
LINEAR INTEGRATED CIRCUITS 1990 DATA BOOK

SEAGATE MICROELECTRONICS

eagate Microelectronics Ltd. is part of the Seagate Technology Corporation, the world's leading manufacturer of hard disc drives for small computer systems.

The company provides advanced integrated circuit solutions for power management applications. This technology combines elements such as power, precision analogue and digital control into a single monolithic chip.

Seagate Microelectronics production facility is constructed to the highest specifications incorporating the latest cleanroom architecture equipment and services. Statistical process

control (S.P.C.) techniques are employed throughout the manufacturing cycle ensuring quality and reliability are inherent to every Seagate Microelectronics device.

As a result Seagate Microelectronics is able to participate in Hi-Rel programmes worldwide and currently holds BS9000/CECC factory and product approvals, is a supplier of MIL STD 883C and class S devices, in addition to the list of approvals for D.E.S.C. "MIL DRAWING" system.

Seagate Microelectronics Limited MacIntosh Road, Kirkton Campus, Livingston EH54 7BW, SCOTLAND Telephone: (0506) 416416 Telex: 727360 INTPOW G Fax: (0506) 413526

PULSE WIDTH MODULATORS

MOTOR CONTROLLERS/DRIVERS

VOLTAGE REGULATORS

MILITARY PRODUCTS

APPLICATIONS INFORMATION

PACKAGE INFORMATION

Life Support Policy: Seagate Microelectronics does not authorize or warrant any Seagate Microelectronics product for use in life support devices and/or systems without the express written approval of Seagate Microelectronics.

Life support devices or systems are devices or systems which, (i) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

Seagate Microelectronics cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in Seagate Microelectronics product. No circuit patent licenses are implied. Seagate Microelectronics reserves the right to change the circuitry and specifications without notice at any time.

© Seagate Microelectronics Limited 1989

TABLE OF CONTENTS

GENERAL INFORMATION 51

Ordering Information	6
Product Selection and Application Guides	7
Alphanumerical Index	10
Package Cross Reference	11
Cross Reference Guide	12
Quality and Reliability	13

2 PULSE WIDTH MODULATORS

IP1P125, IP3P125 IP1060B, IP1060, IP1060A IP1524, IP3524 IP1524B, IP3524B IP1525A, IP3525A IP1527A, IP3527A IP1526, IP3526 IP1526A. IP3526A IP1543, IP3543 IP1842, IP2842, IP3842 IP1843, IP2843, IP3843 IP1844, IP2844, IP3844 IP1845, IP2845, IP3845 IP1842A, IP2842A, IP3842A IP1843A, IP2843A, IP3843A IP1844A, IP2844A, IP3844A IP1845A, IP2845A, IP3845A IP5560, IP5560C IP5561, IP5561C IP35063, IP33063, IP34063

Regulating Pulse Width Modulators	20
Switched-Mode Power Supply Control Circuit	24
Regulating Pulse Width Modulator	29
Advanced Regulating Pulse Width Modulators	34
Regulating Pulse Width Modulators	39
Regulating Pulse Width Modulators	39
Regulating Pulse Width Modulators	44
Advanced Regulating Pulse Width Modulators	49
Power Supply Supervisory Circuits	54
Current Mode Regulating Pulse Width Modulators	59
Current Mode Regulating Pulse Width Modulators	59
Current Mode Regulating Pulse Width Modulators	65
Current Mode Regulating Pulse Width Modulators	65
Current Mode Regulating Pulse Width Modulators	70
Current Mode Regulating Pulse Width Modulators	70
Current Mode Regulating Pulse Width Modulators	70
Current Mode Regulating Pulse Width Modulators	70
Switched-Mode Power Supply Control Circuit	76
Switched-Mode Power Supply Control Circuit	81
DC-DC Converter Control Circuits	85

MOTOR CONTROLLERS/DRIVERS **F** (

IP1D03, IP2D03, IP3D03 IP2D08, IP3D08 IP2D09, IP3D09 IP1M10, IP2M10, IP3M10 IP1M12, IP2M12, IP3M12 IP293DML

5 Amp Stepper Motor Driver	92
Universal Quad Driver	96
Universal Quad Driver	96
200mA Dual H Bridge	99
200mA Dual H Bridge	99
Push-Pull Four Channel Driver	103

TABLE OF CONTENTS (CONTINUED)

4 VOLTAGE REGULATORS

IP1R07A, IP3R07A	Low Dropout, 3 Amp Pos. Adjustable Voltage Regulators 1%	110
IP1R07, IP3R07	Low Dropout, 3 Amp Pos. Adjustable Voltage Regulators	110
IP117A	1.5 Amp, Positive Adjustable Regulator 1%	113
IP117	1.5 Amp, Positive Adjustable Regulator	113
LM117	1.5 Amp, Positive Adjustable Regulator	113
IP117AHV, IP317AHV	1.5 Amp, Positive Adjustable Regulators 1%	113
IP117HV, IP317HV	1.5 Amp, Positive Adjustable Regulators	113
LM117HV	1.5 Amp, Positive Adjustable Regulator	113
IP117MA	0.5 Amp, Positive Adjustable Regulator 1%	119
IP117M	0.5 Amp, Positive Adjustable Regulator	119
IP117MAHV	0.5 Amp, Positive Adjustable Regulator 1%	119
IP117MHV	0.5 Amp, Positive Adjustable Regulator	119
IP120A Series	1.5 Amp, 3-Terminal, Negative Regulator 1%	121
IP120 Series	1.5 Amp, 3-Terminal, Negative Regulator	121
LM120 Series	1.5 Amp, 3-Terminal, Negative Regulator	121
IP7900A Series	1.5 Amp, 3-Terminal, Negative Regulator 1%	121
IP7900 Series	1.5 Amp, 3-Terminal, Negative Regulator	121
IP79M00A Series	0.5 Amp, 3-Terminal, Negative Regulator	127
IP79M00 Series	0.5 Amp, 3-Terminal, Negative Regulator	127
IP120MA Series	0.5 Amp, 3-Terminal, Negative Regulator 1%	127
IP120M Series	0.5 Amp, 3-Terminal, Negative Regulator	127
IP123A, IP323A Series	3 Amp, 3-Terminal, Positive Regulators 1%	131
IP123 Series	3 Amp, 3-Terminal, Positive Regulator	131
LM123	3 Amp, 3-Terminal, Positive Regulator	131
IP137A	1.5 Amp, 3-Terminal, Negative Adjustable Regulator 1%	137
IP137	1.5 Amp, 3-Terminal, Negative Adjustable Regulator	137
LM137	1.5 Amp, 3-Terminal, Negative Adjustable Regulator	137
IP137AHV, IP337AHV,	1.5 Amp, 3-Terminal, Negative Adjustable Regulators 1%	137
IP137HV, IP337HV	1.5 Amp, 3-Terminal, Negative Adjustable Regulators	137
LM137HV, LM337HV	1.5 Amp, 3-Terminal, Negative Adjustable Regulators	137
IP137MA	0.5 Amp, 3-Terminal, Negative Adjustable Regulators	143
IP137M	0.5 Amp, 3-Terminal, Negative Adjustable Regulator	143
IP137MAHV	0.5 Amp, 3-Terminal, Negative Adjustable Regulator 1%	143
IP137MHV	0.5 Amp, 3-Terminal, Negative Adjustable Regulator	143
		145
IP138A, IP338A IP138, IP338	5 Amp, Positive Adjustable Regulators 1% 5 Amp, Positive Adjustable Regulators	145
LM138, LM338	5 Amp, Positive Adjustable Regulators	145
		140
IP140A Series IP140 Series	1 Amp, 3-Terminal, Positive Regulator 1%	151
	1 Amp, 3-Terminal, Positive Regulator	151
LM140 Series	1 Amp, 3-Terminal, Positive Regulator	151
IP7800A Series IP7800 Series	1 Amp, 3-Terminal, Positive Regulator 1%	151
	1 Amp, 3-Terminal, Positive Regulator	157
IP140MA Series IP140M Series	0.5 Amp, 3-Terminal, Positive Regulator 1%	157
	0.5 Amp, 3-Terminal, Positive Regulator	157
IP78M00A Series	0.5 Amp, 3-Terminal, Positive Regulator 1%	
IP78M00 Series	0.5 Amp, 3-Terminal, Positive Regulator	157
IP150A, IP350A	3 Amp, Positive Adjustable Regulators 1%	161
IP150	3 Amp, Positive Adjustable Regulator	161
LM150	3 Amp, Positive Adjustable Regulator	161
IP1R17A, IP3R17A Series	3 Amp, 3-Terminal, Fixed Negative Voltage Regulators 1%	167
IP1R17, IP3R17 Series	3 Amp, 3-Terminal, Fixed Negative Voltage Regulator	167
IP1R18A, IP3R18A Series	5 Amp, 3-Terminal, Fixed Positive Voltage Regulators 1%	172
IP1R18, IP3R18 Series	5 Amp, 3-Terminal, Fixed Positive Voltage Regulators	172
IP1R19A, IP3R19A Series	5 Amp, 3-Terminal, Fixed Negative Voltage Regulators 1%	176
IP1R19, IP3R19 Series	5 Amp, 3-Terminal, Fixed Negative Voltage Regulators	176

TABLE OF CONTENTS (CONTINUED)

5 MILITARY PRODUCTS

BS 9000/BS 9400 Screening Procedures 1 Sampling Plan Comparative Analysis 1
Camping Fian Comparative Analysis
Military Processing Flow Chart-MIL STD 883 1
BS 9000 Approvals 1
D.E.S.C. Mil. Drawing Approvals 1

6 APPLICATIONS INFORMATION

High Performance Pulse Width Modulators	192
The IP1R07A Linear Post Regulator	202
The IP34063 Switching Regulator Control Circuit	207
1% Positive Adjustable Regulators	212
Fixed Output Voltage Regulators	215
1.5 Amp Negative Adjustable Regulators	217

PACKAGE INFORMATION

3-lead TO-39 Metal Package (H)	220
2-lead TO-66 (R)	220
2-lead TO-3 (K)	220
8-lead Ceramic DIP (J)	221
14-lead Ceramic DIP (J)	221
16-lead Ceramic DIP (J)	221
18-lead Ceramic DIP (J)	221
20-lead Ceramic DIP (J)	222
8-lead Molded DIP (N)	222
14-lead Molded DIP (N)	222
16-lead Molded DIP (N)	222
18-lead Molded DIP (N)	223
20-lead Molded DIP (N)	223
8-lead S.O. (D)	223
14-lead S.O. (D)	224
16-lead S.O. (D)	224
16-lead Wide Body S.O. (D)	224
18-lead Wide Body S.O. (D)	225
3-lead TO-218 (V)	225
5-lead TO-218 (V)	225
3-lead TO-220 (T)	226
5-lead TO-220 (T)	226
3-lead TO-257 (TO-220 Style Hermetic) (G)	226
8-lead 0.600 Power SIP (W)	227
15-lead 0.800 Power SIP (W)	227

234

10

ø

6

1C

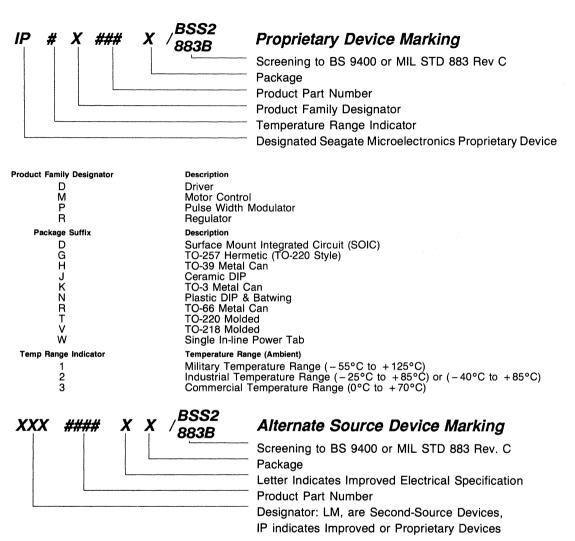
Z

10

1

ø

nc


26

7

GENERAL ORDERING INFORMATION

GENERAL INFORMATION

Devices are listed in the table of contents alphanumerically by product family and then by device number. Most of Seagate Microelectronics linear circuits employ a 1-2-3 numbering system. The 1 denotes a Military temperature range device (-55°C to +125°C), the 2 denotes an Industrial temperature range device (-25°C to +85°C), and the 3 denotes a Commercial temperature range device (0°C to +70°C), i.e., IP117A/IP317A.

Parts are generally listed in the table of contents by military part numbers first, i.e., IP117A/IP317A. Where only one temperature range exists, the part will be listed in its proper order, i.e., IP293.

PRODUCT SELECTION GUIDES

GENERAL INFORMATION

VOLTAGE REGULATOR SELECTION GUIDE

Output Current	Output Votage	1% Output Tolerance		4% Output Tole	erance	Packages
0.5A Fixed + 5V		IP78M05A IP140MA-5	na inga dinta ogan dina.	IP78M05 IP140M-5		TO-39 TO-116 (8 pin)
	Fixed + 12V	IP78M12A IP140MA-12		IP78M12 IP140M-12		
	Fixed +15V	IP78M15A IP140MA-15		IP78M15 IP140M-15		
	Fixed -5V	IP79M05A IP120MA-5		IP79M05 IP120M-5		
	Fixed -12V	IP79M12A IP120MA-12		IP79M12 IP120M-12		
	Fixed -15V	IP79M15A IP120MA-15		IP79M15 IP120M-15		
	Adj. +1.2V to +40V	IP117MA		IP117M		TO-39
	Adj. +1.2V to +60V	IP117MAHV		IP117MHV		
	Adj 1.2V to - 40V	IP137MA		IP137M		
	Adj 1.2V to - 50V	IP137MAHV		IP137MHV		
1.5A	Fixed +5V	IP7805A IP140A-5		IP7805 IP140-5		TO-3 TO-39
	Fixed + 12V	IP7812A IP7815A		IP7812 IP7815		TO-66
	Fixed +15V	IP7815A IP140A-15		IP7815 IP140-15		TO-257
	Adj. +1.2V to +40V	IP117A		IP117		
	Adj. +1.2V to +60V	IP117AHV	IP317AHV	IP117HV	IP317HV	
	Fixed -5V	IP7905A IP120A-5		IP7905 IP120-5		
	Fixed -12V	IP7912A IP120A-12		IP7912 IP120-12		
	Fixed -15V	IP7915A IP120A-15		IP7915 IP120-15		
	Adj1.2V to -40V	IP137A		IP137		
	Adj1.2V to -50V	IP137AHV	IP337AHV	IP137HV	IP337HV	
3.0A	Fixed + 5V	IP123A-5	IP323A-5	IP123-5		TO-3
	Fixed + 12V	IP123A-12	IP323A-12	IP123-12		TO-218
	Fixed +15V	IP123A-15	IP323A-15	IP123-15		TO-220
	Fixed -5V	IP1R17A-5	IP3R17A-5	IP1R17-5	IP3R17-5	
	Fixed -5.2V	IP1R17A-5.2	IP3R17A-5.2	IP1R17-5.2	IP3R17-5.2	TO-257
	Fixed -12V	IP1R17A-12	IP3R17A-12	IP1R17-12	IP3R17-12	
	Fixed -15V	IP1R17A-15	IP3R17A-15	IP1R17-15	IP3R17-15	
	Adj. + 1.2V to + 35V	IP150A	IP350A	IP150	100007	
	Adj. +1.2V to +35V Low Dropout	IP1R07A	IP3R07A	IP1R07	IP3R07	
5.0A	Fixed + 5V	IP1R18A-5	IP3R18A-5	IP1R18-5	IP3R18-5	TO-3
	Fixed +12V	IP1R18A-12	IP3R18A-12	IP1R18-12	IP3R18-12	TO-218
	Fixed + 15V	IP1R18A-15	IP3R18A-15	IP1R18-15	IP3R18-15	
	Fixed -5V	IP1R19A-5	IP3R19A-5	IP1R19-5	IP3R19-5	
	Fixed -5.2V	IP1R19A-5.2	IP3R19A-5.2	IP1R19-5.2	IP3R19-5.2	
	Fixed -12V	IP1R19A-12	IP3R19A-12	IP1R19-12	IP3R19-12	
	Fixed -15V	IP1R19A-15	IP3R19A-15	IP1R19-15	IP3R19-15	
	Adj. +1.2V to +35V	IP138A	IP338A	IP138	IP338	

7

PWM CIRCUIT SELECTION GUIDE

Part Number	Outputs	Output Type	Reference Precision	Output Transistor Rating	Under Voltage Lockout	Soft Start
IP1P125	2	Totem Pole	1%	35V/100mA	Yes	Yes
IP1524	2	Uncommitted	1%	40V/50mA	No	Ext.
IP1524B	2	Uncommitted	1%	60V/200mA	Yes	Ext.
IP1525A	2	Totem Pole	1%	35V/100mA	Yes	Yes
IP1526	2	Totem Pole	1%	35V/100mA	Yes	Yes
IP1526A	2	Totem Pole	1%	35V/100mA	Yes	Yes
IP1527A	2	Totem Pole	1%	35V/100mA	Yes	Yes
IP1842	1	Totem Pole	1%	30V/200mA	Yes	Yes
IP1843	1	Totem Pole	1%	30V/200mA	Yes	Yes
IP1844	1	Totem Pole	1%	30V/200mA	Yes	Yes
IP1845	1	Totem Pole	1%	80V/200mA	Yes	Yes
IP5560/1060	1	Uncommitted	1.6%	18V/40mA	Yes	Ext.
IP5561	1	Open Collector	2%	18V/40mA	Yes	Ext.
IP35063	1	Uncommitted	5%	40V/1.5A	N/A	Ext.

MOTOR/POWER DRIVER SELECTION GUIDE

Function	Part Number	Volts	Amps	Logic	Logic Supply Volts	Internal Clamp Diodes	Current Feedback Sense Resistor	Split Supply	Package
H Bridge	IP1D03	50	5.0	Yes		No	Ext.	No	8 Pin TO-3
	IP3D03	50	5.0	Yes		No	Ext.	No	8 Pin Power SIP*
Dual Bridge	IM10 .	40	± 200m	Yes	5	Yes	Ext.	Option	14 Pin CERDIP
	3M10	40 ± 200m Yes 5 Yes	Yes	Ext.	Option	14 Pin DIP			
	IM12	40	± 200m	Yes	7min	Yes	Ext.	Option	14 Pin CERDIP
	3M12	40	± 200m	Yes	7min	Yes	Ext.	Option	14 Pin DIP
Universal Quad	IP3D08	50	2.0	Yes		Yes			Pwr 16 Pin DIP
Driver	IP3D09	50	2.0	Yes		Yes	Ext.		Pwr 20 Pin DIP

* FUTURE

POWER/SUPPLY MONITOR CIRCUIT SELECTION GUIDE						
Part Number Function		Function Fault Condition		Reference Accuracy		
IP1543	Voltage Sense	OV/UV/CL	2.5V to 40V	1%		

						A MIL
Double Pulse Suppression	Current Limit CM Range	Dead Time Adjust	Error Amp CM Range	Shutdown	*Package TO-116 Style	No. of Pins
Yes	N/A	No	1.8 to V _{CC} -2	Yes, Dig	J.N.D.	16
No	-1 to 1V	No	1.8 to 3.4	Yes	J.N.D.	16
Yes	0 to V _{cc} -2	No	2.3 to 5.2	Yes, Dig.	J.N.D.	16
Yes	N/A	Yes	1.8 to V _{CC} -2	Yes, Dig.	J.N.D.	16
Yes	C to V _{CC} -3	Yes	0 to V _{cc} -2	Yes, Dig.	J.N.D.	18
Yes	0 to V _{cc} -2	Yes	0 to V _{cc} -2	Yes, Dig.	J.N.D.	18
Yes	N/A	Yes	1.8 to V _{CC} -2	Yes, Dig.	J.N.D.	16
N/A	0 to 1V	Yes	N/A	N/A	J.N.D.	**8
N/A	0 to 1V	Yes	N/A	N/A	J.N.D.	**8
N/A	0 to1V	Yes	N/A	N/A	J.N.D.	**8
N/A	0 to1V	Yes	N/A	N/A	J.N.D.	**8
N/A	N/A	Yes	N/A	Yes	J.N.D.	16
N/A	N/A	No	N/A	Yes	J.N.D.	8
N/A	N/A	No	N/A	No	J.N.D.	8

*J -- CERAMIC N -- PLASTIC D -- PLASTIC **SURFACE MOUNT PACKAGE CAN BE SUPPLIED 8 PIN OR 14 PIN

Family	Direct MOS Drive	I Limit	House- keeping	High Freq.	Current Mode	Specific Features	Family Applications
Single-ended							
IP5560/1060		•	•				Forward Converter
IP5561		•					Fly-back Converter
IP1842/43/44/45	•	•		٠	•		
Push-Pull							
1524/1524B		•					Push-Pull Converter
1525A/27A	•						Full Bridge Converter
1526/26A	•	•	•	٠			1/2 Bridge Converter
IP1P125	•			٠		•	
DC-DC Converter							

Part No.	Page	Part No.	Page	Part No.	Page
IP1D03	92	IP1527A	39	IP3524	29
IP1M10	99	IP1543	54	IP3524B	34
IP1M12	99	IP1842	59	IP3525A	39
IP1P125	20	IP1842A	70	IP3526	44
IP1R07	110	IP1843	59	IP3526A	49
IP1R07A	110	IP1843A	70	IP3527A	39
IP1R17	167	IP1844	64	IP3543	54
IP1R17A	167	IP1844A	70	IP3842	59
IP1R18	172	IP1845	64	IP3842A	70
IP1R18A	172	IP1845A	70	IP3843	59
IP1R19	176	IP2D03	92	IP3843A	70
IP1R19A	176	IP2D08	96	IP3844	64
IP1060	24	IP2D09	96	IP3844A	70
IP1060A	24	IP2M10	99	IP3845	64
IP1060B	24	IP2M12	99	IP3845A	70
IP117	113	IP2842	59	IP5560	76
IP117A	113	IP2842A	70	IP5560C	76
IP117AHV	113	IP2843	59	IP5561	81
IP117HV	113	IP2843A	70	IP5561C	81
IP117MA	119	IP2844	64	IP78M00	157
IP117M	119	IP2844A	70	IP78M00A	157
IP117MAHV	119	IP2845	64	IP7800	151
IP117MHV	119	IP2845A	70	IP7800A	151
IP120	121	IP293DML	103	IP79M00	127
IP120A	121	IP3D03	92	IP79M00A	127
IP120MA	127	IP3D08	96	IP7900	121
IP120M	127	IP3D09	96	IP7900A	121
IP123	131	IP3M10	99	LM117	113
IP123A	131	IP3M12	99	LM117HV	113
IP137	137	IP3P125	20	LM120	121
IP137A	137	IP3R07	110	LM123	131
IP137AHV	137	IP3R07A	110	LM123	137
IP137HV	137	IP3R17	167	LM137HV	137
IP137M	143	IP3R17A	167	LM138	145
IP137MA	143	IP3R18	107	LM130	143
IP137MAHV	143	IP3R18A	172	LM150	161
IP137MHV	143	IP3R19	176	LM317HV	137
IP138	145	IP3R19A	176	LM337HV	137
IP138A	145	IP317AHV	113	LM338	137
IP140	151	IP317HV	113	LINISSO	145
IP140A	151	IP323A	131		
IP140M	157	IP33063	85		
IP140MA	157	IP337AHV	137		
IP150	161	IP337HV	137		
IP150A	161	IP338	137		
IP150A IP1524	29	IP338A	145		
IP1524 IP1524B	29 34	IP338A IP34063			
IP1524B IP1525A	34 39		85		
IP1525A IP1526	39 44	IP350	161		
IP1526 IP1526A	44 49	IP350A	161		
171320A	49	IP35063	85		

PACKAGE CROSS REFERENCE

GENERAL INFORMATION

	Seagate Microelectronice	Fairchild	Linear Technology	Motorola	National	SGS	Signetics	Silicon General	Sprague	Texas Instruments	Unitrode
то-з	к	к	к	K, KS	K, KC	к	_	к	V	к	к
то-39	Н	Н	н	G	Н	_	Н	Т	_	LA	_
TO-66	R	_				_		R		_	
TO-116 Plastic	Ν	T, P	N, N8	Ρ	N	B, N, P	Ν	M, N	A, M, B	P, N	Ν
TO-116 Ceramic	J	D, R	J, J8	U	J	_	F	J, Y	R	J, JG	J
TO-218	v				_				_		
TO-220 Plastic	Т	U	Т	Т	Т	V		Р	Z	KC	Т
TO-257 Hermetic (TO-220)	G		_	_			-	_			
Power SIP	w				Т	Multi Watt		S	W		V
SOIC	D	S		D	Μ		D	D	L	D, DW	

1

1

CROSS REFERENCE GUIDE

						CF	iuss he	TERE	NCE GU	IDE
			GEN	ERAL	_ INF	ORN	ΛΑΤΙΟΙ	V	•	
SEA Standard	GATE Improved	Linear Tech	Motorola	National	SGS	Signetics	Silicon General	Sprague	T1	Unitrode
IP117HV	IP117AHV			LM117AHV	-	LM117HV				
IP117	IP117A	LT117	LM117	LM117	LM117	CINTER	SG117		LM117	UC117
IP120.5	IP120A.5			LM120.5			SG120.5		LM120.5	
IP120.12	IP120A.12			LM120.12			SG120.12		LM120.12	
IP120.15	IP120A.15			LM120.15			SG120.15		LM12015	
IP123	IP123A	LT123A	LM123/MC78T05	LM123			SG123/SG153.5	-	SN55123	
IP123.12	IP123A.12		MC78T12				SG153.12			
IP123.15	IP123A.15		MC78T15				SG153.15			
IP137HV	IP137AHV	LT137AHV		LM137HV						
IP137	IP137A	LT137A	LM137	LM 137				LM137	UC137	
IP138	IP138A	LT138A		LM138			SG138			
IP140.5	IP140A.5			LM140.5			SG140.5		LM140.5	
IP140.12	IP140A.12			LM140.12			SG140.12		LM140.12	
IP140.15	IP140A.15			LM140.15			SG140.15		LM140.15	
IP150	IP150A	LT150A	LM 150	LM150			SG 150			UC150
IP1R17	IP1R17A			LM145						
IP317HV	IP317AHV	LT317AHV		LM317HV						
IP337HV	IP337AHV		LM337HV							
IP338	IP338A	LT338A		LM338			SG338			
IP3R17	IP3R17A			LM345		·				
IP1060						TDA1060				
iP1524		LT1524		LM1524		SG1524	SG1524	ULS8124	SG1524	UC1524
IP1524B							SG1524B			UC1524A
IP1525A	10.0001	SG1525A	SG1525A				SG 1525A	SG1525A		UC1525A
IP1526	IP1526A		SG1526			SG 1526A	SG1526	ULS8126		UC1526 UC1543
IP1543 IP1842	IP1842A						SG 1543	+		UC1543 UC1842
IP1843	IP1843A							+		UC1842
IP1843	IP1844A									UC1844
IP1845	IP1845A							+		UC1845
IP1526A							SG1526A			UC1526A
IP33063			MC33063	1						
IP34063	IP34063A		MC34063A							
IP35063			MC35063							
IP2842								1		UC2842
IP2843										UC2843
IP2844										UC2844
IP2845										UC2845
IP3524B			a hanna a sha an a sha a sh			1	SG3524B			UC3524A
IP3525A		SG3525A	SG3525A				SG3525A		SG3525A	UC3525A
IP3526	IP3526A		SG3526			SG3526A	SG3526	ULN8126		UC3526
IP3543							SG3543			UC3543
IP3842										UC3842
IP3843										UC3843
IP3844										UC3844
IP3845										UC3845
IP5560						SE5560		ULS8160		
IP5560C						NE5560		ULN8160		
IP5561						SE5561		ULS8161		
IP5561C					L	NE5561		ULN8161		
IP7805	IP7805A		MC7805	LM7805	L7805	ļ	SG7805		yA7805	UC7805
IP7812	IP7812A		MC7812	LM7812	L7812	ļ	SG7812	+	yA7812	UC7812
IP7815	IP7815A		MC7815	LM7815	L7815	l	SG7815		yA7815	UC7815
IP7905	IP7905A		MC7905	LM7905			SG7905		µА7905	UC7905
IP7912	IP7912A		MC7912	LM7912			SG7912		ųA7912	UC7912
IP7015	IP79154		MC7015	LM7915			SG7915		uA7915	LIC7915

SG7915

µA7915

UC7915

IP7915A

MC7915

LM7915

IP7915

Seagate Microelectronics Limited

GENERAL INFORMATION

QUALITY AND RELIABILITY

Seagate Microelectronics produce a wide range of standard and custom linear power devices for power management purposes such as motor control, power supplies, power drives, power interfaces and power regulation.

Complex logic linear interface and power elements are combined providing unique and cost effective solutions in the areas of power to electronics interface.

Research and development is directed to the special requirements of power management in integrated circuits from a package and process technology concept. Through these facilities Seagate Microelectronics is uniquely placed to offer their customers comprehensive assistance in the development, manufacture and production of linear power and custom circuits and is committed to manufacturing a product with the maximum quality and reliability.

The quality and reliability of integrated circuits is determined by many facets. Design, fabrication manufacturing, packaging and testing are all interlinked and each part may impact the device reliability over a period of time.

Seagate Microelectronics is fully aware of these facts. A systematic approach is taken to assure the manufacturing of superior analog circuits. Our standard manufacturing flow chart is shown on pages 16 and 17. that all manufacturing processes are defined and controlled.

Quality is the responsibility of each and every employee.

Maximum effort is placed on operator training certification and quality awareness.

A strict checks and balances system is maintained.

Each critical process is monitored through quality control, acceptance procedures and quality audits.

Electrical quality is guaranteed by not only guardbanding the measured limits but also the associated forcing functions.

All lots are submitted to a lot acceptance procedure stipulating a 0.1% AQL for all parameters at 25°C and temperature extremes as well as visual mechanical criteria for standard and military product.

Handling procedures are optimized to eliminate the mixing of parts.

Outgoing shipments are verified by quality assurance personnel against the original customer orders.

Outgoing quality levels are monitored by measuring the average outgoing quality.

Data is collected monthly and discussed with Seagate Microelectronics management in order to identify corrective actions.

Seagate Microelectronics actively seeks customer feedback and participation.

Quality Assurance

Seagate Microelectronics is determined that no defective material shall be shipped to their customers.

Statistical process control techniques are employed throughout the operation to ensure

Design

Reliability starts at design. High voltage techniques are used for all Seagate Microelectronics products. Only bandgap or subsurface zener references are implemented to minimize drift and noise problems.

QUALITY AND RELIABILITY

GENERAL INFORMATION

Metallization thickness is defined to minimize current density and so avoid metal migration problems. Power transistors and bonding pads are carefully laid out to minimize current densities in high current carrying tracks.

Seagate Microelectronics current density specification is one of the lowest in the industry.

Bonding pads are positioned in such a manner that there is no overhanging of the bond and bond tail into active areas or tracks. They are of sufficient size to accommodate the wire size employed in power devices.

All voltage regulators are properly short circuit protected and have thermal limiting included to effect shutdown and safeguard against catastrophic failure.

Motor control circuits employ inductive clamping on chips to prevent damage to the circuit.

All Seagate Microelectronics products are designed to operate over the military temperature range.

These examples demonstrate the commitment of Seagate Microelectronic's design philosophy towards providing "Bullet Proof" products for their customers.

Wafer Fabrication

Seagate Microelectronic's wafer manufacturing facility incorporates the most up to date wafer processing equipment.

Maximum effort has been placed on minimizing operator induced errors and handling procedures.

Photomasking processes are greatly enhanced by the employment of proximity mask aligners.

Critical dimensions, mask registration, resist adhesion and etch rates are all carefully monitored. At the diffusion stages extensive steps are taken to minimize the impact of ionic contamination and defect densities.

Seagate Microelectronic's processes incorporate a dual passivation process to minimize the ingress of moisture and the effects of ionic contamination.

All diffusion tubes and depositioning equipment are regularly monitored using CV measuring techniques.

Extensive statistical process control assures that the process is fully understood.

Raw Material

All purchased materials such as raw silicon, chemicals, lead frames and headers are specified in procurement specifications and products are inspected at incoming prior to issuance to the manufacturing line. The performance of suppliers to Seagate Microelectronics are continuously monitored for quality and delivery.

Assembly and Packaging

In addition to the wafer and die manufacturing process the assembly packaging method can have a serious impact on the overall reliability performance of the final product.

Selection of the best available packaging materials and methods of assembly are therefore of prime importance.

The wafer/die separation utilizes a saw through method eliminating the cracking, chipping and mechanical stresses associated with earlier processes such as diamond scribe and break.

Internal visual inspection of all Seagate Microelectronics products is performed per MIL-STD-883 Method 2010 and BS9400 para. 1.2.10.

Die attach techniques are receiving special attention due to the special heat dissipation requirements for linear power products. Many rigorous checks are made such as die shear, thermal resistance and die attach coverage using scanning acoustical microscope and infrared scanning techniques.

The Research and Development programme includes package development particularly related to the power handling capability of Seagate Microelectronics products.

Semi automatic bonding equipment improves lead bond consistency and integrity.

Low temperature sealing glasses in ceramic packages minimize the effects of the sealing temperature on the final product, while for molded packages, the molding components specified have a very low sodium and chlorine content.

Sealing processes are continuously monitored for fine/gross leak and moisture content.

Electrical Test

Seagate Microelectronics invested heavily in the most up to date linear computer controlled test equipment and temperature handlers such as LTX, Symtek, Spartan Exatron and MCT.

The test philosophy includes proper guardbanding, not only to the measured limits but also the forcing functions.

Thermal regulation tests for voltage regulators are closely related to die attach quality.

Reliability

Seagate Microelectronics relies on accelerated life testing and purpose designed tests to determine the reliability performance of its product.

Data from these tests is used to predict infant mortality, wear out and other failure mechanisms.

Through appropriate failure analysis techniques and interpretation of the data, product improvement programmes are accomplished.

Accelerated life tests are also employed as an ongoing assessment of process capability.

It should be noted that a relationship exists between accelerated stress test conditions and actual normal conditions of use.

QUALITY AND RELIABILITY

GENERAL INFORMATION

1, 2. Incoming Material. Raw silicon and chemicals are received from approved vendors and accepted through an incoming inspection prior to use in the manufacture of wafers.

3. Seagate Microelectronics Waferfabrication. Using photolithography, high temperature diffusion, and oxidation depositing techniques integrated circuits are manufactured in wafer form.

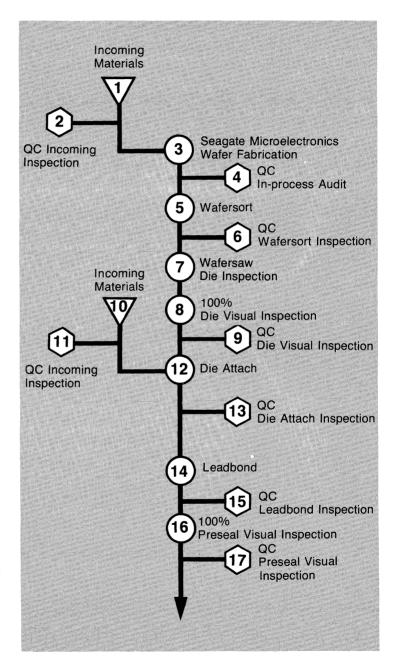
4. QC In-Process Audit. Consistency and control are regularly verified using control charting and statistical process controls. CV plotting checks for contamination. Scanning electron microscope techniques identify integrity of step coverage. Misalignment and metalization, resistivity, oxide thickness, pinhole density, and critical dimension are also verified.

5. Wafersort. Each individual chip on the finished wafer is electronically tested to determine the yield and process distribution using probing equipment linked to sophisticated electrical testers.

 QC Wafersort. Each wafersort operation is inspected for probe quality, such as deep probing, dragging probes, inking quality and consistency.

7. Wafersaw Die Separation. The die on the wafer are separated using sawthrough methods. Good die are separated from reject die.

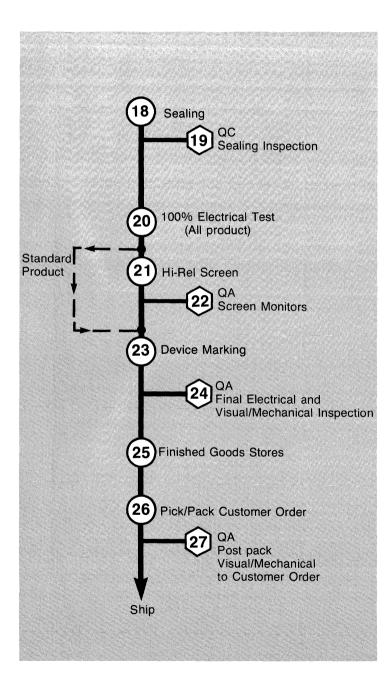
8. 100% Die Visual Inspection. Each die is submitted to a full visual inspection per MIL STD 883C, Method 2010 and BS9400.1.2.10.


9. QC Die Visual Inspection. Each visual inspection is verified.

10, 11. Incoming Material. Raw materials such as headers, cans, leadframes, moulding compound, bondwire and die attach materials are purchased from approved vendors and inspected prior to submitting to assembly.

12. Die Attach. Die are mounted on the headers and leadframes using gold silicon eutectic, softsolder and other methods. For power devices, extreme care is taken to assure low thermal resistance.

13. QC Die Attach. Each die attach operation is monitored using die shear, die removal, and visual methods.


14. Leadbond. Die is connected to the leads with wire using ultrasonic, thermosonic, and thermocompression bonding techniques.

QUALITY AND RELIABILITY

GENERAL INFORMATION

15. QC Leadbond. Leadbond quality is verified using bondpull tests. Each operation is measured using control charts.

 16. 100% Preseal Visual Inspection (3rd Optical Inspection). Prior to sealing, each device is inspected for workmanship, bonding quality, and contaminants per MIL STD 883C, Method 2010 and BS9400 para. 1, 2.
 10.

17. QC Preseal Visual Inspection. Each preseal operation is checked for correctness and compliance.

18. Sealing. Each device is sealed hermetically or molded in epoxy-type molding compounds.

19. QC Seal Visual. The sealing operation is monitored for fine/gross leak, moisture content, and visual (placing of lids, cans, etc.)

20. 100% Final Electrical Test @ 25°C and Temperature Extremes. After burn-in, all integrated circuits are tested fully and at the temperature extremes if required.

21. High Rel Screening. Screening procedures as per section 5 of this data book.

22. QA Screen Monitors To ensure compliance with screening procedures.

23. Bottom Marking, Top Marking. All devices receive a bottom mark to identify the device type, lot number for traceability purposes, and a sealing datecode. Seagate Microelectronics logo, device type, and datecode are marked on the top.

24. QA Final Electrical and Visual/Mechanical Test. Final quality inspection for compliance to Seagate Microelectronics visual, mechanical and electrical standards.

25. Finished Goods Stores. Product is stored in Finished Goods.

26. Pick/Pack Customer Order. Customer orders are made up from finished goods inventory.

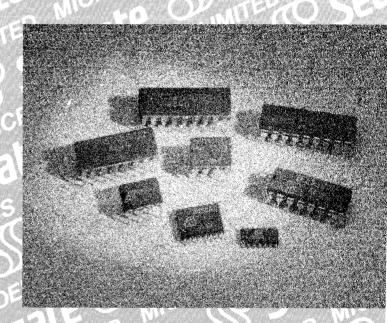
27. QA Post-pack Visual/Mechanical to Customer Order. Final outgoing QA verification of shipment against customer order.

This page intentionally left blank

PULSE WIDTH MODULATORS

10

 \Im


X

1

Ø

2

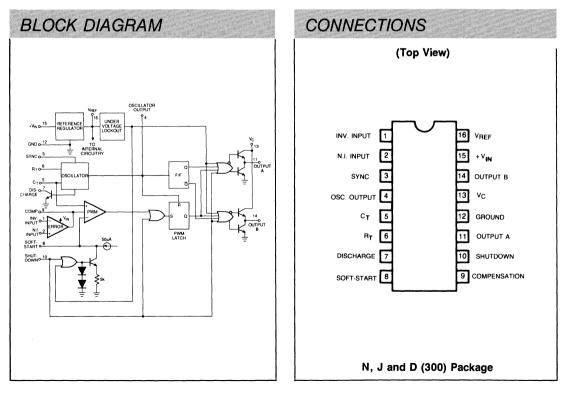
9

T.

Seagate Microelectronics Limited

REGULATING PULSE WIDTH MODULATORS

IP1P125, IP3P125


2

DESCRIPTION

The IP1P125 series of pulse width modulator integrated circuits offers high speed performance optimized for MOSFET drive. Pin compatible with the SG1525A, the IP1P125 features low crossover current through the output transistors as well as 95% total usable output pulse width up to 500KHz. High speed latched shutdown is included as well as a precision 5.1 volt reference, error amp, oscillator, latched PWM comparator, totem-pole output drivers, soft-start and undervoltage lockout.

FEATURES

- Pin compatible with 1525A series
- Low output crossover current
- Fixed 100ns deadtime
- 100ns response latched shutdown
- 100Hz to 500KHz operating frequency
- 5.1 volt ± 1% reference
- Oscillator sync. terminal
- Soft-start
- Undervoltage lockout
- Latching PWM

ABSOLUTE MAXIMUM RATINGS

Input Supply Voltage (+VIN)	+ 40V	Power Dissipation at	
Collector Supply Voltage $(+V_C)$	+ 40V	T _A = +25°C (Note 1) T _C = +25°C (Note 2)	1000mW 2000mW
Logic Iputs	+0.3V to +5.5V	Operating Junction	
Analog Inputs	$-0.3V$ to $+V_{IN}$	Temperature	- 55°C to + 150°C
Output Current, Source or Sink	500mA	Storage Temperature Range	-65°C to +150°C
Reference Output Load Current	Internally Limited	Lead Temperature (Soldering, 10 seconds)	+ 300°C
Oscillator Charging Current	5mA		

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS (Note 3)

Input Voltage	+8V to +35V	Oscillator Timing Resistor	1.5kΩ to 200kΩ				
Collector Supply Voltage	+4.5V to +35V	Oscillator Timing Capacitor	470pF to 0.1µF				
Sink/Source Load Current		Operating Ambient Temperature Range:					
(steady state)	0 to 100mA	IP1525A/IP1527A	– 55°C to + 125°C				
Sink/Source Load Current (peak)	0 to 400mA	IP2525A/IP2527A	-25°C to +85°C				
Oscillator Frequency Range	100Hz to 500kHz	IP3525A/IP3527A	0°C to +70°C				

Note 1. Derate at 10 mW/°C for ambient temperatures above +50°C.

Note 2. Derate at 16 mW/°C for case temperatures above +25°C.

Note 3. Range over which the device is functional and parameter limits are guaranteed.

ORDER INFORMATION

Part Number

IP1P125J IP3P125D IP3P125J IP3P125N

Temperature Range

- 55°C to + 125°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C

Package 16 Pin Ceramic DIP 16 Pin Plastic (300) SOIC 16 Pin Ceramic DIP

16 Pin Ceramic DIP

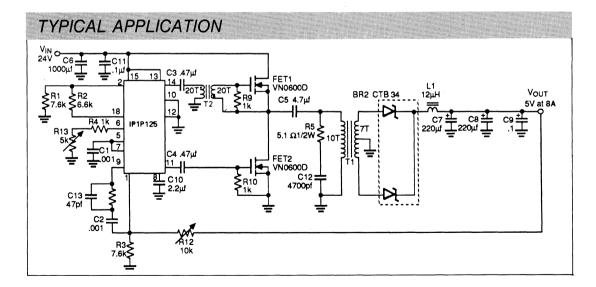
IP1P125, IP3P125

REGULATING PULSE WIDTH MODULATORS

ELECTRICAL CHARACTERISTICS (Note 4)

			1	IP1P125	;	1			
Parameter	Test Conditions		Min	Тур	Max	Min	IP3P125 Typ	Max	Units
Turn-on Characteristics					1	L	1	1	L
Undervoltage Threshold, VIN	VIN Rising	•	5.0	6.5	8.0	5.0	6.5	8.0	V
Turn-on Hysteresis		•	0.2	0.5	0.9	0.2	0.5	0.9	v
Operating Current	$V_{IN} = 8 \text{ to } 35V$	•	1	10	20		10	20	mA
Reference Section			L		L	L	I		L
Output Voltage			5.05	5.10	5.15	5.00	5.10	5.20	V
Output Voltage	$V_{IN} = 8 \text{ to } 35V, I_{L} = 0 \text{ to } 20\text{mA}$	٠	5.00		5.20	4.95		5.25	v
Line Regulation	$V_{IN} = 8 \text{ to } 35V$	٠		1	10		1	15	mV
Load Regulation	$I_L = 0$ to 20 mA	٠		5	15		5	25	mV
Temperature Stability (Note 5)	Over Operating Range	٠		15	50		15	50	mV
Short Circuit Current	V _{REF} = 0 Volts	٠	25	70	120	25	70	120	mA
Output Noise Voltage (Note 5)	10Hz ≤ f ≤ 10kHz			40	200		40	200	µ Vrms
Long term Stability (Note 5)	T _i = 125°C			1	10		1	50	mV/kHr
Oscillator Section (Note 6)			.				I		<u> </u>
Initial Accuracy			37.6	40	42.4	37.6	40	42.4	kHz
Voltage Stability	$V_{IN} = 8 \text{ to } 35V$	٠		0.1	0.5		0.1	2	%
Temperature Stability (Note 5)	Over Operating Range	٠		1	4		1	6	%
Minimum Frequency	R _T = 200k Ω, C _T = 0.1 μ F	٠		80	120		80	120	Hz
Maximum Frequency	$R_T = 1.5 k \Omega$, $C_T = 470 pF$, $R_D = 0 \Omega$			900			900		kHz
Current Mirror	I _{RT} = 2.0 mA	•	1.7	2.0	2.2	1.7	2.0	2.2	mA
Clock Amplitude	Output, PIN 4, $C_T = 0.01 \ \mu F$	٠	3.0	4.0		3.0	4.0		V
Clock Pulse Width	Output, PIN 4, $C_T = 0.01 \ \mu F$	٠	0.3	0.5	1.3	0.3	0.5	1.3	μs
Sync Threshold		٠	1.2	2.0	2.8	1.2	2.0	2.8	V
Sync Input Current	Sync Voltage = 3.5V	٠		1.0	2.5		1.0	2.5	mA
Error Amplifier Section									
Input Offset Voltage	V _{cm} = 1.5 to 5.2V	٠		0.1	5		2	10	mV
Input Bias Current	V _{cm} = 1.5 to 2.5V	٠		1	5		1	10	μA
Input Offset Current	$V_{cm} = 1.5 \text{ to } 5.2 \text{V}$	٠		0.1	1		0.1	1	μΑ
DC Open Loop Gain	$\triangle V_0 = 1 \text{ to } 3V, R_L \ge 10 \text{ M}\Omega$	٠	60	80		60	80		dB
Common Mode Rejection	$V_{cm} = 1.5 \text{ to } 5.2 \text{V}$	٠	60	90		60	90		dB
Supply Voltage Rejection	$V_{IN} = 8 \text{ to } 35V$	٠	50	90		50	90		dB
Output Low Level		٠		0.2	0.5		0.2	0.5	V
Output High Level		٠	3.8	5.6	7.0	3.8	5.6	7.0	V
Gain-Bandwidth Product (Note 5)			1	3.5		1	3.5		MHz
PWM Comparator									
	V _{PIN 1} - V _{PIN 2} ≥ 150mV	٠			0			0	%
Maximum Duty Cycle	V _{PIN 2} - V _{PIN 1} ≥ 150mV	٠	45	49		45	49		%
Input Threshold Low	Zero Duty Cycle	٠	0.6	0.9		0.6	0.9		V
Input Threshold High	Max. Duty Cycle	٠		3.3	3.6		3.3	3.6	V
Input Bias Current				.05			.05		μA

IP1P125, IP3P125 REGULATING PULSE WIDTH MODULATORS


ELECTRICAL CHARACTERISTICS (CONTINUED)

And the second se		•							
				IP1P125			IP3P125		Units
Parameter	Test Conditions	Test Conditions		Тур	Max	Min	Тур	Max	
Shutdown Section			.			•			
Soft Start Current	VSHUTDOWN = 0V	•	25	50	80	25	50	100	μA
Soft Start Low Level	VSHUTDOWN = 2V	•		0.4	0.6		0.4	0.6	V
Shutdown Threshold	To Outputs	•	0.6	1.3	2.0	0.6	1.3	2.0	V
Shutdown Input Current	VSHUTDOWN = 2.5V	•		0.1	1.0		0.1	1.0	mA
Shutdown Delay (Note 5)	$T_i = 25^{\circ}C$, PIN 10 to Output			50	300		50.	300	ns
Output Section (Each Transi	stor)			L	L				
Collector Leakage Current	V _C = 35 Volt	•			200			200	μA
Output Low Level	ISINK = 20mA	•		0.2	0.4		0.2	0.4	V
	ISINK = 100mA	•		1.0	2.5		1.0	2.5	V
Output High Level	ISOURCE = 20mA	•	18	19		18	19		V
	SOURCE = 100mA	•	17	18		17	18		V
Rise Time	$C_{1} = 1nF, T_{j} = 25^{\circ}C$			100	300		100	300	ns
Fall Time	$C_L = 1nF, T_j = 25^{\circ}C$			50	150		50	150	ns
Dead Time	$C_{L} = 1nF, T_{i} = 25^{\circ}C$			100			100		ns

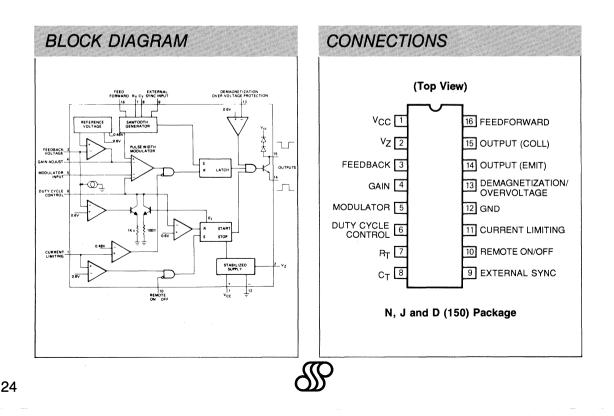
The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25$ °C unless otherwise specified.

Note 4: VIN = 20V, IREF = 0mA unless otherwise specified.

Note 5: These parameters, although guaranteed over the recommended conditions, are not 100% tested in production. Note 6: $R_T = 3.6k\Omega$, $C_T = 0.01 \mu$ F unless otherwise specified.

Seagate Microelectronics Limited SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT

IP1060B, IP1060, IP1060A


2

DESCRIPTION

The IP1060 is a control circuit for use in switched mode power supplies. This single monolithic chip incorporates all the control and supervisory (protection) functions required in switched mode power supplies, including an internal temperature compensated reference source, sawtooth generator, pulse width modulator, output stage and various protection circuits.

