
· . .

SCO® UNIX®
Operating System

User's Guide

sea

sco® UNIX®
Operating System
User's Guide

© 1983-1992 The Santa Cruz Operation, Inc.
© 1980-1992 Microsoft Corporation.
© 1989-1992 UNIX System Laboratories, Inc.
All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into any
human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual, or otherwise, without the prior written permission of the copyright owner, The Santa Cruz Operation,
Inc., 400 Encinal, Santa Cruz, California, 95061, U.S.A. Copyright infringement is a serious matter under the
United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only for use in strict accor
dance with the End User License Agreement, which should be read carefully before commencing use of the soft
ware. Information in this document is subject to change without notice and does not represent a commitment on
the part of The Santa Cruz Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights in Technical Data and Com
puter Software Clause of the United States Department of Defense Federal Acquisition Regulations Supplement:

RESTRICTED RIGHTS LEGEND: USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN SUBPARAGRAPH (c) (1) (ii) OF THE
RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE CLAUSE AT DFARS 52.227-7013.
"CONTRACTOR/SUPPLIER" IS THE SANTA CRUZ OPERATION, INC. 400 ENCINAL STREET, SANTA CRUZ,
CALIFORNIA 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are trademarks of Microsoft Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.

Date: 31 January 1992
Document Version: 3.2.4C

Chapter 1

Introduction 1

About'this guide .. 1
Documentation conventions ... 2
Locating manual pages ... 4

Using online manual pages .. 4
The keyboard .. 6

Chapter 2

Creating, editing, and printing files 7

A vi tutorial ... 8
Entering the editor .. 8
Inserting text .. 9
Repeating a command ... 10
Undoing a command ... 10
Moving the cursor .. 11
Deleting text .. 12
Searching for a pattern .. 14
Searching and replacing .. 16
Leaving vi ... ~ ... 17
Adding text from another file .. 17
Leaving vi temporarily .. 18
Changing your display .. 18
Canceling an editing session .. 19

Editing tasks ... 20
How to enter the editor ... 20
Moving the cursor .. ;............... 20
Moving around in a file ... 23
Inserting text before the cursor .. 23
Correcting typing mistakes .. 24
Opening a new line .. 24
Repeating the last insertion .. 24
Inserting text from other files .. 24
Inserting control characters into text ... 28
Joining and breaking lines .. 28
Deleting a character ... 28
Deleting a word .. 28

Table of contents v

Deleting a line .. 29
Deleting an entire insertion .. 29
Deleting and replacing text .. 30
Moving text .. 32
Searching for patterns .. 35
Searching and replacing .. 36
Pattern matching .. 38
Undoing a command ... 40
Repeating a command ... 41
Leaving the editor .. 41
Editing a series of files ... 42
Editing a new file without leaving the editor ... 44
Leaving the editor temporarily .. 44
Performing a series of line-oriented commands .. 45
Finding out what file you are editing ... 45
Finding out what line you are on .. 46

Solving common problems ... 46
Setting up your vi environment ... 47

Setting the terminal type ... 48
Setting options with the set command .. 48
Displaying tabs and end-of-line .. 49
Ignoring case in search commands ... 50
Displaying line numbers ... 50
Printing the number of lines changed .. 50
Changing the terminal type ... 50
Shortening error messages ... 50
Turning offwamings .. 51
Permitting special characters in searches .. 51
Limiting searches .. 51
Turning on messages ... 51
Mapping keys .. 52
Abbreviating strings .. 52
Customizing your environment .. 53

Printing Files ... 53
Usinglp ... 53
Using lp options .. 54
Canceling a print request .. 54
Finding out the status of a print request ... 55

vi

Processing text files ... 56
Comparing files ... 56
Sorting files .. 56
Removing repeated lines in a file .. 57
Searching for patterns in a file ... 57
Counting words, lines, and characters ... 58

Summary .. 59
Summary of vi commands and variables .. 59
Summary of print commands .. 63
Summary of file processing utilities ... 63

Chapter 3

Communicating using mail 65

Basic concepts ... 65
Mailboxes ... 66
Messages .. 66
Modes .. 67
Headers ... 68
Command syntax ... 69
Message lists .. 70

Using mail ... 71
Composing and sending a message ... 71
Reading your mail .. 72
Saving a message .. 73
Printing a message ... 75
Replying to a message ... 75
Deleting a message ... 75
Forwarding mail ... 76
Executing shell commands ... 76
Sending mail to remote sites .. 76
Leaving mail .. 77
Leaving compose mode temporarily ... 77

Setting up your environment ... 80
Creating mailing lists ... 80
Keeping mail in the system mailbox .. 81
The Cc: prompt ... 81
Listing messages in chronological order ... 81

Table of contents vii

Using advanced mail features .. 82
Using mail as a reminder service .. 82
Redirecting incoming messages to other folders ... 82
Sending automatic responses when on vacation ... 84
Forwarding your messages to another person ... 86
Converting mailboxes to the new MMDF format ... 86
Handling large amounts of mail ... 87

Summary .. 88

Chapter 4

Using disks and tapes 91

Formatting disks and tapes ... 91
Formatting floppy disks .. 92
Formatting mini cartridge tapes .. 93

Using the tar command .. 93
Creating backups with tar .. 94
Listing the contents of backups ... 95
Extracting files from backups .. 96
Shorthand tar notation .. 98

Copying disks ... 99
Summary .. 100

ChapterS

Managing processes 101

Running jobs in the background ... 101
Checking the status of processes ... 102
Killing processes ... 104
Prioritizing processes .. 105
Scheduling your jobs .. 106

Executing programs automatically .. 106
Submitting your crontab file .. 108

Delaying program execution ... 108
Summary .. 112

viii

Chapter 6

Communicating with other sites 113

Using UUCP ... 114
Transferring files with uucp ... 114
Transferring files with uuto .. 118
Executing commands with uux ... 120

Logging in to remote systems .. 121
Using ct .. 121
Using cu .. 123

Summary .. 126

Chapter 7

Using a secure system 127

Terminology .. 127
The security administrator ... 128

Login security ... 128
Logging in .. 128
What to do if you cannot log in ... 129
Changing your password ... 129
Using another account .. 131

Using commands on a trusted system .. 131
Authorizations .. 131
The auths command .. 133
Security for files in sticky directories ... 134

Recommended security practices .. 134
Password security .. 134
Good security habits .. 135
Logging in and out ... 135
File security .. 136

Data encryption-commands and descriptions ... 136
crypt-encode/decode files .. 137
Encrypting and decrypting with editors ... 138

Summary .. 139

Table of contents ix

Chapter 8

The Bourne shell 141

Basic concepts .. 142
How shells are created .. 142
Commands ... 142
How the shell finds commands ... 143
Generation of argument lists ... 143
Quoting mechanisms ... 144
Standard input and output ... 145
Diagnostic and other outputs .. 146
Command lines and pipelines ... 147
Command substitution ... 149

Shell variables .. 150
Positional parameters .. 150
User-defined variables .. 150
Predefined special variables ... 154

The shell state .. 155
Changing directories ... 155
The .profile file .. 156
Execution flags .. 156

A command's environment .. , .. 157
Invoking the shell ... 158
Passing arguments to shell procedures ... 158
Controlling the flow of control .. 160

Using the if statement .. 161
Using the case statement .. 163
Conditional looping: while and until ... 163
Looping over a list: for .. 164
Loop control: break and continue ... 165
End-of-file and exit ... 166
Corrunand grouping: parentheses and braCeS .. . ~ //

100

Defining functions .. 167
Input/output redirection and control commands .. 168
Transfer between files: the dot command ... 169
Interrupt handling: trap .. 169

Special shell commands .. 173
Creation and organization of shell procedures ... 175
More about execution flags ... 177
Supporting commands and features ... 177

Conditional evaluation: test ... 177

x

Echoing arguments .. 179
Expression evaluation: expr ... 179
True and false .. 180
In-line input documents .. 180
Input / output redirection using file descriptors ... 180
Conditional substitution ... 181
Invocation flags ... 183

Effective and efficient shell programming .. 183
Number of processes generated .. 184
Number of data bytes accessed ... 186
Shortening directory searches ... 186
Directory-search order and the PATH variable ... 186
Good ways to set up directories .. 187

Shell procedure examples ... 187
Shell grammar .. 194

Chapter 9

The C shell 197

Invoking the C shell ... 197
Using shell variables .. 198
Using the C shell history list .. 200
Using aliases ... 202
Redirecting input and output ... 204
Creating background and foreground jobs .. 204
Using built-in commands .. 205
Creating shell scripts .. 207

Using the argv variable ... 207
Substituting shell variables .. 208
Using expressions ... 210
A sample script ... 211
Using other control structures ... 214
Supplying input to commands .. 215
Catching interrupts .. 215
Using other features ... 216
Starting a loop at a terminal ... 216
Using braces with arguments .. 217
Substituting commands .. 218
Special characters ... 218

Table of contents xi

Chapter 10

The Korn shell 221
Overview ... 221
Setting up the Kom shell ... 222

Flags and options for ksh .. 223
Editing features .. 224

Using the vi built-in editor mode .. 225
Editing in vi input mode ... 225
Editing in control mode .. 226
Accessing commands in the history file .. 228
Displaying commands in the history file .. 228
Re-executing previous commands ... 229
Editing previous commands .. 229
Configuring the history file .. 230
Manipulating commands wider than the screen ... 230

Using expanded cd capabilities ... 231
Using job control ... 232

Referring to jobs .. 233
Using the ksh job control commands ... 234
Running jobs in the background ... 234
Moving background jobs to foreground ... 234
Moving foreground jobs to background ... 235
Displaying information about jobs ... 235
Terminating a background job ... 235
External job control facilities .. 236

Interpretation of commands ... :... 237
Alias expansion ... 238
Quote expansion and ksh ... 240
Parentheses .. 241
Tilde expansion ... 241

Programming the Kom shell .. 242
Arguments, parameters, and variables .. 242
Built-in commands ... 244

Differences from the Bourne shell .. 246
Functions .. 246
Substring parameter expansion .. 248
The select command .. 250
Pattern matching .. 251
Debugging support .. 251

xii

Chapter 11

Manipulating text with sed 253

Using sed ... 254
Addresses .. 255
Functions ... 257

Whole-line oriented functions ... 257
Substitute functions ... 259
Input-output functions .. 261
Multiple input-line functions ... 262
Hold and get functions .. 263
Flow-of-control functions ... 264
Miscellaneous functions ... 264

Chapter 12

Simple programming with awk 265

Basic awk ... 266
Program structure .. 266
Running awk programs .. 266
Fields ... 267
Printing lines .. 268
Formatting awk output ... 269
Using simple patterns .. 269
Using simple actions .. 270
A handful of useful one-liners ... 271
Error messages .. 272

Patterns ... 273
BEGIN and END ... 273
Relational expressions ... 274
Regular expressions ... 275
Combining patterns ... 277
Pattern ranges .. 278

Actions ... 278
Built-in awk variables .. 278
Performing arithmetic ... 279
Using strings and string functions .. 282
Field variables ... 285
Number or string? .. 286

Table of contents xiii

Control flow statements .. 287
Arrays ... 289
User-defined functions 0 :.. 291
Some lexical conventions .. 292

awk output .. 292
The print statement .. 292
Output separators .. 0 293
The printf statement .. 293
Output into files .. 295
Output into pipes ... 295

Input .. 296
Files and pipes ... 296
Input separators .. 297
Multi-line records ... 297
The getline function ... 297
Command-line arguments ... 300

Using awk with other commands and the shell .. 300
The system function ... 300
Co-operation with the shell .. 301

Example applications ... 302
Generating reports ... 303
Additional examples .. 305

awk summary ... 307
Command line ... 307
Patterns ... 308
Control flow statements .. ,... 308
Input-Output ... 308
Functions .. 309
String functions ... 309
Arithmetic functions .. 309
Operators (Increasing precedence) ... 310
Regular expressions (Increasing precedence) .. 310
Built-in variables ... 311
Limits .. 311
Initialization, comparison, and type coercion .. 312

xiv

Chapter 13

Using DOS accessing utilities 315

Accessing DOS files .. 315
Copying groups of files ... 317

Using mounted DOS filesystems ... 318
Mounting a DOS filesystem .. 318
File and directory arguments ... 319
User configurable default file ... 319
Appearance of DOS files .. 320
Newline conversions with DOS utilities .. 321
Other restrictions .. 321

Summary .. 322

Appendix A

Sample shell startup files 323

The Bourne shell .profile ... 323
The Korn shell .profile and .kshrc ... 325
The C-shell .login and .cshrc .. 328

Table of contents xv

Chapter 1

Introduction

This guide explains many of the features of your UNIX system. It shows you
how to manage your files and directories, save copies of files on backup
media, use security features, and schedule your jobs. It provides information
on several of the most useful UNIX system facilities, including mail(C), the
vi(C) text editor, and UUCP system. In addition, the guide includes informa
tion on the three UNIX system shells: the Bourne shell, the Korn shell, and the
C shell. Information is given on creating shell scripts, with descriptions on
how to use the sed(C) stream editor and the awk(C) programming language.

About this guide

This guide is organized into the following chapters:

Chapter I, "Introduction," provides an overview of the contents of this guide
and gives a list of the notational conventions used throughout.

Chapter 2, "Creating, editing, and printing files," shows you how to use the
UNIX system full screen editor, vi, to create files. This chapter also explains
how to send files to the printer and cancel print jobs and includes information
on the basic utilities you can use to process text files.

Chapter 3, "Communicating using mail," explains how to use the UNIX sys
tem electronic mail facility to communicate with other sites.

Chapter 4, "Using disks and tapes," shows you how to use floppy disks and
tapes to back up files and directories.

Chapter 5, ''Managing processes," demonstrates how to run jobs in the back
ground. This chapter also shows you how to schedule or delay the execution
of your jobs using the cl'On(C), at(C), and batch(C) utilities.

1

Introduction

Chapter 6, "Communicating with other sites," explains how to transfer files
between computer sites and how to execute commands on other computer
sites.

Chapter 7, "Using a secure system," discusses the security features that might
be in use at your site and how to work with them.

Chapter 8, "The Bourne shell," explains how to use the UNIX system Bourne
shell, including how to create "shell scripts" to run under this shell.

Chapter 9, "The C shell," explains how to use the UNIX system C shell.

Chapter 10, ''The Korn shell," explains how to use the Korn shell, and includes
information about the differences between Bourne and Korn shell program
ming.

Chapter 11, "Manipulating text with sed," demonstrates how to use the sed
stream editor to automate file editing.

Chapter 12, "Simple programming with awk," shows how to use awk to write
simple programs that you can use to manipulate files and data.

Chapter 13, "Using the DOS accessing utilities," explains how to access DOS
files indirectly using the DOS utilities, or directly using mounted DOS file
systems.

Appendix A, "Sample shell startup files," contains sample listings and line
by-line explanations for the various shell startup files.

Documentation conventions

2

The following documentation conventions are used in this guide.

boldface Commands are shown in boldface. For example:

· .. use the rm command to remove files ...

UNIX system utilities or library routines are also shown
in boldface. For example:

· .. use the grep utility to search files for a specified
pattern ...

Literal user input is also shown in boldface. For example:

· .. to display the file itself, enter:

more letdtermcap

and press (Return) ...

User's Guide

italics

bold italics

courier

II "

Documentation conventions

Directories and filenames are shown in italics.

For example:

· .. most executable files are found in the /bin directory ...

Emphasized words or phrases are also shown in italics.
For example:

· .. the constant creation and removal of files creates a
situation called disk fragmentation ...

References to book titles are also shown in italics.

For example:

· .. for information relating to system administration,
refer to the System Administrator's Guide . ..

Placeholders are shown in bold italics. A placeholder is a
word which you must replace with an appropriate
filename, number, or option. For example:

· .. to change directories, enter:
cd directory

where directory is the directory you want to change to ...

Screen displays and other output from the computer are
shown in courier. For example:

The 1200 baud dialer is busy
Do you want to wait for dialer? (y for yes)

Data values and field names are shown in "quotation"
marks. For example:

... where x is "0" for a display adapter or "I" for a serial
port. ..

Quotation marks are also used for normal words used in
a way particular to computing. For example:

... your local site is a "dial out" site ...

Document chapter names are also shown in quotations.
For example:

· .. consult the "Communicating using mail" chapter of
this guide ...

SMALL CAPITALS Acronyms are shown in SMALL CAPITALS. For example:

· .. the name UUCP is an acronym for UNIX to UNIX
Copy ...

3

Introduction

SMALL BOLD CAPITALS

()

System parameters (definable system values, for exam
ple, the number of disk drives attached to the system)
and environment variables (definable system informa
tion, for example, what type of terminal is being used)
are shown in SMALL BOLD CAPITALS. For example:

· .. $1 and $2 refer to positional parameters used ...

· .. the preferable method for setting your terminal type
is to assign the type to the TERM variable ...

Names of keys are shown in (angle brackets). For example:

· .. press the (Esc) key to exit the current mode ...

Locating manual pages
When you use the command line you have direct access to utilities and data.
Notice the form used for commands in this guide. Each command is printed
in bold type, and each has a suffix to help you find more information about it.

Table 1.1 lists the locations of the manual pages for the commands with the
indicated suffixes. To find out information about a command, note the letter
or letters that appear in parentheses following the command, then look up the
command in the appropriate reference book or guide. For example, the com
mand lpstat(C) is defined in the Commands(C) section of the Users Reference.

Using online manual pages

4

If manual pages are installed on your system they may be viewed by typing:
man command

where command is the command for which you want to see the manual page.

For example, to see the manual page for the more command, type:
man more

Some manual pages appear in more than one location (see the following
table). To see all occurrences of a particular manual page, type:

man -a command
For example, to see all the manual pages for the hd command, type:

man-ahd

Users Guide

Locating manual pages

To force the system to display a manual page for a particular location, type:
man location command

For example, to see the manual page for the hd command for the location
HW,type:

man HW hd

Table 1·1 Manual page locations

Command Suffix

ADM

C

CP

DOS

F

FP

HW

K

M

S

Book and Purpose

System Administrator's Reference - commands reserved for the
exclusive use of system administrators

User's Reference - operating-system commands available to all
users

Programmer's Reference - programming commands used with
the development system

Programmer's Reference - DOS routines used with the develop-
mentsystem

System Administrator's Reference - (File Formats) description of
system configuration files

Programmer's Reference - (File Formats) description of system
files and data structures

System Administrator's Reference - information about hardware
devices and device nodes

Device Driver Writer's Guide - routines provided in the kernel
for writing device drivers

User's Reference - miscellaneous information used for access to
devices, system maintenance, and communications

Programmer's Reference - system calls and library routines for C
and assembly-language programming

I NOTE The Programmer's Reference and Device Driver Writer's Guide are only
supplied if the Development System is purchased.

5

Introduction

The keyboard

6

Many keys and key combinations perform special actions on UNIX systems.
These actions have names that may not correspond to the key top labels on
your keyboard. Table 1.2 shows which keys on a typical terminal correspond
to special actions on UNIX systems. A list for your particular login device is in
keyboard(HW). Many of these keys can be modified by the user; see stty(C).

Table 1·2 Special keys

UNIX Name

(Return)

(Esc)

(Del)

(Bksp)

(Ctrl)d

(Ctrl)h

(Ctrl)q

(Ctrl)s

(Ctrl}u

(Ctrl) \

Action

terminates a command line and initiates an action. This key is
also called the (ENTER) key; the key top may indicate a down
left arrow.

exits the current mode; for example, exits insert mode when in
the editor vi. This is also known as the (ESCAPE) key.

stops the current program, returning to the shell prompt. This
key is also known as the (INTERRUPT) or the (DELETE) key.

deletes the character to the left of the cursor. The key top may
show a large left arrow, as opposed to the small"cursor left"
arrow.

signals the end of input from the keyboard; exits current shell,
or logs you out if the current shell is the login shell. This is not
interchangeable with the (BREAK) key.

deletes the first character to the left of the cursor. This is also
called the (ERASE) key.

restarts printing after it is stopped with (Ctrl)s.

stops printing at the standard output device, such as a termi
nal. This keystroke does not stop the program.

deletes all characters on the current lirle. TIllS is also called tl.le
(KILL) key.

quits current command, creates a core file. This is also called
the (QUIT) key. (Use of this keystroke is recommended for
debugging only; see core(F).)

User's Guide

Chapter 2

Creating, editing, and printing files

Any ASCII text file, such as a program or document, can be created and
modified using a text editor. There are two text editors available on UNIX sys
tems, ed(C) and vi(C). (For information on ed, see the ed(C) manual page.)

The vi command (which stands for "visual") combines line-oriented and
screen-oriented features into a powerful set of text editing operations that
satisfy . any text editing need.

This chapter explains how to create, edit, print, and process text files on your
UNIX system. It contains the following sections:

• A vi tutorial that gives you some hands-on experience creating and editing
files. This section introduces the basic concepts you must be familiar with
before you can really learn to use vi, and shows you how to perform simple
editing functions.

• A reference section that explains how to perform specific editing tasks.

• A section covering some common problems and how to resolve them.

• A description of how to print the files you create with vi.

• An explanation of some common utilities for processing text files.

• A description of how to set up your vi environment and how to set
optional features.

• A summary of the vi commands covered in this chapter.

Because vi is such a powerful editor, it has many more commands than you
can learn at one sitting. If you have not used a text editor before, the best
approach is to become thoroughly comfortable with the concepts and opera
tions presented in the tutorial section, then refer to the second part for specific
tasks you need to perform. All the steps needed to perform a given task are
explained in each section, so some information is repeated several times.

7

Creating, editing, and printing files

When you are familiar with the basic vi commands you can easily learn how
to use the more advanced features.

If you have used a text editor before, you might want to turn directly to the
task-oriented part of this chapter. Begin by learning the features you use most
often.

This chapter covers the basic text editing features of vi. If you are an experi
enced user of vi you might prefer to use the vi(C) manual page in the Users
Reference instead of this chapter. vi(C) explains more advanced topics and fea
tures related to editing programs.

Avi tutorial
The following tutorial gives you hands-on experience using vi, and introduces
some basic concepts that you must understand before you can learn more
advanced features. This section explains how to enter and exit the editor,
insert and delete text, search for patterns and replace them, and how to insert
text from other files. This tutorial should take one hour. Remember that the
best way to learn vi is to actually use it, so don't be afraid to experiment.

Before you start the tutorial, make sure that your terminal has been properly
set up. See the section "Setting the terminal type," later in this chapter for
more information about setting up your terminal for use with vi.

Entering the editor

8

To enter the editor and create a file named temp, enter:

vi temp

Your screen looks like this:

"temp" [New file]

Note that the examples in this chapter show a twelve-line screen to save
space. In reality, vi uses whatever size screen you have.

Users Guide

A vi tutorial

You are initially editing a copy of the file. The file itself is not altered until you
save it. Saving a file is explained later in the tutorial.

The top line of your display is the only line in the file and is marked by the
cursor, shown above as I. In this chapter, when the cursor is on a character
that character appears in reverse-video font.

The line containing the cursor is called the current line. The lines containing
tildes are not part of the file; they indicate lines on the screen only, not real
lines in the file.

Inserting text

To begin, create some text in the temp file by using the Insert (i) command. To
do this, press i. Next, enter the following five lines to give yourself some text
to experiment with; press (Return) at the end of each line. If you make a mis
take, use the (Bksp) key to erase the error and enter the word again.

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

I

Press the (Esc) key when you are finished.

Like most vi commands, the i command does not appear on your screen. The
command itself switches you from Command mode to Insert mode.

When you are in Insert mode, every character you enter is displayed on the
screen. In Command mode, the characters you enter are not placed in the file
as text; they are interpreted as commands to be executed on the file. If you are
not certain which mode you are in, press (Esc) until you hear the terminal bell.
When you hear the bell, you are in Command mode.

Once in Insert mode, vi inserts the characters that you enter into the file; vi
does not interpret them as vi commands. Always press (Esc) to exit Insert
mode and re-enter Command mode. This switching between modes occurs
often in vi, and it is important to get used to it now.

9

Creating, editing, and printing files

Repeating a command

Next comes a command that you use frequently in vi: the Repeat command.
The Repeat command repeats the most recent Insert or Delete command.
Since we have just executed an Insert command, the Repeat command repeats
the insertion, duplicating the inserted text. The Repeat command is executed
by entering a period (.) or "dot." So, to add five more lines of text, enter" . " .
The Repeat command is repeated relative to the location of the cursor and
inserts text below the current line. (Remember, the current line is always the
line containing the cursor.) After you enter dot (.), your screen looks like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text. ,

Undoing a command

10

Another command which is very useful (and which you need often in the
beginning) is the Undo (u) command. Press u and notice that the five lines you
just finished inserting are deleted or "undone."

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now enter u again, and the five lines are reinserted! This undo feature can be
very useful in recovering from inadvertent deletions or insertions.

User's Guide

A vi tutorial

Moving the cursor

Now, let's learn how to move the cursor around on the screen. In addition to
the arrow keys, the following letter keys also control the cursor:

h Left

Right

k Up

Down

The letter keys are chosen because of their relative positions on the keyboard.
Remember that the cursor movement keys only work in Command mode.

Try moving the cursor using these keys. (First make sure you are in Com
mand mode by pressing the (Esc) key until you hear the bell.) Then, enter the
H command to place the cursor in the upper left corner of the screen. Then
enter the L command to move to the lowest line on the screen. (Note that case
is significant in our example: L moves to the lowest line on the screen; while 1
moves the cursor forward one character.) Next, try moving the cursor to the
last line in the file with the goto command, G. If you enter 2G, the cursor
moves to the beginning of the second line in the file; if you have a 10,000 line
file, and enter 8888G, the cursor goes to the beginning of line 8888. (If you
have a 600 line file and enter 800G the cursor does not move.)

These cursor movement commands should allow you to move around well
enough for this tutorial. Other cursor movement commands you might want
to try out are:

w Moves forward a word

b Backs up a word

o Moves to the beginning of a line

$ Moves to the end of a line

You can move through many lines quickly with the scrolling commands:

(Ctrl)u Scrolls up 1/2 screen

(Ctrl)d Scrolls down 1/2 screen

(Ctrl)f

(Ctrl)b

Scrolls forward one screenful

Scrolls backward one screenful

11

Creating, editing, and printing files

Deleting text

12

Now that we know how to insert and create text, and how to move around
within the file, we are ready to delete text. Many Delete commands can be
combined with cursor movement commands, as explained below. The most
common Delete commands are:

dd Deletes the current line (the line the cursor is on), regardless of the
location of the cursor in the line.

dw Deletes the word above the cursor. If the cursor is in the middle of
the word, deletes from the cursor to the end of the word.

x Deletes the character above the cursor.

d$ Deletes from the cursor to the end of the line.

D Deletes from the cursor to the end of the line.

dO Deletes from the cursor to the start of the line.

Repeats the last change. (Use this only if your last command was a
deletion.)

To learn how all these commands work, let's delete various parts of the
tutorial file. To begin, press (Esc) to make sure you are in Command mode,
then move to the first line of the file by entering:

IG
At first, your file looks like this:

~iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.

I ~~~~:c~~~~ !~~~. 110rds •

Users Guide

To delete the first line, enter dd. Your file now looks like this:

&ext contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

A vi tutorial

Delete the word the cursor is sitting on by entering dw. After deleting, your
file looks like this:

Imtains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

You can quickly delete the character above the cursor by pressing x.
This leaves:

ttains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

13

Creating, editing, and printing files

Now enter a w command to move your cursor to the beginning of the word
lines on the first line. Then, to delete to the end of the line, enter d$. Your file
looks like this:

ontainsl
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

To delete all the characters on the line before the cursor, enter dO. This leaves a
single space on the line:

I
Lines contain characters.
Files contain text.
Text contains lines.
Characters form words.
Words form text.
Lines contain characters.
Characters form words.
Words form text.

For review,let's restore the first two lines of the file.

Press i to enter Insert mode, then enter:

Files contain text.
Text contains lines.

Press (Esc) to go back to Command mode.

Searching for a pattern

14

You can search forward for a pattern of characters by entering a slash U) fol
lowed by the pattern you are searching for, terminated by a (Return). For
example, make sure you are in Command mode (press (Esc», then press H to
move the cursor to the top of the screen. Now, enter:

Ichar

Users Guide

Do not press (Return) yet. Your screen looks like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text •.

/charl

A vi tutorial

Press (Return). The cursor moves to the beginning of the word characters on
line three. To search for the next occurrence of the pattern char, press n (as in
"next".) This takes you to the beginning of the word characters on the eighth
line. If you keep pressing n, vi searches past the end of the file, wraps around
to the beginning, and again finds the char on line three.

Note that the slash character and the pattern that you are searching for appear
at the bottom of the screen. This bottom line is the vi status line.

The status line appears at the bottom of the screen. It is used to display infor
mation, including patterns you are searching for, line-oriented commands
(explained later in this tutorial), and error messages.

For example, to get status information about the file, press (Ctrl)g. Your screen
should look like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain [c]haracters.
Characters form words.
Words form text.

"temp" [Modified] line 4 of 10 --4%--

The status line on the bottom tells you the name of the file you are editing,
whether it has been modified, the current line number, the number of lines in
the file, and your location in the file as a percentage of the number of lines in
the file. The status line disappears as you continue working.

15

Creating, editing, and printing files

Searching and replacing

16

Let's say you want to change all occurrences of text in the tutorial file to docu
ments. Rather than search for text, then delete it and insert documents, you can
do it all in one command. The commands you have learned so far have all
been screen-oriented. Commands that perform more than one action (search
ing and replacing) are line-oriented commands.

Screen-oriented commands are executed at the location of the cursor. You do
not need to tell the computer where to perform the operation; it takes place
relative to the cursor. Line-oriented commands require you to specify an exact
location (called an "address") where the operation is to take place. Screen
oriented commands are easy to enter, and provide immediate feedback; the
change is displayed on the screen. Line-oriented commands are more compli
cated to enter, but they can be executed independent of the cursor, and in
more than one place in a file at a time.

All line-oriented commands are preceded by a colon which acts as a prompt
on the status line. Line-oriented commands themselves are entered on this
line and terminated with a (Return).

In this chapter, all instructions for line-oriented commands include the colon
as part of the command.

To change text to documents, press (Esc) to make sure you are in Command
mode, then enter:

:l,$s/textldocuments/g

This command means "From the first line (1) to the end of the file ($), find text
and replace it with documents (s/text/documents/) everywhere it occurs on
each line (g)."

Press (Return). Your screen now looks like this:

(Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
Words form documents.
Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
'ords form documents.

\

Users Guide

A vi tutorial

Note that Text in lines two and eight was not changed. Case is significant in
searches.

Just for practice, use the Undo command to change documents back to text.
Press u and your screen now looks like this:

iiles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Leaving vi

All of the editing you have been doing has affected a copy of the file, and not
the file named temp that you specified when you invoked vi. To save the
changes you have made, exit the editor and return to the UNIX shell, enter:

:x
Remember to press (Return). The name of the file, and the number of lines and
characters it contains are displayed on the status line:

"temp" [New file] 10 lines, 214 characters

Then the UNIX system prompt appears.

Adding text from another file

In this section we will create a new file, and insert text into it from another
file. First, create a new file named practice by entering:

vi practice

This file is empty. Let's copy the text from temp and put it in practice with the
line-oriented Read command. Press (Esc) to make sure you are in Command
mode, then enter:

:rtemp

17

Creating, editing, and printing files

Your file should now look like this:

liles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

The text from temp has been copied and put in the current file practice. There
is an empty line at the top of the file. Move the cursor to the empty line and
delete it with the dd command.

Leaving vi temporarily

vi allows you to execute commands outside of the file you are editing, such as
date. To find out the date and time, enter:

:Idate

This displays the date, then prompts you to press (Return) to re-enter Com
mand mode. Go ahead and try it. Your screen should look similar to this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

I
: !date
Mon Jan 9 16:33:37 PST 1985
[Press return to continue].

Changing your display

18

Besides the set of editing commands described above, there are a number of
options that can be set either when you invoke vi, or later when editing.
These options allow you to control editing parameters such as line number
display, and whether or not case is Significant in searches. In this section, we
explain how to turn on line numbering, and how to look at the current option
settings.

User's Guide

To turn on automatic line numbering, enter:

:setnumber

A vi tutorial

Press (Return). vi redraws your screen, and line numbers appear to the left of
the text. Your screen now looks like this:

iiles contain text.
Te:;t contains lines.

3 Lines contain characters.
4 Characters form words.
5 Words form text.
6 Files contain text.
7 Text contains lines.
8 Lines contain characters.
9 Characters form words.

10 Words form text.

You can get a complete list of the available options by entering:

:set all

Setting these options is described in the section "Setting up your vi environ
ment," but it is important that you be aware of their existence. Depending on
what you are working on, and your own preferences, you might want to alter
the default settings for many of these options.

Canceling an editing session

Finally, to exit vi without saving the file practice, enter:

:q!

This cancels all the changes you have made to practice and, because it is a new
file, deletes it. The UNIX prompt appears. If practice had already existed
before this editing session, the changes you made are disregarded, but the file
still exists.

This completes the tutorial. You learned how to get in and out of vi, insert
and delete text, move the cursor around, make searches and replacements,
how to execute line-oriented commands, copy text from other files, and cancel
an editing session.

There are many more commands to learn, but this section covers the funda
mentals of using vi. The following sections gives you more detailed informa
tion about these commands and about other vi commands and features.

19

Creating, editing, and printing files

Editing tasks

The following sections explain how to perform common editing tasks. By fol
lowing the instructions in each section, you can complete each task described.
Features that are needed in several tasks are described each time they are
used, so some information is repeated.

How to enter the editor

There are several ways to begin editing, depending on what you are planning
to do. This section describes how to start, or "invoke" the editor with one
filename. To invoke vi on a series of files, see the section ''Editing a series of
files."

Editing a file
The most common way to enter vi is to enter the command vi and the name
of the file you wish to edit:

vi filename

If filename does not already exist, this command creates a new, empty file.

Entering vi at a particular line
You can also enter the editor at a particular place in a file. For example, if you
want to start editing a file at line 100, enter:

vi +100 filename

The cursor is placed at line 100 of filename.

Entering vi at a particular word
If you wish to begin editing at the first occurrence of a particular word, enter:

vi+lword filename

TIle cursor is plac~d at tile first OCCLlrreilC€ of word. For excuuple, to begin
editing the file temp at the the first occurrence of contain, enter:

vi +/contain temp

Moving the cursor

20

The cursor movement keys allow you to move the cursor around in a file.
Cursor movement can only be done in Command mode.

User's Guide

Editing tasks

Moving the cursor by characters
The (Space) bar and the 1 key move the cursor forward a specified number of
characters. The (Bksp) key and the h key move it backward a specified num
ber of characters. If no number is specified, the cursor moves one character.
For example, to move backward four characters, enter:

4h

You can also move the cursor to a designated character on the current line. F
moves the cursor back to the specified character, £ moves it forward. The cur
sor rests on the specified character. For example, to move the cursor back
ward to the nearest p on the current line, enter:

Fp

To move the cursor forward to the nearest p, enter:

£p
The t and T keys work the same way as £ and F, but place the cursor immedi
ately before the specified character. For example, to move the cursor back to
the space next to the nearest p in the current line, enter:

Tp

If the p is in the word telephone, this command places the cursor on the h.

The cursor always remains on the same line when you use these commands.
If you specify a number greater than the number of characters on the line, the
cursor does not move beyond the beginning or end of that line.

Moving the cursor by words
The w key moves the cursor forward to the beginning of the specified number
of words. Punctuation and non-alphabetic characters (such as
,!@#$%A&*O_+{}[] -I \' <> /) are considered words, so if a word is followed by
a comma, the cursor counts the comma in the specified number.

For example, your cursor rests on the first letter of this sentence:

riP, I didn't know he had returned.

If you press:

6w

the cursor stops on the k in know.

21

Creating, editing, and printing files

22

W works the same way as w, but includes punctuation and nonalphabetic
characters as part of the word. Using the above example, if you press:

6W

the cursor stops on the r in returned; the comma and the apostrophe are
included in their adjacent words.

The e and E keys move the cursor forward to the end of a specified number of
words. The cursor is placed on the last letter of the word. The e command
counts punctuation and nonalphabetic characters as separate words; E does
not.

Band b move the cursor back to the beginning of a specified number of
words. The cursor is placed on the first letter of the word. The b command
counts punctuation and nonalphabetic characters as separate words; B does
not. Using the example above, if the cursor is on the r in returned, enter:

4b

and the cursor moves to the t in didn't.

Enter:

4B

and the cursor moves to the first d in didn't.

The w, W, b, and B commands move the cursor to the next line if that is where
the designated word is, unless the current line ends in a space.

Moving the cursor by lines
The (Return), (Linefeed) and (+) keys move the cursor forward a specified num
ber of lines, placing the cursor on the first character. For example, to move the
cursor forward six lines, enter:

6+

The j and (Ctrl)n keys move the cursor forward a specified number of lines.
The cursor remains in the same place on the line, unless there is no character
in that place, in which case it moves to the last character on the line. For
example, in the following two lines if the cursor is resting on the e in charac
ters, pressing j moves it to the period at the end of the second line:

Lines contain characters.
Text contains lines.

Users Guide

Editing tasks

The dollar sign($) moves the cursor to the end of a specified number of lines.
For example, to move the cursor to the last character of the line four lines
down from the current line, enter:

4$

(Ctrl)p and k move the cursor backward a specified number of lines, keeping it
on the same place on the line. For example, to move the cursor backward four
lines from the current line, enter:

4k

Moving the cursor on the screen
The H, M, and L keys move the cursor to the beginning of the top, middle and
bottom lines of the screen, respectively.

Moving around in a file

The following commands move the file so different parts can be displayed on
the screen. The cursor is placed on the first letter of the last line scrolled. Use
(Ctrl)u to scroll up one-half screen; (Ctrl)b scrolls up a full screen. Use (Ctrl)d
to scroll down one-half screen; (Ctrl)f scrolls down a full screen.

Placing a line at the top of the screen
To scroll the current line to the top of the screen, press z, then press (Return).
To place a specific line at the top of the screen, precede z with the line number.
For example:

33z

Press (Return), and line 33 scrolls to the top of the screen. For information on
how to display line numbers, see the section "Displaying line numbers."

Inserting text before the cursor

You can begin inserting text before the cursor anywhere on a line, or at the
beginning of a line. In order to insert text into a file, you must be in Insert
mode. To enter Insert mode, press i. The "i" does not appear on the screen.
Any text typed after the "i" becomes part of the file you are editing. To leave
Insert mode and re-enter Command mode, press (Esc). For more explanation
of modes in vi, see the section "Inserting text."

Use the uppercase "I" to enter Insert mode moves the cursor to the beginning
of the current line. Use this to start inserting text at the beginning of the
current line.

23

Creating, editing, and printing files

To append text after the cursor, press a to enter Insert mode (the "a" does not
appear on your screen), then begin entering your text. Press (Esc) to leave
Insert mode and re-enter Command mode.

If you use an uppercase "A:.' to enter Insert mode, this also moves the cursor to
the end of the current line. It is useful for appending text at the end of the
current line.

Comcting typing mistakes

If you make a mistake while you are typing, the simplest way to correct it is
with the (Bksp) key. Backspace across the line until you have backspaced over
the mistake, then retype the line. However, you can only do this if the cursor
is on the same line as the error. See the sections "Deleting a character" through
"Deleting an entire insertion" for other ways to correct typing mistakes.

Opening a new line

To open a new line above the cursor, press O. To open a new line below the
cursor, press o. Both commands place you in Insert mode, and you can start
entering text immediately. Press (Esc) to leave Insert mode and re-enter Com
mandmode.

You may also use the (Return) key to open new lines above and below the cur
sor. To open a line above the cursor, move the cursor to the beginning of the
line, press i to enter Insert mode, then press (Return). (For information on how
to move the cursor, see the section "Moving the cursor.") To open a line below
the cursor, move the cursor to the end of the current line, press i to enter
Insert mode, then press (Return).

Repeating the last insertion

Pressing (CtrI)@ repeats the last insertion. Press i to enter Insert mode, then
press (CtrI)@.

(Ctrl)@ only repeats insertions of 128 characters or less. If you inserted more
than 128 characters; (Ctrl)@ does nothing,

For other methods of repeating an insertion, see the sections "Inserting text
from other files," and "Repeating a command."

Inserting text from other files

24

To insert the contents of another file into the file you are currently editin~ use
the Read (r) command. Move the cursor to the line immediately above the
place you want the new material to appear, then enter:

:r filename

User's Guide

Editing tasks

Where filename is the name of the file containing the material that you want
to insert. The text of filename appears on the line below the cursor, and the
cursor moves to the first character of the new text. This text is a copy; the ori
ginal filename still exists.

Inserting selected lines from another file is more complicated. First, you copy
the selected lines from the original file into a temporary holding place called a
"buffer", then insert the text into the new file. Use these steps:

1. To select the lines to be copied, save your original file with the Write (:w)
command, but do not exit vi.

2. Now, enter the following:

:e filename

The filename is the file that contains the text you want to copy.

3. Move the cursor to the first line you want to select.

4. Now, enter this command:

mk

This "marks" the first line of text to copy into the new file with the letter
"k."

5. Move the cursor to the last line of the selected text and enter:

"ay'k

The lines from your first "mark" to the cursor are placed, or "yanked" into
buffer a. The lines remain in buffer a until you replace them with other
lines, or until you exit the editor.

6. Now, enter the following command to return to your previous file:

:e#

(For more information about this command, see the section "Editing a new
File without leaving the editor.")

7. Move the cursor to the line above the place you want the new text to
appear and enter:

"ap

This "puts" a copy of the yanked lines into the file, and the cursor is placed
on the first letter of this new text. The buffer still contains the original
yanked lines.

You can have 26 buffers named a, b, c, up to and including z. To name and
select different buffers, replace the a in the above examples with whatever
letter you want.

25

Creating, editing, and printing files

26

You can also delete text into a buffer, then insert it in another place. For infor
mation on this type of deletion and insertion, see the section "Moving text."

Copying lines from elsewhere in the file
To copy lines from one place in a file to another place in the same file, use the
Copy (co) command.

co is a line-oriented command; to use it, you must know the line numbers of
the text to be copied and its destination. To find out the number of the current
line enter:

:nu

The line number and the text of that line are displayed on the status line. To
. find out the destination line number, move the cursor to the line above where
you want the copied text to appear and repeat the :nu command. You can
also make line numbers appear throughout the file with the linenumber
option. For information on how to set this option, see the section "Displaying
line numbers." The following example uses the number option to display line
numbers in a file:

1 iiles contain text.
2 Text contains lines.
3 Lines contain characters.
4 Characters form words.
5 Words form text.

Using the above example, to copy lines 3 and 4 and put them between lines 1
and 2, enter:

:3,4 co 1

The result is:

1 Files contain text.
2 Lines contain characters.
3 iharacters form words.
4 Text contains lines.
5 Lines contain characters.
6 Characters form words.
7 Words form text.

User's Guide

Editing tasks

If you have text that you want to insert several times in different places, you
can save it in a buffer and insert it whenever you need it. For example, to
repeat the first line of the following text after the last line:

iiles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

1. Move the cursor over the "F" in "Files". Enter the following command:

"ayy

This "yanks" the first line into buffer a.

2. Now, move the cursor over the 'W" in 'Words" and enter the following
line:

flap

This "puts" a copy of the yanked line into the file, and places the cursor on
the first letter of this new text. The buffer still contains the original yanked
line.

Your screen now looks like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
iiles contain text.

If you want to yank several consecutive lines, indicate the number of lines you
wish to yank after the name of the buffer. For example, to place three lines
from the above text in buffer a, enter:

"a3yy

27

Creating, editing, and printing files

You can also use yank to copy parts of a line. For example, to copy the words
"Files contain," enter:

2yw
This yanks the next two words, including the word on which you place the
cursor. To yank the next ten characters, enter:

lOyI

I indicates cursor motion to the right. To yank to the end of the line you are
on, from where you are now, enter:

y$

Inserting control characters into text
Many control characters have special meaning in vi, even when you enter
them in Insert mode. To remove their special significance, press (Ctrl)v before
typing the control character. Note that you cannot insert (Ctrl)j, (Ctrl)q, and
(Ctrl)s as text. (Ctrl}j is a newline character; (Ctrl}q and (Ctrl}s are meaningful
to the operating system, and are trapped by it before they are interpreted
by vi.

Joining and breaking lines
To join two lines, press J while the cursor is on the first of the two lines you
wish to join.

To break one line into two lines, position the cursor on the space preceding
the first letter of what you want to be the second line and press r followed by
(Return).

Deleting a character
Use the x and X commands to delete a specified number of characters. The x
deletes the character above the cursor; X deletes the character immediately
before the cursor. If no number is given, one character is deleted. For exam
ple, to delete three characters following the cursor (including the character
above the cursor), enter:

3x

To delete three characters preceding the cursor, enter:
3X

Deleting a word

28

The dw command deletes a specified number of words. If no number is
given, one word is deleted. A word is interpreted as numbers and letters
separated by whitespace. When a word is deleted, the space after it is also
deleted. For example, to delete three words, enter:

3dw

Users Guide

Editing tasks

Deleting a line

The D command deletes all text following the cursor on that line, including
the character the cursor is resting on. The dd command deletes a specified
number of lines and closes up the space. If no number is given, only the
current line is deleted. For example, to delete three lines, enter:

3dd

Another way to delete several lines is to use a line-oriented command. To use
this command, it helps to know the line numbers of the text you want to
delete. For information on how to display line numbers, see the section "Dis
playing line numbers."

For example, to delete lines 200 through 250, enter:

:200,250d

The following message appears on the vi status line, indicating how many
lines were deleted:

50 lines

It is possible to remove lines without displaying line numbers using short
hand "addresses." For example, to remove all lines from the current line (the
line the cursor rests on) to the end of the file, enter:

:.,$d

The dot (.) represents the current line, and the dollar sign stands for the last
line in the file. To delete the current line and 3 lines following it, enter:

:.,+3d

To delete the current line and 3 lines preceding it, enter:

:.,-3d

For more information on using addresses in line-oriented commands, see
vi(C) in the User's Reference.

Deleting an entire insertion

If you wish to delete all of the text you just entered, press (Ctrl)u in Insert
mode. The cursor returns to the beginning of the insertion. The text of the
original insertion is still displayed, and any text you enter replaces it. When
you press (Esc), any text remaining from the original insertion disappears.

29

Creating, editing, and printing files

Deleting and replacing text

30

Several vi commands combine removing characters and entering Insert mode.
The following sections explain how to use these commands.

Overwriting characters
The r command replaces the character under the cursor with the next charac
ter entered. For example, to replace the character under the cursor with a ''b'',
enter:

rb

If you give a number before r, that number of characters is replaced with the
next character entered. For example, to replace the character above the cur
sor, plus the next three characters, with the letter ''b'', enter:

4rb

Note that you now have four ''b''s in a row.

The R command replaces as many characters as you enter. To end the replace
ment, press (Esc). For example, to replace the second line in the following text
with "Spelling is important.":

liles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Move the cursor over the liT" in "Text". Press R, then enter:

Spelling is important.

Press (Esc) to end the replacement. If you make a mistake, use the (Bksp) key
to correct it. Your screen should now look like this:

Files contain text.
Spelling is important.
Lines contain characters.
Characters form words.
Words form text.

User's Guide

Editing tasks

Substituting characters
The s command replaces a specified number of characters, beginning with the
character under the cursor, with text you enter. For example, to substitute
"xyz" for the cursor and two characters following it, enter:

3sxyz

The 5 command deletes a specified number of lines and replaces them with
text you enter. You can enter as many new lines of text as you want; 5 affects
only how many lines are deleted. If no number is given, one line is deleted.
For example, to delete four lines, including the current line, enter:

45
This differs from the R command. The 5 command deletes the entire current
line; the R command deletes text from the cursor onward.

Replacing a word
The cw command replaces a word with text you enter. For example, to
replace the word "bear" with the word "fox," move the cursor over the "b" in
''bear'' and enter:

cw

A dollar sign appears over the "r" in ''bear'', marking the end of the text that is
being replaced. Now, enter:

fox

The rest of ''bear'' disappears and only "fox" remains.

Replacing the rest of a line
The C command replaces text from the cursor to the end of the line. For
example, to replace the text of the sentence:

Who's afraid of the big bad wolf?

from ''big'' to the end, move the cursor over the ''b'' in ''big'' and enter C. A
dollar sign ($) replaces the question mark (?) at the end of the line. Now, enter
the following:

little lamb? (Esc)

The remaining text from the original sentence disappears.

Replacing a whole line
The cc command deletes a specified number of lines, regardless of the location
of the cursor, and replaces them with text you enter. If no number is given,
the current line is deleted.

31

Creating, editing, and printing files

Replacing a particular word on a line
If a word occurs several times on one line, it is often convenient to use a line
oriented command to replace it. For example, to replace the word "removing"
with "deleting" in the following sentence:

In vi, removing a line is as easy as removing a letter.

Make sure the cursor is at the beginning of that line, and enter:

:s/removing/deleting/g

This line-oriented command means "Substitute (s) for the word "removing"
the word "deleting", everywhere it occurs on the current line (g)." If you don't
include a ltg"~ at the end, only the first occurrence of "removing" is changed.

For more information on using line-oriented commands to replace text, see
the section "Searching and replacing."

Moving text

32

To move a block of text from one place in a file to another, you can use the
line-oriented m command. You must know the line numbers of your file to
use this command. The number option displays line numbers. To set this
option, press (Esc) to make sure you are in Command mode, then enter:

set number

Line numbers appear to the left of your text. For more information on setting
the number option, see the section "Displaying line numbers." For other ways
to display line numbers, see the section "Finding out what line you are on."

The following example uses the number option.

1 iiles contain text.
2 Text contains lines.
3 Lines contain characters.
4 Characters form words.
5 Words form text.

To insert lines 2 and 3 between lines 4 and 5, enter:

:2,3m4

User's Guide

Your screen now looks like this:

1 Files contain text.
2 Characters form words.
3 Text contains lines.
4 Lines contain characters.
~ lords form text.

To place line 5 after line 2, enter:

:5m2

After moving, the screen looks like this:

1 Files contain text.
2 Characters form words.
3 lords form text.
4 Text contains lines.
S Lines contain characters.

To make line 4 the first line in the file, enter:

:4mO

Your screen looks like this:

1 &ext contains lines.
2 Files contain text.
3 Characters form words.
4 Words form text.
S Lines contain characters.

Editing tasks

You can also delete text into a buffer and insert it wherever you want. When
text is deleted it is placed in a "delete buffer." There are nine delete buffers.

33

Creating, editing, and printing files

34

The first buffer always contains the most recent deletion. In other words, the
first deletion in a given editing session goes into buffer 1. The second deletion
also goes into buffer I, and pushes the contents of the old buffer 1 into buffer 2.
The third deletion goes into buffer I, pushing the contents of buffer 2 into
buffer 3, and the contents of buffer 1 into buffer 2. When buffer 9 has been
used, the next deletion pushes the current text of buffer 9 off the stack and it
disappears.

Text remains in the delete buffers until it is pushed off the stack, or until you
quit the editor, so it is possible to delete text from one file, change files
without leaving the editor, and place the deleted text in another file.

Delete buffers are particularly useful when you wish to remove text, store it,
and put it somewhere else. Using the following text as an example:

iiles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Delete the first line by entering:

dd

Delete the third line the same way. Now move the cursor to the last line in
the example and press:

"Ip

The line from the second deletion appears:

Text contains lines.
Characters form words.
Words form text.
~ines contain characters.

User's Guide

Editing tasks

Now enter:

"2p

The line from the first deletion appears:

Text contains lines.
Characters form words.
Words form text.
Lines contain characters.
~iles contain text.

Inserting text from a delete buffer does not remove the text from the buffer.
Because the text remains in a buffer until it is either pushed off the stack or
until you quit the editor, you can use it as many times as you want.

You can also place text in named buffers. For information on how to create
named buffers, see the section "Inserting text from other files."

Searching for patterns

You can search forward and backward for patterns in vi. To search forward,
press the slash (f) key. The slash appears on the status line. Enter the charac
ters you want to search for and press (Return). If the specified pattern exists,
the cursor moves to the first character of the pattern.

For example, to search forward in the file for the word "account," enter:

laccount

The cursor moves to the first character of the pattern. To place the cursor at
the beginning of the line above "account," for example, enter:

laccount/-

To place the cursor at the beginning of the line two lines above the line that
contains "account," enter:

laccount/-2

To place the cursor two lines below "account," enter:

laccount/+2

To search backward through a file, use" ?" instead of " /" to start the search.
For example, to find all occurrences of "account" above the cursor, enter:

?account

35

Creating, editing, and printing files

To search for a pattern containing any of the special characters " . * \ [] - $"
and "~", each special character must be preceded by a backslash. For exam
ple, to find the pattern ''U.S.A.'', enter:

IU\ .S\.A \.1

You can continue to search for a pattern by pressing n after each search. The
pattern is unaffected by intervening vi commands, and you can use n to
search for the pattern until you enter a new pattern or quit the editor.

vi searches for exactly what you enter. If the pattern you are searching for
contains an uppercase letter (for example, if it appears at the beginning of a
sentence), vi ignores it. To disregard case in a search command, you can set
the ignorecase option:

:set ignorecase

By default, searches "wrap around" the file. That is, if a search starts in the
middle of a file, when vi reaches the end of the file, it "wraps around" to the
beginning, and continues until it returns to where the search began. Searches
complete faster if you specify forward or backward searches, depending on
where you think the pattern is.

If you do not want searches to wrap around the file, you can change the
wraps can option. Enter:

:set nowrapscan

For more information about setting options, see the section "Setting up your
vi environment."

Searching and replacing

36

The search and replace commands allow you to perform complex changes to
a file in a single command. If you are a serious user of vi, you must learn how
to use these commands.

The syntax of a search and replace command is:

g/patternl/s/[patteii'i2]/[optioii.s]

Brackets indicate optional parts of the command line. The g tells the com
puter to execute the replacement on every line in the file; otherwise, the
replacement occurs only on the current line. The options are explained in the
following sections.

Users Guide

Editing tasks

To explain these commands, we will use the example file from the tutorial
section:

iiles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Replacing a word
To replace the word "contain" with the word "are' throughout the file, enteI
the following command:

:glcontain lsI/are Ig

This command says "On each line of the file (g), find "contain" and substitute
for that word (s/ j) the word "an!', everywhere it occurs on that line (the
second g)." Note that a space is included in the search pattern for "contain";
without the space "contains" is also replace.

After the command executes, your screen looks like this:

iiles are text.
Text contains lines.
Lines are characters.
Characters form words.
Words form text.

Printing all replacements
To replace "contain" with "an!' throughout the file, and print every line
changed, use the p option:

:glcontain lsI/are Igp

After the command executes, each line in which "contain" was replaced by
"an!' is printed on the lower part of the screen. To remove these lines, redraw
the screen by pressing (Ctrl)r.

37

Creating, editing, and printing files

Choosing a replacement
Sometimes you might not want to replace every instance of a given pattern.
The c option displays every occurrence of pattern and waits for you to
confirm that you want to make the substitution. If you press y the substitu
tion takes place; if you press (Return) the next instance of pattern is displayed.

To run this command on the example file, enter:

:glcontain/sl/are/gc

The first instance of "contain" appears on the status line:

Files contain text.

Press y, then (Return). The next occurrence of "contain" appears.

Pattern matching

38

In addition to the characters you want to find, search commands often require
a context in which you want to find them. For example, you might want to
locate every occurrence of a word at the beginning of a line. vi provides
several special characters that specify particular contexts.

Matching the beginning of a line
When you place a caret n at the beginning of a pattern, only patterns found
at the beginning of a line are matched. For example, the following search pat
tern only finds "text" when it occurs as the first word on a line:

rtext!

To search for a caret that appears as text, you must precede it with a backslash
(\).

Matching the end of a line
When you place a dollar sign ($) at the end of a pattern, only patterns found at
the end of a line are matched. For example, the following search pattern only
fi..nds "text" vV"hen it occurs as the last word Oil a line;

Itext$1

To search for a dollar sign that appears as text you must precede it with a
backslash (\).

Matching any single character
When used in a search pattern, the period (.) matches any single character
except the newline character. For example, to find all words that end with
"ed," use the following pattern:

I.ed I

User's Guide

Editing tasks

Note the space between the d and the backslash.

To search for a period in the text, you must precede it with a backslash (\).

Matching a range of characters
A set of characters enclosed in square brackets matches any single character in
the range designated. For example, to find any lowercase letter, enter the fol
lowing search pattern:

l[a-z]1

To find all occurrences of "apple" and "Apple", use this search pattern:

l[aA]pplel

To search for a bracket that appears as text, you must precede it with a
backslash (\).

Matching exceptions
A caret n at the beginning of string matches every character except those
specified in string. For example, the following search pattern finds anything
but a lowercase letter or a newline:

ra-z]

Matching the special characters
To place a caret, hyphen or square bracket in a search pattern, precede it with
a backslash. For example, to search for a caret, enter:

I\AI

If you need to search for many patterns that contain special characters, you
can reset the magic option. To do this, enter:

:set nomagic

This removes the special meaning from the., \, $, [and] characters. You can
include them in search and replace commands without a preceding backslash.
Note that you cannot remove the special meaning removed from the special
characters star (*) and caret n; these must always be preceded by a backslash
in searches.

