsC 
D=/dev/dsk/OsD 
K=/dev/dsk/lsC 

The drive Jetter "A" may be used in place of special device file pathname 
/devlfdO when referencing DOS files (see "Examples" below). The drive letters 
"C" or "K" refer to the DOS partition on the first or second hard disk, and "D" 
refers to a logical drive in the extended partition on the first hard drive. 

The commands operate on the following kinds of disks: 

DOS partitions on a hard disk 
5 Y.inch DOS 
3 Yi inch DOS 
8, 9, 15, or 18 sectors per track 
40 or 80 tracks per side 
1or2 sides 
DOS versions 1.0, 2.0, 3.0, 3.3 or 4.0 

Conversions 
In the case of doscp, certain conversions are performed when copying a UNIX 
system file. Filenames with a basename longer than eight characters are trun­
cated. Filename extensions (the part of the name following separating period) 
longer than three characters are truncated. For example, the file 
123456789.12345 becomes 12345678.123. A message informs the user that the 
name has been changed and the altered name is displayed. Filenames con­
taining illegal DOS characters are stripped when writing to the MS-DOS for­
mat. A message informs the user that characters have been rem9ved and dis­
plays the name as written. 

All DOS text files use a carriage-return/linefeed combination, CR-LF, to indi­
cate a newline. UNIX system files use a single newline LF character. When the 
doscat and doscp commands transfer DOS text files to the UNIX system file­
system, they automatically strip the CR. When text files are transferred to 
DOS, the commands insert a CR before each LF character. 

Under some circumstances the automatic newline conversions do not occur. 
The -m option may be used to ensure the newline conversion. The -r option 
can be used to override the automatic conversion and force the command to 
perform a true byte copy regardless of file type. 

1 February 1993 165 



doscmd(CJ 

166 

Accessing DOS filesystems from the UNIX system 
parti.tion 
The ability to mount DOS filesystems is an extension of the DOS utilities docu· 
mented here. There are several limitations within the DOS directory structure 
which make this a difficult task. 

In short, the DOS filesystem does not associate as much information with each 
file as the UNIX system filesystem does. Therefore, allowances and assump­
tions have to be made for information that would be present under the UNIX 
system but that does not exist under DOS. 

The DOS directory structure contains the following information: 

• Filename: up to 8 characters with 3 character extension (too.bat) 

• File Attribute: read-only /read-write, hidden/visible file, system/normal 
file, Volume name/normal file name, subdirectory /normal file, 
archive/modified bit 

• Time of last modification 

• Date of last modification 

• Starting point (reference through FAT) 

• File size in bytes 

Using this information, it is converted to a UNIX system inode. There are 
some UNIX system provisions which cannot be carried over, because the file­
system must remain sane under DOS. 

• Any date in the UNIX system inode table for the DOS filesystem is the same 
as the modification date (ctime = atime = mtime). 

• The only types of nodes allowed in the DOS filesystem are directories and 
normal files. Pipes, semaphores, and special device files do not exist 
because they do not have a counterpart under DOS. 

• The permissions are 0777 for readable/writable files and 0555 for read only 
files. If a user can access the filesystem, the user will be limited by the per­
missions available under the DOS directory structure. This permission is 
read-only or read write. When creating a file, the creator's umask/mode is 
examined. The creation mode is based on the owner write bit. 

• The GID/UID for all files on the DOS filesystem is the same as the mount 
point. The mount point will maintain the necessary security. If a user can 
get into the mount point, then the user has the same access as the owner. 

• There is only one link for each file under the DOS filesystem. •.• and " . ." are 
a special case and are not links. 

• On every change of the modification time (which on a UNIX system would 
change atime, clime, mtime) the DOS archive bit is set. 

1 February 1993 



doscmd(C) 

• Following 005 filesystem requirements, all blocks previous to a written 
block are allocated before the original block is written. This differs from 
UNIX systems where the program may seek out beyond the end of a file 
and write a block. UNIX systems do not necessarily write blocks which 
have been skipped over. 

• If a program does not use the directory(5} system calls, but opens the direc­
tory in the 005 filesystem as a file, the program should see the DOS direc­
tory structure as it really exists. By using the directory system calls, the 
filesystem switch code will put together a UNIX system style directory 
entry. 

• File contents are not mapped from the 005 filesystem. The file appears 
exactly as it is under DOS. For example, \r\n combinations are left as \r\n 
and not mapped to just \n. The file and directory names are mapped to 
uppercase. 

Accessing UNIX system File Systems with DOS Utilities 
If an attempt is made to access a mounted UNIX system filesystem using the 
005 utilities the message 

command: devicename is mounted 

is printed on stderr and the attempt fails. If possible, the command continues 
to operate on the remaining parameters and returns a value of 1. Upon nor­
mal completion, these commands return a value of 0. If the -c option is used, 
execution of the command halts immediately upon encountering a file in a 
mounted filesystem. 

DOS file conversion 
The utilities xtod(C) and dtox(C} can be used to convert the EOL sequences 
used to and from DOS, respectively. 

1 February 1993 167 



doscmd(C) 

Examples 

Note that the forward slash character (/) must be used as the directory sepa­
rator character when dealing with DOS filesystems under UNIX. This is at vari­
ance with the usual DOS practice of using the backslash (\) character as the 
directory separator character. For example, 

doscat /dev/fdO:/docs/memo.txt 

is used instead of the DOS path syntax, which would be 
doscat a:\docs\memo.txt 

Other examples of the doscmd(C) commands are: 

doscat /tmp/fl /tmp/f2 /dev/fd0:/src/file.asm 

doscp /tmp/myfile.txt /dev/fdO:/docs/memo.txt 
doscp /tmp/fl /tmp/f2 /dev/fd0:/mydir 

dosdir /dev/fdO:/src 
dosdir A:/src A:/dev 

dosformat /dev/fdO 

dosls /dev/fdO:/src 
dosls B: 

dosrm /dev/fdO:/docs/memo.txt 
dosrm A:/docs/memol.txt 

dosmkdir /dev/fdO:/usr/docs 

dosrmdir /dev/fdO:/usr/docs 

Limitations 

168 

Using the DOS utilities, it is not possible to refer to DOS files with wild card 
specifications. The programs mentioned above cooperate among themselves 
so no two programs will access· the same DOS disk. Only one process will 
access a given DOS disk at any time, while other processes wait. If a process 
has to wait too long, it displays the error message, ncan't seize a devicen, and 
exits with an exit code of 1. 

You cannot use the dosformat command to format device A: because it is 
aliased to /dev/install, which cannot be formatted. Use /dev/rfdO/ instead. 

The Development System supports the creation of DOS executable files, using 
cc(CP). Refer to the C User's Guide and C Library Guide for more information 
on using your UNIX system to create programs suitable for DOS systems. 

1 February 1993 



Files 

See also 

doscmd(CJ 

All of the DOS utilities leave temporary files in /tmp. These files are automati­
cally removed when the system is rebooted. They can also be manually 
removed. 

/etc/default/msdos 
/devlfd* 
/dev/dsk/ 

default information 
floppy disk devices 
hard disk devices 

assign(C), dtox(C), dtype(C), mkfs(ADM), xtod(C) 

"Using MS-DOS and other DOS operating systems" chapter in the System 
Administrator's Guide 

Standards confonnance 

doscat, doscp, dosdir, dosformat, dosls, dosmkdir, dosrm and dosrmdir are 
not part of any currently supported standard; they are extensions of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 169 



dtox(C) 

dtox 
change file format from MS-DOS to UNIX 

Syntax 

dtoxfilename > outp11t.file 

Description 

See also 

The dtox command converts a file from MS-DOS format to UNIX format. 
MS-DOS files terminate a line of text with a carriage return and a linefeed, 
while UNIX files terminate a line with a linefeed only. Also MS-DOS places a 
(Ctrl)z at the end of a file, while UNIX systems do not. Some programs and 
utilities are sensitive to this difference and some are not. If a text or data file is 
not being interpreted correctly, then use the dtox and xtod conversion utili­
ties. The dtox command strips the extra carriage return from the end of each 
line and strips the (Ctrl)z from the end of the file. This utility is not required 
for binary object files. 

If no filename is specified on the command line, dtox takes input from stan­
dard input. Output of the utility goes to standard output. 

xtod(C) 

Standards conformance 

170 

dtox is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



dtype(C) 

dtype 
determine disk type 

Syntax 
dtype [·s) device ... 

Description 
The dtype command determines the type of a disk and prints pertinent infor­
mation on the standard output (unless the silent (·s) option is selected), then 
exits with a corresponding value (see below). When more than one argument 
is given for device, the exit value corresponds to the last argument. 

Miscellaneous disk types 

Exit value Message (optional) 

60 error (specified) 
61 empty or unrecognized data 

Storage disk types 

Exit code 
70 
71 
72 
73 

Message (optional) 

backup format, volume n 
tar format [, extent e of n] 
cpio format 
cpio character (-c) format 

XENIX or UNIX disk types 

Version Exit 
or type code 

System III 120 

System V 130 
140 

1February1993 

Message 
(optional) 

XENIX 2.x filesystem [needs cleaning] 

XENIX 3.x or later filesystem [needs cleaning) 
UNIX lK filesystem [needs cleaning) 

171 



dtype(CJ 

MS-DOS disk types 

Version 
or type 

l.x 

2.x 

Exit Message 
code (optional) 

80 DOS l.x, 8 sec/track, single sided 
81 DOS l.x, 8 sec/track, dual sided 

90 MS-DOS 8 sec/track, 40 tracks/side, single sided, 5.25 
inch 

91 MS-DOS 8 sec/track, 40 tracks/side, dual sided, 5.25 inch 
92 MS-DOS 9 sec/track, 40 tracks/side, single sided, 5.25 

inch 
93 MS-DOS 9 sec/track, 40 tracks/side, dual sided, 5.25 inch 
94 MS-DOS fixed disk 

data 100 MS-DOS data disk, n sec/track, single sided 
101 MS-DOS data disk, n sec/track, dual sided 
102 MS-DOS data disk, 9 sec/track, single sided 
103 MS-DOS data disk, 9 sec/track, dual sided 

3.x 110 MS-DOS 9 (3.5 inch) or 15 (5.25 inch) sec/track, 80 
tracks/side, dual sided 

111 MS-DOS 18 sec/track, 80 tracks/side, dual sided, 3.5 inch 
112 MS-DOS 8 sec/track, 80 tracks/side, single sided, 3.5 or 

5.25 inch 
113 MS-DOS 8 sec/track, 80 tracks/side, dual sided, 3.5 or 

5.25 inch 

Limitations 

See also 

XENIX filesystems and backup and cpio binary formats may not be recog­
nized if created on a foreign system. This is due to such system differences as 
byte and word swapping and structure alignment. ("word-swapped" refers to 
byte ordering of long words in relation to the host system.) 

This utility only works reliably for floppy diskettes. 

backup(ADM), cpio(C), tar(C) 

Standards confonnance 

172 

dtype is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



du( CJ 

du 
summarize disk usage 

Syntax 
du [ -afrsu I [ names I 

Description 
The du command gives the number of blocks contained in all files and direc­
tories recursively within each directory and file specified by the names argu­
ment. The block count includes the indirect blocks of the file. If names is 
missing, the current directory is used. 

The -s option causes only the grand total (for each of the specified names) to 
be given. The -a option causes an entry to be generated for each file. Absence 
of either causes an entry to be generated for each directory only. 

The -f option causes du to display the usage of files in the current filesystem 
only. Directories containing mounted filesystems will be ignored. The -u 
option causes du to ignore files that have more than one link. 

du is normally silent about directories that cannot be read, files that cannot be 
opened, and so on. The -r option will cause du to generate messages in such 
instances. 

A file with two or more links is only counted once. Symbolic links are not fol­
lowed, but the disk space used to hold the actual symbolic link is counted. 

Limitations 

Files containing holes will cause an incorrect block count. 

Files 

/bin/du du executable file 

See also 

df(C) 

1February1993 173 



du(C) 

Standards conformance 
du is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

174 1February1993 



eclw(C) 

echo 
echo arguments 

Syntax 

echo [ -n I [ arg I ... 

Description 

The echo command writes its arguments separated by blanks and terminated 
by a new-line on the standard output. The -n option prints a line without the 
new-line; this is the same as using the \c escape sequence. 

echo also understands C-like escape conventions; beware of conflicts with the 
shell's use of•\": 

\b backspace 

\c print line without new-line 

\f form-feed 

\n new-line 

\r carriage return 

\t tab 

\v vertical tab 

\\ backslash 

\n The 8-bit character whose ASCII code is a 1, 2 or 3-digit octal number. In 
all cases, n must start with a zero. For example: 

echo "\07'' echoes ( Ctrl}g 

echo "\007'' also echoes ( Ctrl}g 

echo "\065" echoes the number" 5" 

echo "\0101" echoes the letter" A" 

The echo command is useful for producing diagnostics in command files and 
for sending known data into a pipe. 

1 February 1993 175 



echo( CJ 

Limitations 

See also 

176 

When representing an 8-bit character by using the escape convention \On, the 
n must always be preceded by the digit zero (0). 

For example, typing: echo "WARNING:\07'' will print the phrase "WARNING:" 
and sound the "bell" on your terminal. The use of single (or double) quotes 
(or two backslashes) is required to protect the • \ • that precedes the • 07 ". 

For the octal equivalents of each character, see asdi(M). 

An internal version of this command is provided by ksh(C) and may behave 
slightly differently; please refer to the ksh(C) entry for details. 

sh(C), csh(C), ksh(C) 

1February1993 



ed(C) 

ed, red 
invoke the text editor 

Syntax 
ed [ - ] [ -p string] [file I 

red [ - I [ -p string I [file] 

Description 
ed is the standard text editor. If the file argument is given, ed simulates an e 
command (see below) on the named file; that is to say, the file is read into ed's 
buffer so that it can be edited. ed operates on a copy of the file it is editing; 
changes made to the copy have no effect on the file until a w (write) com­
mand is given. The copy of the text being edited resides in a temporary file 
called the buffer. There is only one buffer. 

red is a restricted version of ed(C). It will only allow editing of files in the 
current directory. It prohibits executing sh(C) commands via the ! command. 
red displays an error message on any attempt to bypass these restrictions. 

In general, red does not allow commands like !date or !sh. 

Furthermore, red will not allow pathnames in its command line. For example, 
the command red /etc/passwd causes an error when the current directory is 
not/etc. 

The options to ed are: 

Suppresses the printing of character counts by the e, r, and w com­
mands, of diagnostics from e and q commands, and the " ! " prompt 
after a ! shell command. 

-p Allows the user to specify a prompt string. 

ed supports formatting capability. After including a format specification as 
the first line of file and invoking ed with your terminal in stty-tabs or sttytab3 
mode (see stty(C)), the specified tab stops will automatically be used when 
scanning file. For example, if the first line of a file contained: <:t5,10,15 s72:> 
tab stops would be set at columns 5, 10, and 15, and a maximum line length of 
72 would be imposed. 

Note: While inputting text, tab characters are expanded to every eighth 
column as the default. 

1 February 1993 177 



ed(CJ 

Commands to ed have a simple and regular structure: zero, one, or two 
addresses followed by a single-character command, possibly followed by pa­
rameters to that command. These addresses specify one or more Jines in the 
buffer. Every command that requires addresses has default addresses, so that 
the addresses can very often be omitted. 

In general, only one command may appear on a line. Certain commands 
allow the input of text. This text is placed in the appropriate place in the 
buffer. While ed is accepting text, it is said to be in input mode. In this mode, 
no commands are recognized; all input is merely collected. Input mode is left 
by entering a period(.) alone at the beginning of a line. 

ed supports a limited form of regular expression notation; regular expressions 
are used in addresses to specify Jines and in some commands (for example, s) 
to specify portions of a line that are to be substituted. A regular expression 
specifies a set of character strings. A member of this set of strings is said to be 
mate/Jed by the regular expression. The regular expressions allowed by ed are 
constructed as follows: 

The following one-character regular expressions match a single character: 

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one­
character regular expression that matches itself. 

1.2 A backslash(\) followed by any special character is a one-character reg­
ular expression that matches the special character itself. The special 
characters are: 

a. . * [ and \ (dot, star, left square bracket, and backslash, respec­
tively), which are otherwise special, except when they appear 
within square brackets ([ )); see 1.4 below). 

b. • (caret), which is special at the beginning of an entire regular 
expression (see 3.1 and 3.2 below), or when it immediately follows 
the left of a pair of square brackets (see 1.4 below). 

c. $ (dollar sign), which is special at the end of an entire regular 
expression (see 3.2 below). 

d. The character used to bound (that is, delimit) an entire regular 
expression, which is special for that regular expression (for exam­
ple, see how slash (/) is used in the g command below). 

1.3 A period(.) is a one-character regular expression that matches any char­
acter except newline. 

178 1 February 1993 



ed(C) 

1.4 A nonempty string of characters enclosed in square brackets is a one­
character regular expression that matches any one character in that 
string. If, however, the first character of the string is a caret n, the one­
character regular expression matches any character except newline and 
the remaining characters in the string. The star(*) also has this special 
meaning only if it occurs first in the string. The dash(-) may be used to 
indicate a range of consecutive ASCII characters; for example, (0-9] is 
equivalent to (0123456789]. The dash loses this special meaning if it 
occurs first (after an initial caret, if any) or last in the string. The right 
square bracket ()) does not terminate such a string when it is the first 
character within it (after an initial caret, if any); for example, [ ]a-fl 
matches either a right square bracket or one of the letters ua" through uf" 
inclusive. Dot, star, left bracket, and the backslash lose their special 
meaning within such a string of characters. 

Ranges of characters (characters separated by" - u are treated according to the 
current locale's collation sequence (see locale(M)). Therefore, if the collation 
sequence in use is A, a, B, b, C, c, then the expression [a-di is equivalent to the 
expression [aBbCcDd]. 

To specify a collation item within a class, the item must be enclosed between 
"[."and".] u. Two character to one collation item mappings must be specified 
this way. For example, if the current collation rules specify that the characters 
"Ch" map to one character for collation purposes (as in Spanish), then this col­
lation item would be specified as [.Ch.] . 

To specify a group of collation items, which are classified as equal unless all 
other collation items in the string also match, in which case a secondary 
uweight" becomes significant, a single member of that group must be 
enclosed between u [=" and u =] ". For example, if the characters "Pt and "au 
are in the same group then the class expressions U=a=]b], [[=A=]b] and [Aab] 
are all equivalent. 

The ctype classes can also be specified within regular expressions. These are 
enclosed between [:and :] . The possible ctype classes are: 

[:alpha:] matches alphabetic characters 
[:upper:] matches upper case characters 
[:lower:] matches lower case characters 
[:digit:] Matches digits 
[:alnum:] matches alphanumeric characters 
[:space:] matches white space 
[:print:] matches printable characters 
[:punct:] matches punctuation marks 
[:graph:] matches graphical characters 
[:cntrl:] matches control characters 

1February1993 179 



ed(C) 

180 

The following rules may be used to construct regular expressions from one­
character regular expressions: 

2.1 A one-character regular expression followed by a star (*) is a regular 
expression that matches zero or more occurrences of the one-character 
regular expression. If there is any choice, the longest leftmost string that 
permits a match is chosen. 

2.2 A one-character regular expression followed by \(m\}, \(m, \}, or 
\(m,n\) is a regular expression that matches a range of occurrences of 
the one-character regular expression. The values of m and n must be 
nonnegative integers less than 255; \{m\} matches exactly m occurren­
ces; \(m, \}matches at least m occurrences; \(m,n\} matches any number 
of occurrences between m and n, inclusive. Whenever a choice exists, 
the regular expression matches as many occurrences as possible. 

2.3 The concatenation of regular expressions is a regular expression that 
matches the concatenation of the strings matched by each component of 
the regular expression. 

2.4 A regular expression enclosed between the character sequences "\(" 
and "\)" is a regular expression that matches whatever the unadorned 
regular expression matches. See 2.5 below for a discussion of why this 
is useful. 

2.5 The expression \n matches the same string of characters as was 
matched by an expression enclosed between \(and \)earlier in the same 
regular expression. Here n is a digit; the subexpression specified is that 
beginning with the n-th occurrence of \( counting from the left. For 
example, the expression \(.*\)\1$ matches a line consisting of two 
repeated appearances of the same string. 

Finally, an entire regular expression may be constrained to match only an ini­
tial segment or final segment of a line (or both): 

3.1 A caret at the beginning of an entire regular expression constrains that 
regular expression to match an initial segment of a line. 

3.2 A dollar sign ($) at the end of an entire regular expression constrains 
that regular expression to match a final segment of a line. The constr~c­
tion "entire regular expression$ constrains the entire regular expressi.m 
to match the entire line. 

The null regular expression (for example, //) is equivalent to the last regular 
expression encountered. 

1 Febmary 1993 



ed(C) 

To understand addressing in ed, it is necessary to know that there is a current 
line at all times. Generally speaking, the current line is the last line affected by 
a command; the exact effect on the current line is discussed under the descrip­
tion of each command. Addresses are constructed as follows: 

1. The character "." addresses the current line. 

2. The character "$" addresses the last line of the buffer. 

3. A decimal number n addresses the n-th line of the buffer. 

4. 'x addresses the line marked with the mark name character x, which 
must be a lowercase letter. Lines are marked with the k command 
described below. 

5. A regular expression enclosed by slashes (/) addresses the first line 
found by searching forward from the line following the current line 
toward the end of the buffer and stopping at the first line containing a 
string matching the regular expression. If necessary, the search wraps 
around to the beginning of the buffer and continues up to and includ­
ing the current line, so that the entire buffer is searched. 

6. A regular expression enclosed in question marks (?) addresses the first 
line found by searching backward from the line preceding the current 
line toward the beginning of the buffer and stopping at the first line 
containing a string matching the regular expression. If necessary, the 
search wraps around to the end of the buffer and continues up to and 
including the current line. See also the last paragraph before "Files" 
below. 

7. An address followed by a plus sign(+) or a minus sign(-) followed by 
a decimal number specifies that address plus or minus the indicated 
number of lines. The plus sign may be omitted. 

8. If an address begins with "+" or " - ", the addition or subtraction is 
taken with respect to the current line; for example, -5 is understood to 
mean.-5. 

9. If an address ends with "+" or " - ", then 1 is added to or subtracted 
from the address, respectively. As a consequence of this rule and of 
rule 8 immediately above, the address " - " refers to the line preceding 
the current line. (To maintain compatibility with earlier versions of the 
editor, the character "·" in addresses is entirely equivalent to " - ".) 
Moreover, trailing "+" and " - " characters have a cumulative effect, so 
" -- " refers to the current line less 2. 

10. For convenience, a comma (,) stands for the address pair 1, $, while a 
semicolon (;) stands for the pair.,$. 

1 February 1993 181 



ed(C) 

182 

Commands may require zero, one, or two addresses. Commands that require 
no addresses regard the presence of an address as an error. Commands that 
accept one or two addresses assume default addresses when an insufficient 
number of addresses is given; if more addresses are given than such a com­
mand requires, the last address(es) are used. 

Typically, addresses are separated from each other by a comma. They may 
also be separated by a semicolon. In the latter case, the current line(.) is set to 
the first address, and only then is the second address calculated. This feature 
can be used to determine the starting line for forward and backward searches 
(see rules 5 and 6 above). The second address of any two-address sequence 
must correspond to a line that follows, in the buffer, the line corresponding to 
the first address. 

In the following list of ed commands, the default addresses are shown in 
parentheses. The parentheses are not part of the address. 

It is generally illegal for more than one command to appear on a line. How­
ever, any command (except e, f, r, or w) may be suffixed by p or by 1, in which 
case the current line is either printed or listed, respectively, as discussed 
below under the p and I commands. 

(.)a 
text 

(. )c 
text 

(.'. )d 

efile 

The append command reads the given text and appends it after 
the addressed line; dot is left at the address of the last inserted line, 
or, if there were no inserted lines, at the addressed line. Address 0 
is legal for this command: it causes the appended text to be placed 
at the beginning of the buffer. 

The change command deletes the addressed lines, then accepts 
input text that replaces these lines; dot is left at the address of the 
last line input, or, if there were none, at the first line that was not 
deleted. 

The delete command deletes the addressed lines from the buffer. 
The line after the last line deleted becomes the current line; if the 
lines deleted were originally at the end of the buffer, the new last 
line becomes the current line. 

The edit command causes the entire contents of the buffer to be 
deleted, and then the named file to be read in; dot is set to the last 
line of the buffer. If no filename is given, the currently remem­
bered filename, if any, is used (see the f command). TJ:te number 
of characters read is typed. file is remembered for possible use ~s 
a default filename in subsequent e, r, and w commands. If file 
begins with an exclamation (!), the rest of the line is taken to be a 
shell command. The output of this command is read for the e and r 
commands. For the w command, the file is used as the standard 
input for the specified command. Such a shell command is not 
remembered as the current filename. 

1 Febniary 1993 



Efile 

£file 

ed(C) 

The Edit command is like e, except the editor does not check to see 
if any changes have been made to the buffer since the last w com­
mand. 

If file is given, the filename command changes the currently 
remembered filename to file; otherwise, it prints the currently 
remembered filename. 

( 1, $ )g/reg11lar-expressionlcommand list 
In the global command, the first step is to mark every line that 
matches the given regular expression. Then, for every such line, 
the given command list is executed with " . " initially set to that 
line. A single command or the first of a list of commands appears 
on the same line as the global command. All lines of a multiline 
list except the last line must be ended with a " \ "; a, i, and c com­
mands and associated input are permitted; the "." terminating 
input mode may be omitted if it would be the last line of the com­
mand list. An empty command list is equivalent to the p com­
mand. The g, G, v, and V commands are not permitted in the com­
mand list. See also "Limitations" and the last paragraph before 
"Files" below. 

( 1, $ )Glregnlar-expressionl 

h 

H 

I February I 993 

In the interactive Global command, the first step is to mark every 
line that matches the given regular expression. Then, for every 
such line, that line is printed, dot (.) is changed to that line, and 
any one command (other than one of the a, c, i, g, G, v, and V com­
mands) may be input and is executed. After the execution of that 
command, the next marked line is printed, and so on. A newline 
acts as a null command. An ampersand (&) causes the re­
execution of the most recent command executed within the 
current invocation of G. Note that the commands input as part of 
the execution of the G command may address and affect any lines 
in the buffer. The G command can be terminated by entering an 
INTERRUPT (pressing the(Del) key). 

The help command gives a short error message that explains the 
reason for the most recent? diagnostic. 

The Help command causes ed to enter a mode in which error mes­
sages are printed for all subsequent ? diagnostics. It will also 
explain the previous diagnostic if there was one. The H command 
alternately turns this mode on and off. It is initially off. 

183 



ed(C) 

184 

(. )i 
text 

(., .+1 )j 

(. )kx 

(.,.)I 

(.,.)ma 

(.,. )n 

(.,. )p 

p 

q 

Q 

The insert command inserts the given text before the addressed 
line; dot is left at the address of the last inserted line, or if there 
were no inserted lines, at the addressed line. This command 
differs from the a command only in the placement of the input 
text. Address 0 is not legal for this command. 

The join command joins contiguous lines by removing the 
appropriate newline characters. If only one address is given, this 
command does nothing. 

The mark command marks the addressed line with name x, which 
must be a lowercase letter. The address 'x then addresses this line. 
Dot is unchanged. 

The list command prints the addressed lines in an unambiguous 
way: a few nonprinting characters (for example, tab, backspace) 
are represented by mnemonic overstrikes, all other nonprinting 
characters are printed in octal, and long lines are folded. An l 
command may be appended to any command other than e, f, r, or 
w. 

The move command repositions the addressed line(s) after the line 
addressed by a. Address 0 is legal for a and causes the addressed 
line(s) to be moved to the beginning of the file. It is an error if 
address a falls within the range of moved lines. Dot is left at the 
last line moved. 

The number command prints the addressed lines, preceding each 
line by its line number and a tab character. Dot is left at the last 
line printed. The n command may be appended to any command 
other than e, f, r, or w. 

The print command prints the addressed lines. Dot is left at the 
last line printed. The p command may be appended to any com­
mand other than e, f, r, or w; for example, dp deletes the current 
line and prints the new current line. 

The editor will prompt with a "* " for all subsequent commands. 
The P command alternately turns this mode on and off. It is ini­
tially off. 

The quit command causes ed to exit. No automatic write of a file 
is done. 

The editor exits without checking if changes have been made in 
the buffer since the last w command. 

1 February 1993 



($ )rfile 

ed(C) 

The read command reads in the given file after the addressed line. 
If no filename is given, the currently remembered filename, if any, 
is used (see e and f commands). The currently remembered 
filename is not changed unless file is the very first filename men­
tioned since ed was invoked. Address 0 is legal for rand causes 
the file to be read at the beginning of the buffer. If the read is suc­
cessful, the number of characters read is typed. Dot is set to the 
address of the last line read in. If file begins with " ! ", the rest of 
the line is taken to be a shell command whose output is to be read. 
Such a shell command is not remembered as the current filename. 

( • , • )slregular-expression/replacement or 
( . , . )s/regular-expressionlreplacementlg or 
(.,. )slregular-expressionlreplacementln n=1-512 

l Februan11993 

The substitute command searches each addressed line for an oc­
currence of the specified regular expression. In each line in which 
a match is found, all nonoverlapped matched strings are replaced 
by replacement if the global replacement indicator g appears after 
the command. If the global indicator does not appear, only the 
first occurrence of the matched string is replaced. It is an error for 
the substitution to fail on all addressed lines. Any character other 
than space or newline may be used instead of " I " to delimit 
regular-expression and replacement. Dot is left at the address of 
the last line on which a substitution occurred. 

The n character represents any number between one and 512. This 
number indicates the instance of the pattern to be replaced on each 
addressed line. 

An ampersand (&) appearing in replacement is replaced by the 
string matching the regular-expression on the current line. The 
special meaning of the ampersand in this context may be 
suppressed by preceding it with a backslash. The characters \n, 
where n is a digit, are replaced by the text matched by the n-th reg­
ular subexpression of the specified regular expression enclosed 
between "\(" and "\) ". When nested parenthesized subexpres­
sions are present, n is determined by counting occurrences of"\(" 
starting from the left. When the character "%" is the only charac­
ter in replacement, the replacement used in the most recent substi­
tute command is used as the replacement in the current substitute 
command. The "%" loses its special meaning when it is in a 
replacement string of more than one character or when it is pre­
ceded by a " \ ". 

A line may be split by substituting a newline character into it. The 
newline in the replacement must be escaped by preceding it with a 
" \ ". Such a substitution cannot be done as part of a g or v com­
mand list. 

185 



ed(C) 

186 

(.,.)ta 

u 

This command _acts just like the m command, except that a copy of 
the addressed Imes 1s placed after address a (which may be 0). Dot 
is left at the address of the last line of the copy. 

The undo command nullifies the effect of the most recent com­
mand that modified anything in the buffer, namely the most recent 
a, c, d, g, i, j, m, r, s, t, v, G, or V command. 

( 1, $ )v/regular-expression/command list 
This command is the same as the global command g except that 
the command list is executed with dot initially set to every line 
that does not match the regular expression. 

( 1, $ )V/regular-expressionl 
This command is the same as the interactive global command G 
except that the lines that are marked during the first step are those 
that do not match the regular expression. 

( 1, $ )w file 
The write command writes the addressed lines into the named file. 
If the file does not exist, it is created with mode 666 (readable and 
writeable by everyone), unless the umask setting (see sh(C)) dic­
tates otherwise. The currently remembered filename is not 
changed unless file is the very first filename mentioned since ed 
was invoked. If no filename is given, the currently remembered 
filename, if any, is used (see e and f commands), and dot remains. 
If the command is successful, the number of characters written is 
displayed. lffile begins with an exclamation(!), the rest of the line 
is taken to be a shell command to which the addressed lines are 
supplied as the standard input. Such a shell command is not 
remembered as the current filename. 

( $ )= The line number of the addressed line is typed. Dot is unchanged 
by this command. 

!shell command 

(.+1) 

The remainder of the line after the u ! " is sent to the UNIX shell 
(sh(C)) to be interpreted as a command. Within the text of that 
command, the unescaped character " % " is replaced with the 
remembered filename. If a u ! " appears as the first character of the 
shell command, it is replaced with the text of the previous shell 
command. Thus, " !! " will repeat the last shell command. If any 
expansion is performed, the expanded line is echoed. Dot is 
unchanged. 

An address alone on a line causes the addressed line to be printed. 
A RETURN alone on a line is equivalent to .+lp. This is useful for 
stepping forward through the editing buffer a line at a time. 

1 February 1993 



ed(C) 

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a question mark 
(?) and returns to its command level. 

ed has size limitations: 512 characters per line, 256 characters per global com­
mand list, 64 characters per filename, and 128K characters in the buffer. The 
limit on the number of lines depends on the amount of user memory. 

When reading a file, ed discards ASCII NUL characters and all characters after 
the last newline. Files (for example, a.out) that contain characters not in the 
ASCII set (bit 8 on) cannot be edited by ed. 

If the closing delimiter of a regular expression or of a replacement string (for 
example, " / ") would be the last character before a newline, that delimiter 
may be omitted, in which case the addressed line is printed. Thus, the follow­
ing pairs of commands are equivalent: 
s/sl/s2 s/sl/s2lp 
g/sl g/sl/p. 
?sl ?sl? 

Diagnostics 

? file 
command errors 
an inaccessible file 

Use the help and Help commands for detailed explanations. 

If changes have been made in the buffer since the last w command that wrote 
the entire buffer, ed warns the user if an attempt is made to destroy ed's 
buffer via the e or q commands by printing "?" and allowing you to continue 
editing. A second e or q command at this point will take effect. The dash(-) 
command-line option inhibits this feature. 

Limitations 

An exclamation (!) command cannot be subject to a g or a v command. 

The ! command and the ! escape from the e, r, and w commands cannot be 
used if the the editor is invoked from a restricted shell (see sh(C)). 

The sequence \n in a regular expression does not match any character. 

The l command mishandles DEL. 

Because 0 is an illegal address for the w command, it is not possible to create 
an empty file with ed. 

If the editor input is coming from a command file; that is, 
edfile < ed-cmd-file 

the editor will exit at the first failure of a command in the command file. 

1 February 1993 187 



ed(C) 

Files 

See also 

/tmp/e# 
ed.hup 

temporary;# is the process number 
work is saved here if the terminal is hung up 

coltbl(M), grep(C), )ocale(M), regexp(S), sed(C), sh(C), stty(C) 

Standards confonnance 

ed is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

188 1 February 1993 



enable(C) 

enable 
turn on terminals and line printers 

Syntax 
enable tty ... 

enable printers 

Description 

Examples 

For terminals this program manipulates the /etc/conf/cfd/init.base file and sig­
nals init to allow logins on a particular terminal. 

Do not use this command to enable /dev/console, as this may corrupt the 
/etc/inittab file. 

For line printers, enable activates the named printers and enables them to 
print requests taken by lp(C). Use lpstat(C) to find the status of the printers. 

A simple command to enable tty01 follows: 

enable ttyOl 

Authorization 

Files 

See also 

The behavior of this utility is affected by assignment of the printerstat author­
ization. Refer to the "Using a secure system'' chapter of the User's Guide for 
more details. 

/dev/tty* 
/etc/conf/cfd/init.base 
/etc/conf/init.d/sio 
/usr/spool/lp/* 

disable(C), getty(M), init(M), inittab(F), login(M), lp(C), lpstat(C), uugetty(M) 

1 February 1993 189 



env(C) 

env 
set environment for command execution 

Syntax 
env [-] [ name=valtie] ... [command [args] ) 

printenv [-] [ name=value] ... [command [args]] 

Description 

The env command obtains the current "environment", modifies it according 
to its arguments, then executes the command with the modified environment. 
Arguments of the form name are merged into the inherited environment 
before the command is executed. The - flag causes the inherited environment 
to be ignored completely, so that the command is executed with exactly the 
environment specified by the arguments. 

If no command is specified, the environment is printed, one name-value pair 
per line. 

Limitations 

See also 

The old printenv command was replaced in System V by the env command. 
The current printenv is a link to env. 

environ(M), exec(S), profile(F), sh(C) 

Standards conformance 

env is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

190 1 February 1993 



ex(C) 

ex, edit 
invoke a text editor 

Syntax 

ex I -s ] I -v] I -t tag I I -r file ] [ -L ] [ -R ] I -c command ] name ... 

edit I -r ] I -x I I -C ] name ... 

Description 

Files 

See also 

The ex command is the root of the editors ex, vi(C), view, and vedit. ex is a 
superset of ed, with the most notable extension being a display editing facil­
ity. Display-based editing is the focus of the vi family of editors. 

edit is a variant of ex recommended for new or casual users who wish to use a 
command-oriented editor. It operates precisely as ex with the following 
options automatically set: 

novice ON 

report ON 

showmode ON 

magic OFF 

These options can be turned on or off via the set command in ex. 

Refer to the vi(C) page for a complete description of the ex commands. 

/usr/lib/ex3.7strings 
/usr/lib/ex3.7recover 
/usr/lib/ex3.7preserve 
/usr/lib/terminfo 
$HOME/.exrc 
/tmp/Exnnnnn 
/tmp/Rxnnnnn 
/usr /preserve 

error messages 
recover command 
preserve command 
describes capabilities of terminals 
editor startup file 
editor temporary 
named buffer temporary 
preservation directory 

awk(C), ctags(CP), ed(C), grep(C), infocmp(ADM), sed(C), tic(C), terminfo(F), 
terminfo(M), vi(C) 

1 February 1993 191 



ex(C) 

Standards confonnance 

192 

ex is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

ex was developed at the University of California at Berkeley and is used with 
permission. 

1February1993 



expr(C) 

ex pr 
evaluate arguments as an expression 

Syntax 
expr arguments 

Description 
The arguments are taken as an expression. After evaluation, the result is writ­
ten on the standard output. Terms of the expression must be separated by 
blanks. Characters special to the shell must be escaped. Note that 0 is 
returned to indicate a zero value, rather than the null string. Strings contain­
ing blanks or other special characters should be quoted. Integer-valued argu­
ments may be preceded by a unary minus sign. Internally, integers are treated 
as 32-bit, 2's complement numbers. 

The operators and keywords are listed below. Individual parameters within 
expressions may need to be quoted or escaped, since many of the characters 
that have special meaning in the shell also have special meaning in expr. The 
list is in order of increasing precedence, with equal precedence operators 
grouped within braces ( I and I ). Parentheses ( ) can be used for grouping; see 
the Examples section below for the syntax. 

expr is useful for performing variable arithmetic and other variable manipula­
tion within shell scripts. See the Examples section below for some ideas. 

arg I arg 
Returns the first arg if it is neither null nor 0, otherwise returns the second 
arg. 

arg&arg 
Returns the first arg if neither arg is null nor 0, otherwise returns 0. 

arg I =, ==, >, >=, <, <=, != I arg 
Returns the result of an integer comparison if both arguments are integers, 
otherwise returns the result of a lexical comparison, as defined by the 
locale. The result will be 1 if the expression is true and 0 if the expression is 
false. The double equals sign(==) does the same thing as the single equals 
sign(=); it is simply an alternative syntax. 

arg I*,/, "lo l arg 
Multiplication, division, or remainder of the integer-valued arguments. 

arg I +, - l arg 
Addition or subtraction of integer-valued arguments. 

l February 1993 193 



expr(C) 

arg: arg 
The matching operator (:) compares the first argument with the second 
argument, which must be a regular expression; regular expression syntax is 
the same as that of ed(C), except that all patterns are "anchored" (that is, 
begin with a caret (")) and therefore the caret is not a special character in 
that context. (Note that in the shell, the caret has the same meaning as the 
pipe symbol ( I).) Normally the matching operator returns the number of 
characters matched (0 on failure). Alternatively, the \( ... \) pattern sym­
bols can be used to return a portion of the first argument. 

match string rexp 
The match operator is identical in function to the colon operator (:) 
described above, but with a different syntax. 

substr string x y 
The substring operator takes three arguments: a string, an integer index 
into the string, x; and the number of characters to return from the string, y. 
substr goes to the xth character in string and returns the next y characters. 
If y is greater than the number of remaining characters in the string, expr 
will return the remainder of the string. x must be an integer greater than 0; 
y must be a positive integer (0 is acceptable, if you want 0 as the result). See 
the following section for an example. 

length string 
The length operator returns the length (the number of characters) of string. 

index string r [stuv I 
The index operator returns an integer indicating the place of r in string. If r 
is not in string, 0 is returned. You can specify as many characters as you 
like in the second argument; expr will then take the first character which 
appears in string and return its place in the string as an integer. See the fol­
lowing section for an example. 

Exit values 

194 

As a side effect of expression evaluation, expr returns the following exit 
values: 

0 If the expression is neither null nor zero 

1 If the expression is null or zero 

2 For invalid expressions 

1February1993 



expr(C) 

Diagnostics 

Examples 

syntax error 
For operator /operand errors, including unset variables 

nonnumeric argument 
If arithmetic is attempted on a nonnumeric string 

This is an example of how expr can be used in a shell script to do variable 
arithmetic: 

a=2 
a='expr $a + 1' 
echo $a 
3 

Parentheses can be placed around the part of an expression you want 
evaluated first. Be careful with the syntax; the backslashes and whitespace 
are essential: 

expr \( 1 + 2 \) \* 10 
30 

The matching operator in expr (:or match) can be used to return a portion of a 
pathname: 

a=/usr/lulu/valentines/woowoo 
expr $a : '.*I\ (. *\)' 
woowoo 

basename(C) does the same thing, however, and uses a simpler syntax: 
a=/usr/lulu/valentines/woowoo 
basename $a 
woowoo 

You can use the length operator to check the length of a string variable, and 
assign this value to another variable, if you like: 

a=/usr/lulu/valentines/woowoo 
b='expr length $a' 
echo $b 
27 

The substring (substr) operator pulls out a specific part of a string: 
expr substr mongoose 4 
goose 

l February 1993 195 



expr(C) 

Here, the expr substring operator returns a substring of "mongoose# specified 
by 4 (start from the fourth character) and 7 (give me the next seven charac­
ters). Note that there are not seven more characters in umongoose" from the 
"g", so expr only returns what is left. 

The index operator tells you the place of a character in a string: 
expr index wombat zoqb 
2 

In this example, the index operator takes the "ri', the first character that is 
actually in the string "wombat", and returns its place in the string. expr index 
wombat o would have the same result. 

Limitations 

See also 

After argument processing by the shell, expr cannot tell the difference 
between an operator and an operand except by the value. If Sa is an equals 
sign(=), the command: 

expr $a = 11 =" 
looks like: 

expr 

The arguments are passed to expr and will all be taken as the = operator. The 
following permits comparing equals signs: 

expr X$a = X= 

awk(C), basename(C), bc(C), dd(C), locale(M), sh(C) 

Standards confonnance 

expr is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

196 1 February 1993 



factor( CJ 

factor 
factor a number 

Syntax 
factor I number I 

Description 
When factor is invoked without an argument, it waits for a number to be 
typed in. If you type in a positive number less than 246 (about 7.2xl013 ) it will 
factor the number and print its prime factors; each one is printed the proper 
number of times. Then it waits for another number. It exits if it encounters a 
zero or any non-numeric character. 

If factor is invoked with an argument, it factors the number as above and then 
exits. 

The time it takes to factor a number, n, is proportional to ..[ri. It usually takes 
longer to factor a prime or the square of a prime, than to factor other numbers. 

Diagnostics 

factor returns an error message if the supplied input value is greater than 246 

or is not an integer number. 

1February1993 197 



false(C) 

false 
return with a non-zero exit value 

Syntax 

false 

Descripti.on 

false does nothing except return with a non-zero exit value. true(C), false's 
counterpart, does nothing except return with a zero exit value. false is typi­
cally used in shell procedures such as: 

until false 
do 

command 
done 

Diagnosti.cs 

false is any non-zero value. 

See also 

sh(C), true(C) 

Standards confonnance 

false is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

198 1 Febmary 1993 



file( CJ 

file 
determine file type 

Syntax 
file [ -cl ] [ -f !file I [ -m mfile I arg ... 

Description 

Files 

See also 

The file command performs a series of tests on each argument in an attempt 
to classify it. If an argument appears to be ASCII, file examines the first 512 
bytes and tries to guess its language. If an argument is an executable a.out, 
file will print the version stamp, provided it is greater than 0. 

-c The -c option causes file to check the magic file for format errors. This 
validation is not normally carried out for reasons of efficiency. No file 
typing is done under -c. 

-L The -L option causes file to follow symbolic links. By default, symbolic 
links are not followed. 

-f If the -f option is given, the next argument is taken to be a file containing 
the names of the files to be examined. 

-m The -m option instructs file to use an alternate magic file. 

The file command uses the file /etc/magic to identify files that have some sort 
of #magic numbe~; that is, any file containing a numeric or string constant 
that indicates its type. Commentary at the beginning of /etc/magic explains its 
format. 

/etc/magic 

filehdr(FP} 

Standards confonnance 

file is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 199 



find(C) 

find 
find files 

Syntax 

find pathname-list expression 

Description 

200 

The find command is used to find files matching a certain set of selection cri­
teria. find recursively descends the directory hierarchy for each pathname in 
the pathname-list (that is, one or more pathnames) seeking files that match a 
boolean expression written in the primaries given below. 

Expressions 
For each file encountered, find evaluates the specified expression, formed of 
one or more of the following primary expressions, which may evaluate as true 
or false. In the descriptions, the argument n is used as a decimal integer 
where +n means more than n, -n means less than n and n means exactly n. 

-atime n 
True if the file was last accessed n days ago. 

-cpio device 
Writes the current file on device in cpio(F) format (5120-byte records). 
Always true. 

-ctimen 
True if the status of the file was last changed (that is, created or modified) 
ndaysago. 

-depth 
Causes all entries in a directory to be acted upon before the directory itself. 
This can be useful when used with cpio(C) or the -cpio expression to 
transfer files located in directories without write permission. Always true. 

-exec cmd 
Executes shell command cmd. The end of cmd must be punctuated by an 
escaped semicolon. A command argument () is replaced by the current 
path name. True if the executed cmd returns a zero value as exit status 
(most commands return a zero value on successful completion and a non­
zero value if an error is encountered). 

1 February 1993 



find( CJ 

-follow 
Always true; causes symbolic links to be followed. When following sym­
bolic links, find keeps track of the directories visited so that it can detect 
infinite loops. For example, an infinite loop in a find would occur if a 
symbolic link pointed to an ancestor. This expression should not be used 
with the -type 1 expression. 

-group gname 
True if the file belongs to the group gname. If gname is numeric and does 
not appear in the /etc/group file as a group name, it is taken as a group ID. 

-inumnum 
True if the file's inode is num. This is useful for locating files with match­
ing inodes. 

-links n 
True if the file has n links. 

-local 
True if the file physically resides on the local system. 

-mount 
Always true; restricts the search to the file system containing the directory 
specified, or if no directory was specified, the current directory. 

-mtimen 
True if the data in the file was last modified n days ago. 

-name pattern 
True if pattern matches the current file name. pattern is similar to sh(C)'s 
filename matching syntax and therefore care must be taken to escape or 
quote patterns containing the following characters: the left bracket ([), the 
question mark(?) and the star(*). 

-newer file 
True if the current file has been modified more recently than the argument 
file. 

-okcmd 
Like -exec except that the generated command line is printed with a ques­
tion mark first, and is executed only if the user responds by typing u y u. 

-permonum 

1 February 1993 

True if the file permission flags exactly match onum (see chmod(C)). If 
onum is prefixed by a minus sign, all other modes become significant (see 
mknod(S)), including the file type, setuid, setgid, and sticky bits rather 
than just read/write/execute modes for owner /group /other. 

201 



find( CJ 

Examples 

202 

-print 
Causes the current path name to be printed. This option is used to create a 
list of files matched by the previous primaries. Always true. 

-sizen[c) 
True if the file is n blocks long (1024 bytes per block), not including 
indirect blocks. If n is followed by a • c ", the size is in characters. 

-typex 
True if the type of the file is x, where x is b for block special file, c for char­
acter special file, d for directory, p for named pipe (first-in-first-out (FIFO)), 
f for regular file, or I for symbolic link. 

-useruname 
True if the file belongs to the user uname. If uname is numeric and does not 
appear as a login name in the /etc!passwd file, it is taken as a user ID. 

( expression ) 
True if the parenthesized expression is true. Usually used with the -o 
operator (see below), parentheses are used for grouping. Parentheses are 
special to the shell and must be escaped. 

The primaries may be combined using the following operators (in order of 
decreasing precedence): 

The • ! " operator specifies the negation of the next primary (that is, 
!-newer file is true if the current file is not newer than file). This is the 
equivalent of the logical "not" operator. 

-o Placing the -o operator between two primaries creates an expression that 
is true if either of the two primaries is true. It should be used with 
parentheses (that is, \( -perm 644 -o -perm 664 \) is true if the current file 
has permissions 644 or 664). This is equivalent to the logical "inclusive or" 
operator. 

Note that placing two primaries next to each other is the equivalent of the log­
ical "and" operation. The precedence of this operation is less than that of the 
• ! • operator but greater than that of the -o operator. 

The following command searches for files named chapter1 in the current ~ire~­
tory and all directories below it and sends the pathname of any such files 1t 
finds to the standard output: 

find • -name chapterl -print 
The following removes all files named core or filenames ending in .out that 
have not been accessed in the last seven days. 

find I\( -name core -o -name "*.out" \) -atime +7 -exec rm 11 \; 

1 February 1993 



Files 

See also 

find( CJ 

The next example uses find with the -cpio expression to make a tape archive 
of all files modified within the last seven days. Note the use of the -depth 
option to prevent any problems with read-only directories: 

find/ -depth -mtime -7 -print -cpio /dev/rctO 

find is used here to list all files within a given range of sizes (between 50 and 
100 kilobytes) by including the -size expression twice: 

find I -size +50 -size -100 -exec ls -s {) \; 

For comparison, the ls(C) command is called with the -s option to report the 
size of each file in 512-byte blocks (including indirect blocks). 

/etc/passwd user names and uids 
/etc/group group names and gids 

cpio(C), cpio(F), sh(C), stat(S), test(C) 

Standards confonnance 

find is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 203 



finger(C) 

finger 
find information about users 

Syntax 

finger [ -bfilpqsw ] [ login1 [ login2 ... ) ) 

Description 

204 

By default finger lists the login name, full name, terminal name and write 
status (as a "*" before the terminal name if write permission is denied), idle 
time, login time, office location, and phone number (if they are known) for 
each current user. (Idle time is minutes if it is a single integer, hours and 
minutes if a colon(:) is present, or days and hours if a" d" is present.) 

A longer format also exists and is used by finger whenever a list of names is 
given. (Account names as well as first and last names of users are accepted.) 
This is a multi-line format; it includes all the information described above as 
well as the user's home directory and login shell, any plan which the person 
has placed in the file .plan in their home directory, and the project on which 
they are working from the file .project which is also in the home directory. 

finger options are: 

-b Briefer long output format of users. 

-f Suppresses the printing of the header line (short format). 

-i Quick list of users with idle times. 

-1 Forces long output format. 

·p Suppresses printing of the .plan files. 

·q Quick list of users. 

-s Forces short output format. 

-w Forces narrow format list of specified users. 

1 February 1993 



finger( CJ 

Examples 
Entries in the /etc!passwd file have the following format: 

login name:user password(coded):user ID:group ID:comments:home 
directory:login shell 

The comment field corresponds to what appears in the finger output. For 
example, in the following /etc!passwd entry: 

blf:*:47:5:Brian Foster, Mission, x70, 767-1234 
: /u/blf: /bin/sh 

the comment field, "Brian Foster, Mission, x70, 767-1234," contains data for 
the "In Real Life," "Office," and "Home Phone" columns of the finger listings. 

Limitations 

Files 

See also 

Only the first line of the .project file is printed. 

Idle time is computed as the elapsed time since any activity on the given ter­
minal. This includes previous invocations of finger which may have modi­
fied the terminal's corresponding device file /dev/tty??. 

/etc/utmp 
/etc!passwd 
$HOME/.plan 
$HOME/ .project 

who file 
user names, offices, phones, login directories, and shells 
plans 
projects 

w(C), who(C) 

Standards conformance 

This utility is not part of any currently supported standard; it was developed 
at the University of California at Berkeley and is used by permission. 

1 February 1993 205 



fixhdr(C) 

fixhdr 
change executable binary file headers 

Syntax 

fixhdr option files 

Description 

fixhdr changes the header of output files created by link editors or assem­
blers. The kinds of modifications include changing the format of the header, 
the fixed stack size, the standalone load address, and symbol names. 

Using fixhdr allows the use of binary executable files, created under other 
versions or machines, by simply changing the header information so that it is 
usable by the target CPU. 

These are the options to fixhdr: 

-xa 

-xb 

-x4 

-x5 [-n] 

Change the x.out format of the header to the a.out format. 

Change the x.out format of the header to the b.out format. 

Change the x.out format of the header to the 4.2BSD a.out format. 

Change the x.out format of the header to 5.2 (UNIX™ System V 
Release 2) a.out format. The -n flag causes leading underscores on 
symbol names to be passed with no modifications. 

-ax -c [11,86] 
Change the a.out format of the header to the x.out format. The -c 
flag specifies the target CPU. 11 specifies a PDP-11 CPU. 86 speci­
fies one of the 8086 family of CPUs (8086, 8088, 80186, 80286 or 
80386). 

-bx Change the b.out format of the header to the x.out format. 

-Sx [-n] Change the 5.2 (UNIX System V Release 2) a.out format of the 
header to the x.out format. The -n flag causes leading underscores 
on symbol names to be passed with no modifications. 

-86x Add the x.out header format to the 86rel object module format. See 
86rel(FP). 

-F num Add (or change) the fixed stack size specified in the x.out format of 
the header. num must be a hexadecimal number. 

-A num Add (or change) the standalone load address specified in the x.out 
format of the header. num must be a hexadecimal number. 

206 1 February 1993 



-M[smlh) 

fixhdr(C) 

Change the model of the x.out or 86rel format. Model refers to the 
compiler model specified when creating the binary. s refers to 
small model, m refers to medium model, l refers to large model, 
and h refers to huge model. 

-v [2,3,5,7) Change the version of XENIX specified in the header. XENIX Ver­
sion 2 was based on UNIX Version 7. 

-s s1=s2 [-s s3=s4) 
Change symbol names, where symbol name s1 is changed to s2. 

-r Ensure that the resolution table is of non-zero size. 

-Ccpu Set the CPU type. cpu can be 186, 286, 386, 8086, or others. 

Limitations 

Files 

See also 

Give fixhdr one option at a time. If you need to make more than one kind of 
modification to a file, use fixhdr on the original file. Then use it again on the 
fixhdr output, specifying the next option. Copy the original file if you need 
an unmodified version as fixhdr makes the modifications directly to the file. 

/usr/binlfixhdr 

a.out(FP), 86rel(FP) 

Standards confonnance 

fixhdr is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 207 



format( CJ 

format 
format floppy disks 

Syntax 
format [ -n ] [ -v ] [ -f ] [ -q ] [ device ] [ -i interleave ] 

Description 

208 

The format command formats diskettes for use on a UNIX system. It may be 
used either interactively or from the command line. The default drive is 
specified in /etc/default/format. 

Options 
The following command line options are available: 

-f Suppresses the interactive feature. The format program does not wait for 
user-confirmation before starting to format the diskette. Regardless of 
whether you run format interactively, track and head information is 
displayed. 

device 
This specifies the device to be formatted. The default device is specified in 
/etc/default/format. 

-i interleave 
Specifies the interleave factor. 

-q Quiet option. Suppresses the track and head output information normally 
displayed. Although this option does not suppress the interactive prompt, 
it would typically be used with -f to produce no output at all. 

-v Specifies format verification. 

-n Specifies that the diskette is not to be verified (overrides verify entry in 
/etc/default/format). 

The file /etc/default/format is used to specify the default device to be formatted 
and whether or not each diskette is to be verified. The entries must be in the 
format DEVICE=/dev/rfdnnn and VERIFY=[yYnN], as in the following example: 

DEVICE=/dev/rfd096ds15 
VERIFY=y 

The device must be a character (raw) device. 

1 Febmary 1993 



Usage 
To run format interactively, enter: 

format 

format( CJ 

followed by any of the legal options except -f, and press (Return). When you 
run format interactively, you see the prompt: 

insert diskette in drive and press return when ready 

When you press(Return) at this prompt, format begins to format the diskette. 

If you specify the -f option, you do not see this prompt. Instead, the program 
begins formatting immediate~y upon invocation. 

Unless you specify the -q option, format displays which track and head it is 
currently on: 

track # head # 

The number signs above are replaced by the actual track and head inform­
ation. 

Limitations 

Files 

See also 

The format utility does not format floppies for use under DOS; use the -
dosformat command documented in doscmd(C). 

UNIX systems require error free floppies. 

It is not advisable to format a low density (48tpi) diskette on a high density 
(96tpi) floppy drive. Diskettes written on a high density drive should be read 
on high density drives. A low density diskette written on a high density drive 
may not be readable on a low density drive. 

The device /dev/install is used only for installing and reading floppies. 
Attempts made to format this device may result in an error. 

/etc/default/format 
/dev/rfd[O - n] 

fd(HW) 

1February1993 209 



getopt<CJ 

get opt 
parse command options 

Syntax 

set - 'getopt optstring $•' 

Description 

This command has been superseded, but is included for backwards compata­
bility; getopts(C) should be used instead. 

getopt is used to check and break up options in command lines for parsing by 
shell procedures. optstring is a string of recognized option letters (see 
getopt(S)). If a letter is followed by a colon, the option is expected to have an 
argument which may or may not be separated from it by whitespace. The 
special option • -- • is used to delimit the end of the options. getopt will place 
• -- • in the arguments at the end of the options, or recognize it if used explic­
itly. The shell arguments ($1 $2 ... ) are reset so that each option is preceded 
by a dash(-) and in its own shell argument. Each option argument is also in its 
own shell argument. 

Diagnostics 

Examples 

210 

getopt prints an error message on the standard error when it encounters an 
option letter not included in optstring. 

The following code fragment shows how one can process the arguments for a 
command that can take the options a and b, and the option o, which requires 
an argument: 

set -- 'getopt abo: $•' 
if[S?!=Ol 
then 

echo •usage: $0 [-a I -bl [-o <arg>]" 
exit 2 

f i 
for in S• 
do 

done 

case Si in 
-a I -bl 
-o) 
--) 

esac 

shift; FLAG= Si 
OARG=$3; shift shift;; 
shift; break; 

1 February 1993 



This code will accept any of the following as equivalent: 

Limitations 

cmd -aoarg 
cmd -a -o arg 
cmd -oarg -a 
cmd -a -oarg --

getopt(C) 

The "Syntax" given for this utility assumes the user has an sh(C) shell. 

See also 

getopt(S), getopts(C), sh(C) 

Standards confonnance 

getopt is conformant with AT&T SVID Issue 2. 

1 February 1993 211 



getopts(C) 

getopts, getoptcvt 
parse command options 

Syntax 

getopts optstring name [ arg ... I 

/usr/lib/getoptcvt [ -b I file 

Description 

212 

The getopts command is used by shell procedures to parse positional parame­
ters and to check for legal options. It supports all applicable rules of the com­
mand syntax standard (see Rules 3-10, Intro(C)). It should be used in place of 
the getopt(C) command. (See the "Notes" below.) 

This feature is only available in the Bourne (sh) and Korn (ksh) shells. 

optstring must contain the option letters the command using getopts will 
recognize; if a letter is followed by a colon, the option is expected to have an 
argument, or group of arguments, which must be separated from it by white 
space. 

Each time it is invoked, getopts will place the next option in the shell variable 
name and the index of the next argument to be processed in the shell variable 
OPTIND. Whenever the shell is invoked, OPTIND is initialized to 1. To pro­
cess another set of arguments within a script, set OPTIND to 1 before invoking 
getopts. 

When an option requires an option-argument, getopts places it in the shell 
variable OPTARG. 

If an illegal option is encountered, getopts prints a message to standard error, 
and sets the name variable to "?". 

When the end of options is encountered, getopts exits with a status of 1. The 
special option " -- " may be used to delimit the end of the options. 

By default, getopts parses the positional parameters. If extra arguments 
(arg .. . ) are given on the getopts command line, getopts will parse them 
instead. 

The /usr/lib/getoptcvt command reads the shell script in file, converts it to use 
getopts(C) instead of getopt(C), and writes the results to the standard output. 

-b the results of running /usr/lib/getoptcvt will be portable to earlier UNIX 
releases. /usr/lib/getoptcvt modifies the shell script in file so that when 
the resulting shell script is executed, it determines at run time whether to 
invoke getopts(C) or getopt(C). 

1 February 1993 



getopts(C) 

So all new commands will adhere to the command syntax standard described 
in Intro(C), they should use getopts(C) or getopt(S) to parse positional param­
eters and check for options that are legal for that command (see nNotes" 
below). 

Diagnostics 

Examples 

getopts prints an error message to the standard error when it encounters an 
option letter not included in optstring. 

The following fragment of a shell program (named foo) shows how one might 
process the arguments for a command that can take the options -a or -b, as 
well as the option -o which requires an option-argument: 

HELP="foo is the archetypal example program• 
USAGE="foo [[-h] I [[-a I -bl [-o list] [otherargs ... ]]]" 

if [ $# = 0 l 
then 

fi 

echo $USAGE 
exit 1 

while getopts habo: c 
do 

done 

case Sc in 
h) echo $HELP 

echo $USAGE 
exit 2 · · 

a I bl FLAG=Sc;; 
o) OARG=SOPTARG;; 
?) echo $USAGE 

exit 3;; 
esac 

shift 'expr $0PTIND - 1' 

The shift command allows the shell program to continue to process any other 
arguments. This example will accept any of the following as equivalent: 

foo -a -o ''xxx z yy" 
foo -o ''xxx z yy'' -a 
foo -a -o "xxx z yy'' --

I February 1993 213 



getopts(C) 

Notes 

See also 

214 

Although the following command syntax rule (see lntro(C)) relaxations are 
permitted under the current implementation, they should not be used because 
they may not be supported in future releases of the system. As in the "Exam­
ples" section above, -a and -o are options to command, with option -o requir­
ing an option-argument: 

command -ao xxx file 
(Rule 5 violation: options with option-arguments must not be grouped 
with other options.) 

command -a -oxxx file 
(Rule 6 violation: there must be white space after an option that takes an 
option-argument.) 

Changing the value of the shell variable OPTIND or parsing different sets of 
arguments may lead to unexpected results. 

lntro(C), getopt(S), sh(C) 

1 February 1993 



gets(C) 

gets 
get a string from the standard input 

Syntax 

gets [ string I 

Descripti.on 

See also 

The gets command can be used with csh(C) to read a string from the standard 
input. If string is given it is used as a default value if an error occurs. The 
resulting string (either string or as read from the standard input) is written to 
the standard output. If no string is given and an error occurs, gets exits with 
exit status 1. 

line(C), csh(C) 

Standards confonnance 

gets is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 215 



getsemo(C) 

getserno 
outputs the serial number 

Syntax 

getserno file ... 

Description 

216 

getserno reads the named binary file and prints the SCO serial numbers found 
within it on the standard output. 

When the named binary file is unreadable or any other file access error occurs 
an error code of 2 is returned. 

When the named binary file does not contain a SCO serial number, an error 
code of 1 is returned. 

When one or more SCO serial numbers are found an error code of 0 is returned 
and the serial number is printed. 

1 Febroary 1993 



greek(C) 

greek 
select terminal filter 

Syntax 

greek [ -Tterminal I 

Description 

Files 

See also 

greek is a filter that reinterprets the extended character set, as well as the 
reverse and half-line motions, of a 128-character TELETYPE Model 37 terminal 
for certain other terminals. Special characters are simulated by overstriking, if 
necessary and possible. If the argument is omitted, greek attempts to use the 
environment variable $TERM (see environ(M)). Currently, the following ter­
minals are recognized: 

300 
300-12 
300s 
300s-12 
450 
450-12 
1620 
1620-12 
2621 
2640 
2645 
4014 
hp 
tek 

/usr/bin/300 
/usr/bin/300s 
/usr/bin/4014 
/usr/bin/450 
/usr/bin/hp 

DASI 300 
DASI 300 in 12-pitch 
DASJ300s 
DASI 300s in 12-pitch 
DASI450 
DASI 450 in 12-pitch 
Diablo 1620 (alias DASI 450) 
Diablo 1620 (alias DASI 450) in 12-pitch 
Hewlett-Packard 2621, 2640, and 2645 
Hewlett-Packard 2621, 2640, and 2645 
Hewlett-Packard 2621, 2640, and 2645 
Tektronix 4014 
Hewlett-Packard 2621, 2640, and 2645 
Tektronix 4014 

300(C), 4014(C), 450(C), environ(M), hp(C), tenn(M), tplot(ADM) 

1 February 1993 217 



grep(C) 

grep, egrep, fgrep 
search files for a pattern 

Syntax 

grep [ -bchilnsvy 1 [ -f expfilel [ [-el expression 1 [files 1 

egrep [ -bchilnv 1 [ -f expfile 1 [ [-el expression 1 [files 1 

fgrep [ -bdnvxy 1 [ -f expfile 1 [[-el expression 1[files1 

Description 

218 

Commands of the grep family search the input files (or standard input if no 
files are specified) for lines matching a pattern. Normally, each matching line 
is copied to the standard output. If more than one file is being searched, the 
name of the file in which each match occurs is also written to the standard 
output along with the matching line (unless the -h option is used, see below). 

grep patterns are limited regular expressions in the style of ed(C}. grep uses a 
compact nondeterministic algorithm. egrep patterns are full regular expres­
sions; it uses a fast deterministic algorithm that sometimes needs exponential 
space. fgrep patterns are fixed strings. fgrep is fast and compact. 

The following options are recognized: 

-v All lines but those matching are displayed. 

-x Displays only exact matches of an entire line. (fgrep only.) 

-c Only a count of matching lines is displayed. 

-1 Only the names of files with matching lines are displayed, separated by 
newlines. 

-h Prevents the name of the file containing the matching line from being 
prepended to that line. Used when searching multiple files. (This option 
works with grep and egrep only.) 

-n Each line is preceded by its relative line number in the file. 

-b Each line is preceded by the block number on which it was found. This is 
sometimes useful in locating disk block numbers by context. 

-s Suppresses error messages produced for nonexistent or unreadable files. 
(grep only.) Note that the -s option will not suppress error messages gen­
erated by the -f option. 

1 February 1993 



grep(C) 

-i Turns on matching of letters of either case in the input so that case is insig­
nificant. Conversion between uppercase and lowercase letters is depen­
dent on the locale setting. 

-y Turns on matching of letters of either case in the input so that case is insig­
nificant. Conversion between uppercase and lowercase letters is depen­
dent on the locale setting. -y does not work with egrep. 
Note: -y is not a standard UNIX system option. It is maintained for back­
wards compatibility with XENIX. 

-e expression or strings 
Same as a simple expression argument, but useful when the expression 
begins with a dash(-). 

-f expfile 
The regular expression for grep or egrep, or strings list for fgrep is taken 
from the expfile. 

In all cases (except with -h) the filename is output if there is more than one 
input file. Care should be taken when using the characters $ * [ - I ( ) and \ in 
expression, because they are also meaningful to the shell. It is safest to 
enclose the entire expression or strings argument in single quotation marks. 
For example: 

grep '[Ss]omeone' text.file 

This command would find all lines containing the word "someone" in the file 
text.file, whether the initial" s" is uppercase or lowercase. 

Multiple strings can be specified in fgrep without using a separate strings file 
by using the quoting conventions of the shell to imbed newlines in the string 
argument. For example, if you were using the Bourne shell (sh(C)) you might 
enter the following on the command line: 

fgrep 'Someone 
someone' text.file 

This would have the same effect as the grep example above. See the csh(C) 
manual page for ways to imbed newlines in a string when using csh(C). 

egrep accepts regular expressions as in ed(C), with the addition of the 
following: 

• A regular expression followed by a plus sign(+) matches one or more oc­
currences of the regular expression. 

• A regular expression followed by a question mark (?) matches 0 or 1 occur­
rences of the regular expression. 

• Two regular expressions separated by a vertical bar ( I ) or by a newline 
match strings that are matched by either regular expression. 

• A regular expression may be enclosed in parentheses " ( ) " for grouping. 
For example: 
egrep '([Ss]ome I [Aa]ny)one' text.file 

1 February 1993 219 



grep(C) 

This example displays all lines in text.file containing the words "someone" 
or "anyone", whether or not they are spelled with initial capital letters. 
Without the parentheses, this example would display all lines containing 
the words "some" or "anyone" (because the vertical bar (I) operator is of 
lower precedence than concatenation, see below). 

Because of the algorithm used, egrep does not support extended ranges as in 
ed(C): Ranges like [a-z] are interpreted on the basis of the machine's collating 
sequence, not the collating sequence defined by the locale. grep supports 
col(C) extended ranges. 

The \( and \) operators, supported by ed(C), are not supported by egrep. 

The order of precedence of operators is [ ), then* ? +,then concatenation, then 
backslash(\) with newline or vertical bar (I). 

Exit values 

Exit status is 0 if any matches are found, 1 if no matches are found, and 2 for 
syntax errors or inaccessible files. 

Limitations 

See also 

Ideally there should be only one grep, but there isn't a single algorithm that 
spans a wide enough range of space-time tradeoffs. 

Lines are limited to 256 characters. Longer lines are truncated. 

When using grep with the -y option, the search is not made totally case insen­
sitive in character ranges specified within brackets. 

col(C), coltbl(M), ed(C), locale(M), sed(C), sh(C) 

Standards conformance 

egrep, fgrep and grep are conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

220 1 February 1993 



hd(C) 

hd 
display files in hexadecimal format 

Syntax 
hd [ -fonnat I [ -s offset I [ -n count I [file] ... 

Description 
The hd command displays the contents of files in hexadecimal, octal, decimal, 
and character formats. Control over the specification of ranges of characters 
is also available. The default behavior is with the following flags set: -abx -A. 
This says that addresses (file offsets) and bytes are printed in hexadecimal 
and that characters are also printed. If no file argument is given, the standard 
input is read. 

Options include: 

-fonnat 

1 February 1993 

Format flags may specify addresses, characters, bytes, words (2 bytes) or 
longs (4 bytes) to be printed in hex, decimal, or octal. Two special formats 
may also be indicated: text or ASCII. Format and base specifiers may be 
freely combined and repeated as desired in order to specify different bases 
(hexadecimal, decimal or octal) for different output formats (addresses, 
characters, etc.). All format flags appearing in a single argument are 
applied as appropriate to all other flags in that argument. 

If no output fonnat is given, but a base specifier is present, the output for­
mat is set to -acbwl. If no base specifier is given, but an output format is 
present, the base specifier is set to -xdo. If neither is present, the format 
flag is set to -abx-A. 

-acbwlA outputs format specifiers for addresses, characters, bytes, words, 
longs and ASCII respectively. Only one base specifier will be used for 
addresses. The address will appear on the first line of output that begins 
each new offset in the input. 

The character format prints all printable characters without change, spe­
cial C escapes as defined in the language, and the remaining values in the 
specified base. 

The ASCII format prints all printable characters without change, and all 
others as a dot (.). This format appears to the right of the first of other 
specified output formats. A base specifier has no meaning with the ASCII 
format. If no other output format (other than addresses) is given, bx is 
assumed. If no base specifier is given, all of xdo are used. 

221 



hd(C) 

222 

-xdo outputs base specifiers for hexadecimal, decimal and octal. 

-t prints a text file, each line preceded by the address in the file. Normally, 
lines should be terminated by a \n character; but long lines will be broken 
up. Control characters in the range OxOO to Oxlf are printed as •@ to ·_. 
Bytes with the high bit set are preceded by a tilde n and printed as if the 
high bit were not set. The special characters ·, - and \ are preceded by a 
backslash (\)to escape their special meaning. As special cases, these two 
values are represented numerically as '\177' and '\377'. This flag will 
override all output format specifiers except addresses. 

-s offset 
Specify the beginning offset in the file where printing is to begin. If no file 
argument is given, or if a seek fails because the input is a pipe, offset bytes 
are read from the input and discarded. Otherwise, a seek error will ter­
minate processing of the current file. 

The offset may be given in decimal, hexadecimal (preceded by Ox), or octal 
(preceded by a 0). It is optionally followed by one of the following multi­
pliers: w, I, b, or k; for words (2 bytes), long words (4 bytes), half kilobytes 
(512 bytes), or kilobytes (1024 bytes), respectively. Note that this is the one 
case where "b " does not stand for bytes. Since specifying a hexadecimal 
offset in blocks would result in an ambiguous trailing "b ", any offset and 
multiplier may be separated by an asterisk(*). (The asterisk may need to 
be escaped to protect it from the shell.) 

-ncount 
Specify the number of bytes to process. The count is in the same format as 
offset, above. 

1 February 1993 



head(C) 

head 
print the first few lines of a file 

Syntax 
head I -count] [file ... ] 

Description 

See also 

The head filter prints the first count lines of each of the specified files. If no 
files are specified, head reads from the standard input. If no count is speci­
fied, then 10 lines are printed. 

tail(C) 

Standards conformance 

head is not part of any currently supported standard; it was developed at the 
University of California at Berkeley and is used with permission. 

I February 1993 223 



hello( CJ 

hello 
send a message to another user 

Syntax 

hello user [tty) 

Description 

Files 

See also 

224 

hello sends messages from one user to another. When first called, hello dis­
plays the following message: 

Message from sender's-system! sender's-name sender's-tty 

The recipient of the message should write back at this point. Communication 
continues until interrupted. (On most terminals, pressing the (Del) key sends 
an interrupt.) At that point hello prints (end of message) on the other termi­
nal, and exits. 

To write to a user who is logged in more than once, the user can employ the 
tty argument to specify the appropriate terminal name. The who(C) com­
mand can be used to determine the correct terminal name. 

Permission to write may be allowed or denied by the recipient, using the 
mesg command. Writing is disallowed by default. Certain commands, such 
as nroff and pr, prohibit messages in order to prevent disruption of output. 

If the character " ! " is found at the beginning of a line, hello calls the shell to 
execute the rest of the line as a command. 

The folJowing protocol is suggested for using hello. When first writing to 
another user, the sender should wait for that user to write back before sending 
a message. Each party should end each message with a signal indicating that 
the other may reply: 'd for "over" is conventional. The signal 'oo' for "over 
and out" is suggested when conversation is about to be terminated. 

/etc/utmp 
/bin/sh 

mail(C), mesg(C), who(C), write(C) 

1 Febrnary 1993 



hel/o(C) 

Standards conformance 

hello is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 225 



hp(C) 

hp 
handle special functions of Hewlett-Packard terminals 

Syntax 

hp[-e I [ ·m] 

Description 

hp supports the special functions of the Hewlett-Packard 2640 series of termi­
nals, with the primary purpose of producing accurate representations of most 
nroff output. A typical usage is in conjunction with text processing software: 

nroff -h files . . . I hp 

Regardless of the hardware options on your terminal, hp tries to do sensible 
things with underlining and reverse line-feeds. If the terminal has the udis­
play enhancementsu feature, subscripts and superscripts can be indicated in 
distinct ways. If it has the umathematical-symbol" feature, Greek and other 
special characters can be displayed. 

The flags are as follows: 

-e It is assumed that your terminal has the udisplay enhancementsu feature, 
and so maximal use is made of the added display modes. Overstruck 
characters are presented in the Underlined mode. Superscripts are 
shown in Half-bright mode, and subscripts in Half-bright, Underlined 
mode. If this flag is omitted, hp assumes that your terminal lacks the 
udisplay enhancements" feature. In this case, all overstruck characters, 
subscripts, and superscripts are displayed in Inverse Video mode, that is, 
dark-on-light, rather than the usual light-on-dark. 

-m Requests minimization of output by changing new-lines to ·M's. Any 
contiguous sequence of 3 or more new-lines is converted into a sequence 
of only 2 new-lines; that is, any number of successive blank lines pro­
duces only a single blank output line. This allows you to retain more 
actual text on the screen. 

With regard to Greek and other special characters, hp provides the same set 
as 300(C) , except that unot" is approximated by a right arrow, and only the 
top half of the integral sign is shown. 

Diagnostics 

line too long 

226 

The line is too long if the representation of a line exce_eds 
1,024 characters. The exit codes are 0 for normal termina­
tion, 2 for all errors. 

1 February 1993 



hp(C) 

Limitations 

See also 

An noverstriking sequencen is defined as a printing character followed by a 
backspace followed by another printing character. In such sequences, if either 
printing character is an underscore, the other printing character is shown 
underlined or in Inverse Video; otherwise, only the first printing character is 
shown (again, underlined or in Inverse Video). Nothing special is done if a 
backspace is adjacent to an ASCII control character. Sequences of control 
characters (for example, reverse line-feeds, backspaces) can make text ndisap­
pear.n In particular, tables generated by tbl(CT) that contain vertical lines will 
often be missing the lines of text that contain the nfoot" of a vertical line, 
unless the input to hp is piped through col(C). 

Although some terminals do provide numerical superscript characters, no 
attempt is made to display them. 

300(C), greek(C) 

1 February 1993 227 



hwconfig(C) 

hwconfig 
read the configuration information 

Syntax 

/etc/hwconfig [ -nlhcq I [ ·f filename I [ param I [ param=val ] ... 

Description 

228 

The hwconfig command returns the configuration information contained in 
the file /usr/adm/hwconfig or in the file specified on the command line with the 
-f filename option. Using combinations of the remaining options, the user can 
view as much information as needed from the configuration file. The display 
format is as follows: 

magic_char device_name base+f inish vec dma rest 

where: 

magic_char 
is the character"%". 

device_name 
is the name of the device driver. 

base+ finish 
are the starting and the finishing addresses of the driver working space. 

vec is the interrupt vector number in decimal. 

dma is the DMA channel number. 

rest is a possibly empty list of parameter=value pairs. 

The default hwconfig display looks similar to this: 
fpu 13 type=80387 
floppy Ox3F2-0x3F7 6 unit=O type=96ds15 
serial Ox2F8-0x2FF 3 unit=l type=Standard nports=l 
parallel Ox378-0x37A unit=O 
console - unit=ega type=O 
disk OxlFO-OxlF7 14 type=WO unit=O cyls=791 hds=16 secs=48 

1 February 1993 



hwconfig(CJ 

Options 

-n The device name is always printed out. 

-I The long format of the device configuration content is used. 

-h Use the long format, with headers. 

-c Check for device conflicts, including 1/0 addresses, OMA channels, and 
interrupt vectors which are being used by more than one driver. 

-q Check quietly for device conflicts; display nothing. When both -c and -q 
are given, display conflicts only. 

-£file 
Use file as the input file instead of the default /usr/adm/hwconfig. 

pa ram 
Show all values of param throughout the configuration file. param can be 
any valid system parameter. The current valid system parameters are: 
name, base, offset, vec, dma, unit, type, nports, hds, cyls, secs, and drvr. 

param=val 
Show only information from the line where param equals the value val. 

The -n, -I and -h options are in increasing overriding power. That is, if -n and 
-I are both specified, -I will be used. param on its own indicates a query for its 
corresponding value(s), whereas param=value indicates a matching 
<token,val> pair in the input file. -I is used by default if there are no queries 
and no explicit option. 

Command-line queries, that is, those with parameters only, are always dis­
played in short format. 

Exit values 

Examples 

hwconfig returns 0 for success, 1 for conflicts detected, 2 for invalid 
arguments. 

hwconfig 
The entire contents of the file /usr/adm/hwconfig are printed. 

hwconfig base 
All the values of the base parameter found in /usr/adm/hwconfig are 
printed. 

1 February 1993 229 



hwconjig(CJ 

hwconfig-f conf base=300 vec=19 
All entries in conf that match the base and vec values given are printed. 

hwconfig name=floppy base 
The name and value of base in /usr/adm/hwconftg for the drivers with the 
name floppy are printed for all entries. 

hwconfig -n base dma 
The device name associated with the base and dma is displayed. For 
example, 
name=scsi base=Ox234 dma=4 

hwconfig base dma vec=4 
The base and dma values of all /usr/adm/hwconftg entries with matching 
vec=4 are printed. 

hwconfig -1 base dma vec=4 
is like hwconfig -1 vec=4 except that base and dma values will be printed 
first. 

hwconfig-h 
Everything is printed in the long format, with a header similar to the one 
shown at boot time. It will ignore all queries, but perform matching on the 
token values. For example, 
hwconf ig -h vec=4 dma=l 

will print in long format, with headers, all those entries with vec=4 and 
dma=l 

hwconfig -ch 
displays /usr/adm/hwconfig in an easy-to-read tabular format and checks for 
device conflicts. 

Limitations 

230 

Information about conflicts is purely advisory because hwconfig can only 
report about hardware devices which have been correctly recognized by a 
kernel driver. 

/etc/hwconfig is only runnable by root. 

/usr/adm/hwconfig is not normally readable by users, but can be made so by the 
system administrator. 

/usr/adm/hwconfig is written by the error logger daemon. The logger daemon 
does not run while in system maintenance mode. This means that the hwcon­
fig report is not up to date until the system is brought into multiuser mode. 

1 February 1993 



Files 
/etc/hwconfig 
/usr/lib/hwconfig.awk 
/usr/adm/hwconfig 

Standards conformance 

program file 
awk program which hwconfig uses 
default source file 

hwconfig(C) 

hwconfig is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 231 



i286emu/(C) 

i286emul 
emulate UNIX 80286 

Syntax 

i286emul [ arg .. . ) prog286 

Description 

232 

i286emul is an emulator that allows programs from UNIX System V Release 2 
or Release 3 on the Intel 80286 to run on UNIX System V Release 3 on the Intel 
80386. 

The UNIX system recognizes an attempt to exec(S) a 286 program, and auto­
matically exec's the 286 emulator with the 286 program name as an additional 
argument. It is not necessary to specify the i286emul emulator on the com­
mand line. The 286 programs can be invoked using the same command for­
mat as on the 286 UNIX System V. 

i286emul reads the 286 program's text and data into memory and maps them 
through the LDT (Local Descriptor Table) (via sysi86(5)) as 286 text and data 
segments. It also sets callgate 89 in the GOT (Global Descriptor Table) (which 
is used by 286 programs for system calls) to point to a routine in i286emul. 
i286emul starts the 286 program by jumping to its entry point. 

When the 286 program attempts to do a system call, i286emul takes control. 
It does any conversions needed between the 286 system call and the 
equivalent 386 system call, and performs the 386 system call. The results are 
converted to the form the 286 program expects, and the 286 program is 
resumed. 

The following are some of the differences between a program running on a 
286 and a 286 program using i286emul on a 386: 

• A 286 program under i286emul always has 64K in the stack segment if it is 
a large-model process, or 64K in the data segment if it is a small-model 
process. 

• System calls and signal handling use more space on the stack under 
i286emul than on a 286. 

• Attempts to unlink or write on the 286 program will fail on the 286 with 
ETXTBSY. Under i286emul, they will not fail. 

• ptrace(S) is not supported under i286emul. 

• The 286 program must be readable for the emulator to read it. 

l February 1993 



i286emul(C) 

Limitations 

Files 

The signal mechanism under the emulator is the System V release 2 signal 
mechanism rather than the System V release 3 mechanism. 

/bin/i286emul the emulator must have this name and be in /bin if it is to be au­
tomatically invoked when exec(S) is used on a 286 program 

1 February 1993 233 



id(C) 

id 
print user and group IDs and names 

Syntax 

id [-I][ -s I 

Descripti.on 

Examples 

See also 

The id command writes a message on the standard output, giving the user 
and group IDs and the corresponding names of the invoking process. If the 
effective and real IDs do not match, both are printed. 

With the -s option, id also shows the supplemental group list. On systems 
that support a large number of supplemental groups, the -s option may pro­
duce a very long line. 

With the -I option, id outputs the Login User ID (LUID) of the caller. 

id -1 produces output with the following format: 
uid=l2460ifred) gid=7003itrustedl luid=l24601fredl 

and id -1 -s produces: 
uid=l2460ifredl gid=70031trustedl iuid=l2460ifredl 
groups=70031trusted),50(groupl 

If the LUID is not set the output is: 
uid=Olrootl gid=Olroot) luid=-llnot set) 

logname(C}, getuid(S), sg(C) 

Standards conformance 

id is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

234 1 February 1993 



ismpx(C) 

ismpx 
return windowing terminal state 

Syntax 

ismpx [-s] 

Descripti.on 

The ismpx command reports whether its standard input is connected to a 
multiplexed xt(HW} channel; that is, whether it is running under layers(C) or 
not. It is useful for shell scripts that download programs to a windowing ter­
minal or depend on screen size. 

The ismpx command prints yes and returns O if invoked under layers(C}, and 
prints no and returns 1 otherwise. 

-s Do not print anything; just return the proper exit status. 

Exit values 

"Examples 

See also 

Returns O if invoked under layers(C}, 1 if not. 

if ismpx -s 
then 

jwin 
f i 

jwin(C}, Iayers(C}, xt(HW} 

1 Februar11 1993 235 



join(C) 

join 
join two relations 

Syntax 

join [ options I file1 file2 

Description 

The join command prints to the standard output a join of the two relations 
specified by the lines offile1 andfile2. l£file1 is a dash(-), the standard input 
is used. 

file1 andfile2 must be sorted in increasing collating sequence (defined by the 
current locale; see locale(M)) on the fields on which they are to be joined, nor­
mally the first in each line. 

There is one line in the output for each pair of lines infilel andfile2 that have 
identical join fields. The output line normally consists of the common field, 
then the rest of the line fromfile1, then the rest of the line fromfile2. 

Fields are normally separated by blank, tab or newline. In this case, multiple 
separators count as one, and leading separators are discarded. 

These options are recognized: 

-an In addition to the normal output, produces a line for each unpairable 
line in file n, where n is 1 or 2. 

-es Replaces empty output fields by strings. 

-j nm Joins on the mth field of file n. If n is missing, uses the mth field in 
each file. 

-o list Each output line comprises the fields specified in list, each element 
of which has the form n.m where n is a file number and m is a field 
number. 

-t c Uses character c as a field separator. Every appearance of c in a line 
is significant. 

236 1February1993 



Examples 

join(C) 

An employer has two files of data about his employees. The first file, E_pers, 
contains the name, address, and payroll number of each employee. The 
second file, E_dept, contains the payroll number, position, salary, and depart­
ment of each employee. The fields in each employee's record are separated by 
colons ":",and each record occupies one line of a file. 

The format of a record in the file E_pers would be: 
Name:Address:Payroll# 

Here are some example records that might be in the file E_pers: 
Stress C:33 Wingfield Court, Anytown, Pa 65000:133 
Leckie N:i7 Awberry Court, Ubique, Ca 18480:91 
Dixon J:l4 Tulip Gardens, Appledorn, NY 10010:231 

Each record in the file E_dept would have the format: 
Payroll#:Position:Salary:Department 

The following are some example records that might appear in E_dept: 
91:Manager:85000:Marketing 
133:Clerk:22000:Accounts 
231:Clerk:19500:Accounts 

The employer wants to know which employees earn more than $20,000. 

Firstly, the fields in the file E_pers are put in the order: 
Payroll#:Name:Address 

This ensures that the field that the files are to be joined on (payroll number) is 
the first field in both files. The reordering is performed using awk(C), and its 
output is piped through sort(C). The sample records from E_pers given above 
would become: 

133:Stross C:33 Wingfield Court, Anytown, Pa 65000 
231:Dixon J:l4 Tulip Gardens, Appledorn, NY 10010 
9l:Leckie N:17 Awberry Court, Ubique, Ca 18480 

Note that the records are sorted into order of payroll number according to the 
collating sequence (not increasing numeric order). The reordered and sorted 
file is named P _tmp: 

awk -F: '(print $3":"$1":"$2}' E_pers I sort -t: +O -1 > P _tmp 

Next, the records in the file E_dept are sorted on payroll number and the out­
put is placed in D _tmp: 
sort -t: +O -1 E_dept > D_tmp 
The sorted files are now joined on their first fields (payroll number), and the 
output is filtered using awk. A final pass through sort puts the output in 
alphabetical order: 

join -t: -o 1.2 2.3 P _tmp D_tmp I awk -F: '$2>20000 (print $1" $"$2}' I sort 

1 February 1993 237 



join(C) 

This command prints the employee's name (the second field of P _tmp) and 
their salary (the third field of D_tmp) if it is more than $20000. For the sample 
records given above, the output would be: 

Leckie N $85000 
Stress C $22000 

The output from join can be directed to a file (E_joined): 

join -t: -o 1.11.2 1.3 2.2 2.3 2.4 P _tmp D _tmp > E_joined 

Omitting the -o option causes all fields to be written to the output file, with 
the fields fromfile1 being followed by those fromfile2. However, the field on 
which the files were joined is only included once. Thus the join command 
above could be entered as: 

join -t: P _hnp D_hnp > E_joined 

The file E_joined may be processed using awk to extract any other information 
required. Here a list of all employees sorted by name within each department 
is output: 
cat E_joined I awk -F: '{print $6" "$2)' I sort 

For the sample records used in the example above, the output would be: 
Accounts Dixon J 
Accounts Stress C 
Marketing Leckie N 

Limitations 

See also 

With default field separation, the collating sequence is that of sort -b. With -t, 
the sequence is that of a plain sort. 

awk(C), comm(C), sort(C) 

Standards conformance 

join is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

238 1 February 1993 



jterm(C) 

jterm 
reset layer of windowing terminal 

Syntax 
jtenn 

Description 

The jtenn command is used to reset a layer of a windowing terminal after 
downloading a terminal program that changes the terminal attributes of the 
layer. It is useful only under layers(C). In practice, it is most commonly used 
to restart the default terminal emulator after using an alternate one provided 
with a terminal-specific application package. For example, on the AT&T 
TELETYPE 5620 DMD terminal, after executing the hp2621 command in a layer, 
issuing the jterm command will restart the default terminal emulator in that 
layer. 

The layer that is reset is the one attached to standard error; that is, the win­
dow you are in when you type the jtenn command. 

Exit values 

Returns O upon successful completion, 1 otherwise. 

See also 

layers(C) 

1February1993 239 



jwin(C) 

jwin ;..... ____________________________ ,_ 

print size of layer 

Syntax 

jwin 

Description 

The jwin command runs only under layers(C) and is used to determine thet 
size of the layer associated with the current process. It prints the width and j 
the height of the layer in bytes (number of characters across and number ol ! 
lines, respectively). For bit-mapped terminals only, it also prints the width I 
and height of the layer in bits. · 

The layer whose size is printed is the one attached to standard input; that is, I 
the window you are in when you type the jwin command. 

Exit values 

jwin returns O on successful completion, 1 otherwise. 

Diagnostics 

Examples 

See also 

240 

If layers(C) has not been invoked, an error message is printed: 
jwin: not mpx 

In the following example, the user input is in bold: 
Sjwin 
bytes: 86 25 
bits: 780 406 

layers(C) 

1 Febmary 1993 



kill(C) 

kill 
terminate a process 

Syntax 
kill [ -signo ] processid ... 

Description 
The kill command sends signal 15 (terminate) to the specified process(es). 
This will normally kill processes that do not catch or ignore the signal. The 
process number of each asynchronous process (background process) started 
with u & "is-reported by the shell (unless more than one process is started in a 
pipeline, in which case the number of the last process in the pipeline is 
reported). Process numbers can also be found by using ps(C}. 

For example, if process number 0 is specified, all processes in the process 
group are signaled. 

The killed process must belong to the current user unless he is the super user. 

If a signal number preceded by u - " is given as the first argument, that signal 
is sent instead of the terminate signal (see signal(S}}. In particular kill -9 ... is 
a sure kill. 

Limitations 

A version of kill is built into the Korn shell (ksh(C}}. It differs slightly from 
the command described here. For further details, refer to the ksh(C} entry. 

See also 

kill(S}, ps(C}, sh(C}, csh(C}, ksh(C}, signal(S} 

Standards conformance 

kill is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1February1993 241 



ksh(CJ 

ksh, rksh 
Korn shell, a standard/restricted command and programming language 

Syntax 
ksh [ ±aefhikmnoprstuvx ) [ ±o option ) ... [ -c string ) [ arg ... ) 

rksh [ ±aefhikmnoprstuvx ] [ ±o option ] ... [ -c string ) [ arg ... ] 

Description 

242" 

ksh is a command and programming language that executes commands read 
from a terminal or a file. rksh is a restricted version of the command inter­
preter ksh; it is used to set up login names and execution environments 
whose capabilities are more controlled than those of the standard shell. See 
"Invocation" below for the meaning of arguments to the shell. 

Definitions 
A metacharacter is one of the following characters: 

; & ( ) I < > new-line space tab 

A blank is a space or a tab. 

An identifier is a sequence of letters, digits, or underscores starting with a 
letter or underscore. Identifiers are used as names for functions and named 
parameters. 

A word is a sequence of characters separated by one or more non-quoted 
metacharacters. 

Commands 
A command is a sequence of characters in the syntax of the shell language. The 
shell reads each command and carries out the desired action either directly or 
by invoking separate utilities. 

A special command is a command that is carried out by the shell without creat­
ing a separate process. Except for documented side effects, most special com­
mands can be implemented as separate utilities. 

1 February 1993 



ksh(CJ 

A simple-command is a sequence of blank-separated words which may be pre­
ceded by a parameter assignment list. (See "Environment" below). The first 
word specifies the name of the command to be executed. Except as specified 
below, the remaining words are passed as arguments to the invoked com­
mand. The command name is passed as argument 0 (see exec(S)). The value 
of a simple-command is its exit status if it terminates normally, or (octal) 
200+status if it terminates abnormally (see signal(S) for a list of status 
values). 

A pipeline is a sequence of one or more commands separated by "I"· The 
standard output of each command but the last is connected by a pipe(S) to the 
standard input of the next command. Each command is run as a separate pro­
cess; the shell waits for the last command to terminate. The exit status of a 
pipeline is the exit status of the last command. 

A list is a sequence of one or more pipelines separated by ; & && or 11 and 
optionally terminated by ; & or I&. Of these five symbols, && and 11 have 
highest precedence. The following three symbols,; & and I & are of equal pre­
cedence, as are && and 11 · A semicolon (;) causes sequential execution of the 
preceding pipeline; an ampersand (&) causes asynchronous execution of the 
preceding pipeline (that is, the shell does not wait for that pipeline to finish). 
The symbol I & causes asynchronous execution of the preceding command or 
pipeline with a two-way pipe established to the parent shell. The parent shell 
can write to and read from the standard input and standard output of the 
spawned command using the -p option of the special commands read and 
print (described later). The symbol && ( 11> causes the list following it to be 
executed only if the preceding pipeline returns a zero (non-zero) value. An 
arbitrary number of new-lines may appear in a list, instead of a semicolon, to 
delimit a command. 

A command is either a simple-command or one of the following compound­
commands. A compound-command is a command that results in the·execution 
of one or more simple-commands, depending upon the state of its input. 
Unless otherwise stated, the value returned by a command is that of the last 
simple-command executed in the command. 

for identifier [ in word ... ) ;do list ;done 

1 February 1993 

Each time a for command is executed, identifier is set to the next .word 
taken from the in word list. If in word ... is omitted, then the for com­
mand executes the do list once for each positional parameter that is set 
(see "Parameter substitution" below). Execution ends when there are no 
more words in the list. 

243 



ksh(C) 

244 

select identifier [ in word ... ) ;do list ;done 
A select command prints on standard error (file descriptor 2), the set of 
words, each preceded by a number. If in word ... is omitted, then the 
positional parameters are used instead (see "Parameter substitution" 
below). The PS3 prompt is printed and a line is read from the standard 
input. If this line consists of the number of one of the listed words, then 
the value of the parameter identifier is set to the word corresponding to 
this number. If this line is empty the selection list is printed again. Other­
wise the value of the parameter identifier is set to null. The contents of the 
line read from standard input is saved in the parameter REPLY. The list is 
executed for each selection until a break or end-of-file is encountered. 

case word in [[()pattern [ I pattern] ... ) list;;] ... esac 
A case command executes the list associated with the first pattern that 
matches word. The form of the patterns is the same as that used for file­
name generation (see "File name generation" below). 

if list ;then list [ elif list ;then list ] ... [ ;else list ] ;fi 
The list following if is executed and, if it returns a zero exit status, the list 
following the first then is executed. Otherwise, the list following elif is 
executed and, if its value is zero, the list following the next then is exe­
cuted. Failing that, the else list is executed. If no else list or then list is 
executed, the if command returns a zero exit status. 

while list ;do list ;done 
until list ;do list ;done 

A while command repeatedly executes the while list and, if the exit status 
of the last command in the list is zero, executes the do list; otherwise the 
loop terminates. If no commands in the do list are executed, then the 
while command returns a zero exit status; until may be used in place of 
while to negate the loop termination test. 

( list) 
Execute list in a separate environment. Note, that if two adjacent open 
parentheses are needed for nesting, a space must be inserted to avoid 
arithmetic evaluation as described below. 

{ list;} 
list is simply executed. Note that unlike the metacharacters " (" and ") ", 
" { " and " } " are reserved words and must be at the beginning of a line or 
after a " ; " in order to be recognized. 

[[ expression II . . 
Evaluates expression and returns a zero exit status. w~en expressio~ is 
true. See "Conditional expressions" below, for a description of expression. 

1 February 1993 



ksh(C) 

function identifier I list;} 
identifier () I list;} 

Define a function which is referenced by identifier. The body of the func­
tion is the list of commands between "I" and "I". (See "Functions" 
below.) 

time pipeline 
The pipeline is executed and the elapsed time as well as the user and sys­
tem time are printed on standard error. 

The following reserved words are only recognized as the first word of a com­
mand and when not quoted: 

if 
esac 
(} 

then 
for 
function 

Comments 

else 
while 
select 

elif 
until 
time 

fi 
do 
[[]] 

case 
done 

A word beginning with u #" causes that word and all the following characters 
up to a new-line to be ignored. 

Aliasing 
The first word of each command is replaced by the text of an alias if an alias 
for this word has been defined. An alias name consists of any number of char­
acters excluding metacharacters, quoting characters, file expansion characters, 
command substitution characters, and the equals sign(=). The replacement 
string can contain any valid shell script including the metacharacters listed 
above. The first word of each command in the replaced text, other than any 
that are in the process of being replaced, will be tested for aliases. If the last 
character of the alias value is a blank then the word following the alias will 
also be checked for alias substitution. Aliases can be used to redefine special 
built in commands but cannot be used to redefine the reserved words listed 
above. Aliases can be created, listed, and exported with the alias command 
and can be removed with the unalias command. Exported aliases remain in 
effect for scripts invoked by name, but must be reinitialized for separate invo­
cations of the shell (see "Invocation" below). 

Aliasing is performed when scripts are read, not while they are executed. 
Therefore, for an alias to take effect the alias definition command has to be 
executed before the command which references the alias is read. 

Aliases are frequently used as an abbreviation for full path names. An option 
to the aliasing facility allows the value of the alias to be automatically set to 
the full pathname of the corresponding command. These aliases are called 
tracked aliases. The value of a tracked alias is defined the first time the corre­
sponding command is looked up and becomes undefined each time the PATH 
variable is reset. These aliases remain tracked so that the next subsequent 
reference will redefine the value. Several tracked aliases are compiled into the 
shell. The -h option of the set command makes each referenced command 
name into a tracked alias. 

l February 1993 245 



ksh(C) 

246 

The following exported aliases are compiled into the shell but can be unset or 
redefined: 
autoload='typeset-fu' 
false= 'let O' 
functions='typeset-f' 
hash=' alias -t' 
history='fc -1' 
integer='typeset-i' 
no_hup='?ohup<' 
r=fc-e-
true=':' 
type='whence -v' 

(The alias of nohup with a trailing space allows nohup to be used with 
aliases.) 

Tilde substitution 
After alias substitution is performed, each word is checked to see if it begins 
with an unquoted " - ". If it does, then the word up to a " I " is checked to see 
if it matches a user name in the /etc/passwd file. If a match is found, the " - " 
and the matched login name are replaced by the login directory of the 
matched user. This is called a tilde substitution. If no match is found, the origi­
nal text is left unchanged. A " - " by itself, or in front of a "I", is replaced by 
the value of the HOME parameter. A " - " followed by a "+" or" - " is replaced 
by $PWD and $0LDPWD respectively. 

In addition, tilde substitution is attempted when the value of a variable assign­
ment parameter begins with a " - ". 

Command substitution 
The standard output from a command enclosed in parentheses preceded by a 
dollar sign ($) or a pair of grave accents (") may be used as part or all of a 
word; trailing new-lines are removed. In the second (archaic) form, the string 
between the quotes is processed for special quoting characters before the com­
mand is executed. (See "Quoting".) The command substitution $(cat file) can 
be replaced by the equivalent but faster $(<file). Command substitution of 
most special commands that do not perform input/output redirection are car­
ried out without creating a separate process. 

An arithmetic expression enclosed in double parentheses preceded by a dollar 
sign ( $((expr)) ) is replaced by the value of the arithmetic expression within 
the double parentheses. 

1 February 1993 



ksh(C) 

Parameter substitution 
A parameter is an identifier, one or more digits, or any of the characters *, @, 
#, ?, -, $, and !. A named parameter (a parameter denoted by an identifier) has 
a value and zero or more attributes. Named parameters can be assigned 
values and attributes by using the typeset special command. The attributes 
supported by the shell are described later with the typeset special command. 
Exported parameters pass values and attributes to the environment. 

The shell supports a one-dimensional array facility. An element of an array 
parameter is referenced by a subscript. A subscript is denoted by a " [ ", fol­
lowed by an arithmetic expression (see "Arithmetic evaluation" below) fol­
lowed by a "] ". To assign values to an array, use set -A name value .... The 
value of all subscripts must be in the range of 0 through 1023. Arrays need 
not be declared. Any reference to a named parameter with a valid subscript is 
legal and an array will be created if necessary. Referencing an array without a 
subscript is equivalent to referencing the element zero. 

The value of a named parameter may also be assigned by writing: 
name = value [ name = vallle ] ... 

If the integer attribute, -i, is set for name the value is subject to arithmetic 
evaluation as described below. 

Positional parameters, parameters denoted by a number, may be assigned 
values with the set special command. Parameter $0 is set from argument zero 
when the shell is invoked. 

The character "$" is used to introduce substitutable parameters. 

${parameter) 
The shell reads all the characters from " ${ " to the matching " } " as part of 
the same word even if it contains braces or metacharacters. The value, if 
any, of the parameter is substituted. The braces are required when param­
eter is followed by a letter, digit, or underscore that is not to be interpreted 
as part of its name or when a named parameter is subscripted. If parame­
ter is one or more digits then it is a positional parameter. A positional 
parameter of more than one digit must be enclosed in braces. If parameter 
is "*" or "@ ", then all the positional parameters, starting with $1, are sub­
stituted (separated by a field separator character). If an array identifier 
with subscript " * " or "@" is used, then the value for each of the elements 
is substituted (separated by a field separator character). 

${#parameter) 
If parameter is " * " or "@ ", the number of positional parameters is substi­
tuted. Otherwise, the length of the value of the parameter is substituted. 

${#identifier[*]) 
The number of elements in the array identifier is substituted. 

${parameter:-word) 

1 February 1993 

If parameter is set and is non-null then substitute its value; otherwise sub­
stitute word. 

247 



ksh(C) 

248 

${parameter.=word} 
If pa~ameter is no~ set or is n':'l! then set it to word; the value of the param­
eter is then substituted. Positional parameters may not be assigned to in 
this way. 

${parameter.?word} 
If parameter is set and is non-null then substitute its value; otherwise, 
print word and exit from the shell. If word is omitted then a standard mes­
sage is printed. 

${parameter:+word) 
If parameter is set and is non-null then substitute word; otherwise substi­
tute nothing. 

${parameter#pattem} 
$lparameterlt#pattem) 

If the shell pattern matches the beginning of the value of parameter, then 
the value of this substitution is the value of the parameter with the 
matched portion deleted; otherwise the value of this parameter is substi­
tuted. In the first form the smallest matching pattern is deleted and in the 
second form the largest matching pattern is deleted. 

${parameter%pattem) 
$(parameter% %pattern} 

If the shell pattern matches the end of the value of parameter, then the 
value of this substitution is the value of the parameter with the matched 
part deleted; otherwise substitute the value of parameter. In the first form 
the smallest matching pattern is deleted and in the second form the largest 
matching pattern is deleted. 

In the above, word is not evaluated unless it is to be used as the substituted 
string, so that, in the following example, pwd is executed only if d is not set or 
is null: 

echo ${d:-$(pwd)) 
If the colon (:) is omitted from the above expressions, then the shell only 
checks whether parameter is set or not. 

The following parameters are automatically set by the shell: 

# 

? 

$ 

The number of positional parameters in decimal. 

Flags supplied to the shell on invocation or by the set command. 

The decimal value returned by the last executed command. 

The process number of this shell. 

1 February 1993 



ksh(C) 

Initially, the value"_" is the absolute pathname of the shell or 
script being executed as passed in the environment. Subse­
quently it is assigned the last argument of the previous com­
mand. This parameter is not set for commands which are asyn­
chronous. This parameter is also used to hold the name of the 
matching MAIL file when checking for mail. 

The process number of the last background command invoked. 

ERRNO The value of ermo as set by the most recent failed system call. 
This value is system dependent and is intended for debugging 
purposes. 

LINENO The line number of the current line within the script or function 
being executed. 

OLDPWD The previous working directory set by the cd command. 

OPTARG The value of the last option argument processed by the getopts 
special command. 

OPTIND The index of the last option argument processed by the getopts 
special command. 

PPID The process number of the parent of the shell. 

PWD The present working directory set by the cd command. 

RANDOM Each time this parameter is referenced, a random integer, uni-
formly distributed between 0 and 32767, is generated. The 
sequence of random numbers can be initialized by assigning a 
numeric value to RANDOM. 

REPLY This parameter is set by the select statement and by the read 
special command when no arguments are supplied. 

SECONDS Each time this parameter is referenced, the number of seconds 
since shell invocation is returned. If this parameter is assigned a 
value, then the value returned uron reference will be the value 
that was assigned plus the number of seconds since the assign­
ment. 

The following parameters are used by the shell: 

CDPATH The search path for the cd command. 

COLUMNS If this variable is set, the value is used to define the width of the 
edit window for the shell edit modes and for printing select lists. 

EDITOR If the value of this variable ends in emacs, gmacs, or vi and the 
VISUAL variable is not set, then the corresponding option (see 
"Special commands" -- set below) will be turned on. 

1 February 1993 249 



ksh(C) 

250 

ENV 

FCEDIT 

FPATH 

HISTFILE 

HISTSIZE 

HOME 

IFS 

LINES 

MAIL 

MAILCHECK 

If this parameter is set, then parameter substitution is performed 
on the value to generate the pathname of the script that will be 
executed when the shell is invoked. (See "Invocation" below.) 
This file is typically used for alias and function definitions. 

The default editor name for the fc command. 

The search path for function definitions. This path is searched 
when a function with the -u attribute is referenced and when a 
command is not found. If an executable file is found, then it is 
read and executed in the current environment. 

If this parameter is set when the shell is invoked, then the value 
is the pathname of the file that will be used to store the com­
mand history. (See "Command re-entry" below.) 

If this parameter is set when the shell is invoked, then the num­
ber of previously entered commands that are accessible by this 
shell will be greater than or equal to this number. The default is 
128. 

The default argument (home directory) for the cd command. 

Internal field separators, normally space, tab, and new-line, that 
are used to separate command words which result from com­
mand or parameter substitution, and for separating words with 
the special command read. The first character of the IFS param­
eter is used to separate arguments for the S* substitution. (See 
"Quoting" below.) 

If this variable is set, the value is used to determine the column 
length for printing select lists. select lists will print vertically 
until about two-thirds of LINES lines are filled. 

If this parameter is set to the name of a mail file and the MAIL­
PATH parameter is not set, then the shell informs the user of 
arrival of mail in the specified file. 

This variable specifies how often (in seconds) the shell ~ill 
check for changes in the modification time of any of the files 
specified by the MAILPATH or MAIL parameters. The defa~lt 
value is 600 seconds. When the time has elapsed the shell will 
check before issuing the next prompt. 

1 February 1993 



ksh(C) 

MAILPATH A colon (:) separated list of file names. If this parameter is set 
then the shell informs the user of any modifications to the speci­
fied files that have occurred within the last MAILCHECK 
seconds. Each file name can be followed by a " ? " and a mes­
sage that will be printed. The message will undergo parameter 
substitution with the parameter $_ defined as the name of the 
file that has changed. The default message is 
you have mail in $_. 

PATH The search path for commands (see "Execution" below). The 
user may not change PATH if executing under rksh (except in 
.profile). 

PSl The value of this parameter is expanded for parameter substitu­
tion to define the primary prompt string which by default is "$ 
"(dollar-space). The character"!" in the primary prompt string 
is replaced by the command number (see "Command re-entry" 
below). 

PS2 Secondary prompt string, by default "> ". 

PS3 ~election prompt string used within a select loop, by default "#? 

PS4 The value of this parameter is expanded for parameter substitu­
tion and precedes each line of an execution trace. If omitted, the 
execution trace prompt is"+ ". 

SHELL The pathname of the shell is kept in the environment. At invo­
cation, if the basename of this variable matches the pattern 
*r*sh, then the shell becomes restricted. 

TMOUT If TMOUT is set to a value greater than zero, the shell will ter­
minate if a command is not entered within the prescribed num­
ber of seconds after issuing the PSl prompt. (Note that the shell 
can be compiled with a maximum bound for this value which 
cannot be exceeded.) 

VISUAL If the value of this variable ends in emacs, gmacs, or vi, then the 
corresponding option (see "Special commands" below) will be 
turned on. 

The shell gives default values to PATH, PSl, PS2, MAILCHECK, TMOUT and 
IFS, while HOME, SHELL, ENV, and MAIL are not set at all by the shell 
(although HOME, MAIL, and SHELL are set by login(M)). 

1 February 1993 251 



ksh(C) 

252 

Blank interpretation 
After parameter and command substitution, the results of substitutions are 
scanned for field separator characters (those found in IFS} and split into dis­
tinct arguments where such characters are found. 

Explicit null arguments ("" or ") are retained. Implicit null arguments (those 
resulting from parameters that have no values) are removed. 

File name generation 
Following substitution, each command word is scanned for the characters*,?, 
and [ unless the -f option has been set. If one of these characters appears then 
the word is regarded as a pattern. The word is replaced with lexicographi­
cally sorted file names that match the pattern. If no file name is found that 
matches the pattern, then the word is left unchanged. When a pattern is used 
for file name generation, the character • . • at the start of a file name or 
immediately following a " I ", as well as the character " I " itself, must be 
matched explicitly. In other instances of pattern matching the "I" and "." 
are not treated specially. 

* Matches any string, including the null string. 

? Matches any single character. 

[. .. ] Matches any one of the enclosed characters. A pair of characters 
separated by " - " matches any character lexically between the pair, 
inclusive. If the first character following the opening "[ " is a "! " then 
any character not enclosed is matched. A " - " can be included in the 
character set by putting it as the first or last character. 

A pattern-list is a list of one or more patterns separated from each other with 
a " I ". Composite patterns can be formed with one or more of the following: 

?(pattern-list) 
Optionally matches any one of the given patterns. 

*(pattern-list) 
Matches zero or more occurrences of the given patterns. 

+(pattern-list) 
Matches one or more occurrences of the given patterns. 

@(pattern-list) 
Matches exactly one of the given patterns. 

!(pattern-list) 
Matches anything, except one of the given patterns. 

1 February 1993 



ksh(C) 

Quoting 
Each of the specified metacharacters (See "Definitions• above) has a special 
meaning to the shell and causes termination of a word unless quoted. A char­
acter may be quoted (that is, made to stand for itself) by preceding it with a 
backslash (\). The pair •\(Enter)• is ignored. All characters enclosed 
between a pair of single quote marks(' ')are quoted. A single quote cannot 
appear within single quotes. Inside double quote marks (""), parameter and 
command substitution occur and•\" quotes the characters \, ',"and$. The 
meaning of$• and $@ is identical when not quoted or when used as a parame­
ter assignment value or as a file name. However, when used as a command 
argument,$* is equivalent to "$1d$2d .. . ",where dis the first character of the 
IFS parameter, whereas $@ is equivalent to "$1" "$2" .... Inside grave quote 
marks('')\ quotes the characters \,',and$. If the grave quotes occur within 
double quotes then \ also quotes the character ". 

The special meaning of reserved words or aliases can be removed by quoting 
any character of the reserved word. The recognition of function names or spe­
cial command names listed below cannot be altered by quoting them. 

Arithmetic evaluation 
An ability to perform integer arithmetic is provided with the special com­
mand let. Evaluations are performed using long arithmetic. Constants are of 
the form [base#]n where base is a decimal number between two and thirty-six 
representing the arithmetic base and n is a number in that base. If base is 
omitted then base 10 is used. 

An arithmetic expression uses the syntax, precedence, and associativity of 
expression of the C language. All the integral operators, other than ++, - -, ?:, 
and comma (,) are supported. Named parameters can be referenced by name 
within an arithmetic expression without using the parameter substitution 
syntax. When a named parameter is referenced, its value is evaluated as an 
arithmetic expression. 

An internal integer representation of a named parameter can be specified with 
the -i option of the typeset special command. Arithmetic evaluation is per­
formed on the value of each assignment to a named parameter with the -i 
attribute. If you do not specify an arithmetic base, the first assignment to the 
parameter determines the arithmetic base. This base is used when parameter 
substitution occurs. 

Since many of the arithmetic operators require quoting, an alternative form of 
the let command is provided. For any command which begins with a ((, all 
the characters until a matching )) are treated as a quoted expression. More 
precisely, (( ... )) is equivalent to let" ... ". 

l February 1993 253 



ksh(C) 

254 

Prompting 
When used interactively, the shell prompts with the value of PSl before read­
ing a command. If at any time a new-line is typed and further input is needed 
to complete a command, then the secondary prompt (that is, the value of PS2) 
is issued. 

Conditional expressions 
A conditional expression is used with the [[ compound command to test 
attributes of files and to compare strings. Word splitting and file name gen­
eration are not performed on the words between [[ and )). Each expression 
can be constructed from one or more of the following unary or binary 
expressions: 

-a file 

-b file 

-cfile 

-dfile 

-£file 

-gfile 

-kfile 

-nstring 

-o option 

-p file 

-rfile 

-sfile 

-tfildes 

-ufile 

-w file 

-xfile 

-z string 

True, if file exists. 

True, if file exists and is a block special file. 

True, if file exists and is a character special file. 

True, if file exists and is a directory. 

True, if file exists and is an ordinary file. 

True, if file exists and is has its setgid bit set. 

True, if file exists and is has its sticky bit set. 

True, if length of string is non-zero. 

True, if option named option i~ on. 

True, if file exists and is a fifo special file or a pipe. 

True, if file exists and is readable by current process. 

True, if file exists and has size greater than zero. 

True, if file descriptor number fildes is open and associated 
with a terminal device. 

True, if file exists and is has its setuid bit set. 

True, if file exists and is writable by current process. 

True, if file exists and is executable by current process. If 
file exists and is a directory, then the current process has 
permission to search in the directory. 

True, if length of string is zero. 

1 February 1993 



-Lfile 

-Ofile 

-Gfile 

filel -ntfile2 

filel -ot file2 

filel -ef file2 

ksh(CJ 

True, if file exists and is a symbolic link. 

True, if file exists and is owned by the effective user id of 
this process. 

True, if file exists and its group matches the effective group 
id of this process. 

True, iffilel exists and is newer thanfile2. 

True, if filel exists and is older than file2. 

True, iffilel andfile2 exist and refer to the same file. 

string = pattern True, if string matches pattern. 

string!= pattern True, if string does not match pattern. 

stringl < string2 True, if stringl comes before string2 based on ASCII value 
of their characters. 

stringl > string2 True, if string1 comes after string2 based on ASCII value of 
their characters. 

expl -eq exp2 

exp1 -ne exp2 

exp1 -It exp2 

expl -gt exp2 

expl -le exp2 

expl -ge exp2 

True, if exp1 is equal to exp2. 

True, if exp1 is not equal to exp2. 

True, if expl is less than exp2. 

True, if expl is greater than exp2. 

True, if exp1 is less than or equal to exp2. 

True, if expl is greater than or equal to exp2. 

In each of the above expressions, if file is of the form /devlfd/n, where n is an 
integer, then the test is applied to the open file whose descriptor number is n. 

A compound expression can be constructed from these primitives by using 
any of the following, listed in decreasing order of precedence. 

(expression) 

! expression 

True, if expression is true. Used to group expressions. 

True if expression is false. 

expressionl && expression2 
True, if expression1 and expression2 are both true. 

1 February 1993 255 



ksh(C) 

256 

expression1 11 expression2 
True, if either expression1 or expression2 is true. 

Spelling checker 
By default, the shell checks spelling whenever you use cd to change direc­
tories. For example, if you change to a different directory using cd and 
misspell the directory name, the shell responds with an alternative spelling of 
an existing directory. Enter "y" and press (Return} (or just press (Return}) to 
change to the offered directory. If the offered spelling is incorrect, enter "n", 
then retype the command line. In this example the user input is boldfaced: 

# cd /usr/spol/uucp 
/usr/spool/uucp? y 
ok 

The spell check feature is controlled by the CDSPELL environment variable. 
The default value of CDSPELL is set to the string "cdspell" whenever a ksh 
session is run. A user can change it to any value, including the null string, but 
the value is immaterial: if CDSPELL is set to any value, the spell check feature 
is engaged. 

To disable the spelling checker, enter the following at the ksh prompt : 
unset CDSPELL 

When the user does a set at the ksh prompt, CDSPELL is not listed if the unset 
was successful. 

Input/output 
Before a command is executed, its input and output may be redirected using a 
special notation interpreted by the shell. The following may appear anywhere 
in a simple-command or may precede or follow a command, and are not 
passed on to the invoked command. Command and parameter substitution 
occurs before word or digit is used, except as noted below. File name genera­
tion occurs only if the pattern matches a single file and blank interpretation is 
not performed. 

<word 

>word 

>I word 

>>word 

<>word 

Use file word as standard input (file descriptor 0). 

Use file word as standard output (file descriptor 1). If the file 
does not exist then it is created. If the file exists, and the 
noclobber option is on, this causes an error; otherwise, it is 
truncated to zero length. 

Same as>, except that it overrides the noclobber option. 

Use file word as standard output. If the file exists then output 
is appended to it (by first seeking to the end-of-file); other­
wise, the file is created. 

Open file word for reading and writing as standard input. 

1 February 1993 



<<[-)word 

<&digit 

<&p 

>&p 

ksh(C) 

The shell input is read up to a line that is the same as word, or 
to an end-of-file. No parameter substitution, command sub­
stitution or file name generation is performed on word. The 
resulting document, called a here-document, becomes the stan­
dard input. If any character of word is quoted, then no 
interpretation is placed upon the characters of the document; 
otherwise, parameter and command substitution occurs, 
\new-line is ignored, and " \ " must be used to quote the 
characters \, $, ', and the first character of word. If " - " is 
appended to <<, then all leading tabs are stripped from word 
and from the document. 

The standard input is duplicated from file descriptor digit 
(see dup(S)). Similarly for the standard output using >&digit. 

The standard input is closed. Similarly for the standard out­
put using >&-. 

The input from the co-process is moved to standard input. 

The output to the co-process is moved to standard output. 

If one of the above is preceded by a digit, then the file descriptor number 
referred to is that specified by the digit (instead of the default 0 or 1). For 
example: 

... 2>&1 

means file descriptor 2 is to be opened for writing as a duplicate of file 
descriptor 1. 

File descriptor 0 is standard input; 1 is standard output; 2 is standard error. 

The order in which redirections are specified is significant. The shell evalu­
ates each redirection in terms of the file descriptor, file association at the time 
of evaluation. For example: 

... l>fname 2>&1 

first associates file descriptor 1 with file fname. It then associates file descrip­
tor 2 with the file associated with file descriptor 1 (that is,fname). If the order 
of redirections were reversed, file descriptor 2 would be associated with the 
terminal (assuming this was the initial state of file descriptor 1) and then file 
descriptor 1 would be associated with file fname. 

If a command is followed by u & " and job control is not active, then the 
default standard input for the command is the empty file /dev/null. Otherwise, 
the environment for the execution of a command contains the file descriptors 
of the invoking shell as modified by input/output specifications. 

1 February 1993 257 



lcsh(C) 

258 

Environment 
The environment (see environ(M)) is a list of name-value pairs that is passed 
to an executing process in the same way as a normal argument list. The 
names must be identifiers and the values are character strings. The shell 
interacts with the environment in several ways. On invocation, the shell scans 
the environment and creates a parameter for each name found, giving it the 
corresponding value and marking it export. Executed commands inherit the 
environment. If the user modifies the values of these parameters or creates 
new ones, using the export or typeset-x commands they become part of the 
environment. The environment seen by any executed command is thus com­
posed of any name-value pairs originally inherited by the shell, whose values 
may be modified by the current shell, plus any additions which must be noted 
in export or typeset-x commands. 

The environment for any simple-command or function may be augmented by 
prefixing it with one or more parameter assignments. A parameter assign­
ment argument is a word of the form identifier=value. Thus: 

TERM=wy60 cmd args 

and 
(export TERM; TERM=wy60; cmd args) 

are equivalent (as far as the above execution of cmd is concerned, except for 
commands listed with one or two daggers (t) in the "Special commands" sec­
tion). 

If the -k flag is set, all parameter assignment arguments are placed in the 
environment, even if they occur after the command name. The following first 
prints a=b c and then c: 

echo a=b c 
set -k 
echo a=b c 

This feature is intended for use with scripts written for early versions of the 
shell and its use in new scripts is strongly discouraged. It is likely to disap­
pear in the future. 

Functions 
The function reserved word, described in the "Commands" section above, is 
used to define shell functions. Shell functions are read in and stored inter­
nally. Alias names are resolved when the function is read .. ~unctions are exe­
cuted like commands with the arguments passed as pos1t1onal parameters. 
(See "Execution" below.) 

1 February 1993 



ksh(C) 

Functions execute in the same process as the caller and share all files and the 
present working directory with the caller. Traps caught by the caller are reset 
to their default action inside the function. A trap condition that is not caught 
or ignored by the function causes the function to terminate and the condition 
to be passed on to the caller. A trap on EXIT set inside a function is executed 
after the function completes in the environment of the caller. Ordinarily, vari­
ables are shared between the calling program and the function. However, the 
typeset special command used within a function defines local variables 
whose scope includes the current function and all functions it calls. 

The special command return is used to return from function calls. Errors 
within functions return control to the caller. 

Function identifiers can be listed with the -f or +f option of the typeset special 
command. The text of functions will also be listed with -f. Function can be 
undefined with the -f option of the unset special command. 

Ordinarily, functions are unset when the shell executes a shell script. The -xf 
option of the typeset command allows a function to be exported to scripts 
that are executed without a separate invocation of the shell. Functions that 
need to be defined across separate invocations of the shell should be specified 
in the ENV file with the -xf option of typeset. 

Jobs 
If the monitor option of the set command is turned on, an interactive shell 
associates a "job" with each pipeline. It keeps a table of current jobs, printed 
by the jobs command, and assigns them small integer numbers. When a job is 
started asynchronously with " & ", the shell prints a line which looks like: 

(1] 1234 

indicating that the job which was started asynchronously was job number 1 
and had one (top-level) process, whose process id was 1234. 

If you are running a job and wish to do something else you may hit the key ·z 
((Ctrl)z) which sends a STOP signal to the current job. (This is known as the 
suspend character, and is ·z by default; this can be changed in the stty susp 
line in a user's .profile file.) The shell will then normally indicate that the job 
has been 'Stopped', and print another prompt. You can then manipulate the 
state of this job, putting it in the background with the bg command, or run 
some other commands and then eventually bring the job back into the fore­
ground with the foreground command fg. A ·z takes effect immediately and 
is like an interrupt in that pending output and unread input are discarded 
when it is typed. 

A job being run in the background will stop if it tries to read from the termi­
nal. Background jobs are normally allowed to produce output, but this can be 
disabled by giving the command "stty tostop". If you set this tty option, then 
background jobs will stop when they try to produce output like they do when 
they try to read input. 

1 February 1993 259 



ksh(C) 

260 

There are several ways to refer to jobs in the shell. A job can be referred to by 
the process id of any process of the job or by one of the following: 

%n11mber 

%string 

%?string 

%% 

%+ 

%-

The job with the given number. 

Any job whose command line begins with string. 

Any job whose command line contains string. 

Current job. 

Equivalent to%%. 

Previous job. 

The shell learns immediately whenever a process changes state. It normally 
informs you whenever a job becomes blocked so that no further progress is 
possible, but only just before it prints a prompt. This is done so that it does 
not otherwise disturb your work. 

When the monitor mode is on, each background job that completes triggers 
any trap set for CHLD. 

When you try to leave the shell while jobs are running or stopped, you will be 
warned that "You have stopped(running) jobs." You may use the jobs com­
mand to see what they are. If you do this or immediately try to exit again, the 
shell will not warn you a second time, and the stopped jobs will be 
terminated. 

Signals 
The INT and QUIT signals for an invoked command are ignored if the com­
mand is followed by " & " and the job monitor option is not active. Other­
wise, signals have the values inherited by the shell from its parent (but see 
also the trap command below). 

Execution 
Each time a command is executed, the above substitutions are carried out. If 
the command name matches one of the "Special Commands" listed below, it 
is executed within the current shell process. Next, the command name is 
checked to see if it matches one of the user defined functions. If it does, the 
positional parameters are saved and then reset to the arguments of the func­
tion call. When the function completes or issues a return, the positional 
parameter list is restored and any trap set on EXIT within the function is exe­
cuted. The value of a function is the value of the last command executed. A 
function is also executed in the current shell process. If a command name is 
not a special command or a user defined function, a process is created and an 
attempt is made to execute the command via exec(S). 

1 February 1993 



ksh(CJ 

The shell parameter PATH defines the search path for the directory containing 
the command. Alternative directory names are separated by a colon(:). The 
default path is /bin:/usr/bin: (specifying /bin, /usr/bin, and the current directory 
in that order). The current directory can be specified by two or more adjacent 
colons, or by a colon at the beginning or end of the path list. If the command 
name contains a • I " then the search path is not used. Otherwise, each direc­
tory in the path is searched for an executable file. If the file has execute per­
mission but is not a directory or an a.out file, it is assumed to be a file contain­
ing shell commands. A sub-shell is spawned to read it. All non-exported 
aliases, functions, and named parameters are removed in this case. If the shell 
command file doesn't have read permission, or if the setuid and/or setgid bits 
are set on the file, then the shell executes an agent whose job it is to set up the 
permissions and execute the shell with the shell command file passed down 
as an open file. A parenthesized command is executed in a sub-shell without 
removing non-exported quantities. 

Command re-entry 
The text of the last HISTSIZE (default 128) commands entered from a terminal 
device is saved in a history file. The file $HOME/.sh_history is used if the 
HISTFILE variable is not set or is not writable. A shell can access the com­
mands of all interactive-shells which use the same named HISTFILE. The spe­
cial command fc is used to list or edit a portion of this file. The portion of the 
file to be edited or listed can be selected by number or by giving the first char­
acter or characters of the command. A single command or range of com­
mands can be specified. If you do not specify an editor program as an argu­
ment to fc then the value of the parameter FCEDIT is used. If FCEDIT is not 
defined then /bin/ed is used. The edited command(s) is printed and re­
executed upon leaving the editor. The editor name " - " is used to skip the 
editing phase and to re-execute the command. In this case a substitution 
parameter of the form old=new can be used to modify the command before 
execution. For example, if r is aliased to 'fc -e -'then typing r bac,i=good c will 
re-execute the most recent command which starts with the letter • c •, replac­
ing the first occurrence of the string bad with the string good. 

In-line editing options 
Normally, each command line entered from a terminal device is simply typed 
followed by a new-line (RETURN or LINE FEED). If the emacs, gmacs, or vi 
option is active, the user can edit the command line. To be in one of these edit 
modes set the corresponding option. An editing option is automatically 
selected each time the VISUAL or EDITOR variable is assigned a value ending 
in either of these option names. 

The editing features require that the user's terminal accept RETURN as car­
riage return without line feed and that a space ()must overwrite the current 
character on the screen. ADM terminal users should set the "space - advance" 
switch to 'space'. Hewlett-Packard series 2621 terminal users should set the 
straps to 'bcGHxZ etX'. 

1 February 1993 261 



ksh(CJ 

The editing modes implement a concept where the user is looking through a 
window at the current line. The window width is the value of COLUMNS if it 
is defined, otherwise 80. If the line is longer than the window width minus 
two, a mark is displayed at the end of the window to notify the user. As the 
cursor moves and reaches the window boundaries the window will be cen­
tered about the cursor. The mark is a">"(<,*) if the line extends on the right 
(left, both) side(s) of the window. 

The search commands in each edit mode provide access to the history file. 
Only strings are matched, not patterns, although a leading"·" in the string re­
stricts the match to begin at the first character in the line. 

Emacs editing mode 
This mode is entered by enabling either the emacs or gmacs option. The only 
difference between these two modes is the way they handle 1. To edit, the 
user moves the cursor to the point needing correction and then inserts or 
deletes characters or words as needed. All the editing commands are control 
characters or escape sequences. The notation for control characters is caret n 
followed by the character. For example, "F is the notation for control F. This 
is entered by depressing 'f' while holding down the (Ctr!) (control) key. The 
(Shift) key is not depressed. (The notation"? indicates the(Del) (delete) key.) 

The notation for escape sequences is M- followed by a character. For exam­
ple, M-f (pronounced Meta f) is entered by depressing (Esc) (ASCII 033) fol­
lowed by 'f'. (M-F would be the notation for(Esc) followed by(Shift) (capital) 
'F'.) 

All edit commands operate from any place on the line (not just at the begin­
ning). Neither the (Return) nor the (Line Feed) key is entered after edit com­
mands except when noted. 

"F Move cursor forward (right) one character. 

M-f Move cursor forward one word. (The emacs editor's idea of a 
word is a string of characters consisting of only letters, digits and 
underscores.) 

"B Move cursor backward (left) one character. 

M-b Move cursor backward one word. 

·A Move cursor to start of line. 

"E Move cursor to end of line. 

"]char Move cursor forward to character char on current line. 

M-']char Move cursor back to character char on current line. 

·x·x Interchange the cursor and mark. 

262 1 February 1993 



ksh(CJ 

erase (User defined erase character as defined by the stty(C) command, 
usually "Hor#.) Delete previous character. 

·o Delete current character. 

M-d Delete current word. 

M-"H (Meta-backspace) Delete previous word. 

M-h Delete previous word. 

M-"? (Meta-DEL) Delete previous word (if your interrupt character is"? 
(DEL, the default) then this command will not work). 

"T Transpose current character with next character in emacs mode. 
Transpose two previous characters in gmacs mode. 

·c Capitalize current character. 

M-c Capitalize current word. 

M-1 Change the current word to lower case. 

"K Delete from the cursor to the end of the line. If preceded by a 
numerical parameter whose value is less than the current cursor 
position, then delete from given position up to the cursor. If pre­
ceded by a numerical parameter whose value is greater than the 
current cursor position, then delete from cursor up to given cursor 
position. 

·w Kill from the cursor to the mark. 

M-p Push the region from the cursor to the mark on the stack. 

kill (User defined kill character as defined by the stty command, usu­
ally ·u or @.) Kill the entire current line. If two kill characters are 
entered in succession, all kill characters from then on cause a line 
feed (useful when using paper terminals). 

·y Restore last item removed from line. (Yank item back to the line.) 

"L Line feed and print current line. 

"@ (Null character) Set mark. 

M-space (Meta space) Set mark. 

"J (New line) Execute the current line. 

"M (Return) Execute the current line. 

1February1993 263 



ksh(C) 

eof 

M-< 

M-> 

"N 

"Rstring 

·o 

M-digits 

M-letter 

M-]letter 

M-. 

M-_ 

264 

End-of-file character, normally ·o, is processed as an End-of-file , 
only if the current line is null. 

Fetch previous ~o~mai:id. Each time ·p is entered the previous i 
command back m time 1s accessed. Moves back one line when not ~ 
on the first line of a multi-line command. 

Fetch the least recent (oldest) history line. 

Fetch the most recent (youngest) history line. 

Fetch next command line. Each time "N is entered the next com­
mand line forward in time is accessed. 

Reverse search history for a previous command line containing 
string. If a parameter of zero is given, the search is forward. 
string is terminated by a RETURN or NEW LINE. If string is pre­
ceded by a u • ", the matched line must begin with string. If string 
is omitted, then the next command line containing the most recent 
string is accessed. In this case a parameter of zero reverses the 
direction of the search. 

Operate - Execute the current line and fetch the next line relative 
to current line from the history file. 

(Escape) Define numeric parameter, the digits are taken as a 
parameter to the next command. The commands that accept a 
parameter are "F, ·s, erase, ·c, ·o, "K, "R, ·p, "N, ·1, M-., M-"], M-~ 
M-b, M-c, M-d, M-f, M-h, M-1 and M-"H. 

Soft-key - Your alias list is searched for an alias by the name 
letter and if an alias of this name is defined, its value will be 

fuserted on the input queue. The letter must not be one of the 
above meta-functions. 

Soft-key - Your alias list is searched for an alias by the name 
_letter (two underscores precede letter) and if an alias of this 
name is defined, its value will be inserted on the input queue. This 
can be used to program function keys on many terminals. 

The last word of the previous command is inserted on the line. If 
preceded by a numeric parameter, the value of this parameter 
determines which word to insert rather than the last word. 

SameasM-.. 

Attempt file name generation on the current word. ~n asterisk_ is 
appended if the word doesn't match any file or contam any special 
pattern characters. 

1 February 1993 



M-ESC 

M-= 

ksh(C) 

File name completion. The current word is treated as a root to 
which an asterisk is appended. A search is conducted for files 
matching the current word. The first match found then replaces 
the current word. Subsequent matches are obtained by repeating 
the M-ESC keystroke. If the match is both unique and a directory, 
a"/" is appended to it. If it is unique but not a directory, a space 
is appended to it. 

List files matching current word pattern if an asterisk were 
appended. 

Multiply parameter of next command by 4. 