FEATURES

- Stabilized power supply
- Temperature compensated reference source
- Sawtooth generator
- Pulse width modulator
- Remote on/off switching
- Current limiting
- Low supply voltage protection
- Loop fault protection
- Demagnetization/overvoltage protection
- Maximum duty cycle clamp
- Feed forward control
- External synchronization

SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Supply		Operating Temperature (Ambient)					
Voltage Sourced	18V	IP1060B – 55°C to + 125°C					
Current Sourced	30mA	IP1060 – 25°C to +85°C					
		IP1060A 0°C to 70°C					
Output Transistor							
Output Current	40mA	Storage Temperature Range -65°C to +150°C					
Collector Voltage (Pin 15)	18V						
		Operating Junction Temperature Range 150°C					
Max. Emitter Voltage (Pin 14)	5V						

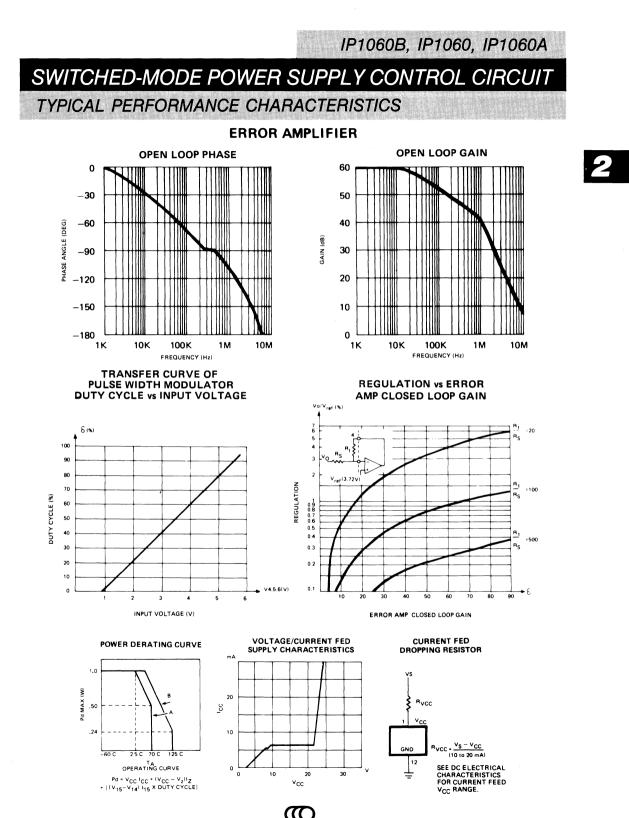
Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS

V_{CC} = 12V unless otherwise specified

			IP	1060B/IP10	60		IP1060A		
Parameter	Test Conditions		Min	Тур	Max	Min	Тур	Max	Unit
Reference Sections									
Internal Reference Voltage (V _{ref})			3.69	3.72	3.81	3.57	3.72	3.95	V
		•	3.42		4.03	3.42		4.03	V
Temperature Coefficient of Vref				±100			±100		ppm/C
Internal Reference (Vz)	ار = .7mA		7.9	8.4	9.0	7.8	8.4	9.0	V
Temperature Coefficient of Vz				±200			±200		ppm/C
Oscillator Section									
Frequency Range		•	50		100k	50		100k	Hz
Initial Accuracy Oscillator	$R = 5 k\Omega$			5			5		%
Duty Cycle range	f _o = 20 KHz		0-90	0-98		0-90	0-98		%
Modulator			-						_
Modulator Input Current	Voltage, at Pin 5 = 2V	•		-0.2	-5.0		-0.2	-5.0	μA
Supervisory Functions									_
Pin 6, Input Current	At 2V O	•		-0.2	-6.0		-0.2	-6.0	μA
Pin 6, Duty Cycle Limit Control	(For 50% Max. Duty Cycle) 15 kHz to 50 kHz, V ₆ = 0.4 V _z		40	50	60	40	50	60	% Duty Cycle
Pin 1, Low Supply Voltage	1		8.85	9.0	10.8	8.85	9.0	10.8	V
Protection Thresholds									
Pin 3, Feedback Loop Protection			460	600	720	460	600	720	mV
Trip Thresholds									
Pin 3, Pull Up Current	At 2V	•	-7	-15	-35	-7	-15	-35	μA
Pin 13, Demag./O.V. Prot. Threshold			470	600	720	470	600	720	mV
Pin 13, Input Current	At 0.25V	1		-0.6	-7.0		-0.6	-7.0	μA
		•			-20			-20	μA
Pin 16, Feed Forward Duty Cycle Control	Voltage at Pin 16 = 2V _Z		30	40	50	30	40	50	% Orig Duty Cycle
Pin 16, Feed Forward Input Current	At 16V, V _{CC} = 18V			0.2	50	<u> </u>	0.2	50	μA

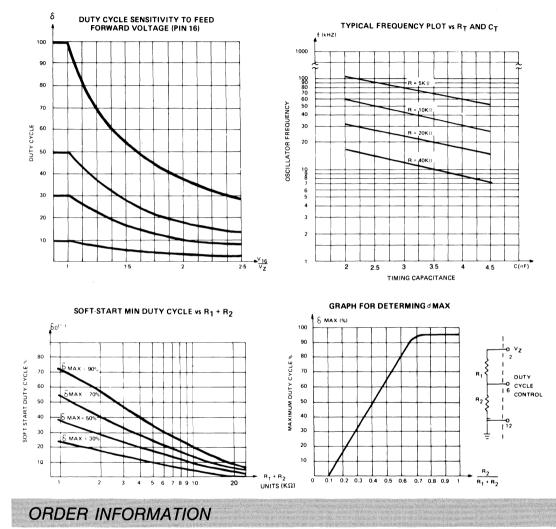
IP1060B, IP1060, IP1060A


SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT

ELECTRICAL CHARACTERISTICS (CONTINUED)

		IP	1060B/IP1	060		IP1060A		
Parameter	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
External Synchronization	n 2009 - Anna Alexandra Alexandra da Canada da Cana							
Pin 9 Off		0		0.8	0		0.8	V
Pin 9 On		2		٧z	2		٧Z	v
Pin 9, Sink Current	Voltage at Pin 9 = 0V		-85	-120		-85	-120	μA
Remote On/Off								
Pin 10 Off		0		0.8	0		0.8	v
Pin 10 On		2		V _Z	2		٧z	V
Pin 10 Sink Current Pin 9 = 0V	Voltage at Pin 9 = 0V		-85	-120		-85	-120	μA
to Pin 10 = 0V								
Current Limiting								
Pin 11, I _{IN}	Voltage at Pin 11 = 250mV		-2	-10		-2	-10	μA
Single Pulse Inhibit Delay	Inhibit Delay Time for 20% Overdrive at 30mA I _{OUT}		0.7	0.8		0.7	0.8	Δs
Trip Levels: Shut Down, Slow Start		560	600	700	560	600	700	mV
Trip Levels: Current Limit		400	480	560	400	480	560	mV
Error Amplifier								
Output Voltage Swing (VOH)		6.2		9.5	6.2		9.5	V
Output Voltage Swing (VOL)				0.7		1	0.7	V
Open Loop gain		54	60		54	60		dB
Feedback Resistor		10k			10k			Ω
Small Signal Bandwidth			3			3		MHz
Output Stage								
V _{CE(SAT)}	I _C = 40mA			0.4			0.4	V
Output Current	(Pin 15)			40	1		40	mA
Max Emitter Voltage	(Pin 14)	5			5			V
Supply Voltage/Current								
lcc	I _Z = 0 Voltage Feed V6 = 5V			10			10	mA
	$R7 = 25k\Omega$	•		15		 	15	mA
Vcc	I _{CC} = 10mA, Current Feed	20		24	19		24	V
Vcc	I _{CC} = 30mA, Current Feed	20		30	20		30	V

The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified.



SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

IP1060B. IP1060. IP1060A

ERROR AMPLIFIER (Cont.)

Part Number

IP1060BJ IP1060D IP1060J IP1060N IP1060AD IP1060AJ IP1060AN

Temperature Range

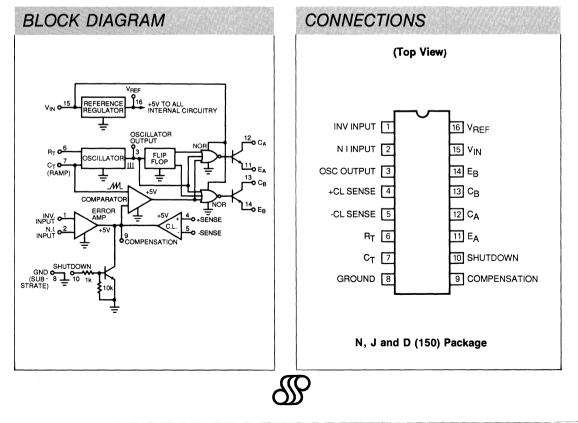
- 55°C to + 125°C - 25°C to + 85°C - 25°C to + 85°C - 25°C to + 85°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C

Package

16 Pin Ceramic DIP 16 Pin Plastic (150) SOIC 16 Pin Ceramic DIP 16 Pin Plastic DIP 16 Pin Plastic (150) SOIC 16 Pin Ceramic DIP 16 Pin Plastic DIP

REGULATING PULSE WIDTH MODULATOR

IP1524, IP3524


DESCRIPTION

The IP1524 series of PWM switching regulator control circuits contains all the functions required to implement single-ended or pushpull switching regulators. Included are voltage reference, error amplifer, oscillator, PWM comparator, output drivers, current limiting and shutdown circuitry.

Although functionally indentical to the SG1524 series, Seagate Microelectronics has incorporated several improvements to the IP1524 allowing tighter and more complete specification of electrical performance.

FEATURES

- Guaranteed ± 2% reference tolerance
- Guaranteed $\pm 6\%$ oscillator tolerance
- Fully specified temperature performance
- Guaranteed 10 mV/1000 hours long term stability
- Interchangeable with SG1524 series

REGULATING PULSE WIDTH MODULATOR

ABSOLUTE MAXIMUM RATINGS

Input Voltage (+V _{IN})	+ 40V	Power Dissipation at	
Collector Voltage	+ 40V	$T_A = +25^{\circ}C$ (Note 1)	1000mW
Output Current (each transistor)	100mA	$T_C = +25^{\circ}C$ (Note2)	2000mW
Reference Load Current	Internally Limited	Operating Junction Temperature	– 55°C to + 150°C
Oscillator Charging Current	5mA	Temperature	
Shut Down Pin Voltage	+ 5.5V	Storage Temperature Range	-65°C to +150°C
Current Limit Sense Common Mode Range	- 1.0V to + 1.0V	Lead Temperature (Soldering,	10 seconds) + 300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS (Note 3)

Input Voltage (V _{IN})	+8V to +40V
Collector Voltage	0V to +40V
Error Amp Common Mode Range	+1.8V to +3.4V
Output Current (each transistor)	0 to 100mA
Reference Load Current	0 to 20mA
Oscillator Charging Current	30u A to 2.0mA

Oscillator Frequency Range	Timing Resistor (RT) $1.8k\Omega$ to $100k\Omega$ Timing Capacitor (CT) $1nF$ to $0.1\mu F$							
Oscillator Timing Resistor (RT)	1nF to 0.1µF							
Oscillator Timing Capacitor (CT)	1nF to 0.1µF							
5 (1)								
IP3524	$-O^{\circ}C$ to $+70^{\circ}C$							

IP1524, IP3524

Note 1. Derate at 10mW/°C for ambient temperatures above +50°C.

Note 2. Derate at 16mW/°C for case temperatures above +25°C.

Note 3. Range over which the device is functional and parameter limits are guaranteed.

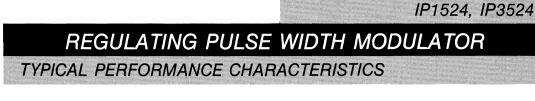
ELECTRICAL CHARACTERISTICS

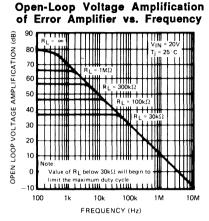
+ VIN = 20V, IREF = 0mA unless otherwise specified

Parameter	Test Conditions		IP1524			IP3524			Τ
			Min	Тур	Max	Min	Тур	Max	Units
Reference Section					<u></u>	.			
Output Voltage		•	4.90	5.00	5.10	4.60	5.00	5.40	V
Line Regulation	+V _{IN} = 8 to 40 Volts	•		1	10		10	30	mV
Load Regulation	$I_L = 0$ to 20 mA	•		5	20		20	50	mV
Ripple Rejection	f = 120 Hz			80			66		dB
Short Circuit Current	V _{REF} = 0 Volts	•	25	50	120		100		mA
Temperature Stability (Note 6)	Over Operating Range	•		0.3	1		0.3	1	%
Long Term Stability (Note 6)	T _j = 125℃			1	10		20		mV/khr
Oscillator Section									
Initial Accuracy	$R_T = 2.7 k\Omega, C_T = 0.01 \mu F$				6		5		%
Voltage Stability	$+V_{IN} = 8$ to 40 Volts			0.1	1		0.5	1	%
Temperature Stability (Note 6)	Over Operating Range	•		1	2			2	%

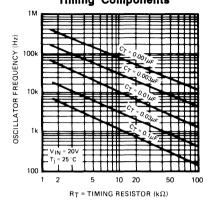
REGULATING PULSE WIDTH MODULATOR

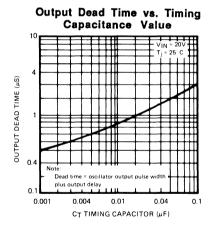
ELECTRICAL CHARACTERISTICS (CONTINUED)

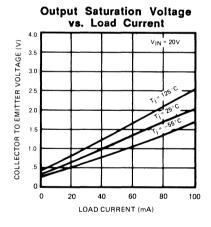

Parameter	Test Conditions		IP1 524			IP3524			
			Min	Тур	Max	Min	Тур	Max	Units
Minimum Frequency	$R_{T} = 100 K\Omega, C_{T} = 0.1 \mu F$	•		120	240		120		Hz
Maximum Frequency	$R_{T} = 2k\Omega, C_{T} = 0.001 \mu F$	•	200	300			300		kHz
Sawtooth Peak Voltage	C _T = 0.01μF			3.6			3.6		V
Sawtooth Valley Voltage	C _T = 0.01μF		0.6	1			1		V
Clock Amplitude	Output, Pin 3, $C_T = 0.01 \mu F$	•	3.0	4.0			3.5		V
Clock Pulse Width	Output, Pin 3, $C_T = 0.01 \mu F$		0.3	0.5	1.0		0.5		μs
Error Amplifier Section (Note 4)									.
Input Offset Voltage		•		0.1	5		2	10	mV
Inputr Bias Current		•		1	2		1	10	μA
Input Offset Current		•			0.5			1	μA
DC Open Loop Gain		•	72	80		60	80		dB
Output Low Level	V _{PIN 1} - V _{PIN 2} ≥ 150mV				0.5			0.5	v
Output High Level	VPIN 2 - VPIN 1 ≥ 150mV		3.8			3.8			v
Common Mode Rejection			70	90			70		dB
Supply Voltage Rejection	+V _{IN} = 8 to 40 Volts		70	100			70		dB
Gain Bandwidth Product Note 6				3			3		MHz
PWM Comparator							L	L	
Minimum Duty Cycle	V _{PIN 1} - V _{PIN 2} ≥ 150mV	•		[0			0	%
Maximum Duty Cycle	V _{PIN 2} -V _{PIN 1} ≥150mV	•	45	49		45	49		%
Current Limit Amplifier (Note 5)				<u> </u>			•		A
Sense Voltage	V _{CM} =0V		190	200	210	180	200	220	mV
Sense Voltage	V _{CM} =0V	•	170	200	230		200		mV
Shutdown Input									
High Input Voltage	V _{PIN 9} ≤0.6V	•	1.2			1.2			V
High Input Current	VSHUTDOWN = +5.0 Volts	•		4	8		4		mA
Low Input Voltage	V _{PIN 9} ≥3.5V	•			0.3			0.3	V
Output Section (Each Transistor)								******	
Collector-Emitter Voltage	I _C = 50μA	•	40			40			V
Collector Leakage Current	V _{CE} = 40 Volts	•		0.1	50		0.1	50	μA
Collector Saturation Voltage	I _C = 50mA	•		1	2		1	2	V
Emitter Output Voltage	V _{IN} = 20V	•	17	18		17	18		V
Emitter Voltage Rise Time	R _E = 2k			0.2	0.4		0.2		μs
Collector Voltage Fall Time	$R_{C} = 2k$			0.1	0.2		0.1		μs
Power Consumption				•					
Standby Current	+V _{IN} = 40 Volts	•		5	10	r	5	10	mA

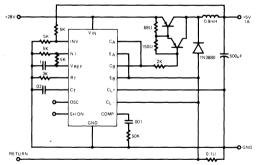

iotes the specifications which apply over the full operating temperature range, all others apply at $1_j=25^\circ$ C unless omerwise specified.

Note 4: $V_{CM} = +1.8$ to +3.4V Note 5: $V_{CM} = -1$ to +1V


Note 6: These parameters, although guaranteed conditions, are not 100% tested in production.







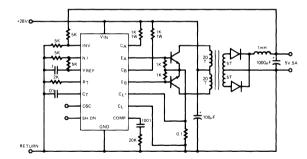
REGULATING PULSE WIDTH MODULATOR APPLICATIONS INFORMATION

The IP1524 is a fixed-frequency pulse-width modulation voltage regulator control circuit. The regulator operates at a frequency that is programmed by one timing resistor (RT) and one timing capacitor (CT). RT establishes a constant charging current for CT, which is fed to the comparator providing linear control of the output pulse width by the error amplifier. The IP1524 contains an on-board 5V regulator that serves as a reference as well as powering the IP1524's internal control circuitry and is also useful in supplying external support functions. This reference voltage is lowered externally by a resistor divider to provide a reference within the common-mode range of the error amplifier or an external reference may be used. The power supply output is sensed by a second resistor divider network to generate a feedback signal to the error amplifier. The amplifier output voltage is then compared to the linear voltage ramp at CT. The resulting modulated pulse out of the high-gain

In this conventional single-ended regulator circuit, the two outputs of the IP1524 are connected in parallel for effective .0-90% duty cycle modulation. The use of an output inductor requires an R-C phase compensation network for loop stability.

ORDER INFORMATION

Part Number


IP1524J IP3524D IP3524J IP3524N

Temperature Range -55°C to +125°C

- 55°C to + 125°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C

comparator is then steered to the appropriate output pass transistor (Q1 or Q2) by the pulsesteering flip-flop, which is synchronously togaled by the oscillator output. The oscillator output pulse also serves as a blanking pulse to assure both outputs are never on simultaneously during the transition times. The width of the blanking pulse is controlled by the value of the CT. The outputs may be applied in a push-pull configuration in which their frequency is half that of the base oscillator, or paralled for single-ended applications in which the frequency is equal to that of the oscillator. The output of the error amplifier shares a common input to the comparator with the current limiting and shutdown circuitry and can be overridden by signals from either of these inputs. This common point is also available externally and may be employed to control the gain of, or to compensate, the error amplifier, or to provide additional control to the regulator.

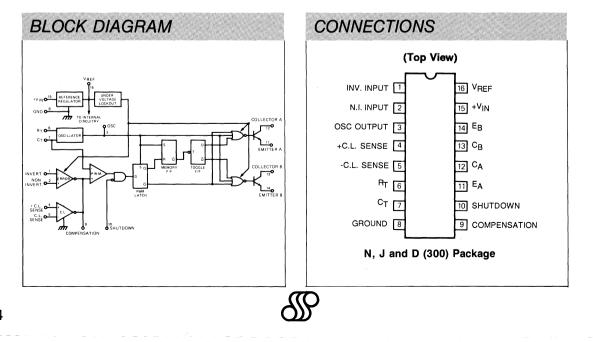
IP1524. IP3524

Push-pull outputs are used in this transformer-coupled DC-DC regulating converter. Note that the oscillator must be set at twice the desired output frequency as the IP1524's internal flip-flop divides the frequency by 2 as it switches the PWM signal from one output to the other. Current limiting is done in the primary so that the pulse width will be reduced should transformer saturation occur.

Package

16 Pin Ceramic DIP 16 Pin Plastic (150) SOIC 16 Pin Ceramic DIP 16 Pin Plastic DIP

Seagate Microelectronics Limited ADVANCED REGULATING PULSE WIDTH MODULATOR


IP1524B, IP3524B

DESCRIPTION

The IP1524B is a pulse width modulator for switching power supplies which features improved performance over industry standards like the SG1524. A direct pin-forpin replacement for the earlier device, it combines advanced processing techniques and circuit design to provide improved reference accuracy, and extended common mode range at the error amplifier and current limit inputs. A DC-coupled flip-flop eliminates triggering and glitch problems, and a PWM data latch prevents edge oscillations. The circuit incorporates true digital shutdown for high speed response, while an undervoltage lockout circuit prevents spurious outputs when the supply voltage is too low for stable operation. Full double-pulse suppression logic insures alternating output pulses when the shutdown pin is used for pulse-by-pulse current limiting.

FEATURES

- Pin compatible with 1524 series
- 7 to 40 volt operation
- 5 volt reference trimmed to $\pm 1\%$
- Undervoltage lockout
- Excellent external sync capability
- Wide current limit common mode range
- +5V error amplifier common mode
- PWM data latch
- Full double-pulse suppression logic
- 50ns shutdown function
- Dual 200mA, 60 volt output transistors
- Fully specified over temperature

ADVANCED REGULATING PULSE WIDTH MODULATOR

ABSOLUTE MAXIMUM RATINGS

Input Voltage (+ VIN)	+ 40V	Power Dissipation at
Collector Voltage	+ 60V	$T_A = +25 ^{\circ}C \text{ (Note 1)}$ 1000mW $T_C = +25 ^{\circ}C \text{ (Note 2)}$ 2000mW
Logic Inputs	-0.3V to +5.5V	Operating Junction
Current Limit Sense Inputs	-0.3V to +VIN	Temperature-55°C to +150°CStorage Temperature Range-65°C to +150°C
Oscillator Charging Current	5mA	Lead Temperature (Soldering, 10 seconds) + 300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS (Note 3)

Input Voltage (VIN)	+7V to +40V				
Collector Voltage	0V to +60V				
Error Amp Common Mode Range +2.3V to VREF					
Current Limit Sense Common Mode Range	0V to V _{IN} -2.5V				
Output Current (each transistor)	0 to 200mA				
Reference Load Current	0 to 20mA				

Oscillator Charging Current	25 µ to 1.8mA
Oscillator Frequency Range	50Hz to 500kHz
Oscillator Timing Resistor (R_T)	$2k\Omega$ to $150k\Omega$
Oscillator Timing Capacitor (CT)	1nF to 0.1µ F
Operating Ambient Temperature	Range
IP1524B	- 55°C to + 125°C
IP3524B	0°C to +70°C

Note 1. Derate at 10mW/°C for ambient temperatures above +50°C.

Note 2. Derate at 16 mW/°C for case temperatures above +25°C.

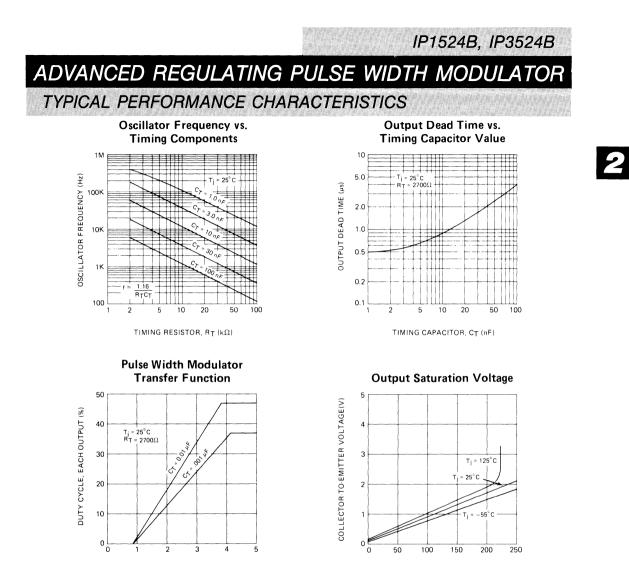
Note 3. Range over which the device is functional and parameter limits are guaranteed.

ELECTRICAL CHARACTERISTICS

(VIN = 20V, IREF = 0mA unless otherwise specified)

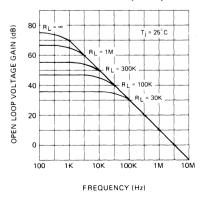
			IP1524B		IP3524B				
Parameter	Conditions		Min	Тур	Max	Min	Тур	Max	Units
Turn-on Characteristics									
VIN Undervoltage Threshold	V _{IN} Rising	•	4.3	5.2	6.5	4.3	5.2	6.5	V
Turn-on Hysteresis		•	0.1	0.3	0.6	0.1	0.3	0.6	V
Operating Current	$V_{IN} = 7 \text{ to } 40 \text{V}$	•		7	<u></u> 10		7	10	mA
Reference Section							1		
Output Voltage			4.95	5.00	5.05	4.90	5.00	5.10	V
Output Voltage	$V_{IN} = 7$ to 40V, $I_L = 0$ to 20mA	•	4.90		5.10	4.85		5.15	V
Line Regulation	V _{IN} = 7 to 40V	•		1	10		1	15	mV
Load Regulation	IL = 0 to 20 mA	•		5	15		5	25	mV
Temperature Stability (Note 4, Note 6)	Over Operating Range	•		40	75		40	75	mV
Short Circuit Current	V _{REF} = 0V	•	25	70	120	25	70	120	mA
Long Term Stability (Note 4)				1	10		1		mV/kh
Oscillator Section (Note 5)						_			
Initial Accuracy			41	43	45	39	43	47	kHz
Voltage Stability	V _{IN} = 7 to 40 V	•		0.1	1		0.1	1	%
Temperature Stability (Note 4)	Over Operating Range			1	2		1	2	%

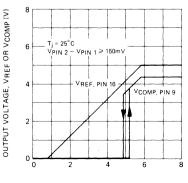
ADVANCED REGULATING PULSE WIDTH MODULATOR


ELECTRICAL CHARACTERISTICS (CONTINUED)

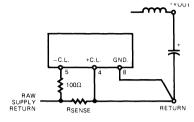
	1		IP1524B				IP3524B		
Parameter	Conditions .		Min	Тур	Max	Min	Тур	Max	Units
Minimum Frequency	$R_T = 150 \text{ k}\Omega, C_T = 0.1 \mu\text{F}$	•		80	140		80	140	Hz
Maximum Frequency	$R_T = 2 k\Omega$, $C_T = 470 pF$	•	400	700		400	700		kHz
Clock Amplitude	Output, Pin 3 C _T = 0.01 μF	•	3.0	4.0		3.0	4.0		V
Clock Pulse Width	Output, Pin 3 $C_T = 0.01 \mu F$	•	0.4	0.5	1.2	0.4	0.5	1.2	μs
Sawtooth Peak Voltage	C _T = 0.01µF	•		3.7	4.0		3.7	4.0	V
Sawtooth Valley Voltage	C _T = 0.01 μF	•	0.6	1	1.1	0.6	1	1.1	V
Sawtooth Valley T.C.				-1.0			-1.0		mV/⁰C
Error Amplifier Section									
Input Offset Voltage	V _{CM} = 2.3 V to V _{REF}	•		0.1	5		2	10	mV
Input Bias Current	V _{CM} = 2.3 V to V _{REF}	•		1	5		1	10	μA
Input Offset Current	$V_{CM} = 2.3 V$ to V_{REF}	•		0.1	1		0.1	1	μΑ
DC Open Loop Gain	$\Delta V_0 = 1 \text{ to } 3 \text{ V}, \text{ R}_L \ge 10 \text{ M}\Omega$	•	60	75		60	75		dB
Common Mode Rejection	V _{CM} = 2.3 V to V _{REF}	•	70	90		70	90		dB
Supply Voltage Rejection	V _{IN} = 7 to 40 V	•	76	120		76	120		dB
Output Low Level	I _{SINK} = 100 μA	•		0.2	0.5		0.2	0.5	V
Output High Level	ISOURCE = 100 µA	•	3.8	4.2		3.8	4.2		V
Gain Bandwidth Product (Note 4)		-	1	2		1	2		MHz
PWM Comparator									
Minimum Duty Cycle	VPIN 1 - VPIN 2 ≥ 150 mV	•			0			0	%
Maximum Duty Cycle	V _{PIN 2} - V _{PIN 1} ≥ 150 mV	•	45	49		45	49		%
Current Limit Amplifier			_						
Sense Voltage	V _{CM} = 0 to 17.5V	•	180	200	220	180	200	220	mV
	$V_{IN} = 7 \text{ to } 40 \text{V}$								
Input Bias Current	$V_{CM} = 0$ to 17.5V,	•		-1	-10		-1	-10	μA
	$V_{IN} = 7 \text{ to } 40 \text{ V}$					1			1
Shutdown Input			L					<u> </u>	
High Input Voltage		•	2.0			2.0			V
High Input Current	VSHUTDOWN = 5.0V	•		0.1	1		0.1	1	mA
Low Input Voltage		•			0.6		1	0.6	V
Shutdown Delay	Pin 10 to Output			50	1		50		ns
Output Section (Each Transistor)									
Collector Leakage Current	V _{CE} = 60V	•		0.1	20		0.1	20	μA
Collector Saturation Voltage	$l_{\rm C} = 20 \rm mA$	•		0.2	0.4		0.2	0.4	V
	$l_{\rm C} = 200 \rm{mA}$	•		1.0	2.2		1.0	2.2	V
Emitter Output Voltage	I _F = 50 mA	•	17	19	1	17	19		V V
	$I_E = 200 \text{ mA}$	•	16.5	18	1	16.5	18		v
Emitter Voltage Rise Time	R _E =2k	-	 	0.2	0.4	t	0.2		μs
Collector Voltage Fall Time	$R_{C} = 2k$		t	0.1	0.2	1	0.1	+	μs

The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified.

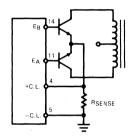

Note 4. These parameters, although guaranteed over the recommended conditions, are not 100% tested in production. Note 5. $R_T = 2.7 K\Omega$, $C_T = 0.01 \mu F$ unless otherwide specified.


PWM INPUT VOLTAGE, PIN 9 (V)

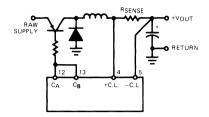
Error Amplifier Voltage Gain vs. Frequency



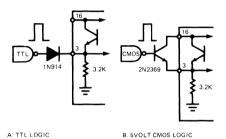
OUTPUT COLLECTOR CURRENT (mA)



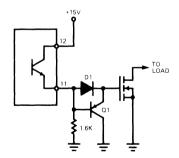
SUPPLY VOLTAGE, VIN (V)


ADVANCED REGULATING PULSE WIDTH MODULATOR APPLICATIONS INFORMATION

Current Sensing in the Ground Line



Sensing Primary Current with an Emitter Resistor



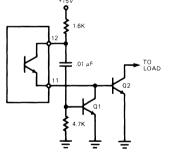
IP1524B. IP3524B

Current Sensing in the Output Line

Oscillator Sync to an External Clock

Driving Power MOSFETS

ORDER INFORMATION


Part Number

IP1524BJ IP3524BD IP3524BJ IP3524BN

Temperature Range

- 55°C to + 125°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C

Driving Power Bipolar Transistors

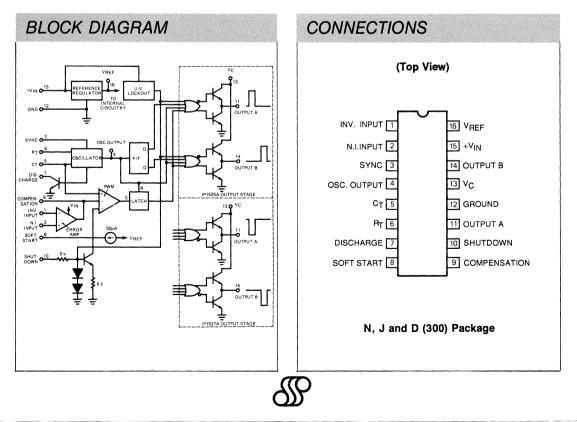
Package 16 Pin Ceramic DIP

16 Pin Ceramic DIP 16 Pin Plastic (300) SOIC 16 Pin Ceramic DIP 16 Pin Plastic DIP

38

Seagate Microelectronics Limited

REGULATING PULSE WIDTH MODULATORS


IP1525A, IP3525A, IP1527A, IP3527A

DESCRIPTION

The IP1525A and IP1527A families of PWM switching regulator control circuits offer improved performance and lower parts count when used in designing switching power supplies. Included are 5.1 volt reference, error amplifier, adjustable dead-time oscillator with synchronization capability, latched PWM comparator, totem-pole output drivers, shutdown, soft start, and undervoltage lockout.

The IP1525A and IP1527A differ only in output phasing. The IP1525A output is low when "off", while the IP1527A output is high when "off".

- 8 to 35 volt operation
- 5.1 volt reference trimmed to $\pm 1\%$
- 100Hz to 500kHz oscillator range
- Separate oscillator sync terminal
- Adjustable deadtime control
- Internal soft-start
- Input undervoltage lockout
- Latching PWM to prevent multiple pulses
- Dual source/sink output drivers

ABSOLUTE MAXIMUM RATINGS

Input Voltage (+ ^V IN)	+ 40V	Power Dissipation at	
Collector Voltage	+ 40V	$T_A = +25^{\circ}C$ (Note 1) $T_C = +25^{\circ}C$ (Note 2)	1000mW 2000mW
Logic Inputs	-0.3V to +5.5V	Operating Junction	20001111
Analog Inputs	–0.3V to +V _{IN}	Temperature	-55°C to +150°C
Output Current, Source or Sink	500mA	Storage Temperature Range	-65°C to +150°C
Reference Output Load Current	Internally Limited	Lead Temperature (Soldering,	10 seconds) +300°C
Oscillator Charging Current	5mA		

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS (Note 3)

Input Voltage (^V IN)	+8V to +35V	Oscillator Timing Resistor	$2k\Omega$ to $200k\Omega$
Collector Voltage	+4.5V to +35V	Oscillator Timing Capacitor	470pF to 0.1,uF
Sink/Source Load Current		Deadtime Resistor Range	0 to 500Ω
(steady state)	0 to 100mA	Operating Ambient Temperat	uro Pango
Sink/Source Load Current (peak)	0 to 400mA	Operating Ambient Temperat	ule hange
. ,	0 10 400MA	IP1525A/IP1527A	– 55°C to + 125°C
Reference Load Current	0 to 20mA	IP3525A/IP3527A	0°C to +70°C
Oscillator Frequency Range	100Hz to 400kHz		

Note 1. Derate at 10 mW/°C for ambient temperatures above +50°C.

Note 2. Derate at 16 mW/°C for case temperatures above +25°C.

Note 3. Range over which the device is functional and parameter limits are guaranteed.

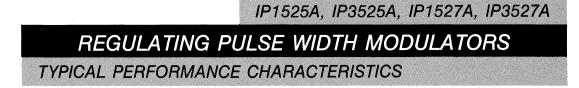
ELECTRICAL CHARACTERISTICS

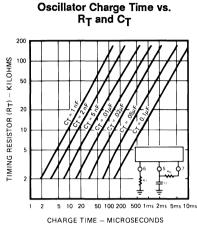
$(+V_{IN} = 20V, unless otherwise specified)$

			IP1525A IP1527A		IP3525A IP3527A				
Parameter	Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
Reference Section									
Output Voltage			5.05	5.10	5.15	5.00	5.10	5.20	V
Line Regulation	V _{IN} = 8 to 35 V	•		2	10		2	20	mV
Load Regulation	$I_L = 0$ to 20 mA	•		5	50		5	50	mV
Temperature Stability (Note 4)	Over Operating Range	•		20	50		20	50	mV
Total Output Variation	Over Line, Load and Temp.	•	5.00		5.20	4.95		5.25	V
Short Circuit Current	V _{REF} = 0			80	100		80	100	mA
Output Noise Voltage (Note 4)	10 Hz ≤ f ≤ 10 kHz			40	200		40	200	μVrms
Long Term Stability (Note 4)				1	10		1	50	mV/kHı
Oscillator Section (Note 5)									
Initial Accuracy				2	6		2	6	%
Voltage Stability	V _{IN} = 8 to 35 V	•		0.3	1		1	2	%
Temperature Stability (Note 4)	Over Operating Range	•		3	6		3	6	%
Minimum Frequency	$R_T = 200 \text{ k}\Omega, C_T = 0.1 \mu\text{F}$	•		90	120		90	120	Hz
Maximum Frequency	$R_T = 2 k\Omega$, $C_T = 470 pf$	•	400	600		400	600		kHz

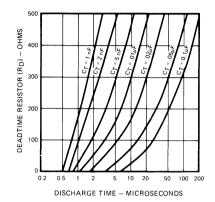
IP1525A, IP3525A, IP1527A, IP3527A

REGULATING PULSE WIDTH MODULATORS

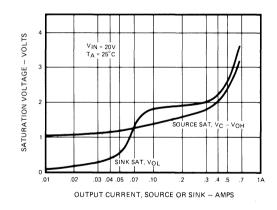

ELECTRICAL CHARACTERISTICS (CONTINUED)

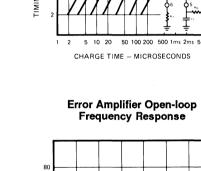

				IP1525A IP1527A		IP3525A IP3527A			
Parameter	Test Conditions		Min	Min Typ Max		Min	Тур	Max	Units
Current Mirror	I _{RT} = 2mA	•	1.7	2.0	2.2	1.7	2.0	2.2	mA
Clock Amplitude		•	3.0	3.5		3.0	3.5		V
Clock Width			0.3	0.5	1.0	0.3	0.5	1.0	μs
Sync Threshold		•	1.2	2.0	2.8	1.2	2.0	2.8	V
Sync Input Current	Sync Voltage = 3.5 V	•		1.0	2.5		1.0	2.5	mA
Error Amplifier Section (V _{CM} = 5.1 V)		.		<u> </u>		<u>.</u>		A
Input Offset Voltage		•		0.5	5		2	10	mV
Input Bias Current		•		1	10		1	10	μΑ
Input Offset Current	·····	•			1			1	μA
DC Open Loop Gain	R _L ≥10 MΩ	•	60	75		60	75		dB
Gain-Bandwidth Product (Note 4)			1	2		1	2		MHz
Output Low Level		•		0.2	0.5		0.2	0.5	V
Output High Level		•	3.8	5.6		3.8	5.6		V
Common Mode Rejection	V _{CM} = 1.5 to 5.2 V	•	60	75		60	75		dB
Supply Voltage Rejection	V _{IN} = 8 to 35 V	•	50	60		50	60		dB
PWM Comparator				<u></u>				<u></u>	
Minimum Duty Cycle	V _{PIN 1} - V _{PIN 2} ≥150 mV	•			0			0	%
Maximum, Duty Cycle	VPIN 2 - VPIN 1 ≥ 150 mV	•	45	49		45	49		%
Input Threshold (Note 5)	Zero Duty Cycle	•	0.6	0.9		0.6.	0.9		V
Input Threshold (Note 5)	Max Duty Cycle	•		3.3	3.6		3.3	3.6	v
Input Bias Current (Note 4)		•		.05	1.0		.05	1.0	μA
Shutdown Section					· · · · · ·		1		
Soft Start Current	V _{SHUTDOWN} = 0 V	•	25	50	80	25	50	80	μA
Soft Start Low Level	V _{SHUTDOWN} = 2 V			0.4	0.6		0.4	0.6	v
Shutdown Threshold	To Outputs	•	0.6	1.3	2.0	0.6	1.3	2.0	V
Shutdown Input Current	V _{SHUTDOWN} = 2.5 V	•		0.1	1.0		0.1	1.0	mA
Shutdown Delay	V _{SHUTDOWN} = 2.5 V			0.2	0.5		0.2	0.5	μs
Output Drivers (Each Output) (V _C = 2					1		L		
Output Low Level	I _{SINK} = 20 mA			0.2	0.4		0.2	0.4	V
-	ISINK = 100 mA	•		1.0	2.0		1.0	2.0	V
Output High Level	ISOURCE = 20 mA	•	18	19		18	19		v
	ISOURCE = 100 mA	1.	17	18		17	18	1	V
Undervoltage Lockout	V _{COMP} = High		5.0	7	8.0	5.0	7	8.0	l v
Output Leakage	$V_{\rm C} = 35 \rm V$	•		<u>† ·</u>	200		<u> </u>	200	μA
Rise Time	C _L =1 nF		 	100	600		100	600	ns
Fall Time	$C_1 = 1nF$			50	300		50	300	ns
Total Standby Current	1	I	L		1	-	<u>.</u>		
Supply Current	V _{IN} = 35 V	•		10	20		10	20	mA

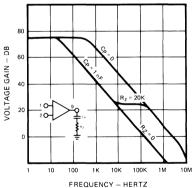
The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified. Note 4. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production. Note 5. Tested at f_{OSC} = 40 kHz (R_T = 3.6 K Ω , C_T = 0.01 μ F, R_D = 0 Ω).

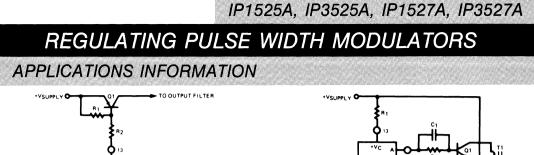


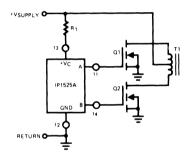
2






Oscillator Discharge Time vs. R_D and Č_T

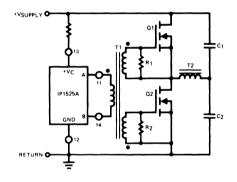




For single-ended supplies, the driver outputs are grounded. The V_C terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycle.

P1525A

RETURN


The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components.

Part Number	Temperature Range
IP1525AJ	- 55°C to + 125°C
IP3525AD	0°C to + 70°C
IP3525AJ	0°C to + 70°C
IP3525AN	0°C to + 70°C
IP1527AJ	- 55°C to + 125°C
IP3527AD	0°C to + 70°C
IP3527AJ	0°C to + 70°C
IP3527AN	0°C to + 70°C

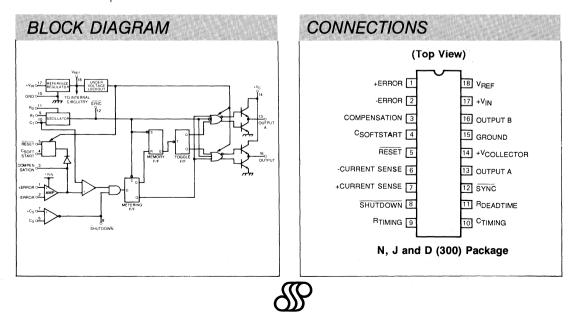
In conventional push-pull bipolar designs, forward base drive is controlled by R_1 - R_3 . Rapid turn-off times for the power devices are achieved with speed-up capacitors C_1 and C_2 .

Low power transformers can be driven directly by the IP1525A. Automatic reset occurs during deadtime, when both ends of the primary winding are switched to ground.

Package 16 Pin Ceramic DIP 16 Pin Plastic (300) SOIC 16 Pin Ceramic DIP 16 Pin Plastic DIP

16 Pin Ceramic DIP 16 Pin Plastic (300) SOIC 16 Pin Ceramic DIP 16 Pin Plastic DIP

Seagate Microelectronics Limited REGULATING PULSE WIDTH MODULATORS


IP1526, IP3526

2

DESCRIPTION

The IP1526 and IP3526 high performance monolithic pulse width modulator circuits are designed for fixed-frequency switching regulators and other power control applications. Included in an 18-pin dual-in-line package are a temperature compensated voltage reference, sawtooth oscillator, error amplifier, pulse width modulator, pulse metering and steering logic, and two low impedence power drivers. Also included are protective features such as soft-start and under-voltage lockout, digital current limiting, double pulse inhibit, a data latch for single pulse metering, adjustable deadtime, and provision for symmetry correction inputs. For ease of interface, all digital control ports are TTL and B-series CMOS compatible. Active LOW logic design allows wired-OR connections for maximum flexibility. This versatile device can be used to implement single-ended or push-pull switching regulators of either polarity, both transformerless and transformer coupled.

- 8 to 35 volt operation
- 5 volt reference trimmed to $\pm 1\%$
- 1Hz to 400kHz oscillator range
- Dual 100 mA source/sink outputs
- Digital current limiting
- Double pulse suppression
- Programmable deadtime
- Undervoltage lockout
- Single pulse metering
- Programmable soft-start
- Wide current limit common mode range
- TTL/CMOS compatible logic ports
- Symmetry correction capability
- Guaranteed 6 unit synchronization

IP1526, IP3526

ABSOLUTE MAXIMUM RATINGS

Input Voltage (+ VIN)	+ 40V	Logic Sink Current	15mA
Collector Supply Voltage	+ 40V	Power Dissipation at	
Logic Inputs	-0.3V to +5.5V	T _A = +25°C (Note 1) T _C = +25°C (Note 2)	1000mW 3000mW
Analog Inputs	$-0.3V$ to $+V_{IN}$	Operating Junction Temperature - 55°C	C to + 150°C
Source/Sink Load Current	200mA		to +150°C
Reference Load Current	Internally Limited	Lead Temperature (Soldering, 10 second	ls) +300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS (Note 3)

Input Voltage	+8V to +35V	Oscillator Timing Resistor	$2k\Omega$ to $150k\Omega$
Collector Voltage	+4.5V to +35V	Oscillator Timing Capacitor	470pF to 20 µ F
Sink/Source Load Current (each output)	0 to 100mA	Available Deadtime Range at 40kHz	3% to 50%
Reference Load Current	0 to 20mA	Operating Ambient Temperatu	ire Range
Oscillator Frequency Range	1Hz to 400kHz	IP 1526 IP 3526	−55°C to +125°C 0°C to +70°C

Note 1. Derate at 10 mW/°C for ambient temperatures above +50 °C.

Note 2. Derate at 24 mW/°C for case temperatures above + 25°C.

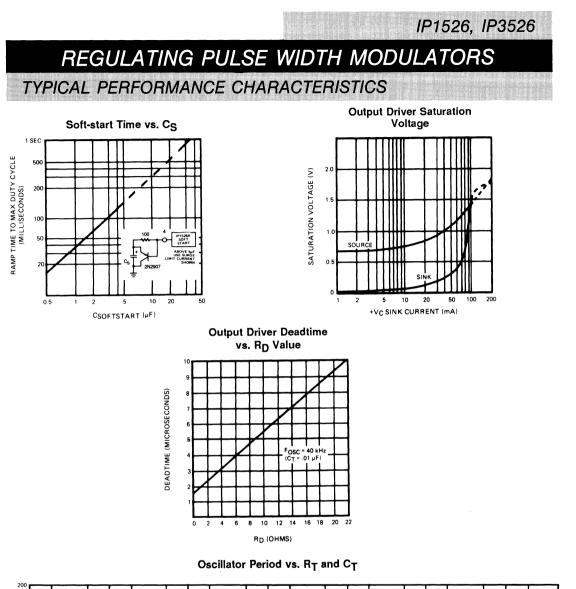
Note 3. Range over which the device is functional and parameter limits are guaranteed.

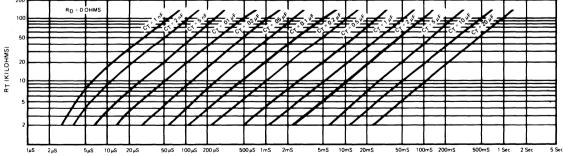
ELECTRICAL CHARACTERISTICS

$(+V_{IN} = 15V, unless otherwise specified)$

			Γ	iP1526			IP3526		Γ
Parameter	rameter Conditions		Min	Тур	Max	Min	Тур	Max	Units
Reference Section									
Output Voltage			4.95	5.00	5.05	4.90	5.00	5.10	V
Line Regulation	+V _{IN} = 8 to 35V	•		2	20		2	30	mV
Load Regulation	$I_L = 0$ to 20 mA	•		5	30		5	50	mV
Temperature Stability (Note 4)	Over Operating Range	•		15	50		15	50	mV
Total Output Voltage Range		•	4.90	5.00	5.10	4.85	5.00	5.15	V
Short Circuit Current	V _{BFF} =0V	•	25	80	140	25	80	140	mA
Undervoltage Lockout	· . ·								
RESET Output Voltage	V _{REF} = 3.8 V	•		0.2	0.4		0.2	0.4	V
RESET Output Voltage	V _{REF} = 4.8 V	•	2.4	4.8		2.4	4.8		V
Oscillator Section (Note 5)	· · · · · · · · · · · · · · · · · · ·								
Initial Accuracy				±3	±8		±3	±8	%
Voltage Stability	+V _{IN} = 8 to 35 V	•		0.5	1		0.5	1	%
Temperature Stability (Note 4)	Over Operating Range	•		3	10		7	10	%
Minimum Frequency	$R_{T} = 150 \text{ k}\Omega, C_{T} = 0.2 \mu\text{F}$	•			100			100	Hz
Maximum Frequency	$R_T = 2 k\Omega$, $C_T = 470 pF$	•	400			400			kHz

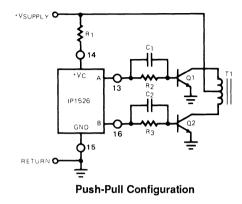
ELECTRICAL CHARACTERISTICS (CONTINUED)

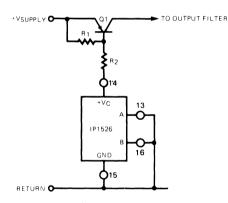

			IP1 526						
Parameter	Conditions		Min	Тур	Max	Min	Тур	Max	Units
Sawtooth Peak Voltage	+V _{IN} = 35 V	•		3.0	3.5		3.0	3.5	V
Sawtooth Valley Voltage	+V _{IN} = 8V		0.5	1.0			1.0		v
Error Amplifier Section (Note 6)									
Input Offset Volltage	R _S ≤2kΩ	•		2	5		2	10	mV
Input Bias Current		•		-350	-1000		-350	-2000	nA
Input Offset Current		•		35	100		35	200	nA
DC Open Loop Gain	R _L ≥10 MΩ	•	64	72		60	72		dB
High Output Voltage	V _{PIN 1} - V _{PIN 2} ≥ 150 mV, ISOURCE = 100 µA	•	3.6	4.2		3.6	4.2		V
Low Output Voltage	V _{PIN 2} -V _{PIN 1} ≥ 150 mV, ISINK = 100 μA	•		0.2	0.4		0.2	0.4	V
Common Mode Rejection	R _S ≤2kΩ	•	70	94		70	94		dB
Supply Voltage Rejection	+V _{IN} = 12 to 18 V		66	80		66	80		dB
PWM Comparator (Note 5)	······································								
Minimum Duty Cycle	VPIN 2 -VPIN 1 ≥ 150mV	•			0			0	%
Maximum Duty cycle	VPIN 1 - VPIN 2≥ 150mV	•	45	49		45	49		%
Digital Ports (SYNC, SHUTDOW	N and RESET)								
HIGH Output Voltage	ISOURCE = 40 µA	•	2.4	4.0		2.4	4.0	[V
LOW Output Voltage	ISINK = 3.6 mA	•		0.2	0.4		0.2	0.4	V
HIGH Input Current	V _{IH} = +2.4 V	•		-125	-200		-125	-300	μΑ
LOW Input Current	V _{II} = +0.4 V	•		-225	-360		-225	-500	μA
Current Limit Comparator (Note	7)								
Sense Voltage	R _S ≤50 Ω	•	90	100	110	80	100	120	mV
Input Bias Current		•		-3	-10		-3	-10	μA
Soft-Start Section									
Error Clamp Voltage	RESET = +0.4 V	•		0.1	0.4		0.1	0.4	V
C _S Charging Current	RESET = +2.4 V	•	50	100	150	50	100	150	μA
Output Drivers (Each Output) (N	Note 8)		•				<u></u>		· · · ·
HIGH Output Voltage	ISOURCE = 20 mA	•	12.5	13.5		12.5	13.5		V
	ISOURCE = 100 mA	•	12	13		12	13		V
LOW Output Voltage	ISINK = 20 mA	•		0.2	0.3		0.2	0.3	V
	ISINK = 100 mA	•		1.2	2.0	1	1.2	2.0	V
Collector Leakage	V _C = 40 V	•		50	150		50	150	μA
Rise Time	CL = 1000 pF	•		0.3	0.6		0.3	0.6	μse
Fall Time	C _L = 1000 pF	•		0.1	0.2		0.1	0.2	μse
Power Consumption (Note 9)									-
Standby Current	SHUTDOWN = +0.4 V			18	30	1	18	30	mA

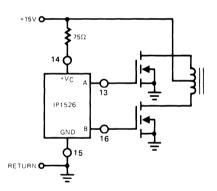

The • denotes the specifications which apply over the full operating temperature range, all others apply at T_j = 25°C unless otherwise specified.

Note 4. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production. Note 5. F_{OSC} = 40 kHz (R_T = 4.12 kΩ ± 1%, C_T = 0.01μ ± 1%, R_D = 0Ω). Note 6. V_{CM} = 0 to + 5.2V.

Note 7. $V_{CM} = 0$ to + 12V. Note 8. $V_C = +$ 15V. Note 9. $+V_{IN} = +$ 35V, $R_T = 4.12$ k Ω .







APPLICATIONS INFORMATION

Single-Ended Configuration

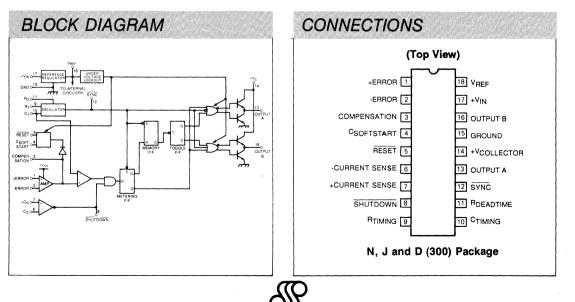
IP1526, IP3526

Driving N-Channel Power MOSFETS

Part Number IP1526J IP3526D IP3526J IP3526N

Temperature Range - 55°C to + 125°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C Package 18 Pin Ceramic DIP 18 Pin Plastic (300) SOIC 18 Pin Ceramic DIP 18 Pin Plastic DIP

Seagate Microelectronics Limited


ADVANCED REGULATING PULSE WIDTH MODULATORS

IP1526A, IP3526A

DESCRIPTION

The IP1526A series of high performance pulse width modulator circuits is a direct replacement for the IP1526 series in all applications and features improved performance in several key areas. Functions included are a temperature compensated voltage reference, sawtooth oscillator, error amplifier, PWM comparator, pulse metering and steering logic, and two low impedance power drivers. Also included are protective features such as soft-start, undervoltage lockout, digital current limiting, double pulse inhibit, a data latch for single pulse metering, adjustable dead-time and provision for symmetry correction inputs. For ease of interface, all digital control ports are TTL and B-series CMOS compatible. Active LOW logic design allows wired-OR connections for maximum flexibility. This versatile device can be used to implement single-ended or pushpull switching regulators of either polarity, both transformerless and transformer coupled.

- Low drain current
- 8 to 35 volt operation
- High performance 5V ± 1% reference
- Low t.c. 1Hz to 400kHz oscillator
- Dual 100 mA source/sink outputs
- Digital current limiting
- Double pulse suppression
- Programmable deadtime
- Accurate current limit sense voltage
- Undervoltage lockout
- Single pulse metering
- Programmable soft-start
- Wide current limit common mode range
- TTL/CMOS compatible logic ports
- Symmetry correction capability
- Guaranteed 6 unit synchronization

ADVANCED REGULATING PULSE WIDTH MODULATORS

ABSOLUTE MAXIMUM RATINGS

Input Voltage (+ ^V IN)	+ 40V	Logic Sink Current 15mA
Collector Supply Voltage $(+V_C)$	+ 40V	Power Dissipation at
Logic Inputs	-0.3V to +5.5V	$T_A = +25^{\circ}C$ (Note 1) 1000mW
Analog Inputs	-0.3V to +VIN	$T_{C} = +25^{\circ}C$ (Note 2) 3000mW
Source/Sink Load Current		Operating Junction Temperature – 55°C to + 150°C
(Each output, continuous)	200mA	Storage Temperature Range - 65°C to + 150°C
Reference Load Current	Internally Limited	Lead Temperature (Soldering, 10 seconds) + 300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS (Note 3)

Input Voltage	+8V to +35V	Oscillator Timing Resistor	2kΩ to 150kΩ			
Collector Voltage	+4.5V to +35V	Oscillator Timing Capacitor	470pF to 20µ F			
Sink/Source Load Current (each output)	0 to 100mA	Available Deadtime Range at 40kHz	3% to 50%			
Reference Load Current	-5mA to 20mA	Operating Ambient Temperature Range				
Oscillator Frequency Range	1Hz to 400kHz	IP1526A IP3526A	-55°C to +125°C 0°C to +70°C			

Note 1. Derate at 10 mW/°C for ambient temperatures above +50°C.

