
REFERENCE MANU.t\L

930 LISP

L. Peter Deutsch

Butler W. Lampson

University of California, Berkeley

Document No. 30.50.40

Issued June 5, 1965

Revised February 17, 1966

Office of Secretary of Defense

Advanced Research Projects Agency

Washington 25, D. c.

TABLE OF CONTENTS

1.0 Lisp Data ••• 0 ••

2.0 Lisp Programs • • • •

2.1 Basic Function

3.0

4.0

5.0

6.0

2.2 Function Definition •

2.3 Conditionals

2.4 Recursion

Evaluation

Arithmetic

Standard Functions

Changing List Structure •

7.0 Functionals •

8.0 Frog •• • •

9.0 Property Lists

10.0 Input-Output

11.0 other Useful Functions

12.0 Error comments

13.0 Special Features of the }II-Language Trans1ato.r

30D50.40
February 17, 1966

'. . .

30.50.40-1-1

30.50.40-2-1

30.50.40-2-1

30.50.40-2-2

30.50.40-2-3

30.50.40-2-4.

30.50.40-3-1

30.50.40-4-1

30.50.40-5-1

30.50.40-6-1

30.50.40-7-1

14.0 The Lisp Operating System • • • • • • • • •

30.50.40-8-1

30.50040-9-1

30.50.40-10-1

30.50.40-ll-1

30.50.40-12-1

30.50.40-13-1

30.50.40-14-1

Appendix 1 • • • • • • • • • • . 30.50.40-A-1 .

1.0 Lisp Data

30.50.40-1-1
May 28, 1965

Lisp operates on data caJ.led S-expressions. The basic components

of the language are ca.D.ed atoms. An atom mB¥ be

1) A name, which is a string of letters and digits of arbitrary

length, beginning with a letter. The particular letters and digit:a used

have no significance except to distinguish the name from other names.

2) A number, written as a decimal in~eger of less than 24 bits,

possibly with a negative sign.

3) The special symbols T and NIT.. T stands for truth-. Nn stands

for falsity and a number of other things.

- ,S-expressions are made up of dotted pairs. The simplest dotted

pair is a dotted pair of two atoms: (A.B). However, the components of a

dotted pair m8¥ themselves be dotted pairs: (A.(e.B», for instance.

The most common form for a dotted pair is a standard represen

tation of a ~ or ordered set of dotted pairs or atoms 0 In this

representation the ordered set A,B,C,D,E would be written

(A.(B.(C.(D.(E.NIL»»). This is the reader's first introduction to Lisp

parentheses. Since the explicit notation is somewhat cumbersome, a com

pressed form is normaJ.1y used, in which the above list is written (A BCD E).

Blanks separate the elements of the list. Any number of blanks may be

used instead of one. Although the dotted pair notation is rarely seen

outside of the introductory section of a manual, it is the' basis of Lisp

data and program structure and can alw8¥s be referred back to in case of

confusion.

2.0 Lisp programs

30.50.40-2-1
M~ 28, 1965

A Lisp program is basically an S-expression which is inter-

preted as a function call according to the following rule: a list is evaluated

by taking its first element as a function name and subsequent elements are .

arguments of the :function. All. arguments are evaluated before the function

is caJJ..ed. Arguments mew themselves be lists·, i. e. function calls.

Thus (A B C) is a call of the function A with arguments obtained by

evaluating the atoms B and C. (A (B C) C) is a call of A with the first

argument obtained from a caD- of B with argument the value 'of C, and the

second argument the value of Co

To prevent evaJ.uation of arguments the function QUOTE is used.

It is a function like any other, except that its argument. is not evaluated,

since its job is to prevent eValuation of the argument. Thus

(A (Q,UOTE B) (Q,UOTE C» is a call of A with argument s B and C, not the

values of J3 and C • ..Likewise (A (Q,UOTE (B C» (QUOTE C» is a call of A

wi th arguments the list (B C) and the atom C.