To restore magic, enter:

:set magic

For more information about setting options, see the "Setting up your vi
environment" section.

39

Creating, editing, and printing files

Undoing a command

40

You can reverse any editing command with the Undo (u) command. The
Undo command works on both screen-oriented and line-oriented commands.
For example, if you delete a line and then decide to keep it, press u and the
line reappears.

Use the following line as an example:

iext contains lines.

Place the cursor over the "c" in "contains," then delete the word with the dw
command. Your screen now looks like this:

Text Dines.

Press u to undo the dw command; "contains" reappears:

(Text !ontains line~.

User's Guide

Editing tasks

If you press u again, "contains" is deleted again:

:ext Bines.

It is important to remember that u only undoes the last command. For exam
ple, if you make a global search and replace, then delete a few characters with
the x command, pressing u undoes the deletions but not the global search and
replace.

Repeating a command

You can repeat any screen-oriented vi command with the Repeat (.) com
mand. For example, you delete two words by entering:

2dw

You can repeat this command as many times as you wish by pressing the peri
od key (.). Cursor movement does not affect the Repeat command, so you can
repeat a command as many times and in as many places in a file as you want.

The Repeat command only repeats the last vi command. Careful planning
can save time and effort. For example, if you want to replace a word that
occurs several times in a file (and for some reason you do not wish to use a
global command), use the cw command instead of deleting the word with the
dw command, then inserting new text with the i command. By using the cw
command you can repeat the replacement with the dot (.) command. If you
delete the word, then insert new text, dot only repeats the replacement.

Leaving the editor

There are several ways to exit the editor and save any changes you may have
made to the file. One way is to enter :x. This command replaces the old copy
of the file with the new one you have just edited, quits the editor, and returns
you to the UNIX shell. Similarly, if you enter ZZ the same thing happens,
except the old copy file is replaced only if you have made any changes. Note
that the ZZ command is not preceded by a colon, and is not echoed on the
screen.

41

Creating, editing, and printing files

To leave the editor without saving any changes you have made to the file,
enter:

:q!

The exclamation point tells vi to quit unconditionally. If you leave out the
exclamation point, vi does not let you quit:

:q
You see the following error message:

No write since last change (:quit! overrides)

This message tells you to use :q! if you really want to leave the editor without
saving your file.

Saving a file without leaving the editor
There are many occasions when you must save a file without leaving the edi
tor, such as when starting a new shell, or moving to another file. Before you
can perform these tasks, you must first save the current file with the Write
(:w) command:

:w

You do not need to enter the name of the file; vi remembers the name you
used when you invoked the editor. If you invoked vi without a filename, you
can name the file by entering:

:w filename

The filename is the name of the new file.

Editing a series of files

42

Entering and leaving vi for each new file takes time, particularly on a heavily
used system, or when you are editing large files. If you have many files to
edit in one session, you can invoke vi with more than one filename, and thus
edit more than one file without leaving the editor, as in:

vi filet file2 file3 file4 fileS file6

But entering many filenames is tedious, and you may make a mistake. If you
mistype a filename, you must either backspace over the mistake and re-enter
the line, or kill the whole line and re-enter it. It is more convenient to invoke
vi using the special characters as abbreviations.

To invoke vi on the above files without typing each name, enter:

vi file*

User's Guide

Editing tasks

This invokes vi on all files that begin with the letters "file." You can plan your
filenames to save time in later editing. For example, if you are writing a docu
ment that consists of many files, it would be wise to give each file the same
filename extension, such as ".S." Then you can invoke vi on the entire docu
ment:

vi *.s

You can also invoke vi on a selected range of files:

vi [3-5]*.s

or

vi [a-h]*

To invoke vi on all files that are five letters long, and have any extension:

vi ?????*

For more information on using special characters, see the Tutorial.

When you invoke vi with more than one filename, you see the following mes
sage when the first file is displayed on the screen:

*x files to edit

After you have finished editing a file, save it with the Write (:w) command,
then go to the next file with the Next (:n) command:

:n
The next file appears, ready to edit. It is not necessary to specify a filename;
the files are invoked in alphabetical (or numerical, if the filenames begin with
numbers) order.

If you forget what files you are editing, enter:

:args

The list of files appears on the status line. The current file is enclosed in
square brackets.

To edit a file out of order, such as file4 after file2, enter the following command
instead of using the (:n) command:

:e file4

If you enter:n after you finish editingfile4, you return to file3.

If you wish to start again from the beginning of the list, enter:

:rew

To discard the changes you made and start again at the beginning, enter:

:rew!

43

Creating, editing, and printing files

Editing a new file without leaving the editor

You can start editing another file anywhere on a UNIX system without leaving
vi. This saves time when you want to edit several files in one session that are
in different directories, or even in the same directory. For example, if you
have finished editing /usr/joe/memo and you wish to edit /usr/mary/letter. First,
save the file memo with the Write (:w) command. Then, enter:

:e /usr/mary/letter

/usr/mary/letter appears on your screen just as though you had left vi.

NOTE You must write out your file with the Write (:w) command to save the
changes you have made. If you try to edit a second file without writing out
the first file, the following message appears:

No write since last change (:e! overrides)

If you use :e! all your changes to the first file are discarded.

If you want to switch back and forth between two files, vi remembers the
name of the last file edited. Using the above example, if you wish to go back
and edit the file /usr/joe/memo after you have finished with /usr/mary/letter,
enter:

:e#

The cursor is pOSitioned in the same location it was when you first saved
/usr/joe/memo.

Leaving the editor temporarily

44

You can execute any UNIX command from within vi using the shell Escape (!)
command. For example, if you wish to find out the date and time, enter:

:!date

The exclamation point sends the remainder of the line to the shell to be exe
cuted, and the date and time appear on the vi status line. You can use the ! to
nQrfnrtn !:IIn'tT , Tl\JTY t"'1'\n'\"",OT'lr1 Tn o.o.nA 't"t"\"3~1 .. ,.. ,;",.0. ,.,.".:""" " ln~,..,.,; __ ... "' _A': ... _ .. r-.... _ -...o.J _ 4J" -_ -...&.V ...,""' - L~ LV JV"'"&.L V'-L .. ,I.\;;Qv '6 L.l.l~ !IIi;;"".I.LV.I.,

enter:

:!mailjoe

Type your message and send it. (For more information about the UNIX mail
system, see the "Communicating using mail" chapter.) After you send the
mail message, the following message appears:

[Press return to continue]

Press (Return) to continue editing.

User's Guide

Editing tasks

If you want to perform several UNIX commands before returning to the editor,
you can invoke a new shell:

:!sh

The UNIX prompt appears. You can execute as many commands as you like.
Press (Ctrl)d to terminate the new shell and return to your file.

If you have not written out your file before a shell escape, you see the follow
ing message:

[No write since last change]

It is a good idea to save your file with the Write (:w) command before execut
ing an escape, just in case something goes wrong. However, once you become
an experienced vi user, you may wish to turn off this message. To turn off the
"No write" message, reset the warn option, as follows:

:setnowarn

For more information about setting options in vi, see the section "Setting up
your vi environment."

Performing a series of line-oriented commands

If you have several line-oriented commands to perform, you can place your
self temporarily in line-oriented mode by entering Q while you are in Com
mand mode. A colon prompt appears on the status line.

You cannot undo commands executed in this mode with the u command, nor
do they appear on the screen until you re-enter Normal vi mode. To re-enter
Normal vi mode, enter:

vi

Finding out what file you are editing

If you forget what file you are editing, press (Ctrl)g in Command mode. A line
similar to the following appears on the status line:

"memo" [Modified] line 12 of 100 --12%--

From left to right, the following information is displayed:

• the name of the file

• whether or not the file has been modified

• the line number the cursor is on

• how many lines there are in the file

o your location in the file (expressed as a percentage)

45

Creating, editing, and printing files

This command is also useful when you need to know the line number of the
current line for a line-oriented command.

The same information can be obtained by entering:

:file

or

:f

Finding out what line you are on

To find out what line of the file you are on, enter:

:nu

This command displays the current line number and the text of the line.

To display line numbers for the entire file, see the section "Displaying line
numbers."

Solving common problems

46

The following is a list of common problems that you might encounter when
using vi, along with the probable solution:

• I do not know which mode I am in.

Press (Esc) until the bell rings. When the bell rings you are in Command
mode.

• I cannot get out of a subshell.

Press (Ctrl)d to exit any subshell. If you have created more than one sub
shell (not a good idea, usually), keep pressing (Ctrl)d until you see the fol
lowing message:

[Press return to continue]

• I made an inadvertent deletion (or insertion).

Press u to undo the last Delete or Insert command.

• There are extra characters on my screen.

Press (Ctrl)l to redraw the screen.

• When I type, nothing happens.

vi has crashed and you are now in the shell with your terminal characteris
tics set incorrectly. To reset the keyboard, slowly enter:

stty sane

User's Guide

Setting up your vi environment

then press (Ctrl}j or (Linefeed). Pressing (Ctrl}j instead of (Return) is impor
tant here, because it is quite possible that the (Return) key will not work as a
newline character. To make sure that other terminal characteristics have
not been altered, log off, turn your terminal off, turn your terminal back on,
and then log back in. This should guarantee that your terminal's charac
teristics are back to normal. This procedure might vary somewhat depend
ing on the terminal.

• The system crashed while I was editing.

Normally, vi informs you (by sending you mail) that your file was saved
before a crash. You can recover your file by entering:

vi -r filename

If vi was unable to save the file before the crash, it is irretrievably lost.

• I keep getting a colon on the status line when I press (Return).

You are in line-oriented Command mode; enter the following command to
return to normal vi Command mode:

vi

• I get the error message "Unknown terminal type [Using open model" when I
invoke vi.

Your terminal type is not set correctly. To leave Open mode, press (Esc),
then enter:

:wq

Turn to the section "Setting the terminal type" for information on how to
set your terminal type correctly.

Setting up your vi environment

There are a number of options that you can set that affect your terminal type,
how vi displays files and error messages on your screen, and how searches are
performed. You can set these options with the set command while you are
editing, with the EXINIT environment variable (see the environ(M) manual
page), or you can place them in the vi .exrc startup file (see "Customizing your
environment").

You can also define mappings and abbreviations to reduce repetitive tasks
with the map and abbr commands while you are editing, with EXINIT, or in
the .exrc file.

The following sections describe how to set some commonly used options and
how to create mappings and abbreviations. There is a complete list of options
in vi(C) in the Users Reference.

47

Creating, editing, and printing files

Setting the terminal type

Before you can use vi, you must set the terminal type, if this has not already
been done for you, by defining the TERM variable in your .profile or .login file.
The TERM variable is a number that tells the operating system what type of
terminal you are using. To determine this number, you must find out what
type of terminal you are using. Then, look up this type in terminals(M) in the
User's Reference. If you cannot find your terminal type or its number, consult
your system administrator.

For these examples, we suppose that you are using an HP 2621 terminal. For
the HP 2621, the TERM variable is 1/2621". How you define this variable
depends on the shell that you are using. You can usually determine the shell
by examining the prompt character. The Bourne and Korn shells prompt with
a dollar sign ($); the C shell prompts with a percent sign (%).

If you are using the Bourne or Korn shells, set your terminal type to 2621 by
placing the following commands in the .profile file:

TERM=2621
export TERM

For the C shell, set your terminal type to 2621 by placing the following com
mand in the .login file:

setenv TERM 2621

Setting options with the set command

48

Use the set command while you are editing in vi to display the current option
settings and to set options.

Listing the available options
To get a list of the options available to you and how they are currently set,
enter:

:set all

User's Guide

Your display looks similar to this:

noautoindent
autoprint
noautowrite
nobeautify
directory=/tmp
noerrorbells
hardtabs=8
noignorecase
nolisp
nolist
magic
non umber

open
nooptimize
paragraphs=IPLPPPQPP Llbp
noprompt
noreadonly
redraw
report=5
scroll=4
sections=NHSHH HU
shell=/bin/sh
shiftwidth=8
noshowmatch

Setting up your vi environment

noslowopen
tabstop=8
taglength=Q
ttytype=h19
term=h19
noterse
warn
window=8
wrapscan
wrapmargin=Q
nowriteany

This section discusses only the most commonly used options. For informa
tion about the options not covered here, see vi(C) in the Users Reference.

Setting an option
To set an option, use the set command. For example, to set the ignorecase
option so that case is not ignored in searches, enter:

:set noignorecase

Displaying tabs and end-ot-line

The list option tells vi to display the "hidden" characters and end-of-line. The
default setting is noHsl. To display these characters, enter:

:set list

This redraws your screen, displaying these characters. The dollar sign ($)
represents end-of-line and (CtrI}i rI) represents the (Tab) character.

49

Creating, editing, and printing files

Ignoring case in search commands

By default, case is significant in search commands. To disregard case in
searches, enter:

:set ignorecase
To return to the default setting, enter:

:set noignorecase

Displaying line numbers

To display the line numbers in the file, enter:
:set number

This redraws your screen, placing numbers to the left of the text.

Printing the number of lines changed

The report option tells you the number of lines modified by a line-oriented
command. For example, to tell vi to report the number of lines modified if
more than one line is changed, enter this command:

:set report=1
The default setting is:

report=5
This reports the number of lines changed when more than five lines are
modified.

Changing the terminal type

,..,y • •

If you are logged in on a terminal that is a different type than the one you nor
mally use, you can check the terminal type setting by entering:

:set term
See the section "Setting the terminal type" for more information about the
TERM variable.

~nonentng error messages

50

After you become experienced with vi, you might want to shorten your error
messages. To change from the default noterse, enter:

:set terse
As an example of the effect of terse, when terse is set the following message:

No write since last change, quit! overrides

becomes:
No write

User's Guide

Setting up your vi environment

Turning off warnings

After you become experienced with vi, you might want to turn off the error
message that appears if you have not written out your file before a Shell
Escape (:!) command. To turn these messages off, enter:

:setnowarn

Permitting special characters in searches

The nomagic option allows the inclusion of the special characters If • \ $ [] " in
search patterns without a preceding backslash. This option does not affect
caret n or star (*); you must always precede these characters with a backslash
in searches regardless of magic. To set nomagic, enter:

:set nomagic

Limiting searches

By default, searches in vi "wrap" around the file until they return to the place
they started. To save time, you might want to disable this feature. Use the
following command:

:set nowrapscan
When you set this option, forward searches go only to the end of the file, and
backward searches stop at the beginning.

Turning on messages

If someone sends you a message with the write(C) command while you are in
vi, the text of the message appears on your screen. To remove the message
from your display, you must press (Ctrl}l. When you invoke vi, write permis
sion to your screen is automatically turned off, preventing write messages
from appearing. If you want to receive write messages while in vi, reset this
option as follows:

:setmesg

51

Creating, editing, and printing files

Mapping keys

Use the map command to map any character or escape sequence to a com
mand sequence. For example, with the following command defined, when
you enter the number sign (#) in Command mode, vi adds a semicolon to the
end of the current line:

map # A;~[

(Ctrl)[represents the (Esc) key that you must enter to exit from Insert mode.
When you create a mapping, use (Ctrl)v to escape control characters.

Here is a more complex example:
map ~p :w~M:!spell % ~M

(Ctrl)p key is mapped to two commands. First, it writes the file, then it exe
cutes a shell escape to run the spell checker on the current file (represented by
the percent sign). The (Ctrl)m represents the (Return) you must enter to exe
cute each command.

Be careful not to map keys that are already defined within vi, such as (Ctrl)r,
which is defined by default to redraw the screen.

You can remove a mapping with the unmap command.

Abbreviating strings

52

The abbr command allows you to avoid typing a frequently used word or
phrase by mapping a short string to a longer string. For example, with the fol
lowing command defined, when you enter "Usa" in Insert mode, vi expands
the string to ''United States of America."

:abbr Usa United States of America
When you create an abbreviation, it helps to use mixed case (as in ''Usa'') so
that you can still enter "USA" if you need to without it expanding.

You can remove an abbreviation with the unabbreviate command.

User's Guide

Printing Files

Customizing your environment

Each time you invoke vi, it reads commands from the file named .exrc in your
home directory. This file sets your preferred options so that you do not need
to set them each time you invoke vi. A sample .exrc file follows:

set number
set ignorecase
set nowarn
set report=l
map 'W !)fmt'M
abbr unix \s-lUNIX\s+l

Each time you invoke vi with the above settings, your file is displayed with
line numbers, case is ignored in searches, warnings before shell escape com
mands are turned off, and any command that modifies more than one line dis
plays a message indicating how many lines were changed. In addition, the
(Ctrl)w key is defined to escape to the shell to run a formatting command on
the current paragraph, and the string "unix" is defined to expand to a string
containing troff(CT) commands that print small capital letters.

Printing Files

Using lp

To print files, use the lp command. This is one of a group of commands
known as the "lineprinter" commands. The lineprinter commands are easy to
use and very flexible. With a few simple commands, you can print multiple
copies of a file, cancel a print request, or ask for a special option on a particu
lar printer. Check with your system administrator to find out what lineprint
ers and printer options are available on your system.

This section explains how to print the temp file that you created in the tutorial
section.

A directory must be "publicly executable" before you can use lp to print any
of the files in that directory. This means that other users must have execute
permissions on the directory. Enter the following command to make your
home directory publicly executable:

chmod o+x $HOME
(See Chapter 3, "Managing files and directories," for more information on
chmod(C).)

Enter the following command to print temp:
lp temp

This command causes one copy of temp to print on the default printer on your
system. A banner page might be printed along with the file. Note that you
can print several files at once by putting more than one name on the lp com
mandline.

53

Creating, editing, and printing files

When you print with lp, a "request 10" like the following is displayed on your
screen:

r pr4-532 l
The first part (pr4) is the name of the printer on which your file is printed.
The second part (532) identifies your job number. If you want to cancel your
print request or check its status later, you need to remember your request ID.
(The following sections discuss canceling and checking on print requests.)

You can also use lp with pipes. (If you are not familiar with pipes, see the sec
tion "Commands revisited: pipes and redirection," in the Tutorial.) For exam
ple, enter the following command to sort and then print a copy of /etc/passwd,
the file that contains system account information:

sort letdpasswd I lp
(For more information on sort(C), see the section "Sorting files," later in this
chapter.)

Using Ip options

The lp command has several options that help you control the printed output.
You can specify the number of copies you want printed by using the number
option, -no For example, to print two copies of temp, enter:

lp -n2 temp
Several different printers are often attached to a single UNIX system. With the
-d option, you can specify the printer on which your file is to be printed. To
print two copies of temp on a printer named laser, enter:

Ip -n2 -dlaser temp
Check with your system administrator for the names of the printers available
on your system.

Canceling a print request

54

Use the cancel command to cancel any of your print requests. With this com
mand, you can only cancel your own requests. The system administrator is
the only person allowed to cancel the requests of other users. If the system
administrator cancels one of your print requests, you are automatically
notified via mail.

The cancel command takes as its argument the request 10. For example, to
stop printing one of your files with a request ID of laser-245, you enter:

cancel laser-245
Experiment with cancel by using lp to print temp and then using cancel to
cancel the print request.

Users Guide

Printing Files

The system administrator can also use the cancel command to stop whatever
is currently printing on a particular printer. For example, to cancel whatever
file is currently printing on the printer laser, enter the following command:

cancel laser
If you cancel a file that does not belong to you, mail reporting that the print
request was canceled is automatically sent to the file's owner.

Finding out the status of a print request

Use the Ipstat command to check on the status of your print request. To use
it, simply enter the following:

lpstat

The lpstat command produces output like the following:

prtl-121 cindym 450 Dec 15 09:30
laser-450 cindym 4968 Dec 15 09:46

Note that entering lpstat with no options displays information on your files
only, not those of other users. To generate a report for all users on your com
puter, use lpstat with the -0 option. Nothing is displayed by the lpstat com
mand if the print job is complete.

I NOTE Depending on how your system administrator has set up your sys
tem, you may not be allowed to see other print jobs. Refer to Chapter 7,
"Using a secure system," for details.

The first column of the Ipstat output shows the request ID for each of your
files being printed. The second column is your login name. The third column
shows the number of characters to be printed and the fourth column lists the
dates and times the print requests were made.

To learn the status of a particular file, use the lpstat command with the file's
request ID. For example, to find out the status of a file with the request ID of
laser-256, enter the following command:

lpstat laser-256
The status of that file only is displayed.

You can also request the status of various printers on your system by using
the -p option or by giving the name of the particular printer you are interested
in. Enter the following command to find out the status of all the printers on
your system:

lpstat -p

55

Creating, editing, and printing files

To find out the status of a printer named laser, enter the following:
lpstat -plaser

The request ID and status information for each file currently waiting to be
printed on laser is displayed.

Processing text files
The UNIX system includes a set of utilities that let you process information in
text files. These utilities enable you to compare the contents of two files, sort
files, search for patterns in files, and count the characters, words, and lines in
files. These utilities are described below.

Comparing files

The diff(C) command allows you to compare the contents of two files and to
print out those lines that differ between the files. To experiment with diff, use
vi(C) to create two files called men and women to compare. Add the following
lines to men:

Now is the time for all good men to
Come to the aid of their party.

And, add the following lines women:

Now is the time for all good women to
Come to the aid of their party.

Enter the following command to compare the contents of these two files:
diff men women

This diff command produces the following output:

leI
< Now is the time for all good men to

> Now is the time for all good women to

The lines displayed are the lines that differ from one another in the two files.

Sorting files

56

One of the most useful file processing commands is sort(C). When you use
sort without any options, this command alphabetizes lines in a file, starting
with the leftmost character of each line. By default, sort outputs the sorted
lines to the screen. You can use redirection on the sort line to place the output
the sort command in a file. The sort command does not affect the contents of
the input file.

Users Guide

Processing text files

Enter the following command to display an alphabetized list of all users who
have system accounts:

sort letc/passwd
The sort command is useful in pipes. For example, enter the following com
mand to display an alphabetized list of users who are currently using the sys
tem:

who I sort

Removing repeated lines in a file
Use the uniq(C) command to remove adjacent lines that are repeated in the
file. For example, if you sort a file that contains duplicate entries, you can use
uniq to remove the redundant entries from the output. Thus, to sort and
remove redundant entries from a list of phone numbers, use the following
command:

sort phone.list I uniq
This outputs the lines in the phone.list file that are unique. Note that uniq only
removes redundant entries if they are adjacent.
For more information on the options to uniq, see the uniq(C) manual page.

Searching for patterns in a file
Use the grep(C) command to select and extract lines from a file, and print only
those lines that match a given pattern. Enter the following command to print
out the lines in /etc/passwd that contain your login information. Generally,
there is only one such line:

grep login letdpasswd
Be sure to replace login in this command with your login name. Your output
should be similar to the following:

markt:+:6005:104:Mark Taub, Docland:/u/markt:/bin/csh

Note that whenever you use wildcard characters to specify a grep search pat
tern, you should enclose the pattern in Single quotation marks ('). Note also
that the search pattern is case sensitive. Searching for "joe" does not yield
lines containing "Joe."
As another example, assume that you have a file named phonelist that contains
a name followed by a phone number on each line. Assume also that there are
several thousand lines in this list. You can use grep to find the phone number
of someone named Joe, whose phone number prefix is 822, by entering the fol
lowing command:

grep 'Joe' phonelist I grep '822-' > joes.number

57

Creating, editing, and printing files

The grep utility first finds all occurrences of lines containing the word jOft' in
the file phonelist. The output from this command is then filtered through
another grep command, which searches for an "822-" prefix, thus removing
any unwanted joes." Finally, assuming that a unique phone number for Joe
exists with the "822-" prefix, grep places that name and number in the file
called joes.number.

Two other pattern searching utilities are available. These are egrep(CM) and
fgrep(CM). Refer to the grep(C) manual page in the Users Reference for more
information on these utilities.

Counting words, lines, and characters

58

Use the we(C) utility to count words in a file. Words are defined as a character
or group of characters separated by punctuation, spaces, tabs, or newlines. In
addition to counting words, we counts characters and lines.

For example, use we to count the lines, words, and characters in the men file
that you created earlier in the "Comparing files" section:

we men

The output from this command should be the following:

16 68 men l
The first number is the number of lines in men, the second number is the num
ber of words and the third number is the number of characters.

To specify a count of characters, words, or lines only, use the -c, -w, or -1
option, respectively. For example, enter the following command to count the
number of users currently logged onto the system:

who I we -1
The who command reports on who is using the system, one user per line. The
we -1 command counts the number of lines reported by the who command.
This is the number of users currently on the system.

Users Guide

Summary

Summary
In addition to the basic vi commands and variables, this chapter covers the
commands and utilities that you can use to print and process text files. This
section contains a summary of the commands discussed in this chapter.

Summary of vi commands and variables

The following tables contain all the basic vi commands and variables dis
cussed in this chapter.

Table 2·1 Entering vi

Typing this:

vi file
vi +n file
vi + file
vi +/pattern file
vi -r file

Does this:

Starts at line 1
Starts at line n
Starts at last line
Starts at pattern
Recovers file after a system crash

Table 2·2 Cursor movement

Pressing this key:

h
1
(Space)
w
b
k
j
(Return)
)
(
}
{
(Ctrl}w

(Ctrl}u

(Ctrl}d

(Ctrl}f

(Ctrl)b

Does this:

Moves 1 space left
Moves 1 space right
Moves 1 space right
Moves 1 word right
Moves 1 word left
Moves 1 line up
Moves 1 line down
Moves 1 line down
Moves to end of sentence
Moves to beginning of sentence
Moves to beginning of paragraph
Moves to end of paragraph
Moves to first character of insertion
Scrolls up 1/2 screen
Scrolls down 1/2 screen
Scrolls down one screen
Scrolls up one screen

59

Creating, editing, and printing files

60

Table 2·3 Inserting text

Pressing this key:

i
I

Starts insertion:

Before the cursor
Before first character on the line
After the cursor
After last character on the line
On next line down
On the line above

a
A
o
o
r

R
On current character, replaces one character only
On current character, replaces until (Esc)

Table 2·4 Delete commands

Command

dw
dO
d$
3dw
dd
Sdd
x

Function

Deletes a word
Deletes to beginning of line
Deletes to end of line
Deletes 3 words
Deletes the current line
Deletes S lines
Deletes a character

Table 2·5 Change commands

Command

ew
3ew
ee
Sec

Function

Changes 1 word
Changes 3 words
Changes current line
Changes Slines

Users Guide

Summary

Table 2·6 Search commands

Command

*/and
*?and
*/lhe
l[bB]ox/

Function

Finds the next occurrence of and
Finds the previous occurrence of and
Finds next line that starts with The
Finds the next occurrence of box or
Box

Example

and, stand, grand
and, stand, grand
The, Then, There

n Repeats the most recent search, in the
same direction

Table 2·7 Search and replace commands

Command Result

:s/pear/peachlg All pears become peach on
the current line

:l,$s/file/directory Replaces file with directory

:glone/sl/lIg
from line 1 to the end.
Replaces every occurrence
of one with 1.

Table 2·8 Pattern matching: special characters

This character:

$

[]

Matches:

Beginning of a line
End of aline
Any single character
A range of characters

Example

filename becomes
directoryname
one becomes 1, oneself
becomes 1self, someone
becomes some1

61

Creating, editing, and printing files

62

Table 2·9 Leaving vi

Command

:w
:x
:q!
:!command
:!sh
!!command

:e file

Table 2·10 Options

This option:

all
term
ignorecase
list
number
report

terse
warn
nomagic

nowrapscan

mesg

Result

Writes out the file
Writes out the file, quits vi
Quits vi without saving changes
Executes command
Forks a new shell
Executes command and places
output on current line
Edits file (save current file with
:w first)

Does this:

Lists all options
Sets terminal type
Ignores case in searches
Displays (Tab) and end-of-line characters
Displays line numbers
Prints number of lines changed by a line-oriented
command
Shortens error messages
Turns off "no write" warning before escape
Allows inclusion of special characters in search patterns
without a preceding backslash
Prevents searches from wrapping around the end or
beginning of a file.
Permits display of messages sent to your terminal with
the write command

Users Guide

Summary

Summary of print commands

Table 2·11 Print commands

Command

Ip(C)

cancel(C)

Ipstat(C)

Description

Sends a file or files to the printer
Cancels a print request
Checks the status of a print job

Summary of file processing utilities

Table 2·12 File processing utilities

Utility

diff(C)
sort(C)

uniq(C)
grep(C)
wc(C)

Description

Compares the contents of two files
Alphabetizes lines in a file
Removes adjacent lines that are repeated in the file
Selects and extracts lines from a file
Counts words in a file

63

Creating, editing, and printing files

64 User's Guide

Chapter 3

Communicating using mail
The UNIX system mail application is a versatile communication facility that
allows users to compose, send, receive, forward, and reply to mail. Users can
also create distribution groups to send copies of a message to multiple users.
These functions are integrated so that all users can quickly and easily com
municate with each other.

This chapter is organized to satisfy the needs of both novice and advanced
users. The first section discusses basic mail concepts. The second section
provides demonstrations of the most commonly used commands. Later sec
tions describe the more advanced mail commands and some advanced uses
of mail.

For a quick introduction to get started using mail immediately, see the
Tutorial. For a complete list of mail functions, refer to mail(C) in the User's
Reference.

You should be familiar with the use of an editor such as vi in order to con
veniently create mail.

Basic concepts
It is much easier to use mail if you understand the basic concepts that under
lie it. The concepts discussed in this section are:

• mailboxes
• messages
• modes
• headers
• command syntax
• message lists

65

Communicating using mail

Mailboxes

Messages

66

It is useful to think of the mail system as modeled after a typical postal sys
tem. What is normally called a post office is called the "system mailbox" in
this chapter. The system mailbox contains a file for each user in the directory
/usr/spool/mail. Your own personal or Huser mailbox" is the file named mbox in
your home directory. Mail sent to you is put in your system mailbox and is
automatically saved in your user mailbox after you have read it. Note that the
user mailbox differs from a real mailbox in these respects:

• The user mailbox is not the place where mail is initially routed-that place
is the system mailbox in the directory /usr/spool/mail.

• Mail is not picked up from your user mailbox.

In mail, the message is the basic unit of exchange between users. Messages
consist of two parts: a heading and a body. The heading contains the follow
ingfields:

To:

Subject:

Cc;

Bcc:

This field is mandatory. It contains one or more valid user names
to which you can send mail.

This optional field contains text describing the message.

The carbon copy field contains one or more valid names of those
who are to receive copies of a message. Message recipients see
these names in the received message. This field is optional.

The blind carbon copy field contains the one or more valid names
of people who are to receive copies of a message. Recipients do
not see these names in the received messages. This field is
optional.

The body of a message is the text you enter exclusive of the heading. The
body can be empty.

User's Guide

Modes

Basic concepts

The mail program has two main modes: compose mode and command mode.
You create a message in compose mode. In command mode, you perform
mail operations for managing your mail.

The most common way of using mail is to begin a session by entering:

mail

If you have mail waiting.this command automatically places you in com
mand mode. In this mode, you can enter commands for handling your mail.
If you have no mail waiting, you see the following message and you return to
the UNIX shell:

rNO mail in /usr/spool/mail/login

From the shell or from mail command mode, you can enter compose mode to
create a message with:

mail usemame

where usemame is the user name of the person to whom you want to send
mail. In compose mode, you can enter the text of your message ending each
line with a (Return). Send the message by pressing (Ctrl)d on a new line; you
then exit from the mail program and return to the UNIX shell. From compose
mode, you can issue commands called compose escapes that allow you to tem
porarily leave or escape from compose mode. Compose escapes, which must
be entered at the beginning of a line, begin with a tilde (-) and so are also
called tilde escapes.

Once you press (Return) to end a line of a message you are creating, you can
not change that line from within compose mode. You must enter edit mode to
change the line. In edit mode, you edit the body of a message using the full
capabilities of an editor.

To enter edit mode from compose mode, use the compose escape -e to enter
ed, the line editor, or -v to enter vi, the visual editor. It is often useful to be
able to invoke either a line or visual editor, depending on the type of terminal
you are using. When you finish editing the message, write it out and quit the
editor; mail responds with:

r (continue)

67

Communicating using mail

Headers

68

You are now back in compose mode and can continue creating your message.

You can also enter edit mode from command mode to edit any existing
message. Use either ed or (vi) to do this. When you save the message and
quit the editor, mail reads the message back into the message buffer.

If you want to mail a message that already exists in a file, you can do so from
the UNIX system command line (without entering mail) as follows:

mail john < letter

Here, the file letter is sent to the user john.

I NOTE Be very careful when mailing a file with the input redirection symbol
«). If you accidentally enter the output redirection symbol (», you
overwrite the file, destroying its contents.

When invoking mail from the shell, certain mail command-line options are
available. Two useful command-line options are the -s (subject) option and
the -c (carbon copy) option. You can specify a subject and carbon copy reci
pients on the command line with these options. For example, you could send
a file named note with the Subject: "Important Meeting" by entering the follow
ing command:

mail -s "Important Meeting" -c "ted bob" bill joe sue < note

The To: field contains bill, joe, and sue; the Cc: field contains ted and bob.

All command-line options must appear before the list of users for the To: field.
If an argument to an option contains multiple words, the entire argument set
must be enclosed in quotes. Other command-line options are described in the
mail(C) manual page.

When you enter mail command mode, a list of message headers is displayed
that looks something like this:

N 3 john Wed Sep 21 09:21 26/91 "Notice"
> N 2 sam Tue Sep 20 22:55 6/91 "Meeting"

U 1 tom Mon Sep 19 01:23 6/91 "Invite"

By default, mail displays headers in reverse chronological order, the most
recent message is displayed at the top of the list. The messages are numbered
in ascending order from first received to most recently received; the message
at the top of the list has the highest number. You can change the order in
which headers are displayed by setting the chron and mchron options.

User's Guide

Basic concepts

A header is a single line of text containing descriptive information about a
message. (Note that we use the word heading to describe the first part of a
message, and header to describe mail's one-line description of a message.) The
header contains:

• a greater-than sign (» pointing to the current message

• a status indicator: "N" for new and "u" for unread

• the number of the message

• the sender

• the date sent

• the number of lines and characters

• the subject (if the message contains a Subject: field)

Message headers are displayed a screenful at a time. You can set the size of a
screen with the screen option. You can move forward one screenful with the
headers (h) command:

h+
You can move backward one screenful with h -. Both plus and minus take an
optional numeric argument that indicates the number of header windows to
move forward or backward before printing. With no argument at all, the
headers command displays a window of headers in which the header of the
current message is at the center.

The following are some characteristics of the header list:

• Deleted messages do not appear in the listing.

• Messages saved with the save or write command are flagged with a star (*).

• Messages selected with the mbox command to be saved in your user mail
box are flagged with an ''M.''

• Messages held in the system mailbox with the hold or preserve command
are flagged with a "P."

Command syntax

Each mail command has its own syntax. Some commands take no argu
ments, some take only one, and others take several arguments.

Each mail command is entered on a line by itself, and any arguments follow
the command word. The command need not be entered in its entirety; you
can use its unique abbreviation. For example, you can enter "s" instead of
"save" for the save command, "se" instead of "set" for the set command.
Throughout this chapter, the appropriate abbreviation is enclosed in
parentheses after the name of the command.

69

Communicating using mail

After you enter the command itself, you should enter one or more spaces to
separate the command from its arguments. If a mail command does not take
arguments, any arguments you give are ignored and no error occurs.

Message lists

70

Many mail commands take a list of messages as an argument. A message list is
a list of message identifiers, ranges, users, search strings, or message types
separated by spaces or tabs. For commands that take a message list as an
argument, if no message list is given, the current message is used.

Message identifiers can be either decimal numbers, which directly specify
messages, or one of three special characters: A (caret), . (dot), and $ (dollar
sign), which specify the first, current, and last non-deleted messages, respec
tively.

A range of messages is two message identifiers separated by a dash. To dis
play the headers of all the messages from the current message to the last mes
sage, enter:

h .-$

By giving a user name as part of a message list, you can display the messages
sent by a particular user. For example, if you want to read only the messages
sent by your manager, enter:

p markt

The print (p) command displays those messages on the screen one after
another.

You can use a search string to specify all messages with the given string in the
Subject: line (case is ignored). For example, to display the headers of only the
messages with "meeting" in the Subject: line, enter:

h Imeeting

You can create a message list by defining the type of messages in which you
are interested. Use a colon followed by one of the following key letters:

d deleted messages
n new messages
o old messages
r read messages
u unread messages

For example, to see a list of headers of the messages you deleted, enter:

h :d

Users Guide

Using mail

Message lists can contain combinations of numbers, ranges, and names. For
example, to delete all messages about your print jobs from user lp that are
numbered from the first non-deleted message to 7 or 11 and 12, use the delete
(d) command with the following message list:

d Ip A_7 1112

As a shorthand notation, you can specify an asterisk (It) to mean all non
deleted messages. For example, to completely clean out your mailbox, use the
save (s) command with an asterisk and a filename to save all non-deleted
messages to the specified file:

s It maiLold

The asterisk symbol cannot be used with any other message list notation.

Using mail

This section demonstrates some of mail's more commonly used features.
Refer to the mail(C) manual page for details about other commands.

Composing and sending a message

Try sending a message to yourself by entering the following command from
UNIX command level:

mail username

where username is your login name.

If the asksub option is set, mail prompts for a Subject: line.

r Subject: I

Enter a one-line summary of the message, then press (Return) to enter com
pose mode.

Incompose mode, the text that you enter is appended one line at a time to the
body of the message you are sending. Normal line editing functions are avail
able when entering text, including (Ctrl)u to kill a line and (Bksp) to back up
one character.

Next, enter the following lines. Press (Return) at the end of each line.

This is a message sent to myself.
I compose a message by entering lines of text.

Press <Ctrl>d on a new line to end the message.

71

Communicating using mail

To view the message you are composing (including the heading fields) as it
will appear when you send it, enter:

-p
This displays the following:

Message contains:
To: login
Subject: Sample Message

This is a message sent to myself.
I compose a message by entering lines of text.
Press (Ctrl}d on a new line to end the message.
(continue)

1

You can abort a message you are composing by entering two interrupts in a
row (i.e., pressing INTERRUPT twice). In this case, the message is not sent.
When you abort a message, a copy of the body of the undelivered message is
appended to the file dead.letter in your home directory.

When you are ready to send your message, press (Ctrl)d on a line by itself to
end the message and to send it. Once you have sent mail, there is no way to
undo the act, so be careful.

If mail cannot be delivered to the address you specified, you are notified with
a message that includes the undeliverable message.

Reading your mail

72

The message you sent yourself should have arrived in your system mailbox.
To begin a mail session, enter:

mail

mail then displays a sign-on message and a list of message headers:

sea Mail version 4.1 Type? for help.
"/usr/ spool/mail/login": 1 message
> N 1 login Fri Aug 31 12:26 9/229 "Sample Message"
?I

The question-mark prompt prompts you to enter a mail command. You can
set the prompt to a different string with the prompt option. To get help on all
the available mail commands, enter:

?

User's Guide

Using mail

To display the message that you sent to yourself, press (Return). mail dis
plays:

From login Fri Aug 20 12:26:52 1985
To: login
Subject: Sample Message

This is a message sent to myself.
I compose a message by entering lines of text.

The message you sent to yourself now contains information about the sender
of the message - a line telling who sent the message and when it was sent.
The next line tells who the message was sent to. If a Subject: or a carbon copy
(Cc:) field was specified by the sender, they too are displayed when you read
the message.

You can configure your environment so that you are notified whenever new
mail is sent to you even if you are not in mail. To do so, you should set the
MAIL shell variable if you are using the Bourne shell or the mail shell
variable if you are using the C-shell. For more information, see ''The Bourne
shell" and "The C shell" chapters of this guide and csh(C) in the User's
Reference.

After examining a message, you will most likely want to either leave the mes
sage in your system mailbox, save it in a file, reply to it, or delete it. These
and other useful mail operations are described in the next sections.

Saving a message

Sometimes you want to save a message for future reference. If you leave mail
with the quit (q) command without performing any other operation on your
message, the message is normally saved in the user mailbox. When you quit,
mail displays the following message before returning you to the UNIX shell:

rsaved 1 message in !u!login!mbox l
To keep the message in the system mailbox, use the hold or preserve
command; mail displays the following message:

Held 1 message in !usr!spool!mail!login

73

Communicating using mail

74

You see the same message the next time you invoke mail.

Saving many messages in the user or system mailbox can be confusing and
can slow down processing. You can use the save (s), write (w), or Write (W)
commands to organize your mail by putting messages that relate to each
other in a specific file.

If you use save, mail saves the message to the name of the mail folder given
as the last argument on the command line. For example, the following
command appends the current message to the file letters:

s letters

Each saved message is marked with an asterisk (*). When you quit from mail,
saved messages are normally deleted from the system mailbox.

If the file letters does not already exist, save creates it. The save command
writes the entire message, including the header fields (such as To:, Subject:, and
Cc:) and the (Ctrl)a delimiters between messages to the specified filename.
mail now treats the file letters as a "mail folder." (For more information about
the different mail folder formats, see the section "Converting mailboxes to the
new MMDF format" later in this chapter.)

You can access messages saved in a mail folder by specifying the filename
with the mail -f command-line option or with the folder (fold) or file (fi)
command from within mail. Both of these methods read in the specified file,
giving you access to the messages 1..'1 that folder in the same way you have
access to the messages in your system mailbox when you invoke mail nor
mally. Your user mailbox is also a mail folder; its messages can be accessed in
the same way.

I NOTE If you leave a mail folder by switching to another folder or back to
your system or user mailbox, you can no longer use undelete to restore a
deleted message from the original folder.

If you want to save your message text and headers without the (Ctrl)a delimit
ers (in other words, you do not want to be able to access the messages using
mail), use the Write (W) command. As with save, Write marks the message
as "saved" (with an asterisk) and the message is deleted from your system
mailbox when you leave mail.

The mail command also provides the write (w) command for saving mes
sages without the headers (or (Ctrl)a delimiters) to a plain text file. In this
case, write keeps only the message text, no headers.

User's Guide

Using mail

Printing a message

Another way to save a message is with the lpr (1) command, which sends the
message to the lineprinter. This command takes a message list as its argu
ment, then paginates and prints each message on the lineprinter. For
example:

I doug

prints each message from the user doug.

Replying to a message

Often, you want to deal with a message by responding to its author right
away. You can use the reply (r) command to set up a response to a message,
automatically addressing a reply to the person who sent the original message.
The original message's Subject: field is copied as the reply's Subject:. Each mes
sage is created in compose mode; thus, all compose escapes work, and you
terminate messages by pressing (Ctrl)d.

The Reply (R) command works just like its lowercase counterpart, except that
copies of the reply are also sent to everyone shown in the original message's
To: and Cc: fields.

Deleting a message

Unless you indicate otherwise, each message you receive is automatically
saved in the user mailbox when you quit mail. Often, however, you do
not want to save messages you have received. To delete a message, use the
delete (d) command. For example:

dl

prevents mail from retaining message 1 in the user mailbox. The message
disappears altogether, along with its number.

The dp command deletes the current message and displays the next message;
this command is useful for quickly reading and disposing of mail.

The undelete (u) command causes a message that has been previously
deleted with d or dp to reappear as if it had never been deleted. For example,
to undelete message I, enter:

ul

You cannot undelete messages from previous mail sessions; they are per
manently deleted.

75

Communicating using mail

Forwarding mail

To forward a copy of a message, use the forward (f) command. This causes a
copy of the current message to be sent to the specified users. For example, to
forward the current message to someone whose login name is john, enter:

f john

John receives the forwarded message, along with a heading showing that you
forwarded it. The forwarded message is indented one tab stop inside the new
message. You can also give an optional message list:

f 2 6 john

This forwards messages 2 and 6 to john.

The Forward (F) command is identical to the lowercase forward command,
except that the forwarded message is not indented.

Executing shell commands

You can execute a shell command without leaving mail from either mail com
mand mode or compose mode. From command mode, precede the command
with an exclamation point. For example:

!date

This command displays the current date without leaving mail.

From compose mode, precede the command with -I. The command is exe
cuted, and you return to mail compose mode without altering your message.

From command mode, you can enter a new shell with the shell (sh) com
mand. To exit from this new shell and return to mail command mode, press
(Ctrl)d.

Sending mail to remote sites

76

You can send mail to users on remote computer sites that are networked to
your own site with UUCP. To find out which UUCP sites your computer com
municates with, enter the following command at the UNIX prompt:

uuname

A list of site names is displayed.

To send mail to a user on a UUCP site, enter the following command:

mail site-namellogin

The site name must be followed by an exclamation point (I).

Users Guide

Using mail

For example, to send mail to user markt on site bowie, enter the following com
mand:

mail bowie!markt
Proceed to use mail just as if you were mailing to a local user.

You can enter several site names on a command line; be sure to follow each
one with an exclamation point. As another example, suppose your site talks
to UUCP site bowie and that bowie talks to UUCP site bradley. You can send
mail to user cindy on bradley by entering the following command:

mail bowie!bradley!cindy

NOTE If you are using the C-shell, you must "escape" exclamation points
with the backslash (\). A C-shell user enters the command above as fol
lows:

mail bowie \ !bradley\ !cindy

For more information on communicating with remote sites, see the "Com
municating with other sites" chapter in this guide.

Leaving mail
When you finish reading all your messages, you can leave mail by entering
the quit (q) command. All messages are held in your user mailbox, except the
following:

• deleted messages, which are discarded irretrievably
• messages marked with the hold or preserve command (these messages are

saved in your system mailbox)

• if the hold option is set, messages that you have read are automatically
saved in your system mailbox

• messages saved with the save or write commands

Forwarded messages are not removed from the system mailbox.

If you want to leave mail quickly without altering either your system or user
mailbox, you can use the exit (x) command. This returns you to the shell
without changing anything: no messages are deleted or saved in your user
mailbox.

Leaving compose mode temporarily
While composing a message to be sent to others, you might need to change
heading fields, invoke the text editor on a partial message, execute a shell
command, or perform some other useful function. mail provides these capa
bilities through compose escapes. These escapes consist of a tilde (-) at the
beginning of a line, followed by a one- or two-character command that
specifies the function to be performed.

77

Communicating using mail

78

To get a list of the available compose escapes, enter the following command
from compose mode:

'7
These compose escapes are available only when you are composing a new
message; they have no meaning when you are in mail command mode. The
mail(C) manual page contains details about these escapes.

Editing headers
To add additional names to the list of message recipients, enter the following
escape:

-t login1 login2 ...
You can name as many additional recipients as you like. Note that users
originally on the recipient list still receive the message; you cannot remove
anyone from the recipient list with -to To remove a recipient, use the n escape
discussed later in this section.

You can replace or add a Subject: field by using the -5 escape:
-5 line-oj-text

This replaces any previous subject with line-oj-text. The subject, if given,
appears near the top of the message, prefixed with the heading Subject:. You
can see what the message looks like by using -p; this displays all heading
fields along with the body of the text.

You might occasionally prefer to list certain people as recipients of carbon
copies of a message rather than direct recipients. The following escape adds
the named people to the Cc: list:

-c login1 login2 ...
Similarly, the following escape adds the named people to the Bcc: (Blind car
bon copy) list.

D login1 login2 ...
The people on this list receive a copy of the message, but are not mentioned
anywhere in the message you send.

The recipients of the message are given in the To: field; the subject is given in
the Subject: field, and carbon copy recipients are given in the Cc: field. If you
want to edit these in ways impossible with the -t, -5, and -c escapes, you can
use:

n
where "h" stands for "heading." The escape n displays To: followed by the
current list of recipients and leaves the cursor at the end of the line. If you
enter ordinary characters, they are appended to the end of the current list of
recipients. You can also use the normal UNIX command-line editing charac
ters to edit these fields, so you can erase existing heading text by backspacing
over it.

Users Guide

Using mail

When you press (Return), mail advances to the Subject: field, where the same
rules apply. Another (Return) brings you to the Cc: field, and another brings
you to the Bcc: field. Each of these fields can be edited in the same way.
Finally, another (Return) leaves you appending text to the end of your message
body. Remember that you can always use -p to see what the message looks
like.

Adding a file to the message
It is often useful to be able to include the contents of some file in your mes
sage. Use the following escape to append the named file to your current
message:

-r filename

mail complains if the file does not exist or cannot be read. If the read is suc
cessful, mail displays the number of lines and characters appended to your
message.

The following escape reads in the file dead.letter in your home directory:
-d

This is often useful because mail normally copies the text of your message
buffer to dead.letter whenever you abort the creation of a message. You can
abort the message by entering two consecutive interrupts or by entering a -q
escape.

Enclosing another message
If you are sending mail from within mail's command mode, you can insert a
message, that was previously sent to you, into the message that you are
currently composing. For example, enter:

-m4

This reads message 4 into the message you are composing, shifted right one
tab stop. Use the following escape to perform the same function, but with no
right shift:

'"M4

You can name any non-deleted message or list of messages.

79

Communicating using mail

Setting up your environment
You can define your mail environment with switch and string options that
can be set with the mail commands set and unset. A switch option is either
on or off (set or unset). String options are strings of characters that are
assigned values with the syntax option=string. Multiple options can be
specified on a line. For example, in the following set command:

set dot askcc SHELL=/usrlbinlsh
the options dot and askcc are switch options; SHELL is a string option.

The set command with no arguments displays the options currently set.

You can create a personal mailing list with the alias (a) command. By using
an alias, you can send mail to one name and have it go to a group of people.
With no arguments, alias displays all currently defined aliases. With one
argument, it displays the users defined by the given alias.

It is most useful to place set, unset, and alias commands in the file .mailrc in
your home directory. The .mailrc file defines your personal default environ
ment when you invoke mail. Whenever mail is invoked, it first reads the file
/usr/lib/mail/mailrc, then the file .mailrc in the your home directory. System
wide set options and system-wide aliases are defined in /usr/lib/mail/mailrc.
These are installed by the system administrator on your system. Personal
aliases and personal set options are defined in .mailrc.

Tne following is a sample .mailrc file:

* number sign introduces comments * personal aliases office and cohorts are defined below
alias office bill joe sue
alias cohorts john mary bob beth mike
* set dot lets messages be terminated by period on new line
* set asksub prompts for Subject: before entering compose mode
set dot ask sub
changes to always begin executing from the same directory
cd

The following sections demonstrate how to create mailing lists and describe a
few of the common set options. Refer to the mail(C) manual page for details
about other options.

Creating mailing lists

80

The alias command links a group of names with the single name given by the
first argument, thus creating a mailing list. For example, you can create an
alias called beatles with the following command:

alias beatles john paul george ringo

User's Guide

Setting up your environment

Now, whenever you used the name beatles in a destination address (you enter
mail beatles), mail expands it to the four names aliased to beatles.

Aliases are expanded in mail sent to others so that they can Reply to each in
dividual recipient. For example, the To: field in a message sent to beatles reads:

To: john paul george ringo

and not:

To: beatles

Keeping mail in the system mailbox

The hold option determines whether messages remain in the system mailbox
when you exit mail. If you do not set hold, the examined messages are auto
matically placed in the mbox file in your home directory (your user mailbox).
They are removed from the system mailbox when you quit.

The Cc: prompt

The askee switch causes prompting for additional carbon copy recipients
when you finish composing a message. Responding with a (Return) signals
your satisfaction with the current list. Pressing INTERRUPT displays:

r i",,,,"p'
.continUe)

so that you can return to edit your message.

Listing messages in chronological order

l

The ehron switch causes mail to list and display messages in chronological
order. By default, messages are listed and displayed with the most recent
first. Set ehron when you want to read a series of messages in the order you
received them.

The mehron switch, like ehron, displays messages in chronological order, but
lists them in the opposite order, that is, highest-numbered, or most recent,
first. This is useful if you keep a large number of messages in your mailbox
and you want to list the headers of the most recently received mail first but
read the messages themselves in chronological order.

81

Communicating using mail

Using advanced mail features
This section discusses advanced features of mail; these features are useful for
people with some existing familiarity with the mail system.

Using mail as a reminder service

Besides sending and receiving mail, you can use mail as a reminder service.
Several UNIX system commands have this idea built in to them. For example,
the lp command's -m option causes mail to be sent to the user after files have
been printed on the lineprinter. When you log in, the operating system auto
matically examines the file named calendar in your home directory and looks
for lines containing either today or tomorrow's date. These lines are sent to
you by mail as a reminder of important events.

If you program in the shell command language, you can use mail to signal the
completion of a job. For example, you might place the following two lines in a
shell procedure:

biglongjob
echo Hbiglongjob done" I mail login

You can also create a logfile that you want to mail to yourself. For example,
you might have a shell procedure that looks like this:

dosomething> logfi1 e
mail login < logfile

For information about writing shell procedures, see ''The Bourne shell"
chapter in this guide.

Redirecting incoming messages to other folders

82

sea UNIX System V /386 uses the MMDF Mail Transport Agent (MTA). You can
use MMDF features to redirect specific messages to folders other than your
system mailbox. Redirecting mail is useful for keeping all the mail on a par
ticular subject or the messages sent to an alias to which you belong in one
folder so that you can read them all at one time.

To tell MMDF to deliver mail to different folders, set up the special .maildelivery
file in your home directory. Use the following procedure to set up .mail
delivery:

1. Create the .maildelivery file in your home directory.

2. Make sure the permissions on the file are set to 644 (-rw-r--r--). To set
the permissions, use the following command:

chmod 644 $(HOME)/.maildelivery

User's Guide

Using advanced mail features

3. Now, create a directory in which to put all the redirected mail. For exam
ple, create a directory called spool in your home directory:

mkdir -/spool

I NOTE This does not work in Bourne shell.

If your redirected mail directory is something other than spool, change all
occurrences of spool in the examples to the new directory name.

NOTE If you do not create the directory in which to redirect your mail
before setting up .maildelivery, you can create an infinite loop as MMDF
tries to deliver mail to a non-existent directory. Make sure you redirect
mail to an existing directory!

4. Add the following lines to .maildelivery:

Header Content Action Result Filename
to login > /usr/spool/mail/login
cc login > /usr/spool/mail/login
resent-to login > /usr/spool/mail/login
apparently-to login > /usr/spool/mail/login

The number sign (#) is a comment character. Replace login with your log
in name.

These lines make sure all mail specifically addressed to you (mail with
your name on the To:, Cc:, Resent-To:, or Apparently-To: lines) is delivered to
your system mailbox file.

The " >" character in the Action column tells MMDF to append the mes
sage to the specified file (/usr/spool/mail/login). The "?" in the Result
column tells MMDF to consider the message "delivered" if the action is
successful. In other words, if the message arrives safely in the system
mailbox, MMDF considers it "delivered." Note that "?" prevents MMDF
from carrying out the specified action if the message has already been
delivered. This is important if you don't want MMDF to deliver a message
to more than one folder.

5. Use this step to redirect mail addressed to an alias to which you belong.
For example, if you want all the messages sent to the engr alias to go to a
folder called /spool/engr.mail, add the following lines to .maildelivery:

to engr > A /u/login/spool/engr.mail
cc engr > A /u/login/spool/engr.mail

83

Communicating using mail

The "N' in the Result column is identical to the? in step 3, except that,
even if the message is already considered "delivered," MMDF still per
forms the specified action.

MMDF creates the engr.mail folder when it first delivers mail to that loca
tion; you do not need to create the folder for MMDF to deliver the mes
sages.

6. This step explains how to redirect messages with specific patterns in the
Subject: header. To do this, simply specify "Subject" in the Header column
and the pattern in the "content" column. For example, to redirect mail
with the word "Style" in the Subject: header to 7spool/style.mail, add the fol
lowing line to .maildelivery:

subject "Style" > A /u/login/spool/style.mail

7. Finally, you must add a line to catch ana deliver all the messages that
don't match the conditions you've specified. Add the following lines to
.maildelivery:

> A /usr/spool/mail/login l
The "default" in the Header column tells MMDF to match this field if the
message hasn't already been delivered. The dash character (-) is simply a
placeholder for an existing but unused field.

See the section, "Saving a message," for information on using the folder com
mand to access the messages that you redirect to other folders.

Sending automatic responses when on vacation

84

MMDF includes a utility called rcvtrip that you can use to generate automatic
replies to the messages that you receive while you are on vacation. MMDF still
delivers your mail to your system mailbox (or other folders, if you've set up
7.maildelivery to redirect messages).

I NOTE The rcvtrip utility sends an automatic response only to messages
that specifically include your login name on the To: or Cc: lines.

In addition, rcvtrip keeps a record of who you have already sent a response
to, and does not send another even if they send you more than one message
while you are gone.

User's Guide

Using advanced mail features

Use the following procedure to set up the appropriate files so that rcvtrip
replies automatically to your incoming mail:

1. First, create a file called tripnote in your home directory. Make sure the
permissions on the file are set to 644 (-rw-r--r--). To set these permis
sions, use the following command:

chmod 644 -/tripnote

2. Edit 7tripnote and add the response that you want MMDF to send to people
when they send you mail. For example, you might want to tell people
about where you are and when you will be back.