Note 2. Derate at 24 mW/°C for case temperatures above + 25°C.

Note 3. Range over which the device is functional and parameter limits are guaranteed.

ELECTRICAL CHARACTERISTICS

$(+V_{IN} = 15V, unless otherwise specified)$

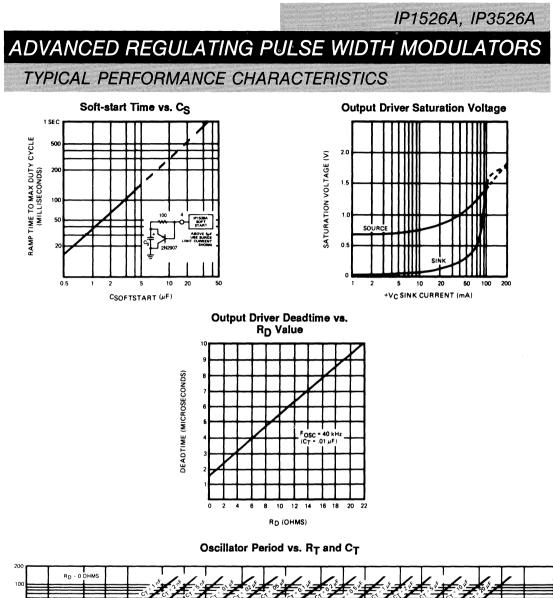
				IP1526A			IP3526A		
Parameter	Conditions		Min	Тур	Max	Min	Тур	Max	Units
Reference Section									
Output Voltage			4.95	5.00	5.05	4.90	5.00	5.10	v
Line Regulation	+V _{IN} = 8 to 35V	•		2	10		2	15	mV
Load Regulation	$I_{L} = -5 \text{ to } +20 \text{ mA}$	•		5	10		5	20	mV
Temperature Stability (Note 4)	Over Operating Range	•		15	50		15	50	mV
Total Output Voltage Range		•	4.90	5.00	5.10	4.85	5.00	5.15	V
Short Circuit Current	V _{RFF} = 0 V	•	30	80	140	30	80	140	mA
Undervoltage Lockout									
RESET Output Voltage	V _{REF} = 3.8 V	•		0.2	0.4		0.2	0.4	V
RESET Output Voltage	V _{REF} = 4.8 V	•	2.4	4.8		2.4	4.8		V
Oscillator Section (Note 5)									
Initial Accuracy	4			±3	±8	ľ	±3	±8	%
Voltage Stability	+V _{IN} = 8 to 35 V	•		0.5	1		0.5	1	%
Temperature Stability (Note 4)	Over Operating Range	•		1	3		1	6	%
Minimum Frequency	$R_T = 150 \text{ k}\Omega, C_T = 0.2 \mu\text{F}$	•,			100			100	Hz
Maximum Frequency	$R_T = 2 k\Omega$, $C_T = 470 pF$	•	400	700		400	700	ľ	kHz

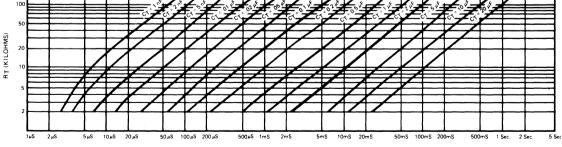
ADVANCED REGULATING PULSE WIDTH MODULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

				IP1 526A			IP3526A		
Parameter	Conditions		Min	Тур	Max	Min	Тур	Max	Units
Sawtooth Peak Voltage	+V _{IN} = 35 V	•		3.0	3.5		3.0	3.5	V
Sawtooth Valley Voltage	+V _{IN} = 8V	•	0.3	1.0		0.3	1.0		v
Error Amplifier Section (Note 6)	· · · ·								
Input Offset Voltage	R _S ≤2kΩ	•		2	5		2	10	mV
Input Bias Current		•		-350	-1000		-350	-2000	nA
Input Offset Current		•		35	100		35	200	nA
DC Open Loop Gain	R _L ≥10 MΩ	•	64	72		60	72		dB
High Output Voltage	VPIN 1 - VPIN 2≥150 mV, ISOURCE = 100 μA	•	3.6	4.2		3.6	4.2		V
Low Output Voltage	VPIN 2 - VPIN 1 ≥ 150 mV, ISINK = 100 μA	•		0.2	0.4		0.2	0.4	V
Common Mode Rejection	R _S ≤2kΩ	•	70	94		70	94		dB
Supply Voltage Rejection	+V _{IN} = 12 to 18 V	•	66	80		66	80	1	dB
PWM Comparator (Note 5)			<u></u>					4	
Minimum Duty Cycle	VPIN 2-VPIN 1 ≥ 150mV	•			0			0	%
Maximum Duty cycle	VPIN 1 -VPIN 2≥150mV	•	45	49		45	49		%
Digital Ports (SYNC, SHUTDOW									
HIGH Output Voltage	ISOURCE = 40 μA	•	2.4	4.0		2.4	4.0		V
LOW Output Voltage	ISINK = 3.6 mA	•		0.2	0.4		0.2	0.4	V
HIGH Input Current	V _{IH} = +2.4 V	•		-125	-200		-125	-200	μA
LOW Input Current	V _{IL} = +0.4 V	•		-225	-360		-225	-360	μΑ
Current Limit Comparator (Note	7)								
Sense Voltage	R _S ≤50 Ω	•	90	100	110	80	100	120	mV
Input Bias Current	••••••	•		-3	-10		-3	-10	μΑ
Soft-Start Section									
Error Clamp Voltage	RESET = +0.4 V	•		0.1	0.4		0.1	0.4	V
C _S Charging Current	$\overline{\text{RESET}} = +2.4 \text{ V}$	•	50	100	150	50	100	150	μΑ
Output Drivers (Each Output) (N	ote 8)								
HIGH Output Voltage	ISOURCE = 20 mA	•	12.5	13.5		12.5	13.5		V
	ISOURCE = 100 mA	•	12	13		12	13		V
LOW Output Voltage	ISINK = 20 mA	•		0.2	0.3		0.2	0.3	V
	ISINK = 100 mA	•		1.2	2.0		1.2	2.0	V
Collector Leakage	$V_{C} = 40 V$	•		50	150		50	150	μA
Rise Time	C _L = 1000 pF	•		0.3	0.6		0.3	0.6	μs
Fall Time	C _L = 1000 pF	•		0.1	0.2		0.1	0.2	μs
Power Consumption (Note 9)			•••••						
Standby Current	SHUTDOWN = +0.4 V, V _{IN} = 35 V	•		14	20		14	20	mA

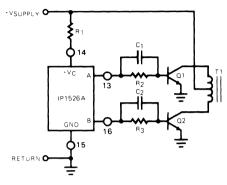
The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified.

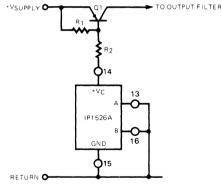

Note 4. These parameters, although guaranteed over the recommended


operating conditions, are not 100% tested in production.

Note 5. FOSC = 40 kHz (R_T = 4.12 kΩ \pm 1%, C_T = 0.01 μ \pm 1%, R_D = 0Ω). Note 6. V_{CM} = 0 to + 5.2V.

 $\begin{array}{l} \mbox{Note 7. } V_{CM} = 0 \mbox{ to } + \mbox{ 12V}. \\ \mbox{Note 8. } V_C = \mbox{ + } 15V. \\ \mbox{Note 9. } + V_{IN} = \mbox{ + } 35V, \mbox{ R}_T = \mbox{ 4.12 } \mbox{ k}\Omega. \end{array}$



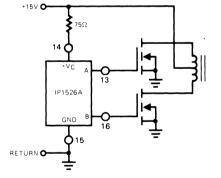

IP1526A, IP3526A

ADVANCED REGULATING PULSE WIDTH MODULATORS

APPLICATIONS INFORMATION

Single-Ended Configuration

ORDER INFORMATION


Part Number IP1526AJ IP3526AD IP3526AJ IP3526AN

Temperature Range

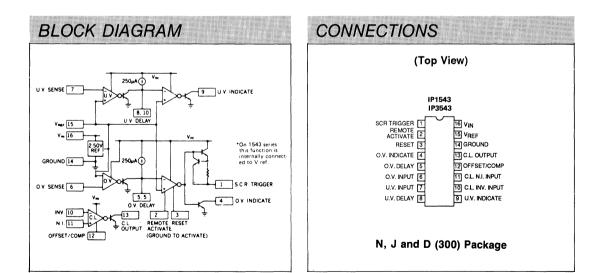
- 55°C to + 125°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C

Driving N-Channel Power MOSFETS

2

Seagate Microelectronics Limited

POWER SUPPLY SUPERVISORY CIRCUITS


IP1543, IP3543

2

DESCRIPTION

The IP1543 and IP3543 power supply supervisory circuits contain all the functions necessary to monitor and control the output of a sophisticated power supply system. Included on the chip are over-voltage (O.V.) sensing with externally programmable delay used to trigger an external SCR "Crowbar", under-voltage (U.V.) sensing with externally programmable delay used to sense either the power supply output or the line input voltage, a third op-amp/comparator with provision for external compensation and/or offset programming used for either current limiting or as an additional voltage monitor, and a voltage reference trimmed to $\pm 1\%$.

- 4.5 to 40V operation over full temperature range
- Reference voltage trimmed to 1% accuracy
- Includes over-voltage, under-voltage and current sensing
- Programmable time delays
- SCR "Crowbar" drive of 300mA
- Remote activation capability
- Optional over-voltage latch capability

ABSOLUTE MAXIMUM RATINGS

Sense Inputs	$\vee_{\sf IN}$	$T_{C}^{n} = +25^{\circ}C$ (Note 3)	2000mW
SCR Trigger Current (Note 1)	Internally Limited	Operating Junction	
Indicator Output Voltage + 40V		Temperature Storage Temperature Range	+ 150°C – 65°C to + 150°C
Indicator Output Sink Current	50mA	Lead Temperature (Soldering, 1	

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

Note 1. At higher input voltages, a dissipation limiting resistor, RG, is required. Note 2. Derate at 10mW/°C for ambient temperatures above + 50°C.

Note 3. Derate at 16mW/°C for case temperatures above +25°C.

RECOMMENDED OPERATING CONDITIONS (Note 4)

Input Supply Voltage (VIN)	+4.5V to +40V						
Current Limit Common Mode Range							
Input Voltage Range	0 to V _{IN} - 3V						
Reference Load Current	0 to 10mA						

Indicate Output Current 0 to 10mA **Operating Ambient Temperature Range** -55°C to +125°C IP1543 IP3543 $0^{\circ}C$ to $+70^{\circ}C$

IP1543, IP3543

Note 4. Range over which the device is functional and parameter limits guaranteed.

ELECTRICAL CHARACTERISTICS

+ V	IN	=	+	1	0V	1
-----	----	---	---	---	----	---

				IP1543			IP3543		
Parameter Test Conditions			Min	Тур	Max	Min	Тур	Max	Units
Input Voltage Range		•	4.5		40	4.5		40	V
Supply Current	V _{IN} = 40V	•		7	10		7	10	mA
Reference Section									
Output Voltage			2.48	2.50	2.52	2.45	2.50	2.55	V
		•	2.45		2.55	2.40		2.60	V
Line Regulation	V _{IN} = 4.5 to 30V	•		1	5		1	5	mV
Load Regulation	I _{REF} = 0 to 10 mA	•		1	10		1	10	mV
Short Circuit Current	V _{REF} = 0	•	12	25	40	12	25	40	mA
Temperature Stability	Over Operating Range			50			50		ppm/°C
SCR Trigger Section							·		
Peak Output Current	$V_{IN} = 5v, R_G = 0, V_O = 0$	•	100	200	400	100	200	400	mA
Peak Output Voltage	V _{IN} = 15V, I _O = 100 mA	•	12	13		12	13		V
Output Off Voltage	V _{IN} = 40V	•		0	0.1		0	0.1	V
Remote Activate Current	Pin 2 = Gnd	•		1	8		1	8	mA
Remote Activate Voltage	Pin 2 = Open	•		1.5	6		1.5	6	V

ELECTRICAL CHARACTERISTICS (CONTINUED)

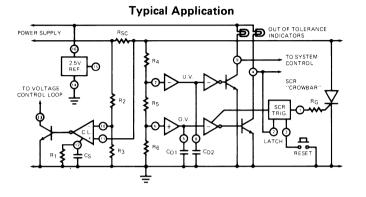
					IP1543			IP3543		
Parameter	er Test Conditions			Min	Тур	Max	Min	Тур	Max	Units
Reset Current	Pin 3 = Gno	d, Pin 2 = Gnd			1	8		1	8	mA
Reset Voltage	Pin 3 = Ope	en, Pin 2 = Gnd	•		1.5	6		1.5	6	V
Output Current Rise Time	$R_L = 50\Omega$				400			400		mA/μS
Prop. Delay from Pin 2	C _D =0	$V_{(Pin 2)} = 0.4V$			300			300		ns
Prop. Delay from Pin 6		$V_{(Pin 6)} = 2.7V$			500			500		ns
Comparator Sections										
Input threshold (Input Voltage Rising	T			2.45	2.50	2.55	2.40	2.50	2.60	V
on Pin 6, falling on Pin 7)			•	2.40		2.60	2.35		2.65	v
Input Hysteresis					25			25		mV
Input Bias Current	Sense Inpu	ut = OV	•		-0.3	-1.0		-0.3	-1.0	μA
Delay Saturation			•		0.2	0.5		0.2	0.5	V
Delay High Level			•		6	8		6	8	V
Delay Charging Current	$V_{D} = 0V$		•	200	250	300	200	250	300	μA
Indicate Saturation	IL = -10 mA	١	•		0.2	0.5		0.2	0.5	V
Indicate Leakage	V _{IND} = 40	V	•		.01	1.0		.01	1.0	μΑ
Propagation Delay	$V_{(Pin 6)} =$	2.7V C _D =0			400			400		ns
		2.3V C _D = 1μF			10			10		ms
Current Limit Section										
Input Voltage Range			•	0		V _{IN} -3	0		V _{IN} -3	V
Input Bias Current	Pin 12 = 0	pen, V _{CM} = 0V	•		-0.3	-1.0		-0.3	-1.0	μΑ
Input Offset Voltage	Pin 12 = 0	pen, V _{CM} = 0V	•		0	10		0	15	mV
	10kΩ from	Pin 12 to Gnd		70	100	130	70	100	130	mV
CMRR	0≤V _{CM} ≤	12V, V _{IN} = 15V	•	60	70		60	70		dB
AVOL	Pin 12 = 0	pen, V _{CM} =0V	•	72	80		72	80		dB
Output Saturation	ار الے = -10 m	۹	•		0.2	0.5		0.2	0.5	V
Output Leakage	V _{IND} = 40'	V	•		.01	1.0		.01	1.0	μA
Small Signal Bandwidth	$A_V = 0 dB$				5			5		MHz
Propagation Delay	Voverdrive	= 100 mV			200			200		ns

The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified.

ORDER INFORMATION

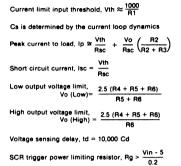
Part Number

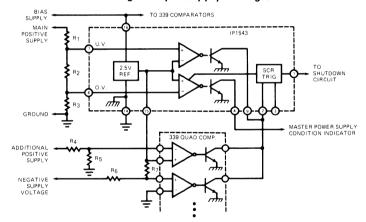
IP1543J IP3543D IP3543J IP3543N


Temperature Range

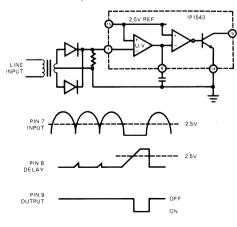
- 55°C to + 125°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C 0°C to + 70°C

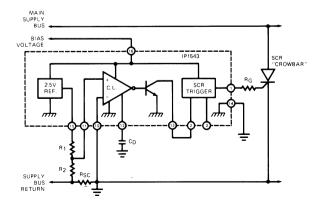
Package 16 Pin Ceramic DIP 16 Pin Plastic (300) SOIC 16 Pin Ceramic DIP 16 Pin Plastic DIP


APPLICATIONS INFORMATION

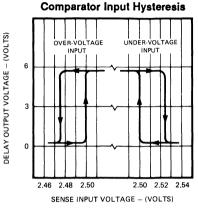

The values for the external components are determined as follows:

2

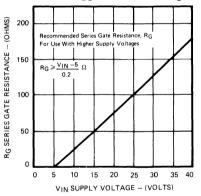

IP1543, IP3543

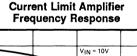

Sensing Multiple Supply Voltages

Input Line Monitor

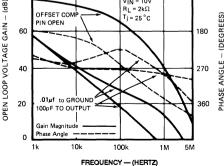


Overcurrent Shutdown

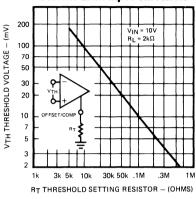




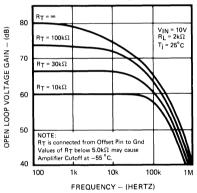
TYPICAL PERFORMANCE CHARACTERISTICS



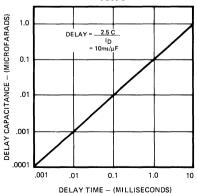
SCR Trigger Power Limiting



80



Current Limit Input Threshold

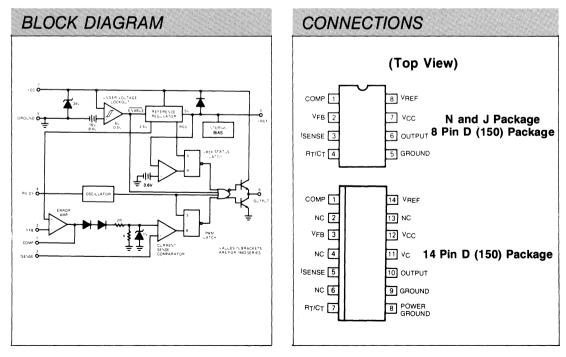

IP1543, IP3543

Current Limit Amplifier Gain

Activation Delay vs. Capacitor Value

Seagate Microelectronics Limited

REGULATING PULSE WIDTH MODULATORS


CURRENT MODE IP1842, IP2842, IP3842, IP1843, IP2843, IP3843

DESCRIPTION

The IP1842 and IP1843 series of switching regulator control circuits contain all the functions necessary to implement off-line, current mode switching regulators, using a minimum number of external parts. Functions included are voltage reference, error amplifier, current sense comparator, oscillator, totem-pole output driver and undervoltage lockout circuitry.

Although pin compatible with the UC1842 and UC1843 series, Seagate Microelectronics has incorporated several improvements in the IP1842 and IP1843 series allowing tighter and more complete specification of electrical performance.

- Guaranteed ±1% reference voltage tolerance
- Guaranteed ±10% frequency tolerance
- Low start-up current (< 500 µA)
- Under voltage lockout with hysteresis
- Output state completely defined for all supply and input conditions
- Interchangeable with UC1842 and UC1843 series for improved operation
- 500 kHz operation

CURRENT MODE IP1842, IP2842, IP3842, IP1843, IP2843, IP3843

REGULATING PULSE WIDTH MODULATORS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (+ VCC)	+ 30V	Error Amp Output Sink Current
(low impedance source)		Power Dissipation at
Supply Voltage (V _{CC}) (I _{CC} <30mA)	Self limiting	$T_A = +25^{\circ}C$ (Note 1) $T_C = +25^{\circ}C$ (Note 2)
Output Current	<u>+</u> 1A	Storage Temperature Range
Output Energy (capacitive load)	,u J	Lead Temperature (Soldering, 10
Analog Inputs (pins 2 and 3)	$-0.3V$ to $+V_{CC}$	

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS (Note 3)

0 to +200mA

-0.3 to 3 V

0 to 2mA

≤30V

Supply Voltage (+V_{CC}) (Note 4)

Output Current

Analog Inputs (pins 2 and 3)

Error Amp Output Sink Current

-55°C to +125°C	IP1842, IP1843
-25°C to +85°C	IP2842, IP2843
0°C to +70°C	IP3842, IP3843

Operating Ambient Temperature Range:

10mA 1000mW 2000mW – 65°C to + 150°C

+ 300°C

seconds)

Note 1. Derate at 10 mW/°C for ambient temperatures above +50°C. Note 2. Derate at 24 mW/°C for case temperatures above +25°C.

Note 3. Range over which the device is functional and parameter limits are guaranteed.

Note 4. Lower limit set by under voltage lockout specification.

ELECTRICAL CHARACTERISTICS

V_{CC} = 15V,f = 52kHz, R_T = 10k, C_T = 3.3nF unless otherwise specified (Note 6)

				842/IP1 842/IP2		IP3	842/IP3	843	
Parameter	arameter Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
Reference Section			I	1		I	L	L	
Output Voltage	IO = 1mA		4.95	5.00	5.05	4.90	5.00	5.10	V
Input Regulation	VCC = 12 to 25V	•		6	20		6	20	mV
Output Regulation	IO = 1 to 20mA	•		6	25		6	25	mV
Temperature Stability	(Note 5)	•		0.2	0.4		0.2	0.4	mV/°C
Total Output Variation	Line, Load, Temp	•	4.90		5.10	4.82		5.18	V
Output Noise Voltage	f = 10Hz to 10kHz (Note 5)			50			50		μV
Long Term Stability	Tj = 125°C 1000 Hrs (Note 5)			5	25		5	25	mV
Output Short Circuit Current	VREF = 0	•	30	80	160	30	80	160	mA
Oscillator Section			· · · · · ·		1 <u></u>		h		
Frequency			47	52	57	47	52	57	kHz
Voltage Stability	VCC = 12 to 25V	•		0.2	1		0.2	1	%
Temperature Stability	$\triangle T_A = Min \text{ to Max} (Note 5)$	•		5			5		%
Amplitude	VPIN 4 Peak to Peak	•		1.7			1.7		V
Discharge Current	× ×			8.3			8.3		mA
	$\triangle T_A = Min \text{ to } Max \text{ (Note 5)}$			8			8	1	%

CURRENT MODE IP1842, IP2842, IP3842, IP1843, IP2843, IP3843

REGULATING PULSE WIDTH MODULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

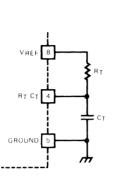
					842/IP1 842/IP2		IP3			
Parameter	eter Test Conditions			Min	Тур	Max	Min	Тур	Max	Units
Error Amp Section		· · · · · · · · · · · · · · · · · · ·		1			A		L	
Input Voltage	VPIN 1 = 2.5V		٠	2.45	2.50	2.55	2.42	2.50	2.58	V
Input Bias Current			٠		-0.3	-1		-0.3	-2	μA
Open Loop Voltage Gain	VO = 2 to 4V		۲	65	90		65	90		dB
Unity Gain Bandwith	(Note 5)		٠	0.7	1		0.7	1		MHz
Supply Voltage Rejection	VCC = 12 to 25	V	٠	60	70		60	70		dB
Output Sink Current	VPIN 2= 2.7V,	VPIN 1 = $1.1V$	٠	2	6		2	6		mA
Output Source Current	VPIN 2 = 2.3V	, VPIN 1 = 4.6V	٠	-0.5	-0.8		-0.5	-0.8		mA
VOUTHigh	VPIN 2 = 2.3V,	, RL = 15k	•	4.6	4.8		4.6	4.8	1	V
VOUTLow	VPIN 2 = 2.7V	, RL = 15k	٠		0.7	1.1		0.7	1.1	V
Current Sense Section					L	L		ł		
Gain	(Notes 7 and 8)		•	2.85	3	3.15	2.85	3	3.15	V/V
Maximum Input Signal	VPIN 1=4.6V (N	lote 7)	•	0.9	1	1.1	0.9	1.0	1.1	V
Supply Voltage Rejection	VC = 12 to 25	/	•	60	70		60	70		dB
Input Bias Current			•		-2	-10		-2	-10	μA
Delay to Output			•	1	200	400		200	400	ns
Output Section				L	·	1	I	L		.
Output Low Level	ISINK = 20mA		٠		0.1	0.4		0.1	0.4	V
	ISINK = 200mA	A	٠		1.5	2.2		1.5	2.2	V
Output High Level	ISOURCE = 20		٠	13	13.5		13	13.5		V
	ISOURCE = 20	00mA	•	12	13.5		12	13.5		V
Rise Time	$C_L = 1nF$				50	150		50	150	ns
Fall Time	$C_L = 1nF$				50	150		50	150	ns
UVLO Saturation	VCC = 6V, IL	= 1mA	•		0.7	1.1		0.7	1.1	V
Under-voltage Lockout S	ection			L	L	L	L.,			l
Upper Threshold	1842 Series		•	15	16	17	14.5	16	17.5	V
(Vcc)	1843 Series		•	7.8	8.4	9	7.8	8.4	9	V
Lower Threshold	1842 Series		•	9	10	11	8.5	10	11.5	V
(Vcc)	1843 Series		•	7	7.6	8.2	7	7.6	8.2	V
Total Standby Current				L	1	1	L	L	1	
Start-Up Current			•		0.3	0.5		0.3	0.5	mA
Operating Supply Current	VPIN 2 = 0V	1842 Series	•		11	15		11	15	mA
	VPIN 3 = 0V	1843 Series	•		14	17	1	14	17	mA
VCC Zener Voltage	ICC = 25mA		•	30	34	40	30	34	40	V

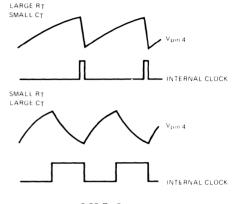
The
 denotes the specifications which apply over the full operating temperature range, all others apply at Ti = 25°C unless otherwise specified.

Note 5. These parameters, although guaranteed over the ten recommended conditions are not 100% tested in production. Note 5. Adjust V_C above start threshold before setting at required level. Note 7. Parameter measured at trip point of latch with V_{PIN 2} = 0V. Note 8. Gain defined as ΔV_{-}

 $riangle V_{\sf PIN}$ 1 A =

;0≤V_{PIN} 3 ≤0.8 **∆V**PIN 3

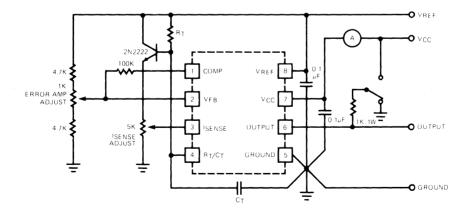



CURRENT MODE IP1842, IP2842, IP3842, IP1843, IP2843, IP3843

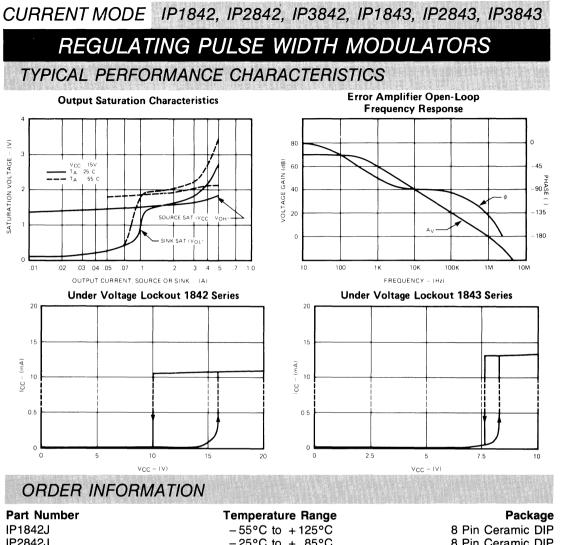
REGULATING PULSE WIDTH MODULATORS


APPLICATIONS INFORMATION

Oscillator Waveforms and Maximum Duty Cycle



Oscillator timing capacitor, C_T is charged by V_{REF} through R_T and discharged by an internal current source. During the discharge time, the internal clock signal blanks the output to the low state. Selection of R_T and C_T therefore determines both oscillator frequency and maximum duty cycle. Charge and discharge times are determined by the formulas:



Open-Loop Laboratory Test Fixture

High peak current associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5K potentiometer are used to sample the oscillator wave form and apply an adjustable ramp to pin 3

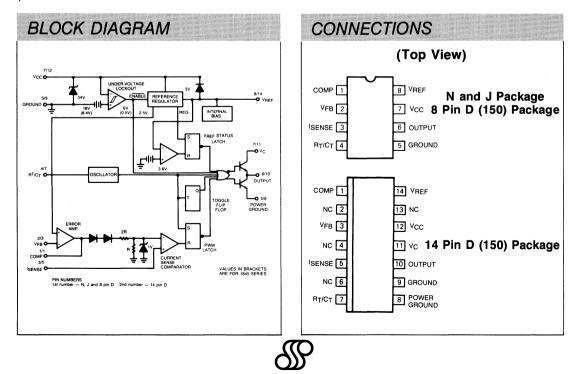
	1 3	5
IP1842J	– 55°C to + 125°C	8 Pin Ceramic DIP
IP2842J	-25°C to + 85°C	8 Pin Ceramic DIP
IP2842N	-25°C to + 85°C	8 Pin Plastic DIP
IP2842D	– 25°C to + 85°C	8 Pin Plastic (150) SOIC
IP2842D-14	-25°C to + 85°C	14 Pin Plastic (150)SOIC
IP3842J	0°C to + 70°C	8 Pin Ceramic DIP
IP3842N	0°C to + 70°C	8 Pin Plastic DIP
IP3842D	0°C to + 70°C	8 Pin Plastic (150) SOIC
IP3842D-14	0°C to + 70°C	14 Pin Plastic (150) SOIC
IP1843J	– 55°C to + 125°C	8 Pin Ceramic DIP
IP2843J	-25°C to + 85°C	8 Pin Ceramic DIP
IP2843N	-25°C to + 85°C	8 Pin Plastic DIP
IP2843D	-25°C to + 85°C	8 Pin Plastic (150) SOIC
IP2843D-14	-25°C to + 85°C	14 Pin Plastic (150) SOIC
IP3843J	0°C to + 70°C	8 Pin Ceramic DIP
IP3843N	0°C to + 70°C	8 Pin Plastic DIP
IP3843D	0°C to + 70°C	8 Pin Plastic (150) SOIC
IP3843D-14	0°C to + 70°C	14 Pin Plastic (150) SOIC
	$\overline{\mathbf{m}}$	

ວມ

Seagate Microelectronics Limited

REGULATING PULSE WIDTH MODULATORS

CURRENT MODE IP1844, IP2844, IP3844, IP1845, IP2845, IP3845


2

DESCRIPTION

The IP1844 and IP1845 series of switching regulator control circuits contain all the functions necessary to implement off-line, current mode switching regulators, using a minimum number of external parts. Functions included are voltage reference, error amplifier, current sense comparator, oscillator, totem-pole output driver and under-voltage lockout circuitry. In addition there is a toggle flip-flop which blanks the output on every second clock pulse, thereby ensuring that the duty cycle never exceeds 50%.

Although pin compatible with the UC1844 and UC1845 series, Seagate Microelectronics has incorporated several improvements in the IP1844 and IP1845 series allowing tighter and more complete specification of electrical performance.

- Guaranteed ±1% reference voltage tolerance
- Guaranteed ±10% frequency tolerance
- Low start-up current (< 500 µA)
- Under voltage lockout with hysteresis
- Output state completely defined for all supply and input conditions
- Interchangeable with UC1844 and UC1845 series for improved operation
- 500 kHz Oscillator operation 250 kHz Output operation

CURRENT MODE IP1844, IP2844, IP3844, IP1845, IP2845, IP3845

REGULATING PULSE WIDTH MODULATORS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $(+V_{CC})$	+ 30V	Power Dissipation at	
(low impedance source)		$T_A = +25^{\circ}C$ (Note 1)	1000mW
Supply Voltage (V _{CC})	Self limiting	N and J Packages	
(I _{CC} < 30mA)		T _C = +25°C (Note 2)	725mW
Output Current	+1A	D Packages	
Output Energy (capacitive load)	5u J	$T_{C} = +25^{\circ}C$ (Note 3)	2000mW
Analog Inputs (pins 2 and 3)	$-0.3V$ to $+V_{CC}$	N and J Packages	
Error Amp Output Sink Current	10mA	Storage Temperature Range	-65°C to +150°C
		Lead Temperature (Soldering, 10) seconds) + 300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS (Note 4)

Supply Voltage (+ V _{CC})	≼30V	Operating Ambient Temperature Range:	
Output Current	0 to <u>+</u> 200mA	IP1844, IP1845 - 55°C to + 12	
Analog Inputs (pins 2 and 3)	-0.3V to 3V	IP2844, IP2845 – 25°C to +8 IP3844, IP3845 0°C to +7	
Error Amp Output Sink Current	0 to 2mA		

Note 1. Derate at 10 mW/°C, for N and J packages, for ambient temperatures above +50°C. Note 2. Derate at 7.25 mW/°C for D packages, for ambient temperatures above +50°C. Note 3. Derate at 16 mW/°C for case temperatures above +25°C.

Note 4. Range over which the device is functional and parameter limits are guaranteed.

ELECTRICAL CHARACTERISTICS

V_{CC} = 15V,f = 52kHz, R_T = 10k, C_T = 3.3nF unless otherwise specified (Note 6)

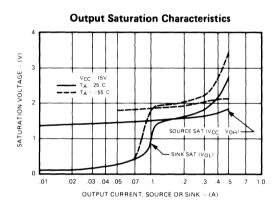
			IP1844/IP1845 IP2844/IP2845		IP3				
Parameter	rameter Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
Reference Section									
Output Voltage	IO = 1mA		4.95	5.00	5.05	4.90	5.00	5.10	V,
Input Regulation	VCC = 12 to 25V	•	1	6	20		6	20	mV
Output Regulation	IO = 1 to 20mA	•		6	25		6	25	mV
Temperature Stability	(Note 5)	•		0.2	0.4		0.2	0.4	mV/°C
Total Output Variation	Line, Load, Temp	•	4.90		5.10	4.82		5.18	V
Output Noise Voltage	f = 10Hz to 10kHz (Note 5)			50			50		μV
Long Term Stability	T _j = 125°C 1000 Hrs (Note 5)			5	25		5	25	mV
Output Short Circuit Current	VREF = 0	•	30	80	160	30	80	160	mA
Oscillator Section		h		I	<u></u>	1		4	
Frequency	Note 10		47	52	57	47	52	57	kHz
Voltage Stability	VCC = 12 to 25V	•		0.2	1		0.2	1	%
Temperature Stability	$\triangle T_A = Min \text{ to Max (Note 5)}$	•		5			5		%
Amplitude	VPIN 4 Peak to Peak	•		1.7			1.7		V
Discharge Current				8.3			8.3		mA
	$\triangle T_A = Min \text{ to } Max \text{ (Note 5)}$			8			8		%

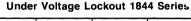
CURRENT MODE IP1844, IP2844, IP3844, IP1845, IP2845, IP3845

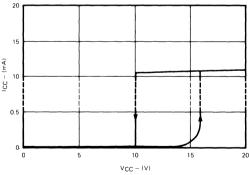
REGULATING PULSE WIDTH MODULATORS

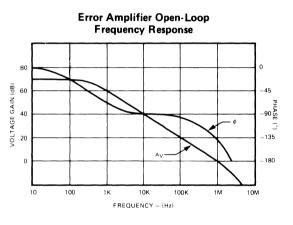
ELECTRICAL CHARACTERISTICS (CONTINUED)

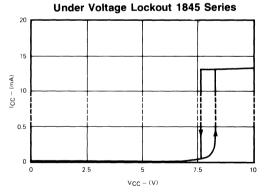
				844/IP1 844/IP2		IP3			
Parameter	Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
Error Amp Section			_		L	L	L		I
Input Voltage	VPIN 1 = 2.5V	٠	2.45	2.50	2.55	2.42	2.50	2.58	V
Input Bias Current		•		-0.3	-1		-0.3	-2	μA
Open Loop Voltage Gain	$V_O = 2 \text{ to } 4V$	٠	65	90		65	90		dB
Unity Gain Bandwith	(Note 5)	٠	0.7	1		0.7	1		MHz
Supply Voltage Rejection	VCC = 12 to 25V	٠	60	70		60	70		dB
Output Sink Current	VPIN 2= 2.7V, VPIN 1 = 1.1V	٠	2	6		2	6		mA
Output Source Current	VPIN 2 = 2.3V, VPIN 1 = 5.0V	٠	-0.5	-0.8		-0.5	-0.8		mA
VOUTHigh	VPIN 2 = $2.3V$, RL = $15k$	٠	5.0	6.0		5.0	6.0		V
VOUTLow	VPIN 2 = 2.7V, RL = 15k	٠		0.7	1.1		0.7	1.1	V
Current Sense Section									
Gain	(Notes 7 and 8)	٠	2.85	3	3.15	2.85	3	3.15	V/V
Maximum Input Signal	VPIN 1 = 5.0 (Note 7)	٠	0.9	1	1.1	0.9	1.0	1.1	V
Supply Voltage Rejection	VC = 12 to 25V	•	60	70		60	70		dB
Input Bias Current		٠		-2	-10		-2	-10	μA
Delay to Output		٠		150	300		150	300	ns
Output Section	· · · · · · · · · · · · · · · · · · ·			1	1	.	I	L	.
Output Low Level	ISINK = 20mA	٠		0.1	0.4		0.1	0.4	V
	ISINK = 200mA	٠		1.5	2.2		1.5	2.2	V
Output High Level	ISOURCE = 20mA	٠	13	13.5		13	13.5		V
	ISOURCE = 200mA	•	12	13.5		12	13.5		V
Rise Time	CL = 1nF	٠		50	150		50	150	ns
Fall Time	CL = 1nF	٠		50	150	,	50	150	ns
UVLO Saturation	$V_{CC} = 6V, I_L = 1mA$	٠		0.7	1.1		0.7	1.1	V
Under-voltage Lockout S	ection			1					1
Upper Threshold	1844 Series	٠	15	16	17	14.5	16	17.5	V
(VCC)	1845 Series	•	7.8	8.4	9	7.8	8.4	9	V
Lower Threshold	1844 Series	•	9	10	11	8.5	10	11.5	V
(Vcc)	1845 Series	٠	7	7.6	8.2	7	7.6	8.2	V
Total Standby Current			L						
Start-Up Current		•		0.3	0.5		0.3	0.5	mA
Operating Supply Current	VPIN 2 = 0V 1844 Series	٠		11	15		11	15	mA
	VPIN 3 = 0V 1845 Series	•		14	17		14	17	mA
VCC Zener Voltage	ICC = 25mA	•	30	34	40	30	34	40	V

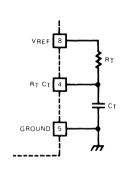

The • denotes the specifications which apply over the full operating temperature range, all others apply at Ti = 25°C unless otherwise specified. Note 5. These parameters, although guaranteed over the full operating temperature range, all others apply at $r_1 = 25$ C Note 5. Adjust V_{CC} above start threshold before setting at required level. Note 7. Parameter measured at trip point of latch with V_{PIN 2} = 0V.

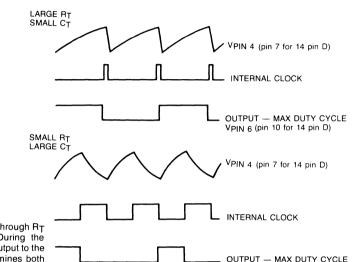

$$A = \frac{\triangle V P IN 1}{\triangle V P IN 3} ; 0 \le V P IN 3 \le 0.8$$




CURRENT MODE IP1844, IP2844, IP3844, IP1845, IP2845, IP3845 REGULATING PULSE WIDTH MODULATORS ELECTRICAL CHARACTERISTICS (CONTINUED) IP1844/IP1845 IP3844/IP3845 IP2844/IP2845 Parameter **Test Conditions** Min Тур Max Min Тур Max Units **PWM Section** Maximum Duty Cycle 47 48 50 % • 48 50 46 Minimum Duty Cycle 0 • 0 %


TYPICAL PERFORMANCE CHARACTERISTICS

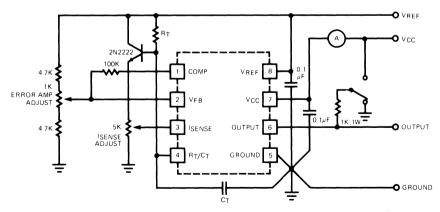




67

CURRENT MODE IP1844, IP2844, IP3844, IP1845, IP2845, IP3845 **REGULATING PULSE WIDTH MODULATORS** APPLICATIONS INFORMATION

Oscillator Waveforms and Maximum Duty Cycle


Oscillator timing capacitor, C_T is charged by V_{REF} through R_T and discharged by an internal current source. During the discharge time, the internal clock signal blanks the output to the low state. Selection of R_T and C_T therefore determines both oscillator frequency and maximum duty cycle. Charge and discharge times are determined by the formulas:

$$\begin{split} t_{C} &\approx 0.55 \; \text{R}_{T}\text{C}_{T} \\ t_{d} &\approx \text{R}_{T}\text{C}_{T} \; \text{ln} \left(\frac{0063 \; \text{R}_{T} \cdot 2.3}{.0063 \cdot 4} \right) \\ \text{Frequency, then is: } f = (t_{C} + t_{d})^{-1} \end{split}$$

For
$$R_T > 5k$$
, $f \approx \frac{1.8}{R_T C_T}$

VPIN 6 (pin 10 for 14 pin D)

Open-Loop Laboratory Test Fixture

High peak current associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5K potentiometer are used to sample the oscillator wave form and apply an adjustable ramp to pin 3.

CURRENT MODE IP1844, IP2844, IP3844, IP1845, IP2845, IP3845

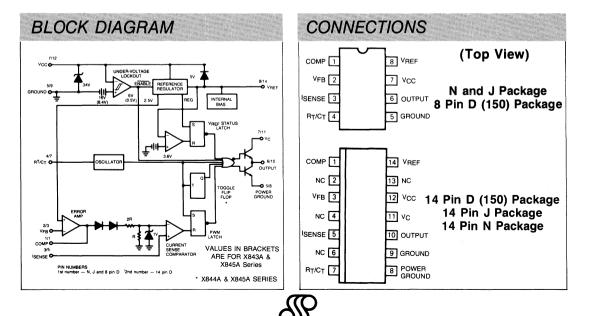
REGULATING PULSE WIDTH MODULATORS

ORDER INFORMATION

Part Number	Temperature Range	Package
IP1844J	– 55°C to + 125°C	8 Pin Ceramic DIP
IP2844J	−25°C to + 85°C	8 Pin Ceramic DIP
IP2844N	– 25°C to + 85°C	8 Pin Plastic DIP
IP2844D	– 25°C to + 85°C	8 Pin Plastic (150) SOIC
IP2844D-14	−25°C to + 85°C	14 Pin Plastic (150) SOIC
IP3844J	0°C to + 70°C	8 Pin Ceramic DIP
IP3844N	0°C to + 70°C	8 Pin Plastic DIP
IP3844D	0°C to + 70°C	8 Pin Plastic (150) SOIC
IP3844D-14	0°C to + 70°C	14 Pin (150) SOIC
IP1845J	– 55°C to + 125°C	8 Pin Ceramic DIP
IP2845J	−25°C to + 85°C	8 Pin Ceramic DIP
IP2845N	−25°C to + 85°C	8 Pin Plastic DIP
IP2845D	– 25°C to + 85°C	8 Pin Plastic (150) SOIC
IP2845D-14	– 25°C to + 85°C	14 Pin(150) SOIC
IP3845J	0°C to + 70°C	8 Pin Ceramic DIP
IP3845N	0°C⁄ to + 70°C	8 Pin Plastic DIP
IP3845D	0°C to + 70°C	8 Pin Plastic (150) SOIC
IP3845D-14	0°C to + 70°C	14 Pin (150) SOIC

REGULATING PULSE WIDTH MODULATORS

CURRENT MODE


IPX842A, IPX843A, IPX844A, IPX845A

DESCRIPTION

The IPX84XA series of switching regulator control circuits contains all the functions necessary to implement off-line, current mode switching regulators, using a minimum number of external parts. Functions included are voltage reference. error amplifier, current sense comparator, oscillator, totem-pole output driver and undervoltage lockout circuitry. In addition the IPX844A and IPX845A have a toggle flip-flop which blanks the output on every second clock pulse, thereby ensuring that the duty cycle never exceeds 50%. For applications requiring more flexible control all devices feature an on-chip trimmed oscillator discharge current, allowing accurate control to maximum-duty-cycle by selection of timing components. This can be beneficial even if using the IPX844A or IPX845A series, as it allows optimum safety margins to be designed into the application.

Although pin compatible with the 'non A' parts, these devices offer improved performance in several areas. They also offer tighter specification and improved performance over the UCX84X series, whilst retaining complete compatability.

- Guaranteed ±1% reference voltage tolerance
- Accurate oscillator discharge current
- Guaranteed ± 10% frequency tolerance
- Low start-up current (<500 µ A)
- Under voltage lockout with hysteresis
- Output state completely defined for all supply and input conditions
- Interchangeable with UC1842/43/44/45 series for improved operation
- 500 kHz Oscillator operation 250 kHz Output operation (IPX844A & IPX845A)

CURRENT MODE

IPX842A, IPX843A, IPX844A, IPX845A

REGULATING PULSE WIDTH MODULATORS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (+V _{CC})	+ 30V	Power Dissipation at	
(low impedance source)		$T_A = +25^{\circ}C$ (Note 1)	1000mW
Supply Voltage (V _{CC})	Self limiting	N and J Packages	
(I _{CC} < 30mA)	5	$T_{C_{1}} = +25^{\circ}C$ (Note 2)	725mW
Output Current	<u>+</u> 1A	D [°] Packages T _C = +25°C (Note 3)	2000mW
Output Energy (capacitive load)	- 5,u J	N and J Packages	20001111
Analog Inputs (pins 2 and 3)	$-0.3V$ to $+V_{CC}$	Storage Temperature Range	– 65°C to +150°C
Error Amp Output Sink Current	10mA	Lead Temperature (Soldering	10 seconds + 300°C

ering, Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS (Note 4)

≤30V

0 to 2mA

Supply Voltage (+V_{CC}) (Note 5) **Output Current**

Error Amp Output Sink Current

0 to +200mA -0.3V to 3V Analog Inputs (pins 2 and 3)

Operating Ambient	Temperature	Range:
IP184XA		– 55°C to + 125°C
IP284XA		-25°C to +85°C
IP384XA		0°C to +70°C

Note 1. Derate at 10 mW/°C, for N and J packages, for ambient temperatures above +50°C. Note 2. Derate at 7.25 mW/°C for D packages, for ambient temperatures above +50°C. Note 3. Derate at 16 mW/°C for case temperatures above +25°C.

Note 4. Range over which the device is functional and parameter limits are guaranteed. Note 5. Lower limit set by under voltage lockout specification

ELECTRICAL CHARACTERISTICS

V_{CC} = 15V,f = 52kHz, R_T = 10k, C_T = 3.3nF unless otherwise specified (Note 7)

			IP184XA IP284XA						
Parameter	Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
Reference Section			.	I	L				.
Output Voltage	IO = 1mA		4.95	5.00	5.05	4.90	5.00	5.10	V
Input Regulation	VCC = 12 to 25V	•		6	20		6	20	mV
Output Regulation	IO = 1 to 20mA	•		6	25		6	25	mV
Temperature Stability	(Note 6)	•		0.2	0.4		0.2	0.4	mV/°C
Total Output Variation	Line, Load, Temp	•	4.90		5.10	4.82	1	5.18	V
Output Noise Voltage	f = 10Hz to 10kHz (Note 6)			50			50		μV
Long Term Stability	T _j = 125°C 1000 Hrs (Note 6)			5	25		5	25	mV
Output Short Circuit Current	VREF = 0	•	30	80	160	30	80	160	mA
Oscillator Section	-			<u>. </u>	l	.		L	•
Frequency	Note 10		47	52	57	47	52	57	kHz
Voltage Stability	VCC = 12 to 25V	•		0.2	1		0.2	1	%
Temperature Stability	$\triangle T_A = Min \text{ to Max} (Note 6)$	•		5			5		%
Amplitude	VPIN 4 Peak to Peak	•		1.7			1.7		V
Discharge Current			7.8	8.3	8.8	7.8	8.3	8.8	mA
	$\triangle T_A = Min \text{ to } Max \text{ (Note 6)}$		7.0	<u> </u>	9.0	7.0		9.0	mA

CURRENT MODE

IPX842A, IPX843A, IPX844A, IPX845A

REGULATING PULSE WIDTH MODULATORS

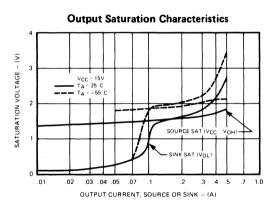
ELECTRICAL CHARACTERISTICS (CONTINUED)

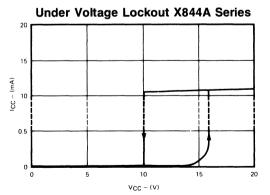
					IP184X/ IP284X/			IP384X/	٩	
Parameter	Test Condition	IS		Min	Тур	Max	Min	Тур	Max	Units
Error Amp Section				1	1	I				
Input Voltage	VPIN 1 = 2.5V	/	٠	2.45	2.50	2.55	2.42	2.50	2.58	V
Input Bias Current			٠	ļ	-0.3	-1		-0.3	-2	μA
Open Loop Voltage Gain	$V_O = 2 \text{ to } 4V$		٠	65	90		65	90		dB
Unity Gain Bandwith	(Note 6)		٠	0.7	1		0.7	1		MHz
Supply Voltage Rejection	VCC = 12 to 25	5V	٠	60	70		60	70		dB
Output Sink Current	VPIN 2= 2.7V,	VPIN 1 = $1.1V$	٠	2	6		2	6		mA
Output Source Current	VPIN 2 = 2.3V	, VPIN 1 = 5.0V	٠	-0.5	-0.8		-0.5	-0.8		mA
VOUTHigh (See Note 11)	VPIN 2 = 2.3V	′, RL = 15k	٠	5.0	6.0		5.0	6.0		V
VOUTLow	VPIN 2 = 2.7V	′, RL = 15k	٠		0.7	1.1		0.7	1.1	V
Current Sense Section										
Gain	(Notes 8 and 9))	٠	2.85	3	3.15	2.85	3	3.15	V/V
Maximum Input Signal	VPIN 1 = 5.0 (Note 8)	٠	0.9	1	1.1	0.9	1.0	1.1	V
Supply Voltage Rejection	VC = 12 to 25	V	٠	60	70		60	70		dB
Input Bias Current			٠		-2	-10		-2	-10	μA
Delay to Output			٠		150	300		150	300	ns
Output Section		11 main (n			L					
Output Low Level	ISINK = 20mA		٠		0.1	0.4		0.1	0.4	V
	ISINK = 200m	A	٠		1.5	2.2		1.5	2.2	V
Output High Level	ISOURCE = 2	0mA	٠	13	13.5		13	13.5		V
	ISOURCE = 2	00mA	٠	12	13.5		12	13.5		V
Rise Time	$C_L = 1nF$		٠		50	150		50	150	ns
Fall Time	$C_L = 1nF$		٠		50	150		50	150	ns
UVLO Saturation	VCC = 6V, IL	= 1mA	٠		0.7	1.1		0.7	1.1	V
Under-voltage Lockout S	ection			_	I		.	l	1	
Upper Threshold	IPX842A/IPX84	4A Series	٠	15	16	17	14.5	16	17.5	V
(VCC)	IPX843A/IPX84	5A Series	٠	7.8	8.4	9	7.8	8.4	9	V
Lower Threshold	IPX842A/IPX84	4A Series	٠	9	10	11	8.5	10	11.5	V
(VCC)	IPX843A/IPX84	5A Series	٠	7	7.6	8.2	7	7.6	8.2	V
Total Standby Current				4			.		J	.
Start-Up Current			٠		0.3	0.5		0.3	0.5	mA
Operating Supply Current	VPIN 2 = 0V	42/44 Series	٠		11	15		11	15	mA
	VPIN 3 = 0V	43/45 Series	٠		14	17	[14	17	mA
VCC Zener Voltage	ICC = 25mA	L	٠	30	34	40	30	34	40	V

The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified. Note 6. These parameters, although guaranteed over the recommended conditions, are not 100% tested in production. Note 7. Adjust V_{CC} above start threshold before setting at required level. Note 8. Parameter measured at trip point of latch with V_{PIN 2} = 0V.

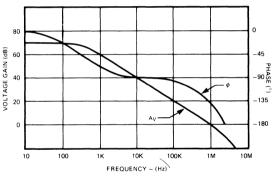
 $A = \frac{\triangle V_{\text{PIN 1}}}{\triangle V_{\text{PIN 3}}} ; 0 \leq V_{\text{PIN 3}} \leq 0.8$

CURRENT MODE

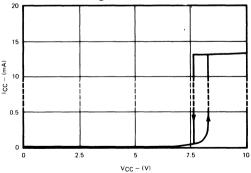

IPX842A, IPX843A, IPX844A, IPX845A


REGULATING PULSE WIDTH MODULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)


			IP184XA IP284XA						
Parameter	neter Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
PWM Section			<u> </u>					1	I
Maximum Duty Cycle	IPX844A/IPX845A Series	•	47	48	50	46	48	50	%
Maximum Duty Cycle	IPX842A/IPX843A Series	•	95	97	100	95	97	100	%
Minimum Duty Cycle		•			0			0	%

TYPICAL PERFORMANCE CHARACTERISTICS



Error Amplifier Open-Loop Frequency Response

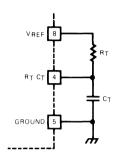
Under Voltage Lockout X845A Series

CURRENT MODE IPX842A, IPX843A, IPX844A, IPX845A **REGULATING PULSE WIDTH MODULATORS** APPLICATIONS INFORMATION Oscillator Waveforms and Maximum Duty Cycle

VPIN 4 (pin 7 for 14 pin D)

OUTPUT — MAX DUTY CYCLE VPIN 6 (pin 10 for 14 pin D)

VPIN 4 (pin 7 for 14 pin D)

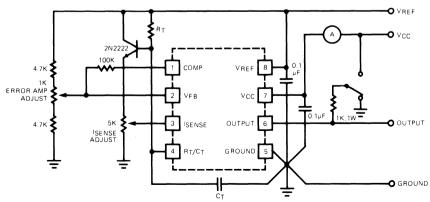

OUTPUT — MAX DUTY CYCLE V PIN 6 (pin 10 for 14 pin D)

INTERNAL CLOCK

INTERNAL CLOCK

LARGE RT SMALL CT

SMALL RT



Oscillator timing capacitor, C_T is charged by V_{REF} through R_T and discharged by an internal current source. During the discharge time, the internal clock signal blanks the output to the low state. Selection of R_T and C_T therefore determines both oscillator frequency and maximum duty cycle. Charge and discharge times are determined by the formulas.

$$\begin{split} t_{C} &\approx 0.55 \; \text{R}_{T}\text{C}_{T} \\ t_{d} &\approx \text{R}_{T}\text{C}_{T} \; \text{ln} \left(\frac{0063 \; \text{R}_{T} + 2.3}{.0063 \cdot 4} \right) \\ \text{Frequency, then is: } f = (t_{C} + t_{d})^{-1} \end{split}$$

High peak current associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5K potentiometer are used to sample the oscillator wave form and apply an adjustable ramp to pin 3.