Escape next character. Editing characters, the user's erase, kill and 
interrupt (normally "?) characters may be entered in a command 
line or in a search string if preceded by a " \ ". The " \ " removes 
the next character's editing features (if any). 

Display version of the shell. 

Insert a "#" at the beginning of the line and execute it. This causes 
a comment to be inserted in the history file. 

Vi editing mode 
There are two typing modes. Initially, when you enter a command you are in 
the input mode. To edit, the user enters control mode by typing (Esc) (ASCII 
033) and moves the cursor to the point needing correction and then inserts or 
deletes characters or words as needed. Most control commands accept an 
optional repeat count prior to the command. 

When in vi mode on most systems, canonical processing is initially enabled 
and the command will be echoed again if the speed is 1200 baud or greater 
and it contains any control characters or less than one second has elapsed 
since the prompt was printed. The (Esc) character terminates canonical pro­
cessing for the remainder of the command and the user can then modify the 
command line. This scheme has the advantages of canonical processing with 
the type-ahead echoing of raw mode. 

If the option viraw is also set, the terminal will always have canonical pro­
cessing disabled. This may be helpful for certain terminals. 

Input edit commands 
By default the editor is in input mode. 

erase 

I February 1993 

(User defined erase character as defined by the stty command, 
usually "Hor#.) Delete previous character. 

Delete the previous blank separated word. 

265 



ksh(CJ 

266 

AD Terminate the shell. 

AV Escape next character. Editing characters, the user's erase or kill 
characters may be entered in a command line or in a search string 
if preceded by a AV. The AV removes the next character's editing 
features (if any). 

\ Escape the next erase or kill character. 

Motion edit commands 
These commands will move the cursor. 

[count)l Cursor forward (right) one character. 

[count]w Cursor forward one alpha-numeric word. 

[count]W Cursor to the beginning of the next word that follows a blank. 

[count)e Cursor to end of word. 

[count)E Cursor to end of the current blank delimited word. 

[count)h Cursor backward (left) one character. 

[count)b Cursor backward one word. 

[count)B Cursor to preceding blank separated word. 

[count] I Cursor to column count. 

[count]fc Find the next character c in the current line. 

[count)Fc Find the previous character c in the current line. 

[count]tc Equivalent to f followed by h. 

[count)Tc Equivalent to F followed by 1. 

[count); Repeats count times, the last single character find command, f, F, t, 
orT. 

[count], Reverses the last single character find command count times. 

0 Cursor to start of line. 

Cursor to first non-blank character in line. 

$ Cursor to end of line. 

1 February 1993 



ksh(C) 

Search edit commands 
These commands access your command history. 

[count]k 

[co1mt]­

[co1mt)j 

[count]+ 

Fetch previous command. Each time k is entered the previous 
command back in time is accessed. 

Equiva~ent to k. 

Fetch next command. Each time j is entered the next command 
forward in time is accessed. 

Equivalent to j. 

[count]G The command number count is fetched. The default is the least 
recent history command. 

/string 

?string 

n 

N 

Search backward through history for a previous command con­
taining string. string is terminated by a RETURN or NEW LINE. If 
string is preceded by a "· ", the matched line must begin with 
string. If string is null the previous string will be used. 

Same as " I " except that search will be in the forward direction. 

Search for next match of the last pattern to " I " or " ? " commands. 

Search for next match of the last pattern to " I " or "? ", but in 
reverse direction. Search history for the string entered by the pre­
vious " I " command. 

Text modification edit commands 
These commands will modify the line. 

a Enter input mode and enter text after the current character. 

A Append text to the end of the line. Equivalent to $a. 

[count]cmotion 
c[count]motion 

c 

s 
D 

1 February 1993 

Delete current character through the character that motion would 
move the cursor to and enter input mode. If motion is "c ", the 
entire line will be deleted and input mode entered. 

Delete the current character through the end of line and enter 
input mode. Equivalent to c$. 

Equivalent to cc. 

Delete the current character through the end of line. Equivalent to 
d$. 

267 



ksh(C) 

268 

[count]dmotion 
d[count]motion 

Delete current character through the character that motion would 
move to. If motion is "d ", the entire line will be deleted. 

Enter input mode and insert text before the current character. 

Insert text before the beginning of the line. Equivalent to Oi. 

[count]P Place the previous text modification before the cursor. 

[count]p Place the previous text modification after the cursor. 

R Enter input mode and replace characters on the screen with char­
acters you type overlay fashion. 

[count]rc Replace the count character(s) starting at the current cursor posi­
tion with c, and advance the cursor. 

[count]x 

[count]X 

[count]. 

[countr 

[count]_ 

.. 

\ 

Delete current character. 

Delete preceding character. 

Repeat the previous text modification command. 

Invert the case of the count character(s) starting at the current cur­
sor position and advance the cursor. 

Causes the count word of the previous command to be appended 
and input mode entered. The last word is used if count is omitted. 

Causes a " * " to be appended to the current word and file name 
generation attempted. If no match is found, it rings the bell. Oth­
erwise, the word is replaced by the matching pattern and input 
mode is entered. 

Filename completion. Replaces the current word with the longest 
common prefix of all filenames matching the current word with an 
asterisk appended. If the match is unique, a " I " is appended if 
the file is a directory and a space is appended if the file is not a 
directory. 

Other edit commands 

[count]ymotion 
y[count]motion 

Yank current character through character that motion would move 
the cursor to and puts them into the delete buffer. The text and 
cursor are unchanged. 

1 February 1993 



\' 

u 

u 

[count]v 

"L 

·1 

"M 

# 

@letter 

Yanks from current position to end of line. Equivalent to y$. 

Undo the last text modifying command. 

ksh(C) 

Undo all the text modifying commands performed on the line. 

Returns the command fc -e $(VISUAL:-${EDITOR:-vi}) count in the 
input buffer. If count is omitted, then the current line is used. 

Line feed and print current line. Has effect only in control mode. 

(New line) Execute the current line, regardless of mode. 

(Return) Execute the current line, regardless of mode. 

Sends the line after inserting a " #" in front of the line. Useful for 
causing the current line to be inserted in the history without being 
executed. 

List the file names that match the current word if an asterisk were 
appended to it. 

Your alias list is searched for an alias by the name _letter and if an 
alias of this name is defined, its value will be inserted on the input 
queue for processing. 

Special commands 
The following simple-commands are executed in the shell process. 
Input/output redirection is permitted. Unless otherwise indicated, the output 
is written on file descriptor 1 and the exit status, when there is no syntax 
error, is zero. Commands that are preceded by one or two t's are treated spe­
cially in the following ways: 

l. Parameter assignment lists preceding the command remain in effect when 
the command completes. 

2. 1/0 redirections are processed after parameter assignments. 

3. Errors cause a script that contains them .to abort. 

4. Words, following a command preceded by tt that are in the format of a 
parameter assignment, are expanded with the same rules as a parameter 
assignment. This means that tilde substitution is performed after the "=" 
sign and word splitting and file name generation are not performed. 

t:[arg ... ] 
The command only expands parameters. 

+.file [ arg ... ] 

l February 1993 269 



ksh(C) 

270 

Read the complete file then execute the commands. The syntax for this is 
dot-space-file followed by optional arguments. The commands are exe­
cuted in the current shell environment. The search path specified by PATH 
is used to find the directory containing file. If any arguments arg are 
given, they become the positional parameters. Otherwise the positional 
parameters are unchanged. The exit status is the exit status of the last 
command executed. 

tt alias [ -tx ] [ name [ = value ] ] ... 
alias with no arguments prints the list of aliases in the form name=value 
on standard output. An alias is defined for each name whose value is 
given. A trailing space in value causes the next word to be checked for 
alias substitution. The -t flag is used to set and list tracked aliases. The 
value of a tracked alias is the full pathname corresponding to the given 
name. The value becomes undefined when the value of PATH is reset but 
the aliases remained tracked. Without the -t flag, for each name in the 
argument list for which no value is given, the name and value of the alias 
is printed. The -x flag is used to set or print exported aliases. An exported 
alias is defined for scripts invoked by name. The exit status is non-zero if 
a name is given, but no value, for which no alias has been defined. 

bg [job ... ] 
This command is only on systems that support job control. Puts each 
specified job into the background. The current job is put in the back­
ground if job is not specified. See "Jobs" for a description of the format of 
job. 

+break [ n I 
Exit from the enclosing for, while, until, or select loop, if any. If n is speci­
fied then break n levels. 

t continue [ n ] 
Resume the next iteration of the enclosing for, while, until, or select loop. 
If n is specified then resume at then-th enclosing loop. 

1 Febrriary 1993 



ksh(C) 

cd I -LP I I arg I 
cd [ -LP) old new 

This command can be in either of two forms. In the first form it changes 
the current directory to arg. If arg is " - " the directory is changed to the 
previous directory. If no arg is specified, the shell parameter HOME is 
used as a default arg. The parameter PWD is set to the current directory. 
The shell parameter CDPATH defines the search path for the directory con­
taining arg. Alternative directory names are separated by a colon (: ). The 
default path is <null> (specifying the current directory). Note that the 
current directory is specified by a null path name, which can appear 
immediately after the equal sign or between the colon delimiters anywhere 
else in the path list. If arg begins with a " I " then the search path is not 
used. Otherwise, each directory in the path is searched for arg. 

The second form of cd substitutes the string new for the string old in the 
current directory name, PWD, and tries to change to this new directory. 

The -L and -P flags are relevant to systems with symbolic links. The 
default, -L, preserves logical naming, so that cd -L •• will move up one 
component towards the root. The physical option, -P, uses a physical 
model for paths. Thus, if /usr/include/sys is a symbolic link to the directory 
/sys/11, then after cd /usr/include/sys, a cd .. would make the current direc­
tory /usr/include, while a cd -P .. would make it sys. 

The cd command may not be executed by rksh. 

echo I arg ... ] 
See echo(C) for usage and description. 

t eval [ arg ... ] 
The arguments are read as input to the shell and the resulting command(s) 
executed. 

t exec I arg ... ] 
If arg is given, the command specified by the arguments is executed in 
place of this shell without creating a new process. Input/output argu­
ments may appear and affect the current process. If no arguments are 
given the effect of this command is to modify file descriptors as prescribed 
by the input/output redirection list. In this case, any file descriptor num­
bers greater than 2 that are opened with this mechanism are closed when 
invoking another program. 

texit[n] 
Causes the shell to exit with the exit status specified by n. If n is omitted 
then the exit status is that of the last command executed. An end-of-file 
will also cause the shell to exit except for a shell which has the ignoreeof 
option (see "set" below) turned on. 

tt export [ name [ = value ] ] ... 

l February 1993 

The given names are marked for automatic export to the environment of 
subsequently-executed commands. 

271 



ksh(C) 

272 

fc [ -e ename ) [ -nlr ) [.first [ last ) ) 
fc -e - [ old=new ) [ command ) 

In the first form, a range of commands from .first to last is selected from 
the last HISTSIZE commands that were typed at the terminal. The argu­
ments first and last may be specified as a number or as a string. A string is 
used to locate the most recent command that starts with that string. A 
negative number is used as an offset to the current command number. If 
the flag -I, is selected, the commands are listed on standard output. Other­
wise, the editor program ename is invoked on a file containing these key­
board commands. If ename is not supplied, then the value of the parame­
ter FCEDIT (default /bin/ed) is used as the editor. When editing is com­
plete, the edited command(s) is executed. If last is not specified then it 
will be set to .first. If .first is not specified the default is the previous com­
mand for editing and -16 for listing. 

The flag -r reverses the order of the commands and the flag -n suppresses 
command numbers when listing. In the second form the command is re­
executed after the substitution old=new is performed. 

fg [job ... ) 
This command is only on systems that support job control. Each job speci­
fied is brought to the foreground. Otherwise, the current job is brought 
into the foreground. See "Jobs" for a description of the format of job. 

getopts optstring name [ arg ... ] 
Checks arg for legal options. If arg is omitted, the positional parameters 
are used. An option argument begins with a " + " or a • - ". An option not 
beginning with • +" or • - " or the special argument • - - " ends the options. 
optstring contains the letters that getopts recognizes. If a letter is followed 
by a •: ", that option is expected to have an argument. The options can be 
separated from the argument by blanks. 

getopts places the next option letter it finds inside variable name each time 
it is invoked with a • +" prepended when arg begins with a "+ ". The 
index of the next arg is stored in OPTIND. The option argument, if any, 
gets stored in OPTARG. 

A leading • : " in optstring causes getopts to store the letter of ~n invalid 
option in OPTARG, and to set name to •?" for an unknown option and to 
• : " when a required option is missing. Otherwise, getopts prin!s an error 
message. The exit status is non-zero when there are no more options. 

jobs [ -lnp )[job ... I . . 
Lists information about each given job, or all active jobs if job is omitted. 
The -I flag lists process ids in addition to the normal information. The -n 
flag only displays jobs that have stopped or.exited sin:e las! notified. 1:he 
-p flag causes only the process group to be hsted. See Jobs for a descnp­
tion of the format of job. 

1 February 1993 



ksh(C) 

kill [ -sig I job ... 
kill -I 

Sends either the TERM (terminate) signal or the specified signal to the 
specified jobs or processes. Signals are either given by number or by 
names (as given in /usr/include/signal.h, stripped of the prefix "SIG"). If the 
signal being sent is TERM (terminate) or HUP (hangup), then the job or 
process will be sent a CONT (continue) signal if it is stopped. The argu­
ment job can specify the process id of a process that is not a member of 
one of the active jobs. See "Jobs" for a description of the format of job. In 
the second form, kill -1, the signal numbers and names are listed. 

let arg ... 
Each arg is a separate arithmetic expression to be evaluated. See "Arith­
metic evaluation" above, for a description of arithmetic expression evalua­
tion. 

The exit status is 0 if the value of the last expression is non-zero, and 1 
otherwise. 

t newgrp [ arg ... I 
Equivalent to exec /bin/newgrp arg .... 

print [ -Rnprsu[n ] ] [ arg ... ) 
The shell output mechanism. With no flags or with flag " - " or " - - " the 
arguments are printed on standard output as described by echo(C). In raw 
mode, -R or -r, the escape conventions of echo are ignored. The -R option 
will print all subsequent arguments and options other than -n. The -p 
option causes the arguments to be written onto the pipe of the process 
spawned with I & instead of standard output. The -s option causes the 
arguments to be written onto the history file instead of standard output. 
The -u flag can be used to specify a one-digit file descriptor unit number n 
on which the output will be placed. The default is 1. If the flag ~n is used, 
no new-line is added to the output. 

pwd[-LP) 
Equivalent to print -r - $PWD 

The -L and -P flags are relevant only on systems with symbolic links. The 
default, -L, uses a logical model, while -P uses a physical model, for paths. 
Thus, if /usr/include/sys is a symbolic link to the directory /sys/h, then 
cd /usr/indude/sys; pwd; pwd-P will print /usr/include/sys, followed by 
/sys/h. 

read I -prsu[ n 11 l name?prompt ] [ name ... ) 

1 February 1993 

The shell input mechanism. One line is read and is broken up into fields 
using the characters in IFS as separators. In raw mode, -r, a " \ " at the end 
of a line does not signify line continuation. The first field is assigned to the 
first name, the second field to the second name, etc., with leftover fields 
assigned to the last name. The -p option causes the input line to be taken 
from the input pipe of a process spawned by the shell using I&. If the -s 
flag is present, the input will be saved as a command in the history file. 

273 



ksh(C) 

274 

The flag -u can be used to specify a one digit file descriptor unit to read 
from. The file descriptor can be opened with the exec special command. 
The default value of n is 0. If name is omitted then REPLY is used as the 
default name. The exit status is 0 unless an end-of-file is encountered. An 
end-of-file with the -p option causes cleanup for this process so that 
another can be spawned. If the first argument contains a "? ", the 
remainder of this word is used as a prompt on standard error when the 
shell is interactive. The exit status is 0 unless an end-of-file is encountered. 

tt readonly [ name [ = value 11 ... 
The given names are marked readonly and these names cannot be changed 
by subsequent assignment. 

t return [ n I 
Causes a shell function to return to the invoking script with the return 
status specified by n. If n is omitted then the return status is that of the 
last command executed. If return is invoked while not in a function or a 
" . " script, then it is the same as an exit. 

set [ ±aefhkmnopstuvx I [ ±o option 1- .. [ ±A name I [ arg ... I 
The flags for this command have meaning as follows: 

-A Array assignment. Unset the variable name and assign values 
sequentially from the list arg. If +A is used, the variable name is 
not unset first. 

-a All subsequent parameters that are defined are automatically 
exported. 

-e If a command has a non-zero exit status, execute the ERR trap, if 
set, and exit. This mode is disabled while reading profiles. 

-f Disables file name generation. 

-h Each command becomes a tracked alias when first encountered. 

-k All parameter assignment arguments are placed in the environ­
ment for a command, not just those that precede the command 
name. 

-m 

-n 

-o 

Background jobs will run in a separate process group and_a line 
will print upon completion. The exit status of background )Obs is 
reported in a completion message. On systems with JOb control, 
this flag is turned on automatically for interactive shells. 

Read commands and check them for syntax errors, but do not 
execute them. Ignored for interactive shells. 

List all option settings. 

1 February 1993 



ksh<C> 

The argument following -o can be one of the following option 
names: 

allexport Same as -a. 

errexit 

bgnice 

emacs 

gm a cs 

Same as -e. 

All background jobs are run at a lower priority. 
This is the default mode. 

Puts you in an emacs style in-line editor for com­
mand entry. 

Puts you in a gmacs style in-line editor for com­
mand entry. 

ignoreeof The shell will not exit on end-of-file. The command 
exit must be used. 

keyword Same as -k. 

markdirs All directory names resulting from file name gen­
eration have a trailing" I" appended. 

monitor Same as -m. 

noclobber Prevents output redirection (>) from truncating 
existing files. Require >I to truncate a file when 
turned on. 

noexec Same as -n. 

noglob Same as -f. 

nolog Do not save function definitions in history file. 

nounset Same as -u. 

privileged Same as -p. 

trackall Same as -h. 

verbose Same as -v. 

vi Puts you in insert mode of a vi style in-line editor 
until you hit escape character 033. This puts you in 
move mode. A return sends the line. 

1 February 1993 275 



ksh(CJ 

276 

viraw 

xtrace 

Each character is processed as it is typed in vi 
mode. 

Same as-x. 

If ~o option name is supplied then the current option settings are 
prmted. 

-p Disables processing of the $HOME/.profile file and uses the file 
/etc/suid_profile instead of the ENV file. This mode is on whenever 
the effective uid (gid) is not equal to the real uid (gid). Turning 
this off causes the effective uid and gid to be set to the real uid 
andgid. 

-s Sort the positional parameters lexicographically. 

-t Exit after reading and executing one command. 

-u Treat unset parameters as an error when substituting. 

-v Print shell input lines as they are read. 

-x Print commands and their arguments as they are executed. 

Turns off -x and -v flags and stops examining arguments for flags. 

Do not change any of the flags; useful in setting $1 to a value 
beginning with " - ". If no arguments follow this flag then the 
positional parameters are unset. 

Using "+" rather than " - " causes these flags to be turned off. These flags 
can also be used upon invocation of the shell. The current set of flags may 
be found in$-. Unless -A is specified, the remaining arguments are posi­
tional parameters and are assigned, in order, to $1 $2 .... If no arguments 
are given then the names and values of all named parameters are printed 
on the standard output. If the only argument is "+ ", the names of all 
named parameters are printed. 

tshift ! n I 
The positional parameters from Sn+l ... are renamed 1 ... , default n is 1. 
The parameter n can be any arithmetic expression that evaluates to a non­
negative number less than or equal to $#. 

t times 
Print the accumulated user and system times for the shell and for pro­
cesses run from the shell. 

1 February 1993 



ksh(C) 

t trap [ arg I [ sig I ... 
arg is a command to be read and executed when the shell receives signal(s) 
sig. (Note that arg is scanned once when the trap is set and once when the 
trap is taken.) Each sig can be given as a number or as the name of the sig­
nal. Trap commands are executed in order of signal number. Any attempt 
to set a trap on a signal that was ignored on entry to the current shell is 
ineffective. If arg is omitted or is " - ", then all trap(s) sig are reset to their 
original values. If arg is the null string then this signal is ignored by the 
shell and by the commands it invokes. If sig is ERR then arg will be exe­
cuted whenever a command has a non-zero exit status. If sig is DEBUG 
then arg will be executed after each command. If sig is 0 or EXIT and the 
trap statement is executed inside the body of a function, then the com­
mand arg is executed after the function completes. If sig is 0 or EXIT for a 
trap set outside any function then the command arg is executed on exit 
from the shell. The trap command with no arguments prints a list of com­
mands associated with each signal number. 

tt typeset [ ±HLRZfilrtux[n)) [name[ =value]] ... 
Sets attributes and values for shell parameters. When invoked inside a 
function, a new instance of the parameter name is created. The parameter 
value and type are restored when the function completes. The following 
list of attributes may be specified: 

-H This flag provides UNIX system to host-name file mapping on non­
UNIX system machines. 

-L Left justify and remove leading blanks from value. If n is non-zero it 
defines the width of the field; otherwise it is determined by the width 
of the value of first assignment. When the parameter is assigned to, it 
is filled on the right with blanks or truncated, if necessary, to fit into 
the field. Leading zeros are removed if the -Z flag is also set. The -R 
flag is turned off. 

-R Right justify and fill with leading blanks. If n is non-zero it defines the 
width of the field; otherwise it is determined by the width of the value 
of first assignment. The field is left filled with blanks or truncated 
from the end if the parameter is reassigned. The -L flag is turned off. 

-Z Right justify and fill with leading zeros if the first non-blank character 
is a digit and the -L flag has not been set. If n is non-zero it defines the 
width of the field; otherwise it is determined by the width of the value 
of first assignment. 

-f The names refer to function names rather than parameter names. No 
assignments can be made and the only other valid flags are -t, -u and 
-x. The flag -t turns on execution tracing for this function. The flag -u 
causes this function to be marked as undefined. The FPATH variable 
will be searched to find the function definition when the function is 
referenced. The flag -x allows the function definition to remain in 
effect across shell procedures invoked by name. 

I February 1993 277 



ksh(C) 

278 

-i Parameter is an integer. This makes arithmetic faster. If n is non-zero 
it defines the output arithmetic base; otherwise the first assignment 
determines the output base. 

-1 All upper-case characters converted to lower-case. The upper-case 
flag, -u is turned off. 

-r The given names are marked read only and these names cannot be 
changed by subsequent assignment. 

-t Tags the named parameters. Tags are user definable and have no spe­
cial meaning to the shell. 

-u All lower-case characters are converted to upper-case characters. The 
lower-case flag, -1, is turned off. 

-x The given names are marked for automatic export to the environment 
of subsequently-executed commands. 

Using • + • rather than " - " causes these flags to be turned off. If no name 
arguments are given but flags are specified, a list of names (and optionally 
the values) of the parameters which have these flags set is printed. (Using 
"+"rather than" - "keeps the values from being printed.) If no names and 
flags are given, the names and attributes of all parameters are printed. 

ulimit [ -HS ] [ limit I 
Set or display a resource limit. The number of 512-byte blocks on files 
written by child processes (files of any size may be read). The limit is set 
when limit is specified. The value of limit can be a number or the value 
unlimited. The -H and -S flags specify whether the hard limit or the soft 
limit is set. A hard limit cannot be increased once it is set. A soft limit can 
be increased up to the value of the hard limit. If neither the -H or -S option 
is specified, the limit applies to both. The current limit is printed when 
limit is omitted. In this case the soft limit is printed unless -H is specified. 

umask [ mask ] 
The user file-creation mask is set to mask (see umask). mask can either be 
an octal number or a symbolic value as described in chmod(C). If a sym­
bolic value is given, the new umask value is the complement of the result 
of applying mask to the complement of the previous umask value. If 
mask is omitted, the current value of the mask is printed. 

unalias name ... 
The parameters given by the list of names are removed from the alias list. 

1 February 1993 



ksh(C) 

unset [ -f ] name ... 
The parameters given by the list of names are unassigned, that is, their 
values and attributes are erased. Readonly variables cannot be unset. If 
the flag, -f, is set, then the names refer to function names. Unsetting 
ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, 
TMOUT, and • _" removes their special meaning even if they are subse­
quently assigned to. 

t wait [job I 
Wait for the specified job and report its termination status. If job is not 
given then all currently active child processes are waited for. The exit 
status from this command is that of the process waited for. See "Jobs" for 
a description of the format of job. 

whence [ -pv ) name ... 
For each name, indicate how it would be interpreted if used as a command 
name. 

The flag, -v, produces a more verbose report. 

The flag, -p, does a path search for name even if name is an alias, a func­
tion, or a reserved word. 

Invocation 
If the shell is invoked by exec(S), and the first character of argument zero ($0) 
is " - ", then the shell is assumed to be a login shell and commands are read 
from /etc/profile and then from either .profile in the current directory or 
$HOME/.profile, if either file exists. Next, commands are read from the file 
named by performing parameter substitution on the value of the environment 
parameter ENV if the file exists. If the -s flag is not present and arg is, then a 
path search is performed on the first arg to determine the name of the script to 
execute. The script arg must have read permission and any setuid ·and setgid 
settings will be ignored. Commands are then read as described below; the fol­
lowing flags are interpreted by the shell when it is invoked: 

1 February 1993 279 



ksh(C) 

280 

-c string If the -c flag is present then commands are read from string. 

-s If the -s flag is present or if no arguments remain then commands 
are read from the standard input. Shell output, except for the out­
put of the special commands listed above, is written to file 
descriptor 2. 

-i If the -i flag is present or if the shell input and output are attached 
to a terminal (as told by ioctl(S)) then this shell is interactive. In 
this case TERM is ignored (so that kill 0 does not kill an interactive 
shell) and INTR is caught and ignored (so that wait is interrupti­
ble). In all cases, QUIT is ignored by the shell. 

-r If the -r flag is present the shell is a restricted shell. 

The remaining flags and arguments are described under the set command 
above. 

rksh only 
rksh is used to set up login names and execution environments whose capa­
bilities are more controlled than those of the standard shell. The actions of 
rksh are identical to those of ksh, except that the following are disallowed: 

changing directory (see cd(C)), 
setting the value of SHELL, ENV, or PATH, 
specifying path or command names containing " I ", 
redirecting output (>, >I, <>,and>>). 

The restrictions above are enforced after .profile and the ENV files are 
interpreted. 

When a command to be executed is found to be a shell procedure, rksh 
invokes ksh to execute it. Thus, it is possible to provide shell procedures to 
the end-user that have access to the full power of the standard shell, while 
imposing a limited menu of commands; this scheme assumes that the end­
user does not have write and execute permissions in the same directory. 

The net effect of these rules is that the writer of the .profile has complete con­
trol over user actions, by performing guaranteed setup actions and leaving the 
user in an appropriate directory (probably not the login directory). 

The system administrator often sets up a directory of commands (for exa~­
ple, /usr/rbin) that can be safely mvoked by rksh. There is also a restricted edi­
tor, red. 

Note that simply setting a user's login shell to rksh does not make their 
account "safe". Some thought and care must be put into creating a properly 
restricted environment. 

1 Febrnary 1993 



ksh(C) 

Diagnostics 
Errors detected by the shell, such as syntax errors, cause the shell to return a 
non-zero exit status. Otherwise, the shell returns the exit status of the last 
command executed (see also the exit command above). If the shell is being 
used non-interactively then execution of the shell file is abandoned. Run-time 
errors detected by the shell are reported by printing the command or function 
name and the error condition. If the line number that the error occurred on is 
greater than one, then the line number is also printed in square brackets ([ )) 
after the command or function name. 

Limitations 

Files 

See also 

If a command which is a tracked alias is executed, and then a command with 
the same name is installed in a directory in the search path before the direc­
tory where the original command was found, the shell will continue to exec 
the original command. Use the -t option of the alias command to correct this 
situation. 

Some very old shell scripts contain a "'" as a synonym for the pipe character 
< I ). 
Using the fc built-in command within a compound command will cause the 
whole command to disappear from the history file. 

The built-in command . file reads the whole file before any commands are 
executed. Therefore, alias and unalias commands in the file will not apply to 
any functions defined in the file. 

Traps are not processed while a job is waiting for a foreground process. Thus, 
a trap on CHLO won't be executed until the foreground job terminates. 

/etc/passwd 
/etc/profile 
/etc/suid_profile 
$HOME/ .profile 
/tmp/sh* 
/dev/null 

cat(C), cd(C), chmod(C), cut(C), echo(C), env(C), ln(C), newgrp(C), paste(C), 
stty(C), test(C), umask(C), vi(C), dup(S), exec(S), fork(S), ioctl(S), lseek(S), 
pipe(S), signal(S), umask(S), ulimit(S), wait(S), rand(S), a.out(FP), profile(M), 
environ(M) 

The chapter entitled "The Korn Shell" in the SCO UNIX User's Guide. 

1 February 1993 281 



/ast(C) 

last 
indicate last logins of users and teletypes 

Syntax 

last I -h I I -n limit I I -t tty I I -w wtmpfile I I name I 

Description 

Files 

See also 

The last command checks the wtmp file, which records all logins and logouts 
for information about a user, a tty line or any group of users and lines. The 
argument name specifies a user name and/or tty line. 

The command last -t 01 root would list all root sessions as well as all sessions 
on /dev/tty01. last prints the sessions of the specified users and ttys, including 
login name, the line used, the device name, the process ID, plus start time and 
elapsed time. 

last with no arguments prints a record of all logins and logouts, in reverse 
chronological order. 

The options behave as follows: 

-h no header. 

-n limit 
limits the report to n lines. 

-t line 
specifies the tty. 

-w wtmpfile 
uses wtmpfile instead of /etc/wtmp. Note that this file must have the same 
format as /etc/wtmp. 

/etc/wtmp login database 

acct(FP), acctcom(ADM), accton(ADM), finger(C), utmp(F) 

Standards conformance 

282 

last is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



layers(C) 

layers 
layer multiplexer for windowing terminals 

Syntax 
layers [ -s ) [ -t I [ -d I [ -p I [ -f file I [ layersys-prgm ) 

Description 
The layers command manages asynchronous windows (see layers(M)) on a 
windowing terminal. On invocation, layers finds an unused xt(HW) channel 
group and associates it with the terminal line on its standard output. It then 
waits for commands from the terminal. 

To use layers, you must have configured the xt driver. This is done using the 
mkdev layers script. For more information, see mkdev(ADM). 

Command-line options: 

-s Reports protocol statistics on standard error at the end of the session after 
you exit from layers. The statistics may be printed during a session by 
invoking the program xts(ADM). 

-t Turns on xt(HW) driver packet tracing, and produces a trace dump on 
standard error at the end of the session after you exit from layers. The 
trace dump may be printed during a session by invoking the program 
xtt(ADM). 

-d If a firmware patch has been downloaded, prints out the sizes of the text, 
data, and bss portions of the firmware patch on standard error. 

-p If a firmware patch has been downloaded, prints the downloading proto­
col statistics and a trace on standard error. 

-fjile 

1 February 1993 

Starts layers with an initial configuration specified by file. Each line of the 
file represents a layer to be created, and has the following format: 
origin_x origin_y corner_x corner_y command_list 

The coordinates specify the size and position of the layer on the screen in 
the terminal's coordinate system. If all four are 0, the user must define the 
layer interactively. command_list, a list of one or more commands, must 
be provided. It is executed in the new layer using the user's shell (by exe­
cuting: $SHELL -i -c "command_list"). This means that the last command 
should invoke a shell, such as /bin/sh. (If the last command is not a shell, 
then, when the last command has completed, the layer will not be func­
tional.) 

283 



layers( CJ 

Examples 

layersys-prgm 
A file containing a firmware patch that the layers command downloads to 
the terminal before layers are created and command_list is executed. 

Each layer is in most ways functionally identical to a separate terminal. Char­
acters typed on the keyboard are sent to the standard input of the UNIX sys­
tem process attached to the current layer (called the host process), and charac­
ters written on the standard output by the host process appear in that layer. 
When a layer is created, a separate shell is established and bound to the layer. 
If the environment variable SHELL is set, the user will get that shell, other­
wise, /bin/sh will be used. In order to enable communications with other 
users via write(C), layers invokes the command relogin(ADM) when the first 
layer is created. relogin(ADM) will reassign that layer as the user's logged-in 
terminal. An alternative layer can be designated by using relogin(ADM) 
directly. layers will restore the original assignment on termination. 

Layers are created, deleted, reshaped, and otherwise manipulated in a 
terminal-dependent manner. For instance, the AT&T TELETYPE 5620 DMD ter­
minal provides a mouse-activated pop-up menu of layer operations. The 
method of ending a layers session is also defined by the terminal. 

layers -f startup 

where startup contains: 
B B 700 200 date : pwd ; exec $SHEL~ 
B 300 780 850 exec $SHELL 

Limitations 

284 

The xt(HW) driver supports an alternate data transmission scheme known as 
ENCODING MODE. This mode makes layers operation possible even over 
data links which intercept control characters or do not transmit 8-bit charac­
ters. ENCODING MODE is selected either by setting a configuration option on 
your windowing terminal or by setting the environment variable DMDLOAD 
to the value hex before running layers: 

export DMDLOAD; DMDLOAD=hex 
If, after executing layers -f file, the terminal does not respond in one or mo~e 
of the layers, often the last command in the command-list for that layer did 
not invoke a shell. 

When invoking layers with the -s, -t, -d, or -p options, it is best to redirect 
standard error to another file to save the statistics and tracing output (for 
example, layers -s 2>stats); otherwise all or some of the output may be lost. 

1 February 1993 



Files 

See also 

/dev/xt??[0-7] 
/usr/lib/layersys/lsys.8;7;3 
/usr/lib/layersys/lsys. 8;?;? 

layers( CJ 

layers(M), libwindows(S), mkdev(ADM), relogin(ADM), sh(C), write(C), 
wtinit(ADM), xts(ADM), xtt(ADM), xt(HW) 

1 February 1993 285 



line( CJ 

line 
read one line 

Syntax 
line 

Description 

See also 

The line command copies one line (up to a new line) from the standard input 
and writes it on the standard output. It returns an exit code of 1 on end-of-file 
and always prints at least a new line. It is often used within shell files to read 
from the user's terminal. 

gets(C), sh(C) 

Standards conformance 

line is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

286 1 February 1993 



/n(CJ 

In 
make a link to a file 

Syntax 
In [ -s ] [ -f] sourcefile targetfile 

In [ -s ] [ -f] sourcefile ... targetdirectory 

Description 

See also 

A link is a directory entry referring to a file; a single file (together with its size, 
all its protection information, and so on) may have several links to it. There 
are two kinds of link: hard links and symbolic links. 

By default In makes hard links. A hard link to a file is indistinguishable from 
the original directory entry; any changes to a file are effective independent of 
the name used to reference the file. Hard links may not span file systems and 
may not refer to directories. 

The -s option causes In to create symbolic links. A symbolic link contains the 
name of the file to which it is linked; this file does not need to exist prior to the 
symbolic link. Symbolic links may span file systems and may refer to direc­
tories. 

When In is given two arguments, and the second argument does not exist, In 
creates a directory entry called targetfile that is a link to sourcefile. 

If the last argument is the name of a directory, In creates a new entry in the 
directory for each sourcefile given. The name of each new entry will be the 
basename of the corresponding sourcefile. 

If In determines that the mode of the target forbids writing, it will print the 
mode (see chmod(C)), ask for a response, and read the standard input for one 
line. 

If the line begins with y, In creates the link if permitted; if not, In exits. 

When the -f option is used or if the standard input is not a terminal, no ques­
tions are asked and In creates the link. 

cp(C), mv(C), rm(C) 

1 February 1993 287 



ln(C) 

Standards confonnance 
In is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

288 1Febmary1993 



lock( CJ 

lock 
lock a use(s terminal 

Syntax 

lock [ -v I [ -n11mber I 

Description 

The lock command requests a password from the user, requests it again for 
verification, then locks the terminal until the password is reentered. If a 
-n11mber is specified in the lock command, the terminal is automatically 
logged out and made available to another user after that number of minutes 
has passed. 

This command uses the file /etc/default/lock. This file has two entries: 

DEFLOGOUT = number 
MAXLOGOUT = number 

DEFLOGOUT specifies the time in minutes that a terminal will remain locked 
before the user is logged out. The default value is set to 30 minutes; this is 
overridden if the -number option is used on the command line. If 
DEFLOGOUT and -number are not specified, the MAXLOGOUT value is used. 

MAXLOGOUT is the maximum number of minutes a user is permitted to lock 
a terminal. The default value is 60 minutes. If a user attempts to lock a termi­
nal for longer than this time, lock will issue a warning to the user that it is 
using the system maximum time limit. If DEFLOGOUT and -number and 
MAXLOGOUT are not specified, users are not logged out. 

DEFLOGOUT and MAXLOGOUT are configured by the system administrator 
to reflect the demand for terminals at the site. 

The lock may be terminated by killing the lock process. Only the super user 
and the user who invoked lock may do so. 

The -v option specifies verbose operation. 

Limitations 

lock can easily be defeated if invoked from csh(C) or ksh(C) using their job 
suspend and control features. 

lock will not lock screens other than the current one if multiscreens are being 
used (see also mscreen(M) and multiscreen(M)). lock is also ineffective on X 
terminals for similar reasons. 

1 February 1993 289 



lock(C) 

Files 
/etc/default/lock file containing default lock values 

Standards confonnance 

290 

lock is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



log name 
get login name 

Syntax 
logname 

Descripti.on 
Iogname returns the user's login name as found in /etc/utmp. If no login name 
is found, logname returns the user's user ID number. 

See also 

env(C), getlogin(S), getuid(S), id(C), login(M), logname(S) 

Standards conformance 

logname is conformant with X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 291 



lp(C) 

Ip, lpr 
send requests to lineprinter 

Syntax 
Ip [ options I files 

Ip -i request-id [ options I 

Description 

The first form of the Ip shell command arranges for the named files and asso­
ciated information (collectively called a request) to be printed. If no filenames 
are specified on the command line, the standard input is assumed. The stan­
dard input may be specified along with named files on the command line, by 
specifying the files as arguments to Ip before the standard input. The files 
will be printed in the order they appear on the command line. 

The second form of Ip is used to change the options for a request. The print 
request identified by the request-id is changed according to the printing 
options specified with this shell command. The printing options available are 
the same as those with the first form of the Ip shell command. If request-id 
has finished printing, the change is rejected. If request-id is already printing, 
it will be stopped and restarted from the beginning, unless the -P option has 
been given. 

Ip associates a unique id with each request and prints it on the standard out­
put. This id can be used later to cancel, change, or find the status of the 
request. (See Ipstat(C) for information about checking the status of a print 
request.) 

Options to Ip must always precede filenames but may be listed in any order. 
The following options are available for Ip: 

-c When Ip runs, it immediately creates a copy of the files specified for 
printing. The copies are subsequently printed. Changes made to a file 
after the Ip command is issued but before the file is printed will therefore 
not be reflected in the printed output. Versions of Ip in earlier releases 
did not create a copy of the print files unless the -c flag was used (to indi­
cate that copies of the print files should be made). Because this is now 
the default behaviour for Ip, this flag is retained solely for backward com­
patibility, and need not be used. 

292 1 Febmary 1993 



lp(C) 

-d dest 
Prints this request using dest as the printer or class of printers. Under 
certain conditions (lack of printer availability, capabilities of printers, and 
so on), requests for specific destinations may not be accepted (see 
accept(ADM) and lpstat(C)). By default, dest is taken from the environ­
ment variable LPDEST (if it is set). Otherwise, a default destination (if 
one exists) for the computer system is used. Destination names vary 
between systems (see lpstat(C)). 

-f form-name [ -d any I 
Prints the request on the form form-name. The Ip print service ensures 
that the form is mounted on the printer. lfform-name is requested with a 
printer destination that cannot support the form, the request is rejected. 
If form-name has not been defined for the system or if the user is not 
allowed to use the form, the request is rejected (see lpfonns(ADM)). 
When the -d any option is given, the request is printed on any printer that 
has the requested form mounted and can handle all other needs of the 
print request. 

-H special-handling 
Prints the request according to the value of special-handling. Acceptable 
values for special-handling are hold, resume, and immediate, as defined 
below: 

hold 
Will not print the request until notified. If already printing, stops it. 
Other print requests will go ahead of a held request until it is 
resumed. 

resume 
Resumes a held request. If it had been printing when held, it will be 
the next request printed, unless subsequently ovenidden by an 
immediate request. 

immediate 
(Available only to Ip administrators.) 
Prints the request next. If more than one request is assigned immedi­
ate, the requests are printed in the reverse order queued. If a request 
is currently printing on the desired printer, you have to put it on hold 
to allow the immediate request to print. 

-L Local printing option. Sends print job to printer attached to the terminal. 

-m Sends mail (see mail(C)) after the files have been printed. By default, no 
mail is sent upon normal completion of the print request. 

-n number 
Prints number copies of the output (default is 1). 

1 February 1993 293 



lp(C) 

294 

-o option 
Specifies printer-dependent or class-dependent options. Several such 
options may be collected by specifying the -o keyletter more than once. 
The standard interface recognizes the following options: 

no banner 
Does not print a banner page with this request. (The administrator 
can disallow this option at any time.) 

nofilebreak 
Does not insert a form feed between the files given if submitting a job 
to print more than one file. 

stty=stty-option-list 
Set the printer with a list of options valid for the stty command. 
Enclose the list with quotes if it contains blanks. 

length=scaled-decimal-number 
Prints the output of this request with pages scaled- decimal-number 
lines long. A scaled-decimal-number is an optionally scaled decimal 
number that gives a size in lines, columns, inches, or centimeters, as 
appropriate. The scale is indicated by appending the letter "i" (for 
inches) or the letter "c" (for centimeters). For length or width set­
tings, an unscaled number indicates lines or columns; for line pitch or 
character pitch settings, an unscaled number indicates lines per inch 
or characters per inch (the same as a number scaled with "i "). For 
example, length=66 indicates a page length of 66 lines, length=11i 
indicates a page length of 11 inches, and length=27.94c indicates a 
page length of 27.94 centimeters. This option cannot be used with the 
-f option. 

width=scaled-decimal-number 
Prints the output of this request with page-width set to 
scaled-decimal-number columns wide. (See the explanation above for 
scaled-decimal-numbers.) This option cannot be used with the -f 
option. 

lpi=scaled-decimal-number 
Prints this request for "lines per inch" with the line pitch set to 
scaled-decimal-number lines per inch. This option cannot be used 
with the -f option. 

1 February 1993 



/p(C) 

cpi=scaled-decimal-number 
Prints this request for "characters per inch" with the character pitch 
set to scaled-decimal-number characters per inch. Character pitch can 
also be set to pica (representing 10 columns per inch) or elite 
(representing 12 columns per inch), or it can be compressed, to print 
as many columns as the printer can handle. There is no standard 
number of columns per inch for all printers; see the 
terminfo(F) database for the default character pitch for your printer. 
The cpi option cannot be used in conjunction with the -f option. 

-P page-list 
Prints the page(s) specified in page-list. This option can be used only if 
there is a filter available to handle it; otherwise, the print request will be 
rejected. 

The page-list may consist of range(s) of numbers, single page numbers, 
or a combination of both. The pages will be printed in ascending order. 

-q priority-level 
Assigns this request priority-level in the printing queue. The values of 
priority-level range from 0, the highest priority, to 39, the lowest priority. 
If a priority is not specified, the default for the print service is used, as 
assigned by the system administrator. 

-R Removes file after sending it. 

-s Suppresses messages from lp(C) such as "request id is ... ". 

-S character-set [ -d any I 
-Sprint-wheel [ -d any ] 

Prints this request using the specified character-set or print-wheel. If a 
form has been specified that requires a character-set or print-wheel other 
than the one specified with the -S option, the request is rejected. 

For printers that take print wheels: if the print-wheel specified is not one 
listed by the administrator as acceptable for the printer involved in this 
request, the request is rejected unless the print wheel is already mounted 
on the printer. For printers that use selectable or programmable character 
sets: if the character-set specified is not one defined in the terminfo data­
base for the printer (see terminfo(F)) or is not an alias defined by the 
administrator, the request is rejected. 

When the -d any option is used, the request is printed on any printer that 
has the print wheel mounted or any printer that can select the character 
set and can handle all other needs of the request. 

-t title 
Prints title on the banner page of the output. The default is no title. 

1 February 1993 295 



Ip( CJ 

Warning 

-T content-type [ -r I 
~ile t~e p_rinter type information tell~ the print service what type of 
printer 1s bemg added, the content type information tells the print service 
what types of files can be printed. Prints the request on a printer that can 
s1;1pport th~ speci_fied content-type. If no printer accepts this type 
directly, a filter will be used to convert the content into an acceptable 
type. If the -r option is specified, a filter will not be used. If -r is specified 
but no printer accepts the content-type directly, the request is rejected. If 
the content-type is not acceptable to any printer, either directly or with a 
filter, the request is rejected. 

-w Writes a message on the user's terminal after the files have been printed 
using write(C). If the user is not logged in or the terminal cannot be writ­
ten to (the state of mesg(C) is n), then mail will be sent instead. 

-y mode-list 
Prints this request according to the printing modes listed in mode-list. 
The allowed values for mode-list are locally defined. This option can be 
used only if there is a filter available to handle it; if there is no filter, the 
print request will be rejected. 

For printers that take mountable print wheels or font cartridges, if you do not 
specify a particular print wheel or font with the -S option, whichever happens 
to be mounted at the time your request prints will be used. Use the lpstat -p -1 
command to see what print wheels are available. For printers that have 
selectable character sets, you will get the standard set if you don't give the -S 
option. 

Limitations 

Files 

296 

Printers for which requests are not being accepted will not be considered 
when the destination is any. (Use the lpstat -a command to see which print­
ers are accepting requests.) On the other hand, if a request is destined for a 
class of printers and the class itself is accepting requests, all printers in the 
class will be considered, regardless of their acceptance status, as long as the 
printer class is accepting requests. 

The file /etc/default/lpd contains the setting of the variable BANNERS, whose 
value is the number of pages printed as a banner identifying each printout. 
This is normally set to either 0 or 1. 

!pr is a link to lp. These names may be used interchangeably. 

/usr/spaol/lp/* 
/etc/default/lpd 

1 February 1993 



See also 

lp(C) 

accept(ADM), cancel(C), enable(C), lpadmin(ADM), lpfilter(ADM), 
lpfonns(ADM), lpsched(ADM), lpstat(C), lpusers(ADM), mail(C), tenninfo(F), 
write(C) 

Standards confonnance 

Ip is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

I February 1993 297 



/print( CJ 

I print 
print to a printer attached to the use(s terminal 

Syntax 

lprint [ - I [file] 

Description 

The lprint(C} command accepts a filename to print or - to read from the key­
board. If the terminal has local printing abilities, it will then print the file to a 
printer attached to the printer port of the terminal. 

The option - tells lprint to use the standard input for printing. 

Limitations 

Files 

See also 

This command uses the file /etc/termcap. 

Only certain terminals have entries in /etc/termcap with this capability already 
defined (for example, Tandy's DT-100 and DT-1, and Hewlett-Packard's 
HP-92). 

To add attached printer capability to the termcap file for a different terminal, 
add entries for PN (start printing) and PS (end printing) with the appropriate 
control or escape characters for your terminal. 

Terminal communications parameters (such as baud rate and parity) must be 
set up on the terminal by the user. 

/etc/termcap 

lp(C}, tenncap(F) 

uUsing printers" chapter in the System Administrator's Guide 

Standards conformance 

298 

)print is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 Febmary 1993 



lpstat(C) 

lpstat, rlpstat 
print information about status of (remote) Ip print service 

Syntax 
lpstat options 

rlpstat local_printer _name 

Description 

lpstat prints information about the current status of the Ip print service. 

rlpstat prints information about the status of a print service on a remote host 
connected via TCP/IP. 

If no options are given, lpstat prints the status of all requests made to lp(C) by 
the users. Any arguments that are not options are assumed to be request-ids 
(as returned by Ip), printers, or printer classes. lpstat prints the status of such 
requests, printers, or printer classes. Options may appear in any order and 
may be repeated and intermixed with other arguments. Some of the 
keyletters below may be followed by an optional list that can be in one of two 
forms: a list of items separated from one another by a comma, or a list of 
items enclosed in double quotes and separated from one another by a comma 
and/or one or more spaces. For example: 

-u user1, user2, user3 
Specifying all after any keyletters that take list as an argument causes all in­
formation relevant to the keyletter to be printed. For example, the command 
lpstat -oall prints the status of all output requests. · 

The arguments to lpstat are as follows: 

-a [list] 
Print acceptance status (with respect to Ip) of destinations for requests (see 
accept(ADM)). list is a list of intermixed printer names and class names; 
the default is all. 

-c [list] 
Print class names and their members. list is a list of class names; the 
default is all. 

-d Print the system default destination for Ip. 

-£[list] (-1] 

1 February 1993 

Print a verification that the forms in form-list are recognized by the Ip 
print service. The -I option will list the form descriptions. 

299 



lpstat(C) 

300 

-o [list] [-I] 
Print the status of output requests. list is a list of intermixed printer 
names, class names, and request-ids; the default is all. The -1 option gives 
a more detailed status of the request. 

-p [list] [-DJ [-1) 
Print the status of printers named in list. If the -D option is given, a brief 
description is printed for each printer in list. If the -I option is given, a full 
description of each printer's configuration is given, including the form 
mounted, the acceptable content and printer types, a printer description, 
the interface used, and so on. 

-r Print the status of the Ip request scheduler. 

-s Print a status summary, including the system default destination, a list of 
class names and their members, a list of printers and their associated de­
vices, a list of all forms currently mounted, and a list of all recognized 
character sets and print wheels. 

-S [list] [-I] 
Print a verification that the character sets or the print wheels specified in 
list are recognized by the Ip print service. Items in list can be character 
sets or print wheels; the default for the list is all. If the -1 option is given, 
each line is appended by a list of printers that can handle the print wheel 
or character set. The list also shows whether the print wheel or character 
set is mounted or specifies the built-in character set into which it maps. 

-t Print all status information. 

-u [list] 
Print status of output requests for users. list is a list of login names. The 
default is all. 

-v [list] 
Print the names of printers and the path names of the devices associated 
with them. list is a list of printer names. The default is all. 

rlpstat allows the user to look at the queue of a remote printer. The c~mmai:id 
is invoked with the name of the printer as it is known locally (that 1s, by its 
host computer). For example, 

rlpstat local_printer _name 
rlpstat will find the machine on which the printer is physically con~ected and 
do an lpstat -o local__printer _name to show the queue on that machine for that 
printer. 

1 February 1993 



lpstat(C) 

rlpstat makes the following assumptions: 

• The user has Ip accounts on both the networked machines. 

• The documented format of /usr/spool/lp/remote is adhered to. 

• The first option of the Ip command to be executed on the remote machine 
is the destination {-d local_printer _name). 

Examples 

Files 

See also 

lpstat-r 

lpstat-t 

/usr/spool/lp/* 

used to find out if the scheduler is running 

display all status information about the print service 

enable{C), lp{C) 

Standards conformance 

lpstat is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1February1993 301 



ls(C) 

I, le, If, Ir, Is, Ix 
list contents of directories 

Syntax 
I [ -ACFLRabcdfginopqrstu) [directory I file ... ] 

le [ -lAFLRabcdfgilmnopqrstux) [directory I file ... ) 

If [ -lALRabcdfgilmnopqrstux) [directory I file ... ) 

Ir [ -lAFLabcdfgilmnopqrstux I [directory I file ... ) 

Is [ -ACFLRabcdfgilmnopqrstux) [ directory I file ... ) 

Ix [ -lACFLRabcdfgilmnopqrstu) [directory I file ... ] 

Description 

302 

I, le, If, Ir, Is, and Ix make up the Is family of commands. 

For each directonJ, the contents are listed. For each file, the filename is 
repeated and any other requested information is displayed. By default, the 
output is sorted alphabetically. When no argument is given, the current direc­
tory is listed. When several arguments are given, they are sorted appropri­
ately; file arguments are processed before directories and their contents. 

I provides a long listing, one file per line, by default. 

le lists files in columns by default. 

If lists files, indicating directories, executables, and symbolic links. If is a vari­
ant of le, so files are listed in columns by default. 

Ir lists files, recursively listing any subdirectories encountered. Ir is a variant 
of le, so files are listed in columns by default. 

Is lists files alphabetically, one entry per line, by default. 

Ix, another variant of le, lists files in columns, but sorted across the page 
rather than down the page. 

You can also list files in stream (across the page) output format, separated by 
commas, using Is -m. 

1 February 1993 



/s(CJ 

Is determines the output format for the ·C (le), -x (Ix), and -m options by using 
an environment variable, COLUMNS, to determine the number of character 
positions available on one output line. If this variable is not set, the termcap 
database is used to determine the number of columns, based on the environ­
ment variable TERM. If this information cannot be obtained, 80 columns are 
assumed. 

Options are: 

-1 Forces an output format with one entry per line, for le, If, Ir, and Ix. 

-A Lists all entries. Entries whose name begin with a dot(.) are listed. Does 
not list current directory "." and directory above " .. ". 

-C Lists in columns with entries sorted down the columns. If the 
argument(s) are filename(s), output is across the page, rather than down 
the page in columns. 

-F Causes directories to be marked with a trailing " I ", executable files to be 
marked with a trailing "* ", and symbolic links to be marked with a trail­
ing "@" symbol. 

-L If an argument is a symbolic link, list the information for the file or direc­
tory the link references. 

-R Recursively lists subdirectories. 

-a Lists all entries; " . " and " .. " are not suppressed. 

-b Forces printing of non-graphic characters in the \ddd notation, in octal. 

-c Uses time of last modification of the inode (file created, mode changed, 
etc.) for sorting; use with -t option. 

·d If an argument is a directory, lists only its name (not its contents); often 
used with -1 to get the status of a directory. 

·f Forces each argument to be interpreted as a directory and lists the name 
found in each slot. This option turns off -1, -t, -s, and -r, and turns on -a. 
The order is the order in which entries appear in the directory. 

·g The same as -1, except that the owner is not printed. 

-i For each file, prints the inode number in the first column of the report. 

I February 1993 303 



ls(C) 

-1 Lists in long format, giving mode, number of links, owner, group, size in 
bytes, and time of last modification for each file. If the file is a symbolic 
link, the filename is printed followed by "->" and the pathname of the 
referenced file. If the file is a special file, the size field will contain the 
major and minor device numbers, rather than a size. A total count of 
blocks in the directory, including indirect blocks, is printed at the top of 
long format listings. A description of the mode listing follows below. 

-m Forces stream output format; files are listed across the page, separated by 
commas. 

-n The same as -1, except that the user ID (UID) and group ID (GID) numbers 
are printed, rather than the owner name and the group name. 

-o The same as -1, except that the group is not printed. 

-p Puts a slash(/) after each directory. 

-q Forces printing of non-graphic characters in filenames as the character 
II?". 

-r Reverses the order of sort to get reverse alphabetic or oldest first, as 
appropriate. 

-s Gives size in 512-byte blocks, including indirect blocks, for each entry. 

-t Sorts by time modified (latest first) instead of by name. 

-u Uses time of last access instead of time of last modification for sorting; 
use with the -t option. 

-x Lists in columns with entries sorted across, rather than down, the page. 
If the argument(s) are filename(s), output is across the page, rather than 
down the page in columns. 

The mode printed under the -1 option (long listing, 1) consists of 10 characters. 
The first character is: 

If the entry is an ordinary file. 

d If the entry is a directory. 

If the entry is a symbolic link. 

b If the entry is a block special file. 

c If the entry is a character special file. 

p If the entry is a named pipe. 

304 1February1993 



ls(C) 

s If the entry is a semaphore. 

m If the entry is a shared data (memory) file. 

The next 9 characters are the permissions, which control who can access the 
file. Permissions are in 3 sets of 3 bits each. The first set refers to the owner 
permissions; the second set to the group permissions; and the third set to per­
missions for all others. 

Within each set, the three characters indicate permission to read, to write, or 
to execute the file, respectively. 

The permissions are as follows: 

r Read. 

w Write. 

x Execute; on a directory, this gives search permission. 

s Setuid, setgid: set the UID or GID of the executing process to that of the 
file when the file is executed. 

S Setuid/setgid is set, but the underlying execute permission is not set. 

On an executable file: the binary image of the file will remain in memory 
after the first time it is used. On a directory: files in the directory can only 
be removed by their owners, or by root. 

T The sticky bit (t bit) is set, but the underlying execute permission is not 
set. 

No permission is set. 

See chmod(C) for more information about permissions. 

Limitations 

ls sorts according to the collating sequence defined by the locale. 

New line and tab are considered printing characters in filenames. 

Unprintable characters in filenames may confuse the columnar output 
options. 

ls -s interprets one 1024-byte block (a standard SCO UNIX block) as two of its 
own 512-byte blocks. Thus a 500-byte file is interpreted as two blocks rather 
than one. 

1 February 1993 305 



ls(C) 

Files 

See also 

/etc/passwd 
/etc/group 
/etc/termcap 

where user IDs are found 
where group IDs are found 
where terminal information is found 

chmod(C), coltbl(M), find(C), l(C), lc(C), locale(M), termcap(F) 

Standards confonnance 

306 

ls is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

le and its variants were developed at the University of California at Berkeley; 
they are used with permission. 

1 February 1993 



machid(C) 

machid: i286, iAPX286, i386, i486 (also: vax, 
mc68k,pdp11, u370,u3b, u3b15,u3b2,u3b5) 
get truth value dependent on processor type 

Syntax 

i286 
iAPX286 
i386 
i486 
(also: vax, mc68k, pdpll, u370, u3b, u3b15, u3b2, u3b5) 

Description 

See also 

If the machine is a 286, the i286 and iAPX286 commands will return a true 
value (exit code of 0); otherwise they will return a false (non-zero) value. 

If the machine is a 386 or fully compatible with a 386 (such as a 486), the i386 
command will return a true value; otherwise it will return a false value. 

If the machine is a 486 or fully compatible with a 486, the i486 command will 
return a true value; otherwise it will return a false value. 

This type of command is often used within makefiles (see make(CP)) and shell 
procedures (see sh(C)) to increase portability. Although SCO UNIX does not 
support these other machines, the commands vax, mc68k, pdpll, u370, u3b, 
u3b15, u3b2, and u3b5 are all available and work in a similar manner (these 
will all return a false value). 

sh(C), test(C), true(C), make(CP) 

1 February 1993 307 



mail(C) 

mail, mailx 
interactive message processing system 

Syntax 
mail [ options ] [ name ... ] 

mailx [ options ] [ name ... ] 

Description 

mail provides a flexible environment for sending and receiving messages 
electronically. For reading mail, mail provides commands to allow saving, 
deleting, and responding to messages. For sending mail, mail allows editing, 
reviewing, and other modification of the message as it is entered. 

Many of the remote features of mail will only work if the UUCP package is 
installed on your system. 

Incoming mail is stored in a standard file for each user, called the mailbox for 
that user. When mail is called to read messages, the mailbox is the default 
place to find them. As messages are read, they are marked to be moved to a 
secondary file for storage, unless specific action is taken, so that the messages 
need not be seen again. This secondary file is called the mbox and is normally 
located in the user's HOME directory (see MBOX under "Environment vari­
ables"). Messages can be saved in other secondary files named by the user. 
Messages remain in a secondary file until forcibly removed. 

The user can access a secondary file by using the -f option of the mail com­
mand. Messages in the secondary file can then be read or otherwise processed 
using the same commands as in the primary mailbox. This gives rise to the 
notion of a current mailbox. 

On the command line, options start with a dash (-) and any other arguments 
are taken to be destinations (recipients). If no recipients are specified, mail 
attempts to read messages from the mailbox. Command-line options are: 

-e Test for presence of mail. mail prints nothing and exits with a successful 
return code if there is mail to read. 

-£[filename] 
Read messages from filename instead of mailbox. If no filename is speci­
fied, the mbox is used. 

-F Record the message in a file named after the first recipient. Overrides the 
record variable, if set (see "Environment variables"). 

308 1February1993 



mail( CJ 

-hnumber 
The number of network "hops" made so far. This is provided for network 
software to avoid infinite delivery loops. (See addsopt under "Environ­
ment variables".) 

-H Print header summary only. 

-i Ignore interrupts. (See ignore under "Environment variables".) 

-n Do not initialize from the system default .mailrc file. 

-N Do not print initial header summary. 

-raddress 
Pass address to network delivery software. All tilde commands are dis­
abled. (See addsopt under "Environment variables".) 

-ssubject 
Set the Subject header field to subject. 

-uuser 
Read user's mailbox. This is only effective if user's mailbox is not read 
protected. 

-U Convert UUCP style addresses to internet standards. Overrides the conv 
environment variable. (See addsopt under #Environment variables".) 

When reading mail, mail is in command mode. A header summary of the first 
several messages is displayed, followed by a prompt indicating mail can 
accept standard commands (see Commands below). When sending mail, 
mail is in input mode. If no subject is specified on the command line, a prompt 
for the subject is printed. (A subject longer than 1024 characters will cause 
mail to dump core.) As the message is typed, mail will read the message and 
store it in a temporary file. Commands may be entered by beginning a line 
with the tilde n escape character followed by a single command letter and 
optional arguments. See "Tilde escapes" for a summary of these commands. 

At any time, the behavior of mail is governed by a set of environment variables. 
These are flags and valued parameters which are set and cleared via the set 
and unset commands. See "Environment variables" below for a summary of 
these parameters. 

Recipients listed on the command line may be of three types: login names, 
shell commands, or alias groups. Login names may be any network address, 
including mixed network addressing. If mail is found to be undeliverable, an 
attempt is made to return it to the sender's mailbox. If the recipient name 
begins with a pipe symbol (I), the rest of the name is taken to be a shell com­
mand to pipe the message through. This provides an automatic interface with 
any program that reads the standard input, such as lp(C), for recording outgo­
ing mail on paper. Alias groups are set by the alias command (see Com­
mands below) and are lists of recipients of any type. 

February 1993 309 



mail(C) 

310 

Regular commands are in the format: 

[ command ) [ msglist ) [ arguments ) 

If no command is spec~fied in com1~and mode, print is assumed. In input mode, 
commands are recogmzed by the hide escape character, and lines not treated 
as commands are taken as input for the message. 

Eac~ message is assigned a sequential number, and there is at any time the 
notion of a current message, marked by a right angle bracket(>) in the header 
summary. Many commands take an optional list of messages (msglist) to 
operate on. The default for msglist is the current message. A msglist is a list 
of message identifiers separated by spaces, which may include: 

n Message number n. 

The current message. 

The first undeleted message. 

$ The last message. 

* All messages. 

n-m An inclusive range of message numbers. 

user All messages from *user. 

/string All messages with string in the subject line (case ignored). 

:c All messages of type c, where c is one of: 

d deleted messages 
n new messages 
o old messages 
r read messages 
u unread messages 

Note that the context of the command determines whether this type of 
message specification makes sense. 

Other arguments are usually arbitrary strings whose usage depends on the 
command involved. File names, where expected, are expanded via the nor­
mal shell conventions (see sh(C)). Special characters are recognized by certain 
commands and are documented with the commands below. 

At start-up time, mail tries to execute commands from the optional system­
wide file (jusr/lib/mail/mailrc) to initialize certain parameters, then from a 
private start-up file ($HOME/.mailrc) for personalized ~ar~ables. With . the 
exceptions noted below, standard commands are legal ms1de start-up files. 
The most common use of a start-up file is to set up initial display options and 
alias lists. 

1February1993 



mail(C) 

The following commands are not legal in the start-up file: !, C (copy), e (edit), 
fo (forward), F (Forward), ho (hold), m (mail), pre (preserve), r (reply), 
R (Reply), sh (shell), and v (visual). An error in the start-up file causes the 
remaining lines in the file to be ignored. The .mailrc file is optional and must 
be constructed locally. 

Commands 
The following is a complete list of mail commands: 

! shell-command 
Execute shell command and return. (See SHELL under uEnvironment 
variables".) 

#comment 
Null command (comment). This may be useful in .mailrc files. 

Print the current message number. 

? Print a summary of commands. 

a alias name .. . 
g alias name .. . 

Declare an alias for the given names; declare a group for the given 
names. The names will be substituted when alias is used as a recipient. 
Useful in the .mailrc file. 

alt name ... 
Alternates. Declare a list of alternate names for your login. When 
responding to a message, these names are removed from the list of reci­
pients for the response. With no arguments, alternates prints the current 
list of alternate names. (See allnet under "Environment variables".) 

cd [directory] 
ch [directory] 

Change directory. (ch is an abbreviation of chdir.) If directory is not 
specified, $HOME is used. 

c [filename] 
c [msglist] filename 

copy messages to the file without marking the messages as saved. Other­
wise equivalent to the s (save) command. 

C [msglist] 
Copy the specified messages to a file whose name is derived from the 
author of the message to be saved, without marking the messages as 
saved. Otherwise equivalent to the Save command. 

d [msglist] 

l February 1993 

Delete messages from the mailbox. If autoprint is set, the next message 
after the last one deleted is printed (see "Environment variables"). 

311 



mail(C) 

312 

di [header-field ... ] 
ig [header-field ... ] 

Discard or Ignore the header field. Suppress printing of the specified 
header fields when displaying messages on the screen. Examples of 
header fields to ignore are "status" and "cc". The fields are included 
when the message is saved. The Print and Type commands override 
these commands. 

dp [msglist] 
dt [msglist] 

Delete the specified messages from the mailbox and print the next mes­
sage after the last one deleted. Roughly equivalent to a delete command 
followed by a print command. 

ec string ... 
Echo the given strings (like echo(C)). 

e [msglist] 

ex 

Edit the given messages. The messages are placed in a temporary file 
and the EDITOR variable is used to get the name of the editor (see 
"Environment variables"). Default editor is ed(C). 

x Exit from mail without changing the mailbox. No messages are saved in 
the mbox (see also quit). 

fi [filename I 
fold [filename] 

(Abbreviations for file or folder.) Quit from the current file of messages 
and read in the specified file. Several special characters are recognized 
when used as file names, with the following substitutions: 
% the current mailbox 
%user the mailbox for user 
# the previous file 
& the current mbox 
Default file is the current mailbox. 

folders 
Print the names of the files in the directory set by the folder variable (see 
"Environment variables"). 

for [message] name ... 
Forward the specified message to the specified users, shifting the for­
warded text to the right one tab stop. 

F [message) name... . . 
Forward the specified message to the specified users, with no indenta­
tion. 

f [msglist] .. 
(Abbreviation for from.) Prints the header summary for the spec1f1ed 
messages. 

1 February 1993 



mail( CJ 

g alias name ... 
group. See alias. 

h [+ I - I msglist] 
headers. Lists the current range of headers. The screen variable sets the 
number of headers per page (see "Environment variables"). If a "+" 
argument is given, then the next page is printed, and if a " - " argument is 
given, the previous page is printed. Both " + " and " - " can take a number 
to view a particular window. If a message list is given, it prints the speci­
fied headers, disregarding all windowing. See also the z command. 

hel (Abbreviation for help.) Prints a summary of commands. 

ho [msglist] 
(abbreviation for hold.) Holds the specified messages in the mailbox. 

is I r mail-commands 
el mail-commands 
en (Abbreviations: i is short for if, el is short for else, and en is short for 

end.) Conditional execution, wheres causes the first mail commands, up 
to an el (else) or en (endif) to be executed if the program is in send mode, 
and r causes the mail commands to be executed only in receive mode. The 
mail-commands after the else are executed if the program is in the oppo­
site mode from the one indicated. Useful in the mailrc file. 

ig header-field ... 
ignore. See discard. 

Ii (Abbreviation: Ii is short for list.) Prints all commands available. No 
explanation is given. 

I [msglist] 
(Abbreviation: I is short for lpr.) Print the specified messages on the 
lineprinter. 

mname ... 
Mail a message to the specified users. 

Mname 
Mail a message to the specified user and record a copy of it in a file 
named after that user. 

mb [msglist] 
(Abbreviation: mb is short for mbox.) Arrange for the given messages to 
end up in the standard mbox save file when mail terminates normally. 
See the ex (exit) and q (quit) commands. 

n [message] 

1 February 1993 

Go to next message matching message. A msglist may be specified, but 
in this case the first valid message in the list is the only one used. This is 
useful for jumping to the next message from a specific user, since the 
name would be taken as a command in the absence of a real command. 
See the discussion of msglists above for a description of possible message 
specifications. 

313 



mai/(C) 

314 

pi [msglist] [shell-command] 
I [msglist] [shell-command] 

Pipe the message through the given shell-command. The message is 
treated as if it were read. If no arguments are given, the current message 
is piped through the command specified by the value of the cmd variable. 
If the page variable is set, a form feed character is inserted after each mes­
sage (see "Environment variables"). 

pre [msglist] 
Preserve (hold) the specified messages in the mailbox. 

P [msglist] 
T [msglist] 

Print (or type) the specified messages on the screen, including all header 
fields. Overrides suppression of fields by the ig (ignore) command. 

p [msglist] 
t [msglist] 

Print (or type) the specified messages. If crt is set, the messages longer 
than the number of lines specified by the crt variable are paged through 
the command specified by the PAGER variable. The default command is 
more(C) (see "Environment variables"). 

q (Abbreviation: q is short for quit.) Exit from mail, storing messages that 
were read in mbox and unread messages in the mailbox. Messages that 
have been explicitly saved in a file are deleted from the mailbox. 

R [msglist] 
Reply (or Respond) to the specified message, including all other reci­
pients of the message. If record is set to a file name, the response is saved 
at the end of that file (see "Environment variables"). 

r[message] 
(Abbreviation: r is short for reply or respond.) Send a response to the 
author of each message in the msglist. The subject line is taken from the 
first message. If record is set to a file name, the response is saved at the 
end of-that file (see "Environment variables"). 

S [msglist] 
Save the specified messages in a file whose name is derived from the 
author of the first message. The name of the file is taken to be the 
author's name with all network addressing stripped off. See also the C 
(copy) commands and outfolder (see "Environment variables"). 

s [filename] 
s [msglist] filename 

Save the specified messages in the given file. "!he file is crea!ed if i~ does 
not exist. The message is deleted from the mailbox when mad termmat~s 
unless keepsave is set (see also "Environment variables" and the ex (exit) 
and q (quit) commands). 

l February 1993 



mai/(C) 

se 
sename 
se name=string 
se name=n11mber 

(Abbreviation: se is short for set.) Define a variable called name. The 
variable may be given a null, string, or numeric value. se by itself prints 
all defined variables and their values. See "Environment variables" for 
detailed descriptions of the mail variables. 

sh Invoke an interactive shell (see SHELL under "Environment variables"). 

si [msglist] 
Print the size in characters of the specified messages. 

so filename 
(Abbreviation: so is short for source.) Read commands from the given 
file and return to command mode. 

to [msglist] 
Print the top few lines of the specified messages. If the toplines variable 
is set, it is taken as the number of Jines to print (see "Environment vari­
ables"). The default is 5. 

tou [msglist] 
Touch the specified messages. If any message in msglist is not specifical­
ly saved in a file, it will be placed in the mbox, or the file specified in the 
MBOX environment variable, upon normal termination. See ex (exit) and 
q (quit). 

T [msglist] 
Type: see Print. 

t [msglist] 
type: see print. 

u [msglist] 
(Abbreviation: u is short for undelete.) Restore the specified deleted mes­
sages. Messages are undeleted in the order they were deleted; that is, the 
deleted messages are kept in a queue, not a stack. Will only restore mes­
sages deleted in the current mail session. If autoprint is set, the last mes­
sage of those restored is printed (see "Environment variables"). 

unsname ... 
(Abbreviation: uns is short for unset.) Causes the specified variables to 
be erased. If the variable was imported from the execution environment 
(that is, a shell variable), then it cannot be erased. 

ve Prints the current version and release date. 

v [msglist] 

l February 1993 

(Abbreviation: v is short for visual.) Edit the given messages with a 
screen editor. The messages are placed in a temporary file and the 
VISUAL variable is used to get the name of the editor (see "Environment 
variables"). 

315 



mai/(C) 

316 

w [msglist] filename 
Write the given messages on the specified file, minus the header and 
trailing blank line. Otherwise equivalent to the save command. 

x See e (exit) or q (quit). 

z [+I-] 
Scroll the header display forward or backward one full screen. The num­
ber of headers displayed is set by the screen variable (see "Environment 
variables"). 

Tilde escapes 
The following commands may be entered only from input mode, by beginning 
a line with the tilde escape character CJ. See escape under "Environment 
variables" for information on changing this special character. 

-1 shell-command 
Execute the shell command and return. 

Simulate end of file (terminate message input). 

-:command 
-_command 

Perform the command-level request. Valid only when sending a message 
while reading mail. 

-7 Print a summary of tilde escapes. 

-A Expand the given alias. 

- a Insert the autograph string sign into the message (see "Environment 
variables"). 

-bname ... 
Add the names to the blind carbon copy (Bee) list. 

-c name ... 
Add the names to the carbon copy (Cc) list. 

-d Read in the dead.letter file. (See DEAD under "Environment variables" for 
a description of this file.) 

-e Invoke the editor on the partial message. (See EDITOR under "Environ­
ment variables".) 

-f [msglist] . . 
Forward the specified messages. The messages are inserted mto the 
message without alteration. 

-h Prompt for "Subject line" and "To", "Cc", "Bee", and "Retum-R~eipt-t~" 
lists. If the field is displayed with an initial value, it may be edited as if 
you had just typed it. 

1 Febniary 1993 



mail( CJ 

-i variable 
Insert the value of the named variable into the text of the message. For 
example, -A is equivalent to -iSign. Environment variables set and 
exported in the shell are also accessible by -i. 

-M [msKlist] 
Insert the specified messages into the letter, with no indentation. Valid 
only when sending a message while reading mail. 

-m [msglist] 
Insert the specified messages into the letter, shifting the new text to the 
right one tab stop. Valid only when sending a message while reading 
mail. 

-p Print the message being entered. 

-q Quit from input mode by simulating an interrupt. If the body of the mes-
sage is not null, the partial message is saved in dead.letter. (See DEAD 
under "Environment variables".) 

-rfilename 
-<filename 
--< !shell-command 

Read in the specified file. If the argument begins with an exclamation 
point (!), the rest of the string is taken as an arbitrary shell command and 
is executed, with the standard output inserted into the message. 

-s string ... 
Set the subject line to string. 

-tname ... 
Add the given names to the "To" list. 

-v Invoke a preferred screen editor on the partial message. (See also VISUAL 
under "Environment variables".) 

-wfilename 
Write the partial message onto the given file, without the header. 

-x Exit as with -q except the message is not saved in dead.letter. 

-1 shell-command 
Pipe the body of the message through the given shell-command. If the 
shell-command returns a successful exit status, the output of the com­
mand replaces the message. 

Environment variables 
The following are environment variables taken from the execution environ­
ment and are not alterable within mail. 

1 February 1993 317 



mai/(C) 

318 

HOME=directory 
The user's base of operations. 

MAILRC=filename 
The name of the start-up file. Default is $HOME/.mailrc. 

The following variables are internal mail variables. They may be imported 
from the execution environment or set via the se (set) command at any time. 
The uns (unset) command may be used to erase variables. 

addsopt 
Enabled by default. If /bin/mail is not being used as the deliverer, 
noaddsopt should be specified. (See "Limitations" below.) 

all net 
All network names whose last component (login name) matches are 
treated as identical. This causes the msglist message specifications to 
behave similarly. Default is noallnet. See also the alt (alternates) com­
mand and the metoo variable. 

append 
Upon termination, append messages to the end of the mbox file instead of 
prepending them. Default is noappend. 

askcc 
Prompt for the "Cc" list after message is entered. Default is noaskcc. 

asksub 
Prompt for subject if it is not specified on the command line with the -s 
option. Enabled by default. 

autoprint 
Enable automatic printing of messages after d (delete) and u (undelete) 
commands. Default is noautoprint. 

bang 
Enable the special-casing of exclamation points (!) in shell escape com­
mand lines as in vi(C). Default is nobang. 

chron 
Cause messages to be displayed in chronological order. The default is 
reverse chronological order (most recent message first). See also mchron 
below. 

cmd=shell-command 
Set the default command for the pi (pipe) command. Not set by default. 

conv=conversion 
Convert UUCP addresses to the specified address style. The only valid 
conversion now is internet, which requires a mail delivery program con­
forming to the RFC822 standard for electronic mail addressing. Com·er­
sion is disabled by default. See also the sendmail variable and the -U 
command-line option. 

I February 1993 



mail(C) 

crt=number 
Pipe messages having more than number lines through the command 
specified by the PAGER variable (more(C) by default). Disabled by 
default. 

DEAD=filename 
The name of the file in which to save partial letters in case of untimely 
interrupt. Default is $HOME/dead.letter. 

debug 
Enable verbose diagnostics for debugging. Messages are not delivered. 
Default is nodebug. 

dot Take a dot on a line by itself during input from a terminal as end-of-file. 
Default is nodot. 

EDITOR=shell-command 
The command to run when thee (edit) or -e command is used. Default is 
ed(C). 

escape=c 
Substitute c for the " - " escape character. Takes effect with next message 
sent. 

folder=directory 
The directory for saving standard mail files. User-specified file names 
beginning with a plus(+) are expanded by preceding the file name with 
this directory name to obtain the real file name. If directory does not start 
with a slash(/), $HOME is prepended to it. In order to use the plus(+) 
construct on a mail command line, folder must be an exported sh 
environment variable. There is no default for the folder variable. See 
also outfolder below. 

header 
Enable printing of the header summary when entering mail. Enabled by 
default. 

hold 
Preserve all messages that are read in the mailbox instead of putting them 
in the standard mbox save file. Default is nohold. 

ignore 
Ignore interrupts while entering messages. Useful for noisy dial-up lines. 
Default is noignore. 

ignoreeof 

l February l 993 

Ignore end-of-file during message input. Input must be terminated by a 
dot(.) on a line by itself or by the -.command. Default is noignoreeof. 
See also the dot variable above. 

319 



mail( CJ 

320 

keep 
When the mailbox is empty, truncate it to zero length instead of removing 
it. Disabled by default. 

keepsave 
Keep messages that have been saved in other files in the mailbox instead 
of deleting them. Default is nokeepsave. 

MBOX=filename 
The name of the file to save messages which have been read. The x (exit) 
command overrides this function, as does saving the message explicitly 
in another file. Default is $HOME/mbox. 

mchron 
Cause message headers to be listed in numerical order (most recently 
received first), but displayed in chronological order. See also chron 
above. 

me too 
If your login appears as a recipient, do not delete it from the list. Default 
isnometoo. 

LISTER=shell-command 
The command (and options) to use when listing the contents of the folder 
directory. The default is ls(C). 

onehop 
When responding to a message that was originally sent to several reci­
pients, the other recipient addresses are normally forced to be relative to 
the originating author's machine for the response. This flag disables 
alteration of the recipients' addresses, improving efficiency in a network 
where all machines can send directly to all other machines (that is, one 
hop away). 

outfolder 
Record outgoing messages in files located in the directory specified by 
the folder variable unless the pathname is absolute. Default is noout­
folder. See the folder variable above and the S (Save) and C (Copy) 
commands. 

page 
Used with the pi (pipe) command to insert a form feed after each mes­
sage sent through the pipe. Default is nopage. 

PAGER=shell-command 
Use shell-command as a filter for paginating output. This can also be 
used to specify the options to be used. Default is more(C). For PAGER to 
function, the crt variable (see above) must be set to a non-zero value. 

prompt=string 
Set the command mode prompt to string. Default is ·? ". 

1 February 1993 



mail(C) 

quiet 
Refrain from printing the opening message and version when entering 
mail. Default is noquiet. 

record=filename 
Record all outgoing mail in filename. Disabled by default. See also out­
folder above. 

save 
Enable saving of messages in dead.letter on interrupt or delivery error. 
See DEAD for a description of this file. Enabled by default. 

screen=number 
Set the number of lines in a full screen of headers for the h (headers) 
command. 

sendmail=shell-command 
Alternate command for delivering messages. Default is rmail(ADM). 

send wait 
Wait for background mailer to finish before returning. Default is 
nosendwait. 

SHELL=shell-command 
The name of a preferred command interpreter. Default is sh(C). 

showto 
When displaying the header summary and the message from you, print 
the recipient's name instead of the author's name. 

sign=string 
The variable inserted into the text of a message when the -a (autograph) 
command is given. Not set by default (see -i under "Tilde escapes"). 

Sign=string 
The variable inserted into the text of a message when the -A command is 
given. Not set by default (see also -i under "Tilde escapes"). 

toplines=number 
The number of lines of header to print with the to (top) command. 
Default is 5. 

visible 

l February 1993 

Make non-printable characters visible. 

Control characters (with the exception of tab, newline, and form feed) are 
displayed as ·x, where X corresponds to the key which would be pressed 
with the (Ctr!) key to obtain the control character. For example, the (Del) 
character (octal 0177) is displayed as ·?. 

Non-ASCII characters in the range 0200 to 0237 octal are displayed as M­
·x. In this case, Xis the control character corresponding to the seven low 
order bits. For example, octal character 0200 would be displayed as M- •@. 

321 



mai[(C) 

Characters with octal values in the ranges 0040 to 0176 and 0240 to 0377 
are considered displayable, and are not converted. 

This variable is set by default. You can disable it by entering the com­
mand uns visible at the mail prompt, or by including this command in 
your .mailrc file. 

VISUAL=she//-command 
The name of a preferred screen editor. Default is vi(C). 

Limitations 

Files 

See also 

The -h, -r and -U options can be used only if mail is built with a delivery 
program other than /bin/mail. 

Where shell-command is shown as valid, arguments are not always allowed. 
Experimentation is recommended. 

Internal variables imported from the execution environment cannot be uns 
(unset). · 

The full internet addressing is not fully supported by mail. The new stan­
dards need some time to become established. 

A line consisting only of a " . " is treated as the end of the message. 

mailx is a link to the standard mail program; either name may be used. 

$HOME/.mailrc 
$HOME/mbox 
/usr/spool/111ai/ 
/usr/lib/111ail/mail.*lielp 
/usr/lib/mail/mailrc 
/tmp/R[emqsx]* 

ls(C}, more(C) 

personal start-up file 
secondary storage file 
post office directory 
help message files 
optional global start-up file 
temporary files 

Standards conformance 

mail is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

322 1 February 1993 



man( CJ 

man 
print reference pages in this guide 

Syntax 

man [ -abcfw I [ -tproc] [ -ppager I [ -ddir I [ -Ttenn] [section I [title I 

/usrnib/manprog.file 

Description 

The man program locates and prints the named title from the designated 
reference section. For historical reasons, "page" is often used as a synonym 
for "entry" in this context. 

Since UNIX commands are given in lowercase, the title is almost always 
entered in lowercase. If no section is specified, the whole guide is searched for 
title and the first occurrence of it is printed. You can search for a group of sec­
tions by separating the section names with colons{:) on the command line. 

There are instances where title contains mixed upper and lowercase letters. 
The Intro pages are one such example. Others are to be found in sections cov­
ering internal routines such as {K) and {S). 

The options and their meanings are: 

-a "All" mode. Displays all matching titles. Incompatible with the -f option. 

-b Leaves blank lines in output. nroff{CT) pads entries with blank lines for 
line printer purposes. man normally filters out these excess blank lines. 
Normally, man does not display more than 2 consecutive blank lines. 
The -b flag leaves blank lines in the CRT output. 

-c Causes man to invoke col{C). Note that col is invoked automatically by 
man unless tenn is one of the following: 300, 300s, 450, 37, 4000a, 382, 
4014, tek, 1620, or X. 

-f "First" mode. Displays only the first matching title. Incompatible with -a 
option. This is the default mode for man. 

-w Prints on the standard output only the pathnames of the entries. 

1 Febriiary 1993 323 



man(C) 

324 

-tproc 
Indicates that if an unprocessed manual page is available, it is to be 
passed to. proc for formatt~ng. proc can be any command script in 
/usr/man/bm or an absolute filename of a text processing program else­
where on the system, for example /bin/nroff. The scripts in /usr/man/bin 
invoke the actual processing programs with the correct flags and argu­
ments. The default processor is /usr/man/bin/nr, which invokes 
/bin/nroff and produces output that safely prints on any terminal. The 
text is also preprocessed by eqn(CT) and tbl(CT) as a default. 

-ppager 
Selects paging program pager to display the entry. Paging systems such 
as more(C), pg(C), cat(C), or any custom pagers that you may have are 
valid arguments for this flag. The default pager, pg, is set in 
/etc/default/man. 

-ddir 
Specifies directory dir to be added to the search path for entries. You can 
specify several directories to be searched by separating the directory 
names with colons(:) on the command line. 

-Tterm 
Format the entry and pass the given term value to the processing pro­
gram, then print it on the standard output (usually, the terminal), where 
term is the terminal type (see term(M) and the explanation below). 

Section names 
The names and general descriptions of the available manual sections are: 

ADM System administration 
C Commands 
CP Commands· for programmers (Development System) 
DOS DOS routines and libraries (Development System) 
F File formats 
FP File formats for programmers (Development System) 
HW Hardware dependent features 
K Device driver routines and libraries 
M Miscellaneous 
S Development System routines and libraries 
XNX XENIX cross development (Development System) 
LOCAL Local utilities for your system 
You can add other section names as you wish. Each new section, however, 
must follow the standard section directory structure. The LOCAL directory is 
shipped without contents, as no LOCAL manual pages are included. You will 
only have access to the Development System and Device Driver manual pages 
if the corresponding modules have been installed on your system. 

1 February 1993 



man( CJ 

/usr/man directory structure 
The source files for the man program are kept in the directory /usr/man. Each 
man section is comprised of two directories, and there is a directory called bin 
for programs and shell scripts related to man. There is also an index file 
called index in /usr/man. This index is a list of all UNIX commands and their 
sections. 

Each manual section has two directories in /usr/man. These directories are 
called man and cat, plus the name of the section as a suffix. For example, the 
u cu manual section comprises of two directories, man.C and cat.C, both 
located in /usr/man. 

The unprocessed source text is in the man directory and the printable pro­
cessed output is in the cat directory. When a title is requested, both directories 
are checked. The most recent copy of the manual page is used as the current 
copy. If the most recent title is in the source text directory and it is processed 
by the default processor with the default terminal type, a display copy of the 
output is placed in the cat directory for future use. Note that a file that must 
be processed takes longer to appear on the screen than a display copy. 

Environment variables 
There is a shell environment variable for use with the man utility. This vari­
able is called MANPATH and it is used to change or augment the path man 
searches for entries. Multiple directories set with this variable must be delim­
ited by colon characters(:). If the MANPATH environment variable is present, 
the directories are searched in the order that they appear. /usr/man must 
appear in the MANPATH list to be included. If you set this environment vari­
able, it supersedes the MANPATH entry in the /etc/default/man file. Alternate 
subdirectories are expected to have the same form as the default directories in 
/usr/man. 

/etc/def aultlman 
The /etc/default/man contains the default settings for the man utility. The fol­
lowing options are set in /etc/default/man: 

PAGER=/usr/bin/pg 
MANPATH=/usr/man 
TERM=lp 
ORDER=ADM:C:S:CP:M:F:HW:DOS:LOCAL 
MODE= FIRST 
PROC=nr 

You can select a different paging system, search path, terminal type, search 
order, mode, and processor for the man system by changing the information 
in this file. 

To change the search order for manual sections, edit the list following the 
ORDER variable. Be certain the section names are separated with colons (:). 
Section names not present in ORDER are searched in arbitrary order after 
those specified in /etc/default/man. 

l February 1993 325 



man(C) 

326 

Creating new manual entries 
You can create new manual pages for utilities and scripts that you have devel­
oped. Use an existing manual page as an example of manual page structure. 
Use the man macros to format your manual page. For more information, refer 
to the nroff(CT) manual page. 

:ou must be logged in ~s root (the "super user'') to place a new manual page 
m your /usr/man directory structure. Place your new page in 
/usr/man/man.LOCAL while logged in as root and view it using the man com­
mand, since only root has write permission for the cat-able directories. Once 
man has produced the cat-able output, any user can view the new page in the 
same manner as any other on line manual page. 

Additionally, you can create your own custom sections by creating another 
manual directory and putting it in the MANPATH. For example, if subdirec­
tories man.X and cat.X are present, then man recognizes that "X" is a valid 
manual section. 

If you wish to use another text processing program (such as troff( CT)) to pro­
cess your custom manual pages, use the -tproc flag of man. proc can be any 
shell script in /usr/man/bin. To place a cat-able copy of the manual page in the 
cat directory, use the tee(C) command to send the output to a file, as well as to 
the standard output. 

Your command should have the form: 

man -tproc filename I tee pathname 

In the above example, proc is the text processing script, filename is the manu­
al page source file, and pathname is the path of the directory for the cat-able 
output. 

Custom manual sections can have an index, if the format is the same as the 
index in /usr/man. man uses the index to locate multiple commands that are 
listed on the same page as well as commands that have pages in several dif­
ferent sections. 

1 Febniary 1993 



man(C) 

1he man macro package 
The man macro package is located in /usr/lib/macros/an. There are 15 basic 
macros in the package. Here is a table of the macros and brief descriptions of 
their functions: 

Macro 

.TH title 

.SH title 

.SS title 

.SM text 

.PP 

.IP 

.HP 

.TP 

.RSn 

.RE 

.I text 

.B text 

.R text 

.PM 

Description 

Title heading 
Section heading 
Subsection heading 
Reduce point size 
New paragraph 
Indented paragraph 
Hanging paragraph 
Tagged paragraph 
Relative indent 
Release relative indent 
Italic font 
Bold font 
Roman font 
Proprietary mark (copyright) 

Limitations 

See also 

All entries are supposed to be reproducible either on a typesetter or on a ter­
minal. However, on a terminal some information, such as eqn(CT) and 
tbl(CT) output, is either lost or approximated as it cannot be exactly repro­
duced. 

In order to make use of eqnchar, nroff, tbl, and troff, it is first necessary to 
obtain and install the UNIX Text Processing System (available separately). 

eqnchar(CT), nroff(CT), tbl(CT), troff(CT), environ(M), term(M) 

Standards confonnance 

man is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 327 



mcart(C) 

mcart 
Irwin mini-cartridge tape maintenance program 

Syntax 

mcart command [ device ] 

Description 

328 

mcart sends commands to, and receives status from, an Irwin tape driver. (See 
tape(HW) and the Release Notes for a list of other supported tape drives, and 
tape(C) for details of the use of other tape drives.) 

The default device special file is /dev/rctmini. This may be changed by specify­
ing a different file to the device argument. 

The file /etc/default/mcconfig contains default driver options for the Irwin 
driver (see mcconfig(F) for details). In addition, the Irwin driver uses a dae­
mon startup program, /etc/mcdaemon, to provide background ECC 
encode I decode processing. 

All mcart commands entered while the tape is busy with other operations 
wait until the currently executing command has been completed before 
proceeding. 

mcart understands the following command options: 

capacity Report the total usable data storage capacity of a formatted tape 
cartridge in 512-byte blocks. Variations in cartridge capacity are 
due to differing numbers of bad blocks. (See also the kapacity 
option.) 

drive Display information about the Irwin driver and the tape drive. An 
example display is: 
Special file: /dev/rctmini 
Driver version: l.0.6a 
Drive type: 285XL 
Drive firmware: AO 
Controller type: SYSFDC 
Unit select (0-31: 3 

Special file is the name of the special file used to access the driver. 

Driver version is the version of the driver linked with the kernel. 

1 February 1993 



I February 1993 

mcart(C) 

Drive type is an "equivalent" tape drive model number as deter­
mined by the MC driver. Since the exact model number of the tape 
drive depends on the drive's form factor and whether the drive is 
mounted in its own cabinet, the equivalent model number may not 
be the exact model of the installed tape drive. The following is a 
list of equivalent drives: 

110: 110, 310, 410 

120(XL]: 120,220,320,420,720,2020 

125: 125,225,325,425,725 

145(XL]: 145,245,345,445,745,2040 

165: 165,265,465,765 

285XL: 285,485,785,2080 

287XL: 287,487,787,2120 

The brackets in the 120[XL] and 145[XL] mean the letters "XL" may 
or may not be present. When the letters "XL'' appear, the drive is 
capable of servo writing extra long (that is, 307.5 foot DC2120) 
tapes. 

Note: When this field displays "125/145," either a 125 drive or an 
early model 145 drive with a DClOOO is present: the driver cannot 
distinguish between the two. A 125 drive will only accept a 
DClOOO cartridge (a DC2000 or DC2120 will not fit). A 145 drive 
will accommodate DClOOO, DC2000, or DC2120 cartridges. 

Drive firmware is the firmware part number and revision level. 
This line is present only for drives which report this information. 

Controller type is a mnemonic for the floppy controller to which the 
tape drive is attached: 

Mnemonic 
SYSFDC 
ALTFDC 
4100MC 
4100MCB 
4100 
4100B 

Description 
System floppy controller 
Alternate floppy controller 
Irwin 4100MC Micro Channel controller 
Second 4100MC Micro Channel controller 
Irwin 4100 PC Bus controller 
Second 4100 PC Bus controller 

Unit select (0-3) gives the controller's unit select, in the range 0 
through 3. The unit select selects the drive. 

329 



mcart(C) 

format Format the tape cartridge. Floppy controller-based tapes must be 
formatted before they can be used. This command takes approxi­
mately one minute per megabyte of tape capacity. 

Preformatted tapes are available which are more reliable than 
user-fi;irm~tted tapes. Before reformatting a used tape, you must 
erase 1t with a bulk eraser. Proper use of a bulk eraser is not 
trivial; refer to the documentation for your bulk eraser. 

info Display Irwin cartridge information. For example: 
Cartridge state: Formatted 
Cartridge format: 145 
Write protect slider position: RECORD 

Cartridge state is the current state of the cartridge's format. 

Cartridge format indicates the format on the cartridge's tape. The 
format is given in a code which is the same as the drive model on 
which the cartridge was originally formatted (see drive and 
tape(HW) for details). When the cartridge is blank, the code has 
the format which would be applied by the format command. 

Write protect slider position indicates whether the cartridge is write 
protected (PROTECT) or may be written to (RECORD). 

kapacity Report the total usable data storage capacity of a formatted tape 
cartridge in 1024-byte blocks. Variations in cartridge capacity are 
due to differing numbers of bad blocks. (See also the capacity 
option.) 

reten Retension tape cartridge. Should be used periodically to remedy 
slack tape problems. Tape slack can cause an unusually large num­
ber of tape errors. 

rewind Rewind to beginning of tape (BOT). 

Exit values 

The following exit values may be returned by mcart: 

0 Normal exit with no error. mcart invoked with no arguments prints a 
usage message and also returns this value. 

2 Unknown command, invalid argument, device not an Irwin drive, 
incompatible major or minor device numbers, seek error on device, tape 
header corruption, or block past end of tape. 

258 Error from the operating system which sets the global flag errno: device 
busy, error on opening device file, or read/write error. 

514 Error from inside the device driver: Driver internal control error, or for­
matting error. 

330 1 February 1993 



Files 

See also 

Device special files: 

/dev/rctmini irwin driver raw device special file 

For more information on device files, see the tape(HW) manual page. 

/etc/defa11/t/mcco11fig 
/etc/111cdae111011 
/11sr/bi11/mcart 

Include files: 

/usr/include/sys/ir.h 
/11sr/inc/11de/sys/tape.h 

default configuration file 
background services executable file 
mcart executable file 

mcconfig(F), tape(C), tape(HW) 

Standards conforance 

mcart(C) 

mcart is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 331 



mesg(C) 

mesg 
permit or deny messages sent to a terminal 

Syntax 
mesg [ n][ y) 

Description 

The mesg command with argument n forbids messages via write(C) by 
revoking non-user write permission on the user's terminal. mesg with argu­
ment y reinstates permission. By itself, mesg reports the current state without 
changing it. 

Exit values 
Exit status is 0 if messages are receivable, 1 if not, 2 on error. 

Files 

/dev/tty* 

See also 

write(C) 

Standards conformance 

mesg is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

332 1 February 1993 



mkdir(C) 

mkdir 
make a directory 

Syntax 

mkdir [ -m mode ] [ -p ] [ -e ] dirname ... 

Description 
The mkdir command creates the named directories in mode 777 (possibly 
altered by umask(C)). 

Standard entries in a directory (for example, the files " . ", for the directory 
itself, and " .. ", for its parent) are made automatically. mkdir cannot create 
these entries by name. Creation of a directory requires write permission in the 
parent directory. 

The owner ID and group ID of the new directories are set to the process's real 
user ID and group ID, respectively. 

Three options apply to mkdir: 

-m This option allows users to specify the mode to be used for new direc­
tories. Choices for modes can be found in chmod(C). 

-p With this option, mkdir creates dirname by creating all the non-existing 
parent directories first. Any intermediate directories that do not exist are 
created with mode 777 altered by umask(C). However, to ensure that 
mkdir(C) does not fail, the user execute and write permissions are always 
set. 

-e For historical compatibility, mkdir changes the ownership of the new 
directory to the real user ID (RUID) and the real group ID (RGID). The -e 
option says to use the effective user ID (EUID) and effective group ID 
(EGID) instead. 

Exit values 

mkdir returns 0 if all directories given in the command line were created suc­
cessfully; otherwise, it prints a diagnostic and returns a non-zero value. 

1 February 1993 333 



mkdir(C) 

Diagnostics 

cannot make directory: dirname 
The directory dirname cannot be created. 

invalid mode: mode 
The permissions specified by mode are invalid. 

See also 
mkdir(S), nn(C), nndir(C), sh(C), umask(C) 

Standards conformance 
mkdir is conformant with AT&T SVID Issue 2. 

334 1 February 1993 



mkfijo(C) 

mkfifo 
make a FIFO special file 

Syntax 
mkfifo [ -m mode I path ... 

Description 

The mkfifo command makes a first-in first-out pipe named by the pathname 
path. The new FIFO has the permissions 666 (possibly altered by umask(C)). 
The optional flag -m specifies the creation mode for the FIFO file; see 
chmod(C) for more details on the format of mode. 

Exit values 

mkfifo returns exit code 0 if all FIFO special files were created successfully. 
Otherwise, it prints a diagnostic and returns non-zero. 

Standards conformance 

mkfifo is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 335 



mknod(C) 

mknod 
build special files 

Syntax 

/etc/mknod name [ b I c ] major minor 

/etc/mknod name p 

/etc/mknod name s 

/etc/mknod name m 

Description 

The mknod command makes a directory entry and corresponding inode for a 
special file. The first argument is the name of the entry. In the first case, the 
second argument is b if the special file is block-type (disks, tape) or c if it is 
character-type (other devices). The last two arguments are numbers specify­
ing the major device type and the minor device (for example, unit, drive, or 
line number), which may be either decimal or octal. Minor numbers must be 
in the range 0 to 255. 

The assignment of major device numbers is specific to each system. Major de­
vice numbers can be found in the system source file /etc/conj/cf d/mdevice. 

mknod can also be used to create named pipes with the p option, semaphores 
with the s option, and shared data (memory) with them option. 

Only the super user can use the first form of the syntax. 

Limitations 

See also 

mknod does not understand extended minor device numbers. It will impose 
an upper limit of 255 on the minor device number parameter. 

mknod(S) 

Standards confonnance 

mknod is conformant with AT&T SVID Issue 2. 

336 1 February 1993 



mnt(C) 

mnt, umnt 
mount a lilesystem 

Syntax 
/usr/bin/mnt [ -anrtu I [ directory I 

/usr/bin/umnt directory 

Description 

The mnt command allows users other than the super user to access the func­
tionality of the mount(ADM) command to mount selected filesystems. The 
super user can define how and when a filesystem mount is permitted via the 
/etc/defaultlfilesys file. 

The filesystem requirements are the same as defined for mount(ADM). 

The umnt command unmounts the mountable filesystem previously mounted 
in directory. 

mnt is invoked from the /etc/re scripts with the -r, the -n and possibly the -a 
flag to mount filesystems when the system comes up as multiuser. The -a flag 
is used when the system has autobooted. None of these flags should be speci­
fied during normal command line use. 

The -n flag directs the system to mount all filesystems defined as fstyp "NFS" 
with remount set to "yes" in the /etc/defaultlfilesys file. Filesystems bf this type 
should have bdev defined as follows: 

bdev=hostname:pathname 

The cdev entry is not necessary if the filesystem is of type "NFS". rcfsck 
should be set to "no". 

The -t flag displays the contents of /etc/defaultlfilesys. 

The -u flag forces mnt to behave like umnt. 

1 February 1993 337 



mnt(C) 

338 

Options 
The following options can be defined in the /etc/defaultlfilesys entry for a file­
system: 

bdev=/dev/device 
Name of block device associated with the filesystem. 

cdev=/dev/device 
Name of character (raw) device associated with the filesystem. 

desc=name 
A string describing the filesystem. 

fsck=yes, no, dirty, prompt 
If yes/no, tells explicitly whether or not to run fsck. If dirty, fsck is run 
only if the filesystem requires cleaning. If prompt, the user is prompted 
for a choice. If no entry is given, the default value is dirty. 

fsckflags=.flags 
Any flags to be passed to fsck. 

fstyp=type 
Defines the filesystem type. Available types include NFS, SSlK, XENIX, and 
DOS. 

init=yes, no, prompt 
Indicates whether an initcmd entry should always be executed, never be 
executed, or executed as specified by the user. 

initcmd=command 
An optional, arbitrary shell command to be invoked immediately follow­
ing a successful mount. 

maxcleans=n 
The number of times to repeat cleaning of a dirty filesystem before giving 
up. If undefined, default is 4. 

mount=yes, no, prompt 
If yes or no, users are allowed or disallowed to mount the filesystem, 
respectively. If prompt, the user specifies whether the filesystem should 
be mounted. 

mountdir=/directory 
The directory the filesystem is to be mounted on. 

mountflags=.flags 
Any flags to be passed to mount. 

1 Febniary 1993 



mnl(C) 

passwd=string 
An optional password prompted for at mount request time. Cannot be a 
simple string; must be in the format permitted by /etc!passwd. (See nlimita­
tions.") 

nfsopts=opts 
Defines NFS options for filesystems of type NFS. Available options are 
described in the mount(ADM) manual page. 

prep=yes, no, prompt 
Indicates whether any prepcmd entry should always be executed, never 
executed, or executed as specified by the user. 

prepcmd=command 
An arbitrary shell command to be invoked immediately following pass­
word check and prior to running fsck. 

rcfsck=yes, no, dirty, prompt 
Similar to fsck entry, but only applies when the -r flag is passed. 

rcmount=yes, no, prompt 
If yes, the filesystem is mounted by /etc/rc2 when the system comes up as 
multiuser. If no, the filesystem is never mounted by /etc/rc2. With 
prompt, a query is displayed at boot time to mount the filesystem. 

Any entries containing spaces, tabs, or new lines must be contained in double 
quotes("). 

The only mandatory entries in /etc/defaultlfilesys are bdev and mountdir. The 
prepcmd and initcmd options can be used to execute another command 
before or after mounting the filesystem. For example, initcmd could be 
defined to send mail to root whenever a given filesystem is mounted. 

When invoked without arguments, mnt attempts to mount all filesystems that 
have the entries mount=yes or mount=prompt. 

Diagnostics 

mnt will fail if the filesystem to be mounted is currently mounted under 
another name. 

Busy filesystems cannot be unmounted with umnt. A filesystem is busy if it 
contains an open file or if a user's present working directory resides within 
the filesystem. 

1 February 1993 339 



mnt(C) 

Examples 

The following is a sample /etc/defaultlfilesys file: 
bdev=/dev1root cdev=idev/rroot mountdir=/ 
desc="The Root Filesystem" rcmount=no mount=no 

bdev=/dev/u cdev=/dev/ru mountdir=/u rcmount=yes 
fsckflags=-y desc="The User Filesystem• 

bdev=/dev/x cdev=/dev/rx mountdir=/u rcmount=no 
mount=yes fsckflags=-y desc="The Extra Filesystem• 

Of the examples above, only/xis mountable by non super users. 

Limitations 

Files 

See also 

The NFS options are only valid if NFS is installed; refer to your NFS documen­
tation for mount options that are specific to NFS. 

Some degree of validation is done on the filesystem; however it is generally 
unwise to mount corrupt filesystems. 

In order to create a password for a filesystem, the system administrator must 
run the passwd(C) command using the -F option. Note that filesystem pass­
words are not supported on all systems. 

/etc/defa11/tlfilesys filesystem data 

filesys(F), mount(ADM) 

Standards conformance 

340 

mnt is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



more(C) 

more 
view a file one screen full at a time 

Syntax 
more [ -cdflrsuvw ] [ -n ] [ +linenumber I [ +/pattern ] [ name ... I 

Description 

This filter allows examination of continuous text one screen full at a time. It 
normally pauses after each full screen, displaying: 

--More--
at the bottom of the screen. If the user then presses carriage return, one more 
line is displayed. If the user presses the Space bar, another full screen is dis­
played. Other possibilities are described below. 

The command line options are: 

-n. 

-c 

-d 

-f 

-I 

-r 

1 February 1993 

An integer which is the size (in lines) of the window which more 
will use instead of the default. 

more draws each page by beginning at the top of the screen and 
erasing each line just before it draws on it. This avoids scrolling 
the screen, making it easier to read while more is writing. This 
option is ignored if the terminal does not have the ability to dear 
to the end of a line. 

more prompts with the message "Hit space to continue, Rubout to 
abort" at the end of each full screen. This is useful if more is being 
used as a filter in some setting, such as a class, where many users 
may be inexperienced. 

This option causes more to count logical, rather than screen lines: 
that is, long lines are not folded. This option is recommended if 
nroff output is being piped through ul, since the latter may gen­
erate escape sequences. These escape sequences contain charac­
ters that would ordinarily occupy screen positions, but do not 
print when they are sent to the terminal as part of an escape 
sequence. Thus more may think that lines are longer than they 
actually are and fold lines erroneously. 

Does not treat (Ctrl)l (form feed) specially. If this option is not 
given, more pauses after any line that contains a (Ctrl)l, as if the 
end of a full screen has been reached. Also, if a file begins with a 
form feed, the screen is cleared before the file is printed. 

Causes carriage returns to be printed as '"M". 

341 



more(C) 

-s Squeezes multiple blank lines from the output,.producing only one 
blank line. Especially helpful when viewing nroff output, this 
option maximizes the useful information present on the screen. 

-u Norma_lly, more handles u~derlining, such as that produced by 
nroff, m a manner appropnate to the particular terminal: if the 
terminal can perform underlining or has a stand-out mode, more 
outputs appropriate escape sequences to enable underlining or 
stand-out mode for underlined information in the source file. The 
-u option suppresses this processing. 

-v Normally, more ignores control characters that it does not inter-
pret in some way. The -v option causes these to be displayed as ·c 
where C is the corresponding printable ASCII character. Non­
printing non-ASCII characters (with the high bit set) are displayed 
in the format M-C, where C is the corresponding character without 
the high bit set. If output is not going to a terminal, more does not 
interpret control characters. 

-w Normally, more exits when it comes to the end of its input. With -
w more prompts and waits for any key to be struck before exiting. 

+linenumber 
Starts up at linenumber. 

+/pattern Starts up two lines before the line containing the regular expres-
sion pattern. 

more looks in /usr/lib/terminfo/* to determine terminal characteristics, and to 
determine the default window size. On a terminal capable of displaying 24 
lines, the default window size is 22 lines. 

more looks in the environment variable MORE to preset any flags desired. For 
example, if you prefer to view files using the -c mode of operation, the shell 
command "MORE=-c" in the .profile file causes all invocations of more to use 
this mode. 

If more is reading from a file, rather than a pipe, a percentage is displayed 
with the "--More--" prompt. This gives the fraction of the file (in characters, 
not lines) that has been read so far. 

Other sequences which may be entered when more pauses, and their effects, 
are as follows (i is an optional integer argument, defaulting to 1 where not 
specified otherwise): 

i(Space) Displays i more lines, (or another full screen if no argument is 
given). 

(Ctrl)d Displays 11 more lines (a "scroll"). If i is given, then the scroll size 
is set to i. 

342 1 February 1993 



d 

iz 

is 

if 

b 

(Ctrl)b 

qorQ 

v 

hor? 

iexpr/ 

in 

more(C) 

Same as(Ctrl)d. 

Same as entering a space except that i, if present, becomes the new 
window size. 

Skips i lines and displays a full screen of lines. 

Skips i full screens and displays a full screen of lines. 

Skips back and displays the previous screen of lines. 

Same as b. 

Exits from more. 

Displays the current line number. 

Starts up the screen editor vi at the current line. 

Help command; gives a description of all the more commands. 

Searches for the ith occurrence of the regular expression expr. If 
there are less than i occurrences of expr, and the input is a. file 
(rather than a pipe), then the position in the file remains 
unchanged. Otherwise, a full screen is displayed, starting two 
lines before the place where the expression was found. The user's 
erase and kill characters may be used to edit the regular expres­
sion. Erasing back past the first column cancels the search com­
mand. 

Searches for the ith occurrence of the last regular expression 
entered. 

(Single quotation mark) Goes to the point from which the last 
search started. If no search has been performed in the current file, 
this command goes back to the beginning of the file. 

!command Invokes a shell with command. The characters " % " and " ! " in 
command are replaced with the current filename and the previous 
shell command respectively. If there is no current filename, "%" 
is not expanded. The sequences"\%" and"\!" are replaced by 
"%"and"!" respectively. 

i:n 

i:p 

1 February 1993 

Skips to the ith next file given in the command line (skips to last 
file if i doesn't make sense). 

Skips to the ith previous file given in the command line. If this 
command is given in the middle of printing out a file, more goes 
back to the beginning of the file. If i doesn't make sense, more 
skips back to the first file. If more is not reading from a file, the 
bell rings and nothing else happens. 

343 



more(C) 

Notes 

Files 

See also 

:f Displays the current filename and line number. 

:q or :Q Exits from more (same as q or Q). 

Repeats the previous command. 

The commands take effect immediately. It is not necessary to enter a carriage 
return. Up to the time when the command character itself is given, the user 
may enter the line kill character to cancel the numerical argument being 
formed. In addition, the user may enter the erase character to redisplay the 
H--More-- lxx%)H message. 

The terminal is set to noecho mode by this program so that the output can be 
continuous. What you enter will not show on your terminal, except for the 
slash(/) and exclamation(!) characters. 

If the standard output is not a teletype, more acts just like cat, except that a 
header is printed before each file (if there is more than one). 

The vi and help options may not be available. 

Before displaying a file, more attempts to detect whether it is a non-printable 
binary file such as a directory or executable binary image. However, more 
cannot detect all possible kinds of non-printable files. 

/usr/lib/terminfo/* 
/usr/lib/more.help 

terminal database 
help file 

cat(C), csh(C), environ(M), sh(C) 

Standards conformance 

344 

more is not part of any currently supported standard; it.w~s developed at the 
University of California at Berkeley and is used by perm1ss1on. 

l February 1993 



rnv(C) 

mv 
move or rename files and directories 

Syntax 
mv [ -f I file1 file2 

mv [ -f ] directory1 directory2 

mv [ -f I file ... directory 

Descripti.on 
In the first form, the mv command moves (changes the name of) file1 to file2 
(or directory1 to directory2). 

If file2 already exists, it is removed before file1 is moved. If file2 has a mode 
which forbids writing, mv prints the mode (see chmod(C)) and prompts you 
for confirmation. If you type "y'', the move takes place; if not, mv exits. 

No questions are asked (iffile2 is not writeable) when the -f option is given. 

In the second form, mv can only move directories within a filesystem, the tar­
get directory2 should not exist. 

In the third form, one or more files are moved to the directory, keeping their 
original filenames. 

Limitations 

See also 

If file1 and file2 lie on different filesystems, mv must copy the file and delete 
the original. In this case the owner name becomes that of the copying process 
and any linking relationship with other files is lost. 

mv refuses to move a file onto itself. 

mv does not follow symbolic links given as arguments. 

chmod(S), copy(C), cp(C), mvdir(ADM) 

1February1993 345 



mv(C) 

Standards confonnance 
mv is conformant with: 

AT & T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

346 1 February 1993 



newform(C) 

newform 
change the format of a text file 

Syntax 
newform [ -s) [ -itabspec I [ -otabspec) [ -bn I [-en I [ -pn I [-an I [ -f I 
[ -cchar I [-In I [file ... I 

Description 
The newform command reads lines from the named files, or the standard 
input if no input file is named, and reproduces the lines on the standard out­
put. Lines are reformatted in accordance with command line options in effect. 

Except for -s, command line options may appear in any order, may be 
repeated, and may be intermingled with files. Command line options are pro­
cessed in the order typed. This means that option sequences like "-e15 -160" 
will yield results different from "-160-elS". Options are applied to all files on 
the command line. 

-s Shears off leading characters on each line up to the first tab and places 
up to 8 of the sheared characters at the end of the line. If more than 8 
characters (not counting the first tab) are sheared, the eighth character is 
replaced by a "* " and any characters to the right of it are discarded. 
The first tab is always discarded. 

An error message and program exit will occur if this option is used on a 
file without a tab on each line. The characters sheared off are saved 
internally until all other options specified are applied to that line. The 
characters are then added at the end of the processed line. 

-it ab spec 
Input tab specification: expands tabs to spaces, according to the tab 
specifications given. tabspec recognizes all tab specification forms 
described below. In addition, tabspec may be " -- ", in which newform 
assumes that the tab specification is to be found in the first line read 
from the standard input. If no tabspec is given, tabspec defaults to -8. A 
tabspec of-0 expects no tabs; if any are found, they are treated as -1. 

-otabspec 

1 February 1993 

Output tab specification: replaces spaces by tabs, according to the tab 
specifications given. The tab specifications are the same as for -itabspec. 
If no tabspec is given, tabspec defaults to -8. A tabspec of -0 means that 
no spaces will be converted to tabs on output. 

347 



newform(C) 

-bn Truncates n characters from the beginning of the line when the lim 
length is greater than the effective line length (see -In). The default is tc 
truncate the number of characters necessary to obtain the effective lint 
length. The default value is used when -b with non is used. This optio11 
can be used to delete the sequence numbers from a COBOL program a~ 
follows: 
newform -11 -b7 filename 

The option -11 must be used to set the effective line length shorter tha11 
any existing line in the file so that the -b option is activated. 

-en Truncates n characters from the end of the line. 

-pn Prefixes n characters (see -ck) to the beginning of a line when the line 
length is less than the effective line length. The default is to prefix the 
number of characters necessary to obtain the effective line length. 

-an Appends n characters to the end of a line. The default is to append the 
number of characters necessary to get the effective line length. 

-f Writes the tab specification format line on the standard output before 
any other lines are output. The tab specification format line which is 
printed will correspond to the format specified in the last -o option. If 
no -o option is specified, the line which is printed will contain the 
default specification of -8. 

-ck Changes the prefix/append character to k. Default character fork is a 
space (see options -p and -a). 

-In Sets the effective line length to n characters. If n is not typed, -I defaults 
to 72. The default line length without the -1 option is 80 characters. 
Note that tabs and backspaces are considered to be one character (use -i 
to expand tabs to spaces). 

Tabs 
Four types of tab specification are accepted for tabspec: "canned", repetitive, 
arbitrary, and file. The lowest column number is 1. For tabs, column 1 always 
refers to the leftmost column on a terminal, even one whose column markers 
begin at 0, for example the DASI 300, DASI 3005, and DASI 450. 

The "canned" tabs are given as -code where code (and its meaning) is from the 
following list: 

-a 1,10,16,36,72 
Assembler, IBM 5/370, first format 

-a2 1,10,16,40,72 
Assembler, IBM 5/370, second format 

-c 1,8,12,16,20,55 
COBOL, normal format 

348 1 February 1993 



newform(C) 

-c2 1,6,10,14,49 
COBOL compact format (columns 1-6 omitted). Using this code, the first 
typed character corresponds to card column 7, one space gets you to 
column 8, and a tab reaches column 12. Files using this tab setup should 
include a format specification as follows: 

<:t-c2 m6 s66 d:> 

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67 
COBOL compact format (columns 1-6 omitted), with more tabs than 
COBOL -c2. This is the recommended format for COBOL. The appropri­
ate format specification is: 

<:t-c3 m6 s66 d:> 

-f 1,7,11,15,19,23 
FORTRAN 

-p 1,5,9,13,17,21,25,29,33,37,41,45,53,57,61 
PL/I 

-s 1,10,55 
SNOBOL 

-u 1,12,20,44 
UNNAC 1100 Assembler 

In addition to these "canned" formats, three other types exist: 

-n A repetitive specification requests tabs at columns l+n, 1+2*n, etc. Note 
that such a setting leaves a left margin of n columns on TermiNet termi­
nals only. Of particular importance is the value -8: this represents the 
UNIX system "standard" tab setting, and is the most likely tab setting 
found at a terminal. It is required for use with nroff(CT) -h option for 
high-speed output. Another special case is the value -0, implying no 
tabs at all. 

nl,n2, ... 

--file 

l February 1993 

The arbitrary format permits the user to type any chosen set of number, 
separated by commas, in ascending order. Up to 40 numbers are 
allowed. If any number (except the first one) is preceded by a plus sign, 
it is taken as an increment to be added to the previous value. Thus, the 
tab lists 1,10,20,30 and 1,10,+ 10,+ 10 are considered identical. 

If the name of a file is given, newform reads the first line of the file, 
searching for a format specification. If it finds one there, it sets the tab 
stops according to it; otherwise it sets them as -8. This type of specifica­
tion may be used to make sure that a tabbed file is printed with correct 
tab settings. 

349 



newform(C) 

Any of the foll~wing may be used also; if a given flag occurs more than once, 
the last value given takes effect: 

-Ttype 
newfonn usually needs to know the type of terminal in order to set tabs 
and always needs to know the type to set margins. type is a name listed 
in tenn(M). If no -T flag is supplied, newfonn searches for the $TERM 
value in the environment (see environ(M)). If no type can be found, 
newfonn tries a sequence that will work for many terminals. 

+mn The margin argument may be used for some terminals. It causes all tabs 
to be moved over n columns by making column n+l the left margin. If 
+m is given without a value of n, the value assumed is 10. For a Ter­
miNet, the first value in the tab list should be 1, or the margin will move 
even further to the right. The normal (leftmost) margin on most termi­
nals is obtained by +mo. The margin for most terminals is reset only 
when the +m flag is given explicitly. 

Exit values 

0 - normal execution 
1 - for any error 

Diagnostics 

350 

All diagnostics are fatal. 

usage: ... 
newfonn was called with a bad option. 

not -s format 
There was no tab on one line. 

can't open file 
Self-explanatory. 

internal line too long 
A line exceeds 512 characters after being expanded in the internal work 
buffer. 

tabspec in error 
A tab specification is incorrectly formatted, or specified tab stops are not 
ascending. 

tabspec indirection illegal . 
A tabspec read from a file (or standard input) may not contain a tabspec 
referencing another file (or standard input). 

1 February 1993 



Examples 

newform(C) 

In the following example, newfonn converts a file named text with leading 
digits, one or more tabs, and text on each line to a file beginning with the text 
and the leading digits placed at the end of each line in column 73 (-s option). 
All tabs after the first one are expanded to spaces (-i option). To reach the line 
length of 72 characters (-1 option), spaces are appended to each line up to 
column 72 (-a option) or lines are truncated at column 72 (-e option). To refor­
mat the sample file text in this manner, enter: 

newfonn -s -i -1 -a -e text 

Limitati.ons 

See also 

newfonn normally only keeps track of physical characters; however, for the -i 
and -o options, newfonn will keep track of backspaces in order to line up tabs 
in the appropriate logical columns. 

newfonn will not prompt the user if a tabspec is to be read from the standard 
input (by use of -i, -- or -o--). 

If the -f option is used, and the last -o option specified was "-o--", and was 
preceded by either "-o--" or a "-i--", the tab specification format line will be 
incorrect. 

csplit(C) 

1 February 1993 351 



newgrp(C) 

newgrp 
log user into a new group 

Syntax 

newgrp [-) group 

Description 

The newgrp command changes the effective group identification of its caller. 
The same person remains logged in, and the current directory is unchanged, 
but calculations of access permissions to files are performed with respect to 
the new group JD. 

newgrp without an argument changes the group identification to the group in 
the password file. 

If the first argument to newgrp is a hyphen(-), the user will actually be logged 
in again as a member of the new group, group. 

If the first argument to newgrp is a hyphen, but group is not specified, the 
user will be logged in again as a member of the caller's original group identifi­
cation according to the password file. 

Limitations 

Files 

See also 

352 

The newgrp command executes, but does not fork, a new shell. If your login 
shell is a C shell and you invoke newgrp, you will have to press(Ctrl}d when 

· you wish to log out. Typing the csh(C) logout command will result in an error 
message. Note also that the newgrp command causes the csh history list to 
start again at 1. 

A version of newgrp is built into the Korn shell (ksh(C)). Please refer to the 
ksh(C) entry for details. This command has been effectively superseded by 
the newer command sg(C), which should be used in preference to newgrp 
wherever possible. 

/etc/group 
/etc/passwd 

group(F), ksh(C), sg(C), login(M) 

1 February 1993 



newgrp(C) 

Standards confonnance 
newgrp is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 353 



news(C) 

news 
print news items 

Syntax 

news [ -a ] [ -n ] [ -s ] [ items ] 

Description 

news is used to keep the user informed of current events. By convention, 
these events are described by files in the directory /usr/news. 

When invoked without arguments, news prints the contents of all current 
files in /usr/news, the most recent first, with each preceded by an appropriate 
header. news stores the ucurrency" time as the modification date of a file 
named .news_time in the user's home directory (the identity of this directory is 
determined by the environment variable $HOME); only files more recent than 
this currency time are considered "current." 

The -a option causes news to print all items, regardless of currency. In this 
case, the stored time is not changed. 

The -n option causes news to report the names of the current items without 
printing their contents, and without changing the stored time. 

The -s option causes news to report how many current items exist, without 
printing their names or contents, and without changing the stored time. 

All other arguments are assumed to be specific news items that are to be 
printed. 

If the INTERRUPT key is struck during the printing of a news item, printing 
stops and the next item is started. Another INTERRUPT within one second of 
the first causes the program to terminate. 

Limitations 

Files 

354 

This is not an interface for USENET news. 

/usr/news/* 
$HOME/.news_time 

1 February 1993 



See also 

environ(M), profile(M) 

Standards conformance 

news is conformant with AT&T SVID Issue 2. 

1 February 1993 

news(C) 

355 



nice( CJ 

nice 
run a command at a different scheduling priority 

Syntax 

nice [ -increment I command [ arguments ] 

Description 

The nice command is used to execute a command at a different scheduling 
priority than usual. Each process has a unice valueu which is used to calculate 
its priority. Nice values range from 0 to 39, with higher nice values resulting 
in lower priorities. By default, commands have a nice value of 20. nice exe­
cutes command with a nice value equal to 20 plus increment. If no increment 
is given, an increment of 10 is assumed. 

The super user may run commands with priority higher than normal by using 
a double negative increment. For example, an argument of --10 would decre­
ment the default to produce a nice value of 10, which is a higher scheduling 
priority than the default of 20. 

Exit values 

nice returns the exit status of command. 

Limitations 

See also 

If the default nice value plus increment is larger than 39, a nice value of 39 
will be used. If a nice value less than zero is requested, zero will be used. 

Note also that this description of nice applies only to programs run under the 
Bourne Shell. The C-Shell has its own nice command, which is documented 
incsh(C). 

csh(C), nice(S), nohup(C) 

Standards conformance 

nice is conformant with AT&T SVID Issue 2. 

356 1 February 1993 



nl(C) 

nl 
add line numbers to a file 

Syntax 
nl [ -h type] [ -b type] [ -f type] [ -v start# I [ -i incr] [ -p I [-I num I 
[ -s sep I [ -w width I [ -n/ormat )file 

Description 
The nl command reads lines from the named file, or the standard input if no 
file is named, and reproduces the lines on the standard output. Lines are 
numbered on the left in accordance with the command options in effect. 

nl views the text it reads in terms of logical pages. Line numbering is reset at 
the start of each logical page. A logical page consists of a header, a body, and 
a footer section. Empty sections are valid. Different line numbering options 
are independently available for header, body, and footer (for example, no 
numbering of header and footer lines while numbering blank lines only in the 
body). 

The start of logical page sections is signaled by input lines containing nothing 
but one or more pairs of backslash-followed-by-colon: 

Page section 
Header 
Body 
Footer 

Line contents 
\:\:\: 
\:\: 
\: 

Unless signaled otherwise, nl assumes the text being read is in a single logical 
page body. 

Command options may appear in any order and may be intermingled with an 
optional filename. Only one file may be named. The options are: 

-b type 

-h type 

-f type 

1 February 1993 

Specifies which logical page body lines are to be numbered. 
Recognized types and their meaning are: a, number all lines; t, 
number lines with printable text only; n, no line numbering; 
pstring, number only lines that contain the regular expression 
specified in string. Default type for logical page body is t (text 
lines numbered). 

Same as -b type except for header. Default type for logical page 
header is n (no lines numbered). 

Same as -b type except for footer. Default for logical page footer is 
n (no lines numbered). 

357 



nl(C) 

See also 

-p Does not restart numbering at logical page delimiters. 

-v start# start# is the initial value used to number logical page lines. 
Default is 1. 

-i incr incr is the increment value used to number logical page lines. 
Default is 1. 

-s sep sep is the character(s) used in separating the line number and the 
corresponding text line. Default sep is a tab. 

-w width width is the number of characters to be used for the line number. 

-nformat 

-lnum 

Default width is 6. 

format is the line numbering format. Recognized values are: In, 
left justified, leading zeroes suppressed; m, right justified, leading 
zeroes suppressed; rz, right justified, leading zeroes kept. Default 
format is m (right justified). 

num is the number of blank lines to be considered as one. For 
example, -12 results in only the second adjacent blank being num­
bered (if the appropriate -ha, -ba, and/or -fa option is set). Default 
is 1. 

pr(C) 

Standards conformance 
nl is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

358 1 February 1993 



no/1up(C) 

nohup 
run a command immune to hangups and quits 

Syntax 

nohup command [ arguments I 

Description 

The nohup command executes command with hangups and quits ignored. If 
output is not redirected by the user, it will be sent to nohup.out. If the user 
does not have write permission in the current directory, output is redirected 
to $HOME/nohup.out. 

Limitations 

See also 

The nohup(C) standalone program is used by the bourne shell sh. The other 
shells have built in nohup commands which behave slightly differently. For 
further details see csh(C) and ksh(C) respectively. 

nice(C), signal(S) 

Standards confonnance 

nohup is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 359 



od(C) 

od 
display files in octal format 

Syntax 

od [ -bcdox I [file I [ [+I offset [ -1 [ b 11 

Description 

See also 

The od command displays file in one or more formats as selected by the first 
argument. If the first argument is missing, -o is the default. The meanings of 
the format options are: 

-b Interprets bytes in octal. 

-c Interprets bytes in ASCII. Certain nongraphic characters appear as C 
escapes: null=\0, backspace=\b, form feed=\f, newline=\n, retum=\r, 
tab=\t; others appear as 3-digit octal numbers. 

-d Interprets words in decimal. 

-o Interprets words in octal. 

-o Interprets words in octal. 

-x Interprets words in hex. 

The file argument specifies which file is to be displayed. If no file argument is 
specified, the standard input is used. 

The offset argument specifies the offset in the file to display from. This argu­
ment is normally interpreted as octal bytes. If "." is appended, the offset is 
interpreted in decimal. If "b " is appended, the offset is interpreted in blocks. 
If the file argument is omitted, the offset argument must be preceded by " + •. 

The display continues until end-of-file. 

adb(CP), hd(C) 

Standards conformance 

od is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

360 1 February 1993 



pack(C) 

pack, peat, unpack 
compress and expand files 

Syntax 

pack [ - I name ... 

peat name ... 

unpack name ... 

Description 
The pack command attempts to store the specified files in a compressed form. 
Wherever possible, each input file name is replaced by a packed file name.z 
with the same access modes, access and modified dates, and the owner of 
name. If pack is successful, name will be removed. Packed files can be 
restored to their original form using unpack or peat. 

pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If 
the " - " argument is used, an internal flag is set that causes pack to display in­
formation about the file compression. Additional occurrences of " - " in place 
of name will cause the internal flag to be set and reset. 

The amount of compression obtained depends on the size of the input file and 
the character frequency distribution. Because a decoding tree forms the first 
part of each .z file, it is usually not worthwhile to pack files smaller than three 
blocks, unless the character frequency distribution is very scattered, which 
may occur with printer plots or pictures. 

Typically, text files are reduced to 60-75% of their original size. Load 
modules, which use a larger character set and have a more uniform distribu­
tion of characters, show little compression, the packed versions being about 
90% of the original size. 

peat does for packed files what cat(C) does for ordinary files. The specified 
files are unpacked and written to the standard output. To view a packed file 
named name.z use: 

pcatname.z 
or just: 

peat name 

To make an unpacked copy, say nnn, of a packed file named name.z without 
destroying name.z, enter the command: 

peat name > nnn 

1February1993 361 



pack( CJ 

unpack expands files created by pack. For each file name specified in the 
command, a search is made for a file called name.z (or just name, if name ends 
in .z). If this file appears to be a packed file, it is replaced by its expanded ver­
sion. The new file has the .z suffix stripped from its name, and has the same 
access modes, access and modification dates, and owner as those of the 
packed file. 

Exit values 

peat returns the number of files it was unable to unpack. 

pack returns a value that is the number of files that it failed to compress. 

unpack returns a value that is the number of files it was unable to unpack. 

Limitations 

362 

pack will fail if: 

• the file appears to be already packed 

• the filename has more than 253 characters 

• the file has links 

• the file is a directory 

• the file cannot be opened 

• no disk storage blocks will be saved by packing 

• a file called name.z already exists 

• the .z file cannot be created 

• an 1/0 error occurred during processing 

The last segment of the filename must contain no more than 253 characters to 
allow space for the appended .z extension. Directories cannot be compressed. 

peat and unpack fail if: 

• the filename (exclusive of the .z) has more than 253 characters 

• the file cannot be opened 

• the file does not appear to be the output of pack 

unpack may also fail if the "unpacked" name already exists in a file, or if the 
unpacked file cannot be created. 

1 February 1993 



pack(C) 

Standards confonnance 

pack, peat and unpack are conformant with: 

AT&T SVJD Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1February1993 363 



passwd(CJ 

passwd 
change login, or modem (dialup shell) password 

Syntax 

passwd [ -m I [ -dluf I [ -n minimum I [ -x expiration ) [ -r retries ) [ name ) 
passwd -s [ -a ] [ name I 

Descri.pti.on 

364 

The passwd command is used by ordinary users to: 

• Change or delete their own login password. 

• List some of the attributes that apply to their account. 

In addition, system administrators can use the passwd command to: 

• Change or delete any user's login password. 

• Change or delete modem (dialup shell) passwords. 

• Lock or unlock any user's account. 

• Invalidate (lock) dialup shell passwords. 

• List some of the attributes of all users, or any single user. 

• Change some of the attributes of any user. 

However, it is recommended that system administrators use the 
sysadmsh(ADM) Accounts selection to administrate passwords. A user is 
considered to be a system administrator if they have auth subsystem authori­
zation. A user must have the passwd subsystem authorization to be able to 
change the password of any account. 

Choosing a good password 
Your login password is one of the most important defenses against security 
breaches. If a malicious person cannot log into a system, it is much harder for 
that person to steal or tamper with your data. Hence, by choosing a hard-to­
guess password (either of your own invention or one suggested by the 
system), regularly changing it, and keeping it secret, you can protect your 
system. 

1 February 1993 



passwd(C) 

In general, a password should: 

• Consist of a mixture of upper- and lower-case letters, digits (0-9), and 
other non-letters (such as@,•,-,/, space, tab, and control characters). 

• Be changed frequently (at least once every six months to a year, and more 
often as necessary). 

• Be different on different machines. 

• Be easy to remember, so you do not have to write it down. 

• Be kept secret and known only by you. 

Passwords should not: 

• Be the name of a person, place, or thing; nor should a password be the 
same as any user's login name, any machine's name, or the name of any 
group. 

• Be a correctly spelt word, street or telephone number, ZIP or postal code; 
nor should a password be a birthday or anniversary of you or anyone you 
know. 

• Be written down (anywhere! - not on paper or in a file); nor should 
passwords be stored in the function keys of a terminal or memory of an 
intelligent modem. 

• Be told to any other person (not even for use in an "emergency"); nor 
should a password be kept if you suspect someone else knows it. 

Spelling a word backwards or appending a digit to a word do not tum a poor 
password choice into a "good" password. However, taking two or three unre­
lated words and combining them with some rion-letters is a reasonable way of 
choosing an easy-to-remember but hard-to-crack password. On SCO UNIX 
System V, passwords can be up to 80 characters long, so nonsensical rhymes 
(for example) can also be used as passwords. 

User login passwords 
When passwd is used to change or delete the password for user name, the old 
password (if any) is prompted for. (The password is not displayed as it is 
being entered.) System administrators are not prompted for the old password 
unless they are attempting to change their own password; the super user is 
never prompted for the old password. The passwd command can only be 
used to change or delete the password for user name by system administra­
tors and the user authorized to change user name's password. Normally, 
users are authorized to change their own password. 

1 February 1993 365 



passwd(C) 

Depending on how the system administrator has configured the account, the 
user may or may not be able to choose their own password, or may have a 
password chosen for them. If they can neither choose their own password nor 
have passwords generated for them, the password cannot be changed. If the 
user is able to do both, passwd asks which should be done. 

A password is considered valid until it has expired. Passwords expire if they 
are not changed or deleted before the expiration time has passed. Once 
expired, the user is required to change (not delete) their password the next 
time they log in. If a user fails to do so before the password's lifetime has 
passed, the password is considered dead and the user's account is locked. 

Once locked, the user may not log in, may not be su(C)'ed to, and no at(C), 
batch(C), or cron(C) jobs for that user may run. Only a system administrator 
can unlock a user with a dead password; a new password must be assigned. 

To discourage re-use of the same password, the system administrator may set 
a minimum change time. After changing or deleting a password, the password 
may not be changed again (even by a system administrator) until at least that 
much time has elapsed. 