3. Create an empty file called triplog in your home directory using touch(C):
touch -/triplog

MMDF uses this file to keep track of the people to whom you have already
sent automatic responses.

4. Make sure that the permissions on 7triplog are set to 644:
chmod 644 -/triplog

5. Now, add the following as the first line in your 7.maildelivery file:1

* - pipe Rrcvtrip $(sender)

NOTE You do not need to set up .maildelivery for redirecting messages if
you just want to use rcvtrip. If this is the case, simply create the .mail
delivery file in your home directory, add the rcvtrip line above, and make
sure the permissions are set to 644.

This line tells MMDF to pipe all your messages to the rcvtrip program but
does not consider the messages "delivered." In other words, MMDF still
delivers the incoming messages to the appropriate folders. (See the
rcvtrip(C) manual pages for details.)

You should leave this line commented out (use the number (#) character)
until immediately before you leave for your vacation.

6. When you return, comment out the rcvtrip line in your .maildelivery file.

The triplog file contains a list of all the people that sent you mail when you
were gone. These lines list the address, date, and time you received the mes
sage, part of the Subject: line, and a plus (+) or minus (-) character to indicate
whether or not rcvtrip sent an automatic response. You can use this file to
check on who received automatic messages.

1. For information on setting up your .maildelivery file to redirect messages to other folders, see
the previous section, "Redirecting incoming messages to other folders."

85

Communicating using mail

Forwarding your messages to another person

MMDF includes a utility called resend{C) that allows you to forward all your
incoming messages to another person automatically. For example, you might
want someone else to read your mail when you go on vacation to ensure that
any time-critical mail is answered promptly. As with rcvtrip, you use resend
by adding a line to your .maildelivery file.2 .

Use the following steps to set up the .maildelivery file so that resend forwards
your messages automatically:

1. If you have not already done so, create a file called .maildelivery in your
home directory and make sure the permissions are set to 644.

2. Add the following as the first line in your /.maildelivery file:

rTO login A lusr/bin/resend user_2

Replace login with your address and user _2 with the address of the person
to whom you want to forward your messages.

This line in .maildelivery tells MMDF to redirect any mail with login in the To:
header (mail addressed to you) to the resend utility which then forwards the
messages to user _2.

For more information on the format of the .maildelivery file, see the
maildelivery{F) manual page or the section, "Redirecting incoming messages
to other folders," earlier in this chapter. See resend{C) for more information
on the resend utility.

Converting mailboxes to the new A1MDF fonnat

If you are converting to sea UNIX System V /386 from XENIX System V or
another UNIX system, your old folders are in the XENIX-style (older UNIX) for
mat. XENIX format uses the "From<space>" lines to delimit between mes
sages in mail folders; MMDF uses (Ctrl)a characters.

By default, the mail(C) program maintains the current format of every mail
folder that you read with this program. For example, if a mail folder is in
MMDF format {with (Ctrl)a delimiters), mail uses this format when adding
messages to the folder. If you use mail to read a folder that has not been con
verted to MMDF format, it prompts you to convert the folder.

2. For information on setting up your .maildelivery file to redirect messages to other folders or to
call rcvtrip, see the sections, "Redirecting incoming messages to other folders;' and "Sending
automatic responses when on vacation" earlier in this chapter.

86 Users Guide

Using advanced mail features

If you use a Mail User Agent (MUA) other than mail, you should convert your
old folders to use the new MMDF format using the cnvtmbox(ADM} utility. To
do this, run the following commands for each folder:

lusr/mmdflbinlcnvtmbox oldJolder new Jolder
mv newJolder oldJolder

For more information, see the cnvtmbox(ADM} manual page.

Handling large amounts of mail

Eventually, you will face the problem of dealing with an accumulation of
messages in your user mailbox. There are a number of strategies that you can
employ to solve this problem concerning space in your mailbox file. Keep in
mind the dictum: When in doubt, throw it out.

This means that you should only save important mail in your user mailbox. If
your mailbox file becomes large, you must periodically examine its contents
to decide whether messages are still relevant. To save space, consider sum
marizing very long messages.

The previously mentioned measures are not always helpful enough in organ
izing the many messages that you are likely to receive. Another effective
approach is to save mail in files organized by sender, by topic, or by a combi
nation of the two. However, be forewarned - this approach to organizing
mail quickly eats up disk space. Using mail folders is described in "Saving a
message."

You can create a directory to hold your mail folders and define that directory
to mail with the folder option. Then, whenever you save a message without
giving a pathname, mail puts the message in a file (or folder) in that directory.
For example, if you want to save your messages by default in the directory
mail in your home directory, use:

set folder=mail

If you forget the names of your mail folders, you can use the folders com
mand to display the names of the files in the directory set by the folder
option.

87

Communicating using mail

Summary

The tables in this section summarize the mail commands and variables dis
cussed in this chapter.

Table 3·1 mail commands

Command Abbreviation Description
Executes a shell escape from command mode

alias a Creates personal mailing lists
delete d Deletes messages
dp Deletes the current message and displays the

next one
edit e Edits an existing message from command

mode
exit x Exits mail without updating the folder
file fi Switches folders
folder fold Switches folders
forward f Forwards a message (indented) to another

person
Forward F Forwards a message (not indented)
headers h Moves forward one screenful
lnr Sends messages to the linepr.J1ter -r -
preserve Holds messages in system mailbox
print p Displays non-deleted messages
quit q Updates the folder and quits mail
reply r Sends a reply to the author only
Reply R Sends a reply to everyone on the distribution

list
save s Saves messages to folders
set Sets mail options
shell sh Enters a new shell
undelete u Restores deleted messages
unset Unsets mail options
visual v Edits an existing message from command

mode
write w Writes messages to files

88 Users Guide

Summary

Table 3·2 Compose mode commands

Command Description
Executes a shell escape from compose mode
Lists compose mode escapes
Adds or changes the Bcc: header
Adds or changes the Cc: header
Reads in the dead.letter file
Adds or changes all the headers
Reads a message (indented) into the current message
composition
Reads a message (not indented) into the current message
composition
Aborts the current message composition
Appends a file to your current message
Adds or changes the Subject: header
Adds names to the To: list

Table 3·3 mail options

Option
askcc
asksub
chron
folder
hold
mchron
prompt
screen

Description
Prompts for carbon copy recipients
Prompts for a Subject: line
Displays messages in chronological order, most recent last
Defines the directory to hold your mail folders
Keeps messages in the system mailbox when you quit
Displays messages in chronological order, most recent first
Sets the prompt to a different string
Sets the size of a screen

89

Communicating using mail

90

Table 3·4 Other commands

Command
chmod
cnvtmbox
mail
rcvtrip
touch
uuname

Description
Changes the permissions on a file or directory
Converts old-style format mailboxes to MMDF format
Sends a message or enter the mail utility
Sends automatic responses to messages
Creates and empty file
Determines which UUCP sites your computer
communicates with

Table 3·5 Special files

File
calendar
.maildelivery
triplog
tripnote

Description
Contains reminders for the operating system to mail to you
Redirects incoming mail to other folders
Keeps track of the people you send automatic responses to
Contains the message for rcvtrip to send automatically

Users Guide

Chapter 4

Using disks and tapes

In general, the system administrator is responsible for creating backups of the
filesystems on UNIX systems. However, you might find it useful to create
backups of your own files as well periodically. The backup media used most
often are floppy disks; however, you can also create backups on cartridge
tapes. This chapter explains how to use the tar(C) command to create back
ups on disks and tapes. You can also use tar to copy files to disks or tapes so
that you can transport them from one computer to another.

This chapter describes how to perform the following tasks:

• format floppy disks and mini cartridge tapes

• copy files to the backup media

• list the contents of the backup media

• extract files from the backup media

• make copies of floppy disks

Formatting disks and tapes
Before you create a backup, you must format the floppy disk(s) using the
format(C) command. In general, cartridge tapes do not need to be formatted.
However, tapes that are to be used with mini tape drives must be formatted.

This section explains how to format floppy disks and mini cartridge tapes.

91

Using disks and tapes

Formatting floppy disks

92

Once you have formatted a floppy disk on a UNIX system, you can re-use it
without reformatting it. If you have disks that have been formatted under a
different operating system, you must reformat them on a UNIX system before
they can be used with a UNIX system. However, be aware that floppy disks
formatted under some operating systems cannot be used under other operat
ing systems, even if they are reformatted.

The default floppy disk drive is determined at installation time by the media
used to install the operating system. For example, if you installed the operat
ing system using 5.25-inch disks, the default drive is the first 5.25-inch drive.
If you installed the operating system using 3.5-inch disks, the default drive is
the first 3.5-inch drive. This is important when using the format command
without any arguments. For example, to format a disk in the default drive,
enter the follOwing command:

format

The system prompts you to insert a disk into the drive and to press (Return).
The disk is then formatted using the default settings for formatting disks; as
defined in Jete/default/format. The default settings for 5.25-inch disks are
rfd096ds15, where:

• r indicates a raw (character) interface to the disk (i.e. not buffered)

• fda is the drive number (0, 1, 2 or 3)

• 96 is the number of disk tracks per inch (48 or 96)

• ds is the number of sides (ds - double sides or ss - single side)

• 15 is the number of sectors per track (8, 9, or 15)

The default settings for 3.5-inch disks are rfd0135ds18. Most of these can be
understood from the default settings for 5.25-inch disks, the only differences
being the number of disk tracks per inch, which must be 135, and the number
of sectors per track, which can be 9 or 18.

Here are a few examples that show how the configurations can be varied to
format different types of disks. (The default drive is assumed in all cases.)

To format a 5.25-inch 360 kilobyte disk, enter:

format /dev/rfd048ds9

To format a 5.25-inch 720 kilobyte disk, enter:

format /dev/rfd096ds9

Users Guide

Using the tar command

To format a 5.25-inch 1.2 megabyte disk, enter:

format Idev/rfd096ds15

To format a 3.5-inch 720 kilobyte disk, enter:

format Idev/rfd0135ds9

To format a 3.5-inch 1.44 megabyte disk, enter:

format Idev/rfd0135ds18

Formatting mini cartridge tapes

To format mini cartridge tapes, use the following command:

meart format

Using the tar command

Use the tar command to save and restore files to and from an archive
medium, typically a floppy disk.

The syntax of tar is:

tar [options] [files]

The options tell tar what you want to do; files are the files that you want to
backup.

The options used most often with tar are as follows:

e Creates a new backup, overwriting any files already on the backup
destination.

x Extracts files from backup media.

t Lists the contents of backup media.

v Displays the name of each file being processed.

f Creates backups on a specified device.

u Adds files to the backup if they are not already there, or if they have
been modified since they were last written on the backup.

93

Using disks and tapes

Creating backups with tar

94

The steps below explain how to back up all of the files in your home directory
onto floppy disks. To back up a different directory, use cd to change to the
new directory before using the tar command at step 3. To back up onto a tape,
substitute the special device file associated with the tape, such as /dev/rctmini
or /dev/rctO, for the floppy device file listed in these commands.

1. Log in on the console. This allows you to work within arm's reach of the
floppy drive.

2. Determine how many floppy disks you need and format that many, using
the format command as described in the earlier section "Formatting disk
and tapes."

To determine how many disks to format, use the du(C) command:

du -8

Your screen looks something like the following:

r du -5
356

This number represents the total number or 512-byte blocks used by the
files in the current directory. In this example, to back up the directory, you
need a total of 512 x 356 bytes, or roughly 183 kilobytes. Thus, you only
have to format a single (1.2 megabyte) floppy disk to back up this direc
tory.

You can display the number of blocks for each individual file using the fol
lowing command:

du -8 filename

User's Guide

Using the tar command

3. To back up all the files in you home directory, enter:

tar cvf Idev/fd096ds15 •

where c causes a new backup to be created (overwriting any files currently
on the floppy disk), v causes each file to be displayed as the backing up
takes place, and f causes the subsequent argument (ldev/fd096ds15) to be
the destination of the backup.

If tar requires more than 1 disk, the system prompts you to insert another
"volume." Insert another disk and press (Return). When the shell prompt
reappears, tar is finished backing up your files.

To back up a single file onto a 1.2 megabyte disk, enter:

tar cvf Idev/fd096ds15 .Ifilename

Note that in this example, a dot and a slash (./) precede the filename. This
tells tar to treat filename as a "relative" rather than an "absolute" path
name (refer to the Tutorial for a definition of "relative" and "absolute"
pathnames.

The tar command recreates all the subdirectories of the directory you are
backing up on the backup media. Thus, if you have a /bin directory in your
home directory, tar creates a backup of it, and all the files in it, on the backup
media.

Listing the contents of backups

To list the contents of tar-floppies (backups on floppies created with tar) use
the t option. The examples in this section show how to list the contents of
different types of disks in the primary floppy drive:

• To list the contents of a 5.25-inch 360 kilobyte tar-floppy:

tar tvf Idev/fd048ds9

• To list the contents of a 5.25-inch 1.2 megabyte tar-floppy:

tar tvf Idev/fd096ds15

• To list the contents of a 3.5-inch tar micro-floppy:

tar tvf Idev/fd0135ds9

95

Using disks and tapes

Extracting files from backups

96

To extract files from tar-floppies use the x option. The examples in this sec
tion explain how to extract files from different kinds of disks in the primary
disk drive.

NOTE We recommend that you extract files from backup media into a tem
porary directory on the hard disk. Once in the temporary directory, you can
use the mv(C) command to move the extracted files to the correct location
on the filesystem.

The reason for using a temporary directory is that tar overwrites any files on
the hard disk that have the same name as the file being extracted from the
backup media. This can result in files being overwritten accidentally.

• To extract all of the files from a 5.25-inch 360 kilobyte tar-floppy:

tar xvf Idev/fd048ds9

• To extract files from a 5.25-inch 1.2 megabyte tar-floppy:

tar xvf Idev/fd096ds15

• To extract a single file from a 1.2 megabyte tar-floppy:

tar xvf Idev/fd096ds15 Jfilename

Note that a dot followed by a slash (.1) precedes filename in t."l-te example
above. This assumes that you copied filename to the tar-floppy using the
dot and slash format (J), as in the examples in "Creating backups with
tar". This treats the filename as a "relative" pathname.

When you copy files to a tar-floppy using this format, tar adds the J prefix
to the filenames. Because you must enter a filename exactly as it appears
on the floppy when extracting a file with tar, you must enter .Ifilename if
you copied filename to the tar-floppy using this format.

Users Guide

Using the tar command

Try this tar command by inserting the disk containing the backup of your
home directory (that you created in "Creating backups with tar") into the pri
mary floppy drive and following these steps:

1. Enter the following command to change to the Itmp directory:

cd Itmp

2. Now, create a subdirectory in Itmp by entering:

mkdir username

Replace username with your username.

3. Now, enter the following command:

cd username

4. Use one of the following commands to extract a file from the tar-floppy:

• If you are a Bourne shell user, and if your primary floppy drive is a 1.2
megabyte drive, try extracting a single file by entering the following
command to extract .profile:

tar xvf Idev/fd096ds15 .I.profile

• If you are a C shell user, use the following command to extract .login:

tar xvf Idev/fd096ds15 ./.login

If your floppy drive is not a 1.2 megabyte drive, enter the appropriate spe
cial device filename.

5. To extract all of the files on a tar floppy, use one of the commands in step
4, but do not specify a file to extract.

6. To check that tar actually copied the files to the hard disk, enter the follow
ing command:

Ie -a

(The -a option tells Ic to show hidden files, those filenames that begin with
a dot (.).)

97

Using disks and tapes

Shorthand tar notation

98

The tar command also provides shorthand notation for referring to special de
vice filenames. This notation allows you to specify numbers in place of full
special device filenames. The file fete/default/tar assigns numbers to the vari
ous floppy and tape devices. Enter the following to display the contents of
fete/default/tar:

more fete/default/tar

Your output should look similar to the following:

device block size tape
archiveO=/dev/rfd048ds9 18 360 n
archive1=/dev/rfd148ds9 18 360 n
archive2=/dev/rfd096ds1S 10 1200 n
archive3=/dev/rfd196ds15 10 1200 n
archive4=/dev/rfd096ds9 18 720 n
archive5=/dev/rfd196ds9 18 720 n
archive6=/dev/rfd0135ds18 18 1440 n
archive7=/dev/rfdl135ds18 18 1440 n
archive8=/dev/rctO 20 0 Y
archive9=/dev/rctrnini 20 y
The default device ...
archive=/dev/rfd096ds15 10 1200 n

This file assigns 0 to the first 360 kilobyte drive, 1 to the second 360 kilobyte
drive, 2 to the first 1.2 megabyte drive, 3 to the second 1.2 megabyte drive,
and so forth.

The following examples show how to use the shorthand tar notation when
creating and extracting backups on the primary drive:

• To copy all the files in the current directory to 5.25-inch 1.2 megabyte disks:

tar ev .

(The default device is /dev/rfd096ds15. You do not have to specify the
default device name in the command in order to use the default device.)

• To copy all the files in the current directory to 5.25-inch 360 kilobyte disks:

tar evO .

• To extract filename from a 3.5-inch 720 kilobyte tar micro-floppy:

tar xv4 .Ifilename

Note that the version of fete/default/tar on your system might differ from our
example; the system administrator might have modified it. For this reason,
double-check the assignments in fete/default/tar on your system before you use
this shorthand notation.

Users Guide

Copying disks

Copying disks

To protect against losing data stored on floppy disks, you can make copies of
your floppy disks using the diskcp(C) command.

You must copy information onto formatted disks. The diskcp command
allows you to format floppies before making copies.

Use the following steps to copy floppies on a system with two floppy disk
drives:

1. Place the disk that you want to copy (the "source" floppy) in your primary
floppy drive. If you created a backup of your home directory, as
instructed in "Creating backups with tar", you can use it to follow this
exercise.

2. Place another floppy (the "target" floppy) in the secondary drive. Note
that any information already on the target disk will be destroyed.

3. To copy a 1.2 megabyte source floppy directly to a formatted target floppy,
enter the following command:

diskcp -d

where the -d option indicates that the computer has dual floppy disk
drives. To format the target floppy before copying, use this command
instead:

diskcp -d -£

4. Follow the instructions as they appear on your screen.

If you only have one floppy drive, the diskcp program copies the information
from the source floppy to the computer's hard disk, prompts you to replace
the source floppy with the target floppy, and then copies the information from
the hard disk to the target floppy.

Use these steps to copy a floppy using only one floppy drive:

1. Place the source floppy in your floppy drive.

2. If the source floppy is a 1.2 megabyte floppy and you do not need to for
mat the target floppy, enter the following command:

diskcp

To format the target floppy as a 1.2 megabyte floppy before copying, enter
this command:

diskcp -£

99

Using disks and tapes

3. The diskcp command prompts you to remove the source disk from the
drive and insert the target disk. Follow the instructions as they appear on
your screen.

Now, place the target floppy in the primary floppy drive and verify that the
files were copied correctly using tar to list the contents of the floppy:

tar tvf Idev/fd096ds15

If your floppy is a 360 kilobyte floppy, enter:

tar tvf Idev/fd048ds9

Note that you can use the shorthand tar notation in these commands, as
explained in the previous section, "Shorthand tar notation."

Summary

100

UNIX systems provide utilities for creating backup copies of files, which you
can store on floppy disks or cartridge tapes. Once you create a backup copy,
you can display its contents, extract files from it, and create additional copies.

This chapter covers the following commands:

Table 4·1 Command review

Command

format(e)
tar(e)
du(e)
diskcp(e)

Description

formats floppies and tapes
saves and restores files to and from floppies
summarizes the current disk usage
creates copies of floppy disks

Users Guide

Chapter 5

Managing processes

This chapter explains the different ways you can manage your processes. It
describes how to perform the following tasks:

• run processes in the background

• view the processes that you are running using the ps(C) command

• terminate jobs using the kill(C) command

• prioritize jobs with the nice(C) command

• specify the time you want to start executing your jobs using the job sched
uling commands at(C), batch(C), and crontab(C)

I NOTE You must be authorized by the system administrator to use the at,
batch, and crontab job scheduling commands.

Running jobs in the background
Normally, commands sent from the keyboard are executed consecutively.
One command finishes executing before the next command begins. However,
if you place a command in the background, you can continue entering com
mands in the foreground, even if the background command has not finished
executing.

To place a command in the background, put an ampersand (&) at the end of
the command line. For example, enter the following command to create, and
then count, the characters in a large file.

cat letdtermcap letdmotd > largefile; \
wc -c largefile > characters &

101

Managing processes

I NOTE Note that this command line is two lines long; to use a multiple-line
command line, enter the backslash (\) before pressing (Return). The
backslash tells the shell that the command line continues on the next line.

This command line runs the cat and we commands in the background, dis
plays a job number, and then returns you to the UNIX system prompt. You see
something like this:

[1] 14145

When the job finishes, you see a message like the following:
[1] + Done cat /ete/termeap /ete/motd > 1argefi1e; \we -e 1argefi1e; > eh

When you place commands in the background, you cannot abort them by
pressing the INTERRUPT key, as you can with foreground commands. You
must use the kill(C) command to abort a background process. The section,
"Killing processes," describes how to use kill.

If you followed the exercise above, you should use rm to remove both large file
and characters when you have finished:

rm largefile characters

For more information about manipulating background jobs, see the section on
"Using job control" in Chapter 10, ''The Korn shell."

Checking the status of processes

102

At any time, you can check the status of your task using ps(C). The ps com
mand lists all the "active" processes that you are running on the UNIX system
(both in the background and foreground). The ps command is used as
follows:

ps [options]

The following examples show you how to use the ps command; try them
yourself:

$ ps (Return)

$

PID TTY TIME COMMAND
21311 005 0:01 ksh
29424 005 0:00 ps

Checking the status of processes

In this example, the ps command prints information about the processes asso
ciated with the current terminal, in this case "005".

where:

PID is the process identification

TTY is the controlling terminal for the process

TIME is the execution time for the process

COMMAND is the command name

You can obtain the same information using the -t tlist option (where tlist is a
terminal number), and specifying the terminal ID as in the following example:

f$ ps-tOO5

You can also use ps to print information about the processes belonging to a
particular user. To do this, use the -u ulist option (where ulist is a usemame):

$ ps-ujohnd

$

PID TTY TIME COMMAND
21311 005 0:01 ksh
29425 005 0:00 ps

In this example, ps prints information about the processes belonging to user
johnd. Notice that the output of this command and the previous command is
the same; this is because both commands are associated with the terminal
identified as "005".

To obtain a listing with more process status information, use ps with the
-f option:

$ ps -f (Return}
UID PID PPID C STlME TTY TIME COMMAND

johnd 21311 1 0 Jul 5 005 0:01 -ksh
johnd 29426 21311 13 10:24:16 005 0:00 ps -f

$

103

Managing processes

where:

UID

PPID

C

STIME

is the user ID of the process owner

is the process ID of the parent process

is the processor utilization for scheduling

is the starting time of the process

For more information about the options to ps, see the ps(C) manual page.

Killing processes

104

If you want to terminate one of your actively running processes, press (Del),
(Bksp), or your equivalent INTERRUPT key on your keyboard, depending on
your system setup. If you need to terminate a background process, or a pro
cess running on a different terminal, use the kill(C) command. The kill com
mand terminates a process by sending it a signal. For more information about
signals, see Chapter 8, ''The Bourne shell."

The kill command without options terminates a process with signal 15, the
software termination signal. The unconditional kill signal (-9) is more com
monly used to terminate processes, because the receiving process cannot
ignore it.

I NOTE UrJess you are the system administrator, you carl only tern-dIlate
your own processes.

In using kill, you specify which process to terminate by specifying its process
ID (PID) on the command line.

When you first enter a background command, the system prints its process ID
(PID) (also known as the "job number") on your screen. You can also get the
process ID from the PID column output of the ps command.

The syntax for the kill command is as follows:

kill [-signaCnumber] process_id ...

The following example shows you how to use the kill command.

$ sleep 100 &
1408
$ kill1408
1408: sleep: Terminated
$

Prioritizing processes

In this example, you run the sleep process in the background; the system dis
plays the job number, 1408. Then, you terminate the job using kill. The shell
indicates when the job has been terminated.

The sleep command is normally used to delay the execution of another com
mand, the delay being the number of seconds entered after the sleep com
mand. For example:

sleep 10; who &

delays the execution of the who command by 10 seconds.

Prioritizing processes
If you do not need to execute your commands immediately, or if you have a
large amount of processing to do, you can execute your command with a
lower scheduling priority using the nice(C) command.

The syntax for nice looks like this:
nice [-increment] command [arguments]

The nice command allows you to change the priority of a job by specifying
the "nice value" of between 20 and 39. The default nice value is 20.

When you use -increment to increase the nice value, you give the command a
lower scheduling priority. For example, use nice -5 to increase the nice value
to 25.

NOTE The super user can run a job at a higher priority by setting the nice
value between 0 and 20 using a double negative increment. For example, -
10 sets the nice value to 10, giving the job a higher priority than the default
nice value.

The following examples show you how to change the scheduling priority with
nice:

r ~ nice -17 big""program l
In this example, you execute big-program with a nice value of 37.

105

Managing processes

To run a program in the background and change the scheduling priority, use a
command like the following:

r $ nire -17 'ig.prolI"'m &
1579
$

Here, you run big..]Jrogram in the background with a nice value of 37.

l
Scheduling your jobs

This section explains how to use the cron(C), at(C), and batch(C) programs to
schedule or delay the execution of programs (jobs).

The job-scheduling programs are as follows:

cron

at

batch

Executes programs repeatedly at a specified time.

Delays the execution of programs until the time you specify.

Delays the execution of programs until the system load is low (as
determined by the system).

This section explains how you or the system administrator can use each of the
job scheduling programs to automate regular operations or delay program
eXecutions that would otherwise slow down the system during peak usage.

Executing programs automatically

106

UNIX systems allow you to run programs automatically at specified times.
Use the cron program to do this. The cron program allows you to run pro
grams and perform tasks such as the following while you are out of the office:

• reminder messages

• file system administration

• time-consuming, user-written shell procedures

• cleanup procedures

Any task that you need to perform repeatedly at a specified time is a candi
date for cron to run.

To use cron, you must first create a crontab file and then use the crontab com
mand to submit this file to the /usr/spool/cron/crontabs directory where cron
looks to execute commands. The following sections explain how to do this.

Scheduling your jobs

Creating a crontab file
To use cron to run commands, you must first create a file to define the pro
cedures that you want to run. This file is called the crontab file; however, you
can name it anything that you want.

Each line in the crontab file defines one procedure. The line entry format looks
like the following: .

minute hour day month day-ot-week command

Table 5.1 defines each of these fields.

Table 5·1 crontab fields

Field

minute
hour
day
month
day-of-week
command

Value

numbers between 0 and 59
numbers between 0 and 23
numbers between 1 and 31
numbers between 1 and 12
numbers between 0 and 6 (0 is Sunday)
command that you want to execute at the specified time

The following rules apply to the first five fields:

• Two numbers separated by a hyphen indicate a range of numbers between
the two specified numbers.

• A list of numbers separated by commas indicates that you want to use only
the numbers listed.

• An asterisk specifies all legal values.

For example, the following line indicates that you want the reminder com
mand to run on the first and fourteenth of each month, as well as on every
Tuesday:

o 0 1,14 * 2 reminder

If you place a percent sign (%) in the command field (sixth field), the operat
ing system translates it as a newline character. The shell only executes the
first line of a command field (the character string up to the percent sign). The
shell interprets any other lines as standard input to the command that you
specify.

For example, create a file called mycron and include the following crontab
entry:

o 13 1,14 * * mailx -s "Call Mom!" $LOGNAME % now!

107

Managing processes

This crontab entry tells eron to execute mailx. The mailx command sends mail
to the user specified by $LOGNAME and uses the -s option to set the Subject
line. When eron encounters the percent character, it interprets it as a newline
and passes the word "now!" to mailx which places it in the text of the mail
message. The result is that, at 1:00 PM on the first and 14th day of every
month, you get a reminder mail message with "Call Mom!" as the Subject, and
"now!" as the message.

Submitting your crontab file
Once you create your crontab file, you must "submit" the file to the
/usr/spool/cron/crontabs directory where cron looks to execute commands. To
do this, use the erontab command. The syntax for crontab looks like this:

crontab file

The crontab command copies the specified file, or standard input (the termi
nal) if no file is specified, into the crontabs directory that holds all the crontab
files for the users on the system.

Now, whenever cron runs, it executes the commands in your crontab file.

To list the contents of your current crontab file, use the -1 option to eron. You
can remove your crontab file, from the crontabs directory using cron with the
-r option, for example:

cron -r mycron

For additional information on cron, see the crontab(C) manual page in the
User's Reference.

Delaying program execution

108

The batch and at commands allow you to specify a command or sequence of
commands to run at a later time. With the batch command, the system deter
mines when to run the commands; with at, you determine when to run the
commands.

Submitting your crontab file

Using batch
The batch command is useful for running a process or shell program that uses
a large amount of system time. The batch command submits a batch job (a
sequence of commands to execute) to the system; batch puts the job in a
queue and runs it when the system load falls to an acceptable level. This frees
the system to respond rapidly to other input and is a courtesy to other users.
Note that if the system load is light, the system executes the submitted batch
job immediately.

The general format for batch is as follows:

$ batch
first_command

last_command
$

When you have entered the last command, press (Return) followed by (Ctrl)d.

The next example uses batch to execute the grep command at a convenient
time. Here grep searches all files in the current directory for the string
"dollar" and redirects the output to the file dol.file:

$ batch grep dollar * > dol.file
warning: commands will be executed using /bin/sh
job 681591549.b at Wed Aug 7 11:59:09 1991
$

When you submit a job with batch, the system responds with a job number,
date, and time. This job number is not the same as the process number that
the system generates when you run a command in the background.

To list your batch jobs, use the -1 option to batch. For example:

batch -1
681591549.b Wed Aug 7 11:59:09 1991

To cancel a batch job, use -r option. Use the job number to refer to the specific
job. For example, to cancel the batch job in the example above, enter the fol
lowing command:

batch -r 681591549.b

109

Managing processes

110

Using at
The at command allows you to specify an exact time to execute the com
mands. The syntax for at is as follows:

$ at time
firsCcommand

When you have entered the last command, press (Return) followed by (Ctrl)d.

The time argument consists of between one and four digits, and AM or PM to
show the time of day and the date. You do not need to enter a date if you
want your job to run the same day. See the at(C) manual page in the User's
Reference for other default times.

The following example shows how to use the at command to mail a ''Happy
Birthday" banner to the user emily on her birthday:

$ at 8:15am Feb 27
banner Happy Birthday I mail emily
(Ctrl)d

I
warning: commands will be executed using /bin/sh
job 453400603.a at Thurs Feb 27 08:15:00 1986
$

Submitting your crontab file

Notice that the at command, like batch, responds with the job number, date,
and time.

If you decide that you do not want to execute the commands currently wait
ing in the at job queue, you can erase those jobs by using the -r option to at.
The format for this is:

at -r jobnumber

Try erasing the previous at job for the "Happy Birthday" banner using the fol
lowing command:

at -r 453400603.a

If you have forgotten the job number, you can use the -1 option to list the
current jobs in the at queue. For example:

$ at -1
user = johnd 168302040.a at Thu Aug 1 16:56:55 1991
user = johnd 453400603.a at Fri Aug 2 08:15:00 1991
$

Notice that the system displays the job number and the time the job is sched
uled to run.

Using the at command, mail yourself the file memo at noon to tell you it is
lunch time:

$ at12:00pm
maillizp < memo
(Ctrl}d
job 263131754.a at Fri Aug 2 12:00:00 1991
$

Then, try listing the current at jobs using at with the -1 option:

$ at-l
user = 1izp 8263131754.a at Fri Aug 2 12:00:00 1989
$

111

Managing processes

Summary

112

On UNIX systems, you can run more than one command at a time. By running
commands in the background, you can execute commands in the foreground
without waiting for previous commands to finish. The system provides utili
ties for checking the status, terminating, and setting the priority of your pro
cesses. In addition, you can tell the system to run specified commands at a
later time.

This chapter covers the following commands:

Table 5·2 Command review

Command

ps(C)

nice(C)
kill(C)

at(C),
batch(C),
crontab(C)

Description

checks the status of processes
runs processes at a lower priority
terminates a process
runs a process at a specified time
delays the execution of a program until the system load is low
executes programs repeatedly at a specified time

Chapter 6

Communicating with
other sites

UNIX systems include a series of utilities that allow you to communicate with
other computer sites. The particular utilities you use depend on how your
computer is connected to the other site, what tasks you want to accomplish on
the other site, and what operating system is running on the other site.

If the site is in close proximity to your computer, in the same room, for exam
ple, it is likely that the two computers are connected by a simple serial line. If
the site is a UNIX site, use the UUCP commands discussed in "Using UUCP"
below.

If the site you want to communicate with is remote (for example, on another
floor, or across the country) then your computer is connected to it by tele
phone lines. If the site is a UNIX system or XENIX system site, use the UUCP
commands discussed in "Using UUCP" below to transfer files between the two
sites and execute commands on the remote site. If the site is not a UNIX sys
tem or XENIX system site, use the commands discussed in ''Using cu' below.

The UUCP commands do not allow you to have an interactive session with the
remote site. If you want to have an interactive session, use the commands
discussed in ''Using cu' below.

This chapter assumes that your UUCP network is configured already. If this is
not true, refer to "Building a remote network with UUCP" in the System
Administrator's Guide for more information.

113

Communicating with other sites

UsingUUCP
UUCP is a series of programs that provide networking capabilities for UNIX
systems. While UUCP commands can be used over serial lines, they are usu
ally used on computers connected by telephone lines.

The UUCP programs allow you to transfer files between remote computers
and to execute commands on remote computers. Since the computers may be
connected by telephone lines, UUCP transfers can take place over thousands
of miles. A UUCP site in New York City can transfer a file to or execute a com
mand on a connected UUCP site in San Francisco, or Jakarta, or anywhere in
the world. The following sections explain how to use these UUCP programs.

Transferring files with uucp

114

Both the uucp(C) and uuto(C) commands can be used to transfer copies of
binary and text files between remote UUCP sites. There are advantages and
disadvantages to each. The uucp command gives you great flexibility in
specifying where on the remote system the transferred file is to be placed.
However, uucp syntax can be rather long and complicated. The uuto com
mand, on the other hand, is easy to use. But uuto restricts where you can
place the file on the remote system. In addition, retrieving a file sent with
uuto is slightly more complicated than retrieving a file sent with uucp.

This section discusses the uucp command; the following section discusses the
uuto command.

Before you begin
Before you can copy files to remote sites with uucp, you must verify that:

• Your local site is a "dial out" site.

• Your local site "knows"how to call the remote site.

• The files that you want to send have read permission set for others.

• The directory that contains the file that you want to send has read and exe
cute permissions set for others. This allows the directory to be searched.

• Your computer has write permission in the directory on the remote site to
which you want to copy the file.

Each of these is discussed below.

Some UUCP sites are "dial-in" sites, some are "dial-out" sites, and some are
both. Verify that your site is a dial-out site. If it is not, your computer might
have the capability to be on the receiving end of a UUCP connection, but not
on the calling end.

User's Guide

Using UUCP

You must be sure that your computer "talks" to the site with which you want
to communicate. The uuname(C) command gives you this information.
Entering uuname with no options lists the UUCP sites your computer talks to
directly. Entering uuname with the -1 option causes the name of your com
puter to be displayed.

Note that you might be able to communicate with a site that does not show
up in a uuname listing. This is possible because UUCP sites are often "chained
together." So if you know that a site you want to transfer files to communi
cates with a site that your system communicates with, you can send files to
the first site through the second. An example is provided later under "Indirect
transfers."

Finally, you must verify that your computer has write permission on the
directory on the remote site to which you want to transfer files. Each remote
UUCP site has a /usr/lib/uucp/Permissions file. This file specifies the directories
on that site from which your computer can read and to which your computer
can write. You can only send a file to a directory on a remote site if your com
puter has write permissions on that directory, as specified on the remote site's
/usr/lib/uucp/Permissions file.

In order to copy a file to a remote UUCP site, the file must have read permis
sion set for others and the directory that contains the file must have read and
execute permissions set for others. Use the 1 command to examine the file's
permissions and the 1 -d command to examine the directory's permissions. If
the permissions are not correct, enter the following commands to set the
correct permissions:

chmod o+r filename
chmod o+rx directory

By default, most UUCP sites permit calling-in computers to write to their
/usr/spool/uucppublic directory. Since there is no way to find out which direc
tories your computer can write to on the remote site, short of contacting
somebody at the site, the safest thing to do when making a UUCP transfer is to
write to /usr/spool/uucppublic. The procedure for doing this is outlined below.

115

Communicating with other sites

116

Usinguucp
The syntax of the uucp command is similar to the syntax of cp(C):

uucp [options] src_computerlsrcJile dest_computerldestJile

These arguments mean the following:

The name of the file that you want to copy. src_file
src_computer
desCfile

The name of the computer on which srcJile is located.
The name of the copied file on the receiving computer.
Usually, srcJile and destJile are the same.

dest_computer The name of the computer on which destJile is located.

There are several different ways to specify the location on the remote machine
to which you want to transfer the file. The simplest is the -ldestJile specifica
tion. This is also the safest specification, because -ldestJile is expanded to
/usr/spool/uucppublic/destJile, thereby assuring that the transfer will succeed.

For example, to send /usr/markt/transfile on machinel to /usr/spool/uucppublic on
machine2, enter the following command:

uucp lusr/marktltransfile machine21-/transfile

This command creates the file /usr/spool/uucppublic/transfile on machine2.

If /usr/markt is your current directory, you can copy transfile to machine2 with
the following command:

uucp transfile machine2!-/transfile

With the uucp command, files are not copied and sent immediately. Instead,
copies are placed in a spool directory and sent once the appropriate daemon
awakens. In the case of the UUCP programs, the daemon is the uucico dae
mon. Depending on how your system is configured, a uucp transfer might
take place within minutes, or it might take hours.

NOTE As the exclamation mark has special meaning to the C shell, you
must "escape" with a backslash (\) any exclamation marks that appear in a
uucp command, if you are using the C shell. For a C-shell user, the com
mand above is specified as:

uucp transfile machine2\!-/transfile

Another form of the command allows you to specify the full pathname of the
copied file on the remote computer. This is for sending the file to a specific
directory on the remote system. However, you must be sure that your com
puter has write permission on this directory, otherwise the transfer will fail.

User's Guide

Using UUCP

As an example, suppose that you want to send transfile in /usr/markt on ma
chine1 to the /usr/cindy directory machine2. To do so, enter the following com
mand:

uucp lusr/marktltransfile machine2!1usr/cindy/transfile

Note that the uucp command can be used to retrieve files from a remote site,
in addition to copying files to a remote site. Using the example above, if your
local computer is machine2 and you want to send a copy of /usr/markt/transfile
on machine1 to the /usr/cindy directory on machine2, enter the following com
mand:

uucp machinel!1usr/marktltransfile lusr/cindy/transfile

You can also use -user to specify a location on the remote computer. The
-user argument is expanded to the pathname of the home directory of the
person on the remote computer whose login is user. For example, if /usr/cindy
is the home directory of a user whose login is cindy on machine2, enter the fol
lowing command from the /usr/markt directory on machine1 to copy
/usr/markt/transfile to /usr/cindy:

uucp transfile machine2!-cindy/transfile

The receiving computer expands -cindy to the full pathname of cindy's home
directory, creating /usr/cindy/transfile. Again, your computer must have write
permission in cindy's home directory in order for this transfer to succeed.

Indirect transfers
You might be able to send files to a UUCP site not listed in a uuname listing.
As an example, suppose that your local computer is connected to a UUCP site
named machine2. Suppose also that machine2 is connected to a UUCP site
named machine3. You can send /tmp/transfile on your local computer to
/usr/spool/uucppublic on machine3. To do this, specify the full UUCP address
relative to your local computer:

uucp Itmp/transfile machine2!machine3!-/transfile

Note that each site name in the command line is followed by an exclamation
mark. By placing several site names in a uucp command line, you can greatly
extend the range of systems to which you can copy files with uucp. This is
also true for the uuto and uux(C) commands discussed below.

uucp options
Several options are available for the uucp command. Some of the most useful
are the -m and -n user options.

The -m option sends you mail reporting on the success or failure of the file
transfer. The -n user option notifies the user on the machine to whom the files
are sent of the file transfer.

117

Communicating with other sites

Other options are available for use with uucp. Refer to uucp(C) for a complete
list of these options.

Checking the status with uustat
You can use the uustat(C) command to check on the status of files you copied
with uucp. To check on the status of all your uucp jobs, enter the following
command:

uustat
Your output looks like the following:

1234 markt machine2 2/19-10:29 2/19-10:40 JOB IS QUEUED

Reading from left to right, the elements of this message are:

1234
This is the job number assigned to this uucp transfer.

markt This is the user who requested the transfer.

machine2 This is the site name of the recipient's computer.

2/19-10:29 This is the date and time the job was queued in the spool
directory.

2/19-10:40 This is the date and time of the uustat request.

JOB is-QUEUED This "job status" message tens you the status of the job. In
this case, JOB IS QUEUED tells you that the job is in the
spool directory waiting to be sent. If the transfer is com
pleted, uustat displays the message: COPY FINISHED, JOB
DELETED.

Several options are available to use with uustat. Refer to uustat(C) for more
information.

Transferring files with uuto

118

The uuto command allows you to copy files to the public directory of a UUCP
site to which your system is connected. The public directory on most UNIX
systems and XENIX systems is /usr/spool/uucppublic. The syntax of uuto is:

uuto [options] srcJile dest_computer!login
The login argument is the login of the user to whom you are sending files.

Before you can send a file with uuto, you must verify that:

• The file has read permission set for others.

• The directory that contains the file has read and execute permissions set for
others.

Users Guide

Using UUCP

If the permissions are not correct, enter the following commands to set the
correct permissions:

chmod o+r filename
chmod o+rx directory

Files sent with uuto are placed in the directory:

/usr/spool/uucppublic/receive/login / src _computer

In this example, login is the login of the user to whom you are sending files
and src_computer is the site name of your system.

As an example, suppose that you want to send a copy of transfile in /tmp on
your computer, machinel, to a user whose login is cindy on machine2. To do so,
enter the following command:

uuto Itmp/transfile machine2!cindy

This command copies transfile to the following directory:

usr/spool/uucppublic/receive/cindy/machinel

When the file transfer is complete, the recipient is notified by mail that the file
has arrived. If the -m option is used on the uuto command line, the sender is
notified by mail of the success or failure of the transfer.

Like uucp, files transferred with uuto are not transferred immediately after
the command is entered. Instead, they are placed in a spool directory and
sent when the uucico daemon awakens.

Retrieving files with uupick
In order to retrieve a file sent by uuto, you must use the uupick(C) command.
To execute uupick, enter the following command:

uupick [-s system]

The uupick program searches the public directory for any files sent to you. If
it finds any, it responds with the following prompt:

r from src_computer: file filename ?

119

Communicating with other sites

The src30mputer is the name of the sender's computer and filename is the
name of the file transferred. In the example above, if the uuto transfer to cindy
on machine2 is successful, cindy sees the following uupick prompt:

ffrom machinel: file trans file ?

Several options are available for responding to the uupick prompt. Two of
the most useful are m [dir] and d. The m [dir] option tells uupick to move the
file to directory dir. Once in dir, you can manipulate the file as you would any
other file on your system. In the example above, cindy could enter the follow
ing in response to the uupick prompt:

m $HOME

This causes transfile to be moved from the public directory to cindy's home
directory. If no directory is specified after m, the file is moved to the
recipient's current directory.

Entering d at the uupick prompt causes the file to be deleted from the public
directory. You can quit uupick by entering q. Note other uupick options are
available. Refer to uupick(C) for a complete list of these options.

Executing commands with uux

120

Use the uux(C) command to execute commands on remote UUCP sites and on
files gathered from remote UUCP sites. For security reasons, the commands
available for remote execution on a computer are often very limited. A
computer's /usr/lib/uucp/Permissions file lists the commands that can be exe
cuted remotely on that computer. If you attempt to execute a command not
listed in this file, you receive mail indicating that the command cannot be exe
cuted on the computer in question.

The syntax of uux is:

uux [options] command_line

The command_line argument looks like any other UNIX command line, with
the exception that commands and filenames might be prefixed with site-name!.

The following is an example of how to execute a command on a remote sys
tem. The command causes /tmp/printfile on machine2 to be sent to machine2' s
default printer:

uux machine2!lp machine2!1tmp/printfile

Note that prefixing a site name to a command causes the command to be exe
cuted on that site.

User's Guide

Logging in to remote systems

The following is an example of how to execute a command on a local system
on files gathered with uux from remote systems. Suppose that your local
computer is connected to both machine2 and machine3. Suppose also that you
want to compare the contents of /tmp/chptl on machine2 with /tmp/chpt1 on ma
chine3. To do so, enter the following command:

uux "diff machine2!1tmp/chptl machine3!1tmp/chptl > diff.file"

This command compares the contents of the files on machine2 and machine3
and place the output in diff.file in the current directory on the local computer.
Since there is no site name prefixed to the diff command, the command is exe
cuted locally.

Note that, in the example above, the uux command line is placed in quotation
marks. This is because it contains the redirect symbol (». In general, place
the uux command line in quotation marks whenever the command line con
tains special shell characters such as "< ", "> ", " I ", and so forth.

Logging in to remote systems

Using ct

The ct(C) command connects your system to a remote terminal with a modem
attached. The eu(C) command connects your system to a remote system. The
remote system can be attached via phone lines or via a simple serial line.
These commands differ from the UUCP commands discussed above in that
your session with the remote system is interactive. The remote system "sees"
you as just another user on the system. Both ct and eu are discussed below.

The ct command connects a local computer to a remote terminal equipped
with a modem and allows a user on that terminal to log in to the computer.
To do this, the command dials the phone number of the remote modem. The
remote modem must be able to answer the call automatically. When ct
detects that the call has been answered, it issues a getty (lOgin) process for the
remote terminal and allows a user on the terminal to log in on the computer.

This command is especially useful when issued from the opposite end, that is,
from the remote terminal itself. If you are using a remote terminal and you
want to avoid long distance charges, you can use ct to have the computer
place a call to your terminal. To do so, simply call the computer, log in, and
issue the ct command. The computer hangs up the line and calls your termi
nal back.

If ct cannot find an available dialer, it tells you that all dialers are busy and
asks if it should wait until one becomes available. If you answer yes, it asks
how long (in minutes) it should wait. If you answer no, ct quits.

121

Communicating with other sites

122

The syntax of ct is:

ct [options] teino
The argument teino is the telephone number of the remote terminal.

As an example, suppose that you have a terminal with a modem attached. at
home and that you want to log in to the computer at work from this terminal.
To avoid long distance charges, first call your work computer and log in.
Then issue the ct command to make the computer hang up and call your ter
minal back. If your phone number is 932-3497, the ct command is:

ct -s 1200 9323497

The -s option tells ct to call the modem at 1200 baud. If no device is available
on the computer at work, you see the following message after executing ct:

The one 1200 baud dialer is busy
Do you want to wait for dialer? (y for yes):

If you type n (no), the ct command exits. If you type y (yes), ct prompts you
to specify how long ct should wait:

rTime, in minutes? l
If a dialer is available when you enter the ct command, you see the following
message:

rA110cated dialer at 1200 baud l
This means that a dialer has been found. You are then asked if you want the
line connecting your remote terminal to the computer to be dropped:

Proceed to hang-up? (y to hang-up, otherwise exit):

Since you want to avoid long-distance charges by having the computer call
you, answer y (yes). You are then logged off and ct calls your remote terminal
back.

As another example, suppose that you are logged in on a computer through a
local terminal and that you want to connect a remote terminal to the com
puter. The phone number of the modem on the remote terminal is 932-3497.
To connect the terminal, enter the following command:

nohup ct -h -s 1200 9323497 &

Users Guide

Usingcu

Logging in to remote systems

The -h option tells ct not to disconnect the local terminal (the terminal on
which the command was issued) from the computer. After the command is
executed, a login prompt is displayed on the remote terminal. The user can
then log in and work on the computer just as on a local terminal.

Several options are available for ct. Refer to ct(C) for a complete list of these
options.

The eu(C) command connects your local computer to a remote computer and
allows you to be logged in on both computers simultaneously. The remote
computer does not have to be a UNIX system.

If the remote computer is a UNIX system, eu allows you to move back and
forth between the two computers, transferring files and executing commands
on both. Note that eu only allows you to transfer text files. You cannot
transfer binary files with cu. To transfer binary files to a remote UNIX system,
useuuep.

The syntax of the eu command is:

eu [options] target

The target argument can take one of three forms:

phone number

system-name

-IUne

-1 line dir

This is the number of the remote computer to which
you want to connect. You can embed equal signs,
which represent secondary dial tones, and dashes,
which represent four-second delays, in the phone num
ber. A sample phone number might be 4084551222--
341. This number contains an area code and number,
two dashes for an eight second delay and an extension.

This is the name of a system that is listed in the
/usr/lib/uucp/Systems file. The eu command obtains the
telephone number and the baud rate of system-name
from this file. The -s, -n, and -1 options should not be
used with system-name. To see the list of computers in
the Systems file, enter uuname.

This is the device name of the serial line connected to
the remote computer. It has the form ffyXX, where XX
is the number of a serial line.

Connects directly with serial line instead of making a
phone connection.

123

Communicating with other sites

124

Several options are available with the eu command. Refer to eu(C) for a com
plete list of these options.

Once the connection is made, if the remote computer is a UNIX system, you
are presented with a login prompt. Log in as you would if you were con
nected locally. When you finish working on the remote computer, log off as
you would if you were connected locally. Then terminate the eu connection
by entering a tilde followed by a period (-.). You are still logged in on the
local computer.

As an example, suppose that you want to log in to a remote UNIX computer
via the phone lines. Suppose also that the remote computer's number is
847-7867. To connect to the remote computer, enter the following command:

eu -s1200 8477867
The -s1200 option causes eu to use a 1200 baud dialer. If the -s option is not
specified, eu uses the first available dialer at the speed specified in the Devices
file.

When the remote UNIX system answers the call, eu notifies you that the con
nection has been made by displaying the following message:

r Connected

Next, you are prompted for your login:

r login:

Enter your login and password. Once you enter this information, you can use
this computer as if you were logged in locally. When you are finished, logout
and then enter:

-.
This terminates the eu session.

Users Guide

Logging in to remote systems

cu command strings
Several "Command Strings" are available with eu that allow your local com
puter to communicate with a remote UNIX system. Two of the most useful
are take and put.

The take command allows you to copy files from the remote computer to the
local computer. Suppose, for example, that you want to copy a file named
proposal in the current directory of the remote computer to your home direc
tory on the local computer. To do so, enter the following command:

-%take proposal /tmp/proposal
Note that you have to prefix a tilde and a percent sign (-%) to the take com
mand, and that the tilde must be placed at the start of a line. For this reason, it
is a good idea to press (Return) before using take.

The put command allows you to do the opposite of take. It copies files from
the local computer to the remote computer. Suppose, for example, that you
want to copy a file named minutes from the /usr/spool/uucppublic directory on
the local computer to the /tmp directory of the remote computer. Suppose
also that you want the file to be called minutes.9-18 on the remote computer.
To do so, enter the following command:

-%put /usr/spool/uueppublidminutes /tmp/minutes.9-18
Like the take command, you have to prefix a tilde and a percent sign (-%) to
the put command, with the tilde coming at the beginning of a line. Note also
that take and put copy only text files, and only to UNIX systems. You cannot
use these commands to copy binary files.

NOTE The eu command cannot detect or correct transmission errors. After
a file transfer, you can check for loss of data by running the sum command
on both the file that was sent and the file that was received. This command
reports the total number of bytes in each file. If the totals match, your
transfer was probably successful. See the sum(C) manual page for details.

Other command strings are available for use with cu. For a complete list of
these, see eu(C).

125

Communicating with other sites

Summary

126

This chapter covers the following commands:

Table 6·1 Command review

Command

uucp(C)
uuto(C)
uuname(C)
chmod(C)
uustat(C)
uupick(C)
uux(C)

ct(C)

cu(C)

Description

Transfers binary and text files between remote UUCP sites
Copies files to the public directory of a UUCP site
Lists the computers with which your computer communicates
Changes file and directory permissions
Checks the status of files you copied with uucp
Retrieves files sent by uuto
Executes commands on remote UUCP sites and on files
gathered from remote UUCP sites
Connects your system to a remote terminal with a modem
attached.
Connects your system to a remote system.

User' 5 Guide

Chapter 7

Using a secure system

Every computer system needs protection from people accessing the computer,
disks and system files without the system administrator's permission. The
operating system carries its own protection in the form of built-in security fea
tures not present in other UNIX systems. These features apply to all users of
the system and are maintained by the system administrator.

This chapter describes security from the viewpoint of the ordinary user. If
you find that your system does not use a feature discussed in this chapter,
your administrator has switched it off in favor of standard non-trusted
behavior.

This chapter includes the following:

• Terminology used to describe ways of enforcing and breaking security.

• The role of the security administrator.

• How to log into a trusted system, change password and use another
account.

• How to issue commands on a trusted system.

• Recommended security practices and security tips.

Terminology

The following terms are used to describe ways of enforcing and breaking
security:

A "Trojan Horse" is a program which masquerades as an innocent program. It
allows a person to steal your data, corrupt your files, or gain access to your
account.

127

Using a secure system

A "login spoofing program" disguises itself as the login program in order to
steal your password. The program displays the login prompt on the terminal
and waits for you to type in your login name followed by password. When
you respond to the prompts and enter your login name and password, the
program stores the password and reports that your entry was incorrect. The
spoofing program then ends and the correct login program starts.

A "protected subsystem" is a collection of files, devices, and commands which
protects a set of resources or which performs security tasks.

The "trusted computing base" (TCB) of a system is the software, hardware and
firmware that provide the system with security. The TCB of your equipment
consists of the system hardware and firmware (supplied by the hardware ven
dor) and the operating system.

The security administrator

A security administrator is appointed to enforce security practices, monitor
the system, trace attempts to breach security and return the system to a
trusted state in the unlikely event of a security break-in.

Login security
This section describes how to log into a trusted system, change password and
use another account. It also explains what to do if you have difficuity logging
in.

Logging in

128

The following login prompts are displayed:

login: login name
Password: non-echoed password

When you enter your password correctly, the last times you successfully and
(if applicable) unsuccessfully logged in are displayed:

Last successful login for login: date and time on ttyxxx
Last unsuccessful login for login: date and time on ttyxxx

If these times do not match your actions, consult your administrator immedi
ately. Someone might have tried to log into your account.

User's Guide

Login security

What to do if you cannot log in

If you cannot log in, go through the following checklist:

• The security administrator has given your password a lifetime, which has
now expired. Ask the administrator to change your password and re-open
your account.

• The security administrator has set a limit to the number of unsuccessful
login attempts you are allowed to make for your account. When you
exceed this number your account is locked automatically. Ask the
administrator to re-open the account. If you feel that you entered your log
in details correctly, tell the administrator immediately. It is possible that
the system has been interfered with.

• The security administrator has set a limit to the number of unsuccessful
login attempts allowed at your terminal. When this number is exceeded
your account is locked automatically. Ask the administrator to re-open the
account. If you believe that you entered your login details correctly, inform
the administrator immediately.

• The security administrator has locked your account or terminal. To con
tinue work you must ask the administrator to re-open the account.

• The security administrator has set a date by which your password expires.
When your password expires you are prompted to change it.

• If you forget your password, ask the security administrator to change it.

Changing your password

The security administrator decides whether or not you can change password
for yourself. The administrator can also set a minimum time period between
changes of password.

If you are not allowed to change password for yourself
If you are not allowed to change password for yourself and you try to use the
passwd(C) command, the following message appears:

Password cannot be changed. Reason: Not allowed to
execute password for the given user.

In this case, you must ask the administrator to change your password.

129

Using a secure system

130

If you are allowed to change password for yourself
If you are allowed to change the password for yourself, the administrator sets
up your account to allow you to specify the password of your choice or have
the system generate one for you.

When you use the passwd(C) command, you are prompted for your current
password:

r Old password:

When you type it in correctly the date and time of your last change of pass
word are displayed:

Last successful password change for login: date and time
Last unsuccessful password change for login: date and time

Make sure that these messages reflect your last attempts to change password.
If they do not, tell your administrator immediately.

The following prompt is then displayed:

(Choose password

You can choose whether you pick your own password,
or have the system create one for you.

1. pick your own password
2. Pronounceable password will be generated for you

Enter choice (default is 1):

If you enter 1, you are prompted for your new password. You are then
prompted to repeat your entry. Refer to the "Recommended security prac
tices" section for guidelines on choosing a password.

If you select 2, the system generates a password for you. The following mes
sage is displayed:

Generating random pronounceable password for login.
The password, along with the hyphenated version, is shown.
Hit (Return) or <ENTER> until you like the choice.
When you have chosen the password you want, type it in.
Note: Type your interrupt character or 'quit' to abort at any time.