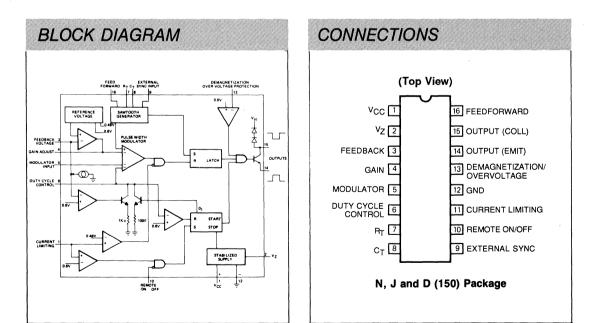
IPX842A, IPX843A, IPX844A, IPX845A

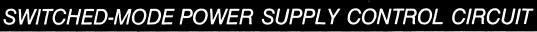
REGULATING PULSE WIDTH MODULATORS

ORDER INFORMATION

Part Number	Temperature Range	Package
IP1842AJ	- 55°C to + 125°C	8 Pin Ceramic DIP
IP2842AJ	- 25°C to + 85°C	8 Pin Ceramic DIP
IP2842AN	– 25°C to + 85°C	8 Pin Plastic DIP
IP2842AD	– 25°C to + 85°C	8 Pin Plastic (150) SOIC
IP2842AD-14	- 25°C to + 85°C	14 Pin Plastic (150) SOIC
IP3842AJ	0°C to + 70°C	8 Pin Ceramic DIP
IP3842AN	0°C to + 70°C	8 Pin Plastic DIP
IP3842AD	0°C to + 70°C	8 Pin Plastic (150) SOIC
IP3842AD-14	0°C to + 70°C	14 Pin (150) SOIC
IP1843AJ	– 55°C to + 125°C	8 Pin Ceramic DIP
IP2843AJ	- 25°C to + 85°C	8 Pin Ceramic DIP
IP2843AN	-25°C to + 85°C	8 Pin Plastic DIP
IP2843AD	– 25°C to + 85°C	8 Pin Plastic (150) SOIC
IP2843AD-14	-25°C to + 85°C	14 Pin(150) SOIC
IP3843AJ	0°C to + 70°C	8 Pin Ceramic DIP
IP3843AN	0°C to + 70°C	8 Pin Plastic DIP
IP3843AD	0°C to + 70°C	8 Pin Plastic (150) SOIC
IP3843AD-14	0°C to + 70°C	14 Pin (150) SOIC
IP1844AJ	– 55°C to + 125°C	8 Pin Ceramic DIP
IP2844AJ	– 25°C to + 85°C	8 Pin Ceramic DIP
IP2844AN	- 25°C to + 85°C	8 Pin Plastic DIP
IP2844AD	- 25°C to + 85°C	8 Pin Plastic (150) SOIC
IP2844AD-14	– 25°C to + 85°C	14 Pin Plastic (150) SOIC
IP3844AJ	0°C to + 70°C	8 Pin Ceramic DIP
IP3844AN	0°C to + 70°C	8 Pin Plastic DIP
IP3844AD	0°C to + 70°C	8 Pin Plastic (150) SOIC
IP3844AD-14	0°C to + 70°C	14 Pin (150) SOIC
IP1845AJ	– 55°C to + 125°C	8 Pin Ceramic DIP
IP2845AJ	– 25°C to + 85°C	8 Pin Ceramic DIP
IP2845AN	-25°C to + 85°C	8 Pin Plastic DIP
IP2845AD	– 25°C to + 85°C	8 Pin Plastic (150) SOIC
IP2845AD-14	– 25°C to + 85°C	14 Pin(150) SOIC
IP3845AJ	0°C to + 70°C	8 Pin Ceramic DIP
IP3845AN	0°C to + 70°C	8 Pin Plastic DIP
IP3845AD	0°C to + 70°C	8 Pin Plastic (150) SOIC
IP3845AD-14	0°C to + 70°C	14 Pin (150) SOIC

Seagate Microelectronics Limited SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT


IP5560, IP5560C


DESCRIPTION

The IP5560 is a control circuit for use in switched mode power supplies. This single monolithic chip incorporates all the control and supervisory (protection) functions required in switched mode power supplies, including an internal temperature compensated reference source, internal reference, sawtooth generator, pulse width modulator, output stage and various protection circuits.

FEATURES

- Stabilized power supply
- Temperature compensated reference source
- Sawtooth generator
- Pulse width modulator
- Remote on/off switching
- Current limiting
- Low supply voltage protection
- Loop fault protection
- Demagnetization/overvoltage protection
- Maximum duty cycle clamp
- Feed forward control
- External synchronization

ABSOLUTE MAXIMUM RATINGS

Supply		Operating Temperature (Ambi	ient)
Voltage Sourced	18V	IP5560	– 55°C to + 125°C
Current Sourced	30mA	IP5560C	-0°C to +70°C
Output Transistor			
Output Current	40mA	Storage Temperature Range	-65°C to +150°C
Collector Voltage (Pin 15)	18V	• • •	
Max. Emitter Voltage (Pin 14)	5V	Operating Junction Temperat	tu re Range -55°c to +150°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS

V_{CC} = 12V unless otherwise specified

				IP5560			IP5560C		
Parameter	Test Conditions		Min	Тур	Max	Min	Тур	Max	Unit
Reference Sections									
Internal Reference Voltage (Vref)			3.69	3.72	3.81	3.57	3.72	3.95	v
		•	3.65		3.85	3.53		4.00	v
Temperature Coefficient of V _{ref}				±100			±100		ppm/°C
Internal Reference (Vz)	I _L = -7mA		7.8	8.4	8.8	7.8	8.4	8.8	v
Temperature Coefficient of Vz		\square		±200			±200		ppm/°C
Ociliator Section									
Frequency Range		•	50		100k	50		100k	Hz
Initial Accuracy Oscillator	R=5kΩ			5			5		%
Duty Cycle range	f _o = 20 KHz		0-90	0-98		0-90	0-98		%
Modulator									
Modulator Input Current	Voltage at Pin 5 = 2V	•		-0.2	-20		-0.2	-20	μA
Supervisory Functions			•		L			4	A
Pin 6, Input Current	At 2V	•		-0.2	-20		-0.2	-20	μA
Pin 6, Duty Cycle Limit Control	(For 50% Max. Duty Cycle)		40	50	60	40	50	60	% Dut
	15 kHz to 50 kHz, $V_6 = 0.4V_z$					1			Cycle
Pin 1, Low Supply Voltage			8	9.0	10.5	8	9.0	10.5	V
Protection Thresholds									
Pin 3, Feedback Loop Protection		T	400	600	720	400	600	720	mV
Trip Thresholds									
Pin 3, Pull Up Current	At 2V	•	-7	-15	-35	-7	-15	-35	μΑ
Pin 13, Demagnetization/									
Over-voltage Protection Threshold			470	600	720	470	600	720	mV
Pin 13, Input Current	At 0.25V			-0.6	-10		-0.6	-10	μA
		•			-20			-20	μA
Pin 16, Feed Forward	Voltage at Pin $16 = 2V_7$	+	30	40	50	30	40	50	%Orig
Duty Cycle Control									Duty
	4+401/11 401/					 		-	Cycle
Pin 16, Feed Forward Input Current	At 16V, V _{CC} = 18V		L	0.2	5		0.2	5	μΑ

IP5560, IP5560C

IP5560, IP5560C

SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT

ELECTRICAL CHARACTERISTICS (CONTINUED)

				IP5560					
Parameter	Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
External Synchronization									
Pin 9 Off			0		0.8	0		0.8	v
Pin 9 On			2		Vz	2		Vz	V
Pin 9, Sink Current	Voltage at Pin 9 = 0V	•		-85	-125		-85	-125	μA
Remote On/Off									
Pin 10 Off			0		0.8	0		0.8	V
Pin 10 On			2		Vz	2		Vz	V
Pin 10 Sink Current	Voltage at Pin 9 = 0V	•		-85	-125		-85	-125	μA
Current Limiting	·····			1	••••••				
Pin 11, I _{IN}	Voltage at Pin 11 = 250mV			-2	-10		-2	-10	μA
Single Pulse Inhibit Delay	Inhibit Delay Time for 20%			0.7	0.8		0.7	0.8	μs
	Overdrive at 30mA IOUT								
Trip Levels: Shut Down, Slow Start			560	600	700	560	600	700	mV
Trip Levels: Current Limit			400	480	500	400	480	500	mV
Error Amplifier									
Output Voltage Swing (VOH)			6.2		9.5	6.2		9.5	V
Output Voltage Swing (VOL)					0.7			0.7	V
Open Loop Gain			54	60		54	60		dB
Feedback Resistor			10			10			kΩ
Small Signal Bandwidth				3			3		MHz
Output Stage									
V _{CE} (SAT)	I _C = 40mA				0.5			0.5	V
Output Current	(Pin 15)				40			40	mA
Max Emitter Voltage	(Pin 14)		5			5			V
Supply Voltage/Current							A		
lcc	$I_Z = 0$, Voltage Fed, $V_6 = .5V$,				10			10	mA
	$R_7 = 25k\Omega$	•			15			15	mA
V _{CC}	ICC = 10mA, Current Feed	1	20		24	19		24	V
	I _{CC} = 30mA, Current Feed	1	20		30	20		30	V

The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified.

IP5560, IP5560C SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT TYPICAL PERFORMANCE CHARACTERISTICS

ERROR AMPLIFIER

60

50

40

(BD) (dB) 30

VOLTAGE/CURRENT FED

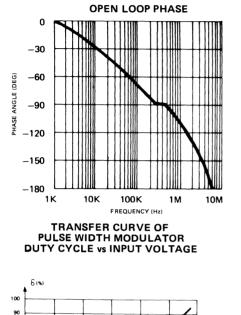
SUPPLY CHARACTERISTICS

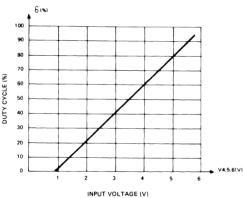
20

v_{cc}

30

20


10


0

0

10

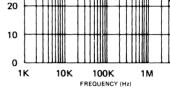
2

POWER DERATING CURVE

1.0

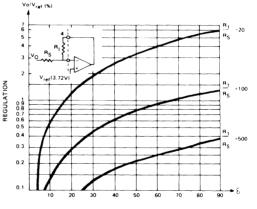
.50

.24

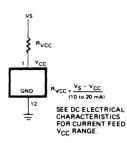

-60 C

25C 70C 125C

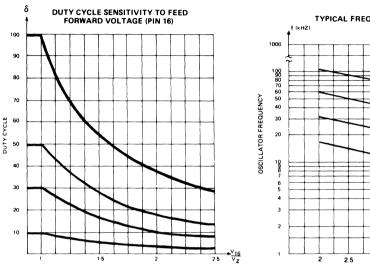
OPERATING CURVE

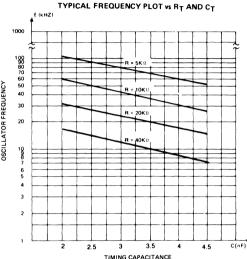

 $Pd = V_{CC} I_{CC} + (V_{CC} - V_z)I_Z + ((V_{15} - V_{14}) I_{15} \times DUTY CYCLE)$

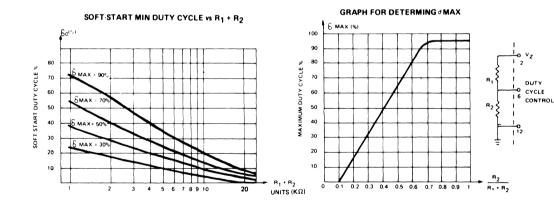
W) XAM by


OPEN LOOP GAIN

REGULATION vs ERROR AMP CLOSED LOOP GAIN


ERROR AMP CLOSED LOOP GAIN


CURRENT FED DROPPING RESISTOR



10M

IP5560, IP5560C SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED) ERROR AMPLIFIER (Cont.)

ORDER INFORMATION

Part Number

IP5560J IP5560CD IP5560CJ IP5560CN

Temperature Range

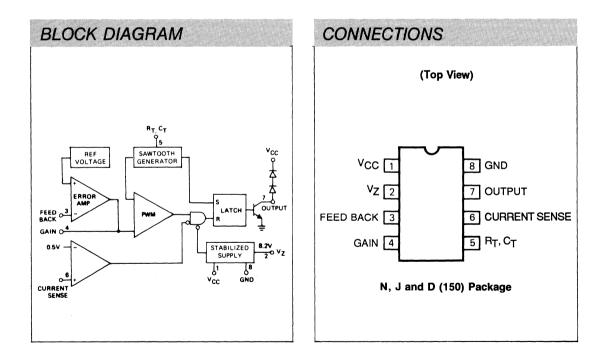
-55°C to +125°C -0°C to + 70°C -0°C to + 70°C -0°C to + 70°C -0°C to + 70°C

Package

16 Pin Ceramic DIP 16 Pin Plastic (150) SOIC 16 Pin Ceramic DIP 16 Pin Plastic DIP

Seagate Microelectronics Limited

SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT


IP5561, IP5561C

DESCRIPTION

The IP5561 is a control circuit for use in switched mode power supplies. This single monolithic chip incorporates the control and supervisory (protection) functions required in switched mode power supplies, including an internal temperature compensated reference source, internal zener reference, sawtooth generator, pulse width modulator, output stage and cycle by cycle current limit.

FEATURES

- Stabilized power supply
- Temperature compensated reference source.
- Sawtooth generator
- Pulse width modulator
- 8 Pin mini-DIP
- Current limiting

IP5561, IP5561C

SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT

ABSOLUTE MAXIMUM RATINGS

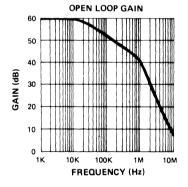
Supply		Operating Temperature (Ambier	nt)
Voltage Sourced	18V	IP5561	_ 55°C to + 125°C
Current Sourced	30mA	IP5561C	0°C to +70°C
Output transistor		Storage Temperature Range	– 65°C to +150°C
Output Current	40mA	Operating Junction	
Collector Voltage (Pin 7)	18V	Temperature Range	- 55°C to + 150°C
Abaaluta marine neticas and the second	a brain and a brain and a	and also added and a second of the second second	1 T I I I I I I I I I I I I I I I I I I I

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

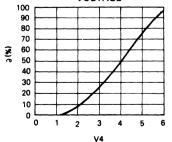
ELECTRICAL CHARACTERISTICS

V_{CC} = 12V unless otherwise specified.

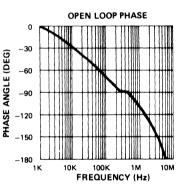
	I				IP5561			Γ		
Parameter	Test Conditions			Min	Тур	Max	Min	Тур	Max	Units
Reference Sections										
Internal Reference Voltage(VREF)				3.69	3.75	3.84	3.57	3.75	3.96	V
			•	3.65		3.88	3.55		3.98	V
Temperature Coeffecient of VREF					±100			±100		ppm/°C
Internal Zener Reference (Vz)	ار = -7 mA			7.8	8.2	8.8	7.8	8.2	8.8	V
Temperature Coefficient of Vz					±200			±200		ppm/°C
Oscillator Section										
Frequency Range			•	50		100k	50		100k	Hz
Initial Accuracy Oscillator	f _o = 20kHz			1	12			12		%
Duty Cycle Range	-			0-90	0-98		0-90	0-98		%
Current Limiting										-
lin .	Pin 6 = 250 mV				-2	-10		-2	-10	μA
			•			-20			-20	μΑ
Single Pulse Inhibit Delay	Inhibit Delay Time	IOUT = 20mA			0.88	1.10		0.88	1.10	μs
	for 20% Overdrive at	IOUT = 40mA			0.7	0.8		0.7	0.8	μs
Current Limit Trip Level		1-1		.400	.500	.600	.400	.500	.600	V
Error Amplifier										
Output Voltage Swing (VOH)				6.2			6.2			V
Output Voltage Swing (VOL)						0.7			0.7	V
Open Loop Gain					60			60		dB
Feedback Resistor				10k			10k			Ω
Small Signal Bandwidth					3			3		MHz
Output Stage										
VCE (SAT)	I _C = 20 mA		•		T	0.4			0.4	V
Output Current	1		•	20			20			mA

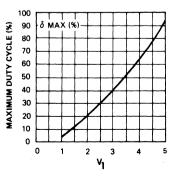

SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT

ELECTRICAL CHARACTERISTICS (CONTINUED)

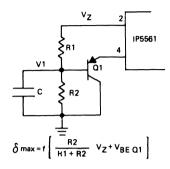

			IP5561						
Parameter	Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
Supply Voltage/Current									
cc	I _z = 0 Voltage Fed				10			10	mA
		•			13			13	mA
V _{CC}	I _{CC} = 10mA, Current Fed		20	21.0	22	19.0	21.0	24.0	V
	I _{CC} = 30mA, Current Fed		20.0	1	30.0	20.0		30.0	V
Low Supply Protection									
Pin 1 Threshold			8	9	10.5	8	9	10.5	V

The \cdot denotes the specifications which apply over the full operating temperature range, all others apply at T_j = 25°C unless otherwise specified.

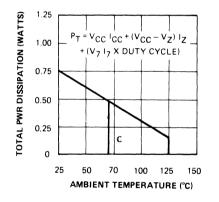

TYPICAL PERFORMANCE CHARACTERISTICS

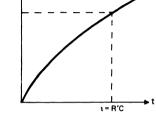


ERROR AMPLIFIER

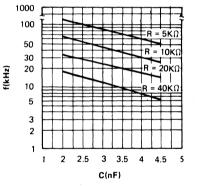


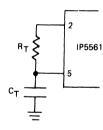
MAXIMUM DUTY CYCLE VS BASE VOLTAGE ON Q1




SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

START-UP CIRCUIT (OPTIONAL)


POWER DERATING CURVE



SLOW START VOLTAGE

TYPICAL FREQUENCY PLOT VS R_T AND C_T

 $\sqrt{4}$

IP5561, IP5561C

ORDER INFORMATION

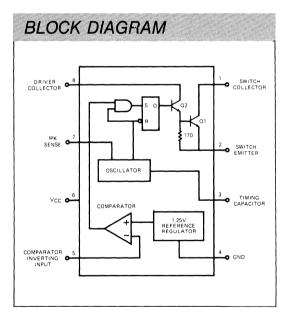
Part Number

Temperature Range

+	125°Č
	70°C
+	70°C
+	70°C
	+ +

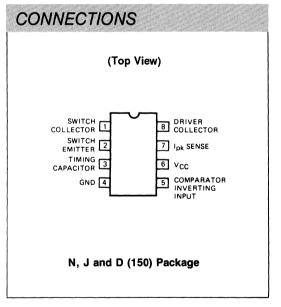
Package

8 Pin Ceramic DIP 8 Pin Ceramic DIP 8 Pin Plastic DIP 8 Pin Plastic (150) SOIC


Seagate Microelectronics Limited

DC-DC CONVERTER CONTROL CIRCUITS

IP35063, IP33063, IP34063


DESCRIPTION

The IP34063 series of control circuits contains all the functions required to implement DC-DC converters. Included are internal voltage reference, comparator, controlled duty cycle oscillator with current limit circuit, driver, and high current output switch. This series was specifically designed to be incorporated in Step-Down (Buck) and Step-Up (Boost) applications with a minimum number of external components.

FEATURES

- Operation from 2.5 to 40V input
- Low standby current
- Current limiting
- Output switch current of 1.5A
- Output voltage adjustable from 1.25 to 40V
- Operating frequency from 100Hz to 100kHz
- Direct replacement for MC34063/ MC34063A series

DC-DC CONVERTER CONTROL CIRCUITS

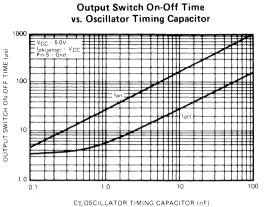
ABSOLUTE MAXIMUM RATINGS

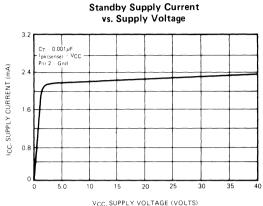
Power Supply Voltage	+ 40V	Power Dissipation at $T_A = +2$	
Comparator Input Voltage Range -0.3 to	+ 40V	Ceramic Package Plastic Package	1.25W 1.0W
Switch Collector Voltage	40V	Operating Junction Temperatu	
Switch Emitter Voltage	40V	Ceramic Package Plastic Package	+ 150°C + 125°C
Switch Collector to Emitter Voltage	40V	Operating Ambient Temperature	re Range
Driver Collector Voltage	40V	IP35063 IP33063	−55°C to +125°C −40°C to +85°C
Switch Current	1.5A	IP34063	0°C to +70°C
		Storage Temperature Range	– 65°C to +150°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

Note 1. Derate at 10mW/°C for ambient temperatures above +25°C.

ELECTRICAL CHARACTERISTICS

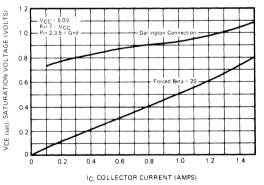

(V_{CC} = 5.0V, unless otherwise specified)


Test Conditions		Min	Тур	Max	Units
5.0V ≤ V _{CC} ≤ 40V		20	35	50	μA
5.0V ≤ V _{CC} ≤ 40V		150	200	250	μΑ
			0.5		Vpp
Ipk (sense) = VCC			6.0		
Ichg = Idischg		250	300	350	mV
I _{SW} = 1.0A	•		1.0	1.3	V
$I_{SW} = 1.0A; I_{C} (Driver) = 50mA, (Forced B = 20)$	•		0.45	0.7	V
ISW = 1.0A; VCE = 5.0V		35	120		
V _{CE} = 40V			10		nA
	•	1.18	1.25	1.32	V
$3.0V \le V_{CC} \le 40V$	•		0.04	0.2	mV/V
V _{IN} = 0V	•		40	400	nA
$5.0V \le V_{CC} \le 40V, C_{T} = 0.001 \mu\text{F}$					
I_{pk} (Sense) = V_{CC} , V_{PIN} 5 > V_{th}	•		2.4	3.5	mA
	$5.0V \le V_{CC} \le 40V$ $5.0V \le V_{CC} \le 40V$ $I_{pk} (sense) = V_{CC}$ $I_{chg} = I_{dischg}$ $I_{SW} = 1.0A; I_{C} (Driver) = 50mA, (Forced B = 20)$ $I_{SW} = 1.0A; V_{CE} = 5.0V$ $V_{CE} = 40V$ $3.0V \le V_{CC} \le 40V$ $V_{IN} = 0V$ $5.0V \le V_{CC} \le 40V, C_{T} = 0.001 \mu\text{F}$		$\begin{array}{c c c c c c c c } 5.0V \leq V_{CC} \leq 40V & 20 \\ \hline 5.0V \leq V_{CC} \leq 40V & 150 \\ \hline \\ I_{pk} (sense) = V_{CC} & \\ \hline \\ I_{chg} = I_{dischg} & 250 \\ \hline \\ I_{SW} = 1.0A & 250 \\ \hline \\ I_{SW} = 1.0A; I_{C} (Driver) = 50mA, (Forced B = 20) & \\ \hline \\ I_{SW} = 1.0A; V_{CE} = 5.0V & 35 \\ \hline \\ V_{CE} = 40V & & \\ \hline \\ \hline \\ V_{CE} = 40V & & \\ \hline \\ \hline \\ S.0V \leq V_{CC} \leq 40V, C_{T} = 0.001 \mu F \\ I_{pk} (Sense) = V_{CC}, V \text{ PIN 5 > Vth} & \\ \hline \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified.

IP35063, IP33063, IP34063 DC-DC CONVERTER CONTROL CIRCUITS TYPICAL PERFORMANCE CHARACTERISTICS

2


vs. Emitter Current VCE (sat), SATURATION VOLTAGE (VOLTS) = 5 0V 1.7.8 = VCC 3.5 = Gnd 1.5 1.4 1.3 1.2 1.1 1.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0

IE, EMITTER CURRENT (AMPS)

Emitter-Follower Configuration

Output Switch Saturation Voltage

IP35063, IP33063, IP34063

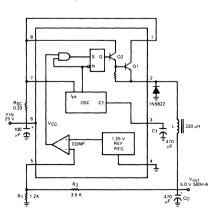
DC-DC CONVERTER CONTROL CIRCUITS

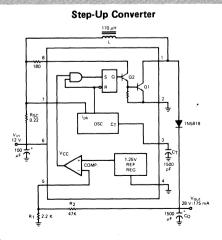
DESIGN FORMULA TABLE

Calculation	Step-down	Step-up
^t ON	V _{OUT} +V _F	VOUT + VF - VIN (MIN)
^t OFF	VIN(MAX) - VSAT - VOUT	VIN(MIN) - VSAT
(ton + toff)max	1 ÎMIN	_ <u>1_</u> fmin
с _т	4 X 10 ⁻⁵ t _{ON}	4 X 10 ⁻⁵ tON
lpk(switch)	^{2 I} OUT(MAX)	^{2 I} OUT(MAX) ^t ON + tOFF tOFF
R _{SC}	0.33/lpk(switch)	0.33/Ipk(switch)
I	VIN(MAX) - VSAT - VOUT	VIN(MIN) - VSAT
L(MIN)	lpk(switch)	^I pk(switch) ^t ON(MAX)
Co	Ipk(switch) (tON + tOFF)	LOUT TON
-	8 V _{ripple} (p-p)	V _{ripple}

V_{SAT} = Saturation voltage of the output switch.

 V_F = Forward voltage drop of the ringback rectifier.

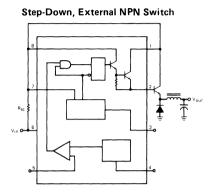

The following power supply characteristics must be chosen-

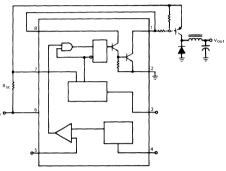

V_{IN} — Nominal input voltage. If this voltage is not constant, then use V_{IN(MAX)} for step-down and V_{IN(MIN)} for step-up converter.

VOUT		Desired output voltage, V _{OUT} = 1.25 $\left(1 + \frac{R_2}{R_2}\right)$.	
юл		Desired output current.	
^f MIN		Minimum desired output switching frequency at the selected values for V $_{ m IN}$ and ${ m I}_{ m O}$	
V _{ripple(p-p)}			
		to the capacitor's equivalent series resistance and board layout. The ripple voltage should be kept to a low	
		value since it will directly affect the line and load reculation.	

APPLICATIONS INFORMATION

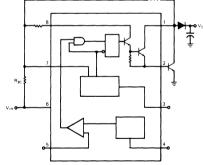
Step-Down Converter





IP35063, IP33063, IP34063 DC-DC CONVERTER CONTROL CIRCUITS APPLICATIONS INFORMATION (CONTINUED)

External Current Boost Connections For IC Peak Greater Than 1.5 A



Step-Down, External PNP Saturated Switch

Step-Up, External NPN Saturated Switch

Step-Up, External NPN Switch

ORDER INFORMATION

Part Number

IP35063J IP33063D IP33063J IP34063D IP34063D IP34063J IP34063N

Temperature Range

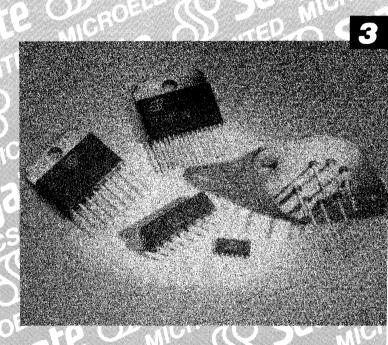
Rsc

			-
–55°C	to	+ '	125°C
– 40°C	to	+	85°C
– 40°C	to	+	85°C
– 40°C	to	+	85°C
0°C	to	+	70°C
0°C	to	+	70°C
0°C	to	+	70°C

Package 8 Pin Ceramic DIP 8 Pin Plastic (150) SOIC 8 Pin Ceramic DIP 8 Pin Plastic DIP 8 Pin Plastic (150) SOIC 8 Pin Ceramic DIP 8 Pin Plastic DIP

R-0 FOR CONSTANT Vin

2



 \mathbb{S}

MOTOR CONTROLLERS/DRIVERS

Ś

Te

X

 Ye

Seagate Microelectronics Limited PRELIMINARY

5-AMP STEPPER MOTOR DRIVER

IP1D03, IP2D03, IP3D03

DESCRIPTION

The IP3D03W is a high voltage, high current monolithic integrated H-bridge driver designed to drive DC and stepper motors with up to 5 amps continuous current. TTL compatible control is provided by two INPUT pins to control the respective phase of each push-pull channel and an ENABLE pin for four-guadrant chopping applications. The entire circuit operates from a single supply with a maximum of 50 volts. Logic pins can be switched from -0.3 volts to supply making this device ideal for military applications. The IP1D03K is packaged in an 8 pin TO-3 for applications which require a hermetic power package. Other features include an external current sense pin, thermal shutdown protection with hysteresis, input hysteresis and internal crossover-current protection to avoid destructive current spikes through the device.

FEATURES

- 5A maximum continuous output current
- 50V maximum supply voltage
- External current sense capability
- Internal crossover-current protection
- Thermal shutdown protection with hysteresis
- TTL compatible inputs with hysteresis
- Power SIP package (Future)
- Hermetic 8 pin TO-3 package
- Parasitic protection from inductive transients

		ENABLE		
$\left(\circ \right)$	IP3D03W (FUTURE)	°	QSUPPLY	
	1—SUPPLY			
	2—INPUT 1 3—OUTPUT 1		トノ	╺╲╹┼╫
	4—SENSE			
	5-OUTPUT 2 6-INPUT 2	OU		JT 2
12345678 Power SIP	7—ENABLE		┲╪╗	
	8—GROUND	GROUND		
	IP1D03K	h.	SENSE	
400^{5}	1—SENSE 2—OUTPUT 1	TOUTU	TADIE	22.93
	3—INPUT 1 4—ENABLE	TRUTH	IABLE	
2 ⁰ 07	5—GROUND/CASE	INPUT	ENABLE	OUTPUT
$\left[0 \right]_{1}^{0} \left[0 \right]_{8}$	6—SUPPLY 7—INPUT 2	x	L	HIGH Z
$\lambda \circ /$	8-OUTPUT 2	L	н	SINK
(\cdot)	TO-3	н	н	SOURCE

5-AMP STEPPER MOTOR DRIVER

IP1D03, IP2D03, IP3D03

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_S	50V	Operating Junction Temperature, T_{J}	J 150°C
Input Voltage, ∨ _{IN}	-0.3 to +50V	Storage Temperature, T _{STG} –	-60°C to 150°C
Output Voltage, V _O	(Note 1)	Package Thermal Resistance	
Output Current, IO	5A	Power SIP, R _{JC} R _{JA}	1.5°C/W 25°C/W
		TO-3 RJC	1.0°C/W

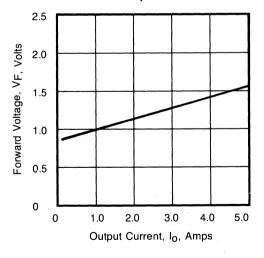
Note 1: Voltage transients above supply must be limited by external suppression diodes. See application information for more details.

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS

Unless otherwise noted, these specifications apply over the full operating ambient temperature range. Typical values are given for $V_S = 28V$ and $T_A = 25$ °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
v _s	Supply Voltage		4.5		48	V
IS	Supply Current	EN = H, IN = H		19		mA
		EN = H, IN = L		37		mA
		EN = L		9		mA
VIL	Input Low Voltage		-0.3		0.8	V
VIH	Input High Voltage		2.4		vs	v
۱ _۱ ∟	Input Low Current	V _{IL} = 0V		- 50		uA
ЧΗ	Input High Current	V _{IH} = 5V		10		uA
U _{th}	Upper Threshold			2.10		v
L _{th}	Lower Threshold			1.50		v
V _{CE} satH	Source Saturation Voltage	$1_0 = -0.5A$		1.45		v
		$l_0 = -5.0A$		1.90		v
V _{CE} satL	Sink Saturation Voltage	l _o = 0.5A		0.75		V
		l ₀ = 5.0A		1.1		V
V _{OD}	Output Voltage Differential	l ₀ = 0.5A		0	25	mV
		l ₀ = 5.0A		0	100	mV
VF	Diode Forward Voltage	l _o = 0.5A		0.95		V
		I ₀ = 5.0A		1.55		V
T _{tsd}	Thermal Shutdown Threshold		150	175		С
T _{hys}	Thermal Shutdown Hysteresis			25		С



5-AMP STEPPER MOTOR DRIVER TYPICAL PERFORMANCE CHARACTERISTICS

IP1D03, IP2D03, IP3D03

Diode Forward Voltage vs Output Current

IP1D03, IP2D03, IP3D03

5-AMP STEPPER MOTOR DRIVER

SWITCHING CHARACTERISTICS

INPUT S	Switching (t1 - t4 Source, t5 - t8 Sink)		Min	Тур	Max	Units
t1	Turn-off delay	0.5Vi to 0.5lo		300		ns
t2	Fall time	0.9Io to 0.1Io		150		ns
t3	Turn-on delay	0.5Vi to 0.5Io		1500		ns
t4	Rise time	0.11o to 0.91o		200		ns
t5	Turn-off delay	0.5Vi to 0.5Io		400		ns
t6	Fall time	0.9Io to 0.1Io		300		ns
t7	Turn-on delay	0.5Vi to0.5Io		450		ns
t8	Rise time	0.11o to 0.91o		300		ns
ENABLE	Switching (t9 - t12 Source, t13 - t16	Sink)				
t9	Turn-off delay	0.5Vi to 0.5Io		3400		ns
t10	Fall time	0.91o to 0.1lo		850		ns
t11	Turn-on delay	0.5Vi to 0.5Io		800		ns
t12	Rise time	0.11o to 0.91o		150		ns
t13	Turn-off delay	0.5Vi to 0.5Io		2900		ns
t14	Fall time	0.9Io to 0.1Io		800		ns
t15 .	Turn-on delay	0.5Vi to 0.5Io		500		ns
t16	Rise time	0.11o to 0.9lo		100		ns
Cross-o	ver Delays, INPUT Switching					
t17	Source to Sink delay			1600		ns
t18	Sink to Source delay			1600		ns

ORDER INFORMATION

Part Number

IP1D03K IP2D03W IP3D03W IP3D03K

Temperature Range

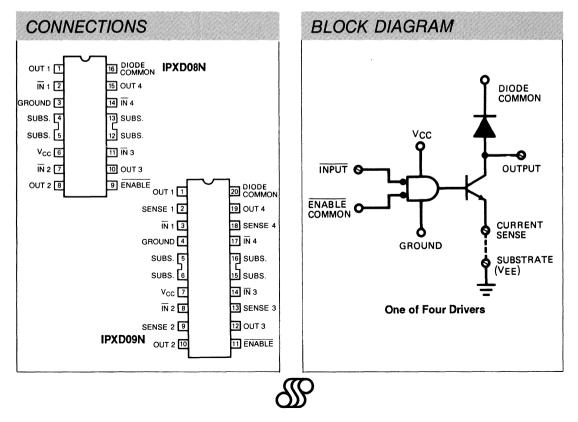
– 55°C to	+125°C
– 40°C to	+105°C
0°C to	+ 70°C
0°C to	+ 70°C

Package

8 Pin TO-3 8 Pin Power SIP (FUTURE) 8 Pin Power SIP (FUTURE) 8 pin TO-3

Seagate Microelectronics Limited

UNIVERSAL QUAD DRIVER


IP2D08, IP2D09, IP3D08, IP3D09

DESCRIPTION

This family of universal quad drivers are high voltage, high current, high gain integrated circuits that provide an interface between stepper motors and motor control circuitry. Both part types, the D08 and D09, allow split supply operation to both positive and negative rails. The D09 allows for external current sensing via an emitter sense pin. The D08/09 are capable of sinking up to 2.5A and can withstand output OFF voltages to 50V. All outputs offer voltage suppression capability with internal clamp diodes and all versions are supplied in dual-in-line packages with heat sink contact tabs for maximum power dissipation.

FEATURES

- Output currents to 2 amps
- Current sense on D09
- 50 volt output breakdown
- Low output saturation voltage
- Low diode forward voltage
- Split supply operation
- Clamp diodes for transient suppression
- Compatible with standard logic families
- Improved noise immunity and parasitic suppression
- 50 volt output sustaining voltage

IP2D08, IP2D09, IP3D08, IP3D09

0

UNIVERSAL QUAD DRIVER

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$

Output Voltage, V _{CE} D08/D09	50V	Current Sense Voltage, V _S D09 1V
Input Voltage, ∨ _{IN}	-0.3V to +80V	Power Dissipation 2.7W
Logic Supply Voltage, V _{CC}		Operating Junction Temperature + 150°C
D08/D09	50V	Operating Ambient Temperature Range
Output Current, I _{OUT}	2.5A	IP2D08/D09 -25°C to +85°C IP3D08/D09 0°C to +70°C
Diode Reverse Voltage V_R	80V	Storage Temperature Range -65°C to +150°C
Diode Forward Current, ${\sf I}_D$	2.5A	Lead Temperature(Soldering, 10 sec.) +300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS

$(V_{CC} = 15V)$

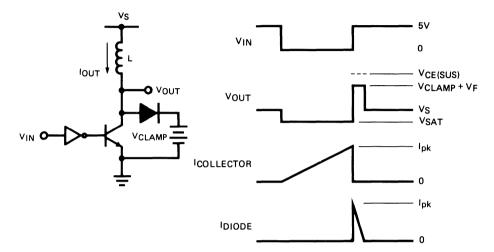
Parameter	Conditions		Min	Тур	Max	Unit
Supply Current, IS	All Inputs = 0.8V	•		25	40	mA
	All Inputs = 5.0V	•		2	5	mA
Input Low Current, IIL	$V_{IL} = 0.8V$	•		-50		uA
Input High Current, IIH	V _{IH} = 2.0V	•			10	uA
Enable Low Current, IIL	$V_{IL} = 0.8V$	•		-200	-400	uA
Enable High Current, IIH	V _{IH} = 2.0V	•			10	uA
Logic Input Low Voltage, VIL		•	-0.3		0.8	V
Logic Input High Voltage, VIH		•	2.0		Vcc	V
Output Saturation Voltage, V _{CE} (SAT)	IOUT = 2.0A	•			1.8	v
Output Leakage Current, ICEX	VOUT = VCE MAX	•			50	uA
Output Sustaining Voltage, VCE(SUS)	IOUT = 100mA (Figure 2)	•	50			V
Diode Leakage Current, IR	$V_{R} = 80V$	•			50	uA
Diode Foward Voltage, VF	IOUT = 2.0A	•			1.5	V

The \bullet denotes the specifications which apply over the full operating range, all others apply at T_A = 25°C unless otherwise specified.

(V_{CC} = 15V, f = 10KHz and T_A = 25°C)

Parameter	Conditions	Min	Тур	Max	Unit
Turn-on Delay, t _{on}	$I_{OUT} = 2.0A$		0.8		us
Turn-off Delay, t _{off}	$I_{OUT} = 2.0A$		0.8		us

Note: Switching times apply for resistive loads and are not tested in production.



IP2D08, IP2D09, IP3D08, IP3D09

UNIVERSAL QUAD DRIVER

TEST CONFIGURATION

Reverse Bias Safe Operating Area — Test Circuit & Waveforms

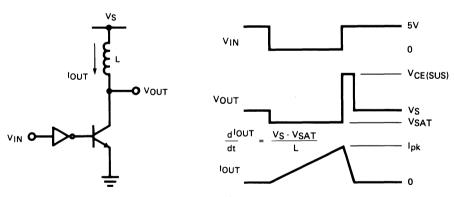


Figure 2. For this test the internal flyback diode is disconnected.

ORDER INFORMATION

Part Number IP2D08N IP3D08N IP2D09N IP3D09N Temperature Range - 25°C to + 85°C 0°C to + 70°C - 25°C to + 85°C 0°C to + 70°C

Package

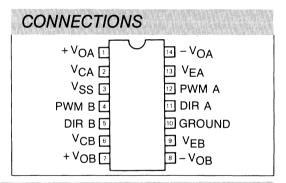
16 pin power DIP 16 pin power DIP 20 pin power DIP 20 pin power DIP

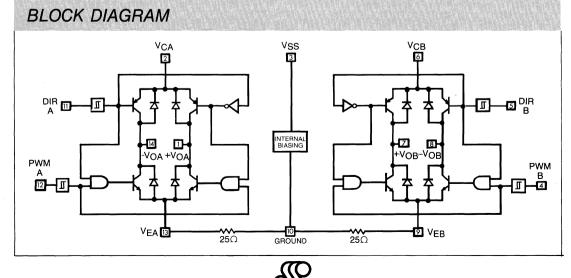
98

Seagate Microelectronics Limited

200mA DUAL H BRIDGE

IP1M10, IP2M10, IP3M10, IP1M12, IP2M12, IP3M12


DESCRIPTION


The IP1M10 and IP1M12 series each contain two full H-bridge power drivers capable of delivering 200 mA continuous output current per channel (100mA for IMXX/2MXX). Each bridge may be run from its own supply voltage of up to 36V and is controlled by 2 high voltage protected logic level inputs with internal hysteresis for noise immunity. Protection features include thermal shutdown. peak current limiting, crossover current blanking, and internal output clamp diodes. Logic supply current is provided by a separate pin so that standby power dissipation may be minimized. The IP1M10 series requires a + 5V logic supply while the IP1M12 series requires a logic supply voltage of +7V or greater, and is typically used in single supply applications.

The IP1M10 and IP1M12 are available in a 14 lead ceramic DIP while the IP2M10, IP2M12, IP3M10, IP3M12 are available in the 14 lead ceramic DIP, 14 lead plastic DIP, and 14 lead plastic SOIC packages.

FEATURES

- 200mA continuous output current per bridge (100mA for IMXX/2MXX)
- Internal output clamp diodes
- Hysteretic logic inputs for noise immunity
- Thermal shutdown protection
- Peak current limit protection
- Crossover current blanking
- Separate + 5V logic supply for minimum power dissipation (1M10 series only)
- Separate + 7 to + 36V logic supply (1M12 series only)

IP1M10, IP2M10, IP3M10, IP1M12, IP2M12, IP3M12

200mA DUAL H[®]BRIDGE

ABSOLUTE MAXIMUM RATINGS

Logic Supply Voltage, Pin 3		Output Current, Peak	INTERNALLY LIMITED
(1M10, 2M10, 3M10) Logic Supply Voltage, Pin 3	+ 7V	Power Dissipation, T _A = + (Note 1)	25°C 1000mW
(1M12, 2M12, 3M12)	+ 40V	Power Dissipation, $T_C = +$	- 25°C 2000mW
Driver Supply Voltage, Pins 2 and 6	+ 40V	(Note 2)	
Logic Inputs – 0	0.3V to +40V	Operating Junction Temper	rature + 150°C
Output Current, DC	<u>+</u> 250mA	Storage Temperature Range	e -65°C to +150°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS (NOTE 3)

0V to +36V

Logic Supply Voltage, Pin 3 (1M10, 2M10, 3M10)	+4.75V to +5.25V
Logic Supply Voltage, Pin 3 (1M12, 2M12, 3M12)	+7V to +36V
Driver Supply Voltage, Pins 2	and 6 + 4.75V to + 36V

Logic In	outs
----------	------

Output Current, DC (3MXX) (1MXX/2MXX)	<u>+</u> 200mA <u>+</u> 100mA
Output Current, peak (3MXX) (1MXX/2MXX)	<u>+</u> 250mA <u>+</u> 125mA
Operating Ambient Temp	erature Range
IP1M1	0/1M12 - 55°C to + 125°C
	0/2M12 - 40°C to + 85°C 0/3M12 0°C to + 70°C

Note 1 Derate at 10mW/°C for ambient temperature above + 50°C

Note 2 Derate at 16mW/°C for case temperature above + 25°C

Note 3 Range over which the device is functional and parameter limits are guaranteed

TRUTH TABLE					
INP	UTS	OUTPUTS			
DIR	PWM	+Vo	– V ₀		
L	L	Z*	Н		
L	н	L	н		
н	L	н	Z*		
н	Н	Н	L		

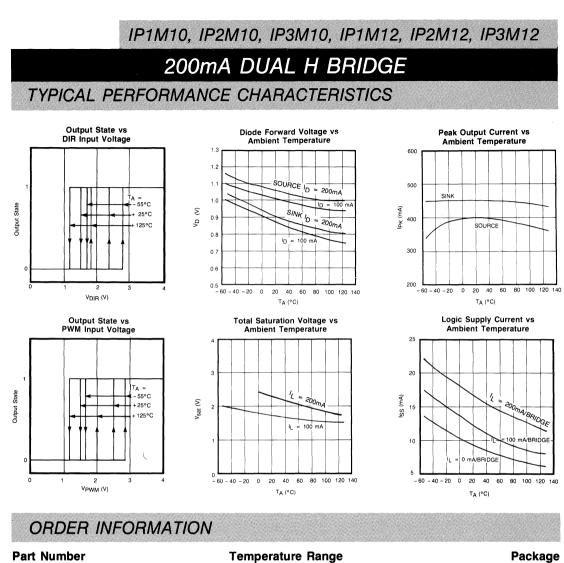
['] Z = High Impedance

200mA DUAL H BRIDGE

ELECTRICAL CHARACTERISTICS

Unless otherwise noted, specifications apply over the recommended operating conditions. (See Notes 1-3).

PARAMETER		TEST CONDITIONS		MIN	ТҮР	MAX	UNITS
Logic Supply Current		$Vss = +5.25V, I_{LOADS} = 0mA$	•		5	12	
(Pin 3)	XM10	$Vss = +5.25V, I_{LOADS} = 100mA$	•		8	20	1
		Vss = +5.25V, ILOADS = 200mA	•		12	28	mA
		$Vss = +36V, I_{LOADS} = 0mA$	•		8	18	1
	XM12	$Vss = +36V, I_{LOADS} = 100mA$	•		11	25	1
		$Vss = +20V, I_{LOADS} = 200mA$	•		15	32	1
Quiescent Bridge Current (Pin 2	or 6)	ILOAD = 0mA	•		2.5	8	mA
PWM Input Threshold	Falling		٠	0.8	1.5	2.0	
(Pins 4 and 12)	Rising		•	1.2	2.5	3.0] v
	Hysterisis		٠	0.4	1.0		1
PWM Input Current	Low	$V_{IN} = 0V$	•		- 20	- 100	
(Pins 4 and 12)	High	V _{IN} = 36V	•		0.1	±10	μA
DIR Input Threshold	Falling		•	0.8	1.5	2.0	
(Pins 5 and 11)	Rising		•	1.2	2.3	3.0	l v
	Hysterisis		•	0.2	0.8		1
DIR Input Current	Low	V _{IN} = 0V	•		- 20	- 100	
(Pins 5 and 11)	High	V _{IN} = +36V	•		0.1	±10	μA
Total Saturation Voltage		$I_{LOAD} = 100 \text{ mA}$	•		1.8	2.25	v
(VSAT (Sink) + VSAT (Source)) 3M10/3M12 Only		$I_{LOAD} = 200 \text{ mA}$	•		2.1	2.70	
Diode Forward Voltage		IDIODE = 100 mA	•		1.1	1.4	v
		IDIODE = 200 mA	•		1.2	1.6	`
Output Leakage Current	Low	Vo = 0V, Vc = 36V	•		1	100	
(Pins 1, 7, 8 and 14)	High	Vo = Vc = 36V	•		1	100	μA


SWITCHING CHARACTERISTICS

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Sink Turn-on Delay	$\triangle t: V_i = V_i(TH)$ to $V_0 = Vs/2$		1250		nS
Sink Current Rise Time	$\triangle t: I_0 = (0.1 \text{ to } 0.9) I_{LOAD}$		200		nS
Sink Turn-off Delay	$\triangle t: V_i = V_i(TH) \text{ to } V_0 = V_{S/2}$		300		nS
Sink Current Fall Time	\triangle t: I ₀ = (0.9 to 0.1) I _{LOAD} load		200		nS
Source Turn-on Delay	$\triangle t: V_i = V_i(TH) \text{ to } V_0 = V_{s/2}$		800		nS
Source Rise Time	\triangle t: I ₀ = (0.1 to 0.9) I _{LOAD}		400		nS
Source Turn-off Delay	$\triangle t: V_i = V_i(TH) \text{ to } V_0 = V_{S/2}$		1000		nS
Source Fall Time	\triangle t: I ₀ = (0.9 to 0.1) I _{LOAD}		500		nS
Sink to Source Deadtime			500		nS
Source to Sink Deadtime			250		nS

The • denotes specifications which apply over the full operating range, all others apply at T_A = 25°C unless otherwise specified.

101

14 Pin Ceramic DIP 14 Pin Ceramic DIP 14 Pin Plastic DIP 14 Pin SOIC 14 Pin Ceramic DIP 14 Pin Plastic DIP 14 Pin SOIC

14 Pin Ceramic DIP 14 Pin Ceramic DIP 14 Pin Plastic DIP 14 Pin SOIC 14 Pin Ceramic DIP 14 Pin Plastic DIP 14 Pin SOIC

-55°C to +125°C

-40°C to + 85°C

-40°C to + 85°C

-40°C to + 85°C

-55°C to +125°C

-40°C to + 85°C

-40°C to + 85°C

-40°C to + 85°C

 $0^{\circ}C$ to + $70^{\circ}C$

 $0^{\circ}C$ to + $70^{\circ}C$

 $0^{\circ}C$ to + $70^{\circ}C$

0°C to + 70°C

 $0^{\circ}C$ to + $70^{\circ}C$

 $0^{\circ}C$ to + $70^{\circ}C$

IP1M10J

IP2M10J

IP2M10N

IP2M10D IP3M10J

IP3M10N

IP3M10D

IP1M12J

IP2M12J

IP2M12N

IP2M12D IP3M12J

IP3M12N

IP3M12D

Seagate Microelectronics Limited

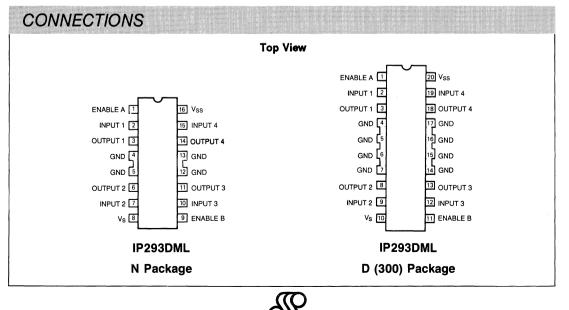
PUSH-PULL FOUR CHANNEL DRIVER

DESCRIPTION

The IP293DML is a low voltage, low current version of the 293 quad push-pull driver with superior output impedance matching and parameters guaranteed over temperature. It is ideal for applications with 5V or 12V power rails and each channel is capable of delivering a continuous output current of 250 mA.

Each full bridge driver has an enable input for a high impedance output state. A separate supply input allows the logic to be operated at lower voltages to reduce power dissipation.

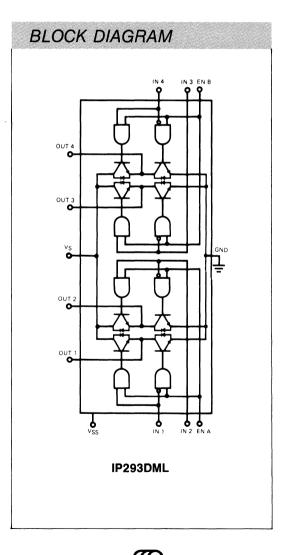
This device has an output differential voltage guaranteed to be less the 75mV at 100mA for accurate positioning in stepper motor applications.


The IP293DML is packaged in a plastic power DIP which uses the four centre pins to conduct heat to the printed circuit board, or a plastic power SOIC which uses the eight centre pins.