Passwords may be deleted (or changed to be empty) only if the user is author­
ized to not have a password. Users without passwords are not recom­
mended. (An empty password is prompted for when logging in, but a deleted 
password is not prompted for at login.) 

If a password is being changed and the user has elected (or is forced) to 
choose a system-generated password, each suggested password is printed 
along with a hyphenated spelling that suggests how the password could be 
pronounced. To accept a suggested password, enter the password; if entered 
correctly, passwd will prompt for the suggested password to be entered again 
as confirmation. To reject a suggestion, just enter{Return); to abort the change 
altogether, either enter "quit" or interrupt passwd. 

If a password is being changed and the user has elected (or is forced) to assign 
a password of their own choosing, the new password is prompted for twice. 
It is checked for being "obvious" after the first prompt, and if deemed to be 
acceptable is prompted for again. If the proposed password is successfully 
entered a second time, it becomes the new password for user name. 

Both system-generated and self-chosen passwords are checked for being easy 
to guess. See the section on "Checking for obvious passwords" (below) for a 
description of the checks. 

When dealing with a user's login password, the following options are 
recognized: 

-d Delete the password. A password may be deleted only if the user is 
authorized to not have a password. System administrato~s ~ust always 
specify name; otherwise, the name of the user who logged m 1s used. 

366 1 February 1993 



passwd(C) 

-f Force user name to change their password the next time they log in. This 
option may be specified only by system administrators, and only when 
the user's password is not being changed or deleted; name must be ex­
plicitly given. 

-1 Lock user name out of the system by applying an administrative lock; 
only system administrators may do this and they must specify name. 

-u Remove any administrative lock applied to user name; only system 
administrators may do this and they must specify name. 

-n minimum 
Set the amount of time which must elapse between password changes for 
user name to minimum days. Only system administrators may do this 
and they must specify name. 

-x expiration 
Set the amount of time which may elapse before the password of user 
name expires to expiration days. Only system administrators may do 
this and they must specify name. Once a password has expired, the user 
must change it the next time they log in. 

-r retries 
Up to retries attempts may be made to choose a new password for user 
name. 

-s Report the password attributes of user name (or, if the -a option is given, 
of all users). The format of the report is: 

name status mmlddlyy minimum expiration 
where status is "PS" if the user has a password, "LK" if the user is admin­
istratively locked, or "NP" when the user does not have a password. The 
date of the last successful password change (or deletion) is shown as 
mm/ddlyy. If neither name nor -a is specified, the name of the user who 
logged in is assumed. Only system administrators can examine the 
attributes of users other than themselves. 

If no -d, -f, -1, -u, or -s option is specified, the password for user name is 
changed as described above. If no name is given and no option which 
requires name is given, then the name of the user who logged in is used. Only 
the -a option may be specified with the -s option. 

1 February 1993 367 



passwd(C) 

368 

Modem (dialup shell) passwords 
When a user whose login shell is listed in /etc/d__passwd with a (encrypted) 
password logs in on a terminal line listed in /etc/dialups, the password in 
/etc/d__passwd must be supplied before the login succeeds. The -m option to 
password allows system administrators to change, delete, or invalidate (lock) 
the passwords for login shell name: 

-d Delete the password. 

-I Invalidate ("lock") the password by arranging so that no matter what the 
user enters, it will not be a valid password. Doing so causes the old pass­
word to be lost. 

-r retries 
Up to retries attempts may be made to choose a new password. 

The name must always be specified. If name begins with a slash (/) then only 
the password for the login shell which completely matches name is changed. 
Otherwise, the password for every shell listed in /etc/d__passwd whose 
basename is name is changed. 

This does not mean that only one line is needed per shell in /etc/d__passwd. For 
example, to have the option of using either lbin/csh or /usr/local/csh, each 
must be specified on a separate line in /etc/d__passwd. However, the dialup 
passwd for both shells can be changed at once with the command: 

passwd -m csh 
If neither the -d nor -1 option is specified, the password is changed. The new 
password is prompted for twice, and must pass checks similar to those for 
login passwords (see below). 

Checking for olroious passwords 
To discourage poor password choices, various checks are applied to reject 
unacceptable passwords. The checks which are applied depend on the type of 
password being checked and the system's configuration. Most of the checks 
for being easy to guess are configurable; see goodpw(ADM). 

The check procedure is as follows (a password is restricted if, according to the 
sysadmsh Accounts selection, it is to be "checked for obviousness"): 

la. User login passwords only: the new password must not be the same as 
the old password. The password must not be empty (or be deleted) 
unless the user is not required to have a password. 

lb. All other passwords: the new and old password can be the same. Empty 
passwords are treated as deleted passwords and are always acceptable. 

1 February 1993 



passwd(C) 

2. All (non-empty) passwords: if the password is not empty, it must be at 
least PASSLENGTH characters long (see below). 

3. All (non-empty) passwords: if the goodpw utility can be run, it is used to 
perform all further checks. If the file CHECKDIR exists (and can be read 
by goodpw) that file is used to modify the default settings in 
/etc/default/goodpw. The CHECKDIR is specified by CHECKDIR in 
/etc/default/passwd and type is the kind of password being checked (user, 
or modem). The strength is the degree of checking to be done: secure if 
the user is restricted (or, for all other password types, if the system 
default is restricted); otherwise weak. 

4. When goodpw cannot be run (all passwords): if the password is not 
empty, it must contain at least one character which is not a lowercase 
letter (but must not consist solely of digits). 

5. When goodpw cannot be run (user login passwords only): finally, for 
user login passwords which are restricted, the password must not be a 
palindrome, any user's login name, the name of any group, or a correctly 
spelled English word (American spelling); see accept_pw(S). 

System-generated passwords are not checked unless the user is restricted (see 
above), in which case the generated password must pass the checks in step 5 
before it is suggested to the user. Generated passwords are never checked by 
goodpw: 

Default 
Several parameters may be specified in /etc/default/passwd. The various set­
tings, and their default values are: 

PASSLENGTH=* 
The minimum length of a password. The maximum length of a pass­
word is 80. Specifying PASSLENGTH overrides the computed value 
based on the lifetime of the password, delay between login attempts (and 
other variables - see passlen(S)). To use the computed value set 
PASSLENGTH to an asterisk(*). 

RETRIES=3 
The maximum number of repeated attempts to change a password that 
has been rejected. If RETRIES is less than l, then 1 is assumed. 

ONETRY=YES 
If set to YES, a rejected password is added to the stop-list passed to 
goodpw. This prevents simplistic modifications of a rejected password 
from being accepted on a later attempt. 

DESCRIBE=/usr/lib/goodpw/describe 

1 February 1993 

The contents of this file are shown once (before the new password is 
prompted for) and should describe the the difference between acceptable 
and unacceptable passwords. 

369 



passwd(C) 

SUMMARY=/usr/lib/goodpw/summary 
The contents of this file are shown each time a password is rejected, and 
should be a (short) remindt:r of what are and are not acceptable pass­
words. 

CHECKDIR=/usr/lib/goodpw/checks 
A hierarchy of additional checks goodpw should perform, based on pass­
word type and restrictions (see above). 

GOODPW=NO 
Defines the location of the goodpw program. If set to NO then goodpw is 
not used and the simpler internal checks are applied instead. Under 
these circumstances the super user is not forced to comply with the pass­
word construction requirements; the only checks enabled are for mini­
mum password length, and null passwords are allowed. If GOODPW is 
set to YES then /usr/bin/goodpw is used to perform password checks. 
Alternatively GOODPW can be set to the path of some other goodpw­
style program. 

The values for the default settings may be changed to reflect the system's 
security concerns. 

If /etc/default/passwd does not exist or is not readable, the above default values 
are used. 

If the DESCRIBE or SUMMARY file defined in /etc/default/passwd does not exist 
or cannot be read, short (and vague) descriptions or summaries are issued 
instead. In addition, if the user who logged in is a system administrator, an 
error message describing the problem is printed. 

If the selected GOODPW program does not exist or is not executable, the 
simpler internal checks are performed (see above). In addition, if the user 
who logged in is a system administrator, an error message describing the 
problem is printed. 

Limitations 

370 

Terminal lines specified in /etc/dialups must specify the complete path; for 
example, /dev/ttyxx, not just ttyxx. 

The -r option is mostly useful during installation to force the newly-installed 
super user to have a password. 

1 February 1993 



Files 

See also 

/etc/au th/system/files 
/etc/a11th/system/defa11/t 

/etc/d_passwd 

/etc/default/passwd 
/etc/dialups 

/etc/group 
/etc!passwd 
/tcblfiles/auth/initiallname 

passwd(C) 

file Control database 
system Defaults database; contains default 
parameters 
list of dialup shells and passwords (one per line): 
shell : encrypted-password : reseroed 
where shell is the pathname of a login shell as 
used in /etc!passwd 
configurable settings (see 0 Default" above) 
list of terminal lines on which remote logging in is 
permitted 
list of groups 
list of user accounts 
protected Password database entry for user name 
(where the first character in name is initial) 

accept_pw(S), authcap(F), authsh(ADM), default(F), goodpw(ADM), group(F), 
login(M), mnt(C), newgrp(C), passlen(S), passwd(F) 

Standards confonnance 

passwd is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 371 



paste(C) 

paste 
merge lines of files 

Syntax 

paste file1 file2 ... 

paste -d list file1 file2 ... 

paste -s [ -d list I file1 file2 ... 

Description 

372 

In the first two forms, paste concatenates corresponding lines of the given 
input files file1, file2, etc. It treats each file as a column or columns of a table 
and pastes them together horizontally (parallel merging). It is the counterpart 
of cat(C) which concatenates vertically, that is, one file after the other. In the 
last form above, paste subsumes the function of an older command with the 
same name by combining subsequent lines of the input file (serial merging). 
In all cases, lines are "glued" together with the tab character, or with charac­
ters from an optionally specified list. Output is to the standard output, so it 
can be used as the start of a pipe. If "-" is used in place of a filename, paste 
reads a line from the standard input. (There is no prompting.) 

The meanings of the options are: 

-d Without this option, the new line characters of each but the last file (or 
last line in case of the -s option) are replaced by a tab character. This 
option allows replacing the tab character by one or more alternate char­
acters (see below). 

list One or more characters immediately following -d replace the default tab 
as the line concatenation character. The list is used circularly, that is, 
when exhausted, it is re-used. In parallel merging (that is, no -s option), 
the lines from the last file are always terminated with a new line charac­
ter, not from the list. The list may contain the special escape sequences: 
\n (new line), \t (tab), \ \ (backslash), and \0 (empty string, not a null 
character). Quoting may be necessary, if characters have special mean­
ing to the shell (for example, to get one backslash, use -d\ \ \ \ ). 

-s Merges subsequent lines rather than one from each input file. Use tab 
for concatenation, unless a list is specified with -d option. Regardless of 
the list, the very last character of the file is forced to be a new line. 

May be used in place of any filename to read a line from the standard 
input. (There is no prompting.) 

1 February 1993 



paste(C) 

Diagnostics 

line too long Output lines are restricted to 511 characters. 

too many files Except for -s option, no more than 12 input files may 
be specified. 

Examples 

ls paste -d" " - Lists directory in one column. 

ls paste - - - - Lists directory in four columns. 

paste -s -d" \ t\ ri' file Combines pairs of lines into lines. 

See also 

cut(C), grep(C), pr(C) 

Standards confonnance 

paste is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 373 



pax(C) 

pax 
portable archive exchange 

Syntax 

pax [ -cimopuvy] [ -f archive ) [ -s replstr] [ -t device ] [pattern ... ] 

pax -r [ -cimopTuvy ] [ -f archive ] [ -s replstr ] [ -t device ) [ pattern ... ] 

pax -w [ -adiLmuvy ] [ -b blocking ) [ -f archive ] [ -s replstr ) [ -t device ] 
[ -xfonnat) [pathname ... ] 

pax -rw [ -ilLmopuvy] [ -s replstr] [pathname ... ) directory 

Description 

The pax command reads and writes archive files which conform to the 
"Archive/Interchange File Format" specified in IEEE Std. 1003.1-1988. pax can 
also read, but not write, a number of other file formats in addition to those 
specified in the Archive/Interchange File Format description. Support for 
these traditional file formats, such as V7 tar and System V binary cp'..:> format 
archives, is provided for backward compatibility and to maximize portability. 

pax will also support traditional cpio and System V tar interfaces if invoked 
with the name "cpio" or "tar" respectively. See the cpio(C} or tar(C} manual 
pages for more details. 

Combinations of the -r and -w command line arguments specify whether pax 
will read, write or list the contents of the specified archive, or move the speci­
fied files to another directory. 

The command line arguments are: 

-w Writes the files and directories specified by pathname operands to the 
standard output together with the pathname and status information 
prescribed by the archive format used. A directory pathname operand 
refers to the files and (recursively) subdirectories of that directory. If no 
pathname operands are given, then the standard input is read to get a list 
of pathnames to copy, one pathname per line. In this case, only those 
pathnames appearing on the standard input are copied. 

-r pax reads an archive file from the standard input. Only files with names 
that match any of the pattern operands are selected for extraction. The 
selected files are conditionally created and copied relative to the current 
directory tree, subject to the options described below. By default, the 
owner and group of selected files will be that of the invoking proce~s, 
and the permissions and modification times will be the same as those m 
the archive. 

374 1 February 1993 



pax(C) 

The supported archive formats are automatically detected on input. The 
default output format is ustar, but may be overridden by the -x format 
option described below. 

-rw pax reads the files and directories named in the pathname operands and 
copies them to the destination directory. A directory pathname operand 
refers to the files and (recursively) subdirectories of that directory. If no 
pathname operands are given, the standard input is read to get a list of 
pathnames to copy, one pathname per line. In this case, only those path­
names appearing on the standard input are copied. The directory named 
by the directory operand must exist and have the proper permissions 
before the copy can occur. 

If neither the -r or -w options are given, then pax will list the contents of the 
specified archive. In this mode, pax lists normal files one per line, hard link 
pathnames as 

pathname == linkname 
and symbolic link pathnames (if supported by the implementation) as 

pathname-> linkname 
where pathname is the name of the file being extracted, and linkname is the 
name of a file which appeared earlier in the archive. 

If the -v option is specified, then pax lists normal pathnames in the same for­
mat used by the ls utility with the -1 option. Hard links are shown as 

<ls -l listing> == linkname 
and symbolic links (if supported) are shown as 

<ls -l listing> -> linkname 
pax is capable of reading and writing archives which span multiple physical 
volumes. Upon detecting an end of medium on an archive which is not yet 
completed, pax will prompt the user for the next volume of the archive and 
will allow the user to specify the location of the next volume. 

Options 
The following options are available: 

-a The files specified by pathname are appended to the specified archive. 

-b blocking 
Block the output at blocking bytes per write to the archive file. A k suffix 
multiplies blocking by 1024, a b suffix multiplies blocking by 512 and an 
m suffix multiplies blocking by 1048576 (1 megabyte). If not specified, 
blocking is automatically determined on input and is ignored for -rw. 

-c Complement the match sense of the pattern operands. 

-d Intermediate directories not explicitly listed in the archive are not creat-
ed. This option is ignored unless the -r option is specified. 

1 February 1993 375 



pax(CJ 

-f archive 
The _-f archiv~ _option specifies the pathname of the input or output 
archive, overndmg the default of standard input for -r or standard output 
for-w. 

-i Interactively rename files. Substitutions specified by -s options (described 
below) are performed before requesting the new filename from the user. 
A file is skipped if an empty line is entered and pax exits with an exit 
status of 0 if EOF is encountered. 

-1 Files are linked rather than copied when possible. 

-L Follow symbolic links. 

-m File modification times are not retained. 

-o Restore file ownership as specified in the archive. The invoking process 
must have appropriate privileges to accomplish this. 

-p Preserve the access time of the input files after they have been copied. 

-s replstr 
Filenames are modified according to the substitution expression using 
the syntax of ed(C) as shown: 

-s /old/new/[gpl 

Any non null character may be used as a delimiter (a " I" is used here as 
an example). Multiple -s expressions may be specified; the expressions 
are applied in the order specified terminating with the first successful 
substitution. The optional trailing p causes successful mappings to be 
listed on standard error. The optional trailing g causes the old expression 
to be replaced each time it occurs in the source string. Files that substi­
tute to an empty string are ignored both on input and output. 

-t device 
The device option argument is an implementation-defined identifier that 
names the input or output archive device, overriding the default of stan­
dard input for-rand standard output for -w. 

-T Truncate long filenames to 14 characters when restoring an archive. This 
feature is for compatibility with XENIX and AFS filesystems which do not 
support long filenames. This option is not used with the -w option. 

-u Copy each file only if it is newer than a pre-existing file with the same 
name. This implies -a. 

-v List filenames as they are encountered. Produces a verbose table of con­
tents listing on the standard output when both-rand-ware omitted; oth­
erwise, the filenames are printed to standard error as they are encoun­
tered in the archive. 

376 1 February 1993 



pax(C) 

-xformat 
Specifies the output archive format. The input format, which must be 
one of the following, is automatically determined when the -r option is 
used. The supported formats are: 

cpio 

us tar 

The extended cpio interchange format specified in "Extended 
CPIO Format" in IEEE Std. 1003.1-1988. 

The extended tar interchange format specified in "Extended TAR 
Format" in IEEE Std. 1003.1-1988. This is the default archive 
format. 

-y Interactively prompt for the disposition of each file. Substitutions speci­
fied by -s options (described above) are performed before prompting the 
user for disposition. EOF or an input li.ne starting with the character q 
caused pax to exit. Otherwise, an input line starting with anything other 
than y causes the file to be ignored. This option cannot be used in con­
junction with the -i option. 

Only the last of multiple-for -t options take effect. 

When writing to an archive, the standard input is used as a list of pathnames 
if no pathname operands are specified. The format is one pathname per line. 
Otherwise, the standard input is the archive file, which is formatted according 
to one of the specifications in "Archive/Interchange File Format" in IEEE Std. 
1003.1-1988, or some other implementation-defined format. 

The user ID and group ID of the process, together with the appropriate 
privileges, affect the ability of pax to restore ownership and permissions 
attributes of the archived files. (See "format-reading utility" in 
"Archive/Interchange File Format" in IEEE Std. 1003.1-1988.) 

The options -a, -c, -d, -i, -1, -p, -t, -u, and -y are provided for functional compa­
tibility with the historical cpio and tar utilities. The option defaults were 
chosen based on the most common usage of these options, therefore, some of 
the options have meanings different than those of the historical commands. 

Operands 
The following operands are available: 

directory The destination directory pathname for copies when both the -r 
and -w options are specified. The directory must exist and be 
writable before the copy or error results. 

pathname A file whose contents are used instead of the files named on the 
standard input. When a directory is named, all of its files and 
(recursively) subdirectories are copied as well. 

1 February 1993 377 



pax(C) 

pattern A pattern is given in the standard shell pattern matching nota­
tion. The default if no pattern is specified is "* ", which selects 
all files. 

Exit values 

Examples 

pax will terminate immediately on an error, without processing any addi­
tional files on the command line or in the archive. 

pax will exit with one of the following values: 

0 All files in the archive were processed successfully. 

>0 pax aborted due to errors encountered during operation. 

The command pax -w -f /dev/rmtO . copies the contents of the current direc­
tory to tape drive 0. (Note that this example assumes that a 1600 bpi 9 track 
tape device is installed.) 

The following commands copy the contents of o/ddir to newdir: 
mkdir newdir 
cd olddir 
pax -rw . newdir 

The command pax -r -s ',"/usr/, \J,' -f pax.out reads the archive pax.out with 
all files rooted in /usr in the archive extracted relative to the current directory. 

Limitations 

378 

Device, user ID, and group ID numbers larger than 65535 cause additional 
header records to be output. These records are ignored by some historical 
version of cpio(C) and tar(C). 

The archive formats have certain restrictions that have been carried over from 
historical usage. For example, there are restrictions on the length of path­
names stored in the archive. 

When getting an ls -1 style listing on tar format archives, link counts are listed 
as zero since the ustar archive format does not keep link count information. 
Super user permissions may be required to copy or extract special files. 

1 February 1993 



Files 

See also 

pax(C) 

/dev/tty used to prompt the user for information when the -i or -y options are 
specified 

cpio(C), cpio(F), find(C), tar(C), tar(F) 

IEEE Std. 1003.1-1988 

Copyright 

Author 

Copyright© 1989 Mark H. Colburn. 
All rights reserved. 

Redistribution and use in source and binary forms are permitted provided 
that the above copyright notice is duplicated in all such forms and that any 
documentation, advertising materials, and other materials related to such dis­
tribution and use acknowledge that the software was developed by Mark H. 
Colburn and sponsored by The USENIX Association. 

THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR 
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PUR­
POSE. 

Mark H. Colburn 
NAPS International 
117 Mackubin Street, Suite 1 
St. Paul, MN 55102 
mark@jhereg.MN.ORG 

Sponsored by The USENIX Association for public distribution. 

1 February 1993 379 



pcpio(C) 

pcpio 
copy file archives in and out 

Syntax 

pcpio -o [ BLacv] 

pcpio -i [ Bcdfmrtuv J [pattern ... ] 

pcpio -p [ aLdlmruv ) directory 

Description 

380 

The pcpio utility produces and reads files in the format specified by the cpio 
Archive/Interchange File Format specified in IEEE Std. 1003.1-1988. 

The pcpio -i (copy in) utility extracts files from the standard input, which is 
assumed to be the product of a previous pcpio -o. Only files with names that 
match patterns are selected. Multiple patterns may be specified and if no pat­
terns are specified, the default for patterns is "* ", selecting all files. The 
extracted files are conditionally created and copied into the current directory, 
and possibly any levels below, based upon the options described below. The 
permissions of the files will be those of the previous pcpio -o. The owner and 
group of the files will be that of the current user unless the user has appropri­
ate privileges, which causes pcpio to retain the owner and group of the files of 
the previous pcpio -o. 

The pcpio -p (pass) utility reads the standard input to obtain a list of path 
names of files that are conditionally created and copied into the destination 
directory based upon the options described below. 

If an error is detected, the cause is reported and the pcpio utility will continue 
to copy other files. pcpio will skip over any unrecognized files which it 
encounters in the archive. 

Options 
The following options are available: 

-8 Input/output is to be blocked with 5120 bytes to the record. Can only be 
used with pcpio -o or pcpio -i for data that is directed to or from character 
special files. 

-L Follow symbolic links. 

-a Reset access times of input files after they have been copie~. When t~e -1 
option is also specified, the linked files do not have their access times 
reset. Can only be used with pcpio -o or pcpio -i. 

1 February 1993 



pcpio(CJ 

-c Write header information in ASCII character for portability. Can only be 
used with pcpio -i or pcpio -o. Note that this option should always be 
used to write portable files. 

-d Creates directories as needed. Can only be used with pcpio -i or pcpio ·p . 

• f Copy in all files except those in patterns. Can only be used with pcpio -i. 

-1 Whenever possible, link files rather than copying them. Can only be used 

-m 

with pcpio -p. 

Retain previous modification times. This option is ineffective on direc­
tories that are being copied. Can only be used with pcpio -i or pcpio ·p. 

-r Interactively rename files. The user is asked whether to rename pattern 
each invocation. Read and write permissions for /dev/tty are required for 
this option. If the user types a null line, the file is skipped. Should only be 
used with pcpio -i or pcpio -o. 

-t Print a table of contents of the input. No files are created. Can only be 
used with pcpio -i. 

-u Copy files unconditionally; usually an older file will not replace a new file 
with the same name. Can only be used with pcpio -i or pcpio ·p. 

-v Verbose: cause the names of the affected files to be printed. Can only be 
used with pcpio -i. Provides a detailed listing when used with the ·t 
option. 

Operands 
The following operands are available: 

patterns 
Simple regular expressions given in the name-generating notation of the 
shell. 

directory 
The destination directory. 

Fxit values 

The pcpio utility exits with one of the following values: 

0 All input files were copied. 

2 The utility encountered errors in copying or accessing files or directories. 
An error will be reported for nonexistent files or directories, or permis­
sions that do not allow the user to access the source or target files. 

l February 1993 381 



pcpio(C) 

Examples 

The following command: 
ls I pcpio -o > /tmp/newfile 

copies out the files listed by the ls utility and redirects them to the file 
ltmplnewfile. 

The following command: 
cat /tmp/newfile I pcpio -id "memo/al" ''memolb*" 

uses the output file /tmp/newfile from the pcpio -o utility, takes those files that 
match the patterns memo/al and memo/b*, creates the directories below the 
current directory, and places the files in the appropriate directories. 

The command: 

find . -depth -print I pcpio -pdlmv newdir 
takes the filenames piped to it from the find utility and copies or links those 
files to another directory named newdir, while retaining the modification time. 

Limitations 

382 

It is important to use the -depth option of the find utility to generate path­
names for pcpio. This eliminates problems pcpio could have trying to create 
files under read-only directories. 

When find(C) and pcpio are used in conjuction, specify the -follow option to 
find and the -L option to pcpio when symbolic links are to be followed. 

The following restrictions apply to the pcpio utility: 

• Pathnames are restricted to 255 characters. 

• Appropriate privileges are required to copy special files. 

• Blocks are reported in 512-byte quantities. 

1 February 1993 



Files 

See also 

pcpio(C) 

/dev/tty used to prompt the user for information when the -i or -r options are 
specified 

find(C), pax(C), tar(C), tar(F) 

Copyright 

Author 

Copyright (c) 1989 Mark H. Colburn. All rights reserved. 

Redistribution and use in source and binary forms are permitted provided 
that the above copyright notice is duplicated in all such forms and that any 
documentation, advertising materials, and other materials related to such dis­
tribution and use acknowledge that the software was developed by Mark H. 
Colburn and sponsored by The USENIX Association. 

THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR 
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR 
PURPOSE. 

Mark H. Colburn 
NAPS International 
117 Mackubin Street, Suite 1 
St. Paul, MN 55102 
mark@jhereg.MN.ORG 

Sponsored by The USENIX Association for public distribution. 

Standards conformance 

pcpio is conformant with: 

IEEE POSIX Std 1003.1-1990 System Application Program Interface (API) 
[C Language] (ISO/IEC 9945-1); NIST FIPS 151-1. 

1 February 1993 383 



pg(C) 

pg 
paginate display for soft-copy terminals 

Syntax 

pg [-number) [ -p string) [ -cefns) [ +linenumber) [ +/pattem/) [files ... ) 

Description 

384 

The pg command is a filter which allows the examination of files one screen­
ful at a time on a terminal. (The dash(-) command line option and/or NULL 
arguments indicate that pg should read from the standard input.) Each 
screenful is followed by a prompt. If you press the(Return} key, another page 
is displayed; other possibilities are listed below. This command is different 
from previous paginators because it allows you to back up and review some­
thing that has already passed. 

To determine terminal attributes, pg scans the termcap(F} database for the ter· 
minal type specified by the environment variable TERM. If TERM is not 
defined, the terminal type dumb is assumed. 

The command line options are: 

-number 

-p string 

-c 

-e 

-f 

Specifies the size (in lines) of the window that pg is to use 
instead of the default. (On a terminal containing 24 lines, the 
default window size is 23.) 

Causes pg to use string as the prompt. If the prompt string 
contains a "0/od", the first occurrence of "%d" in the prompt 
will be replaced by the current page number when the 
prompt is issued. The default prompt string is a colon (:). 

Homes the cursor and clears the screen before displaying 
each page. This option is ignored if cl (clear screen) is not 
defined for this terminal type in the termcap(F} database. 

Causes pg not to pause at the end of each file. 

Inhibits pg from splitting lines. In the absence of the -f 
option, pg splits lines longer than the screen width, but some 
sequences of characters in the displayed text (for example, 
escape sequences for underlining) give undesirable results. 

1February1993 



-n 

-s 

+linenumber 

+lpatteml 

pg(C) 

Normally, commands must be terminated by pressing the 
(Return) key (ASCII newline character). This option causes an 
automatic end of command as soon as a command letter is 
entered. 

Causes pg to display all messages and prompts in standout 
mode (usually inverse video). 

Starts up at linenumber. 

Starts up at the first line containing the regular expression 
pattern. 

The responses that may be entered when pg pauses can be divided into three 
categories: those that cause further perusal, those that search, and those that 
modify the perusal environment. 

Commands which cause further perusal normally take a preceding address 
(an optionally signed number indicating the point from which further text 
should be displayed). pg interprets this address in either pages or lines 
depending on the command. A signed address specifies a point relative to the 
current page or line, and an unsigned address specifies an address relative to 
the beginning of the file. Each command has a default address if no address is 
provided. 

The perusal commands and their defaults are as follows: 

(+l)(Retum) 

(+1) 1 

Causes one page to be displayed. The address is specified in 
pages. 

With a signed address, causes pg to simulate scrolling the 
screen, forward or backward, the number of lines specified. 
With an unsigned address this command displays a full 
screen of text beginning at the specified line. 

( + 1) d or ( Ctrl)d Simulates scrolling half a screen forward or backward. 

The following perusal commands take no address: 

• or(Ctrl)l 

$ 

Causes the current page of text to be redisplayed. 

Displays the last screen of text in the file. Use with caution 
when the input is a pipe. 

The following commands are available for searching for text patterns in the 
text. The regular expressions described in ed(C) are available. They must 
always be terminated by a newline character, even if the -n option is specified. 

I February 1993 385 



pg(C) 

386 

i /pattern/ 

i "pattern· 
i ?pattern 

Search forward for the ith (default i=l} occurrence of pat­
tern. Se~rching begins immediately after the current page 
and continues to the end of the current file, without wrap­
around. 

Search backwards for the ith (default i=l} occurrence of pat­
tern. Searching begins immediately before the current page 
and continues to the beginning of the current file, without 
wrap-around. The caret n notation is useful for terminals 
which will not properly handle the question mark(?). 

After searching, pg displays the line found at the top of the screen. You can 
modify this by appending m or b to the search command to leave the line 
found in the middle or at the bottom of the window from now on. Use the 
suffix t to restore the original situation. 

The following commands modify the environment of perusal: 

in 

ip 

iw 

sfilename 

h 

qorQ 

!command 

Begins perusing the ith next file in the command line. The 
default value of i is 1. 

Begins perusing the ith previous file in the command line. 
The default value of i is 1. 

Displays another window of text. If i is present, set the win­
dow size to i. 

Saves the input in the named file. Only the current file being 
perused is saved. The white space between the s and 
filename is optional. This command must always be ter­
minated by a newline character, even if the -n option is 
specified. 

Help displays abbreviated summary of available commands. 

Quit pg. 

command is passed to the shell, whose name is taken from 
the SHELL environment variable. If this is not available, the 
default shell is used. This command must always be ter­
minated by a newline character, even if the -n option is 
specified. 

At any time when output is being sent to the terminal, the user can press the 
QUIT key (normally (Ctrl)\} or the INTERRUPT key (normally (Break)}. This 
causes pg to stop sending output, and display the prompt. The user may then 
enter one of the above commands in the normal manner. Unfortunately, some 
output is lost when this is done, because any characters waiting in the 
terminal's output queue are flushed when the quit signal occurs. 

1 February 1993 



Examples 

pg(C) 

If the standard output is not a terminal, then pg acts just like cat(C), except 
that a header is printed before each file (if there is more than one). 

To use pg to read system news, enter: 
news I pg -p "(Page %d):" 

Limitations 

Files 

See also 

If terminal tabs are not set every eight positions, undesirable results may 
occur. 

When using pg as a filter with another command that changes the terminal 
1/0 options, terminal settings may not be restored correctly. 

While waiting for terminal input, pg responds to (CtrlXBreak} and (Del} by ter­
minating execution. Between prompts, however, these signals interrupt pg's 
current task and place you in prompt mode. Use these signals with caution 
when input is being read from a pipe, since an interrupt is likely to terminate 
the other commands in the pipeline. 

The z and f commands used with more{C) are available, and the terminal 
slash (/), caret n, or question mark {?) may be omitted from the searching 
commands. 

/etc/termcap 
/tmp/pg* 

terminal information database 
temporary file when input is from a pipe 

cat{C), ed(C), grep(C), more(C), termcap(F) 

Standards conformance 

pg is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 387 



pr(C) 

pr 
print files on the standard output 

Syntax 
pr [options) [files) 

Description 

The pr command prints the named files on the standard output. If file is u - u, 

or if no files are specified, the standard input is assumed. By default, the list­
ing is separated into pages, each headed by the page number, date and time of 
file creation or last modification, and the name of the file. 

By default, columns are of equal width, separated by at least one space; lines 
which do not fit are truncated. If the -s option is used, lines are not truncated 
and columns are separated by the separation character. 

If the standard output is associated with a terminal, error messages are 
withheld until pr has completed printing. 

Options may appear singly or combined in any order. Their meanings are: 

-a Prints multi-column output across the page. 

-d Double-spaces the output. 

-eek Expands input tabs to character positions k+l, 2•k+l, 3•k+l, etc. If k is 
0 or is omitted, default tab settings at every 8th position are assumed. 
Tab characters in the input are expanded into the appropriate number of 
spaces. If c (any non-digit character) is given, it is treated as the input 
tab character (default for c is the tab character). 

-f Uses form feed character for new pages (default is to use a sequence of 
linefeeds). Pauses before beginning the first page if the standard output 
is associated with a terminal. 

-h Uses the next argument as the header to be printed instead of the 
filename. 

-ick In output, replaces white space wherever possible by inserting tabs to 
character positions k+l, 2•k+l, 3•k+l, etc. If k is 0 or is omitte~, ~efault 
tab settings at every 8th position are assumed. If c (any non-d1g1t cha~­
acter) is given, it is treated as the output tab character (default for c 1s 
the tab character). 

+k Begins printing with page k (default is 1). 

388 1 February 1993 



Examples 

See also 

pr(C) 

-k Produces k-column output (default is 1). The options -e and -i are 
assumed for multi-column output. 

-In Sets the length of a page ton lines (default is 66). 

-m Merges and prints all files simultaneously, one per column (overrides 
the -k, and -a options). 

-nck Provides k-digit line numbering (default fork is 5). The number occu­
pies the first k+l character positions of each column of normal output or 
each line of -m output. If c (any non-digit character) is given, it is 
appended to the line number to separate it from whatever follows 
(default for c is a tab). 

-ok Offsets each line by k character positions (default is 0). The number of 
character positions per line is the sum of the width and offset. 

-p 

·r 

·SC 

-t 

Pauses before beginning each page if the output is directed to a terminal 
(pr will ring the bell at the terminal and wait for a carriage return). 

Prints no diagnostic reports on failure to open files. 

Separates columns by the single character c instead of by the appropri­
ate number of spaces (default for c is a tab). 

Prints neither the 5-line identifying header nor the 5-line trailer normally 
supplied for each page. Quits printing after the last line of each file 
without spacing to the end of the page. 

-wk Sets the width of a line to k character positions (default is 72 for equal­
width multi-column output, no limit otherwise). 

The following prints file1 and file2 as a double-spaced, three-column listing 
headed by "file list": 

pr -3dh "file list" filel file2 

The following writes file1 on file2, expanding tabs to columns 10, 19, 28, 
37 ... : 

pr -e9 -t <filel >file2 

cat(C) 

1 February 1993 389 



pr(CJ 

Standards confonnance 
pr is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

390 l February 1993 



prwarn(C) 

prwarn 
warn about password expiration 

Syntax 
prwam [-d days] [-t hh[mm]] [users] 

Description 

Files 

See also 

prwam issues a warning if the user's password must be changed within days 
and the user has not been warned of the impending expiry in the last hhmm, 
where hh is hours and mm is minutes. By default, warnings will be issued if 
the password is due to expire within seven days, at six hour intervals. 

If days is infinite, and no warning has been issued in the last hh[mm], a warn­
ing is given. If hh[mm] is always, and the password must be changed within 
days, a warning is issued. Thus: 

prwam -d infinite -t always 
always issues a warning. 

If no users are specified, then the logged-in user is assumed and the time that 
the last report was issued is the modification time of .prwarn_time in the user's 
home directory. 

System administrators (users with the auth subsystem authorization or 
passwd secondary authorization) may check the password expiry status of 
other users; the time interval between reports being issued is not checked. 

The number of days left before the password expires, the date at which the 
password expires, and whether the password can still be changed or is dead 
(expired and exceeded its lifetime) is reported. 

/usr/bin!prwarn 
$HOME/.prwarn_time used to check time of last warning 

passwd(C} 

Standards confonnance 

prwam is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

l February 1993 391 



ps(C) 

ps 
report process status 

Syntax 
ps [ options I 

Description 

392 

The ps command prints certain information about active processes. Without 
options, information is printed about processes associated with the controling 
terminal. Output consists of a short listing containing only the process ID, ter­
minal identifier, cumulative execution time, and the command name. Other­
wise, the information that is displayed is controlled by the selection of 
options. 

Options accept names or lists as arguments. Arguments can be either 
separated from one another by commas or enclosed in double quotes and 
separated from one another by commas or spaces. Values for proclist and 
grplist must be numeric. 

The options are given in descending order according to volume and range of 
information provided: 

-e Print information about every process now running. 

-d Print information about all processes except process group leaders. 

-a Print information about all processes most frequently requested: all 
those except process group leaders and processes not associated with a 
terminal. 

-f Generate a full listing (see below). 

-1 Generate a long listing (see below). 

-nname 
Valid only for users with a real user ID of root or a real group ID of S!fS. 
Takes argument signifying an alternate system name in place of /umx. 
This option is used when the kernel has been relinked and the execut­
able file /unix does not correspond to the kernel loaded into memory. In 
this case, the argument is the filename of the UNIX executa~le that was 
loaded when the machine was last booted; for example, /umx.old. 

-t termlist 
List only process data associated with the terminal given in term!is!. 
Terminal identifiers may be specified in one of two forms: the d~v1ce s 
filename (for example, tty04) or, if the device's filename starts with tty, 
just the digit identifier (for example, 04). 

1February1993 



ps(CJ 

-p proclist 
List only process data whose process ID numbers are given in proclist. 

-u uidlist 
List only process data whose user ID number or login name is given in 
uidlist. In the listing, the numerical user ID will be printed unless you 
give the -f option, which prints the login name. 

-ggrplist 
List only process data whose process group leader's ID number(s) 
appears in grplist. (A group leader is a process whose process ID num­
ber is identical to its process group ID number. A login shell is a com­
mon example of a process group leader.) 

Under the -f option, ps tries to determine the command name and arguments 
given when the process was created by examining the user block. Failing this, 
the command name is printed, as it would have appeared without the -f 
option, in square brackets. 

The column headings and the meaning of the columns in a ps listing are given 
in the following text; the letters -f and -1 indicate the option (full or long, 
respectively) that causes the corresponding heading to appear; if no option 
letter is given, the heading always appears. Note that these two options 
determine only what information is provided for a process; they do not deter­
mine which processes will be listed. 

F (-1) Octal flags which are added together to give more information about 
the current status of a process: 

l February 1993 

00 

01 

02 

04 

10 

20 

If shown on its own, the process has terminated; its process 
table entry is now available. 

A system process which is part of the kernel and always 
resident in primary memory. sched (the swapper), vhand (the 
pager), and bdflush (the buffer cache manager) are all system 
processes. 

Parent is tracing process. 

Tracing parent's signal has stopped the process; the parent is 
waiting ( ptrace(S)). 

Process is sleeping at less than or equal to priority 25 and cannot 
be awakened by a signal; for example, while waiting for an 
inode to be created. 

Process is loaded in primary memory; it has not been swapped 
out to disk. 

393 



ps(C) 

394 

40 Process is currently locked in primary memory and cannot be 
swa~ped out until an event completes; for example, while per­
forming raw 1/0. 

200 Process is either in a Stream poll, or a select(S) system call. 

S (-1) The state of the process: 

0 Process is running on a processor (SONPROC}. 

S Sleeping: process is waiting for an event to complete (SS LEEP}. 

R Runnable: process is on run queue (SRUN}. 

Idle: process is being created (SIDL}. 

Z Zombie state: process terminated and parent not waiting 
(SZOMB). 

T Traced: process stopped by a signal because parent is tracing it 
(SSTOP}. 

B Process is waiting for more pages of memory to become avail­
able (SXBRK}. 

UID (-f, -1) 
The user ID number of the process owner (the login name is printed 
under the -f option). 

PIO The process ID of the process (this number is needed in order to kill a 
process). 

PPID (-f, -1) 
The process ID of the parent process. 

c (-f, -1) 
A measure of recent CPU usage by the process; the scheduler combines 
this quantity with the nice(C} value of the process to calculate its prior­
ity. 

PRI (-1) 
The priority of the process (higher numbers mean lower priority). The 
swapper (sched) sleeps at the highest priority (0). This ensures that it 
will be the next process to execute if it is put on the run queue. Pro­
cesses with a priority less than or equal to 39 are sleeping in system 
mode while waiting for a system resource to become available. _If the 
priority is less than or equal to 25, they are also immune to signals 
while protecting critical data structures. Processes with a priority in the 
range 40 to 120 are in user mode and may be selected by the scheduler 
to run. 

1February1993 



ps(CJ 

NI (·I) 
The nice value of the process. 

ADDRl (-1) 
ADDR2 (-1) 

sz (-1) 

The page frame numbers of the first two pages of the 11-area (user area) 
of the process. (The user area contains information about a process 
which is only needed by the UNIX kernel when the process is execut­
ing.) 

The size (in kilobytes) of the virtual data and stack segments of the 
process. 

WCHAN (-1) 
An address that uniquely identifies a process within the process table 
as sleeping until a particular resource becomes available; for example, 
until an 1/0 request has been completed, or in an SXBRK state until 
more pages of memory are available. This field is blank if the process 
is running. 

STIME (-f) 
The starting time of the process, given in hours, minutes, and seconds. 
(A process begun more than twenty-four hours before ps is executed is 
given in months and days.) 

TrY The controling terminal for the process (the message "?" is printed 
when there is no controling terminal). 

TIME The cumulative execution time for the process. 

COMMAND 
The name of the command corresponding to the process. The -f option 
prints the full command name and its arguments. The column heading 
is shortened to CMD for the -1 option. 

A process that has exited and has a parent, but has not yet been waited for by 
the parent, is marked <defunct>. 

Limitations 

Things can change while ps is running; the snap-shot it gives is only true for a 
split-second, and it may not be accurate by the time you see it. Some data 
printed for defunct processes is irrelevant. 

If no termlist, proclist, uidlist, or grplist is specified, ps checks stdin, stdout, 
and stderr in that order, looking for the controling terminal and will attempt 
to report on processes associated with the controling terminal. In this situa­
tion, if stdin, stdout, and stderr are all redirected, ps will not find a controling 
terminal, so there will be no report. 

I February 1993 395 



ps(C) 

On a heavily loaded system, ps may report an lseek(S) error and exit. ps may 
seek to an invalid user area address: having obtained the address of a pro­
cess' user area, ps may not be able to seek to that address before the process 
exits and the address becomes invalid. 

ps -ef may not report the actual start of a tty login session, but rather an ear­
lier time, when a getty was last respawned on the tty line. 

Authorization 

Files 

See also 

The behavior of this utility is affected by assignment of the mem authoriza­
tion. Refer to the "Using a secure system" chapter of the User's Guide for more 
details. 

/dev 
/dev/sxt/* 
/dev/tty* 
/dev/xt/* 
/dev/kmem 
/dev/swap 
/dev/mem 
/etc/passwd 
/etc/ps/ps_data 
/etc/ps/syms.* 
/etc/ps/ttys 
/etc/ps/uids 
/unix 

terminal ("tty") names searcher files 

kernel virtual memory 
the default swap device 
memory 
UID information supplier 
internal data structure 
list of kernel symbols 
list of character special devices 
list mapping user IDs to user names 
system name list 

getty(M), kill(C), nice(C) 

Standards conformance 

ps is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

396 1February1993 



pstat(C) 

pstat 
report system information 

Syntax 
pstat [ -aipf I [ -P pid I [ -n namelist I [ -s swapfile I [file I 

Description 
The pstat command interprets the contents of certain system tables. pstat 
searches for these tables in /dev/mem and /dev/kmem. If file is specified, the 
tables are taken from the specified file rather than /dev/mem. The required 
namelist is taken from /unix. 

If no options are specified, pstat prints information for all three tables: the 
inode table, the process table, and the file table. 

pstat has the following options: 

-a Describe all process slots rather than just active ones. (Used in 
conjunction with the -p option.) 

-f Print the open file table with these headings: 

LOC 

FLAGS 

The core location of this table entry. 

Miscellaneous state variables: 

R open for reading 

W open for writing 

A open for append 

N no delay (non-blocking) 

5 synchronized write operation 

CNT Number of processes that know this open file. 

INO The location of the inode table entry for this file. 

OFFS The file offset, see lseek(S). 

-i Print the inode table with these headings: 

LOC The core location of this table entry. 

1 February 1993 397 



pstat(C) 

398 

FLAGS Miscellaneous state variables: 

L locked 

U update time must be corrected 

A access time must be corrected 

M file system is mounted here 

W wanted by another process (L flag is on) 

T contains a text (executable image) file 

C changed time must be corrected 

CNT Number of open file table entries for this inode. 

DEVICE Major and minor device number of file system in which this 
inode resides. 

INO I-number within the device. 

FS Filesystem type. 1 indicates UNIX. 

MODE Mode bits, see chmod(S). 

NLK Number of links to this inode. 

UID User ID of owner. 

SIZE/DEV Number of bytes in an ordinary file, or major and minor de­
vice of special file. 

-n namelist 
Use the file namelist as an alternate namelist in place of /!mix. 

-p Print process table for active processes with these headings: 

LOC The core location of this table entry. 

S Run state encoded thus: 

0 noprocess 

1 SS LEEP; waiting for an event to complete 

2 SRUN; on the run queue 

3 SZOMB; terminated and parent not waiting 

4 SSTOP; stopped by debugger while being traced 

1 Febniary 1993 



I February I 993 

pstat(CJ 

5 SIDL; idle while being created 

6 SONPROC; running on the processor 

7 SXBRK; waiting for more pages of memory 

F Miscellaneous state variables, ORed together: 

OxOOOOOOOl System (resident) process always resident in pri­
mary memory. 

Ox00000002 Process is being traced. 

Ox00000004 Traced process (using ptrace(S)) has been given 
to parent by wait(S). Don't return this process 
to parent again until it runs first. 

Ox00000008 Process sleeping at priority 25 or less and cannot 
be awakened by a signal. 

OxOOOOOOlO Process loaded in primary memory. 

Ox00000020 Process locked in primary memory and cannot 
be swapped. 

Ox00000040 Set when signal goes remote (not used). 

Ox00000080 Process in Stream poll(S) or doing select(S). 

OxOOOOOlOO Process is being stopped. 

Ox00000200 Signal or syscall tracing. 

Ox00000400 Do not run; performing 1/0. 

Ox00000800 Stop on exec(S). 

OxOOOOlOOO Process is open. 

Ox00002000 u-area in primary memory. 

Ox00004000 Set process running on last close. 

Ox00008000 Process asleep, stop not allowed. 

OxOOOlOOOO Process is exiting via ptrace(S). 

Ox00020000 Process is stopped within a call to sleep(K). 

Ox00040000 u-area is being swapped in or out. 

Ox00080000 Waiting for u-area swap to complete. 

399 



pstat(C) 

Ox00100000 Restore old mask after taking signal. 

Ox00200000 Child of a fork(S), but no exec(S} yet. 

Ox00400000 Child being traced after fork(S). 

Ox00800000 Process may only be traced by the super user. 

OxOlOOOOOO Process is exiting. 

PRI Scheduling priority, see nice(C}. 

SIG Signals received (signals 1-32 coded in bits 0-31). 

UID Real user JD. 

TIM Time resident in seconds; times over 127 appear as 127. 

CPU Weighted integral of CPU time used by the scheduler. 

NI Nice level, see nice(C}. 

PGRP Process number of process group leader. 

PID The process JD number. 

PPID The process ID of parent process. 

ADDRl 
ADDR2 The page frame numbers of the first two pages of the u-area 

of the process. If the u-area of the process is in primary mem­
ory, these numbers can be translated into the physical 
addresses of the pages. If the u-area is swapped out, the num­
bers correspond to the addresses of the pages in the swap area 
measured in multiples of 4 kilobytes. 

WCHAN Wait channel number of a waiting process. 

LINK Link pointer in list of runnable processes. 

INODP Pointer to location of shared inode. 

CLKT Countdown for alann(S) measured in seconds. 

400 1 February 1993 



pstat(C) 

-Ppid 
Print information about a user process drawn from its user area (defined 
in /usr/include/sys/user.h). pid is the ID of the process. It may be obtained 
using the ps(C) command. 

-s swapfile 
Use swapfile as the swapfile. 

Authorization 

Files 

See also 

The behavior of this utility is affected by assignment of the mem authoriza­
tion. If you do not have this authorization, the output will be restricted to 
data pertaining to your activities only. Refer to the "Using a secure system" 
chapter of the User's Guide for more details. 

/unix default namelist 
/dev/mem default source of tables 
/dev/swap default swap device 

alarm(S), chmod(S), filesystem(FP), lseek(S), nice(C), ps(C), stat(S) 

System Administrator's Guide 

Standards conformance 

pstat is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

I February 1993 401 



ptar(C) 

ptar 
process tape archives 

Syntax 

ptar -c [ bLfvw ) device block filename .. . 

ptar -r [ bLvw) device block [filename ... ] 

ptar -t [ fv ) device 

ptar -u [ bLvw) device block 

ptar -x [ flmovw) device [filename ... ) 

Descripti.on 

402 

The ptar command reads and writes archive files which conform to the 
Archive/Interchange File Format specified in IEEE Std. 1003.1-1988. 

Opti.ons 
The following options are available: 

-c Creates a new archive; writing begins at the beginning of the archive, 
instead of after the last file. 

-r Writes named files to the end of the archive. 

-t Lists the names of all of the files in the archive. 

-u Causes named files to be added to the archive if they are not already 
there, or have been modified since last written into the archive. This 
implies the -r option. · 

-x Extracts named files from the archive. If a named file matches a directory 
whose contents had been written onto the archive, that directory is recur­
sively extracted. 

If a named file in the archive does not exist on the system, the file is created 
with the same mode as the one on the archive, unless the process does not 
have the appropriate privileges. In this case the access permissions are set in 
the same fashion that creat would have set them when given the Hmodeu 
argument, matching the file permissions supplied by the "mode" field of the 
ptar format. The set-user-id and get-group-id modes are not set unless the 
user has the appropriate privileges. 

1 February 1993 



Files 

See also 

ptar(C) 

If the files exist, their modes are not changed except as described above. The 
owner, group and modification time are restored if possible. If no filename 
argument is given, the entire contents of the archive are extracted. Note that 
if several files with the same name are in the archive, the last one will 
overwrite all earlier ones. 

-b Causes ptar to use the next argument on the command line as the block­
ing factor for tape records. The default is 1; the maximum is 20. This 
option should only be used with raw magnetic tape archives. Normally, 
the block size is determined automatically when reading tapes. 

-f Causes ptar to use the next argument on the command line as the name 
of the archive instead of the default, which is usually a tape drive. If " - " 
is specified as a filename, ptar writes to the standard output or reads 
from the standard input, whichever is appropriate for the options given. 
Thus, ptar can be used as the head or tail of a pipeline. 

-I Tells ptar to report if it cannot resolve all of the links to the files being 
archived. If -1 is not specified, no error messages are written to the stan­
dard output. This modifier is only valid with the -c, -rand -u options. 

-L Causes ptar to follow symbolic links. 

-m Tells ptar not to restore the modification times. The modification time of 
the file will be the time of extraction. This modifier is invalid with the -t 
option. 

-o Causes extracted files to take on the user and group identifier of the user 
running the program rather than those on the archive. This modifier is 
only valid with the -x option. 

-v Causes ptar to operate verbosely. Usually, ptar does its work silently, but 
the -v modifier causes it to print the name of each file it processes, pre­
ceded by the option letter. With the -t option, -v gives more information 
about the archive entries than just the name. 

-w Causes ptar to print the action to be taken, followed by the name of the 
file, and then wait for the user's confirmation. If a word beginning with y 
is given, the action is performed. Any other input means "nd'. This 
modifier is invalid with the -t option. 

/dev/tty used to prompt the user for information when the -i or -y options are 
specified 

cpio(C), dd(C), find(C), pax(C), pcpio(C) 

1 February 1993 403 



ptar(CJ 

Copyright 

Author 

Copyright (c) 1989 Mark H. Colburn. 
All rights reserved. 

Redistribution and use in source and binary forms are permitted provided 
that the above copyright notice is duplicated in all such forms and that any 
documentation, advertising materials, and other materials related to such dis­
tribution and use acknowledge that the software was developed by Mark H. 
Colburn and sponsored by The USENIX Association. 

THE SOFIW ARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR 
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR 
PURPOSE. 

Mark H. Colburn 
NAPS International 
117 Mackubin Street, Suite 1 
St. Paul, MN 55102 
mark@jhereg.MN.ORG 

Sponsored by The USENIX Association for public distribution. 

Standards confonnance 

404 

ptar is conformant with: 

IEEE POSIX Std 1003.1-1990 System Application Program Interface (AP!) 
[C Language) (ISO/IEC 9945-1); NIST FIPS 151-1. 

1 February 1993 



purge( CJ 

purge 
overwrite specified files 

Syntax 
purge [ -f] [ -r] [ -v] [ -m num] [ -suo] [ -t type] ... [ -z] [files] ... 

Description 
The purge command is used to overwrite various parts of the system. It 
overwrites files specified on the command line, or those listed in a policy file 
maintained by the system administrator. The policy file defines types of files 
and devices which are purged as a group. The utility can be used to purge in­
dividual files, divvy(ADM) divisions, fdisk(ADM) partitions, or other devices 
like magnetic tapes and floppies. An option even exists to zero memory. 

The optional flags are outlined below: 

-f Do not warn about files which are not present or inaccessible. Attempts 
to purge a floppy which is inaccessible (for example, the door is open) 
will always generate a diagnostic on the system console. 

-r Recursively purge directories. Without this flag no action is taken upon 
directories. 

-v Verbose operation, list the name of each file as it is overwritten. 

-mnum 
Overwrite each file num times. 

-s Overwrite files and devices designated as nsystem" in the policy file. 
(Equivalent to -tsystem.) 

-u Overwrite files and devices designated as Huser" in the policy file. 
(Equivalent to -tuser.) 

-o Overwrite other (non-system and non-user) files and filesystems. This 
purges all entries in the policy file which are not of either type system 
or user. This flag, by the nature of its implicit definition, has no -t 
equivalent. 

-t type 

1 February 1993 

Overwrite the files identified in the policy file as being part of group 
type. 

405 



purge( CJ 

-z Writes binary zeroes to system memory, including memory buffers of 
intelligent devices (that is, disk controller cache, etc.). This will close 
down the system immediately. This should only be done from single­
user mode, or when no users are logged on. The system will autoboot 
if so configured (see autoboot(ADM)). Only the super user may use 
this option. 

files Regular, directory or special files to purge. 

Similarly to regular files, most special files can be purged by being placed in 
the policy file or with the command purge /dev/special_Jile. Block special 
files and some character special files can be overwritten. The console, ttys, 
printers and other uinfinite outputu devices cannot be purged with this com­
mand. Disks, floppies and magnetic tapes can be overwritten. Tape devices 
are first erased once and then overwritten the specified number of times. 

When both types and files are specified on the command line, all of the indi­
cated files are overwritten by the utility. In particular, first the files selected 
from the policy file, and then those specified on the command line, are 
overwritten. 

Each line in the policy file (!etc/default/purge) designates a file, filesystem or de­
vice as a member of some type. The syntax of a line is: 

file type [ count I 
The optional count field is the number of times to overwrite file. The default 
count is one. The utility will overwrite file any time the command 

purge -t type 

is given. 

Blank lines in the policy file and lines beginning with u #" are ignored. 

Diagnosti.cs 

406 

purge: warning: invalid entry in policy file (line n) 
An invalid line was read from the policy file where n is the number of the 
incorrectly formatted line. 

purge: filename is a directory 
If the -r switch is not specified no action is taken upon directories and this 
diagnostic is displayed. 

purge: only the superuser can zero memory 
This message is displayed when a user other than the super user tries to 
use the -z option. 

1 February 1993 



purge(C) 

Limitations 

Files 

See also 

When files are overwritten multiple times, the first pass writes binary zeros. 
Subsequent passes alternate writing binary ones and binary zeros. 

After being overwritten, od(C), dd(C), or hd(C) may be used to verify that no 
data remains on the device or in the file. 

Only the super user may use the -z option to zero the system's memory. 

/etc/default/purge the policy file 

autoboot(ADM), dd(C), hd(C), od(C), rm(C), purge(F), sysadmsh(ADM) 

Standards confonnance 

purge is not part of any currently supported standard; it is an extensiori of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 407 



pwd(C) 

pwd 
print working directory name 

Syntax 
pwd 

Description 

pwd prints the pathname of the working (current) directory. 

Diagnostics 

"Cannot open ... " and "Read error in ... " indicate possible file system 
trouble. In such cases, see the System Administrator's Guide for information on 
fixing the filesystem. 

Limitations 

A version of pwd is built into the Korn shell (ksh(C)). It differs slightly from 
the program described here. For further information refer to the ksh(C) entry. 

See also 

cd(C) 

Standards conformance 

pwd is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

408 1February1993 



quot(C) 

quot 
summarize file system ownership 

Syntax 
quot [option I ... [filesystem I 

Description 
quot prints the number of blocks in the nained filesystem currently owned by 
each user. If no filesystem is named, the file systems given in /etc/mnttab are 
examined. 

The following options are available: 

-n Processes standard input. This option makes it possible to produce a list 
of all files and their owners with the following command: 

ncheck filesystem I sort +On I quot -n filesystem 

-c Prints three columns giving file size in blocks, number of files of that size, 
and cumulative total of blocks in files of that size or smaller. Data for 
files of size greater than 499 blocks is included in the figures for files of 
exactly size 499. 

-f Prints a count of the number of files as well as space owned by each user. 

Limitations 

Files 

See also 

Holes in files are counted as if they actually occupy space. 

Blocks are reported in 512-byte blocks. 

See also "Limitations" under mount( ADM). 

/etc!passwd 
/etc/mnttab 

du(C), ls(C) 

gets user names 
contains list of mounted file systems 

1 February 1993 409 



quot(C) 

Standards confonnance 

410 

quot is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



random(C) 

random 
generate a random number 

Syntax 

random [ ·s I [ scale ] 

Description 

The random command generates a random number on the standard output. 
and returns the number as its exit value. By default, this number is either 0 or 
1 (that is, scale is 1 by default). If scale is given a value between 1 and 255, 
then the range of the random value is from 0 to scale. If scale is greater than 
255, an error message is printed. 

When the -s, usilent" option is given, the random number is returned as an 
exit value but is not printed on the standard output. If an error occurs, ran­
dom returns an exit value of zero. 

Limitations 

See also 

This command does not perform any floating point computations. 

random uses the time of day as a seed. 

rand(S) 

1February1993 411 



rep( CJ 

rep 
copy files across systems 

Syntax 

rep [ options ) [ srcmachine: ) srcfile [ destinachine: ) destfile 

Description 

412 

The rep command copies files between systems in a Micnet network. The 
command copies the srcmachine:srcfile to destmachine:destfile, where srcma­
chine: and destmachine: are optional names of systems in the network, and 
srcfile and destfile are pathnames of files. If a machine name is not given, the 
name of the current system is assumed. If " - " is given in place of srcfile, rep 
uses the standard input as the source. Directories named on the destination 
machine must have write permission, and directories and files named on a 
remote source machine must have read permission. 

The available options are: 

-m Mails and reports completion of the command, whether there is an error 
or not. 

-u [machine:)user 
Any mail goes to the named user on machine. The default machine is the 
machine on which the rep command is completed or on which an error 
was detected. If an alias for user exists in the system alias files on that 
machine, the mail will be redirected to the appropriate mailbox( es). Since 
system alias files are usually identical throughout the network, any speci­
fied machine will most likely be overridden by the aliasing mechanism. 
To prevent aliasing, user must be escaped with at least two " \ " charac­
ters (at least four if given as a shell command). 

rep is useful for transferring small numbers of files across the network. The 
network consists of daemons that periodically awaken and send files from 
one system to another. The network must be installed using netutil(ADM) 
before rep can be used. 

Also, to enable transfer of files from a remote system, either: 

This line should be in /etc/default/micnet on the systems in the network: 
rcp=/usr/bin/rcp 

Or, these lines should be in that file: 
executeall 
execpath=PATH=path 

where path must contain /usr/bin. 

1 February 1993 



rcp(C) 

Diagnostics 
If an error occurs, mail is sent to the user. 

Examples 
rep -m machinel:/etc/mnttab /tmp/vtape 

Limitations 

See also 

Full pathnames must be specified for remote files. 

rep handles binary data files transparently: no extra options or protocols are 
needed to handle them. Wildcards are not expanded on the remote machine. 

mail(C), micnet(FP), netutil(ADM), remote(C) 

Standards confonnance 

rep is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 413 



rcvalert(CJ 

rcvalert 
mail-receipt notification 

Syntax 

/usr/bin/rcvalert [ size l 

Description 

Examples 

Files 

See also 

414 

The rcvalert command displays a line of mail header information on your 
screen when a letter is received. MMDF invokes rcvalert for you rather than 
you running it yourself. This command is run when you insert a pipe entry to 
rcvalert in your .rnaildelivery file in your home directory. The rcvalert com­
mand checks to see if you are logged on and if your terminal may be written 
to. If so, rcvalert prints a scan listing of the message on your terminal. 

The scan line rings the terminal's bell and then prints the number of charac­
ters in the message and the contents of the "From:" and "Subject:" com­
ponents, if present. If the "Subject:" component is not present or is very short, 
some of the initial text from the body of the message is included. 

The size argument to rcvalert specifies the size of the message. 

The following entry in the .rnaildelivery file invokes rcvalert: 
pipe R rcvalert $(size) 

Specify the full pathname of rcvalert, if /usr/bin is not in your search path. 

/etc/utrnp 
$HOME/.rnai/delivery 

used to see who is logged in 
your delivery specification file 

rcvtrip(C), maildelivery(F) 

1 Febrnary 1993 



rcvalert(C) 

Standards confonnance 
This utility was written by David H. Crocker. 

MMDF is not part of any currently supported standard; it was developed at 
the University of Delaware and is used with permission. 

I February l 993 415 



rcvfi/e(C) 

rcvfile 
put message into named file 

Syntax 

/usr/bin/rcvfile directory [ -1/ogfile I I -m ] 

Description 

416 

This program is intended to be invoked from your $HOME/.mai/delivery file. 
This command examines the "Subject:" field of a mail message and stores the 
message in a file if the "Subject:" line contains the rcvfile keyword as the first 
word in the line. The rcvfile command can be invoked manually if desired, 
and a mail message piped into the command. 

To have mail filed by rcvfile, format the "Subject:" line as follows: 
Subject: rcvf i le output-filename 

The destination file name is created by concatenation of the directory value, a 
slash (/), and the filename given in the subject field after the rcvfile keyword. 
The filename from the subject field is not allowed to contain any • .. " direc­
tory components. If any are found, rcvfile quits. When a message is stored, 
the message headers are removed and only the text is stored in the specified 
file. 

The directory argument is required. The -1 option sets the logfile where a 
record of rcvfile activity is made. The file must already exist and be writable 
to the recipient. The -m option enables the creation of missing directories in 
the pathname of a file to be created. The created directories are given permis­
sion modes of 0755. 

The owner of the created file is notified by mail when a file is delivered, with 
information about who sent it and other relevant facts. It is possible that the 
owner may not be the recipient if the referenced file existed, was owned by 
another user, and was writable. If the file delivery fails for any reason, the 
message is delivered as normal mail. 

1 February 1993 



rcvfile(C) 

Examples 
A typical entry in your .maildelivery can be: 

subject rev file pipe A rcvfile 

or 
Addr user=file pipe A rcvfile 

Specify the full pathname of rcvfile if /usr/bin is not in your search path. 

Files 
$HOME/.maildelivery 

See also 
maildelivery(F) 

Standards conformance 

This utility was written by David H. Crocker. 

MMDF is not part of any currently supported standard; it was developed at 
the University of Delaware and is used with permission. 

1 February 1993 417 



rcvprint(CJ 

rcvprint 
print message automatically 

Syntax 
/usr/bin/rcvprint 

Description 

Examples 

Files 

See also 

This command is intended to be run from your $HOME/.maildelivery file. The 
purpose of rcvprint is to pipe the body of the message into a program that 
prints the message on a line printer. The rcvprint program tries a variety of 
different programs until it finds one that will execute. It then waits to see 
how the program coped and reports back to the local channel. 

A typical entry in your $HOME/.maildelivery file is: 
subject pr inter pipe A rcvpr int 

Specify the full pathname of rcvprint if the /usr/bin directory is not in your 
search path. 

$HOME/.maildelivery 

maildelivery(F) 

Standards conformance 

418 

This utility was written by David H. Crocker. 

MMDF is not part of any currently supported standard; it was developed at 
the University of Delaware and is used with permission. 

1 February 1993 



rcvtrip(C) 

rcvtrip 
notify mail sender that recipient is away 

Syntax 
/usr/bin/rcvtrip [ -d ] [ address I 

Description 
The rcvtrip command makes it possible for you to notify the sender of a mes­
sage that you are away on a trip and you won't be answering your mail for 
some time. MMDF runs rcvtrip on your behalf rather than you running it 
directly. 

To enable use of rcvtrip, put the following line in your .maildelivery file: 
pipe R rcvtrip $1senderJ 

Make sure that your .maildelivery file is not writable by anyone but you. You 
may also place a "custom" reply message in a file named tripnote. Finally, you 
should create an empty triplog file. 

When rcvtrip processes a message, it decides: 

• decide if this type of message should receive a reply 

• decide to whom the reply should be sent 

• decide whether this sender has already received a reply 

The rcvtrip command decides whether this is the type of message that should 
get a reply by looking at the contents of the "Resent-To:", "Resent-Cc:", "To:" 
and "Cc:" header fields. If the recipient has an .alter _egos file (described next), 
then one of the addresses in that file must appear in one of these header fields 
for a reply to be sent. If the recipient does not have an .alter _egos file, then the 
recipient's name or a first-order alias of the recipient's name (for example, 
dlong-->long) must appear in one of these header fields for a reply to be sent. 
This procedure ensures that rcvtrip will not reply to messages sent to mailing 
lists, unless the recipient's name (or some variant of the recipient's name) is 
explicitly mentioned in a header field. 

If rcvtrip decides it should send a reply to the message, it looks at several 
other address fields to determine to whom the reply should be sent. It uses, in 
order of precedence: 

1. addresses in "Resent-Reply-To:" 

2. addresses in "Resent-From:" and, if present, "Resent-Sender:" 

3. addresses in "Reply-To:" 

1 February 1993 419 



rcvtrip(C) 

Files 

420 

4. addresses in "From:• and either "Sender:", if present, or the address argu­
ment from the command line. 

The rcvtrip command notifies any originator of mail who has not previously 
been notified unless you pre-load their address into the triplog file (refer to the 
"Files• section). The reply begins with some standard text (supplied by 
rcvtrip) followed by whatever text the user has placed in the tripnote file, or 
the following message if the tripnote file is missing: 

Your mail has been received by the Mail System. 
The person you are trying to contact is not here right now. 
The Mail System does not know where to forward your message, 
so it will be stored here until the recipient returns to read it. 
This may take some time. 

The originators' names are recorded in triplog, along with the date and time 
the message came in, an indication of whether it was answered (" + • = yes), 
and the first few characters of the subject. This appears as: 

+ jpo@nott.ac.uk 

SHOME/tripnote 

$HOME/triplog 

SHOME/logfile 

SHOME/.alter _egos 

SHOME/.maildelivery 

Wed Oct 8 16:08 >> about your last message 

contains a reply message to be sent to those sending 
you mail. 

contains a list of who sent a message, what was its sub­
ject, when it arrived, and if a response was sent. It can 
also be initialized by hand to contain the addresses, 
one per line, which are not to receive replies. 

if it exists, becomes an output file for logging diagnos­
tic information. If the -d option is specified, then 
extensive output is generated for debugging purposes. 
It is not a good idea to leave -d enabled if this file is left 
lying around, as the output can be quite voluminous. 

an optional file composed of "user@domain" lines for 
all addresses to be considered 'you'. This is needed if 
you have multiple hosts forwarding their mail to_ you. 
If this file is present, then the standard comparisons 
against your usemame and first-level aliases of your 
username do not occur. 

is your mail delivery specification file. The previo':'s 
example shows the line that sho?ld be ad~ed ~o .mail­
delivery to enable use of rcvtnp. In this lme, the 
$(sender) argument is optional (but recomme~d~d). 
You may need to give the full pathname of rcvtnp 1f 1t 
is not in your search path. 

1 February 1993 



rcvtrip(C) 

See also 
maildelivery(F) 

Standards confonnance 
MMDF is not part of any currently supported standard; it was developed at 
the University of Delaware and is used with permission. 

l February 1993 421 



remote( CJ 

remote 
execute commands on a remote system 

Syntax 

remote [ - I [ -ffile I [ -m I [ -u user I machine command [arguments] 

Description 

422 

remote is a limited networking facility that permits execution of UNIX com­
mands across serial lines. Commands on any connected system may be exe­
cuted from the host system using remote. A command line consisting of com­
mand and any blank-separated arguments is executed on the remote machine. 
A machine's name is located in the file /etc/systemid. Note that wild cards are 
not expanded on the remote machine, so they should not be specified in argu­
ments. The optional -m switch causes mail to be sent to the user telling 
whether the command is successful. 

The available options follow: 

A dash signifies that standard input is used as the standard input for 
command on the remote machine. Standard input comes from the 
local host and not from the remote machine. 

-ffile Use the specified file as the standard input for command on the 
remote machine. The file exists on the local host and not on the 
remote machine. 

-m Mails the user to report completion of the command. By default, 
mail reports only errors. 

-u user Any mail goes to the named user on machine. The default machine 
is the machine on which an error was detected, or on which the 
remote command was completed. The mail will be redirected to the 
appropriate mailbox(es), if an alias for user exists in the system alias 
files on that mac11ine. Since system alias files are usually identical 
throughout the network, any specified machine will most likely be 
overridden by the aliasing mechanism. To prevent aliasing, us~r 
must be escaped with at least two " \ " characters (at least four 1f 
given as a shell command). 

Before remote can be used successfully, a network of systems must be set up 
and the proper daemons initialized using netutil(ADM). Also, entries fo~ the 
command to be executed using remote must be added to the /etc/defa11/t/m1cnet 
files on each remote machine. 

1 February 1993 



E:xamples 

remote(C) 

The following command executes an ls command on the directory /tmp of the 
machine machine1: 

remote machinel ls /tmp 

Limitations 

See also 

The mail command uses the equivalent of remote to send mail between 
machines. 

mail(C), micnet(FP), netutil(ADM), rcp(C) 

1 February 1993 423 



resend( CJ 

resend 
redistribute mail using the Resent- notation 

Syntax 

resend [ -rw I [ --subargs I addresses [ -t addresses ) [ -c addresses ] 

Description 

Files 

See also 

424 

The resend command is responsible for taking as input a standard mail mes­
sage, adding the various Resent- components to it, and then handing it over to 
submit( ADM). 

The usual method of operation is to pipe a message into resend and supply 
the addresses to which to resend the message on the command line. The 
default behavior can be changed with the following flags: 

-r This specifies that error returns for this message are not required. 

-w This flag enables you to follow the delivery attempt. submit and its chil­
dren will print out what they are doing. 

Any argument starting in this manner is passed directly to submit after 
losing the--. 

After the flags have been processed, the address lists for the message are built 
up. Normally all addresses are put onto one "Resent-To:" line, but they can be 
broken up onto several "Resent-To:" lines by prefixing a block of addresses 
with the -t flag. Alternatively the -c flag will start building up a list of 
"Resent-Cc:" addresses. resend looks after all the other headers, such as 
"Resent-Date", "Resent-From" etc. 

login directory/fullname 

submit( ADM) 

1Febn1ary1993 



rlpcmd(C) 

rlpcmd 
send requests to remote line printer 

Syntax 

rlpcmd -z I -Z I -

Description 

Manual pages distributed with SCO UNIX Version 4.0 are supplied in 
compress -H format: the man command uses uncompress to read .z pages. 
However, earlier versions of SCO UNIX do not support this format. You can 
use repackman for three different operations as defined by the mutually 
exclusive options: 

-z Convert manual pages on earlier versions of SCO UNIX, in the path 
defined by MANPATH, to packed (see pack(C)) format. 

-Z Convert manual pages on earlier versions of SCO UNIX, in the path 
defined by MANPATH to compress -H (see compress(C) ) format. 

Convert manual pages on earlier versions of SCO UNIX, in the path 
defined by MANPATH to unpacked, u.1compressed format. 

Limitations 

See also 

If there are two or more versions of a file; for example, a compressed and a 
packed version, the older version is removed. 

Use of repackman may cause fully installed MAN packages to be reported by 
custom(ADM) or fixperm(ADM) as partially installed; this is because repack­
man causes filename extensions to be altered. 

pack(C), compress(C), uncompress(C) 

1February1993 425 



nn(C) 

rm 
remove files or directories 

Syntax 
nn [ -fir) file ... 

Description 

426 

The nn command removes the entries for one or more files from a directory. 
If an entry was the last link to the file, the file is destroyed. Removal of a file 
requires write permission in its directory, but neither read nor write permis­
sion on the file itself. If a file is a symbolic link, the link will be removed, but 
the file or directory to which it refers will not be deleted. 

nn will not delete directories unless the -r option is used. 

The following options are recognized: 

-f When invoked with the -f option nn does not prompt the user for confir­
mation for files on which the user does not have write permission. The 
files are simply removed. Any previous occurrences of the -i option on 
the command line are ignored. This option only applies if nn is invoked 
with its standard input attached to a terminal. 

If -f is not specified and the user does not have write permission on the 
target file, the user is prompted for confirmation. The file's name and 
permissions are printed and a line is read from the standard input. If that 
line begins with a u y u the file is deleted; otherwise it remains. 

-i The -i (interactive) option causes nn to ask whether to delete each file, 
and if the -r option is in effect, whether to examine each directory. 

-r The -r (recursive) option causes nn to recursively delete the entire con­
tents of the any directories specified, and the directories themselves. 
Symbolic links encountered with this option will not be traversed. Note 
that the nndir(C) command is a safer way of removing directories. 

The special option u -- u can be used to delimit options. For example, a file 
named u -fu could not be removed by nn because the hyphen is interpreted as 
an option; the command nn -f would do nothing, since no file is specified. 
Using nn - -f removes the file successfully. 

1 February 1993 



rm(C) 

Limitations 

See also 

It is forbidden to remove the file .. to avoid the consequences of inadvertently 
doing something like: 

nn-r.* 

It is also forbidden to remove the root directory of a given file system. 

If the "sticky" {t) bit is set on a directory, only the owner of a file can remove 
that file from the directory. See chmod{C) for more information about 
"sticky" bits. 

chmod{C), nndir{C) 

Standards conformance 

nn is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 427 



rmdir(C! 

rmdir 
remove directories 

Syntax 

nndir [ -p I [ -s ) dirname ... 

Description 

The nndir command removes the entries for one or more sub-directories from 
a directory. A directory must be empty before it can be removed. (Note that 
the nn -r dir command is a more dangerous alternative to nndir.) If the 
parent directory has the "sticky" bit set, removal occurs only if one of the fol­
lowing is true: 

• the parent directory is owned by the user 

• the dirname directory is owned by the user 

• the dirname directory is writable to the user 

• the user is the super user 

The -p option allows users to remove the directory dirname and its parent 
directories which become empty. A message is printed on standard output as 
to whether the whole path is removed or part of the path remains for some 
reason. 

The -s option is used to suppress the message printed on standard error when 
-p is in effect. 

nndir will refuse to remove the root directory of a mounted filesystem. 

Exit values 

See also 

nndir returns an exit code of 0 if all the specified directories are removed suc­
cessfully. Otherwise, it returns a non-zero exit code. 

nn(C) 

Standards conformance 

nndir is conformant with AT&T SVID Issue 2. 

428 1 February 1993 



rsh(C) 

rsh 
invoke a restricted shell (command interpreter) 

Syntax 
rsh [flags I [ name [ arg1 ... I I 

Description 

See also 

rsh is a restricted version of the standard command interpreter sh(C). It is 
used to set up login names and execution environments whose capabilities 
are more controlled than those of the standard shell. The actions of rsh are 
identical to those of sh, except that changing directory with cd, setting the 
value of SPATH, using command names containing slashes, and redirecting 
output using > and >> are all disallowed. 

When invoked with the name -rsh, rsh reads the user's .profile (from 
$HOME/.profile). It acts as the standard sh while doing this, except that an 
interrupt causes an immediate exit, instead of causing a return to command 
level. The restrictions above are enforced after .profile is interpreted. 

When a command to be executed is found to be a shell procedure, rsh invokes 
sh to execute it. Thus, it is possible to provide shell procedures to the end 
user that have access to the full power of the standard shell, while restricting 
the user to a limited menu of commands; this scheme assumes that the end 
user does not have write and execute permissions in the same directory. 

The net effect of these rules is that the writer of the .profile has complete con­
trol over user actions, by performing guaranteed setup actions, then leaving 
the user in an appropriate directory (probably not the login directory). 

rsh is actually just a link to sh and any flags arguments are the same as for 
sh(C). 

The system administrator often sets up a directory of commands that can be 
safely invoked by rsh. 

sh(C), profile(M) 

1 February 1993 429 



scosh(C) 

scosh 
menu-driven SCO Shell with calendar, mail, and calculator 

Syntax 

scosh [ -v ) [ calendar I email I calculator ) 

Description 

430 

SCO Shell is a menu-driven shell, including calendar, calculator and electronic 
mail applications. The calendar is a distributed application suitable for work­
group coordination across a network. 

For information on how to use the SCO Shell, please refer to the SCO Shell 
User's Guide. 

Startup 
The command scosh executes the script /usr/bin/scosh, which initializes the 
curses{S) and tenninfo(M) based screen handling and invokes the desktop. 
scosh reads the environment variable OALIB to locate the path to its support 
files and binaries; these are located in /usr/lib/scosh/* by default. 

If the flag -v is specified, scosh prints its current version number and exits. 

Once scosh has initialized the terminal, it executes the scosh desktop applica­
tion (by default), or another component of the Shell (if specified). For example 
scosh email invokes the email application. 

If the user is logged in as root, scosh starts up in administration mode. In 
administration mode, the Utility menu includes entries for printer configura­
tion and calendar server maintenance. In addition, changes to system defaults 
(window positions, menus, application list, and so on) are saved in the global 
default files. If scosh is started by a user and cannot find the local configura­
tion files in the user's home directory, it loads the system default configura­
tion files instead. 

scosh system files are stored in /usr/lib/scosh by default. Runnable scosh appli­
cations are located in this directory, along with the default preference (appli­
cation configuration) files (typically .caln_pref, .mail_pref, and .sdsk_pref!. 

The subdirectory /usr/lib/scosh/pipes is used by the Shell system for named 
pipes between components, and should not be removed. 

The subdirectory /usr/lib/scosh/opadm contains configuration utilities;_ fc~r ex~m­
ple, /11sr/lib/scosh/opadm/ca/11til is the front end to the calendar admm1strat10n 
utilities. These programs are invoked by the desktop application when the 
utility menu is selected in administration mode. 

1 Febrnary 1993 



scosh(C) 

The subdirectory /usr/lib/scosh/english/us (or similar) contains localization files 
that match the Shell to the language of the country for which it is installed. 
These files follow the conventions for configuration file nomenclature 
(below). 

Configu.rati.on 
The standard procedures for configuring or customizing the Shell are 
described in the User's Guide. SCO Shell retains its configuration between ses­
sions by storing them in user configuration files, in the user's home directory. 

As noted above, to carry out global configuration of the default Shell state, it 
is necessary to log in as root. If user configuration files exist, these override 
the default configuration; therefore, it is necessary to remove these files or 
copy the default file to the users' home directories if you want to take advan­
tage of the new default configuration. 

In administration mode, the Utility menu contains additional choices for 
printer and calendar administration. Refer to the System Administrator's Guide 
for further details of administration procedures. 

Environment variables 
The following environment variables are specific to Shell: 

CALDATA Location of calendar data. 

SCOSHLIB Location of SCO Shell system files. Defaults to /usr/lib/scosh. 

OALIB Search path for configuration files. 

SCOLIB Location of terminal and printer definition files. 

In addition, the following related operating system environment variables 
may be referenced by the Shell during normal use: 

HOME User's home directory. 

SHELL User's login shell. 

TERM User's current terminal type. 

TERMCAP The terminal database setting in use. 

1 February 1993 431 



scosh(C) 

Files 

Configuration files store the definitions of forms, menus and other structures 
used by the applications and utilities. All configuration files have nine charac­
ter names of the form xxxx_yyyy, where xxxx is an abreviation for the associ­
ated binary (for example, caln is short for calendar) and yyyy is the type of 
configuration file (such as strs for prompt string files). The abreviations used 
are as follows: 

Binaries: 

al is Alias utility. 

cadm Calendar administration (holidays). 

calc Calculator. 

caln Calendar. 

desk Desktop. (Includes basic desktop display, file operations, and so on.) 

help Help system. (Each application that has help available has a _help file. 
Help text common to all applications is compiled into the help utility.) 

mail Mail application. 

mgen Menu generator (used in customizing the application and utility menu 
lists). 

mkr Mail creator. 

pcnf Printer configuration utility. (This application is only accessed from the 
system administrator's utility list.) 

File types: 

errs compiled error strings 

form form definitions 

help help text 

menu compiled menu definitions 

strs compiled prompt strings 

432 1 February 1993 



scosh(C) 

In addition, the following suffixed indicate source files for the various config­
uration files: 

errs re 

hip hook 

hlpidx 

hlptxt 

menu.m 

strsrc 

Other files: 

file types 

oacpyrtsrc 

tstrs 

error source 

help hook file 

help index file 

help text file 

menu source 

prompt string source 

This file contains the clipboard types and their descriptions. 
The three letter acronym at the start of the line should not be 
changed. 

This file contains the copyright message used by the Shell. It is 
compiled into oacpyrt by the cnvmsg program. 

Strings used by the terminal configuration utility. This text file 
can be edited directly, as long as the numbering of the messages 
is preserved. 

printer definition files 
Printer definition files are stores in /usr/l.ib/sco/printers, with the 
exception of .defprint (default printer). Currently only one print­
er definition file is provided (Ip). 

application and utility lists 

shell_strs 

These files include .appllist2, .appladd, .appladm, .utillist2, .utiladd, 
and .utiladm. All are in /11sr/l.ib/scosh/language/country. They can 
be edited directly or by using the menu generator. If you edit 
these files manually, ensure that the name field is no more than 
12 characters long, and the description is no more than 20 char­
acters. Longer values will be truncated when mgen is run. 

shell_strs contains all the strings used by the shell scripts in 
/usr/l.ib/scosh/utils and /usr/l.ib/scosh/opadm. 

/usr /lib/sco/ translat 

colr_toks 

1February1993 

Various user directory to text translator files reside in this direc­
tory. Used when pasting a user directory entry from the clip­
board into a mail message. 

Used by the color configuration utility. Entries in this file follow 
the form token (Tab} description. Exists in 
/usr/lib/scosh/lang/co1111try/. 

433 



scosh(C) 

See also 
sh(C) 

User's Guide 

Standards confonnance 

434 

scosh is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



sddate(C) 

sddate 
print and set backup dates 

Syntax 
sddate [ name lev date I 

Description 
If no argument is given to sddate the contents of the backup date file /etc/ddate 
are printed. The backup date file is maintained by backup(ADM) and contains 
the date of the most recent backup for each backup level for each filesystem. 

If arguments are given, an entry is replaced or made in /etc/ddate. name is the 
last component of the device pathname, lev is the backup level number (from 
0 to 9), and date is a time in the form taken by date(C): 

mmddhhmm[yy) 

where the first mm is a two-digit month in the range 01-12, dd is a two-digit 
day of the month from 01-31, hh is a two-digit military hour from 00-23, and 
the final mm is a two-digit minute from 00-59. An optional two-digit year, yy, 
is presumed to be an offset from the year 1900, that is, 19yy. 

Some sites may wish to back up filesystems by copying them in their entirety 
to backup media. sddate could be used to make a "level O" entry in /etc/ddate, 
which would then allow incremental backups. 

For example: 

sddate rhdO 5 10081520 

makes an /etc/ddate entry showing a level 5 backup of /dev/rlidO on October 8, 
at3:20pm. 

Diagnostics 

bad conversion If the date set is syntactically incorrect. 

Files 

/etc/ddate 

1 February 1993 435 



sddate(CJ 

See also 
backup(ADM), date(C), dump(CP) 

Standards conformance 

436 

sddate is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1February1993 



sdifJ<C) 

sdiff 
compare files side-by-side 

Syntax 

sdiff [ options ... ] file1 file2 

Descripti.on 
The sdiff command uses the output of diff(C) to produce a side-by-side list­
ing of two files indicating those lines that are different. Each line of the two 
files is printed with a blank gutter between them if the lines are identical, a 
"<" in the gutter if the line only exists in file1, a ">" in the gutter if the line 
only exists infile2, and a" I "for lines that are different. 

For example: 
x y 
a a 
b 
c 
d d 

c 

The following options exist: 

-w n Uses the next argument, n, as the width of the output line. The default 
line length is 130 characters. 

-I Only prints the left side of any lines that are identical. 

-s Does not print identical lines. 

-o output 

1 February 1993 

Uses the next argument, output, as the name of a third file that is created 
as a user-controlled merging of file1 and file2. Identical lines of file1 
and file2 are copied to output. Sets of differences, as produced by 
diff(C), are printed where a set of differences share a common gutter 
character. After printing each set of differences, sdiff prompts the user 
with a % and waits for one of the following user-entered commands: 

r 

s 

v 

Appends the left column to the output file. 

Appends the right column to the output file. 

Turns on silent mode; does not print identical lines. 

Turns off silent mode. 

437 



sdift<CJ 

See also 

438 

e l Calls the editor with the left column. 

e r Calls the editor with the right column. 

e b Calls the editor with the concatenation of left and right. 

e Calls the editor with a zero length file. 

q Exits from the program. 

On exit from the editor, the resulting file is concatenated on the end of the 
output file. 

diff(C), ed(C) 

1 February 1993 



sed(C) 

sed 
invoke the stream editor 

Syntax 

sed [ -n] [ -e script] [ -f sfile] [files ] 

Description 
The sed command copies the named files (standard input default) to the stan­
dard output, edited according to a script of commands. The -e option causes 
the script to be read literally from the next argument, which is usually quoted 
to protect it from the shell. The -f option causes the script to be taken from 
file sfile; these options accumulate. If there is just one -e option and no -f 
options, the flag -e may be omitted. The -n option suppresses the default out­
put. A script consists of editing commands, one per line, of the following 
form: 

[address [,address] ]function [arguments] 

In normal operation, sed cyclically copies a line of input into a pattern space 
(unless there is something left after a D command), applies in sequence all 
commands whose addresses select that pattern space, and at the end of the 
script copies the pattern space to the standard output (except under -n) and 
deletes the pattern space. 

A semicolon (;) can be used as a command delimiter. 

Some of the commands use a hold space to save all or part of the pattern 
space for subsequent retrieval. 

An address is either a decimal number that counts input lines cumulatively 
across files, a " $" that addresses the last line of input, or a context address, 
that is, a /regular expression/ in the style of ed(C) modified as follows: 

• In a context address, the construction \?regular expression?, where"?" is 
any character, is identical to /regular expression/. Note that in the context 
address \xabc\xdefx, the second x stands for itself, so that the standard 
expression is abcxdef. 

• The escape sequence \n matches a newline embedded in the pattern 
space. 

• A dot(.) matches any character except the terminal newline of the pattern 
space. 

• A command line with no addresses selects every pattern space. 

• A command line with one address selects each pattern space that matches 
the address. 

1 February 1993 439 



sed(C) 

440 

• A command line with two addresses separated by a comma selects the 
inclusive range from the first pattern space that matches the first address 
through the next pattern space that matches the second. (If the second 
address is a number less than or equal to the line number first selected, 
only one line is selected.) Thereafter, the process is repeated, looking again 
for the first address. 

Editing commands can be applied only to nonselected pattern spaces by use 
of the negation function"!" (below). 

In the following list of functions, the maximum number of permissible 
addresses for each function is indicated in parentheses. 

The text argument consists of one or more lines, all but the last of which end 
with backslashes to hide the newlines. Backslashes in text are treated like 
backslashes in the replacement string of an s command, and may be used to 
protect initial blanks and tabs against the stripping that is done on every 
script line. The rfile or wfile argument must terminate the command line and 
must be preceded by one blank. Each wfile is created before processing 
begins. There can be at most 10 distinct wfile arguments. 

(1) a\ text 

(2) b label 

(2) c\ text 

(2) d 

(2)0 

(2) g 

(2) G 

(2) h 

(2)H 

(1) i\ text 

(2) I 

Appends text, placing it on the output before reading the next 
input line. 

Branches to the : command bearing the label. If label is empty, 
branches to the end of the script. 

Changes text by deleting the pattern space and then appending 
text. With 0 or 1 address or at the end of a 2-address range, 
places text on the output and starts the next cycle. 

Deletes the pattern space and starts the next cycle. 

Deletes the initial segment of the pattern space through the 
first newline and starts the next cycle. 

Replaces the contents of the pattern space with the contents of 
the hold space. 

Appends the contents of the hold space to the pattern space. 

Replaces the contents of the hold space with the contents of the 
pattern space. 

Appends the contents of the pattern space to the hold space. 

Insert. Places text on the standard output. 

Lists the pattern space on the standard output wi.th nonprint­
ing characters spelled in two-digit ASCII and long Imes folded. 

1 February 1993 



(2) n 

(2) N 

(2) p 

(2) p 

(1) q 

(2) r rfile 

sed(C) 

Copies the pattern space to the standard output. Replaces the 
pattern space with the next line of input. 

Appends the next line of input to the pattern space with an 
embedded newline. (The current line number changes.) 

Prints (copies) the pattern space on the standard output. 

Prints (copies) the initial segment of the pattern space through 
the first newline to the standard output. 

Quits sed by branching to the end of the script. No new cycle 
is started. 

Reads the contents of rfile and places them on the output 
before reading the next input line. 

(2) s /regular expression/replacement/flags 
Substitutes the replacement string for instances of the regular 
expression in the pattern space. Any character may be used 
instead of • I •. For a more detailed description, see ed(C). 
Flags is zero or more of: 

n n=l-512. Substitute for just the nth occurrence of the 
regular expression. 

g Globally substitutes for all non-overlapping instances 
of the regular expression rather than just the first one. 

p Prints the pattern space if a replacement was made. 

w wfile Writes the pattern space to wfile if a repla_cement was 
made. 

(2) t label Branches to the colon(:) command bearing label if any substi­
tutions have been made since the most recent reading of an 
input line or execution of a t command. If label is empty, t 
branches to the end of the script. 

(2) w wfile Writes the pattern space to wfile. 

(2) x Exchanges the contents of the pattern and hold spaces. 

(2) y lstring11string21 
Replaces all occurrences of characters in string1 with the corre­
sponding characters in string2. The lengths of string1 and 
string2 must be equal. 

(2) !function Applies the function (or group, if function is •I•) only to lines 
NOT selected by the address( es). 

I February 1993 441 



sed(C) 

Examples 

442 

(0): label This command does nothing; it bears a label for b and t com­
mands to branch to. 

(1) = 

(2) ( 

(0) 

Places the current line number on the standard output as a line. 

Executes the following commands through a matching " ) " 
only when the pattern space is selected. 

An empty command is ignored. 

The following examples assume the use of sh or ksh. 

The most common use of sed is to edit a file from within a shell script. In this 
example, every occurrence of the string "sysman" in the file infile is replaced 
by "System Manager". A temporary file TMP is used to hold the intermediate 
result of the edit: 

TMP=/usr/tmp/tmpfile_SS 
sed -e 's/sysman/System Manager/g' < infile > STMP 
mv $TMP inf ile 

sed can be used to strip all lines from a file which do not contain a certain 
string. In this example, all lines in the file infile which start with a hash "#" are 
echoed to the screen: 

sed -e 'r#/!d' < infile 
If several editing commands must be carried out on a file, but the parameters 
for the edit are to be supplied by the user, then a document can be used to 
build a temporary edit script for sed to use. The following example removes 
all occurrences of the strings given as arguments to the script from the file 
infile. The name of the temporary script is held by the variable SCRIPT: 

SCRIPT=/usr/tmp/script_$$ 
for name in $* 
do 

done 

cat >> $SCRIPT<<! 
s/S{name}//g 

TMPFILE=/usr/tmp/tmpf ile_$$ 
sed -f $SCRIPT < infile > $TMPFILE 
mv $TMPFILE infile 
rm $SCRIPT 

Another use of sed is to process the output from other commands. Here the 
ps command is filtered using sed to report the status of all processes other 
than those owned by the super user: 

ps -ef I sed -e 'r[(SpaceXTab}]*root/d' 

1 Febniary 1993 



sed(C) 

See also 

awk(C), ed(C), grep(C) 

User's Guide 

Standards conformance 

sed is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 443 



setcolor(C) 

setcolor, setcolour 
set screen color and other screen attributes 

Syntax 

setcolor - [ bcgknopr] argument [ argument] 

Description 

444 

The setcolor command allows the user to set the screen color on a color 
screen. Both foreground and background colors can be set independently in a 
range of 16 colors. setcolor can also set the reverse video and graphics char­
acter colors. setcolor with no arguments produces a usage message that dis­
plays all available colors, then resets the screen to its previous state. 

For example, the following strings are possible colors: 

blue 
lt_blue 
cyan 
It_ cyan 

magenta 
lt_magenta 
white 
hi_ white 

brown 
yellow 
green 
lt_green 

black 
gray 
red 
lt_red 

The following flags are available. In the arguments below, color is taken from 
the above list. 

-b color 
Set the background to the specified color. 

-c first last 
Set the first and last scan lines of the cursor. (For more information see 
screen(HW}.) 

-gf_color [b_color]. 
Set the foreground graphics characters to the first color /_color Set graphics 
characters' background to second color b_color if specified. 

-k 
Switch on keyclick option. 

-n lf_color (b_color] I 
Reset the screen to default settings, and switch off -k option. If no argu­
ments are given the screen is set to white characters on a black back­
ground; otherwise the specified colors are used. The foreground is set to 
the first color /_color. The background is set to the second color if b_color 
is specified. 

-o Set the color of the screen border (overscan region). This only works on 
CGA adaptors. 

1 February 1993 



setcolor(C) 

·p pitch duration 
Set the pitch and duration of the bell. Pitch is the period in microseconds, 
and duration is measured in fifths of a second. When using this option, a 
(Ctrl)g (bell) must be echoed to the screen for the command to work. For 
example: 
setcolor -p 2500 2 
echo"G 

-rf_color [b_color] 
Set the foreground reverse video characters to the first color /_color. Set 
reverse video characters' background to the second color b_color if 
specified. 

Limitations 

See also 

The ability of setcolor to set any of these described functions is ultimately 
dependent on the ability of devices to support them. setcolor emits an escape 
sequence that may or may not have an effect on monochrome devices. 

Occasionally changing the screen color can help prolong the life of your 
monitor. 

screen(HW) 

Standards confonnance 

setcolor and setcolour are not part of any currently supported standard; they 
are extensions of AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 445 



setkey(C) 

set key 
assign the function keys 

Syntax 

setkey keynum string 

Description 

The setkey command assigns the given ANSI string to be the output of the 
computer function key given by keyn111n. For example, the command: 

setkey 1 date 
assigns the string "date" as the output of function key 1. The string can con­
tain control characters, such as a newline character, and should be quoted to 
protect it from processing by the shell. For example, the command: 

setkey 2 "pwd; lc\n" 
assigns the command sequence "pwd ; le" to function key 2. Notice how the 
newline character is embedded in the quoted string. This causes the com­
mands to be carried out when function key 2 is pressed. Otherwise, the (Enter) 
key would have to be pressed after pressing the function key, as in the previ­
ous example. 

setkey translates "'" into "" ", which, when passed to the screen driver, is 
interpreted as a right angle bracket (>),or greater than key. 

Limitations 

446 

setkey works only on the console keyboard and on terminals running in scan­
code mode. 

The function keys are defined in the string mapping table. This is an array of 
512 bytes (typedef strmap_t) where null terminated strings can be put to rede­
fine the function keys. The first null terminated string is assigned to the first 
string key, the second to the second string key, and so on. There is one string 
mapping table per multi-screen. 

Although the size of the setkey string mapping table is 512 bytes, there is a 
limit of 30 characters that can be assigned to any individual function key. 

Assigning more than 512 characters to the string mapping table causes the 
function key buffer to overflow. When this happens, the sequences sent by the 
arrow keys are overwritten, effectively disabling them. Once the function key 
buffer overflows, the only way to enable the arrow keys is to reboot the 
system. 

1 February 1993 



setkey(C) 

The table below lists the keynum values for the function keys: 

Function key keynum Function key keynum 
(Fl) 1 (CtrlXFlO) 34 
(F2) 2 (CtrIXFll) 35 
(F3) 3 (CtrlXF12) 36 
(F4) 4 (CtrIXShiftXFl) 37 
(F5) 5 (CtrlXShiftXF2) 38 
(F6) 6 (CtrIXShiftXF3) 39 
(F7) 7 (CtrIXShiftXF4) 40 
(FB) 8 (CtrlXShiftXF5) 41 
(F9) 9 (CtrlXShiftXF6) 42 
(FlO) 10 ( CtrlX Shift X F7) 43 
(Fll) 11 (CtrlXShiftXFB) 44 
(F12) 12 (CtrlXShiftXF9) 45 
(ShiftXFl) 13 ( CtrlXShiftX FlO) 46 
(ShiftXF2) 14 (CtrlXShiftXFll) 47 
(ShiftXF3) 15 ( CtrlX ShiftX F12) 48 
(ShiftXF4) 16 
(ShiftXF5) 17 Numeric key pad keynum 
(ShiftXF6) 18 
(ShiftXF7) 19 7 49 
(ShiftXFB) 20 8 50 
(ShiftXF9) 21 9 51 
(ShiftXFlO) 22 52 
(ShiftXFll) 23 4 53 
(ShiftXF12) 24 5 54 
(CtrlXFl) 25 6 55 
(CtrlXF2) 26 + 56 
(CtrlXF3) 27 1 57 
(CtrlXF4) 28 2 58 
(Ctr1XF5) 29 3 59 
(CtrlXF6) 30 0 60 
(CtrlXF7) 31 
(CtrlXFB) 32 
(CtrlXF9) 33 

For a table of the escape sequences, refer to keyboard(HW). 

1 February 1993 447 



setkey(CJ 

Files 

/bin/setkey 

See also 

keyboard(HW), scancode(HW) 

Standards confonnance 

448 

setkey is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



sg 
set groups 

Syntax 
sg [ -e ] [ -t ] [ -v ] [ -g group I [ -a grouplist ] [ -r grouplist ] [ -s grouplist I 
[ -c command I 

sg(C) 

Description 

The sg command allows users to run shells and commands with a different 
group JD and a modified supplemental group list. 

You are limited to working with the groups of which you are a member. 

You are a member of a group if any one of the following conditions is true: 

• You are the super user. (The super user is considered a member of all 
groups.) 

• The group is your login group, listed in /etc/passwd. 

• You are listed as a member of the group in /etc/group. 
• The group is the current real (RGID} or effective group ID (EGID}. 

• The group is in the current effective supplemental group access list. 
sg takes the following options: 

-a group list 
Add groups to the supplemental group list. See below for the syntax of 
grouplist. 

·e Display the supplemental group access list of the current process. This is 
the default. 

-ggroup 
Set the real and effective group JD to group for subsequent commands to 
be executed by sg. group can be a group name or a group ID, but must be 
a group of which the user is a member. 

-t Display the user's login group plus any groups the user is a member of in 
/etc/group. The super user is considered to be a member of all groups 
listed in the group file. 

-v Display the new supplemental group access list before each command or 
shell is run. With -a or -s, -v warns if a group to be added is already in the 
supplemental group access list or if a group cannot be added because the 
supplemental group access list is full. With the -r option, it warns if a 
group to be removed is not in the supplemental group access list. 

1February1993 449 



sg(CJ 

-r grouplist 
Remove groups from the supplemental group list. See below for the syn­
tax of groupl_ist. ~You do not n~d to be a member of the group being 
removed. Neither 1s there a reqmrement that the group being removed is 
actually in the supplemental group list.) 

-s grouplist 
Set the supplemental group list to grouplist. See below for the syntax of 
group list. 

-ccommand 
Pass command to the user's login shell for execution with the specifed 
supplemental group and/or group ID modifications. The shell must sup­
port the -c command syntax similar to sh(C}. Giving the empty string "'' 
as the argument to -c causes the user's shell to be run. Exiting that shell 
will resume execution of sg. 

A grouplist is a comma- or whitespace- (tab or space) separated list of group 
names and group IDs. The user must be a member of any groups specified in 
grouplist. 

If group or grouplist are an empty string "", or just contain separators, the -s 
option sets the supplemental group access list to empty, and -a, -r, and-shave 
no effect. 

sg reads its options from left to right and performs them as they are read. The 
-g, -a, -r and -s options are cumulative, but they only take effect when a com­
mand is executed by the -c option. 

If at least one of the -g, -a, -r or -s options has been specified since the previ­
ous -c option was performed, and the end of the argument list is reached, the 
user's shell is invoked with the specified group ID and supplemental group 
access list. 

When sg terminates, the user's original shell and supplemental group access 
list will be in effect. 

Exit values 

Examples 

450 

If sg detects an error, it displays an appropriate error message and exits with a 
status greater than zero. If no errors are encountered, sg exits with a status of 
zero. 

Assuming the user is listed as a member of groups work and eng (with group 
IDs of 100 and 200), to execute a shell with both groups added to the current 
supplemental group access list: 

sg -a work,eng -c "" 

1 February 1993 



This can also be achieved by: 
sg -a "100 200" 

sg(C) 

To execute yourprog with a group ID of 100 and an empty supplemental 
group access list: 

sg -g work -s "'' -c yourprog 

Limitations 

Each process has a supplemental group access list (maintained by the kernel), 
which is used in determining file access permissions in addition to the effec­
tive group ID. The maximum number of group IDs which can be held in the 
supplemental group access list is defined by the tunable kernel parameter 
NGROUPS. 

sg can potentially output very long lines on systems with a large value of 
NGROUPS configured. sg executes as setuid zero, resetting the effective user 
ID to the real user ID before executing any commands. 

Authorization 

Files 

See also 

The execsuid kernel authorization is required to run sg. 

/etc/group 
/etc/passwd 

group file 
password file 

login(M), newgrp(C), sh(C) 

Standards confonnance 

sg is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1February1993 451 



sh( CJ 

sh 
invoke the shell command interpreter 

Syntax 

sh [ -aceiknrstuvx I [ args ] 

Description 

452 

The shell is the standard command programming language that executes 
commands read from a terminal or a file. See nlnvocationn below for the 
meaning of arguments to the shell. 

Commands 
A simple-command is a sequence of nonblank words separated by blanks (a blank 
is a tab or a space). The first word specifies the name of the command to be 
executed. Except as specified below, the remaining words are passed as argu­
ments to the invoked command. The command name is passed as argument 0 
(see exec{S)). The value of a simple-command is its exit status if it terminates 
normally, or (octal) lOOO+status if it terminates abnormally. See signal(S) for a 
list of status values. 

A pipeline is a sequence of one or more commands separated by a vertical bar 
(I). (The caret n, is an obsolete synonym for the vertical bar and should not 
be used in a pipeline. Scripts that use n • n for pipelines are incompatible with 
the I<om shell.) The standard output of each command but the last is con­
nected by a pipe{S) to the standard input of the next command. Each com­
mand is run as a separate process; the shell waits for the last command to 
terminate. 

A list is a sequence of one or more pipelines separated by;, &, &&, or I I, and 
optionally terminated by ; or &. Of these four symbols, ; and & have equal 
precedence, which is lower than that of && and I I . The symbols && and I I 
also have equal precedence. A semicolon (;) causes sequential execution of 
the preceding pipeline; an ampersand(&) causes asynchronous execution of 
the preceding pipeline (that is, the shell does not wait for that pipeline h? fin­
ish). The symbol && (I I) causes the list following it to be executed only 1f the 
preceding pipeline returns a zero (nonzero) exit status. An arbitrary number 
of newlines may appear in a list, instead of semicolons, to delimit commands. 

1 Febniary 1993 



sh( CJ 

A command is either a simple-command or one of the following commands. 
Unless otherwise stated, the value returned by a command is that of the last 
simple-command executed in the command: 

for name [ in word ... I 
do 

list 
done 

Each time a for command is executed, name is set to the next word taken from 
the in word list. If in word is omitted, then the for command executes the do 
list once for each positional parameter that is set (see "Parameter substitu­
tion" below). Execution ends when there are no more words in the list. 

case word in 
[pattern [ I pattern ] ... ) list 

ii I 
esac 

A case command executes the list associated with the first pattern that 
matches word. The form of the patterns is the same as that used for filename 
generation (see "Filename generation" below). 

if list 
then 

list 
[ elif list then 

list] 

[else list] 
fi 

The list following if is executed and, if it returns a zero exit status, the list fol­
lowing the first then is executed. Otherwise, the list following elif is exe­
cuted and, if its value is zero, the list following the next then is executed. 
Failing that, the else list is executed. If no else list or then list is executed, 
then the if command returns a zero exit status. 

while list 
do 

list 
done 

A while command repeatedly executes the while list and, if the exit status of 
the last command in the list is zero, executes the do list; otherwise the loop 
terminates. If no commands in the do list are executed, then the while com­
mand returns a zero exit status; until may be used in place of while to negate 
the loop termination test. 

1 February 1993 453 



sh( CJ 

454 

until list 
do 

list 
done 

until is similar to while, only until continues execution until the first list 
returns a zero exit status. In other words, until works until the test condition 
succeeds (it works the whole time the command is failing); while works until 
the test condition fails. until is useful when you are waiting for a particular 
event to occur. 

(list) 

Executes list in a subshell. 
{list;} 

list is simply executed. 
name ( ) (list;} 

Define a function which is referenced by name. The body of functions is the 
list of commands between ( and }. Execution of functions is described later 
(see uExecution".) 

The following words are recognized only as the first word of a command and 
when not quoted: 

if 
for 

then 
while 

Comments 

else 
until 

elif 
do 

fi 
done 

case 
( 

esac 
I 

A word beginning with# causes that word and all the following characters up 
to a newline to be ignored. 

Command substitu:tion 
The standard output from a command enclosed between grave accents ( ' ' ) 
may be used as part or all of a word; trailing newlines are removed. 

No interpretation is done on the command string before the string is read, 
except to remove backslashes (\) used to escape other characters. Backslashes 
may be used to escape grave accents (') or other backslashes and are removed 
before the command string is read. Escaping grave accents allows nested com­
mand substitution. If the command substitution lies within a pair of double 
quotes ( "' ... ' " ), backslashes used to escape a double quote (\") will be 
removed; otherwise, they will be left intact. 

1 February 1993 



sh(C) 

If a backslash is used to escape a newline character, both the backslash and 
the newline are removed (see the section on "Quoting"). In addition, 
backslashes used to escape dollar signs ( \$ ) are removed. Since no interpre­
tation is done on the command string before it is read, inserting a backslash to 
escape a dollar sign has no effect. Backslashes that precede characters other 
than\,',", newline, and$ are left intact. 

Parameter substitution 
The character $ is used to introduce substitutable parameters. There are two 
types of parameters, positional and keyword. If parameter is a digit, it is a 
positional parameter. Positional parameters may be assigned values by set. 
Keyword parameters, (also known as variables) may be assigned values by 
writing: 

name =value [ name =value ] ... 

Pattern-matching is not performed on value. There cannot be a function and a 
variable with the same name. 

${parameter) 
A parameter is a sequence of letters, digits, or underscores (a name), a digit, 
or any of the characters*, @, #, ?, -, $, and !. The value, if any, of the 
parameter is substituted. The braces are required only when parameter is 
followed by a letter, digit, or underscore that is not to be interpreted as 
part of its name. A name must begin with a Jetter or underscore. If param­
eter is a digit then it is a positional parameter. If parameter is* or@, then 
all the positional parameters, starting with $1, are substituted (separated 
by spaces). Parameter $0 is set from argument zero when the shell is 
invoked. 

${parameter:-word) 
If parameter is set and is not a null argument, substitute its value; other­
wise substitute word. 

${parameter:=word) 
If parameter is not set or is null, then set it to word; the value of the param­
eter is then substituted. Positional parameters may not be assigned to in 
this way. 

${parameter:?word) 
If parameter is set and is not a null argument, substitute its value; other­
wise, print word and exit from the shell. If word is omitted, the message 
"parameter null or not set" is printed. 

${parameter:+word) 

1 February 1993 

If parameter is set and is not a null argument, substitute word; otherwise 
substitute nothing. 

455 



sh(C) 

In the above, word is not evaluated unless it is to be used as the substituted 
string, so that in the following example, pwd is executed only if d is not set or 
is null: 

echo Sid:- (ga pwd ' } 

If the colon (:) is omitted from the above expressions, then the shell only 
checks whether parameter is set. 

The following parameters are automatically set by the shell: 

# the number of positional parameters in decimal 

flags supplied to the shell on invocation or by the set command 

? the decimal value returned by the last synchronously executed command 

$ the process number of this shell 

the process number of the last background command invoked 

The following parameters are used by the shell: 

CDPATH Defines search path for the cd command. See the section "cd" 
under "Special commands" below. 

HOME The default argument (home directory) for the cd command. 

PATH The search path for commands (see "Execution" below). 

MAIL If this variable is set to the name of a mail file, then the shell 
informs the user of the arrival of mail in the specified file. 

MAILCHECK This parameter specifies how often (in seconds) the shell will 
check for the arrival of mail in the files specified by the MAIL­
PATH or MAIL parameters. The default value is 600 seconds 
(10 minutes). If set to 0, the shell will check before each 
prompt. 

MAILPATH A colon (:) separated list of filenames. If this parameter is set, 
the shell informs the user of the arrival of mail in any of the 
specified files. Each filename can be followed by • % " and a 
message that will be printed when the modification time 
changes. The default message is "you have maW. 

PSt Primary prompt string, by default "$ ". 

PS2 Secondary prompt string, by default "> •. 

IFS Internal field separators, normally space, tab, and newline. 

456 1February1993 



sl1(C) 

SHELL When the shell is invoked, it scans the environment (see 
uEnvironmentu below) for this name. If it is found and there 
is an 'r' in the file name part of its value, the shell becomes a 
restricted shell. 

The shell gives default values to PATH, PSt, PS2, and IFS, while HOME and 
MAIL are not set at all by the shell (although HOME is set by login(M)). 

Blank interpretati.on 
After parameter and command substitution, the results of substitution are 
scanned for internal field separator characters (those found in IFS) and split 
into distinct arguments where such characters are found. Explicit null argu­
ments ( "'' or " ) are retained. Implicit null arguments (those resulting from 
parameters that have no values) are removed. 

Filename generati.on 
Following substitution, each command word is scanned for the characters*,?, 
and [ . If one of these characters appears, the word is regarded as a pattern. 
The word is replaced with alphabetically sorted filenames that match the pat­
tern. If no filename is found that matches the pattern, the word is left 
unchanged. The character " . " at the start of a filename or immediately fol­
lowing a u I u, as well as the character " I " itself, must be matched explicitly. 
These characters and their matching patterns are: 

* Matches any string, including the null string. 

? Matches any single character. 

[ ... ] Matches any one of the enclosed characters. A pair of characters 
separated by " - " matches any character lexically between the pair, 
inclusive. If the first character following the opening bracket ([) is an 
exclamation mark(!), then any character not enclosed is matched. 

Quoti.ng 
The following characters have a special meaning to the shell and cause termi­
nation of a word unless quoted: 

; & ( ) I , < > newline space tab 

A character may be quoted (that is, made to stand for itself) by preceding it 
with a " \ u. The pair \newline is ignored. All characters enclosed between a 
pair of single quotation marks (' '), except a single quotation mark, are 
quoted. Inside double quotation marks (" "), parameter and command substi­
tution occurs and"\" quotes the characters\,',", and$. "$*"is equivalent to 
"$1 $2 ... ", whereas"$@" is equivalent to "$1" "$2" ... 

I February 1993 457 



s/J(CJ 

458 

Prompting 
When used interactively, the shell prompts with the value of PSl before read­
ing a command. If at any time a newline is typed and further input is needed 
to complete a command, the secondary prompt (that is, the value of PS2) is 
issued. 

Spelling checker 
When using cd(C) the shell checks spelling. For example, if you change to a 
different directory using cd and misspell the directory name, the shell 
responds with an alternative spelling of an existing directory. Enter "y" and 
press (Return) (or just press (Return)) to change to the offered directory. If the 
offered spelling is incorrect, enter "n", then retype the command line. In this 
example the sh(C) response is boldfaced: 

S cd /usr/spol/uucp 
cd /usr/spool/uucp?y 
ok 

Input/Output 
Before a command is executed, its input and output may be redirected using a 
special notation interpreted by the shell. The following may appear anywhere 
in a simple-command or may precede or follow a command. They are not 
passed on to the invoked command; substitution occurs before word or digit 
is used: 

<word 

>word 

>>word 

<<[-)word 

<&digit 

<&-

Use file word as standard input (file descriptor 0). 

Use file word as standard output (file descriptor 1). If the file 
does not exist, it is created; otherwise, it is truncated to zero 
length. 

Use file word as standard output. If the file exists, output is 
appended to it (by first seeking the end-of-file); otherwise, the 
file is created. 

The shell input is read up to a line that is the same as word, or 
to an end-of-file. The resulting document becomes the stan­
dard input. If any character of word is quoted, no interpn;ta­
tion is placed upon the characters of the document; otherwise, 
parameter and command substitution occurs, (unescaped) 
\newline is ignored, and " \ " must be used to quote the char­
acters \, $, ', and the first character of word. If " - " is 
appended to <<, all leading tabs are stripped from word and 
from the document. 

The standard input is duplicated from file des~riptor digit 
(see dup(S}}. Similarly for the standard output usmg >. 

The standard input is closed. Similarly for the standard out­
put using>. 

1February1993 



sh(C) 

If one of the above is preceded by a digit, the file descriptor created is that 
specified by the digit (instead of the default 0 or 1). For example: 

... 2>&1 

creates file descriptor 2 that is a duplicate of file descriptor 1. 

If a command is followed by " & ", the default standard input for the com­
mand is the empty file /dev/null. Otherwise, the environment for the execution 
of a command contains the file descriptors of the invoking shell as modified 
by input/output specifications. 

Environment 
The environment (see environ(M)) is a list of name-value pairs that is passed to 
an executed program in the same way as a normal argument list. The shell 
interacts with the environment in several ways. On invocation, the shell scans 
the environment and creates a parameter for each name found, giving it the 
corresponding value. Executed commands inherit the same environment. If 
the user modifies the values of these parameters or creates new ones, none of 
these affect the environment unless the export command is used to bind the 
shell's parameter to the environment. The environment seen by any executed 
command is composed of any unmodified name-value pairs originally inher­
ited by the shell, minus any pairs removed by unset, plus any modifications 
or additions, all of which must be noted in export commands. 

The environment for any simple-command may be augmented by prefixing it 
with one or more assignments to parameters. Thus: 

TERM=wy60 cmd args 

and 

(export TERM; TERM=wy60; cmd args) 

are equivalent (as far as the above execution of cmd is concerned). 

If the -k flag is set, all keyword arguments are placed in the environment, 
even if they occur after the command name. 

Signals 
The INTERRUPT and QUIT signals for an invoked command are ignored if the 
command is followed by" & ";otherwise signals have the values inherited by 
the shell from its parent, with the exception of signal 11. See the trap com­
mand below. 

1February1993 459 



460 

Execution 
Each time a command is executed, the above substitutions are carried out. If 
the command name does not match a special command, but matches the name 
of a defined function, the function is executed in the shell process (note how 
this differs from the execution of shell procedures). The positional parameters 
$1, $2, ... are set to the arguments of the function. If the command name 
matches neither a special command nor the name of a defined function, a new 
process is created and an attempt is made to execute the command via 
exec(S). 

The shell parameter PATH defines the search path for the directory containing 
the command. Alternative directory names are separated by a colon (:). The 
default path is :/bin:/usr/bi11 (specifying the current directory, /bin, and /usr/bin, 
in that order). Note that the current directory is specified by a null pathname, 
which can appear immediately after the equal sign or between the colon de­
limiters anywhere else in the path list. If the command name contains a " / ", 
then the search path is not used. Otherwise, each directory in the path is 
searched for an executable file. If the file has execute permission but is not an 
a.out file, it is assumed to be a file containing shell commands. A subshell 
(that is, a separate process) is spawned to read it. A parenthesized command 
is also executed in a subshell. 

Shell procedures are often used by users running the csh. However, if the first 
character of the procedure is a"#" (comment character), csh assumes the pro­
cedure is a csh script, and invokes /bin/csh to execute it. Always start sh pro­
cedures with some other character if csh users are to run the procedure at any 
time. This invokes the standard shell /bin/sh. 

The location in the search path where a command was found is remembered 
by the shell (to help avoid unnecessary execs later). If the command was 
found in a relative directory, its location must be re-determined whenever the 
current directory changes. The shell forgets all remembered locations when­
ever the PATH variable is changed or the hash -r command is executed (see 
hash in next section). 

Special commands 
Input/output redirection is permitted for these commands: 

No effect; the command does nothing. A zero exit code is returned . 

. file 
Reads and executes commands from file and returns. The search path 
specified by PATH is used to find the directory containingfile. 

break [ n] 
Exits from the enclosing for, while, or until loop, if any. If n is specified, it 
breaks n levels. 

1February1993 



sh(C) 

continue [ n I 
Resumes the next iteration of the enclosing for, while, or until loop. If n is 
specified, it resumes at then-th enclosing loop. 

cd [ arg) 
Changes the current directory to arg. The shell parameter HOME is the 
default arg. The shell parameter CDPATH defines the search path for the 
directory containing arg. Alternative directory names are separated by a 
colon (:). The default path is <null> (specifying the current directory). 
Note that the current directory is specified by a null path name, which can 
appear immediately after the equal sign or between the colon delimiters 
anywhere else in the path list. If arg begins with a " I ", the search path is 
not used. Otherwise, each directory in the path is searched for arg. 

If the shell is reading its commands from a terminal, and the specified 
directory does not exist (or some component cannot be searched), spelling 
correction is applied to each component of directory, in a search for the 
"correct" name. The shell then asks whether or not to try and change 
directory to the corrected directory name; an answer of n means "no", and 
anything else is taken as "yes". 

echo [ arg] 
Writes arguments separated by blanks and terminated by a newline on the 
standard output. Arguments may be enclosed in quotes. Quotes are 
required so that the shell correctly interprets these special escape 
sequences: 

\b Backspace 
\c Prints line without newline 
\f Form feed 
\n Newline 
\r Carriage return 
\t Tab 
\ v Vertical tab 
\ \ Backslash 
\n The 8-bit character whose ASCII code is the 1, 2 or 3-digit 

octal number n. n must start with a zero 

eval [ arg ... I 
The arguments are read as input to the shell and the resulting command(s) 
executed. 

exec [ arg ... I 
The command specified by the arguments is executed in place of this shell 
without creating a new process. Input/output arguments may appear 
and, if no other arguments are given, cause the shell input/output to be 
modified. 

exit[n) 

1 February 1993 

Causes the shell to exit with the exit status specified by n. If n is omitted, 
the exit status is that of the last command executed. An end-of-file will 
also cause the shell to exit. 

461 



sh(C) 

462 

export [ name ... I 
The given names are marked for automatic export to the environment of 
subsequently executed commands. If no arguments are given, a list of all 
names that are exported in this shell is printed. 

getopts 
Used in shell scripts to support command syntax standards (see Intro(C)); 
it parses positional parameters and checks for legal options. See getopts(C) 
for usage and description. 

hash [ -r I [ name ... I 
For each name, the location in the search path of the command specified 
by name is determined and remembered by the shell. The -r option causes 
the shell to forget all remembered locations. If no arguments are given, in­
formation about remembered commands is presented. "Hits" is the num­
ber of times a command has been invoked by the shell process. "Cost" is a 
measure of the work required to locate a command in the search path. 
There are certain situations which require that the stored location of a 
command be recalculated. Commands for which this will be done are 
indicated by an asterisk(*) adjacent to the "hits" information. "Cost" will 
be incremented when the recalculation is done. 

newgrp [ arg ... I 
Equivalent to exec newgrp arg ... 

pwd 
Print the current working directory. See pwd(C) for usage and description. 

read I name ... I 
One line is read from the standard input and the first word is assigned to 
the first name, the second word to the second name, etc., with leftover 
words assigned to the last name. The return code is 0 unless an end-of-file 
is encountered. 

readonly [name .. . 1 
The given names are marked readonly and the values of these names may 
not be changed by subsequent assignment. If no arguments are given, a 
list of all readonly names is printed. 

retum[n I 
Causes a function to exit with the return value specified by n. If n is omit­
ted, the return status is that of the last command executed. 

set [ -aefhknuvx [ arg ... 11 
-a Mark variables which are modified or created for export. 
-e If the shell is noninteractive, exits immediately if a command exits 

with a nonzero exit status. 
-f Disables filename generation. 

1 February 1993 



sh(C) 

-h Locates and remembers function commands as functions are defined 
{function commands are normally located when the function is exe­
cuted). For example, if h is set, /bin/tty is added to the hash table 
when: 
showtty I l ( 

tty 

is declared. If h is unset, the function is not added to the hash table 
until showtty is called. 

-k Places all keyword arguments in the environment for a command, not 
just those that precede the command name. 

-n Reads commands but does not execute them. 
-u Treats unset variables as an error when substituting. 
-v Prints shell input lines as they are read. 
-x Prints commands and their arguments as they are executed. 

Although this flag is passed to subshells, it does not enable tracing in 
those subshells. 
Does not change any of the flags; useful in setting $1 to " - ". 

Using "+" rather than " - " causes these flags to be turned off. These 
flags can also be used upon invocation of the shell. The current set of 
flags may be found in $-. The remaining arguments are positional pa­
rameters and are assigned, in order, to $1, $2, . . . If no arguments are 
given, the values of all names are printed. 

shift [n] 
The positional parameters from $2 ... are renamed $1 ... If n is specified, 
shift the positional parameters by n places. shift is the only way to access 
positional parameters above $9. 

test 
Evaluates conditional expressions. See test(C) for usage and description. 

times 
Prints the accumulated user and system times for processes run from the 
shell. 

trap [ arg ] [ n ] ... 

1 February 1993 

arg is a command to be read and executed when the shell receives signal{s) 
n. (Note that arg is scanned once when the trap is set and once when the 
trap is taken.) Trap commands are executed in order of signal number. 
The highest signal number allowed is 16. Any attempt to set a trap on a 
signal that was ignored on entry to the current shell is ineffective. An 
attempt to trap on signal 11 {memory fault) produces an error. If arg is 
absent, all trap{s) n are reset to their original values. If arg is the null 
string, this signal is ignored by the shell and by the commands it invokes. 
If n is 0, the command arg is executed on exit from the shell. The trap 
command with no arguments prints a list of commands associated with 
each signal number. 

463 



sh( CJ 

464 

type I name ... I 
For each name, indicate how it would be interpreted if used as a command 
name. 

ulimit [ n] 
imposes a size limit of n blocks on files written by the shell and its child 
processes (files of any size may be read). Any user may decrease the file 
size limit, but only the super user (root) can increase the limit. With no 
argument, the current limit is printed. If no option is given and a number 
is specified, -f is assumed. 

unset [ name ... ] 
For each name, remove the corresponding variable or function. The vari­
ables PATH, PSt, PS2, MAILCHECK and IFS cannot be unset. 

umask [ooo] 
The user file-creation mask is set to the octal number ooo where o is an 
octal digit (see umask(C)). If ooo is omitted, the current value of the mask 
is printed. 

wait In] 
Waits for the specified process to terminate, and reports the termination 
status. If n is not given, all currently active child processes are waited for. 
The return code from this command is always 0. 

Invocation 
If the shell is invoked through exec(S) and the first character of argument 0 is 
" - ", commands are initially read from /etc/profile and then from 
$HOME/.profile, if such files exist. Thereafter, commands are read as described 
below, which is also the case when the shell is invoked as /bin/sh. The flags 
below are interpreted by the shell on invocation only; note that unless the -c 
or -s flag is specified, the first argument is assumed to be the name of a file 
containing commands, and the remaining arguments are passed as positional 
parameters to that command file: 

-c string 
If the -c flag is present, commands are read from string. 

-s If the -s flag is present or if no arguments remain, commands are read 
from the standard input. Any remaining arguments specify the positional 
parameters. Shell output is written to file descriptor 2. 

-t If the -t flag is present, a single command is read and executed, and the 
shell exits. This flag is intended for use by C programs only and is not use­
ful interactively. 

1 February 1993 



sh( CJ 

-i If the -i flag is present or if the shell input and output are attached to a ter­
minal, this shell is interactive. In this case, TERMINATE is ignored (so that 
kill O does not kill an interactive shell) and INTERRUPT is caught and 
ignored (so that wait is interruptible). In all cases, QUIT is ignored by the 
shell. 

-r If the -r flag is present, the shell is a restricted shell (see rsh(C)). 

The remaining flags and arguments are described under the set command 
above. 

Exit values 

Notes 

Errors detected by the shell, such as syntax errors, cause the shell to return a 
nonzero exit status. If the shell is being used noninteractively, execution of 
the shell file is abandoned. Otherwise, the shell returns the exit status of the 
last command executed. See the exit command above. 

The command readoniy (without arguments) produces the same type of out­
put as the command export. 

If << is used to provide standard input to an asynchronous process invoked 
by &, the shell gets mixed up about naming the input document; a garbage 
file /tmp/sh* is created and the shell complains about not being able to find 
that file by another name. 

If a command is executed, and a command with the same name is installed in 
a directory in the search path before the directory where the original com­
mand was found, the shell will continue to exec the original command. Use 
the hash command to correct this situation. 

If you move the current directory or one above it, pwd may not give the 
correct response. Use the cd command with a full pathname to correct this 
situation. 

When a sh user logs in, the system reads and executes commands in /etc/profile 
before executing commands in the user's $HOME/.profile. You can, therefore, 
modify the environment for all sh users on the system by editing /etc/profile. 

The shell doesn't treat the high (eighth) bit in the characters of a command 
line argument specially, nor does it strip the eighth bit from the characters of 
error messages. Previous versions of the shell used the eighth bit as a quoting 
mechanism. 

Existing programs that set the eighth bit of characters in order to quote them 
as part of the shell command line should be changed to use of the standard 
shell quoting mechanisms (see the section on "Quoting"). 

1 February 1993 465 



sh(C) 

Warning 

Files 

See also 

Words used to specify filenames in input/output redirection are not 
expanded for filename generation (see the section on "Filename generation#). 
For example, cat filel >a* will create a file named a*. 

Because commands in pipelines are run as separate processes, variables set in 
a pipeline have no effect on the parent shell. 

If you get the error message: 
fork failed - too many processes 

try using the wait(C) command to dean up your background processes. If this 
doesn't help, the system process table is probably full or you have too many 
active foreground processes (there is a limit to the number of processes that 
be can associated with your login, and the number the system can keep track 
of). 

Not all processes of a 3 or more stage pipeline are children of the shell, and 
thus cannot be waited for. 

For wait n, if n is not an active process id, all your shell's currently active 
background processes are waited for and the return code will be zero. 

/etc/profile 

$HOME/.profile 
/tmp/sh* 
/dev/null 

system default profile, read by login shells before 
$HOME/.profile 
read by login shell at login 
temporary file for<< 
source of empty file 

a.out(FP), cd(C), dup(S), env(C), environ(M), exec(S), fork(S), ksh(C), login(M), 
newgrp(C), pipe(S), profile(M), rsh(C), signal(S), test(C), umask(C), umask(S), 
wait(S) 

Standards confonnance 

sh is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

466 1February1993 



shl(C) 

shl 
shell layer manager 

Syntax 

shl 

Description 

The shl command allows a user to interact with more than one shell from a 
single terminal. The user controls these shells, known as layers, using the 
commands described below. 

The current layer is the layer that can receive input from the keyboard. Other 
layers attempting to read from the keyboard are blocked. Output from multi­
ple layers is multiplexed onto the terminal. To have the output of a layer 
blocked when it is not current, the stty(C) option loblk may be set within the 
layer. 

The stty character swtch (set to (Ctrl)z if NUL) is used to switch control to sh! 
from a layer. sh! has its own prompt, ">>>", to help distinguish it from a 
layer. 

A layer is a shell that has been bound to a virtual tty device (/dev/sxt??{0-7] or 
/dev/sxt/??[0-7]). The virtual device can be manipulated like a real tty device 
using stty(C) and ioctl(S). Each layer has its own process group id. 

A name is a sequence of characters delimited by a blank, tab or newline. Only 
the first eight characters are significant. The names (1) through (7) cannot be 
used when creating a layer. They are used by sh! when no name is supplied. 
They may be abbreviated to just the digit. 

Commands 
The following commands may be issued from the sh! prompt level. Any 
unique prefix is accepted. 

create [ name ] 

1 February 1993 

Create a layer called name and make it the current layer. If no argument is 
given, a layer wiil be created with a name of the form "(#)" where "#" is 
the last digit of the virtual device bound to the layer. The shell prompt 
variable PSl is set to the name of the layer followed by a space, or, if super 
user, the name followed by a sharp (#) and a space. A maximum of seven 
layers can be created. 

467 



shl(C) 

468 

block name [ name ... ] 
For each name, block the output of the corresponding layer when it is n 
the current layer. This is equivalent to setting the stty option loblk within 
the layer. 

delete name [ name . . . ] 
For each name, delete the corresponding layer. All processes in the pro­
cess group of the layer are sent the SIGHUP signal (see signal(S)}. 

help (or?) 
Print the syntax of the shl commands. 

layers [ -1 ] [ name ... I 
For each name, list the layer name and its process group. The -1 option 
produces a ps(C)-like listing. If no arguments are given, information is 
presented for all existing layers. 

resume [ name I 
Make the layer referenced by name the current layer. If no argument is 
given, the last existing current layer will be resumed. 

toggle 
Resume the layer that was current before the last current layer. 

unblock name [ name ... ] 
For each name, do not block the output of the corresponding layer when it 
is not the current layer. This is equivalent to setting the stty option loblk 
within the layer. 

quit 
Exit shl. All layers are sent the SIGHUP signal. 

name 
Make the layer referenced by name the current layer. 

1 Febrnary 1993 



shl(C) 

Limitations 

Files 

See also 

It is inadvisable to kill shl. 

shl normally accesses sxt??? devices correctly at all times. Other programs 
may be able to work with these devices if they have the correct protocol and 
device name; however some programs may not expect devices to be located 
outside /dev, and some programs may expect all terminal devices to begin 
with the prefix tty. 

If shl does not run properly on a particular terminal, you may have to set 
istrip for that terminal's line by entering the following command at the 
terminal: 

stty istrip 
By default, the Operating System is not configured for shell layers. To add 
this to kernel, use the command: 

mkdev shl 

This executes a script which prompts you for the number of sessions desired. 
The script also allows you to relink the kernel. The new session limit becomes 
effective after the kernel is rebooted. (For more information, see 
mkdev(ADM).) 

/dev/sxt??[0-7] or 
/dev/sxt/??{0-7] 
$SHELL 

virtual tty devices 
variable containing pathname of the shell to use 
(default is /bin/sh) 

ioctl(S), mkdev(ADM), sh(C), signal(S), stty(C), sxt(M) 

Standards confonnance 

shl is conformant with AT&TSVID Issue 2. 

1 February 1993 469 



sleep( CJ 

sleep 
suspend execution for an interval 

Syntax 

sleep time 

Description 

The sleep command suspends execution for time seconds. It is used to exe­
cute a command after a certain amount of time as in: 

(sleep 105; command)& 

or to execute a command every so often, as in: 
while true 

do 

done 

command 
sleep 37 

Limitations 

See also 

It is recommended that time be less than 65536 seconds. If this amount is 
exceeded, time will be arbitrarily set to some value less than 65536 seconds. 

alann(S), sleep(S) 

Standards conformance 

sleep is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

470 1 February 1993 



slot(C) 

slot 
read the microchannel configuration registers 

Syntax 
/etc/slot [ -a adid I [ -fadnamesfile I [ -s slot I 

Description 

The slot command displays the contents of the configuration POS registers on 
a microchannel architecture machine, and names the adapter cards currently 
configured in each slot. 

For each of the eight adapter slots, slot shows the slot number, the unique 
adapter id (four digits in hexadecimal from registers OxlOO and OxlOl), the 
contents of the remaining six POS registers (two hexadecimal digits each), fol­
lowed by the adapter card name. 

The default slot display looks similar to this: 
Slot 
1 
2 
3 

AdID Regs Oxl02-0xl07 Adapter Name 
Empty Slot 

Oflf 01 3b f7 31 ff ff Adaptec 1640 SCSI Host Adapter 

6bbc 
6bba 
dfbf 

81 00 
81 00 
05 02 

00 85 ff ff 
0 0 b6 ff ff 
ff ff ff ff 

Empty Slot 
Apricot Synchronous Communications Adapt• 
Apricot Ethernet Controller 
IBM 6157 Streaming Tape 
Empty Slot 
Empty Slot 

The available slot options select a particular adapter id, a particular slot, or 
select an alternative names file. 

-a adid Shows only the information for those slots in which an adapter of 
that id is configured (no display if no such adapter). adid should be 
specified in hexadecimal. For example, /etc/slot -a dfbf shows only 
those slots which contain an IBM 6157 Streaming Tape adapter card. 

-f adnamesfile 
The text displayed by /etdslot is normally read from the file 
/etc/default/slot. This option redirects it to read from an alternative file 
adnamesfile. For example, /etc/slot -f /dev/null shows only the regis­
ter contents of occupied slots, without the accompanying text, which 
can be useful when processing the output automatically in a shell 
script. 