S-expressions are extremely inconvenient for complex functions,

so Lisp programs are normal~ written in M-expressions. M is for meta.

Function calls in M-expressions look like those of ordinary mathematics.

The S-expression (A B C) corresponds to the M-expression a[b;c). Note the

use of brackets and semicolons. The lower case letters are customary in

hanmrritten M-expression, upper case being reserved for S-expressions

appearing within the M-expressions. On the teletype, of course, lower case

is not available.

2.1 Basic function

Lisp has the following basic fUnctions:

car [x] takes a list as its argument and has the first element

as its value. Thus car [t (A B C) I] is A. In M-language the single quote is

used in place of the function QUOTE. Car of an atom is an error. Further

examples: car [I«(A B) C) (n E F»I] is «A B) C); car ['«A B C»I] is

(A Be).

30.50.40-2-2
February 17~ 1966

cdr [x] takes a list as its argument and has the list of the

elements after the first as its value. If there is only one element, the

value is NILo cdr of an atom is illegal. Thus cdr [I (A Be) I] is (B C).

Note that car [I (A B) I] is A but cdr [I (A B) t] i.s (B), not B. The value

of cdr is aJ.."nws a list unless it is NIL.

cons [x;y] takes two arguments and has the dotted pair of them

as its value. Thus cons [1 At; 'B'] is (A.B). Because of the convention

for w:riting lists as dotted pairs, cons [tAt; r (B CD)'] is (A BCD).

Note that cons is not symmetric in its two arguments: cons [reB C D)'; 'A']

is «B C D).A), not (B C D A). cons[x;y] is also written as x*y.

atom [x] is a predicate. This is, its value is either T or NTI.,.

In paxticular, atom [x] is T if x is atomic. Thus atom [1 A I] is T, atom

['(B c)tl ·is NIL.

eq [x;y] is another predicate. Its value is T if x and y are

the same atom and NIT., othertvise. eq[x;y] is also written as x=y.

These are the fundamental operations of Lisp. In addition, there

are function definitions and conditionals.

2.2 Function definition

The method of defining functions in lvi-language will be clear

from the following example:

conscar [x;y]: (car x)*y

The list of atoms after the function name is the list of bound variables.

When the function is called its actual arguments are evaluated. The old

values of the atoms x and y axe then saved and their values are set to the

values of the arguments. Thus, when they are evaluated in the function

definition, the values they provide "rill be the values of the actual

arguments 0 When the function is finished, the old values of x and y are

restoredo In this "ray the function definition is completely insulated

from any other uses to which x and y may have been put, and other functions

which use x and y need not be concerned about what conscar does to them.

30.50.40-2-3
February 17, 19G4

The matter of' evaluation and bindings is very important in Lisp

and 1fill receive further discussion later. The important points to remember

are 1) a function call sets the values of' the atoms used in the def-

inition to the values of' the actual arguments in the caJ.l. The old values

are restored afterwards.

2) whenever an expression appears as a function argument it

is evaluated. If it is an atom, the evaluation produces its latest

binding.

Another w8¥ of writing the above function definition makes the

binding more explicit:

conscar : lambda [[x ;y]; (car x)*Y

Lambda is a function which may be used by the running program to define

new :f\mctions. It differs :from an ordinary function in that it eXJ?ects

its first "a.rgwnent to be a list of atoms and does not evaluate it.

2.3 Conditionals

The one remaining major feature of Lisp is the method for

handling conditional branches. This nay be illustrated by a f'unction

definition:

neq[x;y] : [x=y # NIL; T#T]
The first bracket after the == signals the sta.rt of a conditional, "Thich

is composed of a number of clauses of the form expression # expression.

The first expression in the first clause is evaluated. If its value is

not N~, the second expression is evaluated and its value is the value

of the entire conditional. The remaining clauses are ignored. If the

first expression turns out to be NIL, the second expression is ignored

and attention turns to the second clause. This process proceeds until a

first expression is found whose value is not NIL. The absence of such

an expression is an erroro For this reason it is usual to terminate

conditionaJ.s vlith T-#, which becomes the catch-all alternative. The

reader vlill observe from this that the value of T is always T. Likewise,

the value of NIL is alvTays NIL.