FEATURES

250mA continuous output current

IP293DML


- 500mA peak non-repetitive output current per channel
- Enable facility for dual full-bridge configuration
- High noise immunity
- Seperate logic supply
- Thermal shutdown protection
- Cross-over current protection
- Internal output clamp diodes

			IP293DIVIL
P [°] USH-PL	JLL FOUR	CHANNEL DRIV	ER
ABSOLUTE MAXIMU	JM RATINGS	5	
Supply Voltage	18V	Junction Temperature	150°C
Logic Supply Voltage	18V	Storage Temperature	-40°C to + 150°C
Peak Non-repetitive Output Current (t≼ 5ms)	0.5A	Continuous Output Current	0.25A
Operating Ambient Temperature	0°C to +70°C		0.20/1

IDOOODIM

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

104

PUSH-PULL FOUR CHANNEL DRIVER

ELECTRICAL CHARACTERISTICS

$V_S = 12V, V_{SS} = 5V$ unless otherwise stated

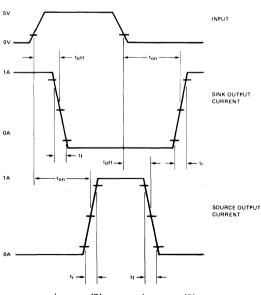
Parameter	Test Conditions		Min	Тур	Max	Units
Supply Voltage VS		•	VSS		15	v
Logic Supply Voltage VSS		•	4.5		15	v
	$V_{IN} = L, V_{EN} = H, I_O = 0$	•		0.5	1.5	mA
Quiscent Supply Current IS (per channel)	$V_{IN} = H, V_{EN} = H, I_O = 0$	•		5	8	mA
	V _{EN} = L	•			1	mA
Quiscent Logic Supply	$V_{IN} = L, V_{EN} = H, I_O = 0$	•		11	15	mA
Current ISS (per channel)	$V_{IN} = H, V_{EN} = H, I_O = 0$	•		1.5	5.5	mA
(per channe)	V _{EN} = L	•		1.5	6.0	mA
Input Low Voltage		•	- 0.3		1.5	v
Input High Voltage		•	2.3		V _{SS}	v
Low Voltage Input Current	V _{IL} = 1.5V	•			- 10	μA
High Voltage Input Current	V _{IN} = 2.3V	•		40	100	μA
Enable Low Voltage		•	- 0.3		1.5	v
Enable High Voltage		•	2.3		V _{SS}	v
Low Voltage Enable Current	V _{ENL} = 1,5V	•		- 40	- 100	μA
High Voltage Enable Current	$V_{\text{ENH}} = 2.3V$	•			10	μA
Source Output Saturation Voltage	$I_{O} = 250 \text{mA}, V_{S} = 10.8 \text{V}$	•		0.9	1.8	v
Sink Output Saturation Voltage	$I_{\rm O}$ = 250mA, $V_{\rm S}$ = 10.8V	•		0.9	1.8	V
Output Differential Voltage	$I_{O} = 100 \text{mA}, V_{S} = 4.3 \text{V}$	•	- 75	<u>+</u> 25	+ 75	mV
Output Differential Voltage	$I_{\rm O}$ = 250mA, $V_{\rm S}$ = 10.8V	•	- 150		+ 150	mV
Diode Forward Voltage	I _O = 250mA	. •		1.3	1.8	V
Output Leakage Curent	$V_{S} = 10.8V, V_{EN} = L$	•	- 200		+ 200	μA

The \bullet denotes the specifications which apply over the full operating ambient temperature range, all others apply T_A = 25°C unless otherwise specified.

PUSH-PULL FOUR CHANNEL DRIVER

SWITCHING CHARACTERISTICS

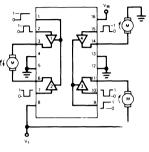
V_{S} = 12V, V_{SS} = 5V, f_{C} = 30 kHz, T_{A} = 25°C


Parameter	Min	Тур	Max	Unit
Sink Current Turn-on Delay		600		ns
Sink Current Rise Time		100		ns
Sink Current Turn-off Delay		400		ns
Sink Current Fall Time		200		ns
Sink Current Turn-on Delay		1000		ns
Sink Current Rise Time		200		ns
Sink Current Turn-off Delay		200		ns
Sink Current Fall Time		100		ns
Sink to Source Deadtime	0	600		ns
Source to Sink Deadtime	0	400		ns

(Note; Switching times apply for resistive loads only)

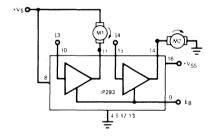
		(per channel)
INPUT	ENABLE*	OUTPUT
н	н	н
L	Н	L
н	L	Z
L	L	Z

*relative to the considered channel

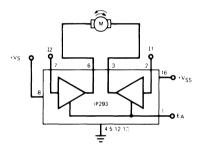

 $t_{d1} = (t_{on}-t_r/2)_{source} - (t_{off} + t_f/2)_{sink}$ $t_{d2} = (t_{on}-t_r/2)_{sink} - (t_{off} + t_f/2)_{source}$

IP293DML

PUSH-PULL FOUR CHANNEL DRIVER


APPLICATIONS INFORMATION

IP293DML

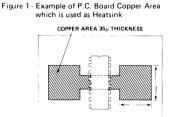

DC motor controls (with connection to ground and to the supply voltage)

EB	13	M1	14	M2
н	н	Fast Motor Stop	н	Run
н	L	Run	L	Fast Motor Stop
L	х	Free Running Motor Stop	×	Free Running Motor Stop

L = Low H = High X = Don't care

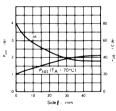
INPUTS		FUNCTION
	I ₂ = H; I ₁ =L	Turn Right
E _A = H	12 = L; I1 = H	Turn Left
	11 = 12	Fast Motor Stop
EA = L	I ₁ = X; I ₂ = X	Free Running Motor Stop

L = Low H = High X = Don't care



PUSH-PULL FOUR CHANNEL DRIVER


MOUNTING INSTRUCTIONS


The R_{9JA} of the IP293DML can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heatsink.

The diagram of Figure 3 shows the maximum package power P_{tot} and the Θ_{JA} as a function of the side " λ " of two equal square copper areas having a thickness of 35µ (see figure 1).

THERMAL DATA IP2930MLN

Rθ.J**Δ**...

B A.**IC**

During soldering the pins' temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

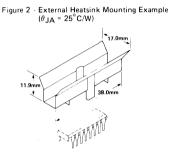
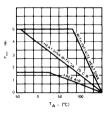



Figure 4 - Maximum Allowable Power Dissapation vs Ambient Temperature

..... MAX 14° C/W

ORDER INFORMATION

Part Number IP293DMLN IP293DMLD

Temperature Range 0°C to +70°C 0°C to +70°C Package 16 Pin Plastic DIP 20 Pin Plastic (300) SOIC

VOLTAGE REGULATORS

1C

6

۲

16

۵

¢Y¢

Ś

Ô

Ć

250

e Y é

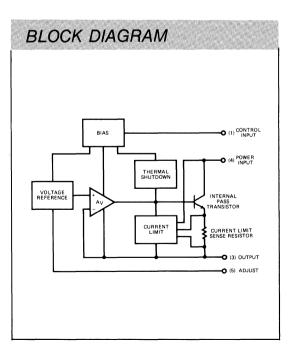
1C

P

No.

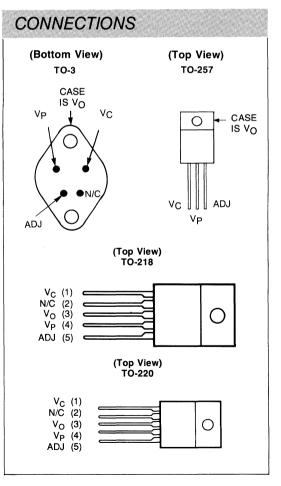
۶

284


Seagate Microelectronics Limited

LOW DROPOUT, 3 AMP POS. ADJUSTABLE REGULATORS

IP1R07A, IP1R07, IP3R07A, IP3R07 Series


DESCRIPTION

The IP3R07A series of low dropout adjustable voltage regulators are capable of supplying 3A of output current with an input-to-output voltage of just 0.8V. In applications where high efficiency is necesary it is now possible to obtain a low cost, single chip solution. These regulators are exceptionally easy to use, requiring only two external resistors to set the output voltage. The IP3R07A exhibits an initial $\pm 1\%$ output voltage tolerance, and over all operating conditions the reference voltage is guaranteed not to vary more than + 2%. These devices include internal current limiting, thermal overload protection, and power device safe operating area compensation.

FEATURES

- 0.8V dropout voltage at 3A
- Guaranteed 1% output voltage tolerance
- Guaranteed 0.3% load regulation
- Guaranteed 0.01%/V line regulation
- Available in TO-218, TO-220, TO-3 and Hermetic TO-257 packages

IP1R07A, IP1R07, IP3R07A, IP3R07 Series

LOW DROPOUT, 3 AMP POS. ADJUSTABLE REGULATORS

ABSOLUTE MAXIMUM RATINGS

Power Dissipation	Internally Limited	Operating Junction Temperature	re	
•	•	IP1R07A, IP1R07	– 55°C to	
Control Input to Output Voltage	35V	IP3R07A, IP3R07	0°C to	+125°C
		Storage Temperature Range	– 65°C to	+150°C
Power Input to Output Voltage	15V	Lead Temperature (Soldering, 1	0 sec.)	+ 300°C

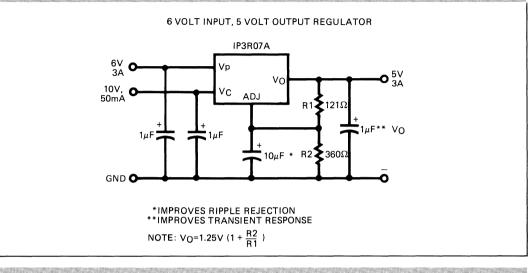
Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS

				IP1R07A/IP3R07A			IP1R07/IP3R07			
Parameter	ameter Conditions (Note 1)			Min	Тур	Max	Min	Тур	Max	Unite
Reference Voltage	l _O = 10m	A		1.238	1.250	1.262				V
	3V ≤ V _C -	V _O ≤35V	•	1.225	1.250	1.270	1.20	1.25	1.30	V
	1.5V ≤ V _F	o-V _O ≤7V								
	10mA ≤ I	O≤3A, P≤20W								
Line Regulation	3V ≤ V _C ·	V _O ≤35V			0.005	0.01		0.005	0.03	%N
		-	•		0.02	0.05		0.02	0.07	°%∧V
Load Regulation	10mA ≤ I	O≤3A			0.10	0.30		0.10	0.50	%
(% V _{OUT})		-	•		0.30	1.0		0.30	1.5	%
Thermal Regulation	20 msec	Pulse			0.002	0.01		0.002	0.03	%N
Ripple Rejection	V _O = 10\	$C_{Adj} = 0$			65			65		dB
(Control Input)	f = 120Hz	C _{Adj} = 10μF	•	66	86		66	86		dB
Dropout Voltage	$\Delta V_{O} = 50$	DmV			0.8	1.0		0.8	1.0	V
(Power Input)										
Adjust Pin Current			•		50	100		50	100	μΑ
Adjust Pin Current	3V ≤ V _C	- V _O ≤35V	•		0.2	5		0.2	5	μΑ
Change	1.5V ≤ V	p-V _O ≤7V								
	10mA ≤ I	10mA ≤ I _O ≤ 3A								
Minimum Load Current	Vc- Vo	= 35V	•		3.5	5		3.5	10	mA
Current Limit	V _P -V _O	≤7V	•	3	4.5		3	4.5		A
Thermal Resistance	V Pkg	Power Transistor			1.2			1.2		°C∧
Junction-to-Case, OIC	K Pkg	Control Circuitry			0.5			0.5		°C∧
	T Pkg	Power Transistor			2.3			2.3		°С∧
	G Pkg	Control Circuitry			0.7			0.7		°C∧

The \bullet denotes specifications which apply over the full operating temperature range, all others apply at T_j = 25 °C unless otherwise specified.

Note 1: Unless otherwise specified, V_C-V_O = 5V, V_P-V_O = 3V, I_O = 3A. Although power dissipation is internally limited, these specifications apply for dissipations up to 20W.


Note 2: Line and load regulation are electrically independent and are measured using pulsed testing techniques at low duty cycle, in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating see thermal regulation specification.

IP1R07A, IP1R07, IP3R07A, IP3R07 Series

LOW DROPOUT, 3 AMP POS. ADJUSTABLE REGULATORS

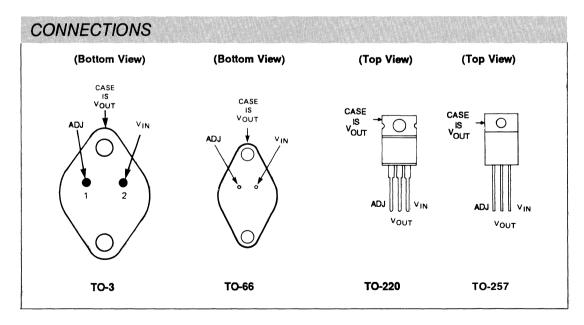
TYPICAL APPLICATION

ORDER INFORMATION

Part Number	Temperature Range	Package
IP1R07AK, IP1R07K IP1R07AG, IP1R07G	- 55°C to + 150°C - 55°C to + 150°C	TO-3 TO-257
IP3R07AK IP3R07K IP3R07AV IP3R07V IP3R07AT IP3R07T	0°C to + 125°C 0°C to + 125°C	TO-3 TO-3 TO-218 TO-218 TO-220 TO-220

Seagate Microelectronics Limited

1.5 AMP POSITIVE ADJUSTABLE REGULATORS


IP117A, IP117, LM117, IP117AHV, IP317AHV, IP117HV, LM117HV, IP317HV

DESCRIPTION

The IP117A Series are three terminal positive adjustable voltage regulators capable of supplying in excess of 1.5A over a 1.25V to 60V output range. These regulators are exceptionally easy to use and require only two external resistors to set the output voltage. In addition to improved line and load regulation, a major feature of the "A" series is the initial output voltage tolerance, which is guaranteed to be less than 1%. Over full operating conditions, including load, line, and power dissipation, the reference voltage is guaranteed not to vary more than 2%. These devices exhibit current limit, thermal overload protection, and improved power device safe operating area protection, making them essentially indestructible.

FEATURES

- Guaranteed 1% output voltage tolerance
- Guaranteed 0.3% load regulation
- Guaranteed 0.01%/V line regulation
- Internal current limiting constant with temperature
- Internal thermal overload protection
- Improved output transistor safe operating area compensation
- Output adjustable between 1.25V and 60V

IP117A, IP117, LM117, IP117AHV, IP317AHV, IP117HV, LM117HV, IP317HV

1.5 AMP POSITIVE ADJUSTABLE REGULATORS

ABSOLUTE MAXIMUM RATINGS

Power Dissipation

Internally Limited

Input to Output Voltage Differential Non-HV HV Series

Operating Junction Temperature Range

117AHV/117A/117HV/117 317AHV/317HV -55°C to +150°C 0°C to +125°C Storage Temperature Range -65°C to +150°C

40V

60V

Lead Temperature (Soldering, 10 sec.) + 300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS (NOTES 1 and 3)

				IP117AHV IP117A			LM117HV IP117HV LM117 IP117			
Parameter	Test Conditions			Min	Тур	Max	Min	Тур	Max	Units
Reference Voltage, VREF	$I_{OUT} = 10 \text{ mA}$			-1.238	-1.250	-1.262				V
	$3V \leq (V_{IN}V_{OUT}) \leq V$ 10 mA $\leq I_{OUT} \leq I_{MA}$	MAX AX, P ≤ P _{MAX}	•	-1.225	-1.250	-1.270	-1.200	-1.250	-1.300	V
Line Regulation, △V _{OUT} △I _{OUT}	3V ≤ (V _{IN} -V _{OUT}) ≤ V (See Note 2)	Имах	•		0.005	0.010		0.010	0.020	%N %N
Load Regulation, $ riangle V_{OUT}$	$10 \text{ mA} \leq I_{OUT} \leq I_{MA}$	$(V_{OUT}) \leq 5V$	-		5	15		5	15	mV
	(See Note 2)	(V _{OUT}) ≤ 5V			0.1	0.3		0.1	0.3	%
		(V _{OUT}) ≤ 5V	•		15	50		20	50	mV
		(V _{OUT}) ≤ 5V	•		0.3	1.0		0.3	1.0	%
Thermal Regulation	20 msec Pulse		-		0.002	0.020		0.030	0.070	%/W
Ripple Rejection	$V_{OUT} = -10V,$ ($C_{ADJ} = 0$	\vdash		65			65		dB
		$P_{ADJ} = 10 \mu F$	•	66	80		66	80		dB
Adjust Pin Current, I _{ADJ}			•		50	100		50	100	μA
Adjust Pin Current Change, △I _{ADJ}	$\begin{array}{l} \text{10 mA} \leqslant \text{I}_{\text{OUT}} \leqslant \text{I}_{\text{MA}} \\ \text{2.5V} \leqslant (\text{V}_{\text{IN}} \text{ - V}_{\text{OUT}}) \end{array}$		•		0.2	5		0.2	5	μA
Minimum Load Current, IMIN	$(V_{IN} - V_{OUT}) = 40V$	The former of the second se	•		3.5	5		3.5	5	mA
	$(V_{\text{IN}} - V_{\text{OUT}}) = 60V,$	HV Series	•		3.5	7		3.5	7	mA
Current Limit, I _{CL}	(V _{IN} - V _{OUT}) ≤ 15V		•	1.5	2.2		1.5	2.2		A
	$(V_{IN} - V_{OUT}) = 40V$	an Thurst Strategy Constants		0.30	0.50		0.30	0.50		A
	$(V_{IN} - V_{OUT}) = 60V H$	IV Series			0.10			0.10		A
Temperature Stability, $\triangle V_{OUT}$ $\triangle TEMP$			•		1	2		1		%
Long Term Stability, $ riangle V_{OUT}$ $ riangle V_{TIME}$	$T_A = 125^{\circ}C, 1000 \text{ Hr}$	$T_A = 125^{\circ}C, 1000 \text{ Hrs.}$			0.3	.1		0.3	1	%
RMS Output Noise (% of V _{OUT}), e _n	10Hz ≤ f ≤ 10kHz				0.001			0.001		%
Thermal Resistance	K Package				2.3	3		2.3	3	°C/W
Junction to Case, O jc	R Package				5	7		5	7	°C/W
-	G Package, T Package				3	5		3	5	°C/W

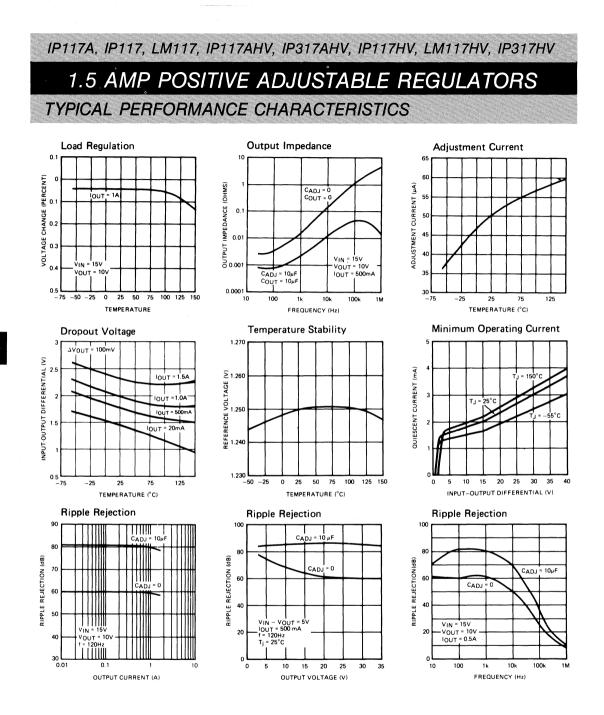
IP117A, IP117, LM117, IP117AHV, IP317AHV, IP117HV, LM117HV, IP317HV

1.5 AMP POSITIVE ADJUSTABLE REGULATORS

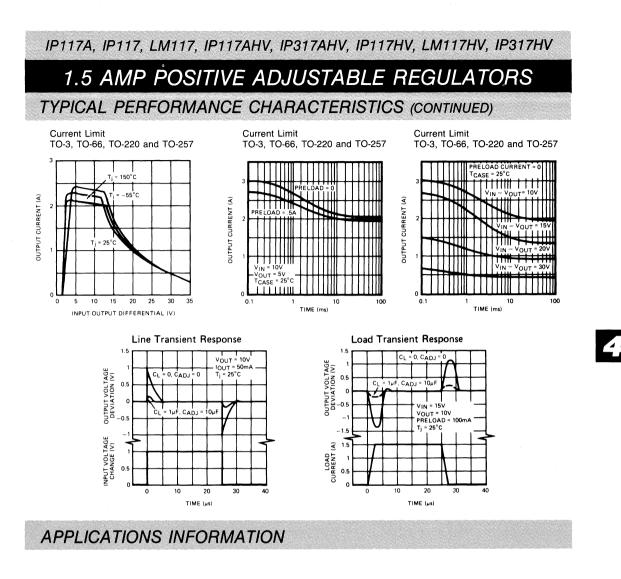
ELECTRICAL CHARACTERISTICS

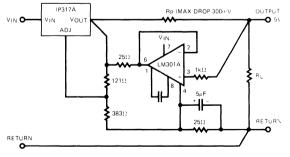
				IP317AHV IP317A			IP317HV IP317			
Parameter	Test Conditions	Test Conditions			Тур	Max	Min	Тур	Max	Units
Reference Voltage, VREF	$I_{OUT} = 10 \text{ mA}$			1.238	1.250	1.262				v
	$3V \leq (V_{IN}-V_{OUT}) \leq V_{I}$ 10 mA $\leq I_{OUT} \leq I_{MA}$	MAX X, P ≤ P _{MAX}	•	1.225	1.250	1.270	1.200	1.250	1.300	V
Line Regulation, $\triangle V_{OUT}$	$3V \leq (V_{IN}-V_{OUT}) \leq V$	MAX			0.005	0.010		0.010	0.040	%N
^{∆I} OUT	(See Note 2)		•		0.010	0.020		0.020	0.070	%N
Load Regulation, $ riangle V_{OUT}$	10 mA \leq I _{OUT} \leq I _{MA}	$(V_{OUT}) \leq 5V$			5	25		5	25	mV
	(See Note 2)	(V _{OUT}) ≤ 5V			0.1	0.5		0.1	0.5	%
		(V _{OUT}) ≤ 5V	•		15	50		20	70	mV
		$(V_{OUT}) \leq 5V$	•		0.3	1.0		0.3	1.5	%
Thermal Regulation	20 msec Pulse				0.002	0.020		0.030	0.070	%/W
Ripple Rejection	$V_{OUT} = -10V,$ C	ADJ = 0			65			65		dB
	f = 120Hz C	ADJ = 10 u F	•	66	80		66	80		dB
Adjust Pin Current, IADJ			•		50	100		50	100	μA
Adjust Pin Current Change, △I _{ADJ}	$\begin{array}{l} 10 \hspace{0.1cm}\text{mA} \leqslant \hspace{0.1cm} \text{I}_{OUT} \leqslant \hspace{0.1cm} \text{I}_{MA} \\ 2.5 \text{V} \hspace{0.1cm} \leqslant \hspace{0.1cm} (\text{V}_{IN} \hspace{0.1cm} \text{-} \hspace{0.1cm} \text{V}_{OUT}) \end{array}$	10 mA $\leq I_{OUT} \leq I_{MAX}$ 2.5V $\leq (V_{IN} \cdot V_{OUT}) \leq V_{MAX}$			0.2	5		0.2	5	μA
Minimum Load Current, IMIN	$(V_{\rm IN} - V_{\rm OUT}) = 40V$		•		3.5	10		3.5	10	mA
	$(V_{IN} - V_{OUT}) = 60V, H$	HV Series	•		3.5	12		3.5	12	mA
Current Limit, I _{CL}	$(V_{IN} - V_{OUT}) \leq 15V$		•	1.5	2.2		1.5	2.2		A
	$(V_{IN} - V_{OUT}) = 40V$			0.15	0.40		0.15	0.40		A
	$(V_{1N} - V_{OUT}) = 60V H$	V Series			0.10			0.10		А
Temperature Stability, $\triangle V_{OUT}$ $\triangle TEMP$			•		1	2		1		%
Long Term Stability, $ riangle V_{OUT}$ $ riangle V_{TIME}$	1000 Hrs.	1000 Hrs.			0.3	1		0.3	1	%
RMS Output Noise (% of V _{OUT}), e _n	10Hz ≤ f ≤ 10kHz				0.003			0.003		%
Thermal Resistance	K Package	K Package			2.3	3		2.3	3	°C/W
Junction to Case, O jc	R Package				5	7		5	7	°C/W
	T Package				4	5		4	5	°C/W
	G Package				3	5		3	5	°C/W

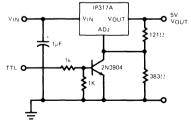
The \bullet denotes the specifications which apply over the full operating temperature range, all others apply at T_j = 25°C unless otherwise specified.

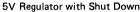

Note 1: Unless otherwise specified, (V_{IN}-V_{OUT}) = 5V, I_{OUT} = 0.5A for the TO-3 (K), TO-257 (G), TO-66 (R) and TO-220 (T) Packages. Although power dissipation is internally limited, these specifications apply for dissipations up to 20W for the TO-3, TO-257, TO-66 and TO-220. I_{MAX} = 1.5A for the TO-3, TO-66, TO-220 and TO-257.

Note 2: Regulation is measured at constant junction temperature, using pulse testing at a low duty cycle. Changes in output voltage due to heating effects are covered under thermal regulation specifications. Load regulation is measured from the bottom of the package for the TO-3, and TO-66, and at the junction of the wide and narrow portion of the output lead for the TO-220, and 1/s" below the base of the package on the output pin of the TO-257.

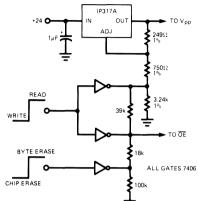

Note 3: V_{MAX} = 40V for IP117A, IP117, LM117.


V_{MAX} = 60V for IP117AHV, IP117HV, LM117HV, IP317HV, IP317AHV.

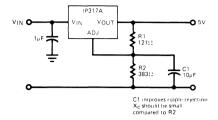




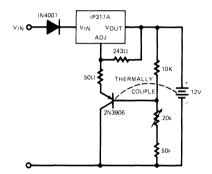
Remote Sensing



IP117A, IP117, LM117, IP117AHV, IP317AHV, IP117HV, LM117HV, IP317HV


1.5 AMP POSITIVE ADJUSTABLE REGULATORS

APPLICATIONS INFORMATION (CONTINUED)



	ŌE	$v_{\rm pp}$
READ	٥v	5V
WRITE		
BYTE	5V	21V
CHIP E RASE	12∨	21V

2816 EEPROM Supply Programmer for **Read/Write Control**

Improving Ripple Rejection

Temperature Compensated Lead Acid Battery Charger

ORDER INFORMATION

Part Number

IP117K/IP117AK/IP117AHVK/IP117HVK LM117K/LM117HVK IP117AR/IP117AHVR/IP117R/IP117HVR IP117AG/IP117AHVG/IP117G/IP117HVG

IP317AHVK/IP317HVK IP317AHVT/IP317HVT

Temperature Range

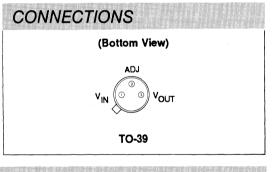
Package

- 55°C to + 150°C	TO-3
- 55°C to + 150°C	TO-66
- 55°C to + 150°C	TO-257 (Hermetic TO-220 style)
0°C to +125°C	TO-3
0°C to +125°C	TO-220

ത	
M	

Seagate Microelectronics Limited

0.5 AMP POSITIVE ADJUSTABLE REGULATORS


IP117MA, IP117M, IP117MAHV, IP117MHV

DESCRIPTION

The IP117M Series are three terminal positive adjustable voltage regulators capable of supplying in excess of 0.5A over a 1.25V to 60V output range. These regulators are exceptionally easy to use and require only two external resistors to set the output voltage. In addition to improved line and load regulation. a major feature of the "A" series is the initial output voltage tolerance, which is guaranteed to be less than 1%. Over full operating conditions, including load, line, and power dissipation, the reference voltage is guaranteed not to vary more than 2%. These devices exhibit current limit, thermal overload protection, and improved power device safe operating area protection, making them essentially indestructible.

FEATURES

- Guaranteed 1% output voltage tolerance
- Guaranteed 0.3% load regulation
- Guaranteed 0.01%/V line regulation
- Internal current limiting constant with temperature
- Internal thermal overload protection
- Improved output transistor safe operating area compensation
- Output adjustable between 1.25V and 60V

ABSOLUTE MAXIMUM RATINGS

Power Dissipation

Internally Limited

Operating Junction Temperature Range

117MAHV/117MHV/117MA/117M

- 55°C to + 150°C

Input to Output Voltage Diffe Non-HV HV Series	rential	40V 60V
Storage Temperature Range	– 65°C to	+ 150°C
Lead Temperature (Soldering,	10 sec.)	+ 300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ORDER INFORMATION

Part Number IP117MAHVH/IP117MHVH/ IP117MAH/IP117MH LM117HVH/LM117H

Temperature Range

Package

- 55°C to + 150°C - 55°C to + 150°C

119

IP117MA, IP117M, IP117MAHV, IP117MHV

0.5 AMP POSITIVE ADJUSTABLE REGULATORS

ELECTRICAL CHARACTERISTICS (NOTES 1 and 3)

				IP117MAHV IP117MA			IP117MHV IP117M LM117HV LM117			
Parameter	Test Conditions			Min	Тур	Max	Min	Тур	Max	Units
Reference Voltage, VREF	$I_{OUT} = 10 \text{ mA}$			-1.238	-1.250	-1.262				v
	$3V \leq (V_{IN}-V_{OUT}) \leq V_{M}$ 10 mA $\leq I_{OUT} \leq I_{MA}$	MAX _X , P ≤ P _{MAX}	•	-1.220	-1.250	-1.270	-1.200	-1.250	-1.300	v
Line Regulation, ΔV_{OUT}	$3V \leq (V_{IN}-V_{OUT}) \leq V$	MAX			0.005	0.010		0.010	0.020	%/V
∆v _{in}	(See Note 2)		•		0.010	0.020		0.020	0.050	%/V
Load Regulation, $\triangle V_{OUT}$	10 mA ≤ I _{OUT} ≤ I _{MA}	х (V _{OUT}) ≼ 5V			5	15		5	15	mV
riangle 'out	(See Note 2)	(V _{OUT}) ≤ 5V			0.1	0.3		0.1	0.3	%
		$(V_{OUT}) \leq 5V$	•		15	50		20	50	mV
		$(V_{OUT}) \leq 5V$	•		0.3	1.0		0.3	1.0	%
Thermal Regulation	20 msec Pulse				0.002	0.020		0.030	0.070	%/W
Ripple Rejection	V _{OUT} = -10V, C	ADJ = 0			65			65		dB
	f = 120Hz C	ADJ = 10 µ F	•	66	80		66	80		dB
Adjust Pin Current, IADJ			.•		50	100		50	100	μA
Adjust Pin Current Change, ∆I _{ADJ}	10 mA ≤ I _{OUT} ≤ I _{MA} 2.5V ≤ (V _{IN} - V _{OUT}) ≤		•		0.2	5		0.2	5	Aų
Minimum Load Current, IMIN	$(V_{IN} - V_{OUT}) = 40V$		•		3.5	5		3.5	5	mA
	(V _{IN} - V _{OUT}) = 60V, H	IV Series	•		3.5	7		3.5	7	mA
Current Limit, I _{CL}	(V _{IN} - V _{OUT}) ≤ 15V		•	0.50	0.80		0.50	0.80		A
and the attraction of the second s	$(V_{IN} - V_{OUT}) = 40V$			0.15	0.20		0.15	0.20		A
	$(V_{IN} - V_{OUT}) = 60V H$	V Series	1		0.30		1	0.30		A
Temperature Stability, △V _{OUT} △TEMP			•		1	2		1		%
Long Term Stability, $ riangle V_{OUT}$ $ riangle V_{TIME}$	T _A = 125°C, 1000 Hrs.				0.3	1		0.3	1	%
RMS Output Noise (% of V _{OUT}), e _n	10Hz				0.001			0.001		%
Thermal Resistance Junction to Case, Ø jc	H Package				12	15		12	15	°C/W

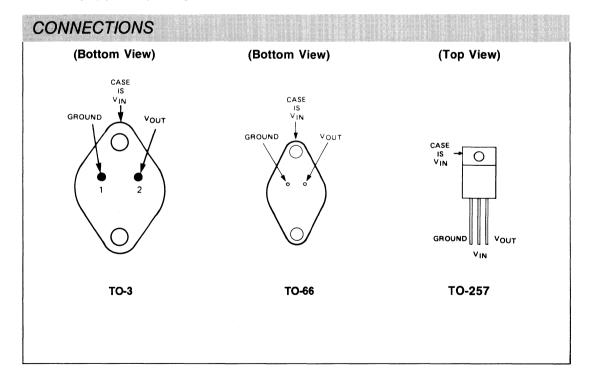
The \bullet denotes the specifications which apply over the full operating temperature range, all others apply at T_j = 25°C unless otherwise specified.

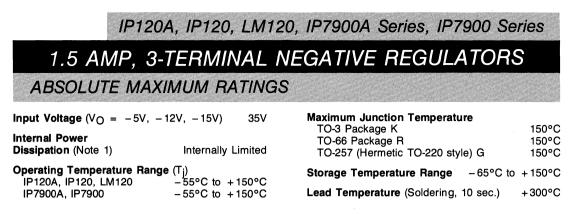
Note 1: Unless otherwise specified, $(V_{IN}-V_{OUT}) = 5V$, $I_{OUT} = 0.1A$ for the TO-39 (H) Package. Although power dissipation is internally limited, these specifications apply for dissipations up to 2W for the TO-39 $I_{MAX} = 0.5A$ for the TO-39.

Note 2: Regulation is measured at constant junction temperature, using pulse testing at a low duty cycle. Changes in output voltage due to heating effects are covered under thermal regulation specifications. Load regulation is measured 1/6" below the base of the package on the output pin of the TO-39.

Note 3: V_{MAX} = 40^{-V} for IP117MA, IP117M, LM117 V_{MAX} = 50V for IP117MAHV, IP117MHV, LM117HV

Seagate Microelectronics Limited 1.5 AMP, 3-TERMINAL NEGATIVE REGULATORS


IP120A, IP120, LM120, IP7900A Series, IP7900 Series


DESCRIPTION

The IP120A/IP7900A/IP7900 series of threeterminal regulators is available with several fixed output voltages making them useful in a wide range of applications. The A-suffix devices provide 0.01%/V line regulation, 0.3%/A load regulation, and $\pm 1\%$ output voltage tolerance at room temperature. Protection features include safe operating area current limiting and thermal shutdown. The entire series of regulators is available in the metal TO-3 and TO-66 power packages. The IP120A/LM120/IP7900A/IP7900 series is now available in a new TO-257 (hermetic TO-220 style) power package.

FEATURES

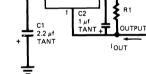
- 1% Tolerance
- -5, -12 and -15V fixed output voltages available
- 0.01%/V line regulation
- 0.3%/A load regulation
- Thermal overload protection
- Short-circuit current limit protection
- Safe area protection
- Start-up with positive voltage (± supplies) on output

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

Note 1. Although power dissipation is internally limited, these specifications are applicable for maximum power dissipation P_{MAX} of 20W for the TO-3, TO-66 and TO-257. I_{MAX} is 1.0A for the TO-3, TO-66 and TO-257 package.

APPLICATION INFORMATION

4


Adjustable Output Regulator

Vout \approx V reg $\frac{(R_1 + R_2)}{R_1}$

TANT *Required if the regulator is located

far from the power supply filter. Required for stability. 25 μ f electrolytic may be substituted.

Fixed Output Regulator

INPUT 3

Current Regulator

7900

 $I_{out} = \frac{V_{reg}}{R1} + I_Q$

ORDER INFORMATION

Part Number

IP120AK-XX/IP120K-XX/LM120K-XX IP7900AK/IP7900K IP120AR-XX/IP120R-XX IP7900AR/IP7900R IP120AG-XX/IP120G-XX IP7900AG/IP7900G

Temperature Range - 55°C to + 150°C

- 55 0 10	T 130 0
- 55°C to	+ 150°C
– 55°C to	+ 150°C
– 55°C to	+ 150°C
- 55°C to	+ 150°C
– 55°C to	+ 150°C

Package

TO-3 TO-3 TO-66 TO-66 TO-257 (Hermetic TO-220 style) TO-257 (Hermetic TO-220 style)

IP120A, IP120, LM120, IP7900A Series, IP7900 Series

1.5 AMP, 3-TERMINAL NEGATIVE REGULATORS

ELECTRICAL CHARACTERISTICS (NOTE 2)

						IP7905A IP120A-5			IP7905 IP120-5 LM120-5		
Parameter	Test Condition	s			Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	I _O = 500 mA, \	/IN = -1	0V		-4.95	-5	-5.05	-4.9	-5	-5.1	v
	$P_{D} \leqslant P_{MAX}$, 5m -7.5V $\leqslant V_{IN} \leqslant$ -	nA ≤ I _O 20V	≤IMAX	٠	-4.85		-5.15	-4.8		-5.2	v
Low Supply, V _O	$\begin{array}{c} P_{D} \leqslant P_{MAX}, 5m \\ -7V \leqslant V_{IN} \leqslant -2 \end{array}$	nA ≤ I _O 20V	≤ I _{MAX}		-4.75		-5.15	-4.75		-5.25	v
Line Regulation, $\triangle V_0$	$I_{O} = 0.5 I_{MAX}$	-7V ≼	V _{IN} ≼ -25V			3	10		3	25	mV
		-7.5V	$\leq V_{IN} \leq -20V$	•		3	10		3	50	mV
	^I O ≤ ^I MAX	-8V ≼	$V_{IN} \leq -12V$			1	4		1	25	mV
				٠		1	12		2	50	mV
Load Regulation, $\triangle V_{O}$	$V_{IN} = -10V$	5 mA	≤ I _O ≤ 1.5A			10	25		10	75	mV
		250m/	$A \leq I_{O} \leq 750 \text{mA}$			4	15		4	25	mV
	5 mA ≼ I _O ≼ I	MAX, VII	_N = -10V	•		7	25		7	50	mV
Quiescent Current, IQ	I _O ≤ 0.5 I _{MAX}					1	1.9		1	1.9	mA
	V _{IN} = -10V			٠		1	2		1	2	mA
Quiescent Current Change, $ riangle I_Q$	5 mA ≤ I _O ≤ I	МАХ				0.2	0.4		0.2	0.4	mA
	V _{IN} = -10V			•		0.2	0.5		0.2	0.5	mA
	I _O ≤ 0.5 I _{MAX} ,	-7V ≤ \	/ _{IN} ≼ -25V			0.1	0.4		0.1	0.4	mA
	I _O ≤ 0.5 I _{MAX} ,	-8V ≤ \	/ _{IN} ≼ -25V	٠		0.1	0.5		0.1	1.0	mA
Output Noise Voltage, V _N	10 Hz ≤ f ≤ 10	00 kHz, \	/ _{IN} = -10V			40	400		40	400	μv
Ripple Rejection, $\triangle V_{IN} / \triangle V_{OUT}$	f = 120 Hz		IO ≤ IMAX		66	80		54	80		dB
	-8 V ≤ V _{IN} ≤ -	18V	I _O	٠	66	80		54	80		dB
Dropout Voltage	IOUT = IMAX					1.1	2.3		1.1	2.3	v
Output Resistance, RO	f = 1 kHz					5			5		mΩ
Short-Circuit Current, Isc	V _{IN} = -35V					0.6	1.2		0.6	1.2	A
Peak Output Current, Ipk	V _{IN} = -10V					2.4	3.3		2.4	3.3	A
Average TC of V _{OUT}	I _O = 5 mA					0.2	2.0		0.2	2.0	mV/°C
Input Voltage Required to Maintain Line Regulation, V _{IN}	I _O ≤ I _{MAX}				-7.3			-7.3			v

IP120A, IP120, LM120, IP7900A Series, IP7900 Series

1.5 AMP, 3-TERMINAL NEGATIVE REGULATORS

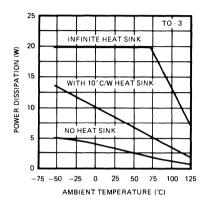
ELECTRICAL CHARACTERISTICS (CONT.)

						IP79124 P120A-1			IP7912 IP120-1: .M120-1	2	
Parameter	Test Condition	s			Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	I _O = 500 mA, \	/IN = -1	9V		-11.88	-12	-12.12	-11.76	-12	-12.24	V
	$P_{D} \leqslant P_{MAX}$, 5m -14.8V $\leqslant V_{IN} \leqslant$		≤IMAX	•	-11.64		-12.36	-11.52		-12.48	V
Low Supply, VO	P _D ≤P _{MAX} , 5m -14.5V ≤ V _{IN} ≤	nA ≼ IO ≨ -27V	≤ I _{MAX}		-11.40		-12.36	-11.4		-12.6	V
Line Regulation, ΔV_O	I _O = 0.5 I _{MAX}	-14.5V	$\leq V_{IN} \leq -30V$			4	18		4	120	mV
		-14.8V	$\leq V_{IN} \leq -27V$	•		4	18		4	200	mV
	I ^O ≷ I ^{MAX}	-16V =	≤ V _{IN} ≤ -22V			1	4		1	25	mV
				•		2	9		2	60	mV
Load Regulation, $\triangle V_O$	$V_{IN} = -19V$	5 mA	≤ I _O ≤ 1.5A			12	32		12	80	mV
		250m/	$A \leq I_{O} \leq 750 \text{mA}$			4	19		4	60	mV
	5 mA ≤ I _O ≤ I	MAX, VII	_N = -19V	٠		8	60		8	120	mV
Quiescent Current, IQ	I _O ≤ 0.5 I _{MAX}					0.2	0.4		0.2	0.4	mA
	V _{IN} = -19V			•		1	2		1	2.0	mA
Quiescent Current Change, $\triangle I_Q$	5 mA ≼ I _O ≼ I	мах				0.2	0.4		0.2	0.4	mA
	$V_{IN} = -19V$			•		0.2	0.5		0.2	0.5	mA
	I _{O_}	-14.5V	≤ V _{IN} ≤ -30V			0.1	0.4		0.1	0.4	mA
	I _O ≤ 0.5 I _{MAX} ,	-15V ≤	V _{IN} ≼ -30V	•		0.1	0.5		0.1	1.0	mA
Output Noise Voltage, VN	10 Hz ≤ f ≤ 10	0 kHz, \	/ _{IN} = -19V			75	960		75	960	μV
Ripple Rejection, $\triangle V_{IN} / \triangle V_{OUT}$	f = 120 Hz		I _O ≤ I _{MAX}		58	72		56	72		dB
	$-15V \leq V_{IN} \leq -15V$	-25V	I _O ≪ 0.5 I _{MAX}	•	58	72		56	72		dB
Dropout Voltage	IOUT = IMAX		1			1.1	2.3		1.1	2.3	v
Output Resistance, RO	f = 1 kHz			-		8			8		mΩ
Short-Circuit Current, I _{SC}	V _{IN} = -35V					0.6	1.2		0.6	1.2	Α
Peak Output Current, Ipk	V _{IN} = -19V			1		2.4	3.3		2.4	3.3	Α
Average TC of VOUT	I _O = 5 mA					0.5	4.8	0.5	4.8	mV/°C	
Input Voltage Required to Maintain Line Regulation, V _{IN}	I _O ≤ I _{MAX}				-14.5			-14.5			V

IP120A, IP120, LM120, IP7900A Series, IP7900 Series

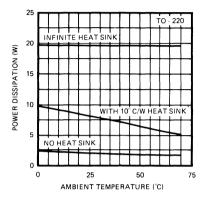
1.5 AMP, 3-TERMINAL NEGATIVE REGULATORS

ELECTRICAL CHARACTERISTICS (CONT.)

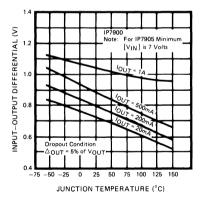

						IP7915A P120A-1					
Parameter	Test Condition	s			Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	I _O = 500 mA, \	/IN = -2	3V		-14.85	-15	-15.15	-14.7	-15	-15.3	V
	$P_{D} \leqslant P_{MAX}$, 5n -17.9V $\leqslant V_{IN} \leqslant$		≤IMAX	•	-14.55		-15.45	-14.4		-15.6	v
Low Supply, VO	$P_D \leqslant P_{MAX}$, 5n -17.5V $\leqslant V_{IN} \leqslant$	nA ≼ IO ⊊ -30V	≤ I _{MAX}		-14.25		-15.45	-14.25		-15.75	v
Line Regulation, $ riangle V_0$	$I_{O} = 0.5 I_{MAX}$	-17.5V	\leq V _{IN} \leq -30V			4	22		4	150	mV
			\leq V _{IN} \leq -30V	•		4	22		4	250	mV
	I _O ≤ I _{MAX}	-20V	$\leq V_{IN} \leq -26V$			2	10		2	75	mV
				•		5	30		5	150	mV
Load Regulation, $\triangle V_O$	$V_{\rm IN} = -23V$	5 mA	≤ I _O ≤ 1.5A			12	35		12	80	mV
		250m/	$A \leq I_{O} \leq 750 \text{mA}$			4	21		4	75	mV
	$5 \text{ mA} \leq I_{O} \leq I$	MAX, VII	v = -23V	•		9	75		9	150	mV
Quiescent Current, IQ	I _O ≤ 0.5 I _{MAX}					1	1.9		1	1.9	mA
	V _{IN} = -23V			•		1	2		1	2.0	mA
Quiescent Current Change, $\triangle I_Q$	5 mA ≤ I _O ≤ I	МАХ				0.2	0.4		0.2	0.4	mA
	V _{IN} = -23V			•		0.2	0.5		0.2	0.5	mA
	$I_{O} \leq 0.5 I_{MAX}$	-17.5V	≤ V _{IN} ≤ -30V			0.1	0.4		0.1	0.4	mA
	I _O ≤ 0.5 I _{MAX} ,	-18.5V	≤ V _{IN} ≤ -30V	٠		0.1	0.5		0.1	1.0	mA
Output Noise Voltage, V _N	10 Hz ≤ f ≤ 10	00 kHz, \	/ _{IN} = -23V			90	1200		90	1200	μV
Ripple Rejection, $\triangle V_{IN} / \triangle V_{OUT}$	f = 120 Hz		I _O ≤ I _{MAX}		56	70		54	70		dB
	-18.5V ≤ V _{IN} ≤	-28.5V	I _O	•	56	70		54	70		dB
Dropout Voltage	IOUT = IMAX					1.1	2.3		1.1	2.3	v
Output Resistance, R _O	f = 1 kHz					9			9		mΩ
Short-Circuit Current, I _{SC}	V _{IN} = -35V					0.6	1.2		0.6	1.2	Α
Peak Output Current, Ipk	V _{IN} = -23V					2.4	3.3		2.4	3.3	A
Average TC of VOUT	$I_{O} = 5 \text{ mA}$			1		0.6	6.0		0.6	6.0	mV/°C
Input Voltage Required to Maintain Line Regulation, V _{IN}	I _O ≤ I _{MAX}				-17.5			-17.5			v

The \bullet denotes the specifications which apply over the full operating temperature range, all others apply at T_j = 25°C unless otherwise specified.

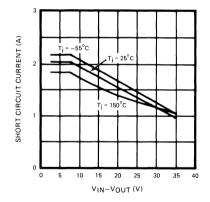
Note 2. All characteristics are measured with a capacitor across the input of 2.2 µ F and a capacitor across the output of 0.1 µ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.



IP120A, IP120, LM120, IP7900A Series, IP7900 Series 1.5 AMP, 3-TERMINAL NEGATIVE REGULATORS TYPICAL PERFORMANCE CHARACTERISTICS



Maximum Average Power Dissipation


Maximum Average Power Dissipation

Dropout Voltage

Peak Output Current

Seagate Microelectronics Limited

0.5 AMP, 3-TERMINAL NEGATIVE REGULATORS

IP79M00 Series, IP79M00A Series, IP120M Series, IP120MA Series

DESCRIPTION

The IP79M00/A series of voltage regulators are fixed output regulators intended for local, on-card voltage regulation. These devices are available in -5, -12, and -15 volt options and are capable of delivering in excess of 500 mA over temperature. The A-suffix devices are fully specified at 0.5A, provide 0.01%/V line regulation, 0.3%/A load regulation, and $\pm 1\%$ output voltage tolerance at room temperature. Protection features include safe operating area, current limiting and thermal shutdown. This series of regulators is available in TO-39 and Ceramic DIP packages.

FEATURES

- 1% output voltage tolerance
- -5, -12 and -15V fixed output voltages available
- 0.01%/V line regulation
- 0.3%/A load regulation
- Thermal overload protection
- Short-circuit current limit protection
- Safe operating area protection
- Start-up with negative voltage (± supplies) on output

CONNECTIONS	
(Bottom View)	(Top View)
	GROUND 1 B NC NC 2 7 NC NC 3 6 VIN VOUT 4 5 NC
ТО-39	8 Pin J Package

IP79M00 Series, IP79M00A Series, IP120M Series, IP120MA Series

0.5 AMP, 3-TERMINAL NEGATIVE REGULATORS

ABSOLUTE MAXIMUM RATINGS

Input Voltage ($V_0 = -5V, -12V, -15V$) -35V

Internal Power Dissipation (Note 1)

Internally Limited

-55°C to +150°C -55°C to +150°C

Operating Temperature Range (T IP79M00A, IP79M00 – IP120MA, IP120M – 8 Pin Ceramic DIP Package J150°CStorage Temperature Range-65°C to +150°CLead Temperature (Soldering, 10 sec.)300°C

150°C

Maximum Junction Temperature

H Package TO-39

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS (NOTE 2)

				IP79M05A IP120MA-5			IP79M05 IP120M-5			
Parameter	Test Condition	ons		Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	I _O = 100mA,	V _{IN} = -10V		-4.95	-5	-5.05	-4.80	-5	-5.20	v
	P _D ≤P _{MAX} , -25V≤V _{IN} ≤-	5mA≤l _O ≤350mA 7V	•	-4.85		-5.15	-4.75		-5.25	v
Line Regulation, ΔV_O	I _O = 350mA	$-25V \le V_{\rm IN} \le -7V$			3	10			50	mV
		-18V ≤ V _{IN} < -8V	•		3	10			30	mV
Load Regulation, ΔV_{O}	5mA ≤ l _O ≤ 50	00mA, V _{IN} = -10V	•		5	50			100	mV
Quiescent Current, IQ	IO = 350mA,	VIN = -10V	•		1	2		1	2	mA
Quiescent Current Change, ΔI_Q	5mA ≤ lo ≤ 50	00mA, V _{IN} = -10V	•		0.1	0.4			0.4	mA
	-25V ≤ V _{IN} ≤ -	-8V, I _O = 200mA	•		0.1	0.4			0.4	mA
Output Noise Voltage, Vn	10Hz≤f≤100)kHz	1		40	400			400	μV
Ripple Rejection, ΔVIN/ΔVOUT	I _O = 300mA, 1	= 120Hz		65	80		54			dB
	-18V≤V _{IN} ≤	-8V								
	I _O = 100mA, 1	= 120Hz	•	65	80		54			dB
	-18V ≤ V _{IN} ≤	-8V								
Dropout Voltage	I _O = 350mA				1.1	2.3			2.3	v
Short Circuit Current, ISC	V _{IN} = -35V				300	600		300	600	mA
Peak Output Current, IpK	V _{IN} = -10V		1	0.5	1.0	1.4	0.5	1.0	1.6	A
Average Temperature Coefficient of Output Voltage	I _O = 5mA				0.5	2.0		0.5		mV/°C

The \bullet denotes the specifications which apply over the full operating temperature range, all others apply at T_j = 25°C unless otherwise specified.

- Note 1: Thermal resistance of the TO-39 package (H) is typically 20°C/W junction to case and 120°C/W case to ambient. Although power dissipation is internally limited, these specifications apply for up to 2W for the TO-39 package, and 1.05W for the J package. Thermal resistance of the J package is typically 119°C/W junction to ambient. (Derate at 8.4mW/°C for ambient temperatures above 25°C).
- Note 2: All characteristics are measured with a capacitor across the input of 0.22µ F and a capacitor across the output of 0.1µ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10ms, duty cycle ≤ 5%. Output voltage changes due to changes in internal temperature must be taken into account separately.