-s slot Shows only the information for that slot (no display if that slot is 
empty). For example, /etc/slot -s 6 shows only the information for 
slot6. 

1February1993 471 



slot( CJ 

Exit values 

Returns 0 upon successful completion. Returns 1 if incorrectly invoked, if the 
machine is not a microchannel architecture machine (/dev/mcapos unreadable), 
if the selected adapter id is not found, or if the selected slot is empty. 

Di.agnosti.cs 

If run on a machine which does not have the microchannel architecture, slot 
reports "not an MCA machine" and exits returns 1. 

If an adapter id is not listed in /etc/default/slot, slot reports "Unknown card" for 
that slot. The System Administrator should add an entry for that adapter id to 
/etc/default/slot. 

Limitati.ons 

Files 

See also 

slot reports what adapter is configured in which slot. No indication is given 
as to whether that adapter is working, nor whether that adapter is connected 
to working hardware. No indication is given as to whether the current SCO 
UNIX System V kernel supports that adapter, nor whether a driver for that 
adapter is available for SCO UNIX System V. 

slot cannot be used to change the configuration shown. To change the config­
uration, use the setup disk supplied with your machine. Consult the hardware 
documentation supplied with your machine for details concerning the use of 
the setup disk. 

/etc/default/slot This file contains the headers, footers and adapter names 
shown by the slot utility. The text in this file may be 
translated, or extended as new adapters are announced. The 
display of header Jines, empty slots, and footers may be 
suppressed by omitting their text. 

/dev/mcapos 

hwconfig(C) 

The slot utility reads the 64 bytes of MCA POS register configu­
ration information from this device. 

Standards confonnance 

472 

slot is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



sort(C) 

sort 
sort and merge files 

Syntax 

sort [ -emu ) [ -0011tp11t I [ -T tmpdir I I -ykmem I [ -zrecsz I [ -dfiMnr I 
[ -b I [ -tx) [ +posl I [ -pos2] [files I 

Description 

sort sorts lines of all the named files together and writes the result on the 
standard output. The standard input is read if " - " is used as a file name or if 
no input files are named. 

Comparisons are based on one or more sort keys extracted from each line of 
input. By default, there is one sort key, the entire input line, and ordering is 
determined by the collating sequence defined by the locale (see locale(M)). 

The following options alter the default behavior: 

-c Check that the input file is sorted according to the ordering rules; give 
no output unless the file is out of sort. 

-m Merge only, the input files are already sorted. 

-ooutput 
The argument given is the name of an output file to use instead of the 
standard output. This file may be the same as one of the inputs. There 
may be optional blanks between -o and output. 

-T tmpdir 
tmpdir is the pathname of a directory to be used for temporary files. The 
default is to try /usr/tmp and /tmp. If -T is specified then tmpdir and /tmp 
are tried. There must be a space between -T and tmpdir. 

-u Unique: suppress all but one in each set of lines having equal keys. This 
option can result in unwanted characters placed at the end of the sorted 
file. 

-ykmem 

1 February 1993 

The amount of main memory used by the sort has a large impact on its 
performance. Sorting a small file in a large amount of memory is a 
waste. If this option is omitted, sort begins using a system default mem­
ory size, and continues to use more space as needed. If this option is 
presented with a value, kmem, sort will start using that number of kilo­
bytes of memory, unless the administrative minimum or maximum is 
violated, in which case the corresponding extremum will be used. Thus, 
-yo is guaranteed to start with minimum memory. By convention, -y 
(with no argument) starts with maximum memory. 

473 



sort< CJ 

474 

-zrecsz 
Causes sort to use a buffer size of recsz bytes for the merge phase. Input 
lines longer than the buffer size will cause sort to terminate abnormally. 
Normally, the size of the longest line read during the sort phase is 
recorded and this maximum is used as the record size during the merge 
phase, eliminating the need for the -z option. However, when the sort 
phase is omitted (-c or -m options) a system default buffer size is used, 
and if this is not large enough, the -z option should be used to prevent 
abnormal termination. 

The following options override the default ordering rules. 

-d uDictionary" order: only letters, digits and blanks (spaces and tabs) are 
significant in comparisons. Dictionary order is defined by the locale set­
ting (see locale(M)}. 

-f Fold lowercase letters into uppercase. Conversion between lowercase 
and uppercase letters are governed by the locale setting (see locale(M}}. 

-i Ignore non-printable characters in non-numeric comparisons. Non­
printable characters are defined by the locale setting (see locale(M)). 

-M Compare as months. The first three non-blank characters of the field are 
folded to uppercase and compared so that "JAN" < uFEB" < ... < "DEC". 
Invalid fields compare low to "JAN". The -M option implies the -b 
option (see below). 

-n An initial numeric string, consisting of optional blanks, an optional 
minus sign, and zero or more digits with optional decimal point, is 
sorted by arithmetic value. The -n option implies the -b option (see 
below). Note that the -b option is only effective when restricted sort key 
specifications are in effect. 

-r Reverse the sense of comparisons. 

When ordering options appear before restricted sort key specifications, the 
requested ordering rules are applied globally to all sort keys. When attached 
to a specific sort key (described below), the specified ordering options over­
ride all global ordering options for that key. 

The notation +pos1 -pos2 restricts a sort key to one beginning at pos1 and 
ending at pos2. The characters at positions pos1 and pos2 are included in the 
sort key (provided that pos2 does not precede posl}. A missing -pos2 means 
the end of the line. 

1 February 1993 



sort( CJ 

Specifying pos1 and pos2 involves the notion of a field (a minimal sequence of 
characters followed by a field separator or a newline). By default, the first 
blank (space or tab) of a sequence of blanks acts as the field separator. All 
blanks in a sequence of blanks are considered to be part of the next field; for 
example, all blanks at the beginning of a line are considered to be part of the 
first field. The treatment of field separators can be altered using the options: 

-tx Use x as the field separator character; x is not considered to be part of a 
field (although it may be included in a sort key). Each occurrence of x is 
significant (for example, xx delimits an empty field). 

-b Ignore leading blanks when determining the starting and ending posi­
tions of a restricted sort key. If the -b option is specified before the first 
+pos1 argument, it will be applied to all +pos1 arguments. Otherwise, 
the b flag may be attached independently to each +pos1 or -pos2 argu­
ment (see below). 

pos1 and pos2 each have the form m.n optionally followed by one or more of 
the flags b, d, f, i, n, or r. A starting position specified by +m.n is interpreted 
to mean the n+ 1st character in the m+ 1st field. A missing .n means .0, indicat­
ing the first character of the m+ 1st field. If the b flag is in effect, n is counted 
from the first non-blank in the m+ 1st field; +m.Ob refers to the first non-blank 
character in the m+ 1st field. 

A last position specified by -m.n is interpreted to mean the nth character 
(including separators) after the last character of the mth field. A missing .n 
means .0, indicating the last character of the mth field. If the b flag is in effect, 
n is counted from the last leading blank in the m+ 1st field; -m.Ob refers to the 
first non-blank in them+ 1st field. 

When there are multiple sort keys, later keys are compared only after all ear­
lier keys compare equal. Lines that otherwise compare equal are ordered with 
all bytes significant. 

Exit values 

Comments and exits with non-zero status for various trouble conditions (for 
example, when input lines are too long), and for disorders discovered under 
the -c option. 

When the last line of an input file is missing a newline character, sort appends 
one, prints a warning message, and continues. 

1February1993 475 



sort(C) 

F:xamples 

Files 

See also 

Sort the contents of infile with the second field as the sort key: 
sort + 1 -2 infile 

Sort, in reverse order, the contents of infile1 and infile2, placing the output in 
outfile and using the first character of the second field as the sort key: 

sort -r -o outfile + 1.0 -1.2 infilel infile2 

Sort, in reverse order, the contents of infile1 and infile2 using the first non­
blank character of the second field as the sort key: 

sort-r +1.0b -1.lb infilel infile2 

Print the password file (passwd(F)) sorted by the numeric user ID (the third 
colon-separated field): 

sort -t: +2n -3 /etc/passwd 

Print the lines of the already sorted file infile, suppressing all but the first oc­
currence of lines having the same third field (the options -um with just one 
input file make the choice of a unique representative from a set of equal lines 
predictable): 

sort -um +2 -3 infile 

/usr/tmp/stm??? 

coltbl(M), comm(C}, join(C}, locale(M), uniq(C} 

Standards conformance 

sort is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

476 1 February 1993 



spe/l(C) 

spell, hashmake, spellin, hashcheck 
find spelling errors 

Syntax 

spell [ -v I [ -b I [ -x I [-I] [ -i I [+local-file I [files I 

/usr/lib/spell/hashmake 

/usr/lib/spelUspellin n 

/usr/lib/spelUhashcheck spelling_list 

Description 

The spell command collects words from the named files and. looks them up in 
a spelling list. Words that neither occur among nor are derivable (by applying 
certain inflections, prefixes, and/or suffixes) from words in the spelling list 
are printed on the standard output. If no files are named, words are collected 
from the standard input. 

spell ignores most troff(CT), tbl(CT), and eqn(CT) constructions. 

Under the -v option, all words not literally in the spelling list are printed, and 
plausible derivations from the words in the spelling list are indicated. 

Under the -b option, British spelling is checked. Besides preferring centre, 
colour, programme, speciality, travelled, etc., this option insists upon -ise in 
words like standardise. 

Under the -x option, every plausible stem is printed with " =" for each word. 

By default, spell (like deroff(CT)) follows chains of included files (.so and .nx 
troff requests), unless the names of such included files begin with /usr/lib. 
Under the -I option, spell will follow the chains of all included files. Under 
the -i option, spell will ignore all chains of included files. 

Under the +local-file option, words found in local_jile are removed from 
spell's output. local-file is the name of a user-provided file that contains a 
sorted list of words, one per line. With this option, the user can specify a set 
of words that are correct spellings (in addition to spell's own spelling list) for 
each job. 

The spelling list is based on many sources, and while more haphazard than an 
ordinary dictionary, it is also more effective with respect to proper names and 
popular technical words. Coverage of the specialized vocabularies of biology, 
medicine, and chemistry is light. 

1 February 1993 477 



spell( CJ 

E:xamples 

478 

Pertinent auxiliary files may be specified by name arguments, indicated below 
with their default settings (see "Files"). Copies of all output are accumulated 
in the history file. The stop list filters out misspellings (for example, 
thier=thy-y+ier) that would otherwise pass. 

Three routines help maintain and check the hash lists used by spell: 

hashmake Reads a list of words from the standard input and writes the cor-
responding nine-digit hash codes on the standard output. 

spellin n Reads n hash codes from the standard input and writes a 
compressed, or hashed spelling_list such as /usr/lib/spell/11/ista or 
/usr/lib/spell/hlistb, on the standard output. Information about the 
hash coding is printed on standard error. 

hashcheck Reads a compressed, or hashed spelling_list, such as 
/usr/lib/spe///11/ista or /usr/lib/spell/hlistb, and recreates the nine-digit 
hash codes for all the words in it, writing these codes on the stan­
dard output. 

This example adds the words in newwords to the on-line dictionary 
(/usr/lib/spell/hlista): 

cd /usr/lib/spell 
cat newwords I . /hashmake I sort -u > newcodes 
cat hlista I . /hashcheck > hashcodes 
cat newcodes hashcodes i sort -u > newhash 
cat newhash I . /spellin •cat newhash I wc -1' > hlist 

mv hlista hlista.00 
mv hlist hl is ta 

cd /usr/dict 
cat newwords words I sort -du > tempwords 
mv words words.OD 
mv tempwords words 

Remember to remove all temporary files after you are sure everything works. 

1 Febniary 1993 



spell(C) 

The following example removes words from the on-line dictionary. You 
should first make a copy of /11sr/dict/words that does not have the words you 
want to remove. Make sure the file is sorted in alphabetical order. Then, fol­
low these steps: 

cd /usr/lib/spell 
cat /usr /diet /words I . /hashmake > hashcodes 
cat hashcodes I . /spell in 'cat hashcodes I we -1' > newhlist 

mv hlista hlista.00 
mv newhlist hlista 

Note that when you are manipulating large text, hash and hash code files, you 
should use cat(C) to open the files, since they may be extremely large. 

Limitations 

Files 

See also 

The spelling list coverage is uneven; new installations will probably wish to 
monitor the output for several months to gather local additions; typically, 
these are kept in a separate local file that is added to the hashed spelling_list 
via spellin. 

By default, logging of errors to /usr/lib/spell/spellhist is turned off. 

D_SPELL and S_SPELL can be overridden by placing alternate definitions in 
your environment. 

D_SPELL=/11sr/lib/spell/hlist[ab] 
S_SPELL=/11sr/lib/spel//11stop 
H_SPELL=/11sr/lib/spell/spellhist 
/usr/lib/spell/spellprog 

hashed spelling lists, American & British 
hashed stop list 
history file 
program 

deroff(CT), eqn(CT), sed(C), sort(C), tbl(CT), tee(C), troff(CT) 

1 February 1993 479 



spell( CJ 

Standards confonnance 

480 

hashcheck, hashmake and spellin are conformant with AT&T SVID Issue 2. 

spell is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1February1993 



spline(C) 

spline 
interpolate smooth curve 

Syntax 

spline [ option I ... 

Description 

The spline command takes pairs of numbers from the standard input as 
abscissas and ordinates of a function. It produces a similar set, which is 
approximately equally spaced and includes the input set, on the standard out­
put. The cubic spline output has two continuous derivatives, and enough 
points to look smooth when plotted. 

The following options are recognized, each as a separate argument. 

-a n Supplies abscissas automatically (they are missing from the input); 
spacing is given by the next argument, or is assumed to be 1 if next 
argument is not a number. 

-kn The constant n used in the boundary value computation 

y~ = 1cy; , ... , y; = ky~-1 

is set by the next argument. By default n = 0. 

-n n Spaces output points so that approximately n intervals occur between 
the lower and upper x limits. (Default n = 100.) 

-p Makes output periodic, that is, matches derivatives at ends. First and 
last input values should normally agree. 

-x l I u I 

Limitations 

Next 1 (or 2) arguments are lower (and upper) x limits. Normally these 
limits are calculated from the data. Automatic abscissas start at lower 
limit (default 0). 

When data is not strictly monotone in x, spline reproduces the input without 
interpolating extra points. 

1 February 1993 481 



split( CJ 

split 
split a file into pieces 

Syntax 

split [ -n I [file [ name 11 

Description 

See also 

The split command reads file and writes it in as many n-line pieces as neces­
sary (default 1000), onto a set of output files. The name of the first output file 
is name with aa appended, and so on lexicographically. If no output name is 
given, xis default. 

If no input file is given, or if a dash(-) is given instead, the standard input file 
is used. 

bfs(C), csplit(C) 

Standards confonnance 

split is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

482 1February1993 



strings(C) 

strings 
find the printable strings in an object file 

Syntax 
strings [ - I [ -o] [-number ]filename ... 

Description 

See also 

The strings command looks for ASCII strings in a binary file. A string is any 
sequence of four or more printing characters ending with a newline or a null 
character. Unless the " - " flag is given, strings only looks in the initialized 
data space of object files. If the -o flag is given, then each string is preceded 
by its decimal offset in the file. If the -number flag is given then number is 
used as the minimum string length rather than 4. 

strings is useful for identifying random binary files. 

hd{C), od{C) 

Standards confonnance 

This utility is not part of any currently supported standard; it was developed 
at the University of California at Berkeley and is used with permission. 

1 February 1993 483 



stty(C) 

stty,STIY 
set the options for a terminal 

Syntax 

stty [ -a I [ -g I [ options I 

Description 

The stty command sets certain terminal 1/0 options for the device that is the 
current standard input; without arguments, it reports the settings of certain 
options. With the -a option, stty reports all of the option settings. The -g 
option causes stty to output the current stty settings of the terminal as a list of 
fourteen hexadecimal numbers separated by colons. This output may be used 
as a command line argument to stty to restore these settings later on. It is a 
more compact form than stty -a. For example, the following shell script uses 
stty -g to store the current stty settings, then turns off character echo while 
reading a line of input. The stored stty values are then restored to the 
terminal: 

echo "Enter your secret code: \c" 
old=' stty -g' 
stty -echo intr •'a• 
read code 
stty Sold 

The various modes are discussed in several groups that follow. Detailed in­
formation about the modes listed in the first four groups may be found in 
termio(M). options in the last group are implemented using multiple options 
in the previous groups. Refer to vidi(C) for hardware specific information that 
describes control modes for the video monitor and other display devices. 

Common control modes 
0 Hangs up phone line immediately. 

50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 19200 38400 
Sets terminal baud rate to the number given, if possible. 

clocal (-clocal) Assumes a line without (with) modem control. 

cread (-cread) Enables (disables) the receiver. 

cs5 cs6 cs7 cs8 Selects character size (see termio(M)). 

cstopb (-cstopb) Uses two (one) stop bits per character. 

ctsflow (-ctsflow) Enables (disables) CTS handshaking for a modem or 
non-modem line. 

484 1 February 1993 



hup(-hup) 

hupcl (-hupcl) 

stty(C) 

Same as hupcl (-hupcl). 

Hangs up (does not hang up) phone connection on last 
close. 

ispeed 50 75 110 134 150 200 300 600 1200 1800 3400 4800 9600 19200 38400 
Sets terminal input baud rate separately. 

ortsfl (-ortsfl) Enables unidirectional (enables bidirectional) flow con­
trol if ctsflow and rtsflow are both set. The following 
table shows the flow control modes available by combin­
ing the ortsfl, ctsflow, and rtsflow flags: 

Flag settings 

ortsfl rtsflow ctsflow 

ortsfl rtsflow -ctsflow 

ortsfl -rtsflow ctsflow 

ortsfl -rtsflow -ctsflow 

-ortsfl rtsflow ctsflow 

-ortsfl rtsflow -ctsflow 

-ortsfl -rtsflow ctsflow 

-ortsfl -rtsflow -ctsflow 

Flow control mode 

Enable unidirectional flow 
control 

Assert RTS when ready to 
send 

No effect 

Enable bidirectional flow 
control 

Enable bidirectional flow 
control 

No effect 

Stop transmission when CTS 
drops 

Disable hardware flow control 

ospeed 50 75 110 134 150 200 300 600 1200 1800 3400 4800 9600 19200 38400 
Sets terminal output baud rate separately. 

parenb (-parenb) Enables (disables) parity generation and detection. 

parodd (-parodd) Selects odd (even) parity. 

rtsflow (-rtsflow) Enables (disables) RTS handshaking for a modem or non­
modem line. 

ln1JUt modes 
brkint (-brkint) Signals (does not signal) INTERRUPT on break. 

cs2scancode (-cs2scancode) 

1February1993 

Put console keyboard into codeset 2/(AT) mode (or 
codeset l/(XT) mode) and interpret the transmitted codes 
accordingly. 

485 



stty(C) 

486 

icml (-icml) Maps (does not map) CR to NL on input. 

ignbrk (-ignbrk) Ignores (does not ignore) break on input. 

igncr (-igncr) Ignores (does not ignore) CR on input. 

ignpar {-ignpar) Ignores (does not ignore) parity errors. 

inlcr {-inlcr) Maps (does not map) NL to CR on input. 

inpck (-inpck) Enables (disables) input parity checking. 

isscancode (-isscancode) 

istrip {-istrip) 

iuclc {-iuclc) 

ixany (-ixany) 

ixoff {-ixoff) 

ixon (-ixon) 

Expect the terminal device to send (not send) PC 
scancodes. 

Strips {does not strip) input characters to 7 bits. 

Maps (does not map) uppercase alphabetics to lowercase 
on input. 

Allows any character {only DCl) to restart output. 

Requests that the system send (not send) START/STOP 
characters when the input queue is nearly empty I full. 

Enables (disables) START/STOP output control. Output 
is stopped by sending an ASCII DC3 and started by send­
ing an ASCII DCl. 

pannrk (-pannrk) Marks (does not mark) parity errors {see termio(M)). 

xscancode {-xscancode) 

Output modes 
bsObsl 

crO crl cr2 cr3 

ffO ffl 

nlOnll 

ocml (-ocml) 

ofdel (-ofdel) 

ofill (-ofill) 

Translate {do not translate) PC scancodes to characters on 
input. 

Selects style of delay for BACKSPACEs (see tennio(M)). 

Selects style of delay for RETURNs (see tennio(M)). 

Selects style of delay for FORMFEEDs (see tennio(M)). 

Selects style of delay for LINEFEEDs (see tennio(M)). 

Maps (does not map) CR to NL on output. 

Fill characters are DELETEs {NULs). 

Uses fill characters (uses timing) for delays. 

1 February 1993 



olcuc (-olcuc) 

onlcr (-onlcr) 

onlret (-onlret) 

onocr (-onocr) 

opost (-opost) 

stty(C) 

Maps (does not map) lowercase alphabetics to uppercase 
on output. 

Maps (does not map) NL to CR-NL on output. 

On the terminal NL performs (does not perform) the CR 
function. 

Does not (does) output CRs at column zero. 

Post-processes output (does not post-process output; 
ignores all other output modes). 

tabO tabl tab2 tab3 Selects style of delay for horizontal TABs (see termio(M)). 

vtO vtl 

Local modes 
echo (-echo) 

echoe (-echoe) 

echok (-echok) 

echonl (-echonl) 

icanon (-icanon) 

iexten (-iexten) 

isig (-isig) 

lfkc (-lfkc) 

noflsh (-noflsh) 

tostop (-tostop) 

xcase (-xcase) 

1 February 1993 

Selects style of delay for vertical TABs (see terrnio(M)). 

Echoes back (does not echo back) every character typed. 

Echoes (does not echo) ERASE character as a backspace, 
space, backspace sequence. Note: this mode will erase 
the ERASE character on many CRT terminals; however, it 
does not keep track of column position and, as a result, 
may be confusing on escaped characters, TABs, and 
BACKSPACES. 

Echoes (does not echo) NL. 

Enables (disables) canonical input (ERASE and KILL 
processing). 

Enables extended implementation (implementation­
defined) functions. 

Enables (disables) the checking of characters against the 
special control characters INTERRUPT, SWITCH and 
QUIT. 

The same as echok (-echok); obsolete. 

Disables (enables) flush after INTERRUPT or QUIT. 

Disables/enables background process group to write to 
controlling terminal (only if job control is supported). 

Canonical (unprocessed) upper /lowercase presentation. 
Echoes (does not echo) NL after KILL character. 

487 



stty(CJ 

488 

Control assignments 
control-character C Sets control-character to C, where control-character is 

erase, kill, intr (interrupt), quit, eof, eol, swtch (switch), 
start, stop or susp. 

line i 

mini, time i 

start and stop are available as possible control characters 
for the control-character C assignment. 

If c is preceded by a caret n (escaped from the shell), 
then the value used is the corresponding control charac­
ter (for example, ·o is a (Ctrl}d, "? is interpreted as 
DELETE, and·- is interpreted as undefined). 

Sets the line discipline to i (0 < i < 127). 

(0 < i < 127) When -icanon is set, and one character has 
been received, read requests are not satisfied until at least 
min characters have been received or the timeout value 
time has expired and one character has been received. 
See termio(M). 

Combination modes 
ek 

evenp or parity 

lease (-lease) 

LCASE (-LCASE) 

nl (-nl) 

oddp 

Resets ERASE and KILL characters back to normal (Ctrl}h 
and(Ctrl}u. 

Enables parenb and cs7. 

Sets (unsets) xcase, iucle, and oleuc. 

Same as lease (-lease). 

Unsets (sets) icml, onler. In addition -nl unsets inler, 
igncr, ocml, and onlret. 

Enables parenb, cs7, and parodd. 

-parity, -evenp, or -oddp 
Disables parenb, and sets cs8. 

raw (-raw or cooked) 
Enables (disables) raw input and output (no ERASE, 
KILL, INTERRUPT, QUIT, EOT, or output post­
processing). 

sane Resets all modes to some reasonable values. Useful 
when a terminal's settings have been hopelessly scram­
bled. This includes setting xscancode if isscancode is set. 

1 February 1993 



stty(C) 

tabs (-tabs or tab3) Preserves (expands to spaces) tabs when printing. 

term Sets all modes suitable for the terminal type term, where 
term is one of tty33, tty37, vtOS, tn300, ti700, or tek. 

Limitations 

See also 

Some console keyboards do not support AT mode. Use kbmode(ADM) to 
determine whether your keyboard supports this mode. 

Do not use the -iscancode or -xscancode options on the console, as the con­
sole keyboard always sends scancodes and needs them translated. 

The stty -a command displays these option settings (along with the settings of 
all other options). However, if the tty is in -isscancode mode, stty -a does not 
display the state of xscancode cs2scancode. 

Many combinations of options make no sense, but no checking is performed. 

console(M), kbmode(ADM), ioctl(S), scancode(HW), scanon(M), tennio(M), 
termios(M), tty(M), vidi(C) 

Standards conformance 

stty is confonnant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 489 



su(C) 

SU 
make the user a super user or another user 

Syntax 

su [ - I [ name [ arg ... 11 

Description 

490 

The su command allows authorized users to change their user id to that of 
another user without logging off. The default user name is root (that is, super 
user). 

If a user has su authorization they can su to any account, providing they 
know the password for that account. If the user does not have su authoriza­
tion, they can su only to their own account or to another account that they 
own, or to an account that has the same owner as the current account. 

To use su, the appropriate password must be supplied (unless you are already 
the super user). If the password is correct, su will execute a new shell with 
the user ID, group ID, and supplemental group list set to those of the specified 
user. The new shell also has the kernel and subsystem authorizations of the 
specified user, although the LUID is not changed. The new shell will be the 
optional program named in the shell field of the specified user's password file 
(/bin/sh if none is specified (see sh(C))). To restore normal user ID privileges, 
press EOF (Ctrl)d to exit the new shell. 

Any additional arguments given on the command line are passed to the pro­
gram invoked as the shell. When using programs like sh(C), an arg of the 
form -c string executes string via the shell and an arg of -r gives the user a re­
stricted shell. You must specify a username with the -c option; for example, 
su root -c sysadmsh. When you exit the system administration shell, you will 
no longer be root. 

The following statements are true only if the optional program named in the 
shell field of the specified user's password file entry is like sh. If the first 
argument to su is a u - ", the environment is changed to what would be 
expected if the user actually logged in as the specified user. This is done by 
invoking the program used as the shell with an argO value whose first chara~­
ter is " - ", thus causing first the system's profile (/etc/profile) and then the speci­
fied user's profile (.profile in the new $HOME directory) to be executed. Other­
wise, the environment is passed along with the possible exception of $PATH, 
which is set to /bin:/etc:/usr/bin for root. The " - " option should never be used 
in /etdrc scripts. 

1 Febmary 1993 



su(C) 

Note that if the optional program used as the shell is /bin/sh, the user's .profile 
can check argO for -sh or -su to determine if it was invoked by login(M) or su, 
respectively. If the user's program is other than /bin/sh, then .profile is 
invoked with an argO of -program by both login and su. 

The file /etc/default/su can be used to control several aspects of how su is used. 
Several entries can be placed in /etc/default/su: 

SULOG 
Name of log file to record all attempts to use su. Usually /usr/adm/sulog. If 
this is not set, no logfile is kept. (See below.) 

PATH 
The PATH environment variable to set for non-root users. If not set, it 
defaults to :/bin:/usr/bin. The current PATH environment variable is 
ignored. 

SUPATH 
The PATH environment variable to set for root. If not set, it defaults to 
/bin:/etc:/usr/bin. The current PATH is ignored. 

CONSOLE 
Attempts to use su are logged to the named device, independently of 
SULOG. 

For example, if you want to log all attempts by users to become root, edit the 
file /etc/default/su. In this file, place a string similar to: 

SULOG=/usr/adm/sulog 

This causes all attempts by any user to switch user IDs to be recorded in the 
file /usr/adm/sulog. This filename is arbitrary. The su logfile records the origi­
nal user, the UID of the su attempt, and the time of the attempt. !f the attempt 
is successful, a plus sign (+) is placed on the line describing the attempt. A 
minus sign(-) indicates an unsuccessful attempt. 

1 February 1993 491 



su(C) 

Examples 

Files 

See also 

To become user bin while retaining your previously exported environment, 
enter: 

SU bin 

To become user bin but change the environment to what would be expected if 
bin had originally logged in, enter: 

SU - bin 

To execute command with the temporary environment and permissions of 
user bin, enter: 

su - bin -c command args 

/etc!passwd 
/etc/default/su 
/etc/profile 
$HOME/. profile 

the system password file 
file containing control options 
the system profile 
the user profile 

auths(C), env(C), environ(M), login(M), passwd(FP), profile(M), sh(C), sg(C) 

Standards confonnance 

su is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

492 1 February 1993 



sum(C) 

sum 
calculate a checksum and count the blocks in a file 

Syntax 

sum I -rl I [file] ... 

Description 

The sum command calculates and prints a checksum for the named file, and 
also prints the number of 512-byte blocks in the file. 

If no file is named, standard input is used. 

Options are: 

-1 Print a long (32-bit) checksum. (The default is to print a short (16-bit) 
checksum.) 

-r Use an alternate (older) algorithm to compute the checksum. This alter­
nate algorithm is sensitive to the order of the bytes in the data; the stan­
dard algorithm is not. 

sum is typically used to validate data after being transported across unreliable 
media. It is also useful when you want to reduce the contents of a file into a 
representative value. 

Limitations 

"Read error" is indistinguishable from "End-of-file" on most devices, so you 
need to check the block count. 

See also 

wc(C) 

Standards confonnance 

sum is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 493 



swconfig(C) 

swconfig 
produce a list of the software modifications to the system 

Syntax 

swconfig [ -a ] [ -p ] 

Description 

494 

The swconfig command displays the modifications to the system software 
since its initialization, in much the same way that hwconfig tells the user 
what hardware is installed on the system. The program can tell the user what 
sets have been installed or removed from the system, as well as what release 
and what parts of the packages were installed at that time. 

Additional flags let the user ask to see all of the description of each installa­
tion on the system. 

The.default behavior is simple so that the information is displayed quickly. 
Additional flags can be used to perform more complex manipulations. 
Updates are recognized and noted as such. The release number is displayed 
in all cases. 

Without options, swconfig generates a display similar to the following 
example: 
Set Release 

Operating System 2.3.la 
International XENIX O,S. Supplem 2.0.0e 
Development System 2.3.0b 

Notes 

partially removed 
partially installed 
removed 

-a The -a flag lists all the information contained in /usr/lib/c11sto111/history, but 
sorted by date. It groups products that were installed at the same time, 
but displays entries in reverse chronological order. 

-p The flag -p is used to display package information in addition to the 
default information. A list of all the packages in a set is stored and their 
installed status tracked by the sequence of information in 
/usr/lib/custom/history. 

1 February 1993 



Examples 

See also 

Here is a sample output using the -a option: 
Set: Operating System lprd = xos) 

Fri Mar 17 07:51:02 PST 1989 
removed successful 
Packages: HELP MOUSE 

Fri Mar 17 10:43:09 PST 1989 
removed successful 
Packages: VSH 

Release 2.3.la 

Release 2.3.la 

Set: International. XENIX O.S. Supplement (prd = sup.os) 
Fri Dec 16 10:32:53 PST 1988 

swconfig(C) 

Type: 386GT 

Type: 386GT 

installed successful Release 2.0.0e Type: n286 
Packages: RTSUP BASE SYSADM FILE 

Fri Dec 16 11:03:37 PST 1988 
installed successful 
Packages: MAPFILE 

Release 2.0.0e 

Here is a sample output generated by the -p option: 
Set Release 

Operating System 2. 3. la 
Operating System 2.3.la 
International XENIX O.S. Supplem 2.0.0e 

International XENIX D.S. Supplem 2.0.0e 
Develoment System 2. 3. Ob 

custom(ADM) 

Notes 

removed 
removed 
installed 

installed 
removed 

Type: n286 

Packages 

HELP MOUSE 
VSH 
RTSUP BASE 
SYSADM FILE 
MAPFILE 
ALL 

Standards confonnance 

swconfig is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 495 



tabs(C) 

tabs 
set tabs on a terminal 

Syntax 

tabs [ tabspec I [ -Ttype ] [ +mn ) 

Description 

The tabs command sets the tab stops on the user's terminal according to the 
tab specification tabspec, after clearing any previous settings. The user's ter­
minal must have remotely-settable hardware tabs. 

tabspec Four types of tab specification are accepted for tabspec. They are 
described below: canned (-code), repetitive (-n), arbitrary (n1,n2, 
... ), and file (--file). If no tabspec is given, the default value is 0 -8", 
that is, 0 standard" UNIX tabs. The lowest column number is 1. Note 
that for tabs, column 1 always refers to the leftmost column on a ter­
minal, even one whose column markers begin at 0, for example, the 
DASI 300, DASI 300s, and DASI 450. 

-code Use one of the codes listed below to select a canned set of tabs. The 
legal codes and their meanings are as follows: 

-a 1,10,16,36,72 
Assembler, IBM S/370, first format 

-a2 1,10,16,40,72 
Assembler, IBM S/370, second format 

-c 1,8,12,16,20,55 
COBOL, normal format 

-c2 1,6,10,14,49 
COBOL compact format (columns 1-6 omitted). Using this code, the 
first typed character corresponds to card column 7, one space gets 
you to column 8, and a tab reaches column 12. Files using this tab 
setup should include a format specification as follows (see fspec(F)): 
<:t-c2 m6 s66 d:> 

496 1 February 1993 



tabs( CJ 

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67 
COBOL compact format (columns 1-6 omitted), with more tabs than 
-c2. This is the recommended format for COBOL. The appropriate 
format specification is (see fspec(F)): <:t-c3 m6 s66 d:> 

-f 1,7,11,15,19,23 
FORTRAN 

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61 
PL/I 

-s 1,10,55 
SNOBOL 

-u 1,12,20,44 
UNIVAC 1100 Assembler 

-n A repetitive specification requests tabs at columns l+n, 1+2*n, etc. 

n1,n2, ... 

--file 

Of particular importance is the value 8: this represents the "stan­
dard" UNIX tab setting, and is the most likely tab setting to be found 
at a terminal. Another special case is the value 0, implying no tabs at 
all. 

The arbitrary format permits the user to type any chosen set of num­
bers, separated by commas, in ascending order. Up to 40 numbers 
are allowed. If any number (except the first one) is preceded by a 
plus sign, it is taken as an increment to be added to the previous 
value. Thus, the formats 1,10,20,30, and 1,10,+10,+10 are considered 
identical. 

If the name of a file is given, tabs reads the first line of the file, 
searching for a format specification (see fspec(F)). Ifit finds one 
there, it sets the tab stops according to it: otherwise it sets them as -8. 
This type of specification may be used to make sure that a tabbed file 
is printed with correct tab settings, and would be used with the pr(C) 
command: 

tabs -- file; pr file 

Any of the following also may be used; if a given flag occurs more than once, 
the last value given takes effect: 

-Ttype tabs usually needs to know the type of terminal in order to set tabs 
and always needs to know the type to set margins. type is a name 
listed in term(M). If no -T flag is supplied, tabs uses the value of the 
environment variable TERM. If TERM is not defined in the environ­
ment (see environ(M)), tabs tries a sequence that will work for many 
terminals. 

I February 1993 497 



tabs(C) 

+mn The margin argument may be used for some terminals. It causes all 
tabs to be moved over n columns by making column n+l the left 
margin. If +m is given without a value of n, the value assumed is 10. 
For a TermiNet, the first value in the tab list should be 1, or the mar­
gin will move even further to the right. The normal (leftmost) mar­
gin on most terminals is obtained by +mo. The margin for most ter­
minals is reset only when the +m flag is given explicitly. 

Tab and margin setting is performed via the standard output. 

Diagnosti.cs 

Examples 

498 

illegal tabs When arbitrary tabs are ordered incorrectly. 

illegal increment When a zero or missing increment is found in an arbi­
trary specification. 

unknown tab code When a canned code cannot be found. 

can't open If -file option used and file can't be opened. 

file indirection If --file option used and the specification in that file 
points to yet another file. Indirection of this form is not 
permitted. 

tabs-a 

tabs -8 

tabs 1,8,36 

Example using -code (canned specification) to set tabs to 
the settings required by the IBM assembler: 
columns 1, 10, 16, 36, 72. 

Example of using -n (repetitive specification), where n is 
8, causes tabs to be set every eighth position: 
1 +(1 *8), 1 +(2*8), ... which evaluate to columns 9, 17, ... 

Example of using n1,n2, ... (arbitrary specification) to set 
tabs at columns 1, 8, and 36. 

tabs --$HOME/fspec.list/att4425 
Example of using --file (file specification) to indicate that 
tabs should be set according to the first line of 
$HOME/fspec.list/att4425 (see fspec(F)). 

1 February 1993 



tabs(C) 

Limitations 

See also 

There is no consistency among different terminals regarding ways of clearing 
tabs and setting the left margin. 

The tabs command clears only 20 tabs (on terminals requiring a long 
sequence), but is willing to set 64. 

The tabspec used with the tabs command is different from the one used with 
the newfonn(C) command. For example, tabs -8 sets every eighth position; 
whereas newfonn -i-8 indicates that tabs are set every eighth position. 

environ(M), fspec(F), newfonn(C), pr(C), tenninfo(F), term(M), tput(C) 

Standards conformance 

tabs is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1February1993 499 



tail( CJ 

tail 
display the last part of a file 

Syntax 

tail [±[number] [Ibc] [ -f] ] [file] 

Description 

The tail command copies the named file to the standard output beginning at a 
designated place. If no file is named, the standard input is used. 

Copying begins at distance +number from the beginning, or -number from the 
end of the input (if number is null, the value 10 is assumed). number is 
counted in units of lines, blocks, or characters, according to the appended 
option I, b, or c. When no units are specified, counting is by lines. 

With the -f ("follow") option, if the input file is not a pipe, the program will 
not terminate after the last line of the input file has been copied, but will enter 
an endless loop, in which it sleeps for a second and then attempts to read and 
copy further records from the input file. Thus it may be used to monitor the 
growth of a file that is being written by some other process. For example, the 
command tail -f file will print the last ten lines of file, followed by any lines 
that are appended to file between the time tail is initiated and killed. 

Limitations 

See also 

Tails relative to the end of the file are kept in a buffer, and thus are limited to 
approximately 300 lines. Unpredictable results can occur if character special 
files are "tailed." 

dd(C) 

Standards conformance 

tail is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

500 1 February 1993 



tape(C) 

tape 
magnetic tape maintenance program 

Syntax 

tape [ -Scfis ) [ -a arg I command [ device I 

Descripti.on 
The tape command sends commands to, and receives status from, the tape 
subsystem. tape can communicate with QIC-02 cartridge, SCSI (including HP 
DAT) tape drives, and QIC-40, QIC-80, and Irwin mini-cartridge tape drives. 
(The Irwin specific program mcart is invoked automatically by tape when 
options specific to the Irwin driver are used. Refer to the mcart(C) manual 
page for more information.) 

The tape command reads /etc/default/tape to find the default device name for 
sending commands and receiving status. For example, the following line in 
/etc/default/tape will cause tape to communicate with the QIC-02 cartridge tape 
device: 

device = /dev/xctO 

If a device name is specified on the command line, it overrides the default de­
vice. tape queries the device to determine its device type. If the device does 
not respond to the query, tape will print a warning message and assume the 
device is a QIC-02 cartridge tape. The tape drive type may be specified using 
the following flags: 

-8 QIC-80 mini-cartridge tape 
-c QIC-02 cartridge tape 
-f QIC-40 mini-cartridge tape 
-i Irwin mini-cartridge tape 
-s SCSI tape (including HP DAT) 

See tape(HW) and the Release Notes for a list of supported tape drives. 

The -a flag allows an argument arg to be passed to the format, partition, and 
setblk commands. 

The following commands can be used with the various tape drivers sup­
ported under UNIX. The letters following each command indicate which 
drivers support the command: 

A All drivers 
C QIC-02 cartridge tape driver 
F QIC-40 and QIC-80 mini-cartridge tape drivers 
H HP DAT tape driver only 
I Irwin mini-cartridge tape driver 
S SCSI tape driver (including HP DAT) 

1 February 1993 501 



tape( CJ 

502 

The amount and reset commands can be used while the tape is busy with 
other operations. All other commands (including status) wait until the 
currently executing command has been completed before proceeding. 

When you are using the non-rewinding tape device or the tape commands 
rfm and wfm, the tape drive light remains on after the command has been 
completed. Use the command tape rewind to clear this condition. 

amount (C,S,F) 
Report amount of data in current or last transfer. 

drive (I) 
Display information about the Irwin driver and the tape drive. See the 
mcart(C) manual page for more details. 

eod(H) 
Position the tape to the EOD, the end of written data. (See the dat(HW) 
manual page for more information.) 

erase (C,S,F) 
Erase and retension the tape cartridge. 

format (F,I) 
Format the tape cartridge. Floppy controller-based tapes must be format­
ted before they can be used. This command takes approximately one 
minute per megabyte of tape capacity. For QIC-40 and QIC-80 tape drives 
only, the argument to the -a flag can be used to specify the number of 
tracks to be formatted. Only even numbers less than or equal to the num­
ber of tracks on the tape are allowed. See tape(HW) for more information. 
If no argument is given, the entire tape will be formatted. 

Preformatted tapes are available which are more reliable than user­
formatted tapes. Before reformatting a used tape, you must erase it with a 
bulk eraser. Proper use of a bulk eraser is not trivial; refer to the documen­
tation for your bulk eraser. 

getbb (F) 
Print a list of bad tape blocks detected during the last tape operation. This 
listing can be saved in a file for use by the putbb command. 

info (I) 
Display Irwin cartridge information. See the mcart(C) manual page for 
more details. 

kapacity (I) 
Report Irwin cartridge capacity in 1024-byte blocks. See the mcart(C) man­
ual page for more details. 

load (S) 
Load the tape cartridge. 

1 February 1993 



tape(C) 

map (F) 
Print out a map of the bad blocks on the tape. The format is a series of 
lines of the format: 
track n: -------------X------ ... 

Each " - " represents a good block on the track; an "X" represents a block 
marked as bad. 

partition (H) 
Partition an HP DAT tape into logical partitions 1 and 2. The size (in mega­
bytes) of partition 2 is specified on the command line. The size of partition 
1 is the remainder of the tape. For example: tape -a 200 partition creates a 
200-megabyte partition (in partition 2) while partition 1 comprises the rest 
of the tape. For a 1300 megabyte unformatted DAT tape, partition 1 would 
able to hold approximately 1100 megabytes of data. (See dat(HW) for 
additional information.) 

putbb (F) 
Read a list of bad tape blocks from the standard input and add them to the 
bad block table on the tape. The format expected by putbb is the same as 
generated by the getbb command. 

reset (C,S,F) 
Reset tape controller and tape drive. Clears error conditions and returns 
tape subsystem to power-up state. 

reten (A) 
Retension tape cartridge. Should be used periodically to remedy slack 
tape problems. Tape slack can cause an unusually large number of tape 
errors. 

rewind (A) 
Rewind to beginning of tape (BOT). (For HP DAT tapes: if the tape is parti­
tioned, the logical partition is rewound to the logical BOT. See dat(HW) for 
details.) 

rfm (C,S) 
Wind tape forward to the next file mark. 

rsm(H) 

1 February 1993 

Position tape forward to the next setmark. (See the dat(HW) manual page 
for more information.) 

503 



tape( CJ 

504 

setblk (5) 
Set the tape block size to a specified byte size. For example, the following 
command sets the tape block size to 512 Bytes: 
tape -a 512 setblk 

Select variable block size by specifying a block size of 0 (zero). 

status (C,5,F) 
The status output looks like this: 
status: stah1s message 
soft errors: n 
underruns: m 

Status is a report of the current status of the drive; "no cartridge", "write 
protected", or "beginning of tape" are typical status messages. 

Soft errors is the number of recoverable errors that occurred during the last 
tape operation. A recoverable error is one which is correctable by the drive 
or controller. An example of a non-recoverable "hard" error is an attempt 
to write to a write-protected cartridge. Note that if the number of soft 
errors greatly exceeds the manufacturer's specifications, the drive may 
require service or replacement, or you may be using a defective tape. 

Underr11ns is the number of times the tape drive had to stop and restart 
due to tape buffer underflows. Underruns are not an error indication; they 
mean that the data transfer did not occur at the drive's maximum data 
transfer rate. The number of underruns can be affected by system load. 

If you use the status command while the tape drive is busy, no message is 
displayed until the drive is free. 

unload (5) 
Unload the tape cartridge. 

wfm(C,5) 
Write a file mark at the current tape position. 

wsm(H) 
Write a setmark at the current tape position. (See the dat(HW) manual 
page for more information.) 

1 February 1993 



tape(C) 

Exit values 

Files 

The following exit values may be returned by tape (for Irwin drives, refer to 
the exit codes listed on the mcart(C) manual page): 

0 Normal exit with no error. 

1 Faulty cables, or no cartridge in drive. 

2 Incorrect command syntax, unknown or bad tape format, unknown 
drive type, or device special file not found. 

3 Cartridge write protected, or no data on cartridge. 

4 Device in use by another process. 

Device special files: 

/dev/rStpO 
/dev/nrStpO 
/dev/xStpO 
/dev/rftO 
/dev/xftO 

/dev/rctO 
/dev/nrctO 
/dev/rct2 
/dev/nrct2 
/dev/xctO 

/dev/erctO 
/dev/xctO 
/dev/rctmini 
/dev/xctmini 
/dev/rmcO 

Device special files for DAT tapes: 

/dev/urStpO.O 
/dev/nurStpO.O 
/dev/nrStpO.O 
/dev/xStpO.O 

/dev/urStp0.1 
/dev/nurStp0.1 
/dev/nrStp0.1 
/dev/xStp0.1 

/dev/rmcl 

The DAT partition 1 is linked to the default SCSI tape device locations: 

/dev/rStpO 
/dev/rStpO.O 
/dev/nrStpO 
/dev/xStpO 
/dev/urStpO 
/dev/rStp0.1 

linked to 
linked to 
linked to 
linked to 
linked to 
linked to 

/dev/nurStpO.O 
/dev/nurStpO.O 
/dev/nrStpO.O 
/dev/xStpO.O 
/dev/urStpO.O 
/dev/nurStp0.1 

1 February 1993 505 



tape( CJ 

See also 

Note that if you have not installed a cartridge tape on your system, SCSI tapes 
device are linked to /dev/rctO. 

For more information on device files, see the tape(HW) manual page. 

Default configuration files: /etc/default/mcconfig configuration file used by 
mcart(C) 
/etc/default/tape configuration file used by tape 

Executable files: /etc/mcdaemon background service program used by mcart(C) 
/usr/bin/mcart mcart(C) executable file 
/usr/bin/tape tape executable file 

Include files: 

/usr/include/sys/tape.h /usr/include/sys/ct.11 /usr/i11clude/sys!Jt.h /usr/include/sys/ir.h 

backup(ADM), cpio(C), dd(C), mcart(C), mcconfig(F), restore(ADM), 
tape(HW), tar(C), xbackup(ADM), xrestore(ADM) 

Standards conformance 

506 

tape is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1February1993 



tapecntl(C) 

tapecntl 
AT&T tape control for QIC-24/QIC-02 tape device 

Syntax 
tapecntl [ -ertw I [ -p arg I 

Description 

tapecntl will send the optioned commands to the tape device driver sub-de­
vice /dev/rmt/cOsO for all commands except "position", which will use sub-de­
vice /dev/rmt/cOsOn using the ioctl command function. Sub-device 
/dev/rmt/cOsO provides a rewind on close capability, while /dev/rmt/cOsOn allows 
for closing of the device without rewind. Error messages will be written to 
standard error. 

The following options are available: 

-e erase tape 

-r reset tape device 

-t retension tape 

-w rewind tape 

-p[n] position tape to "end of file" mark - n 

Erasing the tape causes the erase bar to be activated while moving the tape 
from end to end, causing all data tracks to be erased in a single pass over the 
tape. 

Retensioning the tape causes the tape to be moved from end to end, thereby 
repacking the tape with the proper tension across its length. 

Reset of the tape device initializes the tape controller registers and positions 
the tape at the beginning of the tape mark {BOT). 

Rewinding the tape will move the tape to the BOT. 

Positioning the tape command requires an integer argument. Positioning the 
tape will move the tape forward relative to its current position to the end of 
the specified file mark. The positioning option used with an argument of zero 
will be ignored. Illegal or out-of-range value arguments to the positioning 
command will leave the tape positioned at the end of the last valid file mark. 

Options may be used individually or strung together with selected options 
being executed sequentially from left to right in the command line. 

1 February 1993 507 



tapecntl(C) 

Exi.t values 

Files 

Exit codes and their meanings are as follows: 

0 normal exit; no error 

1 device function could not initiate properly due to misconnected cables or 
poorly inserted tape cartridge 

2 device function failed to complete properly due to unrecoverable error 
condition, either in the command setup or due to mechanical failure 

3 device function failed due to the cartridge being write protected or to the 
lack of written data on the tape 

4 device /dev/rrnt/cOsOn or /dev/rrnt/cOsO failed to open properly due to already 
being opened or claimed by another process 

/usr/lib/tape/tapecntl 
/dev/rm t/cOsOn 
/dev/rrnt/cOsO 

Standards conformance 

508 

tapecntl is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



tapedump(C) 

taped ump 
dump magnetic tape to output file 

Syntax 

tapedump [ -a I -e ) [ -h I -o I [ -bnstnum I tape_device output_jile 

Descripti.on 
The tapedump command dumps the contents of magnetic tapes according to 
the options specified. Options include conversion from input format to user 
specified output format, specification of input and output blocksize, and the 
ability to specify that the dump begin at a specific start block on the tape and 
proceed for a specified number of blocks. 

tapedump takes the following options: 

-a Convert from EBCDIC input to ASCII output. 

-e Convert from ASCII input to EBCDIC output. 

-h Display tape output in hexadecimal format. 

-o Display tape output in octal format. 

-b num[bkw) Set both input and output block size. num is the number of 
blocks, which can include b, k, or w to indicate the block size, 
which correspond to 1024-, 512-, or 2-byte blocks, respec­
tively. If block size is not specified, b is assumed, 

-n num Specify dump of only num blocks. 

-s num Skip num input records before starting dump. 

-t num Specify which tape file to begin dump from, where num is the 
tape file sequence number. 

tape_device The input tape device. 

output_Jile The output filename; standard output is the default. The out­
put file may be specified to be another tape device. 

1February1993 509 



tapedump(C) 

Examples 

See also 

This command reads a tape starting at block 400 and outputs the results in 
hexadecimal format into a user specified file called /tmp/hex.dump: 

taped ump -b400 -h /dev/rctO /tmp/hexdump 

This command reads an EBCDIC tape and converts the standard output to 
ASCII: 

tapedump -a /dev/rctO 

sysadmsh(ADM), dd(C), hd(C), od(C), tape(C) 

Standards conformance 

510 

tapedump is not part of any currently supported standard; it is an extension 
of AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



tar(C) 

tar 
archive files 

Syntax 
tar [key I [files I 

Description 

The tar command saves and restores files to and from an archive medium, 
which is typically a floppy disk or tape, or a standard file. Its actions are con­
trolled by the key argument. lhe key is a string of characters containing at 
most one function letter and possibly one or more function modifiers. Valid 
function letters are c, r, t, u, and x. Other arguments to the command are files 
(or directory names) specifying which files are to be backed up or restored. In 
all cases, a directory name refers to the files and (recursively) the subdirec­
tories of that directory. The rand u options cannot be used with tape devices. 

The function portion of the key is specified by one of the following letters: 

c Creates a new archive; writing begins at the beginning of the archive, 
instead of after the last file. 

r The named files are written to the end of an existing archive. 

The names of the specified files are listed each time that they occur on the 
archive. If no files argument is given, all the names on the archive are 
listed. 

u The named files are added to the archive if they are not already there, or if 
they have been modified since last written on that archive. 

x The named files are extracted from the archive. If a named file matches a 
directory whose contents had been written onto the archive, this directory 
is (recursively) extracted. The owner, modification time, and mode are 
restored (if possible). If no files argument is given, the entire contents of 
the archive are extracted. Note that if several files with the same name are 
on the archive, the last one overwrites all earlier ones. There is no way to 
ask for the nth occurrence of a file. 

The following characters may be used in addition to the letter that selects the 
desired function: 

0, ... ,9999 

1February1993 

This numeric key selects the device on which the archive is mounted. The 
available numeric keys are defined in the file /etc/default/tar. A list of 
archive devices and their corresponding numeric keys can be displayed by 
entering tar without any arguments. The f option is used to specify an 
archive device which is not in /etc/default/tar. 

511 



tar( CJ 

512 

A Suppresses absolute filenames. Any leading • I • characters are removed 
from filenames. During extraction arguments given should match the 
relative (rather than the absolute) pathnames. With the c, r, and u options, 
the A option can be used to inhibit putting leading slashes in the archive 
headers. 

b Causes tar to use the next argument as the blocking factor for archive 
records. The blocking factor is used to calculate the archive block size. This 
option should only be used with archives on raw devices (see the f option 
for how to select different devices). 

The blocking factor is specified as a multiple of 512 bytes, from 1 
(equivalent to an archive block size of 512 bytes) up to a maximum of 20 
(equivalent to lOK). If the device is not a tape device, the blocking factor 
must be specified as an even number from 2 to 20. For example, to use a 
9K block size with a floppy disk, specify a blocking factor of 18: 
tar cvfb /dev/rfdO 18 file 
The block size is determined automatically when reading tape archives. 

e Prevents files from being split across volumes (tapes or floppy disks). If 
there is not enough room on the present volume for a given file, tar 
prompts for a new volume. This is only valid when the k option is also 
specified on the command line. 

f Causes tar to use the next argument as the name of the archive instead of 
the default device listed in /etc/default/tar. If the name of the file is a dash 
(-), tar writes to the standard output or reads from the standard input, 
whichever is appropriate. Thus, tar can be used as the head or tail of a 
pipeline. tar can also be used to move hierarchies with the command: 
cd fromdir; tar cf - . I (cd todir; tar xf -) 

F Causes tar to use the next argument as the name of a file from which 
succeeding arguments are taken. If the name of the file is specified as a 
dash (-), tar reads the arguments from the standard input. This modifier 
cannot be used if the standard input has already been selected as the 
archive device using the f option. You cannot enter a command such as tar 
xfF - - since this would imply reading two things from the standard input 
at the same time. 

k Causes tar to use the next argument as the size of an archive volume in 
kilobytes (K). The minimum value allowed is 250. Very large files are split 
into "extents" across volumes. When restoring from a multi-volume 
archive, tar only prompts for a new volume if a split file has been part!ally 
restored. To override the archive length value in the default file, specify 0 
as the argument to k on the command line. 

Tells tar to display an error message if it cannot resolve all of the links _to 
the files being backed up. If 1 is not specified, no error messages are dis­
played. 

1 February 1993 



tar(C) 

L Follow symbolic links. By default, symbolic links are not followed; when 
tar encounters a symbolic link, it issues a warning message, skips over the 
link, and continues with the rest of the files. 

m Tells tar not to restore the modification times. The modification time of 
the file is the time of extraction. 

n Indicates the archive device is not a magnetic tape. The k option implies 
this. Listing and extracting the contents of an archive are faster because tar 
can seek over files it wishes to skip. Sizes are printed in kilobytes instead 
of tape blocks. 

p Extract the files using their original permissions if the user is not the super 
user. It is possible that the user may be unable to extract files because of 
the permissions associated with the files or directories being extracted. 

The sense of this option is reversed for the super user; the files will be 
extracted with user and group ownership by root. 

q During extraction causes tar to exit immediately after each file on the com­
mand line has been extracted, rather than continuing to look for additional 
files of the same name. 

T Truncates filenames of greater than 14 characters on extraction. This is 
used for extracting files from EAFS-type filesystems that support long 
filenames (up to 255 characters long) to AFS-type filesystems that support 
maximum 14-character filenames. 

v Normally, tar does its work silently. The v (verbose) option causes it to 
display the name of each file it treats, preceded by the function letter. 
With the t function, v gives more information about the archive entries 
than just the name. 

w Causes tar to display the action to be taken, followed by the name of the 
file, and then wait for the user's confirmation. If a word beginning with 
"y" is given, the action is performed. Any other input means "no". 

If no archive device is specified, either by using a numeric key or the f option, 
tar looks for a line in the file /etc/default/tar beginning with the string archive=. 
Following this string are 4 fields, separated by spaces, which contain values 
for the device name, blocking factor, volume size, and device type. The block­
ing factor is used to calculate the archive block size; it is expressed as a multi­
ple of 512 bytes. The volume size entry should be modified to reflect the size 
in kilobytes of the archive volume used. Note that a volume size of 'O' indi­
cates infinite volume length. The device type is set to y for tape devices; other­
wise, it is set to n. 

l February 1993 513 



tar( CJ 

For example, the following is the default device entry from /etc/default/tar: 
archive=idevtrfd096dsl5 10 1200 n 

This indicates that the default device is a floppy disk drive, accessed as a raw 
device with a blocking factor of 10 (equivalent to 5 kilobytes, or ten 512-byte 
disk blocks) and a volume size of 1200 kilobytes. Any default value may be 
overridden using the b and k options. 

When a numeric key (#in the range 0-9999) is specified, the corresponding de­
vice attributes are read from the line beginning with archive#= in the file 
/etc/defa11lt/tar. The remainder of the line has the same format as for the default 
archive device in the same file. 

The default file /etc/default/tar must exist if a device is not specified on the 
command line using the f option. 

A critical consideration when creating a tar volume involves the use of abso­
lute or relative pathnames. Consider the following tar command examples, as 
executed from the directory /11/target: 

tar cv /u/target/arrow 
tar cv arrow 

The first command creates a tar volume with the absolute pathname: 
/u/target/arrow. The second yields a tar volume with a relative pathname: 
./arrow. (The ./ is implicit and shown here as an example; ./ should not be 
specified when retrieving the file from the archive.) When restored, the first 
example results in the file arrow being written to the directory ju/target (if it 
exists and you have write permission) no matter what your working direc­
tory. The second example simply writes the file arrow to your present work­
ing directory. 

Absolute pathnames specify the location of a file in relation to the root direc­
tory (/); relative pathnames are relative to the current directory. This must be 
taken into account when making a tar tape or disk. Backup volumes use 
absolute pathnames so that they can be restored to the proper directory. Use 
relative pathnames when creating a tar volume where absolute pathnames are 
unnecessary. If necessary, you can specify the A option to override absolute 
pathnames. 

Exit values 

tar returns a value of 0 (zero) if it completes successfully; it returns a non-zero 
value if an error has occured. 

Diagnostics 

514 

Displays an error message about bad key characters and archive read/write 
errors. 

Displays an error message if not enough memory is available to hold the link 
tables. 

1 February 1993 



Examples 

tar(C) 

If the name of a floppy disk device is /devlfd1, then a tar format file can be cre­
ated on this device by entering: 

assign /dev/fd 
tar cvfk /dev/fdl 360 files 

where files are the names of files you want archived and 360 is the capacity of 
the floppy disk in kilobytes. Note that arguments to key letters are given in 
the same order as the key letters themselves, thus the fk key letters have cor­
responding arguments /devlfd1 and 360. If you assign(C) the disk at the begin­
ning, remember to deassign it when you have finished. 

To display a listing of the archive, enter: 
tar tvf /dev/fdl 

At some later time you may want to extract the files from the archive floppy. 
You can do this by entering: 

tar xvf /dev/fdl 
The above command extracts all files from the archive, using the exact same 
pathnames as used when the archive was created. Because of this behavior, it 
is normally best to save archive files with relative pathnames rather than 
absolute ones, since directory permissions may not let you read the files into 
the absolute directories specified. (See the A flag under "Options".) 

In the above examples, the v verbose option is used simply to confirm the 
reading or writing of archive files on the screen. Also, a normal file could be 
substituted for the floppy device /devlfd1 shown in the examples. 

If the default device were to be used for the above examples, the corre­
sponding tar commands would be: 

tar cvk 360 files 
tar tv 
tar xv 

The tar commands for the device corresponding to 5 in the device table would 
be: 

tar cvSk 360 files 
tar tvS 
tar xvS 

1 February 1993 515 



tar( CJ 

Limitations 

Files 

See also 

Note that the u option can be slow. 

tar does not verify the selected media type. 

The limit on pathname length is 100 characters. 

When archiving a directory that contains subdirectories, tar will only access 
those subdirectories that are within 17 levels of nesting. Subdirectories at 
higher levels will be ignored after tar displays an error message. 

/usr/bin/tar 
/etc/default/tar 

/tmp/tar* 

tar executable file 
default values of device names, blocking factors, volume sizes, 
and device type 
temporary work files used by tar 

assign(C), tar(F) 

Standards confonnance 

tar is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

516 1 February 1993 



tee(C) 

tee 
create a tee in a pipe 

Syntax 
tee [ -i] [-a] [ -u] [file] ... 

Descripti.on 

Examples 

The tee command transcribes the standard input to the standard output and 
makes copies in the files. The -i option ignores interrupts; the -a option 
causes the output to be appended to the files rather than overwriting them. 
The.-u option causes the output to be unbuffered. 

The following example illustrates the creation of temporary files at each stage 
in a pipeline: 

grep ABC I tee ABC.grep I sort I tee ABC.sort I more 

This example shows how to tee output to the terminal screen: 

grep ABC I tee /dev/tty I sort I uniq >final.file 

Standards confonnance 

tee is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

l February 1993 517 



test( CJ 

test 
test conditions 

Syntax 

test expr 

[exprl 

Description 

518 

The test command evaluates the expression expr, and if its value is true, 
returns a zero (true) exit status; otherwise, test returns a non-zero exit status if 
there are no arguments. The following primitives are used to construct expr: 

-b file 

-cfile 

-dfile 

-£file 

-gfile 

·hfile 

-kfile 

-Lfile 

-nsl 

-rfile 

-sfile 

True if file exists and is a block special file. 

True if file exists and is a character special file. 

True if file exists and is a directory. 

True if file exists and is a regular file. 

True if file exists and its set-group-ID bit is set. 

True if file exists and is a symbolic link. With all other primitives 
(except -L file), the symbolic links are followed. This primitive is 
identical to -L. 

True if file exists and its sticky bit is set. 

True if file exists and is a symbolic link. With all other primitives 
(except -h file), the symbolic links are followed by default. This 
primitive is identical to -h. 

True if the length of string sl is non-zero. 

True if file exists and is readable. 

True if file exists and has a size greater than zero. 

-t lfildes] True if the open file whose file descriptor number is fildes (1 by 
default) is associated with a terminal device. 

-ufile 

·W file 

True if file exists and its set-user-ID bit is set. 

True if file exists and is writable. 

1 February 1993 



Examples 

-xfile 

-z s1 

True if file exists and is executable. 

True if the length of string sl is zero. 

test(C) 

n1 -eq n2 True if the integers n1 and n2 are algebraically equal. Any of the 
comparisons -ne, -gt, -ge, -It, and-le may be used in place of -eq. 

s1 

s1 =s2 

s1 !=s2 

True if sl is not the null string. 

True if strings sl and s2 are identical. 

True if strings sl and s2 are not identical. 

These primaries may be combined with the following operators: 

-a 

-o 

unary negation operator 

binary AND operator 

(expr) 

binary OR operator (-a has higher precedence than -o) 

parentheses for grouping 

Notice that all the operators and flags are separate arguments to test. Notice 
also, that parentheses are meaningful to the shell and, therefore, must be 
escaped. 

In the following examples, the [ I form of the test command is used, and the 
shell script may be used with either sh or ksh. 

Test if a file does not exist. In this example, the file .profile is copied from a 
template file if it does not exist in the user's home directory: 

if [ -f $HOME/.profile ] 
then 

f i 

echo ".profile file does not exist - copy from elsewhere" 
cp /usr/elsewhere/.profile SHOME/.profile 

Test whether a file exists and has zero size. This could be used to see if an 
overnight tape backup reported any errors to a file. The AND -a and negation ! 
operators are both used in this example: 

FILE=itmp/backup_err 
if { -f $FILE -a 
then 

-s $FILE 

echo "The backup produced no errors" 
fi 

Note that the test would not work correctly if only the operator combination 
! -s were used. This would return true if the file did not exist or had zero size. 

1February1993 519 



test(C) 

Test whether a variable has been defined. This example uses the test in a while 
loop which exits when a value has been entered: 

while { -z "$VAL" I 
do 

echo -n "Input value: • 
read VAL 

done 

Note that double quotes around $VAL are necessary for the test to work. If the 
variable VAL is not defined, the expression "$VAi:' evaluates to an empty 
string. If the expression were used without quotes, it would evaluate to noth­
ing at all, and test would report an error. 

Test the numeric value of a variable. Here the value of VAL is checked to see if 
it lies in a particular range: 

if I $VAL -lt 0 -o $VAL -gt 7 I 
then 

echo -n "Value must be in the range 0 to 7" 
fi 

Test whether the previous command succeeded. This example tests the result 
of having tried to change directory to /tmp/mirage: 

DIR= I tmp/mirage 
cd $DIR 
if I $? -ne 
then 

echo -n •could not change directory to $DIR" 
fi 

Limitations 

See also 

In the form of the command that uses [ I rather than the word test, each of the 
square brackets must be surrounded by blank space. If this is not done, the 
command will not be interpreted correctly. 

A version of test is built into sh(C), ksh(C). 

For details, refer to the appropriate section. 

find(C), sh(C) 

Standards conformance 

test is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

520 1February1993 



tic(C) 

tic 
terminfo compiler 

Syntax 

tic [-v [ n]] [-c ]file 

Descripti.on 
The tic command translates a terminfo(F) file from the source format into the 
compiled format. The results are placed in the directory /usr/lib/terminfo. The 
compiled format is necessary for use with the library routines described in 
curses(S). 

-v n (verbose) output to standard error trace information showing tic's 
progress. The optional integer n is a number from 1 to 10, inclusive, 
indicating the desired level of detail of information. If n is omitted, 
the default level is 1. If n is specified and greater than 1, the level of 
detail is increased. 

-c only check file for errors. Errors in use= links are not detected. 

file contains one or more terminfo(F) terminal descriptions in source for­
mat (see terminfo(F)). Each description in the file describes the capa­
bilities of a particular terminal. When a uuse=entry-nameu field is 
discovered in a terminal entry currently being compiled, tic reads in 
the binary from /usr/lib/terminfo to complete the entry. (Entries creat­
ed from file will be used first. If the environment variable TER­
MINFO is set, that directory is searched instead of /usrllib/terminfo.) 
tic duplicates the capabilities in uentry-name" for the current entry, 
with the exception of those capabilities that are explicitly defined in 
the current entry. 

If the environment variable TERMINFO is set, the compiled results are placed 
there instead of /usr/lib/terminfo. 

Diagnosti.cs 

Most diagnostic messages produced by tic during the compilation of the 
source file are preceded with the approximate line number and the name of 
the terminal currently being worked on. 

mkdir ... returned bad status 
The named directory could not be created. 

File does not start with terminal names in column one 

1 February 1993 

The first thing seen in the file, after comments, must be the list of terminal 
names. 

521 



tic( CJ 

522 

Token after an lseek(S) not NAMES 
Somehow the file being compiled changed during the compilation. 

Not enough memory for use_list element 
or 

Out of memory 
Not enough free memory was available (malloc(S) failed). 

Can• t open ... 
The named file could not be created. 

Error in writing ... 
The named file could not be written to. 

Can't link ... to ... 
A link failed. 

Error in re-reading compiled file ... 
The compiled file could not be read back in. 

Premature EOF 
The current entry ended prematurely. 

Backspaced off beginning of line 
This error indicates an error happened within tic. 

Unknown Capability - " ... " 
The named invalid capability was found within the file. 

Wrong type used for capability " ... " 
For example, a string capability was given a numeric value. 

Unknown token type 
Tokens must be followed by u@ u to cancel, u, u for Booleans, u #" for num­
bers, or u = u for strings. 

" ... " : bad term name 
or 

Line ... : Illegal terminal name - ' ... " 
Terminal names must start with a letter or digit 

The given name was invalid. Names must not contain white space or 
slashes, and must begin with a Jetter or digit. 

' ... " : terminal name too long. 
An extremely Jong terminal name was found. 

" ... ': terminal name too short. 
A one-Jetter name was found. 

• ... " filename too long, truncating to ' ... ' 
The given name was truncated to 14 characters due to UNIX system file 
name length limitations. 

1Felmlary1993 



' ... ' defined in more than one entry. Entry being used is ' 
An entry was found more than once. 

Terminal name " ... ' synonym for itself 
A name was listed twice in the list of synonyms. 

At least one synonym should begin with a letter. 
At least one of the names of the terminal should begin with a letter. 

Illegal character - " ... " 
The given invalid character was found in the input file. 

New-line in middle of terminal name 
The trailing comma was probably left off the list of names. 

Missing comma 
A comma was missing. 

Missing numeric value 
The number was missing after a numeric capability. 

NULL string value 

tic( CJ 

The proper way to say that a string capability does not exist is to cancel it. 

Very long string found. Missing comma? 
A comma was anticipated but not found. 

Unknown option. Usage is: 
An invalid option was entered. 

Too many file names. Usage is: 
or 

" ... " nonexistent or permission denied 
The given directory could not be written into. 

" ... " is not a directory 
or 

" ... ': Permission denied 
Access denied. 

' ... ': Not a directory 
tic wanted to use the given name as a directory, but it already exists as a 
file 

SYSTEM ERROR!! Fork failed!!! 
A fork(S) failed. 

l February 1993 523 



tic(C) 

Error in following up use-iinks. Either there is a loop in the 
links or they reference nonexistent terminals. The following is a 
list of the entries involved: 

A terminfo(F) entry with a "use=name" capability either referenced a nonex­
istent terminal called name or name somehow referred back to the given 
entry. 

Limitations 

Files 

524 

Total compiled entries cannot exceed 4096 bytes. The name field cannot 
exceed 128 bytes. 

Terminal names exceeding 14 characters will be truncated to 14 characters and 
a warning message will be printed. 

When the -c option is used, duplicate terminal names will not be diagnosed; 
however, when -c is not used, they will be. 

To allow existing executables from the previous release of the UNIX system to 
continue to run with the compiled terminfo entries created by the new terminfo 
compiler, cancelled capabilities will not be marked as cancelled within the ter­
minjo binary unless the entry name has a " + " within it. (Such terminal names 
are only used for inclusion within other entries via a use= entry. Such names 
would not be used for real terminal names.) 

For example: 
4415+nl, kfl@, kf2@, 

4415+base, kfl=IEOc, kf2=1EOd, 

4415-nl14415 terminal without keys, 
use=4415+nl, use=4415+base, 

The above example works as expected; the definitions for the keys do not 
show up in the 4415-nl entry. However, if the entry 4415+nl did not have a 
plus sign within its name, the cancellations would not be marked within the 
compiled file and the definitions for the function keys would not be cancelled 
within 4415-nl. 

/usr /lib/terminfo/? /* compiled terminal description database 

1 February 1993 



See also 
captoinfo(ADM), curses(S), infocmp(ADM), term(M), terminfo(F) 

Standards conformance 

tic is conformant with AT&T SVID Issue 2. 

1 February 1993 

tic(C) 

525 



time(C) 

time 
time a command 

Syntax 
time command 

Description 
The given command is executed; after it is complete, time prints the time 
which elapsed during the command (real), the time spent executing the com­
mand in user mode (user), and the time spent executing the command in sys­
tem mode (sys). Programs which execute a large number of system calls (for 
example, performing input and output) will spend a greater proportion of 
time in system mode than programs which spend most of their time number 
crunching or character processing. As the system becomes more heavily 
loaded with processes, the total elapsed time will grow faster than the user or 
system times for a given command. 

User and system times are reported in seconds and the elapsed time in 
minutes and seconds in csh(C). The times are printed on the standard output. 
The percentage of total CPU time taken by the command is also reported. The 
command time used with no argument returns the times for the current csh. 

All times are reported in minutes and seconds on the standard error in ksh(C). 

All times are reported in seconds on the standard error in sh(C). 

Limitations 

This command is built into csh and ksh. 

See also 
csh(C), ksh(C), times(S) 

Standards confonnance 
time is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

526 1 February 1993 



touch(C) 

touch 
update access and modification times of a file 

Syntax 
touch [-amc] [ mmddhhmm[yy] ]files 

Description 

See also 

The touch command causes the access and modification times of each argu­
ment to be updated. If no time is specified (see date(C)) the current time is 
used. If a new file is created using touch, the modification and access times 
can be set to any time. However, the creation time is automatically set to the 
current time at the time of creation, and cannot be changed. The first mm 
refers to the month, dd refers to the day, hh refers to the hour, the second mm 
refers to the minute, and yy refers to the year. The -a and -m options cause 
touch to update only the access or modification times respectively (default is 
-am). The -c option silently prevents touch from creating the file if it did not 
previously exist. 

The return code from touch is the number of files for which the times could 
not be successfully modified (including files that did not exist and were not 
created). 

date(C}, utime(S} 

Standards conformance 

touch is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 527 



tput(CJ 

tput 
query the terminfo database 

Syntax 

tput [ -T type ] [ -S I capname [ panns ... ] 

tput [ -T type] [ -S] init 

tput [ -T type I [ -S ] reset 

tput [ -T type ] [ -S ] longname 

Description 

528 

The tput command uses the terminfo(F) database to make the values of 
terminal-dependent capabilities and information available to the shell {see 
sh{C)), to initialize or reset the terminal, or return the long name of the 
requested terminal type. tput outputs a string if the attribute (capability 
name) is of type string, or an integer if the attribute is of type integer. If the 
attribute is of type Boolean, tput simply sets the exit code (0 for TRUE if the 
terminal has the capability, 1 for FALSE if it does not), and produces no out­
put. Before using a value returned on standard output, the user should test 
the exit code ($?, see sh(C)) to be sure it is 0. (See "Exit values" and "Diagnos­
tics".) For a complete list of capabilities and the capname associated with 
each, see terminfo(F). 

-T type 
Indicates the type of terminal. Normally, this option is unnecessary 
because the default is taken from the environment variable TERM. lf-T is 
specified, then the shell variables LINES and COLUMNS and the layer size 
{see layers(C)) will not be referenced. 

-S Causes the capname to be read in from standard input instead of from the 
command line. 

capname 
Indicates the attribute from the terminfo(F) database. 

panns 
If the attribute is a string that takes parameters, the arguments panns will 
be inserted into the string. An all numeric argument will be passed to the 
attribute as a number. 

1 February 1993 



tput(CJ 

init 
If the terrninfo(F) database is present and an entry for the user's terminal 
exists (see -T type, above), the following will occur: 

• if present, the terminal's initialization strings will be output (isl, is2, is3, 
if, iprog); 

• any delays (for example, new line) specified in the entry will be set in 
the tty driver; 

• tabs expansion will be turned on or off according to the specification in 
the entry; 

• if tabs are not expanded, standard tabs will be set (every 8 spaces). 

If an entry does not contain the information needed for any of the four 
above activities, that activity will be silently skipped. 

reset 
Instead of putting out initialization strings, the terminal's reset strings will 
be output, if present (rsl, rs2, rs3, rf). If the reset strings are not present, 
but initialization strings are, the initialization strings will be output. Oth­
erwise, reset acts identically to init. 

Iongname 

Exit values 

If the terrninfo(F) database is present and an entry for the user's terminal 
exists (see -T type above), then the long name of the terminal will be out­
put. The long name is the last name in the first line of the terminal's 
description in the terrninfo(F) database (see term(M)). 

If capname is of type Boolean, a value of 0 is set for TRUE and 1 for FALSE. 

If capname is of type string, a value of 0 is set if the capname is defined for 
this terminal type (the value of capname is returned on standard output); a 
value of 1 is set if capname is not defined for this terminal type (a null value is 
returned on standard output). 

If capname is of type integer, a value of 0 is always set, whether or not 
capname is defined for this terminal type. To determine if capname is defined 
for this terminal type, the user must test the value of standard output. A 
value of -1 means that capname is not defined for this terminal type. 

Any other exit code indicates an error; see nDiagnostics.n 

1 February 1993 529 



tput(C) 

'Diagnostics 

Examples 

530 

tput prints the following error messages and sets the corresponding exit 
codes: 

Exit code Error message 

0 

1 
2 
3 
4 

-1 (capname is a numeric value that is not specified in the 
terminfo(F) database for this terminal type, for example, tput -T450 
lines and tput -T2621 xmc) 
no error message is printed, see uExit values" 
usage error 
unknown terminal type or no terminfo(F) database 
unknown terminfo(F) capability capname 

tput init 
Initialize the terminal according to the type of terminal in the environmen­
tal variable TERM. This command can be included in a user's .profile after 
the environmental variable TERM has been exported (see profile(M)). 

tput -T5620 reset 
Reset an AT&T 5620 terminal, overriding the type of terminal in the 
environment variable TERM. 

tputcup 00 
Send the sequence to move the cursor to row 0, column 0 (the upper left 
comer of the screen, usually known as the uhome" cursor position). 

tputclear 
Echo the clear-screen sequence for the current terminal. 

tput cols 
Print the number of columns for the current terminal. 

tput -Twy60 cols 
Print the number of columns for a Wyse 60 terminal. 

bold='tput smso' 
offbold='tput rmso' 

Set the shell variables bold to begin stand-out mode sequence, and offbold 
to end stand-out mode sequence, for the current terminal. This might be 
followed by a prompt: 
echo '${bold)Please type in your name: ${offbold)\c" 

1Febmary1993 



Files 

See also 

tput(C) 

tputhc 
Set exit code to indicate if the current terminal is a hardcopy terminal. 

tputcup 234 
Send the sequence to move the cursor to row 23, column 4. 

tput longname 
Print the long name from the terminfo(F) database for the type of terminal 
specified in the environmental variable TERM. 

/usr/lib/terminfo/? /* 
/usr/include/curses.h 
/usr/inc/ude/term.h 
/usr/lib/tabsel/* 

compiled terminal description database 
curses(S) header file 
terminfo(F) header file 
tab settings for some terminals, in a format appropriate 
to be output to the terminal (escape sequences that set 
margins and tabs); for more information, see the "Tabs 
and initialization" section of tenninfo(F) 

profile(M), stty(C), tabs(C), tenninfo(F) 

Standards conformance 

tput is conformant with AT&T SVID Issue 2. 

1 February 1993 531 



tr(C) 

tr 
translate characters 

Syntax 

tr [ -eds ) [ stringl [ string2 11 

Description 

532 

The tr command copies the standard input to the standard output with substi­
tution or deletion of selected characters. Input characters found in stringl are 
mapped into the corresponding characters of string2. Any combination of the 
options -eds may be used: 

-e Complements the set of characters in stringl with respect to the universe 
of characters whose ASCII codes are 001 through 377 octal. 

-d Deletes all input characters in stringl. 

-s Squeezes all strings of repeated output characters that are in string2 to 
single characters. 

The following abbreviation conventions may be used to introduce ranges of 
characters or repeated characters into the strings: 

[a-z) 
Stands for the string of characters whose ASCII codes run from character 
u au to character u z ",inclusive. 

[a*n) 
Stands for n repetitions of a. If the first digit of n is 0, n is considered 
octal; otherwise, n is taken to be decimal. A zero or missing n is taken to 
be huge; this facility is useful for padding string2. 

The escape character " \ " may be used as in the shell to remove special mean­
ing from any character in a string. In addition, " \ " followed by 1, 2, or 3 octal 
digits, stands for the character whose ASCII code is given by those digits. 

[=equiv=] 
Characters belonging to the LC_COLLATE equivalence class equiv. 
An equivalence class expression can be used in stringl, and in 
string2 when the command line includes the -d and -s options. 

[a*n) Stands for n repetitions of a. If the first digit of n is 0, n is ~o~sidere_d 
octal; otherwise, n is taken to be decimal. A zero or m1ssmg n is 
taken to be huge; this facility is useful for padding string2. 

1 February 1993 



tr(C) 

The following example creates a list of all the words in file1, one per line in 
file2, where a word is taken to be a maximal string of alphabetics. The strings 
are quoted to protect the special characters from interpretation by the shell; 
012 is the ASCII code for newline: 

tr -cs "[A-ZJ[a-z]" "[\012* ]" <filel >file2 

Limitations 
tr will not handle ASCII NUL in string1 or string2; it always deletes NUL from 
the input. 

See also 

ascii(M), ed(C), sh(C) 

Standards conformance 

tr is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1February1993 533 



translate( CJ 

translate 
translate files from one format to another 

Syntax 

translate option [ infile I [ outfile I 

Description 

The translate command translates files according to the options specified. 

translate uses standard input and standard output unless otherwise specified 
via the optional filename arguments, infile and outfile. 

Options 

-ea from EBCDIC to ASCII 

-ae from ASCII to EBCDIC 

-feformat 
from a user defined format to EBCDIC format 

-fa format 
from a user defined format to ASCII format 

-efformat 
from EBCDIC format to a user defined format 

-afformat 
from ASCII format to a user defined format 

-bm from binary /object code to mailable ASCII uuencode format 

-mb from mailable ASCII uuencode format to original binary 

format is assumed to be a file in the directory /usr/lib/translate if a full path­
name is not provided. 

Examples 

534 

The -bm and -mb options are, for example, used to translate executable object 
code format to ASCII for transfer across communications networks. 

The syntax for the user defined format file is the same as the syntax for the 
mapping files for mapchan(M) and trchan. 

1 February 1993 



Files 

See also 

translate(C) 

Use dd to convert character and file formats (especially tapes) to the format 
specified. For example: 

dd if=/dev/rmtO of=outfile ibs=SOO cbs=80 conv=ascii,lcase 
This command reads an EBCDIC tape, blocked ten 80-byte EBCDIC card 
images per record, into the ASCII file outfile. For more information on conver­
sion options, refer to dd(C) in the User's Reference. 

/usr/lib/translate/" 

dd(C), mapchan(M), sysadmsh(ADM), trchan(M), uudecode(C), uuencode(C) 

Standards confonnance 

translate is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1February1993 535 



true( CJ 

true 
return with a zero exit value 

Syntax 

true 

Description 

true does nothing except return with a zero exit value. false(C), true's coun­
terpart, does nothing except return with a nonzero exit value. true is typically 
used in shell procedures such as: 

while true 
do 

command 
done 

Exit values 

true always has exit status zero. 

See also 

false(C), sh(C) 

Standards confonnance 

true is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

536 1 February 1993 



tset(C) 

ts et 
set terminal modes 

Syntax 

tset [ - I [ -hrsuIQS I [ -e[c] I [ -E[c] I [ -k[c] I 
[ -m [ident] [test baudrate ]:type I [type] 

Descripti.on 

The tset command allows the user to set a terminal's ERASE and KILL charac­
ters, and define the terminal's type and capabilities by creating values for the 
TERM environment variable. It is driven by the /etc/ttytype file and the ter­
minfo database. 

tset initializes or resets the terminal with tput(C). 

The type of terminal is specified by the type argument. The type may be any 
type given in the terminfo database. If the type is not specified with the -s 
option, tset creates information for a terminal of the type defined by the value 
of the environment variable, TERM, unless the -h or -m option is given. If the 
TERM variable is defined, tset uses the terminfo database entry. If the -h or -m 
options are used, tset searches the /etc/ttytype file for the terminal type corre­
sponding to the current serial port; it then creates information for a terminal 
based on this type. If the serial port is not found in /etc/ttytype, the terminal 
type is set to unknown. 

When the tty is in isscancode mode, tset invokes mapstr to read the function 
key values. These values are in a mapstr format file in 
/usr/lib/keyboard/strings.d that corresponds to the terminal type. The mapstr 
utility then issues an ioctl(S) call to put the values into the kernel. 

tset is most useful when included in the .login (for csh) or .profile (for sh or 
ksh) file executed automatically at login, with -m mapping used to specify the 
terminal type you most frequently dial in on. 

tset displays the created information on standard output. The information is 
in a form that can be used to set the current environment variables. The exact 
form depends on the login shell from which tset was invoked. 

There are the following options: 

-e[c] 

-E[c] 

1 February 1993 

Sets the ERASE character to c on all terminals. The default setting is 
the BACKSPACE, or CTRL-H. 

Identical to the -e command except that it only operates on terminals 
that can BACKSPACE. 

537 



tset<CJ 

538 

-k[c] Sets the KILL character to c, defaulting to CTRL-U. 

Prints the terminal type on the standard output. 

-s Outputs the setenv commands (for csh(C)), or export and assign­
ment commands (for sh(C) or ksh(C)). The type of commands are 
determined by the user's login shell. 

For sh, set up the terminal with: 
eval · tset -s' 

-h Forces tset to search /etc/ttytype for information and to overlook the 
environment variable, TERM. 

-S Only outputs the strings to be placed in the environment variables, 
without the shell commands printed for -s. 

To use this information to set up a terminal in csh, enter: 
set noglob 
set term=l'tset -S') 
setenv TERM Sterm[l] 
setenv TERMCAP Sterm[2] 
unset term 
unset noglob 

-r Prints the terminal type on the diagnostic output. 

-Q Suppresses the printing of the "Erase set td' and "Kill set to" 
messages. 

-I Suppresses printing of the terminal initialization strings, for exam­
ple, spawns tput reset instead of tput init. If the terminal is in scan­
code mode, set -I will prevent the invocation of mapkey(M). 

-m[ident][test baudrate]:type 
Allows a user to specify how a given serial port is to be mapped to 
an actual terminal type. The option applies to any serial port in 
/etc/ttytype whose type is indeterminate (for example, dialup, plug­
board, etc.). The type specifies the terminal type to be used, and 
ident identifies the name of the indeterminate type to be matched. If 
no ident is given, all indeterminate types are matched. The test bau­
drate defines a test to be performed on the serial port before the type 
is assigned. The baudrate must be as defined in stty(C). 

The test may be any combination of: >, =, <,@,and!. If the type 
begins with a question mark, the user is asked if they really want 
that type. A null response means to use that type; otherwise, 
another type can be entered which will be used instead. The ques­
tion mark must be escaped to prevent filename expansion by ~he 
shell. If more than one -m option is given, the first correct mappmg 
prevails. 

1 February 1993 



Examples 

Files 

See also 

Set the terminal type to gt42: 
tset gt42 

Use the -m option to map the "dialup" terminal type: 
tset -mdialup\>300:adm3a -mdialup:dw2 -Qr -e# 

tset(C) 

If the entry in /etc/ttytype corresponding to the login port is "dialup", and the 
port speed is greater than 300 baud, set the termianl type to adm3a. If the 
/etc/ttytype entry is "dialup" and the port speed is less than or equal to 300 
baud, set the terminal type to dw2. Set the erase character to "#", and display 
the terminal type (but not the erase or kill characters) on standard error. 

tset -m dial:ti733 -m plug:\?hp2621 -m unknown:\? -e -k"U 

If the /etc/ttytype entry begins with "dial", the terminal type becomes ti733. If 
the entry begins with "plug", tset prompts with: 

TERM = (hp262ll 

You would then press (Return) to accept hp2621 or type in an alternate termi­
nal type and(Retum). If the entry is "unknown", tset prompts with: 

TERM = (unknown) 

In any case, erase is set to the terminal's backspace character, kill is set to 
CTRL-U, and the terminal type is displayed on standard error. 

/etc/ttytype 
/usr/lib/terminfo/* 

port name to terminal type map database 
terminal capability database 

csh(C), ksh(C), sh(C), stty(C), terminfo(F), termio(M), tput(C), tty(M) 

Standards confonnance 

tset is not part of any currently supported standard; it was developed at the 
University of California at Berkeley and is used with permission. 

1February1993 539 



tty( CJ 

tty 
get the terminal's name 

Syntax 

tty [ -I ][ -s I 

Description 

The tty command prints the pathname of the user's terminal on the standard 
output. The -s option inhibits printing of the terminal name, allowing you to 
test just the exit code. 

The -I option tests whether the terminal line is an active synchronous line. An 
additional message is printed to indicate the status of the line (see 
"Diagnostics"). 

Exit values 

0 if the standard input is a terminal, 1 otherwise. 

Diagnostics 

not a tty 
the standard input is not a terminal (-snot specified) 

not on an active synchronous line 
the standard input is not an active synchronous line (-I specified) 

synchronous 1 ine n 
the standard input is active synchronous line number n (-l specified) 

Standards conformance 
tty is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

540 1 February 1993 



umask(C) 

um ask 
get or set file-creation mode mask 

Syntax 
umask [mask) 

Description 
The user file-creation mode mask is set to mask. The mask affects the file per­
mission bits of files which are subsequently created. mask is either an octal 
integer or a string, treated the same as the mode operand by chmod(C). 

If mask is an octal integer, only the low-order 9 bits are used. The value of 
each specified digit is "subtracted" from the corresponding "digit" in the new 
files' permissions (see umask(S) or creat(S) for details). Every octal digit can 
be represented by three bits; an octal integer used by umask consists of three 
digits (or nine bits). Each bit corresponds to a permission which may be 
applied to a file when it is created, and each octal digit corresponds to one of 
the "owner", "group" and "other'' permission groups. Thus, the octal digit for 
"owner" permissions can contain any combination of three bits, which are 
used to set "read", "write" and "execute" permissions. 

Examples 

The value of each specified digit is subtracted from the corresponding digit 
specified by the system for the creation of any file (see umask(S) or creat(S) ). 
If a given mode bit in mask has the value "1 ", then that permission will be 
removed from the file; if the mode bit has the value "0 ", it has no effect. 

For example, umask 022 removes group and others write permission (files 
normally created with mode 777 become mode 755 ; files created with mode 
666 become mode 644). 

If mask is a symbolic mode string the new value of the file mode creation 
mask is the logical complement of the file specified permission bits. 

If mask is omitted, the current value of the mask is printed. 

umask is built into csh and sh. 

umask 037 

The command sets the mode mask so that created files will have all the per­
mission bits for "other" clear, and the write, execute bits set for "group''. Other 
permission bits are not affected. 

I February 1993 541 



umask(C) 

See also 
chmod(C), chmod(S), creat(S), csh(C), sh(C), umask(S) 

Standards confonnance 
umask is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

542 1 February 1993 



uname(C) 

uname 
print the name of the current system 

Syntax 

uname [-aAmnrsvX] 

uname [ -S system name ] 

Description 
The uname command prints the current system name of the UNIX system on 
the standard output file. It is mainly useful to determine which system you 
are using. The options cause selected information returned by uname(S) to be 
printed: 

-a Print all the information corresponding to the options -s, -n, -r, -v, and -m. 

-A Print the license field (activation state) information. 

-m Print the machine hardware name. 

-n Print nodename. The nodename is the name by which the system is 
known to a communications network. 

-r Print the operating system release. 

-s Print system name (default). 

-S system name 
On your computer, the system name and the nodename may be changed 
by specifying a system name argument to the -S option. (The system 
name and the nodename will both be changed to the name you specify.) 
The system name argument is restricted to 8 characters. Only the super 
user is allowed to do this. 

-v Print the operating system version. (This is the AT&T sub-version number 
of System V Release 3.2, and always displays "2" under SCO UNIX System 
V. To determine the SCO version number, examine the line beginning 
"Release = " in the output from uname using the -X option.) 

-X Print information about system name, node name, operating system 
release number, kernel ID, processor type, bus type, serial number, num­
ber of users license (2-user, 8-user or unlimited), OEM number, origin 
number, and number of CPUs. 

1 February 1993 543 



uname(C) 

See also 
uname(S) 

Standards confonnance 
uname is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

544 1 February 1993 



uniq(C) 

uniq 
report repeated lines in a file 

Syntax 
uniq [ -udc [ +n ] [ -n ] ] [ input [ output ] ] 

Description 

See also 

The uniq command reads the input file and compares adjacent lines. In the 
normal case, the second and succeeding copies of repeated lines are removed 
and the lines are compared according to the collating sequence defined by the 
current locale (see locale(M)); the remainder is written to the output file. 
input and output should always be different. 

Note that repeated lines must be adjacent in order to be found; see sort(C}. If 
the -u flag is used, just the lines that are not repeated in the original file are 
output. The -d option specifies that one copy of just the repeated lines is to be 
written. The normal mode output is the union of the -u and -d mode outputs. 

The -c option supersedes -u and -d and generates an output report in default 
style but with each line preceded by a count of the number of times it 
occurred. 

Then arguments specify skipping an initial portion of each line in the com­
parison: 

-n The first n fields together with any blanks before each are ignored. A 
field is defined as a string of nonspace, nontab characters separated by 
tabs and spaces from its neighbors. 

+n The first n characters are ignored. Fields are skipped before characters. 

comm(C}, sort(C} 

Standards conformance 

uniq is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 545 



units(C) 

units 
convert units 

Syntax 

units 

Descripti.on 

Files 

546 

The units command converts quantities expressed in various standard scales 
to their equivalents in other scales. It works interactively in this fashion: 

You have: inch 
You want: cm 

* 2.540000e+OO 
.' 3. 937008e-Ol 

A quantity is specified as a multiplicative combination of units optionally pre­
ceded by a numeric multiplier. Powers are indicated by suffixed positive 
integers, division is shown by the usual sign: 

You have: 15 lbs force/in2 
You want: atm 

* 1. 020689e+OO 
9. 797299e-Ol 

units only does multiplicative scale changes; thus it can convert Kelvin to 
Rankine, but not Centigrade to Fahrenheit. Most familiar units, abbreviations, 
and metric prefixes are recognized, as well as the following: 

pi 
c 
e 
g 
force 
mole 
water 
au 

ratio of circumference to diameter 
speed of light 
charge on an electron 
acceleration of gravity 
same asg 
Avogadrds number 
pressure head per unit height of water 
astronomical unit 

Pound is not recognized as a unit of mass; lb is. Compound names are run 
together, (for example, lightyear). British units that differ from their US coun­
terparts are prefixed with "br''. For a complete list of units, enter: 

cat /usr/lib/unittab 

/usr/lib/unittab 

1February1993 



uptime(C) 

uptime 
display information about system activity 

Syntax 
uptime 

Description 

See also 

The uptime command prints the current time of day, the length of time the 
system has been up, the number of users logged onto the system, and load 
averages. Load averages are the number of processes in the run queue aver­
aged over l, 5, and 15 minutes. All of this information is also contained in the 
first line of the w(C) command. 

w(C) 

Standards conformance 

uptime is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 547 



usemouse(C) 

usemouse 
map mouse input to keystrokes 

Syntax 

usemouse [ -f conffile I -t type I [ -h horiz_sens I [ -v vert_sens ) [ -c cmd ) 
[ -b I parameters 

Description 

548 

The usemouse command merges data from a mouse into the input stream of a 
tty. The mouse data is translated to arrow keys or any other arbitrary ASCII 
strings. Mouse movements up, down, left, right, up-left, up-right, down-left, 
and down-right, as well as individual up and down button transitions, are 
programmable. This permits the mouse to be used with programs that are not 
designed to accept mouse input. 

usemouse with no arguments sets the mouse for use with the default map 
/etc/default/usemouse. A new shell is invoked. To terminate usemouse, exit the 
shell with ( Ctrl)d. 

Alternate map files can be found in the directory /usr/lib/mouse. Users can cre­
ate their own map files based on the default file. Quoted strings may be used 
in a map file, as well as the octal sequences found in the ascii(M) manual 
page. Map files can be located anywhere on the system and accessed with the 
-f option (see below). 

The default map file has the following values: 

Mouse 

Left Button 
Middle Button 
Right Button 
Up 
Down 
Left 
Right 
Up and Left 
Up and Right 
Down and Left 
Down and Right 
Bells 

Keystroke 

vi top of file (lG) command 
vi delete character (x) command 
vi bottom of file (G) command 
Up Arrow Key 
Down Arrow Key 
Left Arrow Key 
Right Arrow Key 
not defined 
not defined 
not defined 
not defined 
no 

1 Febrnary 1993 



usemouse(C) 

usemouse takes the following options: 

-f con/file 
Select an alternate configuration file, con/file. con/file should use the for­
mat of /etc/default/usemouse. 

-t type 
Select a predefined configuration file. type can be any file in /usr/lib/mouse, 
such as vi, rogue, or sysadmsh. These files are identical in format to 
/etc/default/usemouse. 

The vi-specific map maps the traditional h-j-k-1 direction keys to the 
mouse movements. The terminal bell is automatically silenced by the vi 
map entry bells=no. This is done to prevent the bell being activated con­
tinuously when the user generates a spurious command with the mouse. 

-h horiz_sens 
Defines the horizontal sensitivity. Horizontal mouse movements smaller 
than this threshold are ignored. Mouse movements that are multiples of 
this value generate multiple strings. The sensitivity defaults to 5 units. 
The minimum value is 1 unit, and the maximum is 100 units. The lower 
the value, the more sensitive your mouse is to motion. Note that setting a 
high value may cause your mouse to behave as though it is not func­
tioning, due to the large motion required to generate a signal. 

-v vert_sens 
Defines the vertical sensitivity. Vertical mouse movements smaller than 
this threshold are ignored. Mouse movements that are multiples of this 
value generate multiple strings. The sensitivity defaults to 5 units. The 
minimum value is 1 unit, and the maximum is 100 units. The lower the 
value, the more sensitive your mouse is to motion. Note that setting a 
high value may cause your mouse to behave as though it is not func­
tioning, due to the large motion required to generate a signal. 

-ccmd 
Run cmd with usemouse. cmd defaults to the shell specified in the SHELL 
environment variable. If SHELL is unspecified, /bin/sh is used. Note that 
the command given with this flag can contain blank spaces if the entire 
command is placed within double quotes. For example: 
usemouse -c ''vi /etc/termcap" 

is valid. When cmd terminates, usemouse terminates as well. 

-b Suppresses bell re) for the duration of mouse usage. Useful with vi(C). 

1February1993 549 



usemouse(C) 

Examples 

Files 

550 

parameters 
These are name=value pairs indicating what ASCII string to insert into the 
tty input stream, when the given event is received. Valid parameters 
include: 

rbu=string 
rbd=string 
mbu=string 
mbd=string 
lbu=string 
lbd=string 
rt=string 
It= string 
up=string 
dn=string 
ul=string 
ur=string 
dr=string 
dl=string 
hsens=num 

String to generate on right button up 
String to generate on right button down 
String to generate on middle button up 
String to generate on middle button down 
String to generate on left button up 
String to generate on left button down 
String to generate on mouse right 
String to generate on mouse left 
String to generate on mouse up 
String to generate on mouse down 
String to generate on mouse up-left 
String to generate on mouse up-right 
String to generate on mouse down-right 
String to generate on mouse down-left 
Sensitivity to horizontal motion 
Sensitivity to vertical motion vsens=num 

bells=yes I no Whether to remove ·c characters 
Parameters may be specified in any order. They may contain octal escapes. 
They should be quoted with single or double quotes if they contain blank 
spaces. Any parameter may be omitted; its value is then taken from the 
configuration file. 

To set up the mouse for use with vi, type: usemouse -t vi. This will not start 
vi. 

To start up the mouse for use with vi, and start vi, type: usemouse -t vi -c vi. 
This invokes the vi map along with the command; when you quit out of vi the 
mouse disengages. 

To start up vi using the default mouse map, but redefining the middle button 
(mbd) to be insert in vi, type: usemouse -c vi mbd=i. To start the mouse in vi 
using the customized map mine, type: usemouse -f mine -c vi 

/dev/mouse 
/etc/default/usemouse 
/usr/lib/event/devices 
/usr/lib/event/ttys 
/usr/lib/mouse/* 

directory for mouse-related special device files 
default map file for mouse-generated characters 
file containing device information for inice 
file listing ttys eligible to use mice 
alternate map files for mice 

1 February 1993 



usemouse(C) 

See also 
ascii(M), mouse(HW), vi(C) 

Standards confonnance 

usemouse is not part of any currently supported standard; it is an extension 
of AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 551 



uucp( CJ 

uucp, uulog, uuname 
UNIX-to-UNIX system copy 

Syntax 

uucp [ -c I -C ] [ -d I -f ][ -ggrade ] [ -j ] [ -m ][ -nuser ][ -r ][ -sfile ] 
[ -xdebug_level ] source-files destination-file 

uulog [ -ssystem I [ -x I 

uulog -£system [ -number ] [ -x ] 

uuname [ -1 ] [ -c I 

Description 

552 

The uucp command copies files named by the source-file arguments to the 
destination-file argument. A filename may be a pathname on your machine, 
or may have the form: 

system-name!pathname 
where system-name is taken from a list of system names that uucp knows 
about. The system-name may also be a list of names such as 

system-name!system-name! ... !system-name!pathname 
in which case an attempt is made to send the file via the specified route, to the 
destination. See "Notes" below for restrictions. Care should be taken to 
ensure that intermediate nodes in the route are willing to forward 
information. 

The shell metacharacters " ? ", " * " and [ ... ] appearing in pathname will be 
expanded on the appropriate system. 

Pathnames may be one of: 

• A full pathname. 

• A pathname preceded by "user where user is a login name on the specified 
system and is replaced by that user's login directory. 

• A pathname preceded by 1destination where destination is appended to 
/usr/spool/uucppublic; this destination will be treated as a filename unless 
more than one file is being transferred by this request or the destination is 
already a directory. To ensure that destination is a directory, follow the 
destination with a " / " For example, "/dan/ as the destination will make the 
directory /usr/spool/uucppublic/dan if it does not exist and put the requested 
file(s) in that directory. 

1February1993 



uucp(C) 

• Anything else, which gets prefixed by the current directory. 

If the result is an erroneous pathname for the remote system, the copy will 
fail. If the destination-file is a directory, the last part of the source-file name 
is used. 

If a simple -user destination is inaccessible to uucp, data is copied to a spool 
directory and the user is notified by mail(C). 

uucp preserves execute permissions across the transmission and gives 0666 
read and write permissions (see chmod(C)). 

The following options are interpreted by uucp: 

-c Do not copy local file to the spool directory for transfer to the remote ma­
chine (default). 

-C Force the copy of local files to the spool directory for transfer. 

-d Make all necessary directories for the file copy (default). 

-f Do not make intermediate directories for the file copy. 

-ggrade 
grade is a single letter /number; lower ASCII sequence characters will 
cause the job to be transmitted earlier during a particular conversation. 

-j Print the job identification ASCII string on standard output. This job 
identification can be used by uustat to obtain the status or terminate a 
job. 

-m Send mail to the requester when the copy is completed. 

The -m option will only work when sending files or receiving a single file. 
Receiving multiple files specified by special shell characters "? ", "* ", [ ... 
I will not activate the -m option. 

-nus er 
Notify user on the remote system that a file was sent. 

-r Do not start the file transfer, just queue the job. 

-sfile 
Report status of the transfer to file. Note that the file must be a full path­
name. 

-xdebug_level 
Produce debugging output on standard output. The debug_level is a 
number between 0 and 9; higher numbers give more detailed 
information. 

I February 1993 553 



uucp(C) 

uulog queries a log file of uucp or uuxqt(ADM) transactions in a file 
/usr/spool/uucp/.Log/uucico/system, or /usr/spool/uucp/.Log/uuxqt/system. 

The options cause uulog to print logging information: 

-ssystem 
Print information about file transfer work involving system system. 

-fsystem 
Does a tail -f of the file transfer log for system. (You must press DELETE 
or BREAK to exit this function.) 

Other options used in conjunction with the above: 

-x Look in the uuxqt log file for the given system, instead of the uucico log 
file (default). 

-number 
Indicates that a tail command of number lines should be executed. 

uuname lists the names of systems known to uucp. The -c option returns the 
names of systems known to cu. (The two lists are the same, unless your ma­
chine is using different Systems files for cu and uucp. See sysfiles(F).) The -1 
option returns the local system name. 

Limitations 

554 

The domain of remotely accessible files can (and for obvious security reasons, 
usually should) be severely restricted. You may be unable to fetch files by 
pathname; ask a responsible person on the remote system to send them to 
you. For the same reasons, you may not be able to send files to arbitrary path­
names. As distributed, the remotely accessible files are those whose names 
begin /usr/spool/uucppublic (equivalent to/). 

All files received by uucp will be owned by uucp. 

Protected files and files that are in protected directories that are owned by the 
requester can be sent by uucp. However, if the requester is root, and the direc­
tory is not searchable by "other" or the file is not readable by "other'', the 
request will fail. 

The forwarding of files through other systems may not be compatible_ with 
older (non-HOB) versions of uucp. If forwarding is used, all systems m the 
route must have the same version of uucp. 

1 February 1993 



Files 

See also 

/usr/spool/uucp 
/usr/spool/uucppublic/* 
/usr/lib/uucp/* 

spool directories 
public directory for receiving and sending 
other data and program files 

chmod(S), mail(C}, sysfiles(F}, uustat(C}, uux(C}, uuxqt(ADM} 

Standards confonnance 

uucp, uulog, and uuname are conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 

uucp(C) 

555 



uuencode(C) 

uuencode,uudecode 
encode/decode a binary file for transmission via mail 

Syntax 

uuencode [ sourceJilename ] remoteJilename 

uudecode [ -s] [file] 

Description 

556 

The uuencode and uudecode commands are used to convert a binary file 
to/from ASCII characters for transfer via uucp(C} or other electronic mail 
delivery systems. This combination can be used over indirect mail links or 
other non-binary transmission media. 

sourceJilename is the name of the file which is to be uuencoded. uuencode 
reads from the standard input as the default if this filename is not given. 

remoteJilename is the name the file will be given at the remote site after it 
has been uudecoded. You must always supply this argument. It is generally a 
good idea to give the file to be uuencoded a different name on a remote site to 
prevent the accidental overwriting of existing files. You may also find it 
preferable to use a relative pathname rather than an absolute one. 

The uuencoded form of the binary file is written to the standard output. This 
output may be redirected to a file for later transmission, or it may be piped 
directly into the mail command (see "Examples" below). 

The remote filename together with the mode (as an octal number) of the 
source file are encoded into the output as a one line header with the format: 

begin mode remote-filename 

The uuencoded file ends with a one line footer which has the format: 
end 

The uuencoded file is an ordinary text file and can be edited by any text editor 
to change the mode or remoteJilename in the header line. 

uudecode reads a uuencodedfile (or standard input as default), and recreates 
the original binary file, giving it the mode and name remoteJilena_m~ spe~i­
fied in the header line. If the -s argument is specified, the decoded file 1s writ­
ten to standard output rather than to the filename (remoteJilename) specified 
in the header line. 

1 February 1993 



Examples 

uuencode(C) 

uuencode can send an encoded file to a user on another system by piping it 
through the mail(C) command: 

uuencode source_fname remote_fname I mail system!user. 
The recipient of the file only needs to run uudecode to recover the binary 
(uudecode discards any extra lines at the beginning or end of the file). 

The following example encodes the binary file usr/bin/prog as the ASCII file 
uuencoded. This is to be restored at the remote site as the binary file their _prog: 

uuencode /bin/prog their_prog > uuencoded 

The binary file, their _prog, is recovered from uuencoded at the remote site using 
uudecode: 

uudecode uuencoded 
If you wished to give the decoded binary a different filename and path, you 
could edit the header line of the file uuencoded, or you could redirect the out­
put of uudecode: 

uudecode -s uuencoded > /usr/locallbin/our_prog 
You would also use the -s option to redirect output if you do not have write 
permission on the encoded destination directory. 

To counteract the expansion produced by uuencode, use compress(C) to 
compress the binary before using uuencode, and uncompress(C) after 
uudecode to recover the file: 

sum prog 
compress prog 
uuencode prog.Z their_prog.Z > LS 

uudecode LS 
uncompress their_prog.Z 
sum their_prog 

sum(C) is used here to check that the source and remote binaries are the same. 
If the checksums are different, it is likely that the binary has been corrupted. 

I Febrnary 1993 557 



uuencode(C) 

Limitations 

See also 

558 

The file is expanded by 35% (3 bytes become 4 plus control information) caus­
ing it to take longer to transmit. 

The user on the remote system who is invoking uudecode (often uucp) must 
have write permission on the destination directory specified in the header line 
of the encoded file. Also, the path to the destination directory for the decoded 
file must exist. (The -s option to uudecode may be used to circumvent these 
restrictions.) 

mail(C), compress(C), sum(C), uucp(C), uux(C) 

1 February 1993 



uustat(C) 

uustat 
uucp status inquiry and job control 

Syntax 
uustat [-a I 

uustat [-m I 

uustat [-p I 

uustat [-q I 

uustat [ -kjobid I 

uustat [ -rjobid I 

uustat [ -ssystem ] [ -uuser ] 

Description 

The uustat command will display the status of, or cancel, previously specified 
uucp commands, or provide general status on UUCP connections to other sys­
tems. Only one of the following options can be specified with uustat per com­
mand execution: 

-a Output all jobs in queue. 

-m Report the status of accessibility of all machines. 

-p Execute a "ps -flp" for all the process-ids that are in the lock files. 

-q List the jobs queued for each machine. If a status file exists for the ma-
chine, its date, time and status information are reported. In addition, if a 
number appears in ( ) next to the number of C or X files, it is the age in 
days of the oldest C./X. file for that system. The Retry field represents 
the number of hours until the next possible call. The Count is the number 
of failure attempts. 

Note that for systems with a moderate number of outstanding jobs, this could 
take 30 seconds or more of real-time to execute. As an example of the output 
produced by the -q option: 

eagle 
mh3bs3 

1 February 1993 

3C 
2C 

04/07-11:07 
07/07-10:42 

NO DEVICES AVAILABLE 
SUCCESSFUL 

559 



uustat(C) 

560 

The above output tells how many command files are waiting for each system. 
Each command file may have zero or more files to be sent (zero means to call 
the ~ystem ~nd se_e if work is to be done). The date and time refer to the previ­
ous mterachon with the system followed by the status of the interaction. 

-kjobid 
Kill the uucp request whose job identification is jobid. The killed uucp 
request must belong to the person issuing the uustat command unless 
one is the super user. 

-rjobid 
Rejuvenate jobid. The files associated with jobid are touched so that their 
modification time is set to the current time. This prevents the cleanup 
daemon from deleting the job until the jobs' modification time reaches 
the limit imposed by the daemon. 

Either or both of the following options can be specified with uustat: 

-ssystem 
Report the status of all uucp requests for remote system system. 

-uuser 
Report the status of all uucp requests issued by user. 

Output for both the -s and -u options has the following format: 

eaglenOOOO 
eagleNlbd7 
eagleClbdB 

4/07-11: 01: 03 
4/07-11: 07 
4/07-11: 07 
4/07-11:07 

(POLL) 
S eagle dan 

eagle dan 
eagle dan 

522 /usr/dan/A 
59 D.3b2al2ce4924 
rmail mike 

With the above two options, the first field is the jobid of the job. This is fol­
lowed by the date/time. The next field is either an 'S' or 'R' depending on 
whether the job is to send or request a file. This is followed by the user-id of 
the user who queued the job. The next field contains the size of the file, or in 
the case of a remote execution (nnail - the command used for remote mail), 
the name of the command. When the size appears in this field, the file name 
is also given. This can either be the name given by the user or an internal 
name (for example, D.3b2alce4924) that is created for data files associated with 
remote executions (nnail in this example). 

When no options are given, uustat outputs the status of all uucp requests 
issued by the current user. 

1 February 1993 



Files 
/usr/spool/1mcp/* 

See also 

uucp(C) 

Standards confonnance 

spool directories 

uustat is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 

uustat(C) 

561 



uuto(C) 

uuto, uupick 
public UNIX-to-UNIX system file copy 

Syntax 
uuto [ -mp ) source-files destination 

uupick [ -s system ) 

Description 

562 

uuto sends source-files to destination. uuto uses the uucp(C) facility to send 
files, while it allows the local system to control the file access. A source-file 
name is a pathname on your machine. destination has the form: system!user 

where system is taken from a list of system names that UUCP knows about 
(see "uuname"). user is the login name of someone on the specified system. 

Options are: 

-m Send mail to the sender when the copy is complete. 

-p Copy the source file into the spool directory before transmission. 

The files (or sub-trees if directories are specified) are sent to 
/usr/spool/uucppublic. Specifically, the files are sent to: 

/usr/spool/uucppublic/receive/user/mysystem/files. 

The destined recipient is notified by mail(C) of the arrival of files. 

uupick accepts or rejects the files transmitted to the user. Specifically, uupick 
searches /usr/spool/uucppublic for files destined for the user. For each entry (file 
or directory) found, the following message is printed on the standard output: 

from system : [ file filename J [ dir dirname J ? 

uupick then reads a line from the standard input to determine the disposition 
of the file: 

<newline> Go on to next entry. 

d Delete the entry. 

1 February 1993 



m[dir] 

a [ dir] 

p 

q 

uuto(C) 

Move the entry to named directory dir. If dir is not specified as a 
complete pathname (in which $HOME is legitimate), a destina­
tion relative to the current directory is assumed. If no destination 
is given, the default is the current directory. 

Same as m except move all the files sent from system. 

Print the content of the file. 

Quit. 

EOT(Ctrl}d Same as q. 

!command Escape to the shell to do command. 

Print a command summary. 

uupick invoked with the -ssystem option will only search /usr/spool/uucppublic 
for files sent from system. 

Limitations 

Files 

See also 

In order to send files that begin with a dot (for example, .profile) the files must 
by qualified with a dot. For example: .profile, .proj, .profil? are correct; 
whereas •proj, ?profile are incorrect. 

/usr/spool/uucppublic public directory 

mail(C), uuclean(ADM), uucp(C), uustat(C), uux(C) 

Standards confonnance 

uupick and uuto are conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 563 



uux(C) 

uux 
UNIX-to-UNIX system command execution 

Syntax 
uux [ options ] command_string 

Description 

564 

uux will gather zero or more files from various systems, execute a command 
on a specified system and then send standard output to a file on a specified 
system. 

NOTE: For security reasons, most installations limit the list of commands exe­
cutable on behalf of an incoming request from uux, permitting only the 
receipt of mail (see mail(C)). (Remote execution permissions are defined in 
/usr/lib/uucp/Permissions.) 

The command-string is made up of one or more arguments that look like a 
shell command line, except that the command and file names may be prefixed 
by system-name. A null system-name is interpreted as the local system. 

File names may be one of 

• a full path name; 

• a path name preceded by "xxx where xxx is a login name on the specified 
system and is replaced by that user's login directory; 

• anything else is prefixed by the current directory. 

As an example, the command 
uux "!diff usg!/usr/dan/filel pwba!/a4/dan/file2 > !"/dan/file.diff' 

will get the file1 and file2 files from the usg and pwba machines, execute a 
diff(C) command and put the results in file.diff in the local PUBDIR/dan/ 
directory. 

Any special shell characters such as < > ; and I should be quoted eith~r by 
quoting the entire command-string, or quoting the special characters as md1-
vidual arguments. 

uux will attempt to get all files to the execution system. For files that are out­
put files, the filename must be escaped using parentheses. For example, the 
command 

uux a!cut -fl b!/usr/file \ (c!/usr/file) 
gets /usrlfile from system b and sends it to system a, performs a cut command 
on that file and sends the result of the cut command to system c. 

1 February 1993 



uux(C) 

uux will notify you if the requested command on the remote system was 
disallowed. This notification can be turned off by the ·n option. The response 
comes by remote mail from the remote machine. 

The following options are interpreted by uux: 

The standard input to uux is made the standard input to the 
command-string. 

-aname Use name as the user identification replacing the initiator user-id. 
(Notification will be returned to the user.) 

-b Return whatever standard input was provided to the uux command 
if the exit status is non-zero. 

-c Do not copy local file to the spool directory for transfer to the remote 
machine (default). 

-C Force the copy of local files to the spool directory for transfer. 

-ggrade grade is a single letter/number; lower ASCII sequence characters will 
cause the job to be transmitted earlier during a particular conversa­
tion. 

-j Output the jobid ASCII string on the standard output which is the job 
identification. This job identification can be used by uustat to obtain 
the status or terminate a job. 

-n Do not notify the user if the command fails. 

·p Same as n - ";the standard input to uux is made the standard input to 
the command-string. 

·r Do not start the file transfer, just queue the job. 

·sfile Report status of the transfer-in file. 

-xdebug_level 

•Z 

1 February 1993 

Produce debugging output on the standard output. The debug_level 
is a number between 0 and 9; higher numbers give more detailed in­
formation. 

Send success notification to the user. 

565 



uux(C) 

Warning 

Only the first command of a shell pipeline may have a system-name. All 
other commands are executed on the system of the first command. The use of 
the shell metacharacter "*" will probably not do what you want it to do. The 
shell tokens " <<" and ">>" are not implemented. 

The execution of commands on remote systems takes place in an execution 
directory known to the uucp system. All files required for the execution will 
be put into this directory unless they already reside on that machine. There­
fore, the simple file name (without path or machine reference) must be unique 
within the uux request. The following command will NOT work: 

uux "a!diff b!/usr/danlxyz c!/usr/danlxyz > !xyz.diff'' 

but the command 

uux "a!diff a!/usr/danlxyz c!/usr/danlxyz > !xyz.diff'' 

will work (if diff is a permitted command). 

Limitations 

Files 

See also 

Protected files and files that are in protected directories that are owned by the 
requester can be sent in commands using uux. However, if the requester is 
root, and the directory is not searchable by "other", the request will fail. 

/usr/spool/uucp/* 
/usr/lib/uucp/Permissions 
/usr/lib/uucp/* 

mail(C), uucp(C), uustat(C) 

spool directories 
remote execution permissions 
other data and programs 

Standards conformance 

uux is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

566 1 February 1993 



vi(C) 

vi, view, vedit 
invoke a screen-oriented display editor 

Syntax 
vi [-option ... ) [command ... ) [filename ... ] 

view [-option ... ) [command ... ] [filename ... ) 

vedit [-option ... ) [command ... ] [filename ... ] 

Description 

The vi command offers a powerful set of text editing operations based on a 
set of mnemonic commands. Most commands are single keystrokes that per­
form simple editing functions. vi displays a full screen "window" into the file 
you are editing. The contents of this window can be changed quickly and 
easily within vi. While editing, visual feedback is provided (the name vi itself 
is short for "visual"). 

The view command is the same as vi except that the read-only option (-R) is 
set automatically. The file cannot be changed with view. 

The vedit command is the same as vi except for differences in the option set­
tings. vedit uses novice mode, turns off the magic option, sets the option 
report=l and turns on the options showmode and redraw. 

The showmode option informs the vedit user, in a message in the lower right 
hand comer of the screen, which mode is being used. For instance after the 
(Esc)i command is used, the message reads INSERT MODE. 

Note that you can not set the novice option from within vi or ex. If you want 
to use the novice option you must use the vedit utility. (It is possible to set 
the nonovice option from within vedit.) 

vi and the line editor ex are one and the same editor: the names vi and ex 
identify a particular user interface rather than any underlying functional 
difference. The differences in user interface, however, are quite striking. ex is 
a powerful line-oriented editor, similar to the editor ed. However, in both ex 
and ed, visual updating of the terminal screen is limited, and commands are 
entered on a command line. vi, on the other hand, is a screen-oriented editor 
designed so that what you see on the screen corresponds exactly and immedi­
ately to the contents of the file you are editing. In the following discussion, vi 
commands and options are printed in boldface type. 

1 February 1993 567 



ui(C) 

568 

Options available on the vi command line include: 

-x Encryption option; when used, the file will be encrypted as it is 
being written and will require an encryption key to be read. vi 
makes an educated guess to determine if a file is encrypted or 
not. See crypt(C). Also, see the "Limitations" section at the end 
of this manual page. 

-C Encryption option; the same as -x except that vi assumes files 
are encrypted. 

-c command Begin editing by executing the specified editor command (usu­
ally a search or positioning command). 

-t tag Equivalent to an initial tag command; edits the file containing 
tag and positions the editor at its definition. 

-r file Used in recovering after an editor or system crash, retrieves the 
last saved version of the named file. 

-1 Specific to editing LISP, this option sets the showmatch and 
lisp options. 

-L List the names of all files saved as a result of an editor or sys­
tem crash. Files may be recovered with the -r option. 

-wn Sets the default window size to n. Useful on dialups to start in 
small windows. 

-R Sets a read-only option so that files can be viewed but not 
edited. 

The editing buffer 
vi performs no editing operations on the file that you name during invocation. 
Instead, it works on a copy of the file in an "editing buffer". 

When you invoke vi with a single filename argument, the named file is copied 
to a temporary editing buffer. The editor remembers the name of the file 
specified at invocation, so that it can later copy the editing buffer back to the 
named file. The contents of the named file are not affected until the changes 
are copied back to the original file. 

1February1993 



vi(C) 

Modes of operation 
Within vi there are three distinct modes of operation: 

Command Mode 
Within command mode, signals from the keyboard are inter­
preted as editing commands. 

Insert Mode Insert mode can be entered by typing any of the vi insert, 
append, open, substitute, change, or replace commands. Once 
in insert mode, letters typed at the keyboard are inserted into 
the editing buffer. 

ex Escape Mode 
The vi and ex editors are one and the same editor differing 
mainly in their user interface. In vi, commands are usually sin­
gle keystrokes. In ex, commands are lines of text terminated by 
a RETURN. vi has a special "escape" command that gives 
access to many of these line-oriented ex commands. To use the 
ex escape mode, type a colon (:). The colon is echoed on the 
status line as a prompt for the ex command. An executing 
command can be aborted by pressing INTERRUPT. Most file 
manipulation commands are executed in ex escape mode· (for 
example, the commands to read in a file and to write out the 
editing buffer to a file). 

Special keys 
There are several special keys in vi. The following keys are used to edit, de­
limit, or abort commands and command lines. 

(Esc) Used to return to vi command mode or to cancel partially 
formed commands. 

(Return) Terminates ex commands when in ex escape mode. Also used 
to start a newline when in insert mode. 

INTERRUPT Often the same as the (Del) or RUBOUT key on many terminals. 

1 February 1993 

Generates an interrupt, telling the editor to stop what it is 
doing. Used to abort any command that is executing. 

Used to specify a string to be searched for. The slash appears 
on the status line as a prompt for a search string. The question 
mark (?) works exactly like the slash key, except that it is used 
to search backward in a file instead of forward. 

The colon is a prompt for an ex command. You can then type 
in any ex command, followed by an (Esc) or (Return), and the 
given ex command is executed. 

569 



vi(C) 

The following characters are special in insert mode: 

(Bksp) 

(Ctrl)U 

(Ctrl)V 

(Ctrl)W 

(Ctrl)T 

(Ctrl)@ 

Backs up the cursor one character on the current line. The last 
character typed before the (Bksp) is removed from the input 
buffer, but remains displayed on the screen. 

Moves the cursor back to the first character of the insertion and 
restarts insertion. 

Removes the special significance of the next typed character. 
Use (Ctrl)V to insert control characters. Linefeed and (Ctrl)J 
cannot be inserted in the text except as newline characters. 
Both (Ctrl)Q and (Ctrl)S are trapped by the operating system 
before they are interpreted by vi, so they too cannot be inserted 
as text. 

Moves the cursor back to the first character of the last inserted 
word. 

During an insertion, with the autoindent option set and at the 
beginning of the current line, entering this character will insert 
shiftwidth whitespace. 

If entered as the first character of an insertion, it is replaced 
with the last text inserted, and the insertion terminates. Only 
128 characters are saved from the last insertion. If more than 
128 characters were inserted, then this command inserts no 
characters. A ( Ctrl)@ cannot be part of a file, even if quoted. 

Starting and exiting vi 
To enter vi, enter: 

vi Edits empty editing buffer 

vi file Edits named file 

vi +123 file Goes to line 123 

vi + 45 file Goes to line 45 

vi +/word file Finds first occurrence of "word" 

vi +/tty file Finds first occurrence of "tty" 

570 1 February 1993 



vi(C) 

There are several ways to exit the editor: 

:wq This command writes the editing buffer to the file you are editing, quits 
the editor, and returns to the UNIX shell. 

zz 
:x 

:q! 

The editing buffer is written to the file only if any changes were made. 

The editing buffer is written to the file only if any changes were made. 

Cancels an editing session. The exclamation mark (!) tells vi to quit 
unconditionally. In this case, the editing buffer is not written out. 

vi commands 
vi is a visual editor with a window on the file. What you see on the screen is 
vi's notion of what the file contains. Commands do not cause any change to 
the screen until the complete command is entered. Most commands may take 
a preceding count that specifies repetition of the command. This count 
parameter is not given in the following command descriptions, but is implied 
unless overridden by some other prefix argument. When vi gets an improp­
erly formatted command, it rings a bell. 

Cursor movement 
The cursor movement keys allow you to move your cursor around in a file. 
Note in particular the direction keys (if available on your terminal), the h, j, k, 
l, and cursor keys, and (Space), (Bksp), (Ctrl)N, and (Ctrl)P. These three sets of 
keys perform identical functions. 

Forward Space 

Syntax: 

Function: 

1February1993 

1 
(Space) 
right direction key 

Moves the cursor forward one character. If a count is given, 
move forward count characters. You cannot move past the end 
of the line. 

571 



vi<C) 

572 

Backspace 

Syntax: 

Function: 

Next Line 

Syntax: 

Function: 

Syntax: 

Function: 

Previous Line 

Syntax: 

Function: 

Syntax: 

Function: 

h 
(Bksp} 
left direction key 

Moves cursor backward one character. If a count is given, 
moves backward count characters. Note that you cannot move 
past the beginning of the current line. 

+ 
(Return} 

Moves the cursor down to the beginning of the next line. 

j 
(Ctrl}N 
(LF} 
down direction key 

Moves the cursor down one line, remammg in the same 
column. Note the difference between these commands and the 
preceding set of next line commands which move to the begin­
ning of the next line. 

k 
(Ctrl}P 
up direction key 

Moves the cursor up one line, remaining in the same column. 
If a count is given, the cursor is moved count lines. 

Moves the cursor up to the beginning of the previous line. If a 
count is given, the cursor is moved up count lines. 

Beginning of Line 

Syntax: 

Function: 

0 

Moves the cursor to the beginning of the current line. Note 
that O always moves the cursor to the first character of the 
current line. The caret n works somewhat differently: it moves 
to the first character on a line that is not a tab or a space. This 
is useful when editing files that have a great deal of indenta­
tion, such as program texts. 

1 February 1993 



End of Line 

Syntax: 

Function: 

Goto Line 

Syntax: 

Function: 

Column 

Syntax: 

Function: 

vi(C) 

$ 

Moves the cursor to the end of the current line. Note that the 
cursor resides on top of the last character on the line. If a count 
is given, the cursor is moved forward count-1 lines to the end 
of the line. 

[linenumber]G 

Moves the cursor to the beginning of the line specified by 
linenumber. If no linenumber is given, the cursor moves to the 
beginning of the last line in the file. To find the line number of 
the current line, use(Ctrl}G. 

[column] I 

Moves the cursor to the column in the current line given by 
column. If no column is given, the cursor is moved to the first 
column in the current line. 

Word Forward 

Syntax: 

Function: 

Back Word 

Syntax: 

Function: 

1 February 1993 

w 
w 
Moves the cursor forward to the beginning of the next word. 
The lowercase w command searches for a word defined as a 
string of alphanumeric characters separated by punctuation or 
whitespace (that is, tab, newline, or space characters). The 
uppercase W command searches for a word defined as a string 
of nonwhitespace characters. 

b 
B 

Moves the cursor backward to the beginning of a word. The 
lowercase b command searches backward for a word defined 
as a string of alphanumeric characters separated by punctua­
tion or whitespace (that is, tab, newline, or space characters). 
The uppercase B command searches for a word defined as a 
string of non-whitespace characters. If the cursor is already 
within a word, it moves backward to the beginning of that 
word. 

573 



vi(C) 

574 

End 

Syntax: 

Function: 

Sentence 

Syntax: 

Function: 

Paragraph 

Syntax: 

Function: 

Section 

Syntax: 

Function: 

e 
E 

Moves the cursor to the end of a word. The lowercase e com­
mand moves the cursor to the last character of a word, where a 
word is defined as a string of alphanumeric characters 
separated by punctuation or whitespace (that is, tab, newline, 
or space characters). The uppercase E moves the cursor to the 
last character of a word where a word is defined as a string of 
nonwhitespace characters. If the cursor is already within a 
word, it moves to the end of that word. 

Moves the cursor to the beginning (left parenthesis) or end of a 
sentence (right parenthesis). A sentence is defined as a 
sequence of characters ending with a dot (.), question mark (?), 
or exclamation mark (!) followed by either two spaces or a 
newline. A sentence begins on the first nonwhitespace charac­
ter following a preceding sentence. Sentences are also delimit­
ed by paragraph and section delimiters. See below. 

Moves the cursor to the beginning " { " or end " I " of a para­
graph. A paragraph is defined with the paragraphs option. By 
default, paragraphs are delimited by the nroff macros .IP, .LP, 
.P, .QP, and .bp. Paragraphs also begin after empty lines. 

JI 
[[ 

Moves the cursor to the beginning" [[" or end "II" of a section. 
A section is defined with the sections option. By default, sec­
tions are delimited by the nroff macros .NH and .SH. Sections 
also start at formfeeds ((Ctrl)L) and at lines beginning with a 
brace({). 

1February1993 



vi(C) 

Match Delimiter 

Syntax: 

Function: 

Home 

Syntax: 

Function: 

% 

Moves the cursor to a matching delimiter, where a delimiter is 
a parenthesis, a bracket, or a brace. This is useful when match­
ing pairs of nested parentheses, brackets, and braces. 

[offset]H 

Moves the cursor to the upper left corner of the screen. Use 
this command to move quickly to the top of the screen. If an 
offset is given, the cursor is homed offset-1 number of lines 
from the top of the screen. Note that the command dH deletes 
all lines from the current line to the top line shown on the 
screen. 

Middle Screen 

Syntax: 

Function: 

Lower Screen 

Syntax: 

Function: 

M 

Moves the cursor to the beginning of the screen's middle line. 
Use this command to move quickly to the middle of the screen 
from either the top or the bottom. Note that the command dM 
deletes from the current line to the line specified by the M 
command. 

[offset]L 

Moves the cursor to the lowest line on the screen. Use this 
command to quickly move to the bottom of the screen. If an 
offset is given, the cursor is homed offset-1 number of lines 
from the bottom of the screen. Note that the command dL 
deletes all lines from the current line to the bottom line shown 
on the screen. 

Previous Context 

Syntax: 
'character 

'character 

1 February 1993 575 



vi(C) 

576 

Function: Moves the cursor to previous context or to context marked 
with the m command. If the single quotation mark or back 
quotation mark is doubled, the cursor is moved to previous 
context. If a single character is given after either quotation 
mark, the cursor is moved to the location of the specified mark 
as defined by the m command. The previous context is the 
location in the file of the last "nonrelative" cursor movement. 
The single quotation mark ( ') syntax is used to move to the 
beginning of the line representing the previous context. The 
back quotation mark (') syntax is used to move to the previous 
context wit/Jin a line. 

The screen commands 
The screen commands are not cursor movement commands and cannot be 
used in delete commands as the delimiters of text objects. However, the 
screen commands do move the cursor and are useful in paging or scrolling 
through a file. These commands are described below: 

Scroll 

Syntax: 

Function: 

Page 

Syntax: 

Function: 

Status 

Syntax: 

Function: 

[size](Ctrl}U 
[size](Ctrl}D 

Scrolls the screen up a half window ((Ctrl}U) or down a half 
window ((Ctrl}D). If size is given, the scroll is size number of 
Jines. This value is remembered for all later scrolling 
commands. 

(Ctrl}F 
(Ctrl}B 

Pages screen forward and backward. Two lines of continuity 
are kept between pages if possible. A preceding count gives 
the number of pages to move forward or backward. 

BELL 
(Ctrl}G 

Displays vi status on status line. ~is gives you the_ ~ame of 
the file you are editing, whether 1t ~as ~een m?d1fled, the 
current line number, the number of Imes m the file, and the 
percentage of the file (in Jines) that precedes the cursor. 

1 Febrnary 1993 



Zero Screen 

Syntax: 

Function: 

Redraw 

Syntax: 

Function: 

[linenumber)z[size)(Return} 
[linenumber)z[size]. 
[linenumber]z( size)-

vi(C) 

Redraws the display with the current line placed at or "zeroed" 
at the top, middle, or bottom of the screen, respectively. If you 
give a size, the number of lines displayed is equal to size. If a 
preceding linenumber is given, the given line is placed at the 
top of the screen. If the last argument is a (Return}, the current 
line is placed at the top of the screen. If the last argument is a 
dot(.), the current line is placed in the middle of the screen. If 
the last argument is a minus sign(-), the current line is placed 
at the bottom of the screen. 

(Ctrl}R 
(Ctrl}L 
(Command depends on terminal type.) 

Redraws the screen. Use this command to erase any system 
messages or line noise that may scramble your screen. Note 
that system messages do not affect the file you are editing. 

Text insertion 
The text insertion commands always place you in insert mode. Exit from 
insert mode is always done by pressing (Esc}. The following insertion com­
mands are pure insertion commands; no text is deleted when you use them. 
This differs from the text modification commands, change, replace, and sub­
stitute, which delete and then insert text in one operation. 

Insert 

Syntax: 

Function: 

1 February 1993 

i[text)(Esc} 
I[text)(Esc} 

Insert text in editing buffer. The lowercase i command places 
you in insert mode. Text is inserted before the character beneath 
the cursor. To insert a newline, press a (Return}. Exit insert 
mode by typing the (Esc} key. The uppercase I command 
places you in insert mode, but begins text insertion at the 
beginning of the current line, rather than before the cursor. 
(The beginning of the line here is the first non-blank character 
on the line.) 

577 



vi( CJ 

578 

Append 

Syntax: 

Function: 

a[text](Esc) 
A[text](Esc) 

Appends text to the editing buffer. The lowercase a command 
works exactly like the lowercase i command, except that text 
insertion begins after the cursor and not before. This is the 
only way to add text to the end of a line. The uppercase A 
command begins appending text at the end of the current line 
rather than after the cursor. 

Open New Line 

Syntax: 

Function: 

o[text](Esc) 
O[text](Esc) 

Opens a new line and inserts text. The lowercase o command 
opens a new line below the current line; uppercase 0 opens a 
new line above the current line. After the new line has been 
opened, both these commands work like the I command. 