2.4 Recursion

30.50.40-2-4
February 17, 1966

This is not a new :feature of Lisp, but it is so important that

it deserves special treatment. A fUnction definition m~ contain calls on

any functions, including the one being defined. Because of the machinery

for binding variables "tvhich has already been discussed, the programmer need

not worry about the identity of the arguments. Example:

equal[x;y] : [atom x #[atom y # x=y; T#NIL]; atom y #NIL;

equal [car x; car y]# equal[cdr x; cdr y]; T#NIL]

This function compares t1'lO arbitrary lists for equality. The definition

s~s: i:f x is atomic then if y is atomic the value is eq[x;y), which is

already de:fined. If x is atomic and y not atomic they cannot be equal.

If x is not atomic, compare car [x] and car [y]. If' they are equal, x and

y are equal if cdr [x] and cdr [y] are. I:f car [x] and car [y] are not

eqv.al then x and y are not.

The secret of good Lisp progrannnine; is knO\ving hovT to use

recursion. THINK RECURSIVELY. Recursion can be avoided with PRCG,

but people who use PRCG too nruch 1vill never get to Heaven.

3.0 Evaluation

30.50.40-3-1
February 17, 1966

What is evaluated? Everything except the argument of' QUarE,

the f'irst argument of' ~ffiDA, SETQ and FROG, and pieces of' conditionals

which don't get evaluated accerding to the rules.

What does evaluation do? Atoms are replaced by their most recent

binding. Functions have their arguments evaluated and then get called.

QUOTE simply disappears and leaves its literal argument.. (Note the

implications: it is aJJnost aJ.w~s wrong to use QUOTE except on data.

If, for instance, you quote a function argument in a definition it will

not be replaced by its actual argument, since it will not be evaluated).

Lambda and conditionals do peculiar things as described above.

Bindings determine the values of atoms.. The value of' a number,

T or NIL i.s alvrays what you think it iso All other atoms m8(/" have values

which are acquired by' giving them bindings. The most cor.unon way of doing

this is to use them as arguments in a definition of a function. tfuen the

:runction is called the atoms used as arguments acquire nevT bindings and

therefore new values. The old values are not lost; they are saved on the

pushdown list until the function terminates and then restored. This means

that outside the fUnction on the names used f'or the arguments are not

important. Except f'or one thing: if the function uses eval, which does

an extra evaluation of' its argument, and the argument of evaJ. vThen evaluated

once turns out to be one of the function arguments, the second evaluation

will get the most recent binding, whi?h will not be ~he one the atom had

in the calling function. Thus the def'initions

dum[x] : x*eval y

redum [y;z] : dum z

"Till cause-redum ['(QUOTE A)';'Bf] to have the value (B.A), as expected;

it will cause redum [IZ'; 'At] to have the value (A.A), again as expected;

but if' re2dum [w;x] : redum [x;w-]

then re2dum [' A ' ; 'X I] has the value (A.A), not (A. X), because in dum

the most recent binding of x is the one produced by the call of .dum, name~

30.50.40-3-2
November 16, 19~

A, not the one produced by the call of re2dum, which is X. More reaJ.istic

examples are also more complex (that is really possible).

There is another w8¥ to get bindings, vlith the £'unction set.

set[x;y] eValuates its first argument and expects to get an atom. It

then evaluates its second argument and destroys the current binding of

eval[x], replacing it with eval[y]. A more useful function is setq,

which quotes its first argument. If x is not a function argument in

a definition, then setq[x;'A'] sets the value of x to A permanent~.