IP79M00 Series, IP79M00A Series, IP120M Series, IP120MA Series

0.5 AMP, 3-TERMINAL NEGATIVE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

	1			IP79M1	2A/IP12	20MA-12	IP 79N	112/IP12	0M-12	
Parameter	Test Conditi	ion s		Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	I _O = 100mA,	V _{IN} = -19V		-11.88	-12	-12.12	-11.50	-12	-12.50	v
	P _D ≤P _{MAX} , -30V≤V _{IN} ≤	5mA≤I _O ≤350mA -14.5V	•	-11.64		-12.36	-11.40		-12.60	v
Line Regulation, ΔV_O	I _O = 350mA	-30V ≤ V _{IN} ≤ -14.5V			4	18			80	mV
		-25V≤V _{IN} ≤-15V	•		4	18			50	mV
Load Regulation, ΔV_O	5mA≤1 ₀ ≤5	00mA, V _{IN} = -19V	•		10	60			240	mV
Quiescent Current, IQ	I _O = 350mA,	V _{IN} = -19V	•		1.5	3		1.5	3	mA
Quiescent Current Change, ΔI_Q	5mA≤l _O ≤5	00mA, V _{IN} = -19V	•		0.1	0.4			0.4	mA
	-30V ≤ V _{IN} ≤	-14.5V, I _O = 200mA	•		0.1	0.4			0.4	mA
Output Noise Voltage, Vn	10Hz≤f≤10	0kHz			96	960			960	μV
Ripple Rejection, $\Delta V_{IN} / \Delta V_{OUT}$	IO = 300mA,			58	72		54			dB
	$-25V \le V_N \le$ $I_O = 100 \text{ mA},$ $-25V \le V_{IN} \le$	f = 120Hz	•	58	72		54			dB
Dropout Voltage	I _O = 350mA		<u> </u>	1	1.1	2.3			2.3	v
Short Circuit Current, ISC	V _{IN} = -35V	MAT			300	600		300	600	mA
Peak Output Current, IpK	VIN = -19V			0.5	1.0	1.4	0.5	1.0	1.6	A
Average Temperature Coefficient of Output Voltage	I _O = 5mA	+ ···· · · · · · · · · · · · · · · · ·			1.2	4.8		1.2		mV/⁰C

				IP79M1	5A/IP12	20MA-15	IP79M	15/IP12	OM-15	
Parameter	Test Conditi	ion s		Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	l _O = 100mA,	V _{IN} = -23V		-14.85	-15	-15.15	-14.40	-15	-15.60	V
	P _D ≤P _{MAX} , -30V≤V _{IN} ≤	5mA≤l _O ≤350mA -17.5V	•	-14.55		-15.45	-14.25		-15.75	v
Line Regulation, ΔV_O	I _O = 350mA	-30V≤V _{IN} ≤-17.5V			4	22			80	mV
		-28V≤V _{IN} ≤-18V	•		4	22			50	mV
Load Regulation, ∆VO	5mA≤I _O ≤5	00mA, V _{IN} = -23V	•		12	75			240	mV
Quiescent Current, IQ	I _O = 350mA,	V _{IN} = -23V	•		1.5	3		1.5	3	mA
Quiescent Current Change, ΔI_Q	5mA≤lo≤5	00mA, V _{IN} = -23V	•		0.1	0.4			0.4	mA
	-30V ≤ V _{IN} ≤	-17.5V, I _O = 200mA	•		0.1	0.4			0.4	mA
Output Noise Voltage, Vn	10Hz≤f≤10	00kHz			120	1200			1200	μV
Ripple Rejection, $\Delta V_{IN} / \Delta V_{OUT}$	I _O = 300mA, -28.5V ≤ V _{IN}			57	70		54			dB
	I _O = 100mA,	f = 120Hz	•	57	70		54			dB
	-28.5V ≤ V _{IN}	≤-18.5V								1
Dropout Voltage	1 _O = 350mA		1		1.1	2.3			2.3	V
Short Circuit Current, ISC	V _{IN} = -35V				300	600		300	600	mA
Peak Output Current, IpK	V _{IN} = -23V			0.5	1.0	1.4	0.5	1.0	1.6	A
Average Temperature Coefficient of Output Voltage	I _O = 5mA				1.5	6.0		1.5		mV/⁰C

IP79M00 Series, IP79M00A Series, IP120M Series, IP120MA Series

0.5 AMP, 3-TERMINAL NEGATIVE REGULATORS

ORDER INFORMATION

Part Number IP79M05AH IP79M05H IP79M12AH IP79M12H IP79M15AH IP79M15H	Temperature Range - 55°C to + 150°C - 55°C to + 150°C	Package TO-39 TO-39 TO-39 TO-39 TO-39 TO-39
IP79M05AJ IP79M05J IP79M12AJ IP79M12J IP79M15AJ IP79M15J	- 55°C to + 150°C - 55°C to + 150°C	8 Pin Ceramic DIP 8 Pin Ceramic DIP
IP120MAH-5 IP120MH-5 IP120MAH-12 IP120MH-12 IP120MAH-15 IP120MH-15 IP120MH-15	- 55°C to + 150°C - 55°C to + 150°C	TO-39 TO-39 TO-39 TO-39 TO-39 TO-39 TO-39

Seagate Microelectronics Limited

3 AMP, 3-TERMINAL POSITIVE REGULATORS

IP123A, IP323A, IP123, LM123

DESCRIPTION

The IP123A/IP323A/LM123/IP123 series of three terminal, three amp regulators is available with several fixed output voltages and three package options, greatly expanding the versatility of this product line. The A-suffix devices are trimmed to $\pm 1\%$ tolerance and provide 0.04%/V line regulation and 0.3%/A load regulation. Protection features include safe operating area current limiting and thermal shutdown. The entire series of regulators is available in the metal TO-3 power package and the IP123A series is also available in the TO-257 hermetic power package.

FEATURES

- 1% Tolerance
- 5, 12 and 15V fixed output voltages available
- 0.04%/V line regulation
- 0.3%/A load regulation
- Thermal overload protection
- Short-circuit current limit protection
- Safe operating area protection
- Start-up with negative voltage (± supplies) on output
- Selection of TO-3, TO-218, TO-220 or TO-257 packages

3 AMP, 3-TERMINAL POSITIVE REGULATORS

ABSOLUTE MAXIMUM RATINGS

Input Voltage ($V_{O} = 5V, 12V, 15V$) 35V

Storage Temperature Range – 65°C to 150°C

IP123A, IP323A, IP123, LM123

Internal Power Dissipation Internally Limited

Lead Temperature (Soldering, 10 sec.) 300°C

 Operating Temperature Range (Tj)

 IP123A, LM123, IP123
 -55°C to +150°C

 IP323A
 0°C to +125°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS

 $\mathsf{P}_{\mathsf{MAX}}$ = 30W for K (TO-3), V (TO-218) and G (TO-257) Packages $\mathsf{P}_{\mathsf{MAX}}$ = 25W for T (TO-220) Packages

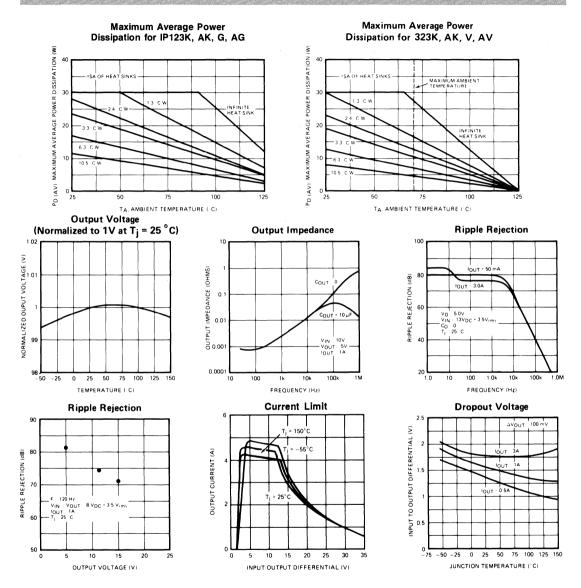
				IP123A- IP323A-			LM123-5 IP123-5		
Parameter	Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	l _O = 1A, V _{IN} = 7.5V		4.95	5	5.05	4.8	5	5.2	V
	$5mA \le IO \le 3A$, $POUT \le PMAX$	•	4.85		5.15	4.75		5.25	V
· · · · · · · · · · · · · · · · · · ·	8V ≤ V _{IN} ≤ 15V								
Line Regulation, ΔV_O	$I_{O} = 1A, 7.5V \le V_{IN} \le 15V$	•			15			25	mV
Load Regulation, ΔV_{O}	$5mA \le I_O \le 3A, V_{IN} = 8V$	•			50			100	mV
Quiescent Current, IQ	$5mA \le I_O \le 3A, V_{IN} = 8V$	•			10			14	mA
Quiescent Current Change, ΔI_Q	$5mA \le I_O \le 3A, V_{IN} = 8V$	•			1.5			3.0	mA
	$I_0 = 1A, 7.5V \le V_{IN} \le 15V$	•			1.5			3.0	mA
Output Noise Voltage, VN	10Hz≤f≤100kHz			40			40		μVrms
Ripple Rejection, $\Delta V_{IN} / \Delta V_{OUT}$	f = 120Hz, I _O = 1A		66	80		60	80		dB
	8V≤V _{IN} ≤18V	•	60			56			dB
Short-Circuit Current, ISC	V _{IN} = 15V			3			3		A
	V _{IN} = 7.5V			4			4		A
Long - Term Stability				1	35			35	mV
Thermal Resistance,	K, V Package		1	1.5	2.5	1	2	1	°C/W
Junction to Case, OJC	G, T Package			3	4	1	4		°C/W

The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified.

Note: All characteristics are measured with a capacitor across the input of 0.22 μF and a capacitor across the output of 0.1 μF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

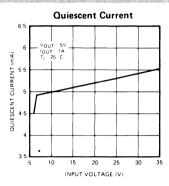
IP123A, IP323A, IP123, LM123

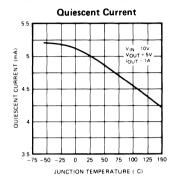
3 AMP, 3-TERMINAL POSITIVE REGULATORS

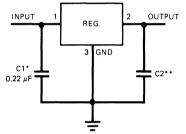

ELECTRICAL CHARACTERISTICS (CONT.)

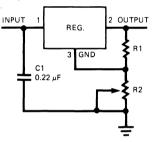
				P123A-1 P323A-1			LM123-1: IP123-12		
Parameter	Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	I _O = 1A, V _{IN} = 14.8V		11.88	12	12.12	11.5	12	12.5	V
	5mA≤I _O ≤3A, P _{OUT} ≤P _{MAX} 15.4V≤V _{IN} ≤22V	•	11.64		12.36	11.4		12.6	V
Line Regulation, ΔV_O	I _O = 1A, 14.8V ≤ V _{IN} ≤ 22V	•			36			60	mV
Load Regulation, ∆VO	$5mA \le I_O \le 3A, V_{IN} = 15.4V$	•			75			150	mV
Quiescent Current, IQ	$5mA \le I_O \le 3A$, $V_{IN} = 15.4V$	•			10			14	mA
Quiescent Current Change, ΔI_Q	5mA ≤ I _O ≤ 3A, V _{IN} = 15.4V	•			1.5			3.0	mA
	$I_0 = 1A, 14.8V \le V_{IN} \le 22V$	•			1.5			3.0	mA
Output Noise Voltage, VN	10Hz≤f≤100kHz			75			75		μV _{rms}
Ripple Rejection, $\Delta V_{IN} / \Delta V_{OUT}$	f = 120Hz, I _O = 1A,		58	72		52	72		dB
	15.4V ≤ V _{IN} ≤ 25.4V	•	52			48			dB
Short-Circuit Current, ISC	V _{IN} = 15.4V			3			3		A
Peak Output Current, Ipk	V _{IN} = 15.4V			4			4		A
Long -Term Stability					84			84	mV
Thermal Resistance,	K, V Package			1.5	2.5		2		°C/W
Junction to Case, OJC	G, T Package			3	4		4		°C/W

			IP123A-15 IP323A-15			I			
Parameter	Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	I _O = 1A, V _{IN} = 17.9V		14.85	15	15.15	14.4	15	15.6	V
	$5mA \le IO \le 3A, POUT \le PMAX$	•	14.55		15.45	14.25		15.75	V
	18.5V≤V _{IN} ≤25V								
Line Regulation, ΔV_O	I _O = 1A, 17.9V ≤ V _{IN} ≤ 25V	•			45			75	mV
Load Regulation, ΔVO	$5mA \le I_O \le 3A, V_{IN} = 18.5V$	•			75			150	mV
Quiescent Current, IQ	$5mA \le I_O \le 3A, V_{IN} = 18.5V$	•			10			14	mA
Quiescent Current Change, ΔI_Q	$5mA \le I_O \le 3A, V_{IN} = 18.5V$	•			1.5			3.0	mA
	I _O = 1A, 17.9V ≤ V _{IN} ≤ 25V	•			1.5			3.0	mA
Output Noise Voltage, VN	10Hz≤f≤100kHz			90			90		μV _{rm}
Ripple Rejection, ΔVIN/ΔVOUT	f = 120Hz, I _O = 1A		56	70		50	70		dB
	18.5V≤V _{IN} ≤28.5V	•	50			46			dB
Short-Circuit Current, ISC	V _{IN} = 18.5V			2.5			2.5		A
Peak Output Current, Ipk	V _{IN} = 18.5V			4			4		A
Long -Term Stability					105			105	mV
Thermal Resistance,	K, V Package		1	1.5	2.5		2	1	°C/W
Junction to Case, OJC	G, T Package			3	4		4		°C/W

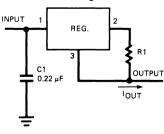



IP123A, IP323A, IP123, LM123 **3 AMP, 3-TERMINAL POSITIVE REGULATORS** TYPICAL PERFORMANCE CHARACTERISTICS


IP123A, IP323A, IP123, LM123 **3 AMP, 3-TERMINAL POSITIVE REGULATORS** TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)


APPLICATIONS INFORMATION

Fixed Output Regulator


- * Required if the regulator is located far from the power supply filter.
- ** Although no output capacitor is needed for stability, it does help transient response. (If needed, use 0.1 μF, ceramic disc.)

Adjustable Output Regulator

$$\begin{split} & \text{VOUT} = \text{V}_{REG} + (\text{V}_{REG}/\text{R}_1 + \text{I}_{Q}) \text{ R}_2 \\ & \text{V}_{REG}/\text{R}_1 > 3 \text{ I}_Q, \text{ load regulation } (\text{L}_r) \approx \\ & \left[\frac{(\text{R}_1 + \text{R}_2)}{\text{R}_1}\right] (\text{L}_R \text{ of Regulator}) \end{split}$$

Current Regulator

1.5 AMP POSITIVE ADJUSTABLE REGULATORS

ORDER INFORMATION

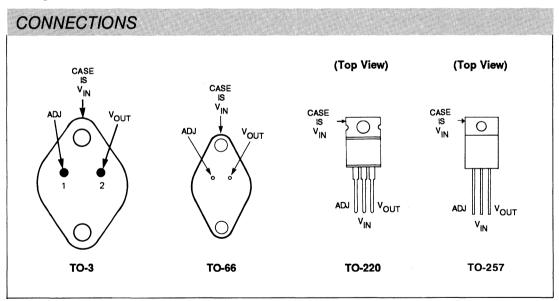
Part Number	Temperature Range	Package
IP123AK-5 LM123K	− 55°C to + 150°C − 55°C to + 150°C	TO-3 TO-3
IP123K-5	-55°C to +150°C	TO-3
IP323AK-5	0°C to +125°C	TO-3
IP123AK-12	– 55°c to + 150°C	TO-3
IP123K-12	– 55°C to + 150°C	TO-3
IP323AK-12	0°C to +125°C	TO-3
IP123AK-15	– 55°C to + 150°C	TO-3
IP123K-15	– 55°C to + 150°C	TO-3
IP323AK-15	0°C to +125°C	TO-3
IP323AV-5	0°C to +125°C	TP-218
IP323AV-12	0°C to +125°C	TO-218
IP323AV-15	0°C to +125°C	TO-218
IP323AT-5	0°C to +125°C	TO-220
IP232AT-12	0°C to +125°C	TO-220
IP323AT-15	0°C to +125°C	TO-220
IP123G-05	– 55°C to + 150°C	TO-257
IP123AG-05	– 55°C to + 150°C	TO-257
IP123G-12	– 55°C to + 150°C	TO-257
IP123AG-12	– 55°C to + 150°C	TO-257
IP123G-15	– 55°C to + 150°C	TO-257
IP123AG-15	– 55°C to + 150°C	TO-257

௸

Seagate Microelectronics Limited

1.5A, 3-TERMINAL NEGATIVE ADJUSTABLE REGULATORS

IP137A, IP137, LM137, IP137AHV, IP137HV, LM137HV, IP337AHV, IP337HV, LM337HV


DESCRIPTION

The IP137A family of negative adjustable regulators will deliver up to 1.5 amps output current over an output voltage range of -1.2V to -47V. Seagate Microelectronics has made significant improvements in these regulators compared to previous devices, such as better line and load regulation, and a maximum output voltage error of 1%.

Internal current and power limiting coupled with true thermal limiting prevents device damage due to overloads or shorts, even if the regulator is not fastened to a heat sink.

FEATURES

- 1% Initial voltage tolerance
- 0.01%/V line regulation
- 0.5%/A load regulation
- 0.02%/W thermal regulation

IP137A, IP137, LM137, IP137AHV, IP137HV, LM137HV, IP337AHV, IP337HV, LM337HV

1.5A. 3-TERMINAL NEGATIVE ADJUSTABLE REGULATORS

ABSOLUTE MAXIMUM RATINGS

Power Dissipation Internally Limited Input to output voltage differential 40V Input to output voltage differential (HV) 50V

Operating	Junction	Temperature	Range
-----------	----------	-------------	-------

+ 125°C

IP137AHV, IP137A, IP137	– 55°Č to + 150°C
LM137HV, LM137	- 55°C to + 150°C
IP337AHV, IP337HV	0°C to +125°C
I M337HV	0°C to +125°C

Lead Temperature (Soldering, 10 sec.) + 300°C

Storage Temperature Range

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS (NOTES 1 AND 3)

-65°C to +150°C

					IP137A IP137AHV						
Parameter	Test Conditions				Min Typ		Max	Min	Тур	Max	Units
Reference Voltage, V _{REF}	$I_{OUT} = 10 \text{ mA}$	I _{OUT} = 10 mA			-1.238	-1.250	-1.262	-1.225	-1.250	-1.275	V
	$3V \leq (V_{IN}-V_{OUT}) \leq V_{10}$ mA $\leq I_{OUT} \leq I_{M}$	VMAX 1AX, I	<pre>C ≤ PMAX</pre>	•	-1.220	-1.250	-1.280	-1.200	-1.250	-1.300	V
Line Regulation, $\triangle V_{OUT} / \triangle V_{IN}$	$3V \leq (V_{IN} - V_{OUT}) \leq$	$3V \leq (V_{IN} V_{OUT}) \leq V_{MAX}$				0.005	0.010		0.010	0.020	%/V
	(See Note 2)			•		0.010	0.030		0.020	0.050	%/V
Load Regulation, $ riangle V_{OUT} / riangle I_{OUT}$	$10 \text{ mA} \leq I_{OUT} \leq I_{M}$	1AX	$(V_{O}) \leqslant 5V$			5	25		15	25	mV
	(See Note 2 and 3)	. [V _O)			0.1	0.5		0.3	0.5	%
		1	V _O)	•		10	50		20	50	mV
		-	V _O) ≤ 5V	•		0.2	1.0		0.3	1.0	%
Thermal Regulation	T _A = 25°C, 10 msec	p Puls	e			0.002	0.02		0.002	0.02	%/W
Ripple Rejection	$V_{OUT} = -10V,$	C _{AD}	J = 0		60	66			60		dB
	f = 120Hz	CAD	μ = 10 μ F	•	70	80		66	77		dB
Adjust Pin Current, I _{ADJ}	· ·	· · · · · · · · · · · · · · · · · · ·		•		65	100		65	100	μA
Adjust Pin Current	10 mA ≤ I _{OUT} ≤ I _M	10 mA \leq I _{OUT} \leq I _{MAX} 3V \leq (V _{IN} - V _{OUT}) \leq 40V		•		0.2	2		0.5	5	μA
Change, $ riangle I_{ADJ}$				•		1.0	5		2	5	μA
	3V ≤ (V _{IN} - V _{OUT}) ≤		7, HV series	•		2.0	6			6	μΑ
Minimum Load Current, IMIN	$ (V_{\text{IN}} - V_{\text{OUT}}) \leqslant 40V \\ (V_{\text{IN}} - V_{\text{OUT}}) \leqslant 10V $	$(V_{IN} - V_{OUT}) \leq 40V$ $(V_{IN} - V_{OUT}) \leq 10V$		•		2.5 1.2	5.0 3.0		2.5 1.2	5.0 3.0	mA mA
Current Limit, I _{CL}	(V _{IN} - V _{OUT}) ≤ 15V			•	1.5	2.2	3.2	1.5	2.2	3.2	A
	$(V_{IN} - V_{OUT}) = 40V$	$(V_{IN} - V_{OUT}) = 40V$		•	0.24	0.4	1.0	0.24	0.4		A
	$(V_{IN} - V_{OUT}) = 50V$	(V _{IN} - V _{OUT}) = 50V HV Series			0.2	0.4	0.8	0.2	0.4	0.8	A
Temperature Stability, △V _{OUT} /△TEMP				•		0.6	1.5		0.6		%
Long Term Stability, △V _{OUT} /△TIME	$T_{A} = 125^{\circ}C, 1000 H$	T _A = 125°C, 1000 Hrs.				0.3	1		0.3	1	%
RMS Output Noise (% of V _{OUT}), e _n	$T_A = 25^{\circ}C, 10Hz \leq$	$T_A = 25^{\circ}C$, 10Hz $\leq f \leq 10$ kHz				0.003			0.003		%
Thermal Resistance	K Package	K Package				2.3	3		2.3	3	°C/W
Junction to Case, e ic	R Package	R Package				5	7		5	7	°C/W
- 10	G Package	G Package				3	5		3	5	°C/W

IP137A, IP137, LM137, IP137AHV, IP137HV, LM137HV, IP337AHV, IP337HV, LM337HV

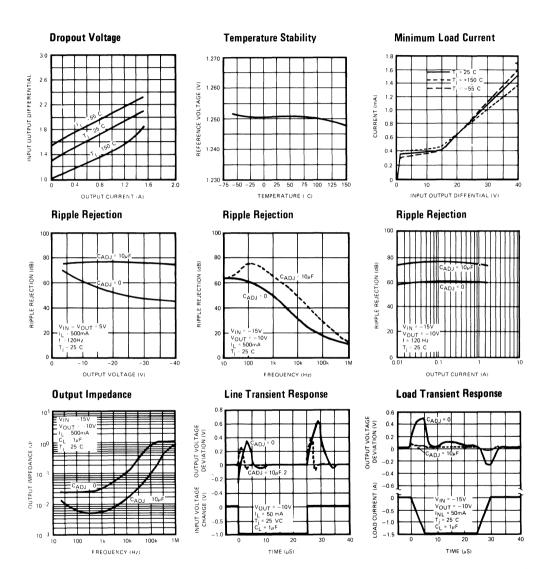
1.5A, 3-TERMINAL NEGATIVE ADJUSTABLE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

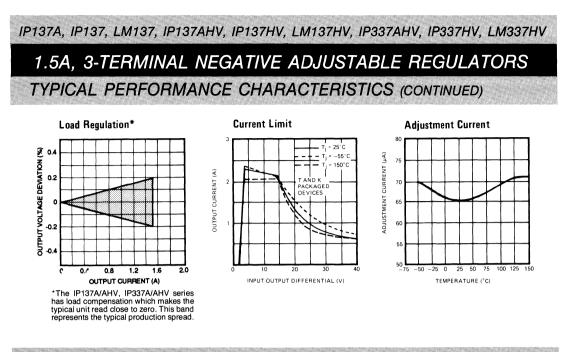
		IP337AHV		IP337HV LM337HV						
Parameter	Test Conditions				Тур	Max	Min	Тур	Max	Units
Reference Voltage, VREF	Reference Voltage, V _{REF} I _{OUT} = 10 mA			-1.238	-1.250	-1.262	-1.213	-1.250	-1.287	V
	$3V \leq (V_{IN}-V_{OUT}) \leq 10 \text{ mA} \leq I_{OUT} \leq I_{M}$	V _{MAX} _{AX} , P ≼P _{MA}	< •	-1.220	-1.250	-1.280	-1.200	-1.250	-1.300	V
Line Regulation, $\triangle V_{OUT} / \triangle V_{IN}$	$3V \leq (V_{IN}-V_{OUT}) \leq$	VMAX			0.005	0.010		0.010	0.040	%/V
	(See Note 2)		•		0.010	0.03		0.020	0.070	%/V
Load Regulation, $ riangle V_{OUT}/ riangle I_{OUT}$	10 mA ≤I _{OUT} ≤I _{MA}	10 mA $\leq I_{OUT} \leq I_{MAX}$ (V _O) $\leq 5V$			5	25		15	50	mV
	(See Note 2 and 3)	(V _O) ≤ 5	/		0.1	0.5		0.3	1.0	%
		(V _O) ≤ 5	/ •		10	50		20	70	mV
	-	(V _O) ≤ 5	/ •		0.2	1.0		0.3	1.5	%
Thermal Regulation	$T_A = 25^{\circ}C$, 10 msec	5°C, 10 msec Pulse			0.002	0.020		0.003	0.04	%/W
Ripple Rejection	V _{OUT} = -10V,	$C_{ADJ} = 0$		60	66			60		dB
	f = 120Hz	C _{ADJ} = 10 µ F		70	80		66	77		dB
Adjust Pin Current, I _{ADJ}			•		65	100		65	100	μΑ
Adjust Pin Current		$\begin{array}{l} 10 \text{ mA} \leqslant I_{OUT} \leqslant I_{MAX} \\ 3V \leqslant (V_{IN} \cdot V_{OUT}) \leqslant 40V \\ 3V \leqslant (V_{IN} \cdot V_{OUT}) \leqslant 50V, \text{HV series} \end{array}$			0.2	2		0.5	5	μA
Change \I _{ADJ}					1.0 2.0	5 6		2 3	5 6	A ب A ب
Minimum Load Current, IMIN	$(V_{IN} - V_{OUT}) \leq 40V$ $(V_{IN} - V_{OUT}) \leq 10V$				2.5 1.2	5 3.0		2.5 1	10 6	mA mA
Current Limit, I _{CL}	(V _{IN} - V _{OUT}) ≤ 15V			1.5	2.2	3.5	1.5	2.2	3.5	A
	$(V_{IN} - V_{OUT}) = 40V$			0.24	0.4	1.0	0.15	0.4		A
	(V _{IN} - V _{OUT}) = 50V HV Series			0.2	0.4	0.8	0.1	0.4	8.0	A
Temperature Stability, △V _{OUT} /△TEMP			•		0.6	1.5		0.6		%
Long Term Stability, △V _{OUT} /△TIME	$T_{A} = 125^{\circ}C, 1000 Hr$	T _A = 125°C, 1000 Hrs.			0.3	1		0.3	1	%
RMS Output Noise (% of V _{OUT}), e _n	$T_A = 25^{\circ}C$, 10Hz \leq	$T_A = 25^{\circ}C$, 10Hz $\leq f \leq 10$ kHz			0.003			0.003		%
Thermal Resistance	K Package	K Package			2.3	3		2.3	3	°C/W
Junction to Case, 9 jc	R Package	R Package			5	7		5	7	°C/W
<u> </u>	T Package				4	5		4		
	G Package			1	3	5		3	5	°C/W

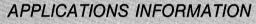
The • denotes the specifications which apply over the full operating temperature range, all others apply at T_i = 25°C unless otherwise specified.

Note 1: Unless otherwise specified, (V_{IN} - V_{OUT}) = 5V, and I_{OUT} = 0.5A for the TO-3 (K), TO-257 (G), TO-66 (R), and TO-220 (T) Packages. Although power dissipation is internally limited, these specifications apply for dissipations up to 20W for the TO-3, TO-66, TO-220 and TO-257. I_{Max} = 1.5A for the TO-3, TO-66 TO-220 and TO-257.


Note 2: Regulation is measured at constant junction temperature, using pulse testing at a low duty cycle. Changes in output voltage due to heating effects are covered under thermal regulation specifications. Load regulation is measured at a point ½" from the bottom of the package for the TO-3 and TO-66, at the junction of the wide and narrow portion of the output lead for the TO-220, and ½" below the base of the package on the output pin of the TO-257.

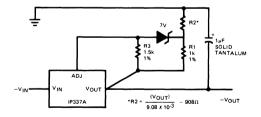
V_{MAX} = 50V for IP137AHV, IP337AHV, LM137HV, LM337HV, IP137HV, IP337HV.

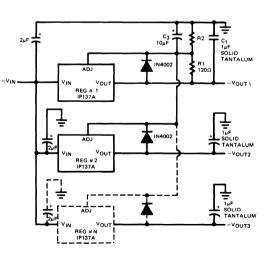



Note 3: V_{MAX} = 40V, IP137A, IP337A, LM137, LM337, IP137, IP337.

IP137A, IP137, LM137, IP137AHV, IP137HV, LM137HV, IP337AHV, IP337HV, LM337HV 1.5A, 3-TERMINAL NEGATIVE ADJUSTABLE REGULATORS TYPICAL PERFORMANCE CHARACTERISTICS

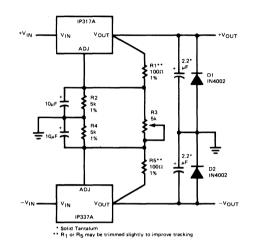
௸

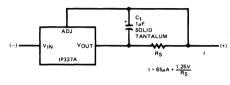



High Stability Regulator:

The output stability, load regulation, line regulation, thermal regulation, temperature drift, long term drift, and noise, can be improved by a factor of 6.6 over the standard regulator configuration. This assumes a zener has 20PPM/°C maximum drift and about 10 times lower noise than the regulator.

Multiple Tracking Regulators:


In the application shown below, regulator#2 to "N" will track regulator #1 to within ± 24 mV initially, and to ± 60 mV over all load, line, and temperature conditions. If any regulator output is shorted to ground, all other outputs will drop to -2V. Load regulation of regulators 2 to "N" will be improved by V_{OUT}/1.25V compared to a standard regulator, so regulator#1 should be the one which has the lowest load current.



IP137A, IP137, LM137, IP137AHV, IP137HV, LM137HV, IP337AHV, IP337HV, LM337HV **1.5A, 3-TERMINAL NEGATIVE ADJUSTABLE REGULATORS** APPLICATION INFORMATION (CONTINUED)

 $(0.8\Omega \leq \mathsf{R}_{S} \leq 250\Omega)$

Dual Tracking Supply ±1.25V to ±20V

Current Regulator

ORDER INFORMATION

Part Number

IP137AK/IP137AHVK/LM137K/LM137HVK/ IP137K/IP137HVK IP137AR/IP137AHVR/IP137R/IP137HVR IP137AG/IP137AHVG/IP137G/IP137HVG IP337AHVK/LM337HVK IP337AHVT/LM337HVT

Temperature Range

Package

 - 55°C to
 + 150°C
 TO-3

 - 55°C to
 + 150°C
 TO-66

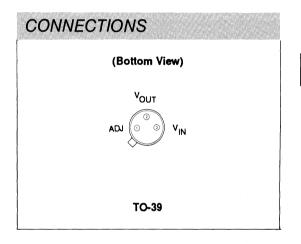
 - 55°C to
 + 150°C
 TO-220 style)

 0°C to
 + 125°C
 TO-3

 0°C to
 + 125°C
 TO-220

0.5A, 3-TERMINAL NEGATIVE ADJUSTABLE REGULATORS

IP137MAHV, IP137MHV, IP137MA, IP137M


DESCRIPTION

The IP137M family of negative adjustable regulators will deliver up to 0.5 amps output current over an output voltage range of -1.2V to -47V. Seagate Microelectronics has made significant improvements in these regulators compared to previous devices, such as better line and load regulation, and a maximum output voltage error of 1%.

Internal current and power limiting coupled with true thermal limiting prevents device damage due to overloads or shorts, even if the regulator is not fastened to a heat sink.

FEATURES

- 1% Initial voltage tolerance
- 0.01%/V line regulation
- 0.5%/A load regulation
- 0.02%/W thermal regulation

ABSOLUTE MAXIMUM RATINGS

Power Dissipation	Internally	/ Limited
Input to output voltage different		40V
Input to output voltage different	50V	
Storage Temperature Range	-65°C to	+ 150°C
Lead Temperature (Soldering,	10 sec.)	+ 300°C

Operating Junction Tempera	ature Range
IP137MAHV, IP137MHV	– 55°C to + 150°C
IP137MA, IP137M	-55°C to +150°C
LM137, LM137HVH	- 55°C to + 150°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ORDER INFORMATION

Part Number IP137MAHVH, IP137MHVH, IP137MAH, IP137MH LM137HVH, LM137H

Temperature	Range
-------------	-------

-55°C to +150°C

- 55°C to + 150°C

Package

TO-39 TO-39

IP137MAHV, IP137MHV, IP137MA, IP137M

0.5A, 3-TERMINAL NEGATIVE ADJUSTABLE REGULATORS

ELECTRICAL CHARACTERISTICS (NOTES 1 AND 3)

					IP137MAHV IP137MA			IP137MHV IP137M LM137HV LM137		
Parameter	Test Conditions			Min	Тур	Max	Min	Тур	Max	Units
Reference Voltage, VREF	$I_{OUT} = 10 \text{ mA}$			-1.238	-1.250	-1.262	-1.225	-1.250	-1.275	V
	$3V \leq (V_{IN}V_{OUT}) \leq V$ 10 mA $\leq I_{OUT} \leq I_{MA}$	MAX X, P ≤ PMAX	•	-1.220	-1.250	-1.280	-1.200	-1.250	-1.300	V
Line Regulation, $\triangle V_{OUT} / \triangle V_{IN}$	$3V \leq (V_{IN}-V_{OUT}) \leq V$	MAX			0.005	0.010		0.010	0.020	%/V
	(See Note 2)		•		0.010	0.030		0.020	0.050	%/V
Load Regulation, $\triangle V_{OUT} / \triangle I_{OUT}$	10 mA ≤ I _{OUT} ≤ I _{MA}	$(V_O) \leq 5V$			5	25		15	25	mV
	(See Note 2 and 3)	(V _O) ≼ 5V			0.1	0.5		0.3	0.5	%
		(V _O) ≤ 5V	•		10	50		20	50	mV
		(V _O) ≤ 5V	•		0.2	1.0		0.3	1.0	%
Thermal Regulation	$T_{A} = 25^{\circ}C, 10 \text{ msec}$	Pulse			0.002	0.02		0.002	0.02	%/W
Ripple Rejection	$V_{OUT} = -10V,$ C	ADJ = 0		60	66			60		dB
		ADJ = 10 UF	•	70	80		66	77		dB
Adjust Pin Current, I _{ADJ}		· · · · · · · · · · · · · · · · · · ·	•		65	100		65	100	μA
Adjust Pin Current	10 mA ≤ I _{OUT} ≤ I _{MA}	х	•		0.2	2		0.5	5	μA
Change, △I _{ADJ}	$3V \leq (V_{IN} - V_{OUT}) \leq$		•		1.0	5		2	5	μA
	3V ≤ (V _{IN} - V _{OUT}) ≤	50V, HV series	•		2.0	6		3	6	μA
Minimum Load Current, IMIN	(V _{IN} - V _{OUT}) ≤ 40V (V _{IN} - V _{OUT}) ≤ 10V		•		2.5 1.2	5.0 3.0		2.5 1.2	5.0 3.0	mA mA
Current Limit, ICI			•	0.5	0.8	1.5	0.5	0.8	1.5	A
	$(V_{IN} - V_{OUT}) \leq 15V$					1.5			1.5	
	$(V_{IN} - V_{OUT}) = 40V$		_	0.15	0.17		0.15	0.17		A
	(V _{IN} - V _{OUT}) = 50V H	IV Series	•	0.1	0.17	0.5	0.1	0.17	0.5	A
Temperature Stability, $\Delta V_{OUT} / \Delta TEMP$			•		0.6	1.5		0.6		%
Long Term Stability, △V _{OUT} /△TIME	$T_A = 125^{\circ}C, 1000 Hrs$	T _A = 125°C, 1000 Hrs.			0.3	1		0.3	1	%
RMS Output Noise (% of V _{OUT}), e _n	$T_A = 25^{\circ}C, 10Hz \leq f$	$T_A = 25$ °C, 10Hz $\leq f \leq 10$ kHz			0.003		i	0.003		%
Thermal Resistance Junction to Case, O ic	H Package				12	15		12	15	°C/W

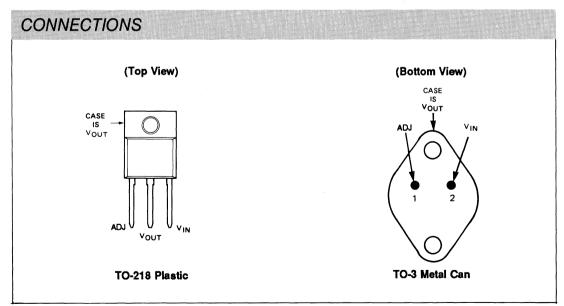
Adjust Pin Change, Z

The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified.

Note 1: Unless otherwise specified, (V_{IN}-V_{OUT}) = 5V, I_{OUT} = 0.1A for the TO-39 (H) Package. Although power dissipation is internally limited, these specifications apply for dissipations up to 2W for the TO-39 I_{MAX} = 0.5A for the TO-39.

Note 2: Regulation is measured at constant junction temperature, using pulse testing at a low duty cycle. Changes in output voltage due to heating effects are covered under thermal regulation specifications. Load regulation is measured 1/6" below the base of the package on the output pin of the TO-39.

Note 3: V_{MAX} = 40V for IP137MA, IP137M, LM137 V_{MAX} = 50V for IP137MAHV, IP137MHV, LM137HV


5 AMP POSITIVE ADJUSTABLE REGULATORS

IP138A, IP338A, IP138, LM138, IP338, LM338

DESCRIPTION

The IP138A series are 3-terminal positive adjustable voltage regulators capable of supplying in excess of 5A over a 1.25V to 35V output range. These regulators are exceptionally easy to use and require only two external resistors to set the output voltage. In addition to improved line and load regulation, a major feature of the "A" series is the initial output voltage tolerance, which is guaranteed to be less than 1%. Over full operating conditions, including load, line and lower dissipation, the reference voltage is guaranteed not to vary more than 2%. These devices exhibit current limit, thermal overload protection, and improved power device safe operating area protection, making them essentially indestructible.

- Available in low cost TO-218
- Guaranteed 1% output voltage tolerance
- Guaranteed 0.3% load regulation
- Guaranteed 0.01%/V line regulation
- Internal current limiting constant with temperature
- Internal thermal overload protection
- Improved output transistor safe operating area compensation
- Output adjustable between 1.25V and 35V

IP138A, IP338A, IP138, LM138, IP338, LM338

5 AMP POSITIVE ADJUSTABLE REGULATORS

ABSOLUTE MAXIMUM RATINGS

Power Dissipation Internally Limited

Storage Temperature Range -65°C to +150°C

Input to Output Voltage Differential 35V

 Operating Junction Temperature Range

 IP138A, LM138, IP138
 -55°C to +150°C

 IP338A, LM338, IP338
 0°C to +125°C

Lead Temperature (Soldering, 10 sec.) 300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS (NOTE 1)

					IP138A		LM138/IP138			
Parameter	Test Conditions			Min	Тур	Max	Min	Тур	Max	Units
Reference Voltage, VREF	I _{OUT} = 10 mA			1.238	1.250	1.262				V
	$3V \leq (V_{IN} - V_{OUT}) \leq 35$	v	•	1.225	1.250	1.270	1.19	1.24	1.29	V
	$10mA \le I_{OUT} \le 5A$, Ps	50W								
Line Regulation, ΔV_{OUT}	3V ≤ (V _{IN} - V _{OUT}) ≤ 35	V I			0.005	0.01		0.005	0.01	‰∕∨
	(See Note 2)		•		0.020	0.04		0.020	0.04	%∕∨
Load Regulation, ΔV_{OUT}	10 mA ≤ I _{OUT} ≤ 5A	V _O ≤5V			5	15		5	15	mV
	(See Note 2)	V _O ≥5V			0.1	0.3		0.1	0.3	%
		V _O ≤5V	•		20	30		20	30	mV
		V _O ≥5V	•		0.3	0.6		0.3	0.6	%
Thermal Regulation	20 msec Pulse				0.002	0.01		0.002	0.01	%/W
Ripple Rejection	V _{OUT} = 10V,	C _{ADJ} =0	•		60			60		dB
	f = 120 Hz	C _{ADJ} = 10μF	•	60	75		60	75		dB
Adjust Pin Current, IADJ			•		45	100		45	100	μA
Adjust Pin Current Change, ∆IADJ	10 mA ≤ lout ≤ 5A		•		0.2	5		0.2	5	μA
	3V≤ (V _{IN} - V _{OUT}) ≤ 35	v								
Minimum Load Current, IMIN	(VIN - VOUT) = 35V		•		3.5	5		3.5	5	mA
Current Limit, ISC	(V _{IN} - V _{OUT}) ≤ 10V	DC	•	5	8		5	8		A
		0.5ms peak	•	7	12		7	12		A
	(V _{IN} - V _{OUT}) = 30V				1			1		A
Temperature Stability, ΔV_{OUT} $\Delta TEMP$			•		1	2		1		%
Long Term Stability, ΔV_{OUT} $\Delta TIME$	T _A = 125°C, 1000 Hrs				0.3	1		0.3	1	%
RMS Output Noise (% of VOUT), en	10Hz≤f≤10khz				0.001			0.001		%
Thermal Resistance Junction to Case, O jc	K Package					1			1	°C/W

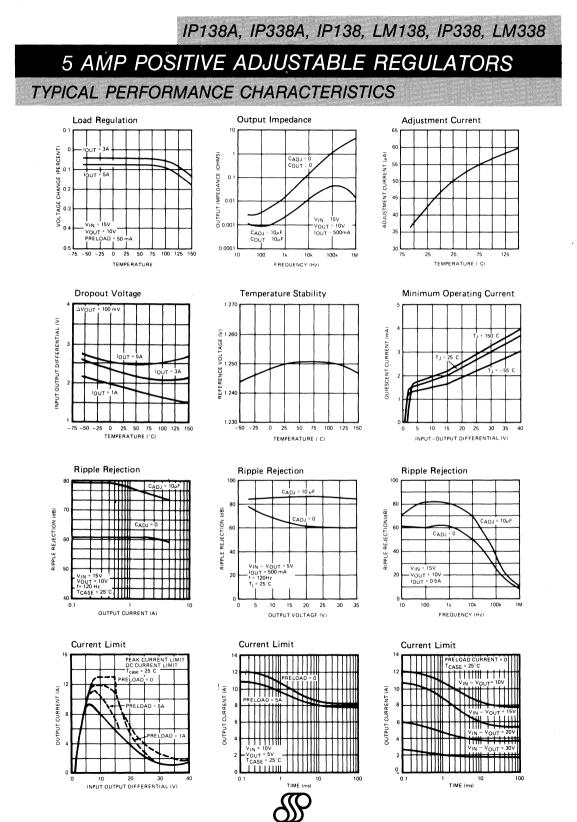
146

IP138A, IP338A, IP138, LM138, IP338, LM338

5 AMP POSITIVE ADJUSTABLE REGULATORS

ELECTRICAL CHARACTERISTICS (NOTE 1)

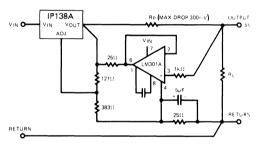
				IP338A			LM338/IP338			
Parameter	Test Conditions			Min	Тур	Max	Min	Тур	Max	Units
Reference Voltage, VREF	IOUT = 10 mA		[1.238	1.250	1.262				V
	$3V \leq (V_{IN} - V_{OUT}) \leq 3V \leq (V_{IN} - V_{OUT}) \leq 3V \leq (V_{IN} - V_{OUT}) \leq 3V \leq 10$	35V	•	1.225	1.250	1.270	1.19	1.24	1.29	V
	$10 \text{mA} \le I_{OUT} \le 5 \text{A}, 1$	P≤ 50W								
Line Regulation, ΔVOUT	$3V \leq (V_{IN} - V_{OUT} \leq 3)$				0.005	0.01		0.005	0.03	%N
AVIN	(See Note 2)		•		0.02	0.04		0.020	0.06	%N
Load Regulation, ΔVOUT	10 mA ≤ I _{OUT} ≤ 5A	V _O ≤5V			5	15		5	25	mν
	(See Note 2)	V _O ≥5V			0.1	0.3		0.1	0.5	%
		V _O ≤5V	•		20	30		20	50	mV
		V _O ≥5V	•		0.3	0.6		0.3	1	%
Thermal Regulation	20 msec Pulse				0.002	0.02		0.002	0.02	%/W
Ripple Rejection	V _{OUT} = 10V,	C _{ADJ} =0	•		60			60		dB
	f = 120 Hz	С _{АДЈ} = 10µF	•	60	75		60	75		dB
Adjust Pin Current, IADJ			•		45	100		45	100	μΑ
Adjust Pin Current Change, ΔI_{ADJ}	$10 \text{ mA} \le I_{OUT} \le 5A$,		•		0.2	5		0.2	5	μΑ
	3V ≤ (V _{IN} - V _{OUT}) ≤	35V								
Minimum Load Current, IMIN	(VIN - VOUT) = 35V		•		3.5	10		3.5	10	mA
Current Limit, ISC	(VIN - VOUT) ≤ 10V	DC	•	5	8		5	8		Α
		0.5ms peak	•	6	12		6	12		Α
	(VIN - VOUT) = 30V				1			1		Α
Temperature Stability, ∆VOUT			•		1	2		1		%
ΔΤΕΜΡ										
Long Term Stability, <u>∆V_{OUT}</u> ∆TIME	T _A = 125°C, 1000 hrs				0.3	1		0.3	1	%
RMS Output Noise (% of VOUT),en	10Hz≤f≤10khz				0.001			0.003		%
Thermal Resistance Junction	K Package					1			1	°C/W
to Case, O jC	V Package					1			1	°C/W


The • denotes the specifications which apply over the full operating temperature range, all others apply at $T_j = 25^{\circ}C$ unless otherwise specified.

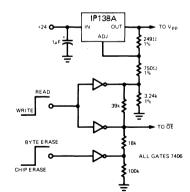
Note 1. Unless otherwise specified, these specifications apply for VIN - VOUT = 5V, IOUT = 2.5A. Although power dissipation is internally limited, these specifications apply for dissipations of 50W and I_{MAX} = 5A.

Note 2. Regulation is measured at constant junction temperature, using pulse testing at a low duty cycle. Changes in output voltage due to heating effects are covered under thermal regulation specifications. Load regulation is measured from the bottom of the package for the TO-3, and at the junction of the wide and narrow portion of the output lead for the TO-218.

147

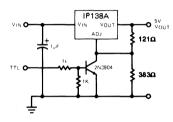

IP138A, IP338A, IP138, LM138, IP338, LM338 5 AMP POSITIVE ADJUSTABLE REGULATORS TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED) Load Transient Response Line Transient Response 1.0 = 1µF;CL = 10μ DUTPUT VOLTAGE DEVIATION (V) Ci. OUTPUT VOLTAGE DEVIATION (V) 2 0.5 C 0 CAD 0 0 сĽ 1.05 c'al 10. -0.5 VIN = 15V VOUT - 10V PRELOAD = 100 mA = 10V 50 mA VOUT 10UT = 1, 25 CADJ 0 - 2 -OAD CURRENT (A) -3 NPUT VOLTAGE CHANGE (V) -15 e

4


2

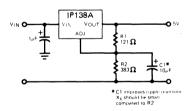
1.0 0.5 c 20 TIME (µS)

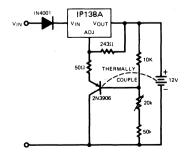
TYPICAL APPLICATIONS



Remote Sensing

	ŌE	Vpp
READ	0V	5V
WRITE		
BYTE	5V	21V
CHIP E RASE	12V	21V


2816 EEPROM Supply Programmer for **Read/Write Control**


20 30

10 TIME (µS)

5V Regulator with Shut Down

Improving Ripple Rejection

Temperature Compensated Lead Acid Battery Charger

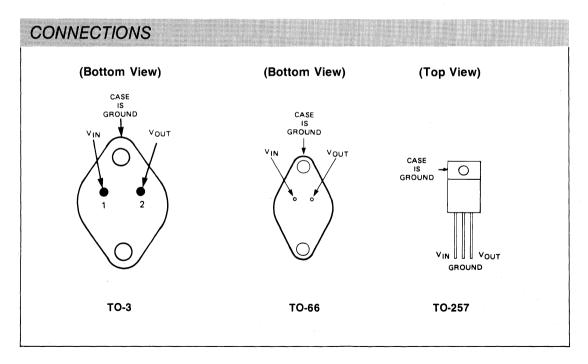
IP138A, IP338A, IP138, LM138, IP338, LM338

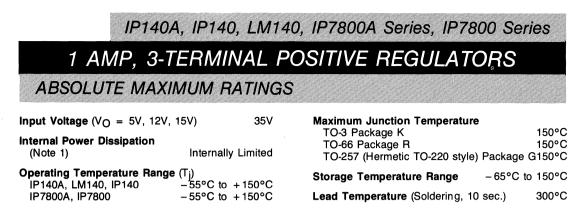
5 AMP POSITIVE ADJUSTABLE REGULATORS

ORDER INFORMATION

Part Number	Temperature Range	Package
IP138AK	– 55°C to + 150°C	TO-3
IP138K	– 55°C to + 150°C	TO-3
LM138K	– 55°C to + 150°C	TO-3
IP338AK	0°C to +125°C	TO-3
IP338K	0°C to +125°C	TO-3
LM338K	0°C to +125°C	TO-3
IP338AV	0°C to +125°C	TO-218
IP338V	0°C to +125°C	TO-218

4

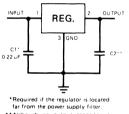

1 AMP, 3-TERMINAL POSITIVE REGULATORS


IP140A, IP140, LM140, IP7800A Series, IP7800 Series

DESCRIPTION

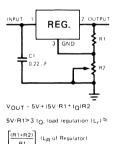
The IP140A/ LM140/ IP7800A/ IP7800 series of three-terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. The A-suffix devices are fully specified at 1.0A, provide 0.01%/V line regulation, 0.3%/A load regulation, and $\pm 1\%$ output voltage tolerance at room temperature. Protection features include safe operating area current limiting and thermal shutdown. The entire series of regulators is available in the metal TO-3 and TO-66 power packages. The IP140A/ LM140/ IP7800A/IP7800 series is now available in a new TO-257 (Hermetic TO-220 style) power package.

- 1% Tolerance
- 5, 12 and 15V fixed output voltages available
- 0.01%/V line regulation
- 0.3%/A load regulation
- Thermal overload protection
- Short-circuit current limit protection
- Safe operating area protection
- Start-up with negative voltage (± supplies) on output

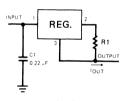


Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

Note 1. Although power dissipation is internally limited, these specifications are applicable for maximum power dissipation P_{MAX} of 20W for the TO-3, TO-66 and TO-257. I_{MAX} is 1.0A for the TO-3, TO-66, TO-257.


APPLICATIONS INFORMATION

Fixed Output Regulator



**Although no output capacitor is needed for stability, it does help transient response. (if needed, use 0.1 µF, ceramic disc)

Adjustable Output Regulator

Current Regulator

 $I_{OUT} = \frac{V_2 - V_3}{R_1} + I_Q$ $\Delta I_Q = 1.3$ mA over line and load changes.

ORDER INFORMATION

Part Number

IP140AK-XX
IP140K/LM140K
IP7800AK/IP7800K
IP140AR-XX/IP140R-XX
IP7800AR/IP7800R
IP140AG-XX/IP140G-XX
IP7800AG/IP7800G

Temperature Range

– 55°C – 55°C – 55°C – 55°C	to to to to	+ 150°C + 150°C + 150°C + 150°C + 150°C + 150°C
– 55°C	to	+ 150°C
		+ 150°C
– 55°C	to	+ 150°C

Package

	-
	TO-3
	TO-3
	TO-3
	TO-66
	TO-66
TO-257 (Hermetic	TO-220 style)
TO-257 (Hermetic	TO-220 style)

IP140A, IP140, LM140, IP7800A Series, IP7800 Series

1 AMP, 3-TERMINAL POSITIVE REGULATORS

ELECTRICAL CHARACTERISTICS (SEE NOTE 2)

						IP7805A IP140A-5			IP7805 LM140-5			
Parameter	Test Conditions	Test Conditions			Min	Тур	Max	Min	Тур	Max	Units	
Output Voltage, VO	K, R, G Pkg., I _C) = 1A,	V _{IN} = 10V		4.95	5	5.05	4.8	5	5.2	V.	
	$P_{D} \leqslant P_{MAX}$, 5m 7.5V $\leqslant V_{IN} \leqslant 2$	nA ≤ I _O 0V	≤IMAX	•	4.85		5.15	4.75		5.25	v	
Low Supply, VO	$\begin{array}{c} P_D \leqslant P_{MAX}, 5m \\ 7V \leqslant V_{IN} \leqslant 20 \end{array}$	NA ≤ IO V	≤ I _{MAX}		4.75		5.15	4.75		5.25	v	
Line Regulation, $ riangle V_O$	$I_{O} = 0.5 I_{MAX}$	7V ≼	V _{IN} ≼ 25V			3	10			50	mV	
		7.5V s	≤ V _{IN} ≤ 25V	٠		3	10			50	mV	
	I _O ≤ I _{MAX}	7.3V s	$\leq V_{IN} \leq 20V$			3	10			50	mV	
		8V ≤	$V_{IN} \leq 12V$			1	4			20	mV	
				٠		2	12			25	mV	
Load Regulation, $ riangle V_O$	K, R, G Pkg.	5 mA	≤ I _O ≤ 1.5A			10	25			50	mV	
	$V_{IN} = 10V$	250m/	$A \leq I_O \leq 750 \text{mA}$			4	15			25	mV	
	5 mA ≤ I _O ≤ I	MAX, VII	v = 10V	٠		7	25			50	mV	
Quiescent Current, IQ	lo ≤ Imax					4	6			6	mA	
	$V_{IN} = 10V$			٠		4	6.5			7	mA	
Quiescent Current Change, △IQ	5 mA ≤ I _O ≤ I	MAX, VI	v = 10V			0.2	0.5			0.5	mA	
	I _O ≤ I _{MAX} , 7.5	$I_{O} \leqslant I_{MAX}$, 7.5V $\leqslant V_{IN} \leqslant 20V$				0.1	0.8			0.8	mA	
	I _O ≤ 0.5 I _{MAX} ,	I _O ≤ 0.5 I _{MAX} , 8V ≤ V _{IN} ≤ 25V				0.1	0.8			0.8	mA	
	$I_{O} \leq 0.5 I_{MAX}$	7V ≼ V	IN ≼ 25V	٠		0.2	1.0			1.0	mA	
Output Noise Voltage, VN	10 Hz ≤ f ≤ 10	0 kHz, V	/ _{IN} = 10V			40	200		40		μv	
Ripple Rejection, $\triangle V_{IN} / \triangle V_{OUT}$	f = 120 Hz		IO ≤ IMAX		68	80		68			dB	
	$8 V \leq V_{IN} \leq 18$	зv	I _O	٠	68	80		68			dB	
Dropout Voltage	IOUT = IMAX	······································				2.0	2.5		2.0		v	
Output Resistance, RO	f = 1 kHz	f = 1 kHz				5			5		mΩ	
Short-Circuit Current, ISC	V _{IN} = 35V	К,	, R, G Package			0.6	1.2		0.6	1.2	A	
Peak Output Current, Ipk	$V_{IN} = 10V$	K, R, G Package				2.4	3.3		2.4	3.3	A	
Average TC of V _{OUT}	$I_{O} = 5 \text{ mA}$	d				0.2	2		0.6		mV/°C	
Input Voltage Required to Maintain Line Regulation, V _{IN}	I _O ≤ I _{MAX}				7.3			7.3			v	

The \bullet denotes the specifications which apply over the full operating temperature range, all others apply at T_j = 25°C unless otherwise specified.