Text deletion 
Many of the text deletion commands use the "d" key as an operator. This 
operator deletes text objects delimited by the cursor and a cursor movement 
command. Deleted text is always saved in a buffer. The delete commands are 
described below: 

Delete Character 

Syntax: 

Function: 

x 
x 
Deletes a character. The lowercase x command deletes the 
character beneath the cursor. With a preceding count, count 
characters are deleted to the right beginning with the character 
beneath the cursor. This is a quick and easy way to delete a 
few characters. The uppercase X command deletes the charac­
ter just before the cursor. With a preceding count, count char­
acters are deleted backward, beginning with the character just 
before the cursor. 

l February 1993 



Delete 

Syntax: 

Function: 

dcursor-movement 
dd 
D 

vi(C) 

Deletes a text object. The lowercase d command takes a 
cursor-movement as an argument. If the cursor-movement is 
an intraline command, deletion takes place from the cursor to 
the end of the text object delimited by the cursor-movement. 
Deletion forward deletes the character beneath the cursor; dele­
tion backward does not. If the cursor-movement is a multi-line 
command, deletion takes place from and including the current 
line to the text object delimited by the cursor-movement. 

The dd command deletes whole lines. The uppercase D com­
mand deletes from and including the cursor to the end of the 
current line. 

Deleted text is automatically pushed on a stack of buffers num­
bered 1 through 9. The most recently deleted text is also placed 
in a special delete buffer that is logically buffer 0. This special 
buffer is the default buffer for all (put) commands using the 
double quotation mark (") to specify the number of the buffer 
for delete, put, and yank commands. The buffers 1 through 9 
can be accessed with the p and P (put) commands by append­
ing the double quotation mark (") to the number of the buffer. 
For example: 

"4p 
puts the contents of delete buffer number 4 in your editing 
buffer just below the current line. Note that the last deleted 
text is uput" by default and does not need a preceding buffer 
number. 

Text modification 
The text modification commands all involve the replacement of text with 
other text. This means that some text will necessarily be deleted. All text 
modification commands can be "undone" with the u command: 

Undo 

Syntax: 

Function: 

l February 1993 

u 
u 

Undoes the last insert or delete command. The lowercase u 
command undoes the last insert or delete command. This 
means that after an insert, u deletes text; and after a delete, u 
inserts text. For the purposes of undo, all text modification 
commands are considered insertions. 

579 



vi(C) 

580 

Repeat 

Syntax: 

Function: 

Change 

Syntax: 

Function: 

Replace 

Syntax: 

Function: 

Substitute 

Syntax: 

Function: 

Filter 

Syntax: 

The uppercase U command restores the current line to its state 
before it was edited, no matter how many times the current 
line has been edited since you moved to it. 

Repeats the last insert or delete command. A special case 
exists for repeating the p and P "put" commands. When these 
commands are preceded by the name of a delete buffer, succes­
sive u commands display the contents of the delete buffers. 

ccursor-movement text ( Esc) 
Ctext(Esc) 
cctext ( Esc) 

Changes a text object and replaces it with text. Text is inserted 
as with the i command. A dollar sign ($) marks the extent of 
the change. The c command changes arbitrary text objects de­
limited by the cursor and a cursor-movement. C affects from 
the cursor to the end of the line, cc affects the whole line; other­
wise, they are identical in function. 

rchar 
Rtext(Esc) 

Overstrikes character or line with char or text, respectively. 
Use r to overstrike a single character and R to overstrike a 
whole line. A count multiplies the replacement text count 
times. 

stext(Esc) 
Stext(Esc) 

Substitutes current character or current line with text. Use s to 
replace a single character with new text. Use S to replace the 
current line with new text. If a preceding count is given, text 
substitutes for count number of characters or lines depending 
on whether the command is s or S, respectively. 

!cursor-movement cmd (Return) 

1 Febmary 1993 



Function: 

Join Lines 

Syntax: 

Function: 

Shift 

Syntax: 

Function: 

vi(C) 

Filters the text object delimited by the cursor and cursor­
movement through the UNIX command, cmd. For example, the 
following command sorts all lines between the cursor and the 
bottom of the screen, substituting the designated lines with the 
sorted lines: 
!Lsort 
Arguments and shell metacharacters may be included as part 
of cmd; however, standard input and output are always associ­
ated with the text object being filtered. 

J 

Joins the current line with the following line. If a count is 
given, count lines are joined. 

>[cursor-movement] 
<[cursor-movement] 
>> 
<< 

Shifts text right (>) or left ( <). Text is shifted by the value of the 
option shiftwidth, which is normally set to eight spaces. Both 
the > and <commands shift all lines in the text object delimited 
by the current line and cursor-movement. The >> and << com­
mands affect whole lines. All versions of the command can 
take a preceding count that acts to multiply the number of 
objects affected. 

Text movement 
The text movement commands move text in and out of the named buffers a-z 
and out of the delete buffers 1-9. These commands either "yank" text out of 
the editing buffer and into a named buffer or •put" text into the editing buffer 
from a named buffer or a delete buffer. By default, text is put and yanked 
from the "unnamed buffer", which is also where the most recently deleted text 
is placed. Thus it is quite reasonable to delete text, move your cursor to the 
location where you want the deleted text placed, and then put the text back 
into the editing buffer at this new location with the p or P command. 

The named buffers are most useful for keeping track of several sections of text 
that you want to keep on hand for later access, movement, or rearrangement. 
These buffers are named with the letters a through z. To refer to one of these 
buffers (or one of the numbered delete buffers) in a command, use a quotation 
mark. For example, to yank a line into the buffer named a, enter: 

"ayy 

1February1993 581 



vi(C) 

582 

To put this text back into the file, enter: 
"ap 

If you delete text in the buffer named A rather than a, text is appended to the 
buffer named a (that is, A and a refer to the same buffer but are handled dif­
ferently). 

Note that the contents of the named buffers are not destroyed when you 
switch files. Therefore, you can delete or yank text into a buffer, switch files, 
and then do a put. Buffer contents are destroyed when you exit the editor, so be 
careful. 

Put 

Syntax: 

Function: 

Yank 

Syntax: 

Function: 

["alphanumeric]p 
["alphanumeric ]P 

Puts text from a buffer into the editing buffer. If no buffer 
name is specified, text is put from the unnamed buffer. The 
lowercase p command puts text either below the current line or 
after the cursor, depending on whether the buffer contains a 
partial line or not. The uppercase P command puts text either 
above the current line or before the cursor, again depending on 
whether the buffer contains a partial line or not. 

["letter]ycursor-movement 
["letter ]yy 
["letter] 

Copies text in the editing buffer to a named buffer. If no buffer 
name is specified, text is yanked into the unnamed buffer. If an 
uppercase letter is used, text is appended to the buffer and 
does not overwrite and destroy the previous contents. When a 
cursor-movement is given as an argument, the delimited text 
object is yanked. The Y and yy commands yank a single line, 
or, if a preceding count is given, multiple lines can be yanked. 

1 Febniary 1993 



vi(C) 

Searching 
The search commands search either forward or backward in the editing buffer 
for text that matches a given regular expression. 

Search 

Syntax: 

Function: 

Next String 

Syntax: 

Function: 

/[pattern]/[ offset)( Return) 
/[pattern)( Return) 
?[pattern)?[offset](Return) 
?[pattern)( Return) 

Searches forward (/) or backward (?) for pattern. A string is 
actually a regular expression. The trailing delimiter is not 
required. If no pattern is given, then the last pattern searched 
for is used. After the second delimiter, an offset may be given, 
specifying the beginning of a line relative to the line on which 
pattern was found. For example: 

/word/-
finds the beginning of the line immediately preceding the line 
containing word and the following command: 

lword/+2 
finds the beginning of the line two lines after the line contain­
ing word. See also the ignorecase and magic options. 

n 
N 

Repeats the last search command. The n command repeats the 
search in the same direction as the last search command. The 
N command repeats the search in the opposite direction of the 
last search command. 

Find Character 

Syntax: 

Function: 

1 February 1993 

fchar 
Fchar 

Finds character char on the current line. The lowercase f 
searches forward on the line; the uppercase F searches back­
ward. The semicolon (;) repeats the last character search. The 
comma (,) reverses the direction of the search. 

583 



vi(C) 

To Character 

Syntax: 

Function: 

Mark 

Syntax: 

Function: 

To Mark 

Syntax: 

Function: 

584 

tchar 
Tchar 

Moves the cursor up to but not on char. The semicolon (;) 
repeats the last character search. The comma (,) reverses the 
direction of the search. 

mletter 

Marks a place in the file with a lowercase letter. You can move 
to a mark using the "to mark" commands described below. It 
is often useful to create a mark, move the cursor, and then 
delete from the cursor to the mark "a" with the following 
command: 

d'a 

'letter 
'letter 

Move to letter. These commands let you move to the location 
of a mark. Marks are denoted by single lowercase alphabetic 
characters. Before you can move to a mark, it must first be cre­
ated with the m command. The back quotation mark (') moves 
you to the exact location of the mark within a line; the forward 
quotation mark (') moves you to the beginning of the line con­
taining the mark. Note that these commands are also legal cur­
sor movement commands. 

1February1993 



vi(C) 

Exit and escape commands 
There are several commands that are used to escape from vi command mode 
and to exit the editor. These are described in the following section. 

ex Escape 

Syntax: 

Function: 

Exit Editor 

Syntax: 

Function: 

Quit to ex 

Syntax: 

Function: 

Enters ex escape mode to execute an ex command. The colon 
appears on the status line as a prompt for an ex command. 
You then can enter an ex command line terminated by either a 
(Return} or an (Esc} and the ex command will execute. You are 
then prompted to type(Return} to return to vi command mode. 
During the input of the ex command line or during execution 
of the ex command, you may press INTERRUPT to stop what 
you are doing and return to vi command mode. 

zz 
Exit vi itllC write out the file if any changes have been made. 
This n:t•1rr,s you to the shell from which you started vi. 

Q 

Enters the ex editor. When you do this, you will still be editing 
the same file. You can return to vi by entering the vi command 
from ex. 

ex commands 
Entering the colon (:) escape command when in command mode produces a 
colon prompt on the status line. This prompt is for a command available in 
the line-oriented editor, ex. In general, ex commands let you write out or read 
in files, escape to the shell, or switch editing files. 

Many of these commands perform actions that affect the "current" file by 
default. The current file is normally the file that you named when you started 
vi, although the current file can be changed with the "file" command, f, or 
with the "next" command, n. In most respects, these commands are identical 
to similar commands for the editor, ed. All such ex commands are aborted by 
either (Return} or INTERRUPT. We shall use (Return} in our examples. Com­
mand entry is terminated by typing INTERRUPT. 

1 February 1993 585 



586 

Command structure 
Most ex command names are English words, and initial prefixes of the words 
are acceptable abbreviations. In descriptions, only the abbreviation is dis­
cussed, since this is the most frequently used form of the command. The 
ambiguity of abbreviations is resolved in favor of the more commonly used 
commands. As an example, the command substitute can be abbreviated s, 
while the shortest available abbreviation for the set command is se. 

Most commands accept prefix addresses specifying the lines in the file that 
they are to affect. A number of commands also may take a trailing count 
specifying the number of lines to be involved in the command. Counts are 
rounded down if necessary. Thus, the command lOp displays the tenth line in 
the buffer while move 5 moves the current line after line 5. 

Some commands take other information or parameters, stated after the com­
mand name. Examples might be option names in a set command, such as set 
number, a filename in an edit command, a regular expression in a substitute 
command, or a target address for a copy command. For example: 

1,Scopy25 

A number of commands have variants. The variant form of the command is 
invoked by placing an exclamation mark (!) immediately after the command 
name. Some of the default variants may be controlled by options; in this case, 
the exclamation mark turns off the meaning of the default. 

In addition, many commands take flags, including the characters p and I. A p 
or I must be preceded by a blank or tab. In this case, the command abbrevi­
ated by these characters is executed after the command completes. Since ex 
normally displays the new current line after each change, p is rarely neces­
sary. Any number of plus(+) or minus(-) characters may also be given with 
these flags. If they appear, the specified offset is applied to the current line 
value before the printing command is executed. 

Most commands that change the contents of the editor buffer give feedback if 
the scope of the change exceeds a threshold given by the report option. This 
feedback helps to detect undesirably large changes so that they may be 
quickly and easily reversed with the undo command. After command_s wi!h 
global effect, you will be informed if the net change in the number of Imes m 
the buffer during this command exceeds this threshold. 

Command addressing 
The following specifies the line addressing syntax for ex commands: 

n 

The current line. Most commands leave the current line as the 
last line which they affect. The default address for most com­
mands is the current line, thus "." is rarely used alone as an 
address. 

The nth line in the editor's buffer, lines being numbered 
sequentially from 1. 

1February1993 



$ 

% 

+n or-n 

vi(C) 

The last line in the buffer. 

An abbreviation for "1,$", the entire buffer. 

An offset, n relative to the current buffer line. The forms • .+3" 
"+3" and"+++• are all equivalent. If the current line is line 100 
they all address line 103. 

!pattern/ or ?pattern? 
Scan forward and backward respectively for a text matching 
the regular expression given by pattern. Scans normally wrap 
around the end of the buffer. If all that is desired is to print the 
next line containing pattern, the trailing slash (/) or question 
mark (?) may be omitted. If pattern is omitted or explicitly 
empty, the string matching the last specified regular expression 
is located. The forms "(Return)" and "?(Return)" scan using the 
last named regular expression. After a substitute, "(Return)" 
and "??(Return)" would scan using that substitute's regular 
expression. 

or 'x Before each nonrelative motion of the current line dot (.), the 
previous current line is marked with a label; subsequently 
referred to with two single quotation marks ("). This makes it 
easy to refer or return to this previous context. Marks are esta­
blished with the vi m command, using a single lowercase letter 
as the name of the mark. Marked lines are later referred to 
with the following notation: 
'x. 

where x is the name of a mark. 

Addresses to commands consist of a series of addresses, separated by a 
comma (,) or a semicolon (;). Such address lists are evaluated' left to right. 
When addresses are separated by a semicolon (;) the current line(.) is set to 
the value of the previous addressing expression before the next address is 
interpreted. If more addresses are given than the command requires, all but 
the last one or two are ignored. If the command takes two addresses, the first 
addressed line must precede the second in the buffer. Null address specifica­
tions are permitted in a list of addresses, the default in this case is the current 
line (.); thus ",100" is equivalent to ".,100". It is an error to give a prefix 
address to a command which expects none. 

Command fonnat 
The following is the format for all ex commands: 

[address] [command][!) [parameters] [count] [flags) 
All parts are optional depending on the particular command and its options. 
The following section describes specific commands. 

l February 1993 587 



vi( CJ 

588 

Argument list commands 
The argm!lent lis! com~ands allow you to. ~ork on a set of files, by 
remembering the hst of filenames that are specified when you invoke vi. The 
args command lets you examine this list of filenames. The file command 
gives you information about the current file. Then (next) command lets you 
either edit the next file in the argument list or change the list. The rewind 
command lets you restart editing the files in the list. All of these commands 
are described below: 

args The members of the argument list are displayed, with the 
current argument delimited by brackets. 

For example, a list might look like this: 

file1 file2 [file3] file4 files 

The current file is file3. 

f Displays the current filename, whether it has been modified 
since the last write command, whether it is read-only, the 
current linenumber, the number of lines in the buffer, and the 
percentage of the buffer that you have edited. In the rare case 
that the current file is u[Not edited]", this is noted also; in this 
case you have to use w! to write to the file, since the editor is 
not sure that a w command will not destroy a file unrelated to 
the current contents of the buffer. 

£file The current filename is changed to file which is considered 
"[Not edited]". 

n The next file in the command line argument list is edited. 

n! This variant suppresses warnings about the modifications to 
the buffer not having been written out, discarding irretrievably 
any changes that may have been made. 

n [+command]filelist 
The specifiedfilelist is expanded and the resulting list replaces 
the current argument list; the first file in the new list is the~ 
edited. If command is given (it must contain no spaces), then 1t 
is executed after editing the first such file. 

rew 

rew! 

The argument list is rewound, and the first file in the list is 
edited. 

Rewinds the argument list discarding any changes made to the 
current buffer. 

If you use C-Shell and set the prompt variable to output a prompt for non­
interactive shells, the prompt is interpreted as a filename when you use these 
commands. This causes unexpected problems. To avoid these problems, the 
default prompt should be set as shown in /usr/lib/mkuser/csh/cshrc. 

1 February 1993 



vi( CJ 

Edit commands 
To edit a file other than the one you are currently editing, you will often use 
one of the variations of the e command. 

In the following discussions, note that the name of the current file is always 
remembered by vi and is specified by a percent sign(%). The name of the pre­
vious file in the editing buffer is specified by a number sign (#). 

The edit commands are described below: 

efile 

e!file 

e +nfile 

(Ctr!}" 

Used to begin an editing session on a new file. The editor first 
checks to see if the buffer has been modified since the last w 
command was issued. If it has been, a warning is issued and 
the command is aborted. The command otherwise deletes the 
entire contents of the editor buffer, makes the named file the 
current file, and displays the new filename. After ensuring that 
this file is sensible, (that is, it is not a binary file, directory, or a 
device), the editor reads the file into its buffer. If the read of 
the file completes without error, the number of lines and char­
acters read is displayed on the status line. If no errors 
occurred, the file is considered edited. If the last line of the 
input file is missing the trailing newline character, it is sup­
plied and a complaint issued. The current line is initially the 
first line of the file. 

This variant form suppresses the complaint about modifica­
tions having been made and not written from the editor buffer, 
thus discarding all changes that have been made before editing 
the new file. 

Causes the editor to begin editing at line n rather than at the 
first line. The argument n may also be an editor command con­
taining no spaces; for example, "+/pattern''. 

This is a shorthand equivalent for :e #(Return} which returns to 
the previous position in the last edited file. If you do not want 
to write the file, you should use :e! #(Return} instead. 

Write commands 
The write commands let you write out all or part of your editing buffer to 
either the current file or to some other file. These are described below: 

wfile 

1February1993 

Writes changes made back to file, displaying the number of 
lines and characters written. Normally, file is omitted and the 
buffer is written to the name of the current file. If file is speci­
fied, text is written to that file. The editor writes to a file only if 
it is the current file and is edited, or if the file does not exist. 
Otherwise, you must give the variant form w! to force the 
write. If the file does not exist it is created. The current 
filename is changed only if there is no current filename; the 
current line is never changed. 

589 



vi( CJ 

W>>file 

w!name 

If an error occurs while writing the current and edited file, the 
editor displays: 
No write since last change 

even if the buffer had not previously been modified. 

Appends the buffer contents at the end of an existing file. Pre­
vious file contents are not destroyed. 

Overrides the checking of the normal write command, and 
writes to any file that the system permits. 

w !command Writes the specified lines into command. Note the difference in 
spacing between 
w!file 
which overrides checks and 
w!cmd 
which writes to a command. {A blank or tab before the excla­
mation mark is mandatory.) The output of this command is 
displayed on the screen and not inserted in the editing buffer. 

Read commands 
The read commands let you read text into your editing buffer at any location 
you specify. The text you read in must be at least one line long, and can be 
either a file or the output from a command. 

r file Places a copy of the text of the given file in the editing buffer 
after the specified line. If no file is given, the current filename 
is used. The current filename is not changed unless there is 
none, in which case the file becomes the current name. If the 
file buffer is empty and there is no current name, this is treated 
as an e command. 

Address 0 is legal for this command and causes the file to be 
read at the beginning of the buffer. Statistics are given as for 
the e command when the r successfully terminates. After an r 
the current line is the last line read. 

r !command Reads the output of command into the buffer after the specified 
line. A blank or tab before the exclamation mark {!) is 
mandatory. 

590 1February1993 



vi(C) 

Quit commands 
There are several ways to exit vi. Some abort the editing session, some write 
out the editing buffer before exiting, and some warn you if you decide to exit 
without writing out the buffer. All of these ways of exiting are described 
below: 

q 

q! 

wqname 

wq!name 

xname 

Exits vi. No automatic write of the editor buffer to a file is per­
formed. However, vi displays a warning message if the file has 
changed since the last w command was issued, and does not 
quit. vi also displays a diagnostic if there are more files in the 
argument list left to edit. Normally, you will wish to save your 
changes, and you should enter a w command. If you wish to 
discard them, enter the q! command variant. 

Quits from the editor, discarding changes to the buffer without 
complaint. 

Like aw and then a q command. 

Overrides checking normally made before execution of the w 
command to any file. For example, if you own a file but do not 
have write permission turned on, the wq! allows you to 
update the file anyway. 

If any changes have been made and not written, writes the 
buffer out and then quits. Otherwise, it just quits. 

Global and substitute commands 
The global and substitute commands allow you to perform complex changes 
to a file in a single command. Learning how to use these commands is a must 
for an experienced vi user. -

glpattern/cmds 

1 February 1993 

The g command has two distinct phases. In the first phase, 
each line matching pattern in the editing buffer is marked. 
Next, the given command list is executed with the current line, 
dot(.), initially set to each marked line. 

The command list consists of the remaining commands on the 
current input line and may continue to multiple lines by end­
ing all but the last such line with a backslash (\). This 
multiple-line option will not work from within vi. You must 
switch to ex to do it. The vi command Q can be used to exit to 
ex, and the ex command vi will return you to visual mode. If 
cmds (or the trailing slash (/) delimiter) is omitted, each line 
matching pattern is displayed. 

591 



592 

The g command itself may not appear in ands. The options 
autoprint and autoindent are inhibited during a global com­
mand and the value of the report option is temporarily infinite, 
in deference to a report for the entire global. Finally, the con­
text mark ( ' ) or ( · ) is set to the value of the current line (.) 
before the global command begins and is not changed during a 
global command. 

The following global commands, most of them substitutions, 
cover the most frequent uses of the global command. 

g/sl/p This command simply prints all lines that contain the string sl. 

g/sl/s//s2/ This command substitutes the first occurrence of sl on all lines 
that contain it with the string s2. 

g/sl/s//s2/g This command substitutes all occurrences of sl with the string 
s2. This includes multiple occurrences of sl on a line. 

g/sl/s//s2/gp This command works the same as the preceding example, 
except that in addition, all changed lines are displayed on the 
screen. 

g/sl/s//s2/gc This command prompts you to confirm that you want to make 
each substitution of the string sl with the string s2. If you 
enter a Y, the given substitution is made, otherwise it is not. 

g/s0/s/sl/s2/g 
This command marks all those lines that contain the string sO, 
and then for those lines only, substitutes all occurrences of the 
string sl with s2. 

g!lpattern/cmds 
This variant form of g runs cmds at each line not matching 
pattern. 

g/"/s// /g This command inserts blank spaces at the beginning of each 
line in a file. 

slpattern/replloptions . 
On each specified line, the first instance of text matching the 
regular expression pattern is replaced by the replacement text 
repl. If the global indicator option character ~ a~pe~rs,. all 
instances on a line are substituted. If the confirm indication 
character c appears, before each substitution t~e line to be su~­
stituted is printed on the screen with the string t~ be substi­
tuted marked with caret 0 characters. By entering Y, you 
cause the substitution to be performed; any other input causes 
no change to take place. After an s command, the current line 
is the last line substituted. 

1 February 1993 



vi(C) 

vlpattemlcmds 
A synonym for the global command variant g!, running the 
specified cmds on each line that does not match pattern. 

Text movement commands 
The text movement commands are largely superseded by commands avail­
able in vi command mode. However, the following two commands are still 
quite useful: 

co addr flags A copy of the specified lines is placed after addr, which may be 
"O". The current line (.) addresses the last line of the copy 

[range]maddr Them command moves the lines specified by range after the 
line given by addr. For example, m+ swaps the current line 
and the following line, since the default range is just the 
current line. The first of the moved lines becomes the current 
line (dot). 

Shell escape commands 
You will often want to escape from the editor to execute normal UNIX com­
mands. You may also want to change your working directory so that your 
editing can be done with respect to a different working directory. These 
operations are described below: 

cd directory The specified directory becomes the current directory. If no 
directory is specified, the current value of the home option is 
used as the target directory. After a cd, the current file is not 
considered to have been edited so that write restrictions on 
preexisting files still apply. 

sh A new shell is created. You may invoke as many commands 
as you like in this shell. To return to vi, enter a (Ctrl)D toter­
minate the shell. 

!command The remainder of the line after the exclamation (!) is sent to a 
shell to be executed. Within the text of command, the charac­
ters " % " and "#" are expanded as the filenames of the current 
file and the last edited file and the character " ! " is replaced 
with the text of the previous command. Thus, in particular, 
"!!"repeats the last such shell escape. If any such expansion is 
performed, the expanded line is echoed. The current line is 
unchanged by this command. 

If there has been "[No write]" of the buffer contents since the last change to 
the editing buffer, a diagnostic is displayed before the command is executed, 
as a warning. A single exclamation (!) is displayed when the command 
completes. 

1 February 1993 593 



vi(C) 

594 

If you use C-Shell and set the prompt variable to output a prompt for non­
interactive shells, the prompt is interpreted as an argument for command in 
shell escapes. This causes unexpected problems. To avoid these problems, 
use the default prompt value as shown in /11sr/lib/mk11ser/csl1/cshrc. 

Other commands 
The following command descriptions explain how to use miscellaneous ex 
commands that do not fit into the above categories. 

The abbr, map, and set commands can also be defined with the EXINIT 
environment variable, which is read by the editor each time it starts up. For 
more information, see environ(M). Alternatively, these commands can be 
placed in a .exrc file in your home directory, which the editor reads if EXINIT 
is not defined. 

abbr Maps the first argument to the following string. For example, 
the following command 

map, map! 

nu 

preserve 

recover file 

:abbr rainbow yellow green blue red 

maps "rainbow" to "yellow green blue red". Abbreviations can 
be turned off with the unabbreviate command, as in: 

:una rainbow 
Maps any character or escape sequence to a command 
sequence. For example, the following command maps the 
(Ctrl)A key to a shell escape that runs the clear(C) command: 

map' A:!clear'M 
To include the (Ctrl)A and (Ctrl)M characters in the mapping, 
you must use vi's(Ctrl)Vescape. 

Characters mapped with map work in command mode, while 
characters mapped with map! work in insert mode. Characters 
mapped with map! cannot be unmapped using unmap. 

Displays each specified line preceded by its buffer line number. 
The current line is left at the last line displayed. To get 
automatic line numbering of lines in the buffer, set the number 
option. 

The current editor buffer is saved as though the system had 
just crashed. This command is for use only in emergencies 
when a w command has resulted in an error and you do not 
know how to save your work. 

Displays the line number of the addressed line. The current 
line is unchanged. 

Recovers file from the system save area. The system saves a 
copy of the editing buffer only if you have made changes to the 
file, the system crashes, or you execute a preserve command. 
When you use preserve, you are notified by mail. 

1 Februa711 1993 



vi(C) 

set argument With no arguments, set displays those options whose values 
have been changed from their defaults; with the argument all, 
it displays all of the option values. 

tag label 

unmap 

l February 1993 

Giving an option name followed by a question mark (?) causes 
the current value of that option to be displayed. The question 
mark is unnecessary unless the option is a Boolean value. 
Switch options are given values either with: 

set option 
to turn them on or: 

set nooption 
to turn them off. String and numeric options are assigned 
with: 

. set option=value 
More than one option can be given to set; all are interpreted 
from left to right. See "Options" for a complete list and 
descriptions. 

The focus of editing switches to the location of label. If neces­
sary, vi will switch to a different file in the current directory to 
find label. If you have modified the current file before givirig a 
tag command, you must first write it out. If you give another 
tag command with no argument, the previous label is used. 

Similarly, if you press(Ctrl)), vi searches for the word immedi­
ately after the cursor as a tag. This is equivalent to entering 
":tag", the word following the cursor, and then pressing the 
(Return) key. 

The tags file is normally created by a program such as ctags, 
and consists of a number of lines with three fields separated by 
blanks or tabs. The first field gives the name of the tag, the 
second the name of the file where the tag resides, and the third 
gives an addressing form which can be used by the editor to 
find the tag. This field is usually a contextual scan using 
/pattern/ to be immune to minor changes in the file. Such 
scans are always performed as if the nomagic option was set. 
The tag names in the tags file must be sorted alphabetically. 

Unmaps any character or escape sequence that has been 
mapped using the map command. 

595 



vi(C) 

596 

Options 
There are a number of options that can be set to affect the vi environment. 
These can be set with the ex set command while editing, with the EXINIT 
environment variable, or in the vi start-up file, .exrc. This file normally sets 
the user's preferred options so that they do not need to be set manually each 
time you invoke vi. 

The first thing that must be done before you can use vi, is to set the terminal 
type so that vi understands how to talk to the particular terminal you are 
using. 

There are only two kinds of options: switch options and string options. A 
switch option is either on or off. A switch is turned off by prefixing the word 
no to the name of the switch within a set command. String options are strings 
of characters that are assigned values with the syntax option=string. Multiple 
options may be specified on a line. vi options are listed below: 

autoindent, ai (default: noai) 
Can be used to ease the preparation of structured program text. For each 
line created by an append, change, insert, open, or substitute operation, vi 
looks at the preceding line to determine and insert an appropriate amount 
of indentation. To back the cursor up to the preceding tab stop, press 
(Ctrl)D. The tab stops going backward are defined as multiples of the 
shiftwidth option. You cannot backspace over the indent, except by press­
ing(Ctrl}D. 

Specially processed in this mode is a line with no characters added to it, 
which turns into a completely blank line (the whitespace provided for the 
autoindent is discarded). Also, specially processed in this mode are lines 
beginning with a caret n and immediately followed by a (Ctrl}D. This 
causes the input to be repositioned at the begim1ing of the line, but retains 
the previous indent for the next line. Similarly, a "O" followed by a (Ctrl)D, 
repositions the cursor at the beginning without retaining the previous 
indent. Autoindent does not happen in global commands. 

autoprint ap (default: ap) 
Causes the current line to be displayed after each ex copy, move, or substi­
tute command. This has the same effect as supplying a trailing "p" to each 
such command. Autoprint is suppressed in globals, and only applies to the 
last command on a line. 

autowrite, aw (default: noaw) 
Causes the contents of the buffer to be automatically written to the current 
file if you have modified it when you give a next, rewind, tag, or ! com­
mand, or a(Ctrl}" (switch files) or(Ctrl}) (goto tag) command. 

beautify, bf (default: nobeautify) . 
Causes all control characters except tab, newline and formfeed to be dis­
carded from the input. A complaint is registered the first ti~e a backspace 
character is discarded. Beautify does not apply to command input. 

1 February 1993 



vi(C) 

directory, dir (default: dir=/tmp) 
Specifies the directory in which vi places the editing buffer file. If the direc­
tory does not have write permission, the editor will exit abruptly when it 
fails to write to the buffer file. 

edcompatible (default: noedcompatible) 
Causes the presence or absence of g and c suffixes on substitute commands 
to be remembered, and to be toggled on and off by repeating the suffixes. 
The suffix r causes the substitution to be like the tilde n command, instead 
of like the ampersand(&) command. 

errorbells, eh (default: noeb) 
Error messages are preceded by a bell. If possible, the editor always places 
the error message in inverse video instead of ringing the bell. 

hardtabs, ht (default: ht=S) 
Gives the boundaries on which terminal hardware tabs are set or on which 
tabs the system expands. 

ignorecase, ic (default: noic) 
Maps all uppercase characters in the text to lowercase in regular expression 
matching. In addition, all uppercase characters in regular expressions are 
mapped to lowercase except in character class specifications enclosed in 
brackets. 

lisp (default: nolisp) 
Autoindent indents appropriately for LISP code, and the ( ) { I [[ and )) 
commands are modified to have meaning for LISP. 

list (default: nolist) 
All printed lines are displayed, showing tabs and end-of-lines. 

magic (default: magic) 
If nomagic is set, the number of regular expression metacharacters is 
greatly reduced, with only caret n and dollar sign ($) having special 
effects. In addition, the metacharacters tilde r> and ampersand (&) in 
replacement patterns are treated as normal characters. All the normal 
metacharacters may be made magic when nomagic is set by preceding 
them with a backslash(\). 

mesg (default: nomesg) 
Causes write permission to be turned off to the terminal while you are in 
visual mode, if nomesg is set. This prevents people writing to your screen 
with the UNIX write command and scrambling your screen as you edit. 

number, n (default: nonumber) 
Causes all output lines to be printed with their line numbers. 

optimize, opt (default: optimize) 

1 February 1993 

Output of text to the screen is expedited by setting the terminal so that it 
does not perform automatic carriage returns when displaying more than 
one line of output, thus greatly speeding output on terminals without 
addressable cursors when text with leading whitespace is printed. 

597 



vi(C) 

598 

paragraphs, para (default: para =IPLPPPQPP TPbp) 
Specifies paragraph delimiters for the I and I operations. The pairs of char­
acters in the option's value are the names of the nroff macros that start 
paragraphs. 

prompt (default: prompt) 
ex input is prompted for with a colon(:). If noprompt is set, when ex com­
mand mode is entered with the Q command, no colon prompt is displayed 
on the status line. 

redraw (default: noredraw) 
The editor simulates (using great amounts of output}, an intelligent termi­
nal on a dumb terminal. Useful only at very high speed. 

remap (default: remap) 
If on, mapped characters are repeatedly tried until they are unchanged. For 
example, if o is mapped to 0 and 0 is mapped to J, o will map to I if remap 
is set, and to 0 if noremap is set. 

report (default: report=S) 
Specifies a threshold for feedback from commands. Any command that 
modifies more than the specified number of lines will provide feedback as 
to the scope of its changes. For global commands and the undo command, 
the net change in the number of lines in the buffer is presented at the end of 
the command. Thus notification is suppressed during a g command on the 
individual commands performed. 

scroll (default: scroll=Y:. window) 
Determines the number of logical lines scrolled when (Ctrl}D is received 
from a terminal input in command mode, and the number of lines dis­
played by a command mode z command (double the value of scroll). 

sections (default: sections=SHNHH HU) 
Specifies the section macros for the [[and II operations. The pairs of char­
acters in the option's value are the names of the nroff macros that start sec­
tions. 

shell, sh (default: sh=/bin/sh) 
Gives the pathname of the shell forked for the shell escape (!) command, 
and by the shell command. The default is taken from SHELL in the 
environment, if present. 

shiftwidth, sw (default:sw=8) 
Gives the width of a software tab stop, used in reverse tabbing with (Ctrl)D 
when using autoindent to append text, and by the shift commands. 

showmatch, sm (default: nosm) 
When a • ) • or " ) " is typed, moves the cursor to the matching " ( " or " ( " 
for one second if this matching character is on the screen. 

1 February 1993 



vi( CJ 

showmode (default:noshowmode) 
Causes the message "INPUT MODE" to appear on the lower right comer of 
the screen when insert mode is activated. 

slowopen (default: noslowopen) 
Postpones update of the display during inserts. 

tabstop, ts (default: ts=S) 
The editor expands tabs in the input file to be on n boundaries for the pur­
poses of display. 

taglength, ti (default: tl=O) 
The first n characters in a tag name are significant, but all others are 
ignored. A value of zero (the default) means that all characters are signifi­
cant. 

tags (default: tags=tags /usr/lib/tags) 
A path of files to be used as tag files for the tag command. A requested tag 
is searched for in the specified files, sequentially. By default, files named 
tags are searched for in the current directory and in /usr/lib. 

term (default=value of shell TERM variable) 
The terminal type of the output device. 

terse ( default: noterse) 
Shorter error diagnostics are produced for the experienced user. 

timeout [=n], to [=n] (default: to=xxx) 
Milliseconds to wait for subsequent input characters. This is the maximum 
allowed waiting time between characters in "multicharacter" sequences, 
such as arrow keys or :map functions. If no value is given, vi determines 
the timeout period from the type and speed of the terminal connection; set­
ting notimeout requires the next character to be input, and is not the same 
as setting timeout to "0" (never waiting). 

warn (default: warn) 
Warn if there has been "[No write since last change]" before a shell escape 
command!. 

window (default: window= speed dependent) 
This specifies the number of lines in a text window. The default is 8 at slow 
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full 
screen (minus one line) at higher speeds. 

w300, w1200, w9600 
These are not true options but set window (above) only if the speed is slow 
(300), medium (1200), or high (9600), respectively. 

wrapscan, ws (default: ws) 

l February 1993 

Searches, using the regular expressions in addressing, will wrap around 
past the end of the file. 

599 



vi(C) 

600 

wrapmargin, wm (default: wm=O) 
Defines the m~r~in !or auto.matic insertion ?f newlines during text input. 
The value spec1f1ed 1s the width of the margin at the right-hand side of the 
screen within which word wrap will be carried out. A newline will be 
inserted immediately after a word that ends in the margin. A value of zero 
specifies no wrap margin. 

writeany, wa (default: nowa) 
Inhibits the checks normally made before write commands, allowing a 
write to any file that the system protection mechanism will allow. 

Regular expressions 
A regular expression specifies a set of strings of characters. A member of this 
set of strings is said to be "matched" by the regular expression. vi remembers 
two previous regular expressions: the previous regular expression used in a 
substitute command and the previous regular expression used elsewhere, 
referred to as the previous scanning regular expression. The previous regular 
expression can always be referred to by a null regular expression: for exam­
ple, " I I " or "?? ". 

The regular expressions allowed by vi are constructed in one of two ways 
depending on the setting of the magic option. The ex and vi default setting of 
magic gives quick access to a powerful set of regular expression metacharac­
ters. The disadvantage of magic is that the user must remember that these 
metacharacters are magic and precede them with the backslash (\) to use 
them as "ordinary" characters. With nomagic set, regular expressions are 
much simpler, there being only two metacharacters. The power of the other 
metacharacters is still available by preceding the now ordinary character with 
a "\ ". Note that " \ " is always a metacharacter. In this discussion, the magic 
option is assumed. With nomagic, the only special characters are the caret n 
at the beginning of a regular expression, the dollar sign ($) at the end of a reg­
ular expression, and the backslash (\). The tilde n and the ampersand (&) 
also lose their special meanings related to the replacement pattern of a substi­
tute. 

The following basic constructs are used to construct magic mode regular 
expressions. 

char An ordinary character matches itself. Ordinary characters are 
any characters except a caret n at the beginning of a line, a 
dollar sign($) at the end of line, a star(*) as any character other 
than the first, and any of the following characters: 

. \ [ -
These characters must be preceded by a backslash (\) if they 
are to be treated as ordinary characters. 

1 Febmary 1993 



$ 

\> 

[string) 

vi( CJ 

At the beginning of a pattern, forces the match to succeed only 
at the beginning of a line. 

At the end of a regular expression, forces the match to succeed 
only at the end of the line. 

Matches any single character except the newline character. 

Forces the match to occur only at the beginning of a "word"; 
that is, either at the beginning of a line, or just before a letter, 
digit, or underline and after a character not one of these. 

Similar to \<,but matching the end of a "word", that is, either 
the end of the line or before a character which is not a letter, a 
digit, or the underline character. 

Matches any single character in the class defined by string. 
Most characters in string define themselves. A pair of charac­
ters separated by a dash(-) in string defines the set of charac­
ters between the specified lower and upper bounds, thus 
"[a-z)" as a regular expression matches any single lowercase 
letter. If the first character of string is a caret n then the con­
struct matches those characters which it otherwise would not. 
Thus "["a-z)" matches anything but a lowercase letter or a new­
line. To place any of the characters caret, left bracket, or dash 
in string they must be escaped with a preceding backslash(\). 

The concatenation of two regular expressions first matches the leftmost regu­
lar expression and then the longest string that can be recognized as a regular 
expression. The first part of this new regular expression matches the first reg­
ular expression and the second part matches the second. Any of the single 
character matching regular expressions mentioned above may be followed by 
a star(*) to form a regular expression that matches zero or more adjacent oc­
currences of the characters matched by the prefixing regular expression. The 
tilde n may be used in a regular expression to match the text that defined the 
replacement part of the last s command. A regular expression may be 
enclosed between the sequences"\(" and"\)" to remember the text matched 
by the enclosed regular expression. This text can later be interpolated into the 
replacement text using the following notation: 

\digit 

where digit enumerates the set of remembered regular expressions. 

The basic metacharacters for the replacement pattern are the ampersand (&) 
and the tilde 0; these are given as "\ &" and "\ -n when nomagic is set. Each 
instance of the ampersand is replaced by the characters matched by the search 
pattern. In the replacement pattern, the tilde stands for the text of the previ­
ous replacement pattern. 

1 February 1993 601 



vi<C) 

Other metasequences possible in the replacement pattern are always intro­
duced by a backslash(\). The sequence"\ n" is replaced by the text matched 
by the nth regular subexpression enclosed between "\ (" and "\ )". When 
nested, parenthesized subexpressions are present, n is determined by count­
ing occurrences of"\(" starting from the left. The sequences"\ u" and"\ l" 
cause the immediately following character in the replacement to be converted 
to uppercase or lowercase, respectively, if this character is a letter. The 
sequences "\ u· and"\ L" tum such conversion on, either until"\ E" or"\ r!' 
is encountered, or until the end of the replacement pattern. 

Limitations 

602 

The /usr/lib/expreserve program can be used to restore vi buffer files that were 
lost as a result of a system crash. The program searches the /tmp directory for 
vi buffer files and places them in the directory /usr!preserve. The owner can 
retrieve these files using the -r option. 

The /usr/lib/expreserve program must be placed in the system startup file, 
/etc/rc.d/3/recoven1, before the command that cleans out the /tmp directory. See 
the System Administrator's Guide for more information on the /etc/rc2 scripts. 

Two options, although they continue to be supported, have been replaced in 
the documentation by the options that follow the Command Syntax Standard 
(see Intro(C)). A -r option that is not followed with an argument has been 
replaced by -L, and +command has been replaced by -c command. 

vi does not strip the high bit from 8-bit characters read in from text files, text 
insertion, and editing commands. It does not look for "magic numbers" of 
object files when reading in a text file. It also writes out text and displays text 
without stripping the high bit. 

vi uses the LC CTYPE environment variable to determine if a character is 
printable, dispJaying the octal codes of non-printable 8-bit characters. It also 
uses LC_CTYPE and LANG to convert between upper and lowercase charac­
ters for the tilde command and for the ignorecase option. 

When the percent sign (%) is used in a shell escape from vi via the exclama­
tion mark (!), the • % • is replaced with the name of the file being ~dite?. In 
previous versions of vi, each character in this replacement had the high bit set 
to 1 to quote it; in the current version of vi it is left alone. 

1 Febniary 1993 



Files 

See also 

vi(C) 

Tampering with the entries in /usr/lib/terminfo/?/* (for example, changing or 
removing an entry) can affect programs such as vi that expect all entries to be 
present and correct. In particular, removing the "dumb" terminal entry may 
cause unexpected problems. 

Software tabs using I work only immediately after the autoindent. 

Left and right shifts on intelligent terminals do not make use of insert and 
delete operations in the terminal. 

Refer to the crypt(C) page for information about restrictions on the availabil­
ity of encryption options. 

/tmp 

/usr/lib/terminfo/? /* 

ex(C) 

default directory where temporary work files are 
placed; it can be changed using the directory option 
(see the ex(C) set command) 
compiled terminal description database 

"Creating, editing, and printing files" chapter in the User's Guide 

"Writing and editing" chapter in the Tutorial 

Standards confonnance 

vedit and view are conformant with AT&T SVID Issue 2. 

vi is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

vi was developed at the University of California at Berkeley and is used with 
permission. 

1 February 1993 603 



vidi(C) 

vi di 
set the font and video mode for a video device 

Syntax 
vidi [ -d I [ -£fontfile ]font 

vidi mode 

Description 

604 

The vidi command has two functions. With arguments it loads/extracts a 
font or sets the video mode for the current standard input device. Without 
arguments, it lists all of the valid video mode and font commands. 

Font options 
Some video cards support changeable character fonts. Available fonts are 
font8x8, font8xl4, and font8x16. The font options are used as follows: 

vidifont 

vidi-dfont 

loads font from /usr/lib/vidi!font. 

writes font to the standard output. 

vidi -d -f font fontfile writes font to fontfile. 

vidi -f fontfile font loads font from fontfile instead of default directory. 

Mode options 
vidi also sets the mode of the video adapter connected to the standard input. 
The modes are: 

mono move current screen to the monochrome adapter. 

cga move current screen to the Color Graphics adapter. 

ega move current screen to the Enhanced Graphics adapter. 

vga move current screen to the Video Graphics adapter. 

internal activate the internal monitor on Compaq portable with a plasma 
screen. 

external activate the exteival monitor on Compaq portable with a plasma 
screen. 

1 February 1993 



vidi(C) 

Text and graphics modes 
The following tables list the available modes. 

Text Modes 

Mode Cols Rows 

c40x25 
e40x25 
v40x25 
m80x25 
c80x25 
em80x25 
e80x25 
vm80x25 
v80x25 
e80x43 

Graphics Modes 

Mode 

modes 
mode6 
modeD 
modeE 
modeF 
modelO 
modell 
mode12 
mode13 

40 
40 
40 
80 
80 
80 
80 
80 
80 
80 

25 
25 
25 
25 
25 
25 
25 
25 
25 
43 

Pixel resolution 

320x200 
640x200 
320x200 
640x200 
640x350 
640x350 
640x480 
640x480 
320x200 

Font 
8x8 
8x14 
8x16 
8x14 
8x8 
8x14 
8x14 
8x16 
8x16 
8x14 

Adapter 
CGA (EGA VGA) 
EGA(VGA) 
VGA 
MONO (EGA_MONO VGA_MONO) 
CGA (EGA VGA) 
EGA_MONO (VGA_MONO) 
EGA(VGA) 
VGA_MONO 
VGA 
EGA(VGA) 

Colors 

4 
2 

16 
16 
2 (mono) 

16 
2 

16 
256 

Adapter 
CGA (EGA VGA) 
CGA (EGA VGA) 
EGA(VGA) 
EGA (VGA) 
EGA (VGA) 
EGA (VGA) 
VGA 
VGA 
VGA 

Limitations 

See also 

The internal and external commands should only be used on Compaq com­
patible displays. 

screen(HW) 

Standards confonnance 

vidi is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 605 



vmstat(CJ 

vmstat 
report paging and system statistics 

Syntax 
vmstat [ -fs I [ -n namelist I [ -I lines I [ interval [ co1mt II 

Description 

606 

vmstat reports some statistics kept by the system on processes, demand pag­
ing, and cpu and trap activity. Three types of reports are available: 

(default) 

-f 

-s 

A summary of the number of processes in various states, paging 
activity, system activity, and cpu cycle consumption. 

Number of fork(S) system calls performed. 

A verbose listing of paging and trap activity. 

If no interval or count is specified, the totals since system bootup are 
displayed. 

If an interval is given, the number of events that have occurred in the last 
interval seconds is shown. If no count is specified, this display is repeated 
forever every interval seconds. Otherwise, when a count is also specified, the 
information is displayed count times. 

Other flags that may be specified include: 

-n namelist Use file namelist as an alternate symbol table instead of /unix. 

-I lines For the default display, repeat the header every lines reports 
(default is 20). 

The fields in the default report are: 

procs The number of processes which are: 

r In the run queue. 
b Blocked waiting for resources. 
w Swapped out. 

These values always reflect the current situation, even if the 
totals since boot are being displayed. 

1 February 1993 



paging 

system 

vmstat(C) 

Reports on the performance of the demand paging system. 
Unless the totals since boot are being displayed, this information 
is averaged over the preceding interval seconds: 

frs Free swap space. 
dmd Demand zero and demand fill pages. 
sw Pages on swap. 
cch Pages in cache. 
fil Pages on file. 
pft Protection faults. 
frp Pages freed. 
pos Processes swapped out successfully. 
pif Processes swapped out unsuccessfully. 
rso Regions swapped out. 
rsi Regions swapped in. 

Reports on the general system activity. Unless the totals since 
boot are being shown, these figures are averaged over the last 
interval seconds: 

sy Number of system calls. 
cs Number of context switches. 

cpu Percentage of cpu cycles spent in various operating modes: 

us User. 
su System. 
id Idle. 

The -f and -s reports are a series of lines of the form: 
number description 

which means that n11mber of the items described by description happened 
(either since boot or in the last interval seconds, as appropriate). These 
reports should be self-explanatory. 

Authorization 

The behavior of this utility is affected by assignment of the mem authoriza­
tion. If you do not have this authorization, the command will not work. Refer 
to the 0 Using a secure system" chapter of the User's Guide for more details. 

1 February 1993 607 



vmstat(C) 

Files 

See also 

/unix 
/dev/kmem 

default namelist 
default source of statistics 

fork(S), ps(C), pstat(C) 

Standards conformance 

608 

vmstat is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



w(C) 

w 
display information about who is on the system and what they are doing 

Syntax 
w [ -hlqtw ] [ -n namelist I [ -s swapdev I [ -u utmpfile I [ users ... I 

Description 

The w command prints a summary of the current activity on the system, 
including what each user is doing. The heading line shows the current time of 
day, how long the system has been up, the number of users logged onto the 
system, and load averages. Load averages are the number of processes in the 
run queue averaged over 1, 5, and 15 minutes. 

The options are: 

-h Do not print the heading or title lines. 

-l Long format (default): for each user, w outputs the user's login name, the 
terminal or pseudo terminal the user is currently using, when the user 
logged onto the system, the number of minutes the user has been idle 
(how much time has expired since the user last typed anything), the CPU 
time used by all processes and their children attached to the terminal, the 
CPU time used by the currently active process, and the name and argu­
ments of the currently active process. 

-q Quick format: for each user, w outputs the user's login name, the terminal 
or pseudo terminal the user is currently using, the number of minutes the 
user has been idle, and the name of the currently active process. 

-t Only the heading line is output (equivalent to uptime(C)). 

-w Both the heading line and the summary of users is output. 

-nnamelist 
The argument is taken as the name of an alternate namelist (lunix is the 
default). 

-sswapdev 
Uses the file swapdev in place of /dev/swap. This is useful when examining 
a corefile. 

-uutmpfile 

1 February 1993 

The file utmpfile is used instead of /etc/11tmp as a record of who is currently 
logged in. 

609 



w(CJ 

If any users are given, the user summary is restricted to reporting on those 
users. 

Limitations 

The "currently active process" is only an approximation and is not always 
correct. Pipelines can produce strange results, as can some background pro­
cesses. If w is completely unable to guess at the currently active process, it 
prints" - ". 

Authorization 

Files 

See also 

The behavior of this utility is affected by assignment of the mem authoriza­
tion, which is usually reserved for system administrators. If you do not have 
this authorization, the output will be restricted to data pertaining to your 
activities only. Refer to the "Using a secure system• chapter of the User's 
Guide for more details. 

/unix 
/etc/utmp 
/dev/kmem 
/dev/swap 

date(C), finger(C), ps(C), uptime(C), who(C), whodo(C) 

Standards conformance 

610 

w is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 Febrnary 1993 



wait(C) 

wait 
await completion of background processes 

Syntax 

wait 

Description 

The wait command waits until all background processes started with an 
ampersand(&:) have finished, and reports on abnormal terminations. 

wait is built in to csh, sh and ksh. 

Because the wait(S) system call must be executed in the parent process, the 
shell itself executes wait, without creating a new process. 

Limitations 

Not all the processes of a pipeline with three or more stages are children of 
the shell, and thus cannot be waited for. 

See also 

csh(C), ksh(C), sh(C) 

Standards confonnance 

wait is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 611 



we( CJ 

WC 
count words, lines and characters 

Syntax 

we [ -lwc] [files) 

Description 

The we command counts Jines, words and bytes in the named files, or in the 
standard input if no files are named. It also keeps a total count for all named 
files. A word is a maximal string of characters delimited by white space as 
defined by the current locale. 

The options I, w, and c may be used in any combination to specify that a sub­
set of lines, words, and bytes (respectively) are to be reported. The default is 
-lwc. 

The order and number of output columns are affected by the order and num­
ber of options. The filename is not present if no filename is given on the com­
mand line. 

If more than one filename is given on the command line, the last line contains 
the total number of lines, words and bytes in all the files, and is labelled with 
the word "total" in the filename column. 

Limitations 

The -c flag formerly stood for "character" count; however the term is mislead­
ing, as this utility counts bytes. The number of characters may not be the same 
as the number of bytes in some locales. 

Standards conformance 

we is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

612 1 February 1993 



wliat(C) 

what 
identify files 

Syntax 
what files 

Description 

See also 

The what command searches the given files for all occurrences of the pattern 
@(#) and prints out what follows until the first tilde n, greater-than sign (>), 
new-line, backslash(\) or null character. The SCCS command get(CP) substi­
tutes this string as part of the @(#) string. 

For example, if the shell procedure in file print contains 
# @(#)this is the print program 
# @(#)syntax: print [files) 
pr $* I lpr 

then the command 
what print 

displays the name of the file print and the identifying strings in that file: 
print: 

this is the print program 
syntax: print [files) 

what is intended to be used with the get(CP) command, which automatically 
inserts identifying information, but it can also be used where the information 
is inserted manually. 

admin(CP), get(CP) 

Standards conformance 

what is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 613 



who(C) 

who 
list who is on the system 

Syntax 

who [ -aAbdfHlpqrstTu] [-n count] [file] 

whoami 

who am I 

Description 

614 

The who command can list the user's name, terminal line, login time, and the 
elapsed time since activity occurred on the line; it also lists the process ID of 
the command interpreter (shell) for each current user. It examines the 
/etc/inittab file to obtain information for the Comments column, and /etc/utmp 
to obtain all other information. If file is given, that file is examined. Usually, 
file will be /etc/wtmp, which contains a history of all the logins since the file 
was last created. 

who with the am i or am I option identifies the invoking user. 

Except for the default -s option, the general format for output entries is: 

name [state] line time activity pid [comment] [exit] 
With options, who can list logins, logoffs, reboots, and changes to the system 
clock, as well as other processes spawned by the init process. These options 
are: 

-a This option processes the /etc/utmp file or the named file with all options 
turned on. 

-A This option displays UNIX accounting information. 

-b This option indicates the time and date of the last reboot. 

1 February 1993 



who(C) 

-d This option displays all processes that have expired and have not been 
respawned by init. The "exit" field appears for dead processes and con­
tains the termination and exit values (as returned by wait(C)), of the dead 
process. This can be useful in determining why a process terminated. 

-f The -f option will suppress pseudo-ttys from who output, except for 
remote logins. 

-H This option displays column headings above the regular output. 

-I This option lists only those lines on which the system is waiting for 
someone to login. The "name" field is LOGIN in such cases. Other fields 
are the same as for user entries except that the "state" field does not exist. 

-n The argument to this option specifies the number of columns for the -q 
option in displaying the user names. 

-p This option lists any other process which is currently active and has been 
previously spawned by init. The "name" field is the name of the program 
executed by init as found in /etc/inittab. The "state", "line", and "idle'' 
fields have no meaning. The "comment" field shows the "id" field of the 
line from /etc/inittab that spawned this process. See inittab(F). 

-q This is a quick who, displaying only the names and the number of users 
currently logged on. When this option is used, all other options are 
ignored. 

-r This option indicates the current run level of the init process. In addition, 
it produces the process termination status, process id, and process exit 
status (see utmp(F)) under the "idle", "pid", and "comment" headings, 
respectively. 

-s This option is the default and lists only the "name", "line", and "time" 
fields. 

-t This option indicates the last change to the system clock (via the date(C) 
command) by root. See su(C). 

-T This option is the same as the -u option, except that the "state" of the ter­
minal line is printed. The "state" describes whether someone else can 
write to that terminal. A plus character ( +) appears if the terminal is writ­
able by anyone; a minus character(-) appears if it is not. root can write to 
all lines having a plus character or a minus character in the "state" field. 
If a bad line is encountered, a question mark (?) is displayed. 

1 February 1993 615 



who(C) 

-u This option lists only those users who are currently logged in. The 
"name" is the user's login name. The uline" is the name of the line as 
found in the directory /dev. The "time" is the time that the user logged in. 
The "activity" is the number of hours and minutes since activity last 
occurred on that particular line. A dot (.) indicates that the terminal has 
seen activity in the last minute and is therefore "current." If more than 
twenty-four hours have elapsed or the line has not been used since boot 
time, the entry is marked "old." This field is useful when trying to deter­
mine whether a person is working at the terminal or not. The "pid" is the 
process ID of the user's shell. The "comment" is the comment field. It 
can contain information about where the terminal is located, the tele­
phone number of the dataset, the type of terminal if hard-wired, and so 
on. 

Exit values 

Examples 

Files 

See also 

who returns 0 on successful completion. A value of 1 indicates that an error 
occurred; values greater than 1 correspond to system errors documented in 
lntro(S}. 

who-b 
Indicates when the system was last rebooted. 

who-uH 
Lists those users currently logged in, with a heading printed above the list. 

/etc/utmp 
/etc/wtmp 
/etc/inittab 

date(C}, inittab(F}, login(M}, mesg(C}, su(C}, utmp(F}, wait(S} 

Standards conformance 

who is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

616 1 frbroary 1993 



whodo(C) 

whodo 
determine who is doing what 

Syntax 

whodo 

Description 

The whodo command produces merged, reformatted, and dated output from 
the who(C) and ps(C) commands. 

Authorization 

Files 

See also 

The behavior of this utility is affected by assignment of the mem authoriza­
tion. If you do not have this authorization, the output will be restricted to 
data pertaining to your activities only. Refer to the "Using a secure system" 
chapter of the User's Guide for more details. 

/bin/whodo full pathname of whodo 

ps(C), who(C) 

Standards confonnance 

whodo is conformant with AT&T SVID Issue 2. 

1 February 1993 617 



write( CJ 

write 
write to another user 

Syntax 

write user [ tty I 

Description 

Files 

618 

The write command copies lines from your terminal to that of another user. 
When first called, it sends the message: 

Message from yo11r-logname your-tty ... 

The recipient of the message should write back at this point. Communication 
continues until an end-of-file is read from the terminal or an interrupt is sent. 
At that point, write displays: 

(end of message I 

on the other terminal and exits. 

If you want to write to a user who is logged in more than once, the tty argu­
ment may be used to indicate the appropriate terminal. 

Permission to receive messages from other users of the system may be 
granted or denied by use of the mesg(C) command. By default, users are not 
allowed to receive messages (this is for security). This may be altered by issu­
ing the mesg command from the .login script. 

If the character " ! " is found at the beginning of a line, write calls the shell to 
execute the rest of the line as a command. Output from the command is sent 
to the terminal; it is not sent to the remote user. 

The following protocol is suggested for using write: when you first write to 
another user, wait for him or her to write back before starting to send. Each 
party should end each message with a distinctive signal ((o) for "over" is con­
ventional), indicating that the other may reply; (oo) for "over and out" is sug­
gested when conversation is to be terminated. 

/etc/utmp 
/bin/sh 

to find user 
to execute"!" 

1 fl'bmary 1993 



write( CJ 

See also 
hello(C), mail(C), mesg(C), who(C) 

Standards confonnance 

write is conformant with: 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

l February 1993 619 



x286emul(C) 

x286emul 
emulate XENIX 80286 

Syntax 

x286emul [ arg ... ] prog286 

Description 

Files 

x286emul is an emulator that allows programs from XENIX System V /286 
Release 2.3 or XENIX System V /286 Release 2.3.2 on the Intel 80286 to run on 
the Intel 80386 processor under UNIX System V Release 3.2 or later. 

The UNIX system recognizes an attempt to exec(S} a 286 program, and auto­
matically exec's the 286 emulator with the 286 program name as an additional 
argument. It is not necessary to specify the x286emul emulator on the com­
mand line. The 286 programs can be invoked using the same command for­
mat as on the XENIX System V /286. 

x286emul reads the 286 program's text and data into memory and maps them 
through the LDT (via sysi86(5}} as 286 text and data segments. It also fills in 
the jam area, which is used by XENIX programs to do system calls and signal 
returns. x286emul starts the 286 program by jumping to its entry point. 

When the 286 program attempts to do a system call, x286emul takes control. 
It does any conversions needed between the 286 system call and the 
equivalent 386 system call, and performs the 386 system call. The results are 
converted to the form the 286 program expects, and the 286 program is 
resumed. 

The following are some of the differences between a program running on a 
286 and a 286 program using x286emul on a 386: 

• Attempts to unlink or write on the 286 program will fail on the 286 with 
ETXTBSY. Under x286emul, they will not fail. 

• ptrace(S) is not supported under x286emul. 

• The 286 program must be readable for the emulator to read it. 

/bin/x286emul the emulator must have this name and be in /bin if it is to be 
automatically invoked when exec(S} is used on a 286 program 

620 1 Febniary l 993 



xargs(C) 

xargs 
construct and execute commands 

Syntax 
xargs [·tpr] [ -eeofstr] [ -i[replstr]] [ -l[number] ] [ ·n number] [ -x] [ -ssize] 
[command [initial-arguments]] 

Descripti.on 
The xargs command combines the fixed initial-arguments with arguments 
read from the standard input to execute the specified command one or more 
times. The number of arguments read for each command invocation and the 
manner in which they are combined are determined by the flags specified. 

command, which may be a shell file, is searched for using the shell $PATH 
variable. If command is omitted, /bin/echo is used. 

Arguments read in from standard input are defined to be contiguous strings 
of characters delimited by one or more blanks, tabs, or newlines; empty lines 
are always discarded. Blanks and tabs may be embedded as part of an argu­
ment if escaped or quoted: Characters enclosed in quotes (single or double) 
are taken literally, and the delimiting quotes are removed. Outside of quoted 
strings, a backslash(\) will escape the next character. 

Each argument list is constructed starting with the initial-arguments, fol­
lowed by some number of arguments read from standard input (exception: 
see the -i flag). Flags -i, -1, and -n determine how arguments are selected for 
each command invocation. When none of these flags are coded, the initial­
arguments are followed by arguments read continuously from standard input 
until an internal buffer is full, and command is executed with the accumulated 
arguments. This process is repeated until there are no more arguments. 
When there are flag conflicts (for example, -1 and -n), the last flag has pre­
cedence. 

xargs takes the following option flags: 

-l[number] 

1 February 1993 

command is executed for each number lines of nonempty arguments 
from the standard input. This is instead of the default single line of input 
for each command. The last invocation of command will be with fewer 
lines of arguments if fewer than number remain. A line is considered to 
end with the first newline unless the last character of the line is a blank or 
a tab; a trailing blank/tab signals continuation through the next 
nonempty line. If number is omitted, 1 is assumed. Option -x is forced. 

621 



xargs(C) 

622 

-i[replstr] 
Insert mode: command is executed for each line from the standard input, 
taking the entire line as a single argument, inserting it in initial­
arguments for each occurrence of replstr. A maximum of 5 arguments in 
initial-arguments may each contain one or more instances of replstr. 
Blanks and tabs at the beginning of each line are thrown away. Con­
structed arguments may not grow larger than 255 characters, and option 
-x is also forced. " I } " is assumed for replstr if not specified. 

-nnumber 
Executes command, using as many standard input arguments as possible, 
up to the number of arguments maximum. Fewer arguments are used if 
their total size is greater than size characters, and for the last invocation if 
there are fewer than number arguments remaining. If option -x is also 
coded, each number of arguments must fit in the size limitation, or xargs 
terminates execution. 

-t Trace mode: the command and each constructed argument list are echoed 
to file descriptor 2 just prior to their execution. 

-p Prompt mode: the user is prompted whether to execute command at each 
invocation. Trace mode (-t) is turned on to display the command instance 
to be executed, followed by a "? ... " prompt. A reply of " y" (optionally 
followed by anything) will execute the command; anything else, includ­
ing a carriage return, skips that particular invocation of command. 

-x Causes xargs to terminate if any argument list would be greater than size 
characters; -x is forced by the options -i, and -1. When none of the options 
-i, -I, or -n are coded, the total length of all arguments must be within the 
size limit. 

-ssize 
The maximum total size of each argument list is set to size characters; 
size must be a positive integer less than or equal to 470. If -s is not coded, 
470 is taken as the default. Note that the character count for size includes 
one extra character for each argument and the count of characters in the 
command name. 

-eeofstr 
eofstr is taken as the logical end-of-file string. Underscore U is assumed 
for the logical EOF string if -e is not coded. -e with no eofstr coded turns 
off the logical EOF string capability (underscore is then taken l_iterally). 
xargs reads standard input until either end-of-file or the log1cal EOF 
string is encountered. 

1 February 1993 



xargs(C) 

Exit values 

Examples 

xargs terminates if it either receives a return code of -1 from, or if it cannot 
execute the command. When command is a shell program, it should explicitly 
exit (see sh(C)) with an appropriate value to avoid accidently returning with 
-1. 

The following will move all files from directory $1 to directory $2, and echo 
each move command just before doing it: 

ls $1 I xargs -i -t mv $1/( } $2/{ } 

The following will combine the output of the parenthesized commands onto 
one line, which is then echoed to the end-of-file log: 

(logname; date; echo $0 $*) I xargs >>log 

The user is prompted to enter which files in the current directory are to be 
printed and prints them one at a time: 

ls I xargs -p -1 lpr 

or many at a time: 
ls I xargs -p -1 I xargs lpr 

The following will execute diff(C) with successive pairs of arguments origi­
nally entered as shell arguments: 

echo $* I xargs -n2 diff 

Standards conformance 

xargs is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 623 



xtod(C) 

xtod 
change file format from UNIX to MS-DOS 

Syntax 

xtod [filename] > [output.file] 

Description 

See also 

624 

The xtod command converts a file from UNIX format to MS-DOS format. The 
MS-DOS files terminate a line of text with a carriage return and a linefeed, 
while UNIX files terminate a line with a linefeed only. Also MS-DOS places a 
(Ctrl)z at the end of a file, while UNIX does not. Some programs and utilities 
are sensitive to this difference and some are not. If a text or data file is not 
being interpreted correctly, use the dtox and xtod conversion utilities. The 
xtod command adds the extra carriage return to the end of each line and adds 
the ( Ctrl)z to the end of the file. This utility is not required for converting 
binary object files. 

If no filename is specified on the command line, xtod takes input from stan­
dard input. Output of the utility goes to standard output. 

dtox(C) 

1Febmary1993 



xtract(C) 

xtract 
extract a file from a cpio archive and stop 

Syntax 
extract cpio_options pattern archive 

Description 
xtract is used to extract a single file from a cpio archive. Unlike using cpio 
directly, this allows for the quick extraction of a single file without reading the 
entire archive. The extraction is performed using the -iv options. 

See also 

cpio(C) 

Standards confonnance 

xtract is conformant with AT&T SVID Issue 2. 

1 February 1993 625 



yes(C) 

yes 
print string repeatedly 

Syntax 

yes [ string ] 

Description 

626 

yes repeatedly outputs "y", or if a single string argument is given, arg is out­
put repeatedly. The command will continue indefinitely unless aborted. This 
is useful in pipes to commands that prompt for input and require a "y" 
response for a yes. In this case, yes terminates when the command it pipes to 
terminates, so that no infinite loop occurs. 

1 Fe/lniary 1993 



Miscellaneous (M) 





lntro(M) 

Intro 
introduction to miscellaneous features and files 

Description 
This section contains miscellaneous information useful in maintaining the 
system. Included are descriptions of files, devices, tables and programs that 
are important in maintaining the entire system. 

See also 

lntro(ADM), Intro(C), Intro(F), Intro(HW) 

1 February 1993 629 



aio(MJ 

aio 
Asynchronous disk 1/0 ioctl commands 

Syntax 

#include <sys/async.h> 

int ioctl Cfildes, command, arg) 

intfildes, command, arg; 

Description 

630 

AIO 1/0 control commands (ioctls) are a subset of ioctl(S) system calls that 
perform asynchronous 1/0 operations on raw disk partitions. This allows a 
program to do other processing while the kernel performs the 1/0 requests; a 
later ioctl command polls the status of issued operations. A program may 
have several disk partitions open, and have multiple AIO requests issued to 
each partition. 

Use of AIO requires disk driver support; all SCO hard disk drivers support 
AIO. The DKIOCASTAT ioctl can be used to query whether a given open file 
descriptor supports AIO. 

AIO supports the option of locking an area of physical memory for the use of 
AIO transfers; this can be configured by the UNIX system administrator by 
using the /usr/lib/aiomemlock file and the /etc/aiolkinit command. AIO can be 
performed whether or not such a lock is available. 

ioctl commands 

DKIOCMLOCK Signals the intent of the program to perform AIO on the pro­
vided file descriptor; this call also locks physical memory if 
this is permitted for the user. The arg argument to ioctl 
points to the following structure: 
typedef struct asyncmlock 
{ 

char *avaddr; /* starting user virtuai add::: 
uint asize; /* size of area to be locked *, 

ASYNCMLOCK; 

The area of memory spanned by the ASYNCMLOCK struc­
ture must already be allocated to the calling program, for 
example, by a previous call to malloc(S). If aaize is~· _or the 
user does not have AIO memory lock privileges, 
DKIOCMLOCK does not lock physical memory, but returns 
without an error. Possession of memory locking privileges 
by a user does not affect the success or failure of a locking 

1 frbrnary 1993 



aio(M) 

call, but determines whether or not the call does anything. 
Similarly, a memory Jocking length of zero is not an error, 
but is treated as a no-op. 

If the program is doing AIO to multiple partitions, 
DKIOCMLOCK must be called on each open file descriptor. 
The DKIOCMLOCK for all calls by one process must refer to 
the same area of memory, and DKIOCMLOCK should only 
be called once for each file descriptor. Memory should not 
be locked more than once for any file descriptor. 

On failure, errno is set to one of the following values: 

[EAGAINl No internal AIO per-process structure could be 
allocated (too many processes doing AIO). 

[EFAULTl 

[EINVALl 

The arg pointer is not within the user's space, 
or the memory area specified is not within the 
user's space. 

DKIOCMLOCK has been called with different 
ASYNCMLOCK values than a previous call, or 
AIO is not supported for this fd, or AIO has not 
been linked into the running kernel. 

[ENOMEM] Not enough memory was available to satisfy 
the lock request. 

DKIOCASTRT Initiates an AIO request. arg is a pointer to the following 
structure: 

1 February 1993 

typedef struct 
long 
long 
char 
long 
char 

AREQBUF; 

1• 
• Command bits ., 

areqbuf { 
au_cmd; 
au_daddr; 
•au_maddr; 
au_size; 
*au_ref; 

#define AU_READ 01 
#define AU_WRITE 02 

au_cmd is set to either AU_READ or AU_WRITE. 

au_daddr is the (512 byte) disk block number where the 1/0 
is to start from. 

631 



aio(M) 

632 

au_maddr is the user's address for 1/0. 

a u_s i z e is the length in bytes of the transfer. 

ar_ref is a context pointer for the caller's use. It is returned 
with the status from the 1/0 request. 

The AIO facility imposes restrictions on the 1/0 request pa­
rameters. au_size must be a multiple of 512 (that is, only 
multiples of 512 byte disk blocks are permitted). au_maddr 
must be aligned on a 512 byte address boundary. The entire 
transfer must fit within an MMU page, that is, within a 4K 
aligned page in the user's space. Finally, for a given process 
doing asynchronous 1/0 only one memory range can be 
locked, and the same range must be specified for all file 
descriptors; otherwise an error will result. 

On failure, AIO sets errno to one of the following values (the 
disk driver itself may set other values on errors). 

[EFAULTI The arg pointer is not within the user's space, 
or the transfer address is not in the user's 
space. 

[EINVALI One of the above alignment restrictions has 
been violated, au_cmd is unrecognized, the user 
has locked AIO memory and the transfer is not 
within this locked range, AIO is not supported 
for this file descriptor, or AIO has not been 
linked into the running kernel. 

[EAGAINI Some AIO resource could not be allocated (for 
example, too many AIO requests for the sys­
tem, or for this user). 

[ENXIO] The disk block was beyond the range of the 
partition. 

DKIOCASTAT Returns information for any completed requests (up to 15) 
on this file descriptor. If more than 15 requests have been 
issued on this file descriptor, or if all the requests have not 
completed, then DKIOCASTAT will need to be called more 
than once. 

DKIOCASTAT also determines whether a particular open file 
descriptor supports AIO. If AIO is not supported, the ioctl 
returns -1, and errno is set to EINVAL. 

1 Febntary 1993 



Return values 

aio(M) 

arg is a pointer to an ASYNCSTATUS structure, which is filled in 
by the ioctl system call: 
#define MAXSTATUS 15 

typedef struct asyncstatus 
{ 

long 
IOSTAT 

ASYNCSTATUS; 

typedef struct aiostat 
{ 

a count; 
astatus[MAXSTATUS]; 

short iostatus; 
short iobs i ze; 
char *iomaddr; 
char • ioref; 

IOSTAT; 

acount is set to the number of IOSTAT structures actually 
returned in this call. iostatus is set to 0 for a successful l/0 
request, and to nonzero (typically a valid errno code) on an 
error. iobsize is set to the number of bytes transferred. 
iornaddr is the user's transfer address as given in the AREQBUF 
structure, and ioref is the context pointer; these two values 
associate the returned status with the initial request. 

On failure, AIO sets errno to one of the following values: 

[EFAULT) 

1 The arg pointer is not within the user's space. 

2 AIO is not supported by this driver, or AIO is not config­
ured into the kernel. 

The AIO ioctls r..?turn 0 on success, and-1 on error. 

See also 

aio(F), aioinfo(ADM), aiolkinit(ADM), aiomemlock(F) 

1February1993 633 



ascii(MJ 

ascii 
map of the ASCII character set 

Description 

ascii is a map of the 7-bit ASCII character set. It lists both octal and hexade­
cimal equivalents of each character. It contains: 

Octal 

000 nul 001 soh 002 stx 003 etx 004 eot OOS enq 006 ack 007 bel 
010 bs 011 ht 012 nl 013 vt 014 np OlS er 016 so 017 si 
020 die 021 dcl 022 dc2 023 dc3 024 dc4 02S nak 026 syn 027 etb 
030 can 031 em 032 sub 033 esc 034 fs 03S gs 036 rs 037 us 
040 sp 041 ! 042" 043 # 044 $ 04S % 046 & 047 • 

oso ( OSl ) OS2 • OS3 + OS4' oss - OS6. OS7 I 
060 0 061 1 062 2 063 3 064 4 06S s 066 6 067 7 
070 8 071 9 072 : 073; 074 < 07S = 076 > 077 ? 
100@ 101 A 102 B 103 c 104 D lOS E 106 F 107 G 
110 H 111 I 112 J 113 K 114 L llS M 116 N 117 O[ 

120 p 121 Q 122 R 123 s 124 T 125 u 126 v 127 w 
130 x 131 y 132 z 133 [ 134 \ 13S I 136 • 137 -
140 • 141 a 142 b 143 c 144 d 14S e 146 f 147 g 

150 h lSl i 1S2 j 1S3 k 154 I lSS m 1S6 n 1S7 0 

160 p 161 q 162 r 163 s 164 t 16S u 166 v 167 w 

170 x 171 y 172 z 173 { 174 I 17S I 176 - 177 del 

Hexadecimal 

00 nul 01 soh 02 stx 03 etx 04 eot OS enq 06 ack 07 bel 

08 bs 09 ht Oa nl Ob vt Oc np Oder Oe so Of si 

10 die 11 dcl 12 dc2 13 dc3 14 dc4 lS nak 16 syn 17 etb 

18 can 19 em la sub lb esc le fs ld gs le rs 1f us 

20 sp 21 ! 22" 23 # 24 $ 2S % 26 & 27 .. 

28 ( 29) 2a • 2b + 2c , 2d - 2e. 2f I 
30 0 31 1 32 2 33 3 34 4 3S s 36 6 37 7 

38 8 39 9 3a : 3b; 3c < 3d = 3e > 3f ? 

40@ 41 A 42 B 43 c 44 D 4S E 46 F 47 G 

48 H 49 I 4a J 4b K 4c L 4dM 4e N 4f 0 

sop Sl Q S2 R S3 s 54 T 55 u S6 v S7 w 
S8 x S9 y Sa z Sb [ Sc \ Sd I Se. Sf_ 

60 .. 61 a 62 b 63 c 64 d 6S e 66 f 67 g 

68 h 69 i 6a j 6b k 6c I 6d m 6e n 6f 0 

70 p 71 q 72 r 73 s 74 t 7S u 76 v 77 w 

78 x 79 y 7a z 7b ( 7c I 7d I 7e - 7f del 

634 1 February 1993 



Files 

ascii(M) 

The extended 8-bit ASCII character set is shown here, again with the octal and 
hexadecimal value of each character. The mapchan(M) utility allows access to 
these characters. Display of these characters is dependent on the capabilities 
of the hardware device. (A ill indicates an unassigned character.) 

Octal 

200. 201. 202. 203. 204 ind 205 nel 206 ssa 207 esa 
210 hts 211 htj 212 vts 213 pld 214 plu 21S ri 216 ss2 217 ss3 
220 des 221 pul 222 pu2 223 sts 224 cch 22S mw 226 spa 227 epa 
230. 231 • 232. 233 csi 234 st 23S osc 236 pm 237 ape 
240 nbsp 241 j 242 ( 243 £ 244 D 24S ¥ 246 I 247 § 
250 .. 251 © 252. 253 (( 2S4 ~ 25S shy 256 ® 2S7 -

260 ° 261 ± 262 2 263 3 264 • .26S µ 266 'I 267 . 

270 • 271 I 272. 273 » 274 v. 27S ~ 276 Y. 277 i. 
300 A 301 A 302 A 303 A 304 A. 30s A 306 IE 307 <;: 
310 E 311 E 312 E 313 E 314 I 31S i 316 i 317 I 
320 D 321 N 322 C) 323 () 324 6 32S 6 326 b 327. 
330 0 331 0 332 (J 333 0 334 0 33S y 336 " 337 8 
340 a 341 a 342 a 343 a. 344 a 34S re 346 re 347 <; 
3so e 351 e 3s2 e 3S3 e 3S4 i 3SS i 3S6 i 3S7 I 
360 d 361 i\ 362 0 363 6 364 6 36S 0 366 Ci 367. 

370" 371 u 372 u 373 ii 374 ii 37S y 376" 377 y 

Hexadecimal 

80. 81. 82. 83. 84 ind BS nel 86 ssa S7 esa 
SB hts 89 htj Sa vts Sb pld Sc plu Sd ri 8e ss2 Bf ss3 
90 des 91 pul 92 pu2 93 sts 94 cch 9S mw 96 spa 97 epa 
9S. 99. 9a Ill 9b csi 9c st 9d osc 9e pm 9f ape 
aO nbsp al ; a2 ( a3 £ a4 D as ¥ a6 ~ a7 § 
aS ·· a9 © aa ' ab cc ac ~ ad shy ae ® af -

bO 0 bl ± b2 2 b3 3 b4. bS µ b6 'II b7. 

b8. b9 I ba • bb » be Y. bd ~ be Y. bf i. 
co A cl A c2 A c3 A c4 A. cs A c6 IE c7 <;: 
cs E c9 E: ca E cb E cc I cd I ce I cf I 
dO D dl N d2 C) d3 6 d4 6 dS 6 d6 0 d7. 
dS 0 d9 0 da (J db 0 de 0 dd y de I> df 8 
e0 a el a e2 a e3 a e4 a es a e6 re e7 <; 
es e e9 e ea e eb e ec i ed i ee i efl 
fO d fl i\ f2 0 f3 6 f4 6 fS o f6 Ci f7 • 

f8 " f9 u fa u lb ii fc ii fd y fe jJ ff y 

/usr!pub/ascii 

1February1993 635 



chrtbl(M) 

chrtbl 
create a ctype locale table 

Syntax 

chrtbl [ specfile ) 

Description 

636 

The utility chrtbl is provided to allow new LC_CTYPE locales to be defined; it 
reads a specification file, containing definitions of the attributes of characters 
in a particular character set, and produces a binary table file, to be read by 
setlocale(S), which determines the behavior of the ctype(S) routines. 

The information supplied in the specification file consists of lines in the 
following format: 

char type conv 

The three fields, which are separated by space or tab characters, have the 
following meanings and syntax: 

char 

type 

This is the character which is being defined. It may be specified in 
one of six different ways (the following examples all specify the 
ASCII character "/!\'): 

65 decimal 
0101 octal 
Ox41 hexadecimal 
'X quoted character 
'\101' quoted octal 
'\x41' quoted hexadecimal 

This specifies the classification of the character, as reported by the 
ctype(S) routines. There are 7 basic classifications: 

C iscntrl 
D sdigit 
L islower 
P ispunct 
S isspace 
U isupper 
X isxdigit 

1 February 1993 



chrtbl(M) 

Other ctype macros use combinations of these 7 basic classifications. 
Zero, one or more of these classification letters can be specified, in 
any order, although only certain combinations are logically reason­
able, as follows: 
C control character 
CS spacing control character 
U uppercase alphabetic 
UX uppercase alphabetic hex digit 
UL dual case character 
L lowercase alphabetic 
LX lowercase alphabetic hex digit 
DX decimal and hex digit 
S spacing character 
P punctuation (all other printing chars) 
blank undefined (all classifications false) 

conv This optional field specifies the corresponding uppercase character 
for a lowercase character, or the corresponding lowercase character 
for an uppercase character. Dual case characters should have their 
own values repeated in this field. 

The syntax is as for the char field. 

All characters following a hash (#) are treated as a comment and ignored up to 
the end of the line, unless the hash is within a quoted character. 

The initial tc_CTYPE table used is that for the ascii(M) character set, with the 
entries for the higher 128 characters (Ox80 - Oxff) set to zero (that is, all classifi­
cations false). Thus an empty specification file will result in a table for US 
ASCII. Any specifications found in the input to chrtbl will overwrite the spec­
ifications for that character only, thus additions and modifications to the 
ASCII table can be made without respecifying those characters which are 
unchanged. 

The binary table output is placed in a file named ctype, within the current 
directory. This file should be copied or linked to the correct place in the setlo­
ca/e file tree (see locale(M)). To prevent accidental corruption of the output 
data, the file is created with no write permission; if the chrtbl utility is run in a 
directory containing a write-protected "ctype" file, the utility will ask if the 
existing file should be replaced; any response other than "yes" or "y" will 
cause chrtbl to terminate without overwriting the existing file. 

If the specfile argument is missing, the specification information is read from 
the standard input. 

1February1993 637 



chrtbl(M) 

Specification file fonnat 
The chrtbl specification file has the following format (the order of the specifi­
cations is not significant): 

# chrtbl file for TVI 7-bit Spanish character set 
# Note that only non-ASC!I characters need be specified 
# 
'@• P # inverted ? 
'[' L ']' #ntilde 
'\ \' P # inverted ! 
']' U '[' # N tilde 

# degree sign 

Exit values 

Any error conditions encountered will cause the program to exit with a non­
zero return code; successful completion is indicated with a zero return code. 

Diagnostics 

Files 

See also 

If the input table file cannot be opened for reading, processing will terminate 
with the error message, HCannot open specification file". 

Any lines in the specification file which are syntactically incorrect will cause 
an error message to be issued to the standard error output, specifying the line 
number on which the error was detected. The line will be ignored, and pro­
cessing will continue. 

If the output file, "ctype", cannot be opened for writing, processing will ter­
minate with the error message, "Cannot create table file." 

/usr/include/ctype.h 

ascii(M), ctype(S), locale(M), setlocale(S) 

Standards confonnance 

638 

chrtbl not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



clone(M) 

clone 
open any minor device on a STREAMS driver 

Description 

done is a STREAMS software driver that finds and opens an unused minor de­
vice on another STREAMS driver. The minor device passed to done during 
the open is interpreted as the major device number of another STREAMS 
driver for which an unused minor device is to be obtained. Each such open 
results in a separate stream to a previously unused minor device. 

The done driver consists solely of an open function. This open function per­
forms all of the necessary work so that subsequent system calls (including 
dose(S)) require no further involvement of done. 

done will generate an ENXIO error, without opening the device, if the minor 
device number provided does not correspond to a valid major device, or if the 
driver indicated is not a STREAMS driver. 

done will generate an ENODEV error, without opening the device, if a pipe 
cannot be created. 

Limitations 

See also 

Multiple opens of the same minor device cannot be done through the done 
interface. Executing stat(S) on the file system node for a cloned device yields 
a different result from executing stat(S) using a file descriptor obtained from 
opening the node. 

log(M), pipe(ADM), pipe(S) 

AT&T STREAMS Programmer's Guide 

1February1993 639 



coltbl(M) 

coltbl 
create a collation locale table 

Syntax 

coltbl [ specfile I 

Description 

640 

The utility coltbl is provided to allow LC_COLLATE locales to be defined. It 
reads in a specification file (or standard input if specfile is not defined), con­
taining definitions for a particular locale's collation ordering, and produces a 
concise format table file, to be read by setlocale(S). 

In general, characters may be specified in one of six different ways (the fol­
lowing examples all specify the ASCII character "N'): 

65 decimal 
0101 octal 
Ox41 hexadecimal 
'X quoted character 
'\ 101' quoted octal 
'\x41' quoted hexadecimal 

The information in the specification file is to an extent free format. A particu­
lar type of definition is started by one of the following keywords: 

PRIM: ZERO: EQUIV: DOUBLE: 

The keywords, PRIM:, ZERO: and EQUIV:, are concerned directly with the set­
ting of the collation ordering of characters. 

A group of characters which are to be collated as equal, unless all other char­
acters in a pair of strings are also equal, are grouped together with the PRIM: 
keyword. The position of a particular group in the specification file is signifi­
cant as far as the collation ordering is concerned. Collating elements following 
the PRIM: keyword are separated by white spaces. A two-character collating 
element can be specified here by (ab), where a and b are the two characters 
making up the sequence. The order of the collating elements defined in one 
group is significant in secondary collation ordering. It is also possible to 
define a range of characters, for example: 

PRIM: 'a' - 'z' 

Collating elements following the ZERO: keyword, are to be ignored when col­
lating. The format of the definitions is the same as with PRIM:. Ranges of 
characters can also be defined, as for example: 

ZERO: Ox80 - Ox9f 

1 February 1993 



coltbl(M) 

EQUIV: is used to give two collating elements identical positions in the colla­
tion ordering. The syntax is: 

EQUIV: a =b 
where a and b are the two equal collating elements. There can be only one 
definition for each occurrence of this keyword. 

Single characters which are to be collated as two characters, for example the 
German sharp s, are defined with the DOUBLE: keyword. The syntax is: 

DOUBLE: a = (b c) 
where a is the single character, and band c are the two characters in the collat­
ing sequence. There can be only one definition for each occurrence of this key­
word. The single character a must not also appear after a PRIM:, a ZERO: or an 
EQUIV: keyword. 

All characters following the hash character are treated as a comment and 
ignored up to the end of the line, unless the hash is within a quoted string. 

The concise format locale table is placed in a file named collate in the current 
directory. This file should be copied or moved to the correct place in the 
setlocale(S) file tree (see locale(M)). To prevent accidental corruption of the 
output data, the file is created with no write permission; if the coltbl utility is 
run in a directory containing a write-protected collate file, the utility will ask if 
the existing file should be replaced - any response other than "yes" or "y" 
will cause coltbl to terminate without overwriting the existing file. 

Diagnostics 

See also 

All error messages are self explanatory. 

chrtbl(M), locale(M), mestbl(M), montbl(M), numtbl(M), setlocale(S), 
timtbl(M) 

Standards conformance 

coltbl is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1February1993 641 



console(MJ 

console 
system console device 

Description 

Warning 

The file /dev/conso/e is the device used by the system administrator for system 
maintenance (single-user) operations. It is the tty to which the first default 
shell is attached. 

The system console device can be either a terminal (a serial adapter device, 
ttyla) or a system keyboard display adapter monitor (tty01). 

Many programs, such as the UNIX kernel, redirect error messages to 
/dev/conso/e. Initially /dev/console is linked to /dev/systty. 

Do not enable(C) or disable(C) /dev/conso/e because this may corrupt the 
/etc/inittab file; instead, enable or disable the display adapter (tty01), or the 
serial adapter (tty?a) if the console is configured to be on a particular serial de­
vice. 

Limitations 

Files 

See also 

642 

A serial console cannot be attached to a multiport card or one that uses special 
drivers; it must be on a standard COMl card. 

/dev/conso/e 

boot(HW), screen(HW), systty(M), tty(M) 

1 February 1993 



daemon.mn(M) 

daemon.mn 
micnet mailer daemon 

S-yntax 
/usr/lib/mail/daemon.mn [ -ex I 

Description 
The mailer daemon performs the "backend" networking functions of the mail, 
rep, and remote commands by establishing and servicing the serial communi­
cation link between computers in a Micnet network. 

When invoked, the daemon creates multiple copies of itself, one copy for each 
serial line used in the network. Each copy opens the serial line, creates a 
startup message for the LOG file, and waits for a response from the daemon at 
the other end. The startup message lists the names of the machines to be con­
nected, the serial line to be used, and the current date and time. If the daemon 
receives a correct response, it establishes the serial link and adds the message 
"first handshake complete" to the LOG file. If there is no response, the dae­
mon waits indefinitely. 

If invoked with the -x switch, the daemon records each transmission in the 
LOG file. A transmission entry shows the direction of the transmission (tx for 
transmit, rx for receive), the number of bytes transmitted, the elapsed time for 
the transmission (in minutes and seconds), and the time of day of the 
transmission (in hours, minutes, and seconds). Each entry has the form: 

direction byte_count elapsed_time time_of_day 

The daemon also records the date and time every hour. The date and time 
have the same format as described for the date command. 

If invoked with the -e switch, the daemon records all transmission errors in 
the LOG file. An error entry shows the cause of the error preceded by the 
name of the daemon subroutine which detected the error. 

The mailer daemon is normally invoked by the start option of the netutil 
command and is stopped by the stop option. 

During the normal course of execution, the mailer daemon uses several files in 
the /usr/spool/micnet/remote directory. These files provide storage for LOG 
entries, commands issued by the remote(C) command, and a list of processes 
under daemon control. 

1 February 1993 643 



daernon.mn(M) 

Files 

See also 

/usr/lib/mail/daemon.mn 
/usr/spool/micnet/rernote/*/LOG 
/usr/spool/micnet/remote/*/mn 
/usr/spool/micnet/remote/local/mn* 
/usr/spool/micnet/rernote/lock 
/usr /spool/micnet/remote/pids 

netutil(ADM) 

Standards conformance 

644 

daemon.mn is not part of any currently supported standard; it is an extension 
of AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



environ(M) 

environ 
the user environment 

Description 
The user environment is a collection of information about a user, such as login 
directory, mailbox, and terminal type. The environment is stored in special 
"environment variables," which can be assigned character values, such as 
names of files, directories, and terminals. These variables are automatically 
made available to programs and commands invoked by the user. The com­
mands can then use the values to access the user's files and terminal. 

The environment can be changed by assigning a new value to a variable. An 
assignment has the form: 

name =value 

For example, the assignment: 

TERM=h29 
sets the TERM variable to the value "h29". The new value can be "exported" 
to each subsequent invocation of a shell by exporting the variable with the 
export command (see sh(C)) or by using the env(C) command. 

You may also add variables to the environment, but you must be sure that the 
new names do not conflict with exported shell variables such as MAIL, PSI, 
PS2, and IFS. Placing assignments in the .profile file is a useful way to change 
the environment automatically before a session begins. 

Note that the environment is made available to all programs as an array of 
strings. Each string has the form: 

name=value 

where the name is the name of an exported variable and the value is the 
variable's current value. For programs started with a exec(S) call, the environ­
ment is available through the external pointer environ. For other programs, 
individual variables in environment are available through getenv(S) calls. 

The following is a short list of commonly used environment variables. 

EDITOR Used to set the editor. The default editor is ed(C). Using vi as an 
example, for Bourne Shell users, the syntax is: 
EDITOR = /bin/vi 
For C-Shell users, the syntax is: 

setenv EDITOR /bin/vi 

EXINIT Used to set vi options and define vi abbreviations and mappings. 
For Bourne Shell users, the syntax is: 

I February 1993 645 



environ(M) 

646 

EXINIT ='set options' 

For C-Shell users, the syntax is: 
setenv EXINIT 'set options' 

For example, a C-Shell user might place the following command in 
$HOME/.cshrc: 
setenv EXINIT 'set wm=24 I map g lG' 

This would automatically set vi's wrapmargin option to 24 and 
would define the • g" key to move to the top of the file Gust as "G • 
moves to the bottom of the file). 

You can set more than one option with the same set command. If 
you define abbreviations or mappings with this environment vari­
able, you must separate the abbr and map commands from the set 
command and from each other with a bar (I). The function of the 
bar is similar to that of the semicolon that separates commands on a 
shell command line. 

If you are defining many customizations, you might prefer to use the 
.exrc file, where each command can be listed one per line (see vi(C)). 

HOME Names the user's login directory. Initially, HOME is set to the login 
directory given in the user's passwd file entry. 

HZ Defines, with a numerical value, the number of clock interrupts per 
second. The value of this variable is dependent on the hardware, 
and configured in the file /etc/initscript. If HZ is not defined, pro­
grams which depend on this hertz value, such as prof(CP) and 
times(S), will not run. 

LANG Represents the international locale in the format lan­
guage_territory.codeset. This is used by setlocale(S) to establish the 
default locale on program startup. 

Individual locale-specific functions can be affected independently using the 
following optional LC_• environment variables: 

LC_ COLLATE 
Locale affecting collation/sorting sequence. 

LC_CTYPE 
Locale affecting character classification routines (ctype(S)). 

LC_MESSAGES 
Locale affecting message language. 

LC_MONETARY 
Locale affecting currency formatting. 

LC_NUMERIC 
Locale affecting numeric formatting. 

1 February 1993 



environ(MJ 

LC TIME 
- Locale affecting time and date format. 

PATH Defines the search path for the directories containing commands. 
The system searches these directories whenever a user types a com­
mand without giving a full pathname. The search path is one or 
more directory names separated by colons (:). Initially, PATH is set 
to :/bin:/usr/bin. 

TERM Defines the type of terminal being used. This information is used by 
commands such as more(C) which rely on information about the 
capabilities of the user's terminal. The variable may be set to any 
valid terminal name (see terminals(M)) directly or by using the 
tset(C) command. 

TZ Defines time zone information. This information is used by date(C) 
to display the appropriate time. The variable may have any value of 
the form: 

I February 1993 

std offset [ dst [offset],[ start [/time], end [/time]]] 
(You may also have: 

std offset [ dst [offset];[ start [/time], end [/time]]] 
which is the XENIX format. Note that this format is not POSIX 
compatible.) 

std, the standard local time zone abbreviation (1-9 characters), and 
offset, the difference between the local time and GMT, are the only 
mandatory fields. 

offset should be specified as: 
[ + I - ] hh [ :mm [ :ss ]] 
where hh is hours (0-24), mm is minutes (0-59), and ss is seconds (0-
59). Only the hours field is mandatory. If offset is preceded by a 
minus(-), it is east of the Prime Meridian, otherwise it is assumed to 
be west (this can be specified with an optional plus ( + )). 

dst is a 1-9 character abbreviation for the local summertime 
timezone. If dst is not specified, the system will not be aware of 
summertime; it will always be on standard time. 

The offset after dst is the difference between local standard time and 
local summertime. If you do not specify an offset, it is assumed to be 
one hour. (This is usually what you want.) 

Everything following the second offset is the rule for when to change 
from standard to summertime. start/time is when the change to 
summertime occurs; end/time is when the time changes back. (Note 
that, for systems in the Southern Hemisphere, start/time does not 
have to come earlier in the year than end/time.) 

647 



environ(M) 

See also 

start and end describe the day, while time specifies the time. time is 
specified in the same way as offset (see above), but the leading N + • 
or N - " is not valid. If time is not specified, it is assumed to be 
02:00:00 (2 A.M.). 

start and end can be specified in any of the following ways: 

Jn The Julian day (1-365). Leap years are not counted; Febru­
ary 28 is day 59 and March 1 is day 60, always. 

n The zero-based Julian day (0-365); you can refer to February 
29 in a leap year. 

Wn.d The dth day (0-6, where 0 is Sunday) of week n (1-4). 

Mm.n.d The dth day (0-6, where 0 is Sunday) of week n (1-5) of 
month m (1-12). If you specify the week (n) as 5, this means 
the last d day in m month, as in MS.5.1 which would be the 
last Monday in August. 

If you specify the comma starting off the summertime rule, it is 
advisable to specify the rest of the rule. 

A sample TZ for Eastern Standard Time, EST, might look like this: 
EST5:00: OOEDT4 :00: 00,M4 .1. 0/2: 00: 00,MlO. 5.0/2 :00: 00. 

We start off with "EST5:00": this names our time zone and defines it 
as five hours west of Greenwich Mean Time. Summertime in this 
locale is called EDT (Eastern Daylight Time), and is four hours ahead 
of GMT. Summertime starts on a Sunday in the first week in April at 
2 A.M., and standard time resumes on the last Sunday in October at 2 
A.M. 

Refer to the tz(M) and timezone(F) manual pages for more informa­
tion on TZ. 

env(C), exec(S), getenv(S), locale(M), login(M), profile(M), setlocale(S), sh(C), 
timezone(F), tz(M) 

Standards conformance 

648 

environ is conformant with: 

AT&T SVID Issue 2; 
IEEE POSIX Std 1003.1-1990 System Application Program Interface (API) 
[C Language) (ISO/IEC 9945-1); 
and NIST FIPS 151-1. 

1 February 1993 



error(M) 

error 
kernel error output device 

Description 

System error messages are collected and made available to error logging dae­
mons through the /dev/error device. /dev/error is a read-only device which 
returns one error per read with no EOF character. 

When going to multiuser mode, the /etdrc.d/1/sdaemons script starts the dae­
mon /etc/logger to filter messages from /dev/error: 

/etc/logger /dev/error /usr/adm/messages /usr/adm/hwconfig & 

Two Jog files are written to: 

• Error messages are appended to the system error log file 
/usr/adm/messages. 

• Device initialization messages are written to the configuration log file 
/usr/adm/11wconfig. 

Any process can read /dev/error or arrange to be signaled when errors are 
queued in /dev/error. The following ioctl causes the error device to signal the 
process with SIGUSRl when an error message is queued in /dev/error. 

#include <signal.h> 
#include <sys/eio.h> 
#include <fcntl.h> 

int f d; 

fd = open("/dev/error", O_RDONLY); 
ioctl(fd, EMSG_SIG, SIGUSRli; 

Before exiting, the process must return /dev/error to its normal state. Do this 
with the following ioctl: 

ioctlifd,EMSG_NOSIG, 01; 

Limitations 

Panic error messages are not logged in /dev/error. 

1 February 1993 649 



error(M) 

Files 

See also 

/dev/error 
/etc/logger 
/etc/rc.d(l/sdaemons 
/usr/adm/hwconfig 
/usr/adm/messages 

error device driver (err) special file 
kernel message logger daemon executable file 
script to start the kernel message logger 
device initialization log file 
system error log file 

System Administrator's Guide 

Standards confonnance 

650 

error is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

l February 1993 



fcntl(M) 

fen ti 
file control options 

Syntax 

#include <fcntl.h> 

Descri.pti.on 

The fcntl(S) function provides for control over open files. This include file 
describes requests and arguments to fcntl and open(S). 

•Flag values accessible to openlSl and fcntliSI • 
!The first three can only be set by open) • 

#define O_RDONLY 0 

#define O_WRONLY 

#define O_RDWR 

#define O_NDELAY 04 * Non-blocking I O * 
#define O_APPEND 010 * append (writes guaranteed at 
#define O_SYNC 020 * synchronous write option * 

* Flag values accessible only to open($) * 

the endl • 

#define O_CREAT 00400 • open with file create !uses third open arg)• 

#define O_TRUNC 01000 • open with truncation • 
#define O_EXCL 02000 

• fcntl IS! requests • 
#define F_DUPFD 0 
Ide fine F_GETFD 
#define F_SETFD 
I define F_GETFL 
#define F_SETFL 
#define F_GETLK 

#define F_SETLK 
#define F_SETLKW 
Ide fine F_CHKFL 

* exclusive open * 

* Duplicate fildes * 
• Get f ildes flags • 
• Set fildes flags • 

* Get file flags • 
• Set file flags • 

• Get file lock • 

* Set file lock * 
* Set file lock and wait * 
• Check legality of file flag changes • 

* file segment locking control structure * 
struct flock { 

short l_type; 
short 
long 
long 
short 
short 

!_whence; 
!_start; 
l_len; 
l_sysid; 

l__pid: 

* if 0 then until EOF * 
* returned with F_GETLK* 
* returned with F_GETLK* 

* file segment locking types * 
#define F_RDLCK 01 • Read lock • 
#define F _WRLCK 
ldefine F _UNLCK 

1February1993 

02 
03 

* Write lock * 
* Remove 1 cc ks * 

651 



fcnt/(M) 

See also 

fcntl(S), open(S) 

Standards conformance 

fcntl is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

652 1February1993 



getclk(M) 

getclk 
get string from real-time clock 

Syntax 

/etc/getclk 

Descripti.on 

getclk gets a string suitable for date(C) from the real-time clock and writes it 
to stdout. 

Exit values 

getclk returns 0 if successful; 1 if an er:or occurs. 

See also 

date(C) 

1 February 1993 653 



getty(M) 

getty,uugetty 
set terminal type, modes, speed, and line discipline 

Syntax 

/etc/getty [ -h I [ -t timeout I line [ speed [ hjpe [ linedisc I ] I 

/etc/getty -c file 

/usr/lib/uucp/uugetty [-a [ -d dialer II [ -t timeout I line [speed [type 
[ linedisc I I ] 

/usr/lib/uucp/uugetty -c file 

Description 

654 

getty is a program that is invoked by init(M). It is the second process in the 
series, (init-getty-login-shell), that ultimately connects a user with the UNIX 
system. getty uses initcond(ADM) to secure the terminal for logins. 

In previous versions, getty was complemented by the command uugetty, 
which allowed bidirectional line use. In this release of UNIX, uugetty exists as 
a shell script that calls getty, which now recognizes all the arguments 
required by uugetty. 

Initially getty displays the login message field for the entry it is using from 
/etc/gettydefs. getty reads the user's login name and invokes the login(M) com­
mand with the user's name as argument. While reading the name, getty 
attempts to adapt the system to the speed and type of device being used. 

line is the name of a tty line in/dev to which getty is to attach itself. getty uses 
this string as the name of a file in the /dev directory to open for reading and 
writing. 

The available options are as follows: 

-a Enables automatic baud rate detection. The baud rate is detected by 
reading the dialer entry in /usr/lib/uucp/Devices (or the equivalent file 
if the system has been customized). 

-d dialer 
Specifies dialer to be used for automatic baud rate detection. ~is 
option is ignored if the dialer entry is present in /usr/11b/u1tcp/Dev1ces 
or the equivalent file. 

-t timeout 
Specifies that getty should exit if the open on the line succeeds and 
there is no response to the login prompt in timeout seconds. 

1 February 1993 



line 

speed 

type 

getty(M) 

Defines the name of the line to which getty will attach itself. The line 
name will point to an entry in the /dev directory: for example, 
/dev/ttyOO. 

Defines the entry to use from the /etc/gettydefs file. The entry defines 
the line speed, the login message, the initial tty setting, and the next 
speed to try if the user says the speed is inappropriate (by sending a 
break character). If no speed is supplied, the first entry in 
/etc/gettydefs is used. If /etc/gettydefs cannot be read, a default speed of 
300 baud is used. 

Defines the type of terminal connected to the line. The default termi­
nal is none, representing a normal terminal unknown to the system. 
For terminal type to have any meaning, the virtual terminal handlers 
must be compiled into the operating system. They are available, but 
not compiled in the default condition. 

linedisc Sets the line discipline to use on the line. The hooks for line discip­
lines are available in the operating system; five are available, num­
bered LDISCO - LDISC4. The default is LDISCO. 

-h This argument is provided for internal use by ct, and is not docu­
mented here. 

-c file Checks the speed and tty definitions in file and sends the results to 
standard output. Unrecognized modes and improperly constructed 
entries are reported. For correct entries, flag values are printed. file 
is replaced by /etc/gettydefs or a similarly structured file. 

getty displays the login message before reading the user's name a character at 
a time. If a null character (or framing error) is received, it is assumed to be the 
result of the user pressing the (Break) key. This will cause getty to attempt the 
next speed in the series determined by what it finds in the file /efc/gettydefs. 

The user's name is terminated by a new-line or carriage-return character. This 
is used to define the subsequent treatment of carriage returns (see ioctl(S)). 

The user's name is scanned to see if it contains any lowercase alphabetic char­
acters. getty suggests that the user use all lowercase characters. If the user 
uses uppercase characters, the system is told to map any future uppercase 
characters into the corresponding lowercase characters. 

Finally, login is executed with the user's name as an argument. Additional 
arguments may be typed after the login name. These are passed to login, 
which will place them in the environment (see login(M)). 

A check option is provided. When getty is invoked with the -c option and 
file, it scans the file as if it were scanning /etc/gettydefs and prints out the 
results to the standard output. If there are any unrecognized modes or 
improperly constructed entries, it reports these. If the entries are correct, it 
displays the values of the various flags. See ioctl(S) to interpret the values. 
Note that some values are added to the flags automatically. 

1 February 1993 655 



getty(M) 

Limitations 

656 

While getty understands simple single character quoting conventions, it is not 
possible to quote certain special control characters used by getty. Thus, you 
cannot log in via getty and type a#,@,/,!,_, ·u, ·o, & or backspace as part of 
your login name or arguments. getty uses them to determine when the end of 
the line has been reached, which protocol is being used, and what the erase 
character is. They will always be interpreted as having these special mean­
ings. 

ct will not work when getty or uugetty is used with an intelligent modem 
such as a penril or ventel. 

In order for a line to be used in both directions, there must be an entry for that 
line in /usr/lib/uucp/Devices. 

If a line is being used in both directions, getty or uugetty will wait to read a 
character before it outputs the login message, thus preventing two gettys 
from looping. This functionality is equivalent to the -r option in other UNIX 
system implementations. 

getty and uugetty allow users to log in on bidirectional lines, but if the line is 
free uucico, cu, or ct can use it for dialing out. The implementation depends 
on the fact that uucico, cu, and ct create lock files when devices are used. 
When the open returns (or when the first character is read when the line is 
being used in both directions) the status of the lock file indicates whether the 
line is being used by uucico, cu, ct, or by someone trying to log in. Note that 
when the line is being used in both directions, several carriage-return charac­
ters may be required before the login message is output. Human users should 
be able to handle this slight inconvenience. uucico trying to log in will have 
to be told by using the following login script: 

"" \r\d\r\d\r\d\r in:--in: ... 

where the ... is whatever would normally be used for the login sequence. 

If /etc/gettydefs is unreadable, getty sets the speed of the interface to 300 baud, 
specifies that raw mode will be used (awaken on every character), that echo 
will be suppressed, either parity allowed, that new-line characters will be con­
verted to carriage return-line feed, and that tab expansion is performed on the 
standard output. 

If there is a getty on one end of a direct line between two machines, there 
must be a getty or uugetty on the other end as well. Here is an /etc/inittab 
entry using getty on an intelligent modem or direct line: 

30: 2: res pawn: /usr /lib/uucp/uugetty -t 60 ttyOO 1200 

1 Febniary 1993 



Files 

See also 

/etc/gettydefs 
/etc/issue 
/usr/lib/uucp/Devices 

getty(M) 

ct(C), cu(C), dial(ADM), gettydefs(F), init(M), initcond(ADM), inittab(F), 
ioctl(S), login(M), tty(M), tty(C), uucico(ADM) 

1February1993 



idas(M) 

id as 
assembler used by the Link Kit 

Syntax 

idas [-di I [ -m I [ -n I [ -o objfile] [-RI [ -V] [ -Y [ md ),dir]filename 

Description 

Warning 

The idas command assembles the named file. The following flags may be 
specified in any order: 

-di Do not produce line number information in the object file. 

-m Run the m4(CP) macro processor on the input to the assembler. 

-n Turn off long/short address optimization. By default, address optimiza-
tion takes place. 

-o objfile 
Put the output of the assembly in objfile. By default, the output file name 
is formed by removing the .s suffix, if there is one, from the input file 
name and appending a .o suffix. 

-R Remove (unlink) the input file after assembly is completed. 

-V Write the version number of the assembler being run on the standard 
error output. 

-Y [md],dir 
Find the m4 preprocessor (m) and/or the file of predefined macros (d) in 
directory dir instead of in the customary place. There must be a space 
between the -Y flag and its options. 

If the -m (m4 macro processor invocation) option is used, keywords for m4 
cannot be used as symbols (variables, functions, labels) in the input file since 
m4 cannot determine which are assembler symbols and which are real m4 
macros. 

Limitations 

658 

idas is intended for use by the Link Kit. The as(CP) assembler should be used 
if an assembler is needed for program development. as is supplied as par! of 
the SCO UNIX Development System, which also includes the C compiler 
cc(CP), the link editor ld(CP), object libraries, and header files. 

1 February 1993 



Files 

See also 

idas(M) 

The assembler directive may not work in the .text section when optimization 
is performed. 

Arithmetic expressions may only have one forward referenced symbol per 
expression. 

Wherever possible, the assembler should be accessed through a compilation 
system interface program such as cc(CP) or rcc(CP). 

/bin/idas 
TMPDIR/* 

idas executable file 
temporary files. TMPDIR is usually /usr/tmp but can be redefined 
by setting the environment variable TMPDIR (see tempnam( ) in 
tmpnam(S)). 

a.out(FP), as(CP), cc(CP), idld(M), ld(CP), m4(CP), nm(CP), strip(CP), 
tmpnam(S) 

Standards confonnance 

idas is conformant with AT&T SVID Issue 2. 

1February1993 659 



idld(M) 

idld 
link editor used by the Link Kit 

Syntax 

idld [options ]filename 

Description 

660 

idld is used by the Link Kit to relink the UNIX kernel. 

The idld command combines several COFF format object files into one, per­
forms relocation, resolves external symbols, and supports symbol table infor­
mation for symbolic debugging. It creates an executable program by combin­
ing one or more object files and copying the executable result to the file a.out. 
The filename must name an object or library file. By convention these names 
have the ".o• (for object) or ".a• (for archive library) extensions. If more than 
one name is given, the names must be separated by one or more spaces. If 
any input file, filename, is not an object file, idld assumes it is either an 
archive library or a text file containing link editor directives. By default, the 
file a.out is executable if no errors occurred during the load. If errors occur 
while linking, idld displays an error message; the resulting a.out file is unexe­
cutable. 

idld concatenates the contents of the given object files in the order given in 
the command line. Library files in the command line are examined only if 
there are unresolved external references encountered from previous object 
files. 

The library is searched iteratively to satisfy as many references as possible 
and only those routines that define unresolved external references are con­
catenated. The library (archive) symbol table (see ar(CP)) is searched sequen­
tially with as many passes as are necessary to resolve external references 
which can be satisfied by library members. Thus, the ordering of library 
members is functionally unimportant, unless multiple library members exist 
defining the same external symbol. The library may be either a relocatable 
archive library or a shared library. Object and library files are processed at the 
point they are encountered in the argument list, so the order of files in the 
command line is important. In general, all object files should be given bef~re 
library files. idld sets the entry point of the resulting program to the begin­
ning of the first routine. 

idld recognizes the following options: 

-a Create an absolute file. This is the default if the -r option is not 
used. Used with the -r option, -a allocates memory for common 
symbols. 

1 February 1993 



-eepsym 

-£fill 

-Ix 

-L dir 

-m 

-M 

-N 

-oname 

-r 

-s 

-t 

-u symbol 

-V 

-VSnum 

l February 1993 

idld(M) 

Set the default entry point address for the output file to be that 
of the symbol epsym. 

Set the default fill pattern for "holes" within an output section as 
well as initialized bss sections. The argument fill is a two-byte 
constant. 

Search a library libx.a, where xis up to nine characters. A library 
is searched when its name is encountered, so the placement of a 
-1 is significant. By default, libraries are located in LIBDIR or 
LLIBDIR. 

Change the algorithm of searching for libx.a to look in dir before 
looking in LIBDIR and LLIBDIR. This option is effective only if it 
precedes the -I option on the command line. 

Produce a map or listing of the input/output sections on the 
standard output. 

Output a message for each multiply-defined external definition. 

Put the text section at the beginning of the text segment rather 
than after all the header information, and put the data section 
immediately following text in the core image. 

Set the executable program filename to name instead of a.out. 

Retain relocation entries in the output object file. Relocation 
entries must be saved if the output file is to become an input file 
in a subsequent idld run. The link editor will not complain 
about unresolved references, and the output file will not be exe­
cutable. 

Strip line number entries and symbol table information from the 
output object file. 

Tum off the warning about multiply-defined symbols that are 
not the same size. 

Designate the specified symbol as undefined. This is useful for 
loading entirely from a library, since initially the symbol table is 
empty and an unresolved reference is needed to force the load­
ing of the first routine. The placement of this option on the idld 
line is significant; it must be placed before the library which will 
define the symbol. 

Output a message giving information about the version of idld 
being used. 

Use num as a decimal version stamp identifying the a.out file 
that is produced. The version stamp is stored in the optional 
header. 

661 



id/d(M) 

-x Do not preserve local symbols in the output symbol table; enter 
external and static symbols only. This option saves some space 
in the output file. 

-Y[ LU],dir Change the default directory used for finding libraries. If L is 
specified, the first default directory which idld searches, LIB­
DIR, is replaced by dir. If U is specified and idld has been built 
with a second default directory, LLIBDIR, then that directory is 
replace~ by dir .. ~f idld was b~ilt ~ith ~nly one default directory 
and U 1s spec1f1ed, a warning 1s printed and the option is 
ignored. 

-z Do not bind anything to address zero. This option will allow 
runtime detection of null pointers. 

Exit values 

idld returns 0 (zero) if it succeeds in linking an executable output file; it 
returns a non-zero value if an error occurs. 

Diagnostics 

Warning 

If the link editor does not recognize an input file as an object file or an archive 
file, it will assume that it contains link editor directives and will attempt to 
parse it. This will occasionally produce an error message complaining about 
"syntax errors". 

Invoking idld directly is not recommended since failure to give command line 
arguments in the correct order can result in errors. 

Limitations 

662 

idld is intended for use by the Link Kit only; it cannot link XENIX x.out 
binaries. The link editor Id, however, is capable of linking x.out binaries. Id is 
supplied as part of the SCO UNIX Development System which also includes 
the startup routines, libraries, and header files necessary for program devel­
opment. 

The source programs for the input object files should conform to the follow­
ing rules: 

• 

• 

No variable may be located at virtual address 0 (zero) in the program's 
address space. 

When the link editor ld(CP) is invoked indirectly by cc(CP), a startup 
routine is linked with the user's program. This routine calls exit(S) after 
execution of the main program. If Id or idld is called directly, the user 
must insure that the program calls exit. 

1 February 1993 



Files 

See also 

idld<MJ 

• The symbols etext, edata, and end (see end(S)) are reserved for use by 
the link editor. A user program must not redefine them. 

• Arithmetic expressions may only have one forward referenced symbol 
per expression. 

/bin/idld 
LIBDIR/libx.a 

LLIBDIR/libx.a 

a.out 

idld executable file 
Development System libraries (LIBDIR is usually defined 
as /lib) 
Development System libraries (LLIBDIR is usually 
defined as /usr/lib) 
default output file if -o option is not given 

a.out(FP), ar(CP), as(CP), cc(CP), end(S), exit(S), ld(CP), masm(CP), 
mkshlib(CP) 

Standards conformance 

idld is conformant with AT&TSVID Issue 2. 

1 February 1993 663 



init(M) 

init, telinit 
process control initialization 

Syntax 

/etdinit [ 0123456SsQqabc ] 

/bin/telinit [ 0123456SsQqabc ) 

Description 

664 

init is a general process spawner. Its primary role is to create processes from 
information stored in the file /etc/inittab (see inittab(F) for further details). 

At any given time, the system is in one of eight possible run-levels. A run­
level is a software configuration of the system under which only a selected 
group of processes exist. The processes spawned by init for each of these 
run-levels are defined in /etc/inittab. init can be in one of eight run-levels, 0-6 
and S or s (run-levels S and s are identical). The run-level changes when a 
privileged user runs /etc/init. This user-spawned init sends appropriate sig­
nals to the original init spawned by the operating system when the system 
was booted, telling it which run-level to change to. 

If the file /etc/default/boot contains the string MAPKEY=YES, init invokes the 
map key program (see mapkey(M)) to map the console keyboard. If the call to 
mapkey succeeds, the console is set to 8-bits no parity. If the call fails, and the 
string SERIAL8=YES appears in /etc/default/boot, a serial console device is 
assumed and set to 8-bits no parity. For additional information on keywords, 
see the "Default file Settings" section of boot(HW). 

The following are the arguments to init: 

0 

1 

2 

3 

Shut the machine down so it is safe to remove the power. Have the 
machine remove power if it can. This state can be executed only 
from the console. 

Put the system in single-user mode. Unmount all file systems except 
root. All user processes are killed except those connected to the con­
sole. This state can be executed only from the console. 

Put the system in multiuser mode. All multiuser environment ter­
minal processes and daemons are spawned. This state is commonly 
referred to as the multiuser state. 

Start the remote file sharing processes and daemons. Mount and 
advertise remote resources. Run-level 3 extends multiuser mode 
and is known as the remote-file-sharing state. 

1 February 1993 



init(M) 

4 Is available to be defined as an alternative multiuser environment 
configuration. It is not necessary for system operation and is usu­
ally not used. 

5 Stop the UNIX system and go to the firmware monitor. 

6 Stop the UNIX system and reboot to the state defined by the initde­
fault entry in /etc/inittab. 

a,b,c Process only those /etc/inittab entries having the a, b or c run-level 
set. These are pseudo-states, which may be defined to run certain 
commands, but which do not cause the current run-level to change. 

Q,q Re-examine /etc/inittab. 

S,s Enter single-user mode. When this occurs, the terminal which exe­
cuted this command becomes the system console (see "Limitations" 
for more information about console device assignment). This is the 
only run-level that doesn't require the existence of a properly for­
matted /etc/inittab file. If this file does not exist, then by default the 
only legal run-level that init can enter is the single-user mode. 
When the system enters S or s, all mounted file systems remain 
mounted and only processes spawned by init are killed. 

When a UNIX system is booted, init is invoked and the following occurs. init 
first looks in /etc/default/boot to determine if autoboot on panic is desired. init 
then looks to see if DEFAULT_LEVEL=n is specified in /etc/defalllt/boot. If it is, 
then n is the default level, otherwise, the user is prompted to see if they wish 
to go to multiuser or system maintenance mode (single-user mode). In the 
single-user state, the virtual console terminal is assigned to the user's terminal 
and is opened for reading and writing. The sulogin command, which requires 
the user to enter the root password, is invoked and a message is generated on 
the physical console saying where the virtual console has been relocated. Use 
either init or telinit to signal init to change the run-level of the system. Note 
that if the shell is terminated (via an end-of-file), init will only reinitialize to 
the single-user state if the /etc/inittab file does not exist. 

If a 0 through 6 is entered, init enters the corresponding run-level. Note that, 
on the 80386 computer, the run-levels 0, 1, 5, and 6 are reserved states for 
shutting the system down; the run-levels 2, 3, and 4 are available as normal 
operating states. 

On your computer, the run-levels 0 and 1 are reserved states for shutting the 
system down, and run-levels 2, 3, and 4 are available as normal operating 
states. 

1 February 1993 665 



init(M) 

666 

If this is the first time since power up that init has entered a run-level other 
than single-user state, init first scans /etc/inittab for boot and bootwait entries 
(see inittab(F)). These entries are performed before any other processing of 
/etc/inittab takes place, providing that the run-level entered matches that of the 
entry. In this way, any special initialization of the operating system, such as 
mounting filesystems, can take place before users are allowed onto the sys­
tem. init then scans /etc/inittab and executes all other entries that are to be 
processed for that run-level. 

In a multiuser environment, /etc/inittab is set up so that init will create a getty 
process for each terminal that the administrator sets up to respawn. 

To spawn each process in /etc/inittab, init reads each entry and for each entry 
that should be respawned, it forks a child process. init spawns each process 
by forking a shell to run the job in. To set up the environment for this shell, 
init uses the /etc/initscript file which contains the definitions of some global 
variables, for example, TZ, HZ, and PATH. (For more information about 
/etc/initscript, see initscript(ADM).) 

After init has spawned all of the processes specified by /etc/inittab, it waits for 
one of its descendant processes to die, a powerfail signal, or a signal from 
another init or telinit process to change the system's run-level. When one of 
these conditions occurs, init re-examines /etc/inittab. New entries can be 
added to /etc/inittab at any time; however, init still waits for one of the above 
three conditions to occur before re-examining /etc/inittab. To get around this, 
an init Q or init q command wakes init to re-examine /etc/inittab immediately. 

When init comes up at boot time and whenever the system changes from the 
single-user state to another run state, init sets the ioctl(S) states of the virtual 
console to those modes saved in the file /etc/ioctl.syscon. This file is written by 
init whenever the single-user state is entered. 

When a run-level change request is made, init sends the warning signal 
(SIGTERM) to all processes that are undefined in the target run-level. init 
waits 5 seconds before forcibly terminating these processes via the kill signal 
(SIGKILL). 

The shell running on each terminal will terminate when the user types a~ 
end-of-file or hangs up. When init receives a signal telling it that a process 1t 
spawned has died, it records the fact and the reason it died in /etc/utmp and 
/etc/wtmp if it exists (see who(C)). A history of the processes spawned is kept 
in /etc/wtmp. 

If init receives a "powerfail" signal (SIGPWR) it scans /etc/inittab for speci~l 
entries of the type "powerfail" and "powerwait". These entries are invo_ked (1f 
the run-levels permit) before any further processing takes place. In this way 
init can perform various cleanup and recording functions during the power­
down of the operating system. Note that in the single-user st.at~s, S ~nd ~, 
only "powerfail" and "powerwait" entries are executed. tehmt, which is 
linked to /etc/init, is used to direct the actions of init. It takes a one-character 
argument and signals init to take the appropriate action. 

1 Febrnary 1993 



init(M) 

Diagnostics 

If init finds that it is respawning an entry from /etc/inittab more than 10 times 
in 2 minutes, it will assume that there is an error in the command string in the 
entry, and generate an error message on the system console. It will then 
refuse to respawn this entry until either 5 minutes has elapsed or it receives a 
signal from a user-spawned init (telinit). This prevents init from eating up 
system resources when someone makes a typographical error in the inittab file 
or a program is removed that is referenced in /etc/inittab. 

When attempting to boot the system, failure of init to prompt for a new run­
level may be because the virtual system console is linked to a device other 
than the physical system console. 

Limitations 

init and telinit can be run only by someone who is super user. 

The S or s state must not be used indiscriminately in the /etc/inittab file. A 
good rule to follow when modifying this file is to avoid adding this state to 
any line other than the initdefault. 

The assignment of the console device may seem confusing at first. Whenever 
the system is rebooted, the first boot up messages will be displayed on the 
"normal" system console (tty01), then the prompt for going multiuser will be 
displayed on the the tty from which init S was last invoked, which could be 
any tty on the system. The system console device (/dev/syscon) remains linked 
to the tty from which the last init S is invoked. Rebooting the system does not 
reset this to tty01. 

If the /etc/initscript file is not present, init will print a warning on the console 
and spawn the job without setting up the global environment. -

The change to /etc/gettydefs described in the "Limitations" section of the -
gettydefs(F) manual page will permit terminals to pass 8 bits to the system as 
long as the system is in multiuser state (run-level greater than 1). When the 
system changes to single-user state, the getty is killed and the terminal 
attributes are lost. To permit a terminal to pass 8 bits to the system in single­
user state, after you are in single-user state, type: 

stty -istrip cs8 

The /etc/TIMEZONE file should exist. /etc/initscript tries to execute this file to 
set the correct TZ variable for the system. 

1 February 1993 667 



init(M) 

Files 

See also 

/etc/default/boot 
/etc/inittab 
/etc/utmp 
/etc/wtmp 
/etc/ioctl.syscon 
/etc/initscript 
/dev/conso/e 
/dev/contty 

boot(HW), disable(C), enable(C), getty(M), gettydefs(F), initcond(ADM), 
initscript(ADM), inittab(F), kill(S), login(M), sh(C), shutdown(ADM), stty(C), 
sulogin(ADM), tennio(F), utmp(F), who(C) 

Standards confonnance 

init is conformant with AT&T SVID Issue 2. 

668 1 February 1993 



is verify( M) 

isverify 
verily ISAM database records 

Syntax 
isverify [ -Iilpyn] tablelist 

Description 

isverify detects and, if specified, repairs inconsistencies between ISAM 
(Indexed Sequential Access Method) data (.dat) files and index (.idx) files. The 
isverify utility checks that every valid record in the data file is properly 
represented in the index file; it also checks that every index entry points to a 
valid data record. 

tablelist is the list of tables to be checked by isverify. The .dat and .idx suffixes 
should not be included in the tablelist. 

You can specify any of the following flags when invoking isverify: 

-I after a system restore, an ISAM application can fail with the message: 
Error: Incorrect sco Runtime System installed 

You can correct this situation by logging in as root and invoking 
isverify -I. 

-i check only the index file (as opposed to checking both the index and the 
data files) for consistency. Use this option as a quick check if you think 
the data files are probably not corrupted. 

-1 prints a long listing of the information for each defined key (index), 
along with the associated data record pointer. The key value for each 
data record is displayed by key part, along with the byte position of the 
data record in the data file. This information is useful only if you under­
stand the Indexed Sequential Access Method (ISAM). 

-p pauses after displaying information about each index. If you select this 
option, you must press the (Bksp) key before the isverify process contin­
ues. 

-y causes isverify to assume a "yes" answer to each error state and to 
attempt to make the specified correction. It is recommended that you 
use this flag so that the isverify utility attempts to correct any 
discrepancies automatically. 

-n causes isverify to assume a "no" answer to each error state and to leave 
the files unchanged. It also allows you see where errors are by display­
ing them on the screen. 

1February1993 669 



isverify( MJ 

670 

Whether or not you use isverify with the -I or -p flags, if an error is detected, 
you have the option of making a correction or leaving the files unchanged. If 
no errors are detected, no response is required. If you choose to make a correc­
tion, isverify attempts to repair the files. Unless the -y or -n flags are specified 
on the command line, you must choose interactively whether or not to make 
each correction. 

1 February 1993 



jagent(M) 

jagent 
host control of windowing terminal 

Syntax 

#include <sys/jioctl.h> 

ioctl (cntlfd, JAGENT, &arg) 
int cntlfd 
struct bagent arg 

Description 

The ioctl(S} system call, when performed on an xt(HW} device with the 
JAGENT request, allows a host program to send information to a windowing 
terminal. 

ioctl has three arguments: 

cntlfd the xt control channel file descriptor 

JAG ENT the xt ioctl request to invoke a windowing terminal agent routine. 

arg the address of a bagent structure, defined in <sys/jioctl.h> as follows: 
struct bagent ( 

long size; /* size of src in & dest out */ 
char *src; /* the source byte string */ 
char *dest; /* the destination byte string */ 

}; 

The src pointer must be initialized to point to a byte string which is sent to 
the windowing terminal. See layers(M) for a list of JAGENT strings recognized 
by windowing terminals. Likewise, the de st pointer must be initialized to the 
address of a buffer to receive a byte string returned by the terminal. When 
ioctl is called, the size argument must be set to the length of the src string. 
Upon return, size is set by ioctl to the length of the destination byte string, 
dest. 

Return values 

See also 

Upon successful completion, the size of the destination byte string is returned. 
If an error occurs, -1 is returned. 

ioctl(S}, layers(M}, libwindows(S}, xt(HW} 

1 February 1993 671 



layers(M) 

layers 
protocol used between host and windowing terminal under layers(C) 

Syntax 

#include <sys/jioctl.h> 

Description 

672 

layers are asynchronous windows supported by the operating system in a 
windowing terminal. Communication between the UNIX system processes 
and terminal processes under layers(C) occurs via multiplexed channels 
managed by the respective operating systems using a protocol as specified in 
xtproto(M). 

To use layers, you must have configured the xt driver. This is done using the 
mkdev layers script. For more information, see mkdev(ADM). 

The contents of packets transferring data between a UNIX system process and 
a layer are asymmetric. Data sent from the UNIX system to a particular termi­
nal process is undifferentiated and it is up to the terminal process to interpret 
the contents of packets. 

Control information for terminal processes is sent via channel 0. Process 0 in 
the windowing terminal performs the designated functions on behalf of the 
process connected to the designated channel. These packets take the form: 

command, channel 
except for timeout and jagent information which take the form: 

command, data ... 
The commands are the bottom eight bits extracted from the following ioctl(S) 
codes: 

JBOOT 

JTERM 

JTIMO 

JTIMOM 

Prepare to load a new terminal program into the designated 
layer. 

Kill the downloaded layer program and restore the default win­
dow program. 

Set the timeout parameters for the protocol. The data consists of 
two bytes: the value of the receive timeout in seconds and the 
value of the transmit timeout in seconds. 

Set the timeout parameters for the protocol. The ~ata ~onsists ?f 
four bytes in two groups: the value of the recei;te tii;neout. m 
milliseconds (the low eight bits followed by the high eight bits) 
and the value of the transmit timeout (in the same format). 

1 February 1993 



layers(M) 

JZOMBOOT Like JBOOT, but do not execute the program after loading. 

JAG ENT Send a source byte string to the terminal agent routine and wait 
for a reply byte string to be returned. 

The data are from a bagent structure (see jagent(M)) and con­
sists of a one-byte size field followed by a two-byte agent com­
mand code and parameters. Two-byte integers transmitted as 
part of an agent command are sent with the high-order byte 
first. The response from the terminal is generally identical to the 
command packet, with the two command bytes replaced by the 
return code: 0 for success, -1 for failure. Note that the routines 
in the libwindows(S) library all send parameters in an agen­
trect structure. The agent command codes and their parame­
ters are as follows: 

A_NEWLAYER followed by a two-byte channel number 
and a rectangle structure (four two-byte 
coordinates). 

A_CURRENT followed by a two-byte channel number. 

A_DELETE followed by a two-byte channel number. 

A_TOP followed by a two-byte channel number. 

A_BOTTOM followed by a two-byte channel number. 

A_MOVE followed by a two-byte channel number 
and a point to move to (two two-byte coor­
dinates). 

A_RESHAPE followed by a two-byte channel number 
and the new rectangle (four two-byte coor­
dinates). 

A_NEW followed by a two-byte channel number 
and a rectangle structure (four two-byte 
coordinates). 

A_EXIT no parameters needed. 

A_ROMVERSION no parameters needed. The response 
packet contains the size byte, two-byte 
return code, two unused bytes, and the 
parameter part of the terminal id string (for 
example, "8;7;3"). 

1 February 1993 673 



layers(MJ 

See also 

674 

Packets from the windowing terminal to the UNIX system all take the follow­
ing form: 

command, data ... 
The single-byte commands are as follows: 

C_SENDCHAR Send the next byte to the UNIX system process. 

C_NEW Create a new UNIX system process group for this layer. 
Remember the window size parameters for this layer. 
The data for this command is in the form described by 
the jwinsize structure. The size of the window is speci­
fied by two 2-byte integers, sent low byte first. 

C_UNBLK Unblock transmission to this layer. There is no data for 
this command. 

C_DELETE Delete the UNIX system process group attached to this 
layer. There is no data for this command. 

C_EXIT Exit. Kill all UNIX system process groups associated with 
this terminal and terminate the session. There is no data 
for this command. 

C_DEFUNCT Layer program has died: send a terminate signal to the 
UNIX system process groups associated with this termi­
nal. There is no data for this command. 

C_SENDNCHARS The rest of the data are characters to be passed to the 
UNIX system process. 

C_RESHAPE The layer has been reshaped. Change the window size 
parameters for this layer. The data takes the same form 
as for the C_NEW command. 

jagent(M), layers(C), libwindows(S), mkdev(ADM), xt(HW), xtproto(M) 

1 February 1993 



locale(M) 

locale 
the international locale 

Syntax 
language [ _ [ territory I [ . [ codeset ) ) ] 

"C" 

Description 

The international locale is a definition of the local conventions to be used by 
UNIX libraries (and hence utilities and applications) for features whose 
behavior varies internationally. 

The locale is specified by a character string of the form: 
language_territory.codeset 

where: 

language 

territory 

codeset 

represents both the language of text files being used, and the 
preferred language for messages (where the utility or applica­
tion is capable of displaying messages in many languages), 

represents the geographical location (usually the country) deter­
mining such factors as currency and numeric formats, and 

represents the character set in use for the internal representation 
of text. 

The locale string "french_canada.8859" could therefore represent a Canadian 
user using the French language, processing data using the ISO 8859/l stan­
dard international character set. 

Each element (language, territory or codeset) can be up to 14 characters long, 
and should use only alphanumeric ASCII characters (see ascii(M)). 

Note that the locale is not required to be completely specified: territory and 
codeset are optional. When a locale is incompletely specified, missing values 
are sought in the following sequence: 

1. For each subclass, such as LC_ TIME, in an environment variable of the 
same name as the subclass. 

2. In the LANG environment variable. 

3. In the file /etc/default/lang. 

1 February 1993 675 



/ocale(M) 

See also 

The special locale string "C", used to represent the minimal environment 
needed for the C programming language, is taken to be equivalent to 
• english_us.ascii". 

The format of the file /etc/default/lang is at least one line, of the form: 
LANG=''language_territory.codeset" 

A partly specified locale string will be expanded to the first LANG= entry in 
which the specified locale fields match. 

Thus if the /etc/default/lang file contains the following: 
LANG=english_us.ascii 
LANG=english_uk.8859 
LANG=french_france. 8859 

A locale string "english_uk" will get expanded to "english_uk.8859", whereas 
a locale string "french" will get expanded to "french_france.8859". 

The information used to configure a particular locale is generated by the utili­
ties chrtbl{M), coltbl{M), mestbl{M), montbl{M), numtbl{M) and timtbl{M). 
The output files produced by these utilities (ctype, collate, currency, messages, 
numeric and time respectively) must be installed in the correct place in the 
directory structure /usr/lib/lang. The correct directory name is found by sub­
stituting the language, territory and codeset names into the string 
"/usr/lib/lang/language/territory/codeset''. The files should be installed into 
this directory with their existing file name (such as ctype). 

A suggested naming convention for locales is as follows: 

language 

territory 

codeset 

The name of the language, in English, such as: english, french, 
german. 

The name of the nation, in English, such as: us, uk, canada, 
·france, germany, switzerland. 