Password:xxxxxX Hyphenation:xx-xx-xx Enter password:

User's Guide

Using commands on a trusted system

The generated password is displayed with a hyphenated version. The hyphe
nation separates the password into logical parts and is designed to help you
commit the password to memory. Do not write the password down.

If you decide not to change your password type quit or your interrupt charac
ter (normally the (Del) key). Your last unsuccessful password change time is
updated and the following message is displayed:

Password cannot be changed. Reason: user stopped program.

Using another account

The su(C) command allows you to become another user without logging off.
su cannot be used to simply assume the login of another user; instead, su can
be used under four circumstances:

• The super user can "Su" to any account.

• An administrative user with the su authorization can "Su" to the super user
account.

• A user can "Su" to their own account.

• A system daemon can "Su" to an account.

To use su, the appropriate password must be supplied (unless you are already
a super user). If the password is correct, su executes a new shell with the
effective user ID set to that of the specified user.

Using commands on a trusted system

The use of commands is restricted on a trusted system. You can issue certain
commands only if the security administrator has given you the appropriate
authorization. This section describes the different types of authorization and
how they affect your use of commands.

Authorizations

The security mechanism has two types of authorization: kernel and subsys
tem. A kernel authorization allows you to run specific processes on the oper
ating system. A subsystem authorization allows you to use the commands of
a specific protected subsystem.

131

Using a secure system

132

The kernel authorizations are as follows:

execsuid This authorization allows you to run SUID programs. An
SUID program gains access to all the files, processes and
resources belonging to the person running the program or
the owner of the program file.

chmodsugid

chown

audittrail

Allows you to change the setuid and setgid attributes of a
file or directory, using the chmod(C) command.

Allows you to change the ownership of files using the
chown(C) command.

Permits the use of the audit subsystem to monitor your own
activities only. This can be useful for debugging of pro
grams because a detailed record of system calls is generated
by the autdit daemon. For more information, see "Using the
audit subsystem" in the System Administrator's Guide.

There are two levels of subsystem authorization: primary and secondary. A
primary subsystem authorization allows you to use the commands of a pro
tected subsystem as an administrator. Primary authorizations are given to
administrators and are fully described in the System Administrator's Guide.
However, they can be given to ordinary users also. The primary authoriza
tions are:

mem

terminal

This authorization allows you to use the ps(C) command to
check the status of other users' processes, and the ipcs(C)
conuuand to report the status of inter-process communica
tion. Without the authorization, you can only use these com
mands to report on processes belonging to you.

Allows you to use the write(C) command to communicate
with other users. If you use the write command without the
authorization, any control codes and escape sequences in
your message are converted to ASCII characters.

A secondary subsystem authorization allows you to use the commands of a
subsystem as an ordinary user (that is, you are not given administrative
privilege). Secondary authorizations are described below:

printqueue

printerstat

queryspace

su

Allows you to view other users' jobs on the print queue.

Allows you to use the enable(C) and disable(C) commands
to change the status of printers.

Allows you to use the df(C) command to query the amount
of space available on the file systems.

Permits the use of the su(C) command to access another
account (including root). Without this authorization, users
can only access accounts they are defined as being responsi
blefor.

User's Guide

Using commands on a trusted system

The auths command

The auths(C) command allows you to list your kernel authorizations, and
start up a shell so that you can issue commands with specific authorizations.
The instructions below show you how to use the auths command with a
variety of arguments. Examples are given for a user with execsuid and chown
authorizations.

• The auths command without arguments lists your kernel authorizations.
For example:

$ auths
Kernel authorizations: execsuid,chown

• The auths command with the -a option allows you to specify a restricted
set of one or more of your authorizations. For example, the user with exec
suid and chown authorizations can restrict themself to the chown authori
zation:

$ auths -a chown
$ auths
Kernel authorizations: chown

To restore your authorizations, leave the shell started by the auths -a
command.

• The auths command with the -r option allows you to specify which of your
authorizations you wish to remove. For example:

$ auths -r chown
$ auths
Kernel authorizations: execsuid

You must leave the shell started by the auths -r command to restore your
authorizations.

• The auths command with the -c option allows you to issue a command
instead of starting an interactive subshell. In the example below, chown
authorization is removed and then the auths(C) command is issued. The
result is a line listing the user's authorizations; the chown authorization is
not included.

$ auths -r chown -c auths
Kernel authorizations: execsuid

133

Using a secure system

When the user executes another list, the chown authorization is restored:

$ auths
Kernel authorizations: execsuid,chown

Security for files in sticky directories

A directory with the sticky bit set means that only the file owner and the
super user can remove files from that directory. Other users are denied the
right to remove files irrespective of directory permissions. Only the super user
can place the sticky bit on a directory. Unlike with files, the sticky bit on direc
tories remains there until the directory owner or super user removes the direc
tory or applies chmod(C) or chmod(S) to it.

A sticky directory contains a "t" at the end of the permissions field, as in this
example:

drwxrwxrwt 2 bin bin 1088 Mar 18 21:10 tmp

Recommended security practices
This section gives a list of recommended security practices for the ordinary
user.

Password security

134

It is your responsibility to protect your password. The careless use and main
tenance of passwords represents the greatest threat to the security of a com
puter system. The security administrator can configure the system to be as re
strictive or open as desired. Some of the guidelines listed in this section might
be enforced by the system, including password length, complexity, and life
time. The following are basic guidelines for choosing and maintaining pass
words:

• A password should be at least eight characters in length and include letters,
digits and punctuation marks. For example, frAiJ6*.

• Do not use a password that is easy to guess. A password must not be a
name, nickname, proper noun or word found in the dictionary. Do not use
your birthdate or a number in your address.

• Do not use words spelled backwards.

• Do not start or end a password with a single number. For example, do not
use terry9 as your password.

User's Guide

Recommended security practices

• Use different passwords on different machines. Do not make the pass
words reflect the names of the machines.

• Always keep your password secret. A password should never be written
down, shared with another person, sent over electronic mail or spoken.
Treat your password like the PIN number for your instant teller card.

• Never re-use a password. This just increases the probability of someone
guessing it.

• Never type a password while someone is watching your fingers.

Good security habits

The following are some general guidelines for simple, good security habits:

• Remember to log out before leaving a terminal.

• Use the lock(C) utility when you leave your terminal, even for a short time.
The lock command requests a password at the time of use, and then locks
the terminal until the password is re-entered.

• Make certain that sensitive files are not publically readable.

• Keep any floppies or tapes containing confidential data (program source,
database backups) under lock and key.

• If you notice strange files in your directories, or find other evidence that
your account has been tampered with, tell your system administrator.

Logging in and out

The following guidelines include "things to look out for" as well as recom
mended practices for logging into your system and logging out.

• When logging into a trusted system, check that the reported last login and
logout times are as you remember them. Look out for login attempts made
when you are normally logged out of the system. Report any discrepancies
to your security administrator immediately.

• Be careful how you type in your password.

• When you enter your password and the system reports an error, although
you believe your entry to have been correct, tell your security administra
tor immediately. Check the reported last login time against the current
time. If there is a discrepancy it is possible that a spoofing program (see
''Terminology'' section) has taken your password.

135

Using a secure system

File security

Follow the guidelines below when you are creating, copying, and moving
files. The list also includes security tips related to your startup scripts.

• When you create a file or directory your startup script determines the per
missions given to the file or directory. Newly created files and directories
should only be accessible by you (the owner) or the group. It is advisable
to keep your files and directories secure in this way, by leaving your
startup script set to the system default. If you wish to share a few files with
other users, change the permissions on those files, individually.

• When you use the cp(C) command to copy an SUlD file owned by someone
else, the new file is also an SUlD file and is owned by you. Note that when
an SUlD file is executed, it has access to all your files and directories. It is
good practice to use the chmod(C) command to change the permissions on
the file so that it can be accessed only by you.

• When you use the cp command to copy a file so as to create a new file, the
new file takes the permissions of the original file. Remember to check the
permissions of the new file and, if necessary, change them using the
chmod(C) command.

• Remember that temporary directories are world-readable.

• Use the ls(C) command to check the permissions on your shell, mailer and
startup files. If the files can be read and modified by other users, change
the permissions using chmod so that only you have access to them.

Data encryption-commands and descriptions

136

If you have sensitive data that requires greater protection than that provided
by access permission, you can encrypt the data. The encrypted file can not be
read without a password. If somebody tries to read the encrypted file without
a password, it cannot be understood.

I NOTE You will only have data encryption capabilities if the crypt(C) soft
ware is installed on your system. This software is available only within the
United States and must be requested from your distributor.

There are seven different commands used in data encryption. A brief sum
mary of these commands appears in the following table.

User's Guide

Command
Line

crypt

makekey
ed-x

vi-x

ex-x

edit -x

x

Data encryption - commands and descriptions

Description

This command is used to encode and decode files. The crypt
command reads from the standard input or keyboard and
writes to the standard output or terminal.
This command generates an encryption key.
This command line edits a file that has already been
encrypted, or creates a new encrypted file using the ed editor.
This command line edits a file that has already been
encrypted, or creates a new encrypted file using the vi editor.
This command line edits a file that has already been
encrypted, or creates a new encrypted file using the ex editor.
This command line edits a file that has already been
encrypted, or creates a new encrypted file using the edit
editor.
This command encrypts a file while in the editor mode
ed, ex, or edit).

crypt-encode/decode files

The crypt command encodes and decodes files for security. When using
crypt, you have to assign a password (key) to encode the file. The same pass
word is used to decode the file. You cannot read an encrypted file unless you
use the correct password to decode it.

If you do not give a password with the crypt command, the system prompts
you for one. For security, the screen does not display the password as you
type it in.

Password security is the most vulnerable part of the crypt command. Anyone
who figures out your password can look at your files. The best way to ensure
your security is to select an uncommon group of characters. As with your
login password, the password should be no more than eight letters or num
bers long.

A file can be encrypted in the shell mode using crypt, or in the edit mode
using the -x or X option. When you are ready to decrypt the file, you can use
the crypt command in the shell mode. The following is the command format
to encrypt a file:

crypt < oldfile > newfile

The system prompts you for a password.

137

Using a secure system

Before removing the unencrypted oldfile, make sure the encrypted newfile
can be decrypted using the appropriate password. The oldfile is the file to be
encrypted. The newfile is the name of the destination file for the encrypted
text. Now, remove the old file.

I NOTE Always remember to remove the file (oldfile) from which you are
encrypting because it is not encrypted. Only the new file is encrypted.

Without any arguments, the crypt command takes standard input from the
keyboard and encodes it before directing it to the standard output (the dis
play). To encode an existing file, you must tell crypt to take its input «) from
a file instead of the keyboard. Similarly, you must tell crypt to send its output
(» to a new file instead of the display.

To decrypt a file, redirect the encrypted file to a new file you can read. The
command to decrypt a file is as follows:

crypt < cryptedJile > newJilename

I NOTE Always encrypt and decrypt files separately.

Encrypting and decrypting with editors

138

You can use the editors (ed, edit, ex, and vi) to either edit an existing file that
has been encrypted or to create a new encrypted file by using the -x option.
When encrvotin2: a file. vou have to assi2:ll a oassword to encode the file. The

"'.I. v . J V .L

same password is used to decode the file. An encrypted file cannot be read
unless the correct password is used to decode it.

Select an uncommon group of characters for the password. It should be no
more than eight characters long.

The following is the command format for the editors (ed, edit, ex, and vi)
using the -x option:

ed -x [filename]

edit -x [filename]

ex -x [filename]

vi -x [filename]

The -x option is used either to edit an existing file that has been encrypted or
to create a new encrypted file. The filename variable is the name of the file
that is being created or edited. The system prompts you for a password.

When you get ready to decrypt the file, you must use the crypt command
from the shell.

User's Guide

Summary

The editor X command is another way to encrypt a file while in the editor
mode. The X command only works with the ed, edit, or ex editors. (For the vi
editor, type :X.) This command also needs a password to encrypt and
decrypt files.

After you have edited the file, you can easily encrypt it again by using the X
command as follows:

1. While still in the editor, enter X on a line by itself.

2. The system prompts you for a password.

3. Quit the file.

Summary
This chapter covers the following commands:

Table 7·1 Command review

Command

su«C»
auths (C)

crypt (C)
ed (C)

edit (C)
ex (C)

vi (C)

passwd (C)
chmod (C)
chown (C)
ps(C)
write (C)
enable (C)
disable (C)
df(C)
lock (C)

Description

Allows you to use another account
allows you to list your kernel authorizations, and use
commands with specific authorizations
Encodes and decodes files for security
Edits or create an encrypted file

Allows you to change your password
Changes file and directory permissions
Changes ownership of files
Checks the status of processes
Communicates with other users
Changes the status of printers

Queries the amount of space available on the file systems
Locks your terminal

139

Using a secure system

140 User's Guide

Chapter 8

The Bourne shell

When you log into a UNIX system, you communicate with one of several
interpreters. This chapter discusses the shell command interpreter, sh. This
interpreter is a UNIX program that supports a very powerful command lan
guage. Each invocation of this interpreter is called a shell; and each shell has
one function: to read and execute commands from its standard input.

The shell gives the user a high-level language in which to communicate with
the operating system, therefore you can perform tasks unheard of in less
sophisticated operating systems. Commands that would normally have to be
written in a traditional programming language can be written with just a few
lines in a shell procedure. In other operating systems, commands are exe
cuted in strict sequence. With the shell, commands can be:

• combined to form new commands
• passed positional parameters
• added or renamed by the user
• executed within loops or executed conditionally
• created for local execution without fear of name conflict with other user

commands
• executed in the background without interrupting a session at a terminal

Furthermore, commands can "redirect" command input from one source to
another and redirect command output to a file, terminal, printer, or to another
command. This provides flexibility in tailoring a task for a particular
purpose.

141

The Bourne shell

Basic concepts
The shell itself (that is, the program that reads your commands when you log
in or that is invoked with the sh command) is a program written in the
C language; it is not part of the operating system proper, but an ordinary user
program.

How shells are created

On a UNIX system, a process is an executing entity complete with instruc
tions, data, input, and output. All processes have lives of their own, and
might even start (or "fork") new processes. Thus, at any given moment
several processes might be executing, some of which are "children" of other
processes.

Users log into the operating system and are assigned a "shell" from which
they execute. This shell is a personal copy of the shell command interpreter
that is reading commands from the keyboard: in this context, the shell is sim
ply another process.

In the UNIX system multitasking environment, files might be created in one
phase and then sent off to be processed in the "background." This allows the
user to continue working while programs are running.

Camma'nds

142

The most common way of using the shell is by entering simple commands at
your keyboard. A simple command is any sequence of arguments separated by
spaces or tabs. The first argument (numbered zero) specifies the name of the
command to be executed. Any remaining arguments, with a few exceptions,
are passed as arguments to that command. For example, the following com
mand line might be entered to request printing of the files allan, barry, and cal
vin:

Ipr allan barry calvin

If the first argument of a command names a file that is executable (as indicated
by an appropriate set of permission bits associated with that file) and is actu
ally a compiled program, the shell, as parent, creates a child process that
immediately executes that program. If the file is marked as being executable,
but is not a compiled program, it is assumed to be a shell procedure, that is, a
file of ordinary text containing shell command lines. In this case, the shell
spawns another instance of itself (a subshell) to read the file and execute the
commands inside it. From the user's viewpoint, compiled programs and shell
procedures are invoked in exactly the same way. The shell determines which
implementation has been used, rather than requiring the user to do so. This
provides uniformity of invocation.

User's Guide

Basic concepts

You can enter as many command lines as you want without waiting for the
commands to complete their execution and for the prompt to reappear. This
is because UNIX systems support character type-ahead. The system can hold
up to 256 characters in the kernel buffers that read keyboard input.

How the shell finds commands

The shell normally searches for commands in three distinct locations in the
file system. The shell attempts to use the command name as given; if this
fails, it prepends the string /bin to the name. If the latter is unsuccessful, it
prepends /usr/bin to the command name. The effect is to search, in order, the
current directory, then the directory /bin, and finally, /usr/bin. For example,
the pr and man commands are actually the files /bin/pr and /usr/bin/man,
respectively. A more complex pathname can be given, either to locate a file
relative to the user's current directory, or to access a command with an abso
lute pathname. If a given command name includes a slash (f) (for example,
/bin/sort dir/cmd,) the prepending is not performed. Instead, a single attempt is
made to execute the command as named.

This mechanism gives the user a convenient way to execute public commands
and commands in or near the current directory, as well as the ability to exe
cute any accessible command, regardless of its location in the file structure.
The current directory is usually searched first, therefore anyone can possess a
private version of a public command without affecting other users. Similarly,
the creation of a new public command does not affect a user who already has
a private command with the same name. The particular sequence of direc
tories searched can be changed by resetting the shell PATH variable. (Shell
variables are discussed later in this chapter.)

Generation of argument lists

The arguments to commands are very often filenames. Sometimes, these
filenames have similar, but not identical, names. To take advantage of this
similarity in names, the shell lets the user specify patterns that match the
filenames in a directory. If a pattern is matched by one or more filenames in a
directory, then those filenames are automatically generated by the shell as
arguments to the command.

Most characters in such a pattern match themselves, but there are also UNIX
special characters that can be included in a pattern. These special characters
are: the asterisk (*), which matches any string, including the null string; the
question mark (?), which matches anyone character; and any sequence of
characters enclosed within brackets ([and]), which matches anyone of the
enclosed characters. Inside brackets, a pair of characters separated by a
dash (-) matches any character within the range of that pair. Thus [a-de] is
equivalent to [abcde].

143

The Bourne shell

Examples of metacharacter usage:

Metacharacter

temp
[a-£]*
*.c
/usr/bin/?

Meaning

Matches all names in the current directory
Matches all names containing "temp"
Matches all names beginning with "a" through "t"
Matches all names ending in ".c"
Matches all single-character names in /usr/bin

This pattern-matching capability saves typing and, more importantly, makes
it possible to organize information in large collections of files that are named
in a structured fashion, using common characters or extensions to identify re
lated files.

Pattern matching has some restrictions. If the first character of a filename is a
dot (.), it can be matched only by an argument that literally begins with a dot.
If a pattern does not match any filenames, then the pattern itself is the result
of the match.

Note that directory names should not contain any of the following characters:

* ? []

If these characters are used, then infinite recursion might occur during pattern
matching attempts.

Quoting mechanisms

144

Several characters, including "<, >, *, ?, [," and"]," have special meanings to
the shell. To remove the special meaning of these characters requires some
form of quoting. This is done by using single quotation marks (') or double
quotation marks (to) to surround a string. A backslash (\) before a single
character provides this function. (Back quotation marks (') are used only for
command substitution in the shell aI\d do not hide the special meanings of
any characters.)

All characters within single quotation marks are taken literally. Thus:

eehostuff='eeho $? $*; 15 * I we'

results in the string:

echo $? $*; Is * I we

being assigned to the variable eehostuff, but it does not result in any other
commands being executed.

User's Guide

Basic concepts

Within double quotation marks, the special meaning of certain characters
does persist, while all other characters are taken literally. The characters that
retain their special meaning are the dollar sign ($), the backslash (\), the back
quotation mark (,), and the double quotation mark (") itself. Thus, within
double quotation marks, variables are expanded and command substitution
takes place (both topics are discussed in later sections). However, any com
mands in a command substitution are unaffected by double quotation marks,
so that characters such as asterisk (*) retain their special meaning.

To hide the special meaning of the dollar sign ($) and single and double quota
tion marks within double quotation marks, precede these characters with a
backslash (\). Outside of double quotation marks, preceding a character with
a backslash is equivalent to placing single quotation marks around that char
acter. A backslash followed by a newline causes that newline to be ignored.
The backslash-newline pair is therefore useful in allowing continuation of
long command lines.

Some examples of quoting are displayed below:

Input

"11 '

"echo one' ,

"\""
II 'echo one' II

one two

"onetwo"

'one two'

'one * two'

"one * two"

'echo one'

Standard input and output

Shell interprets as:

the back quotation mark (')

the double quotation mark (")

the one word'" echo one' "

the double quotation mark (")

the one word "one"

illegal (expects another')

the two words "one" & "twd'

the one word "one twd'

the one word "one twd'

the one word "one * twd'

the one word "one * twd'

the one word "one"

In general, most commands do not know or care whether their input or out
put is coming from or going to a terminal or a file. Thus, a command can be
used conveniently either at a terminal or in a pipeline. A few commands vary
their actions depending on the nature of their input or output, either for
efficiency, or to avoid useless actions (such as attempting random access I/O
on a terminal or a pipe).

145

The Bourne shell

When a command begins execution, it usually expects that three files are
already open: a "standard input," a "standard output," and a "diagnostic out
put" (also called "standard error"). A number called a file descriptor is associ
ated with each of these files. By convention, file descriptor 0 is associated with
the standard input, file descriptor 1 with the standard output, and file descrip
tor 2 with the diagnostic output. A child process normally inherits these files
from its parent; all three files are initially connected to the terminal (0 to the
keyboard, 1 and 2 to the terminal screen). The shell permits the files to be
redirected elsewhere before control is passed to an invoked command.

An argument to the shell of the form "<file" or ">file" opens the specified file
as the standard input or output (in the case of output, destroying the previous
contents of file, if any). An argument of the form "»filt' directs the standard
output to the end of file, thus providing a way to append data to the file
without destroying its existing contents. In either of the two output cases, the
shell creates file if it does not already exist. Thus, the following command
alone on a line creates a zero-length file:

> output
The following appends to file log the list of users who are currently logged on:

who » log
Such redirection arguments are only subject to variable and command substi
tution; neither blank interpretation nor pattern matching of filenames occurs
after these substitutions. This means that:

echo 'this is a test' > *.gal
produces a one-line file named *.gal. Similarly, an error message is produced
by the following command, unless you have a file with the name"? ":

cat < ?

Special characters are not expanded in redirection arguments because redirec
tion arguments are scanned by the shell before pattern recognition and expan
sion takes place.

Diagnostic and other outputs

146

Diagnostic output from UNIX system commands is normally directed to the
file associated with file deScriptor 2. (There is often a need for an error output
file that is different from standard output so that error messages do not get
lost down pipelines.) You can redirect this error output to a file by immedi
ately prepending the number of the file descriptor (2 in this case) to either out
put redirection symbol> or ». The following line appends error messages
from the cc command to the file named ERRORS:

cc testfile.c 2» ERRORS
Note that the file descriptor number must be prepended to the redirection
symbol without any intervening spaces or tabs; otherwise, the number will be
passed as an argument to the command.

User's Guide

Basic concepts

This method can be generalized to allow redirection of output associated with
any of the first ten file descriptors (numbered 0-9). For instance, if cmd puts
output on file descriptor 9, then the following line will direct that output to
the file savedata:

cmd 9> savedata

A command often generates standard output and error output, and might
even have some other output, perhaps a data file. In this case, one can
redirect independently all the different outputs. Suppose, for example, that
cmd directs its standard output to file descriptor I, its error output to file
descriptor 2, and builds a data file on file descriptor 9. The following would
direct each of these three outputs to a different file:

cmd >standard 2> error 9> data

Command lines and pipelines

A sequence of commands separated by the vertical bar (I) makes up a pipeline.
In a pipeline consisting of more than one command, each command is run as a
separate process connected to its neighbors by pipes, that is, the output of each
command (except the last one) becomes the input of the next command in
line.

A filter is a command that reads its standard input, transforms it in some way,
then writes it as its standard output. A pipeline normally consists of a series
of filters. Although the processes in a pipeline are permitted to execute in
parallel, each program needs to read the output of its predecessor. Many
commands operate on individual lines of text, reading a line, processing it,
writing it out, and looping back for more input. Some must read large
amounts of data before producing output; sort is an example of the extreme
case that requires all input to be read before any output is produced. The fol
lowing is an example of a typical pipeline:

nroff -mm text I col I lpr

nroff is a text formatter available in the UNIX Text Processing System whose
output might contain reverse line motions, col converts these motions to a
form that can be printed on a terminal lacking reverse-motion capability, and
lpr does the actual printing. The flag -mm indicates one of the commonly
used formatting options, and text is the name of the file to be formatted.

147

The Bourne shell

148

The following examples illustrate the variety of effects that can be obtained by
combining a few commands in the ways described above. It might be helpful
to try these at a terminal:

• who
Prints the list of logged-in users on the terminal screen.

• who»log
Appends the list of logged-in users to the end of file log.

• who I we -1
Prints the number of logged-in users. (The argument to we is pronounced
"minus ell".)

• who I pr
Prints a paginated list of logged-in users.

• who I sort
Prints an alphabetical list of logged-in users.

• who I grep bob
Prints the list of logged-in users whose login names contain the string bob.

• who I grep bob I sort I pr
Prints an alphabetized, paginated list of logged-in users whose login names
contain the string bob.

• { date; who I we -I;} » log
Appends (to file log) the current date followed by the count of logged-in
users. Be sure to place a space after the left brace and a semicolon before
the right brace.

• who I sed -e 'sl .*/1' I sort I uniq -d
Prints only the login names of all users who are logged in more than once.
Note the use of sed as a filter to remove characters trailing the login name
from each line. (The ".*" in the sed command is preceded by a space.)

The who command does not by itself provide options to yield all these results
- they are obtained by combining who with other commands. Note that
who just serves as the data source in these examples. As an exercise, replace"
who I " with II </etc/passwd" in the above examples to see how a file can be
used as a data source in the same way. Notice that redirection arguments can
appear anywhere on the command line, even at the start. This means that:

< infile >outfile sort I pr

is the same as:

sort < infile > outfile I pr

User's Guide

Basic concepts

Command substitution

Any command line can be placed within back quotation marks (' ... ') so that
the output of the command replaces the quoted command line itself. This
concept is known as command substitution. The command or commands
enclosed between back quotation marks are first executed by the shell and
then their output replaces the whole expression, back quotation marks and all.
This feature is used to assign the output of commands to shell variables.
(Shell variables are described in the next section.)

For example:

today=' date'

assigns the string representing the current date to the variable "today"; for
example ''Tue Nov 2616:01:09 EST 1985". The following command saves the
number of logged-in users in the shell variable users:

users= 'who I we-1'

Any command that writes to the standard output can be enclosed in back
quotation marks. Back quotation marks can be nested, but the inside sets
must be escaped with backslashes (\). For example:

logmsg='eeho Your login directory is \ 'pwd\"

displays the line "your login directory is name of login directory." Shell vari
ables can also be given values indirectly by using the read and line com
mands. The read command takes a line from the standard input (usually your
terminal) and assigns consecutive words on that line to any variables named.

For example:

read first init last

takes an input line of the form:

G. A. Snyder

and has the same effect as entering:

first=G. init=A. last=Snyder

The read command assigns any excess "words" to the last variable.

The line command reads a line of input from the standard input and then
echoes it to the standard output.

149

The Bourne shell

Shell variables
The shell has several mechanisms for creating variables. A variable is a name
representing a string value. Certain variables are referred to as positional
parameters; these are the variables that are normally set only on the command
line. Other shell variables are simply names to which the user or the shell
itself can assign string values.

Positional parameters

When a shell procedure is invoked, the shell implicitly creates positional
parameters. The name of the shell procedure itself in position zero on the com
mand line is assigned to the positional parameter $0. The first command
argument is called $1, and so on. The shift command can be used to access
arguments in positions numbered higher than nine. For example, the follow
ing shell script might be used to cycle through command line switches and
then process all succeeding files:

while test -n "$1"
do case $1 in

-a) A=aoption
-b) B=boption
-c) C=coption

shift, ,
shift, ,
shift, ,

-*) echo "bad option" exit 1 ;;
*) process rest of files
esac

done

You can explicitly force values into these positional parameters by using the
set command. For example:

set abc def ghi

assigns the string 1/ abc 1/ to the first positional parameter, $1, the string" def"
to $2, and the string" ghi" to $3. Note that $0 cannot be assigned a value in
this way-it always refers to the name of the shell procedure; or in the login
shell, to the name of the shell.

User-defined variables

150

The shell also recognizes alphanumeric variables to which string values can
be assigned. A simple assignment has the syntax:

name=string

Thereafter, $name yields the value string. A name is a sequence of letters,
digits, and underscores that begins with a letter or an underscore. No spaces
surround the equal sign (=) in an assignment statement. Note that positional
parameters cannot appear on the left side of an assignment statement; they
can only be set as described in the previous section.

User's Guide

Shell variables

More than one assignment can appear in an assignment statement, but
beware: the shell performs the assignments from right to left. Thus, the following
command line results in the variable "N acquiring the value "abc":

A=$B B=abc

The following are examples of simple assignments. Double quotation marks
around the right-hand side allow spaces, tabs, semicolons, and newlines to be
included in a string, while also allowing variable substitution (also known as
"parameter substitution") to occur. This means that references to positional
parameters and other variable names that are prefixed by a dollar sign ($) are
replaced by the corresponding values, if any. Single quotation marks inhibit
variable substitution:

MAIL=/usr/mail/gas
echovar="echo $1 $2 $3 $4"
stars=*****
asterisks='$stars'

In the above example, the variable echovar has as its value the string consist
ing of the values of the first four positional parameters, separated by spaces,
plus the string "echd'. No quotation marks are needed around the string of
asterisks being assigned to stars because pattern matching (expansion of
asterisk, the question mark, and brackets) does not apply in this context. Note
that the value of $asterisks is the literal string "$stars", not the string "*****",
because the single quotation marks inhibit substitution.

In assignments, spaces are not re-interpreted after variable substitution, so
that the following example results in $first and $second having the same
value:

first=' a string with embedded spaces'
second=$first

In accessing the values of variables, you can enclose the variable name in
braces { ... } to delimit the variable name from any following string. In partic
ular, if the character immediately following the name is a letter, digit, or
underscore, then the braces are required. For example, examine the following
input:

a='This is a string'
echo "${a}ent test of variables."

Here, the echo command prints:

This is a stringent test of variables.

If no braces were used, the shell would substitute a null value for "$aent" and
print:

test of variables.

The following variables are maintained by the shell. Some of them are set by
the shell, and all of them can be reset by the user:

151

The Bourne shell

HOME Initialized by the login program to the name of the user's
login directory, that is, the directory that becomes the
current directory upon completion of a login; cd without
arguments switches to the $HOME directory. Using this
variable helps keep full pathnames out of shell pro
cedures. This is of great benefit when pathnames are
changed, either to balance disk loads or to reflect admin
istrative changes.

IFS The variable that specifies which characters are internal
field separators. These are the characters the shell uses
during blank interpretation. (If you want to parse some
delimiter-separated data easily, you can set IFS to include
that delimiter.) The shell initially sets IFS to include the
blank, tab, and newline characters.

MAIL The pathname of a file where your mail is deposited. If
MAIL is set, then the shell checks to see if anything has
been added to the file it names and announces the arrival
of new mail each time you return to command level (e.g.,
by leaving the editor). MAIL is not set automatically; if
desired, it should be set (and optionally "exported") in
the user's .profile. (The export command and .profile file
are discussed later in this chapter.) (The presence of mail
in the standard mail file is also announced at login,
regardless of whether MAIL is set.)

MAILCHECK This parameter specifies how often (in seconds) the shell
will check for the arrival of mail in the files specified by
the MAILPATH or MAIL parameters. The default value is
600 seconds (10 minutes). If set to 0, the shell will check
before each prompt.

MAILPATH A colon (:) separated list of file names. If this parameter
is set, the shell informs the user of the arrival of mail in
any of the specified files. Each file name can be followed
by % and a message that will be printed when the
modification time changes. The default message is you
have mail.

SHACCT If this parameter is set to the name of a file writable by
the user, the shell will write an accounting record in the
file for each shell procedure executed. Accounting rou
tines such as acdcom(ADM) and acdon(ADM) can be
used to analyze the data collected.

SHELL When the shell is invoked, it scans the environment for
this name. If it is found and there is an 'r' in the file name
part of its value, the shell becomes a restricted shell.

152 Users Guide

PATH

CDPATH

PSI

PS2

Shell variables

The variable that specifies the search path used by the
shell in finding commands. Its value is an ordered list of
directory pathnames separated by colons. The shell ini
tializes PATH to the list :/bin:/usr/bin where a null argu
ment appears in front of the first colon. A null anywhere
in the path list represents the current directory. On some
systems, a search of the current directory is not the
default and the PATH variable is initialized instead to
/bin:/usr/bin. If you wish to search your current directory
last, rather than first, use:

PATH=/bin:/usr/bin:

Below, the two colons together represent a colon fol
lowed by a null, followed by a colon, thus naming the
current directory. You could possess a personal directory
of commands (say, $HOME/bin) and cause it to be
searched before the other three directories by using:

PATH=$HOME/bin::/bin:/usr/bin

PATH is normally set in your .profile file.

This variable defines the search path for the directory
containing argo Alternative directory names are sep
arated by a colon (:). The default path is <null> (specify
ing the current directory). The current directory is
specified by a null path name, which can appear immedi
ately after the equal sign or between the colon delimiters
anywhere else in the path list. If arg begins with a / then
the search path is not used. Otherwise, each directory in
the path is searched for argo

The variable that specifies what string is to be used as the
primary prompt string. If the shell is interactive, it
prompts with the value of PSl when it expects input. The
default value of PSl is II $ II (a dollar sign followed by a
blank).

The variable that specifies the secondary prompt string.
If the shell expects more input when it encounters a new
line in its input, it prompts with the value of PS2. The
default value for this variable is ">" (a greater-than sym
bol followed by a space).

In general, you should be sure to export all of the above variables so that their
values are passed to all shells created from your login. Use export at the end
of your .profile file. An example of an export statement follows:

export HOME IFS MAIL PATH PSI PS2

153

The Bourne shell

Predefined special variables

154

Several variables have special meanings; the following are set only by the
shell:

$# Records the number of arguments passed to the shell, not counting
the name of the shell procedure itself. For instance, $# yields the
number of the highest set positional parameter. Thus:

sh cmd abc

automatically sets $# to 3. One of its primary uses is in checking for
the presence of the required number of arguments:

if test $# -It 2
then

echo 'two or more args required'; exit
fi

$? Contains the exit status of the last command executed (also referred
to as "return code," "exit code," or "value"). Its value is a decimal
string. Most UNIX system commands return zero to indicate suc
cessful completion. The shell itself returns the current value of $?
as its exit status.

$$ The process number of the current process. Because process num
bers are unique among all existing processes, this string is often
used to generate unique names for temporary files. The operating
system provides no mechanism for the automatic creation and dele
tion of temporary files; a file exists until it is explicitly removed.
Temporary files are generally undesirable objects; the UNIX system
pipe mechanism is far superior for many applications. However,
the need for uniquely-named temporary files does occasionally
occur.

The following example illustrates the recommended practice of
creating temporary files; note that the directories lusr and lusrltmp
are cleared out if the system is rebooted.

* use current process id
* to form unique temp file
temp=/usr/tmp/$$
Is > $temp
* commands here, some of which use $temp
rm -f $temp

clean up at end

User's Guide

The shell state

$! The process number of the last process run in the background
(using the ampersand (&». This is a string containing from one to
five digits.

$- A string consisting of names of execution flags currently turned on
in the shell. For example, $- might have the value "xv" if you are
tracing your output.

The shell state

The state of a given instance of the shell includes the values of positional
parameters, user-defined variables, environment variables, modes of execu
tion, and the current working directory.

The state of a shell can be altered in various ways. These include changing
the working directory with the cd command, setting several flags, and by
reading commands from the special file, .profile, in your login directory.

Changing directories

The cd command changes the current directory to the one specified as its
argument. This can and should be used to change to a convenient place in the
directory structure. Note that cd is often placed within parentheses to cause a
subshell to change to a different directory and execute some commands
without affecting the original shell.

For example, the first sequence below copies the file /etc/passwd to
/usr/you/passwd; the second example first changes directory to /etc and then
copies the file:

cp fetcfpasswd fusrfyoulpasswd
(cd fetc; cp passwd fusrfyoulpasswd)

Note the use of parentheses. Both command lines have the same effect.

If the shell is reading its commands from a terminal, and the specified direc
tory does not exist (or some component cannot be searched), spelling correc
tion is applied to each component of directory, in a search for the "correct"
name. The shell then asks whether or not to try and change directory to the
corrected directory name; an answer of n means "nd', and anything else is
taken as "yes."

155

The Bourne shell

The .profile file

The file named .profile is read each time you log in. It is normally used to exe
cute special one-time-only commands and to set and export variables to all
later shells. Only after commands are read and executed from .profile, does
the shell read commands from the standard input - usually the terminal.

If you wish to reset the environment after making a change to the .profile file,
enter:

. .profile

This command eliminates the need to log out and then log in again to execute
.profile.

Execution flags

156

The set command lets you alter the behavior of the shell by setting certain
shell flags. In particular, the -x and -v flags can be useful when invoking the
shell as a command from the terminal. The flags -x and -v can be set by
entering:

set -xv

The same flags can be turned off by entering:

set +xv

These two flags have the following meaning:

-v Input lines are printed as they are read by the shell. This flag is par
ticularly useful for isolating syntax errors. The commands on each
input line are executed after that input line is printed.

-x Commands and their arguments are printed as they are executed.
(Shell control commands, such as for, while, etc., are not printed,
however.) Note that -x causes a trace of only those commands that
are actually executed, whereas -v prints each line of input until a
syntax error is detected.

The set command is also used to set these and other flags within shell
procedures.

Users Guide

A command's environment

A command's environment
All variables and their associated values that are known to a command at the
beginning of its execution make up its environment. This environment
includes variables that the command inherits from its parent process and vari
ables specified as keyword parameters on the command line that invokes the
command.

The variables that a shell passes to its child processes are those that have been
named as arguments to the export command. The export command places
the named variables in the environments of both the shell and all its future
child processes.

Keyword parameters are variable-value pairs that appear in the form of
assignments, normally before the procedure name on a command line. Such
variables are placed in the environment of the procedure being invoked. For
example:

keycommand
echo $a $b

This is a simple procedure that echoes the values of two variables. If it is
invoked as:

a=keyl b=key2 keycommand

then the resulting output is:

keyl key2

Keyword parameters are not counted as arguments to the procedure and do
not affect $#.

A procedure can access the value of any variable in its environment. How
ever, if changes are made to the value of a variable, these changes are not
reflected in the environment; they are local to the procedure in question. In
order for these changes to be placed in the environment that the procedure
passes to its child processes, the variable must be named as an argument to
the export command within that procedure. To obtain a list of variables that
have been made exportable from the current shell, enter:

export

You also get a list of variables that have been made readonly. To get a list of
name-value pairs in the current environment, enter either:

printenv

or

env

157

The Bourne shell

Invoking the shell
The shell is a command and can be invoked in the same way as any other
command:

sh proc [arg . ..] A new instance of the shell is explicitly invoked
to read proc. Arguments, if any, can be manipu
lated.

sh -v proc [arg .••] This is equivalent to putting "set -v" at the begin
ning of proc. It can be used in the same way for
the -x, -e, -u, and -n flags.

proc [arg ..•] If proc is an executable file, and is not a compiled
executable program, the effect is similar to that
of:

shprocargs

An advantage of this form is that variables that
have been exported in the shell will still be
exported from proc when this form is used
(because the shell only forks to read commands
from proc). Thus any changes made within proc
to the values of exported variables are passed on
to subsequent commands invoked from proc.

Passing arguments to shell procedures

158

When a command line is scanned, any character sequence of the form $n is
replaced by the nth argument to the shell, counting the name of the shell pro
cedure itself as $0. This notation permits direct reference to the procedure
name and to as many as nine positional parameters. Additional arguments
can be processed using the shift command or by using a for loop.

The shift command shifts arguments to the left; i.e., the value of $1 is thrown
away, $2 replaces $1, $3 replaces $2, and so on. The highest-numbered posi
tional parameter becomes unset ($0 is never shifted). For example, in the shell
procedure ripple below, echo writes its arguments to the standard output.

* ripple command
while test $* != 0
do

done

echo $1 $2 $3 $4 $5 $6 $7 $8 $9
shift

Users Guide

Passing arguments to shell procedures

Lines that begin with a number sign (#) are comments. The looping com
mand, while, is discussed in "Conditional looping: while and until" in this
chapter. If the procedure were invoked with:

ripple abc

it would print:

abc
b c
c

The special shell variable star ($*) causes substitution of all positional parame
ters except $0. Thus, the echo line in the ripple example above could be writ
ten more compactly as:

echo $*

These two echo commands are not equivalent: the first prints at most nine
positional parameters; the second prints all of the current positional parame
ters. The shell star variable ($*) is more concise and less error-prone. One
obvious application is in passing an arbitrary number of arguments to a com
mand. For example:

we $*

counts the words of each of the files named on the command line.

It is important to understand the sequence of actions used by the shell in scan
ning command lines and substituting arguments. The shell first reads input
up to a newline or semicolon, and then parses that much of the input. Vari
ables are replaced by their values and then command substitution (via back
quotation marks) is attempted. I/O redirection arguments are detected, acted
upon, and deleted from the command line. Next, the shell scans the resulting
command line for internal field separators, that is, for any characters specified
by IFS to break the command line into distinct arguments; explicit null argu·
ments (specified by"" or ") are retained, while implicit null arguments result
ing from evaluation of variables that are null or not set are removed. Then
filename generation occurs with all metacharacters being expanded. The
resulting command line is then executed by the shell.

Sometimes, command lines are built inside a shell procedure. In this case, it is
sometimes useful to have the shell rescan the command line after all the initial
substitutions and expansions have been performed. The special command
eval is available for this purpose. eval takes a command line as its argument
and simply rescans the line, performing any variable or command substitu
tions that are specified. Consider the following (simplified) situation:

command=who
output=' I we -I'
eval $command $output

159

The Bourne shell

This segment of code results in the execution of the command line:
who I we -1

Uses of eval can be nested so that a command line can be evaluated several
times.

Controlling the flow of control

160

The shell provides several commands that implement a variety of control
structures useful in controlling the flow of control in shell procedures. Before
describing these structures, a few terms need to be defined.

A simple command is any single irreducible command specified by the name of
an executable file. I/O redirection arguments can appear in a simple com
mand line and are passed to the shell, not to the command.

A command is a simple command or any of the shell control commands
described below. A pipeline is a sequence of one or more commands separated
by vertical bars (I). In a pipeline, the standard output of each command but
the last is connected (by a pipe) to the standard input of the next command.
Each command in a pipeline is run separately; the shell waits for the last com
mand to finish. The exit status of a pipeline is the exit status of last process in
the pipeline.

A command list is a sequence of one or more pipelines separated by a semi
colon (;), an ampersand (&), an "and-if' symbol (&&), or an "or-if' (I I) sym
bol, and optionally terminated by a semicolon or an ampersand. A semicolon
causes sequential execution of the previous pipeline. This means that the shell
waits for the pipeline to finish before reading the next pipeline. On the other
hand, the ampersand (&) causes asynchronous background execution of the
preceding pipeline. Thus, both sequential and background execution are
allowed. A background pipeline continues execution until it terminates
voluntarily, or until its processes are killed.

Other uses of the ampersand include off-line printing, background compila
tion, and generation of jobs to be sent to other computers. For example, if you
enter:

nohup ee prog.e&
You can continue working while the C compiler runs in the background. A
command line ending with an ampersand is immune to interrupts or quits
that you might generate by typing INTERRUPT or QUIT. However, (Ctrl)d will
abort the command if you are operating over a dial-up line or have stty hupcl.
In this case, it is wise to make the command immune to hang-ups
(i.e., logouts) as well. The nohup command is used for this purpose. In the
above example without nohup, if you log out from a dial-up line while ee is
still executing, ee will be killed and your output will disappear.

Users Guide

Controlling the flow of control

The ampersand operator should be used with restraint, especially on heavily
loaded systems. Other users will not consider you a good citizen if you start
up a large number of background processes without a compelling reason for
doing so. .

The and-if (&&) and or-if (I I) operators cause conditional execution of pipe
lines. Both of these are of equal precedence when evaluating command lines
(but both are lower than the ampersand (&) and the vertical bar (I ». In the
command line:

cmdl II cmd2

the first command, cmd1, is executed and its exit status examined. Only if
cmd1 fails (i.e., has a nonzero exit status) is cmd2 executed. Thus, this is a
more terse notation for:

if cmdl
test $? ! = 0

then
cmd2

fi

The and-if operator (&&) yields a complementary test. For example, in the
following command line:

cmdl && cmd2

the second command is executed only if the first succeeds (and has a zero exit
status). In the sequence below, each command is executed in order until one
fails:

cmdl && cmd2 && cmd3 && ... && cmdn

A simple command in a pipeline can be replaced by a command list enclosed
in either parentheses or braces. The output of all the commands so enclosed is
combined into one stream that becomes the input to the next command in the
pipeline. The following line formats and prints two separate documents:

{ nroff -mm textl; nroff -mm text2; } I Ipr

Note that a space is needed after the left brace and that a semicolon should
appear before the right brace.

Using the if statement

The shell provides structured conditional capability with the if command.
The simplest if command has the following form:

if command-list
then command-list
fi

The command list following the if is executed and if the last command in the
list has a zero exit status, then the command list that follows then is executed.

161

The Bourne shell

162

The word fi indicates the end of the if command.

To cause an alternative set of commands to be executed when there is a
nonzero exit status, an else clause can be given with the following structure:

if command-list
then command-list
else command-list
fi

Multiple tests can be achieved in an if command by using the elif clause,
although the case statement might be better for large numbers of tests. For
example:

if

then
elif

test -f "$1"

pr $1
test -d "$1"

then (cd $1; pr *)

is $1 a file?

else, is $1 a directory?

else echo $1 is neither a file nor a directory
fi

The above example is executed as follows: if the value of the first positional
parameter is a filename (-£), then print that file; if not, then check to see if it is
the name of a directory (-d). If so, change to that directory (cd) and print all
th~ files there (pr *). Otherwise, echo the error message.

The if command can be nested (but be sure to end each one with a fi). The
newlines in the above examples of if can be replaced by semicolons.

The exit status of the if command is the exit status of the last command exe
cuted in any then clause or else clause. If no such command was executed, if
returns a zero exit status.

Note that an alternate notation for the test command uses brackets to enclose
the expression being tested. For example, the previous example might have
been written as follows:

if

[-f "$1"

then pr $1
elif

[-d "$1"

then (cd $1; pr *)

is $1 a file?

else, is $1 a directory?

else echo $1 is neither a file nor a directory
fi

Note that a space after the left bracket and one before the right bracket are
essential in this form of the syntax.

User's Guide

Controlling the flow of control

Using the case statement

A multiple test conditional is provided by the case command. The basic for
mat of the case statement is:

case string in
pattern) command-list ii

pattern) command-list ii
esac

The shell tries to match string against each pattern in turn, using the same
pattern-matching conventions as in filename generation. If a match is found,
the command list following the matched pattern is executed; the double semi
colon (;;) serves as a break out of the case and is required after each command
list except the last. Note that only one pattern is ever matched, and that
matches are attempted in order, so that if a asterisk (*) is the first pattern in a
case, no other patterns are looked at.

More than one pattern can be associated with a given command list by speci
fying alternate patterns separated by vertical bars (I).

case $i in
*.c) cc $i

; i

*.h I *.sh)
: do nothing

*) echo "$i of unknown type"

esac

In the above example, no action is taken for the second set of patterns because
the null, colon (:) command is specified. The asterisk (*) is used as a default
pattern, because it matches any word.

The exit status of case is the exit status of the last command executed in the
case command. If no commands are executed, then case has a zero exit
status.

Conditional looping: while and until

A while command has the general form:

while command-list
do

command-list
done

163

The Bourne shell

The commands in the first command-list are executed, and if the exit status of
the last command in that list is zero, then the commands in the second
command-list are executed. This sequence is repeated as long as the exit
status of the first command-list is zero. A loop can be executed as long as the
first command-list returns a nonzero exit status by replacing while with until.

Any newline in the above example can be replaced by a semicolon. The exit
status of a while (or until) command is the exit status of the last command
executed in the second command-list. If no such command is executed, while
(or until) has a zero exit status.

Looping over a list: for

164

Often, one wishes to perform some set of operations for each file in a set of
files, or execute some command once for each of several arguments. The for
command can be used to accomplish this. The for command has the format:

for variable in word-list
do

command-list
done

Here word-list is a list of strings separated by blanks. The commands in the
command-list are executed once for each word in the word-list. variable
takes on as its value each word from the word list, in turn. The word list is
fixed after it is evaluated the first time. For example, the following for loop
causes each of the C source files xec.c, cmd.c, and word.c in the current direc
tory to be compared with a file of the same name in the directory
/usr/src/cmd/sh:

for CFILE in xec cmd word
do diff $CFILE.c /usr/src/cmd/sh/$CFILE.c
done

Note that the first occurrence of CFILE immediately after the word for has no
preceding dollar sign, since the name of the variable is wanted and not its
value.

You can omit the "in word-list" part of a for command; this causes the current
set of positional parameters to be used in place of word-list. This is useful
when writing a command that performs the same set of commands for each of
an unknown number of arguments.

User's Guide

Controlling the flow of control

As an example, create a file named ech02 that contains the following shell
script:

for word
do echo $word$word
done

Give ech02 execute status:

chmod +x ech02

Now type the following command:

ech02 ma pa bo fi yo no so ta

The output from this command is:

mama
papa
bobo
fifi
yoyo
nono
5050

tata

Loop control: break and continue

The break command can be used to terminate execution of a while or a for
loop. The continue command immediately starts the execution of the next
iteration of the loop. These commands are effective only when they appear
between do and done.

The break command terminates execution of the smallest (i.e., innermost)
enclosing loop, causing execution to resume after the nearest following
unmatched done. Exit from n levels is obtained by break n.

165

The Bourne shell

The continue command causes execution to resume at the nearest enclosing
for, while, or until statement, i.e., the one that begins the innermost loop con
taining the continue. You can also specify an argument n to continue and
execution will resume at the nth enclosing loop:

* This procedure is interactive.
* "Break" and "continue" commands are used
* to allow the user to control data entry.
while true *loop forever
do echo "Please enter data"

read response

done

case "$response" in
"done") break

* no more data

" ") * just a carriage return,
* keep on going
continue

*) * process the data here
i i

esac

End-of-file and exit

When the shell reaches the end-of-file in a shell procedure, it terminates exe
cution, returning to its parent the exit status of the last command executed
prior to the end-of-file. The top level shell is terminated by typing a (Ctrl}d
(which logs the user out of the system).

The exit command simulates an end-of-file, setting the exit status to the value
of its argument, if any. Thus, a procedure can be terminated normally by
placing "exit 0" at the end of the file.

Command grouping: parentheses and braces

166

There are two methods for grouping commands in the shell: parentheses and
braces. Parentheses cause the shell to create a subshell that reads the enclosed
commands. Both the right and left parentheses are recognized wherever they
appear in a command line - they can appear as literal parentheses only when
enclosed in quotation marks. For example, if you enter:

garble(stuff)

Users Guide

Controlling the flow of control

the shell prints an error message. Quoted lines, such as:

garble"("stuff")"
"garb Ie (stuff)"

are interpreted correctly. Other quoting mechanisms are discussed in
"Quoting mechanisms" in this chapter.

This capability of creating a subshell by grouping commands is useful when
performing operations without affecting the values of variables in the current
shell, or when temporarily changing the working directory and executing
commands in the new directory without having to return to the current direc
tory.

The current environment is passed to the subshell and variables that are
exported in the current shell are also exported in the subshell. Thus:

and

CURRENTDIR='pwd'; cd lusr/docs/otherdir;
nohup nroff doc.n> doc.out&; cd $CURRENTDIR

(cd lusr/docs/otherdir; nohup nroff doc.n> doc.out&)

accomplish the same result: /usr/docs/otherdir/doc.n is processed by nroff and
the output is saved in /usr/docs/otherdir/doc.out. (Note that nroff is a text pro
cessing command.) However, the second example automatically puts you
back in your original working directory. In the second example above, blanks
or newlines surrounding the parentheses are allowed but not necessary.
When entering a command line at your terminal, the shell will prompt with
the value of the shell variable PS2 if an end parenthesis is expected.

Braces ({ and }) can also be used to group commands together. Both the left
and the right brace are recognized only if they appear as the first (unquoted)
word of a command. The opening brace can be followed by a newline (in
which case the shell prompts for more input). Unlike parentheses, no subshell
is created for braces: the enclosed commands are simply read by the shell.
The braces are convenient when you wish to use the (sequential) output of
several commands as input to one command.

The exit status of a set of commands grouped by either parentheses or braces
is the exit status of the last enclosed executed command.

Defining functions

The shell includes a function definition capability. Functions are like shell
scripts or procedures except that they reside in memory and so are executed
by the shell process, not by a separate process. The basic form is:

name () {list;}

167

The Bourne shell

list can include any of the commands previously discussed. Functions can be
defined in one section of a shell script to be called as many times as needed,
making them easier to write and maintain. Here is an example of a function
called Ngetyn":

i Prompt for yes or no answer - returns non-zero for no
getyn() {

while echo "$* (yin)? \c" >& 2
do read yn rest

case $yn in
[yY]) return 0
[nN]) return 1
*) echo "Please answer y or n" >&2 ;;
esac

done

i i

In this example, the function appends a N(y In)?" to the output and accepts
"Y", Ny", "n" or NN" as input, returning a 0 or 1. If the input is anything else,
the function prompts the user for the correct input. (Echo should never fail,
so the while-loop is effectively infinite.)

Functions are used just like other commands; an invocation of getyn might be:

getyn ''Do you wish to continue" I I exit

However, unlike other commands, the shell positional parameters $1, $2, ... ,
are set to the arguments of the function. Since an exit in a function will ter
minate the shell procedure, the return command should be used to return a
value back to the procedure.

Input/output redirection and control commands

168

The shell normally does not fork and create a new shell when it recognizes the
control commands (other than parentheses) described above. However, each
command in a pipeline is run as a separate process in order to direct input to
or output from each command. Also, when redirection of input or output is
specified explicitly to a control command, a separate process is spawned to
execute that command. Thus, when if, while, until, case, and for are used in
a pipeline consisting of more than one command, the shell forks and a sub
shell runs the control command. This has two implications:

• Any changes made to variables within the control command are not
effective once that control command finishes (this is similar to the effect of
using parentheses to group commands).

• Control commands run slightly slower when redirected, because of the
additional overhead of creating a shell for the control command.

User's Guide

Controlling the flow of control

Transfer between files: the dot command

A command line of the form:

. proc

causes the shell to read commands from proc without spawning a new pro
cess. Changes made to variables in proc are in effect after the dot command
finishes. This is a good way to gather a number of shell variable initializations
into one file. A common use of this command is to reinitialize the top level
shell by reading the .profile file with:

. .profile

Interrupt handling: trap

Shell procedures can use the trap command to disable a signal (cause it to be
ignored) I or redefine its action. The form of the trap command is:

trap arg signal-list

Here arg is a string to be interpreted as a command list and signal-list con
sists of one or more signal numbers as described in signal(S) in the
Programmer's Reference. The most important of these signals follow:

Number

o
1
2
3
9
11
15

Signal

Exit from the shell
HANGUP
INTERRUPT character (DELETE or RUB OUT)
QUIT «Ctr!) \)
KILL (cannot be caught or ignored)
Segmentation violation (cannot be caught or ignored)
Software termination signal

169

The Bourne shell

170

The commands in arg are scanned at least once, when the shell first
encounters the trap command. Because of this, it is usually wise to use single
rather than double quotation marks to surround these commands. The
former inhibit immediate command and variable substitution. This becomes
important, for instance, when one wishes to remove temporary files and the
names of those files have not yet been determined when the trap command is
first read by the shell. The following procedure will print the name of the
current directory in the user information as to how much of the job was done:

trap 'echo Directory was 'pwd' when interrupted' 2 3 15
for i in /bin /usr/bin /usr/gas/bin
do

cd $i
* commands to be executed in directory $i here

done

Beware that the same procedure with double rather than single quotation
marks does something different. The following prints the name of the direc
tory from which the procedure was first executed:

trap "echo Directory was 'pwd' when interrupted" 2 3 15

A signal 11 can never be trapped, because the shell itself needs to catch it to
deal with memory allocation. Zero is interpreted by the trap command as a
signal generated by exiting from a shell. This occurs either with an exit com
mand, or by "falling through" to the end of a procedure. If arg is not specified,
then the action taken upon receipt of any of the signals in the signal list is
reset to the default system action. If arg is an explicit null string (" or ""),
then the signals in the signal list are ignored by the shell.

The trap command is most frequently used to make sure that temporary files
are removed upon termination of a procedure. The preceding example would
be written more typically as follows:

temp=$HOME/temp/$$
trap 'rm -f $temp; exit' 0 1 2 3 15
Is > $temp

* commands that use $temp here

In this example, whenever signal 1 (hangup),2 (interrupt), 3 (quit), or 15 (ter
minate) is received by the shell procedure, or whenever the shell procedure is
about to exit, the commands enclosed between the single quotation marks are
executed. The exit command must be included, or else the shell continues
reading commands where it left off when the signal was received.