If x is a function argument, then the setq overrides the current binding,

but vThen that binding is destroyed by the termination of the function

whose call produced it, the effect of the setq is also lost o

.When the user types in to Lisp at the console, he is talking

to evaJ.. I--lore precisely, '<That he types is substituted for X in the form

(PRINT X), where PRrnT is a function which prints its argument. This means

that eval is applied once to whatever is typed. . Hence, typing an atom

causes its value to be printed out. If the atom is a function name,

its value is the S-expression function· definition.

Typing (CONS A B) probably gives an error, unless A and B have

been setq'ed. On the other hand (CONS (QUOTE A) (QUOTE B)) gives (A.B);

4.0 Arithmetic

30.50.40-4-.1

MC3¥ 28, 1965

There are a fevT Lisp functions for operations on nmnbers. Plus

takes any number of arguments and adds. them together to get its result.

Times multiplies its arguments. Quot divides the first argument by the

second. Rem takes the first argument modulo the second. Note that because

arguments are evaluated before the functions are called, the expression

(a+b) (c+d) is evaluated in Lisp by times [plus[a;b];plus[c;d)].

To compare numbers the predicate ~ is available; it is true

if the first argument is greater than the second. The· predicate numbp

is true if its argument is a number. All of these functions except

numbp give errors if their arguments are non-numeric.

Minus is a fUnction of one numeric argument which returns the

negative of the argument as its value.

5.0 Standard functions

30.50.40-5-1
February 17, "1966

The follmTing i'tmctions are either built into the 930 Lisp

system or in the librar,y:

list takes its arguments and strings them together into a list. It is one

of the fevT standard functions which take a variable number of arguments.

member [x;y] is true if x is a member of the list y. The definition is

member [x;y] : [null y #NIL; equal [x;car Y]#T; T# member [x;cdr y]]

equal [x;y] is true if x equals y. It was defined above.

subst [x;y;z] substitutes x for all occurrences of the S-expression y

in Zo sub.st [x;y;z] : [atom z #[z:ry #x;T#z]; TIl subst
[x;y;car z]* subst [x;y;cdr z]].'

sas_soc [x;a;u] searches the ~ list a for a dotted pair vThose first

element is x 8...11d returns this pair as its value. A pair list is a list of

dotted pairs. If there is no such pair the value is the value of the

function u of no arguments.

sassoc [x;a;uJ : [null a # u[); (caar a)=x #car a; T#sassoc[x;cdr"a ;u]]

pair [x;y] has as value the list of pairs of co~esponding elements of the

lists x and y. It can be used to construct pair lists of the kind searched

by sassoc o pair[x;y): [null x!fNIL; T#«ca:r x)*car y}xpair[cdrx;cdr y])

append [x;y] combines its tvTO arguments into one new list. It is not li.ree

cons.

append [x;y] : [null x #y;T#(car x)*append[cdr x;y]]

~ takes any number of arguments and is T if none of them is NIL, NIL

other\fise.

~ takes any number of arguments and is NIL if aJJ. of them are NIL, T

othenrise.

30.50.40-5-2

February 17, 1966

null [x] is' T if x is NIL or the empty list (), which is the same thing.

otherwise it is NIL. null is exactly the same as not, which is therefore

not provided.

gensym[] has as value a symbol guaranteed different from any other in the

world.

length [x] has the number of elements in x as its value.

reverse [x] has as value the list with the elements of x in reverse order.

evaJ.. has already been discussed. It evaluates its argument again. Do not

forget that the argument is al,vays evaluated once.

prog2 [x;y] has as its value the value of y. Its function is to get both

x and y evaluated.

caa:r [x) car car x

cadr [x] car cdr x

cdar [x 1 cdr car x

~ [x] cdr cdr x

caaar [x] through cdddr [x] are defined similarly.

define [x] takes as 'its single argument a list of things to be defined. Each

of these things is either a list of two elements:

(fUnction name S-expression)

which sets the literal S-expression to be the value of the fUnction name; or

a list of three elements:

(fUnction name (list of variables) S-ex~ression)

which sets the value of the function name to (LAMBDA (list of variables)

S-expression).