An identification of the codeset, such as: ascii, 8859. 

chrtbl{M), coltbl{M), environ(M), mestbl{M), montbl{M), numtbl{M), 
setlocale(S), timtbl(M) 

Standards confonnance 

676 

locale is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



log(M) 

log 
interlace to STREAMS error logging and event tracing 

Description 
log is a STREAMS software device driver that provides an interface for the 
STREAMS error logging and event tracing processes (see strerr(ADM), 
strace(ADM)). log presents two separate interfaces: a function call interface in 
the kernel through which STREAMS drivers and modules submit log mes­
sages; and a subset of ioctl(S) system calls and STREAMS messages for interac­
tion with a user level error logger, a trace logger, or processes that need to 
submit their own log messages. 

Kemel interface 
log messages are generated within the kernel by calls to the function strlog: 

strlog (mid, sid, level, flags, fmt, argl, ... ) 
short mid, sid; 
char level; 
ushort flags; 
char * fmt; 
unsigned argl; 

Required definitions are contained in <sys/strlog.h> and <sys/log.h>. mid is the 
STREAMS module id number for the module or driver submitting the log mes­
sage. sid is an internal sub-id number usually used to identify a particular 
minor device of a driver. level is a tracing level that allows for selective 
screening out of low priority messages from the tracer. flags are any combi­
nation of SL_ERROR (the message is for the error logger), SL_ TRACE (the mes­
sage is for the tracer), SL_FATAL (advisory notification of a fatal error), and 
SL_NOTIFY (request that a copy of the message be mailed {o the system 
administrator). fmt is a printf(S) style format string, except that %s, %e, %E, 
%g, and %G conversion specifications are not handled. Up to NLOGARGS 
(currently 3) numeric or character arguments can be provided. 

User interface 
log is opened via the clone interface, /dev/log. Each open of /dev/log obtains a 
separate stream to log. In order to receive log messages, a process must first 
notify log whether it is an error logger or trace logger via a STREAMS I_STR 
ioctl call (see below). For the error logger, the l_STR ioctl has an ic_cmd field 
of l_ERRLOG with no accompanying data. For the trace logger, the ioctl has 
an ic_cmd field of I_TRCLOG, and must be accompanied by a data buffer con­
taining an array of one or more struct trace_ids elements. Each trace_ids 
structure specifies an mid, sid, and level from which messages will be 
accepted. strlog will accept messages whose mid and sid exactly match those 
in the trace_ids structure, and whose level is less than or equal to the level 
given in the trace_ids structure. A value of -1 in any of the fields of the 
trace_ida structure indicates that any value is accepted for that field. 

1February1993 677 



log(MJ 

Examples 

678 

At most one trace logger and one error logger can be active at a time. Once 
the logger process has identified itself via the ioctl call, log will begin sending 
up messages subject to the restrictions noted above. These messages are 
obtained via the getmsg(S) system call. The control part of this message con­
tains a log_ctl structure, which specifies the mid, sid, level, flags, time in 
ticks since boot that the message was submitted, the corresponding time in 
seconds since Jan. 1, 1970, and a sequence number. The time in seconds since 
1970 is provided so that the date and time of the message can be easily com­
puted, and the time in ticks since boot is provided so that the relative timing 
of log messages can be determined. 

Different sequence numbers are maintained for the error and trace logging 
streams, and are provided so that gaps in the sequence of messages can be 
determined (during times of high message traffic, some messages may not be 
delivered by the logger to avoid hogging system resources). The data part of 
the message contains the unexpanded text of the format string (null ter­
minated), followed by NLOGARGS words for the arguments to the format 
string, aligned on the first word boundary following the format string. 

A process may also send a message of the same structure to log, even if it is 
not an error or trace logger. The only fields of the log_ctl structure in the 
control part of the message that are accepted are the leve 1 and flags fields; 
all other fields are filled in by log before being forwarded to the appropriate 
logger. The data portion must contain a null terminated format string, and 
any arguments (up to NLOGARGS) must be packed one word each, on the 
next word boundary following the end of the format string. 

Attempting to issue an l_TRCLOG or I_ERRLOG when a logging process of 
the given type already exists will result in the error ENXIO being returned. 
Similarly, ENXIO is returned for l_TRCLOG ioctls without any trace_ids 
structures, or for any unrecognized l_STR ioctl calls. Incorrectly formatted 
log messages sent to the driver by a user process are silently ignored (no error 
results). 

Example of l_ERRLOG notification: 

struct strioctl ioc; 

ioc. ic_cmd = I_ERRLOG; 

ioc.ic_timout = O; 
ioc. ic_len = 0; 
ioc. ic_dp = NULL; 

ioctl (log, !_STR, &ioc); 

/*default timeout 115 secs.I */ 

1 February 1993 



Files 

See also 

Example of I_TRCLOG notification: 

struct trace_ids tid(2]; 

tid(OJ .ti_mid = 2; 
tid(OJ.ti_sid = O; 
tid(OJ. ti_level = 1; 

tid(l] .ti_mid = 1002; 
tid(l) .ti_sid = -1; /*any sub-id will be allowed*/ 
tid(l) .ti_level = -1; /* any level will be allowed */ 

ioc. ic_cmd = I_TRCLOG; 
ioc.ic_timout = O; 
ioc.ic_len = 2 * sizeoflstruct trace_ids); 
ioc.ic_dp = (char *)tid; 

ioctl(log, CSTR, &ioc); 

Example of submitting a log message (no arguments): 

struct strbuf ctl, dat; 
struct log_ctl le; 
char *message = 'Don't forget to pick up some milk on the way home"; 

ctl.len ctl.maxlen = sizeof(lc); 
ctl.buf = (char *)&le; 

dat.len = dat.maxlen strlenlmessage); 
dat.buf =message; 

le.level = O; 
le. flags = SL_ERRORISL_NOTIFY; 

putmsg(log, &ctl, &dat, 0); 

/dev/log 
/usr/include/sys/log.h 
/usr/include/sys/strlog.h 

clone(M), getmsg(S), Intro(S), putmsg(S), strace(ADM), strerr(ADM) 

AT&T STREAMS Programmer's Guide 

log(M) 

Standards conformance 

log is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1February1993 679 



login(M) 

login 
give access to the system 

Syntax 

login [ name [ env-var ) ) 

login [ -r remotel1ost remotename localname ) ... 

Description 

680 

The login command is used at the beginning of each terminal session to iden­
tify users and allow them access to the system. It cannot be invoked except 
when a connection is first established, or after the previous user has logged 
out by sending an end-of-file ((Ctrl)d) to their initial shell. 

login asks for a user name (if not supplied as an argument), and, if appropri­
ate, the user's password and a dialup password. (For information on dialup 
passwords, refer to passwd(C)). Echoing is turned off (where possible) during 
the typing of the passwords, so it will not appear on the written record of the 
session. 

If the user makes a mistake in the login procedure the user will receive the 
message "Login incorrect" and a new login prompt will appear. The number 
of login attempts the user is allowed is configurable. If the user makes too 
many unsuccessful login attempts, the user or the terminal can be locked out. 

If the login sequence is not completed successfully within a configurable 
period of time (for example, one minute), the user is returned to the "login:" 
prompt or silently disconnected from a dial-in line. 

The -r form of the command is used for remote logins across a network. The 
remote login must supply parameters in the order indicated; these are the 
name of the remote host from which the login is being attempted, the user's 
name on the remote host, and the user's name on the local host (on which the 
login process is running). This form of the login command is intended for use 
by network software rather than users. 

After a successful login, accounting files (/etc/utmp and /etclwtmp) are updated, 
the user is notified if they have mail, and the start-up shell files (.profile for the 
Bourne shell or .login for the C-shell) if any, are executed. 

Login sets the user's supplemental groups list. If the file .suppgroups is in the 
user's home directory, the supplemental groups list is taken from this. The 
.suppgroups file contains a list of group names, one per line. Groups are 
verified before they are added to the supplemental group list. 

1 February 1993 



login(M) 

To be able to use a group, a user must either be explicitly listed in that group 
in /etc/group, or the group must have the group ID listed for the user in the 
/etclpasswd file. If no .suppgroups file is found, the supplemental groups list is 
set from the /etc/group file plus the login group ID. 

If the hushlogin feature is enabled in /etc/default/login and a file named 
.huslzlogin exists in the user's home directory, login suppresses the printing of 
the last successful and last unsuccessful login times and the copyright mes­
sages. login also sets the environment variable HUSHLOGIN to TRUE, so the 
system and user initialization files are aware a hushlogin is taking place and 
can suppress output as appropriate (typically the message of the day, and the 
calling of mail(C) and news(C} are suppressed). The .hushlogin file itself does 
not need to contain anything; it only needs to exist. 

login checks /etc/default/login for the following definitions of the form 
DEFINE=va.lue: 

ALTSHELL If ALTSHELL is set to YES or if it is not present in 
/etc/default/login, then the SHELL environment variable is set to 
whatever shell is specified in the user's /etc/passwd entry. If 
ALTSHELL is set to NO, then the SHELL environment variable 
is set only if the shell is defined in the /usr/lib/mkuser directory 
(which is list of recognized shells). 

CONSOLE The CONSOLE=device entry means that root can only log in 
on the device listed. For example, CONSOLE=/dev/console re­
stricts root logins to the console device. 

ALLOWHUSH The ALLOWHUSH entry is used to enable or disable the 
hushlogin feature on a system-wide basis. If 
ALLOWHUSH=YES, login checks for the existence of a 
.hushlogin file in the user's home directory. If the file exists, 
the environment variable HUSHLOGIN is set to TRUE and a 
quiet login takes place. If ALLOWHUSH=NO or 
ALLOWHUSH=YES and there is no .hushlogin file in the user's 
home directory, the environment variable HUSHLOGIN is set 
to FALSE and the normal login messages appear. If there is no 
ALLOWHUSH entry, the HUSHLOGIN environment variable 
is not set and the normal login messages appear. 

IDLEWEEKS If a password has expired, the user is prompted to choose a 
new one. If it has expired beyond IDLEWEEKS, the user is not 
allowed to log in, and must consult system administrator. 
This works in conjunction with passwd(C). 

I Febrnary 1993 681 



login(M) 

OVERRIDE 

PASSREQ 

REUSEUID 

SUP A TH 

ULIMIT 

UMASK 

This allows root to log in on the console even if the Protected 
Password database entry for root is corrupted. login checks 
/etc/default/login to see if there is an entry similar to the follow­
ing, which identifies the tty to be used when doing an over­
ride login for root: 
OVERRIDE= ttyO 1 

If PASSREQ=YES, a password is required. Users who do not 
have a password will be forced to select one. PASSREQ=NO 
allows users to have accounts without passwords. 

The REUSEUID entry is used by unretire(ADM) and 
rmuser(ADM). 

If a user's UID is 0 (that is, if this is the super user), the PATH 
variable is set to SUPATH, if SUPATH is specified in 
/etc/default/login. It is not advisable for SUPATH to include the 
current directory symbol •. ". Note that an empty directory 
("::•or":" at the beginning or end) is equivalent to".". 

This variable defines the maximum allowable file size. The 
default is 2,097,152 blocks, or 1 gigabyte. When setting 
ULIMIT, be sure to specify even numbers, as the ULIMIT vari­
able accepts a number of 512-byte blocks. 

This is the default file creation mask (see umask(C)). 

login initializes the user and group IDs and the working directory, then exe­
cutes a command interpreter (usually sh(C)) according to specifications found 
in the /etc!passwd file. Argument 0 of the command interpreter is a dash(-) fol­
lowed by the last component of the interpreter's pathname. The basic environ­
ment (see environ{M)) is initialized to: 
HOME= user-login-directory 
SHELL=last field of passwd entry 
MAIL=/usr/spool/mail/user-login-name 
Possible HUSHLOGIN=TRUE or FALSE 

Initially, umask is set to octal 022 by login. 

Diagnostics 

682 

Not on system console 
login is set up to allow root to log on to the console only, and the user is 
not on the system console. 

Login incorrect 
The login or dialup password is incorrect. 

1 February 1993 



login(M) 

Unable to change directory to dir 
login cannot change directories to the home directory as specified by 
/etc!passwd. 

No utmp entry. You must exec 'login' from the lowest level 'sh'. 
init did not put an entry in utmp. 

No Root Directory 
The shell field starts with a "* ", and the attempt to do a chroot to the 
home directory failed. 

You don't have a password. 
A password is required and it has not been set previously. 

Protected Password information suddenly vanished 
During the course of working with the Protected Password database in­
formation the pointer pointing to the static version of the information 
has suddenly disappeared. 

Cannot execute passwd program 
The password program cannot be executed for some reason. 

Login aborted due to no password. 
The password program has returned an error while setting a password, 
as when the(Del) key is pressed. 

Can't rewrite Protected Password entry for user name, 
Authentication error; see Account Administrator 

The login program cannot update the Protected Password database 
entry. 

Protected Password database problem 
After updating Protected Password data, login reads the information 
again and the entry cannot be read. This can be caused by redundant 
database backup files and/or lockfiles; these may be distinguished by a 
-t suffix. See tcbck(ADM) for information on these files and how to 
remove them from the system. 

Account is disabled but console login is allowed. 
Account is disabled -- see Account Administrator. 

If the account is locked, but root is logging in on the console (OVERRIDE 
tty), the first message is displayed; an ordinary user will see the second. 

Account has been retired -- logins are no longer allowed. 
The account is retired - see unretire(ADM) and nnuser(ADM) on how to 
unretire or remove an account. 

Cannot set terminal mode. 
The chmod of the tty failed. 

Bad login user id. 
No UID has been set. This can be due to a missing critical database file, 

l February 1993 683 



login(M) 

684 

such as /etc/auth/system/authorize. Run authck(ADM) and check any error 
messages. This message will also be issued if login is run from an esta­
blished login session rather that from init(M). 

Wait for login retry. 
Wait for login exit. 

A login attempt has failed, and the system is configured to enforce a 
delay between login attempts. 

user appears in /etc/passwd but not in Protected Password database 
If the user is in /etc!passwd but not in the Protected Password database, 
there is no message printed, but login generates the audit record shown 
above. 

Cannot obtain database information on this terminal 
login cannot get information from /etc/auth/system/ttys for the tty line. 

Error in terminal setup. 
Something is wrong with the terminal setup (for example, stdin, stdout, 
and stderr are the same thing.) 

Cannot obtain settings for this terminal 
The ioctl(S) on the tty device failed. 

No login program on root 
When attempting to do a sublogin (chrooting to a subtree for a restricted 
login), no login program was found. 

Can't rewrite terminal control entry for tty, 
Authentication error; see Account Administrator 

The information for the login tty cannot be updated. 

Terminal Control information suddenly vanished 
During the course of working with the terminal database information 
the pointer pointing to the static version of the information suddenly 
disappeared. 

Bad priority setting. 
nice failed to set the nice value specified in the Protected Password 
entry for the user. 

Bad supplemental group list. 
The call to setgroups failed. 

Bad group id. 
The call to setgid failed. 

Bad user id. 
The call to setuid failed. 

Unable to set kernel authorizations. 
The call to set the kernel authorizations failed. 

1 February 1993 



login(M) 

Login timed out 
login received an ALARM signal. Note: login sets this itself, but it could 
conceivably come from somewhere else. 

Terminal is disabled but root login is allowed. 
Terminal is disabled -- see Account Administrator. 

If the terminal is disabled and root attempts to login on the (OVERRIDE) 
tty the first message is displayed; the second message is displayed 
when any other user attempts to login on a disabled terminal. 

The security databases are corrupt. 
However, root login at terminal tty is allowed, 

This is the message displayed when the OVERRIDE tty is used during a 
security problem. 

Impossible to execute /bin/sh! 
login cannot execute the shell program for doing an OVERRIDE. 

Limitations 

Files 

login cannot be executed from a shell. 

Environment variables such as HZ, PATH, and so forth should not be defined 
in /etc/default/login. Instead use /etc/initscript to set global variables. 

Sublogins (indicated by a shell of "* ") are not supported and cause a 
warning. 

Although IDLEWEEKS and PASSREQ are supported for compatibility with 
other UNIX systems, their use is not recommended. The proper way to set the 
behavior defined by these variables is by use of the sysadmsh(ADM) Accounts 
selection. 

/etc/utmp 
/etc/wtmp 
/usr/spool/niail/name 
/etc/motd 
/etc/default/login 

/etc/passwd 
/etc/profile 
$HOME/.profile 
$HOME/. login 
$HOME/.cshrc 
$HOME/.suppgroups 
$HOME/.hushlogi11 

information on current logins 
history of logins since last multiuser 
mailbox for user name 
message of the day 
default values for environment variables and login 
behavior 
password file 
system profile for Bourne or Korn shell 
personal profile for Bourne or Korn shell 
personal C shell login file 
personal C shell initialization file 
supplemental groups file 
make login quieter 

1 February 1993 685 



login(M) 

See also 

686 

environ(M), getty(M), mail(C), newgrp(C), passwd(C), passwd(F), profile(M), 
rmuser(ADM), sh(C), sg(C), su(C), ulimit(S), umask(C), unretire(ADM), 
who(C) 

1 February 1993 



mapchan(M) 

mapchan 
configure tty device mapping 

Syntax 

mapchan [ -ans I [ -f mapfile I [ channels ... I 

mapchan [ [ -o I [ -d 11 [ channel I 

Description 

The mapchan utility configures the mapping of information input and output. 
mapchan is intended for users of applications that employ languages other 
than English (character sets other than 7-bit ASCII). 

mapchan translates codes sent by peripheral devices, such as terminals, to the 
internal character set used by the UNIX system. mapchan can also map codes 
in the internal character set to other codes, for output to peripheral devices 
(such as terminals, printers, console screen, etc.). Note that PC keyboard con­
figuration is accomplished through the mapkey(M) utility. 

mapchan has several uses: to map a cl1annel (-a or -s); to unmap a channel 
(-n and optionally -a); or to display the map on a channel (optionally -o, -d, 
channels). 

mapchan with no options displays the map on the user's channel. The map 
displayed is suitable as input for mapchan. 

The options are: 

-a when used alone, sets all channels given in the default file 
(/etc/default/mapchan) with the specified map. When used with -n, it 
refers to all channels given in the default file. Super user maps or 
unmaps all channels, other users map only channels they own. -a can­
not be used with -d, -o, or -s. 

-d causes the mapping table currently in use on the given device, channel, 
to be displayed in decimal instead of the default hexadecimal. An ASCII 
version is displayed on standard output. This output is suitable as an 
input file to mapchan for another channel. Mapped values are dis­
played. Identical pairs are not output. -d cannot be used with -a, -f, -n, 
-o, or-s. 

-f causes the current channel or list of channels to be mapped with map­
file. -f cannot be used with -d, -n, -s, or -o. 

1 February 1993 687 



mapchan(M) 

688 

-n causes null mapping to be performed. All codes are input and output as 
received. Mapping is turned off for the user's channel or for other chan­
nels, if given. -a used with -n will tum mapping off on all channels 
given in the default file. This is the default mapping for all channels 
unless otherwise configured. -n cannot be used with -d, -£, -o, or -s. 

-o causes the mapping table currently in use on the given device, channel, 
to be displayed in octal instead of the default hexadecimal. An ASCII 
version is displayed on standard output. This output is suitable as an 
input file to mapchan for another port. Mapped values are displayed. 
Identical pairs are not output. -o cannot be used with -a, -d, -£, -n, or -s. 

-s sets the user's current channel with the mapfile given in the default file. 
-s can not be used with any other option. 

The user must own the channel in order to map it. The super user can map 
any channel. Read or write permission is required to display the map on a 
channel. 

Each tty device channel (display adapter and video monitor on computer, 
parallel port, serial port, etc.) can have a different map. When UNIX boots, 
mapping is off for all channels. 

mapchan is usually invoked in the /etc/rc2 scripts. These scripts are executed 
when the system enters multi-user mode and sets up the default mapping for 
the system. Users can invoke mapchan when they log in by including a map­
chan command line in their .profile or .login file. In addition, users can remap 
their channel at any time by invoking mapchan from the command line. 
Channels not listed in the default file are not automatically mapped. Chan­
nels are not changed on logout. Whatever mapping was in place for the last 
user remains in effect for the next user, unless they modify their .profile or 
.login file. 

For example, the default file /etc/default/mapchan can contain: 
tty02 
tty la 
tty2a 
lp 

ibm 

wy60.ger 
ibm 

The default directory containing mapfiles is /usr/lib/mapchan. The default 
directory containing channel files is /dev. Full pathnames may be used for 
channels or mapfiles. If a channel has no entry, or the entry field is blank, no 
mapping is enabled on that channel. Additional channels added to th~ sys­
tem, (for example, adding a serial or parallel port) are not automatically 
entered in the mapchan default file. If mapping is required, the system 
administrator must make the entries. 

The format of the mapfiles is documented in the mapchan(F} manual page. 

1 Febniary 1993 



rnapchan(M) 

Using a mapped channel 
The input information is assumed to be 7- or 8-bit codes sent by the peripheral 
device. The device may make use of "dead" or "compose" keys to produce 
the codes. If the device does not have dead or compose keys, these keys can 
be simulated using mapchan. 

One-to-one mapped characters are displayed when the key is pressed, and the 
mapped value is passed to the kernel. 

Certain keys are designated as dead keys in the mapfile. Dead key sequences 
are two keystrokes that produce a single mapped value that is passed to the 
kernel. The dead key is usually a diacritical character, the second key is usu­
ally the letter being modified. For example, the sequence ' e could be mapped 
to the ASCII value OxE9, and display as e. 
One key is designated as the compose key in the mapfile. Compose key 
sequences are made up of three keystrokes that produce a single mapped 
value that is passed to the kernel. The compose key is usually a seldom-used 
character or(Ctrl)letter combination. The second key is usually the letter being 
modified. The third key may be another character being combined, or a 
diacritical character. For example, if "@" is the compose key, the sequence 
@ c 0 could be mapped to the ASCII value OxA9, and display as ©. 

Characters are not echoed to the screen during a dead or compose sequence. 
The mapped character is echoed and passed to the kernel once the sequence is 
correctly completed. 

Characters are always put through the input map, even when part of dead or 
compose sequences. The character is then checked for the internal value. The 
value may also be mapped on output. This should be kept in mind when 
preparing mapfiles. 

The following conditions will cause an error during input: 

• non-recognized (not defined in the mapfile) dead or compose sequence; 

• restarting a compose sequence before completion by pressing the compose 
key in the middle of a dead or compose sequence. This is an error, but a 
new compose sequence is initiated. 

If the mapfile contains the keyword beep, a bell sounds when either of the 
above conditions occurs. In either case, the characters are not echoed to the 
screen, or passed to the kernel. 

In order to allow for character sequences sent to control the terminal (move 
the cursor, and so on) rather than to print characters on the screen, mapchan 
allows character sequences to be specified as special sequences which are not 
passed through the normal mapping procedure. Two sections may be speci­
fied, one for each of the input (keyboard) and output (screen) controls. 

l February 1993 689 



mapchan(M) 

Warning 

Character sets 
The internal character set used is defined by the mapfiles used. By default, 
this is the ISO 8859I1 character set which is also known as the dpANS X3.4.2 
and ISO/TC97 /SC2. It supports most of the Latin alphabet and can represent 
most European languages. 

Several partial mapfiles are provided as examples. They must be modified for 
use with specific peripheral devices. Consult your hardware manual for the 
codes needed to display the desired characters. Two mapfiles are provided 
for use with the console device: /usr/lib/mapchan/ibm for systems with a stan­
dard PC character set ROM, and /usr/lib/mapchan/iso for systems with an 
optional ISO 8859/l character set ROM. 

Care should be taken that the stty(C) settings are correct for 8-bit terminals. 
The /etc/gettydefs file may require modification to allow logging in with the 
correct settings. 

7-bit U.S. ASCII (ANSI X3.4) should be used if no mapping is enabled on the 
channel. 

Use of mapfiles that specify a different "internal" character set per-channel, or 
a set other than the 8-bit ISO 8859 set supplied by default can cause strange 
side effects. It is especially important to retain the 7-bit ASCII portion of the 
character set (see ascii(M)). UNIX utilities and many applications assume 
these values. 

Media transported between machines with different internal code set map­
pings may not be portable as no mapping is performed on block devices, such 
as tape and floppy drives. However, trchan with an appropriate mapfile can 
be used to "translate" from one internal character set to another. 

Do not set ISTRIP (see stty(C)) when using mapchan. This option causes the 
eighth bit to be stripped before mapping occurs. 

Limitations 

690 

Some non-US keyboards and display devices do no support characters com­
monly used by UNIX command shells and the C programming language. It is 
not recommended that these devices be used for system administration tasks. 

Printers can be mapped, output only, and can either be sent 8-bit ~odes or 
one-to-many character strings using mapchan. Line printer spooler mte~face 
scripts can be used (setuid root) to change the output map on the_ pnnter 
when different maps are required (as in changing print wheels to display a 
different character set). See lp(C) and lpadmin(ADM) for information on in­
stalling and administering interface scripts. 

1 February 1993 



Files 

See also 

mapchan(M) 

Not all terminals or printers can display all the characters that can be 
represented using this utility. Refer to the device's hardware manual for infor­
mation on the capabilities of the peripheral device. 

/etc/default/mapchan 
/usr/lib/mapchan/* 

ascii(M), keyboard(HW), lp(C), lpadmin(ADM), mapchan(F), mapkey(M), 
parallel(HW), screen(HW), serial(HW), setkey(C), trchan(M), tty(M) 

Standards confonnance 

mapchan is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 691 



mapkey(M) 

mapkey, mapscrn, mapstr, convkey 
configure monitor screen mapping 

Syntax 

mapkey [ -adox ) [ datafile ) 

mapscm [ -d I [ datafile I 

mapstr [ -d I [ datafile I [ -f I [ termtype I 

convkey [ in [ out J ] 

Description 

692 

mapkey, mapscrn and mapstr configure mapping for the terminal on which 
they are invoked. 

The super user can map or unmap any terminal device, while other users can 
map only the terminal devices that they own. 

The following options are defined: 

-a The -a option sets mapping for all the terminals according to 
the file /etc/default/mapkey. Each line in this file names a tty 
line and a file in the /usr/lib/keyboard directory; for example: 
ttyOl keys.fr 

If mapkey -a is run with the above entry in 
/etc/default/mapkey, the terminal device /dev/tty01 is mapped 
using the file /usr/lib/keyboard/keys.fr. 

-d [ datafile ] If datafile is specified on the argument line, the respective 
mapping tabl.e is configured from the contents of this input 
file. If no file is given, the default files in /usr/lib/keyboard and 
/usr/lib/conso/e are used to write the mapping table. 

The -d option causes the mapping table to be read from the 
kernel instead of written, and an ASCII version to be dis­
played on the standard output. The format of the output is 
suitable for input files to mapscm, mapkey or mapstr. 

Non-super users can run mapkey and mapstr when the -d 
option is given. 

1 February 1993 



-f [ tenntype I 

-o 

-x 

in [out] 

mapkey(M) 

Specifies the terminal type for setting function keys. mapstr 
reads the function key values from the file corresponding to 
that terminal type, in /usr/lib!keyboard/strings.d, and passes 
these values to tset. If tenntype is not specified, mapstr 
takes the terminal type from the TERM environment 
variable. 

The mapstr utility expects 12 function keys. If your terminal 
uses a different number of function keys, these keys might 
have unexpected effects when you run your terminal in 
scancode mode. For example, function keys above (FI2) 
might behave like shifted function keys below (F12) (that is, 
(ShiftXFl),(ShiftXF2), and so on). 

mapstr functions on a per-screen basis. Mapping strings on 
one screen does not affect any other screen. 

With the -o option, mapkey displays the mapping table in 
octal notation. 

With the -x option, mapkey displays the mapping table in 
hexadecimal notation. 

If in or out are not specified, convkey uses the defaults of 
stdin or stdout. 

Limitations 

Files 

There is no way to specify that the map utilities read their configuration tables 
from standard input. 

If mapkey -a is run but the correct tty line cannot be found in 
/etc/default/mapkey, mapkey reads the default file /usr/lib/keyboard/keys. Like­
wise, if no key file is specified against the appropriate tty entry in 
/etc/default/mapkey, mapkey -a uses /usr/lib/keyboard/keys. When the user logs 
off, getty will reset any keyboard mappings on that line unless MAPKEY=YES is 
added to /etc/default/boot. When this change is made, getty also reads 
/etc/default/mapkey at login time, to obtain the mapkey file to use with each tty. 

/usr/lib/keyboard/* 
/usr/lib/console/* 

l February 1993 693 



mapkey(MJ 

See also 

keyboard(HW), mapchan(M), scancode(HW), screen(HW), setkey(C), tset(C) 

Standards confonnance 

694 

convkey, mapkey, mapscm and mapstr are not part of any currently sup­
ported standard; they are extensions of AT&T System V provided by The Santa 
Cruz Operation, Inc. 

1 February 1993 



math(M) 

math 
math functions and constants 

Syntax 

#include <math.Ii> 

Description 

math contains declarations of the functions in the Development System Math 
Library and the C Library that return floating-point values. 

math also defines the structures and constants used by the matherr(S) error­
handling mechanisms, including the following constant used as an error­
return value: 

HUGE maximum value of a single-precision floating-point number 

The following mathematical constants are defined: 

M_E base of natural logarithms (e) 

M_LOG2E base-2 logarithm of e 

M_LOGlOE base-10 logarithm of e 

M_LN2 natural logarithm of 2 

M_LN10 natural logarithm of 10 

M_PI 7t, the ratio of the circumference of a circle to its diameter 

M_Pl_2 7t/2 

M_Pl_4 7t/4 

M_l_PI l/7t 

M_2_PI 2/7t 

M_2_SQRTPI 2/ V7t 

M_SQRT2 positive square root of 2 

M_SQRT1_2 positive square root of Y, 

I February 1993 695 



math(MJ 

Limitations 

Files 

See also 

Machine-dependent constants are defined in the <val11es.h> header file (see 
values(M) ). 

/usr/include/math.h 

Intro(S), matherr(S), values(M) 

Standards conformance 

math is conformant with X/Open Portability Guide, Issue 3, 1989. 

696 1February1993 



messages(M) 

messages 
system service, kernel, and device driver error messages 

Description 
Utilities and applications send system service messages to the user when a 
system call fails. These messages appear on the controlling terminal for the 
shell. They are described in the section "System service messages." 

Messages from the UNIX kernel and device drivers are displayed on the con­
sole for the attention of the system administrator. These messages are 
described in the sections "Kernel messages" and "Device driver messages." 
These sections should be used in conjunction with the section "CPU interrupts 
and exceptions." This section lists the external and internal events to which 
the processor can respond, and that may give rise to a system message. 

Each kernel or device driver message consists of a severity level, usually fol­
lowed by a comment specifying the relevant kernel routine or device name, 
and containing information about the problem. 

The general format of messages from kernel routines is: 
severity: rouHne - description 

routine is the name of the routine where the problem occurred (this name is 
not always present). The descripHon may include the major and minor num­
bers of the device in which an error arose. 

The following command pipeline will list the name of the device special files 
associated with the given major and minor numbers: 

find /dev -depth -exec ls -I {} \; I grep ' major,[ *]minor' 
The general format of device driver messages is: 

severity: ddname: description 

ddname is the internal name of the device driver in which the problem 
occurred; this name is not necessarily the same as the handler prefix of the de­
vice driver defined in mdevice(F). The description also often includes the 
major and minor numbers of the associated device. 

The severity of a message has seven possible levels, listed here in increasing 
order of importance: 

CONFIG This usually means that the maximum value of a kernel parameter 
has been exceeded. In this case, the message takes the form: 

1February1993 

CONFIG: routine - message (param = value exceeded I 

Here, ro11Hne is the routine name, message is a short description of 
the problem, param is the name of the tunable variable, and value is 
its current value. 

697 



messages(MJ 

Use the configure(ADM) utility to adjust the stune(F) value of the 
tunable variable, and build a new kernel. On large systems, or spe­
cial purpose machines such as dedicated database servers, the new 
value may need to exceed the maximum value in the mtune(F) file. If 
this is the case, override the maximum value by specifying the -o 
option and the new value of the parameter to configure on the com­
mand line. A new kernel must be linked and the computer rebooted 
for any changes to take effect. See "Tuning system performance" in 
the System Administrator's Guide for more details. 

The following is an example of this class of message: 
CONFIG: s5iread - EAFS inode table overflow ININODE = 300 exceeded) 

Here, the default in-core inode table size of 300 has been exceeded. 

NOTICE This indicates that an error has occurred that should be monitored. 
System shutdown and rebooting is not usually necessary, although 
the super user should take action to remedy the fault. This may 
necessitate killing large or rogue processes, getting users to log off 
the system, or clearing space on a filesystem by deleting files. 

The following is an example of this class of message: 
NOTICE: sSalloc - No space on EAFS dev hd (1,401 

Here, the error occurred on an EAFS filesystem in the device driver 
hd with a major device number of 1 and a minor device number of 
40. The remedy would be to delete some large files on the filesystem 
to make room. Typical culprit files are those that grow slowly and 
consistently; for example: system message, spool, and mailbox files. 

WARNING Resource use has been effected and some corrective action is needed 
immediately. 

The following is an example of this class of message: 
WARNING: Swap space running out 

If this message occurs within a few hours of every reboot of the sys­
tem, it may be a sign that not enough swap space was reserved when 
the operating system was originally installed. Otherwise, you should 
check if there are too many large processes running. 

DANGER The situation reported in a previous warning message has increased 
in seriousness to a level where the system is severely effected. 

The following is an example of this class of message: 
DANGER: out of swap space 

FATAL This is a diagnostic message output immediately prior to a system 
panic. 

698 1 February 1993 



messages(M) 

The following is an example of this class of message: 
FATAL: Parity error in the motherboard memory. 

PANIC This indicates hardware problems or kernel inconsistencies that are 
too severe for continued operation. (Kernel inconsistencies are 
almost certainly due to a hardware fault unless a new device driver 
has been linked into the kernel.) After displaying the panic message, 
the system stops. Turn off the power to the system, correct the prob­
lem if it is in hardware, and reboot the system. 

A panic when booting from a newly built kernel indicates a cor­
rupted kernel, or a bug in a new device driver. The machine may 
then be booted from an older version of the kernel, such as /unix.old. 

The following is an example of this class of message: 
PANIC: Kernel and machine architectures unsuited 

Device drivers supported by SCO should rarely cause a panic except 
in the case that the kernel will not support the installed hardware 
configuration. This may not be the case for third-party device 
drivers. 

DOUBLE PANIC 
This indicates that two or more panic requests have been received at 
the same time. Treat this like a PANIC message. 

System service messages 

The shell displays one of the following messages when a system call fails. The 
error code and error value corresponding to each message are shown after 
each message. The error codes are defined in the file /usr/include/sys/errno.h. 
Programmers should refer to the Intro(S) manual page for more information 
about the error codes listed. 

Arg list too long [E2B1Gl 7 
An argument list longer than NCARGS (5120) bytes was presented to a 
member of the exec(S) family when trying to execute a program. 

Bad address [EFAULT] 14 
The system responded to a hardware fault when an impossible address 
reference was used in a system call. 

Bad file number [EBADFl 9 
This has the following possible causes: 

• A file descriptor did not refer to an open file. 
• A read(S) request was made on a file open only for writing. 
• A write(S) request was made on a file open only for reading. 

I February 1993 699 



messnges(M) 

700 

Block device required [ENOTBLK) 15 
A nonbl~k file was specified where a block device was required, for 
example, m mount(ADM). 

Broken pipe [EPIPE) 32 
A write(S) occurred on a pipe with no process to read it. This condition 
normally generates the signal SIGPIPE; the error is returned if the signal 
is ignored. 

Corrupted shared library [ELIBBAD) 84 
A shared library could not be loaded by exec(S) when trying to execute a 
program. The shared library is probably corrupted. 

Cross-device link [EXDEV) 18 
A non-symbolic link(S) to a file on another filesystem was attempted. 

Deadlock avoided [EDEADLK) 45 
Deadlock between two processes was detected and avoided. This error 
can be raised during file and record locking. 

Device not a stream [ENOSTR) 60 
A putmsg(S) or getmsg(S) system call to transfer a STREAMS message 
was attempted on a file descriptor that is not a STREAMS device. 

Device or resource busy [EBUSYI 16 
An attempt was made to mount a device that was already mounted, or 
to unmount a device on which there is an active file (open file, current 
directory, mounted-on file, or active text segment). This error also 
occurs if an attempt is made to enable accounting when it is already 
enabled. 

Exec format error [ENOEXEC) 8 
A request was made to execute a file, which had the appropriate permis­
sions, but did not start with a valid magic number. 

Exec on shared library [ELIBEXECJ 87 
Trying to exec(S) a shared library directly is not allowed. 

File exists [EEXIST) 17 
The existence of a file prevents an operation from taking place, for 
example, creating a link(S) when a file of that name already exists. 

1 February 1993 



messages(M) 

File table overflow [ENFILEJ 23 
The system open file table was full; no more open(S) calls can be 
accepted. If this error message occurs persistently, the maximum num­
ber of open files defined by NFILE (default value is 200) may be adjusted 
using configure(ADM). 

File too large [EFBIGJ 27 
The size of a file exceeded the maximum file size defined by ULIMIT, or 
the maximum possible file size (2 gigabytes), whichever is smaller (see 
ulimit(S)). If this error message occurs persistently, the value of ULIMIT 
(default value is 1 gigabyte) may be adjusted using configure(ADM). 

Filename too long [ENAMETOOLONG) 78 
A pathname longer than PATHSIZE (1024) was encountered. This error 
may be encountered when creating a symbolic link. 

I/0 error [EIOJ 5 
An input or output error occurred on a peripheral device. This error 
may in some cases occur on the system call following the one to which it 
actually applies. 

Identifier removed [EIDRM) 36 
This error is returned to a process that resumes execution due to the 
removal of an identifier from the filesystem name space; see msgctl(S), 
semctl(S), and shmctl(S). 

Illegal seek [ESPIPE) 29 
lseek(S) was attempted on a pipe. 

Interrupted system call [EINTRJ 4 
An asynchronous signal (such as interrupt or quit), which the user has 
elected to catch, occurred during a system call. If execution is resumed 
after processing the signal, it will appear as if the interrupted system call 
returned this error condition. 

Invalid argument [EINVALJ 22 

1February1993 

An invalid argument was supplied to a system call. For example, this 
may occur when: 

• A nonmounted device is unmounted. 
• An undefined signal is used with signal(S) or kill(S). 
• A file is read from or written to for which lseek(S) has generated a 

negative pointer. 

701 



messages(M) 

702 

Is a directory [EISDIR] 21 
An attempt was made to write on a directory. 

Math argument [EDOM] 33 
The argument of a function in the Math Library was out of the domain 
of the function. (Programmers should refer to matherr(S) for details of 
how to include their own error handling function.) 

Missing shared library [ELIBACC] 83 
An executable was invoked that requires a shared library that either 
does not exist or the user does not have permission to use. 

No child processes [ECHILD] 10 
A wait(S) was executed by a process that had no existing or unwaited­
for child processes. 

No lock [ENOLCK] 46 
No more record locks were available for fcntl(S). If this error message 
occurs persistently, the maximum number of record locks FLCKREC 
(default value is 100) may be increased using configure(ADM). 

No message of desired type [ENOMSGJ 35 
An attempt was made to receive a message of a type that does not exist 
on the specified message queue (see msgop(S)). 

No more processes [EAGAIN] 11 
This has the following possible causes: 

• A fork(S) failed because the system's process table is full. The user is 
not allowed to create any more processes. If this error message 
occurs pe~sistently, the maximum number of process table entries 
NPROC (default value is 100) may be increased using config­
ure(ADM). 

• A fork failed because there is no space on the swap device. The user 
is not allowed to create any more processes. 

• An exec(S) failed because there were insufficient pages available to 
load an executable. 

• A lock failed on a file or record that was already locked. 

No space on device [ENOSPC] 28 
There was no free space left on the filesystem during a link, open, or 
write on a file. 

No such device [ENODEVI 19 
An inappropriate system call was made to a device; for example, read­
ing from a write-only device. 

1 February 1993 



messages(M) 

No such device or address [ENXIO] 6 
I/0 on a special file referred to a subdevice that did not exist, did not 
respond, or was beyond the limits of the device. This error may also 
occur when, for example, a tape drive is not online or no disk pack is 
loaded on a drive. 

No such file or directory [ENOENT] 2 
The specified filename or pathname did not exist. 

No such process [ESRCHI 3 
No process can be found corresponding to that specified by the process 
number pid to kill(S) or ptrace(S). 

Not a character device [ENOTTY] 25 
An ioctl(S) call on a file failed because it is not a character device file. 

Not a directory [ENOTDIR] 20 
A nondirectory was specified where a directory is required; for example, 
in a path prefix or as an argument to chdir(S). 

Not enough space [ENOMEM] 12 
During an exec, a program requested more space than the system is able 
to supply. The error may also occur if the arrangement of text, data, and 
stack segments requires too many segmentation registers, or if there is 
not enough swap space during a fork(S). 

Not owner [EPERMl 1 
An attempt to modify a file failed because the user was not the file's 
owner or the super user. This error may also returned for attempts by 
ordinary users to perform actions only allowed to the super user. 

Out of streams [ENOSR) 63 
During a STREAMS open(S), either no STREAMS queues or no STREAMS 
head data structures were available. If this error message occurs per­
sistently, increase the values of the STREAMS tunable parameters 
NSTREAM and NQUEUE using configure(ADM). 

Package not installed [ENOPKG) 65 
A system call was made to a package that has not been installed. 

Permission denied [EACCES] 13 
An attempt was made to access a file in a way forbidden by the protec­
tion system. 

Protocol error [EPROTO) 71 

I February 1993 

Some protocol error occurred. This error is device specific, but is 
generally not related to a hardware failure. 

703 



messages(M) 

704 

Read-only file system [EROFSJ 30 
An attempt to modify a file or directory was made on a device mounted 
read-only. 

Result too large [ERANGEJ 34 
The value of a function in the Math Library was not representable 
within machine precision. (Programmers should refer to matherr(S) for 
details of how to include their own error handling function.) 

Text file busy [ETXTBSY) 26 
An attempt was made to execute a program that was already open for 
writing or reading. The error is also generated when an attempt is made 
to open a program for writing that is being executed. 

Timer expired [ETIMEl 62 
The timer set for a STREAMS ioctl(S) call has expired. The cause of this 
error is device specific and could indicate either a hardware or software 
failure, or perhaps a timeout value that is too short for the specific 
operation. The status of the ioctl operation is indeterminate. 

Too many links [EMLINKl 31 
An attempt was made to create more than the maximum number of 
links (MAXLINKS; defined to be 32) allowed to a file. 

Too many open files [EMFILEI 24 
A process may have no more than NOFILES (default value is 60) file 
descriptors open at a time. 

Too many shared libraries [ELIBMAXl 86 
An exec(S) was invoked on an executable file that requires more than 
SHLBMAX shared libraries. If this error message occurs persistently, the 
maximum number of shared libraries SHLBMAX (default value is 8) may 
be increased using configure(ADM). 

Unreadable message [EBADMSGl 77 
This error may occur during a read(S), getmsg(S), or ioctl(S) (with com­
mand argument I..:.RECVFD) system call to a STREAMS device. The fol­
lowing table describes for each system call what cannot be processed at 
the head of the queue: 

getmsg(S) passed file descriptor 
ioctl(S) control or data information 
read(S) control information or a passed file descriptor 

1 February 1993 



messages(M) 

Kernel messages 

Configuration messages 
If any of the following configuration messages appears persistently, you may 
wish to use configure(ADM) to adjust the value of the given tunable para­
meter. 
CONFIG: ro11tine - map Oxn overflow !size = n exceeded!; lost n items at n 

Generated from memory allocation routines when an attempt to free 
previously allocated memory fails. The calling routine may be one of: 
dmaable_rawio, ksegcmn, mfree, mlsetup, sptalloc, or unkseg. 

CONFIG: ro11tine - Only n resident pages free (MINARMEM. = n reserved); n wanted 

This reports a shortage of swappable pages while trying to lock a pro­
cess into memory, or while allocating memory. The calling routine may 
be one of sealloc, shmctl lock, or strinit. 

CONFIG: ro11tine - Only n swappable pages free (MINASMEM = n reserved); n wanted 

This reports a shortage of swappable pages while trying to lock a pro­
cess into memory, or while allocating memory. routine may be one of 
sealloc, shmctl lock, or strinit. 

CONFIG: routine - Out of clists (NCLIST = n exceeded); n failures so far 

There are insufficient character list buffers in the kernel. Data read from 
or written to character devices may be lost. 

CONFIG: aio_memlock - AID process table overflow (NAIDPROC = n exceeded I 

The maximum number of processes allowed to perform asynchronous 
1/0 has been exceeded. 

CONFIG: aio_breakup - AID request table overflow (NAIDREQ = n exceeded) 

The maximum number of pending asynchronous 1/0 requests has been 
exceeded. 

CONFIG: aio_breakup - AID buffer table overflow INAIDBUF = n exceeded) 

The maximum number of asynchronous 1/0 buffers has been exceeded. 
Check that the parameter NAIOBUF is equal to NAIOREQ. 

CONFIG: aio_setlockauth - AID lock table overflow INAIDLOCKTBL = n exceeded! 

The maximum number of entries in the asynchronous 1/0 lock permis­
sions table has been exceeded. 

CONFIG: allocreg - Region table overflow INREGIDN = n exceeded) 

There are insufficient region table entries for all the processes running. 
Each process needs at least three entries for its text, data, and stack. 
Additional regions are needed for shared memory and shared library 
segments. Processes that share the same program text, however, may 
share the same text region. 

CONFIG: Configured value of param INGROUPS) greater than max (maxval); set to useval 

The configured value of the maximum number of supplemental groups 
was greater than the maximum allowed value maxval. The value useval 
was used instead. 

1February1993 705 



messages(M) 

706 

CONFIG: Configured value of param tNOFILESl greater than max tm11:rv11!); set to useval 

The configured value of the maximum number of open files per process 
was greater than the maximum allowed value maxval. The value useval 
was used instead. 

CONFIG: Configured value of param tNOFILESi less than min (minval); set to useval 

The configured value of the minimum number of open files per process 
was less than the minimum allowed value minval. The value useval 
was used instead. 

CONFIG: dk_name - Diskinfo table overflow INDISK = n exceeded) 

There are more entries in the disk information table than the number of 
disk drives defined by the configurable parameter NDISK. If necessary, 
you can increase this value using mkdev hd when installing additional 
disks (See mkdev(ADM}.) 

CONFIG: dosiread - DOS inode table overflow (OOSINODE = n exceeded) 

There were no more in-core inodes for a mounted DOS filesystem. 
CONFIG: event - Event channel full IEVDEVSPERQ = n exceeded) 

Too many devices have been attached to an event queue. 
CONFIG: event - Event table full (EVDEVS = n exceeded) 

Too many devices have been attached to event queues systemwide. 
CONFIG: falloc - File table overflow INFILE = n exceeded) 

There are too many open file table entries. Note that NFILE must be less 
than or equal to the in-core inode table size NINODE. 

CONFIG: Fewer itimers (n) than processes (NPROC = n); all itimers disabled 

Interval timers are disabled if configured to be fewer in number than the 
process table size. 

CONFIG: hsiread - HS extent table overflow (HSNEXTENT = n exceeded) 
CONFIG: hsiread - HS inode table overflow (HSNINODE = n exceeded) 

There were no more in-core inode or extent table entries for a High 
Sierra filesystem. 

CONFIG: id - out of STREAMS queues (NQUEUE = n exceeded) 

There were no more STREAMS queues available. NQUEUE should 
always be an even number, and is generally set to 4*NSTREAM. 

CONFIG: ifreeget - Inode table overflow ININODE = n exceeded) 

There were no more inode table entries available. Note that NINODE 
must be greater than or equal to the open file table size NFILE. 

CONFIG: ldterminsrv n - cannot allocate STREAMS block INBLK??? values exceeded) 

A STREAMS message block could not be allocated. 
CONFIG: main - Buffer allocation was reduced (NBUF reduced to nl 

The system has limited the amount of memory allocated to buffer cache. 
CONFIG: main - Could not obtain required number of low buffers 

There was not enough Direct Access Memory to allocate to buffer cache. 

1 February 1993 



messages(M) 

CONFIG: main - Not enough low buffers IPLOWBUFS set to nl 

The proportion of buffer cache in Direct Access Memory (the first 16M 
of RAM) has been set too low. The system uses 5% if PLOWBUFS is set to 
less than 5%. 

CONFIG: Max pages to free IMAXFC = nl reduced to MAXFPGLST 

The maximum number of pages that can be added to the free list in a 
single operation is MAXFPGLST. 

CONFIG: Max pages to swap IMAXSC = nl reduced to MAXSPGLST 

The maximum number of pages that can be swapped out in a single 
operation is MAXSPGLST. 

CONFIG: msginit - Cannot allocate nk message buffer (MSGSffi = n segments of MSGSSZ = n cytesl 

The total space allocated to message segments (MSGSEG*MSGSSZ) can­
not be greater than 128K. 

CONFIG: newproc - Process table overflow INPROC = n exceeded) 

A fork(S) call failed because there were no spare slots in the process 
table. 

CONFIG: Obsolete pipe= keyword ignored; use pipelADMI instead 

The pipe= keyword is not valid in the bootstring. 
CONFIG: s5iread - fstyp inode table overflow (NINODE = n exceeded) 

The system has run out of spare entries in its internal inode table. This 
may adversely affect those processes that regularly need to use tem­
porary files for their operation. Increase the value of NINODE using con­
figure(ADM) to create additional table entries. 

CONFIG: strinit - NQUEUE = n not even, set to n-1 

The number of STREAM queues was reset to be an even number. 
CONFIG: stropen 1 - Out of streams INSTRE.!\M = n exceeded) 

No more STREAMS queues are available. 
CONFIG: stropen 2 - Out of streams (NSTREAM = n exceeded) 

No more STREAMS head data structures are available. 
CONFIG: swapdel - Total swap area too small IMINASMEM = n exceeded) 

There was less than the minimum allowed number of swappable pages 
available. 

CONFIG: timeout - Timeout table overflow INCALL = n exceeded) 

1February1993 

The kernel dock handler has run out of call-out table entries to allocate 
to functions. 

707 



messages( MJ 

708 

Notice messages 
NOTICE: clalloc - No space on fstyp dev name (major/minor) 

No space remains on the filesystem. This may lead to corruption of user 
files. You must free space on the device. 

NOTICE: datalock - Insufficient memory to allocate n pages - system call failed 
NOTICE: datalock(stack) - Insufficient memory to allocate n pages - system call failed 

No more record locks could be provided because there is insufficient 
system memory. The error EAGAIN is set by the system call. 

NOTICE: dbdOalloc - Insufficient memory to allocate n pages - system call failed 

The disk block descriptor tables of a process could not be created. 
NOTICE: Direct read/write of directory on fstyp dev name (major/minor) 

Inode n by PID n: procname 

A process attempted to read from or write to a directory inode. 
NOTICE: dosexpand - No space on fstyp dev name (major/minor) 

No space remains on the filesystem. This may lead to corruption of user 
files. You must free space on the device. 

NOTICE: dupreg - Insufficient memory to allocate n pages - system call failed 

There was insufficient memory to create a copy of a data or stack region 
following a fork(S} call. The error EAGAIN is set by the system call. 

NOTICE: dupreg - Page n usage count on swapdev dev (major/minor) overflow 

The usage count for a block of swap has exceeded the maximum permit­
ted value (MAXSUSE}. 

NOl'ICE: getcpages - Insufficient memory to allocate n contiguous pages - system call failed 

No more pages could be allocated to a process. 
NOTICE: getpages - Page n usage count on swapdev dev (major/minor) overflow 

The usage count for a block of swap has exceeded the maximum permit­
ted value (MAXSUSE}. 

NOTICE: growreg - Insufficient memory to allocate n pages - system call failed 

A process region table could not be grown. 
NOTICE: growreg - Insufficient memory to lock n pages - system call failed 

Pages could not be locked into memory while trying to grow a process 
region table. 

NOTICE: hsiread - Cannot handle multi-extent files 
Inode n on fstyp device name (major/minor) 

Multiextent CD-ROM files (those described by secondary volume 
descriptors) are not supported. 

NOTICE: I/O error. Job remap size n pages exceeds tunable DMAABLEBUF size n pages 

Not enough pages are available for physical 1/0 job remapping. 
NOTICE: k_trap - Unexpected NMI in system mode! 

Non-maskable interrupts are ignored in system mode if a trap occurs 
while on the kernel stack. 

1 February 1993 



messages(M) 

NOTICE: kseg - Insufficient memory to allocate n pages - system call failed 

Pages could not be added to the kernel. 
NOTICE: munlink - Error n closing dev name lmajorlminor), proceeding 

There was an error unlinking a STREAMS multiplexer link. 
NOTICE: ptOalloc - Insufficient memory to allocate n pages - system call failed 

The page tables of a process could not be created. 
NOTICE: sSalloc - No space on fstyp dev name lmajortminorl 

No space remains on the filesystem. This may lead to corruption of user 
files. You must free space on the device. 

NOTICE: sSialloc - Out of inodes on fstyp dev name (major/minor) 

The filesystem has run out of free inodes to allocate to files. You should 
remove any worthless files, or the filesystem must be backed up and 
then remade using mkfs(ADM) to specify a larger number of inodes. 

NOTICE: stray - Stray interrupt at Oxvector 

The CPU has received an interrupt via an unused vector. This is likely to 
be a hardware problem when a hardware failure has miscomputed the 
vector of a valid interrupt. 

NOTICE: textlock - Insufficient memory to allocate n pages - system call failed 

The text pages of a process could not be locked into memory. 
NOTICE: u_trap - Unexpected NMI in user mode! 

Non-maskable interrupts are ignored in user mode. 
NOTICE: u_trap - Unknown interrupt Oxvector 

The CPU has received an interrupt via an unused vector while in user 
mode. This is likely to be a hardware problem. 

NOTICE: uballoc - Insufficient memory to allocate n pages - system call failed 

The u-block for a process could not be created. 
NOTICE: ubexpand - Insufficient memory to allocate n pages - system call failed 

The u-block of a process could not be grown. 
NOTICE: ubsalloc - Insufficient memory to allocate n pages - system call failed 

The u-block for process 0 (the swapper sched) could not be created. 
NOTICE: useracc - couldn't lock page 

A page could not be locked into memory. 

l February 1993 709 



messages(M) 

710 

Warning messages 
WARNING: routine - map Oxn overflow I size too small!; lost n items at n 

Generated from memory allocation routines when an attempt to free 
previously allocated memory fails. The calling routine may be one of: 
dmaable_rawio, ksegcmn, mfree, mlsetup, sptalloc, or unkseg. 

WARNING: Bad interrupt type n 

The type of interrupt routine handler being installed was not found in 
sdevice(F). 

WARNING: Bad interrupt vector Dxvector 

The vector was not in the range of usable vectors for the machine archi­
tecture. 

WARNING: Bad I PL n 

The IPL level defined for an interrupt routine handler being installed is 
greater than the maximum allowed IPLHI (defined in 
/usr/include/sys/ipl.h). 

WARNING: Boot string invalid, ignored 

The bootstring has been altered since its checksum was last calculated. 
WARNING: bufcall - Could not allocate STREAMS event 

Not enough buffers were available to allocate a STREAMS event. 
WARNING: caller not original locker: lock_pid proc_pid 

A process that was not the original locking process tried to free a lock. 
WARNING: Cannot load floating point emulator (error n): /etc/emulator 

The floating point emulator in /etc/emulator could not be loaded. 
WARNING: cleanlocks: ip not locked(inum = nl 

An inode was found not to be locked while attempting to clean up the 
record locks left by a process. 

WARNING: Corrupt floating point emulator (error nl: /etc/emulator 

The floating point emulator in /etc/emulator was found to have been 
corrupted. 

WARNING: dosreadmap - Block n pagein err n inode n on DOS dev name !major/minor) 

Could not read a page from a DOS file. 
WARNING: Floating point emulator not regular file: /etc/emulator 

The floating point emulator file /etc/emulator was not a regular file. 
WARNING: fpexterrflt - No floating point support 

No floating point support (coprocessor or software emulator) was avail­
able. The signal SIGFPE would also be sent to the calling user process. 

WARNING: fpexterrflt - No process owns floating point unit 

Floating point support (coprocessor or software emulator) was not 
available. No user process could be signaled with SIGFPE. 

1 February 1993 



messages(M) 

WARNING: fpextovrflt - No floating point support 

There was a floating point unit overrun that caused interrupts to be lost. 
The signal SIGFPE would also be sent to the calling user process. 

WARNING: fpextovrflt - No process owns floating point unit 

There was a floating point unit overrun that caused interrupts to be lost. 
No user process could be signaled with SIGFPE. 

WARNING: fpuki ll - Coprocessor error not from emulator, CS=Oxn 

A floating point exception was received that did not originate in the 
floating point emulator. The value of the code segment register (CS) is 
displayed. 

WARNING: hsitrunc - Attempt to free inode n on HS dev name !major/minor) 

Disk blocks could not be freed because the HS filesystem is read-only. 
WARNING: IPL n conflicts with vector Oxvector IPL n 

While trying to install an interrupt routine handler, the interrupt vector 
was found to be already occupied with a different IPL level. 

WARNING: Interrupts already enabled 

Interrupt routine handlers could not be added or removed because 
interrupts have been enabled. 

WARNING: Invalid hard disk partition sector on bad dev major/minor 

The disk partition information could not be read on opening a drive. 
WARNING: k_trap - EXTOVRFLT in system mode 

A floating point extension overrun was detected while on the kernel 
stack in system mode. 

WARNING: k_trap - Floating point trap in kernel mode 

A floating point exception was raised while in system mode. 
WARNING: k_trap - Unexpected INT 1 in system mode 

An unexpected debugger single step request was received in system 
mode. 

WARNING: No floating point is available 

Requested floating point support (coprocessor or software emulator) 
was not found on initialization. 

WARNING: Null m_rnount in iget mp: n 

The mount point inode of a filesystem could not be found. 
WARNING: overwriting existing audit collection file name 

One of the raw audit trail collection files has been overwritten. This 
error would indicate a serious problem in the audit subsystem, or, more 
unlikely, the audit session has wrapped the internal 32-bit counter 
without deleting the collection file. 

WARNING: reclock: ip not locked on exit (inum = nl 
WARNING: reclock: ip not locked!inum = n) 

Either of these messages may be displayed if a file could not be locked. 

1February1993 711 



messages<MJ 

712 

WARNING: s5alloc - Bad free count n in fstyp dev name (major/minor) superblock 

The system has attempted to repair a structural inconsistency in the 
superb lock of the filesystem. Further error messages may follow. 

WARNING: s5badblock - Invalid block n on fstyp dev name !major/minor) 

A nonexistent block was found on, or being inserted in, the free list. 
WARNING: s5ialloc - No rdev for inode n on fstyp dev name (major/minor) 

An unused inode could not be allocated on an AFS, EAFS, or SSIK file­
system because the raw device specified was invalid. 

WARNING: s5imake - No filesystem (cmd n rdev major/minor) 

An AFS, EAFS, or S51K filesystem entry has disappeared from the mount 
table. 

WARNING: s5imake - Unknown Cind n for fstyp dev n (major/minor) rdev major/minor 

An error occurred while allocating an inode on an AFS, EAFS, or S51K 
filesystem. 

WARNING: s5readmap - Block n pagein err n inode n on fstyp dev name (major/minor) 

An error occurred while reading a file on an AFS, EAFS, or S51K file­
system. 

WARNING: sizemem - Too many mem= ranges; n ranges not used 

A maximum of B_MAXARGS (14) memory ranges may be specified to 
boot. 

WARNING: strini t - Cannot allocate n pages for STREAMS data blocks 

There are insufficient pages available to allocate to STREAMS data blocks 
on initialization. 

WARNING: swapout - No swap space for PID n u-area In pages) swapout lnl: usize=n 

There was not enough space on the swap device to swap out the pages 
of a process; the pages remain in RAM. 

WARNING: Swap space running out 
Need n pages 

The system is running out of swap space. When this happens, only one 
page at a time will be allocated until no more pages are available. 

WARNING: u_trap - Unexpected INT l in user mode, dr6=0xn 

An unexpected debugger single step request was received in user mode. 
WARNING: Unknown error n 

An error of an unknown type occurred while trying to add or remove an 
interrupt handler routine. 

WARNING: Vector Oxvector is private 

An interrupt handler routine could not be added because the vector was 
already fully occupied or not sharable. 

WARNING: Zero length floating point emulator: /etc/emulator 

The file that should contain the floating point emulator is empty. 

1February1993 



messages(M) 

Danger messages 
DANGER: out of swap space 

This message is output if no action has been taken to remedy earlier 
warning messages that swap space is running out. The system should be 
shut down gracefully, and the cause of the shortage of swap space 
investigated. 

Fatal messages 
The following messages give diagnostic information immediately prior to a 
system panic. 
FATAL: Bad bootstring syntax - kernel.keyword 

An invalid bootstring keyword was entered at the Boot prompt. 
FATAL: Parity error in the motherboard memory 

A hardware error was found in the main memory. 
FATAL: Parity error or channel check on an add-on card 

A hardware error was found in an add-on card. 
FATAL: Parity error in memory which is on an add-on card which starts at address Oxn 

A hardware error was found in memory on an add-on card. 
FATAL: Parity error on the motherboard 

A hardware error was found on the main computer circuit board. 
FATAL: Parity error on an add-on card 

A hardware error was found on an installed card. 
FATAL: Parity error on an add-on card which starts at address Oxn 

A hardware error was found in an add-on card. 

Panic messages 
PANIC: routine - Adding overlapping memory segment Oxbase-Oxbase+extent 

This message is output from the routine addto_memavail when mem­
ory being added overlaps that already available. The calling routine is 
one of smp_meminit, or sizemem. 

PANIC: routine - Insufficient memory for kernel; at least nk DMAable needed 
PANIC: ro11tine - Insufficient memory for kernel; at least nk physical needed 

One of these messages is output from the routine imemget when insuf­
ficient memory exists to load the kernel. The calling routine may be one 
of create_page_pool, kseginit, mapnow, mlsetup, mkbufs, mktables, 
pOu, pioseginit, scanmem, smpmapmem, sysseginit, or windowinit. 

PANIC: Attempt to close unopened device 

This message implies a fault in the tracking of the opening and closing 
of devices. 

PANIC: Attempted write to disk in standalone mode 

The disk cannot be written to while booting. 

I February 1993 713 



messages(M) 

714 

PANIC: Audit subsystem irrecoverable error 

There was a catastrophic and irrecoverable audit file 1/0 error. 
PANIC: bumprcnt - Region count list overflow 

Too many pages have been put in the page cache or the free page list. 
PANIC: cannot allocate character buffers 

No character buffers are available on initializing a character list struc­
ture (dist). 

PANIC: clfree - Free block n freed on fstyp dev name !major/minor) 

An AFS, EAFS, or 551K filesystem inconsistency. A disk block being freed 
was already free. 

PANIC: clfreei - Inode n cached free block n freed on fstyp dev name !majorlminorl 

An AFS, EAFS, or S51K filesystem inconsistency. A cached disk block 
being freed was already free. 

PANIC: copy_iodone - Copy buffer header is inconsistent 

The copy buffer header was found to be corrupted. 
PANIC: copy_iodone - Could not locate copy buffer header 

The copy buffer header was missing. 
PANIC: copyio - Bad mapping n 

copyio was called with a strange request; this is usually due to a bad 
device driver. 

PANIC: dmaable_rawio n - vtop failed 

Conversion of a virtual to a physical address failed while accessing the 
OMA page pool. 

PANIC: dosinit - Not in fstypsw 

A DOS filesystem could not be initialized because the filesystem type 
was not recognized. 

PANIC: dosiput - NULL fs pointer 

The in-core DOS inode structure could not be released. 
PANIC: dcsiread - Allocated DOS inode n on dev name (major/minor) in free ilist 

A previously allocated inode was found in the free inode list. 
PANIC: expand_upage - ptmemall failed for u-block !PIO n) 

No memory was available to increase the size of the u-block of a 
process. 

PANIC: expand_upage - attempt to shrink LDT 

An attempt to shrink the Local Descriptor Table of a user process was 
detected while expanding the u-block of the process. 

PANIC: expand_upage - attempt to shrink OFILE 

An attempt to decrease the maximum number of open files of a user 
process is detected while expanding the u-block of the process. 

1Febn111ry1993 



messages(MJ 

PANIC: expanc:Lupage - attempt to modify TSS 

An attempt to modify the Task State Segment of a user process was 
detected while expanding the u-block of the process. 

PANIC: expand_upage - at tempt to shrink TSS 

An attempt to shrink the Task State Segment of a user process was 
detected while expanding the u-block of the process. 

PANIC: expand_upage - invalid section lnl 

An invalid option was supplied to the routine that expands the u-block 
of a process. 

PANIC: finddbd: can't find page table entry 

A page table entry could not be found while attempting to find the asso­
ciated disk block descriptor (DBD). 

PA.'IIC: fpextovrflt - EXTOVRFLT in user mode with no 287/387 

A processor extension overrun fault was detected with no floating point 
coprocessor present. 

PANIC: fpinit - No floating point support 

An attempt was made to initialize a floating point unit with no floating 
point support (coprocessor or software emulator) present. 

PANIC: fpnoextflt - NOEXTFLT in kernel mode, no floating point support 

An unexpected floating point instruction was encountered in system 
mode when there is no floating point support (coprocessor or software 
emulator). 

PANIC: fpsave - No process owns floating point unit 

The state of a floating point unit is normally saved on a context switch. 
In this case, the owning process could not be traced. 

PANIC: get_copybuf - No copy buffer obtained 

No copy buffer was available for use. 
PANIC: getblkh - Device name (major/minor) block n not on hash list 

The block being assigned to a buffer was not in the hashed block cache. 
PANIC: getblkh - Unknown device major/minor 

The device specified while assigning a buffer to a block was invalid. 
PANIC: geteblk - Obtained a high buffer 

An empty block was obtained that was not inside low OMA space. 
PANIC: get pages - pbremove 

A page to be released from the hashed page cache could not be found. 
PANIC: hsinit - Not in fstypsw 

A High Sierra (HS) filesystem could not be initialized because the file­
system type was not recognized. 

PANIC: hsiput - NULL fs pointer 

The in-core HS inode structure could not be released. 

1 February 1993 715 



messages( M) 

716 

PANIC: iget - mounted on inode not in mount table. 

An inode in one filesystem used to mount another filesystem was not 
present in the mount table. 

PANIC: Illegal bootstring, cannot continue 

The bootstring was invalid; booting could not continue. 
PANIC: Invalid DMAABLEBUF parameter 

The specified tunable number of OMA pages is less than zero. 
PANIC: invalid return code from ptmemall 

Not enough pages were available to cover a request for pages. 
PANIC: IPL is n, not 0, at return to user mode 

The interrupt priority level was not 0 (zero) on returning to user mode 
from system mode. 

PANIC: Job remap size n pages exceeds system pool size n pages 

Not enough OMA pages were available for raw 1/0. 

PANIC: k_trap - Double fault trap type Oxvector 

A double fault occurred while on the system stack. 
PANIC: k_trap - Kernel mode trap type Oxvector 

An exception of unknown type was trapped in system mode. 
PANIC: k_trap - NOEXTFLT in system mode 

A floating point instruction was encountered (while on the kernel stack 
in system mode) when there is no floating point support. If encountered 
in user mode, the process is killed with SIGFPE. 

PANIC: k_trap - Unexpected breakpoint in system mode 

An unexpected breakpoint was detected outside the debugger in system 
mode. 

PANIC: Kernel and machine architectures unsuited 

The kernel code does not correspond to the machine type. 
PANIC: Kernel requires a new /boot program 

No configuration flags were set by the bootstrap program. 
PANIC: kseg - ptmemall failed: Oxn 

This message is output from the routine ksegcmn when it fails to get 
pages to allocate to the kernel using ptmemall. 

PANIC: kseginit 2 - Not enough physical memory; at least nk needed 

Kernel memory allocation needed more memory. Either reduce the size 
of some kernel parameter, such as disk buffers, or add more physical 
memory 

PANIC: main - swapadd dev name (n/n) swplo=n nswap=n failed (error nl 

The swap device cannot be initialized at system startup. 

1 February 1993 



messages(M) 

PANIC: MINUSIZE In) insufficient 

There was not enough space for the local descriptor table of the swapper 
(sched or PIO 0) with MINUSIZE set to n memory pages. This message 
can only be generated when initializing the swapper. 

PANIC: mkbufs n - Not enough physical memory; at least nk needed 

There was not enough memory to allocate system buffers dynamically. 
PANIC: noreach - Call to internal routine of uninstalled package 

An internal routine of an uninstalled package has been called. 
PANIC: Not enough system pool pages lml for n page DMA remap 

Not enough OMA pages were available for raw I/0. 
PANIC: pageremove - pfdat Oxn not free: Oxflags 

A page to be removed was already on the list of free pages. 
PANIC: pageremove - pfdat Oxn pf_ use set: n 

A page.to be removed was in use by another process. 
PANIC: Parity error address unknown. 

A memory parity error was signaled at an unknown address. 
PANIC: Parity error at address Om. 

A memory parity error was signaled at the given address. 
PANIC: pfdattopfn - Bad pfdata n 

A physical address yielded an invalid page frame number. 
PANIC: pfntopfdat - Bad pf num n 

A page frame number yielded an invalid physical address. 
PANIC: pinsert - Duplicate page 

An active page already existed in the hashed page cache. 
PANIC: s5init - Not in fstypsw 

An AFS, EAFS, or 551K filesystem could not be initialized because the 
filesystem type was not recognized. 

PANIC: sSiput - NULL fs pointer 

The in-core AFS, EAFS, or 551K in-core inode structure could not be 
released. 

PANIC: sSiread - Allocated fstyp inode n on dev name (major/minor) in free ilist 

An allocated inode was found in the free list. 
PANIC: sSiupdat - FIFO inode n address n > 2'24 on fstyp dev name !major/minor) 

The block number addressed was too high. 
PANIC: sec_init - Cannot allocate security info for NPROC = n processes 

Not enough memory was available to initialize the security information 
structures for the audit subsystem. 

PANIC: setrq - proc on q. 

A process to be put on the run queue was already on it. 

1 February 1993 717 



messages(M) 

718 

PANIC: shrir.k_upage - attempt to expand LDT 

An attempt to expand the Local Descriptor Table of a user process was 
detected while shrinking the u-block of the process. 

PANIC: shrink_upage - attempt to modify TSS 

An attempt to modify the Task State Segment of a user process was 
detected while shrinking the u-block of the process. 

PANIC: shrink_upage - attempt to expand TSS 

An attempt to expand the Task State Segment of a user process was 
detected while shrinking the u-block of the process. 

PANIC: shrink_upage - attempting to expand ofiles 

An attempt to increase the maximum number of open files of a user pro­
cess is detected while shrinking the u-block of the process. 

PANIC: shrink_upage - Illogical newsz n 

The new specified size for the u-block of a process was smaller than 
MINUSIZE. 

PANIC: shrink_upage - invalid section (n) 

An invalid option was supplied to the routine that shrinks the u-block of 
a process. 

PANIC: shrink_upage: newsz (n) bigger than oldsz In) 

The new specified size for the u-block of a process was larger than its 
present size. 

PANIC: srrnountfun - Error n mounting rootdev name !major/minor) 

The root filesystem could not be mounted, for example, by fsck(ADM). 
PANIC: srumountfun - Error n unmounting rootdev name (major/minor) 

The root filesystem could not be unmounted, for example, at system 
shutdown. 

PANIC: svirtophys - Page not present 

The physical page implied by a virtual address could not be found. 
PANIC: swapout - PIO n u-area page n vtop failed 

While swapping out a process, an invalid address was calculated for a 
page. 

PANIC: swapseg - Swap [readlwrite] buffer Oxn corrupted: Oxn 

The read or write buffer was corrupted while swapping a page of mem­
ory. 

PANIC: swapseg - Swap [readlwrite] error n on swapdev name 1major/minorl 

There was a read or write error while swapping a page of memory. 
PANIC: System watchdog timeout! 

An unexpected non-maskable interrupt (NMI) occurred in system mode. 
This NM! can only occur on Micro Channel architecture machines. 

PANIC: u_trap - User mode trap type Oxvector 

An exception of unknown type was trapped in user mode. 

1 Febr11ary 1993 



messages(M) 

PANIC: uballoc - ptmemall failed for u-block (PID nJ 

Memory could not be allocated to the u-block of a process. 
PANIC: ubsalloc - ptmemall failed for u-block (PID OJ 

Memory could not be allocated to the u-block of the swapper (sched or 
PID 0). This message can only be generated when initializing the 
swapper. 

PANIC: Unrecoverable timeout on channel n 

An unexpected non-maskable interrupt (NMI) occurred in system mode. 
This NMI can only occur on Micro Channel architecture machines. 

PANIC: unswap - ptmemall slept 

A free page in physical memory could not be found to free a swap block. 
PANIC: vfault - bad dbd_type 

The page requested by a page fault was previously unassigned; it did 
not exist in core memory, in swap, or in the filesystem. 

PANIC: xalloc - Bad magic Onumber for inum n on fstyp dev name (major/minor) 

A loaded text region had a bad magic number (displayed in octal). The 
inode number of the executable file is given. 

Device driver messages 

This section lists only messages ouput from device drivers supported by SCO; 
no third-party device driver messages are included. 

The first section lists all generic device driver messages. The kernel prints 
these when it cannot perform a service for a particular driver. Subsequent sec­
tions deal with messages output from within device drivers for the various 
hardware supported under SCO UNIX. The name of the device driver that pro­
duced the message always follows the message severity. 

Generic device driver messages 
NOTICE: driver: Spurious interrupt on vector n 

The CPU has received an interrupt via an unused vector while in a de­
vice driver routine. The device driver name may be one of aha, ciha, 
eiad, ha, oha, spad, Swrm, or sumo. This is likely to be a hardware prob­
lem when a hardware failure has miscomputed the vector of a valid 
interrupt. 

WARNING: driver: Cannot install intr vecno;n, type;n, IPL;n 

An interrupt routine handler could not be installed to process interrupts 
at the given vector and IPL level. The type is defined in sdevice(F). The 
reason for the failure is given in a subsequent message. 

WARNING: driver: Cannot remove intr vecno;n 

1Februan11993 

An interrupt routine handler could not be. removed. The reason for the 
failure is given in a subsequent message. 

719 



messages(MJ 

720 

WARNING: driver handler not found at vector n 

An interrupt routine handler could not be removed because no inter­
rupts are processed on the given vector. 

aha - Adaptec AHA-1X40 SCSI host adapter driver 
These messages may be produced if either the Adaptec AHA-1540 or AHA-1640 
host adapter is installed. 
WARNING: aha: Adapter m detected SCSI reset, status;Qxn, intr;Oxvector 

An unexpected host adapter reset was detected. 
lvARNING: aha: Adapter m uneX?ected MBI status Oxn 
AHA-1X40 cmd : o 
AHA-1X40 sense : p 

The incoming mailbox is in an unexpected state after an interrupt. 
WARNING: aha: Port Oxm failed to go idle, status;Oxn, cmd;Oxo 

Register m on the host adapter indicated that a command had still not 
been completed after R_LIMIT cycles in a spin loop. 

WARNING: aha: Port Oxm internal failure Oxn 

The host adapter failed to be recognized on initialization. 

AIO - Asynchronous IIO disk driver 
NOTICE: AIO: aio_dma_xfer: invalid vtop 

The virtual address specified to a AIO data transfer request is invalid. 
NOTICE: AIO: aio_memlock: not enough memory for lock 

Not enough memory is available to lock a chunk of user memory prior 
to a data transfer. 

NOTICE: AIO: no dmaable buffers IDMAABLEBUF) 

No buffers are available in OMA memory (below 16M in physical 
address space). 

cdt - tape emulator for SCSI CD-ROM (Srom) driver 
This driver overlays the existing CD-ROM driver (Srom) to provide a cartridge 
tape-like interface. Data on the CD-ROM can then be accessed using utilities 
normally used to access a cartridge or SCSI tape. 
CONFIG: cdt: Block device name (--/minor) driver not installed 

The major device number corresponding to the underlying physical de­
vice could not be calculated. 

CONFIG: cdt: Device name unit m (cdt_unitnuml not CD-ROM tape unit n 

The underlying physical device must be a CD-ROM drive. 
WARNING: cdt: Unrecognized data format on dev device (major/minor) 

The data format on the disk was not recognized. 

1 February 1993 



messages(MJ 

console - console driver 
CONFIG: console: Cannot allocate SCRNMEM = nk INSCRN = n too many screens) 

Not enough memory was available for the video driver. Decrease the 
number of screens as set by the configurable parameter NSCRN. 

WARNING: console: Kernel messages lost on non-text screen 
Check kernel messages logfile 

Kernel messages were lost while the console was in graphics mode and 
did not appear. Check the last few lines of /usr/adm/messages to find the 
messages. 

PANIC: console: Too many keyboard groups (MAXKBGRPS max) 

There are more video devices attached to your system than the kernel is 
designed to support. 

cpqs - Compaq 3201525 DAT SCSI tape driver 
NOTICE: cpqs: Adapter timed out, status=Oxn 

The adapter reset routine timed out after 30 seconds; the adapter failed 
to reset. 

NOTICE: cpqs: Adapter self test failed, status=Oxn 

The adapter registered an internal error while it was being reset. 
NOTICE: cpqs: Bad device type n in device major/minor ioctl 

An inappropriate ioctl(S) command was used on the device. 

ct - cartridge tape driver 
Some of these messages print the unit number(#) of the drive on which the 
problem occurred. 
CONFIG: ct#: Cannot allocate nk tape buffer for dev major/minor (CTBUFSIZE = nk too small) 

Increase the size of the tunable variable CTBUFSIZE. 

CONFIG: Tape controller ct=type(Oxbase,irq,dma) error n: Not found 

The registers of the controller specified in the file /usr/sys/io/ctconfasm 
were not found on initialization. 

CONFIG: Tape controller ct=type!Oxbase,irq,dma) error n: Won't interrupt 

The tape controller was found not to be capable of generating interrupts 
when it was initialized. 

NOTICE: ct#: No cartridge tape in dev major/minor 

Usually requires a cartridge to be inserted. Also check for physical dam­
age to the drive. 

NOTICE: ct#: Write protected cartridge tape in dev major/minor 

The cartridge must not be set write protected if it is to be written to. 
Also check for physical damage to the drive and the cartridge. 

WARNING: ct#: n uncorrectable ECC errors on dev major/minor 
WARNING: ct: n uncorrectable ECC errors 

Error correction could not handle the errors found on the device. 

1 February 1993 721 



messnges(M) 

722 

WARNING: ct: attempted to free invalid buffer 

The driver attempted to free an inactive buffer. 
WARNING: ct: Block n [readlwritten] with difficulty 

A block could only be read or written successfully after several retries. 
WARNING: ct: Block n needed ECC correction 

Error correction was necessary while a block was being read. 
WARNING: ct: cannot allocate tape buffer 

Allocation of enough kernel memory for a buffer failed when the device 
was being opened. 

WARNING: ct: cartridge tape is write protected 

Remove write protect tab from cartridge. Also check for physical dam­
age to the drive and the cartridge. 

WARNING: ct: no cartridge - check tape unit 

Check that a cartridge has been inserted. Also check for physical dam­
age to the drive and the cartridge. 

WARNING: ct: RDY or EXC failed to go active 

The spin loop in the device driver interrupt routine timed out while 
waiting for the device to become ready. 

WARNING: ct: Unknown tape controller, ct=name ignored 

The specified tape controller device name does not exist. 

dptH - NEC EISA SCSI host adapter driver 
WARNING: dptH: Adapter n does not support BusMaster DMA 

The adapter has not been set to support DMA. 
WARNING: dptH: Host adapter n timeout, resetting 

The host adapter timed out and had to be reset. 
WARNING: dptH: Port Oxm internal failure, status=Oxn 

Self test detected an error on a host adapter register. 

eiad -Adaptec AHA-1740 EISA SCSI host adapter driver 
NOTICE: eiad: No soft reset interrupt pending, status=Oxm 
AHA-1740 cmd : n 
AHA-1740 sense : o 

No interrupt was pending when adapter interrupts were to be cleared. 
WARNING: eiad: Adapter m hard reset failure, port Oxn = Oxstahts 

Hard reset of the adapter failed. 
WARNING: eiad: Adapter m soft reset failure: port Oxn = Oxstatus 

Clearing pending adapter interrupts failed. 
WARNING: eiad: Unexpected interrupt status Oxn 

An unexpected interrupt was received. 

1 February 1993 



eisarom - Compaq EISA CD-ROM driver 
NOTICE: eisarom: Cannot allocate nk for EISA configuration 

The error ENOMEM is set and the configuration is aborted. 

err - error message driver 
WARNING: err: Error log buffer overflow 
WARNING: err: Error log overflow 

messages(M) 

The error message driver will overwrite the oldest messages if the log or 
the log buffer overflows. 

esdi - ESDI hard disk driver 
WARNING: esdi: adapter reset failed 

The adapter could not be reset. 
WARNING: esdi: adapter reset failed - no status bsr 

The adapter could not be reset; the BSR status register contained the 
value bsr. 

WARNING: esdi: adapter reset command failed 

Reset failed because an interrupt was present. 
WARNING: esdi: error parking heads for drive n 

An error occurred while parking the disk drive heads. 
WARNING: esdi: esdiattention timeout - stat = n 

The routine esdiattention in the driver timed out after requesting 
attention. 

WARNING: esdi: get drive attention error 

Could not get drive attention while testing the configuration. 
WARNING: esdi: get drive command error 

An error was detected in the command block sent to the controller on 
testing the configuration. 

WARNING: esdi: get drive configuration failed 

The drive configuration test failed. 
WARNING: esdi: get drive interrupt bit not set 

The drive configuration test failed because the drive interrupt status 
was not available. 

WARNING: esdi: get drive no status block 

The drive configuration test failed because the drive status block was 
not available. 

WARNING: esdi: no controller installed 

An ESDI controller could not be found. 

1 February 1993 723 



messages(M) 

724 

WARNING: esdi: no drive n 

A drive could not be opened because the physical device corresponding 
to the minor device number was not present. 

WARNING: esdi: on fixed disk dev=major!millor block=n 
esdi: cmd=command, isr=completion_status, sir=error _code 

DMA error still present after four retries. 
WARNING: esdi: Reset failed isr=completion status 

esdi: status=n 

The completion status after a reset still reported an error. 
WARNING: esdi: timeout parking heads for drive n 

A timeout occurred on parking the disk drive heads. 

fdha - Future Domain Corp SCSI host adapter 110 
module driver 
CONFIG: fdha: Out of jobs (FDH_SCSI_JOBS = n exceeded I 

Too many SCSI commands were pending to be dealt with. 
NOTICE: fdha: Non-existent adapter m (only n adapters) 

The specified host adapter (m) could not be found. 
NOTICE: fdha: Unexpected reselection device id=m lun=n error 
NOTICE: fdha: Unexpected SCSI reselection device id=m lun=n error 

One.of the peripheral devices made an unexpected reselection. 

floppy - floppy disk driver 
NOTICE: floppy: Switch from disk dev major/minor1 to majortminor2 

The system allows both root and boot floppies to be mounted at the 
same time (on /dev/root and /dev/install), although only one disk may be 
present in the drive at a time. This message is intended to serve as a 
reminder to swap the disks. 

WARNING: floppy: 5.25 inch diskette Adapter/A not installed 

This message is output by the driver for the PS/2 5.25-inch diskette 
Adapter I A if the adapter is not found. 

WARNING: floppy: CMOS indicates no diskette drives installed 

The configuration memory is invalid; run the DOS SETUP disk that came 
with your machine. 

WARNING: floppy: CMOS indicates diskette drive n not present 

The configuration memory is invalid; run the DOS SETUP disk that came 
with your machine. 

WARNING: floppy: Disk is write protected in fdn dev major/minor 

Remove the write protect tag from the disk. 
WARNING: floppy: fdn being formatted 

The drive is presently formatting a disk. 

1 February 1993 



messages(M) 

WARNING: floppy: Handshake error for cmd Oxm on fdn dev major/minor 

A handshaking error occurred while reading from or writing to the disk. 
WARNING: floppy: I/O after close of fdn dev major/minor 

An 1/0 request was detected after the drive was closed. The data 
transfer is not performed. 

WARNING: Insert disk or close floppy n door 

A disk has not been inserted in the drive or the drive door has not been 
closed. Also check for damage to the drive mechanism or the disk. 

ft - QIC-40 tape driver 
CONFIG: ft: Cannot allocate m ton lft_minbufs to ftJ11i!xbufsl 32k buffers 
Will try again if opened 

Not el;'lough memory was available to allocate to the buffers on 
initialization. 

hd - root hard disk driver 
NOTICE: hd: Invalid hard disk partition sector on device major/minor 

The root hard disk partition information could not be read on opening 
the drive. 

WARNING: hd: multiple root disk controllers 

More than one disk controller was found to be present; boot-time load­
ing of a valid driver using the hd=driver keyword will override this 
error. 

WARNING: hd: no controller 

No disk controller was found. 
WARNING: hd: no root disk controller 

The root disk controller was not found on system initialization. 
WARNING: Ignoring "hd=name" : Unknown driver 

The hard disk device driver name specified in the bootstring could not 
be found. 

PANIC: hd: devsw error 

The driver was not found. 
PANIC: hd: intsw error 

The interrupt handler routine could not be patched. 
PANIC: hd: multiple controllers 

1February1993 

More than one disk controller was found to be present on booting up; 
boot-time loading of a valid driver using the hd=driver keyword will 
override this error. 

725 



messages(M) 

726 

hf - IBM Hard.file SCSI host adapter module driver 
WARNING: hf: Adapter m unexpected intr state Oxn 

An unexpected interrupt was received. 
WARNING: hf: Adapter BUSY bit not reset 

The adapter could not be reset. 
WARNING: hf: hfintr - Too many soft error retries (n) 

Three soft error retries are allowed before continuing. 
WARNING: hf: hfintr - Too many sense request retries (n) 

Three sense request retries are allowed before continuing. 
WARNING: hf: hf present - Timeout on SCSI bus m RESET cmd=Oxn 

The SCSI bus took too long to reset while testing the adapter. 
WARNING: hf:h/_msg 

hf _msg can be one of the following sense error messages: 

16 bit Card Slot Address Range Exceeded 
8032 Internal Peripheral fail 
8032 ROM Test failed 
Adapter Buffer Check Retry 
Adapter Busy 
Adapter Hardware Error 
Adapter Hardware Failure 
Adapter Micro Detected Error 
Adapter Retry Invoked 
Additional Status Available 
Assign Rejected Command in Progress on Device 
Assign Rejected SCSI Device Already Assigned 
Attachment Buffer Defective 
Check Condition (Error) 
Command Aborted (by system) 
Command Aborted by Adapter 
Command Completed with Failure 
Command Interface Reg. empty 
Command Interface Reg. full 
Command Not Supported 
Command Rejected Adapter Diagnostic Failure 
Command Rejected Buffer Test with Buffer Enabled 
Command Rejected SCSI Device Not Assigned 
Condition Met/Good (No error) 
Data Flow Ctlr chip failed 
Device Busy !Error) 
Device Dependent Status avai 1. 
Device Not Initialized 
OMA error 
Format Rejected Sequence Error 
Global Command Time-out 
Good Status (No error) 
Hardware failure on soft reset 
Immediate Command Complete 
Intermediate/Cond Met/Good 

1February1993 



Intermediate/Good (No error) 
Interrupt Request active 
Invalid Command I Parameter 
Invalid Command rejected 
Invalid Device for Command 
Invalid Parameter in SCB 
Invalid SCSI Phase Sequence 
Local RAM test failed 
Long Record Exception 
Major Exception Occurred 
Mandatory SCSI Message Rejected 
Maximum LBA Exceeded 
Missing or defective fuse 
No Error 
No error - cold reset complete 
No error - warm reset complete 
Reservation Conflict (Error) 
SCB cmd. complete with success 
SCB cmd complete, OK + retries 
SCB Command Completed OK 
SCB Command Completed with retry 
SCB Ended (No error) 
SCB Halted (Error I End Chain) 
SCB Interrupt Queued 
SCB rejected 
SCB specification check 
SCSI Bus Reset Occurred 
SCSI Interface Fault 
SCSI interface test failed 
SCSI Selection Time-out 
Short Length Record 
Short Record Exception 
Soft reset successful 
Software Sequencing Error 
System Interface Check Retry 
System Interface ctrl chip fail 
Unexpected SCSI Bus Free 

messages(M) 

WARNING: hf: readpos - Unknown board address Oxn in POS slot n 

The board address n of a host adapter was invalid for its slot position n. 
WARNING: hf: Sense failed 

Sense request has totally failed. 
PANIC: hf: hf_immediate_cmd - Unknown cmd=Oxn 

The driver encountered an unknown immediate command to the host 
adapter of a specified logical unit. 

PANIC: hf: No response from adapter ha=m after vector n interrupt 
hf: on scsi ctlr o, id p 

1 February 1993 

After receiving an interrupt, the driver timed out waiting for the host 
adapter. 

727 



messages(M) 

728 

ida- Compaq EISA disk drive a"ay (DISCO) driver 
CONFIG: ida#: Vectors for controlle~ in slot m differ lkernel=o, system=pl 

The EISA configuration interrupt vector does not match that in sde­
vice(F). 

NJTICE: ida#: n abort errors on dev major/minor unit m, block=n cnrl=Oxo status=Oxp 

Reports the number of abort errors. 
NJTICE: ida#: n bad cO!lllliind lists on dev major/minor unit m, block=n cnrl=Oxo status=Oxp 

Reports the number of bad command lists. 
NOTICE: ida#: n bad requests on dev majortminor unit m, block=n cmd=Oxo 
status=Oxp 

Reports the number of bad requests. 
NJTICE: ida#: n recoverable errors on dev major/minor unit m, block=n cnrl=Oxo status=Oxp 

Reports the number of recoverable errors. 
WARNING: ida: Cannot allocate nk, IDA disabled 

Not enough memory was available to allocate to command blocks. 
WARNING: ida: Only first six of 11 Disc Array Controllers supported 

A maximum of six drive controllers can be attached. 
WARNIJll3: ida#: m non-recoverable errors on elev major/minor unit n, block=o rnrl=Oxp status=Oxq 

Reports the number of non-recoverable errors. 
WARNING: ida#: m unknown errors on dev major/minor unit n, block=o cmd=Oxp status=Oxq 

Reports the number of unknown errors. 
WARNING: ida#: No queued requests 

No request blocks were found for processing on update. 
WARNING: ida#: Spurious interrupt 

No command was pending when an interrupt was received. 
WARNING: ida#: Unknown cmd=Oxm on dev major/minor unit n, offset=Oxo status=Oxp 

An unknown command was received. 
PANIC: ida - ran out of cmdlist 

No more command blocks were available. 

ir - Irwin tape driver 
NOTICE: ir: type error m on tape unit n dev major/minor: ir_msg 

type is the status of the tape drive when the error occurred. This may be 
one of: 
Close 
Control error 
Daemon start 
Read 
Write 

ir _msg gives more information about the error. This may be one of: 

1 February 1993 



l February 1993 

Bad block address 
Bad count 
Bad device number 
Bad operation code 
Block 0 corrupt 
Block O medium error 
Block O missing servo header 
Block allocation failure 
Block merge failure 
Block not found 
Block relocation failure 
Controller not found 
Cylinder not found 
DMA attempt past end of cylinder 
DMA boundary error 
DMA overrun 
Daemon not started 
Data CRC error 
Defect list corrupt 
Defect list has unrecoverable error 
Device busy 
Device busy formatting 
Device performing diagnostic 
Drive not found 
Drive not ready 
Equipment fault 
Erase failure 
Error on sense interrupt status 
Error sending command to drive 
Error starting data transfer 
Floppy controller reset failure 
ID CRC error 
Incompatible cartridge 
Insufficient memory 
Internal error 
Invalid parameter 
Maximum block relocation tries reached 
Medium changed 
Memory address conversion error 
No ID address mark 
No data address mark 
No error 
No servo 
Operating system call failed 
Read after write miscompare 
Record not found 
Request aborted 
Request timed out 
Seek track error 
Sense drive status failure 
Servo but no sector format 
Servo failure 
State machine hung 
Timeout reading controller result 
Timeout writing controller command 
Timer initialization failure 

messages(M) 

729 



messages(M) 

730 

Too many bad biocks 
Too many bad blocks on a track 
Too many missing servo headers 
Too many missing servo headers on track 
Too many outstanding interrupts 
Too many sequential bad blocks 
Too many sequential missing servo headers 
Track following error 
Unexpected interrupt 
Unrecognized controller error 
Unsupported drive command 
Vector installation failure 
Write protected 

WARNING: ir: Attempt to write past end of tape unit n dev majorlmi11or 

The end of the tape has been reached unexpectedly. 
WARNING: ir: Bad tape header 

The tape header is unreadable. 
WARNING: ir: Cannot write old tape format 

The drive is not capable of writing in an old tape format. 
WARNING: ir: Fatal error during format 

Formatting of the tape failed. 
WARNING: ir: ir_format - not enough memory 

Not enough memory could be allocated to format the tape. 
WARNING: ir: irfmO - Tape is write-protected 

Move the write protect slider on the cartridge to the RECORD position. 
Also check for damage to the drive and the tape cartridge. 

WARNING: ir: irwrite - Drive type !dtl does not match tape type !ttl 

Possible drive and tape types are IR_IO, IR_20, IR_25, IR_45, IR_46, IR_65, 
and IR_85. The driver reports incompatible drive and tape types. 

keyboard - keyboard driver 
NOTICE: keyboard: AT mode reset to XT 

The keyboard has been reset to XT mode by an ioctl(S) call. 

oha - Olivetti EISA SCSI board ESC-1 driver 
WARNING: ESC Host Adapter #m not found ( type=esc ha=n) 

The host adapter was not found on initialization. 
WARNING: No EISA Mother Board present 

The architecture of the machine is not of type EISA. 

1 February 1993 



messages(M) 

WARNING: oha: Sense failed 

A sense request command failed. 
WARNING: oha_cmd 1 - Adapter n timeout 

Timeout while waiting for incoming mailbox flag to be set. 
WARNING: oha_cmd 2 - Adapter n timeout 

Timeout while waiting for the adapter to respond to the outgoing mail­
box flag. 

WARNING: oha_cmd 3 - Adapter n bad MBO status: lra_status ta_status 

The outgoing mailbox had a bad status after being read by the adapter. 

omti - OMTI disk driver 
WARNING: omti: already busy 

omtistart had already been called on a busy drive. 
WARNING: omti: C_D bit stuck off 

The controller failed to indicate its readiness for a command. 
WARNING: omti: cannot enter command phase 

The controller failed to accept the selected command. 
WARNING: omti: colliding polling routines 

A re-entrant call to omtipoll has been detected. 
WARNING: omti: command setup failed 

The controller failed to accet the setup command. 
WARNING: omti: controller configured for no drive n 

An open on a drive failed to identify the disk type. 
WARNING: omt i: error during OMTI_SENSE 

An interrupt was received during an OMTI sense command. 
WARNING: omti: error on fixed disk (minor minor), block=rn 
omti: Error Type n, Code o, Unit p 
omti: Sector = q. Cylinder/head= r/s, 
omti: msg 

The OMTI sense error message msg provides more information about the 
error. The following are possible drive errors: 
Cartridge Changed 
Drive Not Selected/Not Ready 
Multiple Drives Selected 
No error or no sense information 
No Index 
No Seek/Command Complete 
No Track zero or Cylinder zero found 
Seek/Command in progress 
Write/Drive Fault 

l February 1993 731 



messages(M) 

732 

The following are possible data errors: 
Alternate of Bad Track Already Assigned 
Bad Track Encountered 
Correctable ECC 
Data Address Mark Not Found 
Error with unknown type and code 
ID Address Mark Not Found 
ID CRC 
Illegal Access To An Alternated Track/Unable to Read the Alternate Track Address 
Illegal Alternate Track Address 
Illegal Disk Address · 
Illegal Interleave Factor 
No Alternate Track Found 
Sector Not Found 
Seek Error 
Sequence I DMA 
Uncorrectable Data ECC 
Unknown Error 
Write Protected 

The following are possible command errors: 
Illegal Function for Drive Type 
Invalid Command 
Volume Overflow 

The following are possible diagnostic errors: 
EPROM Checksum/ Internal Diagnostic error 
RAM error 

WARNING: omti: initialization failure 

An error occurred during initialization. 
WARNING: omti: non-omti interrupt (stah1s) 

The controller did not signal an interrupt when one was received. 
WARNING: omti: OMTI_BUSY bit still stuck on 

The controller failed to obey the reset command. 
WARNING: omti: sense command setup failed 

The controller failed to accept the setup command. 
WARNING: omti: still busy 

The controller is still busy after generating an interrupt. 
WARNING: omti: timed out 

An expected interrupt did not arrive. 
WARNING: omti: unexpected interrupt (stah1s) 

No command was pending when an interrupt was received. 
WARNING: omti: unknown command(n) 

omtistart encountered an unrecognized command. 
WARNING: omti: unloading all requests 

The driver is preparing for manual reset because the programmed reset 
did not work. 

WARNING: unexpected end of data phase 

Abnormal termination of a data read. 

1 February 1993 



messages( M) 

WARNING: Please use sfmt to modify disk parameters 
Attempt to write the disk characteristics directly using the DIOWDISK 
ioctl call. 

parallel - parallel port driver 
WARNING: parallel: Parallel port (unit=nl not found 

A parallel port could not be found. 

ptem - AT&T STREAMS pseudo-terminal driver 
CONFIG: ptem: No STREAMS buffer (NBLK??? values exceeded!; XOFF ( "S) not sent 
CONFIG: ptem: No STREAMS buffer INBLK??? values exceeded); XON ("Ql not sent 

A STREAMS message block could not be allocated. 

SCSI - Small Computer Systems Inteiface driver 
CONFIG: No Stype SCSI devices configured !unit n missing) 

No configuration information existed for a given SCSI device. 
CONFIG: Only m Stype SCSI devices configured (unit n missing) 

No configuration information existed for a given SCSI device. 
NOTICE: Stype: Error 
on [reading I writing} SCSI device_hjpe 
[ dev major/minor 1 
lha=host_adapter id=controller lun=logical_1mit) 
[ block=block_number 1 
NOTICE: Stype: sensemsg 
NOTICE: Status: host=host_stah1s target=target_stah1s, 

Key: key code qualifier 

1 February 1993 

The output sensemsg is one of the following sense error messages: 

Command aborted: Command sent before previous one was completed 
Command aborted: Drive detected a SCSI parity error 
Command aborted: Drive received an 'initiator detected' error 
Command aborted: Drive received an illegal message 
Command aborted: Host sent abort message 
Command aborted: Message phase unexpected 
Command aborted: Phase sequence unexpected 
Command aborted: SCSI selection/reselection error occurred 
Command aborted: Unexpected command phase 
Command aborted: Unexpected data phase -possible DMA error 

Copy aborted: Due to error on the source or destination device 
Copy aborted: Host cannot disconnect 

Drive not ready: Being loaded 
Drive not ready: No media present 
Drive not ready: Offline 

Error rate warning 

733 



messages(MJ 

734 

Hardware error: Failure during write operation 
Hardware error: Media load/eject failed 
Hardware error: Moisture detected 
Hardware error: Track-following 
Hardware error: Unexpected internal error 

Humidity warning 

Illegal request: Invalid bits in identify message 
Illegal request: Invalid command 
Illegal request: Inv al id field in COB 
Illegal request: Invalid parameter list 
Illegal request: Logical unit not supported 
Illegal request: Parameter length error 
Illegal request: Parameter page not supported 

Medium error: Append error during write 
Medium error: Blank tape - use tape erase command 
Medium error: EOP /M encountered 
Medium error: Incompatible medium installed 
Medium error: Positioning error detected 
Medium error: RAW retry limit exceeded 
Medium error: Unrecovered read error 

Unit attention: Drive failed power-on self test 
Unit attention: Drive or bus reset 
Unit attention: Log parameters may have changed 
Unit attention: Mode parameters may have changed 
Unit attention: Possible media change - you may need to repeat command 

Write error: Media is write protected 

NOTICE: Status: host=n target=n, 
Key : unknown 

The SCSI sense block was found to be empty. 
WARNING: SCSI boot optionlsl ignored Invalid host adapter parameters 
WARNING: SCSI boot option Isl ignored Invalid id and/or lun 
WARNING: SCSI boot option(s) ignored Unknown host adapter driver 
WARNING: SCSI boot optionlsl ignored Unknown peripheral driver 

These errors are reported at I/0 initialization when they are read from 
the SCSI bootstrings. 

PANIC: Unacceptable value for Sha_last_registered In l , in Sharegister 

Could not register a host adapter as a bootable device. 

1 February 1993 



messages(M) 

Sdsk - SCSI disk driver 
CONFIG: Sdsk: Non-scatter /gather SCSI disk n dev major/minor cannot be used 

Mixed scatter/gather and non-scatter/gather SCSI adapters 

Once scatter/gather has been turned on with the filesystem, a non­
scatter /gather unit cannot be added to the system. 

NOTICE: Sdsk, _Spurious interrupt 

No command was pending when an interrupt was received. 
WARNING: Sdsk: Bad block size 

SDsk: Block size (n) must be between NBPSCTR and SBUFSIZE 

The block size on the device has been found to be outside the allowed 
limits. 

serial - Serial IIO driver 
WARNING: serial: Serial adapter (type=m, nports=n) not found 

A serial adapter could not be found. 
WARNING: serial: Garbage or loose cable on dev n, port shut down 

Too many interrupts were received together. Check the connections on 
the port. 

Srom - SCSI CD-ROM driver 
NOTICE: Srom: Spurious interrupt 

No command was pending when an interrupt was received. 

Stp - SCSI tape driver 
NOTICE: Stp: SCSI tape n11mber device major/minor tape is write p~otected 

Tape is write protected. Damage to the drive mechanism may also cause 
this error. 

NOTICE: Stp: SCSI tape number device major/minor tape unit not ready 

Tape unit was performing another operation. 
WARNING: Stp: not enough DMAABLE memory for tape buffer - tape may not function 

Not enough memory could be allocated to the tape buffer on 
initialization. 

Swrm - SCSI WORM driver 
CONFIG: Swrm: Too many WORM devices configured ISWrm_nunits = n exceeded) 

The maximum number of configurable devices is n. 

sp - STREAMS pipe driver 
CONFIG: sp: spclose - Cannot allocate STREAMS block INBLK??? values exceeded) 

A STREAMS message block could not be allocated. 

1 February 1993 735 



messages(M) 

736 

spad-AHA-1520 SCSI host adapter driver 
WARNING: spad: Adapter 0 configuration error Oxn, base port Oxn 

The host adapter could not be found at the given address. 
WARNING: spad: Spurious interrupt 
AHA-1520 and :n 
AHA-1520 sense :n 

An unexpected interrupt was received. 
WARNING: spad_init: Adapter 0 initialization error Oxn, base port Oxn 

The host adapter could not be initialized successfully. 

st506 - ST506 fixed disk adapter driver 
This driver supports the ST506, the Adaptec 2610 and 2620, and the IBM 
50-021, 50-031, 60-041, and 80-041. 
WARNING: st506: Invalid fixed disk parameter table on dev major/minor 

The disk information had been corrupted. 
WARNING: st506: Error on fixed disk dev major/minor block=n 

st506: isr=status, ASR BUSY after reset 

A reset failed on the adapter status register. 
WARNING: st506: Error on fixed disk dev major/minor block=n 

st506: isr=stah1s, ASR_BUSY set, coll'llland aborted 

A command was aborted because the adapter is busy. 
WARNING: st506: Error on fixed disk dev major/minor block=n 

st506: isr=stah1s, CCB error. sector=m, cylinder/head=n/o 

An error occurred with a command control block. 
WARNING: st506: isr=status, error parking heads for drive n 

An error occurred while parking the disk drive heads. 
WARNING: st506: Error on .fixed disk dev major/minor block=n 

st506: isr=status, initialization error, sending CSB 

The error occurred while sending the command specify block. 
WARNING: st506: Error on fixed disk dev major/minor block=n 

st506: isr=status, reading SSB 

The sense summary block could not be read. 
WARNING: st506: Error on fixed disk dev major/minor block=n 

st506: isr=status, sending data (possible bad track) 
drive=m, sector=n, cylinder/head=o/p 

A possibly defective track was found on the disk. 
WARNING: st506: Error on fixed disk dev major/minor block=n 

st506: isr=status, spurious interrupt 

WARNING: st506: Error on fixed disk dev major/minor block=n 
st506: isr=stah1s, spurious interrupt during unknown state 

No command was pending when an interrupt was received. 

1February1993 



WARNING: st506: Error on fixed disk dev major/minor block=n 
st506: isr=stah1s, timeout, ASR BUSY waiting to read SSB 

messages(MJ 

A command timed out because the adapter was busy waiting to read the 
sense summary block. 

string - string device driver 
CONFIG: string: Configuration buffer full (MAX_CFGSIZE = n exceeded) on dev major/minor 

No more characters could be written to one of the bootstring, package 
string, or configuration string buffers. 

sumo - NEC SUMO SCSI host adapter driver 
NOTICE: sumo: Spurious interrupt from device drive oil vector n 

No command was pending when an interrupt was received. 

tmcha - Future Domain Corp 1MC SCSI host adapter 
driver 
CONFIG: tmcha: Out of jobs (TMC_SCSI_JOBS = max exceeded) 

Too many SCSI commands were pending to be dealt with. 
NOTICE: tmcha: Non-existent adapter m (only n adapters) 

The specified host adapter (m) could not be found. 
NOTICE: tmcha: Unexpected SCSI reselection device id=target lun=n error 
NOTICE: tmcha: Unexpected reselection device id=target lun=n 

One of the peripheral devices made an unexpected reselection. 

wd - Western Digi.tal 1010 disk controller driver 
This driver is also used for the IBM 35SX, 40SX, L40SX, and for the TA Walk­
station 386. 
WARNING: wd#: Error on fixed disk dev major/minor, block=m, cmd=Oxn 

status=Oxerror, sector=o, cylinder /head=plq 

Reports an error detected while accessing the disk. 

wdha - Western Digi.tal 7000 SCSI host adapter driver 
WARNING: wdha: Command Oxm not completed, no status: host=Oxn target=Oxo 

Reports an uncompleted command. 
WARNING: wdha: Command Oxm rejected, port=Oxn status=Oxo 

Reports an illegal command. 
WARNING: wdha: Selection timeout cmd=Oxn 

A command timed out without receiving an interrupt. 
WARNING: wdha: Unexpected WDMBI status Oxn 

The incoming mailbox is in an unexpected state after an interrupt. 

1February1993 737 



messages(M) 

WARNING: wdha: Unknown WDMBI status Oxn 

The incoming mailbox is in an unrecognized state after an interrupt. 
PANIC: wdha: No ccb available 

The driver could not find an available command control block on 
attempting to start a SCSI job. 

weitek - Weitek floating point coprocessor driver 
WARNING: weitek: Unexpected interrupt level, no floating point process 

A floating point exception (SIGFPE) was not signaled to the current pro­
cess since it was not flagged as using floating point calculations. 

CPU interrupts and exceptions 

738 

The CPU can detect signals generated by itself, or by external hardware. These 
signals cause an interrupt or exception that requires a llandler routine. 

Interrupts are generated externally to the CPU. Peripherals generate inter­
rupts when they require attention; for example, when data is ready to be read. 
These events are signaled on the INTR (Interrupt Request) pin of the processor 
and may be temporarily ignored (masked). Non-maskable interrupts are sig­
naled on the NM! pin by events such as memory parity errors, and cannot be 
ignored. 

Exceptions are generated by the CPU when it detects abnormal internal condi­
tions, or by certain machine instructions. There are three types of internal 
exception detected by the processor: 

abort reported due to severe error, such as hardware failure or a corrupt sys­
tem table. It is not possible to determine which instruction caused the 
error. An example would be failure of the internal cache. 

fault reported either before or during the execution of an instruction. An 
example is a page fault generated when a process requires a page of 
memory. 

trap reported immediately after the execution of a machine instruction. An 
example is overflow on divide. 

Programmed exceptions are reported when certain machine instructions 
(BOUND, INT n, and INTO on the i80386 and i80486) cause an error condition. 
For example, BOUND is used by software when checking that an array index 
lies within given limits. These exceptions are sometimes referred to as "soft­
ware interrupts." 

1 February 1993 



messages(M) 

The hexadecimal identification number or vector for each type of interrupt or 
exception is listed in the following table. The names of the vectors are defined 
in /usr/inc/11de/sys/trap.h. The description indicates the circumstances under 
which the vector might be reported m a kernel or device driver message. 

Vector 

OxOO 
OxOl 
Ox02 
Ox03 
Ox04 

Ox05 

Ox06 

Ox07 

Ox08 

Ox09 
OxOA 

OxOB 

OxOC 

OxOD 

OxOE 

Ox OF 
OxlO 

Oxll-OxlF 
Ox20-0xFF 

Name 

DIVE RR 
SGLSTP 
NMIFLT 
BPTFLT 
INTOFLT 

BOUNDFLT 

INVOPFLT 

NOEXTFLT 

DBLFLT 

EXTOVRFLT 
INVTSSFLT 

SEGNPFLT 

STKFLT 

GPFLT 

PGFLT 

EXTERRFLT 

Type 

fault 
trap 
NM! 
trap 
pe 

pe 

fault 

fault 

abort 

abort 
fault 

fault 

fault 

fault 

fault 

fault 

INTR 

Description 

Divide error 
Debugging 
Non-maskable interrupt 
Breakpoint 
Overflow; programmed exception detected by 
INTO instruction 
Array range exceeded; programmed exception 
detected by BOUND instruction 
Invalid opcode; illegal instruction possibly due 
to an error in the cache, bad hardware, or bad 
memory 
Coprocessor not available; usually caused by 
the device not being present 
Double fault (causes a DOUBLE PANIC); 
caused by an illegal instruction from a third­
party device driver, or bad memory 
Coprocessor extension overrun 
Invalid TSS (Task State Segment); usually 
occurs when performing i8086 emulation 
Segment not present; caused by an addressing 
problem due to bad memory, or conflict with a 
third-party device driver 
Stack fault (system mode only); fixed stack size 
is being overflowed, perhaps caused by a third 
party device driver 
General protection; caused by invalid address, 
or parity error from bad memory 
Page fault; page could not be brought into 
memory due to bad memory, or a bug in a third 
party device driver 
Reserved by the manufacturer 
Floating point error; caused by bad coprocessor 
hardware 
Reserved by the manufacturer 
External interrupts on the INTR pin 

Interrupt vectors Ox40-0x4F are assigned in SCO UNIX System V to interrupts 
from the Programmable Interrupt Controllers {P!Cs). When output in diagnos­
tic messages, all external interrupt vectors are given relative to Ox40 
{PIC_ VECTBASE). This value corresponds to the IRQ (interrupt request line) 
on the PICs. For example, the clock is always at IRQ 0, the first serial port at 
IRQ 4, and the ST506 hard disk controller at IRQ 14. 

1 February 1993 739 



messages(M) 

See also 

740 

boot(HW}, chdir(S), configure(ADM), exec(S), fcntl(S), fork(S), getmsg(S), 
Intro(S}, ioctl(S), kill(S}, link(S), lseek(S}, matherr(S), mdevice(F}, 
mount(ADM}, msgctl(S), msgop(S), mtune(F), open(S), ptrace(S), putmsg(S), 
read(S), semctl(S), shmctl(S), signal(S), stune(F), ulimit(S), wait(S}, write(S) 

Development System Programmer's Reference Manual Volume 2 
System Administrator's Guide 

1 February 1993 



mestbl(M) 

mestbl 
create a messages locale table 

Syntax 
mestbl [ specfile I 

Description 

The utility mestbl is provided to allow LC_MESSAGES locales to be defined. It 
reads in a specification file (or standard input if specfile is not defined), con­
taining a definition for a particular locale's response strings to yes/no queries, 
and produces a concise format table file, to be read by setlocale(S). 

The response strings may be specified as a string held within double quotes or 
as a series of characters which are specified in one of six different ways (the 
following examples all specify the ASCII character "K): 

65 -decimal 
0101 - octal 
Ox41 - hexadecimal 
'X - quoted character 
'\ 101' - quoted octal 
'\x41' - quoted hexadecimal 

or a combination of both methods, for example: 

is identical to: 
"yes" 

To specify the response strings, the above string definitions must be preceded 
by the keyword YESSTR= for affirmative responses, and NOSTR= for negative 
responses. 

If a hash character (#) appears in any line, all characters following the hash 
character are treated as a comment and ignored up to the end of the line, 
unless the hash is within a quoted string. 

The concise format locale table is placed in a file named messages in the 
current directory. This file should be copied or moved to the correct place in 
the setlocale(S) file tree (see locale(M)). To prevent accidental corruption of 
the output data, the file is created with no write permission; if the mestbl util­
ity is run in a directory containing a write-protected messages file, the utility 
will ask if the existing file should be replaced - any response other than "yes" 
or "y" will cause mestbl to terminate without overwriting the existing file. 

1 February 1993 741 



mestbl(M) 

Diagnostics 

See also 

All error messages are self-explanatory. 

chrtbl(M), coltbl(M), locale(M), montbl(M), numtbl(M), setlocale(S), 
timtbl(M) 

Standards conformance 

742 

mestbl is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



montbl(M) 

montbl 
create a currency locale table 

Syntax 

montbl [ specfile I 

Description 
The utility montbl is provided to allow new LC_MONETARY locales to be 
defined; it reads a specification file, containing a definition of the currency 
symbol for a particular locale, and produces a binary table file, to be read by 
setlocale(S), which determines the behavior of the nl_langinfo(S) routine. 

The information supplied in the specification file consists of a line in the fol­
lowing format: 

CRNCYSTR =string 

The "=" can be separated from the keyword and string fields by zero ot more 
space or tab characters. 

The string is a sequence of characters surrounded by quotes ("). The first 
character of the string should be " - " if the symbol is to precede the currency 
value, or " +" if it should appear after the value. Characters within the string 
can be specified both literally and using "\" escapes; the following three 
strings are equivalent: 

"+DM" literal 
"+\x44M" hexadecimal escapes 
"+D\115" octal escapes 

All characters following a hash (#) are treated as a comment and ignored up to 
the end of the line, unless the hash is within a quoted string. 

The binary table output is placed in a file named currency, within the current 
directory. This file should be copied or linked to the correct place in the setlo­
cale file tree (see locale(M)). To prevent accidental corruption of the output 
data, the file is created with no write permission; if the montbl utility is run in 
a directory containing a write-protected currency file, the utility will ask if the 
existing file should be replaced - any response other than "yes" or "y" will 
cause montbl to terminate without overwriting the existing file. 

If the specfile argument is missing, the specification information is read from 
the standard input. 

1 February 1993 743 



montbl(MJ 

Exit values 

Any error conditions encountered will cause the program to exit with a non­
zero return code; successful completion is indicated with a zero return code. 

Diagnostics 

If the input table file cannot be opened for reading, processing will terminate 
with the error message, "Cannot open specification file''. 

Any lines in the specification file which are syntactically incorrect, or contain 
an unrecognized value instead of CRNCYSTR, will cause an error message to 
be issued to the standard error output, specifying the line number on which 
the error was detected. The line will be ignored, and processing will continue. 

If the output file, currency, cannot be opened for writing, processing will ter­
minate with the error message, "Cannot create table file". 

Limitations 

See also 

This utility was formerly known as curtbl. A link with this name is provided 
to maintain backward compatability. 

chrtbl(M), Iocale(M), msgtbl(M), nl_langinfo(S), numtbl(M), setlocale(S), 
timtbl(M) 

Standards conformance 

744 

montbl is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



motd(M) 

motd 
message of the day displayed at login 

Fonnat 
Free-format ASCII text 

Description 

Examples 

Files 

motd contains the message of the day that every user sees when they log into 
the system. A system administrator normally updates this file on a regular 
basis to inform of: 

• disruptions to the user service 

• changes to the system hardware or software 

• times of regular system backups 

• contents of mounted filesystems 

• names and telephone numbers of system operators 

Display the message of the day at any time while logged in by typing 
pg /etc/motd. Suppress the appearance of the message using the hushlogin 
feature described in login(M). 

NOTE: The system will be shut down at 14:00 12 PM) today Tuesday 
December 4 for installation of a new disk drive. Service 
will be restored at 16:00 14 PM) at the earliest. 

GENERAL: The system is not available on Mondays between 08:00 
and 10:00 when system backup is performed. 

ENQUIRIES: Contact Mick O'Neil or Sean Mccann on x410. 

/etc/motd Full pathname of motd 

1February1993 745 



motd(M) 

See also 

login(M) 

746 1 February 1993 



mscreen(M) 

mscreen 
serial multiscreens utility 

Syntax 
mscreen [ -s ] [ -n number I [ -t I 

Description 
mscreen allows a serial terminal to have multiple login screens similar to the 
multiscreen(M) console. 

Note: For full mscreen support the terminal must have the ability to switch 
internal screen pages on command and it must retain a separate cursor posi­
tion for each screen page. 

The options are as follows: 

-s Silent mode. This flag suppresses the startup messages, and on "dumb" 
terminals it suppresses the screen switch messages 

-n Selects the number of serial multiscreens desired up to the maximum 
defined for the terminal type. 

·t Disables the transparent tty checking. mscreen normally exits silently if 
the terminal device name starts with the characters "ttyp". Device names 
beginning with "ttyp" are used as slave devices for mscreen. The correct 
names for the master tty devices begin with "ptyp". 

mscreen can be used on both "smart" and "dumb" terminals. Although it is 
optimized to take advantage of smart terminals with screen memory, mscreen 
also works on dumb terminals, although the screen images are not saved dur­
ing screen changes. mscreen also supports terminals with two (or more) 
serial ports that are connected to different computers. 

mscreen is designed to be invoked from the .profile or .login files. Use mscreen 
in place of the SHELL variable so that serial multiscreens can be automatic at 
login time. The "stop" and "quit" keys allow you to logout from all screens 
with a single keystroke. 

Configuration 

mscreen determines the terminal type of the terminal it is invoked from by 
examining the environment variable TERM. mscreen looks in /etc/mscreencap 
or in the filename contained in the environment variable MSCREENCAP to get 
the capabilities for the terminal type. 

1 February 1993 747 



mscreen(M) 

748 

The pseudo terminals assigned to the user are automatically determined at 
startup by mscreen. Manual assignment of ttys can be accomplished by creat­
ing a file in the user's home directory called .mscreenrc. 

mscreencap fonnat 
mscreencap contains an entry for each terminal type supported. An entry 
may have several names if the support for several terminal types is the same. 
Within an entry are the key mappings for each potential pseudo terminal. 
Each pseudo terminal has a help key string, an input string (the sequence gen­
erated by the key that selects this screen), and an optional output string (the 
sequence to send to the terminal that will cause a page switch). The input and 
output strings are in a termcap like format: (the backslash and caret are spe­
cial lead in (escape) characters). 

\nnn an octal number, one to three digits are allowed 

\n newline 

\r carriage return 

\t tab 

\b backspace 

\f form feed 

\E escape (hex lb octal 33). 

\ \ enter backslash as a data character 

\ • enter caret as a data character 

\ ·x (Ctrl}x, where x can be: 
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]" _ 
Effectively the caret can generate hex 01 through hex lf. 

If a terminal type has no output strings then it is assumed to be a dumb termi­
nal that does not have multiple internal memory pages. 

There are five special entries that allow the user to define keys to support the 
other functions of mscreen. They are the "help" key (prints a list of all of the 
keys that are currently available and their functions), the "who" key (prints 
the name of the current screen), the "stop" key (terminates mscreen and 
returns a good (zero) shell return code), and "quit" key (terminates mscree_n 
and returns a bad (non-zero) shell return code and the dummy entry that is 
used for terminals with multiple ports. 

1 February 1993 



The format is: 
#this is a comment and may only appear between entries 
entryname I aliasl I aliasl. .. I aliasn: 

:specialname,helpname,inputstring,pageselectstring: 
:specialname,helpname,inputstring,pageselectstring: 

entrynamelaliasllaliasl ... laliasn: 
:specialname,helpname,inputstring,pageselectstring: 
:specialname,helpname,inputstring,pageselectstring: 

mscreen(M) 

The specialname is empty for real screen entries. See the provided 
/etc/mscreencap for examples . 

. mscreenrc format 

.mscreenrc contains a list of ttynames if the user wants to allocate a fixed set of 
ttys for use: 

ttypO 
ttypl 
ttypn 

Shell return codes and auto logi.nllogout 
mscreen exits with a bad (non-zero) return code if there is an error or when 
the "quit" key is pressed. The "stop" key causes mscreen to exit with a good 
(zero) return code. This allows users to place mscreen in the .login or .profile 
files. The .login or .profile files should set up an automatic logout if the 
mscreen return code is good (zero). The following is a csh sample invocation 
of mscreen for a .login file: 

mscreen-n4 
if ($status == 0) logout 

The single key logout feature of mscreen works as if a normal logout was 
entered on each pseudo-terminal. A hangup signal is sent to all of the pro­
cesses on all the pseudo terminals. 

Multi.pie port option 
mscreen provides a dummy entry type. It allows mscreen to be placed in an 
inactive state while the user uses his terminal to converse through another 
(physical) 1/0 port to another computer. See the provided /etc/mscreentermmap 
for an example. To use it, you must take the example and configure it for your 
needs. 

mscreen driver 
The mscreen driver is already installed in the UNIX kernel with eight pseudo 
terminals available for use. You must enable a pseudo terminal before you 
can use it. See the link-kit instructions for relinking the kernel to have more 
available pseudo terminals. 

1 February 1993 749 



mscreen(M) 

Limitations 

See also 

mscreen has a VTIM timeout of 1/5 second for input strings. 

mscreen has a limit of twenty multiscreens per user. 

You should not switch screen pages in mscreen when output is occurring 
because if an escape sequence is cut in half it may leave the terminal in an 
indeterminate state and distort the screen image. 

Terminals that save the cursor location for each screen often do not save states 
such as insert mode, inverse video, and others. For example, you should not 
change screens if you are in insert mode in vi, and you should not change 
screens during an inverse video output sequence. 

For inactive screens (screens other than the current one) mscreen saves the 
last 2048 characters of data (2K). Data older than this is lost. This limit occa­
sionally results in errors for programs that require a memory of more data 
than this. The user-defined screen redraw key restores the screen to normal 
appearance. 

mscreen depends on the pseudo terminal device names starting with "ttyp" 
for the slave devices and "ptyp" for the master devices. The number of trail­
ing characters in the device name is not significant. 

enable(C), multiscreen(M) 

•Administering serial terminals" chapter in the System Administrator's Guide 

Standards conformance 

750 

mscreen is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



multiscreen(M) 

multiscreen 
multiple screens (device files) 

Syntax 
(AltXFn} 

(AitXCtrlXFn} 

(AltXShiftXFn} 

(AltXCtrIXShiftXFn} 

Description 

With the multiscreen feature, a user can access up to twelve different 
"screens," each corresponding to a separate device file. Each screen can be 
viewed one at a time through the primary monitor video display. 

The number of screens on a system depends upon the amount of memory in 
the computer. The system displays the number of enabled screens during the 
boot process. 

Access 
To see the next consecutive screen, enter: 

(Ctr IX PrtSc} 

To move to any screen from any other screen, enter: 

( AltX Fn} or ( AltX CtrlX Fn} or 
(AltXShiftXFn} 
(AltXFn} or(AltXCtrlXFn} (screens 1-12) 
(AltXShiftXFn} or(AltXCtrIXShiftXFn} (screens 11-16, 7-12) 

where n is the number of one of the " F " function keys on the primary monitor 
keyboard. For example: 

(AltXF2} 

selects tty02, and all output in that device's screen buffer is displayed on the 
monitor screen. 

The second form (using the (Shift} key) permits access to screens 11 and 12 on 
keyboards that have only ten function keys. It is possible to configure the ker­
nel for up to 16 screens, but 12 is the default. 

The function key combinations used to display the various screens are defined 
in the keyboard mapping file. The /usr/lib/keyboard/keys or other mapkey(M) 
file can be modified to allow different key combinations to change mul­
tiscreens. Use the mapkey utility to create a new keyboard map. 

1 February 1993 751 



multiscreen(M) 

Diagnostics 

Any system error messages are normally output on the console device file 
(/dev/conso/e). When an error message is output, the video display reverts to 
the console device file, and the message is displayed on the screen. The con­
sole device is the oniy teletype device open during the system boot sequence 
and when in single-user, or system maintenance mode. 

Limitations 

Files 

See also 

Limitations to the number of multiscreens available on a system does not 
affect the number of serial lines or devices available. See serial(M) for infor­
mation on available serial devices. 

Note that the keystrokes given here are the default, but your keyboard may be 
different. If so, see keyboard(M) for the appropriate substitutes. Also, any 
key can be programmed to generate the screen switching sequences by using 
the map key utility. 

/dev/tty{Ol-12) multiscreen devices (number available depends on system 
memory) 

mapkey(M), keyboard(HW), screen(HW), serial(HW), stty(C) 

Standards confonnance 

752 

multiscreen is not part of any currently supported standard; it is an extension 
of AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



numtbl(M) 

numtbl 
create a numeric locale table 

Syntax 

numtbl [ table_file I 

Description 
This utility will create a numeric locale table to be interpreted by the 
setlocale(S) system call. 

The table_jile contains information about the numeric locale in a user read­
able form. 

At present, two pieces of information can be supplied. These are: the character 
to be used as a decimal place marker (radix character), and the character to be 
used as a thousands delimiter, for example the commas in 1,000,000. To 
specify these, there must be lines, in the table file, of the form: 

DECIMAL=d 
THOUSANDS=t 

Where "d" is the character to be used as the decimal place mark and" t" is the 
character to be used as the thousands delimiter. The characters "d" and "t" 
may be specified in six different ways. The following lines show different for­
mats for the letter "b ". 
98 -decimal 
0142 -octal 
Ox62 - hexadecimal 
'b' - quoted character 
'\0142' - quoted octal 
'\x62' - quoted hexadecimal 
Any line starting with a hash (#) is treated as a comment. 

The output is a file, called numeric, which is placed in the current directory. 
This file is in a form which can be interpreted by the setlocale(S) system call. 
For more information on where this file should be placed, please see 
locale(M). 

If no table file is specified, the information is taken from the standard input. 
The format of the information is identical. 

If either DECIMAL or THOUSANDS is not specified, its value will default to " . " 
or ", ", respectively. 

1 February 1993 753 



numtbl(MJ 

Diagnostics 

Any lines of input which are in the wrong format will cause a warning to be 
issued on the terminal, but will not terminate the program. 

"Character syntax error' will be issued on the terminal if the format of the 
character specification does not match one of those specified above. The pro­
gram will then terminate. 

If the input table file cannot be opened for reading, the program will also ter­
minate with the error message, "Cannot open table file." 

If the output file, n11meric, cannot be opened for writing, the program will ter­
minate with the error message, "Cannot create numeric locale file." 

Limitations 

See also 

The thousands delimiter is not currently used within any of the standard 
UNIX libraries or utilities, although it can be accessed by application programs 
using the nl_langinfo(S) function. 

The string RADIXCHAR may be used as an alternative to DECIMAL, and 
THOUSEP as an alternative to THOUSANDS, if required. These alternatives 
are provided for consistency with the identifiers used by nl_langinfo(S). 

locale(M), environ(M) 

Standards conformance 

754 

numtbl not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



prof(MJ 

prof 
profile within a function 

Syntax 
#define MARK 
#include <profh> 

void MARK (name) 

Description 

Examples 

MARK will introduce a mark called name that will be treated the same as a 
function entry point. Execution of the mark will add to a counter for that 
mark, and program-counter time spent will be accounted to the immediately 
preceding mark or to the function if there are no preceding marks within the 
active function. 

name may be any valid C identifier. Each name in a single compilation must 
be unique, but may be the same as any ordinary program symbol. 

For marks to be effective, the symbol MARK must be defined before the 
header file <profh> is included. This may be defined by a preprocessor direc­
tive as in the synopsis or by a command line argument, that is: 

cc -p -DMARK foo.c 

If MARK is not defined, the MARK( name) statements may be left in the source 
files containing them and will be ignored. 

In this example, marks can be used to determine how much time is spent in 
each loop. Unless this example is compiled with MARK defined on the com­
mand line, the marks are ignored. 

1 February 1993 755 



prof<MJ 

See also 

756 

#include <prof.h> 
foo( ) 
( 

int i, j; 

MARK 1 loopl): 
for Ii = 0: i < 2000; i++l ( 

) 
MARK lloop2) : 
for (j = 0: j < 2000; j++) ( 

profil(S), monitor(S) 

1February1993 



profile(M) 

profile 
set up an environment at login lime 

Description 
The optional file, .profile, permits automatic execution of commands when­
ever a user logs in. The file is generally used to personalize a user's work 
environment by setting exported environment variables and terminal mode 
(see environ(M)). 

When a user logs in, the user's login shell looks for .profile in the login direc­
tory. If found, the shell executes the commands in the file before beginning 
the session. The commands in the file must have the same format as if they 
were entered at the keyboard. Any line beginning with the number sign (#) is 
considered a comment and is ignored. The following is an example of a 
typical file: 

# Tell me when new mail comes in 
MAIL=/usr/mail/myname 
# Add my /bin directory to the shell search sequence 
PATH=$PATH:$HOME/bin 
# Make some environment variables global 
export MAIL PATH TERM 
# Set file creation mask 
umask 22 

Limitations 

Files 

See also 

Note that the file /etc/profile is a system-wide profile that, if it exists, is exe­
cuted for every user before the user's .profile is executed. 

SHOME/.profile 
/etc/profile 

env(C), login(M), mail(C), sh(C), stty(C), su(C), environ(M) 

1 February 1993 757 



ptmX(M) 

ptmx, pts??? 
STREAMS master pseudo-tty device 

Description 

The file /dev/ptmx is the device node used by applications to open STREAMS­
based master pseudo-tty devices. This is a single device node which allows 
access to multiple devices via the clone(M) driver. Successive open(S) calls to 
/dev/ptmx return different file descriptors, each referring to a new cloned 
device. 

The master pseudo-tty device opened is used to transfer data between the 
application and one of the slave pseudo-tty nodes /devlpts???, where ??? is a 3 
digit decimal number with leading zeros. 

Limitations 

Files 

See also 

758 

Although /dev/ptmx is referred to as a pseudo-tty, the master device does not 
have tty characteristics and therefore cannot become the controlling tty of a 
process group. The slave side of the connection does have the characteristics 
of a real tty and can become the controlling tty of a process group. 

/dev/ptmx 
/devlpts??? 

clone(M) 

AT&T STREAMS Programmer's Guide 
AT&T STREAMS Primer 

1 February 1993 



rmb(M) 

rmb 
remove extra blank lines from a file 

Syntax 

/usr/bin/rmb 

Description 

/usr/bin/rmb acts as a filter to remove any series of blank Jines greater than 
two Jines in length. This means that all long sequences of blank Jines will be 
reduced to two blank Jines. This is particularly useful for cleaning nroff(CT) 
output of blank lines before putting the output in a file. 

Limitations 

See also 

Because /usr/bin/rmb is a filter, it must be used within a piped command 
sequence as shown in the following examples: 

cat infile I /usr/bin/rmb > outfile 

nroff infile I /usr/bin/rmb > outfile 
It cannot be used in the form /usr/bin/rmb filename. 

man(C), nroff(CT) 

Standards conformance 

rmb is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 759 



scanon(M) 

scanon,scanoff 
enable and disable scancode·IO·character mapping 

Syntax 

scanon [ ldevlttyline ... ) 

scanoff [ /devlttyline ... ) 

Description 

The scanon script simultaneously sets the terminal and the serial line to send 
PC scancodes (turns on PC-scancode mode). The scanoff script turns off PC­
scancode mode. With no arguments, scanon and scanoff affect the current 
tty. 

scanon also calls the mapstr function to set up the strings for the terminals 
function keys. 

Limitations 

Files 

See also 

760 

When scanon or scanoff are called without parameters, the $TERM environ­
ment variable is used to determine the terminal type. When a device is speci­
fied on the command line, the connect terminal type for the device must be 
entered in the /etc/ttytype file for the command to work correctly. Note that 
for a Wyse-60 terminal the type (or $TERM, if the command is run from the 
terminal itself) must be set to wy60-pc. 

/etc/ttype 
/usr/lib/keyboard/strings.d/* 

stty(C), tput(C), ttytype(F) 

l February 1993 



streamio(M) 

streamio 
STREAMS ioctl commands 

Syntax 

#include<stropts.h> 

int ioctl (fildes, command, arg) 

int fildes, command; 

Description 

STREAMS (see lntro(S)) ioctl commands are a subset of ioctl(S) system calls 
which perform a variety of control functions on "streams." The arguments 
command and arg are passed to the file designated by fildes and are inter­
preted by the "stream head." Certain combinations of these arguments may be 
passed to a module or driver in the stream. 

fildes is an open file descriptor that refers to a stream. command determines 
the control function to be performed as described below. arg represents addi­
tional information that is needed by this command. The type of arg depends 
upon the command, but it is generally an integer or a pointer to a command­
specific data structure. 

Since these STREAMS commands are a subset of ioctl, they are subject to the 
errors described there. In addition to those errors, the call will fail with ermo 
set to EINVAL, without processing a control function, if the stream referenced 
by fildes is linked below a multiplexer, or if command is not a valid value for 
a stream. 

Also, as described in ioctl, STREAMS modules and drivers can detect errors. In 
this case, the module or driver sends an error message to the stream head con­
taining an error value. This causes subsequent system calls to fail with ermo 
set to this value. 

ioctl commands 
The following ioctl commands, with error values indicated, are applicable to 
all STREAMS files: 

I_PUSH 

1 February 1993 

Pushes the module whose name is pointed to by arg onto the 
top of the current stream, just below the stream head. It then 
calls the open routine of the newly-pushed module. On failure, 
ermo is set to one of the following values: 

[EINVAL) 
[EFAULTI 

Invalid module name. 
arg points outside the allocated address space. 

761 



streamio(M) 

l_POP 

l_LOOK 

l_FLUSH 

l_SETSIG 

762 

[ENXIO) 
[ENXIO) 

Open routine of new module failed. 
Hangup received onfildes. 

Removes the module just below the stream head of the stream 
pointed to by fildes. arg should be 0 in an I_POP request. On 
failure, errno is set to one of the following values: 

[EINVAL) 
[ENXIOI 

No module present in the stream. 
Hangup received on fildes. 