User's Guide

Controlling the flow of control

Sometimes the shell continues reading commands after executing trap com
mands. The following procedure takes each directory in the current directory,
changes to that directory, prompts with its name, and executes commands
typed at the terminal until an end-of-file «Ctrl)d) or an interrupt is received.
An end-of-file causes the read command to return a nonzero exit status, and
thus the while loop terminates and the next directory cycle is initiated. An
interrupt is ignored while executing the requested commands, but causes ter
mination of the procedure when it is waiting for input:

d='pwd'
for i in *
do if test -d $d/$i

then cd $d/$i

fi
done

while echo "$i:"
trap exit 2
read x

do trap : 2

done

ignore interrupts
eval $x

Several traps can be in effect at the same time: if multiple signals are received
simultaneously, they are serviced in numerically ascending order. To deter
mine which traps are currently set, enter:

trap

It is important to understand some things about the way in which the shell
implements the trap command. When a signal (other than 11) is received by
the shell, it is passed on to whatever child processes are currently executing.
When these (synchronous) processes terminate, normally or abnormally, the
shell polls any traps that happen to be set and executes the appropriate trap
commands. This process is straightforward, except in the case of traps set at
the command (outermost, or login) level. In this case, it is possible that no
child process is running, so before the shell polls the traps, it waits for the ter
mination of the first process spawned after the signal was received.

When a signal is redefined in a shell script, this does not redefine the signal for
programs invoked by that script; the signal is merely passed along. A dis
abled signal is not passed.

For internal commands, the shell normally polls traps on completion of the
command. An exception to this rule is made for the read command, for which
traps are serviced immediately, so that read can be interrupted while waiting
for input.

171

The Bourne shell

172

Shell script example
The following is a good shell script for handling signals.

~

~

~

Set signal handlers for shell script

trap "echo \" \nSignal caught
trap "echo \" \nSignal caught
trap "echo \" \nSignal caught

SIGHUP.DS IR drop \n \" " 1
SIGINT interrupt DEL key \n \"" 2
SIGQUIT Ctrl \\ \n \" ;rm core;exit 0 " 3

Note: If you cd to a different directory you might want to
reset the trap for SIGQUIT so it will find the "core" file.
To do this you would put the same line below the cd command
in the shell script.

trap "echo \" \nSignal caught SIGTERM software termination\n \"" 15

echo " Going into loop "
while true
do

done

cd /tmp
trap "echo \" \nSignal caught SIGQUIT Ctrl \\ \n \";rm core;exit 0 " 3
If
cd /usr
trap "echo \" \nSignal caught SIGQUIT Ctrl \\ \n \";rm core;exit 0 " 3
If
sleep 1

echo " Leaving the loop "
exit 0

User's Guide

Special shell commands

Special shell commands
There are several special commands that are internal to the shell, some of
which have already been mentioned. The shell does not fork to execute these
commands, so no additional processes are spawned. These commands
should be used whenever possible, because they are, in general, faster and
more efficient than other UNIX system commands.

Several of the special commands have already been described because they
affect the flow of control. They are dot (.), break, continue, exit, and trap.
The set command is also a special command. Descriptions of the remaining
special commands are given here:

The null command. This command does nothing and
can be used to insert comments in shell procedures.
Its exit status is zero (true). Its utility as a comment
character has largely been supplanted by the number
sign (#) which can be used to insert comments to the
end-of-line. Beware: any arguments to the null com
mand are parsed for syntactic correctness; when in
doubt, quote such arguments. Parameter substitu
tion takes place, just as in other commands.

cd arg Make arg the current directory. If arg is not a valid
directory, or the user is not authorized to access it, a
nonzero exit status is returned. Specifying cd with
no arg is equivalent to entering lied $HOME" which
takes you to your home directory.

exec arg ...

hash [-r] name

If arg is a command, then the shell executes the com
mand without forking and returning to the current
shell. This is effectively a "gotd' and no new process
is created. Input and output redirection arguments
are allowed on the command line. If only input and
output redirection arguments appear, then the input
and output of the shell itself are modified accord
ingly.

For each name, the location in the search path of the
command specified by name is determined and
remembered by the shell. The -r option causes the
shell to forget all remembered locations. If no argu
ments are given, information about remembered
commands is presented. Hits is the number of times
a command has been invoked by the shell process.
Cost is a measure of the work required to locate a
command in the search path. There are certain

173

The Bourne shell

newgrp arg ...

pwd

read var ...

readonly var ...

return n

times

type name

ulimit [-f] n

174

situations which require that the stored location of a
command be recalculated. Commands for which
this will be done are indicated by an asterisk (*) adja
cent to the hits information. Cost will be incremented
when the recalculation is done.

The newgrp command is executed, replacing the
shell. Newgrp in turn creates a new shell. Beware:
only environment variables will be known in the
shell created by the newgrp command. Any vari
ables that were exported will no longer be marked as
such.

Print the current working directory. See pwd(C) for
usage and description.

One line (up to a newline) is read from the standard
input and the first word is assigned to the first vari
able, the second word to the second variable, and so
on. All words left over are assigned to the last vari
able. The exit status of read is zero unless an end
of-file is read.

The specified variables are made readonly so that no
subsequent assignments can be made to them. If no
arguments are given, a list of all readonly and of all
exported variables is given.

Causes a function to exit with the return value
specified by n. If n is omitted, the return status is that
of the last command executed.

The accumulated user and system times for pro
cesses run from the current shell are printed.

For each name, indicate how it would be interpreted
if used as a command name.

This imposes a size limit of n blocks on files written.
The -£ flag imposes a size limit of n blocks on files
written by child processes (files of any size can be
read). With no argument, the current limit is
printed. If no option is given and a number is
specified, -£ is assumed.

User's Guide

umasknnn

unset name

wait n

Creation and organization of shell procedures

The user file creation mask is set to nnn. If nnn is
omitted, then the current value of the mask is
printed. This bit-mask is used to set the default per
missions when creating files. For example, an octal
umask of 137 corresponds to the following bit-mask
and permission settings for a newly created file:

user group other

Octal 1 3 7
bit-mask 001 011 111
permissions rw- r--

See umask(C) in the User's Reference for information
on the value of nnn.

For each name, remove the corresponding variable
or function. The variables PATH, PS1, PS2, MAIL
CHECK and IFS cannot be unset.

The shell waits for all currently active child pro
cesses to terminate. If n is specified, the shell waits
for the specified process to terminate. The exit status
of wait is always zero if n is not given; otherwise it is
the exit status of child n.

Creation and organization of shell procedures
A shell procedure can be created in two simple steps. The first is building an
ordinary text file. The second is changing the mode of the file to make it execut
able, thus permitting it to be invoked by:

proc args
rather than

sh proc args
The second step can be omitted for a procedure to be used once or twice and
then discarded, but is recommended for frequently-used ones. For example,
create a file named mailall with the following contents:

LETTER=$l
shift
for i in $*
do mail $i < $LETTER
done

Next enter:
chmod +x mailall

175

The Bourne shell

176

The new command might then be invoked from within the current directory
by entering:

mailall letter joe bob
Here letter is the name of the file containing the message you want to send,
and joe and bob are people you want to send the message to. Note that shell
procedures must always be at least readable, so that the shell itself can read
commands from the file.

H mailall were thus created in a directory whose name appears in the user's
PATH variable, the user could change working directories and still invoke the
mailall command.

Shell procedures are often used by users running the csh. However, if the first
character of the procedure is a # (comment character), the sh assumes the pro
cedure is a csh script, and invokes /bin/csh to execute it. Always start sh pro
cedures with some other character if csh users are to run the procedure at any
time. This invokes the standard shell /bin/sh.

Shell procedures can be created dynamically. A procedure can generate a file
of commands, invoke another instance of the shell to execute that file, and
then remove it. An alternate approach is that of using the dot command (.) to
make the current shell read commands from the new file, allowing use of
existing shell variables and avoiding the spawning of an additional process
for another shell.

Many users prefer writing shell procedures to writing programs in C or other
traditional languages. This is true for several reasons:

• A shell procedure is easy to create and maintain because it is only a file of
ordinary text.

• A shell procedure has no corresponding object program that must be gen
erated and maintained.

• A shell procedure is easy to create quickly, use a few times, and then
remove.

• Shell procedures are usually short in length. They are written in a high
level programming language, are kept only in their source-language form,
and are generally easy to find, understand, and modify.

By convention, directories that contain only commands and shell procedures
are named bin. This name is derived from the word "binary", and is used
because compiled and executable programs are often called ''binaries'' to dis
tinguish them from program source files. Most groups of users sharing com
mon interests have one or more bin directories set up to hold common pro
cedures. Some users have their PATH variable list several such directories.
Although you can have a number of such directories, it is unwise to go over
board: it can become difficult to keep track of your environment and efficiency
might suffer.

Users Guide

Supporting commands and features

More about execution flags
There are several execution flags available in the shell that can be useful in
shell procedures:

-e This flag causes the shell to exit immediately if any command that it
executes exits with a nonzero exit status. This flag is useful for shell
procedures composed of simple command lines; it is not intended
for use in conjunction with other conditional constructs.

-u This flag causes unset variables to be considered errors when sub
stituting variable values. This flag can be used to effect a global
check on variables, rather than using conditional substitution to
check each variable.

-t This flag causes the shell to exit after reading and executing the
commands on the remainder of the current input line. This flag is
typically used by C programs which call the shell to execute a sin
gle command.

-n This is a "don't execute" flag. On occasion, one might want to check
a procedure for syntax errors, but not execute the commands in the
procedure. Using "set -nv" at the beginning of a file will accomplish
this.

-k This flag causes all arguments of the form variable=value to be
treated as keyword parameters. When this flag is not set, only such
arguments that appear before the command name are treated as
keyword parameters.

Supporting commands and features
Shell procedures can make use of any UNIX system command. The com
mands described in this section are either used especially frequently in shell
procedures, or are explicitly designed for such use.

Conditional evaluation: test

The test command evaluates the expression specified by its arguments and, if
the expression is true, test returns a zero exit status. Otherwise, a nonzero
(false) exit status is returned. test also returns a nonzero exit status if it has no
arguments. Often it is convenient to use the test command as the first com
mand in the command list following an if or a while. Shell variables used in
test expressions should be enclosed in double quotation marks if there is any
chance of their being null or not set.

177

The Bourne shell

178

The square brackets can be used as an alias to test, so that:

[expression]

has the same effect as:

test expression

Note that the spaces before and after the expression in brackets are essential.

The following is a partial list of the options that can be used to construct a
conditional expression:

-r file True if the named file exists and is readable by the user.

-w file

-x file

-s file

True if the named file exists and is writable by the user.

True if the named file exists and is executable by the user.

True if the named file exists and has a size greater than
zero.

-d file True if the named file is a directory.

-f file True if the named file is an ordinary file.

-z sl True if the length of string sl is zero.

-n sl True if the length of the string sl is nonzero.

-t fileds True if the open file whose file descriptor number is fildes
is associated with a terminal device. If fildes is not
specified, file descriptor 1 is used by default.

sl = s2 True if strings sl and s2 are identical.

sl != s2 True if strings sl and s2 are not identical.

sl True if sl is not the null string.

nl -eq n2 True if the integers nl and n2 are algebraically equal; other
algebraic comparisons are indicated by -ne (not equal), -gt
(greater than), -ge (greater than or equal to), -It (less than),
and -Ie (less than or equal to).

These can be combined with the following operators:

-a

-0

(expr)

Unary negation operator.

Binary logical AND operator.

Binary logical OR operator; it has lower precedence than
the logical AND operator (-a).

Parentheses for grouping; they must be escaped to remove
their significance to the shell. In the absence of
parentheses, evaluation proceeds from left to right.

Note that all options, operators, filenames, etc. are separate arguments to test.

User's Guide

Supporting commands and features

Echoing arguments

The echo command has the following syntax:

echo [options] [args]

echo copies its arguments to the standard output, each followed by a single
space, except for the last argument, which is normally followed by a newline.
You can use it to prompt the user for input, to issue diagnostics in shell pro
cedures, or to add a few lines to an output stream in the middle of a pipeline.
Another use is to verify the argument list generation process before issuing a
command that does something drastic.

You can replace the Is command with

echo *
because the latter is faster and prints fewer lines of output.

The -n option to echo removes the newline from the end of the echoed line.
Thus, the following two commands prompt for input and then allow entering
on the same line as the prompt:

echo -n 'enter name:'
read name

The echo command also recognizes several escape sequences described in
echo(C) in the User's Reference.

Expression evaluation: expr

The expr command provides arithmetic and logical operations on integers
and some pattern-matching facilities on its arguments. It evaluates a single
expression and writes the result on the standard output; expr can be used
inside grave accents to set a variable. Some typical examples follow:

increment $A
A='expr $a + l'
put third through last characters of
$1 into substring
substring='expr "$1" : ' .• \(.*\)'
obtain length of $1
c='expr "$1": '.*"

The most common uses of expr are in counting iterations of a loop and in
using its pattern-matching capability to pick apart strings.

179

The Bourne shell

True and false
The true and false commands perform the functions of exiting with zero and
nonzero exit status, respectively. The true and false commands are often
used to implement unconditional loops. For example, you might enter:

while true
do echo forever
done

This will echo "forever" on the screen until an INTERRUPf is entered.

In-line input documents
Upon seeing a command line of the form:

command « eofstring
where eofstring is any arbitrary string, the shell will take the subsequent lines
as the standard input of command until a line is read consisting only of eof
string. (By appending a minus (-) to the input redirection symbol «<), lead
ing tabs are deleted from each line of the input document before the shell
passes the line to command.)

The shell creates a temporary file containing the input document and per
forms variable and command substitution on its contents before passing it to
the command. Pattern matching on filenames is performed on the arguments
of command lines in command substitutions. In order to prohibit all substitu
tions, you can quote any character of eofstring:

command « \ eofstring
The in-line input document feature is especially useful for small amounts of
input data, where it is more convenient to place the data in the shell pro
cedure than to keep it in a separate file. For instance, you could enter:

cat «- xx

xx

This message will be printed on the
terminal with leading tabs removed.

This in-line input document feature is most useful in shell procedures. Note
that in-line input documents may not appear within grave accents.

Input / output redirection using file descriptors

180

We mentioned above that a command occasionally directs output to some file
associated with a file descriptor other than 1 or 2. In languages such as C, one
can associate output with any file descriptor by using the write(S) system call
(see the Programmer's Reference). The shell provides its own mechanism for
creating an output file associated with a particular file descriptor. Byenter
ing:

fdl >& fd2

User's Guide

Supporting commands and features

where fdl and fd2 are valid file descriptors, one can direct output that would
normally be associated with file descriptor fdl to the file associated with fd2.
The default value for fdl and fd2 is 1. If, at run time, no file is associated with
fd2, then the redirection is void. The most common use of this mechanism is
that of directing standard error output to the same file as standard output.
This is accomplished by entering:

command 2>&1

If you wanted to redirect both standard output and standard error output to
the same file, you would enter:

command 1>file 2>&1

The order here is significant: first, file descriptor 1 is associated with file; then
file descriptor 2 is associated with the same file as is currently associated with
file descriptor 1. If the order of the redirections were reversed, standard error
output would go to the terminal, and standard output would go to file,
because at the time of the error output redirection, file descriptor 1 still would
have been associated with the terminal.

This mechanism can also be generalized to the redirection of standard input.
You could enter:

fda <& fdb

to cause both file descriptors fda and fdb to be associated with the same input
file. If fda or fdb is not specified, file descriptor 0 is assumed. Such input
redirection is useful for a command that uses two or more input sources.

Conditional substitution

Normally, the shell replaces occurrences of $variable by the string value
assigned to variable, if any. However, there exists a special notation to allow
conditional substitution, dependent upon whether the variable is set or not
null. By definition, a variable is set if it has ever been assigned a value. The
value of a variable can be the null string, which can be assigned to a variable
in anyone of the following ways:

A=
bcd='"'
efg="
set" ""

181

The Bourne shell

182

The first three examples assign null to each of the corresponding shell vari
ables. The last example sets the first and second positional parameters to null.
The following conditional expressions depend upon whether a variable is set
and not null. Note that the meaning of braces in these expressions differs
from their meaning when used in grouping shell commands. parameter as
used below refers to either a digit or a variable name.

${variable:-string} If variable is set and is nonnull, then substitute the
value $variable in place of this expression. Other
wise, replace the expression with string. Note that
the value of variable is not changed by the evalua
tion of this expression.

${variable:=string} If variable is set and is nonnull, then substitute the
value $variable in place of this expression. Other
wise, set variable to string, and then substitute the
value $variable in place of this expression. Posi
tional parameters cannot be assigned values in this
fashion.

·${variable:?string} If variable is set and is nonnull, then substitute the
value of variable for the expression. Otherwise,
print a message of the form

variable: string

and exit from the current shell. (If the shell is the
login shell, it is not exited.) If string is omitted in
this form, then the message

variable: parameter null or not set

is printed instead.

${variable:+string} If variable is set and is nonnull, then substitute
string for this expression. Otherwise, substitute the
null string. Note that the value of variable is not
altered by the evaluation of this expression.

These expressions can also be used without the colon. In this variation, the
shell does not check whether the variable is null or noti it only checks whether
the variable has ever been set.

Users Guide

Effective and efficient shell programming

The two examples below illustrate the use of this facility:

1. This example performs an explicit assignment to the PATH variable:
PATH=${P ATH:-':lbin:lusrlbin 1

This says, if PATH has ever been set and is not null, then it keeps its
current value; otherwise, set it to the string ":/bin:/usr/bin".

2. This example automatically assigns the HOME variable a value:
cd ${HOME:='/usr/gas1

If HOME is set, and is not null, then change directory to it. Otherwise set
HOME to the given value and change directory to it.

Invocation flags
There are five flags that can be specified on the command line when invoking
the shell. These flags cannot be turned on with the set command:

-i If this flag is specified, or if the shell's input and output are both
attached to a terminal, the shell is interactive. In such a shell, INTER
RUPT (signal 2) is caught and ignored, and TERMINATE (signal 15)
and QUIT (signal 3) are ignored.

-s If this flag is specified or if no input/output redirection arguments
are given, the shell reads commands from standard input. Shell
output is written to file descriptor 2. All remaining arguments
specify the positional parameters.

-c When this flag is turned on, the shell reads commands from the first
string following the flag. Remaining arguments are ignored.

-t When this flag is on, a single command is read and executed, then
the shell exits. This flag is not useful interactively, but is intended
for use with C programs.

-r If this flag is present the shell is a restricted shell (see rsh(C».

Effective and efficient shell programming
This section outlines strategies for writing efficient shell procedures, ones that
do not waste resources in accomplishing their purposes. The primary reason
for choosing a shell procedure to perform a specific function is to achieve a
desired result at a minimum human cost. Emphasis should always be placed
on simplicity, clarity, and readability, but efficiency can also be gained
through awareness of a few design strategies. In many cases, an effective
redesign of an existing procedure improves its efficiency by reducing its size,
and often increases its comprehensibility. In any case, you should not worry
about optimizing shell procedures unless they are intolerably slow or are
known to consume an inordinate amount of a system's resources.

183

The Bourne shell

The same kind of iteration cycle should be applied to shell procedures as to
other programs: write code, measure it, and optimize only the few important
parts. The user should become familiar with the time command, which can
be used to measure both entire procedures and parts thereof. Its use is
strongly recommended; human intuition is notoriously unreliable when used
to estimate timings of programs, even when the style of programming is a
familiar one. Each timing test should be run several times, because the results
are easily disturbed by variations in system load.

Number of processes generated

184

When large numbers of short commands are executed, the actual execution
time of the commands might be dominated by the overhead of creating pro
cesses. The procedures that incur significant amounts of such overhead are
those that perform much looping, and those that generate command
sequences to be interpreted by another shell.

If you are worried about efficiency, it is important to know which commands
are currently built into the shell, and which are not. Here is the alphabetical
list of those that are built in:

break case cd continue echo
eval exec exit export for
if read readonly return set
shift test times trap umask
until wait while
{}

Parentheses, (), are built into the shell, but commands enclosed within them
are executed as a child process, i.e., the shell does a fork, but no exec. Any
command not in the above list requires both fork and exec.

The user should always have at least a vague idea of the number of processes
generated by a shell procedure. In the bulk of observed procedures, the num
ber of processes created (not necessarily simultaneously) can be described by:

processes = (k*n) + c

where k and c are constants for any given script, and n can be the number of
procedure arguments, the number of lines in some input file, the number of
entries in some directory, or some other obvious quantity. Efficiency
improvements are most commonly gained by reducing the value of k, some
times to zero.

User's Guide

Effective and efficient shell programming

Any procedure whose complexity measure includes n2 terms or higher
powers of n is likely to be intolerably expensive.

As an example, here is an analysis of a procedure named split, whose text is
given below:

* split
trap 'rm temp$$; trap 0; exit' 0 1 2 3 15
start1=0 start2=0
b=' [A-Za-z]'

cat > temp$$
* read stdin into temp file
* save original lengths of $1, $2

if test -s "$1"
then start1='wc -1 < $1'
fi
if test -s "$2"
then start2='wc -1 < $2'
fi
grep "$b" temp$$ » $1

* lines with letters onto $1
grep -v "$b" temp$$ I grep '[0-9]' » $2

* lines without letters onto $2
total=" 'wc-l< temp$$' "
end1=" 'wc-l<$l' n

end2=" 'wc-l<$2' "
lost=" 'expr $total - \($end1 - $start1\) \
- \($end2 - $start2\)' n

echo "$total read, $lost thrown away"

For each iteration of the loop, there is one expr plus either an echo or another
expr. One additional echo is executed at the end. If n is the number of lines of
input, the number of processes is (2*n)+ 1.

Some types of procedures should not be written using the shell. For example,
if one or more processes are generated for each character in some file, it is a
good indication that the procedure should be rewritten in C. Shell procedures
should not be used to scan or build files a character at a time.

185

The Bourne shell

Number of data bytes accessed

It is worthwhile to consider any action that reduces the number of bytes read
or written. This might be important for those procedures whose time is spent
passing data around among a few processes, rather than in creating large
numbers of short processes. Some filters shrink their output, others usually
increase it. It always pays to put the shrinkers first when the order is
irrelevant. For instance, the second of the following examples is likely to be
faster because the input to sort will be much smaller:

sort file I grep pattern
grep pattern file I sort

Shortening directory searches

Directory searching can consume a great deal of time, especially in those
applications that utilize deep directory structures and long pathnames. Judi
cious use of cd, the change directory command, can help shorten long path
names and thus reduce the number of directory searches needed. As an exer
cise, try the following commands:

Is -1 lusrlbinl* >/dev/null
cd lusrlbin; Is -1 * >/dev/null

The second command runs faster because of the fewer directory searches.

Directory-search order and the PAlH variable

186

The PATH variable is a convenient mechanism for allowing organization and
sharing of procedures. However, it must be used in a sensible fashion, or the
result might be a great increase in system overhead.

The process of finding a command involves reading every directory included
in every pathname that precedes the needed pathname in the current PATH
variable. As an example, consider the effect of invoking nroff (i.e.,
/usr/bin/nroft> when the value of PATH is ":/bin:/usr/bin". The sequence of
directories read is:

I
Ibin
I
lusr
lusr/bin

A long path list assigned to PATH can increase this number significantly.

User's Guide

Shell procedure examples

The vast majority of command executions are of commands found in /bin and,
to a somewhat lesser extent, in /usr/bin. Careless PATH setup can lead to a
great deal of unnecessary searching. The following four examples are ordered
from worst to best with respect to the efficiency of command searches:

:/usr/johnlbin:lusr/localbin:lbin:lusrlbin
:lbin:lusr/johnlbin:lusr/localbin:/usrlbin
:lbin:lusrlbin:/usr/johnlbin:lusr/localbin
:lbin:lusrlbin:lusr/johnlbin:lusr/localbin

The first one above should be avoided. The others are acceptable and the
choice among them is dictated by the rate of change in the set of commands
kept in /bin and /usr/bin.

A procedure that is expensive because it invokes many short-lived commands
can often be speeded up by setting the PATH variable inside the procedure so
that the fewest possible directories are searched in an optimum order.

Good ways to set up directories

It is wise to avoid directories that are larger than necessary. You should be
aware of several special sizes. A directory that contains entries for up to 62*
files (plus the required. and ..) fits in a single disk block and can be searched
very efficiently. A directory can have up to 638* entries and still be viable, as
long as it is used only for data storage; anything larger is usually a disaster
when used as a working directory. It is especially important to keep login
directories small, preferably one block at most. Note that, as a rule, direc
tories never shrink. This is very important to understand, because if your
directory ever exceeds either the 62 or 638 thresholds, searches will be
inefficient; furthermore, even if you delete files so that the number of files is
less than either threshold, the system will still continue to treat the directory
inefficiently.

Shell procedure examples
The power of the UNIX system shell command language is most readily seen
by examining how many labor-saving UNIX system utilities can be combined
to perform powerful and useful commands with very little programming
effort. This section gives examples of procedures that do just that. By study
ing these examples, you will gain insight into the techniques and shortcuts
that can be used in programming shell procedures (also called "scripts").
Note the use of the null command (:) to begin each shell procedure and the
use of the number sign (#) to introduce comments.

" These figures apply to filenames of 14 characters or less. As filename lengths increase, up to a
maximum of 255 characters, the number of files that fit on a single disk block decreases, thus
reducing the optimum number of files in a directory.

187

The Bourne shell

188

It is intended that the following steps be carried out for each procedure:

1. Place the procedure in a file with the indicated name.

2. Give the file execute permission with the chmod command.

3. Move the file to a directory in which commands are kept, such as your
own bin directory.

4. Make sure that the path of the bin directory is specified in the PATH vari
able found in .profile.

5. Execute the named command.

BlNUNIQ

Is /bin /usr/bin I sort I uniq -d

This procedure determines which files are in both /bin and /usr/bin. It is done
because files in /bin will "override" those in /usr/bin during most searches and
duplicates need to be weeded out. If the /usr/bin file is obsolete, then space is
being wasted; if the /bin file is outdated by a corresponding entry in /usr/bin
then the wrong version is being run and, again, space is being wasted. This is
also a good demonstration of "sort I uniq" to find matches and duplications.

COPYPA1RS

Usage: copypairs filel file2 •..
Copies filel to file2, file3 to file4,
while test "$2" != ""
do

done

cp $1 $2
shift; shift

if test "$1" != ""
then echo "$0: odd number of arguments" >&2

fi

This procedure illustrates the use of a while loop to process a list of positional
parameters that are somehow related to one another. Here a while loop is
much better than a for loop, because you can adjust the positional parameters
with the shift command to handle related arguments.

Users Guide

Shell procedure examples

COPITO

* Usage: copy to dir file '"
* Copies argument files to "dir",
making sure that at least
* two arguments exist, that "dir" is a directory,
* and that each additional argument
* is a readable file.
if test $* -it 2

then echo" $0: usage: copy to directory file ... ">&2
elif test ! -d $1

then echo "$0: $1 is not a directory";>&2
else dir=$l; shift

for eachfile
do cp $eachfile $dir
done

fi

This procedure uses an if command with several parts to screen out improper
usage. The for loop at the end of the procedure loops over all of the argu
ments to copy to but the first; the original $1 is shifted off.

DISTINCTl

* Usage: distinct1
Reads standard input and reports list of
* alphanumeric strings that differ only in case,
* giving lowercase form of each.
tr -cs 'A-Za-zO-9' '\012' I sort -u I \
tr 'A-Z' 'a-z' I sort I uniq -d

This procedure is an example of the kind of process that is created by the left
to-right construction of a long pipeline. Note the use of the backslash at the
end of the first line as the line continuation character. It might not be immedi
ately obvious how this command works. You might wish to consult tr(C),
sort(C), and uniq(C) in the User's Reference if you are completely unfamiliar
with these commands. The tr command translates all characters except letters
and digits into newline characters, and then squeezes out repeated newline
characters. This leaves each string (in this case, any contiguous sequence of
letters and digits) on a separate line. The sort command sorts the lines and
emits only one line from any sequence of one or more repeated lines. The
next tr converts everything to lowercase, so that identifiers differing only in
case become identical. The output is sorted again to bring such duplicates
together. The "uniq -d" prints (once) only those lines that occur more than
once, yielding the desired list.

189

The Bourne shell

190

The process of building such a pipeline relies on the fact that pipes and files
can usually be interchanged. The first line below is equivalent to the last two
lines, assuming that sufficient disk space is available:

cmd1 I cmd2 I cmd3

cmd1 > temp1; < temp1 cmd2 > temp2; < temp2 cmd3
rm temp[123]

Starting with a file of test data on the standard input and working from left to
right, each command is executed taking its input from the previous file and
putting its output in the next file. The final output is then examined to make
sure that it contains the expected result. The goal is to create a series of
transformations that will convert the input to the desired output.

Although pipelines can give a concise notation for complex processes, you
should exercise some restraint, since such practice often yields incomprehen
sible code.

DRAFT

Usage: draft file(s)
Print manual pages for Diablo printer.
for i in $*

do nroff -man $i I lpr
done

Users often write this kind of procedure for convenience in dealing with com
mands that require the use of distinct flags that cannot be given default values
that are reasonable for all (or even most) users.

EDFIND

Usage: edfind file arg
Finds the last occurrence in "file" of a line
whose beginning matches "argO, then prints
3 lines (the one before, the line itself,
and the one after)
ed - $1 « -EOF

EOF

?'$2?
-,+p
q

This illustrates the practice of using ed in-line input scripts into which the
shell can substitute the values of variables.

User's Guide

Shell procedure examples

EDLAST

Usage: edlast file
Prints the last line of file,
then deletes that line.
ed - $1 «-\!

$p
$d
w
q

echo done

This procedure illustrates taking input from within the file itself up to the exc
lamation point (!). Variable substitution is prohibited within the input text
because of the backslash.

FSPLIT

Usage: fsplit file1 file2
Reads standard input and divides it into 3 parts
by appending any line containing at least one letter
to file1, appending any line containing digits but
no letters to file2, and by throwing the rest away.
count=O gone=O
while read next
do

count="'expr $count + 1'"
case "$next" in
[A-Za-z))

echo "$next" » $1 "
[0-9))

echo "$next" » $2 "
*)

gone='" expr $gone + l' "
esac

done
echo "$count lines read, $gone thrown away"

Each iteration of the loop reads a line from the input and analyzes it. The loop
terminates only when read encounters an end-of-file. Note the use of the expr
command.

Do not use the shell to read a line at a time unless you must because it can be
an extremely slow process.

191

The Bourne shell

192

USTFIEWS

grep $* I tr ":" "\012"

This procedure lists lines containing any desired entry that is given to it as an
argument. It places any field that begins with a colon on a newline. Thus, if
given the following input:

joe newman: 13509 NE 78th 5t: Redmond, Wa 98062

listfields produces this:

joe newman
13509 NE 78th St
Redmond, Wa 98062

Note the use of the tr command to transpose colons to linefeeds.

MKFILES

~ Usage: mkfi1es pref [quantity]
~ Makes "quantity" files, named prefl, pref2, ...
~ Default is 5 as determined on following line.
quantity=${2-5}
i=l
while test "Sin -Ie "$quantity"
do

> li
i="'expr $i + I'"

done

The mkfiles procedure uses output redirection to create zero-length files. The
expr command is used for counting iterations of the while loop.

NULL

~ Usage: null files
~ Create each of the named files as an empty file.
for eachfile
do

>$eachfile
done

This procedure uses the fact that output redirection creates the (empty) out
put file if a file does not already exist.

User's Guide

Shell procedure examples

PHONE

Usage: phone initials ...
Prints the phone numbers of the
people with the given initials.
echo ' inits ext home'
grep "$1" «END

jfk 1234 999-2345
lbj 2234 583-2245
hst 3342 988-1010
jqa 4567 555-1234

END

This procedure is an example of using an in-line input script to maintain a
small database.

TEXTFILE

if test "$1" = "-s"
then
Return condition code

shift
if test -z "'$0 $*'" # check return value
then

exit 1
else

exit a
fi

fi

if test $# -It 1
then

fi

echo "$0: Usage: $0 [-s J file
exit a

" 1>&2

file $* I fgrep 'text' I sed 'sf: .*//'

To determine which files in a directory contain only textual information,
text file filters argument lists to other commands. For example, the following
command line will print all the text files in the current directory:

pr 'textfile *' I Ipr

This procedure also uses an -s flag which silently tests whether any of the files
in the argument list is a text file.

193

The Bourne shell

WR1TEMAlL

Usage: writemail message user
If user is logged in,
writes message to terminal;
otherwise, mails it to user.
echo "$1" I { write "$2" I I mail "$2" ;}

This procedure illustrates the use of command grouping. The message
specified by $1 is piped to both the write command and, if write fails, to the
mail command.

Shell grammar

194

item: word
input-output
name = value

simple-command: item
simple-command item

command:

pipeline:

andor:

simple-command
(command-list)
{ command-list}
for name do command-list done
for name in word do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part esac
if command-list then command-list else-part fi

command
pipeline I command

pipeline
andor && pipeline
andor I I pipeline

command-list andor
command-list i
command-list &
command-list i andor
command-list & andor

User's Guide

input-output: > file
<file
«word
» file
digit> file
digit <file
digit» file

file: word
& digit
&-

case-part: pattern) command-list ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list

empty:

word:

name:

digit:

empty

a sequence of nonblank characters

a sequence of letters, digits, or underscores
starting with a letter

0123456789

Metacharacters and Reserved Words

1. Syntactic

I
&&
II

" &
()

<
«
>
»

Pipe symbol
And-if symbol
Or-if symbol
Command separator
Case delimiter
Background commands
Command grouping
Input redirection
Input from a here document
Output creation
Output append
Comment to end of line

Shell grammar

195

The Bourne shell

196

2. Patterns

*
?
[••• J

3. Substitution

${ ••• }

4. Quoting

\

" "

5. Reserved words

if esac
then for
else while
elif until
fi do
case done
in { }

Match any character(s) including none
Match any single character
Match any of enclosed characters

Substitute shell variable
Substitute command output

Quote next character as literal with no special meaning
Quote enclosed characters excepting the back quota
tionmarks n
Quote enclosed characters excepting: $' \ "

User' 5 Guide

Chapter 9

The C shell

The C shell program, csh(C) is a command language interpreter. The C shell,
like the standard UNIX system shell sh(C,) is an interface between you and the
UNIX operating system commands and programs. It translates command
lines entered at a terminal into corresponding system actions, gives you
access to information, such as your login name, home directory, and mailbox,
and lets you construct shell procedures for automating system tasks.

This chapter explains how to use the C shell. It also explains the syntax and
function of C shell commands and features, and shows how to use these fea
tures to create shell procedures. The C shell is fully described in csh(C) in the
User's Reference.

Invoking the C shell
You can invoke the C shell from another shell by using the csh command. To
invoke the C shell, enter the following command at the standard shell's com
mandline:

csh

You can also direct the system to invoke the C shell for you when you log in.
If the C shell is your login shell in your /etc/passwd file entry, the system auto
matically starts the shell when you log in.

After the system starts the C shell, the shell searches your home directory for
the command files .cshrc and .login. If the shell finds the files, it executes the
commands contained in them, then displays the C shell prompt (%).

197

The C shell

The .cshrc file typically contains the commands you want to execute each time
you start a C shell, and the .login file contains the commands you want to exe
cute after logging in to the system. For example, the following is the contents
of a typical .login file:

set ignoreeof
set mail=(/usr/spool/mail/bill)
set time=15
set history=10
mail

This file contains several set commands. The set command is executed
directly by the C shell; there is no corresponding UNIX system program for
this command. This command sets the C shell variable ignoreeof which
shields the C shell from logging out if you press (Ctrl)d. Instead of (Ctrl)d, use
the logout command to log out of the system. Set the mail variable to tell the
C shell to watch for incoming mail and notify you if new mail arrives.

Next, the C shell variable time is set to 15 causing the C shell to automatically
print out statistics lines for commands that execute for at least 15 seconds of
CPU time. The history variable is set to 10 indicating that the C shell
remembers the last 10 commands typed in its history list (this is described
later in this chapter).

Finally, the UNIX operating system mail program is invoked.

When you log out (by entering the logout command), the C shell executes
commands from the file .logout if it exists in your home directory. After that,
the C shell terminates and logs you off the system.

Using shell variables

198

The C shell maintains a set of variables. For example, in the above section, the
variables history and time have the values 10 and 15. Each C shell variable
has as its value an array of zero or more strings. You can assign values to C
shell variables using the set command. The syntax for set is:

set name = value

You can also use C shell variables to store values to use later in commands
through a substitution mechanism. The most commonly referenced variables
are those to which the C shell itself refers. By changing the values of these
variables you can directly affect the behavior of the C shell.

One of the most important variables is path. This variable contains a list of
directory names. When you enter a command name at your terminal, the C
shell examines each named directory in turn, until it finds an executable file
whose name corresponds to the name you entered.

Users Guide

Using shell variables

The set command with no arguments displays the values of all variables
currently defined in the C shell. The following example file shows typical
default values:

argv
home
path
prompt
shell
status

o
lusr/bill
(. Ibin lusr Ibin)
%
Ibin/csh
o

This output indicates that the variable path begins with the current directory
indicated by dot (.), then /bin, and /usr/bin. Your own local commands can be
in the current directory. Normal UNIX system commands reside in /bin and
/usr/bin.

Sometimes a number of locally developed programs reside in the directory
/usr/local. If you want all C shells that you invoke to have access to these new
programs, place the following command in the .cshrc file in your home direc
tory:

set path=(. Ibin lusrlbin lusr/local}

Try doing this, then logging out and back in. To see that the value assigned to
path changed, enter:

set

You should be aware that when you log in the C shell examines each directory
that you insert into your path and determines which commands are contained
there. However, the C shell treats the current directory specially. This means
that if you add commands to a directory in your search path after you have
started the C shell, they might not necessarily be found. If you want to use a
command which has been added after you have logged in, enter the following
command:

rehash

The rehash command causes the shell to recompute its internal table of com
mand locations, so that it finds the newly added command. Since the C shell
has to look in the current directory on each command anyway, placing it at
the end of the path specification usually works best and reduces overhead.

199

Thee shell

Other useful built-in variables are home which shows your home directory,
and ignoreeof which (when set in your .login file) tells the C shell not to exit
when it receives an end-of-file from a terminal. The variable ignoreeof is one
of several variables whose value the C shell does not care about; the C shell is
only concerned with whether these variables are set or unset. Thus, to set
ignoreeof, simply enter:

set ignoreeof

To unset it, enter:

unset ignoreeof

Some other useful built-in C shell variables are noclobber and mail.

Set the noclobber variable to prevent accidental overwriting of files. Nor
mally, if you redirect the standard output of a command to a file like this:

command> filename

you overwrite and destroy the previous contents of the named file. In this
case, you might accidentally overwrite a valuable file. If you prefer that the C
shell not overwrite files in this way, set noclobber in your .login file:

set noclobber

Now, when you enter a command like the following:

date > now

if the file now already exists, the shell displays an error message. If you really
want to overwrite the contents of now, you can enter:

date>! now

The >! is a special syntax indicating that overwriting or "clobbering" the file is
OK. (The space between the exclamation point (I) and the word "now" is criti
cal here, as "!now" invocates the history mechanism, and has a completely
different effect.)

Using the C shell history list

200

The C shell can maintain a history list of previously entered commands. With
this list, you can use a notation that reuses commands, or words from com
mands, to form new commands. You can use this mechanism to repeat previ
ous commands or to correct minor typing mistakes in commands.

User's Guide

Using the C shell history list

The following figure gives a sample session involving typical usage of the his
tory mechanism of the C shell (boldface indicates user input):

% eat bug.c
main ()
(

printf ("hello);
)

% ee !$
cc bug.c
bug.c(4) :error 1: newline in constant
% ed !$
ed bug.c
28
3s/);f'&lp

w
29
q
% !e

printf ("hello");

cc bug.c
% a.out
hello% !e
ed bug.c
29
3s/10/10 \ \nlp

w
31
q

printf ("hello\n");

% !e -0 bug
cc bug.c -0 bug
% size a.out bug
a.out: 5124 + 614 + 1254 = 6692 = Ox1b50
bug: 5124 + 616 + 1252 = 6692 = Ox1b50
% Is -1 !.
ls -1 a.out bug
-rwxr-xr-x 1 bill 7648 Dec 19 09:41 a.out
-rwxr-xr-x 1 bill 7650 Dec 19 09:42 bug
% bug
hello
% pr bug.c I Ipt
lpt: Command not found.
% Alpnpr
pr bug.c I lpr
%

In this example, we have a very simple C program that has a bug or two in the
file bug.c; we use cat(C) to display it on the terminal. We then try to run the C
compiler on it, referring to the file again as !$ meaning the last argument to
the previous command. Here the exclamation mark (!) is the history mecha
nism invocation metacharacter, and the dollar sign ($) stands for the last argu
ment, by analogy to the dollar sign in the editor which stands for the end-of
line.

201

The'C shell

The C shell echoes the command (as you would have typed it and then exe
cutes the command. The compilation yielded error diagnostics, so we edit the
file, fix the bu~ and run the C compiler again, this time referring to this com
mand simply as Ie, which repeats the last command that started with the
letter "C."

If there are other commands that begin with the letter lie" executed recently,
you can use lee or even lee:p. The:p allows you to print the last command
starting with liCe" without executing it, so that you can check to see whether
you really want to execute a given command.

After recompiling, we ran the resulting a.out file, and then noting that there
was still a bug, ran the editor again. After fixing the program we ran the
C compiler again, but included the -0 bug option, telling the compiler to place
the resultant binary in the file bug rather than a.out. (In general, you can use
the history mechanisms anywhere to form new commands, and you can place
other characters before and after the substituted commands.)

We then ran the size command to see how large the binary program images
are, and then we ran an Is -1 command with the same argument list, denoting
the argument list:

1*
Finally, we ran the program bug to see that its output is indeed correct.

To make a listing of the program, we ran the pr command on the file bug.c. In
order to print the listing at a lineprinter, we piped the output to lpr, but
misspelled it as "Ipt. /I To correct and rerun the command, we used a C shell
substitute, placing the old text and new text between caret n characters. This
is similar to the substitute command in the editor.

There are other mechanisms available for repeating commands. The history
command prints out a numbered list of previous commands. You can then
refer to these commands by number. You can also refer to a previous com
mand by searching for a string which appeared in it. See the esh(C) manual
page in the Users Reference for a complete description of all these mechanisms.

Using aliases

202

The C shell has an alias mechanism that you can use to change the string that
you use to enter the command. This mechanism can be used to simplify the
commands you enter, to supply default arguments to commands, or to per
form transformations on commands and their arguments. The alias facility is
similar to a macro facility. Some of the features of aliasing can also be
obtained by using C shell command files. However, these take place in
another instance of the C shell and cannot directly affect the current C shell's
environment or involve commands such as ed which must be done in the
current C shell.

Users Guide

Using aliases

For example, suppose there is a new version of the mail program on the sys
tem called newmail that you wish to use instead of the standard mail program
mail. If you place the C shell command

alias mail newmail
in your .cshrc file, when you enter the following command:

mail bill

the C shell runs the newmail program. Suppose you want the command Is to
display sizes of files. In other words, you want Is to use the -s option always.
In this case, you can use the alias command like this:

alias Is Is -s
If you are used to DOS, you might create the following alias to perform the
same thing:

alias dir Is -s
Now, if you enter:

dir Dill
C shell translates this to:

Is -s lusrlbill

Note that the tilde character n is a special C shell symbol that represents the
user's home directory.

Thus, you can use alias to provide short names for commands, to provide
default arguments, and to define new short commands in terms of other com
mands. You can also define aliases that contain multiple commands or pipe
lines, showing where the arguments to the original command are to be substi
tuted using the facilities of the history mechanism.

For example, the following definition:
alias cd 'cd \!* ; Is '

specifies to run an Is command after each cd command. We enclosed the
entire alias definition in single quotation marks (') to prevent most substitu
tions from occurring and to prevent the semicolon character (;) from being
recognized as a metacharacter. The exclamation mark (!) is escaped with a
backslash (\) to prevent it from being interpreted when the alias command is
entered. The \!* here substitutes the entire argument list to the pre-aliasing
cd command; no error is given if there are no arguments. The semicolon
separating commands is used here to indicate that one command is to be done
and then the next. Similarly, the following example defines a command that
looks up its first argument in the password file:

alias whois 'grep \!A letdpasswd'

203

The C shell

The C shell currently reads the .cshrc file each time it starts up. If you place a
large number of aliases there, C shells tend to start slowly. You should try to
limit the number of aliases you have to a reasonable number (10 or 15 is
reasonable). Too many aliases causes delays and makes the system seem
sluggish when you execute commands from within an editor or other pro
grams.

Redirecting input and output
In addition to the standard output, commands also have a diagnostic output
that is normally directed to the terminal even when the standard output is
redirected to a file or a pipe. Sometimes, you might want to direct the diag
nostic output along with the standard output. For instance, if you want to
redirect the output of a long running command into a file and want to have a
record of any error diagnostic it produces, you can enter:

command > & file

The> & here tells the C shell to route both the diagnostic output and the stan
dard output into file. Similarly, you can enter the following command to route
both standard and diagnostic output through the pipe to the lineprinter:

command I & Ipr

Use the following form when noclobber is set and file already exists:

command >&! file

Finally, use the following form to append output to the end of an existing file:

command » file

If noclobber is set, an error results if file does not exist, otherwise the C shell
creates file. The following form allows you to append to a file even if it does
not exist and noclobber is set:

command »! file

Creating background and foreground jobs

204

Usually, every line entered to the C shell creates a job. Single commands
without pipes or semicolons create the simplest jobs. When you enter one or
more commands together as a pipeline or as a sequence of commands
separated by semicolons, the C shell creates a single job consisting of these
commands together as a unit. Each of the following lines creates a job:

sort < data
Is -s I sort -n I head -5
mail harold

User's Guide

Using buiU-in commands

If you enter the ampersand metacharacter (&t) at the end of the commands,
the job is started as a background job. This means that the C shell does not
wait for the job to finish, but instead, immediately prompts for another com
mand. The job runs in the background at the same time that normal jobs,
called foreground jobs, continue to be read and executed by the C shell. Thus,
the following command:

du > usage&t

runs the du program (which reports on the disk usage of your working direc
tory), puts the output into the file usage, and returns immediately with a
prompt for the next command without waiting for du to finish. The du pro
gram continues executing in the background until it finishes; you can enter
and execute more commands in the mean time. Background jobs are
unaffected by any signals from the keyboard such as the INTERRUPf or QUIT
signals.

The kill command terminates a background job immediately. Normally, this
is done by specifying the process number of the job to be killed. You can
determine the process number of a job with the ps command. See Chapter 5,
~anaging processes," for more information.

Using built-in commands
This section explains how to use some of the built-in commands.

Use the alias command described above to assign new aliases and to display
existing aliases. If given no arguments, alias prints the list of current aliases.
You can also give alias one argument in order to show the current alias for a
given string of characters. For example, the following command prints th~.
current alias for the string Is:

alias Is

The history command displays the contents of the history list. You can use
the numbers given with the history events to reference previous events that
are difficult to reference contextually. There is also a C shell variable named
prompt. By placing an exclamation point (I) in its value, the C shell substi
tutes the number of the current command in the history list. You can use this
number to refer to a command in a history substitution. For example:

set prompt='\! % '

Note that the exclamation mark has to be escaped here even within bacl
quotes.

The logout command is used to terminate a login C shell that has ignoreeof
set.

205

The C shell

The rehash command causes the C shell to recompute a table of command
locations. This is necessary if you add a command to a directory in the current
C shell's search path and want the C shell to find it, because otherwise the
hashing algorithm might tell the C shell that the command was not in that
directory when the hash table was computed.

Use the repeat command to repeat a command several times. Thus to make 5
copies of the file one in the file five, you enter:

repeat 5 cat one » five

Use the setenv command to set variables in the environment. Thus, to set the
value of the environment variable TERM to adm3a, use this command:

setenv TERM adm3a

Use the env program to print out the environment. For example, the output
from env might look like this:

HOME=/usr/bill
SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a
USER=bill

Use the source command to force the current C shell to read commands from
a file. Thus, use the following command after editing the .cshrc file to read in
the changes that you want to take effect before the next time you login:

source .cshrc

The same holds true when using the source command with the .login file.

Use the time command to time a command regardless of how much CPU time
it takes. Thus, the following command:

time cp /etc/termcap /usrlbillltermcap

displays:
O.Ou 0.4s 0:02 21%

Similarly, this command:

time we /etc/termcap /usrlbillltermcap

displays:
2071 5849 92890 /etc/termcap
2071 5849 92890 /usr/bill/termcap
4142 11698 185780 total

1.3u 0.7s 0:04 47%

206 User's Guide

Creating shell scripts

This output indicates that the cp command used a negligible amount of user
time (u) and about 4/lOths of a second of system time (s); the elapsed time
was 2 seconds (0:02). The word count command wc used 1.3 seconds of user
time and 0.7 seconds of system time in 4 seconds of elapsed time. The percen
tage "47%" indicates that over the period when it was active, the we com
mand used an average of 47 percent of the available CPU cycles of the ma
chine.

Use the unalias and unset commands to remove aliases and variable
definitions from the C shell.

Creating shell scripts
You can place commands in files and tell the C shell to read and execute com
mands from these files, called "C shell scripts" or simply "shell scripts." This
section describes the C shell features that are useful when creating shell
scripts.

Using the argv variable

To interpret a csh command script, use a command like the following:

esh script argument . ..

where script is the name of the file containing the C shell commands and
argument is a sequence of command arguments. The C shell places these
arguments in the argv variable and then begins to read commands from
script. These parameters are then available through the same mechanisms
that you use to reference any other C shell variables.

To run your shell script in the file called script, first place a C shell comment at
the beginning of the shell script {i.e., begin the file with a number sign (#».
Then, make script executable by entering:

ehmod 755 script

or:

ehmod +x script

Now, when you enter the following command, /bin/csh is invoked automati
cally to execute script:

script

If the file does not begin with a number sign (#), the standard shell /bin/sh is
used to execute it. {For more information about sh, see Chapter 8, liThe
Bourne shell."

207

The C shell

Substituting shell variables

208

After each input line is broken into words and history substitutions are per
formed on it, the input line is parsed into distinct commands. Before each
command is executed, a mechanism known as variable substitution is per
formed on these words. Keyed by the dollar sign ($), this substitution
replaces the names of variables with their values. Thus, when you place the
following command in a shell script:

echo $argv

the current value of the argv variable is echoed to the output of the shell
script. If argv is unset at this point, the C shell displays an error.

A number of notations are provided for accessing components and attributes
of variables. The notation:

$?name

expands to 1 if name is set or to 0 if name is not set. This is the fundamental
mechanism used for checking whether particular variables have been
assigned values. All other forms of reference to undefined variables cause
errors.

The following notation expands to the number of elements in the variable
name:

$#name

To illustrate this, examine the following terminal session (user input appears
in boldface):

% set argv=(a b c)
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
o
% echo $argv
Undefined variable: argv.
%

Users Guide

Creating shell scripts

You can also access the components of a variable that has several values.
Thus:

$argv[l)

gives the first component of argv (in the example above, "a"). Similarly:

$argv[$#argv)

gives "C". Other notations useful in C shell scripts are:

$n

where n is an integer. This is shorthand for:

$argv[n)

(the n'th parameter). The following notation:

$*

is shorthand for:

$argv

The form:

$$

expands to the process number of the current C shell. Because this process
number is unique in the system, it is often used to generate unique temporary
filenames.

One minor difference between $n and $argv[n) should be noted here. The
form: $argv[n) yields an error if n is not in the range l-$#argvwhile $n never
yields an out-of-range subscript error. This is for compatibility with the way
older shells handle parameters.

Another important point is that, if there are less than n components of the
given variable and you give a subrange of the form:

n-

it is never an error and no words are substituted. Likewise, a range of the
form:

m-n

retu"ns an empty vector without giving an error when m exceeds the number
of elements of the given variable, provided the subscript n is in range.

209

The C shell

Using expressions

210

To construct useful C shell scripts, the C shell must be able to evaluate expres
sions based on the values of variables. In fact, all the arithmetic operations of
the C language are available in the C shell with the same precedence that they
have in C. In particular, the operations == and != compare strings and the
operators && and I I implement the logical AND and OR operations.

The C shell also allows file inquiries of the following form:

-? filename

where question mark (?) is replaced by a number of single characters. For
example, the expression primitive:

-e filename

tells whether filename exists. Other primitives test for read, write and execute
access to the file, whether it is a directory, or if it has nonzero length.

It is possible to test whether a command terminates normally, by using a
primitive of the form:

{command}

This returns 1 if the command exits normally with exit status 0, or 0 if the
command terminates abnormally or with a nonzero exit status. If more
detailed information about the execution status of a command is required, it
can be executed and you can examine the status variable in the next com
mand. Because $status is set by every command, its value is always chang
ing.

For the full list of expression components, see csh(C) in the User's Reference.

User's Guide

Creating shell scripts

A sample script

A sample shell script follows that uses the expression mechanism of the
c shell and some of its control structures:

t
t Copyc copies those c programs in the specified list
t to the directory -/backup if they differ from the files
t already in -/backup
t
set noglob
foreach i ($argv)

end

if ($i != *.c) continue t not a .c file so do nothing

if (! -r -/backup/$i:t) then

endif

echo $i:t not in backup ••• not cp\ 'ed
continue

cmp -s $i -/backup/$i:t t to set $status

if ($status != 0) then

endif

echo new backup of $i
cp $i -/backup/$i:t

This script uses the foreach command, which iteratively executes the group of
commands between the foreach and the matching end statements for each
value of the variable i. If you want to look more closely at what happens dur
ing execution of a foreach loop, you can use the debug command break to
stop execution at any point. To resume execution, use the debug command
continue. The value of the iteration variable (i in this case) remains at what
ever it was when the last foreach loop was completed.

The noglob variable is set to prevent filename expansion of the members of
argv. In general, this is a good idea if the arguments to a C shell script are
filenames which have already been expanded or if the arguments might con
tain filename expansion metacharacters. You can also quote each use of a
$ variable expansion, but this is harder and less reliable.

The other control construct is a statement of the form:

if (expression) then
command

endif

211

The C shell

212

The placement of the keywords in this statement is not flexible due to the
current implementation of the C shell. For example, the following two for
mats are not acceptable to the C shell:

and:

if (expression) :# Won't work!
then

command

endif

if (expression) then command endif:# Won't work

The C shell does have another form of the if statement:

if (expression) command

You can also write this if statement this way:

if (expression) \
command

In this example, we escape the newline for the sake of appearance. The com
mand must not include I, &, or ; and must not be another control command.
The second form requires the final backslash (\) immediately preceding the
end-of-line.

The more general if statements above also admit a sequence of else-if pairs
followed by a single else and an endif. For example:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Users Guide

Creating shell scripts

Another important mechanism used in C shell scripts is the colon <:) modifier.
For example, use the :r modifier to extract the root of a filename or :e to extract
the extension. Thus if the variable i has the value /mnt/foo.bar, then, the fol
lowing command:

echo $i $i:r $i:e

produces:

/mnt/foo.bar /mnt/foo bar

This example shows how the :r modifier strips off the trailing ".bar" and the :e
modifier leaves only the "bar." Other modifiers take off the last component of
a pathname leaving the head :h or all but the last component of a pathname
leaving the tail:t. These modifiers are fully described in the csh(C) page in the
Users Reference. You can also use the command substitution mechanism to
perform modifications on strings to then re-enter the C shell environment.
Because each usage of this mechanism involves the creation of a new process,
it is much more expensive to use than the colon (:) modification mechanism.
It is also important to note that the current implementation of the C shell lim
its the number of colon modifiers on a $ substitution to 1. Thus, the following
command:

echo $i $i:h:t

produces:

/a/b/e /a/b:t

and does not do what you might expect.

Finally, note that the number sign character (#) lexically introduces a C shell
comment in C shell scripts (but not from the terminal). The C shell discards
all subsequent characters on the input line after a number sign. You can quote
this character using' or \ to place it in an argument word.

213

The C shell

Using other control structures

214

The C shell also has control structures while and switch similar to those of C.
These take the forms:

and:

while (expression)
commands

end

switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:

endsw

commands
breaksw

For details see the csh(C) manual page in the Users Reference. C programmers
should note that breaksw exits from a switch and break exits a while or
foreach loop. A common mistake to make in C shell scripts is to use break
rather than breaksw in switches.

Finally, the C shell includes a goto statement, with labels looking like they do
inC:

loop:
commands
goto loop

Users Guide

Creating shell scripts

Supplying input to commands

Commands run from C shell scripts receive by default the standard input of
the C shell which is running the script. This allows C shell scripts to fully par
ticipate in pipelines, but mandates extra notation for commands that are to
take inline data.

Thus, you need a metanotation for supplying inline data to commands in C
shell scripts. For example, consider this script which runs the editor to delete
leading blanks from the lines in each argument file:

deblank -- remove leading blanks
foreach i ($argv)
ed - $i « ' EOF'
1,$s/"[]*//
w
q
'EOF'
end

The notation:
« 'EOF'

means that the standard input for the ed command is to come from the text in
the C shell script file up to the next line consisting of exactly EOF. The fact
that the EOF is enclosed in single quotation marks ('), i.e., it is quoted, causes
the C shell not to perform variable substitution on the intervening lines. In
general, if any part of the word following the« (which the C shell uses to ter
minate the text to be given to the command) is quoted, these substitutions are
not performed. In this case, because we use the form 1,$ in our editor script,
we need to insure that this dollar sign is not variable substituted. We can also
insure this by preceding the dollar sign ($) with a backslash (\), i.e.:

1, \$sr[]*11

Quoting the EOF terminator is a more reliable way of achieving the same
thing.