Each element of the first kind is equivalent to

function name: 'S-expres'sion'
and each element of the second Itind is equivalent to

function name [list of variables] : S-expression.

function [x] is exactly equivalent to quote [x].

6.0 Changing list structure

30.50.40-6-1
February 17, 1966

A dotted pair in memory is a word with two pointers, one to the first

element of the pair and the other to the secondo The list (A Ben) then looks

like this:

cS- I I
:7

n5 NJL I

Because of this use of pointers, a list m~ be a member of many other lists,

each of which has a pointer to it. When a ne:w list is generated by cons,

a single memory word is used. In it are placed pointers to the two elements

of the dotted :pair being created by the cons. No account is taken of other

lists of which either element m~ be a member.

These considerations are important for proper use of two functions

which explicitly change pointers in an existing list structure, since these

functions can affect all the lists which have painters to the cell being

changed. If the prograzmner is not alert, he m8:Y- not be aware of how many such

lists there are.

rplaca [x;y] replaces the first element· of the dotted pair x with a pointer

to y.

rplacd [x;y] replaces the second element of the dotted pair x with a pointer

to y.

rplaca looks something like y*cdr x J but it is ~ the same. It does .

not create a new word, and it permanently changes x.

A useful function which makes use of these operations is nconc,

which is like append except that it does not copy its first argument. For

this reason it is somewhat more efficient than append. It is also much more

dangerous. Unless you are very sure of what you are doing, do not use

30.50.40-6-2

May 28, 1965

nconc except when the first ar~ent has just been created by list or some

similar function. Nconc does a rplacd on the last element of its first

argument.

7.0 Functionals .

30.50.40-7-1

February 17, 1966

It is possible, as the discerning reader \,lill already have noticed,

for a function to have functions as arguments. Such functions are called

functionals, and they are very useful. The most useful ones are the true

Lisp programmer's substitute for iteration; they are the mapping functionals.

maplist [x;f] runs down the list x and applies the function f to each sublist

obtained by taking elements off the front of x. The values are then cons fed

together 0 The definition is clearer: maplist [x;f] : [null x #NIL;T#

(r x)* maplist[cdr x ;f) 1

Since this is rarely exactly what is wanted, there are several

other mapping functions which may be more suitable for particular applications.

mapcon [x;fl : [null x #NIL;T#nconc[f x ; mapcon[cdr x ;f)))

is like ma'Plist except that it uses nconc rather than cons. It is not safe

if the value of r is a list the last element .of vlhich is on any other lists.

mapIx;fl : [null x #NIL;T#prog2[f x ; map[cdr x ;f)]) is like maplist

except that it does not save the val'll:es of f 0 It is good when f is being

executed for its effect rather than its valueo

mapcar [x;f) [null x #Nll; T#(f car :x;)* mapcar(cdr x ;f]] is like

maplist except that it applies f to each element of x in turn, instead of to

each tail in turn.

8.0 Prog

30 .50 .49-8- 1

February 17, 1966

As "Te have already mentioned, there is in Lisp a feature which allows

the programmer to write sequences of statements, just like Fortran, and transfer

between ~hem. To do this, use the pseudo-function ~, thus

reverse [x] prog [[y]
a; {null x # return y 1;

y ~car .x)*y;
x ~ cdr x;
go .a 1

which defines the library function reverse. Note ~that statements are separated

by semicolons. The program variables are specified in the first list of the

:prog definition; they are bound by the prog and are set to NIL "Then it is

entered. They may be regarded as function arguments "'hich are always NIL

when the function is called.

Labels of statements are atoms followed by semicolons. Transfers are

done with the function,gQ,. To leave the prog, execute the function return ,

which delivers its argument as the value of the :prog. If the prog is left

because the last statement "ras executed and did not include a go, . its value

is NIL.

The function setq takes the place of the Fortran assignment statement.