Retrieves the name of the module just below the stream head 
of the stream pointed to by fildes, and places it in a null ter­
minated character string pointed at by arg. The buffer pointed 
to by arg should be at least FMNameSZ+l bytes long. An 
#include <sys/conf.h> declaration is required. On failure, 
errno is set to one of the following values: 

[EFAULT) 
IEINVALI 

arg points outside the allocated address space. 
No module present in stream. 

This request flushes all input and/or output queues, depend­
ing on the value of arg. Legal argvalues are: 

FLUSHR 
FLUSHW 
FLUSHRW 

Flush read queues. 
Flush write queues. 
Flush read and write queues. 

On failure, errno is set to one of the following values: 

[ENOS RI 

[EINVAL) 
[ENXIO) 

Unable to allocate buffers for flush message due 
to insufficient STREAMS memory resources. 
Invalid arg value. 
Hangup received onfildes. 

Informs the stream head that the user wishes the kernel to 
issue the SIGPOLL signal (see signal(S) and sigset(S)) when a 
particular event has occurred on the stream associated with 
fildes. l_SETSIG supports an asynchronous processing capa­
bility in STREAMS. The value of arg is a bitmask that specifies 
the events for which the user should be signaled. It is the 
bitwise-OR of any combination of the following constants: 

S_INPUT 

S_HIPRI 

A non-priority message has arrived on a stream 
head read queue, and no other messages existed 
on that queue before this message was placed 
there. This is set even if the message is of zero 
length. 
A priority message is present on the stream 
head read queue. This is set even if the message 
is of zero length. 

1 February 1993 



I_GETSIG 

I_FIND 

1February1993 

streamio(M) 

S_OUTPUT The write queue just below the stream head is 
no longer full. This notifies the user that there is 
room on the queue for sending (or writing) data 
downstream. 

S_MSG A STREAMS signal message that contains the 
SIGPOLL signal has reached the front of the 
stream head read queue. 

A user process may choose to be signaled only of priority mes­
sages by setting the arg bitmask to the value S_HIPRI. 

Processes that wish to receive SIGPOLL signals must explicitly 
register to receive them using l_SETSIG. If several processes 
register to receive this signal for the same event on the same 
Stream, each process will be signaled when the event occurs. 

If the value of arg is zero, the calling process will be unre­
gistered and will not receive further SIGPOLL signals. On 
failure, ermo is set to one of the following values: 

[EINVALJ 

[EA GAIN) 

arg value is invalid or arg is zero and process is 
not registered to receive the SIGPOLL signal. 
Allocation of a data structure to store the signal 
request failed. 

Returns the events for which the calling process is currently 
registered to be sent a SIGPOLL signal. The events are 
returned as a bitmask pointed to by arg, where the events are 
those specified in the description of I_SETSIG above. On 
failure, errno is set to one of the following values: 

[EINVAL) 

[EFAULT) 

Process not registered to receive the SIGPOLL 
signal. 
arg points outside the allocated address space. 

Compares the names of all modules currently present in the 
stream to the name pointed to by arg, and returns 1 if the 
named module is present in the stream. It returns 0 if the 
named module is not present. On failure, ermo is set to one of 
the following values: 

[EFAULT) 
[EINVAL) 

arg points outside the allocated address space. 
arg does not contain a valid module name. 

763 



streamio(M) 

l_PEEK 

I_SRDOPT 

l_GRDOPT 

764 

Allows a user to retrieve the information in the first message 
on the stream head read queue without taking the message off 
the queue. arg points to a etrpeek structure which contains the 
following members: 
struct strbuf ctlbuf; 
struct strbuf databuf; 
long flags; 

The maxlen field in the ctlbuf and databuf strbuf structures 
(see getmsg(S)) must be set to the number of bytes of control 
information and/or data information, respectively, to retrieve. 
If the user sets flags to RS_HIPRI, I_PEEK will only look for a 
priority message on the stream head read queue. 

l_PEEK returns 1 if a message was retrieved, and returns 0 if no 
message was found on the stream head read queue, or if the 
RS_HIPRI flag was set in flags and a priority message was not 
present on the stream head read queue. It does not wait for a 
message to arrive. On return, ctlbuf specifies information in 
the control buffer, databuf specifies information in the data 
buffer, and flags contains the value 0 or RS_HIPRI. On failure, 
ermo is set to one of the following values: 

[EFAULTl arg points, or the buffer area specified in ctlbuf 
or databuf is, outside the allocated address 
space. 

[EBADMSGl Queued message to be read is not valid for 
J_pEEK 

Sets the read mode using the value of the argument arg. Legal 
arg values are: 

RN ORM 
RMSGD 
RMSGN 

Byte-stream mode, the default. 
Message-discard mode. 
Message-nondiscard mode. 

Read modes are described in read(S). On failure, ermo is set to 
the following value: 

[EINVALl arg is not one of the above legal values. 

Returns the current read mode setting in an int pointed to by 
the argument arg. Read modes are described in read(S). On 
failure, ermo is set to the following value: 

[EFAULTl arg points outside the allocated address space. 

1 February 1993 



l_NREAD 

streamio(M) 

Counts the number of data bytes in data blocks in the first mes­
sage on the stream head read queue, and places this value in 
the location pointed to by arg. The return value for the com­
mand is the number of messages on the stream head read 
queue. For example, if zero is returned in arg, but the ioctl 
return value is greater than zero, this indicates that a zero­
length message is next on the queue. On failure, ermo is set to 
the following value: 

[EFAULTl arg points outside the allocated address space. 

I_FDINSERT Creates a message from user specified buffer(s), adds informa­
tion about another stream and sends the message downstream. 
The message contains a control part and an optional data part. 
The data and control parts to be sent are distinguished by 
placement in separate buffers, as described below. 

1February1993 

arg points to a strfdinsert structure which contains the fol­
lowing members: 
struct strbuf ctlbuf; 
struct strbuf databuf; 
long flags; 
int fildes; 
int offset; 

The len field in the ctlbuf strbuf structure (see putmsg(S)) 
must be set to the size of a pointer plus the number of bytes of 
control information to be sent with the message. fildes in the 
strfdinsert structure specifies the file descriptor of the other 
stream. offset, which must be word-aligned, specifies the 
number of bytes beyond the beginning of the control buffer 
where l_FDINSERT will store a pointer. This pointer will be 
the address of the read queue structure of the driver for the 
stream corresponding to fildes in the sti:fdinsert structure. 
The len field in the databuf strbuf structure must be set to the 
number of bytes of data information to be sent with the mes­
sage or zero if no data part is to be sent. 

flags specifies the type of message to be created. A non­
priority message is created if flags is set to 0, and a priority 
message is created if flags is set to RS_HIPRI. For non-priority 
messages, I_FDINSERT will block if the stream write queue is 
full due to internal flow control conditions. For priority mes­
sages, I_FDINSERT does not block on this condition. For non­
priority messages, I_FDINSERT does not block when the write 
queue is full and O_NDELAY is set. Instead, it fails and sets 
ermo to EAGAIN. 

765 



streamio(M) 

766 

l_FDINSERT also blocks, unless prevented by lack of internal 
resources, waiting for the availability of message blocks in the 
stream, regardless of priority or whether O_NDELAY has been 
specified. No partial message is sent. On failure, ermo is set to 
one of the following values: 

[EAGAINl 

[ENOS RI 

[EFAULT] 

[EINVAL] 

[ENXIO] 

[ERANGE] 

A non-priority message was specified, the 
O_NDELAY flag is set, and the stream write 
queue is full due to internal flow control 
conditions. 
Buffers could not be allocated for the message 
that was to be created due to insufficient 
STREAMS memory resources. 
argpoints, or the buffer area specified in ctlbuf 
or databuf is, outside the allocated address 
space. 
One of the following: f i ldes in the strfdinsert 
structure is not a valid, open stream file descrip-
tor; the size of a pointer plus offset is greater 
than the 1 en field for the buffer specified 
through ctlptr; offset does not specify a prop­
erly aligned location in the data buffer; an unde-
fined value is stored in flags. 
Hangup received on fildes of the ioctl call or 
f i ldes in the strfdinsert structure. 
The len field for the buffer specified through 
databuf does not fall within the range specified 
by the maximum and minimum packet sizes of 
the topmost stream module, or the len field for 
the buffer specified through databuf is larger 
than the maximum configured size of the data 
part of a message, or the len field for the buffer 
specified through ctlbuf is larger than the max­
imum configured size of the control part of a 
message. 

l_FDINSERT can also fail if an error message was received by 
the stream head of the stream corresponding to fildes in the 
strfdinsert structure. In this case, ermo will be set to the 
value in the message. 

1 February 1993 



I_STR 

l February 1993 

streamio(M) 

Constructs an internal STREAMS ioctl message from the data 
pointed to by arg and sends that message downstream. 

This mechanism is provided to send user ioctl requests to 
downstream modules and drivers. It allows information to be 
sent with the ioctl and will return to the user any information 
sent upstream by the downstream recipient. I_STR blocks until 
the system responds with either a positive or negative ack­
nowledgment message or until the request "times out" after 
some period of time. If the request times out, it fails with errno 
set to ETIME. 

At most, one l_STR can be active on a stream. Further I_STR 
calls will block until the active I_STR completes at the stream 
head. The default timeout interval for these requests is 15 
seconds. The O_NDELA Y (see open(S)) flag has no effect on 
this call. 

To send requests downstream, arg must point to a strioctl 
structure which contains the following members: 
int ic_cmd; /* downstream command */ 
int ic_timout; /* ACK/NAK timeout */ 
int ic_len; /* length of data arg */ 
char *ic_dp; /* ptr to data arg */ 

ic_cmd is the internal ioctl command intended for a down­
stream module or driver; and ic_timout is the number of 
seconds (-1 = infinite, 0 = use default, >0 = as specified) an 
l_STR request will wait for acknowledgment before timing out. 
ic_len is the number of bytes in the data argument and ic_dp 
is a pointer to the data argument. The ic_len field has two 
uses: on input, it contains the length of the data argument 
passed in, and on return from the command, it contains the 
number of bytes being returned to the user (the buffer pointed 
to by ic_dp should be large enough to contain the maximum 
amount of data that any module or the driver in the stream can 
return). 

The stream head will convert the information pointed to by the 
strioctl structure to an internal ioctl command message and 
send it downstream. 

On failure, errno is set to one of the following values: 

[ENOSRl 

[EFAULT] 

[EINVAL] 

Unable to allocate buffers for the ioctl message 
due to insufficient STREAMS memory resources. 
arg points, or the buffer area specified by ic_dp 
and ic_len (separately for data sent and data 
returned), is outside the allocated address space. 
ic_len is less than 0 or ic_len is larger than the 
maximum configured size of the data part of a 
message or ic_tirnout is less than -1. 

767 



streamio(MJ 

l_SENDFD 

l_RECVFD 

768 

IENXIOI 
[ETIMEI 

Hangup received onfildes. 
A downstream ioctl timed out before 
acknowledgment was received. 

An l_STR can also fail while waiting for an acknowledgment if 
a message indicating an error or a hangup is received at the 
stream head. In addition, an error code can be returned in the 
positive or negative acknowledgment message, in the event 
that the ioctl command sent downstream fails. For these cases, 
l_STR will fail with ermo set to the value in the message. 

Requests the stream associated with fildes to send a message, 
containing a file pointer, to the stream head at the other end of 
a stream pipe. The file pointer corresponds to arg, which must 
be an integer file descriptor. 

l_SENDFD converts arg into the corresponding system file 
pointer. It allocates a message block and inserts the file pointer 
in the block. The user id and group id associated with the 
sending process are also inserted. This message is placed 
directly on the read queue (see lntro(S}} of the stream head at 
the other end of the stream pipe to which it is connected. On 
failure, ermo is set to one of the following values: 

[EAGAINI 

[EAGAINI 

[EBADF) 
[EINVALI 
[ENXIOI 

The sending stream is unable to allocate a mes­
sage block to contain the file pointer. 
The read queue of the receiving stream head is 
full and cannot accept the message sent by 
l_SENDFD. 
arg is not a valid, open file descriptor. 
fildes is not connected to a stream pipe. 
Hangup received onfildes. 

Retrieves the file descriptor associated with the message sent 
by an I_SENDFD ioctl over a stream pipe. arg is a pointer to a 
data buffer large enough to hold an strrecvfd data structure 
containing the following members: 
int fd; 
unsigned short uid; 
unsigned short gid; 
char fill[BJ; 

fd is an integer file descriptor. uid and gid are the user id and 
group id, respectively, of the sending stream. 

If O_NDELAY is not set (see open(S)), l_RECVFD will bloc_k 
until a message is present at the stream head. If ~-NDELAY is 
set I RECVFD will fail with ermo set to EAGAIN 1f no message 
is prisent at the stream head. 

1 February 1993 



streamio(M) 

If the message at the stream head is a message sent by an 
l_SENDFD, a new user file descriptor is allocated for the file 
pointer contained in the message. The new file descriptor is 
placed in the fd field of the strrecvfd structure. The structure 
is copied into the user data buffer pointed to by arg. On 
failure, errno is set to one of the following values: 

[EA GAIN! 

[EBADMSGI 

[EFAULT] 
[EMFILE] 
[ENXIO] 

A message was not present at the stream head 
read queue, and the O_NDELAY flag is set. 
The message at the stream head read queue was 
not a message containing a passed file 
descriptor. 
arg points outside the allocated address space. 
No files file descriptors are currently open. 
Hangup received onfildes. 

The following two commands are used for connecting and disconnecting mul­
tiplexed STREAMS configurations. 

l_LINK 

1 February 1993 

Connects two streams, where fildes is the file descriptor of the 
stream connected to the multiplexing driver, and arg is the file 
descriptor of the stream connected to another driver. The 
stream designated by arg gets connected below the multiplex­
ing driver. l_LINK requires the multiplexing driver to send an 
acknowledgmen_t message to the stream head regarding the 
linking operation. This call returns a multiplexer ID number 
(an identifier used to disconnect the multiplexer, see 
l_UNLINK) on success, and a -1 on failure. On failure, errno is 
set to one of the following values: 

[ENXIO] 
[ETIMEI 

[EAGAIN] 

[ENOSR] 

[EBADF) 
[EINVAL) 
[EINVALI 

[EINVAL) 

Hangup received onfildes. 
Time out before acknowledgment message was 
received at stream head. 
Temporarily unable to allocate storage to per­
form the l_LINK. 
Unable to allocate storage to perform the l_LINK 
due to insufficient STREAMS memory resources. 
arg is not a valid, open file descriptor. 
fildes stream does not support multiplexing. 
arg is not a stream, or is already linked under a 
multiplexer. 
The specified link operation would cause a 
"cycle" in the resulting configuration; that is, if a 
given stream head is linked into a multiplexing 
configuration in more than one place. 

769 



streamio(M) 

!_UNLINK 

~ l_LINK can also fail while waiting for the multiplexing 
driver to acknowledge the link request, if a message indicating 
an error or a hangup is received at the stream head of fildes. In 
addition, an error code can be returned in the positive or nega­
tive acknowledgment message. For these cases, I_LINK will 
fail with errno set to the value in the message. 

Disconnects the two streams specified by fildes and arg. fildes 
is the file descriptor of the stream connected to the multiplex­
ing driver. fildes must correspond to the stream on which the 
ioctl l_LINK command was issued to link the stream below the 
multiplexing driver. arg is the multiplexer ID number that was 
returned by the l_LINK. If arg is -1, then all streams which 
were linked to fildes are disconnected. As in l_LINK, this com­
mand requires the multiplexing driver to acknowledge the 
unlink. On failure, errno is set to one of the following values: 

!ENXIO) 
lETIME) 

[ENOS RI 

[EINVAL) 

Hangup received onfildes. 
Time out before acknowledgment message was 
received at stream head. 
Unable to allocate storage to perform the 
l_UNLINK due to insufficient STREAMS memory 
resources. 
arg is an invalid multiplexer ID number or fildes 
is not the stream on which the I_LINK that 
returned arg was performed. 

An I_UNLINK can also fail while waiting for the multiplexing 
driver to acknowledge the link request, if a message indicating 
an error or a hangup is received at the stream head of fildes. In 
addition, an error code can be returned in the positive or nega­
tive acknowledgment message. For these cases, l_UNLINK will 
fail with errno set to the value in the message. 

Return values 

See also 

770 

Unless specified otherwise above, the return value from ioctl is 0 upon suc­
cess and-1 upon failure with errno set as indicated. 

close(S}, fcntl(S}, getmsg(S}, Intro(S}, ioctl(S}, open(S}, poll(S), putmsg(S), 
read(S}, signal(S}, sigset(S}, write(S} 

AT&T STREAMS Programmer's Guide 
AT&T STREAMS Primer 

1 February 1993 



string(M) 

string 
access boot, configuration, or package string 

Description 

See also 

There are three string devices (the number in the first column is the string de­
vice's minor device number): 
1 /dev/string/boot read/write access to the bootstring 
2 /dev/string/pkg read-only access to the package string 
3 /dev/string/cfg read-only access to the configuration string 
The bootstring (bootstring) is the string built by /boot from user input and 
from /etc/default/boot. The package string (pkgstring) lists what has been 
linked into the kernel at boot time. The configuration string (cfgstring) is a 
concatenation of all the output from printcfg(K). 

The routines getbsvalue(K), getbsflag(K), getpkgvalue(K), and getpkgflag(K) 
provide an interface to /dev/string/boot and /dev/string/pkg. /dev/string/cfg can 
only be accessed directly. 

Reading from the devices is non-blocking and non-destructive. 

boot(HW), cfgstart(K), close(S), getbsflag(K), getbsvalue(K), getcfgline(K), 
getpkgvalue(K), getpkgflag(K), open(S), printcfg(K), read(S), write(S) 

Device Drivers Writer's Guide 

Standards confonnance 

/dev/string is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 771 



subsystem(M) 

subsystem 
security subsystem component description 

Description 

772 

The operating system includes extensions to the UNIX system that segregate 
commands and data which are used to implement system services. Many of 
these commands have been grouped into subsystems. A group of commands 
and data performing similar security relevant tasks or together protecting a 
set of resources is termed a protected subsystem. 

The operating system has the following protected subsystems: 

• Memory 
• Terminal 
• Line Printer 
• Backup 
• Authentication 
• Cron 
• Audit 

The description of each subsystem includes the following information: 

Group and subsystem authorization name 
Each subsystem is associated with a subsystem authoriza­
tion. The commands and files associated with the subsys­
tem take the subsystem authorization name as their group 
name. Users wishing to use the subsystem must have the 
appropriate subsystem authorization. 

Commands Each subsystem has a set of commands. 

Helper programs Some subsystems use helper programs. These are pro­
grams which call other programs. 

Data files A subsystem's programs use permanent and temporary 
data files. 

The administrative functions associated with each subsystem can be selected 
from the sysadmsh menu. Help information is available with each option. 

1 February 1993 



subsystem(M) 

The memory subsystem 
The mem subsystem authorization is defined to grant users the ability to use 
the memory subsystem commands to view total system activity. Users 
without this authorization may only view their own processes. Traditional 
UNIX allowed any user to view total system activity. This authorization was 
introduced to allow the administrator to isolate users, and restrict their ability 
to sense the activity of other users. 

Mem authorization and group name 
In order to look at information in the mem subsystem, an administrator must 
have the mem authorization. The administrator responsible for maintaining 
users' processes should be the only person with this authorization. This 
administrator may need to list users' processes in order to select one or more 
of them for removal (using the kill(C) command). The following is a table of 
command modifications managed by the mem authorization: 

Command With mem Without mem 

ps lists all processes 
(standard behavior) 

list processes owned by login user ID, or 
owned by real user ID of current process 
on current terminal 

whodo lists all processes 
(standard behavior) 

list processes on terminals owned by 
user 

ipcs lists all objects 
(standard behavior) 

list objects for which user is creator or 
owner or for which user has read access 

sysadmsh selection 
The Memory subsystem does not have a sysadmsh selection as the Printer 
subsystem does. The Memory subsystem includes the system tables that con­
tain information about memory and processes, which is accessed by several 
commonly-used UNIX utilities. · 

Commands 
ps 

whodo 

ipcs 

1 February 1993 

An administrator with mem authorization can use the ps(C) com­
mand to list all users' processes. Using the command without the 
mem authorization shows only those processes associated with 
the user invoking it. 

An administrator with mem authorization can use the whodo(C) 
command to list processes by terminal. Someone using the com­
mand without mem authorization sees only the processes associ­
ated with their terminal. 

An administrator with mem authorization can use this command 
to view active semaphores, shared memory segments and mes­
sage queues (known collectively as IPC entities). Without mem 
authorization, a user is restricted to viewing IPC entities that they 
own or created and those which have read permission. Even enti­
ties that are writable, but not readable, cannot be displayed. 

773 



subsystem(M) 

774 

crash An administrator with mem authorization can run the crash pro­
gram to report information on kernel data structures. The report 
includes security information. 

An administrator can search for information by running crash and 
specifying an identifier name. 

Helper programs 
timex Because timex uses internal kernel data structures, it must be run 

from an account in the mem group. 

Accounting programs 
Accounting programs such as sar(ADM}, acctcom(ADM}, and sar(ADM} also 
use information in the mem subsystem. These programs must be run from an 
account in the mem group. 

Data files 
All files through which programs may access kernel memory are protected 
with owner root, group mem, and mode -r--r-----. As for all files, the root 
account bypasses the discretionary check on these files, and root programs 
may violate the System Architecture requirement. All root programs (those 
running with effective ID equal to root) must take care when running other 
programs, because those programs inherit the right to modify the running 
copy of the TCB. The following files are protected by the mem subsystem 
according to the above owner, group, and mode: 

/etclps.data 

/dev/mem 

/dev/kmem 

/dev/swap 

/unix 

Cache relevant parts of the kernel symbol table to avoid lengthy 
lookups for each run of ps. 

Special device allowing access to physical memory including 
the operating system and all resident processes. 

Special device allowing access to the operating system image. 

Special file for the disk partition used as the system swap de­
vice, storing memory images of non-resident processes. 

Executable file containing the binary copy of the operating sys­
tem. Writing this file modifies the executing copy of the TCB 
when the system is rebooted. 

1 February 1993 



subsystem(M) 

Th.e tenninal subsystem 

The tenninal subsystem protects the use of terminals by restricting the use of 
the write(C) and mesg(C) commands. 

Tenninal authorization and group name 
In order to send information from one terminal to another, the user sending 
information must have the tenninal authorization and the receiving terminal 
must be configured to accept information from other terminals. 

All terminals belong to the tenninal group. Each terminal is owned by and 
can only be used by a given user identity. 

sysadmsh selection 
The tenninal subsystem does not control sysadmsh functions. 

Commands 
When an unauthorized user uses the write command, any special control 
codes or escape sequences he sends are trapped and converted to presentable 
ASCII characters. All control codes are output as '(char) where (char) is the 
character whose ASCII code is the character sent plus 0100. For instance, 
ASCII NUL (0), SOH (1), and ACK (6) are output as"@(@ is 0100), "A (A is 0101) 
and "F respectively on the recipient's terminal. The ASCII ESC (033) character 
writes as"( and the DEL (0177) character writes as"?. 

As an example of using the trusted write command, assume there is a 
hypothetical terminal that silently stores any string between two ASCII DC4 
(024) characters. This string is transmitted from the same hypothetical termi­
nal to the computer when the terminal receives a DC2 (022) character. 
Assume that a devious user knows the recipient of a write command has this 
terminal and tries to corrupt the recipient's session by sending a damaging 
message. If this user did not have the terminal authorisation, the recipient 
would see the message: How are y'Trrn *'Tou today'E?. The recipient 
would be alerted to an attempt on his session. In addition, the tenninal sub­
system audits this event so you can locate suspect activity. On the other hand, 
if the sending user has the tenninal authorization, the recipient would see the 
message: How are you today? 

The following commands are modified to support the terminal subsystem. 

Command 

write 

mesg 

1 February 1993 

With terminal 

unrestricted 
(standard behavior) 
changes sense of group 
write permission only 

Without terminal 

control codes output as "(char) 

same 

775 



subsystem(M) 

776 

A person with tenninal authorization can use the write(C) command to write 
to another terminal and send control codes and escape sequences. A mali­
cious user might use the command to send malicious commands and breach 
system security. 

Without the authorization, a user can use the write(C) command, but control 
codes and escape sequences are displayed on the receiving terminal in their 
ASCII form, thus warning the recipient of suspicious activity. Such activity is 
recorded by the audit facilities. 

The mesg y form of the command allows messages, but sets write permission 
for the terminal device group that has been set to terminal by the login pro­
gram. The new write command is SGID to terminal, which allows it to send 
characters to user terminals that have used mesg y of the file enough for the 
terminal group to write to the terminal. The new write command handles 
this change. Unlike the less trusted mesg, UNIX mesg never allows any per­
mission to all users. 

Data files 
The data files for the terminal subsystem are the terminals themselves. They 
belong to the terminal group at the start and end of each session, and all 
access is denied except to the user. The preferred way for a user to open and 
close access to a terminal is to use the mesg command. When a session is not 
in progress on a terminal, only the super user can access the device file. Some 
terminal files are presented below. 

/dev/console This is the system console. Use of this terminal as a user term­
inal is discouraged because: 

/dev/tty* 

• Messages from the kernel appear on /dev/console. To avoid 
losing these messages or intermixing them with user mes­
sages, it is better to use the console solely for the message 
output. 

• On some systems, physical access to the console is equivalent 
to having access to the entire system. Use another terminal 
unless the system configuration prevents this. In any event, 
allow physical access to /dev/console only to the most trusted 
users of the system. 

Most of the terminals on the system are named /dev/ttyl, 
/dev/tty2, /dev/tty3, . . . These devices may at times be owned by a 
protected subsystem (such as uucp or terminal) and be unavail­
able for general use. You have the option of configuring th~ ter­
minals for login sessions, protected subsystems, or for nothing. 

1 February 1993 



subsystem(M) 

Line printer subsystem 

The purpose of the Ip subsystem is to provide an administrative role that has 
control over printing facilities. Unlike the less trusted version of the Ip com­
mands, the trusted version does not require a special printer account that 
owns and executes (with the SUID bit set) all the printer programs. Instead, 
there is an Ip group with multiple users as its members. 

Authorization/Group name 
The Ip authorization allows the user to be a printer administrator. This allows 
multiple Printer administrators. They force the administrator to have a login 
userid (LUID) of 0 or a login name of Ip, a scheme that does not allow you 
much flexibility in account setups or individual accountability. 

All printer administrators are allowed to execute some commands that non­
authorized users cannot, and can perform certain actions within commands 
that are restricted from other users. Only administrators may run accept, 
lpadmin, lpmove, lpsched, lpshut, and reject. For the other commands, 
enhancements due to Ip authorization are detailed under each command 
heading. 

sysadmsh selection 
The Ip authorization allows access to the printing functions under the 
System ¢ Printer selection as described in the "Using Printers" chapter. 

Commands 
To determine the invoker, the Printer subsystem command uses the immut­
able login user ID (LUID). Less trusted versions use various other schemes, all 
of which could be fooled. The commands listed here perform exactly like 
their traditional (less trusted) versions except where noted: 

accept 

cancel 

disable 

enable 

1February1993 

The accept command may only be used by printer administra­
tors. 

The less trusted version of cancel allowed any user to cancel any 
job. The originating user is notified of the cancellation via mail. 
The trusted version of cancel gives this right to printer adminis­
trators only. Mail is still sent to the originator when a job is can­
celed by the printer administrator. Other users can only remove 
jobs they submitted. 

The disable command operates without change from the less 
trusted version. 

The enable command operates without change from the less 
trusted version. 

777 



subsystem(M) 

778 

Ip 

lpadmin 

lpforms 

lpmove 

lpsched 

lpshut 

lpstat 

The trusted version of the Ip command, with the -w option 
enabled by you, never writes to the terminal directly as does the 
less trusted version of Ip. The trusted version of Ip knows that 
the system prohibits direct writing to another user's terminal. 
Instead, the write(C) program is used to send the message; refer 
to the previous discussion of write in the terminal subsystem. 

The trusted version of the Ip command creates an output label 
for each file submitted. The output label contains the system 
label (the same as seen on most terminals), the owner, group, 
and mode of the file. To accurately determine the output label, 
the Ip command cannot accept input from pipes. This is 
because the discretionary attributes of a file are not available if 
the file was accessed on the other end of a pipe. Note that input 
redirection and temporary files may still be printed. 

Printer files are always copied to the printer spool by assuming 
the -c (copy) option, even if the user did not explicitly request it. 
By doing this, the Ip subsystem ensures that the file cannot be 
altered between the time the request was made and the time it is 
printed. (The less trusted version of Ip does not guarantee that 
the file cannot be updated, even while the printer is running.) 
As added protection, the file being copied is locked during the 
formation of the output label and the copy operation, so that the 
file and label output accurately reflects the file being printed. 

This command may only be used by printer administrators. 

The lpforms command operates without change from the less 
trusted version. 

This command may only be used by printer administrators. 

The lpsched command may only be used by the super user and 
Ip. When the lpsched command uses a printer device dedicated 
to the Ip subsystem, the subsystem guarantees exclusive use of 
the printer device each time it is used. Any prior activity (out­
side the Ip subsystem) on that device is forcibly stopped. In this 
way, the Ip subsystem ensures that the file being output is not 
interspersed with other output, unlike less trusted versions. 

The lpshut command may only be used by printer administra­
tors. 

The trusted version of lpstat does not display other users' jobs if 
the invoking user does not have the Ip authorization .. Knowing 
the jobs of other users is not necessary since unauthorized users 
cannot hold or cancel those jobs anyway. Printer administrators 
see all printer jobs, and they can hold or cancel any job that has 
been submitted. 

1 February 1993 



reject 

Datafile 
/usr/spool/lp 

Backup subsystem 

subsystem(M) 

This command may only be used by printer administrators. 

All the files in this file hierarchy have the same formats and pur­
poses as their counterparts in less trusted versions of UNIX. In 
the trusted version, the files are accessible by any printer 
administrator, so that the group permissions are the only ones 
of true importance. In all cases, the spool, its directories, and all 
data files allow no access to the user population. Hence, a user 
can be assured that a private file that is spooled for printing can­
not be accessed or changed by untrusted users. 

The purpose of the backup subsystem is to provide a full set of disk and tape 
management tools without requiring detailed knowledge of UNIX. The 
backup administrator assumes responsibility of file system maintenance. The 
backup administrator is responsible for all actions which do not modify the 
format of file systems, while the root account is still responsible for format­
ting, configuring, and maintaining the consistency of file system disk parti­
tions. 

Authorization/Group name 
The user with backup authorization, a Backup administrator, may perform 
file backups. Restorations can only be made by the root user. The following 
authorizations are defined for the backup subsystem: 

Authorization 

backup 
queryspace 

Type 

primary 
secondary 

Purpose 

enables system backup command 
allows use of df program 

All disk partitions are protected with owner root, group backup and mode 
-r--r----. The mount table (/etc/mnttab) is publicly readable, modified only by 
the mount command. The df program is SGID to backup, which enforces the 
queryspace and backup authorizations. 

sysadmsh selection 
The backup authorization allows access to the backup functions under the 
Backups selection. 

Commands 
df 

l February 1993 

The df command may only be used by Backup administrators. 
Otherwise, the options and output format remain the same as 
the less trusted version. 

779 



subsystem(M) 

780 

mkfs 

la be lit 

The mkfs command may only be used by a member of the 
backup gro~p (or by the super user, which is discouraged). As 
always, this command must be used to initialize a filesystem 
after the partitions are laid out. Immediately after mkfs is run, 
you should run labelit to complete the initialization. 

The labelit program, documented in vokopy(ADM), associates 
the filesystem with a directory mount point. 

Helper programs 
/etc/mount 

/etdfsck 

This program is used by backupif to display and modify 
the mounted file systems. 

This is used by backup to check and repair filesystems. 

/usr/bin/backup This program is used to copy entire UNIX and XENIX file­
systems to either magtape or cartridge tape. 

/bin/xbackup 

/bin/xrestore 

/usr/bin/restore 

/usr/bin/cpio 

Data files 
/etc/defaultlfilesys 

/dev/[r]d[s]k• 

This program is used to copy entire XENIX disk filesystems 
to either magtape or cartridge tape. 

This program is used to replace entire XENIX filesystem 
images on magtape or cartridge tape to a clean (newly for­
matted with mkfs) 

This program is used to replace entire XENIX or UNIX file­
system images on magtape or cartridge tape. 

This is the default backup program. cpio makes non-file­
system specific copies of filesystem data. 

This file contains the relationship between mounted file­
system devices and the directories on which they are 
mounted (mount points). It is used to display that relation­
ship in both df and the backup selection. Because altering 
this file would display erroneous information to backup 
administrators and reading this file defaults the access pro­
tection created for the backup subsystem, this file must be 
accessible to the backup group only. 

These block and character special files are the buffered 
interfaces to the disk partitions you have set up. They are 
used for mounting the filesystem they contain onto a direc­
tory. The backup group must be able to read and write these 
files. It is a severe security breach if others can access these 
files in any way. 

1 February 1993 



subsystem(M) 

Authentication subsystem 

The Authentication subsystem provides you with an exhaustive set of 
account management services. These services are: 

• self-checking to prevent dangerous actions, and 

• monitored extensively by the auditing system. 

Authorization/Group name 
The auth authorization allows an Authentication administrator to perform 
sensitive actions on the Authentication database. This database contains all 
information on account ownership, types, authorizations, locked status, login 
times, password change times, and various other parameters. 

With the auth authorization, an Authentication administrator may alter 
Authentication parameters for other users. Because this database directly 
controls the attributes of any account on the system, this subsystem controls 
user access to your system. The trust you place in the system can be no 
greater than that placed in the Authentication administrators. Not only must 
they be trustworthy people, but they must also not leave any uncorrected mis­
takes when assigning authorizations to the accounts they manage. 

sysadmsh selection 
The auth authorization allows access to the user account management func­
tions under Accounts. 

Commands 
passwd 

login 

The passwd command in UNIX has been greatly enhanced for 
both security and flexibility. The trusted system checks on 
system-wide password parameters as well as user-specific ones 
and, depending on the results found, the user has a choice of 
choosing their own password or having one chosen for them. 
You can set each account to do either one of these, or do both. A 
closely related change is that, regardless of the method for get­
ting the password, you can have the system screen passwords 
that are probable guesses by intruders. The password selection 
method, as well as the optional restriction screening, are set by 
Authentication administrators in sysadmsh for a single account 
or for system-wide use. 

The login command is no longer available as a command used 
in a session to start a new session. Instead, a user must first log 
out before logging in as another user. 

Sublogins are forbidden since the LUID of a session may not change once it is 
set. This is to guarantee to you that the owner of a session is known at all 
times. If the login program were allowed to be run from a session, the login 
USERID would have to change and the guarantee would be broken. 

1 February 1993 781 



subsystem(MJ 

782 

The login prog~am _is ~till invoked from getty to start a user session. The pro­
cedure for logging m 1s almost the same. The user supplies a login name and 
the system requests a password. Once the password is entered, the system 
either lets the user log in or rejects the login attempt. A user may be rejected 
for a number of reasons: 

1. The account does not exist. 

2. The password was entered incorrectly. 

3. The password lifetime has been passed. 

4. The number of unsuccessful attempts made to the account has surpassed 
a system or account threshold. 

5. The number of unsuccessful attempts made to the terminal has surpassed 
a system or terminal threshold. 

6. An Authentication administrator has unconditionally locked the account. 

Reasons 3 through 6 notify the user that the Authentication administrator has 
locked the account. 

If the user enters the correct login name/password combination, the last suc­
cessful and unsuccessful login times are displayed on the terminal. The user 
should view the dates and times of each to determine if someone else has 
used the account. These dates may also be used to determine whether a Tro­
jan horse program is simulating the login procedure to obtain a password. A 
user with doubts about the authenticity of the login dates and times should 
report it to you. The earlier you take action on this, the better you can use 
fresh audit trails and people's recollections to find the source of the problem. 

SU The su program has been strengthened a great deal for security. 
It now uses information from the Authentication database in 
determining whether or not to allow a user to "switch" to 
another user. The following rules apply: 

• A user cannot use su to enter an account that has been 
locked. 

• The su command cannot be used as a means to bypass the 
lock-checking done by login, at, and cron. 

newgrp 

auths 

The newgrp command operates without change 
from the less trusted version. 

The auths command is especially tailored for UNIX 
to allow all users to adjust their authorizations. 
No user can increase authorizations, but one can 
temporarily decrease authorizations in o~der to 
run an untrusted program or to prevent mistakes. 
More details on the authorizations and syntax are 
given in the man page for auths(C). 

1 February 1993 



Data files 

I February 1993 

subsystem(M) 

/usr/adm/sulog 
This file keeps track of the history of use of the su program. 
Each line represents an attempt to run the su program. The 
date and time are first recorded on the line. Then, a " - " 
means the attempt failed; a "+" means the attempt suc­
ceeded. After the " - " or " + " code, the terminal of the 
attempt is provided. Last, the login name (using the login 
UID) of the invoker of su, together with the login name of 
the (attempted) changed real UID is presented. As an exam­
ple, the following log excerpt presents some interesting 
situations: 
SU 02/29 19:19 + tty?? root-lp 
SU 03/01 20:22 + tty2 blf-root 
SU 03/04 04: 13 + tty2 fred-proj 1 
SU 03/07 20:30 - tty2 reese-star 
SU 03/07 20:30 + tty2 reese-star 
SU 03/07 21:38 + modem auth-root 
SU 03/07 21: 39 + tty2 blf-root 
SU 03/07 21:39 - tty7 daa-root 
SU 03/07 21:40 - tty7 daa-root 
SU 03/07 21:40 - tty7 daa-root 
SU 03/07 21:41 - tty7 daa-root 
SU 03/07 21:41 - tty7 daa-root 
SU 03/07 21:47 + tty2 fred-proj 1 

Foremost, it appears as though the user daa is attempting to 
break into the root account, for there are many unsuccessful 
attempts (denoted with the " - " attribute) in rapid succes­
sion. That should be investigated further. 

The su program does not require one to become the root user. 
In the log above, users root, fred and reese chose to assume the 
identities of other users. In the effort by reese to become the 
star user, the first 

attempt failed and the next immediately succeeded. This 
occurs frequently and is quite natural when users mistype 
the password of the other account. You should get suspi­
cious, however, when the number of unsuccessful attempts 
becomes large. Such attempts, like the case with daa above, 
probably means a breach of security. 

The su program was used by root to enter the Ip account. 
This occurrence was detached from any terminal, because of 
the special terminal designation of tty??. This particular case 
occurred from /etc/re where the lpsched daemon is run. 

783 



subsystem(M) 

The /usr/adm/sulog file needs attention periodically. It should 
be examined and then pruned, saving the most recent 
entries. The entries removed from the file should be 
archived if possible rather than completely deleted. 

/tcblfiles/auth 
This directory consists of subdirectories that contain private 
account data for all the accounts in the system. There is a file 
for each account. Because of the sensitive nature of the data 
here, all these files are completely protected from the users. 

/etc/au th/system 
This directory contains the system-wide authorization data 
for the machine. The /etc/auth/system directory contains the 
Terminal Control database, the File Control database, the 
Command Control database and the System Defaults data­
base. This information is accessible to the users but not writ­
able. The /etc/autlt/subsystems directory contains one file per 
protected subsystem, each containing the user permissions 
for that protected subsystem. This permissions file may only 
be read by the programs that are part of that protected sub­
system, and is written by the aut/1 user. 

cron subsystem 

784 

The purpose of the cron subsystem is to allow cron, at, and batch services that 
are audited as closely as normal login sessions. The cron subsystem provides 
a useful interface for controlling these facilities. 

Authorization/Group name 
The authorization for the cron subsystem is given to cron administrators who 
are allowed to view or alter the authority for users to run the services associ­
ated with the cron subsystem. A user may run the programs of the cron sub­
system (excluding the use of the sysadmsh selections) without the authoriza­
tion, provided that a cron administrator has granted the authority. 

sysadmsh selection 
The cron authorization allows access to the process management functions 
under Jobs. 

Commands 
at, batch, crontab 

These at commands operate in the same way as the less t!usted versio~, 
except that the .LUID (login UID), rather than the real UID, 1s ~sed by ":t m 
determining the user. Because the LUID cannot be altered during a session, 
it promotes better accountability. at and batch jobs run with all of the log­
in, real, and effective U!Ds set to that of the login user. 

1 February 1993 



subsystem(M) 

Helper programs 
/tcb/lib/cron 

This is the cron daemon that actually runs all at, batch, and crontab jobs. 
The at, batch, and crontab commands merely queue the jobs for the cron 
daemon to run. This daemon validates the account (ensures the account is 
not locked) before running the job. 

Data files 
Although enumerated here, these data files are not manipulated directly by 
the cron administrator because of the arcane rules historically applied to them 
by the cron subsystem programs. Instead, the sysadmsh provides a more 
coherent interface, reducing the possibility that users or permissions are set 
up incorrectly. 

/usr/lib/cron 
This is the directory containing all the cron administrative files. 

/usr/lib/cron/at.allow 
This file lists the users allowed to execute the at or batch programs. If this 
file exists, it is used to determine the user's authority. 

/usr/lib/cron/at.deny 
This file lists the users denied access to the at or batch programs. If 
/usr/lib/cron/at.allow does not exist, /usr/lib/cron/at.deny is used to determine 
the user's authority. You should be aware that an empty at.deny file per­
mits access for all users. 

/usr/lib/cron/cron.allow 
This file lists the users allowed to execute the crontab program. If this file 
exists, it is used to determine the user's authority. 

/usr/lib/cron/cron.deny 
This file lists the users denied access to the crontab program. If 
/usr/lib/cron/cron.allow does not exist, /usr/lib/cron/cron.deny is used to deter­
mine the user's authority. You should be aware that an empty cron.deny 
file permits access for all users. 

/usr/lib/cron/.proto 
This file contains a list of commands that are executed before every at job. 
It contains commands primarily used to fix and restrict the environment of 
the user before running the job submitted. 

/usr/lib/cron/.proto.b 

l February 1993 

This file contains a list of commands that are executed before every batch 
job. It contains commands primarily used to fix and restrict the environ­
ment of the user before running the job submitted. 

785 



subsystem(M) 

/usr /I ib/cron/log 
This is a log of all at, batch, and crontab activity reported by the cron dae­
mon since the system was rebooted. It provides an accurate ASCII log of 
all user initiated non-terminal activity. If the system is up for a very long 
time and there are many job submissions or crontab activity, this file 
should be periodically examined, pruned, and archived. 

/usr/lib/cron/OLD/og 
This is the log associated with the last time the system was up. Upon 
startup, the cron daemon moves any /usr/lib/cron/log file here. 

/usr /spool/cron 
This is the root of the subtree where all at, crontab, and batch jobs are 
stored. at and batch jobs are automatically cleared when they have fin­
ished executing. The -r option of crontab removes a crontab job. 

Audit subsystem 

786 

The purpose of the audit subsystem is to provide an administrative role that 
has control over auditing facilities. 

Authorization/Group name 
The audit authorization allows the user to be the audit administrator. The 
audit administrator can enable and disable auditing, examine audit records, 
generate reports and alter audit parameters. 

sysadmsh selection 
The audit authorization allows access to the audit functions under the 
System c:> Audit selection as described in the "Maintaining system security" 
chapter. 

Commands 
auditcmd 

The command interface for audit subsystem activation, termination, statis­
tic retrieval, and subsystem notification. 

auditd 
The auditd utility is the daemon that runs when auditing is enabled. 

reduce 
This program performs audit data analysis and reduction. 

1February1993 



Data files 
/tcb!files/audit/a11dit_parms 

audit parameters file 

/tcblfiles/audit/* 
audit log file directory 

/tcb/audittmp 
audit compaction file directory 

subsystem(M) 

Creati.ng a new subsystem 

See also 

The system administrator can create additional subsystems as desired. 

To create a new subsystem, do the following: 

1. Add a line to /etc/au th/system/authorize of the following format: 

subsystem:class1,class2, ... ,classn 
where: 

subsystem 
class1 ... n 

the name of your new subsystem 
optional name(s) of the authorizations 

For example: 
backup:dump,freespace 

This defines the "backup" subsystem (used to control read access to file­
systems), which has two special cases: "dump", actually make a backup of 
the filesystem, and "freespace", ability to read the filesystem to determine 
how full it is (but for no other reason). 

2. Create a group with the same name as the subsystem. Make the (empty) 
file /etc/auth/subsystems/subsystem, owner auth or bin, and the group owner 
is the new group subsystem with a mode of at least 440 (the mode must 
not grant any write permission to "other"). 

You are finished creating the new subsystem. It should be automatically 
recognized and understood by the system and the sysadmsh. There can be at 
most 32 subsystems and all names must be unique. 

audit(HW), auditcmd(ADM), auditd(ADM), authck(ADM), authorize(F), 
auths(C), authcap(F), chg_audit(ADM), integrity(ADM), reduce(ADM) 

"Maintaining system security" chapter in the System Administrator's Guide 

1 February 1993 787 



subsystem(MJ 

Standards conformance 

788 

subsystem is not part of any currently supported standard; it is an extension 
of AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



sxt(M) 

sxt 
pseudo-device driver 

Description 
sxt is a pseudo-device driver that interposes a discipline between the standard 
tty line disciplines and a real device driver. The standard disciplines manipu­
late virtual tty structures (channels) declared by the sxt driver. sxt acts as a 
discipline manipulating a real tty structure declared by a real device driver. 
The sxt driver is currently only used by the shl(C) command. 

Virtual ttys are named /dev/sxt?? or /dev/sxt/?? (where ?? is a combination of 
two digits, each in the range 0 .. 7 ) and are allocated in groups of up to eight. 
Filenames end in three digits, where the first two digits represent the group 
and the last digit represents the virtual tty number of the group. The /dev/sxt 
form of the name increases the size of /dev, which adversely affects some com­
mands; the /dev/sxt/ form is not understood by most commands. To allocate a 
group, a program should exclusively open a file with a name of the form 
/dev/sxt??O (channel 0) or /dev/sxt/??O and then execute a SXTIOCLINK ioctl 
call to initiate the multiplexing. 

Only one channel, the controlling channel, can receive input from the keyboard 
at a time; others attempting to read will be blocked. 

ioctl commands 
There are two groups of ioctl(S) commands supported by sxt. The first group 
contains the standard ioctl commands described in termio(M), with the addi­
tion of the following: 

TIOCEXCL 
Set exclusive use mode: no further opens are permitted until the file has 
been closed. 

TIOCNXCL 
Reset exclusive use mode: further opens are once again permitted. 

The second group are directives to sxt itself. Some of these may only be exe­
cuted on channel 0. 

SXTIOCLINK 
Allocate a channel group and multiplex the virtual ttys onto the real tty. 
The argument is the number of channels to allocate. This command 
may only be executed on channel 0. Possible errors include: 

EINVAL The argument is out of range. 
ENOTTY The command was not issued from a real tty. 

1 February 1993 789 



sxt(MJ 

Files 

See also 

790 

ENXIO linesw is not configured with sxt. 
EBUSY An SXTIOCLINK command has already been issued for this 

real tty. 
ENOMEM Where is no system memory available for allocating the vir­

tual tty structures. 
EBADF Channel 0 was not opened before this call. 

SXTIOCSWTCH 
Set the controlling channel. Possible errors include: 

An invalid channel number was given. EINVAL 
EPERM The command was not executed from channel 0. 

SXTIOCWF 
Cause a channel to wait until it is the controlling channel. This com­
mand will return the error, EINVAL, if an invalid channel number is 
given. 

SXTIOCUBLK 
Turn off the loblk control flag in the virtual tty of the indicated channel. 
The error EINVAL will be returned if an invalid number or channel 0 is 
given. 

SXTIOCSTAT 
Get the status (blocked on input or output) of each channel and store in 
the sxtblock structure referenced by the argument. The error EFAULT 
will be returned if the structure cannot be written. 

SXTIOCTRACE 
Enable tracing. Tracing information is written to the console. This com­
mand has no effect if tracing is not configured. 

SXTIOCNOTRACE 
Disable tracing. This command has no effect if tracing is not configured. 

/dev/sxt? ?(0-7} virtual tty devices 
/dev/sxt/??{0-71 
/usr/include/sys/sxt.h driver specific definitions 

ioctl(S), open(S), shl(C), stty(C), tennio(M) 

1 February 1993 



systty(M) 

sys tty 
system maintenance device 

Description 

Files 

See also 

The file /dev/systty is the device on which system error messages are dis­
played. The actual physical device accessed via /dev/systty is selected during 
boot, and is typically the device used to control the bootup procedure. The 
default physical device /dev/systty is determined by boot(HW) when the sys­
tem is brought up. 

Initially /dev/console is linked to /dev/systty. 

/dev/systty 

boot(HW), console(M) 

1 February 1993 791 



term(M) 

term 
conventional names for terminals 

Description 

792 

These names are used by certain commands (for example, man(C), tabs(C), 
tput(C), vi(C) and curses(S)) and are maintained as part of the shell environ­
ment in the environment variable TERM (see sh(C), profile(M), and 
environ(M)). 

Entries in terminfo(F) source files consist of a number of comma-separated 
fields. (To obtain the source description for a terminal, use the -I option of 
infocmp(ADM).) White space after each comma is ignored. The first line of 
each terminal description in the terminfo(F) database gives the names by 
which terminfo(F) knows the terminal, separated by bar (I) characters. The 
first name given is the most common abbreviation for the terminal (this is the 
one to use to set the environment variable TERMINFO in $HOME.profile; see 
profile(M). The last name given should be a long name fully identifying the 
terminal, and all others are understood as synonyms for the terminal name. 
All names but the last should contain no blanks and must be unique in the 
first 14 characters; the last name may contain blanks for readability. 

Terminal names (except for the last, verbose entry) should be chosen using the 
following conventions. The particular piece of hardware making up the ter­
minal should have a root name chosen. For example, for the AT&T 4425 termi­
nal, the root name is att4425. This name should not contain hyphens, except 
that synonyms may be chosen that do not conflict with other names. Up to 8 
characters, chosen from [a-z0-9], make up a basic terminal name. Names 
should generally be based on original vendors, rather than local distributors. 
A terminal acquired from one vendor should not have more than one distinct 
basic name. Terminal sub-models, operational modes that the hardware can 
be in, or user preferences, should be indicated by appending a hyphen and an 
indicator of the mode. Thus, an AT&T 4425 terminal in 132 column mode 
would be att4425-w. The following suffixes should be used where possible: 

Suffix Meaning Example 

-w Wide mode (more than 80 columns) att4425-w 
-am With auto. margins (usually default) vtlOO-am 
-nam Without automatic margins vtlOO-nam 
-n Number of lines on the screen aaa-60 
-na No arrow keys (leave them in local) clOO-na 
-np Number of pages of memory c100-4p 
-rv Reverse video att4415-rv 

1 February 1993 



term(M) 

To avoid conflicts with the naming conventions used in describing the dif­
ferent modes of a terminal (for example, -w), it is recommended that a 
terminal's root name not contain hyphens. Further, it is good practice to make 
all terminal names used in the terminfo(F) database unique. Terminal entries 
that are present only for inclusion in other entries via the use= facilities 
should have a "+" in their name, as in 4415+nl. 

Some of the known terminal names may include the following (for a complete 
list, type: ls -C /usr/lib/terminfo/? ): 

Name 
2621,hp2621 
2631 
2631-c 

2631-e 
2640,hp2640 
2645,hp2645 
3270 
33,tty33 
35,tty35 
37,tty37 
4000a 
4014,tek4014 
40,tty40 
43,tty43 
4410,5410 

4410-nfk,5410-nfk 
4410-nsl,5410-nsl 
4410-w,5410-w 
4410vl,5410vl 

4410vl-w,5410vl-w 

4415,5420 
4415-nl,5420-nl 
4415-rv,5420-rv 
4415-rv-nl,5420-rv-nl 

4415-w,5420-w 
4415-w-nl,5420-w-nl 

4415-w-rv,5420-w-rv 
4415-w-rv-nl,5420-w-rv-nl 

(Continued on next page) 

l February 1993 

Terminal 

Hewlett-Packard 2621 series 
Hewlett-Packard 2631 line printer 
Hewlett-Packard 2631 line printer - compressed 
mode 
Hewlett-Packard 2631 line printer - expanded mod~ 
Hewlett-Packard 2640 series 
Hewlett-Packard 2645 series 
IBM Model 3270 
AT&T TELETYPE Model 33 KSR 
AT&T TELETYPE Model 35 KSR 
AT&T TELETYPE Model 37 KSR 
Trendata 4000a 
TEKTRONIX 4014 
AT&T TELETYPE Dataspeed 40/2 
AT&T TELETYPE Model 43 KSR 
AT&T 4410/5410 terminal in 80-column mode -
version 2 
AT&T 4410/5410 without function keys - version 1 
AT&T 4410/5410 without pin defined 
AT&T 4410/5410 in 132-column tnode 
AT&T 4410/5410 terminal in 80-column mode -
version 1 
AT&T 4410/5410 terminal in 132-column mode -
version 1 
AT&T 4415/5420 in 80-column mode 
AT&T 4415/5420 without changing labels 
AT&T 4415/5420 80 columns in reverse video 
AT&T 4415/5420 reverse video without changing 
labels 
AT&T 4415/5420 in 132-column mode 
AT&T 4415/5420 in 132-column mode without 
changing labels 
AT&T 4415/5420 132 columns in reverse video 
AT&T 4415/5420 132 columns reverse video 
without changing labels 

793 



tenn(MJ 

794 

(Continued) 

Name 
441S,541S 
441S-w,541S-w 
4420 
4424 
4424-2 

4425,5425 
4425-fk,5425-fk 
4425-nl,5425-nl 

4425-w ,5425-w 
4425-w-fk,5425-w-fk 

4425-nl-w ,5425-nl-w 

4426 
450 
450-12 
500,att500 
510,510a 
513bct,att513 
5320 
5420_2 
5420_2-w 
5620,dmd 
5620-24,dmd-24 
5620-34,dmd-34 
610,610bct 
610-w,610bct-w 
7300,pc7300,unix_pc 
735,ti 
745 
dumb 

hp 
Ip 
pt505 
pt505-24 
sync 

Terminal 

AT&T 541S in SO-column mode 
AT&T 541S in 132-column mode 
AT&T TELETYPE Model 4420 
AT&T TELETYPE Model 4424 
AT&T TELETYPE Model 4424 in display function 
group ii 
AT&T 4425/5425 
AT&T 4425/5425 without function keys 
AT&T 4425/5425 without changing labels in SO­
column mode 
AT&T 4425/5425 in 132-column mode 
AT&T 4425/5425 without function keys in 132-
column mode 
AT&T 4425/5425 without changing labels in 132-
column mode 
AT&T TELETYPE Model 44265 
ASI 450 (same as Diab lo 1620) · 
DASI 450 in 12-pitch mode 
AT&T-IS 500 terminal 
AT&T 510/510a in SO-column mode 
AT&T 513 bet terminal 
AT & T 5320 hardcopy terminal 
AT&T 5420 model 2 in SO-column mode 
AT&T 5420 model 2 in 132-column mode 
AT&T 5620 terminal SS columns 
AT&T TELETYPE Model DMD 5620 in a 24xSO layer 
AT&T TELETYPE Model DMD 5620 in a 34xSO layer 
AT&T 610 bet terminal in SO-column mode 
AT&T 610 bet terminal in 132-column mode 
AT&T UNIX PC Model 7300 
Texas Instruments Tl735 and TI725 
Texas Instruments TI745 
generic name for terminals that lack reverse line­
feed and other special escape sequences 
Hewlett-Packard (same as 2645) 
generic name for a line printer 
AT&T Personal Terminal 505 (22 lines) 
AT&T Personal Terminal 505 (24-line mode) 
generic name for synchronous TELETYPE Model 
4540-compatible terminals 

Commands whose behavior depends on the type of terminal s.hould acce~t 
arguments of the form -Ttenn where tennis one of the names given above; if 
no such argument is present, such commands should obtain the te~inal type 
from the environment variable TERM, which, in turn, should contain term. 

1 Febniary 1993 



term(M) 

Limitations 

Files 

See also 

Not all programs follow the above naming conventions. 

/usr/lib/terminfo/? compiled terminal description database 

curses(S), profile(M), tenninfo(M), terminfo(F), environ(M), infocmp(ADM), 
sh(C), stty(C), tabs(C), tput(C), tplot(ADM), vi(C) 

1February1993 795 



termina/s(M) 

terminals 
list of supported terminals 

Description 

796 

The following list, derived from the file /etc/termcap, shows the terminal name 
(suitable for use as a TERM shell variable), and a short description of the ter­
minal. The advice in termcap(F) will assist users in creating termcap entries 
for terminals not currently supported. 

Name 

1200 
1620 
1640 
2392 
2392an 
2392ne 
2621 
2621k45 
2621nl 
2621nt 
2621wl 
2622 
262x 
2640 
2640b 
300 
3045 
33 
37 
40 
4025 
4025-17 
4025-17ws 
4025ex 
43 
515 
5410 
5410-nfk 
5410132 
5420132 
5425 
5425-w 
610bct 

Terminal 

Terminet 1200 
Diablo 1620 
Diablo 1640 
239x series 
Hp 239x in ansi mode 
239x series 
HP2621 
HP 2621 with 45 keyboard 
HP 2621 with no labels 
HP 2621 w /no tabs 
HP 2621 with labels 
HP2622 
HP 262x series 
HP2640a 
HP 264x series 
Terminet 300 
Datamedia 3045a 
Model 33 teletype 
Model 37 teletype 
Teletype dataspeed 40/2 
Tektronix 4024/ 4025 I 4027 
Tek 4025 17 line window 
Tek 4025 17 line window in workspace 
Tek4025w/! 
Model 43 teletype 
AT&T-IS 515 terminal in native mode 
5410 terminal 80 columns 
Version 1 tty5410 entry without function keys 
5410 132 columns 
5420 132columns 
AT&T Teletype 5425 80 columns 
AT&T Teletype 5425 132 columns 
AT&T 610; 80 column; 98key keyboard 

(Continued on next page) 

1 February 1993 



(Continued) 

Name 
615mt 
620mtg 
7900 
8001 
912b 
925 
925so 
ATI5620 
Ma2 
TWO 
a980 
aa 
aaa 
aaa30 
aaa48db 
aaadb 
act5s 
adds 
adds25 
admll 
adml2 
adm2. 
adm3 
adm31 
adm3a 
adm3a+ 
adm3al9.2 
adm3aso 
adm42 
adm5 
aj830 
altos3 
altos4 
altos5 
am219w 
amp219 
amp232 
ampex 
ansi 
ansi-nam 
arpanet 
at386 
at386-m 
atarist 

Terminal 
AT&T 615; 80 column; 98key keyboard 
AT&T 620; 80 column; 98key keyboard 
NCR7900-l 
Intecolor 
New Televideo 
Newer Televideo 

terminals(M) 

Newer Televideo with attribute byte workaround 
5620 terminal 88 columns 
Ampex Model 232 I 132 lines 
Altos Computer Systems II 
Adds Consul 980 
Ann Arbor 
Ann Arbor Ambassador I 48 lines 
Ann Arbor Ambassador 30/destructive backspace 
Ann Arbor Ambassador 48/destructive backspace 
Ann Arbor Ambassador 48/destructive backspace 
Skinnyact5 
Adds Viewpoint 
Adds Regent 25 with local printing 
Lsiadmll 
Lsiadml2 
Lsiadm2 
Lsiadm3 
Lear Siegler ADM31 
Lsiadm3a 
Lsiadm3a+ 
Lsi adm3a at 19.2 baud 
Lsi adm3a with {} for standout 
Lsiadm42 
Lsiadm5 
Anderson Jacobson 
Altos III 
Altos IV 
Altos V 
Ampex 132 Cols 
Ampex with Automargins 
Ampex Model 232 
Ampex dialogue 80 
Ansi standard crt 
Ansi standard crt without automargin 
Network 
At/386 console 
At/386 console 
Atari ST vt52 

(Continued on next page) 

1 February 1993 797 



terminals(M) 

798 

(Continued) 

Name 

att513 

att513-w 

att605 
att630 
bct500 
bh3m 
big2621 
clOO 
c1004p 
clOOrv 
c100rv4p 
cl00rv4pna 
cl00rv4ppp 
clOOrvs 
clOOs 
c3102 
carlock 
cci 
cdc456 
cdc456tst 
cdi 
cie467 
cit80 
cit80nam 
compucolor 
dl32 
datapoint 
delta 
dg 
digilog 
dml520 
dml521 
dm2500 
dm3025 
dmterm 
dosansi 
dtlOO 
dtlOOw 
dt200 
dt80 
dt80132 

Terminal 

AT&T-IS 513 Business Communications Terminal 80 
columns 
AT&T-IS 513 Business Communications Terminal 132 
columns 
AT&T 605 BCT 
AT&T 630 windowing terminal 
Teletype 5541 
BeehiveIIIm 
48 line 2621 
Concept 100 
clOO w /4 pages 
clOO rev video 
clOO w /4 pages 
clOO with no arrows 
clOO with printer port 
Slow reverse concept 100 
Slow concept 100 
Cromemco 3102 
Kie 
Cci4574 
Cdc 
Cdc456tst 
Cdil203 
C.Itoh 467, 414 Graphics 
C.ltoh 80 
C.Itoh 80 without automargins 
Compucolorll 
Datagraphix 132a 
Datapoint 3360 
Delta data 5000 
Data general 6053 
Digilog333 
Datamedia 1520 
Datamedia 1521 
Datamedia 2500 
Datamedia 3025a 
Tandy deskmate terminal 
ANSI.SYS standard crt 
Tandy DT-100 terminal 
Tandy DT-100 terminal 
Tandy DT-200 
Datamedia dt80/l 
Datamedia dt80/1in132 char mode 

(Continued on next page) 

1 February 1993 



(Continued) 

Name 
dtc300s 
du 
dumb 
dwl 
dw2 
ep40 
ep48 
esp925 
esp HA 
ethemet 
exidy 
fos 
fox 
freelOO 
freellO 
ft1024 
gt40 
gt42 
h1500 
h1510 
h1520 
h1552 
h1552rv 
h19 
h19a 
h19nk 
h2000 
hp 
hp2626 
hp2648 
hpansi 

hpansi-24 
hpex 
hpsub 
ilOO 
ibm3101 
ibm3151 
ibm3161 
ibm3163 
ibm3164 
ibm5151 
ibmcons 

Terminal 

Dtc300s 
Dial up 
Unknown 
Decwriter I 
Decwriter II 
Execuport 4000 
Execuport 4080 
Esprit tvi925 emulation 
Esprit 6310 in Hazeltine emulation mode 
Network 
Exidy sorcerer as dm2500 
Fortune system 
Perkin Elmer 1100 
Liberty Freedom 100 
Freedom 110 
Forward Technology graphics controller 
Dec gt40 
Dec gt42 
Hazeltine 1500 
Hazeltine 1510 
Hazeltine 1520 
Hazeltine 1552 
Hazeltine 1552 reverse video 
Heathkit hl 9 w I function keypad 
Heathkit h19 ansi mode 

terminals(M) 

Heathkit w /numeric keypad (not function keys) 
Hazeltine 2000 
HP 264x series 
HP2626 
HP 2648a graphics terminal 
Hewlett Packard 700/44 in HP-PCterm mode, PC 
character set 
HP 700/44 in HP-PCterm 24 line mode, PC character set 
HP extended capabilities 
HP terminals - capability subset 
General Terminal lOOA (formerly Infoton 100) 
IBM3101-10 
3151 
3161 
3163 
3164 
IBM console 
Ansi standard with EGA 

(Continued on next page) 

1 February 1993 799 



termina/s(M) 

800 

(Continued) 

Name 
ibmcons-43 
in text 
ipc 
klO 
kn 
kt7ix 
lisa 
mlOO 
macterm 
macterm-nam 
mdlllO 
microb 
micro term 
microterm5 
mime 
mime2a 
mime2as 
mime3a 
mime3ax 
mimefb 
mimehb 
mt70 
nabu 
netx 
nucterm 
oadm31 
omron 
ot80 
owl 
pe550 
pixel 
plasma 
pt1500 
pt210 
qume5 
qvtlOl 
qvtlOl+ 
qvtlOl+so 
qvtlOlb 
qvt102 
qvt103 
qvt108 
qvt109 
qvt119 

Terminal 

Ansi EGA console in 43 line mode 
ISC modified owl 1200 
Intel IPC 
Kaypro 10 
Kt70pcix 
Kimtron kt-7 
Apple Lisa xenix console display (white on black) 
Radio Shack model 100 
Macintosh MacTerm in vt-100 mode 
MacTerm in vt-100 mode with automargin NOT set 
Cybemex mdl-110 
Micro Bee series 
Microterm act iv 
Microterm act v 
Microterm mimel 
Microterm mime2a (emulating an enhanced vt52) 
Microterm mime2a (emulating an enhanced Soroc iq120) 
Mimel emulating 3a 
Mimel emulating enhanced 3a 
Full Bright Mimel 
Half Bright Mimel 
Morrowmt70 
Nabu terminal 
Netronics 
NUC homebrew 
oldadm31 
Omron 8025AG 
Onyxot80 
Perkin Elmer 1200 
Perkin Elmer 550 
Pixel terminal 
Plasma panel 
Convergent Technologies PT 
Tandy TRS-80 PT-210 printing terminal 
Qume Sprint 5 
Qume QVT-101 vers c 
Qume QVT-101 Plus vers c 
Qume QVT-101+ with protected mode/standout 
QVT-101 with cursor set to blinking underline 
QumeQVT102 
Qume QVT-103 
QVT-108 
QVT-109 
Qume QVT-119 

(Continued on next page) 

1 February 1993 



(Continued) 

Name 
qvt119+ 
qvt201 
qvt202 
qvt203 
regent 
regentlOO 
regent20 
regent25 
regent25a 
regent40 
regent60 
regent60na 
rx303 
sbl 
sb2 
sexidy 
sk8620 
soroc 
sun 
sun-cmd 

sun-nic 

sunl 
superbeeic 
svtlOO 
svt1210 
svt1220 
svt52 
switch 
swtp 
t1061 
t1061f 
t3700 
t3800 
td200 
tek 
tek4013 
tek4014 
tek4014sm 
tek4015 
tek4015sm 
tek4023 

Terminal 
Qume QVT-119 Plus vers c 
Qume QVT-201 
Qume QVT-202 
Qume QVT 203 PLUS 
Adds Regent series 
Adds Regent 100 
Adds Regent 20 
Adds Regent 25 
Adds Regent 25a 
Adds Regent 40 
Adds Regent 60 
Regent 60 w /no arrow keys 
Rexon 303 terminal 
Beehive Super Bee 
Fixed Super Bee 
ExidySmart 
Seiko8620 
Soroc 120 
Sun Microsystems Workstation console 

terminals(M) 

Sun Microsystems Workstation console with scrollable 
history 
Sun Microsystems Workstation console without insert 
character 
old Sun Microsystems Workstation console 
Super Bee with insert char 
1220/PC, Sperry in VTlOO mode 
Sperry 1210, standard setup 
Sperry 1220, standard setup 
1210/1220/PC, Sperry in VT52 mode 
Intelligent switch 
Southwest Technical Products ct82 
Teleray 1061 
Teleray 1061 with fast PROMs 
Dumb Teleray 3700 
Teleray 3800 series 
Tandy200 
Tektronix 4012 
Tektronix 4013 
Tektronix 4014 
Tektronix 4014 in small font 
Tektronix 4015 
Tektronix 4015 in small font 
Tektronix 4023 

(Continued on next page) 

1 February 1993 801 



terminals(M) 

802 

(Continued) 

Name 
tek4107 
teletec 
terak 
ti 
ti745 
ti924 
ti924-8 
ti926 
ti931 
trslOO 
trs16 
trs600 
tty4420 
tty4424 
tty4424-w 
tty5410 
tty5410-w 
tvi910 
tvi910+ 
tvi912 
tvi9220 
tvi9220w 
tvi924 
tvi950 
tvi950-2p 
tvi950-4p 
tvi950-ap 
tvi950b 
tvi950ns 
v50 
v55 
vi200 
vi200f 
vi200ic 
vi200rv 
vi200rvic 
vi50 
vi55 
vis613 
vslOO 
vslOOs 
vtlOO 
vtlOOn 
vtlOOnam 

Terminal 

Tektronix 4107 
Teletec Datascreen 
Terak emulating Datamedia 1520 
Ti silent 700 
Ti silent 745 
Texas Instruments 924 VDT 7 bit 
Texas Instruments 924 VDT 8 bit 
Texas Instruments 926 VDT 
Texas Instruments 931 VDT 
Tandy TRS-80 Model 100 
Tandy trs-80 model 16 console 
Tandy Model 600 
Teletype 4420 
Teletype 4424 
Teletype 4424 in display function group ii 
Teletype 5410 terminal in 80 column mode 
Teletype 5410 in 132 column mode 
old Televideo 910 
Televideo 910 PLUS 
old Televideo 
Televideo 9220 w /status line @bottom 
Televideo 9220 132 col w /status line @bottom 
Televideo924 
Televideo950 
TVI 950 w /2 pages 
TVI 950 w I 4 pages 
TVI 950 w /alt pages 
bare TVI950 no is 
TVI950 w /no standout 
Visual 50 emulation of DEC VT52 
Visual 55 emulation of DEC VT52 (called V55) 
Visual 200 with function keys 
Visual 200 no function keys 
Visual 200 using insert char 
Visual 200 reverse video 
Visual 200 reverse video using insert char 
Visual 50 in ADDS viewpoint emulation 
Visual 55 using ADDS emulation 
Visual613 
Xterm terminal emulator 
Xterm terminal emulator (small screen 24x80) 
DEC vtlOO 
VTlOO w /no init 
DEC VTlOO without automargins 

(Continued on next page) 

1 February 1993 



(Continued) 

Name 
vtlOOs 
vtlOOw 
vt102 
vt131 
vt132 
vt220 
vt220d 

vt50 
vt50h 
vt52 
vt52so 
vtz 
w2110A 
ws5B4 
ws5B4fr 
ws5B4gr 
ws5B4nr 
ws5B4sp 
ws5B4sw 
ws5B4uk 
ws5B4us 
ws6B5 
wylOO 
wy120 
wy120-25 
wy120-vb 
wy120-wvb 
wy120w 
wy120w-25 
wy150 
wy150-25 
wy150-vb 
wy150-wvb 
wy150w 
wy150w-25 
wy30 
wy30-vb 
wy350 
wy350-vb 
wy350-wvb 
wy350w 
wy50 

Terminal 
DEC vtlOO 132 cols 14 lines 
DEC vtlOO 132 cols 
DECvt102 
DECdec vt131 
VT-132 
DEC vt220 generic 

termina/s(M) 

DEC VT220 in vtlOO mode with DEC function key 
labeling 
DECvt50 
DECvt50h 
DECvt52 
DEC vt52 with brackets added for standout use 
Zilog vtz 2/10 
Wang 2110 Asynch Data Entry Terminal - BO column 
Olivetti WS5B4 
Olivetti WS5B4 with French keyboard 
Olivetti WS5B4 with German keyboard 
Olivetti WS5B4 with Norwegian/Danish keyboard 
Olivetti WS5B4 with Spanish keyboard 
Olivetti WS5B4 with Swedish/Finnish keyboard 
Olivetti WS5B4 with U.K. keyboard 
Olivetti WS5B4 with U.S.A. keyboard 
Olivetti WS6B5 
Wyse 100 
Wyse 120 
Wyse 120 BO-column 25-lines 
Wyse 120 Visible bell 
Wyse120-wvb 
Wyse 120132-column 
Wyse 120 132-column 25-lines 
Wyse150 
Wyse 150 BO-column 25-lines 
Wyse 150 Visible bell 
Wyse150-wvb 
Wyse 150 132-column 
Wyse 150 132-column 25-lines 
Wyse WY-30 in wy30 mode 
Wyse 30 Visible bell 
Wyse 350 BO column color terminal emulating wy50 
Wyse 350 Visible bell 
Wyse 350 132-column Visible bell 
Wyse 350 132 column color terminal emulating wy50 
Wyse 50/BO Wyse WY-50 with BO column screen 

(Continued on next page) 

l February 1993 803 



tenninals(MJ 

804 

(Continued) 

Name 

wy50-wvb 
wy501 

wy50n 
wy50vb 
wy50w 
wy60 

wy60-25 
wy60-42 
wy60-43 
wy60-vb 
wy60ak 
wy60w 

wy60w-25 
wy60w-42 
wy60w-43 
wy60w-vb 
wy75 
wy75-mc 
wy75-vb 
wy75-wvb 
wy75ap 

wy75w 
wy75x 
wy85 
wy85-vb 
wy85-wvb 
wy85w 
wy85w 
wy99gt 
wy99gt-25 
wy99gt-25-w 
wy99gt-vb 
wy99gt-w 
wy99gt-w-vb 
wysel20ak 
xl720 
xitex 
z29 
z39 

Terminal 

Wyse 50 132-column Visible bell 
Wyse WY-60 with 80 column/43 line screen in WY50+ 
mode 
Wyse WY-50 - 80 column screen, no automargin 
Wyse WY-50/80vb Wyse WY-50/80 with visible bell 
Wyse WY-50/132 Wyse WY-50 with 132 column screen 
Wyse WY-60 with 80 column/24 line screen in wy60 
mode 
Wyse 60 80-column 25-lines 
Wyse 60 80-column 42-lines 
Wyse 60 80-column 43-lines 
Wyse 60 Visible bell 
Wyse 60 in wy60 mode with ANSI arrow keys + 
Wyse WY-60 with 132 column/24 line screen in wy60 
mode 
Wyse 60 132-column 25-lines 
Wyse 60 132-column 42-lines 
Wyse 60 132-column 43-lines 
Wyse 60 132-column Visible bell 
Wyse WY-75 with 80 column line 
Wyse 75 with magic cookies 
Wyse 75 with visible bell 
Wyse 75 with visible bell 132 columns 
Wyse WY-75 with Applications and Cursor keypad 
modes 
Wyse WY-75 in 132 column mode 
Wyse WY-75 with 132 column lines in vi editor mode 
Wyse 85 in 80 column mode, vtlOO emulation 
Wyse 85 with visible bell 
Wyse 85 with visible bell 132-columns 
Wyse 85 in 132 column mode, vtlOO emulation 
Wyse 85 in 132-column mode 
Wyse99gt 
Wyse 99gt 80-column 25-lines 
Wyse 99gt 132-column 25-lines 
Wyse 99gt Visible bell 
Wyse 99gt 132-column 
Wyse99gt-wvb 
Wyse 120 with ANSI key values 
Xerox 1720 
Xitex sct-100 
Zenithz29 
ZenithZ-39 

(Continued on next page) 

1 February 1993 



Files 

See also 

(Continued) 

Name 

zen30 
zen40 
zen50 
zephyr 
zephymam 

/etc/termcap 

Terminal 

Zentec 30 
Zentec40 
Zentec 50 
Zentec zephyr220 in vtlOO mode 

terminals(M) 

Zentec zephyr220 in vtlOO mode w /out automargins 

tset(C), environ(M), tenncap(F) 

1February1993 805 



terminfo(M) 

term info 
terminal capability database 

Syntax 

/usr/lib/ten11i11fo/? /* 

Description 

806 

terminfo is a compiled database (see tic(C)) describing the capabilities of ter­
minals. Terminals are described in terminfo source descriptions by giving a set 
of capabilities which they have, by describing how operations are performed, 
by describing padding requirements, and by specifying initialization 
sequences. This database is used, for example, by vi(C) and curses(S), so they 
can work with a variety of terminals without changes to the programs. To 
obtain the source description for a terminal, use the -I option of 
infocmp(ADM). When doing an infocmp for the terminal you are on, there is 
no difference between infocmp and infocmp -I. 

Entries in terminfo source files consist of a number of fields separated by com­
mas. White space after each comma is ignored. The first line of each terminal 
description in the terminfo database gives the name by which terminfo knows 
the terminal, separated by bar ( I ) characters. The first name given is the most 
common abbreviation for the terminal (this is the one to use to set the 
environment variable TERM in $HOME .profile; see profile(M)); the last name 
given should be a long name fully identifying the terminal, and all others are 
understood as synonyms for the terminal name. All names but the last should 
contain no blanks and must be unique in the first 14 characters; the last name 
may contain blanks for readability. 

Terminal names (except for the last verbose entry) should be chosen using the 
following conventions. The particular piece of hardware making up the ter­
minal should have a root name chosen, for example, for the AT&T 4425 termi­
nal, att4425. Modes that the hardware can be in, or user preferences, should 
be indicated by appending a hyphen and an indicator of the mode. See 
term(M) for examples and more information on choosing names and 
synonyms. 

1 Febrnary 1993 



terminfo(MJ 

Part 1: Tenninal capabilities 

Capabilities in terminfo are of three types: boolean capabilities (which show 
that the terminal has some particular feature), numeric capabilities (which 
specify the size of the terminal or particular features), and string capabilities 
(which provide a sequence that can be used to perform particular terminal 
operations). 

In the following tables, a "Variable" is the name by which a C programmer 
accesses a capability (at the terminfo level). A "Capname" is the short name 
for a capability used in the source description. It is used by a person updating 
the database and by the tput(C) command when asking what the value of the 
capability is for a particular terminal. A "Termcap Code" is a two-letter code 
that corresponds to the old termcap capability name. 

Capability names have no hard length limit, but an informal limit of five char­
acters has been adopted to keep them short. Whenever possible, names are 
chosen to be the same as or similar to those specified by the ANSI X3.64-1979 
standard. Semantics are also intended to match those of the ANSI standard. 

All string capabilities listed below may have padding specified, with the 
exception of those used for input. Input capabilities, listed under the 
"Strings" section in the following table, have names beginning with key_. The 
following indicators may appear at the end of the "Description" for a variable. 

(G) indicates that the string is passed through tparm() with parameters 
(parms) as given(#;) 

(*) indicates that padding may be based on the number of lines affected 

(# ;) indicates the ;th parameter 

(**) not present in all versions of termcap 

1 February 1993 807 



terminfo(M) 

Booleans 

Variable Cap· Termcap Description 
name code 

auto_left_margin bw bw cub 1 wraps from column 0 to last column 

auto_right_margin am am Terminal has automatic margins 
back_color_erase bee be Screen erased with background color 
can_change CCC cc Terminal can re-define existing color 
ceol_standout_glitch xhp XS Standout not erased by overwriting (hp) 
col_addr_glitch xhpa YA Only positive motion for hpa/mhpa caps 
cpi_changes_res cpix YF Changing character pitch changes 

resolution 

cr_cancels_micro_mode crxm YB Using er turns off micro mode 
eat_newline_glitch xenl xn Newline ignored after 80 columns 

(Concept) 

erase_overstrike eo eo Can erase overstrikes with a blank 
generic_ type gn gn Generic line type (for example, dialup, 

switch) 

hard_copy he he Hardcopy terminal 
hard_ cursor ch ts HC Cursor is hard to see 
has_meta_key km km Has a meta key (shift, sets parity bit) 
has_print_ wheel daisy YC Printer needs operator to change character set 
has_status_line hs hs Has extra "status line" 
hue_lightness_saturation his hi Terminal uses only HLS 

color notation (Tektronix) 

insert_null_glitch in in Insert mode distinguishes nulls 
lpi_changes_res I pix YG Changing line pitch changes resolution 
memory _above da da Display may be retained above the screen 
memory_below db db Display may be retained below the screen 
move_insert_mode mir mi Safe to move while in insert mode 
move_standout_mode rnsgr ms Safe to move in standout modes 
needs_xon_xoff nxon nx Padding won't work, xon/xoff required 
no_esc_ctlc xsb xb Beehi\'e (fl=escape, f2=ctrl C) 
no_pad_char npc NP Pad character doesn't exist 
non_dest_scroll_region ndscr ND Scrolling region is non-destructive 
non_rev _nncup nrrmc NR smcup does not reverse rmcup 
over_strike OS OS Terminal overstrikes on hard-<:opy terminal 
prtr_silent mc5i 
row _addr_glitch xvpa YD Only positive motion for vpa/mvpa caps 
semi_auto_right_margin sam YE Printing in last column causes er 
status_line_esc_ok eslok es Escape can be used on the status line 
dest_tabs_magic_srnso xt xt Destructive tabs, magic smso char (11061) 
tilde_glitch hz hz Hazeltine; cannot print tilde n 
transparent_underline ul ul Underline character overstrikes 
xon_xoff xon XO Terminal uses xon/xoff handshaking 

808 1 Febn1ary 1993 



terminfo(M) 

Numbers 

Variable Cap- Termcap Description 
name code 

buffer_capacity bufsz Ya Number of bytes buffered before printing 

columns cols co Number of columns in a line 
dot_ vert_spacing spinv Yb Spacing of pins vertically in pins per inch 
dot_horz_spacing spinh Ye Spacing of dots horizontally in dots per inch 

init_tabs it it Tabs initially every# spaces 

labeLheight lh lh Number of rows in each label 
label_ width lw lw Number of columns in each label 

lines lines Ii Number of lines on a screen or a page 
lines_of_memory Im Im Lines of memory if > lines; 0 means varies 

magic_cookie_glitch xmc sg Number of blank characters left by smso or rmso 
max_attributes ma ma Maximum combined video attributes 

terminal can display 

max_colors colors Co Maximum number of colors on the screen 
max_micro_address maddr Yd Maximum value in micro_ ... _address 
max_micro_jump mjump Ye Maximum value in parm_ ... _micro 
max_pairs pairs pa Maximum number of color-pairs on the screen 
maximum_ windows wnum MW Maximum number of definable windows 
micro_coLsize mes Yf Character step size when in micro mode 
micro_line_size mis Yg Line step size when in micro mode 
no_ color_ video ncv NC Video attributes that can't be used with colors 
number_of_pins npins Yh Number of pins in print-head 
num_labels nlab NI Number of labels on screen (start at 1) 
output_res_char ore Yi Horizontal resolution in units per chal"acter 
output_res_line orl Yj Vertical resolution in units per line 
output_res_horz_inch orhi Yk Horizontal resolution in units per inch 
output_res_ vert_inch orvi YI Vertical resolution in units per inch 
padding_baud_rate pb pb Lowest baud rate where padding needed 
print_rate cps Ym Print rate in characters per second 
virtual_terminal vt vt Virtual terminal number (UNIX system) 
wide_char_size wides Yn Character step size when in double wide mode 
width_status_line wsl ws Number of columns in status line 

I February 1993 809 



terminjo(M) 

Strings 

Variable Cap· 
name 

acs_chars acsc 

back_tab cbt 
bell be! 
carriage_retum er 
change_char_pitch cpi 

change_line_pitch lpi 

change_res_horz chr 
change_res_ vert cvr 
change_scroll_region csr 
char_padding rmp 
char_set_names csnm 
clear_all_tabs tbc 
clear_margins mgc 
clear_screen clear 
clr_bol ell 
clr_eol el 
clr_eos ed 
column_address hpa 
command_character cmdch 
create_ window cw in 
cursor_address cup 
cursor_down cudl 
cursor_home home 
cursor_invisible civis 
cursor_left cubl 
cursor_mem_address mrcup 
cursor _normal cnorm 
cursor_right cu fl 

cursor_to_ll II 
cursor_up cuul 
cursor_ visible cvvis 
define_char defc 
delete_character dchl 
delete_line dll 
delete_phone dial 
dis_status_line dsl 
display_clock dclk 
display _pc_char dis pc 
down_half_line hd 
ena_acs enacs 
enter_alt_charset_mode smacs 

(Continued on next page) 

810 

Termcap 
code 
ac 

bt 
bl 
er 
ZA 

ZB 

zc 
ZD 
cs 
rP 
Zy 
ct 
MC 
cl 
cb 
ce 
cd 
ch 
cc 
cw 
cm 
do 
ho 
vi 
le 
CM 
ve 
nd 

11 
up 
VS 

ZE 
de 
di 
DI 
ds 
DK 
51 
hd 
eA 
as 

Description 

Graphic charset pairs aAbBcC • def=vtlOO 

Back tab 
Audible signal (bell) 
Carriage return ( •) 
Change number of characters per inch(••) 

Change number of lines per inch(••) 

Change horizontal resolution(••) 
Change vertical resolution(••) 
Change to lines #1 through #2 (vtlOO) (G) 
Like ip but when in replace mode 
List of character set names 
Clear all tab stops 
Clear all margins (top, bottom, and sides) 
Clear screen and home cursor ( •) 
Clear to beginning of line, inclusive 
Clear to end of line 
Clear to end of display(*) 
Horizontal position absolute (G) 
Terminal settable cmd character in prototype 
Define win #1 to go from #2,#3 to #4,#5 
Mm·e to row #1 col #2 (G) 
Down one line 
Home cursor (if no cup) 
Make cursor invisible 
Move left one space 
Memory relative cursor addressing (G) 
Make cursor appear normal (undo vs/vi) 
Non-destructive space 
(cursor or carriage right) 

Last line, first column (if no cup) 
Upline (cursor up) 
Make cursor very visible 
Define a character in a character set ( • •) 
Delete character ( •) 
Delete line(*) 
Dial phone number #l 
Disable status line 
Display time-of-day clock 
Displays PC character 
Half-line down (forward I /2 linefeed) 
Enable alternate character set 
Start alternate character set 

1 February 1993 



terminfo(M) 

(Continued) 

Variable Cap- Termcap Description 
name code 

enter_am_mode smam SA Turn on automatic margins 
enter_blink_mode blink mb Turn on blinking 
enter_bold_mode bold md Turn on bold (extra bright) mode 

enter_ca_mode smcup ti String to begin programs that use cup 
enter_delete_mode smdc dm Delete mode (enter) 
enter_dim_mode dim mh Turn on half-bright mode 
enter_doublewide_mode swidm ZF Enable double wide printing 
enter_draft_quality sdrfq ZG Set draft quality print 
enter_insert_mode smir im Insert mode (enter) 
enter_italics_mode sitm ZH Enable italics 
enter_leftward_mode slm ZI Enable leftward carriage motion 
enter_micro_mode smicm ZJ Enable micro motion capabilities 
enter_near_letter_quality snlq ZK Set near-letter quality print 
enter_normal_quality snrmq ZL Set normal quality print 
enter_pc_charset_mode smsc 54 Enables PC·scancode mode 
enter_protected_mode prot mp Turn on protected mode 
enter_reverse_mode rev mr Turn on reverse video mode 
enter_secure_mode in vis mk Turn on blank mode (characters invisible) 
enter_shadow _mode sshm ZM Enable shadow printing 
enter_standout_mode smso so Begin standout mode 
enter_subscript_mode ssubm ZN Enable subscript printing 
enter_superscript_mode ssupm zo Enable superscript printing 
enter_underline_mode smul us Start underscore mode 
enter_upward_mode sum ZP Enable upward carriage motion 
enter_xon_mode smxon SX Turn on xon/xoff handshaking 
erase_ chars ech ec Erase #1 characters (G) 
exit_alt_charset_mode rmacs ae End alternate character set 
exit_am_mode rmam RA Turn off automatic margins 
exit_attribute_mode sgrO me Turn off all attributes 
exit_ca_mode rmcup te String to end programs that use cup 
exit_delete_mode rmdc ed End delete mode 
exit_doublewide_mode rwidm ZQ Disable double wide printing 
exit_insert_mode rmir ei End insert mode 
exit_italics_mode ritm ZR Disable italics 
exit_leftward_mode rim ZS Enable rightward (normal) carriage motion 
exit_micro_mode rmicm ZT Disable micro motion capabilities 
exit_pc_charset_mode rmsc SS Disables PC-scancode mode 
exit_shadow _mode rshm zu Disable shadow printing 
exit_standout_mode rmso se End standout mode 
exit_subscript_mode rsubm zv Disable subscript printing 
exit_superscript_mode rsupm 'ZW Disable superscript printing 
exit_underline_mode rmul ue End underscore mode 
exit_upward_mode rum zx Enable downward (normal) carriage motion 

(Continued on next page) 

1 February 1993 811 



terminjo(M) 

(Continued) 

Variable Cap· Termcap Description 
name code 

exit_xon_mode nnxon RX Tum off xon/xoff handshaking 
fixed_pause pause PA Pause for 2-3 seconds 
flash_hook hook fh Flash the switch hook 
flash_screen flash vb Visible bell (may not move cursor) 
form_feed ff ff Hardcopy terminal page eject ( •) 
from_status_line fsl fs Return from status line 
goto_ window wingo WG Got to window #1 

hangup hup HU Hang-up phone 
init_lstring isl i1 Terminal or printer initialization string 
init_2string is2 is Terminal or printer initialization string 
init_3string is3 i3 Terminal or printer initialization string 
init_file if if Name of initialization file 
init_prog iprog iP Path name of program for initialization 
initialize_color initc le Initialize the definition of color 
initialize_pair initp Ip Initialize color-pair 
insert_ character ichl ic Insert character 
insert_line ill al Add new blank line(•) 

insert_padding ip ip Insert pad after character inserted(*) 

key_al kal Kl KEY _A 1, 0534, upper left of keypad 

key_a3 ka3 K3 KEY _A3, 0535, upper right of keypad 

key_b2 kb2 K2 KEY _82, 0536, center of keypad 

key _backspace kbs kb KEY _BACKSPACE, 0407, 
sent by backspace key 

key_beg kbeg @1 KEY _BEG, 0542, sent by beg( inning) key 
key_btab kcbt kB KEY_BTAB, 0541, sent by back-tab key 
key_cl kcl K4 KEY_Cl, 0537, lower left of keypad 

key_c3 kc3 KS KEY_C3, 0540, lower right of keypad 
key_cancel kcan @2 KEY _CANCEL, 0543, sent by cancel key 

key_catab ktbc ka KEY _CATAB, 0526, sent by dear-all-tabs key 

key_dear kdr kC KEY _CLEAR, 0515, sent by dear-screen 
or erase key 

key_dose kdo @3 KEY _CLOSE, 0544, sent by dose key 

key _command kcmd @4 KEY _COMMAND, 0545, 
sent by cmd (command) key 

key_copy kcpy @S KEY_COPY, 0546, sent by copy key 

key_create kcrt @6 KEY_CREATE, 0547, sent by create key 

key_ctab kctab kt KEY_CTAB, 0525, sent by dear-tab key 

key_dc kdchl kD KEY_DC, 0512, sent by delete-character key 

key_dl kdll kL KEY_DL, 0510, sent by delete-line key 

key_down kcudl kd KEY _DOWN, 0402, sent by terminal 

down-arrow key 

key_eic krmir kM KEY_EIC, 0514, sent by rmir 
or smir in insert mode 

(Continued on next page) 

812 1 February 1993 



terminfo(M) 

(Continued) 

Variable Cap- Termcap Description 
name code 

key_end kend @7 KEY _END, 0550, sent by end key 
key_enter kent @8 KEY _ENTER, 0527, sent by enter /send key 
key_eol kel kE KEY _EOL, 0517, sent by clear-to-end-of-line key 
key_eos ked kS KEY_EOS, 0516, sent by 

clear-to-end-of-screen key 

key_exit kext @9 KEY_EXIT, 0551, sent by exit key 
key_fO kfO kO KEY_F(O), 0410, sent by function key fO 
key_fl kfl kl KEY_F(l),0411, sent by function key fl 
key_f2 kf2 k2 KEY_F(2), 0412, sent by function key f2 
key_f3 kf3 k3 KEY_F(3), 0413, sent by function key f3 
key_f4 kf4 k4 KEY_F(4), 0414, sent by function key f4 
key_f5 . kf5 k5 KEY_F(5), 0415, sent by function key f5 
key_f6 kf6 k6 KEY_F(6), 0416, sent by function key f6 
key_f7 kf7 k7 KEY_F(7), 0417, sent by function key f7 
key_f8 kf8 k8 KEY_F(8), 0420, sent by function key f8 
key_f9 kf9 k9 KEY_F(9), 0421, sent by function key f9 
key_flO kflO k; KEY_F(lO), 0422, sent by function key flO 
key_fll kfll Fl KEY_F(ll), 0423, sent by function key fll 
key_f12 kf12 F2 KEY _F(l2), 0424, sent by function key f12 
key_f13 kf13 F3 KEY _F(13), 0425, sent by function key fl3 
key_f14 kfl4 F4 KEY _F(l4), 0426, sent by function key fl4 
key_f15 kf15 F5 KEY_F(15), 0427, sent by function key fl5 
key_f16 kf16 F6 KEY_F(l6), 0430, sent by function key fl6 
key_f17 kf17 F7 KEY_F(l7), 0431, sent by function key f17 
key_f18 kf18 FS KEY_F(18), 0432, sent by function key fl8 
key_f19 kfl9 F9 KEY_F(l9), 0433, sent by function key fl9 
key_f20 kf20 FA KEY _F(20), 0434, sent by function key f20 
key_f21 kf21 FB KEY _F(21), 0435, sent by function key f21 
key_f22 kf22 FC KEY_F(22), 0436, sent by function key f22 
key_f23 kf23 FD KEY _F(23), 0437, sent by function key f23 
key_f24 kf24 FE KEY_F(24), 0440, sent by function key f24 
key_f25 kf25 FF KEY_F(25), 0441, sent by function key f25 
key_f26 kf26 FG KEY _F(26), 0442, sent by function key f26 
key_f27 kf27 FH KEY _F(27), 0443, sent by function key f27 
key_f28 kf28 Fl KEY _F(28), 0444, sent by function key f28 
key_f29 kf29 FJ KEY _F(29), 0445, sent by function key f29 
key_f30 kf30 FK KEY _F(30), 0446, sent by function key f30 
keyJ31 kf31 FL KEY_F(31),0447, sent by function key f31 
key_f32 kf32 FM KEY _F(32), 0450, sent by function key f32 
key_f33 kf33 FN KEY _F(33), 0451, sent by function key fl3 
key_f34 kf34 FO KEY _F(34), 0452, sent by function key f34 
key_f35 kf35 FP KEY _F(35), 0453, sent by function key f35 

(Continued on next page) 

1 February 1993 813 



terminfo(M) 

(Continued) 

Variable Cap- Termcap Description 
name code 

key_f36 kf36 FQ KEY _F(36), 0454, sent by function key 136 
key_f37 kf37 FR KEY _F(37), 0455, sent by function key 137 
key_f38 kl38 FS KEY _F(38), 0456, sent by function key 138 
key_f39 kl39 Fr KEY_F(39), 0457, sent b)' function key 139 
key_f40 kf40 FU KEY_F(40), 0460, sent by function key 140 
key_f41 kf41 FV KEY_F(41), 0461, sent by function key 141 
key_f42 kf42 FW KEY _F(42), 0462, sent by function key 142 
key_f43 kf43 FX KEY_F(43), 0463, sent by function key 143 
key_f44 kf44 FY KEY _F(44), 0464, sent by function key f44 
key_f45 kf45 FZ KEY_F(45), 0465, sent by function key 145 
key_f46 kf46 Fa KEY_F(46), 0466, sent by function key 146 
key_f47 kf47 Fb KEY _F(47), 0467, sent by function key 147 
key_f48 kf48 Fe KEY _F(48), 0470, sent by function key 148 
key_f49 kf49 Fd KEY _F(49), 0471, sent by function key 149 
key_f50 kf50 Fe KEY _F(50), 0472, sent by function key 150 
key_f51 kf51 Ff KEY _F(51), 0473, sent by function key 151 
key_f52 kf52 Fg KEY_F(52), 0474, sent by function key f52 
key_f53 kf53 Fh KEY _F(53), 0475, sent by function key f53 
key_f54 kf54 Fi KEY _F(54), 0476, sent by function key 154 
key_f55 kf55 Fj KEY _F(55), 0477, sent by function key 155 
key_f56 kf56 Fk KEY _F(56), 0500, sent by function key 156 
key_f57 kf57 Fl KEY _F(57), 0501, sent by function key 157 
key_f58 kf58 Fm KEY_F(58), 0502, sent by function key 158 
key_f59 kf59 Fn KEY_F(59), 0503, sent by function key 159 
key_f60 kf60 Fo KEY _F(60), 0504, sent by function key 160 
key_f61 kf61 Fp KEY_F(61), 0505, sent by function key f61 
key_f62 kf62 Fq KEY_F(62), 0506, sent by function key 162 
key_f63 kf63 Fr KEY_F(63), 0507, sent by function key 163 
key_find kind @O KEY _FIND, 0552, sent by find key 
key_help khlp °lol KEY_HELP, 0553, sent by help key 
key_horne khome kh KEY _HOME, 0406, sent by home key 
key_ic kichl kl KEY _IC, 0513, sent by ins-char /enter 

ins-mode key 

key_il kill kA KEY_IL, 0511, sent by insert-line key 
key_left kcubl kl KEY_LEFr, 0404, sent by terminal 

left-arrow key 

key_ll kll kH KEY _LL, 0533, sent by home-down key 
key_mark kmrk %2 KEY_MARK, 0554, sent by mark key 
key _message kmsg %3 KEY _MESSAGE, 0555, sent by message key 
key_move kmov %4 KEY _MOVE, 0556, sent by move key 
key_next knxt %5 KEY _NEXT, 0557, sent by next key 
key_npage knp kN KEY_NPAGE, 0522, sent by next-page key 

(Continued on next page) 

814 1 Febmary 1993 



terminfo(M) 

(Continued) 

Variable Cap- Termcap Description 
name code 

key_open kopn %6 KEY _OPEN, 0560, sent by open key 

key _options kopt %7 KEY_OPTIONS, 0561, sent by options key 

key_ppage kpp kP KEY_PPAGE, 0523, sent by previous-page key 

key _previous kprv %8 KEY _PREVIOUS, 0562, sent by 
previous-object key 

key_print kprt %9 KEY_PRINT, 0532, sent by print or copy key 

key_redo krdo 0 KEY_REOO, 0563, sent by redo key 

key _reference kref &l KEY _REFERENCE, 0564, sent by ref( erence) key 

key _refresh krfr &2 KEY _REFRESH, 0565, sent by refresh key 

key _replace krpl &3 KEY _REPLACE, 0566, sent by replace key 

key _restart krst &4 KEY _RESTART, 0567, sent by restart key 

key_resume kres &5 KEY _RESUME, 0570, sent by resume key 

key_right kcufl kr KEY _RIGHT, 0405, sent by terminal right-arrow key 
key_save ksav &6 KEY _SAVE, 0571, sent by save key 

key_sbeg kBEG &9 KEY _SBEG, 0572, sent by shifted beginning key 
key _scancel kCAN &O KEY _SCANCEL, 0573, sent by shifted cancel key 

key _scommand kCMD •1 KEY_SCOMMAND, 0574, sent by shifted 
command key 

key_scopy kCPY •2 KEY _SCOPY, 0575, sent by shifted copy key 
key _screate kCRT •3 KEY _SCREATE, 0576, sent by shifted create key 
key_sdc kDC •4 KEY _SOC. 0577, sent by shifted delete-char key 
key_sdl kDL •5 KEY _SOL, 0600, sent by shifted delete-line key 
key_select kslt •6 KEY _SELECT, 0601, sent by select key 
key_send kEND •7 KEY _SEND, 0602, sent by shifted end key 
key_seol kEOL •8 KEY _SEOL, 0603, sent by shifted clear-line key 
key_sexit kEXT •9 KEY _SEXIT, 0604, sent by shifted exit key 
key_sf kind kF KEY _SF, 0520, sent by scroll-forward/.down key 
key_sfind kFND •O KEY _SFIND, 0605, sent by shifted find key 
key_shelp kHLP #1 KEY _SHELP, 0606, sent by shifted help key 
key_shome kHOM #2 KEY _SHOME, 0607, sent by shifted home key 
key_sic k!C #3 KEY _SIC, 0610, sent by shifted input key 
key_sleft kLFT #4 KEY _SLEFT, 0611, sent by shifted left-arrow key 
key _smessage kMSG %a KEY _SMESSAGE, 0612, sent by shifted message key 
key_smo\•e kMOV %b KEY _SMOVE, 0613, sent by shifted mo\•e key 
key_snext kNXT %c KEY_SNEXT, 0614, sent by shifted next key 
key _sop lions kOPT %d KEY _SOPTIONS, 0615, sent by shifted options key 
key _sprevious kPRV %e KEY _SPREVIOUS, 0616, sent by shifted prev key 
key_sprint kPRT %f KEY_SPRINT, 0617, sent by shifted print key 
key_sr kri kR KEY _SR, 0521, sent by scroll-backward/up key 
key_sredo kROO %g KEY _SREOO, 0620, sent by shifted redo key 
key _sreplace kRPL %h KEY_SREPLACE, 0621, sent by shifted replace key 
key_sright kRIT %i KEY _SRIGHT, 0622, sent by shifted right-arrow key 

(Continued on next page) 

1 February 1993 815 



terminfo(M) 

(Contim1ed) 

Variable Cap· Termcap Description 
name code 

key_srsume kRES %j KEY _SRSUME, 0623, sent by shifted resume key 
key_ssave kSAV !l KEY _SSA VE, 0624, sent by shifted save key 
key _ssuspend kSPD !2 KEY_SSUSPEND, 0625, 

sent by shifted suspend key 

key_stab khts kT KEY _STAB, 0524, sent by set-tab key 
key_sundo kUND !3 KEY_SUNOO, 0626, sent by shifted undo key 
key _suspend kspd &7 KEY_SUSPEND, 0627, sent by suspend key 
key_undo kund &8 KEY _UNDO, 0630, sent by undo key 
key_up kcuul ku KEY _UP, 0403, sent by terminal up-arrow key 
keypad_local nnkx ke Out of "keypad-transmit" mode 
keypad_xmit smkx ks Put terminal in "keypad-transmit" mode 
lab_fO lfO 10 Labels on function key fO if not fO 
lab_fl lfl 11 Labels on function key fl if not fl 
lab_f2 lf2 12 Labels on function key f2 if not f2 
lab_f3 lf3 13 Labels on function key f3 if not f3 
lab_f4 lf4 14 Labels on function key f4 if not f4 
lab_f5 lf5 15 Labels on function key 15 if not 15 
lab_f6 lf6 16 Labels on function key f6 if not f6 
lab_l7 117 17 Labels on function key 17 if not 17 
lab_fB lfB 18 Labels on function key fB if not fB 
lab_f9 lf9 19 Labels on function key f9 if not f9 
lab_flO lflO la Labels on function key no if not no 
label_format fin Lf Label format 
labeLoff rmln LF Tum off soft labels 
la be Lon smln w Tum on soft labels 
meta_ off rmm mo Tum off "meta mode" 
meta_ on smm mm Tum on "meta mode" (8th bit) 
micro_column_address mhpa 'ZY Like column_address for 

micro adjusbnent ** 
micro_down mcudl zz Like cursor_down for micro adjustment 
micro_left mcubl Za Like cursor_left for micro adjustment 
micro_right mcufl Zb Like cursor_right for micro adjustment 
micro_row _address mvpa Zc Like row _address for micro adjustment•• 
micro_ up mcuul Zd Like cursor_up for micro adjustment 
newline nel nw Newline (behaves like er followed by If) 
order_of_pins porder Ze Matches software bits to print-head pins 
orig_ colors oc oc Set all color(·pair)s to the original ones 
orig_pair op op Set default color-pair to the original one 
pad_char pad pc Pad character (rather than null) 
parm_dch dch DC Delete #1 chars (G•) 
parm_delete_line di DL Delete #1 lines (G•) 
parm_down_cursor cud DO Move down #l lines. (G•) 

(Continued on next page) 

816 1 February 1993 



terminfo(M) 

(Continued) 

Variable Cap· Termcap Description 
name code 

parm_down_micro mcud Zf Like parm_down_cursor for 
micro adjust. (G*) 

parm..ich ich IC Insert #1 blank chars (G•) 

parm..index indn SF Scroll forward #1 lines. (G) 

parm_insert_line ii AL Add #1 new blank lines (G•) 

parm_left_cursor cub LE Mo\•e cursor left #1 spaces (G) 
parm_left_micro mcub Zg Like parm_left_cursor for micro adjust.(••) 

parm_right_cursor cuf RI Move right #1 spaces. (G•) 
parm_right_micro mcuf Zh Like parm_right_cursor for micro adjust. (••) 
parm_rindex rin SR Scroll backward #1 lines. (G) 
parm_up_cursor cuu UP Move cursor up #1 lines. (G•) 
parm_up_micro mcuu Zi Like parm_up_cursor for micro adjust.(••) 
pkey_key pfkey pk Prog funct key #1 to type string #2 
pkey_local pfloc pl Prog funct key #1 to execute string #2 
pkey_xmit pfx px Prog funct key #1 to xmit string #2 
plab_norm pin pn Prog label #1 to show string #2 
print_screen mcO ps Print contents of the screen 
prtr_non mc5p pO Turn on the printer for #1 bytes 
prtr_off mc4 pf Turn off the printer 
prtr_on mc5 po Turn on the printer 
pulse pulse PU Select pulse dialing 
quick_ dial qdial QD Dial phone number #1, without 

progress detection 

remove_clock rmclk RC Remove time-of-day clock 
repeat_ char rep rp Repeat char #1 #2 times (G•) 
req_for_input rfi RF Send next input char (for ptys) 
reset_lstring rsl rl Reset terminal completely to sane modes 
reset_2string rs2 r2 Reset terminal completely to sane modes 
reset_3string rs3 r3 Reset terminal completely to sane modes 
reset_file rf rf Name of file containing reset string 
restore_ cursor re re Restore cursor to position of last sc 
row _address vpa CV Vertical position absolute (G) 
save_ cursor SC SC Save cursor position 
scroll_forward ind sf Scroll text up 
scroll_reverse ri sr Scroll text down 
select_char_set scs Zj Select character set(••) 
set_attributes sgr sa Define the video attributes (G) #1-#9 
set_background setb Sb Set current background color 
set_bottom_margin smgb Zk Set bottom margin at current line 
set_bottom_margin_parm smgbp Zl Set bottom margin at line #1 ( • •) 
set_ clock sclk SC Set time-of-day clock 
set_color_pair scp sp Set current color-pair 

(Continued on next page) 

l February 1993 817 



terminfo(M) 

(Continued) 

Variable Cap- Termcap Description 
name code 

set_foreground self Sf Set current foreground colorl 
set_left_margin smgl ML Set left margin at current line 
set_left_margin_parm smglp Zm Set left margin at column #1 ( • •) 
set_right_margin smgr MR Set right margin at current column 
set_right_margin_parm smgrp Zn Set right margin at column #I (••) 
set_ tab hts st Set a tab in all rows, current column 
set_top_margin smgt Zo Set top margin at current line 
set_top _margin_parm smgtp Zp Set top margin at line #1 ( ••) 
set_ window wind wi Current window is lines #1-#2 cols #3-#4 (G) 
start_bit_image sbim Zq Start printing bit image graphics(••) 
start_char_set_def scsd Zr Start definition of a character set ( ••) 
stop_bit_image rbim Zs End printing bit image graphics 
stop_char_set_def rcsd Zt End definition of a character set 
subscript_characters subcs Zu List of "subscript-able" characters 
superscript_ characters supcs Zv List of "superscript-able" characters 

tab ht ta Tab to next 8-space hardware tab stop 
these_cause_cr doer Zw Printing any of these chars causes er 
to_status_line ts! ts Go to status line, col #1 (G) 

tone tone TO Select touch tone dialing 
underline_char UC UC Underscore one char and move past it 
up _half_line hu hu Half-line up (reverse 1/2 linefeed) 

userO uO uO User string 0 
user! ul ul User string I 

user2 u2 u2 User string 4 
user3 u3 u3 User string 3 

user4 u4 u4 User string 4 

users us us User string S 
user6 u6 u6 User string 6 
user7 u7 u7 User string 7 

users u8 u8 User string 8 

user9 u9 u9 User string 9 
wait_tone wait WA Wait for dial tone 
xoff_character xoffc XF X-off character 
xon_character xonc XN X-on character 
xon_character xonc XN Alternate XON character (scancode mode) 

xoff_character xoffc XF Alternate XOFF character (scancode mode) 

zero_motion zerom Zx No motion for the subsequent character 

818 1Febmary1993 



terminfo(M) 

Booleans 

Cap- Variable Termcap Description 
name code 

am auto_right_margin am Terminal has automatic margins 

bw auto_left_margin bw cubl wraps from column 0 to last column 

CCC can_ change cc Terminal can re-define existing color 

ch ts hard_cursor HC Cursor is hard to see 

cpix cpi_changes_res YF Changing character pitch changes resolution 

cps print_rate Ym Print rate in characters per second 

crxm cr_cancels_micro_modem YB Using er turns off micro mode 

cw in create_ window cw Define win #1 to go from #2,#3 to #4,#5 

da memory _above da Display may be retained above the screen 

daisy has_print_wheel YC Printer needs operator to change character set 
dclk display _clock DK Display time-of-day clock 
db memory _below db Display may be retained below the screen 
dial dial_phone DI Dial phone number #1 
eo erase_ overstrike eo Can erase o•'erstrikes with a blank 
eslok status_line_esc_ok es Escape can be used on the status line 

gn generic_ type gn Generic line type (e.g., dialup, switch) 
he hard_ copy he Hardcopy terminal 
his hue_lightness_saturation hi Terminal uses only HLS 

color notation (Tektronix) 

hs has_status_line hs Has extra "status line11 

hz tilde_glitch hz Hazeltine; can't print tilde (j 
in insert_null_glitch in Insert mode distinguishes nulls 
km has_meta_key km Has a meta key (shift, sets parity bit) 
I pix lpi_changes_res YG Changing line pitch changes resolution 
mcSi prtr_silent 
mir move_insert_mode mi Safe to move while in insert mode 
ms gr move_standout_mode ms Safe to move in standout modes 
npc no_pad_char NP Pad character doesn't exist 
nrrmc non_rev _rmcup NR smcup does not reverse rmcup 
nxon needs_xon_xoff nx Padding won't work, xon/xoff required 
OS over_strike OS Terminal overstrikes on hard-copy terminal 
sam semi_auto_right_margin YE Printing in last column causes er 
ul transparent_ under line ul Underline character overstrikes 
xenl eat_newline_glitch xn Newline ignored after 80 columns (Concept) 
xhp ceol_standout_glitch XS Standout not erased by overwriting (hp) 
xhpa col_addr_glitch YA Only positive motion for hpa/mhpa caps 
xon xon_xoff XO Terminal uses xon/xoff handshaking 
xsb no_esc_ctlc xb Beehive (fl=escape, f2=ctrl C) 
xt dest_tabs_magic_smso xt Destructive tabs, magic smso char (11061) 
xv pa row _addr_glitch YD Only positive motion for vpa/mvpa caps 

l February 1993 819 



terminfo(M) 

Numbers 

Cap- Variable Termcap Description 
name code 

bufsz buffer_capacity Ya Number of bytes buffered before printing 
colors max_colors Co Maximum number of colors on the screen 
cols columns co Number of columns in a line 
cps print_rate Ym Average print rate in characters per second 
it init_tabs it Tabs initially every# spaces 
lh label_height lh Number of rows in each label 
lines lines Ii Number of lines on a screen or a page 
Im lines_of_memory Im Lines of memory if> lines; 0 means varies 
lw label_ width lw Number of columns in each label 
maddr max_micro_address Yd Maximum value in micro_ ... _address 
mes micro_col_size YI Character step size when in micro mode 
mjump max_micro_jump Ye Maximum value in parm_ ... _micro 
mis micro_line_size Yg Line step size when in micro mode 
ncv no_color_ video NC Video attributes that can't be used with colors 
nlab num_labels NI Number of labels on screen (start at 1) 
npins number_of_pins Yh Number of pins in print-head 
ore output_res_char Yi Horizontal resolution in units per character 
or hi output_res_horz_inch Yk Horizontal resolution in units per inch 
orl output_res_line Yj Vertical resolution in units per line 
orvi output_res_ vert_inch YI Vertical resolution in units per inch 
pairs max_ pairs pa Maximum number of color-pairs on the screen 
pb padding__baud_rate pb Lowest baud rate where padding needed 
spinh dot_horz_spacing Ye Spacing of dots horizontally in dots per inch 
spinv dot_ vert_spacing Yb Spacing of pins vertically in pins per inch 
vi virtual_terminal vi Virtual terminal number (UNIX system) 
wides wide_char_size Yn Character step size when in double wide mode 

wsl width_status_line ws Number of columns in status line 

xmc magic_cookie__glitch sg Number of blank characters left 
by smso or rmso 

820 1 February 1993 



terminfo(M) 

Strings 

Cap- Variable Termcap Description 
name code 

acsc acs_chars ac Graphic charset pairs aAbBcC - dcf=vtlOO 
bel bell bl Audible signal (bell) 
blink enter_blink_mode mb Turn on blinking 
bold enter_bold_mode md Turn on bold (extra bright) mode 
cbt back_ tab bt Back tab 
chr change_res_horz zc Change horizontal resolution(**) 
civis cursor_invisible vi Make cursor invisible 
clear clcar_screen cl Clear screen and home cursor ( •) 
cmdch command_character cc Terminal settable cmd character in prototype 
cnorrn cursor _normal ve Make cursor appear normal (undo vs/vi) 
cpi change_char_pitch ZA Change number of characters per inch ( ••) 
er carriage_return er Carriage return ( •) 
csnm char_set_names Zy List of character set names 
csr change_scroll_region cs Change to lines #1 through #2 (vtlOO) (G) 
cub parrn_left_cursor LE Move cursor left #1 spaces (G) 
cubl cursor_left le Move left one space. 
cud parrn_down_cursor 00 Move down #1 lines. (G•) 
cuf parm_right_cursor RI Move right #1 spaces. (G•) 
cu fl cursor_right nd Non-destructive space (cursor or carriage right) 
cup cursor_address cm Move to row #1 col #2 (G) 
cuu parm_up_cursor UP Move cursor up #1 lines. (G•) 
cvr change_res_ vert ZD Change vertical resolution(••) 
cvvis cursor_ visible vs Make cursor very visible 
dch parrn_dch DC Delete #1 chars (G•) 
dchl delete_character de Delete character(•) 
defc define_char ZE Define a character in a character set 
dim enter_dim_mode mh Turn on half-bright mode 
di delete_line dll Delete line(*) 
di parrn_delete_line DL Delete #1 lines (G•) 
do cursor_down do Down one line 
doer these_cause_cr Zw Printing any of these chars causes er 
dsl dis_status_line ds Disable status line 
ech erase_ chars ec Erase #1 characters (G) 
ed clr_eos cd Clear to end of display ( •) 
el clr_eol ce Oear to end of line 
ell clr_bol cb Clear to beginning of line, inclusive 
enacs ena_acs eA Enable alternate character set 
ff forrn_feed ff Hardcopy terminal page eject(•) 
flash flash_screen vb Visible bell (may not move cursor) 
fin label_format Lf Label format 
fsl from_status_line Es Return from status line 
hd down_half_line hd Half-line down (forward 1/2 linefeed) 

(Continued on next page) 

l February 1993 821 



terminfo(M) 

(Continued) 

Cap- Variable Termcap Description 
name code 

home cursor_home ho Home cursor (if no cup) 
hook flash_hook fh Flash the switch hook 
hpa column_address ch Horizontal position absolute (G) 
ht tab ta Tab to next 8-space hardware tab stop 
hts set_ tab st Set a tab in all rows, current column 
hu up_half_line hu Half-line up (reverse I /2 linefeed) 
hup hangup HU Hang-up phone 
ich parm_ich IC Insert#! blank chars (G') 
ichl insert_character ic Insert character 
if init_file if Name of initialization file 
ii parm_insert_line AL Add #I new blank lines (G•) 
ill insert_line al Add new blank line ( •) 
ind scroll_forward sf Scroll text up 
indn parm_index SF Scroll forward #I lines. (G) 
initc initialize_color le Initialize the definition of color 
initp initialize_pair Ip Initialize color-pair 
in vis enter_secure_mode mk Turn on blank mode (characters invisible) 
ip insert_padding ip Insert pad after character inserted ( •) 
iprog init_prog iP Path name of program for initialization 
isl init_lstring i1 Terminal or printer initialization string 
is2 init_2string is Terminal or printer initialization string 
is3 init_3string i3 Terminal or printer initialization string 
kBEG key_sbeg &9 KEY_SBEG, 0572, sent by shifted beginning key 
kCAN key _scancel &O KEY_SCANCEL, 0573, sent by shifted cancel key 
kCMD key _scommand •1 KEY_SCOMMAND, 0574, sent by 

shifted command key 

kCPY key_scopy •2 KEY_SCOPY, 0575, sent by shifted copy key 
kCRT key _screate •3 KEY_SCREATE, 0576, sent by shifted create key 
kDC key_sdc •4 KEY_SDC, 0577, sent by shifted delete-char key 
kDL key_sdl •5 KEY_SDL, 0600, sent by shifted delete-line key 
kEND key_send •7 KEY _SEND, 0602, sent by shifted end key 
kEOL key_seol •8 KEY_SEOL, 0603, sent by shifted clear-line key 
kEXT key_sexit •9 KEY_SEXIT, 0604, sent by shifted exit key 
kFND key_sfind •0 KEY_SFIND, 0605, sent by shifted find key 
kHLP key_shelp #1 KEY _SHELP, 0606, sent by shifted help key 
kHOM key_shome #2 KEY_SHOME, 0607, sent by shifted home key 
klC key_sic #3 KEY_SIC, 0610, sent by shifted input key 
kLFT key_sleft #4 KEY _SLEFT, 0611, sent by shifted left-arrow key 
kMOV key_smove b KEY_SMOVE, 0613, sent by shifted move key 
kMSG key _smessage %a KEY_SMESSAGE, 0612, sent by 

shifted message key 

kNXT key_snext %c KEY_SNEXT, 0614, sent by shifted next key 

(Continued on next page) 

822 1 February 1993 



terminfo(M) 

(Continued) 

Cap- Variable Termcap Description 
name code 

kOPT key _soptions %d KEY_SOPTIONS, 0615, sent by 
shifted options key 

kPRT key_sprint %f KEY_SPRINT, 0617, sent by shifted print key 

kPRV key _sprevious %e KEY _SPREVIOUS, 0616, sent by shifted prev key 

kRDO key_sredo %g KEY _SREDO, 0620, sent by shifted redo key 

kRES key_srsume %j KEY_SRSUME, 0623, sent by shifted resume key 

kRIT key_sright %i KEY _SRIGIIT, 0622, sent by shifted right-arrow key 

kRPL key _sreplace %h KEY _SREPLACE, 0621, sent by shifted replace key 

kSAV key_ssave !1 KEY _SSA VE, 0624, sent by shifted save key 

kSPD key _ssuspend !2 KEY _SSUSPEND, 0625, sent by shifted suspend key 

kUND key_sundo !3 KEY_SUNDO, 0626, sent by shifted undo key 

kal key_al Kl KEY_Al, 0534, upper left of keypad 

ka3 key_a3 K3 KEY _A3, 0535, upper right of keypad 

kb2 key_b2 K2 KEY _B2, 0536, center of keypad 

kbeg key_beg @1 KEY_BEG, 0542, sent by beg(inning) key 

kbs key _backspace kb KEY_BACKSPACE, 0407, sent by backspace key 

kcl key_cl K4 KEY _c1, 0537, lower left of keypad 
kc3 key_c3 KS KEY _C3, 0540, lower right of keypad 

kc an key_cancel @2 KEY _CANCEL, 0543, sent by cancel key 
kcbt key_btab kB KEY_BTAB, 0541, sent by back-tab key 
kclo key_close @3 KEY_ CLOSE, 0544, sent by close key 
kclr key_clear kC KEY _CLEAR, 0515, sent by dear-screen or erase key 
kcmd key_command @4 KEY _COMMAND, 0545, sent by cmd 

(command) key 

kcpy key_copy @5 KEY_COPY, 0546, sent by copy key 
kcrt key_create @6 KEY _CREATE, 0547, sent by create key 
kc tab key_ctab kt KEY_CTAB, 0525, sent by clear-tab key 
kcubl key_left kl KEY _LEFT, 0404, sent by terminal left-arrow key 
kcudl key_down kd KEY _DOWN, 0402, sent by terminal 

down-arrow key 

kcufl key_right kr KEY _RIGIIT, 0405, sent by terminal right-arrow key 
kcuul key_up ku KEY_UP, 0403, sent by terminal up-arrow key 
kdchl key_dc kD KEY _DC, 0512, sent by delete-character key 
kdll key_dl kL KEY _DL, 0510, sent by delete-line key 
ked key_eos ked KEY _EOS, 0516, sent by dear-to-end-of-screen key 
kel key_eol kE KEY _EOL, 0517, sent by clear-to-end-of-line key 
kend key_end @7 KEY _END, 0550, sent by end key 
kent key_enter @8 KEY _ENTER, 0527, sent by enter /send key 
kext key_exit @9 KEY _EXIT, 0551, sent by exit key 
kfO key_fO kO KEY _F(O), 0410, sent by function key fO 
kfl key_fl kl KEY_F(C), 0411, sent by function key fl 
kflO key_flO k- KEY_F(ADM), 0422, sent by function key flO 

(Continued on next page) 

1February1993 823 



terminjo(M) 

(Continued) 

Cap· Variable Termcap Description 
name code 

kfll key_fll Fl KEY _F(ADM), 0423, sent by function key fl 1 
kf12 key_f12 F2 KEY_F(ADM), 0424, sent by function key f12 
kf13 key_f13 F3 KEY_F(ADM), 0425, sent by function key f13 
kf14 key_f14 F4 KEY _F(ADM), 0426, sent by function key f14 
kf15 key_f15 F5 KEY _F(ADM), 0427, sent by function key f15 
kf16 key_f16 F6 KEY_F(ADM), 0430, sent by function key f16 
kf17 key_f17 F7 KEY_F(ADM), 0431, sent by function key f17 
kf18 key_f18 FS KEY_F(ADM), 0432, sent by function key f18 
kf19 key_f19 F9 KEY_F(ADM), 0433, sent by function key f19 

kf2 key_f2 k2 KEY _F(S), 0412, sent by function key f2 
kf20 key_f20 FA KEY_F(20), 0434, sent by function key f20 
kf21 key_f21 FB KEY_F(21), 0435, sent by function key f21 

kf22 key_f22 FC KEY _F(22), 0436, sent by function key f22 
kf23 key_f23 FD KEY _F(23), 0437, sent by function key f23 
kf24 key_f24 FE KEY _F(24), 0440, sent by function key f24 

kf25 key_f25 FF KEY_F(25), 0441, sent by function key f25 
kf26 key_f26 FG KEY _F(26), 0442, sent by function key f26 

kf27 key_f27 FH KEY_F(27), 0443, sent by function key f27 

kf28 key_f28 FI KEY _F(28), 0444, sent by function key f28 

kf29 key_f29 FJ KEY _F(29), 0445, sent by function key f29 

kf3 key_f3 k3 KEY_F(S), 0413, sent by function key f3 

kf30 key_f30 FK KEY_F(S), 0446, sent by function key f30 

kf31 key_f31 FL KEY _F(S), 0447, sent by function key f31 

kf32 key_f32 FM KEY_F(S), 0450, sent by function key f32 

kf33 key_f33 FN KEY _F(ADM), 0451, sent by function key f33 

kf34 key_f34 FO KEY_F(S), 0452, sent by function key f34 

kf35 key_f35 FP KEY_F(S), 0453, sent by function key f35 

kf36 key_f36 FQ KEY _F(S), 0454, sent by function key f36 

kf37 key_l37 FR KEY_F(S), 0455, sent by function key f37 

kf38 key_f38 FS KEY _F(S), 0456, sent by function key f38 

kf39 key_f39 Ff KEY_F(S), 0457, sent by function key f39 

kf4 key_l4 k4 KEY _F(F), 0414, sent by function key f4 

kf40 key_f40 FU KEY _F(40), 0460, sent by function key f40 

kf41 key_f41 FV KEY_F(41), 0461, sent by function key 141 

kl42 key_f42 FW KEY_F(42), 0462, sent by function key 142 

kf43 key_f43 FX KEY_F(43), 0463, sent by function key 143 

kf44 key_f44 FY KEY_F(44), 0464, sent by function key f44 

kf45 key_f45 FZ KEY_F(45), 0465, sent by function key f45 

kf46 key_l46 Fa KEY_F(46), 0466, sent by function key f46 
kf47 key_f47 Fb KEY _F( 47), 0467, sent by function key f47 
kf48 key_f48 Fe KEY_F(48), 0470, sent by function key 148 

kfS key_f5 k5 KEY_F(M), 0415, sent by function key f5 
kf50 key_l50 Fe KEY _F(SO), 0472, sent by function key fSO 

(Continued on next page) 

824 1 February 1993 



terminfo(M) 

(Continued) 

Cap· Variable Termcap Description 
name code 

kf51 key_f51 Ff KEY_F(51), 0473, sent by function key 151 

kf52 key_f52 Fg KEY _F(52), 0474, sent by function key f52 

kf53 key_f53 Fh KEY _F(53), 0475, sent by function key f53 

kf54 key_f54 Fi KEY _F(54), 0476, sent by function key f54 

kf55 key_f55 Fj KEY_F(55), 0477, sent by function key f55 

kf56 key_f56 Fk KEY _F(56), 0500, sent by function key f56 

kf57 key_f57 Fl KEY _F(57), 0501, sent by function key f57 

kf58 key_f58 Fm KEY_F(58), 0502, sent by function key 158 

kf59 key_f59 Fn KEY_F(59), 0503, sent by function key f59 

kf6 key_f6 k6 KEY_F(6),0416, sent by function key 16 

kf60 key_f60 Fo KEY_F(60), 0504, sent by function key 160 

kf61 key_f61 Fp KEY_F(61), 0505, sent by function key f61 

kf62 key_f62 Fq KEY _F(62), 0506, sent by function key f62 

kf63 key_f63 Fr KEY_F(63), 0507, sent by function key f63 

kf7 key_f7 k7 KEY _F(7), 0417, sent by function key f7 

Kf8 key_f8 k8 KEY_F(8), 0420, sent by function key f8 

kf9 key_f9 k9 KEY _F(9), 0421, sent by function key f9 

kfnd key_find @O KEY _FIND, 0552, sent by find key 

khlp key_help %1 KEY _HELP, 0553, sent by help key 
khome key_home kh KEY_HOME, 0406, sent by home key 

khts key_stab kT KEY _STAB, 0524, sent by set-tab key 

kichl key_ic kl KEY _IC, 0513, sent by ins-char /enter ins-mode key 
kill key_il kA KEY _IL, 0511, sent by insert-line key 
kind key_sf kF KEY_SF, 0520, sent by scroll-forward/down key 
kll key_ll kH KEY _LL, 0533, sent by home-down key 
kmov key_move %4 KEY _MOVE, 0556, sent by move key 
kmrk key_mark %2 KEY _MARK, 0554, sent by mark key 
kmsg key _message %3 KEY _MESSAGE, 0555, sent by message key 
knp key_npage kN KEY _NPAGE, 0522, sent by next-page key 
knxt key_next %5 KEY_NEXT, 0557, sent by next-object key 
kopn key_open %6 KEY _OPEN, 0560, sent by open key 
kopt key _options %7 KEY_OPTIONS, 0561, sent by options key 
kpp key_ppage kP KEY _PPAGE, 0523, sent by previous-page key 
kprt key_print %9 KEY_PRINT, 0532, sent by print or copy key 
kprv key _previous %8 KEY _pREVIOUS, 0562, sent by previous-object key 
krdo key_redo %0 KEY _REDO, 0563, sent by redo key 
kref key _reference &l KEY _REFERENCE, 0564, sent by ref(erence) key 
kres key_resume &5 KEY _RESUME, 0570, sent by resume key 
krfr key _refresh &2 KEY _REFRESH, 0565, sent by refresh key 
kri key_sr kR KEY _SR, 0521, sent by scroll-backward/up key 
krmir key_eic kM KEY _EiC, 0514, sent by rmir or smir in insert mode 
krpl key_replace &3 KEY _REPLACE, 0566, sent by replace key 
krst key _restart &4 KEY _RESTART, 0567, sent by restart key 

(Continued on next page) 

1 February 1993 825 



terminfo(MJ 

(Continued) 

Cap· Variable Termcap Description 
name code 
ksav key_save &:6 KEY _SAVE, 0571, sent by save key 
kslt key_select •6 KEY _SELECT, 0601, sent by select key 
kspd key _suspend &:7 KEY _SUSPEND, 0627, sent by suspend key 
ktbc key_catab ka KEY _CATAB, 0526, sent by clear-all-tabs key 
kund key_undo &:8 KEY _UNDO, 0630, sent by undo key 
Ito lab_fO 10 Labels on function key fO if not fO 
lf1 lab_fl 11 Labels on function key fl if not fl 
lflO lab_flO la Labels on function key no if not no 
lf2 lab_f2 12 Labels on function key f2 if not f2 
lf3 lab_f3 13 Labels on function key f3 if not f3 
lf4 lab_f4 14 Labels on function key f4 if not f4 
lfS lab_fS 15 Labels on function key fS if not fS 
lf6 lab_f6 16 Labels on function key f6 if not f6 
lf7 lab_f7 17 Labels on function key f7 if not f7 
lf8 lab_f8 18 Labels on function key f8 if not f8 
119 lab_f9 19 Labels on function key f9 if not f9 
II cursor_to_ll II Last line, first column (if no cup) 
!pi change_line_pitch ZB Change number of lines per inch•• 
ma max_attributes ma Maximum combined video attributes 

terminal can display 

mcO print_ screen ps Print contents of the screen 
mc4 prtr_off pf Turn off the printer 
mes prtr_on po Turn on the printer 
mcSp prtr_non pO Turn on the printer for #1 bytes 
mcub parm_left_micro Zg Like parm_left_cursor for micro adjust.•• 
mcubl micro_left Za Like cursor _left for micro adjustment 
mcud parm_down_micro Zf Like parm_down_cursor for micro adjust. (G•) 
mcudl micro_down zz Like cursor_down for micro adjustment 
mcuf parm_right_micro Zh Like parm_right_cursor for micro adjust.•• 
mcufl micro_right Zb Like cursor_right for micro adjustment 
mcuu parm_up_micro Zi Like parm_up_cursor for micro adjust.** 
mcuul micro_up Zd Like cursor_up for micro adjustment 
mgc clear_margins MC Clear all margins (top, bottom, and sides) 
mhpa micro_column_address zy Like column_address for micro adjustment** 
mrcup cursor_mem_address CM Memory relative cursor addressing (G) 
mvpa micro_row _address Zc Like row _address for micro adjustment•• 
ndscr non_dest_scroll_region ND Scrolling region is non-destructive 
nel newline nw Newline (behaves like er followed by If) 
oc orig_colors oc Set all color( ·pair)s to the original ones 
op orig_pair op Set default color-pair to the original one 
pad pad_char pc Pad character (rather than null) 
pause fixed_pause PA Pause for 2·3 seconds 

(Continued on next page) 

826 1February1993 



terrninfo(MJ 

(Continued) 

Cap- Variable Termcap Description 
name code 

pfkey pkey_key pk Prog funct key #I to type string #2 

pfloc pkey_local pl Prog funct key #I to execute string #2 

pfx pkey_xmit px Prog funct key #I to xmit string #2 

pin plab_norm pn Prog label #I to show string #2 

porder order_of_pins 'Ze Matches software bits to print-head pins 

prot enter_protected_mode mp Turn on protected mode 

pulse pulse PU Select pulse dialing 

qdial quick_dial QD Dial phone number #I, without progress detection 

rbim stop_bit_image Zs End printing bit image graphics 

re restore_ cursor re Restore cursor to position of last sc 

rcsd stop_char_set_def Zt End definition of a character set 

rep repeat_ char rp Repeat char #1 #2 times (G•) 

rev enter_reverse_mode mr Turn on reverse video mode 

rf reset_file rf Name of file containing reset string 
rfi req_for_input RF Send next input char (for ptys) 

ri scroll_reverse sr Scroll text down 
rin parm_rindex SR Scroll backward #1 lines. (G) 

ritm exit_italics_mode ZR Disable italics 
rim exit_leftward_mode ZS Enable rightward (normal) carriage motion 
rmacs exit_alt_charset_mode ae End alternate character set 
rmam exit_am_mode RA Turn off automatic margins 
rm elk remove_clock RC Remove time-of-day clock 
rm cup exit_ca_mode te String to end programs that use cup 
rmdc exit_delete_mode ed End delete mode 
rmicm exit_micro_mode ZT Disable micro motion capabilities 
nnir exit_insert_mode ei End insert mode 
rmkx keypad_local ke Out of "keypad-transmit" mode 
rmln label_ off LF Turn off soft labels 
rmm meta_ off mo Turn off "meta mode'' 
rmp char _padding rP Like ip but when in replace mode 
rm so exit_standout_mode se End standout mode 
rmul exit_underline_mode ue End underscore mode 
rmxon exit_xon_mode RX Turn off xon/xoff handshaking 
rsl reset_lstring rl Reset terminal completely to sane modes 
rs2 reset_2string r2 Reset terminal completely to sane modes 
rs3 reset_3string r3 Reset terminal completely to sane modes 
rshm exit_shadow _mode zu Disable shadow printing 
rsubm exit_subscript_mode zv Disable subscript printing 
rsupm exit_superscript_mode zw Disable superscript printing 
rum exit_upward_mode zx Enable downward (normal) carriage motion 
rwidm exit_doublewide_mode ZQ Disable double wide printing 
sbim start_bit_image Zq Start printing bit image graphics** 
SC save_cursor SC Save cursor position 

(Continued on next page) 

1 February 1993 827 



terminfo(M) 

(Continued) 

Cap- Variable Termcap Description 
name code 
sclk set_clock SC Set time-of-day clock 
scp set_color_pair Sp Set current color-pair 
scs select_char_set Zj Select character set•• 
scsd start_char_set_def Zr Start definition of a character set•• 
sdrfq enter_draft_quality ZG Set draft quality print 
setb set_background Sb Set current background color 
setf set_foreground Sf Set current foreground color 
sgr set_attributes sa Define the video attributes #1-#9 (G) 
sgrO exit_attribute_mode me Tum off all attributes 
sitm enter_italics_mod.e ZH Enable italics 
slm enter_leftward_mode ZI Enable leftward carriage motion 
smacs enter_alt_charset_mode as Start alternate character set 
smam enter_am_mode SA Tum on automatic margins 
smcup enter _ca_mode ti String to begin programs that use cup 
smdc enter_delete_mode dm Delete mode (enter) 
smgb set_bottom_margin Zk Set bottom margin at current line 
smgbp set_bottom_margin_parm ZI Set bottom margin at line #1 •• 
smgl set_left_margin ML Set left margin at current line 
smglp set_left_margin_parm Zm Set left margin at column #1 •• 
smgr set_right_margin MR Set right margin at current column 
smgrp set_right_margin_parm Zn Set right margin at column #1 •• 
smgt set_top _margin Zo Set top margin at current line 
smgtp set_top_margin_parm Zp Set top margin at line #1 •• 
smicm enter_micro_mode ZJ Enable micro motion capabilities 
smir enter_insert_mode im Insert mode (enter) 
smkx keypad_xmit ks Put terminal in "keypad-transmit" mode 
smln label_ on w Tum on soft labels 
smm meta_ on mm Tum on "meta mode" (8th bit) 

smso enter_standout_mode so Begin standout mode 
smxon enter_xon_mode sx Tum on xon/xoff handshaking 
snlq enter_near_letter_quality ZK Set near-letter quality print 
snrmq enter_norrnal_quality ZL Set normal quality print 
sshm enter_shadow _mode ZM Enable shadow printing 
ssubm enter_subscript_mode ZN Enable subscript printing 
ssupm enter_superscript_mode w Enable superscript printing 
subcs subscript_ characters Zu List of "subscript-able" characters 
sum enter_upward_mode ZP Enable upward carriage motion 
supcs superscript_characters Zv List of "superscript-able" characters 
swidm enter_doublewide_mode ZF Enable double wide printing 
tbc clear_all_tabs ct Clear all tab stops 
tone tone TO Select touch tone dialing 
ts! to_status_line ts Go to status line, col #1 (G) 
uO userO uO User string 0 

(Continued on next page) 

828 1February1993 



terminfo(M) 

(Continued) 

Cap· 
name 
ul 
u2 
u3 
u4 
us 
u6 
u7 
u8 
u9 
UC 

up 
vpa 
wait 
wind 
wingo 
wnum 
xoffc 
xonc 
zero 

Variable Termcap Description 
code 

userl ul User string 1 
user2 u2 User string 2 
user3 u3 User string 3 
user4 u4 User string 4 
users u5 User string S 
user6 u6 User string 6 
user7 u7 User string 7 
users u8 User string 8 
user9 u9 User string 9 
underline_char UC Underscore one char and move past it 
cursor_ up cuul Upline (cursor up) 
row _address CV Vertical position absolute (G) 
wait_tone WA Wait for dial tone 
set_ window wi Current window is lines #1·#2 cols #3-114 (G) 
goto_ window WG Got to window #1 
maximum_ windows MW Maximum number of definable windows 
xoff_character XF X-off character 
xon_character XN X·on character 
zero_motion Zx No motion for the subsequent character 

Sample entry 
The following entry for the AT&T 610 terminal is among the more complex 
entries in the terminfo file. 