Catching interrnpts

If a C shell script creates temporary files, you might want to catch interrup
tions of the C shell script so that you can clean up these files. To do this:

onintr label

is included in the script, where label is a label in your program. If an interrupt
is received, the C shell performs a goto label and you can remove the tem
porary files and run the exit command (which is built into the C shell) to exit
the C shell script. If you want to exit with nonzero status, use the following
command to exit with status 1:

exit (1)

215

The C shell

Using other features
There are other features of the C shell that shell script writers might find use
ful. Use the verbose and echo options and the related -v and -x command-line
options to help trace the actions of the C shell. The -n option causes the
C shell only to read commands and not to execute them.

One other thing to note is that the C shell does not execute C shell scripts that
do not begin with the number sign character (#).

The C shell also includes another quotation mechanism using the double quo
tation mark ("), that allows only some of the expansion mechanisms to occur
on the quoted string. It serves to make this string into a single word as the
single quote (') does.

Starting a loop at a tenninal

216

It is occasionally useful to use the foreach control structure at the terminal to
aid in performing a number of similar commands. For instance, if there are
three shells in use on a particular system, /bin/sh, /bin/nsh, and /bin/csh, you can
count the number of persons using each shell with the following commands:

grep -c csh$ /etdpasswd
grep -c nsh$ /etdpasswd
grep -c -v /sh$ /etdpasswd

These commands are very similar, but you can use foreach to simplify them
(boldface indicates user input):

% foreach i ('sh$' 'esh$' '-v sh$')
? grep -e $i letc/passwd
? end

Note here that the C shell prompts for input with"?" when reading the body
of the loop. This occurs only when the foreach command is entered interac
tively.

Variables that contain lists of filenames or other words are also useful with
loops. For example, examine the following terminal session:

% set a=('ls ')
% echo$a
csh.n csh.rm
% Is
csh.n
csh.rm
% echo$#a
2

User's Guide

Creating shell scripts

The set command here gives the variable a a list of all the filenames in the
current directory as value. You can then iterate over these names to perform
any chosen function.

The C shell converts the output of a command within back quotation marks
(') to a list of words. You can also place the quoted string within double quo
tation marks (01) to take each (nonempty) line as a component of the variable.
This prevents the lines from being split into words at blanks and tabs. Use the
:x modifier to expand each component of the variable into another variable by
splitting the original variable into separate words at embedded blanks and
tabs.

Using braces with arguments

Another form of filename expansion involves the characters, { and}. These
characters specify that the contained strings, separated by commas (,) are to
be consecutively substituted into the containing characters and the results
expanded left to right. Thus:

~{strl,str.2, ••. ston}B

expands to:

r AstrlB Astr2B . . . AstrnB

This expansion occurs before the other filename expansions, and can be
applied recursively (i.e., nested). The results of each expanded string are
sorted separately, preserving left to right order. If no other expansion mecha
nisms are used, the resulting filenames do not have to exist. This means that
you can use this mechanism to generate arguments which are not filenames,
but which have common parts.

For example, use this to make subdirectories hdrs, retrofit, and csh in your
home directory:

mkdir -/{hdrs,retrofit,csh}

This mechanism is most useful when the common prefix is longer; for
example:

chown root lusr/demo/{filel,file2, ••. }

217

The C shell

Substituting commands

A command enclosed in accent symbols (') is replaced, just before filenames
are expanded, by the output from that command. Thus, use this command to
save the current directory in the variable pwd:

set pwd='pwd'

Another example runs the vi editor, supplying as arguments those files whose
names end in .c that contain the string "TRACE":

vi 'grep -1 TRACE *.e'

Command expansion also occurs in input redirected with « and within quo
tation marks ("). Refer to esh(C) in the User's Reference for more information.

Special characters

The following table lists the esh and UNIX operating system special charac
ters. A number of these characters also have special meaning in expressions.
See the esh manual section for a complete list.

separates commands to be executed sequentially

I separates commands in a pipeline

() brackets expressions and variable values

& follows commands to be executed without waiting for completion

Filename metacharacters
/ separates components of a file's pathname

separates root parts of a filename from extensions

?

*
[]

expansion character matching any single character

expansion character matching any sequence of characters

expansion sequence matching any single character from a set of
characters

used at the beginning of a filename to indicate home directories

{ } used to specify groups of arguments with common parts

218 User's Guide

Quotation metacharacters
\ prevents meta-meaning of following single character

prevents meta-meaning of a group of characters

like " but allows variable and command expansion

Input/output metacharacters
< indicates redirected input

> indicates redirected output

Expansion/Substitution metacharacters
$ indicates variable substitution

indicates history substitution

precedes substitution modifiers

used in special forms of history substitution

indicates command substitution

Other metacharacters
begins scratch filenames; indicates C shell comments

prefixes option (flag) arguments to commands

Creating shell scripts

219

The C shell

220 Users Guide

Chapter 10

The Korn shell

This chapter contains an introduction to the Kom shell, ksh(C), a powerful
tool that acts as a control center for you in your day to day work with the op
erating system.

The ksh is provided as an alternative to the sh and csh programs. It contains
almost all the features of sh, along with many new facilities. Consequently, if
you are new to the operating system you should read the chapter titled "The
Bourne shell" before starting this section.

Overview

The Kom shell is an interactive command language interpreter and program
ming language, which reads and executes commands from either the terminal
or a file.

It is command compatible with the Bourne shell, and has history and substitu
tion features similar to those of the C shell. It also prOvides command line
editing, job control and enhanced command history functions.

The Kom shell maintains a history file of previously executed command lines.
Commands can be retrieved and edited using the same keystrokes as the vi or
emacs editors. You can search for and substitute previously executed com
mands and parameters using the text search and replacement facilities of the
selected editor.

Extensive job control features are built into the Kom shell. Using these facili
ties you can start tasks running in the background, adjust the priority of exe
cuting tasks, move background tasks into the foreground, cause tasks to wait
for a fixed period, and kill tasks. These features are also available to shell
scripts executing in the Kom shell environment.

221

The Korn shell

The Kom shell command language is an extended version of the language
recognized by the Bourne shell (sh(C)). Extensive command aliasing and
substitution features are provided, similar to those of the C shell. In addition,
the Kom shell provides a rich set of expressions and program control struc
tures. All the job control and command substitution features are available to a
shell script executing under the shell. Consequently, the Kom shell language
provides greater flexibility and power than either the Bourne shell or the C
shell, while maintaining compatibility with the Bourne shell.

Setting up the Kom shell

222

If the Kom shell is not installed as the default login shell, it can be started
from the command line of either of the other shells, like any other program, by
typing its name:

ksh (Enter)

If no arguments are specified, ksh loads and runs in interactive mode; it dis
plays a prompt, and any commands typed at the console are executed
immediately. If ksh is started with the name of a file as an argument, and the
file is marked as being executable, ksh checks the type of the file and executes
it as a script (if it contains text) or runs it as a program (if it is a binary file).

For serious use, it is normal to install ksh as the default login shell. To change
your login shell, ask your system administrator to change your login shell
specifier in the /etc/passwd file to ksh.

When the system administrator specifies that ksh is to be used as the login
shell, the sysadmsh(ADM) utility creates two files in the user's home direc
tory; .profile and .kshrc.

When you log in, ksh reads commands from the system profile file, jete/profile,
then from .profile in the current directory (or $HOME/.profi1e, if either file
exists). The .profile file is used to set and export variables that are to· be
applied to the entire work session.

For example, it is possible to use .profile to set and export the TERM variable,
which specifies the type of terminal you are using in the current session. (This
is recognized by other applications and shells.)

You can use .profile to set a trap that causes ksh to execute another file, for
example, .logout, when you exit the shell. To do this, enter the following in
.profile:

trap $HOME/.logout 0

The .logout file must be executable.

Users Guide

Setting up the Korn shell

I NOTE This particular example is only useful to provide backward compati
bility with esh. Otherwise, there is no reason to use this trap.

After executing .profile, the shell reads commands from the ksh environment
file, $HOME/ .kshrc (if it exists). .kshrc is used to customize the working
environment for ksh sessions; it is not executed by the other shells. Com
mands and definitions that only ksh recognizes should therefore be defined in
this file rather than in .profile, which is used by sh and esh.

For example, the ignoreeof variable prevents ksh from exiting when it reads
an end of file character; this stops the user from logging out by hitting (Ctrl)d.
Because ignoreeof is only recognized by ksh, it should be set in .kshrc rather
than in .profile.

After reading .kshrc, ksh looks for the .shJzistory file. This file contains a list of
previously entered commands; if there is no .sh_history file in the home direc
tory, ksh creates one. (For more information on the .sh_history file, refer to the
section below on additional editing features.)

Flags and options for ksh

A large number of startup flags may be specified when ksh is started from the
command line. Additionally, environment variables can be set to configure
the ksh operating parameters. For a full list of all the flags and parameters
which the shell recognizes, see ksh(C).

It is not normally necessary to change the startup flags associated with ksh:
however you may want to set some of the ksh environment variables in your
.profile file. To assign values to ksh environment variables, use this format:

EDITOR=/binlvi
export EDITOR

The first line assigns the value Ibinlvi to the environment variable EDITOR
(which is created by the assignment expression if it does not already exist).
The second line contains the export command, which specifies that the EDI
TOR variable is to be exported in the environment that ksh passes to any
tasks that it starts. (If you do not export variables, they are unavailable to sec
ondary shells or programs invoked from ksh. Because variables often convey
essential information about the environment in which programs run, this is
generally undesirable.)

223

The Kom shell

The following table shows some of the more common environment variables:

Table 10-1 Environment variables

Variable

COLUMNS

EDITOR

ENV
ffiSTFILE

ffiSTSIZE

HOME
MAILCHECK

PATH

PSI

TERM

VISUAL

Description

specifies the number of columns that ksh uses to display the
command line
sets either the vi like or emacs like editor to use when editing
the command line. (EDITOR must not be set if ksh is used on
the console.)
sets the environment file (.kshrc by default)
sets an alternate history file (.sh_history by default)
sets the maximum number of commands that are stored in
the history file (128 by default)
specifies the default argument used by the cd(C) command
specifies the interval in seconds that ksh checks for new
mail, if MAIL is set in .profile. The default value is 600
seconds.
specifies the pathnames that ksh searches when executing
commands
specifies the primary prompt to display when the interactive
option is on ($ by default); ksh replaces an exclamation point
(0 with the command number (to print a! in the prompt,
enter !!)
specifies the type of terminal that you are using
sets the editor to use when editing command lines (overrides
the value of EDITOR). VISUAL must not be set if ksh is used
on the console.

Editing features

224

Using csh or sh, the only way to fix errors on the command line is to back
space or retype the entire line. With ksh you can edit the command line using
the same commands that you use to edit files. You can move through the
commands in your history file (the list of commands you have already typed
at the console) and re-execute commands. You can also edit command lines,
copying sections of other commands into your current command line. The
Kom shell provides both vi-like and emacs-like built in editor interfaces for
manipulating the command line.

The .kshrc startup file normally contains a command which turns on the vi
like editor. In this mode, ksh responds to the editing commands used by vi.
You can turn off the ksh editor completely, or turn off vi and turn on emacs
emulation for the current session or for every login session.

Users Guide

Editing features

To turn offvi for the current login session only, enter the following at the com
mandline:

set +0 vi
To turn on emacs for the current login session~ enter the following at the com
mandline:

set -0 emacs
(It is necessary to turn one editor off before the other can be turned on.) To
turn either editor on or off automatically when you log in, add the appropriate
command

set [+/-] [editorname]
to the .profile or environment file (.kshrc by default).

You can use the EDITOR and VISUAL environment variables to set the editor
to any pathname that ends in vi (or emacs). For example, to turn on the vi
editor automatically when you log in, add the following line to your .kshrc file:

EDITOR=/usrlbinlvi
Note that the VISUAL variable overrides the EDITOR variable.

Using the vi built-in editor mode

Like the vi text editor, ksh's built in vi editor has two modes; input mode and
control mode. In input mode, ksh inserts the characters you type at the key
board into an editing buffer. In control mode, ksh interprets the characters
you type at the keyboard as editing commands.

When you log in using ksh as your login shell, you are in input mode by
default, with the cursor positioned at the beginning of the line. This differs
from vi, where you are initially in control mode by default, and must press a
or i to begin entering text. To enter control mode from input mode, press
(Esc). If you press (Esc) when you are already in control mode, the terminal
beeps.

Editing in vi input mode

While entering commands in input mode, you can edit the current command
line using editing commands from the following table:

Table 10-2 Input mode editing commands

Command

(Ctrl)h or (Bksp)
(Return) or (Ctrl)m
(Ctrl)v

Description

moves back one character
executes the current line
escapes the character that follows
(for entering control characters)

225

The Korn shell

Editing in control mode

226

At any time before you press (Return) to execute the command, you can press
(Esc) to enter control mode. In control mode, you can move around the com
mand line as if you were in vi, editing a file.

The following table shows the vi commands for moving the cursor on the
command line in control mode:

Table 10-3 Moving the cursor

Key

h
I
b
B
w
W
e
E

o
$

fx
Fx
tx

Tx

Description

moves left one character
moves right one character
moves left one word
moves left one word, skipping punctuation
moves right one word
moves right one word, skipping punctuation
moves to the last character of the next word
moves to the last character of the next word, skipping
punctuation
moves to the beginning of the current line
moves to the end of the current line
moves to the first character on the current line that is not
a (Space) or (Tab)

moves right to the next occurrence of x
moves left to the preceding occurrence of x
moves right to the character before the next occurrence
ofx
moves left to the character following the preceding
occurrence of x
repeats the last character search f, F, t, or T.
reverses the last character search f, F, t, or T.

Users Guide

Editing features

The following table gives the commands for entering input mode from control
mode, and for changing and deleting text:

Table 10-4 Adding changing and deleting text

Key

a
A
i
I

rz
Rtext
emotion

x
X

cw
cl
c$

cc

dw
dmotion

D
d$
dd
ymotion

y

y$
yy
p

p

Description

enters input mode after the character under the cursor
enters input mode after the last character on the line
enters input mode before the character under the cursor
enters input mode before the first character on the line
appends the last word of the previous ksh command to
the current line and then enters input mode.
replaces the character under the cursor with z
replaces characters with text beginning at the cursor
changes the characters from cursor position, using the vi
motion command
For example:
changes word below cursor
changes character below cursor and then adds text
changes from the current character to the end-of-line
deletes the entire line and returns to input mode (same
as c$)

deletes the character under the cursor
deletes the character to the left of the cursor
deletes the word under the cursor
deletes characters, starting at the cursor, up to and
including the other end of motion
deletes from the cursor to the end of line
sameasD
deletes the entire line
yanks the current character using the vi motion com
mand
yanks from cursor to end of line
sameasY
yanks the entire line into the buffer
puts previously yanked (or deleted) words to the right of
the cursor
puts previously yanked (or deleted) words to the left of
the cursor

227

The Korn shell

The following table shows the control mode commands for executing and
redrawing the current line, repeating commands, and undoing modifications
on the command line:

Table 10-5 Miscellaneous control mode commands

Command

(Return) or (Ctrl) m
(Ctrl) 1

u

U

Description

executes the current line
redraws the current line
changes the case of the character under the cursor
repeats the most recent vi command
undoes the previous vi command
undoes all modifications on the current line

Accessing commands in the history file

Using the vi built in editor, you can access previously entered commands that
are stored in your ksh history file (.sh_history). Once you retrieve a command,
you can modify it and execute it again.

This serves two main purposes. Firstly, it significantly reduces retyping when
you are working with complex, long command lines. Secondly, because the
commands are saved in .sh_history, you can copy the file and edit the copy to
produce a shell script that repeats your commands, or embed them in a more
complex program. (See the section "Programming the Korn shell.")

Displaying commands in the history file

228

To display the list of the commands that are stored in the history file, enter
history. The history command is a predefined alias that uses the ksh built in
command, fc (fix command), to access the history file. For more information
about fc, see ksh(C).

The history alias displays the last 16 commands in the history file (or fewer, if
there are fewer than 16 commands in the file). You can specify how many and
which commands that you want history to display. Note that the commands
must be accessible in the history file for history to display them. The follow
ing list gives examples of how to use the history alias:

history -4 displays the previous four commands only.

history 20 displays all commands from the history file, starting with 20.

history 12 24 displays only commands 12 through 24.

history >fred copies all commands from the history file to a file called fred.

User's Guide

Editing features

Re-executing previous commands

The ksh also includes r, another predefined alias that uses the fc built-in com
mand. The r alias allows you to re-execute commands from the history file.
This alias functions similarly to the ! command in csh. The following list
shows some common uses of the r alias:

r re-executes the last command entered

r command re-executes the last command entered

r x re-executes the last command beginning with x

r # re-executes command number #

Note that r simply re-executes commands from the history list; r does not
allow you to modify commands before you execute them.

Editing previous commands

You can use vi commands to search for and retrieve commands from the his
tory file. Once you locate a command, you can edit and re-execute it using the
vi commands described in the section "Editing in control mode" earlier in this
chapter.

To move through the history file, first press (Esc) to enter control mode. Then,
use the vi commands in the following table to move up and down in the his
tory file:

Table 10-6 Moving in the history file

Command

k
j
/string

?string

G
n
N

Description

moves up (previous) one command in the history file
moves down (next) one command in the history file
searches left and up (back) through the history file for the next
command containing string
searches right and down (forward) through the history file for
the next command containing string
goes back to the oldest accessible command in the history file
repeats the last I or ? search command
repeats the last I or ? command, searching backward

229

The Korn shell

Configuring the history file

In addition to the command editing facilities provided by ksh, a number of
other features are provided to make life easier. If you use a particular com
mand frequently, you can define aliases for them. When the alias is typed, the
original command is carried out instead; short, simple alias names can be
used to invoke long, complex commands. (This feature is described in the sec
tion "Alias expansion.") You can also save your history file and use it in subse
quent sessions in conjunction with your aliases. This enables you to use the
command recall facilities of ksh to run complex or frequently used command
lines in any session.

The ksh normally saves commands in the sh_history file in your home direc
tory. This is a default setting: to specify a different history file, set the HIST
FILE environment variable in your .profile file.

For example, to use the file .history instead of .sh_history, add the following
lines to your .profile:

HISTFILE=-I.history
export HISTFILE

You can also specify the maximum number of previously entered commands
that you can retrieve from the history file with the HISTSIZE environment
variable. If HISTSIZE is not set, ksh stores 128 commands by default. There is
no limit to the number of commands that ksh can store. If HISTSIZE is very
large, ksh may be very slow at startup time.

The ksh does not delete the history file when you exit; the shell appends and
stores commands across login sessions. When you log in, ksh deletes any
commands in your history file that are older than the last number of com
mands specified by HISTSIZE.

Manipulating commands wider than the screen

230

The ksh allows you to enter commands of up to 256 characters from the ter
minal. You can define the maximum width of the command line display (SO
columns by default) using the COLUMNS variable.

If you edit a command that is wider than the command line, ksh automatical
ly scrolls the command line horizontally to the left or right of your screen. In
the last column on the right side of the screen, ksh displays one of the follow
ing characters to show that the line is scrolling:

< scrolls to the right (text to the left is not displayed)

>

*

scrolls to the left (text to the right is not displayed)

text both to the right and to the left is not displayed

User's Guide

Using expanded cd capabilities

For example, if COLUMNS is not set, the width of the command line display is
the default of 80 columns and your command line is greater than 78 characters
wide, ksh scrolls the command line left to display the end of the line. To the
right of the command line,ksh displays the> character. It is possible to edit
lines wider than the screen by using the 0 and $ commands (start of line and
end of line respectively) to jump to the appropriate point.

Using expanded cd capabilities

The ksh includes expanded functionality for the cd(C) command. You can
instruct ksh to search through a specified list of directories when you enter
pathnames that do not begin with the slash / character. To do this, set the
CDPATH variable in your .kshrc file.

The ksh provides an option to cd that allows you to return quickly to your
previous working directory. For example, if you are in the /u/sue/bin directory
and you enter:

cd Iulsue

you can return to your previous directory, /u/sue/bin, by entering cd -. From
this directory, you can enter cd - again to return to the /u/sue directory.

ksh provides a means for changing to a directory with a pathname that is
slightly different from your current working directory, without having to
enter the full path to it. To do this, use the following format:

cd old new

where old is the part of the pathname that you want to change and new is
what you want to change it to. For example, if you are in /usr/spool/mail and
you want to change to /usr/bin/mail, enter:

cd spool bin

The ksh also behaves intelligently when working out where you are in the file
system. ksh has a built-in version of the pwd command which recognizes
symbolic links to other directories. Suppose, for example, you are working in
a directory called /usr/fred/work/here/now. Your home directory is /usr/me.
Because /usr/fred/work/here/now is hard to type, you have created a link called w
from your home directory to the work directory, using the command

In -s lusr/fredlworklhere/now w

And to get from your home directory to /usr/fred/work/here/now you simply
type

cdw

231

The Korn shell

ksh's pwd command understands links; when you type

pwd

ksh responds with
/usr/me/w

This is in contrast to the program /bin/pwd which responds with

/usr/fred/work/here/now

You can return to your home directory (/usr/me) from /usr/fred/work/here/now by
entering either

cd ..

or

cd/usr/me

because ksh's cd command recognizes the symbolic link /usr/me/w as being the
route by which you entered the work directory.

If you want to turn this behaviour off, forcing pwd and cd to ignore symbolic
links, you can either use the commands with the -P argument, as in

cd-P ..

or you can add the following lines to your .kshrc file:

alias cd='cd -P'
alias pwd='pwd _p'

Using job control

232

The job control feature of ksh allows you to manipulate jobs running in the
foreground and background. A job is a program that a user has started but
which requires no user input while it is running; examples include database
sorting and program compilation. With job control, you can stop and restart
programs, and move them between the foreground and the background. This
is particularly useful for dealing with long, non interactive tasks, such as for
matting a long document or making a large program. You can also specify the
priority of a job, using nice, and permit jobs to continue running after you log
out, using nohup.

Like sh and csh, ksh runs commands in the foreground by default; the shell
waits for the current command to finish executing before displaying the
prompt. You run a command in the background by adding an ampersand (&)
character to the end of the command before pressing (Return). Before display
ing the prompt, the shell displays the status of any completed background
jobs.

User's Guide

Using job control

When job control is active and you run a command in the background, ksh
displays both the number of the job in square brackets, [1, and the process ID
number (PID).

Job control is active by default. If job control is disabled, ksh displays the fol
lowing error message when you try to manipulate foreground and back
ground jobs:

no job control

To activate job control, add the following line to your environment file (.kshrc):

"set -0 monitOl'"

To use job control, Suspend must be set (usually (Ctrl)-z). To set it, add the fol
lowing line to your $HOME/ .profile file:

"stty susp "Z'"

Referring to jobs

When you use ksh as your login shell, you can refer to jobs in several different
ways:

PID refers to the job by the process ID number.

%number refers to the job by the job number that ksh displays in square
brackets.

%string refers to the job whose command begins with string.

%?string refers to the job whose command contains string.

%+ or % % refers to the current job.

%- refers to the previous job.

For example, if you enter the command sleep 30&:, and ksh displays:
[1] 3456

you can refer to this background job in various ways, including the following:

3456
%1
%sle
%?ee

233

The Korn shell

Using the ksh job control commands

The ksh includes the following built-in commands for job control. These
commands take a PID, job name, or number as the argument:

Table 10-7 Job control commands

Command

bg
fg
jobs
kill
wait

Description

starts the specified stopped job in the background.
moves the specified background job to the foreground.
displays status information about current jobs.
terminates the specified background job.
tells ksh to wait for all or a specific background process to
complete.

Running jobs in the background

To run a job in the background, enter the command name, followed by an
ampersand (&) character and press (Return).

For example, when you enter
sleep 30&

ksh starts the job in the background and displays a message like the follow
ing:

[1] 3456

When the job finishes, ksh displays a message like this:
[1] + Done sleep 30&

Moving background jobs to foreground

234

To move a job that is running in the background to the foreground, enter fg
followed by the PID, command name, or job number.

For example, move the sleep background process to the foreground by enter
ing:

fg %?ee

Once the job is in the foreground, ksh waits for it to complete before display
ing a prompt.

User's Guide

Using job control

Moving foreground jobs to background

To move a foreground job to the background, press the suspend key. (This is
usually -Z, but can be altered; if your system does not respond to -z check the
stty susp line in your .profile file.) The ksh stops the job and displays a mes
sage like the following:

[1] + Stopped sleep 30&

The ksh displays your prompt. At the prompt, enter bg followed by the PID,
job number, or name. For example, move the sleep process to the background
by entering:

bg %?ee

The ksh restarts the suspended job, displays a message like the following, and
runs the job in the background:

[1] sleep 30&

Displaying information about jobs

Use the jobs command to display status information about the jobs that ksh is
currently running. To display information about all active jobs, enter jobs at
the command line. The ksh displays status information in the following for
mat:

[2] + Running sleep 40&
[1] - Stopped sleep 30& <

The ksh displays a plus (+) character after the job number of the current job, a
minus (-) after the previous job.

Use the -1 option to display the PID after the job number. For example, if you
enter

jobs -1

ksh displays information like the following:
[1] + 23909 Stopped sleep 30&

You can limit the display to PID only by using the -p option to jobs.

Terminating a background job

To terminate a process, use the kill(C) command. The syntax for kill is:

kill [-signal] job

where signal is an optional signal number or name and job is the job name,
number, or PID of the job that you want to terminate.

235

The Korn shell

To display a complete list of signal numbers and names, enter kill -I. Signals
are used by UNIX as a way of communicating between processes. The kill(C)
command is simply a program that can be used to send signals to other pro
cesses, in order to suspend or kill them.

If you do not specify signal, ksh sends the TERM (terminate) signal to the
specified job. See the previous section "Referring to jobs" in this chapter for
more information on referring to jobs by job name, number, and PID .

When you use kill ksh displays a message like the following and terminates
the job:

[lJ + Terminated sleep 30&

External job control facilities

236

In addition to the job control facilities built into ksh it is worth remembering
two other programs at this point; nice and nohup. While nice and nohup are
not part of the shell, these utilities complement the job control features built
intoksh.

If a large number of users are logged onto the system or a large number of
jobs are running in the background, system performance may be significantly
degraded. To reduce the likelihood of this happening, it is possible to fine
tune the resource allocation of a job. nice can be used to reduce the amount of
time allocated to a job by the processor. For further information on using
nice, see nice(C).

Occasionally it may be necessary to run an extremely long job in the back
ground which needs to continue even after you have logged out. When you
log out of the Kom shell, a HUP signal is sent to all ksh's child processes. The
HUP (hangup) signal causes a process receiving it to terminate.

To enable a program to continue running after you log out, it is necessary to
run the program using nohup. (nohup traps the HUP signal, allowing your
program to run on without interruption.) For example,

nohup very_long_job &

causes very _Ion~job to be run as a background process that continues even
after the parent process is logged out. For further information, see nohup(C).

Users Guide

Interpretation of commands

Interpretation of commands
Like sh, the Kom shell is a fully functional command language interpreter.
The language provided by ksh is an extended version of the sh language.
Among the additional language features ksh provides are:

• a menu selection primitive (select) which provides a means of querying the
user via menus.

• built in integer arithmetic; ksh can perform integer arithmetic using ksh
variables and constants.

• string operators that enable ksh to convert strings to upper- or lower-case
and return substrings.

• array handling facilities so that ksh can operate upon one dimensional
arrays of strings or numbers.

• function definitions; ksh recognizes variables local to a function; conse
quently recursive functions can be defined and it is easier to write well
structured programs.

In general, most existing sh scripts run under ksh without alteration. This is
because ksh is effectively a superset of sh, and duplicates almost all the func
tionality of the earlier shell, while adding additional features. To understand
how ksh works, it is necessary to start by looking at how commands are car
ried out.

ksh first reads a command from the standard input, then executes it. Com
pound commands such as a for ... in ... do ... done loop are expanded and
executed at every iteration; functions are expanded and executed each time
they are called. The process of expansion consists of substituting aliases,
expanding quotes, and interpolating variables. Consequently, the command
which ksh ultimately executes may not resemble the line which ksh is fed as
input.

For example, after the earlier commands

alias whereis='find / -name $1 -print 2> /dev/null'
set fubar=' /ete/motd'

are executed, the command
whereis fubar

is interpreted as
find / -name=/ete/motd -print 2> /dev/null

237

The Korn shell

Alias expansion

238

The ksh alias mechanism is similar to that of the C shell in that it carries out
transformations upon commands immediately after they are input. The com
mand is checked against a list of aliases known to ksh, and if it is recognized
the corresponding meaning of the alias is substituted. This feature is used to
provide synonyms for commands and command sequences to improve the
usability of the shell.

To define an alias, enter the command alias, followed by the name of the alias
to use and then the definition of the alias. For example:

alias -x look='vi $1'
assigns the alias look to the command vi $1. (Note that the -x flag, short for
export, marks the alias automatically so that it is exported to any programs
run from the shell.) When the command

look my_file
is typed, ksh expands the alias look to vi $1. (The process of replacing a refer
ence to an alias with its value is known as "expansion".) $1 is the first argu
ment of the command, as with sh, so myJile, which is the first argument on
the current line, is substituted for $1. Consequently, the command which is
actually executed is

vi my_file

I NOTE If you enter a (Tab) or (Space) before or after the "=" in the alias
assignment ksh may misinterpret your definition.

In general, aliases take the form
alias [-x] name=value

where name is the alias to which value is assigned.

If value is enclosed in single quotes, it is expanded only when ksh processes a
reference to it; if it is enclosed in double quotes, ksh expands it when it first
processes the alias command.

For example, in the command
alias -x edit='vi $1'

$1 is expanded when the alias is called, so that
edit foo.bar

will result in
vi foo.bar

being executed; but the command
alias -x edit=''vi $1"

User's Guide

Interpretation of commands

is expanded when the alias is defined, so that $1 is not interpreted in context
when edit is used.

Aliases can contain any valid ksh command structure. It is safe to use the
name of an alias inside its value. For example, in the definition

alias -x Is='ls -aI'

the Is within the quotes is not replaced again by

'Is -al'.

If the value of an alias ends with a space or tab character, ksh automatically
checks the next command word it encounters for alias substitution. For exam
ple, the following dialogue sets up an alias for print that checks its argument
for aliases:

1% alias -x hello='print '
2% alias -x world='hello world'
3 % hello world
hello world
4%

While this one doesn't check:

1% alias -x hello='print'
2 % alias -x world=' hello world'
3% hello world
world
4%

There are two parameters to alias:

1. -x in an alias definition causes the alias to be exported to sub shells; other
wise aliases are specific to the shell in which they are defined. If alias -x is
entered without a definition, a list of all the current exportable alias
definitions is sent to the standard output.

2. -t in an alias definition flags the alias as a "tracked" definition. A tracked
alias is one in which the full pathname corresponding to the program
given in the alias definition is substituted for the name in the definition;
for example:

alias -tmv

would result in mv having the value /bin/my. Use of a tracked alias
reduces the amount of time it takes ksh to find and execute a program.
The value of a tracked alias becomes undefined whenever the PATH vari
able is reset, but the alias remains defined as being tracked. The next time
the alias is referenced, its value is redefined.

If the -t flag is used without an alias definition, a list of all existing tracked
aliases is sent to the standard output.

239

The Korn shell

Quote expansion and ksh

240

In addition to expanding aliases encountered in its input, ksh operates upon
tokens encountered between quotation marks. (A token is the smallest unit of
input recognized by ksh as being either a command or an item of data.)

If a command is enclosed between backquotes (, •.. ') or within brackets pre
ceded by a II $" symbol ($(•••)), the bracketed command is replaced by the
output of that command. For example:

where_am_i='pwd'

or

where_am_i=$(pwd)

assigns the value returned by pwd to the variable where_am_i, but
where_am_i='pwd'

assigns the string "pwd" to the variable where_am_i.

Ordinary quotes (single or double) do not result in command substitution
being carried out in this way. However, ksh does not interpret commands
enclosed in quotes in exactly the same way as unquoted commands.

ksh obeys the same rules for interpreting quoted text as sh. Literal (single)
quotes, (, .•. ') remove the special meaning of all enclosed characters. A sin
gle quote can never appear within a single quoted string because it is inter
preted as the end of the string.

Double quoted (grouping) quotes remove the special meaning of all enclosed
characters, except" $", II' ", """ and" \".

Within double quotes, when ksh encounters one of the above characters pre
ceded by a backslash, the backslash is discarded and the character is inter
preted with its literal meaning. When not preceded by a backslash, the special
characters are interpreted as follows:

$
$(...)
II'"
IIU11

II "

,Parameter expansion
Command substitution (new style, not shared with sh).
Old style command substitution
End of current string
Escape character

User's Guide

Interpretation of commands

Parentheses

In addition to the $(•••) construct, there are a few other parenthesized forms
that are unique to ksh.

The ${ ••• } form is used to indicate that parameter expansion should be
applied to the parameters within the braces. For full details of this process,
refer to ksh(C} ; briefly, the parameters in the braces are treated as variables,
and their values substituted.

The « ... » form is used to denote an arithmetic evaluation. ksh is capable of
evaluating arithmetic statements of the form let II ••• ". The double bracket
notation is a shorthand for this, and text contained between double brackets is
evaluated arithmetically.

Single square brackets [...] are used to denote array subscripts. ksh, unlike
the other shells, is capable of handling one dimensional arrays of variables.
The text within the square brackets immediately after the name of the array is
evaluated and used as a subscript: that is, an index that indicates which ele
ments of the array are being referred to.

Double square brackets [[...]] are used to contain test expressions for some
conditional statements. The expression contained between double square
brackets is evaluated, and a zero exit status is returned if the expression is
true. This notation is unlikely to be encountered unless you are writing or
maintaining shell programs.

Tilde expansion

Tilde Expansion is a feature of ksh which is not shared by the other shells.
When a word beginning with a tilde (" -") is encountered in ksh's input after
alias substitution, the word is checked as far as the first II /" to see if it
matches:

,JI- "

11-_"

II-II

II-II

(by itself) is replaced by the value of $HOME.
this is replaced by the string $PWD, which is then expanded.
this is replaced by $OLDPWD, which is then expanded.
when followed by user login name, this is replaced by the home
directory of the user.
followed by anything else is left unchanged.

241

The Korn shell

Programming the Kom shell
Programs written in the Korn Shell language are known as shell scripts. They
can be written using any of the standard text editors. To execute a shell script,
all that is necessary is to use chmod +x to make the file executable, then type
the name of the script file at the shell prompt (followed by any necessary
arguments). ksh then runs the script.

You can also run a script by running ksh with the name of the script as an
argument; this causes a second copy of ksh to execute and run the script.

At its simplest, a ksh script might consist of a list of program names and their
arguments, each located on a new line or separated from the preceding and
following commands by a semicolon. Such a list, when read by ksh, is inter
preted one command at a time. Each command is checked for aliases, which
are expanded as necessary, then all required quote and variable substitutions
are carried out. Finally, ksh forks and executes the command, then advances
to the next line. When there are no more lines to execute, ksh terminates the
script and closes the file.

Arguments, parameters, and variables

242

As with sh, it is possible to pass arguments to a shell script via the command
line. Arguments to the script are stored as positional parameters. Positional
parameter 1/ 0 1/ is set to the name of the script, and parameters numbered
sequentially from 1/ I" onwards are set to the value of the arguments.

Parameters are accessed within the script using the following notation:

$n Refers to the n'th parameter. For example, the third parameter is
referred to by $3. Braces are required around the parameter number
for values of n greater than 9. (Unlike sh, ksh does not place an upper
limit on the number of parameters which are permitted.)

$# The number of positional parameters, not including o.
"$*" A single argument consisting of all the positional parameters except o.

(Note that quotes are required to prevent parameters with embedded
white space from being split into separate arguments and null argu
ments from being removed.)

The set command can be used to assign new values to or unset the values of
the positional parameters.

User's Guide

Programming the Korn shell

In addition to the arguments provided when the script is first executed, ksh
can access environment parameters and its own internal parameters in the
course of execution. Such named parameters are referred to as variables.
Some of the parameters are preconfigured and contain information relating to
the state of the shell; others are defined by the script and can be used for tem
porary storage during execution.

ksh lets you define as many variables as you need. User defined parameter
names are preceded by a II $ " symbol to identify them to ksh.

By default, ksh treats all parameters as strings of text. However, unlike sh,
ksh can distinguish different types of variable. You can specify that a variable
is to be treated as an integer number by using the typeset -i option to tag it
with the integer attribute. Whenever ksh expands a parameter tagged with
the -i attribute it treats it as an integer rather than a string. Indeed, there are a
number of attributes available which control the manner in which variables
are treated by the shell. Any variable can be tagged with any attribute by use
of the typeset command; but some of the attributes are mutually exclusive.
For example, the -u (uppercase) attribute and the -1 (lower case) attribute can
cel one another; only the most recently applied takes effect.

The following attributes are available:

-H This flag provides UNIX system to hostname file mapping on non
UNIX system machines.

-L Left justify and remove leading blanks from value. If n is non zero it
defines the width of the field: otherwise it is determined by the width
of the value of the first assignment. When the parameter is assigned to,
it is filled on the right with blanks or truncated, if necessary, to fit into
the field. Leading zeros are removed if the -Z flag is also set. The-R
flag is turned off.

-R Right justify and fill with leading blanks. If n is non zero it defines the
width of the field, otherwise it is determined by the width of the value
of the first assignment. The field is left filled with blanks or truncated
from the end if the parameter is reassigned. The L flag is turned off.

-Z Right justify and fill with leading zeros if the first non blank character
is a digit and the -L flag has not been set. If n is non zero it defines the
width of the field, otherwise it is determined by the width of the value
of first assignment.

243

The Korn shell

-f The names refer to function names rather than parameter names. No
assignments can be made and the only other valid flags are -t, -u and
-x. The flag -t turns on execution tracing for this function. The flag -u
causes this function to be marked as undefined. The FPATH variable is
searched to find the function definition when the function is refer
enced. The flag -x allows the function definition to remain in effect
across shelt'procedures invoked by name.

-i Parameter is an integer. This makes arithmetic faster. If n is non zero it
defines the output arithmetic base; otherwise the first assignment
determines the output base.

-1 All upper-case characters converted to lower case. The upper-case
flag, -u, is turned off.

-r The given names are marked readonly and these names cannot be
changed by subsequent assignment.

-t Tags the named parameters. Tags are user definable and have no spe
cial meaning to the shell.

-u All lower-case characters are converted to upper-case characters. The
lower-case flag, -1 is turned off.

-x The given names are marked for automatic export to the environment
of subsequently executed commands.

Using + rather than - causes these flags to be turned off. If no name
arguments are given but flags are specified, a list of names (and option
ally the values) of the parameters which have these flags set is printed.
(Using + rather than - keeps the values from being printed.) If no
names and flags are given, the names and attributes of all parameters
are printed.

Built-in commands

244

Built-in commands (sometimes referred to as internal commands) are recog
nized as keywords by ksh, which processes them itself. It is not necessary for
ksh to fork and execute another process to carry out an internal command;
consequently scripts consisting only of internal commands run faster than
those which frequently make use of external commands. Because internal
commands are part of ksh, they can also be used to alter the current environ
ment.

Users Guide

Programming the Korn shell

There are two categories of built in command in ksh. There are simple com
mands, like typeset or export, and flow control commands like for and while.
The flow control commands tend to be more complex because they are used
to control the execution of the other commands.

All internal commands return a value when executed, just like any other com
mand. The return value FALSE (1) is returned if a command is specified for
which any of the following are true:

• the wrong number of arguments was specified.

• an invalid argument was specified (for example, a string argument when a
numeric one was expected).

• an invalid variable was assigned.

• an invalid alias name was specified.

• an invalid II 0 redirection was requested.

• an expansion for an unset parameter is specified and nounset is on.

• an invalid option is selected.

If a command succeeds, a non false value is returned, the type of which
depends on the command in question.

The following reserved words are recognized as the first word of an internal
command when not quoted:

u then
elif fi
esac
until
{}
time

for
do
function
U]]

else
case
while
done
select

All the above listed internal commands behave like their equivalents in sh,
except for select, which is described below.

Comments are denoted by a word beginning with a "#". The presence of this
symbol causes that word and all the following characters up to a new line to
be ignored.

245

The Korn shell

Differences from the Bourne shell

Functions

246

As noted previously, the syntax recognized by ksh is a superset of the stan
dard sh language. All the normal shell program constructs are available. In
addition to these the job control commands, alias expansions and variable
attributes are available. ksh provides a few more programming features
which are not available under sh. These are described below.

The additional constructs are:

• functions

• substring expansions

• the select command

• pattern matching

• debugging support

Functions provide the ksh with a degree of structure which enables complex
programs to be written, debugged and maintained more easily than in the
standard shell. A set of tasks which are carried out repeatedly in the course of
a program can be encapsulated within a function. The function must be
defined (declared) in the main program before it can be used. The act of
declaring a function does not actually cause the actions defined in the func
tion to be carried out; but when the function name is called from the main
program the function definition is recalled and the commands contained in it
are executed.

A function differs from a dot script in that variables can be defined which are
local to the function, and positional parameters are saved and restored prior
to and after function execution. Functions execute faster than dot scripts
because they are read once only, when they are defined, rather than every
time that they are invoked. Because functions execute within the current
environment, they can share variables with the script from which they are
invoked. They can also invoke other functions.

Local variables, which are only accessible within the body of a function, can
be created by using typeset within the function. Local variables can possess
the same name as a variable in the main script, but assigning a value to a local
variable has no effect on the variable in the calling script. However, if a new
value is assigned to a variable declared in the main script, the change is
retained when the function returns.

User's Guide

Differences from the Bourne shell

Functions can have parameters. When calling a function, specify any parame
ters to it as you would the parameters to a shell script or ordinary function.
Positional parameter 0, as with a script, is set to the name of the function.

After expanding the current command line, ksh checks the current command
to see if it is an internal command, then a function, then an external com
mand. Consequently if a function possesses the same name as an external
command, the external command cannot be executed; and if a user defined
function possesses the same name as an internal command, it cannot be car
ried out.

To declare a function, the command function is required and the body of the
function is enclosed in braces:

function equal_args # Returns true (0) if $1 = $2
{

if (($1 == $2))
then return 0

else

fi

print error
return 1

Note that $1 and $2 in this example refer to the positional parameters supplied
to the function.

To display the definition of one or more functions, use the functions alias. To
remove a function from the shell, use unset -f followed by the name of the
function. Because function definitions are not inherited by sub-shells, any
functions which are required in all sub-shells created by ksh should be
defined in the .kshrc file.

It is possible to define autoload functions which are loaded by the shell only
when they are first called. Such functions are declared in the shell script using
the autoload alias. When ksh encounters the name of an autoload function, it
searches the path defined in FP ATH for a file with the same name as the func
tion. ksh then reads this file into the environment before it executes the func
tion. This confers the advantage that ksh does not read the function defini
tions unless and until the function is called within a program.

Because alias expansion occurs before commands are interpreted, it is possi
ble to use an alias in conjunction with a function to redefine an internal ksh
command. First, a function to carry out the desired action is defined. It
should have a different name from the internal command it is to replace, oth
erwise the internal command is invoked in preference to the function.
Secondly, an alias with the same name as the internal command is defined, its
value being the name of the function. Because the alias is evaluated before
any commands are carried out, all instances of the internal command name
are expanded into the name of the function to replace that command.

247

The 'Korn shell

For example, using a combination of alias and function definitions it is possi
ble to redefine the cd command to behave in a way more familiar to users of
MS-DOS.

_cd()
case $# in
0) pwd ; ;

*) cd "$@" && PSl="$PWD> " ;;
esac

alias cd= cd

Under UNIX, the command cd either changes to the specified directory (if an
argument is given), or changes to the users home directory (if no arguments
are given). This may confuse users who are converting from MS-DOS; under
MS-DOS, if no arguments are used, cd echoes the present working directory
(that is, it behaves like the UNIX command pwd).

Firstly, the function _cdO is defined. If _cdO is called without arguments, it
executes pwd. If it is called with one or more arguments it cd's to the direc
tory given by the argument, and if successful sets the current command
prompt to the value of the present working directory (in a manner similar to
the MS-DOS prompt pg command).

Secondly, the cd command is redefined as an alias to _cdO. Whenever the
command cd is entered, the function _cdO will be executed instead.

Substring parameter expansion

248

ksh provides a variety of string manipulation facilities, which are applied to
variables at the parameter expansion stage of command execution. Using the
substring parameters listed below, it is possible to chop and change variables
and conduct pattern matching searches upon data held by the program. Sub
string parameter expansion can be applied to any parameter. The normal
${ ..• } syntax is used to indicate that the parameters in braces are to be
expanded; however a number of flags may be included, which indicate the
way in which the parameters are to be treated.

The substring expansions available to ksh programs include the following:

${#parameter} If parameter is * or @, the number of positional parameters is
substituted. Otherwise, the length of the value of the parameter is substi
tuted.

User's Guide

Differences from the Bourne shell

${#identifierl*]} The number of elements in the array identifier is substituted.

${parameter:-word} If parameter is set and is non null then substitute its
value; otherwise substitute word.

${parameter:=word} If parameter is not set or is null then set it to word; the
value of the parameter is then substituted. Positional parameters may not be
assigned to in this way.

${parameter:?word} If parameter is set and is non null then substitute its
value; otherwise, print word and exit from the shell. If word is omitted then a
standard message is printed.

${parameter:+word} If parameter is set and is non null then substitute word;
otherwise substitute nothing.

${parameter#pattern}

${parameter##pattern} If the shell pattern matches the beginning of the value
of parameter, then the value of this substitution is the value of the parameter
with the matched portion deleted; otherwise the value of this parameter is
substituted. In the first form the smallest matching pattern is deleted and in
the second form the largest matching pattern is deleted.

${parameter%pattern}

${parameter%%pattern} If the shell pattern matches the end of the value of
parameter, then the value of this substitution is the value of the parameter
with the matched part deleted; otherwise substitute the value of parameter.
In the first form the smallest matching pattern is deleted and in the second
form the largest matching pattern is deleted.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set
oris null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, then the shell only
checks whether parameter is set or not.

249

The Korn shell

The select command

250

The select command is a special purpose command intended to make it easier
to write scripts which require user input. The syntax of select is as follows:

select identifier [in word . ..]
do compound list

done

ksh performs command and parameter substitution, word splitting, path
name expansion and quote removal on each word, to produce a list of items
before it processes the do C compound list command. If inword is not speci
fied, ksh substitutes the positional parameters (starting at 1) as the list of
items.

The select command is executed as follows:

• The list of items is displayed in one or more columns on the standard error.
Each item is preceded by a number. Below the items, ksh displays the PS3
prompt. The number of lines and columns used are derived from the
values of the LINES and COLUMNS variables.

• ksh reads a line from the standard input. If the line is empty, ksh redis
plays the list of items and the PS3 prompt until a non empty line is read. If
the line consists of the number of one of the displayed items, ksh sets the
value of the variable identifier to the item corresponding to the number.

• ksh saves the contents of the non empty selection line in the variable
REPLY.

• ksh executes compound list for each selection until a break, return or exit
command is encountered in compound list.

• select terminates when it encounters an End of file condition.

The following example shows a simple menu and returns the results of the
selection:

one='one'
two='two'
three='three'
four=' four'
five='last'
PS3='Please enter a number:'
select choice in $one $two $three $four $five
do print 'You entered number' $REPLY

print 'and selected item' $choice;
break;

done

Users Guide

Differences from the Bourne shell

Note that the menu appears on the standard error. Consequently it is impor
tant that the standard error should be redirected to the same terminal as the
standard input if select is to be used interactively.

Pattern matching

The ksh pattern matching facilities are extensive, and differ from those pro
vided by grep, ed or other programs. Patterns can be used in pathnames, case
pattern matching, pattern matching within [[...]], and substring expansion.

The following pattern characters are recognized by ksh and are expanded:

II * II
I/?"
/I [•••] "

Matches any string, including the null string.
Matches any single character.
Matches anyone of the enclosed characters. A pair of
characters separated by /I -" matches any character
lexically between the pair, inclusive. If the first character
following the opening /I [" is a /I ! " then any character not
enclosed is matched. A /I -" can be included in the
character set by putting it as the first or last character.

A pattern list is a list of one or more patterns separated from each other with
a I. Composite patterns can be formed with one or more of the following:

?(pattern list)
*(pattern list)
+(pattern list)
@(pattern list)
!(pattern list)

Debugging support

Optionally matches anyone of the given patterns.
Matches zero or more occurrences of the given patterns.
Matches one or more occurrences of the given patterns.
Matches exactly one of the given patterns.
Matches anything, except one of the given patterns.

ksh provides facilities that make it easier to detect problems with scripts.
When ksh detects a syntax error while reading a script it displays the script
name, the line number at which it became aware of the error, and the probable
cause of the error. When ksh detects a runtime error while executing a script
it displays the function or script name, line number (n square brackets) and
error. Line numbers are relative to the beginning of the script file when exe
cuting a script and relative to the first line of a function when executing a
function.

251

The Korn shell

252

In addition to these basic features, ksh provides a number of other debugging
aids. You can check the syntax of a script without executing it, by running
ksh with the noexec option; or you can make ksh display its input by setting
the verbose option.

You can also make ksh display an execution trace as it executes your script.
The execution trace is a listing of each command that ksh encounters, as it is
expanded but before it is executed. ksh can be made to produce a trace out
put by either turning on the xtrace option with set -x or set -0 xtrace inside the
script, or by invoking ksh with the xtrace parameter. To trace a function, use
typeset with the -ft options.

The PS4 prompt is displayed in front of each line during the execution trace.
To follow the line numbering within the script, make sure that the PS4 prompt
contains the LINENO variable. If the appropriate variables are included in the
prompt, you can trace their values as execution proceeds.

Finally, ksh provides the DEBUG trap. To set the DEBUG trap, use the com
mand

trap [action] debug

Where action is a command to execute after every simple command. For
example, you can specify that the action to take is something like

trap print $firstvar $secondvar DEBUG

in which case the value of each variable is printed after each line is executed,
until the trap is removed.

User's Guide

Chapter 11

Manipulating text with sed

This chapter describes the stream editor, sed(C), that allows you to perform
large-scale, noninteractive editing tasks. The sed editor is useful for working
with large files or running complicated sequences of editing commands on a
file or group of files.

Although you can perform many of the same tasks with grep, sort, and the
variants of dUf, sed offers an added facility for the processing of complicated
changes to large files, or many files at once. sed is very handy for large batch
editing jobs, however, you can perform many of the same tasks with ed
scripts.

The sed program is a noninteractive editor which is especially useful when
the files to be edited are either too large, or the sequence of editing commands
too complex, to execute interactively. sed works on only a few lines of input
at a time and does not use temporary files, so the only limit on the size of the
files you can process is that both the input and output fit simultaneously on
your disk. You can apply multiple "global" editing functions to your text in
one pass. You can create complicated editing scripts and submit them to sed
as a command file. Therefore, you can save yourself considerable retyping
and the possibility of making errors. You can also save and reuse sed com
mand files that perform editing operations that you repeat frequently.

Processing files with sed command files is more efficient than using ed, even if
you prepare a prewritten script. Note, however, that sed lacks relative
addressing becauses it processes a file one line at a time. Also, note that sed
gives you no immediate verification that a command has altered your text in
the way you actually intended. For this reason, you should check your output
carefully.

253

Manipulating text with sed

The sed program is derived from ed, although there are considerable
differences between the two, resulting from the different characteristics of
interactive and batch operation. However, there is a striking resemblance in
the class of regular expressions that each program recognizes; the code for
matching patterns is nearly identical for ed and sed.

Using sed

254

By default, sed copies the standard input to the standard output, performing
one or more editing commands on each line before writing it to the output.
Typically, you need to specify the file or files that you are processing, along
with the name of the command file that contains your editing script. For
example:

sed -f script filename

The flags, such as -£ are optional. The -£ flag in this example tells sed to take
the next argument as a filename. (This file must contain editing commands,
one to a line.)

The general format of a sed editing command is:

addressl,address2 function arguments

In any command, you can omit one or both addresses. A function is always
required, but an argument is optional for some functions. Any number of
blanks or tabs can separate the addresses from the function, and tab charac
ters and spaces at the beginning of lines are ignored.

Three flags are recognized on the command line:

-n Directs sed to copy only those lines specified by p functions or
p flags after s functions.

-e Indicates that the next argument is an editing command.

-f Indicates that the next argument is the name of the file which con-
tains editing commands, typed one to a line.

sed commands are applied one at a time, generally in the order they appear,
unless you change this order with one of the "flow-of-control" functions dis
cussed below. sed works in two phases, compiling the editing commands in
the order they are given, then executing the commands one by one to each
line of the input file.

The input to each command is the output of all preceding commands. Even if
you change this default order of applying commands with one of the two
flow-of-control commands, t and b, the input line to any command is still the
output of any previously applied command.

User's Guide

Addresses

You should also note that the range of pattern match is normally one line of
input text. This range is called the "pattern space." More than one line can be
read into the pattern space by using the N command described below in
"Multiple input-line functions."

The rest of this section discusses the principles of sed addressing, followed by
a description of sed functions. All the examples here are based on the follow
ing lines from Samuel Taylor Coleridge's poem, "Kubla Khan":

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

For example, the following command quits after copying the first two lines of
the input:

2q

Using the sample text, the result is:
In Xanadu did Kubla Khan
A stately pleasure dome decree:

Addresses
The following rules apply to addressing in sed. There are two ways to select
the lines in the input file to which editing commands are to be applied: with
line numbers or with "context addresses."

Context addresses correspond to regular expressions. You can control the
application of a group of commands by one address or an address pair, by
grouping the commands with curly braces ({}). You can specify 0, 1, or 2
addresses, depending on the command. The maximum number of addresses
possible for each command is indicated.

A line number is a decimal integer. As each line is read from the input file, a
line number counter is incremented. A line number address matches the
input line, causing the internal counter to equal the address line number. The
counter runs cumulatively through multiple input files. It is not reset when a
new input file is opened. A special case is the dollar sign character ($) which
matches the last line of the last input file.

255

Manipulating text with sed

256

Context addresses are enclosed in slashes U). They include all the regular
expressions common to both ed and sed:

• An ordinary character is a regular expression and matches itself.

• A caret n at the beginning of a regular expression matches the null charac
ter at the beginning of a line.

• A dollar sign ($) at the end of a regular expression matches the null charac
ter at the end of a line.

• The characters /I \ n" match an embedded newline character, but not the
newline at the end of a pattern space.

• A period (.) matches any character except the terminal newline of the pat
tern space.

• A regular expression followed by a star (*) matches any number, including
0, of adjacent occurrences of regular expressions.

• A string of characters in square brackets ([]) matches any character in the
string, and no others. If, however, the first character of the string is a caret
n, the regular expression matches any character except the characters in
the string and the terminal newline of the pattern space.

• A concatenation of regular expressions is one that matches a particular
concatenation of strings.

• A regular expression between the sequences "\ (" and "\)" is identical in
effect to itself, but has side-effects with the s command. (Note the follow
ing specification.)

• The expression II \ d" means the same string of characters matched by an
expression enclosed in II \ (" and II \)" earlier in the same pattern. Here d
is a single digit; the string specified is that beginning with the dth occur
rence of \ (, counting from the left. For example, the expression A\ (.*\)\ 1
matches a line beginning with two repeated occurrences of the same string.

• The null regular expression standing alone is equivalent to the last regular
expression compiled.

For a context address to "match" the input, the whole pattern within the
address must match some portion of the pattern space. If you want to use one
of the special characters literally, that is, to match an occurrence of itself in the
input file, precede the character with a backslash (\) in the command.

Users Guide

Functions

Each sed command can have 0, I, or 2 addresses. The maximum number of
allowed addresses is included. A command with no addresses specified is
applied to every line in the input. If a command has one address, it is applied
to all lines that match that address. On the other hand, if two addresses are
specified, the command is applied to the first line that matches the first
address, and to all subsequent lines until and including the first subsequent
line that matches the second address. An attempt is made to match the first
address on subsequent lines, and the process is repeated. Two addresses are
separated by a comma. Here are some examples:

lanl
Ian. *an I
rani
1,/
Ir*anl

Functions

matches lines 1,3,4 in our sample text
matches line 1
matches no lines
matches all lines
matches lines 1,3,4 (number = zero!)

All sed functions are named by a single character. They are of the following
types:

• whole-line oriented functions that add, delete, and change whole text lines.

• substitute functions that search and substitute regular expressions within a
line.

• input-output functions that read and write lines and/or files.

• multiple input-line functions that match patterns that extend across line
boundaries.

• hold and get functions that save and retrieve input text for later use. ,
• flow-of-control functions that control the order of application of functions.