It is of course the same function that is available outside of progs to set

variables. This conclusion follows from the general rule that a statement in

a prog may be any S- or M-expressio~ which would be legal as the argument of

a function. The one exception is that a conditional used alone as a statement

is permitted to run off the end. Frogs may of course be nested and may in fact

appear wherever any other function call is legal.

9.0 Property Lists

30.50.40-9-1

May 28,. 1965

An atom in Lisp is like a hatrack yrith hooks on which various

things can be hung. Some of' these have already been discussed: the value,

which is an S-expression; and the print name, "'hich is the name of the atom

and not accessible to the programmer except on input-output.

There is one more hook which is not used by the Lisp system itself

for anything. This is the property list. It is ?n S-expression like the ~alue,

and its only function is to provide a convenient place to keep information about

the atom. There are tyro functions connected with it.

setlis [x;y] sets the property list of the atom x to be the S-expression y.

getlis [x] has as its value the property list of the atom x.

10.0 Input-output

30050040-10-1

November 16, 1965

Lisp does input-output with a small number of useful fUnctionso

read is a function of no "arguments vThich reads a single S-expression from

the current input medium. Read vTill treat any punctuation character except

() " and dot as an atom. It ,.,ill also take any string of characters enclosed

in a double quote as an atom. The first character of the string is not

checked for double quote, i.e., to input" as atom vTrite """.

print [xl prints the S-expression x on the current output mediumo

prinl [x) prints the single atom x on the current output medium.

input [xl sets the input medium to the file whose name is the atom" xo

output [x) does the s~ne for the output medium.

The input medium can also be set f'ram the teletype. Both input and output

media are reset to teletype by pushing the rubout button and by any error.

Whe~ the input or output medium is switched, the former input or output file

is closed (unless it is the teletype). File names need not be quoted.

terpri is a function of no arguments which prints a carriage return and line feed.

11.0 other useful functions

30.50.4o-ll-1

February 17, 1966

trace [x] takes a list of function names and changes the definitions so that

the function name and the arguments are printed each-time the function is

called, and the function name and the value are printed each time the function

exits.

Untrace [x] reverses the action of trace.

been traced is likely to cause an error.

will not be correct afterwards.

Untracing functions which have not

If it does not, the function definition

nlamda [[x]; definition] is like lambda with the following exception: vJhen

the f\mction defined by the nlamda is called, its arguments are collected

literaJJ.y and made into a list. x is then bound to this ·list. The arguments

are not evaluated. Using nlamda it is possible to write so-called pseudo

fUnctions like quote, which do not follow the usual Lisp rules. In fact, quote

is defined by

quote [x] : nla.mda [[x]; car x]

12.0 Error comments

30 0 50.40-12-1

May 28, 1965

Errors detected by the interpreter cause three character error

comments ~d return control to the Lisp supervisor. The error comments are:

Code

IAR

ICD

ILS

IRP

ISG

NNA

PCE

SCE

???

IAF

rnA
rnL

UAS

GCH

IIF

lIP

lIT

DM

PRl

additional information

atom

first arg

First arg:'

first arg

argument

function

atom

line

line

line

line

argument

meaning

tried to take CAR or CDR of an atom

ran off the end of a COND

tried to SETQ, a non-atom or number T or NIL

tried to RPIACA or RPLACD an atom

tried to SETLIS or GETLIS a non-atom

non-numeric argument for an arithmetic function

ran off pushdovm list

storage capacity exceeded

disaster. give up

illegal atom used as function name

wrong number of arguments for built-in function

wrong number of arguments for LAMBDA

unbound atom evaluated

garbage collector snarled. give up

) or • at the beginning of an S-expression

o not followed by (or atom

• atom not followed by)

illegal number

PRINI called with non-atomic argument

13.0 Special ~eatures o~ the M-language translator

30.50.40-13-1
February 17, 1966

The internal operation of Lisp is exclusively in S-expressions, but in

practice all input and output of programs is done in M-language. Each list

read ~rom the input may contain either a single ~unction definition or a single

function call to be evaluated. Thus, -to de~ine cadr the following teletype

input might be used:

$(CADR X : CAR CDR XJ

to which Lisp would respond

(CADR)

$

The translator types $ to indicate that it is waiting for more input.