IP140A, IP140, LM140, IP7800A Series, IP7800 Series

1 AMP, 3-TERMINAL POSITIVE REGULATORS

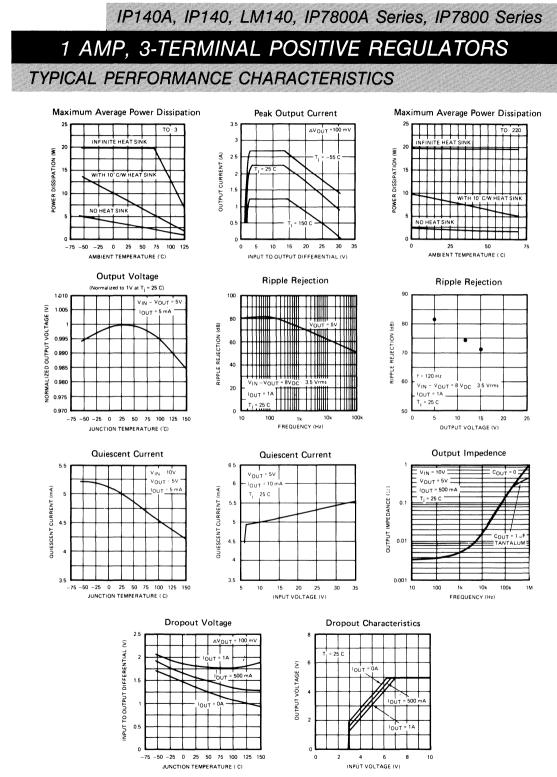
ELECTRICAL CHARACTERISTICS (CONTINUED)

						IP7812A P140A-1			IP7812 .M140-1		Unite
Parameter	Test Condition	5			Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	K, R, G Pkg., IC) = 1A,	V _{IN} = 19V		11.88	12	12.12	11.5	12	12.5	v
	$P_{D} \leq P_{MAX}$, 5m 14.8V $\leq V_{IN} \leq$	A ≤ I _O 27V	≤I _{MAX}	•	11.64		12.36	11.4		12.6	V
Low Supply, V _O	$P_D \leqslant P_{MAX}$, 5m 14.5V $\leqslant V_{IN} \leqslant$	IA ≤ IO 27V	≤ I _{MAX}		11.40		12.36	11.4		12.6	v
Line Regulation, $\triangle V_O$	I _O = 0.5 I _{MAX}	14.5V	$\leq V_{IN} \leq 30V$			4	18			120	mV
		14.8V	$\leq V_{IN} \leq 30V$	•		4	18			120	mV
	I _O ≤ I _{MAX}	14.5V	$\leq V_{IN} \leq 27V$			4	18			120	mV
		16V ≼	ξ V _{IN} ≼ 22V			2	9			50	mV
				•		4	30			60	mV
Load Regulation, $ riangle V_O$	K, R, G Pkg.	5 mA	≤ I _O ≤ 1.5A			12	32			120	mV
	V _{IN} = 19V	$V_{\rm IN} = 19\dot{V}$ 250mA $\leq I_{\rm O} \leq 750$ mA				4	19			60	mV
	5 mA ≤ I _O ≤ I	$5 \text{ mA} \leq I_{O} \leq I_{MAX}, V_{IN} = 19V$		•		8	60			120	mV
Quiescent Current, IQ	lo ≤ Imax					4	6			6	mA
	$V_{IN} = 19V$			٠		4	6.5			7	mA
Quiescent Current Change, $\triangle I_Q$	5 mA ≼ I _O ≼ I	MAX, VII	N = 19V			0.2	0.5			0.5	mA
	I _O ≤ I _{MAX} , 14.	3V ≼ V _I	<u>N</u> ≼ 27V	•		0.1	0.8			0.8	mA
	I _O ≤ 0.5 I _{MAX} ,	15V ≤	V _{IN} ≼ 30V			0.1	0.8			0.8	mA
	I _O ≤ 0.5 I _{MAX} ,	14.5V ≼	≰ V _{IN} ≼ 30V	•		0.2	1.0			1.0	mA
Output Noise Voltage, V _N	10 Hz ≤ f ≤ 10	0 kHz, \	V _{IN} = 19V			75	480		75		μv
Ripple Rejection, $\triangle V_{IN} / \triangle V_{OUT}$	f = 120 Hz		I _O ≤ I _{MAX}		61	72		61			dB
	15 V ≤ V _{IN} ≤ 2	25V	I _O	•	61	72		61			dB
Dropout Voltage	IOUT = IMAX		L			2.0	2.5		2.0		v
Output Resistance, RO	f =∖1 kHz					8			8		mΩ
Short-Circuit Current, I _{SC}	V _{IN} = 35V	IN = 35V K, R, G Package				0.6	1.2		0.6	1.2	A
Peak Output Current, I _{pk}	V _{IN} = 19V	к	, R, G Package			2.4	3.3		2.4	3.3	A
Average TC of VOUT	$I_0 = 5 \text{ mA}$					0.5	4.8		1.5		mV/°C
Input Voltage Required to Maintain Line Regulation, V _{IN}	I _O ≤ I _{MAX}				14.5			14.6			v

The \bullet denotes the specifications which apply over the full operating temperature range, all others apply at T_j = 25°C unless otherwise specified.

IP140A, IP140, LM140, IP7800A Series, IP7800 Series

1 AMP, 3-TERMINAL POSITIVE REGULATORS

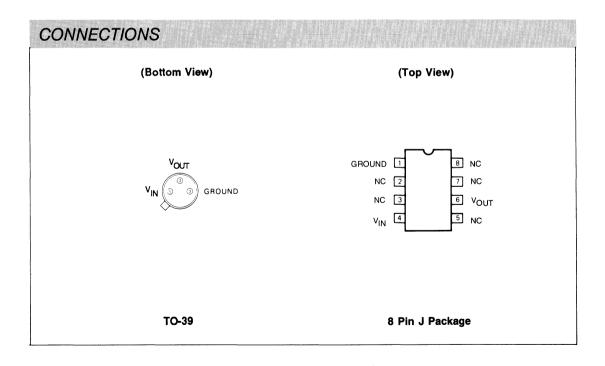

ELECTRICAL CHARACTERISTICS (CONTINUED)

					IP7815A IP140A-15			ı			
Parameter	Test Condition	S			Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	K, R, G Pkg., IC) = 1A,	V _{IN} = 23V		14.85	15	15.15	14.4	15	15.6	V
	$P_{D} \leqslant P_{MAX}$, 5m 17.9V $\leqslant V_{IN} \leqslant$	$P_{D} \leq P_{MAX}, 5mA \leq I_{O} \leq I_{MAX}$ 17.9V $\leq V_{IN} \leq 30V$			14.55		15.45	14.25		15.75	v
Low Supply, VO	$P_D \leqslant P_{MAX}$, 5m 17.5V $\leqslant V_{IN} \leqslant$	nA ≼ I _O 30V	≤ I _{MAX}		14.25		15.45	14.25		15.75	v
Line Regulation, $\triangle V_{O}$	$I_{O} = 0.5 I_{MAX}$	17.5V	$\leq V_{IN} \leq 30V$			4	22			150	mV
		17.9V	$\leq V_{IN} \leq 30V$	•		4	22			150	mV
	I _O ≤ I _{MAX}	17.5V	$\leq V_{IN} \leq 30V$			4	22			150	mV
		20V ≼	≨ V _{IN} ≼ 26V			2	10			60	mV
				٠		5	30			75	mV
Load Regulation, $\triangle V_O$	K, R, G Pkg.	5 mA	≤ I _O ≤ 1.5A			12	35			150	mV
	$V_{IN} = 23V$	250m/	$A \leq I_O \leq 750 \text{mA}$			4	21			75	mV
	5 mA ≤ I _O ≤ I	$5 \text{ mA} \leq I_{O} \leq I_{MAX}, V_{IN} = 23V$		•		9	75			150	mV
Quiescent Current, IQ	lo ≤ Imax					4	6			6	mA
	$V_{IN} = 23V$			٠		4	6.5			7	mA
Quiescent Current Change, △IQ	5 mA ≤ I _O ≤ I	MAX, VII	v = 23V			0.2	0.5			0.5	mA
	I _O ≤ I _{MAX} , 17.	9V ≼ V _I	N ≤ 30V	٠		0.1	0.8			0.8	mA
	I _O ≤ 0.5 I _{MAX} ,	18.5V ≤	≨ V _{IN} ≼ 30V			0.1	0.8			0.8	mA
	1 ₀ ≤ 0.5 I _{MAX} ,	17.5V ≤	≰ V _{IN} ≼ 30V	٠		0.2	1.0			1.0	mA
Output Noise Voltage, VN	10 Hz ≤ f ≤ 10	0 kHz, \	/ _{IN} = 23V			90	600		90		٧ų
Ripple Rejection, $\triangle V_{IN} / \triangle V_{OUT}$	f = 120 Hz		IO ≤ IMAX		60	70		60			dB
	18.5 V ≤ V _{IN} ≤	28.5V	I _O ≤ 0.5 I _{MAX}	٠	60	70		60			dB
Dropout Voltage	IOUT = IMAX		· · · · · · · · · · · · · · · · · · ·			2.0	2.5		2.0		V
Output Resistance, RO	f = 1 kHz	f = 1 kHz				9			9		mΩ
Short-Circuit Current, I _{SC}	$V_{IN} = 35V$	К,	, R, G Package			0.6	1.2		0.6	1.2	Α
Peak Output Current, Ipk	$V_{IN} = 23V$	к,	, R, G Package			2.4	3.3		2.4	3.3	. A
Average TC of VOUT	$I_0 = 5 \text{ mA}$	l	·····			0.6	6.0		1.8		mV/°C
Input Voltage Required to Maintain Line Regulation, V _{IN}	IO ≤ IMAX				17.5			17.7			v

The • denotes the specifications which apply over the full operating temperature range, all others apply at T_j = 25°C unless otherwise specified.

Note 2. All characteristics are measured with a capacitor across the input of 0.22 µ F and a capacity across the output of 0.1 µ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

௸


0.5 AMP, 3-TERMINAL POSITIVE REGULATORS

IP78M00 Series, IP78M00A Series, IP140M Series, IP140MA Series

DESCRIPTION

The IP78M00/A series of voltage regulators are fixed output regulators intended for local, on-card voltage regulation. These devices are available in 5, 12, and 15 volt options and are capable of delivering in excess of 500 mA over temperature. The A-suffix devices are fully specified at 0.5A, provide 0.01%/V line regulation, 0.3%/A load regulation, and $\pm 1\%$ output voltage tolerance at room temperature. Protection features include safe operating area, current limiting and thermal shutdown. The entire series of regulators is available in TO-39 and Ceramic DIP packages.

- 1% output voltage tolerance
- 5, 12 and 15V fixed output voltages available
- 0.01%/V line regulation
- 0.3%/A load regulation
- Thermal overload protection
- Short-circuit current limit protection
- Safe operating area protection
- Start-up with negative voltage (± supplies) on output

IP78M00 Series, IP78M00A Ser	ies, IP140M Series, IP140MA Series
0.5 AMP, 3-TERMINAL	POSITIVE REGULATORS
ABSOLUTE MAXIMUM RATINGS	3
Input Voltage (V _O = 5V, 12V, 15V) 35V Internal Power Dissipation (Note 1) Internally Limited	Maximum Junction TemperatureH Package TO-39150°C8 Pin Ceramic DIP Package J150°C
Operating Temperature Range (Tj) IP78M00A, IP78M00 -55°C to +150°C IP140MA, IP140M -55°C to +150°C	Storage Temperature Range- 65°C to 150°CLead Temperature (Soldering, 10 sec.)300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

FI FOTDIOAL OLIADAOTEDIOTIOO

					IP78M05A IP140MA-5			IP 78M05 IP 140M-5		
Parameter	Test Conditio	ons		Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	I _O = 100mA, 1	/ _{IN} = 10V		4.95	5	5.05	4.80	5	5.20	V
		$P_D \le P_{MAX}$, 5mA $\le I_O \le 350$ mA 7.5V $\le V_{IN} \le 20V$		4.85		5.15	4.75		5.25	v
Line Regulation, ΔV_O	l _O = 200mA	$I_{O} = 200 \text{mA}$ $7 \text{V} \le \text{V}_{\text{IN}} \le 25 \text{V}$			3	10			50	mV
		8V ≤ V _{IN} ≤ 25V	•		3	10			25	mV
	I _O = 500mA	8V≤V _{IN} ≤12V			3	10			50	mV
Load Regulation, ΔV_O	5mA ≤ I _O ≤ 50	$5\text{mA} \le I_{O} \le 500\text{mA}, V_{IN} = 10\text{V}$			5	50			50	mV
Quiescent Current, IQ	V _{IN} = 10V, I _O	= 350mA	•		4	6		4	6	mA
Quiescent Current Change, Δl_Q	5mA ≤ I _O ≤ 50	0mA, V _{IN} = 10V	•		0.1	0.5			0.5	mA
	8V≤V _{IN} ≤25	V, I _O = 200mA	•		0.2	0.8			0.8	mA
Output Noise Voltage, Vn	10Hz≤f≤100)kHz			40	200		40	200	μV
Ripple Rejection, $\Delta V_{IN} / \Delta V_{OUT}$	f = 120Hz,	I _O = 300mA		65	80		62			dB
	8V≤V _{IN} ≤18	V I _O = 100mA	•	65	80		62			dB
Dropout Voltage	I _O = 350mA				2	2.5			2.5	V
Short Circuit Current, ISC	V _{IN} = 35V				300	600		300	600	mA
Peak Output Current, IPK	V _{IN} = 10V	V _{IN} = 10V		0.7	1.0	1.4	0.7	1.0	1.6	A
Average Temperature Coefficient of Output Voltage	I _O = 5mA				0.5	2.0		0.5		mV/⁰C

The \bullet denotes the specifications which apply over the full operating temperature range, all others apply at T_j = 25°C unless otherwise specified.

Note 1: Thermal resistance of the TO-39 package (H) is typically 20°C/W junction to case and 120°C/W case to ambient. Although power dissipation is internally limited, these specifications apply for up to 2W for the TO-39 package, and 1.05W for the J package. Thermal resistance of the J package is typically 119°C/W junction to ambient. (Derate at 8.4mW/°C for ambient temperatures above 25°C).

Note 2: All characteristics are measured with a capacitor across the input of 0.22µ F and a capacitor across the output of 0.1µ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10ms, duty cycle ≤ 5%. Output voltage changes due to changes in internal temperature must be taken into account separately.

IP78M00 Series, IP78M00A Series, IP140M Series, IP140MA Series

0.5 AMP, 3-TERMINAL POSITIVE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

······································				-	P78M12 140MA-					
Parameter	Test Conditio	ns		Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	I _O = 100mA, V	I _O = 100mA, V _{IN} = 19V			12	12.12	11.50	12	12.50	V
	P _D ≤P _{MAX} ,5 14.8V≤V _{IN} ≤	mA ≤ I _O ≤ 350mA 27V	•	11.64		12.36	11.40		12.60	v
Line Regulation, ΔV_O	I _O = 200mA	14.5V ≤ V _{IN} ≤ 30V			4	18			60	mV
		16V ≤ V _{IN} ≤ 30V	•		4	18			30	mV
	I _O = 500mA	16V≤V _{IN} ≤22V			4	18			120	mV
Load Regulation, ΔV_{O}	5mA ≤ I _O ≤ 50	5mA ≤ I _O ≤ 500mA, V _{IN} = 19V			10	60			120	mV
Quiescent Current, IQ	VIN = 19V, IO	= 350mA	•		4	6		4	6	mA
Quiescent Current Change, ΔI_Q	5mA≤I _O ≤50	0mA, V _{IN} = 19V	•		0.1	0.5			0.5	mA
	14.8V ≤ V _{IN} ≤	30V, I _O = 200mA	•		0.2	0.8			0.8	mA
Output Noise Voltage, Vn	10Hz≤f≤100	kHz			75	480		75	480	μV
Ripple Rejection, $\Delta V_{IN} / \Delta V_{OUT}$	f = 120Hz	I _O = 300mA		58	72		55			dB
	15V≤V _{IN} ≤2	5V I _O = 100mA	•	58	72		55			dB
Dropout Voltage	I _O = 350mA				2	2.5			2.5	V
Short Circuit Current, ISC	V _{IN} = 35V				300	600		300	600	mA
Peak Output Current, IPK	V _{IN} = 19V	V _{IN} = 19V		0.7	1.0	1.4	0.7	1.0	1.6	A
Average Temperature Coefficient of Output Voltage	I _O = 5mA				1.2	4.8		1.2		mV/⁰C

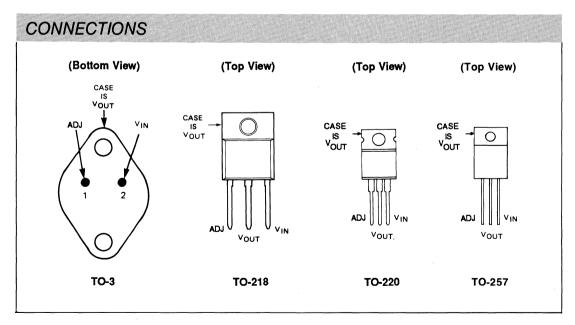
				IP78M1 P140MA			IP78M15 IP140M-15				
Parameter	Test Conditio	ons			Min	Тур	Max	Min	Тур	Max	Units
Output Voltage, VO	I _O = 100mA,	I _O = 100mA, V _{IN} = 23V			14.85	15	15.15	14.40	15	15.60	V
	P _D ≤P _{MAX} , 5 18V≤V _{IN} ≤3		O≤350mA	•	14.55		15.45	14.25		15.75	v
Line Regulation, ΔV_O	l _O = 200mA	17.5	V≤V _{IN} ≤30V			4	22			60	mV
		20V	≤V _{IN} ≤30V	•		4	22			30	mV
	lo = 500mA	20V :	≤V _{IN} ≤ 26V			4	22			150	mV
Load Regulation, ΔV_O	5mA ≤ I _O ≤ 50	$5mA \le I_O \le 500mA$, $V_{IN} = 23V$				12	75			150	mV
Quiescent Current, IQ	V _{IN} = 23V, I _C	V _{IN} = 23V, I _O = 350mA				.4	6		4	6	mA
Quiescent Current Change, ΔI_Q	5mA ≤ 1 _O ≤ 50	00mA, '	V _{IN} = 23V	•		0.1	0.5			0.5	mA
	18V ≤ V _{IN} ≤ 3	IOV, IO	= 200mA	•		0.2	0.8			0.8	mA
Output Noise Voltage, Vn	10Hz≤f≤100	OkHz	·			90	600		90	600	μV
Ripple Rejection, $\Delta V_{IN} / \Delta V_{OUT}$	f = 120Hz		I _O = 300mA		57	70		54			dB
	18.5V ≤ V _{IN} ≤	≤28.5V	I _O = 100mA	•	57	70		54			dB
Dropout Voltage	I _O = 350mA					2	2.5			2.5	V
Short Circuit Current, ISC	V _{IN} = 35V		***			300	600		300	600	mA
Peak Output Current, IpK	V _{IN} = 23V				0.7	1.0	1.4	0.7	1.0	1.6	A
Average Temperature Coefficient of Output Voltage	I _O = 5mA					1.5	6.0		1.5		mV/⁰C

IP78M00 Series, IP78M00A Series, IP140M Series, IP140MA Series

0.5 AMP, 3-TERMINAL POSITIVE REGULATORS

ORDER INFORMATION

Part Number IP78M05AH IP78M05H IP78M12AH IP78M12AH IP78M15AH IP78M15H	Temperature Range - 55°C to + 150°C - 55°C to + 150°C	Package TO-39 TO-39 TO-39 TO-39 TO-39 TO-39
IP78M05AJ IP78M05J IP78M12AJ IP78M12J IP78M15AJ IP78M15J	- 55°C to + 150°C - 55°C to + 150°C	8 Pin Ceramic DIP 8 Pin Ceramic DIP
IP140MAH-05 IP140MH-05 IP140MAH-12 IP140MH-12 IP140MAH-15 IP140MH-15	- 55°C to + 150°C - 55°C to + 150°C	TO-39 TO-39 TO-39 TO-39 TO-39 TO-39 TO-39


Seagate Microelectronics Limited 3 AMP POSITIVE ADJUSTABLE REGULATORS

IP150, IP150A, IP350A, IP350, LM150

DESCRIPTION

The IP150A series are 3-terminal positive adjustable voltage regulators capable of spplying in excess of 3.0A over a 1.25V to 35V output range. These regulators are exceptionally easy to use and require only two external resistors to set the output voltage. In addition to improved line and load regulation, a major feature of the "A" series is the initial output voltage tolerance, which is guaranteed to be less than 1%. Over full operating conditions, including load, line, and power dissipation, the reference voltage is guaranteed not to vary more than 2%. These devices exhibit current limit, thermal overload protection, and improved power device safe operating area protection, making them essentially indestructible.

- Available in military TO-257
- Guaranteed 1% output voltage tolerance
- Guaranteed 0.3% load regulation
- Guaranteed 0.01%/V line regulation
- Internal current limiting constant with temperature
- Internal thermal overload protection
- Improved output transistor safe operating area compensation
- Output adjustable between 1.25V and 35V

IP150, IP150A, IP350A, IP350, LM150

3 AMP POSITIVE ADJUSTABLE REGULATORS

ABSOLUTE MAXIMUM RATINGS

Power Dissipation

Internally Limited

Input to Output Voltage Differential 35V Storage Temperature Range -65°C to +150°C

300°C

Lead Temperature (Soldering, 10 sec.)

Operating Junction Temperature Range

IP150, IP150A, LM150 -55°C to +150°C IP350A 0°C to +125°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

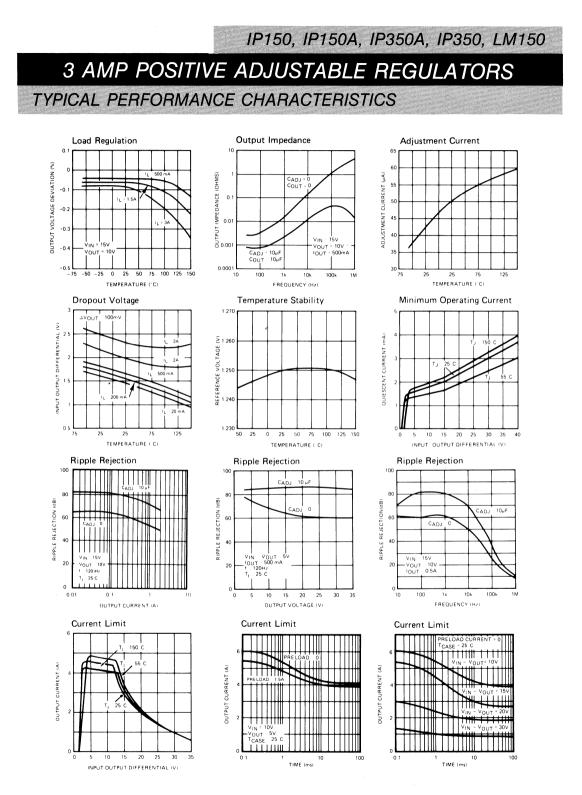
ELECTRICAL CHARACTERISTICS (NOTE 1)

						IP150A			LM150 IP150		
Parameter	Test Conditions				Min	Тур	Max	Min	Тур	Max	Units
Reference Voltage, VREF	IOUT = 10 mA				1.238	1.250	1.262				V
	3V ≤ (V _{IN} - V _{OUT})	≤35V		•	1.225	1.250	1.270	1.20	1.25	1.30	V
	10mA≤IOUT≤3A)mA≤I _{OUT} ≤3A, P≤30W									
Line Regulation, ΔV_{OUT}	3V ≤ (V _{IN} - V _{OUT})	V≤(V _{IN} -V _{OUT})≤35V				0.005	0.01		0.005	0.01	%∕V
ΔVIN	(See Note 2)			•		0.02	0.05		0.020	0.05	%/V
Load Regulation, ΔV_{OUT}	$10 \text{ mA} \le I_{OUT} \le 34$	A	V _O ≤5V			5	15		5	15	mV
	(See Note 2)		V _O ≥5V			0.1	0.3		0.1	0.3	%
			V _O ≤5V	•		15	50		20	50	mV
			V _O ≥5V	•		0.3	1.0		0.3	1.0	%
Thermal Regulation	T _A = 25°C, 20 mse	ec Pulse				0.002	0.01		0.002	0.01	%/W
Riipple Rejection	V _{OUT} = 10V,	CADJ	= 0	+		65			65		dB
	f = 120 Hz	CADJ	= 10µF	•	66	86		66	86		dB
Adjust Pin Current, IADJ				•		50	100		50	100	μA
Adjust Pin Current Change, ΔI_{ADJ}	$10 \text{ mA} \le I_{OUT} \le 3$	A		•		0.2	5		0.2	5	μA
	3V ≤ (VIN - VOUT))≤35V									
Minimum Load Current, IMIN	$(V_{IN} - V_{OUT}) = 35$	5V		•		3.5	5		3.5	5	mA
Current Limit, ICL	(V _{IN} - V _{OUT}) ≤ 10	V		•	3	4.5		3	4.5		Α
	$(V_{IN} - V_{OUT}) = 30$	V			0.3	1		0.3	1		A
Temperature Stability, ΔV_{OUT} $\overline{\Delta TEMP}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•		1	2		1		%
Long Term Stability, ΔV_{OUT}	T _A = 125℃, 1000	Hrs				0.3	1		0.3	1	%
RMS Output Noise (% of VOUT),en	T _A = 25°C, 10Hz ≤ f ≤ 10kHz			1	0.001			0.001		%	
Thermal Resistance Junction	K Package				1	1.5			1.5		°C/W
to Case, O ic	G Package				1	3	4	1	3	4	

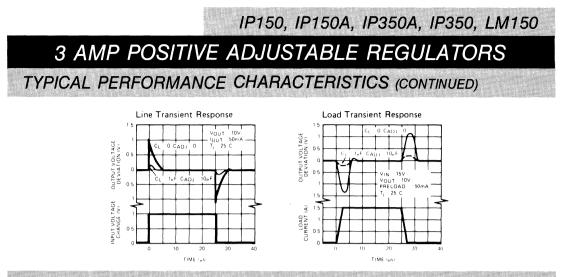
IP150, IP150A, IP350A, IP350, LM150

3 AMP POSITIVE ADJUSTABLE REGULATORS

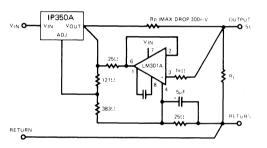
ELECTRICAL CHARACTERISTICS (SEE NOTE 1)

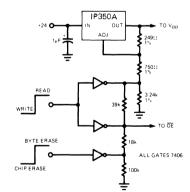

						IP350A			IP350		
Parameter	Test Conditions				Min	Тур	Max	Min	Тур	Max	Units
Reference Voltage, VREF	IOUT = 10 mA			Τ	1.238	1.250	1.262				V
	3V ≤ (VIN - VOUT))≤35'	V	•	1.225	1.250	1.270	1.200	1.250	1.300	V
	10mA ≤ IOUT≤ 3A	mA≤l _{OUT} ≤3A, P≤30V									
Line Regulation, ΔV_{OUT}	3V ≤ (V _{IN} - V _{OUT})	V≤(V _{IN} -V _{OUT})≤35V				0.005	0.01		0.005	0.03	‰∕∨
ΔVIN	(See Note 2)			•		0.02	0.05		0.02	0.07	%N
Load Regulation, ΔV_{OUT}	$10 \text{ mA} \le I_{OUT} \le 3$	A	V _O ≤5V			5	15		5	25	mV
Alout	(See Note 2)		V _O ≥5V			0.1	0.3		0.1	0.5	%
			V _O ≤5V	•		15	50		20	70	mV
			V _O ≥5V	•		0.3	1		0.3	1.5	%
Thermal Regulation	T _A = 25°C, 20 ms	ec Pu	lse			0.002	0.01		0.002	0.03	%W
Riipple Rejection	V _{OUT} = 10V,	CA	DJ=0			65			65		dB
	f = 120 Hz	CA	DJ = 10μF	•	66	86		66	86		dB
Adjust Pin Current, IADJ				•		50	100		50	100	μA
Adjust Pin Current Change, ΔI_{ADJ}	$10 \text{ mA} \le I_{OUT} \le 3$	A,		•		0.2	5		0.2	5	μA
	3V ≤ (V _{IN} - V _{OUT}) ≤35\	/								
Minimum Load Current, IMIN	$(V_{IN} - V_{OUT}) = 35$	5V		•		3.5	10		3.5	10	mA
Current Limit, ICL	$(V_{IN} - V_{OUT}) \le 10$	ov.		•	3	4.5		3	4.5		A
	$(V_{IN} - V_{OUT}) = 30$	v			0.25	1		0.25	1		A
Temperature Stability, ΔV_{OUT}				•		1	2		1		%
Long Term Stability, ΔV _{OUT} ΔTIME	T _A = 125°C, 1000	hrs				0.3	1		0.3	1	%
RMS Output Noise (% of VOUT),en	T _A = 25°C, 10Hz	≤f≤1	0kHz			0.001		1	0.001		%
Thermal Resistance Junction	K Package					1.5			1.5		°C/W
to Case, Θ_{iC}	T Package					3	4		3	4	°C/W
- Jo	V Package					1.5			1.5		°C/W

The • denotes specifications which apply over the full operating junction temperature range. All others apply at $T_j = 25^{\circ}C$ unless otherwise specified.

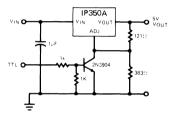

Note 1: Unless otherwise specified, these specifications apply for $V_{IN} - V_{OUT} = 5V$, $I_{OUT} = 1.5A$. Although power dissipation is internally limited, these specifications apply for dissipations of 30W for the TO – 3, TO – 218 and TO-257, and 25W for the TO-220; $I_{MAX} = 3A$.

Note 2: Regulation is measured at constant junction temperature, using pulse testing techniques at a low duty cycle. Changes in output voltage due to heating effects are covered under thermal regulation specifications. Load regulation is measured from the bottom of the package for the TO-3 and on the back of the heat tab for the TO-218, TO-220 and TO-257.

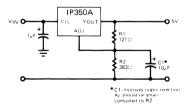


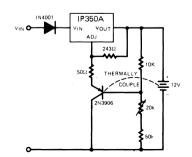

 \mathbb{S}

TYPICAL APPLICATIONS



Remote Sensing




2816 EEPROM Supply Programmer for Read/Write Control

5V Regulator with Shut Down

Improving Ripple Rejection

Temperature Compensated Lead Acid Battery Charger

IP150, IP150A, IP350A, IP350, LM150

3 AMP POSITIVE ADJUSTABLE REGULATORS

ORDER INFORMATION

Part Number

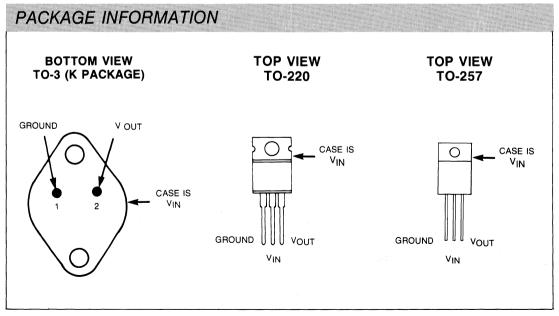
IP150AK	
IP150K	
IP150G	
IP150AG	
LM150K	
IP350AK	
IP350K	
IP350AT	
IP350T	
IP350AV	
IP350V	

Temperature Range

_	559	°C	to	+	15	0°	С
	559	°C	to	+	15	0°	С
_	559	°C	to	+	15	0°	С
	559	°C	to	+	15	0°	С
_	55°	°C	to	+	15	0°	С
	0	ъС	to	+	12	5°	С
	0	ъ	to	+	12	5°	С
	0	ъС	to	+	12	5°	С
	0	ъС	to	+	12	5°	С
	0	ъс	to	+	12	5°	С
	0	°C	to	+	12	5°	С

Package TO-3 TO-257 TO-257 TO-3 TO-3 TO-3 TO-220 TO-220 TO-218 TO-218

4



3 AMP, 3-TERMINAL, FIXED NEGATIVE VOLTAGE REGULATORS IP1R17, IP3R17, IP1R17A, IP3R17A

DESCRIPTION

The IP1R17A/IP3R17A and IP1R17/IP3R17 series of fixed three terminal negative regulators are capable of delivering 3 amps of output current, and are available with several convenient output voltages. The A-suffix devices provide 0.01%/V line regulation, 0.5% load regulation, and a $\pm 1\%$ output voltage tolerance at room temperature. Over all specified operating conditions (load, line, power, and temperature), the output voltage is guaranteed not to vary by more than $\pm 3\%$. Protection features include safe operating area current limiting for the output power transistor. and thermal shutdown. The entire series of regulators is available in a TO-3 package, and the commercial version is also available in a convenient, low cost plastic TO-220 package. For military applications the space saving Hermetic TO220 (TO257) is available.

- 3 Amp output current capability
- ± 1% Output tolerance at room temperature (A suffix)
- 0.01%/V Line regulation
- 0.5% Load regulation
- -5, -5.2, -12, -15 Volt fixed output voltages available
- Short circuit current limit protection
- Safe operating area protection
- Thermal shutdown protection
- Improved version of LM145

3 AMP, 3-TERMINAL, FIXED NEGATIVE VOLTAGE REGULATORS ABSOLUTE MAXIMUM RATINGS

Input Voltage ($V_{OUT} = -5, -5.2$	2, –12, or –15V) 35V	Lead Temperature (Soldering	g, 10 sec)	300°C
Power Dissipation	Internally Limited	Operating Junction Temper		
Storage Temperature Range	-65°C to +150°C	IP1R17A/IP1R17 IP3R17A/IP3R17	- 55°C to + 0°C to +	

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS

				IP1R1	7A-5/IP3F	R17A-5	IP1R	17-5/IP3F	117-5	
Symbol	Parameter	Conditions (Note 1)		Min	Тур	Max	Min	Тур	Max	Units
				-5.05	-5.00	-4.95	-5.15	-5.00	-4.85	V
VOUT	Output Voltage	$\begin{array}{l} \text{-5mA} \geqslant \text{I}_{OUT} \geqslant \text{-3A} \\ \text{-8V} \geqslant \text{V}_{IN} \geqslant \text{-20V}, \ P \leqslant \text{P}_{MAX} \end{array}$	•	-5.15		-4.85	-5.25		-4.75	V
∆Vout	Line Regulation	IOUT = -5mA (Note 2)			3	15		6	30	mV
∆VIN		-7.5V ≥ V _{IN} ≥ -35V	٠		6	30		12	60	mV
\triangle Vout	Load Regulation	-5mA ≥ IOUT ≥ -3A			5	25		10	50	mV
△IOUT	Loud Hogalation	(Note 2)	٠		10	50		20	100	mV
IQ	Quiescent Current	IOUT = -5mA	٠			5			5	mA
	Quiescent Current	-5mA ≥ IOUT ≥ -3A	٠			10			10	mA
2102	Change (Load/Line)	IOUT = -5mA, -7.5V ≥ VIN ≥ -35V	٠			5			5	mA
VD	Dropout Voltage	IOUT = -3A, △VOUT = 100mV	٠		2.2	3.0		2.2	3.0	V
	Ripple Rejection	IOUT = -1A, f = 120Hz	٠	60	80		60	80		dB
	Thermal Regulation	^t PULSE = 20msec, △P = PMAX			0.002	0.01		0.002	0.02	%/W
IPEAK	Peak Output Current (dc)	VIN = -10V	٠	-6.5	-4.5		-6.5	-4.5		A
ISC	Short Circuit	VIN = -10V			-4			-4		A
.30	Current	VIN = -35V			-1			-1		A
en	Output Noise Voltage	10Hz ≤ f ≤ 100kHz			40			40		JV
	AVE TC of VOUT									mV
ejc	Thermal Resistance,	K Package			1.5	2.5		1.5	2.5	°C/W
-00	Junction to Case	G, T Package			3	4		3	4	°C/W
										°C/W

The • denotes specifications which apply over the full operating junction temperature range. All others apply at $T_{CASE} = 25^{\circ}C$ unless otherwise specified.

- Note 1: Unless otherwise specified, $V_{IN} = -10V$, and $I_{OUT} = -1.5A$. Although power dissipation is internally limited, these specifications apply for dissipations up to 30W for the TO 3 package, and for dissipations up to 20W for the TO 220 and TO-257.
- Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to the thermal regulation specification.

3 AMP, 3-TERMINAL, FIXED NEGATIVE VOLTAGE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

				IP1R17	A-5.2/IP3F	17A-5.2	IP1R1	7-5.2/IP3F	17-5.2	
Symbol	Parameter	Conditions (Note 1)		Min	Тур	Max	Min	Тур	Max	Units
				-5.25	-5.20	-5.15	-5.35	-5.20	-5.05	V
VOUT	Output Voltage	$\begin{array}{l} \text{-5mA} \geqslant \text{IOUT} \geqslant \text{-3A} \\ \text{-8.2V} \geqslant \text{V}_{IN} \geqslant \text{20V}, \ P \leqslant \ \text{PMAX} \end{array}$	٠	-5.35		-5.05	-5.45		-4.95	v
∆Vout	Line Regulation	IOUT = -5mA (Note 2)			3	15		6	30	mV
∆Vin	Line riegulation	-7.7V ≥ VIN ≥ -35V	•		6	30		12	60	mV
	Load Regulation	-5mA ≥ IOUT ≥ -3A			5	25		10	50	mV
△lout	Loud Hogulation	(Note 2)	٠		10	50		20	100	mV
IQ	Quiescent Current	IOUT = -5mA •	٠			5			5	mA
	Quiescent Current	-5mA ≥ IOUT ≥ -3A	٠			10			10	mA
∆ iQ	Change (Load/Line)	$I_{OUT} = -5mA$, $-7.7V \ge V_{IN} \ge -35V$	٠			5			5	mA
VD	Dropout Voltage	IOUT = -3A, △VOUT = 100mV	٠		2.2	3.0		2.2	3.0	V
	Ripple Rejection	IOUT = -1A, f = 120Hz	٠	60	80		60	80		dB
	Thermal Regulation	^t PULSE = 20msec, △P=PMAX			0.002	0.01		0.002	0.02	%/W
IPEAK	Peak Output Current (dc)	VIN = -10V	٠	-6.5	-4.5		-6.5	-4.5		A
ISC	Short Circuit	VIN = -10V			-4			-4		A
.30	Current	VIN = -35V			-1			-1		A
en	Output Noise Voltage	10Hz ≤ f ≤ 100kHz			40			40		μV
	AVE TC of VOUT									mV
€JC	Thermal Resistance,	K Package			1.5	2.5		1.5	2.5	°C/W
010	Junction to Case	G, T Package			3	4		3	4	°C/W
										°C/W

The \bullet denotes specifications which apply over the full operating junction temperature range. All others apply at T_{CASE} = 25°C unless otherwise specified.

- Note 1: Unless otherwise specified, $V_{IN} = -10V$, and $I_{OUT} = -1.5A$. Although power dissipation is internally limited, these specifications apply for dissipations up to 30W for the TO 3 package, and for dissipations up to 20W for the TO 220 and TO-257.
- Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to the thermal regulation specification.

3 AMP, 3-TERMINAL, FIXED NEGATIVE VOLTAGE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

				IP1R17	A-12/IP3F	R17A-12	IP1R1	7-12/IP3	717-12	
Symbol	Parameter	Conditions (Note 1)		Min	Тур	Max	Min	Тур	Max	Units
				-12.12	-12.00	-11.88	-12.36	-12.00	-11.64	V
VOUT	Output Voltage	$-5mA \ge I_{OUT} \ge -3A$ $-15V \ge V_{IN} \ge -27V, P \le P_{MAX}$	•	-12.36		-11.64	-12.60		-11.40	v
	Line Regulation	IOUT = -5mA (Note 2)			5	30		10	60	mV
∆Vin		-14.5V ≥ V _{IN} ≥ -35V	٠		10	60		20	120	mV
riangle Vout	Load Regulation	-5mA ≥ IOUT ≥ -3A			10	60		20	120	mV
△IOUT	Loud Hogaldton	(Note 2)	٠		20	120		40	240	mV
IQ	Quiescent Current	IOUT = -5mA	٠			5			5	mA
	Quiescent Current	-5mA ≥ IOUT ≥ -3A	٠			10			10	mA
<u>,</u>	Change (Load/Line)	I _{OUT} = -5mA, -14.5V ≥ V _{IN} ≥-35V	٠			5			5	mA
٧D	Dropout Voltage	IOUT = -3A, △VOUT = 250mV	٠		2.2	3.0		2.2	3.0	v
	Ripple Rejection	IOUT = -1A, f = 120Hz	•	52	72		52	72		dB
	Thermal Regulation	^t PULSE = 20msec, △P=PMAX			0.002	0.01		0.002	0.02	%/W
IPEAK	Peak Output Current (dc)	VIN = -17V	٠	-6.5	-4.5		-6.5	-4.5		A
ISC	Short Circuit	VIN = -17V			-2.5			-2.5		A
.00	Current	VIN = -35V			-1			-1		A
en	Output Noise Voltage	10Hz ≤ f ≤ 100kHz			75			75		Vu
	AVE TC of VOUT									mV
elc	Thermal Resistance,	K Package			1.5	2.5		1.5	2.5	°C/W
000	Junction to Case	G, T Package			3	4		3	4	°C/W
										°C/W

The \bullet denotes specifications which apply over the full operating junction temperature range. All others apply at T_{CASE} = 25°C unless otherwise specified.

- Note 1: Unless otherwise specified, $V_{IN} = -17V$, and $I_{OUT} = -1.5A$. Although power dissipation is internally limited, these specifications apply for dissipations up to 30W for the TO 3 package, and for dissipations up to 20W for the TO 220 and TO-257.
- Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to the thermal regulation specification.

3 AMP, 3-TERMINAL, FIXED NEGATIVE VOLTAGE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

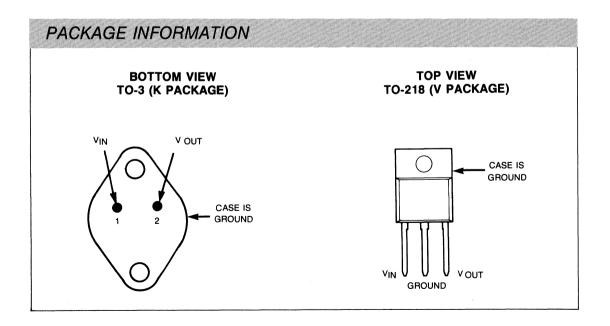
				IP1R17	A-15/IP3F	R17A-15	IP1R1			
Symbol	Parameter	Conditions (Note 1)		Min	Тур	Max	Min	Тур	Max	Units
				-15.15	-15.00	-14.85	-15.45	-15.00	-14.55	V
VOUT	Output Voltage	$\begin{array}{l} \text{-5mA} \geqslant \text{I}_{OUT} \geqslant \text{-3A} \\ \text{-18V} \geqslant \text{V}_{IN} \geqslant \text{-30V}, \ \text{P} < \ \text{PMAX} \end{array}$	٠	-15.45		-14.55	-15.75		-14.25	v
∆Vout	Line Regulation	IOUT = -5mA (Note 2)			8	40		16	80	mV
$ riangle V_{IN}$	Line riegulation	-17.5V ≥ VIN ≥ -35V	۲		16	80		32	160	mV
△ Vout	Load Regulation	-5mA ≥ IOUT ≥ -3A			16	80		32	160	mV
∆lout	Loud riegulation	(Note 2)	٠		32	160		64	320	mV
lQ	Quiescent Current	IOUT = -5mA	٠			5			5	mA
	Quiescent Current	-5mA ≥ IOUT ≥ -3A	٠			10			10	mA
∆ iQ	Change (Load/Line)	IOUT = -5mA, -17.5V ≥ VIN ≥ -35V	٠			5			5	mA
VD	Dropout Voltage	IOUT = -3A, △VOUT = 300mV	٠		2.2	3.0		2.2	3.0	V
	Ripple Rejection	IOUT = -1A, f = 120Hz	•'	50	70		50	70		dB
	Thermal Regulation	tPULSE = 20msec, △P = PMAX			0.002	0.01		0.002	0.02	%/W
IPEAK	Peak Output Current (dc)	VIN = -20V	٠	-6.5	-4.5		-6.5	-4.5		A
ISC	Short Circuit	$V_{IN} = -20V$			-2.3			-2.3		A
130	Current	VIN = -35V			-1			-1		A
en	Output Noise Voltage	10Hz ≤ f ≤ 100kHz			90			90		٧u
	AVE TC of VOUT									mV
θJC	Thermal Resistance,	K Package			1.5	2.5		1.5	2.5	°C/W
010	Junction to Case	G, T Package			3	4		3	4	°C/W
										°C/W

The • denotes specifications which apply over the full operating junction temperature range. All others apply at T_{CASE} = 25°C unless otherwise specified.

- Note 1: Unless otherwise specified, $V_{IN} = -20V$, and $I_{OUT} = -1.5A$. Although power dissipation is internally limited, these specifications apply for dissipations up to 30W for the TO 3 package, and for dissipations up to 20W for the TO 220 and TO-257.
- Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to the thermal regulation specification.

ORDER INFORMATION

Part Number	Temperature Range	Package
IP1R17AK-XX, IP1R17K-XX	- 55°C to + 150°C	TO-3
IP1R17AG-XX, IP1R17G-XX	– 55°C to + 150°C	TO-257
IP3R17AK-XX, IP3R17K-XX	0°C to +125°C	TO-3
IP3R17AT-XX, IP3R17T-XX	0°C to +125°C	TO-220


5 AMP, 3-TERMINAL, FIXED POSITIVE VOLTAGE REGULATORS

IP1R18A, IP3R18A, IP1R18, IP3R18

DESCRIPTION

The IP1R18A/IP3R18A and IP1R18/IP3R18 series of fixed three terminal positive regulators are capable of delivering 5 amps of load current, and are available with several convenient output voltage options. The A-suffix devices provide 0.01%/V line regulation, 0.5% load regulation, and a $\pm 1\%$ output voltage tolerance at room temperature. Over all specified operating conditions (load, line, power, and temperature), the output voltage is guaranteed not to vary by more than $\pm 3\%$. Protection features include safe operating area current limiting for the output power transistor. and thermal shutdown. The entire series of regulators is available in a TO-3 package, and the commercial version is also available in a convenient, low cost plastic TO-218 package.

- 5 Amp output current capability
- ±1% Output tolerance at room temperature (A suffix)
- 0.01%/V Line regulation
- 0.5% Load regulation
- 5, 12, 15 Volt fixed output voltages available
- Short circuit current limit protection
- Safe operating area protection
- Thermal shutdown protection
- Available in convenient, low cost plastic TO-218 package

IP1R18A, IP3R18A, IP1R18, IP3R18

5 AMP, 3-TERMINAL, FIXED POSITIVE VOLTAGE REGULATORS

35V

ABSOLUTE MAXIMUM RATINGS

Input Voltage ($V_{OUT} = 5, 12, \text{ or } 15V$)

Operating Junction Temperature Range IP1R18A/IP1R18 -55°C IP3R18A/IP3R18 0°C

- 55°C to + 150°C 0°C to + 125°C

Power Dissipation Internally Limited

Storage Temperature Range -65°C to +150°C

Lead Temperature (Soldering, 10 sec) 300°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS

					P1R18A-5 P3R18A-5					
Symbol	Parameter	Conditions (Note 1)		Min	Тур	Max	Min	Тур	Max	Units
				4.95	5.00	5.05	4.85		5.15	V
VOUT	Output Voltage	$\begin{array}{l} 5mA \leqslant I_{OUT} \leqslant 5A \\ 8V \leqslant V_{IN} \leqslant 20V, P \leqslant 50W \end{array}$	•	4.85		5.15	4.75		5.25	v
∆Vout	Line Regulation	IOUT = 5mA (Note 2)			3	15		6	30	mV
∆VIN	2	7.5V ≤ VIN ≤ 35V	٠		6	30		12	60	mV
	Load Regulation	5mA ≤ IOUT ≤ 5A			5	25		10	50	mV
∆lout	Loud Hogalation	(Note 2)	٠		10	50		20	100	mV
lQ	Quiescent Current	IOUT = 5mA	٠			7			7	mA
	Quiescent Current	5mA ≤ IOUT ≤ 5A	٠			10			10	mA
∠ iQ	Change (Load/Line)	IOUT = 5mA, 7.5V ≤ VIN ≤ 35V	٠			3			3	mA
٧D	Dropout Voltage	IOUT = 5A, △VOUT =100mV	٠		2.5	3.0		2.5	3.0	V
	Ripple Rejection	IOUT = 1A, f = 120Hz	٠	60	80		60	80		dB
	Thermal Regulation	tPULSE = 20msec, △P = 50W			0.002	0.01		0.002	0.02	%/W
IPEAK	Peak Output Current (dc)	$V_{IN} = 10V$	٠		8	12		8	12	A
ISC	Short Circuit	$V_{IN} = 10V$			7			7		A
.50	Current	$V_{IN} = 35V$			2			2		A
en	Output Noise Voltage	10Hz ≤ f ≤ 100kHz			40			40		νىر
	AVE TC of VOUT									mV
ejc	Thermal Resistance,	K Package			1.0	1.5		1.0	1.5	°C/W
-00	Junction to Case	V Package			1.0	1.5		1.0	1.5	°CM
										°CM

The • denotes specifications which apply over the full operating junction temperature range. All others apply at $T_{CASE} = 25^{\circ}C$ unless otherwise specified.

Note 1: Unless otherwise specified, $V_{IN} = 10V$, and $I_{OUT} = 2.5A$. Although power dissipation is internally limited, these specifications apply for dissipations up to 50W.

Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle . in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to thermal regulation specification.

IP1R18A, IP3R18A, IP1R18, IP3R18

5 AMP, 3-TERMINAL, FIXED POSITIVE VOLTAGE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

					IP1R18A- IP3R18A-		.			
Symbol	Parameter	Conditions (Note 1)		Min	Тур	Max	Min	Тур	Max	Units
				11.88	12.00	12.12	11.64	12.00	12.36	V
VOUT	Output Voltage	$\begin{array}{l} 5\text{mA} \leqslant \text{I}_{OUT} \leqslant 5\text{A} \\ 15\text{V} \leqslant \text{V}_{IN} \leqslant 27\text{V}, \text{P} \leqslant 50\text{W} \end{array}$	•	11.64		12.36	11.40		12.60	V ,
∆Vout	Line Regulation	IOUT = 5mA (Note 2)			5	30		10	60	mV
riangle VIN		14.5V ≤ VIN ≤ 35V	•		10	60		20	120	mV
	Load Regulation	5mA ≤ IOUT ≤ 5A			10	60		20	120	mV
△IOUT		(Note 2)	٠		20	120		40	240	mV
IQ	Quiescent Current	IOUT = 5mA	٠			7			7	mA
	Quiescent Current	5mA ≤ IOUT ≤ 5A	٠			10			10	mA
	Change (Load/Line)	$I_{OUT} = 5mA$, $14.5V \leq V_{IN} \leq 35V$	٠			3			3	mA
٧D	Dropout Voltage	IOUT = 5A, △VOUT = 250mV	٠		2.5	3.0		2.5	3.0	V
an a	Ripple Rejection	IOUT = 1A, f = 120Hz	•	52	72		52	72		dB
	Thermal Regulation	^t PULSE = 20msec, $\triangle P = 50W$			0.002	0.01		0.002	0.02	%/W
IPEAK	Peak Output Current (dc)	VIN = 17V	٠		8	12		8	12	A
ISC	Short Circuit	VIN = 17V			4			4		A
00	Current	VIN = 35V			2			2		A
en	Output Noise Voltage				75			75		uV
	AVE TC of VOUT									mV
ejc	Thermal Resistance,	K Package			1.0	1.5		1.0	1.5	°C/W
- 00	Junction to Case	V Package			1.0	1.5		1.0	1.5	°C/W
										°C/W

The \bullet denotes specifications which apply over the full operating junction temperature range. All others apply at T_{CASE} = 25°C unless otherwise specified.

Note 1: Unless otherwise specified, $V_{IN} = 17V$, and $I_{OUT} = 2.5A$. Although power dissipation is internally limited, these specifications apply for dissipations up to 50W.

Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to thermal regulation specification.

IP1R18A, IP3R18A, IP1R18, IP3R18

5 AMP, 3-TERMINAL, FIXED POSITIVE VOLTAGE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

					IP1R18A- IP3R18A-			5		
Symbol	Parameter	Conditions (Note 1)		Min	Тур	Max	Min	Тур	Max	Units
	······································			14.85	15.00	15.15	14.55	15.00	15.45	V
VOUT	Output Voltage	$\begin{array}{l} 5\text{mA} \leqslant \text{I}_{OUT} \leqslant 5\text{A} \\ 18\text{V} \leqslant \text{V}_{IN} \leqslant 30\text{V}, \text{P} \leqslant 50\text{W} \end{array}$	•	14.55		15.45	14.25		15.75	v
∆Vout	Line Regulation	IOUT = 5mA (Note 2)			8	40		16	80	mV
∆Vin	Line riogulation	17.5V ≤ VIN ≤ 35V	•		16	80		32	160	mV
\triangle Vout	Load Regulation	5mA ≤ IOUT ≤ 5A			16	80		32	160	mV
∆lout	Loud Hogulation	(Note 2)	•		32	160		64	320	mV
lQ	Quiescent Current	IOUT = 5mA	•			7			7	mA
	Quiescent Current	5mA ≤ IOUT ≤ 5A	•			10			10	mA
	Change (Load/Line)	$I_{OUT} = 5mA$, $17.5V \le V_{IN} \le 35V$	٠			3			3	mA
٧D	Dropout Voltage	IOUT = 5A, △VOUT = 300mV	٠		2.5	3.0		2.5	3.0	V
	Ripple Rejection	IOUT = 1A, f = 120Hz	٠	50	70		50	70		dB
	Thermal Regulation	tPULSE = 20msec, △P = 50W			0.002	0.01		0.002	0.02	%/W
IPEAK	Peak Output Current (dc)	VIN = 20V	•		8	12		8	12	A
ISC	Short Circuit	$V_{IN} = 20V$			3.5			3.5		A
.50	Current	VIN = 35V			2			2		A
en	Output Noise Voltage				90			90		uV
	AVE TC of VOUT									mV
elc	Thermal Resistance,	K Package			1.0	1.5		1.0	1.5	°C/W
-00	Junction to Case	V Package			1.0	1.5		1.0	1.5	°C/W
										°C/W

The • denotes specifications which apply over the full operating junction temperature range. All others apply at $T_{CASE} = 25^{\circ}C$ unless otherwise specified.