• miscellaneous functions.

Whole-line oriented functions

d Deletes from the file all lines matched by its addresses. No further com
mands are executed on a deleted line. As soon as the d function is exe
cuted, a newline is read from the input, and the list of editing commands is
restarted from the beginning on the newline. The maximum number of
addresses is two.

n Reads and replaces the current line from the input, writing the current line
to the output if specified. The list of editing commands continues follow
ing the n command. The maximum number of addresses is two.

257

Manipulating text with sed

258

a Causes the text to be written to the output after the line matched by its
address. The a command is inherently multi-line and must appear at the
end of a line. The text can contain any number of lines. The interior new
lines must be hidden by a backslash character (\) immediately preceding
each newline. The text argument is terminated by the first unhidden new
line, the first one not immediately preceded by backslash. Once an a func
tion executes successfully, the text is written to the output regardless of
what later commands do to the line that triggered it, even if the line is sub
sequently deleted. The text is not scanned for address matches, and no
editing commands are attempted on it, nor does it cause any change in the
line number counter. Only one address is possible.

i When followed by a text argument, i functions the same as a, except that
the text is written to the output before the matched line. It has only one
possible address.

c The c function deletes the lines selected by its addresses, and replaces
them with the lines in the text. Like the a and i commands, c must be fol
lowed by a newline hidden with a backslash; interior newlines in the text
must be hidden by backslashes. The c command may have two addresses,
and therefore select a range of lines. If it does, all the lines in the range are
deleted, but only one copy of the text is written to the output, not one copy
per line deleted. As in the case of a and i, the text is not scanned for
address matches, and no editing commands are attempted on it. It does
not change the line number counter. After a line has been deleted by a c
function, no further commands are attempted on it. If text is appended
after a line by a or r functions, and the line is subsequently changed, the
text inserted by the c function is placed before the text of the a or r func
tions.

Note that when you insert text in the output with these functions, leading
blanks and tabs disappear in all sed commands. To get leading blanks and
tabs into the output, precede the first desired blank or tab by a backslash; the
backslash does not appear in the output.

For example, apply the following list of editing commands to our standard
input:

n
a\
XXXX
d

Users Guide

The output is:
In Xanadu did Kubla Khan
XXXX
Where Alph, the sacred river, ran
XXX X
Down to a sunless sea.

Functions

In this particular case, you get the same effect using either of the two follow
ing command lists:

or:

n
i\
XXXX
d

n
c\
XXXX

Substitute functions

The substitute function(s) changes parts of lines selected by a context search
within the line, as in:

(2)s pattern replacement flags substitute

The s function replaces part of a line selected by the designated pattern with
the replacement pattern. The pattern argument contains a pattern, exactly
like the patterns in addresses. The only difference between a pattern and a
context address is that a pattern argument may be delimited by any character
other than space or newline. By default, only the first string matched by the
pattern is replaced, except when you use the -g option.

The replacement argument begins immediately after the second delimiting
character of the pattern, and must be followed immediately by another
instance of the delimiting character. The replacement is not a pattern, and the
characters that are special in patterns do not have special meaning in replace
ment. Instead, the following characters are special:

This character is replaced by the string matched by the pattern.

\ d d is a single digit that is replaced by the dth substring matched by
parts of the pattern enclosed in "\(" and "\) ". If nested sub
strings occur in the pattern, the dth substring is determined by
counting opening delimiters.

259

Manipulating text with sed

260

As in patterns, you can make special characters literal by preceding them with
a backslash (\).

A flag argument can contain the following:

g

p

wfile

Substitutes the replacement for all non-overlapping instances of
the pattern in the line. After a successful substitution, the scan for
the next instance of the pattern begins just after the end of the
inserted characters; characters put into the line from the replace
ment are not rescanned.

Prints the line if a successful replacement was done. The p flag
causes the line to be written to the output only if a substitution
was actually made by the s function. Note that if several s func
tions, each followed by a p flag, successfully substitute in the same
input line, multiple copies of the line are written to the output (one
for each successful substitution).

Writes the line to a file if a successful replacement was done. The
-w option causes lines tht are actually substituted by the s function
to be written to the named file. If the filename existed before you
run sed, it is overwritten; if not, the file is created. A single space
must separate -wand the filename. The possibilities of multiple,
somewhat different copies of one input line being written are the
same as for the -p option. A combined maximum of ten different
filenames can be specified after w flags and w functions.

Here are some examples. (For the sake of clarity, only the lines affected by the
changes are shown. In reality, even unchanged lines are passed through and
printed.) When applied to our standard input, the following command:

s/to/bylw changes
produces the following to standard output:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and produces the following in the file changes:
Through caverns measureless by man
Down by a sunless sea.

The following command:
S/[.,i?:]/*P&*/gp

produces:
A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

User's Guide

With the g flag, the following command:

/XIs/anJAN/p

produces:
In XANadu did Kubla Khan

The following command:

/XIs/anJAN/gp

produces:

In XANadu did Kubla KhAN

Input-output functions

This section covers the sed input-output functions.

Functions

p The print function writes the addressed lines to the standard out
put file at the time sed encounters the p function, regardless of
what succeeding editing commands do to the lines. The max
imum number of possible addresses is two.

w The write function writes the addressed lines to filename. If the file
previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is
encountered for each line, regardless of what subsequent editing
commands do to them. Exactly one space must separate the w
command and the filename. The combined number of write func
tions and w flags can not exceed 10.

r The read function reads the contents of the named file, and
appends them after the line matched by the address. The file is
read and appended regardless of what subsequent editing com
mands do to the line that matched its address. If r and a functions
are executed on the same line, the text from the a functions and the
r functions is written to the output in the order that the functions
are executed. Exactly one space must separate the r and the
filename. One address is possible. If a file mentioned by an r func
tion cannot be opened, it is considered a null file rather than an
error, and no diagnostic is given.

Note that, since there is a limit to the number of files that can be opened
simultaneously, make sure that no more than ten files are mentioned in func
tions or flags; that number is reduced by one if any r functions are present.
Only one read file is open at one time.

261

Manipulating text with sed

In the following example, the file notel contains the following lines:

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

The following command:

lKublalr notel

produces:
In Xanadu did Kubla Khan

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Multiple input-line functions

262

Three upper-case functions deal specially with pattern spaces containing
embedded newlines. These functions are intended principally to provide pat
tern matches across lines in the input.

N Appends the next input line to the current line in the pattern
space; the two input lines are separated by an embedded newline.
Pattern matches can extend across the embedded newline(s).
There is a maximum of two addresses.

D Deletes up to and including the first newline character in the
current pattern space. If the pattern space becomes empty (the
only newline was the terminal newline), another line is read from
the input. In any case, begin the list of editing commands over
again. The maximum number of addresses is two.

P Prints up to and including the first newline in the pattern space.
The maximum number of addresses is two.

If there are no embedded newlines in the pattern space, the P and D functions
are equivalent to their lowercase counterparts.

User's Guide

Functions

Hold and get functions

These functions save and retrieve part of the input for possible later use:

h The h function copies the contents of the pattern space into a hold
ing area, destroying any previous contents of the holding area.
The maximum number of addresses is two.

H The H function appends the contents of the pattern space to the
contents of the holding area. The former and new contents are
separated by a newline.

g The g function copies the contents of the holding area into the pat
tern space, destroying the previous contents of the pattern space.

G The G function appends the contents of the holding area to the
contents of the pattern space. The former and new contents are
separated by a newline. The maximum number of addresses is
two.

x The exchange command interchanges the contents of the pattern
space and the holding area. The maximum number of addresses is
two.

For example, apply the following commands to our standard example:

lh
lsi did.*/1
1x
G
s/\nI :1

These commands produce the following:

In Xan~du did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

263

Manipulating text with sed

Flow-of-conb-ol functions
These functions do no editing on the input lines, but control the application of
functions to the lines selected by the address part.

This command causes the next command written on the same line
to be applied to only those input lines not selected by the address
part. There are two possible addresses.

{ This command causes the next set of commands to be applied or
not applied as a block to the input lines selected by the addresses
of the grouping command. The first of the commands under con
trol of the grouping command can appear on the same line as the {
or on the next line. The group of commands is terminated by a
matching} on a line by itself. Groups can be nested and can have
two addresses.

:label The label function marks a place in the list of editing commands
that can be referred to by band t functions. The label can be any
sequence of eight or fewer characters; if two different colon func
tions have identical labels, an error message is generated, and no
execution attempted.

blabel The branch function causes the sequence of editing commands
being applied to the current input line to be restarted immediately
after encountering a colon function with the same label. If no
colon function with the same label can be found after all the edit
ing commands have been compiled, an error message is produced,
and no execution is attempted. A b function with no label is inter
preted as a branch to the end of the list of editing commands.
Whatever should be done with the current input line is done, and
another input line is read; the list of editing commands is restarted

tlabel
from the beginning on the new line. Two addresses are possible.
The t function tests whether any substitutions have been made
successful on the current input line. If so, it branches to the label;
if not, it does nothing. The flag that indicates that a successful
substitution has been executed is reset either by reading a new
input line, or by executing a t function.

Miscellaneous functions

264

There are two other functions of sed not discussed in the sections above.
= The = function writes the number of the line matched by its

address to the standard output. One address is possible.
q The q function causes the current line to be written to the output

(if it should be), any appended or read text to be written, and exe
cution to be terminated. One address is possible.

Users Guide

Chapter 12

Simple programming with awk

Suppose you want to tabulate some survey results stored in a file, print vari
ous reports summarizing these results, generate form letters, reformat a data
file for one application package to use with another package, or count the oc
currences of a string in a file. Using the awk(C) programming language, you
can handle these and many other tasks of information retrieval and data pro
cessing. The name awk is an acronym constructed from the initials of its de
velopers; it denotes the language and also the UNIX system command you use
to run an awk program.

awk is an easy language to learn. It automatically does quite a few things that
you have to program for yourself in other languages. As a result, many useful
awk programs are only one or two lines long. Because awk programs are
usually smaller than equivalent programs in other languages, and because
they are interpreted, not compiled, awk is also a good language for proto
typing.

The first part of this chapter introduces you to the basics of awk and is
intended to make it easy for you to start writing and running your own awk
programs. The rest of the chapter describes the complete language. For the
experienced awk user, the end of the chapter contains a summary of the lan
guage.

You should be familiar with UNIX operating system commands and shell pro
gramming to use this chapter. Although you do not need other programming
experience, some knowledge of the C programming language is beneficial
because many constructs found in awk are also found in C.

265

Simple programming with awk

Basic awk
This section provides enough information for you to write and run some of
your own programs. Each topic presented is discussed in more detail in later
sections.

Program structure

The basic operation of awk is to scan a set of input lines one after another,
searching for lines that match any set of patterns or conditions that you
specify. For each pattern, you can specify an action; this action is performed
on each line that matches the pattern. Accordingly, an awk program is a
sequence of pattern-action statements. For example:

Structure:
pattern
pattern

Example:

{action}
{action}

$1 == "address" {print $2, $3 }

The example is a typical awk program, consisting of one pattern-action state
ment. The program prints the second and third fields of each input line
whose first field is "address." In general, awk programs work by matching
each line of input against each of the patterns in turn. For each pattern that
matches, the associated action (which can involve multiple steps) is executed.
Then the next line is read, and the matching starts over. This process typically
continues until all the input has been read.

Either the pattern or the action in a pattern-action statement can be omitted.
If there is no action with a pattern, the matching line is printed. For example:

$1 == "name"

If there is no pattern with an action, the action is performed for every input
line. For example:

{ print $1, $2 }

Because patterns and actions are both optional, actions are enclosed in braces
to distinguish them from patterns.

Running awk programs

266

There are two ways to run an awk program. First, you can type the command
line to execute the pattern-action statements on the set of named input files:

awk 'pattern-action statements' optional list of input files

User's Guide

Fields

Basicawk

For example, enter:
awk '{ print $1, $2 }' file1 file2

Notice that the pattern-action statements are enclosed in single quotes. This
protects characters like $ from being interpreted by the shell and also allows
the program to be longer than one line.

If no files are mentioned on the command line, awk reads from the standard
input. You can also specify that input comes from the standard input by
using the hyphen (-) as one of the input files. For example, to read input first
from filel and then from the standard input, enter:

awk '{ print $3, $4 }' file1 -
The arrangement above is convenient when the awk program is short. If the
program is long, it is often more convenient to put it into a separate file and
use the -f option to fetch it:

awk -£ program file optional list of input files
For example, the following command line specifies to fetch and execute
myprogram on input from the file fUel:

awk -f myprogram file1

Normally, awk reads its input one line, or record, at a time; a record is, by
default, a sequence of characters ending with a newline character. awk then
splits each record into fields; by default, a field is a string of non-blank, non
tab characters.

As input for many of the awk programs in this chapter, we use the file coun
tries, which contains information about the 10 largest countries in the world.
Each record contains the name of a country, its area in thousands of square
miles, its population in millions, and the continent on which it is found. (Data
are from 1978; the U.S.S.R. has been arbitrarily placed in Asia.) The white space
between fields is a tab in the original input; a single blank space separates
both North and South from America.

USSR 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

This file is typical of the kind of data awk is good at processing - a mixture
of words and numbers separated into fields by blanks and tabs.

267

Simple programming with awk

The number of fields in a record is determined by the field separator. Fields
are normally separated by sequences of blanks and/or tabs, so the first record
of countries has four fields, the second five, and so on. It is possible to set the
field separator to just tab, so each line has four fields, matching the meaning
of the data. We explain how to do this shortly. For the time being, let's use
the default: fields separated by blanks or tabs. The first field within a line is
called $1, the second $2, and so forth. The entire record is called $0.

Printing lines

268

If the pattern in a pattern-action statement is omitted, the action is executed
for all input lines. The simplest action is to print each line. You can accom
plish this with an awk program consisting of a single print statement:

{ print}

The following command line prints each line of countries, copying the file to
the standard output:

awk '{ print}' countries

You can also use the print statement to print parts of a record. For example,
this program prints the first and third fields of each record!

{ print $1, $3 }

Thus, entering the following command:

awk '{ print $1, $3 }' countries

produces as output the following sequence of lines:
USSR 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

When printed, items separated by a comma in the print statement are
separated by the output field separator (by default, a single blank). Each line
printed is terminated by the output record separator, (by default, a newline).

NOTE In the remainder of this chapter, we only show awk programs,
without the command line that invokes them. You can run each complete
program, either by enclosing it in quotes as the first argument of the awk
command, or by putting it in a file and invoking awk with the -£ flag, as dis
cussed in "awk command usage." In an example, if no input is mentioned,
the input is assumed to be the file countries.

User's Guide

Basicawk

Formatting awk output

For more carefully formatted output, awk provides a C-like printf statement:

printf format, expr sub 1, expr sub 2, ... , expr sub n

This statement prints the expr sub n's according to the specification in the
string format. For example, the following awk program:

{ printf "% lOs %6d \n'~ $1, $3 }

prints the first field ($1) as a string of 10 characters (right justified), then a
space, then the third field ($3) as a decimal number in a six-character field,
finally a newline (\n). With input from the file countries, this program prints
an aligned table:

USSR 262
Canada 24
China 866

USA 219
Brazil 116

Australia 14
India 637

Argentina 26
Sudan 19

Algeria 18

With printf, no output separators or newlines are produced automatically;
you must create them yourself by using \n in the format specification. ''The
printf statement" section in this chapter contains a full description of printf.

Using simple patterns

You can select specific records for printing or other processing by using sim
ple patterns. awk has three kinds of patterns. First, you can use patterns
called relational expressions that make comparisons. As an example,
the operator == tests for equality. Thus, to print the lines in which the fourth
field equals the string Asia, use the program consisting of the following single
pattern:

$4 == "Asia"

With the file countries as input, this program yields:
USSR 8650 262 Asia
China
India

3692
1269

866
637

Asia
Asia

269

Simple programming with awk

The complete set of comparisons are >, >=, <, <=, == (equal to), and != (not
equal to). These comparisons can be used to test both numbers and strings.
For example, suppose you want to print only countries with a population
greater than 100 million. All you need is the following program:

$3> 100

(Remember that the third field in the file countries is the population in mil
lions.) This program prints all lines in which the third field exceeds 100.

Second, you can use patterns called regular expressions that search for
specified characters to select records. The simplest form of a regular expres
sion is a string of characters enclosed in slashes:

IUS!

This program prints each line that contains the (adjacent) letters US any
where; with the file countries as input, it prints:

USSR 8650 262 Asia
USA 3615 219 North America

There are more examples of regular expressions later in this chapter.

Third, you can use two special patterns, BEGIN and END, that match before
the first record is read and after the last record is processed. This program
uses BEGIN to print a title:

BEGIN {print "Countries of Asia:" }
!Asia! {print" '~$1}

The output from this program is as follows:
Countries of Asia:

USSR
China
India

Using simple actions

270

We have already seen the simplest action of an awk program: printing each
input line. This section explains how you can use built-in and user-defined
variables and functions for other Simple actions in a program.

User's Guide

Basicawk

Built-in variables
Besides reading the input and splitting it into fields, awk counts the number
of records read and the number of fields within the current record; you can
use these counts in your awk programs. The variable NR is the number of the
current record, and NF is the number of fields in the record. For example, the
following program prints the number of each line and how many fields it has:

{ print NR, NF }

This program prints each record preceded by its record number:

{ print NR, $0 }

User-defined variables
Besides providing built-in variables like NF and NR, awk allows you to define
your own variables, which you can use for storing data, doing arithmetic, and
the like. To illustrate, consider computing the total population and the aver
age population represented by the data in the file countries:

{ sum = sum + $3 }
END {print "Total population is", sum, ''million''

print "Average population of'~ NR, "countries is'~ sumlNR }

I NOTE awk initializes sum to zero before it is used.

The first action accumulates the population from the third field; the second
.action, which is executed after the last input, prints the sum and average:

Total population is 2201 million
Average population of 10 countries is 220.1

Functions
awk has built-in functions that handle common arithmetic and string opera
tions for you. For example, there is an arithmetic function that computes
square roots. There is also a string function that substitutes one string for
another. awk also lets you define your own functions. Functions are
described in detail in the section" Actions" in this chapter.

A handful of useful one-liners

Although you can use awk used to write large programs of some complexity,
many programs are not much more complicated than what we have seen so
far. Here is a collection of other short programs that you might find useful
and instructive. They are not explained here; however, any new constructs
appear later in this chapter.

271

Simple programming with awk

Print last field of each input line:
{print$NF}

Print the tenth input line:
NR==10

Another way of printing only the tenth line is as follows:
sed-n10p

Print the last input line:
{line = SO}

END { print line}
Print input lines that do not have four fields:

NF != 4 {print $0, "does not have 4 fields" }
Print the input lines with more than four fields:

NF>4
Print the input lines with last field more than 4:

$NF>4
Print the total number of input lines:

END { print NR }
Print total number of fields:

{nf=nf+NF}
END { print nf }

Print total number of input characters:
{ nc = nc + length($O) }

END { print nc + NR }
(Adding NR includes in the total the number of newlines.)

Print the total number of lines that contain the string Asia:
IAsial {nlines++ }
END { print nlines }

(The statement nlines++ has the same effect as nlines = nlines + I.)

Error messages

272

Generally, if you make an error in your awk program, you get an error mes
sage. For example, if you try to run the following program:

$3 < 200 { print ($1 }
generates the following error messages:

awk: syntax error at source line 1
context is

$3 < 200 { print { »> $1 } «<
awk: illegal statement at source line 1

1 extra (
Some errors might be detected while your program is running. For example,
if you try to divide a number by zero, awk stops processing and reports the
input record number (NR) and the line number in the program.

User's Guide

Patterns

Patterns
In a pattern-action statement, the pattern is an expression that selects the
records for which the associated action is executed. This section describes the
kinds of expressions that can be used as patterns.

BEGIN and END

BEGIN and END are two special patterns that give you a way to control ini
tialization and wrap-up in an awk program. BEGIN matches before the first
input record is read, so any statements in the action part of a BEGIN are done
once, before the awk command starts to read its first input record. The END
pattern matches the end of the input, after the last record has been processed.

The following awk program uses BEGIN to set the field separator to tab (\t)
and to put column headings on the output. The field separator is stored in a
built-in variable called FS. Although FS can be reset at any time, usually the
only sensible place is in a BEGIN section, before any input has been read. The
program's second printf statement, which is executed for each input line, for
mats the output into a table, neatly aligned under the column headings. The
END action prints the totals. (Notice that a long line can continue after a
comma.)

BEGIN {FS = "\t"
printf"%10s %6s %5s %s\n",

"COUNTRY", "AREA'~ "POP", "CONTINENT" }
{ printf "% lOs %6d % 5d % s \n", $1, $2, $3, $4

area = area + $2; pop = pop + $3 }
END {printf"\n%10s %6d %5d\n", "TOTAC', area, pop}

With the file countries as input, this program produces

COUNTRY AREA POP CONTINENT
USSR 8650 262 Asia

Canada 3852 24 North America
China 3692 866 Asia

USA 3615 219 North America
Brazil 3286 116 South America

Australia 2968 14 Australia
India 1269 637 Asia

Argentina 1072 26 South America
Sudan 968 19 Africa

Algeria 920 18 Africa

TOTAL 30292 2201

273

Simple programming with awk

Relational expressions

274

An awk pattern can be any expression involving comparisons between strings
of characters or numbers. To make comparisons, awk includes six relational
operators and two regular expression matching operators, - (tilde) and r, (dis
cussed in the next section). Table 12.1 shows these operators and their mean
ings.

Table 12·1 awk comparison operators

Operator

<
<=

!=
>=
>

Meaning

less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than
matches
does not match

In a comparison, if both operands are numeric, a numeric comparison is
made; otherwise, the operands are compared as strings. (Every value might
be either a number or a string; usually awk can determine what is intended.
The section "Number or string?" contains more information about this.) Thus,
the following pattern selects lines where the third field exceeds 100:

$3>100

This program selects lines that begin with the letters 5 through Z (i.e. lines
with an ASCII value greater than or equal to 5):

$1>="5"

The output looks like this:
USSR
USA
Sudan

8650
3615
968

262
219
19

Asia
North America
Africa

In the absence of any other information, awk treats fields as strings. Thus, the
following program compares the first and fourth fields as strings of charac
ters:

$1 == $4

Using the file countries as input, this program prints the single line for which
this test succeeds:

Australia 2968 14 Australia

If both fields appear to be numbers, awk performs the comparisons
numerically.

User's Guide

Patterns

Regular expressions

awk provides more powerful patterns for searching for strings of characters
than the comparisons illustrated in the previous section. These patterns are
called regular expressions and are like those found in grep(C). See the grep(C)
manual page in the User's Reference for more information.

The simplest regular expression is a string of characters enclosed in slashes.
For example:

IAsia!

This program prints all input records that contain the substring Asia; if a
record contains Asia as part of a larger string like Asian or Pan-Asiatic it is
also printed. In general, if "n!' is a regular expression, then the following pat
tern matches any line that contains a substring specified by the regular
expression "re':

fret

To restrict a match to a specific field, you use the matching operators
- (matches) and !- (does not match). The following program prints the first
field of all lines in which the fourth field matches "Asia":

$4 -/Asia! {print $1}

This program prints the first field of all lines in which the fourth field does not
match "Asia":

$4 !- IAsia! {print $1 }

In regular expressions, the following symbols are metacharacters with special
meanings like the metacharacters in the UNIX system shell:

\A$.[]*+?O I

For example, the metacharacters A and $ match the beginning and end of a
string, and the metacharacter "dot" (.) matches any single character. Thus, the
following matches all records that contain exactly one character:

r.$1

A group of characters enclosed in brackets matches anyone of the enclosed
characters. For example, I [ABC] I matches records containing anyone of A, B,
or C anywhere. You can abbreviate ranges of letters or digits within brackets.
Thus, I [a-zA-Z] I matches any single letter.

If the first character after the left bracket ([) is a caret n, this complements the
class so it matches any character not in the set. Thus, I ra-zA-Z] I matches any
non-letter. The following program prints all records in which the second field
is not a string of one or more digits (A for beginning of string, [0-9]+ for one or
more digits, and $ for end of string):

$2!-r[0-9]+$1

275

Simple programming with awk

276

Programs of this nature are often used for data validation.

Parentheses () are used for grouping and the pipe symbol (I) is used for alter
natives. For example, the following program matches lines containing any
one of the four substrings "apple pie," "apple tart," "cherry pie," or "cherry
tart:"

!(apple I cherry) (pie I tart)!

To turn off the special meaning of a metacharacter, precede it by a " \ "
(backslash). Thus, the following program prints all lines containing b fol
lowed by a dollar sign:

Ib\$!

In addition to recognizing metacharacters, the awk command recognizes the
following C programming language escape sequences within regular expres
sions and strings:

\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\ddd octal value ddd.

quotation mark
\c any other character c literally

For example, to print all lines containing a tab, use the program:

I\t/

awk interprets any string or variable on the right side of a - or r as a regular
expression. For example, you can write the program:

as:

$2 r r[0-9] +$!

BEGIN { digits = IIA[O_91+ $" }
$2 {- digits

Suppose you wanted to search for a string of characters such as A [0-9] + $.
When a literal quoted string like I'" [0-9] + $" is used as a regular expression,
one extra level of backslashes is needed to protect regular expression meta
characters. This is because one level of backslashes is removed when a string
is originally parsed. If a backslash is needed in front of a character to turn off
its special meaning in a regular expression, then that backslash needs a
preceding backslash to protect it in a string.

User's Guide

Patterns

For example, suppose we want to match strings containing b followed by a
dollar sign. The regular expression for this pattern is b \$. To create a string
to represent this regular expression, add one more backslash: "b \ \$". The
two regular expressions on each of the following lines are equivalent:

x - "b\ \$" x - /b\$/
x -''b\$'' x - /b$/
x - "b$" x - /b$/
x-"\\t" x- /\t/

The precise form of regular expressions and the substrings they match is
given in Table 12.2. The unary operators *, +" and? have the highest pre
cedence, with concatenation next, and then alternation I. All operators are
left associative. The r stands for any regular expression.

Table 12·2 awk regular expressions

Expression

c
\c

$

[s]
rs]
r*
r+
r?
(r)
rsub 1 rsub2
r sub 11 r sub 2

Combining patterns

Matches

any non-metacharacter c
character c literally
beginning of string
end of string
any character but newline
any character in set s
any character not in set s
zero or more 1's
one or more 1's
zero or one r
r
r sub 1 then r sub 2 (concatenation)
r sub 1 or r sub 2 (alternation)

A compound pattern combines simpler patterns with parentheses and the log
ical operators I I (or), && (and), and! (not). For example, if you want to print
all countries in Asia with a population of more than 500 million, use the fol
lowing program. This program selects all lines in which the fourth field is
Asia and the third field exceeds 500:

$4 == "Asia" && $3 > 500

The following program selects lines with Asia or Africa as the fourth field:

$4 == "Asia" I I $4 == "Africa"

277

Simple programming with awk

Another way to write the latter query is to use a regular expression with the
alternation operator I:

$4 - r<Asia 1 Africa)$1

The negation operator! has the highest precedence, then &&" and finally 1 I.
The operators && and 1 1 evaluate their operands from left to right; evalua
tion stops as soon as truth or falsehood is determined.

Pattern ranges

Actions

A pattern range consists of two patterns separated by a comma:

pat sub 1, pat sub 2 { ... }

In this case, the action is performed for each line between an occurrence of pat
sub 1 and the next occurrence of pat sub 2 (inclusive). As an example, the fol
lowing pattern:

ICanadal, IBrazill

matches lines starting with the first line that contains the string Canada, up
through the next occurrence of the string Brazil:

Canada
China
USA
Brazil

3852
3692
3615
3286

24
866
219
116

North America
Asia
North America
South America

Similarly, because FNR is the number of the current record in the current
input file (and FILENAME is the name of the current input file), the following
program prints the first five records of each input file with the name of the
current input file prepended:

FNR == 1, FNR == 5 { print FILENAME, $0 }

In a pattern-action statement, the action determines what is to be done with
the input records that the pattern selects. Actions frequently are simple print
ing or assignment statements, but they can also be a combination of one or
more statements. This section describes the statements that can make up
actions.

Built-in awk variables

278

Table 12.3 lists the built-in variables that awk maintains. You are familiar
with some of these; others are used in this and later sections.

User's Guide

Table 12-3 awk built-in variables

Variable

ARGC
ARGV
FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS
RS
RSTART
RLENGTH
SUBSEP

Meaning

number of command-line arguments
array of command-line arguments
name of current input file
record number in current file
input field separator
number of fields in current record
number of records read so far
output format for numbers
output field separator
output record separator
input record separator
index of first character matched by matchO
length of string matched by matchO
subscript separator

Performing arithmetic

Actions

Default

blank&tab

%.6g
blank

newline
newline

"\034"

Actions can use conventional arithmetic expressions to compute numeric
values. As a simple example, suppose we want to print the population den
sity for each country in the file countries. Because the second field is the area
in thousands of square miles, and the third field is the population in millions,
the expression 1000 * $3 1 $2 gives the population density in people per square
mile. Use the follOWing program to print the name of each country and its
population density:

{ printf n% lOs %6.lf\ri', $1, 1000 * $31 $2 }

279

Simple programming with awk

280

The output looks like this:
USSR 30.3

Canada 6.2
China 234.6

USA 60.6
Brazil 35.3

Australia 4.7
India 502.0

Argentina 24.3
Sudan 19.6

Algeria 19.6

Arithmetic is done internally in floating point. The arithmetic operators are +,
., *, /, % (remainder), and A (exponentiation; ** is a synonym). Arithmetic
expressions can be created by applying these operators to constants, variables,
field names, array elements, functions, and other expressions, all of which are
discussed later. Note that awk recognizes and produces scientific (exponen
tial) notation: le6, lE6, 10eS, and 1000000 are numerically equal.

awk has assignment statements like those found in the C programming lan
guage. The simplest form is the assignment statement

v=e
where v is a variable or field name, and e is an expression. For example, to
compute the number of Asian countries and their total populations, use this
program:

$4 == "Asia" {pop = pop + $3; n = n + 1 }
END { print ''population of", n,

"Asian countries in millions is'~ pop}
Applied to countries, this program produces:

population of 3 Asian countries in millions is 1165

The action associated with the pattern $4 == "Asia" contains two assignment
statements, one to accumulate population and the other to count countries.
The variables are not explicitly initialized, yet everything works properly
because awk initializes each variable with the string value"" and the numeric
valueO.

The assignments in the previous program can be written more concisely using
the operators += and ++ as follows:

$4 == "Asia" { pop += $3; ++n}
The += operator is borrowed from the C programming language:

pop +=$3
It has the same effect as:

pop=pop+$3
The += operator is shorter and runs faster. The same is true of the ++ opera
tor, which adds one to a variable.

Users Guide

Actions

The abbreviated assignment operators are +=, -=, *=, /=, %=, and ~=. Their
meanings are similar. For example,

vop=e

has the same effect as

v=vope

The increment operators are ++ and -. As in C, you can use them as prefix
(++x) or postfix (x++) operators. If x is I, then i=++x increments x, then sets i
to 2. On the other hand, i=x++ sets i to I, then increments x. An analogous
interpretation applies to prefix - and postfix-.

Assignment and increment and decrement operators can all be used in arith
metic expressions.

We use default initialization to advantage in the following program, which
finds the country with the largest population:

maxpop < $3 {maxpop = $3; country = $1 }
END { print country, maxpop }

Note, that this program is not correct if all values of $3 are negative.

awk provides the built-in arithmetic functions shown in Table 12.4.

Table 12·4 awk built·in arithmetic functions

Function

atan2(y,x)
cos(x)
exp(x)
int(x)
log (x)

randO
sin(x)
sqrt(x)
srand(x)

Value Returned

arctangent of yrx in the range - pi to pi
cosine of x, with x in radians
exponential function of x
integer part of x truncated towards 0
natural logarithm of x
random number between 0 and 1
sine of x, with x in radians
square root of x
x is new seed for randO

Both x and yare arbitrary expressions. The function randO returns a pseudo
random floating point number in the range (0,1), and srand(x) can be used to
set the seed of the generator. If srandO has no argument, the seed is derived
from the time of day.

281

Simple programming with awk

Using strings and string functions

282

A string constant is created by enclosing a sequence of characters inside quo
tation marks, as in "abc" or ''hello, everyone". String constants can contain the
C programming language escape sequences for special characters listed in
''Regular expressions" in this chapter.

String expressions are created by concatenating constants, variables, field
names, array elements, functions, and other expressions. The following pro
gram prints each record preceded by its record number and a colon, with no
blanks:

{ print NR ":" $0 }

This concatenates the three strings representing the record number, the colon,
and the record, and prints the resulting string. The concatenation operator
has no explicit representation other than juxtaposition.

awk provides the built-in string functions shown in Table 12.5. In this table,
"r' represents a regular expression (either as a string or as Ir!), 5, and tare
string expressions, and n and p are integers.

Table 12·5 awk built·in string functions

Function

gsub(r,s)

gsub(r, S, t)

index(s, t)
length(s)
match(s,r)

split(s, a)

split(s, a, r)
sprintf(fmt, expr-list)

sub(r,s)

sub(r,s, t)

substr(s, p)

substr(s, p, n)

Description

substitutes s for r globally in current record, returns
number of substitutions
substitutes s for r globally in string t, returns number
of substitutions
returns position of string tins, 0 if not present
returns length of s
returns the position in s where r occurs, 0 if not
present
splits 5 into array a on FS, returns number of fields
splits s into array a on r, returns number of fields
returns expr-list formatted according to format string
fmt
substitutes 5 for first r in current record, returns
number of substitutions
substitutes s for first r in t, returns number of
substitutions
returns suffix of s starting at position p
returns substring of s of length n starting at position p

User's Guide

Actions

The functions sub and gsub are patterned after the substitute command in the
text editor ed(C). See the Users Reference for more information. The function
gsub(r, s, t) replaces successive occurrences of substrings matched by the reg
ular expression r with the replacement string s in the target string t. (As in ed,
the left-most match is used and is made as long as possible.) gsub returns the
number of substitutions made. The function gsub(r, s) is a synonym for
gsub(r,s, $0). For example, the following program transcribes its input, re
placing occurrences of USA with United States:

{ gsub(IUSAI, ''United States"); print}

The sub functions are similar, except that they only replace the first matching
substring in the target string.

The function index(s, t) returns the left-most position where the string t
begins in s, or zero if t does not occur in s. The first character in a string is at
position 1. For example, the following command returns 2:

index("banana", "an")

The length function returns the number of characters in its argument string;
thus, the following prints each record, preceded by its length:

{ print length($O), $0 }

($0 does not include the input record separator.) The following program
prints the longest country name (Australia):

length($1) > max {max = length($1); name = $1 }
END { print name}

The match(s, r) function returns the position in string 5 where regular expres
sion r occurs, or 0 if it does not occur. This function also sets two built-in vari
ables RSTART and RLENGTH. RSTART is set to the starting pOSition of the
match in the string; this is the same value as the returned value. RLENGTH is
set to the length of the matched string. (If a match does not occur, RSTART is
0, and RLENGTH is -1.) For example, the following program finds the first oc
currence of the letter "i," followed by at most one character, followed by the
letter "a" in a record:

{ if (match($O, li.?aJ»
print RSTART, RLENGTH, $0 }

283

Simple programming with awk

284

This program produces the following output on the file countries:

217 2 USSR 8650 262 Asia
26 3 Canada 3852 24 North America
3 3 China 3692 866 Asia
24 3 USA 3615 219 North America
27 3 Brazil 3286 116 South America
8 2 Australia 2968 14 Australia
4 2 India 1269 637 Asia
7 3 Argentina 1072 26 South America
17 3 Sudan 968 19 Africa
6 2 Algeria 920 18 Africa

NOTE match() matches the left-most longest matching string. For example,
if you use the following record as input:

AsiaaaAsiaaaaan

this program:

{ if (match($O, la+/)) print RSTART, RLENGTH, $0 }

matches the first string of as and sets RSTART to 4 and RLENGTH to 3.

The following function:

sprintf(format, expr sub 1, expr sub 2, ... ,

returns (without printing) a string containing:

expr sub 1, expr sub 2, ... , expr sub n

formatted according to the printf specifications in the string format. ''The
printf statement" in this chapter contains a complete specification of the for
mat conventions.

The statement:

x = sprintf("%10s %6d'~ $1, $2)

assigns to x the string produced by formatting the values of $1 and $2 as a 10-
character string and a decimal number in a field of width at least six; x can be
used in any subsequent computation.

The function substr(s, p, n) returns the substring of s that begins at position p
and is at most n characters long. If substr(s,p) is used, the substring goes to
the end of s; that is, it consists of the suffix of 5 beginning at position p. For
example, we could abbreviate the country names in countries to their first
three characters by invoking the following program:

{ $1 = substr($l, 1,3); print}

Users Guide

This produces the following output:
USS 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

Actions

Note that setting $1 in the program forces awk to recompute $0 and,
therefore, the fields are separated by blanks (the default value of OFS), not by
tabs.

Strings are stuck together (concatenated) merely by writing them one after
another in an expression. For example, when invoked on file countries, the
following program:

{ s = s substr($l, 1, 3) " " }
END {print s }

prints the following by building s up, one piece at a time, from an initially
empty string:

uss Can Chi USA Bra Aus Ind Arg Sud Alg

Field variables

The fields of the current record can be referred to by the field
variables $1, $2, ... , $NF. Field variables share all of the properties of other
variables: they can be used in arithmetic or string operations, and they can
have values assigned to them. So, for example, you can divide the second
field of the file countries by 1000 to convert the area from thousands to mil
lions of square miles:

{ $2/= 1000; print}
You can also assign a new string to a field:

BEGIN { FS = OFS = "\t" }
$4 == "North America" {$4 = "NA" }
$4 == "South America" {$4 = "SA" }

{print}
The BEGIN action in this program resets the input field separator FS and the
output field separator OFS to a tab. Notice that the print in the fourth line of
the program prints the value of $0 after it has been modified by previous
assignments.

Fields can be accessed by expressions. For example, $(NF-l) is the second to
last field of the current record. The parentheses are needed to show that the
value of $NF-l is 1 less than the value in the last field.

285

Simple programming with awk

A field variable referring to a nonexistent field, for example, $(NF+1), has as
its initial value the empty string. A new field can be created, however, by
assigning a value to it. For example, the following program invoked on the
file countries creates a fifth field giving the population density:

BEGIN {FS = OFS = "\t"}
{ $5 = 1000 * $3 I $2; print}

The number of fields can vary from record to record, but there is usually an
implementation limit of 100 fields per record.

Number or string?

Variables, fields, and expressions can have a numeric value, a string value, or
both at any time. They take on numeric or string values according to context.
For example, in the context of an arithmetic expression like the following:

pop +=$3

pop and $3 must be treated numerically, so their values can be coerced to
numeric type if necessary.

In a string context like:

print $1 ":" $2

$1 and $2 must be strings to be concatenated, so they can be coerced if
necessary.

In an assignment v=e or v -op=e, the type of v becomes the type of e. In an
ambiguous context like the following, the type of the comparison depends on
whether the fields are numeric or string:

$1 ==$2

This can only be determined when the program runs; it might differ from
record to record.

In comparisons, if both operands are numeric, the comparison is numeric;
otherwise, operands are coerced to strings, and the comparison is made on the
string values. All field variables are of type string; in addition, each field that
contains only a number is also considered numeric. This determination is
done at run time. For example, the comparison "$1 == $2" succeeds on any
pair of the following inputs:

1 1.0 +1 0.1e+1 lOE-1 001

but fails on these inputs:
(null) 0
(null) 0.0
Oa 0
1e50 1.0e50

286 User's Guide

Actions

There are two idioms for coercing an expression of one type to the other:

number""

string + 0

concatenate a null string to a number to coerce it
to type string
add zero to a string to coerce it to type numeric

Thus, to force a string comparison between two fields, such as:
$1 II II == $2 II II

The numeric value of a string is the value of any prefix of the string that looks
numeric; thus the value of 12.34x is 12.34, while the value of x12.34 is zero.
The string value of an arithmetic expression is computed by formatting the
string with the output format conversion OFMT.

Uninitialized variables have numeric value 0 and string value II ". Nonexistent
fields and fields that are explicitly null have only the string value II "; they are
not numeric.

Control flow statements

awk provides if-else, while, do-while, and for statements, and statement
grouping with braces, as in the C programming language.

The if statement syntax is

if (expression) statement sub 1 else statement sub 2

The expression acting as the conditional has no restrictions; it can include the
relational operators <, <=, >, >=, ==, and 1=; the regular expression matching
operators - and 1- ; the logical operators I I, &&, and I; juxtaposition for
concatenation; and parentheses for grouping.

In the if statement, the expression is first evaluated. If it is non-zero and non
null, statement sub 1 is executed; otherwise statement sub 2 is executed. The
else part is optional.

A single statement can always be replaced by a statement list enclosed in
braces. The statements in the statement list are terminated by new lines or
semicolons.

Rewriting the maximum population program from II Arithmetic functions"
with an if statement results in the following:

{ if (maxpop < $3) {
maxpop=$3
country = $1

}
}
END {print country, maxpop }

287

Simple programming with awk

288

The while statement is exactly that of the C programming language:

while (expression) statement

The expression is evaluated; if it is non-zero and non-null, the statement is
executed, and the expression is tested again. The cycle repeats as long as the
expression is non-zero. For example, use the following to print all input fields
one per line:

{ i = 1
while (i <= NF) {

print$i

}
}

i++

The for statement is like that of the C programming language:

for (expression sub 1 ; expression; expression sub 2) statement

This has the same effect as:

expression sub 1
while (expression) {

statement
expression sub 2

}

Thus, the following statement:

{for (i = 1; i <= NF; i++) print $i}

does the same job as the while example above. An alternate version of the for
statement is described in the next section.

The do statement has the following form:

do statement while (expression)

The statement is executed repeatedly until the value of the expression
becomes zero. Because the test takes place after the execution of the
statement (at the bottom of the loop), it is always executed at least once. As a
result, the do statement is used much less often than while or for, which test
for completion at the top of the loop.

The following example of a do statement prints all lines except those between
start and stop:

/start! {
dol

getline x
} while (x ,- fstopf)

}
{print}

User's Guide

Arrays

Actions

The break statement causes an immediate exit from an enclosing while or for;
the continue statement causes the next iteration to begin. The next statement
causes awk to skip immediately to the next record and begin matching
patterns starting from the first pattern-action statement.

The exit statement causes the program to behave as if the end of the input had
occurred; no more input is read, and the END action, if any, is executed.
Within the END action, the following statement causes the program to return
the value of expr as its exit status:

exit expr

If there is no expr, the exit status is zero.

awk provides one-dimensional arrays. You do not need to declare arrays and
array elements; like variables, they spring into existence when you use them.
An array subSCript can be a number or a string.

As an example of a conventional numeric subscript, the following statement
assigns the current input line to the NRth element of the array x:

x[NR] = $0

In fact, it is possible in principle (though perhaps slow) to read the entire
input into an array with the awk program like this:

{x[NR] = $O}
END { ... processing . .. }

The first action merely records each input line in the array x, indexed by line
number; processing is done in the END statement.

Array elements can also be named by nonnumeric values. For example, the
following program accumulates the total population of Asia and Africa into
the associative array pop. The END action prints the total population of these
two continents.

{ pop["Asia"] += $3 }
{ pop["Africa"] += $3 }

IAsia!
IAfrica!
END { print "Asian population in millions is'~ pop["Asia"]

print "African population in millions is",
pop["Africa"] }

On the file countries, this program generates the following output:
Asian popUlation in millions is 1765
African popUlation in millions is 37

In this program, if we use pop [Asia] instead of pop["Asia"], the expression
uses the value of the variable Asia as the subscript. because the variable is
uninitialized, the values would have been accumulated in pOp[II "].

289

Simple programming with awk

290

Suppose our task is to determine the total area in each continent of the file
countries. Any expression can be used as a subscript in an array reference.
Thus, this statement:

area[$4] += $2

uses the string in the fourth field of the current input record to index the array
area and in that entry accumulates the value of the second field:

BEGIN { FS = "\t" }
{ area[$4] += $2 }

END { for (name in area)
print name, area[name] }

When you invoke this on the countries file, this program produces the
following output:

Africa 1888
North America 7467
South America 4358
Asia 13611
Australia 2968

This program uses a form of the for statement that iterates over all defined
subscripts of an array:

for (i in array) statement

This executes statement with the variable i set in turn to each value of i for
which array[i] has been defined. The loop is executed once for each defined
subscript, which are chosen in a random order. Results are unpredictable
when i or array is altered during the loop.

awk does not provide multi-dimensional arrays, but it does permit a list of
subscripts. They are combined into a single subscript with the values
separated by an unlikely string (stored in the variable SUBSEP). For example,
the following code creates an array that behaves like a two-dimensional array;
the subscript is the concatenation of i, SUBSEP, and j:

for (i = 1; i <= 10; i++)
for (j = 1; j <= 10; j++)

arr[i,j] = .•.
You can determine whether a particular subscript i occurs in an array arr by
testing the condition i in arr:

if ("Africa" in area) ...

This condition performs the test without the side effect of creating
area["Africa"], which would happen if we used the following:

if (area["Africa"] != "") ..•

Note that neither is a test of whether the array area contains an element with
value "Africa".

User's Guide

Actions

It is also possible to split any string into fields in the elements of an array
using the built-in function split. The function splits the string sl:s2:s3 into
three fields (using the separator :) and stores sl in a[l], s2 in a[2], and s3 in
a[3].

split("sl:s2:s3", a, ":")

The number of fields found, here three, is returned as the value of split. The
third argument of split is a regular expression to be used as the field separa
tor. If the third argument is missing, FS is used as the field separator.

An array element can be deleted with the delete statement:

delete arrayname[subscript]

User-defined functions

awk provides user-defined functions. A function is defined as:

function name (argument-list)(
statements

}

The definition can occur anywhere a pattern-action statement can. The argu
ment list is a list of variable names separated by commas; within the body of
the function, these variables refer to the actual parameters when the function
is called. There must be no space between the function name and the left
parenthesis of the argument list when the function is called; otherwise it looks
like a concatenation. For example, the following program defines and tests
the usual recursive factorial function (using some input other than the file
countries):

function fact(n) {
if (n <= 1)

return 1
else

return n * fad(n-l)
}
{ print $1 "! is " fad($l) }

Array arguments are passed by reference, as in C, so it is possible for the func
tion to alter array elements or create new ones. Scalar arguments are passed
by value, however, so the function cannot affect their values outside. Within a
function, formal parameters are local variables, but all other variables are glo
bal. (You can have any number of extra formal parameters that are used
purely as local variables.) The return statement is optional, but the returned
value is undefined if it is not included.

291

Simple programming with awk

Some lexical conventions

Comments may be placed in awk programs; they begin with the character
"#" and end at the end of the line. For example:

print x, y # this is a comment

Statements in an awk program normally occupy a single line. Several
statements can occur on a single line if they are separated by semicolons. You
can continue a long statement over several lines by terminating each contin
ued line by a backslash. (It is not possible to continue a " ... " string.) This ex
plicit continuation is rarely necessary, however, because statements continue
automatically after the operators && and I I or if the line ends with a comma
(for example, as might occur in a print or printf statement).

Several pattern-action statements can appear on a single line if separated by
semicolons.

awk OUtput

The print and printf statements are the two primary constructs that generate
output. The print statement is used to generate simple output; printf is used
for more carefully formatted output. Like the shell, awk lets you redirect out
put so that output from print and printf can be directed to files and pipes.
This section describes how to use these two statements.

The print statement

292

The following statement prints the string value of each expression separated
by the output field separator followed by the output record separator:

print expr sub I, expr sub 2, ... , expr sub n
The following statement:

print

is an abbreviation for:

print $0

To print an empty line, use the following:

print ""

Users Guide

awkoutput

Output separators

The built-in variables OFS and ORS contain the output field separator and
record separator. Initially, OFS is set to a single blank and ORS to a single
newline, but you can change these values at any time. For example, the fol
lowing program prints the first and second fields of each record with a colon
between the fields and two newlines after the second field:

BEGIN {OFS = n:n; ORS = n\n \n" }
{ print $1, $2 }

Notice that the following program prints the first and second fields with no
intervening output field separator:

{ print $1 $2 }

This is because $1 $2 is a string consisting of the concatenation of the first two
fields.

The printf statement

awk's printf statement is the same as that in C except that the * format
specifier is not supported. The printf statement has the general form:

printf format, expr sub I, expr sub 2, ... , expr sub n

where format is a string that contains both information to be printed and spe
cifications on what conversions to perform on the expressions in the
argument list, as in Table 12.6. Each specification begins with a "% ", ends
with a letter that determines the conversion, and can include:

left-justify expression in its field
width pad field to this width as needed;

fields that begin with a leading 0
are padded with zeros

.prec maximum string width or digits
to right of decimal point

293

Simple programming with awk

294

Table 12·6 awk printf conversion characters

Character Prints expression as

single character
decimal number
[-] d.ddddddE[+-] dd
[-] ddd.dddddd

%c
%d
%e
%f
%g e or f conversion, whichever is shorter, with nonsignificant

zeros suppressed
%0
%s
%x
%%

unsigned octal number
string
unsigned hexadecimal number
print a %; no argument is converted

Here are some examples of printf statements with the corresponding output:

printf "%d'~ 99/2
printf "%e'~ 99/2
printf "% f', 99/2
printf "%6.2f', 99/2
printf "%g'~ 99/2
printf "% d', 99
printf"%06d',99
printf "%x'~ 99
printf" I %8 I ", "January"
printf" I %108 I'~ "January"
printf" I %-108 I ", "January"
printf" I %.38 I ", "January"
printf" I %10.38 I ", "January"
printf" I %-10.38 I ", "January"
printf "% %"

49
4.950000e+01
49.500000
49.50
49.5
143
000143
63
I January I
I January I
I January I
IJanl
I Jan I
I Jan I
%

The default output format of numbers is %.6g; this can be changed by assign
ing a new value to OFMT. OFMT also controls the conversion of numeric
values to strings for concatenation and creation of array subscripts.

Users Guide

awkoutput

Output into files

You can print output into files, instead of to the standard output using the>
and » redirection operators. For example, if you invoke the following
program on the file countries, awk prints all lines where the population (third
field) is bigger than 100 into a file called bigpop, and all other lines into
smallpop:

$3 > 100 {print $1, $3 >''bigpop'' }
$3 <= 100 {print $1, $3 >"smallpop" }

Notice that the filenames must be quoted; without quotes, bigpop and smallpop
are merely uninitialized variables. If the output filenames are created by an
expression, they also must be enclosed in parentheses:

$4 - INorth America! { print $1 > ("tmp" FILENAME) }
This is because the > operator has higher precedence than concatenation;
without parentheses, the concatenation of tmp and FILENAME does not work.

NOTE Files are opened once in an awk program. If > is used to open a file,
its original contents are overwritten. But if » is used to open a file, its con
tents are preserved and the output is appended to the file. Once the file has
been opened, the two operators have the same effect.

Output into pipes

You can also direct printing into a pipe with a command on the other end,
instead of into a file. The following statement causes the output of print to be
piped into the command-line:

print I "command-lint!'
Although we show the command-line and filenames here as literal strings
enclosed in quotes, they can also come from variables, and the return values
from functions.

Suppose we want to create a list of continent-population pairs, and sort it
alphabetically by continent. The awk program below accumulates the popu
lation values in the third field for each of the distinct continent names in the
fourth field in an array called pop. Then it prints each continent and its popu
lation, and pipes this output into the sort command:

BEGIN {FS = "\t" }
{ pop[$4] += $3 }

END {fode in pop)
print e ":" pop[c] I "sort"}

295

Simple programming with awk

Input

Invoked on the file countries, this program yields the following:
Africa:37
AsiJ.:1765
Australia:14
North America:243
South America:142

In all of these print statements involving redirection of output, the files or
pipes are identified by their names (that is, the pipe above is literally named
sort), but they are created and opened only once in the entire run. So, in the
last example, for all c in pop, only one sort pipe is open.

There is a limit to the number of files that can be open simultaneously. The
statement close <file) closes a file or pipe; file is the string used to create it in
the first place. For example:

close("sort")

When opening or closing a file, different strings are different commands.

The most common way to give input to an awk program is to name on the
command line the file(s) that contains the input. This is the method that we
have been using in this chapter. However, you can use several other
methods, each of which is described in this section.

Files and pipes

296

You can provide input to an awk program by putting the input data into a file,
say awkdata, and then executing it like this:

awk 'program awkdata
awk reads its standard input if no filenames are given (see "Usage" in this
chapter); thus, a second common arrangement is to have another program
pipe its output into awk. For example, grep(C) selects input lines containing a
specified regular expression, but it can do so faster than awk, because this is
the only thing it does. Therefore, you can invoke the pipe like this:

grep 'Asia' countries I awk'",'

grep quickly finds the lines containing Asia and passes them on to the awk
program for subsequent processing.

User's Guide

Input

Input separators

With the default setting of the field separator FS, input fields are separated by
blanks or tabs, and leading blanks are discarded, so each of these lines has the
same first field:

fieldl field2
fieldl

fieldl

When the field separator is a tab, however, leading blanks are not discarded.

The field separator can be set to any regular expression by assigning a value
to the built-in variable FS. For example the following sets it to an optional
comma followed by any number of blanks and tabs:

BEGIN { FS = "(,[\ \t]*) 1([\ \t]+)" }

You can also set FS on the command line with the -F argument. For example,
this behaves the same as the previous example:

awk-F'(,[\t]*) I ([\t1+),' ... '

Regular expressions used as field separators match the left-most longest oc
currences (as in sub()), but they do not match null strings.

Multi-line records

Records are normally separated by newlines, so that each line is a record; you
can change this, but only in a limited way. If you set the built-in record
separator variable RS to an empty string like this:

BEGIN {RS = ""}

In this case, input records can be several lines long; a sequence of empty lines
separates records. A common way to process multiple-line records is to set
the record separator to an empty line and the field separator to a newline, as
in the following example:

BEGIN {RS = ""; FS = "\n" }

There is a limit to how long a record can be; it is usually about 2500 charac
ters. ''The getline function" and "Co-operation with the shell" in this chapter
show other examples of processing multi-line records.

The getline function

For some tasks, awk's facility for automatically breaking its input into records
that are more than one line long is not adequate for some tasks. For example,
if records are not separated by blank lines, but by something more compli
cated, merely setting RS to null does not work. In such cases, it is necessary to
manage the splitting of each record into fields in the program. Here are some
suggestions.

297

Simple programming with awk

298

Use the function getline to read input either from the current input or from a
file or pipe, by using redirection in a manner analogous to printf. By itself,
getline fetches the next input record and performs the normal field-splitting
operations on it. It sets NF, NR, and FNR. getline returns 1 if there was a
record present, 0 if the end-of-file was encountered, and -1 if some error
occurred (such as failure to open a file).

To illustrate, suppose we have input data consisting of multi-line records,
each of which begins with a line beginning with START and ends with a line
beginning with STOP. The following awk program processes these multi-line
records, a line at a time, putting the lines of the record into consecutive entries
of an array:

f[l] f[2] ... f[nf]

Once the line containing STOP is encountered, the record can be processed
from the data in the f array:

rSTART/{

}

f[nf=l] = $0
while (getline && $0 ,- rSTOP/)

f[++nf] = $0
now process the data in f[l] ..• f[nf]

Notice that this code uses the fact that && evaluates its operands left to right
and stops as soon as one is true. The same job can also be done by the follow
ing program:

rSTARTI && nf==O
nf>l

{ f[nf=l] = $0 }
{f[++nf] = $0 }

rSTOPI { # now process the data in f[l] .•. f[nf]

nf=O
}

The following statement reads the next record into the variable x:

getline x

No splitting is done; NF is not set.

This statement reads from file instead of the current input:

getiine <"file"

It has no effect on NR or FNR, but field splitting is performed, and NF is set.

The following statement gets the next record from file into x:

getline x <"file"

In this case, no splitting is done, and NF, NR, and FNR are untouched.

User's Guide

Input

NOTE If a filename is an expression, it should be in parentheses for evalua
tion:

while (getline x < (ARGV[1] ARGV[2])) { ... }

This is because the < has precedence over concatenation. Without
parentheses, a statement such as the following sets x to read the file tmp
<value of FILENAME:

getline x < "tmp" FILENAME

Also, if you use this getline statement form, a statement like the following
loops forever if the file cannot be read:

while (getline x < file) { ..• }

This is because getline returns -1, not zero, if an error occurs. A better way
to write this test is as follows:

while (getline x < file > 0) { ••• }

It is also possible to pipe the output of another command directly into getline.
For example, the following statement executes who and pipes its output into
getline:

while (''who'' I getline)
n++

Each iteration of the while loop reads one more line and increments the vari
able n, so after the while loop terminates, n contains a count of the number of
users. Similarly, the follOWing statement pipes the output of date into the
variable d, thus setting d to the current date:

"date" I getline d

Table 12.7 summarizes the getline function.