The M-language translator has a number o~ use~ul ~eatures, some o~

which are not yet implemented. The form which is now implemented is the one

used in the ~unction definitions in this manual; that is, it has a limited number

of binary operators (: for function definition, = I'or s., t!. for setq, *' ~or ~)
and accepts no special symbols except single quotes. There are three exceptions:

1) Double quotes may be used to input unmentionable characters as described

in section 9.

2) A ~unction o~ one argument may be written without bracket-s surrounding

the argument. Thus car cdr car x is equivalent to car [cdr[car[x]]].

3) Parentheses have their usual mathematical meaning.

A useful ~unction for examining function definitions is see [x] where x is

either a single function name or a list of names. This function prints out the

definitions in M-1anguage.

30.50-.40-13-2
February 17, 1966

Binary operators should be used with caution: they take the shortest

possible left operand and the largest possible right operand:

car x*car y

car[x)*car y

car (x*Y)*z

is

is

is

car[cons[x;car[y])]
cons[car[x);car[y]]
car[cons[cons[x;y];z]]

14.0 The Lisp Operating System

30.50.40-14-1

November 16, 1965

To call in the Lisp system give. the executive command

@ LISP.

The Lisp system will then read in the library and type $. At this point the

M-language translator is in control and remains in control until either control

returns to the exec, or the user types $ himself. In either case Lisp will be

in S-language mode: each S-expression read in will be evaluated and the result

printed out, as discussed in section 3. To return to M-language, type (XM).

To change the input medium, type bell (control G), followed by a file

name •. Data is read from this file until an end of file is encountered, after

which control returns to the teletype. Pushing the rubout button always returns

control to the teletype.

During input of text, A
C (control A) deletes the most recently typed

character in the current line. If there are no characters left in the current line,

.it has no effect. QC deletes the current line completely. Once a carriage return

has been typed, nothing can delete the line except the rubout button. Carriage

return looks the same as space, and the system always provides a line feed.

Whenever the Lisp system is doing anything, pushing the rubout button

term~nates the activity and returns control to the teletype. If this happens

during computation, some' atoms may have rather strange bindings. Other than

this, no trouble can be caused by pushing the rubout button.

After the rubout button has been pushed, pushing it again without typing

anything else will cause control to revert to the exec. To return to Lisp

without initi-alizing the system, give the exec command

@ CONTINUE LISP.

..

30.50.4o-A-l

Nove~r 16, 19ft;

Appendix 1: Functions is the Lisp system

The following functions are machine coded in the Lisp system.

Function name ,Page

atom 2-2
car 2-1
cdr 2-2
caar 5-2
cadr 5-2
cdar 5-2
cddr 5-2
cond 2-3
cons 2-2
eq 2-2
equal 2-4
eval 3-1
gensym 5-2
get1is 9-1
go 8-1
gtp 4-1
lambda 2-3
length 5-2
list 5-1
member 5-1
minus 4-1
nconc 6-1
nlamda ll-l
-null 5-2
numbp 4-1
plus 4-1
prinl 1(}'1
print 1(}'1
prog 8-1
prog2 5-2
quot 4-1
quote 2-1
read 1(}'1

return 8-1
rplaca 6-1
rp1acd 6-1
set lis 9-1
setq 3-2
subst 5-1
terpri- 1(}'1
times 4-1

The following functions are in the Lisp library

Function name Page

define 5-2
and 6-1
append 5-1
function 5-2
map 7-1
mapcar 7-1
mapcon 7-1
map1ist 7-1
or 5-1
pair 5-1
rem 4-1
reverse 5-2
sassoc 5-1
see 13-1
set 3-2
trace 11-1
untrace 11-1
xm 14-1

30.50.4o-A-2

November 16, 1965