610 I 610bct I ATT610 I att610 I AT&T 610; 80 column; 98key keyboard 
am, eslok, hs, mir, msgr, xenl, xon, 
cols#80, it#8, lh#2, lines#24, lw#8, nlab#S, wsl#SO; 
acsc=''aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz(( I I 11··, 
bel="G, blink=\E(5m, bold=\E[lm, cbt=\E[Z, 
civis=\E[?251, clear=\E[H\E[J, cnorm=\E[?25h\E[?121, 
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%pl%dD, cubl=\b, 
cud=\E[%p1%dB, cudl=\E[B, cuf=\E[%p1%dC, cufl=\E[C, 
cup=\E[%i%p1%d;%p2%dH, CUU=\E[%p1%dA, cuul=\E[A, 
cvvis=\E[?12;25h, dch=\E[%p1%dP, dchl=\E[P, dim=\E[2m, 
dl=\E[%p1%dM, dll=\E[M, ed=\E(J, el=\E[K, ell=\E[lK, 
flash=\E[?5h$<200>\E[?51. fsl=\E8, home=\E[H, ht=\t, 
ich=\E[%p1%d@, il=\E[%p1%dL, ill=\E[L, ind=\ED, 
invis=\E[Sm, 
isl=\E[8;0 I \E[?3;4;5;13;151\E[13;201\E[?7h\E[l2h\E(B\E)0, 
is2=\E[Om"O, is3=\E(B\E)0, kLFT=\E[\s@, kRIT=\E[\sA, 
kbs=\b, kcbt=\E[Z, kclr=\E[2J, kcubl=\E[D, kcudl=\E[B, 
kcufl=\E[C, kcuul=\E[A, kfl=\EOc, kflO=\ENp, 
kfll=\ENq, kfl2=\ENr, kf13=\ENs, kf14=\ENt, kf2=\E0d, 
kf3=\E0e, kf4=\EOf, kf5=\E0g, kf6=\E0h, kf7=\EOi, 
kf8=\E0j, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T, 
ll=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE, 
pfx=\E[%p1%d;%p2%1%02dq\s\s\sF%pl%ld\s\s\s\s\s 

\ s \ s Is\ s \s \ s%p2%s, 

1February1993 829 



tenninfo(MJ 

830 

p\r.;\E[%pl%d;O;O;Oq%p2%:-16.16s, rc;\EB, rev;\E[7m, 
fl;\EM, rmacs;"Q, rmir;\£[41, rm:n;\E[2p, rmso;\E[m, 
rmu);IE(m, rs2;\Ec\E[?ll, SC;\E7, 

sgr; IE I 0%?%p6%c; 1%; %?%p5%t; 2%; % ?%p2%t; 4%; % ?%p4%t; 5%; 
%?%p3%pl% I %t;7%;%?%p7%t;8%;m%?%p9%t"N%e"O%;, 

sgrQ;\Eim"O, smacs;"N, smir;\E[4h, sm\n;\E[p, 
smso;\E [7m, smul;\E I 4m, tsl;\E7\E [25; %i%pl%dx, 

Types of capabilities in the sample entry 
The sample entry shows the formats for the three types of terminfo capabilities 
listed: Boolean, Numeric, and String. The names of Boolean capabilities are 
often listed as abbreviations or acronyms, such as am (short for "automatic 
margins") in the sample entry. ("Automatic margins" is a short description of 
an automatic return and linefeed when the end of a line is reached.) 

Numeric capabilities are followed by the character "#" and then the value. 
Thus, in the sample, cols (which shows the number of columns available on a 
terminal) gives the value 80 for the AT&T 610. (Values for numeric capabilities 
may be specified in decimal, octal or hexadecimal, using normal C conven­
tions.) 

Finally, string-valued capabilities such as el (clear to end-of-line sequence) are 
listed by a two- to five-character capname, an "= ", and a string ended by the 
next occurrence of a comma. A delay in milliseconds may appear anywhere 
in such a capability, enclosed in$< .. > brackets, as in el=\EK$<3>. Padding 
characters are supplied by tputs( ). The delay can be any of the following: a 
number (5), a number followed by a "*" (5*), a number followed by a "I" 
(5/), or a number followed by both (5* /). A "*" shows that the padding 
required is proportional to the number of lines affected by the operation, and 
the amount given is the per-affected-unit padding required. (In the case of 
insert characters, the factor is still the number of lines affected. This is always 
1 unless the terminal has in and the software uses it.) When a "* " is speci­
fied, it is sometimes useful to give a delay of the form 3.5 to specify a delay 
per unit to tenths of milliseconds. (Only one decimal place is allowed.) 

A u I" indicates that the padding is mandatory. Absence of a "I" is not 
shown, if the terminal has xon defined. Padding information is advisory and 
will be used only for cost estimates or when the terminal is in raw mode. 
Mandatory padding will be transmitted regardless of the setting of xon. 

A number of escape sequences are provided in the string valued capabilities 
for easy encoding of characters there. Both \E and \e map to an ESCAPE char­
acter, Ax maps to a control-x for any appropriate x, and the sequences \n, \1, 
\r, \t, \b, \f, and \s give a newline, linefeed, return, tab, backspace, formfeed, 
and space, respectively. Other escapes include: \A for caret (A); \ \ for 
backslash ( \ ); \, for comma (, ); \: for colon (: ); and \0 for null. (\0 will 
actually produce \200, which does not terminate a string but behaves as a null 
character on most terminals.) Finally, characters may be given as three octal 
digits after a backslash (for example, \ 123). 

1 February 1993 



terrninfo(M) 

Sometimes individual capabilities must be commented out. To do this, put a 
period before the capability name. For example, see the second ind in the 
example above. Note that capabilities are defined in a left-to-right order and, 
therefore, a prior definition will override a later definition. 

Preparing descri.pti.ons 
The most effective way to prepare a terminal description is by imitating the 
description of a similar terminal in terminfo and building up a description gra­
dually, using partial descriptions with vi(C) to check that they are correct. Be 
aware that a very unusual terminal may expose deficiencies in the ability of 
the terrninfo file to describe it or the inability of vi(C) to work with that termi­
nal. To test a new terminal description, set the environment variable TER­
MINFO to a pathname of a directory containing the compiled description you 
are working on: programs will then look there rather than in /usr/lib/terminfo. 
To get the padding for insert-line correct (if the terminal manufacturer did not 
document it) a severe test is to comment out xon, edit a large file at 9600 baud 
with vi(C), delete 16 or so lines from the middle of the screen, then hit the "u" 
key several times quickly. If the display is corrupted, more padding is usually 
needed. A similar test can be used for insert-character. 

1.1 Basic capabilities 
The number of columns on each line for the terminal is given by the cols 
numeric capability. If the terminal has a screen, then the number of lines on 
the screen is given by the lines capability. If the terminal can clear its screen, 
leaving the cursor in the home position, then this is given by the clear string 
capability. If the terminal overstrikes (rather than clearing a position when a 
character is struck over) then it should have the os capability. If the terminal 
is a printing terminal, with no soft copy unit, give it both he and os. (os 
applies to storage scope terminals, such as the Tektronix 4010 series, as well as 
hard-copy and APL terminals.) If there is a code to move the cursor to the left 
edge of the current row, give this as er. (Normally this will be carriage return, 
control M.) If there is a code to produce an audible signal (such as a bell or a 
beep), specify it as bel. If the terminal uses the xon-xoff flow-control protocol, 
like most terminals, specify xon. 

If there is a code to move the cursor one position to the left (such as back­
space), that capability should be given as cubl. Similarly, codes to move to 
the right, up, and down should be given as cufl, cuul, and cudl. These local 
cursor motions should not alter the text they pass over; for example, you 
would not normally use "cufl=\s" because the space would erase the charac­
ter moved over. 

A very important point here is that the local cursor motions encoded in ter­
rninfo are undefined at the left and top edges of a screen terminal. Programs 
should never attempt to backspace around the left edge, unless bw is given, 
and should never attempt to go up locally off the top. In order to scroll text 
up, a program will go to the bottom left comer of the screen and send the ind 
(index) string. 

1 February 1993 831 



terminfo(M) 

832 

To scroll text down, a program goes to the top left comer of the screen and 
sends the ri (reverse index) string. The strings ind and ri are undefined when 
not on their respective comers of the screen. 

Parameterized versions of the scrolling sequences are indn and rin which 
have the same semantics as ind and ri except that they take one parameter, 
and scroll that many lines. They are also undefined except at the appropriate 
edge of the screen. 

If the terminal wraps around to the beginning of the next line when it reaches 
the right margin, then it should have the am capability. The am capability 
tells whether the cursor sticks at the right edge of the screen when text is out­
put, but this does not necessarily apply to a cufl from the last column. The 
only local motion which is defined from the left edge is if bw is given: then a 
cubt from the left edge will move to the right edge of the previous row. If bw 
is not given, the effect is undefined. This is useful for drawing a box around 
the edge of the screen, for example. If the terminal has switch selectable 
automatic margins, the terminfo file usually assumes that this is on; that is, am. 
If the terminal has a command which moves to the first column of the next 
line, that command can be given as nel (newline). It does not matter if the 
command clears the remainder of the current line, so if the terminal has no er 
and If it may still be possible to craft a working nel out of one or both of them. 

These capabilities suffice to describe hardcopy and screen terminals. Thus the 
model 33 teleprinter is described as: 

he, as, xon 
cols#72, 
bel="G, er= Ir. cudl=ln, ind= In, 

while the Lear Siegler ADM-3 is described as: 
adm3 I lsi adm3, 
am, bel="G, clear="Z, cols#80, cr="M, cubl="H, 
cudl="J, ind="J, lines#24, 

1.2 Parameterized strings 
Cursor addressing and other strings requiring parameters in the terminal are 
described by a parameterized string capability, with printf(S) -like escapes 
(%x) in it. For example, to address the cursor, the cup capability is given, 
using two parameters: the row and column to address to. (Rows and 
columns are numbered from zero and refer to the physical screen visible to 
the user, not to any unseen memory.) If the terminal has memory-relative 
cursor addressing, that can be indicated by mrcup. 

The parameter mechanism uses a stack and special % codes to manii:ulate it 
in the manner of a Reverse Polish Notation (postfix) calculator. Typ~call_Y •. a 
sequence will push one of the parameters onto the stack and then prmt it m 
some format. Often more complex operations are necessary. Binary opera­
tions are in postfix form with the operands in the usual order. That 1s, to get 
x-5 one would use %gx%(5)%-. 

1 February 1993 



terminfo(M) 

The % encodings have the following meanings: 

%% outputs '%' 
%[(:Jtlags][width[.precision]][doxXs] 

as in printf, flags are[-+#] and space 
%c print pop( ) gives %c 

[ 91 h .th 
%p 1- pus 1 parm 
%P[a-z] set variable [a-z] to pop() 
%g[a-z] get variable [a-z] and push it 
%'c' push char constant c 
%{nn} push decimal constant nn 
%1 push strlen(pop( )) 

%+ %- 010* %/ %m 

%&%1 %-
%=%>%< 
%A%0 
%!%­
%i 

arithmetic (%mis mod): push(pop() op pop()) 
bit operations: push(pop() op pop()) 
logical operations: push(pop() op pop()) 
logical operations: and, or 
unary operations: push( op pop()) 
(for ANSI terminals) 
add 1 to first parm, if one parm present, 
or first two parms, if more than one parm present. 

%? expr %t thenpart %e elsepart %; 
if-then-else, %e elsepart is optional; 
else-if's are possible ala Algol 68: 
%?c1 %tb1 %ec2 %tb2 %ec3 %tb3 %ec4 %tb4 %eb5%; 

ci are conditions, bi are bodies. 

If the "-" flag is used with "%[doxXs]", then a colon (:) must be placed 
between the "0lo" and the "-" to differentiate the flag from the binary "%-" 
operator, for example, "%:-16.16s". · 

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, 
needs to be sent \E&a12c03Y padded for 6 milliseconds. Note that the order 
of the rows and columns is inverted here, and that the row and column are 
zero-padded as two digits. Thus its cup capability is 
"cup= \E&a%p2%2.2dc%pl %2.2dY$<6>•. 

The Micro-Term ACT-IV needs the current row and column sent preceded by a 
AT, with the row and column simply encoded in binary, 
"cup=AT%p1%c%p2%c". Terminals which use "%c" need to be able to back­
space the cursor (cubl), and to move the cursor up one line on the screen 
(cuul). This is necessary because it is not always safe to transmit \n, AD, and 
\r, as the system may change or discard them. (The library routines dealing 
with terminfo set tty modes so that tabs are never expanded, so \t is safe to 
send. This turns out to be essential for the Ann Arbor 4080.) 

1February1993 833 



terminfo(MJ 

834 

A final example is the LSI ADM-3a, which uses row and column offset by a 
blank character, thus "cup=\E=%p1%'\s'%+%c%p2%'\s'%+%c". After send­
ing "\E=", this pushes the first parameter, pushes the ASCII value for a space 
(5), adds them (pushing the sum on the stack in place of the two previous 
values), and outputs that value as a character. Then the same is done for the 
second parameter. More complex arithmetic is possible using the stack. 

1.3 Cursor motions 
If the terminal has a fast way to home the cursor (to very upper left comer of 
screen) then this can be given as home; similarly a fast way of getting to the 
lower left-hand comer can be given as 11; this may involve going up with cuul 
from the home position, but a program should never do this itself (unless 11 
does) because it can make no assumption about the effect of moving up from 
the home position. Note that the home position is the same as addressing to 
(0,0): to the top left comer of the screen, not of memory. (Thus, the \EH 
sequence on Hewlett-Packard terminals cannot be used for home without los­
ing some of the other features on the terminal.) 

If the terminal has row or column absolute-cursor addressing, these can be 
given as single parameter capabilities hpa (horizontal position absolute) and 
vpa (vertical position absolute). Sometimes these are shorter than the more 
general two-parameter sequence (as with the Hewlett-Packard 2645) and can 
be used in preference to cup. If there are parameterized local motions (for 
example, move n spaces to the right) these can be given as cud, cub, cuf, and 
cuu with a single parameter indicating how many spaces to move. These are 
primarily useful if the terminal does not have cup, such as the Tektronix 4025. 

1.4 Area clears 
If the terminal can clear from the current position to the end of the line, leav­
ing the cursor where it is, this should be given as el. If the terminal can clear 
from the beginning of the line to the current position inclusive, leaving the 
cursor where it is, this should be given as ell. If the terminal can clear from 
the current position to the end of the display, then this should be given as ed. 
ed is only defined from the first column of a line. (Thus, it can be simulated 
by a request to delete a large number of lines, if a true ed is not available.) 

1.5 Insert/delete line 
If the terminal can open a new blank line before the line where the cursor is, 
this should be given as ill; this is done only from the first position of a line. 
The cursor must then appear on the newly blank line. If the terminal .ca!' 
delete the line which the cursor is on, then this should be given as dll; this 1s 
done only from the first position on the line to be deleted. Version~ of ill and 
dll which take a single parameter and insert or delete that many Imes can be 
given as ii and di. 

If the terminal has a settable destructive scrolling region (like the VTlOO) the 
command to set this can be described with the csr capability, which takes tw? 
parameters: the top and bottom lines of the scrolling region. Th~ curso~ posi­
tion is, unfortunately, undefined after using this command. It 1s possible to 

1 February 1993 



terminfo( M) 

get the effect of insert or delete line using this command -- the sc and re (save 
and restore cursor) commands are also useful. Inserting lines at the top or 
bottom of the screen can also be done using ri or ind on many terminals 
without a true insert/delete line, and is often faster even on terminals with 
those features. 

To determine whether a terminal has destructive scrolling regions or non­
destructive scrolling regions, create a scrolling region in the middle of the 
screen, place data on the bottom line of the scrolling region, move the cursor 
to the top line of the scrolling region, and do a reverse index (ri) followed by a 
delete line (dll) or index (ind). If the data that was originally on the bottom 
line of the scrolling region was restored into the scrolling region by the dll or 
ind, then the terminal has non-destructive scrolling regions. Otherwise, it has 
destructive scrolling regions. Do not specify csr if the terminal has non­
destructive scrolling regions, unless ind, ri, indn, rin, di, and dll all simulate 
destructive scrolling. 

If the terminal has the ability to define a window as part of memory, which all 
commands affect, it should be given as the parameterized string wind. The 
four parameters are the starting and ending lines in memory and the starting 
and ending columns in memory, in that order. 

If the terminal can retain display memory above, then the da capability 
should be given; if display memory can be retained below, then db should be 
given. These indicate that deleting a line or scrolling a full screen may bring 
non-blank lines up from below or that scrolling back with ri may bring down 
non-blank lines. 

1.6 Insert/delete character 
There are two basic kinds of intelligent terminals with respect to insert/delete 
character operations which can be described using terminfo. The most com­
mon insert/delete character operations affect only the characters on the 
current line and shift characters off the end of the line rigidly. Other termi­
nals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction 
between typed and untyped blanks on the screen, shifting upon an insert or 
delete only to an untyped blank on the screen which is either eliminated, or 
expanded to two untyped blanks. You can determine the kind of terminal you 
have by clearing the screen and then typing text separated by cursor motions. 
Type "abc def• using local cursor motions (not spaces) between the abc and 
the def. Then position the cursor before the abc and put the terminal in insert 
mode. If typing characters causes the rest of the line to shift rigidly and char­
acters to fall off the end, then your terminal does not distinguish between 
blanks and untyped positions. If the abc shifts over to the def which then 
move together around the end of the current line and onto the next as you 
insert, you have the second type of terminal, and should give the capability 
in, which stands for "insert null". While these are two logically separate 
attributes (one line versus multiline insert mode, and special treatment of 
untyped spaces) no terminals whose insert mode cannot be described with the 
single attribute have been seen. 

1 February 1993 835 



terminfo(M) 

836 

terminfo can describe both terminals which have an insert mode and terminals 
which send a simple sequence to open a blank position on the current line. 
Give as smir the sequence to get into insert mode. Give as nnir the sequence 
to leave insert mode. Now give as ichl any sequence needed to be sent just 
before sending the character to be inserted. Most terminals with a true insert 
mode will not give ichl; terminals which send a sequence to open a screen 
position should give it here. (If your terminal has both, insert mode is usually 
preferable to ichl. Do not give both unless the terminal actually requires both 
to be used in combination.) If post-insert padding is needed, give this as a 
number of milliseconds padding in ip (a string option). Any other sequence 
which may need to be sent after an insert of a single character may also be 
given in ip. If your terminal needs both to be placed into an 'insert mode' and 
a special code to precede each inserted character, then both smir/nnir and 
ichl can be given, and both will be used. The ich capability, with one param­
eter, n, will insert n blanks. 

If padding is necessary between characters typed while not in insert mode, 
give this as a number of milliseconds padding in nnp. 

It is occasionally necessary to move around while in insert mode to delete 
characters on the same line (for example, if there is a tab after the insertion 
position). If your terminal allows motion while in insert mode you can give 
the capability mir to speed up inserting in this case. Omitting mir will affect 
only speed. Some terminals (notably Datamedia's) must not have mir 
because of the way their insert mode works. 

Finally, you can specify dchl to delete a single character, dch with one param­
eter, n, to delete n characters, and delete mode by giving smdc and nndc to 
enter and exit delete mode (any mode the terminal needs to be placed in for 
dchl to work). 

A command to erase n characters (equivalent to outputting n blanks without 
moving the cursor) can be given as ech with one parameter. 

1.7 Highlighting, underlining, and visible bells 
Your terminal may have one or more kinds of display attributes that allow 
you to highlight selected characters when they appear on the screen. The fol­
lowing display modes (shown with the names by which they are set) may .be 
available: a blinking screen (blink), bold or extra-bright characters (bold), dim 
or half-bright characters (dim), blanking or invisible text (invis), protected text 
(prot), a reverse-video screen (rev), and an alternate character set (smacs to 
enter this mode and nnacs to exit it). (If a command is necessary before you 
can enter alternate character set mode, give the sequence in enacs or nenable 
alternate-character-set" mode.) Turning on any of these modes singly may or 
may not tum off other modes. 

If you set any display attributes for highlighting, you will also want to pro­
vide the capability for turning them off. To do so, set sgrO. 

1 February 1993 



terminfo(M) 

You should choose one display method as standout mode (see curses(S)) and 
use it to highlight error messages and other kinds of text to which you want to 
draw attention. Choose a form of display that provides strong contrast but 
that is easy on the eyes. (We recommend reverse-video plus half-bright or 
reverse-video alone.) The sequences to enter and exit standout mode are 
given as smso and rmso, respectively. If the code to change into or out of 
standout mode leaves one or even two blank spaces on the screen, as the TVI 
912 and Teleray 1061 do, then xmc should be given to tell how many spaces 
are left. 

Codes to begin underlining and end underlining can be given as smul and 
rmul, respectively. If the terminal has a code to underline the current charac­
ter and move the cursor one space to the right, such as the Micro-Term MIME, 
this can be given as uc. 

For historical reasons, some programs interpret rmso, rmul to mean "tum off 
all attributes", not just standout and underline, respectively. 

If there is a sequence to set arbitrary combinations of modes, this should be 
given as sgr (set attributes), taking nine parameters. Each parameter is either 
0 or non-zero, as the corresponding attribute is on or off. The nine parameters 
are, in order: standout, underline, reverse, blink, dim, bold, blank, protect, 
alternate character set. Not all modes need to be supported by sgr; only those 
for which corresponding separate attribute commands exist should be sup­
ported. (See the example at the end of this section.) 

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" 
when they receive mode-setting sequences, which affect the display algorithm 
rather than having extra bits for each character. Some terminals, such as the 
Hewlett-Packard 2621, automatically leave standout mode when they move 
to a new line or the cursor is addressed. Programs using standout mode 
should exit standout mode before moving the cursor or sending a newline, 
unless the msgr capability, asserting that it is safe to move in standout mode, 
is present. 

If the terminal has a way of flashing the screen to indicate an error quietly (a 
bell replacement), then this can be given as flash; it must not move the cursor. 
A good flash can be done by changing the screen into reverse video, pad for 
200 ms, then return the screen to normal video. 

If the cursor needs to be made more visible than normal when it is not on the 
bottom line (for example, to make a non-blinking underline into an easier-to­
find block or blinking underline) give this sequence as cvvis. The boolean 
chts should also be given. If there is a way to make the cursor completely 
invisible, give that as civis. The capability cnorm should be given which 
undoes the effects of either of these modes. 

l February 1993 837 



terminfo(M) 

838 

If the terminal needs to be in a special mode when running a program that 
uses these capabilities, the codes to enter and exit this mode can be given as 
smcup and rmcup. This arises, for example, from terminals, such as the Con­
cept, with more than one page of memory. If the terminal has only memory 
relative cursor addressing and not screen relative cursor addressing, a one 
screen-sized window must be fixed into the terminal for cursor addressing to 
work properly. This is also used for the Tektronix 4025, where smcup sets the 
command character to be the one used by term info. If the smcup sequence will 
not restore the screen after a nncup sequence is output (to the state prior to 
outputting nncup), specify nmnc. 

If your terminal generates underlined characters by using the underline char­
acter (with no special codes needed) even though it does not otherwise over­
strike characters, then you should give the capability ul. For terminals where 
a character overstriking another leaves both characters on the screen, give the 
capability os. If overstrikes are erasable with a blank, then this should be indi­
cated by giving eo. 

Example of highlighting: assume that the terminal under question needs the 
following escape sequences to turn on various modes. 

Tparm Attribute Escape sequence 
parameter 

none \E[Om 
pl standout \E[0;4;7m 
p2 underline \E[0;3m 
p3 reverse \E[0;4m 
p4 blink \E[O;Sm 
pS dim \E[0;7m 
p6 bold \E[0;3;4m 
p7 in vis \E[O;Sm 

protect not available 
p9 altcharset AO (off) AN(on) 

Note that each escape sequence requires a 0 to turn off other modes before 
turning on its own mode. Also note that, as suggested above, standout is set 
up to be the combination of reverse and dim. Also, because this termi~al has 
no bold mode, bold is set up as the combination of reverse and 1111derlme. In 
addition, to allow combinations, such as underline+blink, the sequence to use 
would be \E[0;3;5m. The terminal does not have protect mode, either, but that 
cannot be simulated in any way, so is ignored. The a/tcharset mode is dif­
ferent in that it is either AO or AN, depending on whether it is off or on. If all 
modes were to be turned on, the sequence would be \E[0;3;4;5;7;8mAN. 

1 Febniary 1993 



terminfo(M) 

Now look at when different sequences are output. For example, ;3 is output 
when either p2 or p6 is true; that is, if either underline or bold modes are turned 
on. Writing out the above sequences, along with their dependencies, gives the 
following: 

Sequence 

\E[O 
;3 
;4 
;5 
;7 
;8 
m 
~Nor Ao 

When to output 

always 
ifp2 orp6 
ifplorp3orp6 
ifp4 
if pl orpS 
if p7 
always 
if p9 AN, else AO 

Terminfo translation 

\E(O 
%?%p2%p6% I %t;3%; 
%?%p1%p3% I %p6% I %t;4%; 
%?%p4%t;5%; 
%?%p1%p5% I %t;7%; 
%?%p7%t;8%; 
m 
%?%p9%tAN°loeA0%; 

Putting this all together into the sgr sequence gives: 

sgr=\E[O%?%p2%p6% I %t;3%;%?%pl %p3% I %p6% I %t;4%;%?%p5%t;5%; 
%?%p1%p5% I %t;7%;%?%p7%t;8%;m%?%p9%t AN%eAO%;, 

1.8 Keypad 
If the terminal has a keypad that transmits codes when the keys are pressed, 
this information can be given. Note that it is not possible to handle terminals 
where the keypad only works in local (this applies, for example, to the 
unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit or 
not transmit, give these codes as smkx and rmkx. Otherwise the keypad is 
assumed to transmit. 

The codes sent by the left arrow, right arrow, up arrow, down arrow, and 
home keys can be given as kcubl, kcufl, kcuul, kcudl, and khome respec­
tively. If there are function keys such as fO, fl, ... , f63, the codes they send can 
be given as kfO, kfl, ... , kf63. If the first 11 keys have labels other than the 
default fO through flO, the labels can be given as lfO, 1£1, ... , 1£10. The codes 
transmitted by certain other special keys can be given: kll (home down), kbs 
(backspace), ktbc (clear all tabs), kctab (clear the tab stop in this column), kclr 
(clear screen or erase key), kdchl (delete character), kdll (delete line), krmir 
(exit insert mode), kel (clear to end of line), ked (clear to end of screen), kichl 
(insert character or enter insert mode), kill (insert line), knp (next page), kpp 
(previous page), kind (scroll forward/down), kri (scroll backward/up), khts 
(set a tab stop in this column). In addition, if the keypad has a 3 by 3 array of 
keys including the four arrow keys, the other five keys can be given as kal, 
ka3, kb2, kcl, and kc3. These keys are useful when the effects of a 3 by 3 
directional pad are needed. Further keys are defined above in the capabilities 
list. 

1 February 1993 839 



termi11fv(M) 

840 

Strings to program function keys can be given as pfkey, pfloc, and pfx. A 
string to program their soft-screen labels can be given as pin. Each of these 
strings takes two parameters: the function key number to program (from O to 
10) and the string to program it with. Function key numbers out of this range 
may program undefined keys in a terminal-dependent manner. The differ­
ence between the capabilities is that pfkey causes pressing the given key to 
give the same result as the user typing the given string; pfloc causes the string 
to be executed by the terminal in local mode; and pfx causes the string to be 
transmitted to the computer. The capabilities nlab, lw, and lh define how 
many soft labels there are and their width and height. If there are commands 
to tum the labels on and off, give them in smln and rmln. smln is normally 
output after one or more pin sequences to make sure that the change becomes 
visible. 

1.9 Tabs and initialization 
If the terminal has hardware tabs, the command to advance to the next tab 
stop can be given as ht (usually control I). A "backtab" command which 
moves left to the next tab stop can be given as cbt. By convention, if the tele­
type modes indicate that tabs are being expanded by the computer rather than 
being sent to the terminal, programs should not use ht or cbt even if they are 
present, since the user may not have the tab stops properly set. If the terminal 
has hardware tabs which are initially set every n spaces when the terminal is 
powered up, the numeric parameter it is given, showing the number of spaces 
the tabs are set to. This is normally used by tput init (see tput(C)) to deter­
mine whether to set the mode for hardware tab expansion and whether to set 
the tab stops. If the terminal has tab stops that can be saved in nonvolatile 
memory, the terminfo description can assume that they are properly set. If 
there are commands to set and clear tab stops, they can be given as tbc (clear 
all tab stops) and hts (set a tab stop in the current column of every row). 

Other capabilities include: isl, is2, and is3, initialization strings for the termi­
nal; iprog, the path name of a program to be run to initialize the terminal; and 
if, the name of a file containing long initialization strings. These strings are 
expected to set the terminal into modes consistent with the rest of the terminfv 
description. They must be sent to the terminal each time the user logs in and 
be output in the following order: run the program iprog; output isl; output 
is2; set the margins using mgc, smgl, and smgr; set the tabs using tbc and hts; 
print the file if; and finally output is3. This is usually done using the init 
option of tput(C); see profile(M). 

Most initialization is done with is2. Special terminal modes can be set up 
without duplicating strings by putting the common sequences in is2 and spe­
cial cases in isl and is3. Sequences that do a harder reset fro!Il a. tot~lly 
unknown state can be given as rsl, rs2, rf, and rs3, analogous to isl, 1s2, 1s3, 
and if. (The method using files, if and rf, is used for a few terminals, from 
/usr/lib/tabset/*; however, the recommended method is to use the initialization 
and reset strings.) These strings are output by tput reset, which is used .when 
the terminal gets into a wedged state. Commands are normally placed m rsl, 
rs2, rs3, and rf only if they produce annoying effects on the screen and are not 
necessary when logging in. 

1 February 1993 



terminfo(M) 

For example, the command to set a terminal into 80-column mode would nor­
mally be part of is2, but on some terminals it causes an annoying glitch on the 
screen and is not normally needed since the terminal is usually already in 80-
column mode. 

If a more complex sequence is needed to set the tabs than can be described by 
using tbc and hts, the sequence can be placed in is2 or if. 

Any margin can be cleared with mgc. (For instructions on how to specify 
commands to set and clear margins, see "Margins" below under "Printer capa­
bilities.") 

1.10 Delays 
Certain capabilities control padding in the tty(7) driver. These are primarily 
needed by hard-copy terminals, and are used by tput init to set tty modes 
appropriately. Delays embedded in the capabilities er, ind, cubl, ff, and tab 
can be used to set the appropriate delay bits to be set in the tty driver. If pb 
(padding baud rate) is given, these values can be ignored at baud rates below 
the value of pb. 

1.11 Status lines 
If the terminal has an extra "status line" that is not normally used by software, 
this fact can be indicated. If the status line is viewed as an extra line below 
the.bottom line, into which one can cursor address normally (such as the 
Heathkit hl9's 25th line, or the 24th line of a VTlOO which is set to a 23-line 
scrolling region), the capability hs should be given. Special strings that go to 
a given column of the status line and return from the status line can be given 
as ts! and fsl. (fsl must leave the cursor position in the same place it was 
before tsl. If necessary, the sc and re strings can be included in tsl and fsl to 
get this effect.) The capability tsl takes one parameter, which is the column 
number of the status line the cursor is to be moved to. 

If escape sequences and other special commands, such as tab, work while in 
the status line, the flag eslok can be given. A string which turns off the status 
line (or otherwise erases its contents) should be given as dsl. If the terminal 
has commands to save and restore the position of the cursor, give them as sc 
and re. The status line is normally assumed to be the same width as the rest 
of the screen, for example, cols. If the status line is a different width (possibly 
because the terminal does not allow an entire line to be loaded) the width, in 
columns, can be indicated with the numeric parameter wsl. 

1.12 Line graphics 
If the terminal has a line drawing alternate character set, the mapping of 
glyph to character would be given in acsc. The definition of this string is 
based on the alternate character set used in the DEC VTlOO terminal, extended 
slightly with some characters from the AT&T 4410vl terminal. 

1 February 1993 841 



terminfo<MJ 

842 

Glyph name vt100+ 
character 

arrow pointing right + 
arrow pointing left 
arrow pointing down 
solid square block 0 
lantern symbol I 
arrow pointing up 
diamond 
checker board (stipple) a 
degree symbol f 
plus/minus g 
board of squares h 
lower right comer j 
upper right comer k 
upper left comer 1 
lower left comer m 
plus n 
scan line 1 0 

horizontal line q 
scan line 9 s 

left tee(~) 
right tee ( -D u 
bottom tee Cl) v 
top tee <T> w 
vertical line x 
bullet 

The best way to describe a new terminal's line graphics set is to add a third 
column to the above table with the characters for the new terminal that pro­
duce the appropriate glyph when the terminal is in the alternate character set 
mode. For example, 

Glyph name vt100+ new tty 
character character 

upper left comer R 
lower left comer m F 
upper right comer k T 
lower right comer i G 
horizontal line q 
vertical line x 

Now write down the characters left to right, as in uacsc=lRrnFkTjGq\,x.". 

In addition, terminfo allows you to define multiple character sets. See "2.5 
Alternate character sets" for details. 

1February1993 



terminfo(M) 

1.13 Color manipulation 
There are two methods of color manipulation: the HP method and the Tek­
tronix method. Most existing color terminals belong to one of these two 
classes. 

The Tektronix method uses a set of N predefined colors (usually 8) from 
which a user can select "current" foreground and background colors. Thus 
the terminal can support up to N colors mixed into N*N color-pairs to be dis­
played on the screen at the same time. 

The HP method restricts the user from defining the foreground independently 
of the background, or vice-versa. Instead, the user must define an entire 
color-pair at once. Up to M color-pairs, made from 2*M different colors, can 
be defined this way. 

The numeric variables colors and pairs define the number of colors and 
color-pairs that can be displayed on the screen at the same time. If a terminal 
can change the definition of a color (for example, the Tektronix 4100 and 4200 
series terminals can do this), this should be specified with ccc (can change 
color). To change the definition of a color (Tektronix method), use initc (ini­
tialize color). It requires four arguments: color number (ranging from 0 to 
colors-1) and three RGB (red, green, and blue) values (ranging from 0 to 1,000). 

Tektronix 4100 series terminals use a type of color notation called HLS (Hue 
Lightness Saturation) instead of RGB color notation. For such terminals one 
must define a boolean variable his. The last three arguments to the initc 
string would then be HLS values: H, ranging from 0 to 360; and L and S, rang­
ing from 0 to 100. 

If a terminal can change the definitions of colors, but uses a color notation dif­
ferent from RGB and HLS, a mapping to either RGB or HLS must be developed. 

To set current foreground or background to a given color, use setf (set fore­
ground) and setb (set background). They require one parameter: the number 
of the color. To initialize a color-pair (HP method), use initp (initialize pair). 
It requires seven parameters: the number of a color-pair (range= 0 to pairs-1), 
and six RGB values: three for the foreground followed by three for the back­
ground. (Each of these groups of three should be in the order RGB.) When 
initc or initp are used, RGB or HLS arguments should be in the order "red, 
green, blue" or "hue, lightness, saturation"), respectively. To make a color­
pair current, use scp (set color-pair). It takes one parameter, the number of a 
color-pair. 

Some terminals (for example, most color terminal emulators for PCs) erase 
areas of the screen with current background color. In such cases, bee (back­
ground color erase) should be defined. The variable op (original pair) con­
tains a sequence for setting the foreground and the background colors to what 
they were at the terminal start-up time. Similarly, oc (original colors) contains 
a control sequence for setting all colors (for the Tektronix method) or color­
pairs (for the HP method) to the values they had at the terminal start-up time. 

1February1993 843 



terminfo(M) 

844 

Some color terminals substitute color for video attributes. Such video 
attributes should not be combined with colors. Information about these video 
attributes should be packed into the ncv (no color video) variable. There is a 
one-to-one correspondence between the nine least significant bits of that vari­
able and the video attributes. The following table depicts this corre­
spondence. 

Attribute 

A_STANOOUT 
A_ UNDERLINE 
A_REVERSE 
A_BLINK 
A_DIM 
A_ BOLD 
A_INVIS 
A_PROTECT 
A_ALTCHARSET 

NCV Bit 
number 

0 
1 
2 
3 
4 
5 
6 
7 
8 

When a particular video attribute should not be used with colors, the corre­
sponding ncv bit should be set to 1; otherwise it should be set to zero. For 
example, if the terminal uses colors to simulate reverse video and bold, bits 2 
and 5 should be set to 1. The resulting values for ncv will be 22. 

1.14 Miscellaneous 
If the terminal requires other than a null (zero) character as a pad, then this 
can be given as pad. Only the first character of the pad string is used. If the 
terminal does not have a pad character, specify npc. 

If the terminal can move up or down half a line, this can be indicated with hu 
(half-line up) and hd (half-line down). This is primarily useful for super­
scripts and subscripts on hardcopy terminals. If a hardcopy terminal can eject 
to the next page (form feed), give this as ff (usually control L). 

If there is a command to repeat a given character a given number of times (to 
save time transmitting a large number of identical characters) this can be indi­
cated with the parameterized string rep. The first parameter is the character 
to be repeated and the second is the number of times to repeat it. Thus, 
tparm(repeat_char, 'l(, 10) is the same as xxxxxxxxxx. 

If the terminal has a settable command character, such as the Tektronix 4025, 
this can be indicated with cmdch. A prototype command character is chosen 
which is used in all capabilities. This character is given in the cmdch capabil­
ity to identify it. The following convention is supported on some UNIX sys­
tems: If the environment variable CC exists, all occurrences of the prototype 
character are replaced with the character in CC. 

Terminal descriptions that do not represent a specific kind of known termin~l, 
such as switch, dialup, patch, and network, should include the gn (generic) 
capability so that programs can complain that they do not know how to talk 

1 Febmary 1993 



terminfo(M) 

to the terminal. (This capability does not apply to virtual terminal descrip­
tions for which the escape sequences are known.) If the terminal is one of 
those supported by the UNIX system virtual terminal protocol, the terminal 
number can be given as vt. A line-turn-around sequence to be transmitted 
before doing reads should be specified in rfi. 

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding 
information should still be included so that routines can make better decisions 
about costs, but actual pad characters will not be transmitted. Sequences to 
turn on and off xon/xoff handshaking may be given in smxon and rmxon. If 
the characters used for handshaking are not AS and AQ, they may be specified 
with xonc and xoffc. 

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of 
any character transmitted, this fact can be indicated with km. Otherwise, soft­
ware will assume that the 8th bit is parity and it will usually be cleared. If 
strings exist to tum this "meta mode'' on and off, they ca.n be given as smm 
andrmm. 

If the terminal has more lines of memory than will fit on the screen at once, 
the number of lines of memory can be indicated with Im. A value of lm#O 
indicates that the number of lines is not fixed, but that there is still more mem­
ory than fits on the screen. 

Media copy strings which control an auxiliary printer connected to the termi­
nal can be given as mcO: print the contents of the screen, mc4: turn off the 
printer, and mc5: turn on the printer. When the printer is on, all text sent to 
the terminal will be sent to the printer. A variation, mc5p, takes one parame­
ter, and leaves the printer on for as many characters as the value of the param­
eter, then turns the printer off. The parameter should not exceed 255. If the 
text is not displayed on the terminal screen when the printer is on, specify 
mc5i (silent printer). All text, including mc4, is transparently passed to the 
printer while an mc5p is in effect. 

1.15 Special cases 
The working model used by terminfo fits most terminals reasonably well. 
However, some terminals do not completely match that model, requiring spe­
cial support by terminfo. These are not to be construed as deficiencies in the 
terminals; they are just differences between the working model and the actual 
hardware. They may be unusual devices or, for some reason, do not have all 
the features of the terminfo model implemented. 

Terminals which can not display tilde(-) characters, such as certain Hazeltine 
terminals, should indicate hz. 

Terminals which ignore a linefeed immediately after an am wrap, such as the 
Concept 100, should indicate xenl. Those terminals whose cursor remains on 
the right-most column until another character has been received, rather than 
wrapping immediately upon receiving the right-most character, such as the 
VTlOO, should also indicate xenl. 

l February 1993 845 



terminfo(M) 

If el is required to get rid of standout (instead of writing normal text on top of 
it), xhp should be given. 

Those Teleray terminals whose tabs turn all characters moved over to blanks, 
should indicate xt (destructive tabs). This capability is also taken to mean that 
it is not possible to position the cursor on top of a "magic cookie" therefore, to 
erase standout mode, it is instead necessary to use delete and insert line. 

Those Beehive Superbee terminals which do not transmit the escape or 
control-C characters, should specify xsb, indicating that the (Fl} key is to be 
used for escape and the ( F2) key for ( Ctrl)c. 

1.16 Similar terminals 
If there are two very similar terminals, one can be defined as being just like 
the other with certain exceptions. The string capability use can be given with 
the name of the similar terminal. The capabilities given before use override 
those in the terminal type invoked by use. A capability can be canceled by 
placing xx@ to the left of the capability definition, where xx is the capability. 
For example, the entry 

att4424-21Teletype 4424 in display function group ii, 
rev@, sgr@, smul@, use=att4424, 

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul capa­
bilities, and hence cannot do highlighting. This is useful for different modes 
for a terminal, or for different user preferences. More than one use capability 
may be given. 

Part 2: Printer capabilities 

846 

The terminfo database allows you to define capabilities of printers as well as 
terminals. To find out what capabilities are available for printers as well as 
for terminals, see the two lists under "Terminal capabilities" that list capabili­
ties by variable and by capability name. 

2.1 Rounding values 
Because parameterized string capabilities work only with integer values, we 
recommend that terminfo designers create strings that expect numeric values 
that have been rounded. Application designers should note this and should 
always round values to the nearest integer before using them with a 
parameterized string capability. 

2.2 Printer resolution 
A printer's resolution is defined to be the smallest spacing of characters it can 
achieve. In general printers have independent resolution horizont~lly and 
vertically. Thus the vertical resolution of a printer can be de!ermm~d .by 
measuring the smallest achievable distance between consecutive p;mtmg 
baselines, while the horizontal resolution can be determined by measuring the 
smallest achievable distance between the left-most edges of consecutive 
printed, identical, characters. 

1 February 1993 



terminfo(M) 

All printers are assumed to be capable of printing with a uniform horizontal 
and vertical resolution. The view of printing that the terminfo currently 
presents is one of printing inside a uniform matrix: All characters are printed 
at fixed positions relative to each "cell" in the matrix; furthermore, each cell 
has the same size given by the smallest horizontal and vertical step sizes dic­
tated by the resolution. (The cell size can be changed as will be seen later.) 

Many printers are capable of "proportional printing", where the horizontal 
spacing depends on the size of the character last printed. The terminfo does 
not make use of this capability, although it does provide enough capability 
definitions to allow an application to simulate proportional printing. 

A printer must not only be able to print characters as close together as the hor­
izontal and vertical resolutions suggest, but also of "moving" to a position an 
integral multiple of the smallest distance away from a previous position. 
Thus printed characters can be spaced apart a distance that is an integral mul­
tiple of the smallest distance, up to the length or width of a single page. 

Some printers can have different resolutions depending on different "modes". 
In "normal mode", the existing terminfo capabilities are assumed to work on 
columns and lines, just like a video terminal. Thus the old lines capability 
would give the length of a page in lines, and the cols capability would give 
the width of a page in columns. In "micro mode", many terminfo capabilities 
work on increments of lines and columns. With some printers the micro 
mode may be concomitant with normal mode, so that all the capabilities work 
at the same time. 

2.3 Specifyi.ng printer resolution 
The printing resolution of a printer is given in several ways. Each specifies 
the resolution as the number of smallest steps per distance: 

Specification of printer resolution 

Characteristic 
or hi 
orvi 
ore 
or! 

Number of smallest steps 

Steps per inch horizontally 
Steps per inch vertically 
Steps per column 
Steps per line 

When printing in normal mode, each character printed causes movement to 
the next column, except in special cases described later; the distance moved is 
the same as the per-column resolution. Some printers cause an automatic 
movement to the next line when a character is printed in the rightmost posi­
tion; the distance moved vertically is the same as the per-line resolution. 
When printing in micro mode, these distances can be different, and may be 
zero for some printers. 

1 February 1993 847 



terminfo(MJ 

848 

Specification of printer resolution 

Automatic motion after printing 
Normal Mode:. 
ore 
orl 
Micro Mode: 
mes 
mis 

Steps moved horizontally 
Steps moved vertically 

Steps moved horizontally 
Steps moved vertically 

Some printers are capable of printing wide characters. The distance moved 
when a wide character is printed in normal mode may be different from when 
a regular width character is printed. The distance moved when a widti! char­
acter is printed in micro mode may also be different from when a regular 
character is printed in micro mode, but the differences are assumed to be 
related: If the distance moved for a regular character is the same whether in 
normal mode or micro mode (mcs=orc), then the distance moved for a wide 
character is also the same whether in normal mode or micro mode. This 
doesn't mean the normal character distance is necessarily the same as the 
wide character distance, just that the distances do not change with a change in 
normal to micro mode. However, if the distance moved for a regular charac­
ter is different in micro mode from the distance moved in normal mode5 
(mes<orc), the micro mode distance is assumed to be the same for a wide 
character printed in micro mode, as the table below shows. 

Specification of printer resolution 

Automatic motion after printing wide character 
Normal Mode or Micro Mode (mes = ore): . 
wides Steps moved horizontally 
Micro Mode (mes <ore): 
mes Steps moved horizontally 

1February1993 



terminfo(M) 

There may be control sequences to change the number of columns per inch 
(the character pitch) and to change the number of lines per inch (the line 
pitch). If these are used, the resolution of the printer changes, but the type of 
change depends on the printer: 

Specification of printer resolution 

Changing the character/line pitches 

cpi 
cpix 
lpi 
I pix 
chr 
cvr 

Change character pitch 
If set, cpi changes orhi, otherwise changes ore 
Change line pitch 
If set, lpi changes orvi, otherwise changes orl 
Change steps per column 
Change steps per line 

The epi and lpi string capabilities are each used with a single argument, the 
pitch in columns (or characters) and lines per inch, respectively. The ehr and 
evr string capabilities are each used with a single argument, the number of 
steps per column and line, respectively. 

Using any of the control sequences in these strings will imply a change in 
some of the values of ore, orhi, orl, and orvi. Also, the distance moved when 
a wide character is printed, wides, changes in relation to ore. The distance 
moved when a character is printed in micro mode, mes, changes similarly, 
with one exception: if the distance is 0 or 1, then no change is assumed (see 
item marked with ** in the following table). 

Programs that use cpi, lpi, chr, or evr should recalculate the printer resolution 
(and should recalculate other values - see "2.7 Effect of changing printing 
resolution"). 

1 February 1993 849 



terminfo(M) 

850 

Specification of printer resolution 

Effects of changing the character/line pitches 
Before Alter 

Using epi with epix clear: 
orhi' 
ore' 

Using epi with epix set: 
orhi' 
ore' 
Using lpi with lpix clear: 
orvi' 
orl' 

Using lpi with lpix set: 
orvi' 
orl' 
Usingehr: 
orhi' 
ore' 
Usingevr: 
orvi' 
orl' 
Using epi or ehr: 
wides' 

mes'** 

or hi 
orhi orc=--
Vcpi 

orhi=orc· V cpi 
ore 

orvi 
orl= orvi 

V1p; 

orvi=orl·V1p; 

orl 

or hi 
Vchr 

orvi 
V cvr 

wides=wides' :::. 

mes=mes' ore 
ore' 

Vcpi• Vlj>i• Vc1,,. and Vm are the arguments used with epi, lpi, ehr, and cvr 
respectively. The ** mark indicates the old value. 

2.4 Capabilities that cause movement 
In the following descriptions, "movement" refers to the motion of the "current 
position". With video terminals this would be the cursor; with some printers 
this is the carriage position. Other printers have different equivalents. In gen­
eral, the current position is where a character would be displayed if printed. 

1 February 1993 



terminfo(M) 

terminfo has string capabilities for control sequences that cause movement a 
number of full columns or lines. It also has equivalent string capabilities for 
control sequences that cause movement a number of smallest steps. 

String capabilities for motion 

mcubl 
mcufl 
mcuul 
mcudl 

mcub 
mcuf 
mcuu 
mcud 

mhpa 
mvpa 

Move 1 step left 
Move 1 step right 
Move 1 step up 
Move 1 step down 

Move N steps left 
Move N steps right 
Move N steps up 
Move N steps down 

Move N steps from the left 
Move N steps from the top 

The latter six strings are each used with a single argument, N. 

Sometimes the motion is limited to less than the width or length of a page. 
Also, some printers do not accept absolute motion to the left of the current 
position. terminfo has capabilities for specifying these limits. 

Limits to motion 

mjump 
maddr 

xhpa 
xvpa 

Limit on use of mcubl, mcufl, mcuul, mcudl 
Limit on use of mhpa, mvpa 

If set, hpa and mhpa can't move left 
If set, vpa and mvpa can't move up 

If a printer needs to be in a "micro mode" for the motion capabilities described 
above to work, there are string capabilities defined to contain the control 
sequence to enter and exit this mode. A boolean is available for those printers 
where using a carriage return causes an automatic return to normal mode. 

Entering/Exiting micro mode 
smicm 
rmicm 

crxm 

Enter micro mode 
Exit micro mode 

Using er exits micro mode 

The movement made when a character is printed in the rightmost position 
varies among printers. Some make no movement, some move to the begin­
ning of the next line, others move to the beginning of the same line. terminfo 
has boolean capabilities for describing all three cases. 

What happens after character printed in rightmost position 
sam Automatic move to beginning of same line 

1 February 1993 851 



terminfo(MJ 

852 

Some printers can be put in a mode where the normal direction of motion is 
reversed. This mode can be especially useful when no capabilities exist for 
leftward or upward motion, because those capabilities can be built from the 
motion reversal capability and the rightward or downward motion capabili­
ties. I~ !s. best to leave it up to an applica~ion to bui~d the leftward or upward 
capab1hhes, though, and not enter them m the termmfo database. This allows 
several reverse motions to be strung together without intervening wasted 
steps that leave and reenter reverse mode. 

Entering/Exiting reverse modes 

slm Reverse sense of horizontal motions 
rim Restore sense of horizontal motions 
sum Reverse sense of vertical motions 
rum Restore sense of vertical motions 

While sense of horizontal motions reversed: 
mcubl Move 1 step right 
mcufl Move 1 step left 
mcub Move N steps right 
mcuf Move N steps left 
cubl Move 1 column right 
cufl Move 1 column left 
cub Move N columns right 
cuf Move N columns left 

While sense of vertical motions reversed: 
mcuul Move 1 step down 
mcudl Move 1 step up 
mcuu Move N steps down 
mcud Move N steps up 
cuul Move 1 line down 
cudl Move 1 line up 
cuu Move N lines down 
cud Move N lines up 

The reverse motion modes should not affect the mvpa and mhpa absolute 
motion capabilities. The reverse vertical motion mode should, however, also 
reverse the action of the line "wrapping" that occurs when a character is 
printed in the right most position. Thus printers that have the standard ter­
minfo capability am defined should experience motion to the beginning of the 
previous line when a character is printed in the right-most position under 
reverse vertical motion mode. 

The action when any other motion capabilities are used in reverse motion 
modes is not defined; thus, programs must exit reverse motion modes before 
using other motion capabilities. 

Two miscellaneous capabilities complete the list of new motion ~~pabilities. 
One of these is needed for printers that move the current pos1hon to the 
beginning of a line when certain control characters, like "line-feed" or "fo~m­
feed", are used. The other is used for the capability of suspending the motion 
that normally occurs after printing a character. 

1 February 1993 



Miscellaneous motion strings 

doer 
zerom 

Margins 

terrninfo(M) 

List of control characters causing er 
Prevent auto motion after printing next single 
character 

terrninfo provides two strings for setting margins on terminals: one for the left 
and one for the right margin. Printers, however, have two additional margins, 
for the top and bottom margins of each page. Furthermore, some printers do 
not require using motion strings to move the current position to a margin and 
fixing the margin there, as with the existing capabilities, but require the speci­
fication of where a margin should be regardless of the current position. 
Therefore terrninfo offers six additional strings for defining margins with 
printers. 

Setting 

smgl 
smgr 
smgb 
smgt 
smgbp 
smglp 
smgrp 
smgtp 

Margins 

Set left margin at current column 
Set right margin at current column 
Set soft bottom margin at current line 
Set soft top margin at current line 
Set soft bottom margin at line N 
Set soft left margin at column N 
Set soft right margin at column N 
Set soft top margin at line N 

The last four strings are used with a single argument, N, that gives the line or 
column number, where line 0 is the top line and column 0 is the leftmost 
column. 

Note that not all printers use 0 for the top line or the leftmost column. 

All margins can be cleared with mgc. 

1February1993 853 



tenninjo(M) 

854 

Shadows, italics, wide characters, superscripts, subscripts 
Five new sets of strings are used to describe the capabilities printers have of 
enhancing printed text. 

Enhanced printing 

sshm 
rshm 

sitm 
ritm 

swidm 
rwidm 

ssupm 
rsupm 
supcs 

ssubm 
rsubm 
subcs 

Enter shadow-printing mode 
Exit shadow-printing mode 

Enter italicizing mode 
Exit italicizing mode 

Enter wide character mode 
Exit wide character mode 

Enter superscript mode 
Exit superscript mode 
List of characters available as superscripts 
Enter subscript mode 
Exit subscript mode 
List of characters available as subscripts 

If a printer requires the sshm control sequence before every character to be 
shadow-printed, the rshm string is left blank. Thus programs that find a con­
trol sequence in sshm but none in rshm should use the sshm control sequence 
before every character to be shadow-printed; otherwise, the sshm control 
sequence should be used once before the set of characters to be shadow­
printed, followed by rshm. The same is also true of each of the sitm/ritm, 
swidm/rwidm, ssupm/rsupm, and ssubm/rsubm pairs. 

Note that terminfo also has a capability for printing emboldened text (bold). 
While shadow printing and emboldened printing are similar in that they 
"darken" the text, many printers produce these two types of print in slightly 
different ways. Generally, emboldened printing is done by overstriking the 
same character one or more times. Shadow printing likewise usually involves 
overstriking, but with a slight movement up and/or to the side so that the 
character is "fatter". 

It is assumed that enhanced printing modes are independent modes, so that it 
would be possible, for instance, to shadow print italicized subscripts. 

As mentioned earlier, the amount of motion autcmatically made after printing 
a wide character should be given in wides. 

If only a subset of the printable ASCII characters can be printed as superscripts 
or subscripts, they should be listed in supcs or subcs strings, respectively._ If 
the ssupm or ssubm strings contain control sequences, but the corresponding 
supcs or subcs strings are empty, it is assumed that all printable ASCII charac­
ters are available as superscripts or subscripts. 

1 Flbruary 1993 



terminfo(M) 

Automatic motion made after printing a superscript or subscript is assumed 
to be the same as for regular characters. Thus, for example, printing any of 
the following three examples will result in equivalent motion: 

Bi B. B; 
I 

Note that the existing msgr boolean capability describes whether motion con­
trol sequences can be used while in "standout mode". This capability is 
extended to cover the enhanced printing modes added here. msgr should be 
set for those printers that accept any motion control sequences without affect­
ing shadow, italicized, widened, superscript, or subscript printing. Con­
versely, if msgr is not set, a program should end these modes before attempt­
ing any motion. 

2.5 Alternate character sets 
In addition to allowing you to define line graphics (described in "l.12 Line 
graphics"), terminfo also lets you define alternate character sets. The following 
capabilities cover printers and terminals with multiple selectable or definable 
character sets. 

Alternate character sets 
scs 
scsd 
defc 
rcsd 
cs nm 
daisy 

Select character set N 

Start definition of character set N, M characters 
Define character A, B dots wide, descender D 
End definition of character set N 
List of character set names 
Printer has manually changed print-wheels 

The scs, rcsd, and csnm strings are used with a single argument, N, a number 
from 0 to 63 that identifies the character set. The scsd string is also used with 
the argument N and another, M, that gives the number of characters in the set. 
The defc string is used with three arguments: A gives the ASCII code 
representation for the character, B gives the width of the character in dots, 
and Dis zero or one depending on whether the character is a "descender'' or 
not. The defc string is also followed by a string of "image-data" bytes that 
describe how the character looks (see below). 

Character set 0 is the default character set present after the printer has been 
initialized. Not every printer has 64 character sets, of course; using scs with 
an argument that does not select an available character set should cause a null 
result from tparm( ). 

If a character set has to be defined before it can be used, the scsd control 
sequence is to be used before defining the character set, and the rcsd is to be 
used after. They should also cause a null result from tparm() when used with 
an argument N that doesn't apply. If a character set still has to be selected 
after being defined, the scs control sequence should follow the rcsd control 
sequence. By examining the results of using each of the scs, scsd, and rcsd 
strings with a character set number in a call to tparm( ), a program can deter­
mine which of the three are needed. 

1February1993 855 



terminfo(MJ 

856 

Between use of the scsd and rcsd strings, the defc string should be used to 
define each character. To print any character on printers covered by terminfo, 
the ASCII code is sent to the printer. This is true for characters in an alternate 
set as well as "normal" characters. Thus the definition of a character includes 
the ASCII code that represents it. In addition, the width of the character in 
dots is given, along with an indication of whether the character should des­
cend below the print line (like the lower case letter "g" in most character sets). 
The width of the character in dots also indicates the number of image-data 
bytes that will follow the defc string. These image-data bytes indicate where 
in a dot-matrix pattern ink should be applied to "draw'' the character; the 
number of these bytes and their form are defined below under "Dot-mapped 
graphics". 

It is easiest for the creator of terminfo entries to refer to each character set by 
number; however, these numbers will be meaningless to the application de­
veloper. The csnm string alleviates this problem by providing names for each 
number. 

When used with a character set number in a call to tparm( ), the csnm string 
will produce the equivalent name. These names should be used as a reference 
only. No naming convention is implied, although anyone who creates a ter­
minfo entry for a printer should use names consistent with the names found in 
user documents for the printer. Application developers should allow a user 
to specify a character set by number (leaving it up to the user to examine the 
csnm string to determine the correct number), or by name, where the applica­
tion examines the csnm string to determine the corresponding character set 
number. 

These capabilities are likely to be used only with dot-matrix printers. If they 
are not available, the strings should not be defined. For printers that have 
manually changed print-wheels or font cartridges, the boolean daisy is set. 

2.6 Dot-matrix graphics 
Dot-matrix printers typically have the capability of reproducing "raster­
graphics" images. Three new numeric capabilities and three new string capa­
bilities can help a program draw raster-graphics images independent of the 
type of dot-matrix printer or the number of pins or dots the printer can handle 
at onetime. 

Dot-matrix graphics 
npins 
spinv 
spinh 
po rd er 
sbim 
rbim 

Number of pins, N, in print-head 
Spacing of pins vertically in pins per inch 
Spacing of dots horizontally in dots per inch 
Matches software bits to print-head pins 
Start printing bit image graphics, B bits wide 
End printing bit image graphics 

1 February 1993 



terminfo(M) 

The sbim string is used with a single argument, B, the width of the image in 
dots. 

The model of dot-matrix or raster-graphics that the terminfo presents is similar 
to the technique used for most dot-matrix printers: each pass of the printer's 
print-head is assumed to produce a dot-matrix that is N dots high and B dots 
wide. This is typically a wide, squat, rectangle of dots. The height of this rec­
tangle in dots will vary from one printer to the next; this is given in the npins 
numeric capability. The size of the rectangle in fractions of an inch will also 
vary; it can be deduced from the spinv and spinh numeric capabilities. With 
these three values an application can divide a complete raster-graphics image 
into several horizontal strips, perhaps interpolating to account for different 
dot spacing vertically and horizontally. 

The sbim and rbim strings are used to start and end a dot-matrix image, 
respectively. The sbim string is used with a single argument that gives the 
width of the dot-matrix in dots. A sequence of "image-data bytes" are sent to 
the printer after the sbim string and before the rbim string. The number of 
bytes is an integral multiple of the width of the dot-matrix; the multiple and 
the form of each byte is determined by the porder string as described below. 

The porder string is a comma separated list of pin numbers; the position of 
each pin number in the list corresponds to a bit in a data byte. The pins are 
numbered consecutively from 1 to npins, with 1 being the top pin. Note that 
the term "pin" is used loosely here; "ink-jet" dot-matrix printers do not have 
pins, but can be considered to have an equivalent method of applying a single 
dot of ink to paper. The bit positions in porder are in groups of 8, with the 
first position in each group the most significant bit and the last position the 
least significant bit. 

The "image-data bytes" are to be computed from the dot-matrix image, map­
ping vertical dot positions in each print-head pass into eight-bit bytes, using a 
1 bit where ink should be applied and 0 where no ink should be applied. If a 
position is skipped in porder, a 0 bit is used. There must be a multiple of 8 bit 
positions used or skipped in porder; if not, 0 bits are used to fill the last byte 
in the least significant bits. 

2.7 Effect of changing printing resolution 
If the control sequences to change the character pitch or the line pitch are 
used, the pin or dot spacing may change: 

Dot-matrix graphics 
Changing the character/line pitches 
cpi 
cpix 

!pi 
!pix 

1 February 1993 

Change character pitch 
If set, cpi changes spinh 

Change line pitch 
If set, lpi changes spinv 

857 



terminfo(M) 

858 

Programs that use cpi or lpi should recalculate the dot spacing: 

Dot-matrix graphics 
Effects of changing the charactermne pitches 
Before After 

Using cpi witli cpix clear: 
spinh' 

Using cpi with cpix set: 
spinh' 

Using lpi with lpix clear: 
spinv' 

Using lpi witli lpix set: 
spinv' 

Usingchr: 
spinh' 

Usingcvr: 
spinv' 

spinh 

spinh=spinh'· orh·i­
orh1 

spinv 

spinv=spinv'· orh·i· 
orh1 

spinh 

spinv 

orhi' and orhi are the values of the horizontal resolution in steps per inch, 
before using cpi and after using cpi, respectively. Likewise, orvi' and orvi are 
the values of the vertical resolution in steps per inch, before using lpi and 
after using lpi, respectively. Thus, the changes in the dots per inch for dot­
matrix graphics follow the changes in steps per inch for printer resolution. 

2.8 Print quality 
Many dot-matrix printers can alter the dot spacing of printed text to produce 
near uletter quality" printing or "draft quality" printing. Usually, it is impor­
tant to be able to choose one or the other because the rate of printing generally 
falls off as the quality improves. There are three new strings used to describe 
these capabilities. 

Print quality 

snlq 
snrmq 
sdrfq 

Set near-letter quality print 
Set normal quality print 
Set draft quality print 

The capabilities are listed in decreasing levels of quality. If a printer does not 
have all three levels, one or two of the strings should be left blank as 
appropriate. 

1 February 1993 



Warning 

terminfo(M) 

2.9 Printing rate and buffer size 
Because there is no standard protocol that can be used to keep a program syn­
chronized with a printer, and because modern printers can buffer data before 
printing it, a program generally cannot determine at any time what has been 
printed. Two new numeric capabilities can help a program estimate what has 
been printed. 

Print rate/buffer size 

cps 
bufsz 

Nominal print rate in characters per second 
Buffer capacity in characters 

cps is the nominal or average rate at which the printer prints characters; if this 
value is not given, the rate should be estimated at one-tenth the prevailing 
baud rate. bufsz is the maximum number of subsequent characters buffered 
before the guaranteed printing of an earlier character, assuming proper flow 
control has been used. If this value is not given it is assumed that the printer 
does not buffer characters, but prints them as they are received. 

As an example, if a printer has a 1000-character buffer, then sending the letter 
"a" followed by 1000 additional characters is guaranteed to cause the letter "a" 
to print. If the same printer prints at the rate of 100 characters per second, 
then it should take 10 seconds to print all the characters in the buffer, less if 
the buffer is not full. By keeping track of the characters sent to a printer, and 
knowing the print rate and buffer size, a program can synchronize itself with 
the printer. 

Note that most printer manufacturers advertise the maximum print rate, not 
the nominal print rate. A good way to get a value to put in for cps is to gen­
erate a few pages of text, count the number of printable characters, then see 
how long it takes to print the text. 

Applications that use these values should recognize the variability in the print 
rate. Straight text, in short lines, with no embedded control sequences will 
probably print at close to the advertised print rate and probably faster than 
the rate in cps. Graphics data with a lot of control sequences, or very long 
lines of text, will print at well below the advertised rate and below the rate in 
cps. If the application is using cps to decide how long it should take a printer 
to print a block of text, the application should pad the estimate. If the applica­
tion is using cps to decide how much text has already been printed, it should 
shrink the estimate. The application will thus err in favor of the user, who 
wants, above all, to see all the output in its correct place. 

As described in the "Tabs and initialization" section above, a terminal's initial­
ization strings, isl, is2, and is3, if defined, must be output before a curses(S) 
program is run. An available mechanism for outputting such strings is tput 
init (see tput(C) and profile(M)). 

1February1993 859 



tenninfo(M) 

Files 

See also 

860 

If a null character (\0) is encountered in a string, the null and all characters 
after it are lost. Therefore it is not possible to code a null character (\0) and 
send it to a device (either terminal or printer). The suggestion of sending a 
\0200, where a \0 (null) is needed can succeed only if the device (terminal or 
printer) ignores the eighth bit. For example, because all eight bits are used in 
the standard international ASCII character set, devices that adhere to this stan­
dard will treat \0200 differently from \0. 

Tampering with entries in /usr/lib/.COREterm/?/* or /usr/lib/terminfo/?/* (for 
example, changing or removing an entry) can affect programs such as vi(C) 
that expect the entry to be present and correct. In particular, removing the 
description for the "dumb" terminal will cause unexpected problems. 

/usr/lib/terminfo/? /* compiled terminal description database 

/usr/lib/.COREterm/?/* subset of compiled terminal description database 

/usr/lib/tabsel/* tab settings for some terminals, in a format appropriate 
to be output to the terminal (escape sequences that set 
margins and tabs) 

captoinfo(ADM), curses(S), infocmp(ADM), printf(S), profile(M), term(M), 
terminfo(F), tic(C), tput(C), vi(C) 

1 February 1993 



terrnio(M) 

termio 
general terminal interface 

Description 

All asynchronous communications ports use the same general interface, no 
matter what hardware is involved. The remainder of this section discusses the 
common features of this interface. Please refer to termios(M) for details of 
POSIX-specific extensions to tennio. 

When a terminal file is opened, it normally causes the process to wait until a 
connection is established. In practice, users' programs seldom open these files; 
they are opened by getty(M) and become a user's standard input, output, and 
error files. (To do this, getty(M) opens the terminal for read/write access, then 
FDUPs it twice.) The very first terminal file opened by the process group 
leader of a terminal file not already associated with a process group becomes 
the Hcontrol terminalH for that process group. The control terminal plays a 
special role in handling quit and interrupt signals, as discussed below. The 
control terminal is inherited by a child process during a fork(S). A process 
can break this association by changing its process group using setpgrp(S). 

A terminal associated with one of these files ordinarily operates in full duplex 
mode. Characters can be entered at any time, even while output is occurring, 
and are only lost when the system's character input buffers become com­
pletely full, which is rare, or when the user has accumulated the maximum 
allowed number of input characters that have not yet been read by some pro­
gram. Currently, this limit is 256 characters. When the input limit is reached, 
all the saved characters are thrown away without notice. 

Normally, terminal input is processed in units of lines. A line is delimited by 
a newline (ASCII LF) character, an end-of-file (ASCII EOT) character, or an 
end-of-line (ASCII EOL) character. This means that a program attempting to 
read will be suspended until an entire line has been entered. Also, no matter 
how many characters are requested in the read call, one line will be returned 
at most. It is not, however, necessary to read a whole line at once; any number 
of characters, even one, may be requested in a read without losing informa­
tion. 

Erase and kill processing is normally performed during input. By default, a 
(Ctrl)h or(Bksp) erases the last character typed, but it will not erase beyond the 
beginning of the line. By default, a (Ctrl)u kills (deletes) the entire input line, 
and optionally outputs a newline character. Both these characters operate on a 
keystroke basis, independent of any backspacing or tabbing that may have 
been done. Both the erase and kill characters may be entered literally by 
preceding them with the escape character(\). In this case, the escape charac­
ter is not read. The erase and kill characters may be changed (see stty(C)). 

1February1993 861 



termio(MJ 

862 

Certain characters have special functions on input. These functions and their 
default character values are summarized as follows: 

INTR (Rubout or ASCII DEL) Generates an interrupt signal which is sent to 
all processes with the associated control terminal. Normally, each 
such process is forced to terminate, but arrangements may be made 
either to ignore the signal or to receive a trap to an agreed-upon loca­
tion; see signal(S). 

QUIT ((Ctrl)\ or ASCII FS) Generates a quit signal. Its treatment is identical 
to the interrupt signal except that, unless a receiving process has 
made other arrangements, it will not only be terminated, but a core 
image file (core) will be created in the current working directory. 

SWTCH (ASCII NUL) Is used by the shell layers facility, shl(C), to change the 
current layer to the control layer. 

ERASE ((Ctrl)h) Erases the preceding character. It will not erase beyond the 
start of a line, as delimited by an NL, EOF, or EOL character. 

KILL ((Ctrl)u) Deletes the entire line, as delimited by a NL, EOF, or EOL 
character. 

EOF ((Ctrl)d or ASCII EOT) May be used to generate an end-of-file from a 
terminal. When received, all the characters waiting to be read are 
immediately passed to the program, without waiting for a newline, 
and the EOF is discarded. Thus, if there are no characters waiting, 
which is to say the EOF occurred at the beginning of a line, zero char­
acters will be passed back, which is the standard end-of-file indica­
tion. 

NL (ASCII LF) Is the normal line delimiter. It cannot be changed or 
escaped. 

EOL (ASCII NUL) Is an additional line delimiter, like NL. It is not normally 
used. 

STOP ((Ctrl)s or ASCII DC3) Temporarily suspends output. It is useful with 
CRT terminals to prevent output from disappearing before it can be 
read. While output is suspended, STOP characters are ignored and 
not read. 

START ((Ctrl)q or ASCII DCl) Resumes output which has been suspended by 
a STOP character. While output is not suspended, START characters 
are ignored and not read. The START/STOP characters cannot be 
changed or escaped within termio (but see tennios(M) for further 
information). 

The character values for INTR, QUIT, SWTCH, ERASE, KILL, EOF, and EOL may 
be changed to suit individual tastes. The ERASE, KILL, and EOF characters 
may be escaped by a preceding backslash (\) character, in which case no 
special function is carried out. 

1 February 1993 



termio(M) 

When the carrier signal from the dataset drops, a "hangup" signal is sent to all 
processes that have this terminal as the control terminal. Unless other 
arrangements have been made, this signal causes the processes to terminate. If 
the hangup signal is ignored, any subsequent read returns with an end-of-file 
indication. Thus, programs that read a terminal and test for an end-of-file can 
terminate appropriately when hung up on. 

When one or more characters are written, they are transmitted to the terminal 
as soon as the previously typed characters have been entered. Input charac­
ters are echoed by putting them in the output queue as they arrive. If a pro­
cess produces characters more rapidly than they can be typed, it will be 
suspended when its output queue exceeds a given limit. When the queue has 
drained down to the given threshold, the program is resumed. 

ioctl commands 
Several ioctl(S) system calls apply to terminal files. The primary calls use the 
termio structure, defined in the file /usr/include/sys/termio.h: 

#define NCC 8 

struct termio 
unsigned short 
unsigned short 
unsigned short 
unsigned short 
char 
unsigned char 

}; 

c_iflag; 
c_oflag; 
c_cflag; 
c_lflag; 
c_line; 
c_cc [NCC]; 

I* input modes */ 
I* output modes */ 
I* control modes *I 
I* line discipline modes 
I* line discipline */ 
I* control chars *I 

Primary ioctl(S) system calls have the form: 

ioctl (fildes, command, arg) 
struct termio *arg; 

Commands using this form are: 

*I 

TCGETA Get the parameters associated with the terminal and store them in 
the termio structure referenced by arg. 

TCSETA Set the parameters associated with the terminal from the structure 
referenced by arg. The change is immediate. 

TCSETAW Wait for the output to drain before setting the new parameters. 
This form should be used when changing parameters that will 
affect output. 

TCSETAF Wait for the output to drain, then flush the input queue and set the 
new parameters. 

I February 1993 863 



termio(M) 

864 

Additional ioctl(S) calls have the form: 

ioctl <fildes, command, arg) 
int arg; 

Commands using this form are: 

TCSBRK Wait for the output to drain. If arg is 0, then send a break (zero bits 
for 0.25 seconds). 

TCXONC Start/stop control. If arg is 0, suspend output; if l, restart 
suspended output; if 2, block; if 3, unblock. 

TCFLSH If arg is 0, flush the input queue; if 1, flush the output queue; if 2, 
flush both the input and output queues. 

Special control characters 
The special control characters (used to interrupt processes, erase characters, 
and switch jobs) are defined by the array c_cc field of the termio structure. 
The relative positions and initial values for each function are as follows: 

Position 
0 
1 
2 
3 
4 
5 
6 
7 

Name 
VINTR 
VQUIT 
VERASE 
VKILL 
VEOF/VMIN 
VEOL/VTIME 
VEOU 
VSWTCH 

Input modes 

Initial value 
DEL 
FS 
(Ctrl}h 
(Ctrl}u 
EOT 
NUL 
EOL 
NUL 

The c_iflag field specifies the treatment of input. The initial value of this 
field is 0 (all bits clear). 

1 February 1993 



termio(M) 

The following input mode flags may be set: 
IGNBRK 0000001 Ignores break condition 
BRKINT 0000002 Signals interrupt on break 
IGNPAR 0000004 Ignores characters with parity errors 
PARMRK 0000010 Marks parity errors 
INPCK 0000020 Enables input parity check 
ISTRIP 0000040 Strips high bit from character 
INLCR 0000100 Maps NL to CR on input 
IGNCR 0000200 Ignores CR 
ICRNL 0000400 Maps CR to NL on input 
IUCLC 0001000 Maps uppercase to lowercase on input 
IXON 0002000 Enables start/stop output control 
IXANY 0004000 Enables any character to restart output 
IXOFF 0010000 Enables start/stop input control 

IGNBRK Ignore the break condition (a character framing error with data 
all zeros). It is not put on the input queue and is therefore not 
read by any process. 

BRKINT Cause the break condition to generate an interrupt signal and 
flush both the input and output queues. 

IGNPAR Ignore characters with other framing and parity errors. 

PARMRK If set, read a character with a framing or parity error which is 
not ignored as the 3-character sequence: 0377, 0, X, where X is 
the data of the character received in error. To avoid ambiguity in 
this case, if ISTRIP is not set, read a valid character of 0377 as 
0377,0377. 

INPCK 

IS TRIP 

INLCR 

ICRNL 

IUCLC 

IXON 

1 February 1993 

If not set, read a framing or parity error which is not ignored as 
the character NUL (0). 

If set, input parity checking is enabled. If not set, disable input 
parity checking. This allows output parity generation without 
input parity errors. 

If set, strip valid input characters to 7 bits. If not set, process all 8 
bits. 

Translate a received NL character into a CR character. IGNCR 
Ignore (do not read) a received CR character. 

Translate a received CR character into a NL character. 

Translate a received uppercase alphabetic character into the cor­
responding lowercase character. 

If set, enable start/stop output control. A received STOP charac­
ter suspends output and a received START character restarts out­
put. 

865 



termio(M) 

866 

IXANY 

IX OFF 

If not set, ignore (do not read) all start/stop characters. 

Causes any input character to restart output which has been 
suspended. 

If set, enable start/stop input control. Transmit START charac­
ters when the input queue is nearly empty and STOP characters 
when nearly full. 

Output modes 
The c_oflag field specifies the treatment of output. The initial value of this 
field is 0 (all bits dear). 

The following output mode flags may be set: 
OPOST 
OLCUC 
ONLCR 
OCRNL 
ONO CR 
ONLRET 
OF ILL 
OFDEL 
NLDLY 
NLO 
NLl 
CRDLY 
CRO 
CRl 
CR2 
CR3 
TABDLY 
TABO 
TABl 
TAB2 
TAB3 
BSDLY 
BSD 
BSl 
VTDLY 
VTO 
VTl 
FFDLY 
FFO 
FFl 

OPOST 

OLCUC 

0000001 Postprocesses output 
0000002 Maps lowercase to uppercase on output 
0000004 Maps NL to CR-NL on output 
0000010 Maps CR to NL on output 
0000020 No CR output at column 0 
0000040 NL performs CR function 
0000100 Uses fill characters for delay 
0000200 Fills is DEL, else NUL 
0000400 Selects newline delays: 
0 
0000400 
0003000 Selects carriage return delays: 
0 
0001000 
0002000 
0003000 
0014000 Selects horizontal tab delays: 
0 
0004000 
0010000 
0014000 Expands tabs to spaces 
0020000 Selects backspace delays: 
0 
0020000 
0040000 Selects vertical tab delays: 
0 
0040000 
0100000 Selects form feed delays: 
0 
0100000 

If set, output characters are post-processed as ind.icated ~y the 
remaining flags. If not set, characters are transmitted without 
change. 

Transmit a lowercase alphabetic character as the corresponding 
uppercase character. This function is often used in conjunction 
withIUCLC. 

1February1993 



ONLCR 

OCRNL 

ON OCR 

ONLRET 

Transmit the NL character as the CR NL character pair. 

Transmit the CR character as the NL character. 

termio(M) 

Do not transmit the CR character when it is in column 0 (first 
position). 

If set, use the NL character to perform the carriage return func­
tion; the column pointer is set to 0, and the delays specified for 
CR will be used. If not set, use the NL character 

To perform the linefeed function; the column pointer will 
remain unchanged. Also set the column pointer to 0 if the CR 
character is actually transmitted. 

The delay bits specify how long transmission stops to allow for mechanical or 
other movement when certain characters are sent to the terminal. No delay is 
implemented if none of the bits has been set. Note that actual delays depend 
on line speed and system load. 

The following delay modes are defined: 

OFILL 

OFDEL 

NLDLY 

NU 

CRDLY 

CRl 

CR2 

CR3 

TABDLY 

TABl 

TAB2 

l February 1993 

Transmit fill characters to implement a delay instead of a real 
timed delay. This is useful for high baud rate terminals which 
need only a minimal delay. 

If set, DEL is the fill character; if not set, it is NUL. 

Use to turn off the newline delay bits. 

Select a newline delay of about 0.10 seconds. If ONLRET is set, 
use carriage return delays instead of newline delays. 

Use to turn off the carriage return delay bits. 

Select a carriage return delay dependent on the current column 
position. If OFILL is set, transmit 2 fill characters. 

Select a carriage return delay of about 0.10 seconds. If OFILL is 
set, transmit 4 fill characters. 

Select a carriage return delay of about 0.15 seconds. 

Use to turn off the horizontal tab delay bits. 

Select a horizontal tab delay which is dependent on the current 
column position. If OFILL is set, 2 fill characters will be transmit­
ted for any delay. 

Select a horizontal tab delay of about 0.10 seconds. If OFILL is 
set, 2 fill characters will be transmitted for any delay. 

867 



termio(MJ 

868 

TAB3 

BSDLY 

BSl 

VTDLY 

VT1 

FFDLY 

FF1 

Specify that tabs are to be expanded into spaces. 

Use to tum off the backspace delay bits. 

Select a backspace delay of about 0.05 seconds. If OFILL is set, 1 
fill character will be transmitted. 

Use to tum off the vertical tab delay bits. 

Select a vertical tab delay of about 2 seconds. 

Use to tum off the form feed delay bits. 

Select a form feed delay of about 2 seconds. 

Hardware control modes 
The c_cflag field describes the hardware control of the terminal. The initial 
value of this field is 89600, CS8, CREAD, HUPCL. 

The following hardware control modes may be set: 
CBAUD 
BO 
850 
875 
8110 
8134 
8150 
8200 
8300 
8600 
81200 
81800 
82400 
84800 
89600 
819200 
EXTA 
838400 
EXT8 

0000017 Baud rate: 
0 Hang up 
0000001 50 baud 
0000002 75 baud 
0000003 110 baud 
0000004 134.5 baud 
0000005 150 baud 
0000006 200 baud 
0000007 300 baud 
0000010 600 baud 
0000011 1200 baud 
0000012 1800 baud 
0000013 2400 baud 
0000014 4800 baud 
0000015 9600 baud 
0000016 19200 baud 
0000016 External A 
0000017 38400 baud 
0000017 External 8 

1 February 1993 



CSIZE 0000060 Character size: 
CSS O 5 bits 
CS6 0000020 6 bits 
CS7 0000040 7 bits 
CSB 0000060 8 bits 
CSTOPB 0000100 Sends two stop bits if set, else one 
CREAD 0000200 Enables receiver 
PARENB 0000400 Parity enable 
PARODD 0001000 Odd parity if set, else even 
HUPCL 0002000 Hangs up on last close 
CLOCAL 0004000 Local line if set, else dial-up 
LOBLK 0010000 Block layer output 
CTSFLOW 0020000 Enables CTS handshaking on a serial line 
RTSFLOW 0040000 Enables RTS handshaking on a serial line 
CRTSFL 0100000 Enables bidirectional hardware flow control -

included for backward compatibility 

termio(M) 

ORTSFL 0100000 Enables unidirectional or bidirectional hardware 
flow control depending on the settings of CTSFLOW 
and RTSFLOW 

CBAUD Use to turn off the baud rate bits. 

BO Zero baud rate; used to hang up a connection. If BO is specified, 
Data Terminal Ready (DTR) will not be asserted. Without DTR, 
the line is disconnected if it is connected through a modem. For 
any particular hardware, impossible speed changes are ignored. 

B50 B75 B100 B134 B150 B200 B300 B600 B1200 
B1800 B2400 B4800 B9600 B19200 EXTA B38400 EXTB 

Use to specify the baud rate. 

CSIZE Use to turn off the character size bits. 

CS5 CS6 CS7 CS8 

CSTOPB 

CREAD 

PARENB 

PARODD 

HUPCL 

1 February 1993 

Use to specify the character size in bits for both transmission 
and reception. This size does not include the parity bit, if any. 

If set, use 2 stop bits; if not set, use 1 stop bit. For example, at 
110 baud, 2 stops bits are required. 

If set, enable the receiver; if not set, the receiver is disabled and 
no characters will be received. 

Enable parity generation and detection, and add a parity bit to 
each character. 

If set, select odd parity if PARENB is also set; if not set, select 
even parity if PARENB is also set. 

Disconnect the line when the last process with the line open 
either closes it or terminates; that is, Data Terminal Ready (DTR) 
will not be asserted. 

869 



termio(MJ 

870 

CLOCAL Assume the line to be a local, direct connection with no modem 
control. Data Terminal Ready (DTR) and Request To Send (RTS) 
are asserted, but incoming modem signals are ignored. If CLO­
CAL is not set, modem control is assumed. This means that DTR 
and RTS are asserted. Also, Carrier Detect (CD) must be asserted 
before communications can proceed. 

LOBLK If set, block the output of a shell layer when it is not the current 
layer; if not set, multiplex the output generated by the shell 
layer onto the current layer. 

CTSFLOW Enable CTS handshaking. 

RTSFLOW Enable RTS handshaking. 

CTSFLOW and RTSFLOW correspond to the stty(C) settings ctsflow and 
rtsflow. 

The RS-232 serial interface provides the RTS and CTS signal lines to allow 
handshaking between Data Terminal Equipment (DTE; devices such as termi­
nals, printers, and computers) and Data Circuit terminating Equipment 
(sometimes referred to as Data Communications Equipment or DCE; almost 
always a modem). (There are exceptions to these definitions; for example, 
DCE serial ports and DTE modems exist.) Communication using bidirectional 
flow control in hardware is more efficient and reliable than using software 
flow control {IXON/IXOFF). There is also no problem with sending binary data 
over a link which uses RTS/CTS based handshaking. 

Unidirectional flow control works in the following manner: 

• The DTE asserts the RTS (Request To Send) line when it is ready to send 
data to the DCE. 

• The DTE drops RTS when there is no more data in its output buffer. 

• The DCE asserts the CTS (Clear To Send) line when it is ready to receive 
data from the DTE. 

• The DCE drops CTS if it needs to stop the DTE sending data. 

In this way, the DCE controls the flow of data from the DTE but not the other 
way around. The implicit assumption is that the DTE is faster than the DCE. 
With the high-speed modems now available, bidirectional flow control is used 
in preference; this avoids the possibility of characters being lost due to the 
modem causing the input buffer on the serial port to overflow. 

Using bidirectional flow control, the DTE asserts RTS when it is ready to 
receive data (reversing its role from the unidirectional case), and drops RTS 
when its input buffer becomes too full. As for the unidirectional case,. th~ DCE 
asserts CTS when it is ready to receive data, and drops CTS when its ~nrut 
buffer is too full. In each case, the sending equipment stops transm1ttmg 
whenever it sees the incoming control line drop. 

1 February 1993 



terrnio(M) 

CRTS FL Changes the meaning of RTS (with RTSFLOW and CTSFLOW not 
set) to allow bidirectional flow control. CRTSFL is included for 
backward compatibility; ORTSFL should be used in preference. 

ORTSFL Old RTSFLOW; depending on the settings of RTSFLOW and 
CTSFLOW, ORTSFL determines the type of flow control. 

The hardware flow control modes which may be obtained by combining the 
flags ORTSFL, RTSFLOW, and CTSFLOW are shown in the following table: 

Flag combination 
ORTSFL I RTSFLOW I CTSFLOW 

(ORTSFL I RTSFLOW) & ·cTSFLOW 

(ORTSFL I CTSFLOW) & -RTSFLOW 

ORTSFL & -(RTSFLOW I CTSFLOW) 

(RTSFLOW I CTSFLOW) & -oRTSFL 

RTSFLOW & -(CTSFLOW I ORTSFL) 

CTSFLOW & -(RTSFLOW I ORTSFL) 

-(ORTSFL I RTSFLOW I CTSFLOW) 

Flow control mode 

Enable unidirectional flow control 
Assert RTS when ready to send 
No effect 
Enable bidirectional flow control 
Enable bidirectional flow control 
No effect 
Stop transmission when CTS drops 
Disable hardware flow control 

Older serial devices requiring unidirectional flow control should use the stty 
settings ortsfl rtsflow ctsflow. 

Bidirectional flow control is achieved using the stty settings: ortsfl -rtsflow 
-ctsflow, or -ortsfl rtsflow ctsflow. These settings are the ones most likely to 
work with high-speed modems and other modern serial devices. (The settings 
supercede the older stty settings crtsfl -rtsflow -ctsflow.) 

In both the unidirectional and bidirectional cases, you should also specify 
-clocal -ixon -ixoff to stty. These settings specify that the line has modem 
control, and that software flow control is disabled. 

Software flow control (IXON and IXOFF) should be disabled when using hard­
ware flow control (ORTSFL, RTSFLOW and CTSFLOW). The reverse also 
applies; disable hardware flow control when using software flow control. 

Set all flags explicitly on or off when selecting the flow control mode using 
stty. For example, to set bidirectional flow control, you would enter: 
stty ortsfl -ctsflow -rtsflow -ixon -ixoff. 

The use of the settings CTSFLOW, RTFLOW, CRTSFL, or ORTSFL is strictly 
hardware dependent, and should only be used between devices capable of 
supporting RTS/CTS signaling. 

1February1993 871 



termio(M) 

872 

The RS-232 line must also be wired correctly for RTS/CTS handshaking. The 
EIA 232D standard has the following pin connections for linking DTE to DCE: 

DTE DCE 
1 to 1 Shield 
2 to 2 Transmit Data TXD 
3 to 3 Receive Data RXD 
4 to 4 Request to Send RTS 
5 to 5 Clear to Send CTS 
6 to 6 Data Set Ready DSR 
7 to 7 Signal earth return 
8 to 8 Carrier Detect CD 
20 to 20 Data Terminal Ready DTR 
22 to 22 Ring Indicator RI, sometimes used by modems 

For direct connection linking DTE to DTE back-to-back, the pin connections 
(null-modem) are: 

DTE DTE 
1 to 1 
2 to 3 
3 to 2 
4 to 5 
5 to 4 
6and8 to 20 
7 to 7 
20 to 6and8 

Line discipline modes 
The line discipline used by the serial driver is chosen by the setting of the 
c_line field. The basic line discipline used by standard terminal drivers is line 
discipline 0 (zero). 

The c_lflag field of the argument structure is used by the line discipline to 
control terminal functions. The initial value of this field is 0 (all bits clear). 

Line discipline 0 provides the following modes: 
ISIG 
I CANON 
XCASE 
ECHO 
EC HOE 
ECHOK 
ECHONL 
NOFLSH 
XCLUDE 

0000001 Enable signals 
0000002 Canonical input (erase and kill processing) 
0000004 Canonical upper/lower presentation 
0000010 Enables echo 
0000020 Echoes erase character as BS-SP-BS 
0000040 Echoes NL after kill character 
0000100 Echoes NL 
0000200 Disables flush after interrupt or quit 
0100000 Exclusive use of the line 

1 February 1993 



termio(M) 

ISIG If set, check each input character against the special control 
characters INTR, SWTCH and QUIT. If the character matches 
one of these, perform the function associated with that character 
(generate the signal associated with that character). 

ICANON 

XCASE 

ECHO 

If not set, perform no checking. 

Special input functions are only available if ISIG is set. These 
functions may be disabled individually by changing the value of 
the control character to an unlikely or impossible value (for 
example, 0377). 

If set, select canonical processing ("cooked" mode). This enables 
the erase and kill edit functions, and the assembly of input char­
acters into lines delimited by NL, EOF and EOL. 

If not set, satisfy read requests directly from the input queue 
("raw" mode). A read will not be satisfied until at least VMIN 
characters have been received or the timeout value VTIME has 
expired and at least one character has been input. This allows 
fast bursts of input to be read efficiently while still allowing sin­
gle character input. (See the discussion in "VMIN and VTIME 
settings".) 

If set with ICANON, accept an uppercase letter on input by 
preceding it with a " \ " character, and is output preceded by a 
" \ " character. In this mode, the following escape sequences are 
generated on output and accepted on input: 

For: 

{ 
I 
\ 

Use: 
\" 
\! 
\" 
\( 
\) 
\\ 

For example, A is input as \a, \n as \ \n, and \N as \ \ \n. 

Echo characters when they are received. 

With ICANON set, the echo modes ECHOE, ECHOK, and ECHONL are 
possible: 

ECHOE 

1 February 1993 

If ECHO is also set, echo the erase character as the ASCII 
sequence BS SP BS. This clears the previous character on a CRT 
screen. 

If set and ECHO is not set, echo the erase character as the ASCII 
sequence SP BS. 

873 



termio(M) 

874 

ECHOK 

ECHO NL 

Echo the NL character after the kill character to emphasize that 
the line will be deleted. Note that an escape character preceding 
the erase or kill character removes any special function. 

Echo the NL character even if ECHO is not set. This is useful for 
terminals set to local echo (so-called half duplex). 

Unless escaped, the EOF character is not echoed. Because EOT is the default 
EOF character, this prevents terminals that respond to EOT from hanging up. 

NOFLSH 

XCLUDE 

Disable the normal flush of the input and output queues associ­
ated with the quit and interrupt characters. 

Causes any subsequent attempt to open the tty device using 
open(S) to fail for all users except the super user. The call 
returns EBUSY in errno if it fails. 

XCLUDE is useful for programs which must have exclusive use 
of a communications line. It is not intended for the line to the 
program's controlling terminal. 

Clear XCLUDE before the setting program terminates, otherwise 
subsequent attempts to open the device will fail. 

VMIN and Vl1ME settings 
VMIN and VTIME set the timing characteristics for reading characters in 
"raw" mode: 

VMIN 

VTIME 

The minimum number of characters that should be received 
when the read is satisfied (that is, the characters are returned to 
the user). 

A timer of 0.10 second granularity used to time-out "bursty" and 
short-term data transmissions. The value of VTIME is measured 
in tenths of seconds. 

The four possible values for VMIN and VTIME and their interactions are: 

VMIN > 0, VTIME > 0 In this case, VTIME serves as an inter-character timer 
activated after the first character is received, and 
reset upon receipt of each character. VMIN and 
VTIME interact as follows: 

As soon as one character is received the inter­
character timer is started. 

If VMIN characters are received before the inter­
character timer expires the read is satisfied. 

1 February 1993 



Files 

See also 

termio(M) 

If the timer expires before VMIN characters are 
received the characters received to that point are 
returned to the user. 

A read(S) operation will sleep until the VMIN and 
VTIME mechanisms are activated by the receipt of 
the first character; thus, at least one character must 
be returned. 

VMIN > 0, VTIME = 0 In this case, because VTIME = 0, the timer plays no 
role and only VMIN is significant. A read(S) opera­
tion is not satisfied until VMIN characters are 
received. 

VMIN = 0, VTIME > 0 In this case, because VMIN = 0, VTIME no longer 
serves as an inter-character timer, but now serves as 
a read timer that is activated as soon as the read(S) 
operation is processed. A read(S) operation is satis­
fied as soon as a single character is received or the 
timer expires, in which case, the read(S) operation 
will not return any characters. 

VMIN = 0, VTIME = 0 In this case, return is immediate. If charaders are 
present, they will be returned to the user. 

The VMIN and VTIME values are stored in the position for the EOF and EOL 
characters respectively. VMIN and VTIME are interpreted as EOF and EOL if 
ICANON is set. Default VMIN and VTIME values are stored in the 
/usr/inc/ude/sys/termio.h file. To change these values, unset ICANON and use 
stty(C) to change the VMIN and VTIME values as represented by EOF and 
EOL. 

/dev/tty 
/dev/tty* 
/dev/console 

fork(S), getty(M), ioctl(S), mapchan(F), mapchan(M), read(S), setgprp(S), 
shl(C), signal(S), stty(C), termios(M), tty(M) 

Standards conformance 

termio is conformant with; 

AT&TSVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 875 



tem1ios(MJ 

termios 
POSIX general terminal interlace 

Description 

876 

This entry discusses the POSIX termios extensions to the termio(M) interface. 
Only those functions not described in termio(M) are described here. 

Certain characters have special functions on input. These functions and their 
default character values are summarized as follows: 

SUSP (Unset by default) If the ISIG flag is enabled, receipt of the SUSP 
character causes a SIGTSTP signal to be sent to the current process 
group. The SUSP character is discarded when processed. It is often 
set to ( Ctrl}z. 

Several library functions apply to terminal files. The primary calls use the 
following structure, defined in the file <lermios.h>: 

#define NCCS 13 
struct termios { 

tcf lag_t 
tcflag_t 
tcflag_t 
tcflag_t 

]; 

char 
cc_t 
char 
char 

c_i flag; 
c_oflag; 
c_cflag; 
c_Hlag; 
c_line; 
c_cc[NCCSJ; 
c_ispeed; 
c_ospeed; 

!• input modes •! 
!• output modes •/ 
/* control modes •I 
!• local I line discipline) 
I* line discipline •/ 
I* control chars •/ 
I* input baud rate *I 
I* output baud rate *I 

modes •I 

The additional special control characters defined by the array c_cc. are: 
10 VSUSP NUL 
11 VSTART DCl 
12 VSTOP DC3 

The following additional line discipline (0) functions are available in the 
c_l flag field: 

IEXTEN 0000400 enable extended functions 
TOSTOP 0001000 SIGTTOU on background output 

If IEXTEN is set, additional non-POSIX functions are recognized. This is the 
default. If IEXTEN is not set, the modes ICANON, ISIG, IXON, and IXOFF are 
assumed. 

1 Febrnary 1993 



Files 

See also 

termios(M) 

If TOSTOP is set, the signal SIGTTOU is sent to the process group of a process 
that tries to write to its controlling terminal if it is not the foreground process 
group. By default, this signal stops the members of the process group. If 
TOSTOP is not set, the output generated by the process is output to the 
current output stream. 

The associated library functions are found in tcattr(S) and tdlow(S). 

/dev/tty 
/dev/tly* 
/dev/conso/e 

ioctl(S), signal(S), stty(C), tcattr(S), tdlow(S), termio(M), tty(M) 

Standards conformance 

termios is conformant with: 

IEEE POSIX Std 1003.1-1990 System Application Program Interface (API) 
[C Language] (150/IEC 9945-1); 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 877 



timod(M) 

ti mod 
Transport Interface cooperating STREAMS module 

Descripti.on 

878 

timod is a STREAMS module for use with the Transport Interface (TI) functions 
described in the Development System Programmer's Reference Manual Volume 2. 
The timod module converts a set of ioctl(S) calls into STREAMS messages that 
may be consumed by a transport protocol provider which supports the Trans­
port Interface. This allows a user to initiate certain TI functions as atomic 
operations. 

The timod module must only be pushed onto a stream terminated by a trans­
port protocol provider which supports the Tl. 

All STREAMS messages, with the exception of the message types generated 
from the ioctl commands described below, will be transparently passed to the 
neighboring STREAMS module or driver. The messages generated from the 
following ioctl commands are recognized and processed by the timod 
module. The format of the ioctl call is: 

#include csys/stropts.h> 

struct strioctl strioctl; 

strioctl. ic_cmd = cmd; 
strioctl.ic_timeout = INFTIM; 
strioctl. ic len = size; 
strioctl.ic=dp = (char *)bu/ 
ioctllfildes, I_STR, &strioctl); 

where, on issuance, size is the size of the appropriate TI message to be sent to 
the transport provider and on return, size is the size of the appropriate TI 
message from the transport provider in response to the issued TI message. 
bu/ is a pointer to a buffer large enough to hold the contents of the appropri­
ate TI messages. The TI message types are defined in <sys/tihdr.h>. The possi­
ble values for the cmd field are: 

Tl_BIND 

Tl_ UNBIND 

Bind an address to the underlying transport protocol pro­
vider. The message issued to the Tl_BIND ioctl is equivalent 
to the TI message type T_BIND_REQ and the message 
returned by the successful completion of the ioctl is 
equivalent to the TI message type T_BIND_ACK. 

Unbind an address from the underlying transport protocol 
provider. The message issued to the Tl_UNBIND ioctl is 
equivalent to the TI message type T_UNBIND_REQ and the 
message returned by the successful completion of the ioctl is 
equivalent to the TI message type T_OK_ACK. 

1 February 1993 



timod(M) 

TI_GETINFO Get the TI protocol specific information from the transport 
protocol provider. The message issued to the Tl_GETINFO 
ioctl is equivalent to the TI message type T_INFO_REQ and 
the message returned by the successful completion of the 
ioctl is equivalent to the TI message type T_INFO_ACK. 

TI_OPTMGMT Get, set, or negotiate protocol specific options with the trans­
port protocol provider. The message issued to the 
Tl_OPTMGMT ioctl is equivalent to the TI message type 
T_OPTMGMT_REQ, and the message returned by the suc­
cessful completion of the ioctl is equivalent to the TI mes­
sage type T_OPTMGMT_ACK. 

Return values 

Files 

See also 

If the ioctl system call returns with a value greater than 0, the lower 8 bits of 
the return value will be one of the TI error codes as defined in <sys/tiuser.h>. If 
the TI error is of type TSYSERR, then the next 8 bits of the return value will 
contain an error as defined in <sys/errno.h> (see Intro(S)). 

/usr/inc/ude/sys/timod.h 
/usr/include/sys/tiuser.h 
/usr/inc/ude/sys/tihdr.h 
/usr/include/sys/errno.h 

tirdwr(M) 

AT&T STREAMS Primer 
AT&T STREAMS Programmer's Guide 

1 February 1993 879 



timtbl(MJ 

timtbl 
create a time locale table 

Syntax 

timtbl [ specfile ] 

Description 

The utility timtbl is provided to allow new LC_TIME locales to be defined. It 
reads a specification file, which contains definitions of the way in which time 
and date information is presented for a particular locale, and produces a 
binary table file, to be read by setlocale(S), which determines the behavior of 
the strftime(S) routine. 

The information supplied in the specification file consists of lines in the fol­
lowing format: 

item = string 
The "=" can be separated from the item and string fields by zero or more 
space or tab characters. The following values are meaningful for item: 

DATE_FMT specification of the format string for representing the date. It 
will contain • % " directives representing variable items such as 
the month number, as used in the format string for strftime(S). 

TIME_FMT specification of the format string for representing the time of 
day. 

F_NOON string indicating 12-hour clock times before midday, for exam­
ple "AM". 

A_NOON string indicating 12-hour clock times after midday, for example 
"PM". 

D_T_FMT string for formatting combined date and time. 

DAY_l full name of the first day of the week (Sunday). 

DAY_7 full name of the seventh day of the week. 

880 1February1993 



timtbl(M) 

ABDAY_l abbreviated name of the first day of the week, for example 
"Sun". 

ABDAY_7 abbreviated name of the seventh day of the week. 

MON_t full name of the first month in the Gregorian calendar. 

MON_t2 full name of the twelfth month. 

ABMON_t abbreviated name of the first month. 

ABMON_t2 full name of the twelfth month. 

The string is a sequence of characters surrounded by quotes ("). Characters 
within the string can be specified both literally and using"\" escapes; the fol­
lowing three strings are equivalent: 

"Tuesday'' - literal 
"\x54ue \x73da \x79" - hexadecimal escapes 
"\124ue\163da\171" -octal escapes 

The strings for the items DATE_FMT, TIME_FMT and D_T_FMT will also 
include " % " directives as detailed in the strftime(S) manual page, to specify 
variable portions of the string. 

All characters following a hash(#) are treated as a comment-and ignored up to 
the end of the line, unless the hash is within a quoted string. 

The various items may be specified in any order. If any items are not speci­
fied, a warning message will be produced, and the null string ("") substituted. 

The binary table output is placed in a file named "time", within the current 
directory. This file should be copied or linked to the correct place in the setlo­
cale file tree (see locale(M)). To prevent accidental corruption of the output 
data, the file is created with no write permission; if the timtbl utility is run in 
a directory containing a write-protected "ctype" file, the utility will ask if the 
existing file should be replaced: any response other than "yes" or "y'' will 
cause timtbl to terminate without overwriting the existing file. 

If the specfile argument is missing, the specification information is read from 
the standard input. 

1February1993 881 



timtbl(M) 

Diagnostics 

If the input table file cannot be opened for reading, processing will terminate 
with the error message, "Cannot open specification file''. 

Any lines in the specification file which are syntactically incorrect, or contain 
an unrecognized value for the item, will cause an error message to be issued 
to the standard error output, specifying the line number on which the error 
was detected. The line will be ignored, and processing will continue. 

If a particular item is specified more than once, a warning message will be 
produced, and processing will continue. 

If the specification file does not contain specifications for all possible items, a 
warning message will be produced. 

If the output file, time, cannot be opened for writing, processing will terminate 
with the error message, "Cannot create table file". 

Any error conditions encountered will cause the program to exit with a non­
zero return code; successful completion is indicated with a zero return code. 

Limitations 

See also 

The strings D_FMT, T_FMT, AM_STR and PM_STR may be used as alternatives 
to DATE_FMT, TIME_FMT, F_NOON and A_NOON respectively, if required. 
These alternatives are provided for consistency with the identifiers used by 
nl_langinfo(S). 

chrtbl(M}, locale(M}, numtbl(M}, setlocale(S}, strftime(S) 

Standards conformance 

882 

timtbl is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



tirdwr(M) 

tirdwr 
Transport Interface read/write interface STREAMS module 

Descripti.on 
tirdwr is a STREAMS module that provides an alternate interface to a transport 
provider which supports the Transport Interface (TI) functions described in 
the Development System Programmer's Reference Manual Volume 2. This alternate 
interface allows a user to communicate with the transport protocol provider 
using the read(S) and write(S) system calls. The putmsg(S) and getmsg(S) sys­
tem calls may also be used. However, putmsg and getmsg can only transfer 
data messages between user and stream. 

The tirdwr module must only be pushed (see I_PUSH in streamio(M)) onto a 
stream terminated by a transport protocol provider which supports the Tl. 
After the tirdwr module has been pushed onto a stream, none of the Transport 
Interface functions can be used. Subsequent calls to TI functions will cause an 
error on the stream. Once the error is detected, subsequent system calls on the 
stream will return an error with errno set to EPROTO. 

The following are the actions taken by the tirdwr module when pushed on the 
stream, popped (see I_POP in streamio(M)) off the stream, or when data 
passes through it. 

push 

write 

When the module is pushed onto a stream, it will check any exist­
ing data destined for the user to ensure that only regular data mes­
sages are present. It will ignore any messages on the stream that 
relate to process management, such as messages that generate sig­
nals to the user processes associated with the stream. If any other 
messages are present, the I_PUSH will return an error with ermo 
set to EPROTO. 

The module will take the following actions on data that originated 
from a write system call: 

• All messages with the exception of messages that contain con­
trol portions (see the putmsg and getmsg system calls) will be 
transparently passed onto the module's downstream neighbor. 

• Any zero length data messages will be freed by the module and 
they will not be passed onto the module's downstream 
neighbor. 

• Any messages with control portions will generate an error, and 
any further system calls associated with the stream will fail 
with errno set to EPROTO. 

1February1993 883 



tirdwr(M) 

See also 

884 

read The module will take the following actions on data that originated 
from the transport protocol provider: 

pop 

• All messages with the exception of those that contain control 
portions (see the putmsg and getmsg system calls) will be tran­
sparently passed onto the module's upstream neighbor. 

• The action taken on messages with control portions will be as 
follows: 

- Messages that represent expedited data will generate an 
error. All further system calls associated with the stream 
will fail with ermo set to EPROTO. 

- Any data messages with control portions will have the con­
trol portions removed from the message prior to passing 
the message to the upstream neighbor. 

- Messages that represent an orderly release indication from 
the transport provider will generate a zero length data mes­
sage, indicating the end-of-file, which will be sent to the 
reader of the stream. The orderly release message itself will 
be freed by the module. 

- Messages that represent an abortive disconnect indication 
from the transport provider will cause all further write and 
putmsg system calls to fail with ermo set to ENXIO. All 
further read and getmsg system calls will return zero length 
data (indicating end of file) once all previous data has been 
read. 

- With the exception of the above rules, all other messages 
with control portions will generate an error and all further 
system calls associated with the stream will fail with ermo 
set to EPROTO. 

• Any zero length data messages will be freed by the module and 
they will not be passed onto the module's upstream neighbor. 

When the module is popped off the stream or the stream is closed 
and an orderly release indication has been received previously, an 
orderly release request will be sent to the remote side of the trans­
port connection. 

streamio(M), timod(M), Intro(S), getmsg(S), putmsg(S), read(S), write(S) 

AT&T STREAMS Primer 
AT&T STREAMS Programmer's Guide 

1 February 1993 



trchan(M) 

trchan 
translate character sets 

Syntax 

trchan [ -ciko I mapfile 

Description 

trchan performs mapping as a filter, using the same format of mapfile as 
mapchan(M) (described in mapchan(F)). This allows a file consisting of one 
internal character set to be "translated" to another internal character set. 

trchan reads standard input, maps it, and writes to standard output. A 
mapfile must be given on the command line. Errors cause trchan to stop pro­
cessing unless -c is specified. 

The following options can be used with trchan: 

-c causes errors to be echoed on stderr, and processing is continued. 

-i specifies that the "input" section of the mapfile is used when translat­
ing data. 

-k specifies that the "dead" and "compose" sections of the mapfile are 
used when translating data. 

-o specifies that the "output" section of the mapfile is used when translat­
ing data. 

The -i, -k and -o options can be specified in any combination; if none 
are specified, trchan uses the entire mapfile, as if all three were speci­
fied together. 

Limitations 

trchan currently ignores the control sections of the mapfile. 

Files 

/usr/lib/mapcl1a11/* 

See also 

ascii(M), mapchan(F), mapchan(M) 

1 February 1993 885 



trchan(MJ 

Standards confonnance 

886 

trchan is not part of any currently supported standard; it is an extension of 
AT&T System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 



tty(M) 

tty 
special terminal interface 

Description 

Files 

See also 

The file /dev/tty is, in each process, a synonym for the control terminal associ­
ated with the process group of that process, if any. It is useful for programs or 
shell sequences that wish to be sure of writing messages on the terminal no 
matter how output has been redirected. It can also be used for programs that 
demand the name of a file for output, when typed output is desired, and 
when it is tiresome to find out what terminal is currently in use. 

The general terminal interface is described in termio(M). 

/dev/tty 
/dev/tty* 

termio(M) 

Standards confonnance 

tty is conformant with: 

AT&T SVID Issue 2; 
X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 887 



tz<MJ 

tz 
time zone environment variable 

Syntax 
/etc/tz 

Description 
TZ is the shell environment variable for the time zone of the system and is set 
in the file /etc/TIMEZONE (see timezone(F) for a complete description of the 
syntax for defining TZ). 

The shell script /etc/tz, generally run during installation, prompts for the 
correct time zone, prompts for the dates when time is shifted from standard to 
daylight time and back, and for the number of hours to shift (partial hours in 
the form of hh:mm:ss are acceptable). and sets TZ correctly in the appropriate 
files. The following files are examined to see if they read from /etc/TIMEZONE 
to set TZ for their environment: 

/etc/cs/ire 
/etc/profile 
/etc/rc2 
/.profile 

If these files do not read from /etc/TIMEZONE, a warning is issued. 

Users living in a time zone different than that of the host machine may change 
TZ in their $HOME/.profile or $HOME/.login files. 

To change the time zone for the entire system, run the shell script /etc/tz (as 
root) or use an editor to change the variable TZ in the file /etc/TIMEZONE. 

Limitations 

Files 

888 

The date(C) automatically switches from Standard Time to Summer Time 
(Daylight Saving Time). Leap days are properly accounted for. 

Changes to TZ are immediately effective, (that is, if a process changes the TZ 
variable, the next call to a ctime(S) routine returns a value based on the new 
value of the variable). 

/etc/rc2 
/etc/default/login 
/etc/tz 
$HOME/.profile 
$HOME/. login 

1 February 1993 



tz(M) 

See also 
ctime(S), date(C), environ(M), timezone(F) 

Standards confonnance 
tz is not part of any currently supported standard; it is an extension of AT&T 
System V provided by The Santa Cruz Operation, Inc. 

1 February 1993 889 



undocumented(M) 

undocumented 
programs not documented elsewhere in these manuals 

Description 

890 

Several programs distributed with SCO UNIX System V are not fully docu­
mented. In general, these programs fall into two categories: programs 
retained to provide compatability with earlier versions of SCO UNIX System V, 
and programs intended for execution by other programs, which are rarely of 
interest to the end user. 

This page lists undocumented programs, together with brief notes on their 
functionality and relevance. Note that this list is likely to change with future 
releases of SCO UNIX System V. We strongly recommend that you make no 
attempt to use or remove programs on this list; doing so may interfere with 
the functionality of other programs. 

Undocumented but useful programs are as follows: 

brand Used by installation scripts; documented in Product Engineering 
Toolkit. 

cleanup Shell script occasionally run by the root crontab file to clean up 
log files. 

checkeq Macro eqn(CT) checker. 

debrand Used by installation scripts; documented in Product Engineering 
Toolkit. 

ibmlpopt Used by the print service; displays lp(C) options specific to the 
IBM ProPrinter. 

menu_add Link to /bin/true. 

menu_del Link to /bin/true. 

message Used by installpkg(ADM), displaypkg(ADM), and 
removepkg(ADM). 

mt Lists the drive model number of the (obsolete) Intel tape drive. 

pwdmenu Used by backup(ADM). 

utmp_getty Provided for mscreen(M) support. 

1 February 1993 



Files 

See also 

undocumented(M) 

Utilities marked with an asterisk are unsupported and are included in the op­
erating system because they are part of the base distribution: 

/etc/_jst _fst* 
/usr/bin/asa asa* 
/etc/brand brand 
/usr/bin/c/1eckeq checkeq 
/etc/ckbupscd ckbupscd* 
/etc/cleanup cleanup 
/etc/debrand de brand 
/usr/bin/dsconfig dsconfig* 
/usr/lib/cmactovi emactovi* 
/11sr/binlfixshlib fixshlib* 
/etc/free free* 
/etc!Jsanck fsanck* 
/etclfsba fsba* 
/usr/bin/ibmlpopt ibmlpopt 
/usr/bin/inipcrm inipcrm* 
/usr/bin/menu_add menu_add 
/usr/bin/menu_del menu_del 
/usr/bin/message message 
/usr/bin/mlist mlist* 
/bin/mt mt 
/usr/bin/newmail newmail* 
/usr/bin/pwdmenu pwdmenu 
/etc/rstab rs tab* 
/etc/setc/k setclk* 
/usr/bin/update update* 
/etc/utmp_getty utmp_getty 

Intro(ADM), lntro(C}, Intro(F}, Intro(HW}, Intro(M} 

1 February 1993 891 



values(M) 

values 
machine-dependent values 

Syntax 

#include <values.h> 

Description 

892 

This file contains a set of manifest constants, conditionally defined for partic-
ular processor architectures. • 

The model assumed for integers is binary representation (ones or twos com­
plement), where the sign is represented by the value of the high-order bit. 

BITS( type) 

HIBITS 

HIBITL 

HIBITI 

MAXSHORT 

MAXLONG 

MAXI NT 

MAXFLOAT 
LN_MAXFLOAT 

MAXDOUBLE 
LN_MAXDOUBLE 

MINFLOAT 
LN_MINFLOAT 

The number of bits in a specified type (for example, 
int). 

The value of a short integer with only the high-order 
bit set (in most implementations, Ox8000). 

The value of a long integer with only the high-order bit 
set (in most implementations, Ox80000000). 

The value of a regular integer with only the high-order 
bit set (usually the same as HIBITS or HIBITL). 

The maximum value of a signed short integer (in most 
implementations, Ox7FFF = 32767). 

The maximum value of a signed long integer (in most 
implementations, Ox7FFFFFFF = 2147483647). 

The maximum value of a signed regular integer (usu­
ally the same as MAXSHORT or MAXLONG). 

The maximum value of a single-precision floating­
point number, and its natural logarithm. 

The maximum value of a double-precision floating­
point number, and its natural logarithm. 

The minimum positive value of a single-precision 
floating-point number, and its natural logarithm. 

1 February 1993 



Files 

See also 

MINDOUBLE 
LN_MINDOUBLE 

FSIGNIF 

DSIGNIF 

/usr/inc/11de/ualues.h 

Intro(S), math(M) 

Standards confonnance 

values(M) 

The m1mmum positive value of a double-precision 
floating-point number, and its natural logarithm. 

The number of significant bits in the mantissa of a 
single-precision floating-point number. 

The number of significant bits in the mantissa of a 
double-precision floating-point number. 

values is conformant with X/Open Portability Guide, Issue 3, 1989. 

1 February 1993 893 



xtproto(MJ 

xtproto 
multiplexed channels protocol used by xt(HW) driver 

Description 

Files 

See also 

894 

The xt(HW) driver contains routines which implement a multiplexed, multi­
buffered, full-duplex protocol with guaranteed delivery of ordered data via an 
8-bit byte data stream. This protocol is used for communication between 
multiple UNIX system host processes and an AT&T windowing terminal oper­
ating under layers(C). 

The protocol uses packets with a 2-byte header containing a 3-bit sequence 
number, 3-bit channel number, control flag, and data size. The data part of a 
packet may not be larger than 32 bytes. The trailer contains a CRC-16 cone in 2 
bytes. Each channel is double-buffered. 

Correctly received packets in sequence are acknowledged with a control 
packet containing an ACK; however, out of sequence packets generate a con­
trol packet containing a NAK, which will cause the retransmission in sequence 
of all unacknowledged packets. 

Unacknowledged packets are retransmitted after a timeout interval which is 
dependent on baud rate. Another timeout parameter specifies the interval 
after which incomplete receive packets are discarded. 

/usr/include/sys/xtproto.h channel multiplexing protocol definitions 

layers(M), layers(C), xt(HW) 

1 February 1993 



SCOiill® 
OPEN SYSTEMS SOFTWARE 

Please help us to write computer manuals that meet your needs by completing this 
form. Please post the completed form to the Publications Manager nearest you: The 
Santa Cruz Operation, Ltd., Croxley Centre, Hatters Lane, Watford WD1 8YN, 
United Kingdom; The Santa Cruz Operation, Inc., 400 Encinal Street, P.O. Box 1900, 
Santa Cruz, California 95061, USA or SCO Canada, Inc., 130 Bloor Street West, 10th 
Floor, Toronto, Ontario, Canada MSS lNS. 

Volume title: _________________________ _ 
(Copy this from the title page of the mar1ual, for example, sea UNIX Operating System User's Guide) 

Product: __________________________ _ 
(for example, sea UNIX System V Re/nJSe 3.2 Operating System Version 4.0) 

How long have you used this product? 

D Less than one month D Less than six months D Less than one year 

D 1to2 years D More than 2 years 

How much have you read of this manual? 

D Entire manual D Specific chapters D Used only for reference 

Agree Disagree 

The software was fully and accurately described D D D 
The manual was well organized D D D 
The writing was at an appropriate technical level 
(neither too complicated nor too simple) D D D 
It was easy to find the information I was looking for D D D 
Examples were clear and easy to follow D D D 
Illustrations added to my understanding of the software D D D 
I liked the page design of the manual D D D 

If you have specific comments or if you have found specific inaccuracies, 
please report these on the back of this form or on a separate sheet of paper. 
In the case of inaccuracies, please list the relevant page number. 

D 
D 

D 
D 
D 
D 
D 

May we contact you further about how to improve SCO UNIX documentation? 
If so, please supply the following details: 

D 
D 

D 
D 
D 
D 
D 

Name------------- Position ------------
Company __________________________ _ 

Address ___________________________ _ 

City & Post/Zip Code--------------------

Country ---------------------------

Telephone----------- Facsimile-----------



I February 1993 

11111111111111111111111111111111111111111111111111111111111111111 

BH01208P001 
61064 




	SCO_UOS_UR
	00_0001
	00_0002
	00_0003
	00_0004
	00_0005
	00_0006
	00_0007
	00_0008
	00_0009
	00_0010
	00_0011
	00_0012
	00_0013
	00_0014
	00_0015
	00_0016
	00_0017
	00_0018
	00_0019
	00_0020
	00_0021
	00_0022
	00_0023
	00_0024
	00_0025
	00_0026
	00_0027
	00_0028
	00_0029
	00_0030
	00_0031
	00_0032
	00_0033
	00_0034
	00_0035
	00_0036
	00_0037
	00_0038
	00_0039
	00_0040
	00_0041
	00_0042
	00_0043
	C_0001
	C_0002
	C_0003
	C_0004
	C_0005
	C_0006
	C_0007
	C_0008
	C_0009
	C_0010
	C_0011
	C_0012
	C_0013
	C_0014
	C_0015
	C_0016
	C_0017
	C_0018
	C_0019
	C_0020
	C_0021
	C_0022
	C_0023
	C_0024
	C_0025
	C_0026
	C_0027
	C_0028
	C_0029
	C_0030
	C_0031
	C_0032
	C_0033
	C_0034
	C_0035
	C_0036
	C_0037
	C_0038
	C_0039
	C_0040
	C_0041
	C_0042
	C_0043
	C_0044
	C_0045
	C_0046
	C_0047
	C_0048
	C_0049
	C_0050
	C_0051
	C_0052
	C_0053
	C_0054
	C_0055
	C_0056
	C_0057
	C_0058
	C_0059
	C_0060
	C_0061
	C_0062
	C_0063
	C_0064
	C_0065
	C_0066
	C_0067
	C_0068
	C_0069
	C_0070
	C_0071
	C_0072
	C_0073
	C_0074
	C_0075
	C_0076
	C_0077
	C_0078
	C_0079
	C_0080
	C_0081
	C_0082
	C_0083
	C_0084
	C_0085
	C_0086
	C_0087
	C_0088
	C_0089
	C_0090
	C_0091
	C_0092
	C_0093
	C_0094
	C_0095
	C_0096
	C_0097
	C_0098
	C_0099
	C_0100
	C_0101
	C_0102
	C_0103
	C_0104
	C_0105
	C_0106
	C_0107
	C_0108
	C_0109
	C_0110
	C_0111
	C_0112
	C_0113
	C_0114
	C_0115
	C_0116
	C_0117
	C_0118
	C_0119
	C_0120
	C_0121
	C_0122
	C_0123
	C_0124
	C_0125
	C_0126
	C_0127
	C_0128
	C_0129
	C_0130
	C_0131
	C_0132
	C_0133
	C_0134
	C_0135
	C_0136
	C_0137
	C_0138
	C_0139
	C_0140
	C_0141
	C_0142
	C_0143
	C_0144
	C_0145
	C_0146
	C_0147
	C_0148
	C_0149
	C_0150
	C_0151
	C_0152
	C_0153
	C_0154
	C_0155
	C_0156
	C_0157
	C_0158
	C_0159
	C_0160
	C_0161
	C_0162
	C_0163
	C_0164
	C_0165
	C_0166
	C_0167
	C_0168
	C_0169
	C_0170
	C_0171
	C_0172
	C_0173
	C_0174
	C_0175
	C_0176
	C_0177
	C_0178
	C_0179
	C_0180
	C_0181
	C_0182
	C_0183
	C_0184
	C_0185
	C_0186
	C_0187
	C_0188
	C_0189
	C_0190
	C_0191
	C_0192
	C_0193
	C_0194
	C_0195
	C_0196
	C_0197
	C_0198
	C_0199
	C_0200
	C_0201
	C_0202
	C_0203
	C_0204
	C_0205
	C_0206
	C_0207
	C_0208
	C_0209
	C_0210
	C_0211
	C_0212
	C_0213
	C_0214
	C_0215
	C_0216
	C_0217
	C_0218
	C_0219
	C_0220
	C_0221
	C_0222
	C_0223
	C_0224
	C_0225
	C_0226
	C_0227
	C_0228
	C_0229
	C_0230
	C_0231
	C_0232
	C_0233
	C_0234
	C_0235
	C_0236
	C_0237
	C_0238
	C_0239
	C_0240
	C_0241
	C_0242
	C_0243
	C_0244
	C_0245
	C_0246
	C_0247
	C_0248
	C_0249
	C_0250
	C_0251
	C_0252
	C_0253
	C_0254
	C_0255
	C_0256
	C_0257
	C_0258
	C_0259
	C_0260
	C_0261
	C_0262
	C_0263
	C_0264
	C_0265
	C_0266
	C_0267
	C_0268
	C_0269
	C_0270
	C_0271
	C_0272
	C_0273
	C_0274
	C_0275
	C_0276
	C_0277
	C_0278
	C_0279
	C_0280
	C_0281
	C_0282
	C_0283
	C_0284
	C_0285
	C_0286
	C_0287
	C_0288
	C_0289
	C_0290
	C_0291
	C_0292
	C_0293
	C_0294
	C_0295
	C_0296
	C_0297
	C_0298
	C_0299
	C_0300
	C_0301
	C_0302
	C_0303
	C_0304
	C_0305
	C_0306
	C_0307
	C_0308
	C_0309
	C_0310
	C_0311
	C_0312
	C_0313
	C_0314
	C_0315
	C_0316
	C_0317
	C_0318
	C_0319
	C_0320
	C_0321
	C_0322
	C_0323
	C_0324
	C_0325
	C_0326
	C_0327
	C_0328
	C_0329
	C_0330
	C_0331
	C_0332
	C_0333
	C_0334
	C_0335
	C_0336
	C_0337
	C_0338
	C_0339
	C_0340
	C_0341
	C_0342
	C_0343
	C_0344
	C_0345
	C_0346
	C_0347
	C_0348
	C_0349
	C_0350
	C_0351
	C_0352
	C_0353
	C_0354
	C_0355
	C_0356
	C_0357
	C_0358
	C_0359
	C_0360
	C_0361
	C_0362
	C_0363
	C_0364
	C_0365
	C_0366
	C_0367
	C_0368
	C_0369
	C_0370
	C_0371
	C_0372
	C_0373
	C_0374
	C_0375
	C_0376
	C_0377
	C_0378
	C_0379
	C_0380
	C_0381
	C_0382
	C_0383
	C_0384
	C_0385
	C_0386
	C_0387
	C_0388
	C_0389
	C_0390
	C_0391
	C_0392
	C_0393
	C_0394
	C_0395
	C_0396
	C_0397
	C_0398
	C_0399
	C_0400
	C_0401
	C_0402
	C_0403
	C_0404
	C_0405
	C_0406
	C_0407
	C_0408
	C_0409
	C_0410
	C_0411
	C_0412
	C_0413
	C_0414
	C_0415
	C_0416
	C_0417
	C_0418
	C_0419
	C_0420
	C_0421
	C_0422
	C_0423
	C_0424
	C_0425
	C_0426
	C_0427
	C_0428
	C_0429
	C_0430
	C_0431
	C_0432
	C_0433
	C_0434
	C_0435
	C_0436
	C_0437
	C_0438
	C_0439
	C_0440
	C_0441
	C_0442
	C_0443
	C_0444
	C_0445
	C_0446
	C_0447
	C_0448
	C_0449
	C_0450
	C_0451
	C_0452
	C_0453
	C_0454
	C_0455
	C_0456
	C_0457
	C_0458
	C_0459
	C_0460
	C_0461
	C_0462
	C_0463
	C_0464
	C_0465
	C_0466
	C_0467
	C_0468
	C_0469
	C_0470
	C_0471
	C_0472
	C_0473
	C_0474
	C_0475
	C_0476
	C_0477
	C_0478
	C_0479
	C_0480
	C_0481
	C_0482
	C_0483
	C_0484
	C_0485
	C_0486
	C_0487
	C_0488
	C_0489
	C_0490
	C_0491
	C_0492
	C_0493
	C_0494
	C_0495
	C_0496
	C_0497
	C_0498
	C_0499
	C_0500
	C_0501
	C_0502
	C_0503
	C_0504
	C_0505
	C_0506
	C_0507
	C_0508
	C_0509
	C_0510
	C_0511
	C_0512
	C_0513
	C_0514
	C_0515
	C_0516
	C_0517
	C_0518
	C_0519
	C_0520
	C_0521
	C_0522
	C_0523
	C_0524
	C_0525
	C_0526
	C_0527
	C_0528
	C_0529
	C_0530
	C_0531
	C_0532
	C_0533
	C_0534
	C_0535
	C_0536
	C_0537
	C_0538
	C_0539
	C_0540
	C_0541
	C_0542
	C_0543
	C_0544
	C_0545
	C_0546
	C_0547
	C_0548
	C_0549
	C_0550
	C_0551
	C_0552
	C_0553
	C_0554
	C_0555
	C_0556
	C_0557
	C_0558
	C_0559
	C_0560
	C_0561
	C_0562
	C_0563
	C_0564
	C_0565
	C_0566
	C_0567
	C_0568
	C_0569
	C_0570
	C_0571
	C_0572
	C_0573
	C_0574
	C_0575
	C_0576
	C_0577
	C_0578
	C_0579
	C_0580
	C_0581
	C_0582
	C_0583
	C_0584
	C_0585
	C_0586
	C_0587
	C_0588
	C_0589
	C_0590
	C_0591
	C_0592
	C_0593
	C_0594
	C_0595
	C_0596
	C_0597
	C_0598
	C_0599
	C_0600
	C_0601
	C_0602
	C_0603
	C_0604
	C_0605
	C_0606
	C_0607
	C_0608
	C_0609
	C_0610
	C_0611
	C_0612
	C_0613
	C_0614
	C_0615
	C_0616
	C_0617
	C_0618
	C_0619
	C_0620
	C_0621
	C_0622
	C_0623
	C_0624
	C_0625
	C_0626
	M_0627
	M_0628
	M_0629
	M_0630
	M_0631
	M_0632
	M_0633
	M_0634
	M_0635
	M_0636
	M_0637
	M_0638
	M_0639
	M_0640
	M_0641
	M_0642
	M_0643
	M_0644
	M_0645
	M_0646
	M_0647
	M_0648
	M_0649
	M_0650
	M_0651
	M_0652
	M_0653
	M_0654
	M_0655
	M_0656
	M_0657
	M_0658
	M_0659
	M_0660
	M_0661
	M_0662
	M_0663
	M_0664
	M_0665
	M_0666
	M_0667
	M_0668
	M_0669
	M_0670
	M_0671
	M_0672
	M_0673
	M_0674
	M_0675
	M_0676
	M_0677
	M_0678
	M_0679
	M_0680
	M_0681
	M_0682
	M_0683
	M_0684
	M_0685
	M_0686
	M_0687
	M_0688
	M_0689
	M_0690
	M_0691
	M_0692
	M_0693
	M_0694
	M_0695
	M_0696
	M_0697
	M_0698
	M_0699
	M_0700
	M_0701
	M_0702
	M_0703
	M_0704
	M_0705
	M_0706
	M_0707
	M_0708
	M_0709
	M_0710
	M_0711
	M_0712
	M_0713
	M_0714
	M_0715
	M_0716
	M_0717
	M_0718
	M_0719
	M_0720
	M_0721
	M_0722
	M_0723
	M_0724
	M_0725
	M_0726
	M_0727
	M_0728
	M_0729
	M_0730
	M_0731
	M_0732
	M_0733
	M_0734
	M_0735
	M_0736
	M_0737
	M_0738
	M_0739
	M_0740
	M_0741
	M_0742
	M_0743
	M_0744
	M_0745
	M_0746
	M_0747
	M_0748
	M_0749
	M_0750
	M_0751
	M_0752
	M_0753
	M_0754
	M_0755
	M_0756
	M_0757
	M_0758
	M_0759
	M_0760
	M_0761
	M_0762
	M_0763
	M_0764
	M_0765
	M_0766
	M_0767
	M_0768
	M_0769
	M_0770
	M_0771
	M_0772
	M_0773
	M_0774
	M_0775
	M_0776
	M_0777
	M_0778
	M_0779
	M_0780
	M_0781
	M_0782
	M_0783
	M_0784
	M_0785
	M_0786
	M_0787
	M_0788
	M_0789
	M_0790
	M_0791
	M_0792
	M_0793
	M_0794
	M_0795
	M_0796
	M_0797
	M_0798
	M_0799
	M_0800
	M_0801
	M_0802
	M_0803
	M_0804
	M_0805
	M_0806
	M_0807
	M_0808
	M_0809
	M_0810
	M_0811
	M_0812
	M_0813
	M_0814
	M_0815
	M_0816
	M_0817
	M_0818
	M_0819
	M_0820
	M_0821
	M_0822
	M_0823
	M_0824
	M_0825
	M_0826
	M_0827
	M_0828
	M_0829
	M_0830
	M_0831
	M_0832
	M_0833
	M_0834
	M_0835
	M_0836
	M_0837
	M_0838
	M_0839
	M_0840
	M_0841
	M_0842
	M_0843
	M_0844
	M_0845
	M_0846
	M_0847
	M_0848
	M_0849
	M_0850
	M_0851
	M_0852
	M_0853
	M_0854
	M_0855
	M_0856
	M_0857
	M_0858
	M_0859
	M_0860
	M_0861
	M_0862
	M_0863
	M_0864
	M_0865
	M_0866
	M_0867
	M_0868
	M_0869
	M_0870
	M_0871
	M_0872
	M_0873
	M_0874
	M_0875
	M_0876
	M_0877
	M_0878
	M_0879
	M_0880
	M_0881
	M_0882
	M_0883
	M_0884
	M_0885
	M_0886
	M_0887
	M_0888
	M_0889
	M_0890
	M_0891
	M_0892
	M_0893
	M_0894
	M_0895
	M_0896
	M_0897