Table 12·7 getline function

Form

getline
getlinevar
getline <file
getline var <file
cmd I getline
cmd I getline var

Sets

$0, NF, NR, FNR
var,NR,FNR
$O,NF
var
$O,NF
var

299

Simple programming with awk

Command-line arguments

The command-line arguments are available to an awk program: the array
ARGV contains the elements ARGV[O), ... , ARGV[ARGC-l)i as in C, ARGC
is the count. ARGV[O) is the name of the program (generally awk)i the
remaining arguments are whatever was provided (excluding the program and
any optional arguments).

The following command line contains an awk program that echoes the
arguments that appear after the program name:

awk'
BEGIN {

for (i = 1; i < ARGC; i++)
printf "%s ", ARGV[i]

printf "\n"
}' $*

You can modify or add to the argumentsi you can also alter ARGC. As each
input file ends, awk treats the next non-null element of ARGV (up to the
current value of ARGC-l) as the name of the next input file.

The one exception to the rule that an argument is a filename is that if it is of
the following form, then the variable var is set to the value value as if by
assignment:

var=value

If value is a string, no quotes are needed. Such an argument is not treated as a
filename.

Using awk with other commands and the shell
awk gains its greatest power when you use it in conjunction with other
programs. Here we describe some of the ways in which awk programs
co-operate with other commands.

The system function

300

The built-in function system (command-line) executes the command
command-line, which can be a string computed by, for example, the built-in
function sprintf. The value returned by system is the return status of the
command executed.

User's Guide

Using awk with other commands and the shell

For example, the following program:
$1 == "#includE!' {gsub(l[<>"1/, "", $2); system("cat " $2) }

calls the command cat to print the file named in the second field of every
input record whose first field is "#include;' after stripping any <, >, or " that
might be present.

Co-operation with the shell

In all the examples thus far, the awk program is in a file and is retrieved using
the -£ flag, or it appears on the command line enclosed in single quotes, as in
the following example:

awk '{ print $1 }' •.•

Since awk uses many of the same characters as the shell does, such as $ and ",
surrounding the awk program with single quotes ensures that the shell passes
the entire program unchanged to the awk interpreter.

Now, consider writing a command addr that searches a file addresslist for
name, address, and telephone information. Suppose that addresslist contains
names and addresses in which a typical entry is a multi-line record such as the
following:

G. R. Emlin
600 Mountain Avenue
Murray Hill, NJ 07974
201-555-1234

Records are separated by a single blank line.

You want to be able to search the address list by issuing commands like the
following:

addrEmlin

To do this, create a program of the form:
awk'
BEGIN
IEmlini
, addresslist

{RS=""}

The problem is how to get a different search pattern into the program each
time it is run.

There are several ways to do this. One way is to create a file called addr that
contains the following lines:

awk '
BEGIN
/'$1'/
, addresslist

{ RS = "" }

301

Simple programming with awk

The quotes are critical here. The awk program is only one argument, even
though there are two sets of quotes, because quotes do not nest. The $1 is out
side the quotes, visible to the shell, which then replaces it by the pattern Emlin
when you invoke the command addr Emlin. On a UNIX system, you can
make addr executable by changing its mode with the following command:

chmod +x addr

A second way to implement addr relies on the fact that the shell substitutes
for $ parameters within double quotes:

awk "
BEGIN
/$1/
" addresslist

{ RS = \"\"

Here you must protect the quotes defining RS with backslashes so that the
shell passes them on to awk, uninterpreted by the shell. $1 is recognized as a
parameter, however, so the shell replaces it by the pattern when you invoke
the following command:

addrpattem

A third way to implement addr is to use ARGV to pass the regular expression
to an awk program that explicitly reads through the address list with getline:

awk '
BEGIN RS = ""

} , $*

while (getline < "addresslist")
if ($0 - ARGV[l])

print $0

All processing is done in the BEGIN action.

Notice that you can pass any regular expression to addr; in particular, you can
retrieve parts of an address or telephone number, as well as a name.

Example applications

302

awk has been used in surprising ways. We have seen awk programs that
implement database systems and a variety of compilers and assemblers, in
.addition to the more traditional tasks of information retrieval, data manipula
tion, and report generation. Invariably, the awk programs are significantly
shorter than equivalent programs written in more conventional programming
languages, such as Pascal or C. In this section, we present a few more exam
:pIes to illustrate some additional awk programs.

User's Guide

Example applications

Generating reports

awk is especially useful for producing reports that summarize and format in
formation. Suppose you want to produce a report from the file countries, that
lists the continents alphabetically, and after each continent, its countries in
decreasing order of population, like this:

Africa:
Sudan 19
Algeria 18

Asia:
China 866
India 637
USSR 262

Australia:
Australia 14

North America:
USA 219
Canada 24

South America:
Brazil 116
Argentina 26

As with many data processing tasks, it is much easier to produce this report in
several stages. First, create a list of continent-country-population triples, in
which each field is separated by a colon. To do this, use the following pro
gram, triples, which uses an array pop, indexed by subscripts of the form
'continent:country' to store the population of a given country. The print state
ment in the END section of the program creates the list of continent-country
population triples that are piped to the sort routine:

BEGIN {FS - "\t" }
{ pop[$4 ":" $1] +- $3 }

END {for (cc in pop)
print cc ":" pop[cc] I "sort -t: +0 -1 +2nr" }

303

Simple programming with awk

304

The arguments for sort deserve special mention. The -t: argument tells sort to
use: as its field separator. The +0 -1 arguments make the first field the pri
mary sort key. In general, +i -j makes fields i+1, i+2, ... , j the sort key. If -j is
omitted, the fields from i+1 to the end of the record are used. The +2nr argu
ment makes the third field, numerically decreasing, the secondary sort key (n
is for numeric, r for reverse order). Invoked on the file countries, this program
produces as output:

Africa:Sudan:19
Africa:Algeria:18
Asia:China:866
Asia:India:637
Asia:USSR:262
Australia:Australia:14
North America:USA:219
North America:Canada:24
South America:Brazil:116
South America:Argentina:26

This output is in the right order but the wrong format. To transform the out
put into the desired form, run it through a second awk program, format:

BEGIN
{

{ FS = ":" }

if ($1 != prey) {
print "\n" $1
prey = $1

". "

printf "\t%-10s %6d\n", $2, $3

This is a control-break program that prints only the first occurrence of a con
tinent name and formats the country-population lines associated with that
continent in the desired manner. The following command line produces the
report:

awk -f triples countries I awk -f format

As this example suggests, complex data transformation and formatting tasks
can often be reduced to a few simple awks and sorts.

User's Guide

Example applications

Additional examples

This section gives some additional examples of how you might use awk.

Word frequencies
Our first example illustrates associative arrays for counting. Suppose you
want to count the number of times each word appears in the input, where a
word equals any contiguous sequence of non-blank, non-tab characters. The
following program prints the word frequencies, sorted in decreasing order:

{ for (w = 1; w <= NF; w++) count[$w]++ }
END {for (w in count) print count[w], w I "sort -nt' }

The first statement uses the array count to accumulate the number of times
each word is used. Once the input has been read, the second for loop pipes
the final count, along with each word, into the sort command.

Accumulation
Suppose you have two files of records, deposits and withdrawals, that contain a
name field and an amount field. For each name, you want to print the net bal
ance determined by subtracting the total withdrawals from the total deposits
for each name. The net balance can be computed by the following program:

awk'
FILENAME == "deposits" { balancel$1] += $2 }
FILENAME == ''withdrawals'' {balance[$1] -= $2 }
END { for (name in balance)

print name, balance[name]
} , deposits withdrawals

The first statement uses the array balance to accumulate the total amount for
each name in the file deposits. The second statement subtracts associated
withdrawals from each total. If there are only withdrawals associated with a
name, an entry for that name is created by the second statement. The END
action prints each name with its net balance.

305

Simple programming with awk

306

Random choice
The following function prints (in order) k random elements from the first
n elements of the array A. In the program, k is the number of entries that still
need to be printed, and n is the number of elements yet to be examined.
The decision of whether to print the ith element is determined by the test
randO < kin:

function choose(A, k, n) {
for (i = 1; n > 0; i++)

if (randO < kln-) {
printA[i]
k-

}
}

Shell facility
The following awk program simulates (crudely) the history facility of the
UNIX system shell:

$1 == "=" { if (NF == 1)
system(x[NR] = x[NR-1])

else
for (i = NR-1; i > 0; i--)

if (xU] - $2) {
system(x[NR] = xli])
break

}
next}

I. I { system(x[NR] = $0) }

A line containing only = re-executes the last command executed. A line
beginning with = cmd re-executes the last command whose invocation
included the string cmd. Otherwise, the current line is executed.

Users Guide

Generating tonn-letters
The following program generates form letters:

BEGIN { FS = " I "
while (getline <"form.leHet')

liner ++n] = $0
}
{ for (i = 1i i <= ni i++){

}
}

s = line[i]
for (j = 1i j <= NFi j++)

gsub("\ \$"j, $j, s)
prints

This program uses a template stored in a file called form.letter:
This is a form letter.
The first field is $1, the second $2, the third $3.
The third is $3, second is $2, and first is $1.

combined with replacement text of this form:

field 11 field 2 I field 3
one I two I three
albic

awksummary

The BEGIN action stores the template in the array template; the remaining
action cycles through the input data, using gsub to replace template fields of
the form $n with the corresponding data fields.

In all such examples, a prudent strategy is to start with a small version and
expand it, trying out each aspect before moving on to the next.

awksummary
The following sections summarize the functions and usage of awk.

Command line

awk program filenames
.awk -f program-file filenames
awk -F s sets field separator to string s; -Ft sets separator to tab

307

Simple programming with awk

Patterns
BEGIN
END
Iregular expression
relational expression
pattern && pattern
pattern I I pattern
(pattern)
!pattern
pattern, pattern

Control flow statements

if (expr) statement [else statement]
if (subscript in array) statement [else statement]
while (expr) statement
for (expri expri expr) statement
for (var in array) statement
do statement while (expr)
break
continue
next
exit [expr]
return [expr]

Input-Output

308

close(filename)
getline

getline < filename
getlinevar
getline var < filename
print
print expr-list
print expr-list > filename
printf fmt , expr-list
printf fmt , expr-list > filename
system(cmd-line)

close filename
set $0 from next input record;
set NF, NR, FNR
set $0 from next record of filename; set NF
set var from next input record; set NR, FNR
set var from next record of filename
print current record
print expressions
print expressions on filename
format and print
format and print on filename
execute command cmd-line, return status

In print and printf above, » filename appends to the filename, and
I command writes on a pipe. Similarly, command I getline pipes into get
line. getline returns 0 on end of file, and -1 on error.

User's Guide

Functions

func name (parameter list) { statement}
function name (parameter list) { statement}
function-name(expr, expr, ...)

awksummary

String functions

gsub(r, s, t)

index(s, t)

length(s)
match(s,r)

split(s, a, r)

sprintf(fmt, expr-list)

sub(r,s, t)

substr(s, i, n)

Arithmetic functions

atan2(y,x)
cos(expr)
exp(expr)
int(expr)
log(expr)
randO
sin(expr)
sqrt(expr)
srand(expr)

substitute string s for each substring matching
regular expression r in string t, return number of
substitutions; if t omitted, use $0
return index of string t in string s, or 0 if not
present
return length of string s
return position in s where regular expression r
occurs, or 0 if r is not present
split string s into array a on regular expression r,
return number of fields; if r omitted, FS is used in
its place
print expr-list according to fmt, return resulting
string
like gsub except only the first matching substring
is replaced
return n-char substring of s starting at i; if n
omitted, use rest of s

arctangent of yrx in radians
cosine (angle in radians)
exponential
truncate to integer
natural logarithm
random number between 0 and 1
sine (angle in radians)
square root
new seed for random number generator; use time
of day if no expr

309

Simple programming with awk

Operators Qncreasing precedence)

= += _= *= /= %= A=
?:
II
&&
-r
< <= > >= != ==
blank
+ -
* / %
+ - !

++ --
$

assignment
conditional expression
logical OR
logical AND
regular expression match, negated match
relationals
string concatenation
add, subtract
multiply, divide, mod
unary plus, unary minus, logical negation
exponentiation (** is a synonym)
increment, decrement (prefix and postfix)
field

Regular expressions Qncreasing precedence)

310

c
\c

$
[abc •. .]
rabc •..]
rll r2
rlr2
r+
r*
r?
(r)

matches non-metacharacter c
matches literal character c
matches any character but newline
matches beginning of line or string
matches end of line or string
character class matches any of abc •••
negated class matches any but abc . .. and newline
matches either rl or r2
concatenation: matches rl, then r2
matches one or more r's
matches zero or more r's
matches zero or one r's
grouping: matches r

User's Guide

awksummary

Built-in variables

Limits

number of command-line arguments ARGC
ARGV array of command-line arguments (0 .. ARGC-l)

FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS

name of current input file
input record number in current file
input field separator (default blank)
number of fields in current input record
input record number since beginning
output format for numbers (default %.6g)
output field separator (default blank)
output record separator (default newline)
input record separator (default newline) RS

RSTART index of first character matched by match(); 0 if no
match

RLENGTH length of string matched by match(); -1 if no
match

SUBSEP separates multiple subscripts in array elements;
default "\034"

Any particular implementation of awk enforces some limits. The following
limits exist in this implementation of awk: (Limits marked with an asterisk (*)
are safe approximations.)

100 fields
3000* characters per input record
3000* characters per output record
3000* characters per individual field
3000* characters per printf string
400 characters maximum quoted string
250* characters in character class
55* open files or pipes
double precision floating point
Numbers are limited to what can be represented on the local

machine, e.g., 1e-38 .. 1e+38

311

Simple programming with awk

Initialization, comparison, and type coercion

312

Each variable and field can potentially be a string or a number or both at any
time. When a variable is set by the following assignment, its type is set to that
of the expression:

var=expr

(Assignment includes +=, -=, etc.) An arithmetic expression is of type num
ber, a concatenation is of type string, and so on. If the assignment is a simple
copy, as in the following example, then the type of vI becomes that of v2:

v1=v2

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to string if necessary, and the
comparison is made on strings. The type of any expression can be coerced to
numeric by subterfuges such as:

expr+O

and to string by:

expr""

(that is, concatenation with a null string).

Uninitialized variables have the numeric value 0 and the string value" ".

The type of a field is determined by context when possible; for example:

$1++

implies that $1 is to be numeric. The following implies that $1 and $2 are both
to be strings:

$1 = $1 "," $2

Coercion is done as needed.

In contexts where types cannot be reliably determined, as in the following
example, the type of each field is determined on input:

if($l == $2) ...

All fields are strings; in addition, each field that contains only a number is also
considered numeric.

Fields that are explicitly null have the string value"" ; they are not numeric.
Non-existent fields (i.e., fields past NF) are treated this way, too.

As it is for fields, so it is for array elements created by splitO.

User's Guide

awksummary

Mentioning a variable in an expression causes it to exist, with the value II II as
described above. Thus, if arr[i] does not currently exist, the following expres
sion causes it to exist with the value II II so the if is satisfied:

if (arr[i] == II ") •••

The following special construction determines if arr[i] exists without the side
effect of creating it if it does not:

if (i in arr). ..

313

Simple programming with awk

314 User's Guide

Chapter 13

Using DOS accessing utilities
DOS tools are provided to help you bridge between the two operating sys
tems. These tools are an extension of the features available on UNIX systems.
These programs allow you, while working on your UNIX system, to access
DOS files and directories which reside in a non-mounted DOS partition. If
your system administrator permits, you can also gain access DOS files by
mounting a DOS filesystem and using them directly. This chapter discusses
both methods.

Accessing DOS files
The following is a list of the dos(C) commands and their functions:

doscat

doscp

dosdir

dosformat

Copies one or more DOS files to the standard output. By
default, the standard output is the terminal screen. If more
than one file is specified, the files are displayed con
catenated. doscat· functions like the UNIX system cat(C)
command. The following is an example of its usage:

doscat Idev/fdO:/johnimemos

Copies files between DOS and UNIX system environments.
The first file specified is copied to the second file. Example
of usage:

doscp Imary/list Idev/fdO:lbudgetllist

Lists DOS files in the standard DOS-style directory format.
Example of usage:

dosdir Idev/fdO:/john

Creates a DOS 2.0 formatted diskette. Example of usage"

dosformat Idev/fdO

315

Using DOS accessing utilities

316

dosls

dosrm

dosmkdir

dosrmdir

Lists DOS files and directories in a UNIX system format.
Example of usage:

dosls Idev/fdO:/john

Removes files from a DOS disk. Example of usage:

dosrm Idev/fdO:/johnlmemos

Creates a directory on a DOS disk. Example of usage:

dosmkdir Idev/fdO:/johnlmemos

Deletes directories from a DOS disk. Example of usage:

dosrmdir Idev/fdO:/johnlmemos

Note that you must have a bootable, although not mounted, DOS partition on
the hard disk or a DOS floppy in order to use these UNIX system commands.
For example, you can only transfer a file from a UNIX system partition on the
hard disk to a DOS floppy if either the DOS floppy is bootable or there is also a
DOS partition on the hard disk. For more information about the DOS access
ing utilities, refer to the Users Reference.

In order that the DOS utilities function correctly, the DOS partition/drive you
are accessing must first be formatted using the DOS format command (i.e. the
one in the DOS operating system). The volume label must also be set to a non
null value, and in DOS 4.0 or above the serial number must be set. Failure to
comply with any of these actions may result in failure of the UNIX DOS utili
ties.

You might also be able to use the UNIX system dd(C) and diskcp(C) com
mands to copy and compare DOS floppies. The UNIX system dtype(C) com
mand tells you what type of floppies you have (various DOS and UNIX system
floppies).

In addition, the file /etc/default/msdos describes which DOS filesystems
(e.g. A:, B:, C: ...) correspond to which UNIX system devices.

I NOTE You cannot execute (run) DOS programs or applications under the
UNIX operating system.

If you have the Development System, with the emerge compiler, you can cre
ate and compile programs that can be run under DOS operating systems.
Refer to the DOS-OS/2 Development Guide for more information. Also, see the
DOS section in the Programmer's Reference.

Users Guide

Accessing DOS files

Copying groups of files
The doscp command does not allow the use of wildcards, so it is only possible
to copy one file at a time. To work around this restriction so that you can
copy groups of files to or from a DOS diskette or partition, you must create the
following shell scripts:

DOS file format to UNIX system file format transfer script:
: fromdos: copy a batch of files from DOS to UNIX format
if ["$1" - "")
then

fi

echo "Usage: $0 disk: [/dospath/directory)"
exit 1

dosdir-$l
names-'dosls $dosdir'
for i in $names
do

doscp "$dosdir/$i" 'echo $i I tr "[A-Z)" "[a-z)'"
done

.UNIX system file format to DOS file format transfer script:
: todos: copy a batch of files from UNIX format to DOS
if [$# -It 2)
then

echo "Usage: $0 file [file ...) disk: [/dospath/directory)"
exit 1

fi
files-"$l"
while ["$2" !- "")
do

files-"$files $1"
shift

done
dosdir-$l
for i in $files
do

doscp $i $dosdir
done

You should create both of these scripts as executable files in the /usr/bin direc
tory and give them appropriate names such as "fromdos" or "todos." Use the
chmod(C) command to make the files executable. For example:

chmod 755 lusrlbinlfromdos
This command gives read and execute permissions for the file fromdos to all
users. Once you set these permissions, you can use the filename as a substi
tute for doscp on your command line, as in the following example:

fromdos Idev/fdO:ljohn

317

Using DOS accessing utilities

Using mounted DOS filesystems

In addition to using the DOS utilities provided with to manipulate DOS files,
you can also mount a DOS filesystem and access its files directly while still op
erating from the UNIX system partition.

This means that you can edit or examine DOS files in place, without first copy
ing them into the UNIX system filesystem. The major restriction is that DOS
files and applications cannot be executed under this arrangement; this
requires use of VP / ix (if operating from the UNIX system partition) or booting
of the DOS partition. However, you can examine, copy, or edit data files and
text files.

The operating system deals with DOS filesystems by superimposing certain
qualities of UNIX system filesystems over the DOS filesystem without chang
ing the actual files. UNIX system filesystems are highly structured and
operate in a multiuser environment. In order to make DOS files readily acces
sible, access permissions and file ownership are superimposed on the DOS
filesystem when mounted.

Mounting a DOS filesystem

318

Only root can mount a filesystem. Access by users is governed by the permis
sions and ownership that root places on the DOS filesystem. The system
administrator must either mount the DOS filesystem or set up the system so
that users can use the mnt(C) command.

Mounting a floppy disk
For example, if the system administrator permits it, you can mount DOS
floppy disks, as in the following example using the 96tpi floppy mounted on
Imnt:

mnt -f DOS Idev/fd096 Imnt

Because of the limitations discussed earlier, DOS does not recognize permis
sions or ownership. When mounted from the UNIX system partition, the DOS
files behave as follows:

• The permissions and ownership of the filesystem are governed by the
mount point. For example, if root creates a mount point IX with permis
sions of 777, all users can read or write t4e contents of the filesystem. If the
mount point is owned by root, all files within the DOS filesystem and any
created by other users are all owned by root.

User's Guide

Using mounted DOS filesystems

• The permissions for regular files are either 0777 for readable/writable files
or 0555 for read-only files. This preserves the consistency of the DOS
filesystem. If a user can access the filesystem, the user is limited by the per
missions available under the DOS directory structure. This permission is
read-only or read-write. When a file is created, the permissions are based
on the umask of the creator. For example, if the user's umask is 022, this
generates files with permissions of 777.

File and directory arguments

The file and directory arguments for DOS files take the form:

device:name

where device is a UNIX system pathname for the special device file containing
the DOS diskette or DOS partition, and name is a pathname to a DOS file or
directory. For example:

Idev/fdO:/johnimemos

indicates that the file memos is in the directory /john, and that both are in the
device file /dev/fdO (the UNIX system special device file for the primary floppy
drive). Arguments without device: are assumed to be UNIX system files.

User configurable default file

For convenience, the user configurable default file /etc/default/msdos defines
DOS drive names that you can use in place of UNIX system special device file
pathnames. These are short forms that the system administrator can set up
for DOS filesystems using the A:, B:, C: convention instead of, for example,
/dev/fd096ds15.

319

Using DOS accessing utilities

Appearance of DOS files

320

Because no attempt is made to change the nature of 005 files, the carriage
return character rM) is visible when editing a 005 file from the UNIX system
partition. (UNIX system files only use a newline, while DOS files use a carriage
return and a newline.) Thus when a DOS file (for example, NUM.BAS) that
contains a series of numbers is opened using vi(C), it looks something like
this:

1111 2222 3333 4444 SSSS"M
6666 7777 8888 9999 OOOO"M
1111 2222 3333 4444 SSSS"M
6666 7777 8888 9999 OOOO"M
1111 2222 3333 4444 SSSS"M
6666 7777 8888 9999 OOOO"M

"NUM.BAS" 6 lines, 100 characters

You can either ignore these numbers, or remove them with the dtoxlxtod(C)
commands.

I NOTE If you remove the carriage returns in a DOS file, you must replace
them to use the file under DOS.

The dtox and xtod commands
These commands are the easiest way to switch the end-of-line format. For
example, the following commands convert the file NUM.BAS to and from the
UNIX system file format, respectively:

dtox NUM.BAS > filename
xtod NUM.BAS > filename

User's Guide

Using mounted DOS filesystems

Newline conversions with DOS utilities

When the doscat(C) and doscp(C) commands transfer DOS format text files to
UNIX format, they automatically strip the AM character. When text files are
transferred to DOS, the commands insert a AM before each linefeed character.
Under some circumstances, the automatic newline conversions do not occur.
The -m option ensures that the newline conversion is carried out. The
-r option overrides the automatic conversion and forces the command to per
form a true byte copy regardless of file type.

I NOTE All DOS utilities leave temporary files in /tmp, regardless of whether
or not the utility executed successfully. These files are removed at the next
reboot.

Other restrictions

This section explainS the additional restrictions that you must observe.

Filenames

The rules for filenames and their conversion follows the guidelines found in
the dos(C) manual page in the User's Reference. All DOS filenames have a max
imum of eight characters, plus a three-character extension. For example, if
you attempt to create a file named rumplestiltski within the DOS filesystem, it
is truncated to rumplest:

In addition, the standard DOS restrictions on illegal characters apply. How
ever, you can use wildcards just as you use them with UNIX system filesys
terns.

Modification times
When accessed from the UNIX system partition, the creation, modification,
and access times of DOS files are always identical and use GMT, or Greenwich
Mean Time. (This is because UNIX systems use GMT internally and convert it
for the user.) This means that files created in the OOS filesystem will not have
consistent times across the operating systems.

321

Using DOS accessing utilities

UNIX backup utilities
You cannot use the UNIX system backup(C) utility to make backups of a
mounted DOS filesystem. However, DOS utilities and other copy programs
like tar(C) work as expected.

For more information, including more technical aspects of DOS usage, refer to
the dos(C) page in the User's Reference.

Summary

322

This chapter covers the following commands:

Table 13·1 Command review

Command

doscat(C)
doscp(C)
dosdir(C)
dosformat(C)
dosls(C)
dosrm(C)
dosmkdir(C)
dosrmdir(C)
dd(C)
diskcp(C)
dtype(C)
chmod(C)
mnt(C)
dtox(C)
xtod(C)

Description

Copies one or more DOS files to the standard output
Copies files between DOS and UNIX environments
Lists DOS files in the standard Dos-style directory format
Creates a DOS 2.0 formatted diskette
Lists DOS files and directories in a UNIX format
Removes files from a DOS disk
Creates a directory on a DOS disk
Deletes directories from a DOS disk
Copies and compares DOS floppies

Determines the floppy type
Changes the permissions on files and directories
Mounts a filesystem
Convert DOS file to UNIX file format
Convert UNIX file to DOS file format

User's Guide

Appendix A

Sample shell startup files

This appendix contains sample listings and line-by-line explanations of the
following shell startup files:

Bourne shell (sh) .profile

Korn shell (ksh) .profile

C shell (csh)

.kshrc

.login

.cshrc

Line numbers have been added to all the file listings for purposes of explana
tion; numbers do not appear in the actual files.

The Bourne shell .profile
The Bourne shell (sh) reads a single file in your home directory, the .profile. A
typical Bourne shell .profile might look something like this:

1 :
2 ~ @(~) profile 23.1 91/04/03
3 ~

4 ~ .profile
5 ~

-- Commands executed by a login Bourne shell

6 ~ Copyright (c) 1985-1991, The Santa Cruz Operation, Inc.
7 ~ All rights reserved.
8 #
9 ~ This Module contains Proprietary Information of the Santa Cruz

10 * Operation, Inc., and should be treated as Confidential.

11 *

323

Sample shell startup files

324

12 PATH=$PATH:$HOME/bin:.
13 MAIL=/usr/spool/mail/'logname'
14 export PATH MAIL

15 # use default system file creation mask

set command search path
mailbox location

16 eval 'tset -m ansi:ansi -m :?${TERM:-ansi} -r -s -Q'

line 1 contains a single colon that says "execute this script as a Bourne
shell script." This is a convention for scripts written in Bourne
shell, so e shells know to start a new sh to run the Bourne shell
scripts.

(e shells need to start Bourne shells to run Bourne shell scripts
because they do not understand the Bourne shell language. The
Korn shell, however, is compatible with the Bourne shell, so you
can use most Bourne shell scripts in the Korn shell without a
problem.)

lines 2-11 contain comments. Each line that starts with a # (number sign) is
a comment. The shell ignores these lines. In this case, lines 2-11
contain sea copyright information.

line 12 sets the path. It says, "set the path equal to the current path, plus
the bin in the home directory, plus the current directory (.)." Set
ting the path to the existing path presumes there is a system
wide /etc/profile that sets up a path definition for all users. The
path definition in /etc/profile would contain the usual command
directories, such as /bin and /usr/bin.

line 13 tells the shell where to find mail. The 'logname' in backquotes
tells the shell to substitute the output of the command
logname(e), which returns a users login name. Because 'log
name' is used instead of a particular login name, this script works
for any user.

line 14 tells the shell to export the PATH and MAIL settings to all its sub
shells. This guarantees that if you type sh to start a new Bourne
shell, the new Bourne shell has the same path definition and mail
setup as your login Bourne shell.

line 15 contains a comment, like lines 2-11. This comment tells us that
login Bourne shells use the default system file creation mask,
which is set in /etc/profile. This explains why there is no umask
setting in this .profile.

The Korn shell .profile and .kshrc

line 16 sets up the terminal type, using the tset(C) (terminal setup) com
mand. tset sets your terminal type, as well as the erase and kill
characters for your terminal.

This tset command says "check if this serial line is mapped to
ansi in the /etc/ttytype file; if it is, set the terminal type to ansi.
Otherwise, prompt the user with TERM: ansi." The -r option prints
the terminal type on the screen, -s exports the terminal type to
any subshells, and -Q suppresses the Erase set to ... , Kill set
to ... messages that tset would otherwise show. The tset com
mand is enclosed in backquotes and preceded by the shell com
mand eval to guarantee that all necessary substitutions are made
within the tset command before it is evaluated by the shell.

The Kom shell .profile and .kshrc
The Kom shell uses two startup files, the .profile and the .kshrc. The .profile is
read once, by your login ksh, while the .kshrc is read by each new ksh.

A typical Kom shell .profile might look something like this:
1 :
2 # @(#) profile 23.1 91/04/03
3 #
4 # .profile -- Commands executed by a login Korn shell
5 #
6 # Copyright (c) 1990, 1991, The Santa Cruz Operation, Inc.
7 # All rights reserved.
8 #
9 # This Module contains Proprietary Information of the Santa Cruz

10 # Operation, Inc., and should be treated as Confidential.
11 #

12 PATH=$PATH:$HOME/bin:.
13 export PATH

14 if [-z "$LOGNAME" l; then
15 LOGNAME='logname'
16 export LOGNAME
17fi

set command search path

name of user who logged in

325

Sample shell startup files

326

18 MAIL=/usr/spool/mail/$LOGNAME
19 export MAIL

20 if [-z "$PWD"]; then
21 PWD= $ HOME
22 export PWD
23 fi

~ mailbox location

assumes initial cwd is HOME

24 if -f $HOME/.kshrc -a -r $HOME/.kshrc]; then
25 ENV=$HOME/.kshrc # set ENV if there is an rc file
26 export ENV
27 fi

28 # use default system file creation mask (umask)

29 eval 'tset -m ansi:ansi -m $TERM:?$[TERM:-ansi} -r -s -Q'

30 ~ If job control is enabled, set the suspend character to 'z (control-z):
31 case $- in
32 *m*)

33
34 esac

stty susp , 'z'
; ;

35 set -0 ignoreeof ~ don't let control-d logout

36 case $LOGNAME in ~ includ~ command number in prompt
37 root)
38 *)

39 esac

PSl="!~ " "
PSl="!$ " "

40 export PSI

41 /tcb/bin/prwarn ~ issue a warning if password due to expire

line 1 contains a single colon that says "this is a Bourne shell script."

lines 2-11

line 12

line 13

Even though this is a startup script for the Korn shell, the
authors have chosen to use the more common syntax of the
Bourne shell programming language.

contain comments.

sets the path definition in exactly the same way as the preceding
Bourne shell .profile: "set the path equal to the current path, the
bin in the home directory, and the current directory."

exports the path to any subshells. This way, you do not have to
include a path definition in your .kshrc.

The Korn shell .profile and .kshrc

lines 14-17 set up a variable called LOGNAME, which is used in the follow
ing MAIL setting (line 18). Literally, these lines say "if checking
for the value of LOG NAME returns a zero-length string (that is, if
LOGNAME is not set), then set LOG NAME to the output of the
logname command. Then, export the LOG NAME variable to all
subshells."

line 18 tells the shell where to look for mail, using the variable LOG
NAME.

line 19 exports the mail location to all subshells.

lines 20-23 check to see if a variable is already set, and if it is not, set the
variable. These lines are similar to lines 14-17. In this case, PWD
is being set to the home directory.

lines 24-27 check for a .kshrc file in the home directory, and set the ksh vari
able ENV to this file if it exists. ksh looks in the file pointed to by
the ENV variable to set up the environment for every new ksh;
you need to tell it explicitly to look in 7.kshrc for ENV definitions.
Literally, these lines say "if a file called .kshrc exists in the home
directory and the file is readable, then set ENV to point to this
file, and export ENV."

line 28 contains a comment. Just as in the preceding Bourne shell
.profile, umask is not set here. The authors have chosen to use
the default system umask rather than resetting it on a per-user
basis.

line 29 sets up the terminal type using tset(C), as explained in the
preceding Bourne shell .profile.

lines 30-34 test to see if job control is enabled, and if it is, set the suspend
character to (Ctrl}z. Job control is a Korn shell feature that lets
you move jobs you are processing from the foreground to the
background and vice versa. You use the suspend character to
suspend a job temporarily that is running in the background.

line 35 tells the shell to ignore single end-of-file (EOF) characters. This is
what you set to stop (Ctrl}d from logging you out.

lines 36-40 set up the prompt based on the value of LOGNAME. For normal
users, the prompt is the current command number followed by a
"$"; for root (the super user), the prompt is the current command
number followed by a" #".

line 41 runs the command prwam(C), which warns you if your pass
word is due to expire soon.

327

Sample shell startup files

A typical .kshrc might look like this:
1 :

2 *
3 * .kshrc-- Commands executed by each Korn shell at startup

4 *
5 * @(#) kshrc 1.1 90/03/13

6 *
7 # Copyright (c) 1990, The Santa Cruz Operation, Inc.
a # All rights reserved.
9 #

10 # This Module contains Proprietary Information of the Santa Cruz
11 # Operation, Inc., and should be treated as Confidential.
12 #

13 # If there is no VISUAL or EDITOR to deduce the desired edit
14 # mode from, assume vi(C)-style command line editting.
15 if [-z "$VISUAL" -a -z "$EDITOR"]; then
16 set -0 vi
17 fi

line 1 tells the shell that this is a Bourne shell script by starting the
script with a single colon, as you have seen before.

lines 2-14 contain comments. These make up the bulk of this brief .kshrc.

lines 15-17 set up vi(C) as the default editor ksh uses when you want to edit
a command line. Literally, these lines say "If the VISUAL vari
able is not set, and the EDITOR variable is not set, then tum on
(set -0) the vi option."

The C-shell .login and .cshrc

328

The C shell, like the Korn shell, uses one file to set up the login environment
and a different file to set up environments for every subsequent C shell. In C
shell, .login is the file read only at login, and .cshrc is the file read each time a
csh is started.

While both the Bourne shell and the Korn shell use Bourne shell startup
scripts, the C shell uses C-shell startup scripts, so you will notice that vari
ables are set and tests are performed slightly differently. C-shell scripts do not
start with a " : " because they are intended for use with C shells, not Bourne
shells.

The C-shell .login and .cshrc

A typical C-shell .login might look something like this:
1 # @(#) login 23.1 91/04/03
2 #
3 # .login-- Commands executed only by a login C-shell
4 #
5 # Copyright (c) 1985-91, The Santa Cruz Operation, Inc.
6 # All rights reserved.
7 #
8 # This Module contains Proprietary Information of the Santa Cruz
9 # Operation, Inc., and should be treated as Confidential.

10 #

11 setenv SHELL /bin/csh

12 set ignoreeof
13 set path = ($path $home/bin .)

14 set noglob

don't let control-d logout
execution search path

15 set term = ('tset -m ansi:ansi -m :?ansi -r -S -Q')
16 if ($status == 0) then
17 setenv TERM "$term"
18 endif
19 unset term noglob

20 /tcb/bin/prwarn # issue a warning if password due to expire

lines 1-10 contain comments.

line 11 sets the environment variable SHELL to be /bin/csh.

line 12 tells csh to ignore single end-of-file (EOF) characters; in other
words, do not let (Ctrl)d log out, as the comment says.

line 14 turns on the noglob setting. The noglob setting, which prevents
filename expansion, is turned on before a tset(C) command is
attempted (on line 15). Without noglob, the tset command
would be read incorrectly.

lines 15-19 set up your terminal type using tset. Line 15 is the tset com
mand you have seen before. Line 16 tests to make sure the tset
command succeeded and, if it did, line 17 sets the environment
variable TERM. Line 18 closes the if statement. Line 19 unsets
the term variable and turns off noglob, so filenames now expand
as expected when wildcard characters are used.

line 20 runs prwarn to warn you if your password is due to expire.

329

Sample shell startup files

330

A typical .cshrc might look like this:
1 ~

2 ~ .cshrc-- Commands executed by the C-shell each time it runs
3 ~

4 ~ @(~) cshrc 3.1 89/06/02
5 ~
6 ~ Copyright (c) 1985-1989, The Santa Cruz Operation, Inc.
7 ~ All rights reserved.
8 ~
9 ~ This Module contains Proprietary Information of the Santa Cruz

10 # Operation, Inc., and should be treated as Confidential.
11 #

12 set noclobber
13 set history=20

~ don't allow'>' to overwrite
save last 20 commands

14 if ($?prompt) then
15 set prompt=% # set prompt string
16 # some BSD lookalikes that maintain a directory stack
17 if (! $?_d) set d = ()

18 alias popd 'cd $_d[lJ; echo ${_d[lJ 1:; shift d'
19 alias pushd 'set d = ('pwd' $_d); cd *, -
20 alias swapd 'set - d = ($_d[2J $_d[1J $_d[3-J) ,
21 alias flipd 'pushd ., swapd ; popd'
22 endif
23 alias print 'pr -n :* I 1p' # print command alias

lines 1-11

line 12

line 13

lines 14-15

lines 16-22

line 23

contain comments.

turns on noclobber, which prevents you from unintentionally
overwriting files using output redirection.

sets the length of the command history to 20 commands. Both
ksh and esh keep track of old commands and allow you to re-use
them.

check to see if the prompt string is set, and, if it is not, set it to be
a "%".

set up some command aliases to perform directory stack mani
pulation. These commands are familiar to users of the Berkeley
(Berkeley Standard Distribution - BSD) UNIX system.

sets up the print alias, which runs files through the pr(C) print
program before sending them to the printer.

Index

A
Abbreviating in vi, 52
ADM manual pages,S
Alias

in C shell, 202, 204-205, 207
in Korn shell, 238
in mail, 80

Alphabetizing, 56
Appending

in Bourne shell, 146
in C shell, 204
in vi, 23

at command, 110
audittrail authorization, 132
Authorizations, 131
auths command, 133
awk

actions, 270, 278-279
arguments, command-line, 300
arithmetic, 279
arrays, 289
comments, 292
debugging, 272
examples, 271, 302, 305-307
fields, 267
flow control, 287
functions

string, 282-284
user-defined, 291

functions, 271
input

separators, 297
input, 296-297
lexical conventions, 292
limits, 311
multi-line records, 297
operators, 274
output

formatted, 269,293-294
printing, 292
separators, 293

output, 268, 292, 295, 303
patterns

BEGIN and END, 273

awk (continued)
patterns (continued)

combining, 277
ranges, 278
regular expressions, 275
relational expressions, 274

patterns, 269,273
program structure, 266
strings, 282
summary, 307-312
using with shell, 300-301
variables

built-in, 271, 278
field, 285
type, 286
user-defined, 271

awk,266

B
Background processing

in C shell, 204
in Korn shell, 232, 234
process ID (PID) in Bourne shell, 155

Background processing, 101, 160-161
Backspace key, 6
backup command, 322
Backups

creating, 94-95
extracting, 96
listing contents, 95
shorthand tar notation, 98

Backups, 91, 93
batch command, 108
/bin,143
Bourne shell (sh)

See also Shell.
arguments

expanding, 146, 159
number of, 154
rescanning,159
testing, 155

background processing, 160
command

331

Index

Bourne shell (sh) (continued)
command (continued)

built-in commands, 173, 184
exit status, testing, 154
grouping, 166
substitution, 144,149
supporting commands, 177, 179-180, 184

flags, 156, 177, 183
input/output, 146,168,180-181
invoking, 158
process ID number (PID), 154-155
.profile,153,156,169,323
programming

argument passing, 158
arithmetic, 179
debugging, 156, 177
flow control, 161-166
functions, 167
in-line input documents, 180, 190
interrupt handling, 169-171
reading in a file, 169
summary, 194

programming, 183
prompt ($), 48
quoting, 144,149,151
redirection, 146, 148
variables

assignment, 149-151
conditional substitution, 181
exporting, 153, 157
keyword parameter, 177
parameter substitution, 151
positional parameters, 150, 154, 158-159,
182

pre-defined, 154
substitution, 151
user-defined, 150-151

variables, 145, 150, 153, 157
Bourne shell (sh), 141
Buffers

in kernel, 143
in vi,26

c
C manual pages, 5
C shell (csh)

See also Shell.
argument

332

C shell (csh) (continued)
argument (continued)

expansion, 211, 217
background processing, 204-205
command

adding, 199
alias, 202, 204-205,207
built-in commands, 205-206
executing, 199
exit status, testing, 210
history, 200-202
repeating, 205
separator (i), 203
substitution, 213,218

.cshrc, 197, 323
flags, 216
input/ output, 204, 215, 219
invoking, 197
logging out, 198
.login, 197,323
path variable, 198
programming

colon (:) modifiers, 213
comments, 207, 213
debugging, 216
example, 211
execution, 207, 216
flow control, 211-212, 214,216
inline data, 215
interrupt handling, 215
operators, 210
reading in a file, 206

programming, 207,209
prompt (%), 48
quoting, 203, 216-217, 219
redirection, 204, 219
special characters, 218-219
variables

substitution, 209
accessing, 208
assignment, 198
built-in, 199-200
expansion, 217
setting, 206
substitution, 208

variables, 198
C shell (csh), 197
Calendar reminder service, 82
Calling.a remote system, 121, 123
cancelcommand,54

Canceling
mail message, 72
vi session, 19

cat command, 102
cd command, 155,224,231
CDPATH variable, 153
Changing

directories, ISS, 231
display in vi, 18
passwords, 129

Characters
counting, 58
typing ahead, 143

chmod command, 317
chmodsugid authorization, 132
chown command, 132
Command

See also individual command names.
alias

in C shell, 202, 204-205, 207
in Korn shell, 238

command list, 160
editing

in Korn shell, 224
editing, 6
entering, 6
environment, 157
execution

remote, 120
execution, 101,142-143,186
exit status, testing in Bourne shell, 154
naming, 143
repeating

in C shell, 205
in Korn shell, 229
in vi, 10, 12

substitution, 144,149
undoing, in vi, 10

Command,160
Comparing files, 56
Control characters, inserting in vi, 28
Copying

DOS files,317
text in vi

See also vi, yanking.
text in vi, 26

Core file,6
Correcting mistakes in vi, 24
Counting words,lines, characters, 58
CP manual pages,S

Crash recovery in vi, 46
cron command, 106
crontab command, 106
crypt command, 137
.cshrcfile, 197, 323
ctcommand,121-123
cu command, 121, 123-125
Cursor, moving in vi, 11, 20
Customizing

mail,80
vi,53

D
dd command, 316
Debugging

See also individual shells and awk.
creating core file, 6

Decryption, 138
Delete key, 6
Deleting

in vi, 12, 28, 60
mail,71

Diagnostic output
in Bourne shell, 146, 181
in C shell, 204

diff command, 56
Directories

changing, ISS, 231
naming, 144, 176
searching, 143, 153, 186-187, 198
size, 187

diskcp command, 99, 316
Disks

copying, 99
extracting file from, 93
formatting, 92
listing contents, 93
number needed, 94
reporting usage, 205
saving file to, 93

Disks,91
Display, changing, in vi, 18
DOS

accessing DOS files,315
appearance of files, 320
backups, 322
cross-compiling, 316
doscat command, 315, 321

Index

333

Index

DOS (continued)
doscp command, 315, 317, 321
dosdir command, 315
dosformat command, 315
dosls command, 316
dosmkdir command, 316
dosrm command, 316
dosrmdir command, 316
letc/default/msdos file, 316, 319
file and directory arguments, 319
filenames, 321
filesystems, mounting, 318
manual pages, 5
utilities, newline conversions, 321

dtox command, 320
dtype command, 316
du commalld, 94, 205

E
echo command, 179
ed scripts, 253
Editing, command line, 6
Editors, See also sed and vi.
Editors, 7
Electronic mail (e-mail). See mail.
Encryption

commands, 136
editing encrypted files, 137

Encryption, 137
End-of-line, displaying, in vi, 49
Enter key, 6
Environment, customizing, in mail, 80
Environment, 157
Environment, customizing

in mail, 80
in vi, 53

Erase key, 6
Escape key

in vi, 9,52
Escape key, 6
execsuid authorization, 132
EXINIT variable, 47
Exiting

mail, 73, 77
sheIl,6
vi, 17,41,44

exprcommand,179
.exrc file, 53

334

F
F manual pages, 5
false command, 180
Field separator, in Bourne shell, 152
Files

comparing, 56
creating in vi, 8
DOS files, accessing, 315
encryption/decryption, 137-138
file descriptor, 146, 180
filename

argument, 143
DOS filenames, 321

finding text in, 57
naming in vi, 43
overwriting in C shell, 200
printing, 53
saving to disk or tape, 93
security, 136
sorting, 56
transferring

to non-UNIX systems, 123
with cu, 125
with uucp or uuto, 114

Filter, 147
Finding text in a file, 57
Form letters, 307
format command, 91
Formatting

disks,92
tapes (mini cartridge), 93

FP manual pages, 5

G
Global substitution, 253
grep command, 57, 109

H
Help

in mail, 72, 78
online manual pages, 4

HOME variable, 152
HW manual pages, 5

I
IFS variable, 152
Input. See Standard input or individual
shells.

Inserting text in vi, 9, 23-24

K
K manual pages, 5
Kernel authorizations, 131
Keys

mapping, 52
modifying, 6

Keys, 6
Keyword parameter, 157
kill command, 102, 104, 205, 235
Killing

process, 102, 104
Korn shell (ksh)

background processing, 232-234
Bourne shell compatibility, 221, 246
command

alias, 238
built-in commands, 244
execution, 237
history, 228-230
interpretation, 237
repeating, 229
substitution, 241

command-line editing, 224-230
editing command line, 225
expanded cd capabilities, 231
flags, 223
invoking

with filename, 222
invoking, 222
job control, 221, 232-235
.kshrc, 323
parentheses, 241
pattern matching, 251
programming

debugging, 251
dot scripts, 246
functions, 246-247
substring parameter expansion, 248
user input, 250

programming,222,242
prompt ($), 48
quoting, 240-241

Korn shell (ksh) (continued)
tilde expansion, 241
variables, environment, 224

Korn shell (ksh), 221
.kshrc file, 323

L
Lines

breaking in vi, 28
counting, 58
current line in vi, 9
joining in vi, 28

Locked account/terminal, 129
Logging in, 135
Logging out, in C shell, 198
Login

changing shell, 222
directory, 152
ending session, 6, 166
remote login, 121, 124
security,128
spoofing program, 128

.login file, 197, 323
logout command, 198
lp command, 53
lpstat command, 55

M
M manual pages, 5
mail

alias, 80
canceling, 72
carbon copy, 73, 79, 81
command

summary, 88
syntax, 69

compose escapes, 67, 78
customizing, 80
deleting, 71, 75
editing

with vi or ed, 68
editing, 71
folder, 74, 87
forwarding

automatic, 86
forwarding, 76
headers

Index

335

Index

mail (continued)
headers (continued)

editing, 78
paging through, 69

headers, 68-69, 72
help, 72, 78
mailbox

mbox,66
system mailbox, 66

.mailrc,80
message list

special characters, 70
message list, 70
messages

listing in chronological order, 81
messages, 66
options

carbon copy (-c), 68
subject (-s), 68

options, 68
organizing, 87
printing, 75
prompt, 72
quitting

with no changes, 77
quitting, 73, 77
reading, 70, 72
reading in

dead letter, 79
file, 79
message, 79

reminder service, 82
replying to, 75, 79
saving

automatic, 75,77
saving, 69, 71, 73-74, 81
screen size, setting, 69
sending

to remote sites, 76-77
sending, 71-72
shell escape, 76
subject, 68, 71, 73
system defaults, 80
undeleting, 75

mail, 65
MAIL variable, 152
MAILCHECK variable, 152
MAILPATH variable, 152
.mailrc file, 80
makekey command, 137

336

man command, 4
Manual pages, 4-5
Mapping keys, 52
Matching. See Pattern matching.
mcartcommand,93
mem authorization, 132
Messages in vi, 51
Metacharacters. See Special characters.
Mistakes, correcting in vi, 24
mntcommand,318
Mode, changing, 6
Modems, calling a remote system, 121, 123
Mounting DOS filesystems, 318

N
nice command, 105, 232, 236
nohup command, 160,232,236

o
Output. See Standard output or individual
shells.

Overwriting, file, in C shell, 200

p
Password

changing, 129
security, 134
warn of imminent expiration, 326

Pasting text in vi. See vi, putting.
Path. See Shell, search path.
PATH variable, 143, 153, 186
Pattern matching

See also awk.
in Korn shell, 251
in shell, 143-144, 146,151
in vi, 14,35,38-39

Pipe, 147, 160,204
printerstat authorization, 132
Printing

canceling, 54
status, 55

Printing, 53
printqueue authorization, 132
Process

See also Background processing.

Process (continued)
background,101
delaying execution, 105
ID number (PID)

in Bourne shell, 154-155
listing, 205

killing, 102, 104
prioritizing, 105
scheduling, 106
status, 102
terminating, 235

Process, 142
.profile file, 153, 156, 169, 323
Programming. See Shell, individual shells, and
awk.

Prompt
colon (:), 16
dollar sign ($), 48
percent sign (%), 48
PSI variable, 153
PS2 variable, 153
question mark (?) in mail, 72

Protected subsystem, 128
prwarn command, 326
psconunand,10~205

Q
queryspace authorization, 132
Quoting

in Bourne shell, 151
in C shell,203, 216-217, 219
in Korn shell, 240-241
with uux conunand, 121

Quoting, 144,149

R
Redirection

in Bourne shell, 146, 148, 168
in C shell, 204, 219

Reference manuals. See Manual pages.
Regular expressions, See also pattern
matching.

Regular expressions, 254,310
Reminder service, 82
Remote login. See Login, remote login.
Repeating conunand

in C shell, 205-206

Repeating conunand (continued)
in Korn shell, 229
in vi, 10, 12, 41

Return code. See Command, exit status.
Return key,6
rm command, 102

s
S manual pages, 5
Saving file

in vi, 41
to disk or tape, 93

Scheduling processes, 106
Screen, redrawing, 37,46
Scrolling, in vi, 11
Scrolling, 6
Searching, 14, 16,36,50
Secondary authorizations, 132
Security

files, 136
passwords, 134
practices, 134
user accounts, 135

Security administrator, 128
sed

= function, 264
{ function, 264
: label function, 264
a function, 258
addressing, 255
b label function, 264
B!function, 264
c function, 258
d function, 257
D function, 262
-e,254
-f,254
flow-of-control, 254
flow-of-control functions, 264
functions, 257
g function, 260, 263
G function, 263
h function, 263
H function, 263
hold and get functions, 263
i function, 258
input/output functions, 261
miscellaneous functions, 264

Index

337

Index

sed (continued)
multiple input-line functions, 262
-n,254
n function, 257
N function, 262
p function, 260-261
P function, 262
q function, 264
r function, 261
s function, 259
substitution functions, 259
t label function, 264
w function, 260-261
x function, 263

sh command. See Bourne shell (sh).
Shell

See also individual shells.
command execution, 142-143
creating, 142
escape

in mail, 76
in vi, 18,44

exiting, 6, 166
identifying, 48
input/output, 146
PATH variable, 143
pattern matching, 143-144, 146, 151
programming

examples, 187
optimizing, 184

programming,142,175
search path, 143, 153
startup files, 323

SHELL variable, 152
sleep command, 105
sort command, 56
Special characters

in C shell, 218-219
in mail message list, 70
in vi, 39, 51

Special characters, 143
Spoofing program, 135
Standard error. See Diagnostic output.
Standard input, in Bourne shell, 146
Standard output, in Bourne shell, 146
Status

line in vi, 15,45
process, 102

Sticky directories, 134
String

338

String (continued)
abbreviating, in vi, 52
searching for, in vi, 15
variable, in Bourne shell, 150

stty command, 6
su authorization, 132
su command, 131
Subsystem authorizations, 132
sysadmsh command, 222

T
Tabs, displaying, in vi, 49
Tapes

extracting file from, 93
formatting, 93
listing contents, 93
saving file to, 93

Tapes, 91
tar command, 93, 95, 322
Telecommunication. See UUCP.
TERM variable, 48
terminal authorization, 132
Terminal type

displaying in vi, 50
setting, 48, 325

test command, 177
time command, 184, 206
Transferring files

to non-UNIX systems, 123
with cu, 125

Trojan horse, 127
true command, 180
Trusted computing base (TCB), 128
tset command, 325

u
Undoing command

in vi, 10,40
Users, currently on system, 57
/usr/bin, 143
UUCP

connected sites, 76
dial-out site, 114
file permissions, 115
listing remote UUCP systems, 115
status of transfer, 118
transferring files

UUCP (continued)
transferring files (continued)

indirect transfers, 115, 117
transferring files, 114
uucico daemon, 119
uucp command, 116-117
uuname command, 76, 115
uupick command, 119-120
uustat command, 118
uuto command, 118-119
uux command, 120-121

UUCP, 114

v
Variables. See shells and individual variables.
vi

abbreviating, 52
appending, 23-24
buffers

delete buffers, 33
named buffers, 25

buffers, 26
colon (:) prompt, 16
commands

summary,59,63
command~ 16,45
copying

See also yanking.
copying, 26
crash recovery, 46-47
cursor movement, 11,20-23
customizing, 53
deleting, 12,28-30,33
display, changing, 18
editing several files, 43
encryption, 137
end-of-line, displaying, 49
entering, 8, 20, 42
error messages, 45, 50
escape key, 9
escaping to shell command line, 18
EXINIT variable, 47
.exrc file, 53
file

amount displayed, 15
creating, 8, 20
current (%), 52
name, 45

vi (continued)
file (continued)

naming,43
saving, 41
status, 15,45
switching, 44

goto command (G), 11
inserting, 9, 17, 23-24, 28
joining lines, 28
leaving, 19
line

addressing, 29
breaking, 28
current, 9
moving to specific (G), 11
numbers, 19,26,46,50

mail, using in, 67
mapping, 52
marking, 25
mistakes, correcting

See also deleting.
mistakes, correcting, 24
modes, 9,46
moving text, 32
options, 18-19,36,39,45-47,49-51
overwriting characters, 30
pasting. See putting.
problem solving, 46
putting, 25
quitting, 17,41,44
redrawing screen, 37, 46
repeating command, 10, 12,41
replacing

choosing replacement, 38
line, 31
printing replacements, 37
word, 31-32, 37

searching
backward, 35
case significance, 36, 50
forward, 14, 35
matching, 38-39
next match, 15,36
search and replace, 16,36-37
special characters, 36, 51
wrap, 15, 36, 51

shell escape, 44, 46
status line, 15, 45
substituting, 31-32
tabs, displaying, 49

Index

339

vi (continued)
undo command, 10, 40
yanking, 25, 27

vi,7

w
wc command, 58
who command, 57
Wildcard characters. See Special characters.
Words, counting, 58

x
xtod command, 320

Index

340

Please help us to write computer manuals that meet your needs by completing this
form. Please post the completed form to the Technical Publications Research
Coordinator nearest you: The Santa Cruz Operation, Ltd., Croxley Centre, Hatters
Lane, Watford WDI 8YN, United Kingdom; The Santa Cruz Operation, Inc., 400
Encinal Street, P.O. Box 1900, Santa Cruz, California 95061, USA or SCO Canada,
Inc., 130 Bloor Street West, 10th Floor, Toronto, Ontario, Canada M5S INS.

Volumetitle: ________________________ _
(Copy this from the title page of the manual, for example, SeD UNIX Operating System User's Guide)

Producc _________________________ ___
(for example, SeD UNIX System V Release 3.2 Operating System Version 4.0)

How long have you used this product?

o Less than one month 0 Less than six months 0 Less than one year

o 1 to 2 years o More than 2 years

How much have you read of this manual?

o Entire manual o Specific chapters o Used only for reference

Agree Disagree

The software was fully and accurately described 0 0 0
The manual was well organized 0 0 0
The writing was at an appropriate technical level
(neither too complicated nor too simple) 0 0 0
It was easy to find the information I was looking for 0 0 0
Examples were clear and easy to follow 0 0 0
Illustrations added to my understanding of the software 0 0 0
I liked the page design of the manual 0 0 0

If you have specific comments or if you have found specific inaccuracies,
please report these on the back of this form or on a separate sheet of paper.
In the case of inaccuracies, please list the relevant page number.

0
0

0
0
0
0
0

May we contact you further about how to improvt seo UNIX documentation?
If so, please supply the following details:

0
0

0
0
0
0
0

Name ___________ ___ Position __________ _

Com~ny--
Address __________________________ _

City & Post/Zip Code __________________ _
Country __ ___

Tcl~hone----------- Facsimile __________ _

31 January 1992

BH01206P000
58076

11111~11111~1~11_111111~111~
AU01210POOO