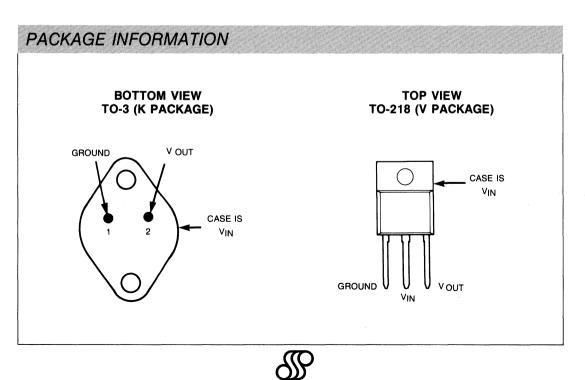
Note 1: Unless otherwise specified, $V_{IN} = 20V$, and $I_{OUT} = 2.5A$. Although power dissipation is internally limited, these specifications apply for dissipations up to 50W.

Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to thermal regulation specification.

ORDER INFORMATION

Part Number

IP1R18AK-XX, IP1R18K-XX IP3R18AK-XX, IP3R18K-XX IP3R18AV-XX, IP3R18V-XX Temperature Range - 55°C to 150°C 0°C to 125°C 0°C to 125°C Package TO-3 TO-3 TO-218


5 AMP, 3-TERMINAL, FIXED NEGATIVE VOLTAGE REGULATORS

IP1R19A, IP3R19A, IP1R19, IP3R19

DESCRIPTION

The IP1R19A/IP3R19A and IP1R19/IP3R19 series of fixed three terminal negative regulators are capable of delivering 5 amps of load current, and are available with several convenient output voltages. The A-suffix devices provide 0.01%/V line regulation, 0.5% load regulation, and a $\pm 1\%$ output voltage tolerance at room temperature. Over all specified operating conditions (load, line, power, and temperature), the output voltage is guaranteed not to vary by more than $\pm 3\%$. Protection features include safe operating area current limiting for the output power transistor. and thermal shutdown. The entire series of regulators is available in a TO-3 package, and the commercial version is also available in a convenient, low cost plastic TO-218 package.

- 5 Amp output current capability
- ±1% Output tolerance at room temperature (A suffix)
- 0.01%/V Line regulation
- 0.5% Load regulation
- -5, -5.2, -12, -15 Volt fixed output voltages available
- Short circuit current limit protection
- Safe operating area protection
- Thermal shutdown protection
- Available in convenient, low cost plastic TO-218 package

IP1R19A, IP3R19A, IP1R19, IP3R19

5 AMP, 3-TERMINAL, FIXED NEGATIVE VOLTAGE REGULATORS

ABSOLUTE MAXIMUM RATINGS

E 0 40 --- 4510

Input voltage ($V_{OUT} = -5, -5.2$, -12, or -15V) 35V
Power Dissipation	Internally Limited
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 1	10 sec) 300°C

In much Malkana Ala

Operating Junction Temperature Range IP1R19A/IP1R19 -55°C t IP3R19A/IP3R19 0°C

-55°C to + 150°C 0°C to + 125°C

Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The electrical characteristics provide conditions for actual device operation.

ELECTRICAL CHARACTERISTICS

					P1R19A-5 P3R19A-5					
Symbol	Parameter	Conditions (Note 1)		Min	Тур	Max	Min	Тур	Max	Units
				-5.05	-5.00	-4.95	-5.15	-5.00	-4.85	V
VOUT	Output Voltage	$\begin{array}{l} \text{-5mA} \geqslant \text{IOUT} \geqslant \text{-5A} \\ \text{-8V} \geqslant \text{V}_{IN} \geqslant \text{-20V}, \ \text{P} \leqslant \ \text{50W} \end{array}$	•	-5.15		-4.85	-5.25		-4.75	v
∆Vout	Line Regulation	IOUT = -5mA (Note 2)			3	15		6	30	mV
∆VIN		-7.5V ≥ VIN ≥ -35V	٠		6	30		12	60	mV
	Load Regulation	-5mA ≥ IOUT ≥ -5A			5	25		10	50	mV
∆IOUT		(Note 2)	٠		10	50		20	100	mV
IQ	Quiescent Current	IOUT = 5mA	٠			5			5	mA
	Quiescent Current	-5mA ≥ IOUT ≥ -5A	•			10			10	mA
<u> </u>	Change (Load/Line)	I_{OUT} = -5mA, -7.5V \ge VIN \ge -35V	٠			5			5	mA
VD	Dropout Voltage	IOUT = -5A, △VOUT = 100mV	٠		2.2	3.0		2.2	3.0	V
	Ripple Rejection	IOUT = -1A, f = 120Hz	٠	60	80		60	80		dB
	Thermal Regulation	tPULSE = 20msec, $\triangle P = 50W$			0.002	0.01		0.002	0.02	%/M
IPEAK	Peak Output Current (dc)	VIN = -10V	٠	-12	-8		-12	-8		A
ISC	Short Circuit	VIN = -10V			-7			-7		A
.00	Current	V _{IN} = -35V			-2			-2		A
en	Output Noise Voltage	10Hz ≤ f ≤ 100kHz			40			40		٧μ
	AVE TC of VOUT									mV
elc	Thermal Resistance,	K Package			1.0	1.5		1.0	1.5	°C/M
-00	Junction to Case	V Package			1.0	1.5		1.0	1.5	°C/V
										°CN

The \bullet denotes specifications which apply over the full operating junction temperature range. All others apply at T_{CASE} = 25°C unless otherwise specified.

Note 1: Unless otherwise specified, $V_{IN} = -10V$, $I_{OUT} = -2.5A$. Although power dissipation is internally limited, these specifications apply for dissipations up to 50W.

Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to the thermal regulation specification.

IP1R19A, IP3R19A, IP1R19, IP3R19

5 AMP, 3-TERMINAL, FIXED NEGATIVE VOLTAGE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

					P1R19A-5 P3R19A-5			P1R19-5. P3R19-5.		
Symbol	Parameter	Conditions (Note 1)		Min	Тур	Max	Min	Тур	Max	Units
				-5.25	-5.20	-5.15	-5.35	-5.20	-5.05	V
VOUT	Output Voltage	$ \begin{array}{c c} \text{-5mA} \geqslant \text{I}_{OUT} \geqslant \text{-5A} \\ \text{-8.2V} \geqslant \text{V}_{IN} \geqslant \text{-20V}, \ \text{P} \leqslant \text{50W} \end{array} $	٠	-5.35		-5.05	-5.45		-4.95	v
∆Vout	Line Regulation	IOUT = -5mA (Note 2)			3	15		6	30	mV
$ riangle V_{IN}$	Line riegalation	-7.7V ≥ VIN ≥ -35V	٠		6	30		12	60	mV
△ Vout	Load Regulation	-5mA ≥ IOUT ≥ -5A			5	25		10	50	mV
∆lout	Loud Hogaidion	(Note 2)	٠		10	50		20	100	mV
IQ	Quiescent Current	IOUT = -5mA	٠			5			5	mA
	Quiescent Current	-5mA ≥ IOUT ≥ -5A	٠			10			10	mA
	Change (Load/Line)	I _{OUT} = -5mA, -7.7V ≥ V _{IN} ≥ -35V	٠			5			5	mA
٧D	Dropout Voltage	IOUT = -5A, △VOUT = 100mV	٠		2.2	3.0		2.2	3.0	V
	Ripple Rejection	IOUT = -1A, f = 120Hz	٠	60	80		60	80		dB
	Thermal Regulation	$t_{PULSE} = 20 msec, \triangle P = 50 W$			0.002	0.01		0.002	0.02	%/W
IPEAK	Peak Output Current (dc)	VIN = -10V	٠	-12	-8		-12	-8		A
ISC	Short Circuit	VIN = -10V			-7			-7		A
.30	Current	VIN = -35V			-2			-2		A
en	Output Noise Voltage	10Hz ≤ f ≤ 100kHz			40			40		٧u
	AVE TC of VOUT									mV
elc	Thermal Resistance,	K Package			1.0	1.5		1.0	1.5	°C/W
-10	Junction to Case	V Package			1.0	1.5		1.0	1.5	°C/W
					-					°C/W

The • denotes specifications which apply over the full operating junction temperature range. All others apply at $T_{CASE} = 25^{\circ}C$ unless otherwise specified.

Note 1: Unless otherwise specified, $V_{IN} = -10V$, $I_{OUT} = -2.5A$ Although power dissipation is internally limited, these specifications apply for dissipations up to 50W.

Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to the thermal regulation specification.

IP1R19A, IP3R19A, IP1R19, IP3R19

5 AMP, 3-TERMINAL, FIXED NEGATIVE VOLTAGE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

				IP1R19A-12 IP3R19A-12			IP1R19-12 IP3R19-12			
Symbol	Parameter	Conditions (Note 1)		Min	Тур	Max	Min	Тур	Max	Units
				-12.12	-12.00	-11.88	-12.36	-12.00	-11.64	V
VOUT	Output Voltage	$\begin{array}{c} \text{-5mA} \geqslant \text{I}_{OUT} \geqslant \text{-5A} \\ \text{-15V} \geqslant \text{V}_{IN} \geqslant \text{-27V}, P \leqslant \text{50W} \end{array}$	•	-12.36		-11.64	-12.60		-11.40	v
∆Vout	Line Regulation	IOUT = -5mA (Note 2)			5	30		10	60	mV
∆VIN	Line riegulation	-14.5V \geqslant V _{IN} \geqslant -35V	•		10	60		20	120	mV
\triangle Vout	Load Regulation	-5mA ≥ IOUT ≥ -5A			10	60		20	120	mV
	Loud Hegulation	(Note 2)	٠		20	120		40	240	mV
IQ	Quiescent Current	IOUT = -5mA	٠			5			5	mA
	Quiescent Current	-5mA ≥ IOUT ≥ -5A	٠			10			10	mA
∆ iQ	Change (Load/Line)	IOUT = -5mA, -14.5V ≥ VIN ≥-35V	•			5			5	mA
VD	Dropout Voltage	IOUT = -5A, △VOUT = 250mV	•		2.2	3.0		2.2	3.0	V
	Ripple Rejection	IOUT = -1A, f = 120Hz	•	52	72		52	72		dB
	Thermal Regulation	tPULSE = 20msec, △P = 50W			0.002	0.01		0.002	0.02	%/W
PEAK	Peak Output Current (dc)	VIN = -17V	•	-12	-8		-12	-8		A
ISC	Short Circuit	VIN = -17V			-4			-4		A
130	Current	VIN = -35V			-2			-2		A
en	Output Noise Voltage	$10Hz \leq f \leq 100kHz$			75			75		∨ىر
	AVE TC of VOUT									mV
elc	Thermal Resistance,	K Package			1.0	1.5		1.0	1.5	°C/W
010	Junction to Case	V Package			1.0	1.5		1.0	1.5	°C/W
										°C/W

The • denotes specifications which apply over the full operating junction temperature range. All others apply at $T_{CASE} = 25^{\circ}C$ unless otherwise specified.

Note 1: Unless otherwise specified, $V_{IN} = -17V$, $I_{OUT} = -2.5A$ Although power dissipation is internally limited, these specifications apply for dissipations up to 50W.

Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to the thermal regulation specification.

IP1R19A, IP3R19A, IP1R19, IP3R19

5 AMP, 3-TERMINAL, FIXED NEGATIVE VOLTAGE REGULATORS

ELECTRICAL CHARACTERISTICS (CONTINUED)

					P1R19A-1 P3R19A-1			IP1R19-15 IP3R19-15		
Symbol	Parameter	Conditions		Min	Тур	Max	Min	Тур	Max	Units
				-15.15	-15.00	-14.85	-15.45	-15.00	-14.55	V
VOUT	Output Voltage	$\begin{array}{c} \text{-5mA} \geqslant \text{IOUT} \geqslant \text{-5A} \\ \text{-18V} \geqslant \text{V}_{\text{IN}} \geqslant \text{-30V}, \ \text{P} \leqslant \ \text{50W} \end{array}$	٠	-15.45		-14.55	-15.75		-14.25	v
∆Vout	Line Regulation	IOUT = -5mA (Note 2)			8	40		16	80	mV
∆Vin	2o riegalation	-17.5V \geqslant VIN \geqslant -35V	٠		16	80		32	160	mV
△ Vout	Load Regulation	-5mA ≥ IOUT ≥ -5A			16	80		32	160	mV
△IOUT	Loud Hogalation	(Note 2)	٠		32	160		64	320	mV
IQ	Quiescent Current	IOUT = -5mA	٠			5			5	mA
$\triangle \mathbf{q} $	Quiescent Current	-5mA ≥ IOUT ≥ -5A	٠			10			10	mA
	Change (Load/Line)	IOUT = -5mA, -17.5V ≥ VIN≥ -35V	٠			5			5	mA
٧D	Dropout Voltage	$IOUT = -5A$, $\triangle VOUT = 300mV$	٠		2.2	3.0		2.2	3.0	V
	Ripple Rejection	IOUT = -1A, f = 120Hz	٠	50	70		50	70		dB
	Thermal Regulation	^t PULSE = 20msec, △P = 50W			0.002	0.01		0.002	0.02	%/W
IPEAK	Peak Output Current (dc)	VIN = -20V	٠	-12	-8		-12	-8		A
ISC	Short Circuit	VIN = -20V			-3.5			3.5		A
130	Current	VIN = -35V			-2			-2		A
en	Output Noise Voltage	10Hz ≤ f ≤ 10kHz			90			90		Vu
	AVE TC of VOUT									mV
ejc	Thermal Resistance,	K Package			1.0	1.5		1.0	1.5	°C/W
- 10	Junction to Case	V Package			1.0	1.5		•1.0	1.5	°C/W
										°C/W

The • denotes specifications which apply over the full operating junction temperature range. All others apply at $T_{CASE} = 25^{\circ}C$ unless otherwise specified.

Note 1: Unless otherwise specified, $V_{IN} = -20V$, $I_{OUT} = 2.5A$. Although power dissipation is internally limited, these specifications apply for dissipations up to 50W.

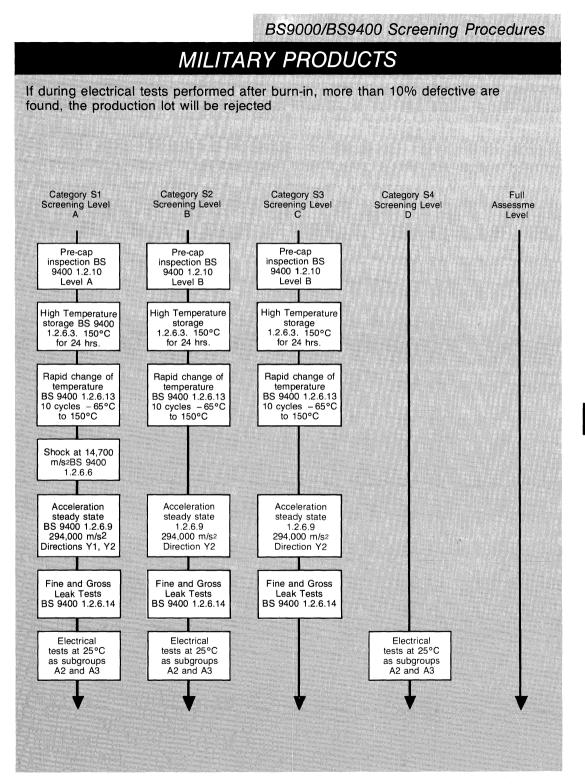
Note 2: Load and line regulation are electrically independent and are measured using pulse testing techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating refer to the thermal regulation specification.

ORDER INFORMATION

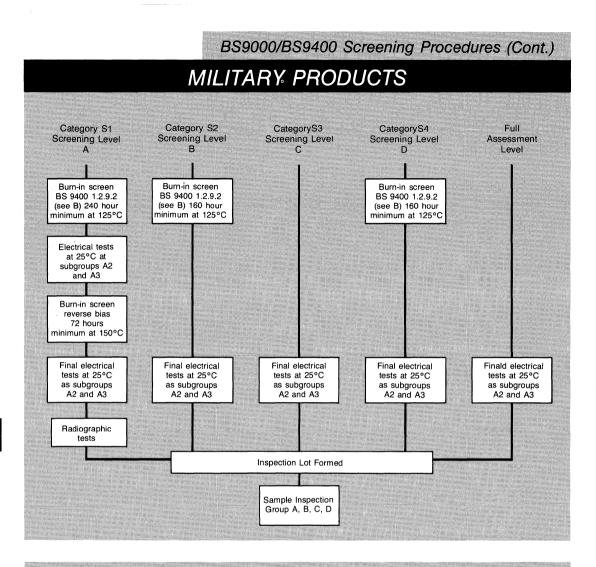
Part Number	Temperature Range	Package
IP1R19AK-XX	– 55°C to 150°C	TO-3
IP1R19K-XX	– 55°C to 150°C	TO-3
IP3R19AK-XX	0°C to 125°C	TO-3
IP3R19K-XX	0°C to 125°C	TO-3
IP3R19AV-XX	0°C to 125°C	TO-218
IP3R19V-XX	0°C to 125°C	TO-218

MILITARY PRODUCTS

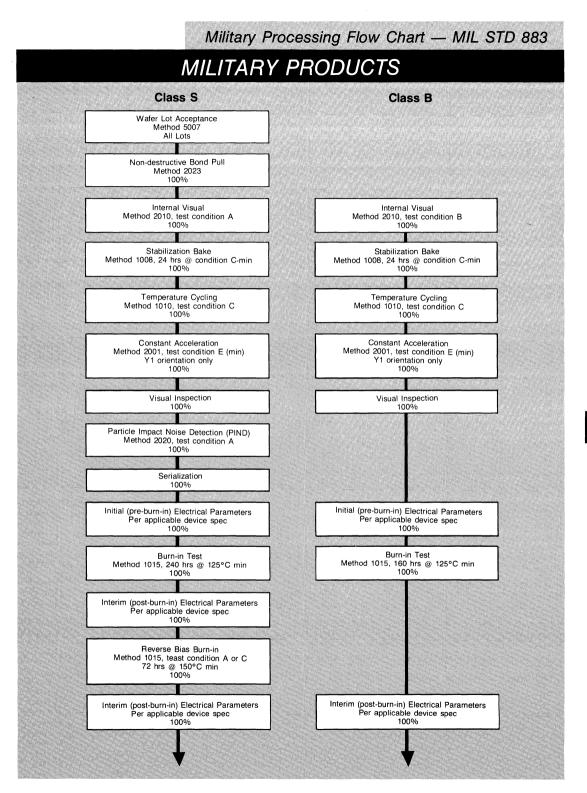
Seagate Microelectronics offers a wide variety of product screened to MIL-STD-883, Method 5004, BS9400 and CECC 90200. All products are 100% tested to Seagate Microelectronics data sheet electrical limits.

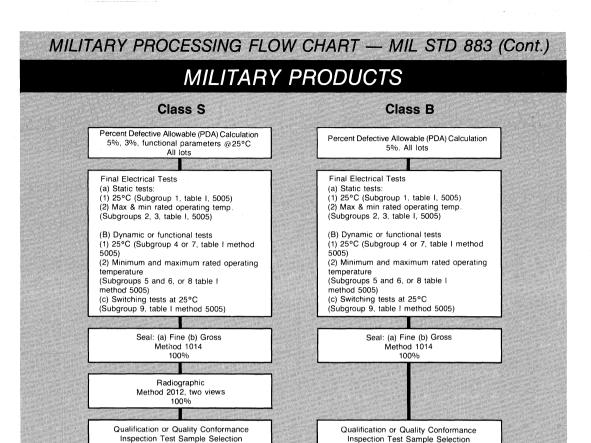

Quality conformance inspection is performed in accordance with MIL-STD-883, Method 5005.

BS9400 and CECC 90200 generic quality conformance data is generally available for common device and package combination tests.


Seagate Microelectronics provides a large selection of hermetic packages for military use:

Package Type	Suffix Designator
CERDIP	J
TO-3	K
TO-39	Н
TO-66	R
TO-257 (Hermetic TO-220 style)	G




SAMPLING PLAN COMPARATIVE ANALYSIS

Parameter	SME Sampling Plan	883 Method 5005	BS9400	CECC 90200
DC +25°C	0.1% AQL 1.8% LTPD	0.3% AQL 2% LTPD	1.5% AQL	0.65% AQL
DC +125°C	0.1% AQL 1.8% LTPD	0.4% AQL 3% LTPD	4% AQL	1% AQL
DC -55°C	0.1% AQL 1.8% LTPD	0.8% AQL 5% LTPD	4% AQL	1% AQL
AC +25°C (Dynamic)	0.1% AQL 1.8% LTPD	0.3% AQL 2% LTPD	4% AQL	1.5% AQL
AC +125°C (Dynamic)	0.1% AQL 1.8% LTPD	0.4% AQL 3% LTPD	4% AQL (3 Monthly)	4% AQL (3 Monthly)
AC -55°C (Dynamic)	0.1% AQL 1.8% LTPD	0.8% AQL 5% LTPD	4% AQL (3 Monthly)	4% AQL (3 Monthly)

Method 5005, per applicable device spec

All Lots

External Visual

Method 2009

100%

Method 5005, per applicable device spec

All Lots

External Visual

Method 2009

100%

P

BS 9000 APPROVALS

MILITARY PRODUCTS

1) BS 9430 -	Voltage Regulators	Voltage Regu	ulators Contd	Voltage F	legulators Contd
IP117K	F0394 (0119)	IP150AK	F0597	IP1R18K	 F0876
IP117R	F0401	IP120K/7900K	F0604	IP1R17K	F0904
iP117G	F0772	IP120R	F0611	IP1R17G	T.B.A.
IP117HVK	F0408	IP120AK	F0618	IP145K	F0149
IP117HVR	F0415	IP120AR	F0625	IP109K	F0039
IP117HVG	F0779	IP120MH	F0632	IP109H	F0031
IP117AK	F0422	IP120MR	F0639	2) BS 9493	- PWMs & Supervisory Circuits
IP117AR	F0429	IP120MAH	F0646	IP1P125J	F0094
IP117AG	F0786	IP120MAR	F0653	IP1060BJ	F0113
IP117AHVK	F0436	IP137K	F0660 (0389)	IP1524J	F0120
IP117AHVR	F0443	IP137R	F0667	IP1524BJ	F0087
IP117AHVG	F0793	IP137G	F0800	IP1525AJ	F0127
IP117MHVR	F0471	IP137HVK	F0674	IP1526J	F0134
IP117MAH	F0478	IP137HVR	F0681	IP1526AJ	F0141
IP117MAR	F0485	IP137HVG	F0814	IP1527AJ	F0148
IP117MAHVH	F0492	IP137AK	F0688	IP1543J	F0196
IP117MAHVR	F0499	IP137AR	F0695	IP1842J	F0155
IP123K	F0506	IP137AG	F0807	IP1843J	F0162
IP123AK	F0513	IP137AHVK	F0702	IP1844J	F0245
IP138K	F0520	IP137AHVR	F0709	IP1845J	F0252
IP138AK	F0527	IP137AHVG	F0821	IP5560J	F0169
IP140K/7800K	F0534 (0102)	IP137MH	F0716 (0386)	IP5561J	F0175
IP140R	F0541	IP137MR	F0723	IP35063J	F0187
IP140AK	F0548 (0107)	IP137MHVH	F0730		
IP140AR	F0555	IP137MHVR	F0737		
IP140MH	F0562	IP137MAH	F0744		
IP140MR	F0569	IP137MAR	F0751		
IP140MAH	F0576	IP137MAHVH	F0758		
IP140MAR	F0583	IP137MAHVR	F0765		
IP150K	F0590 (0360)	IP1R19K	F0828	1	

(Note figures in brackets are existing specification numbers and are available from Seagate Microelectronics.)

MILITARY PRODUCTS

VOLTAGE REGULATORS

DEVICE	MIL. DRWG.	STATUS
IP117H/883B	7703401XX	APPROVED
IP117K/883B	7703401YX	APPROVED
IP117R/883B	7703401ZX	APPROVED
IP117HVH	773402XX	APPROVED
IP117HVK/883B	773402YX	APPROVED
IP117HVR/883B	773402ZX	CAN BE ADDED
IP137H/883B	773403XX	APPROVED
IP137K/883B	7703403YX	APPROVED
IP137R/883B	7703403ZX	APPROVED
IP137HVH/883B	7703404XX	APPROVED
IP137HVK/883B	7703404YX	APPROVED
IP137HVR/883B	7703404ZX	CAN BE ADDED
IP117AH/883B	773405XX	APPROVED
IP117AK/883B	773405YX	APPROVED
IP117AR/883B	773405ZX	APPROVED
IP137AH/883B	773406XX	APPROVED
IP137AK/883B	7703406YX	APPROVED
IP137AR/883B	7703406ZX	APPROVED
IP117AHVH/883B	7703407XX	APPROVED
IP117AHVK/883B	7703407YX	APPROVED
IP117AHVR/883B	7703407ZX	CAN BE ADDED
IP137AHVH/883B	7703408XX	APPROVED
IP137AHVK/883B	7703408YX	APPROVED
IP137AHVR/883B	7703408XX	CAN BE ADDED
IP117G/883B IP117HVG/883B IP137G/883B IP137HVG/883B IP137HVG/883B IP117AG/883B IP137AG/883B IP117AHVG/883B IP137AHVG/883B	7703401TX 7703402TX 7703403TX 7703404TX 7703405TX 7703406TX 7703407TX 7703408TX	APPROVED APPROVED APPROVED APPROVED APPROVED APPROVED APPROVED APPROVED
IP123K-5/883B IP123K-12/883B IP123R-15/883B IP123AK-5/883B IP123AK-12/883B IP123AK-12/883B IP123AK-15/883B	5962-8777501YX 5962-8777502YX 5962-8777503YX 5962-8777504YX 5962-8777505YX 5962-8777505YX 5962-8777506YX	APPROVED CAN BE ADDED CAN BE ADDED CAN BE ADDED CAN BE ADDED CAN BE ADDED

NOTE: Please contact factory for current status.

MILITARY PRODUCTS

VOLTAGE REGULATORS

VOETAGE REGOLATO	0	
DEVICE	MIL DRWG.	STATUS
IP150K/883B IP150AK/883B	5962-8767501XX 5962-8767502XX	APPROVED APPROVED
IP78M05AH/883B IP7805AK/883B IP7805AR/883B IP7805AG/883B	5962-8778201XX 5962-8778201YX 5962-8778201ZX 5962-8778201ZX 5962-8778201TX	APPROVED APPROVED APPROVED APPROVED
IP78M12AH/883B IP7812AK/883B IP7812AR/883B	5962-8777601XX 5962-8777601YX 5962-8777601ZX	APPROVED APPROVED APPROVED
IP78M15AH/883B IP7815AK/883B IP7815AR/883B IP7815AR/883B IP7815AG/883B	5962-8855301XX 5962-8855301YX 5962-8855301ZX 5962-8855301ZX 5962-8855301TX	APPROVED APPROVED APPROVED APPROVED
IP79M05AH/883B IP7905AK/883B IP7905AR/883B IP7905AG/883B	5962-8874601XX 5962-8874601YX 5962-8874601ZX 5962-8874601ZX 5962-8874601TX	IN DESC IN PROGRESS IN DESC IN PROGRESS IN DESC IN PROGRESS IN DESC IN PROGRESS
IP79M12AH/883B IP7912AK/883B IP7912AR/883B IP7912AR/883B IP7912AG/883B IP79AIG/883B	5962-8874701XX 5962-8874701YX 5962-8874701ZX 5962-8874701TX 5962-8874701UX	APPROVED APPROVED APPROVED APPROVED APPROVED
IP79M15AH/883B IP7915AK/883B IP7915AR/883B IP7915AG/883B IP7915AIG/883B	5962-8874801XX 5962-8874801YX 5962-8874801ZX 5962-8874801TX 5962-8874801UX	APPROVED APPROVED APPROVED APPROVED APPROVED
LM109K/883B	5962-8777401YX	IN DESC IN PROGRESS
PULSE WIDTH MODUL	ATORS	n en
DEVICE	MIL. DRWG.	STATUS
IP1524J/883B	7802801EX	APPROVED
IP1524BJ/883B	5962-87645	APPROVED
IP1526J/883B IP1526AJ/883B	5962-8551501VX 5962-8551502VX	APPROVED APPROVED
IP1842J/883B IP1843J/883B IP1844J/883B IP1845J/883B	5962-8670401PX 5962-8670402PX 5962-8670403PX 5962-8670409X	APPROVED APPROVED APPROVED APPROVED
IP5560J/883B	5962-8672201EX	APPROVED
IP1543J/883B	5962-8774001EX	APPROVED

NOTE: Please contact factory for current status.

This page intentionally left blank

Seagate Microelectronics Limited

APPLICATIONS INFORMATION

HIGH PERFORMANCE PULSE WIDTH MODULATORS

INTRODUCTION

The IP1525A/27A pulse width modulators are an improved family of switch mode power supply control integrated circuits. They are pin for pin compatible with the UC/SG1525A, UC/SG1527A families.

The optimized chip design exhibits significant benefits in the following areas:

- Crossover current reduction
- Lower power consumption
- Oscillator frequencies up to 500 kHz
- Increased reliability and improved performance over the entire operating temperature range.

BLOCK DIAGRAM

These PWM integrated circuits contain all four basic control elements: voltage reference, oscillator, error amplifier, and pulse width modulator. Additional functions provided are: low impedance drive, undervoltage lockout, soft start, logic compatible shut down, multiple pulse suppression and external oscillator synchronization.

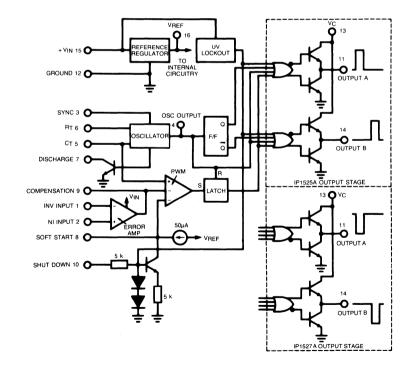
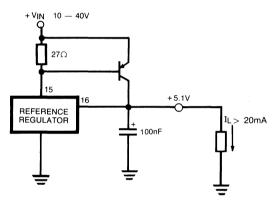


Figure 1: Block Diagram of the IP1525A/27A



HIGH PERFORMANCE PULSE WIDTH MODULATORS APPLICATIONS INFORMATION

VOLTAGE REFERENCE

The on-chip +5.1V bandgap reference is trimmed to \pm 1% accuracy. It is essentially a temperature compensated, short circuit protected linear regulator.

 V_{REF} supplies power to most of the internal circuitry and is also available for external use at pin 16. If currents above 20 mA are needed, figure 2 shows a configuration that uses an external PNP transistor. In applications with high system noise or non optimal layout V_{REF} should be decoupled with a 100nF ceramic capacitor.

OSCILLATOR

The oscillator circuit consists of a current source, programmable via R_T , a timing capacitor (C_T), a comparator, and a discharge transistor.

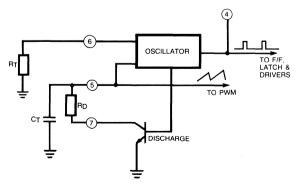
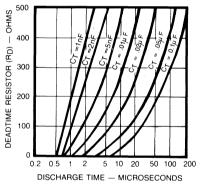



Figure 3: Oscillator

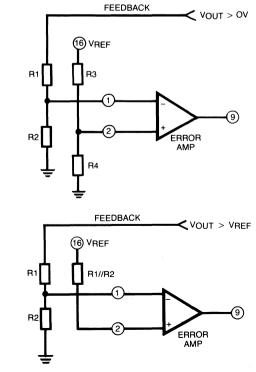
The oscillator circuit consists of a current source, programmable via R_T , a timing capacitor (CT), a comparator, and a discharge transistor.

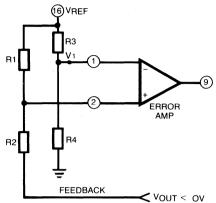
The voltage present at pin 6 (RT) is approximately + 3.6V. The current that flows through the timing resistor RT is mirrored internally and made available to charge the timing capacitor CT. This constant current charging of CT produces a linear ramp voltage. When the ramp reaches 3.5 V. The comparator changes state: the discharge transistor is turned ON. CT is discharged toward ground through RD, and the output on pin 4 becomes high. When the voltage across CT reaches 0.9 V, the comparator again changes state: pin 4 becomes low and the cycle is repeated. An external resistor RD, modifies the discharge time. In doing so, it increases the clock pulse width and the dead time. Rn can be as high as RT/15 (see Figure 4). For minimum dead time, pins 5 and 7 are connected together.

Figure 4: Oscillator Discharge Times vs. R_D and C_T

The saw tooth waveform generated at pin 5 is used at the pulse width modulator. The narrow clock pulses available at pin 4 are used for the following functions:

- 1. Blanking pulses for both outputs.
- 2. Reset to the latch that follows the pulse width modulator.
- 3. Sync pulses for external circuits.


The SYNC input can be used to synchronize multiple controllers to a single clock source. A positive TTL level at pin 3 will override the internal comparator and initiate a discharge cycle in the oscillator. The free running oscillator frequency should be set to 10% to 20% **lower** than that of the master clock, so that the external SYNC pulse will initiate the discharge cycle before the internal comparator changes it's state.


HIGH PERFORMANCE PULSE WIDTH MODULATORS APPLICATIONS INFORMATION SWITCHING FREQUENCY

Switching frequency, the rate at which every power switch in the circuit goes through a complete cycle, determines size, weight, efficiency, and cost of the finished power supply.

Within the usual design range, the power density or power to volume ratio increases with the frequency. The size and weight of the magnetic and filtering elements are reduced when the frequency increases. Projected densities of 2.5 W/in³ at 20 kHz approach 10 W/in³ at 200 kHz and 51 W/in³ at 1 MHz. For these reasons and thanks to the advent of power MOSFETs, new designs at higher frequencies are now more practical. The IP1525A/27A have useful oscillator frequencies up to 500 kHz.

Three possible connections to the error amplifier are shown in Figure 5. For output voltages above + 5.1 V, the amplifier can operate at a common mode voltage up to V_{IN} —2V. For negative output voltages, the feedback network is returned to V_{REF} and the common mode voltage V_I should be no lower than 1.5V.

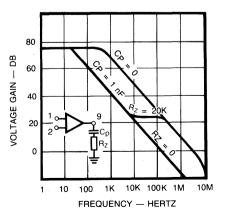


Figure 5: Error Amplifier Connections

Positive or negative power supply voltages can be regulated by varying the reference node of the feedback network.

The transconductance amplifier has a typical output impedance of $6M\Omega$, with a single pole at 200 Hz. The open loop voltage gain is about 10,000 (80dB) and can be reduced by a shunt impedance from pin 9 to ground. Figure 6 shows how the open loop pole may be shifted by adding a compensation capacitor $C_{p.}$ In those cases where a two pole LC output filter is used, it may be necessary to compensate for the two pole roll-off. This can be done by inserting a zero through the addition of R_Z .

Figure 6: Error Amplifier Open-loop Frequency Response

HIGH PERFORMANCE PULSE WIDTH MODULATORS

GAIN

(dB)

APPLICATIONS INFORMATION

Several forms of compensation networks are shown on Figure 7 (a), (b) and (c). If the feedback network is a low impedance, the output buffer circuit of Figure 7 (d) may be used.

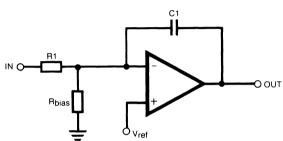


Figure 7(a): Type 1 Amplifier Schematic

Type 1: Amplifier Transfer Function

 $f = 2\pi R1 C1$

1

GAİN

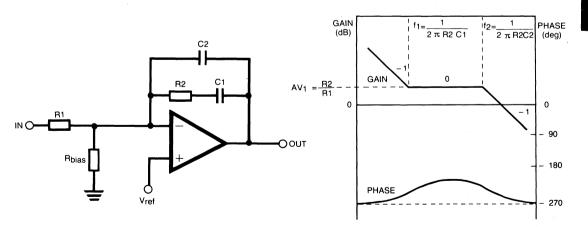
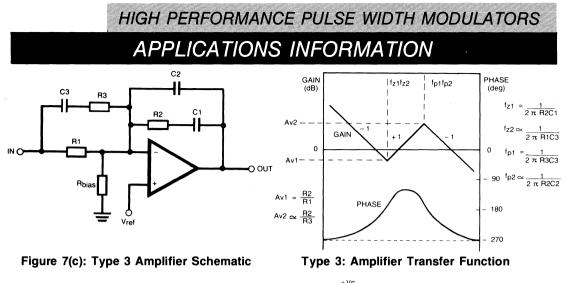
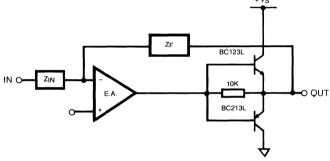


Figure 7(b): Type 2 Amplifier Schematic

PHASE


(deg)


0

90

180

270

Figure 7(d): Driving a Low Impedance Feedback Network with an External Buffer

The error amplifier is powered by + V_{IN}. Its output, however, is limited to 5.7 V by an internal PNP clamp connected from pin 9 to V_{REF}. Figure 8 illustrates the relationship between the PWM duty cycle and the error amplifier output voltage.

6

HIGH PERFORMANCE PULSE WIDTH MODULATORS

APPLICATIONS INFORMATION

PWM COMPARATOR

This circuit generates the width modulated pulses by comparing the ramp and error voltage signals, Fig. 9.

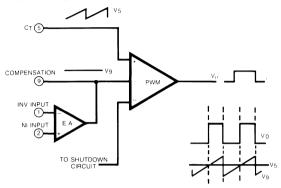
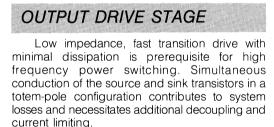
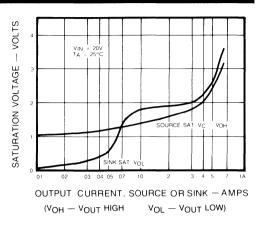




Figure 9: PWM Comparator

Pulse width is controlled by the crossing points of the error voltage with respect to the ramp. When Vg is less than V5, the comparator output is low. When Vg is greater than V5, the comparator output is high.

The output stage of the IP1525A/27A exhibits a 500 mA peak drive capability without conduction overlap providing effective drive up to 500 kHz. The saturation characteristic of the output driver is shown in Fig. 10.

Figure 10: IP1525A Output Saturation Characteristics

Two output polarities are available. In the 1525A the output is high during the ON state, suitable for direct drive of grounded source power FET's. Alternatively the 1527A output is high during OFF state, meeting the requirements of proportional base drive circuits.

Figures 10(a), (b), (c) and (d), illustrate a number of output drive configurations. The power FET options include series current limiting and schottky clamp diodes, protection against output ringing.

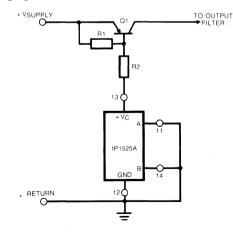


Figure 10(a): Single Ended Supply

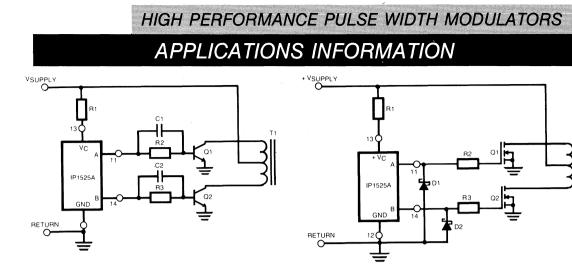
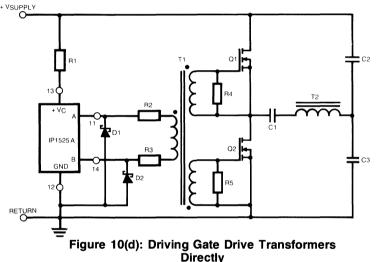



Figure 10(b): Bipolar Push Pull Supply

Figure 10(c): Power Fet Push-Pull Supply

MULTIPLE PULSE SUPPRESSION LOGIC

The PWM logic ensures that single pulses reach alternate outputs within each switching period. This occurs regardless of the action of the shutdown circuit or compensation node pull-down utilized in pulse by pulse current limiting techniques. This feature is critical in push-pull converters where two output pulses in succession on one driver would cause power transformer saturation and consequent failure of the power devices.

DEAD TIME

The dead time is that portion of each clock period when, at maximum duty cycle, both outputs are maintained OFF. This is necessary to prevent destructive crossover currents, which could occur if two totem pole power switches were ON simultaneously.

The IP1525A/27A have a minimum built in dead time of 500 ns which allows usable duty cycles up to 90% at 200 kHz. A resistor (up to RT/15), connected between pins 5 and 7, provides dead time adjustment. Figure 11 shows the effect of dead time on maximum output pulse width.

HIGH PERFORMANCE PULSE WIDTH MODULATORS APPLICATIONS INFORMATION

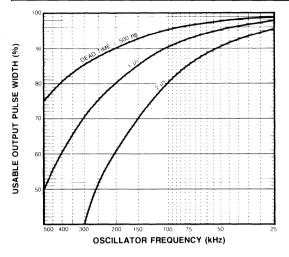


Figure 11: Effect of Dead Time on Output Pulse Dynamic Range

SOFT START

Controlled power supply turn ON is provided by the SOFT-START circuit. This feature sets a duty cycle that gradually increases from zero to the value called for by the error amplifier. The output voltage, therefore, ramps to its nominal value minimising overshoot without creating a sudden current in-rush that could cause overstressing of the rectifiers and saturation of the magnetic components.

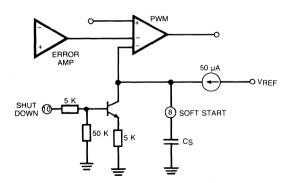


Figure 12: Soft-Start and Shut Down Circuits

An external capacitor CS provides the timing element for the soft start cycle. This capacitor is charged via an internal 50 μ A current source to approximately 4.4V.

The turn ON time can be calculated from the time required to charge C_S to 3.5V (full duty cycle) with 50 μ A.

Turn ON Time = $\frac{C_S \times 3.5 \text{ V}}{50 \mu \text{ A}} = \frac{C_S (\mu \text{ F})}{14.3}$ (s)

The softstart capacitor is discharged automatically during power down or when a shutdown signal is received.

UNDERVOLTAGE LOCKOUT

The under voltage (UV) lockout circuit monitors the reference voltage (VREF) with an accurate and stable comparator which holds the output stages low in the IP1525A (High in the IP1527A). In addition the soft start capacitor is maintained in a discharged condition.

Once the reference voltage reaches 4.9V, corresponding to a supply voltage of 6.7V, the soft start is initiated. The UV lockout exhibits 300 mV of hysteresis to eliminate jitter at threashold of turn on. Monitoring VREF (as opposed to VIN) is especially significant when the voltage reference has to source current into a discharged decoupling capacitor.

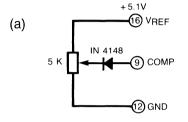
SHUTDOWN FUNCTION

The shutdown pin provides a convenient port for protective functions and converter sequencing. During steady state operation if the voltage on Pin 10 exceeds logic 1 three things happen. The output drivers are disabled within 100 ns, the PWM latch is set for the remainder of the switching period and the soft start capacitor is discharged by a 150 μ A current source.

CURRENT LIMITING

In case of an overload condition, it is desirable to protect the power supply by limiting its output current. This can be done in two ways: linearly and digitally.

HIGH PERFORMANCE PULSE WIDTH MODULATORS

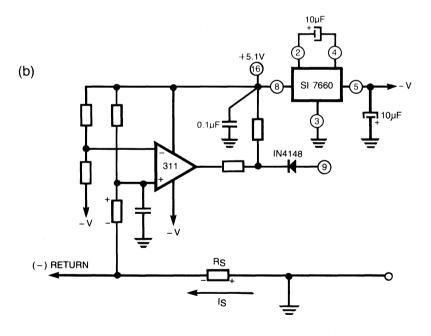
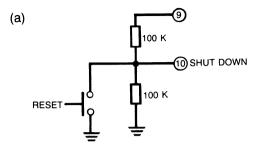

APPLICATIONS INFORMATION

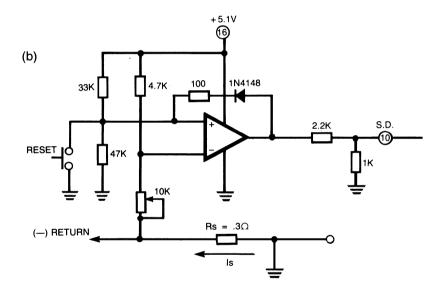
Linear current limiting will reduce the output voltage if the current demand becomes excessive. The high output impedance of the error amplifier allows a voltage clamp, Figure 13 (a), to limit the duty cycle. This, in turn, will limit the current delivered to the load.

The circuit of Figure 13 (b) uses a voltage

comparator to sense current in the ground return loop. When an overload occurs, it clamps pin 9 to a predetermined level and limits the duty cycle and the output current.

If desired the circuits of Figure 13 can also be used to clamp pin 8 for an equivalent width limiting effect.


Figure 13: Linear Current Limiting

HIGH PERFORMANCE PULSE WIDTH MODULATORS

APPLICATIONS INFORMATION

Digital or pulse by pulse current limiting will shut the output voltage OFF when a fault is sensed. The circuit of Figure 14 (a) uses the error amplifier output level as a duty cycle indicator. When the duty cycle exceeds a predetermined maximum, the shut down circuit is activated. In Figure 14 (b) the comparator output goes high when an overload is sensed and generates a shutdown signal for pin 10. Alternatively an open collector comparator or transistor can be used to pull down the compensation node, Pin 9, this sets the PWM latch, turning off both outputs. The outputs remain inactive, once the fault condition has ceased, until the clock pulse resets the PWM latch, thus achieving pulse by pulse protection.

CONCLUSION

The switch-mode environment demands control devices that include comprehensive protection and realistic drive capability in addition to the basic pulse width modulation function. The IP1525A/27A family of regulating pulse width modulators meets this demand without compromising system reliability or performance.

Seagate Microelectronics Limited

APPLICATIONS INFORMATION

THE IP1R07A LINEAR POST REGULATOR

INTRODUCTION

As switch mode technology matures, driven by tighter specification and escalating power density requirements, the proportion of overall system losses contributed by post regulation has become significant. Whilst advances in switching regulator and magnetic amplifier techniques have minimised this inefficiency at high power, losses incurred in linear post regulation remain unacceptable.

The IP1R07A represents a timely advance in linear regulator design, specifically meeting switch mode power supply secondary regulation requirements.

DESIGNING FOR EFFICIENCY

Conventional three terminal regulators are inefficient power processors. Power dissipation in a linear regulator is given by the expression.

 $P_D = IO (VIN - VOUT)$

The majority of monolithic voltage regulators require an input to output voltage differential (dropout) of 2-3V (6-9W dissipation at 3A and minimum line). Analysis of the existing techniques for low power secondary regulation highlights the requirement for efficient linear regulation in the 1A to 3A range. The IP1R07A linear post regulator fulfils this demand.

A block diagram of the IP1R07A is shown in figure 1.

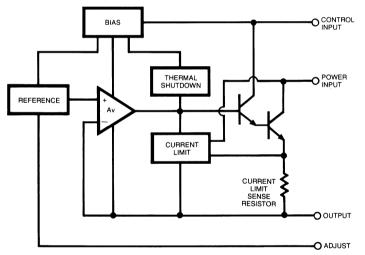


Figure 1: Block Diagram of the IP1R07A

High efficiency is achieved by separating the collectors of the internal Darlington transistor pair into control and power inputs, respectively, exploiting the low saturation voltage of the power device. The typical drop out voltage at 3A realised with this technique is 0.8V (2.4W dissipation at minimum line).

In addition to reduced power dissipation the IP1R07A exhibits excellent line and load regulation, comprehensive internal protection and an initial \pm 1% output voltage tolerance.

The IP1R07Å is compared with contemporary solutions to linear post regulation in table 1.

THE IP1R07A LINEAR POST REGULATOR

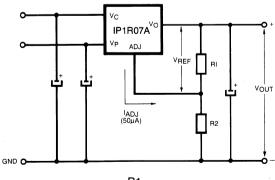
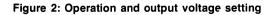

APPLICATIONS INFORMATION								
LINEAR REGULATOR TYPE	ADVANTAGES	DISADVANTAGES						
DISCRETE COMPONENTS	HIGH PERFORMANCE	*HIGH COMPONENT COUNT *NO INHERENT THERMAL LIMITING *LARGE BOARD AREA						
AUTOMOTIVE REGULATORS	*LOW DROP OUT *THREE TERMINAL DEVICE	*LOW EFFICIENCY (PNP PASS DEVICE) *AVERAGE PERFORMANCE *LOAD DEPENDANT STABILITY						
HYBRID	*LOW DROP OUT *THREE TERMINAL DEVICE	*AVERAGE PERFORMANCE *LOAD DEPENDANT STABILITY *NO INHERENT THERMAL LIMITING *BULKY PACKAGE						
IP1R07A	*LOW DROP OUT *HIGH EFFICIENCY *INTERNALLY STABILISED *HIGH PERFORMANCE *THERMAL LIMITING	*EXTRA BIAS RAIL REQUIRED						

Table 1


OPERATION & O/P VOLTAGE SETTING

In common with most adjustable regulators the IP1R07A develops and maintains a nominal 1.25v reference voltage (V_{ref}) between its output and adjustment terminals, as illustrated below in Figure 2. If this reference voltage is applied across R1, a constant current is caused to flow through R2, thereby adjusting the output voltage to: Vout = Vref (1 + R2/R1) + I_{adj} R2

Because the adjustment current represents an error term in the output voltage expression, the IP1R07A was designed to minimize both the value of I_{ADJ} and its variation with line and load changes. As a result, all but 50u a of the circuit's quiescent operating current appears at the output terminal, thereby establishing a minimum load current requirement. If the value of R1 is such that the minimum load current is not exceeded, the output voltage will rise. The tightened initial VREF tolerance of the IP1R07A allows inexpensive 1% or 2% metal film resistors to be used to get the output voltage well within acceptable limits.

 $V_{OUT} = V_{REF} (1 + \frac{R1}{R2}) + I_{ADJ} R2$

\mathbb{S}

THE IP1R07A LINEAR POST REGULATOR

APPLICATIONS INFORMATION

BYPASS CAPACITORS

It is good practice to use a 1μ F solid aluminium or 25μ F electrolytic input bypass capacitor, particularly if the regulator is located any appreciable distance from the output filter. Improved ripple rejection can be achieved by adding a capacitor from the adjust pin to return. The reactance of the capacitor at the frequency of interest should be small compared to that of the voltage setting resistor.

Regulator output impedance is in the order of 10 m Ω or less and increases as a function of frequency above 10KHz due to the gain roll-off of the error amplifier. A solid aluminium bypass capacitor connected to the regulator output will maintain low impedance up to 1MHz. This capacitor should be shunted with a ceramic capacitor when driving switching loads.

REMOTE SENSING

As the IP1R07A internal feedback loop is regulating the voltage between the adjust pin and the heat tab of the package, the device is unable to provide true remote load sensing. The load regulation is limited by the resistance of the output tab and the wire connecting the regulator to the load. Negative side sensing is a conventional Kelvin connection, with the bottom of the divider returned to the negative side of the load. best load

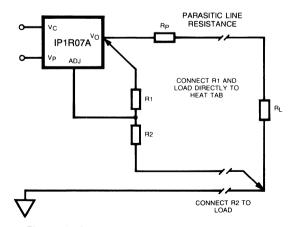


Figure 3: Connections for best load regulation

regulation is obtained when the top of the divider is connected, with the load, directly to the tab of the package. The correct divider connection is illustrated in figure 3. (**Note:** In practical converters R2 would be connected to the output terminal and the output voltage adjusted to accommodate line drop).

LAYOUT

In general all lines should be kept short and direct to reduce voltage drops and minimize thermal effects and inductance. A single point "star" return prevents circulating return currents.

PACKAGING

Versatile TO-218 and hermetic TO-257 packages supplement the increased efficiency of the IP1R07A with electrical and thermal characteristics equivalent to those of a TO3 can. The TO-218 exhibits excellent thermal performance under the pulse conditions and high ambient temperature encountered in the S.M.P.S. environment.

In order to realise the full capabilities of the IP1R07 linear post regulator sufficient attention must be paid to all aspects of thermal management.

DEVELOPING THE BIAS RAIL

As the bias circuitry consumes less than 100mA, developing the control input voltage is not a problem.

In a flyback converter an overwind on the secondary, together with a rectifier and electrolytic capacitor supplies the bias current.

In a forward converter the control input voltage can be supplied by either an overwind on the output filter choke or by peak detecting the voltage from the same winding that supplies the power input. Figs 4 and 5.

THE IP1R07A LINEAR POST REGULATOR

APPLICATIONS INFORMATION

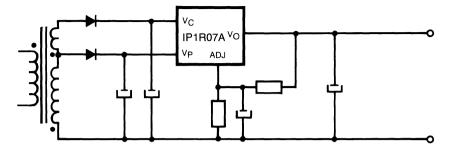
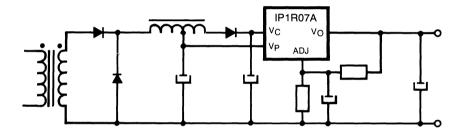
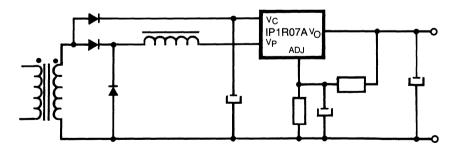
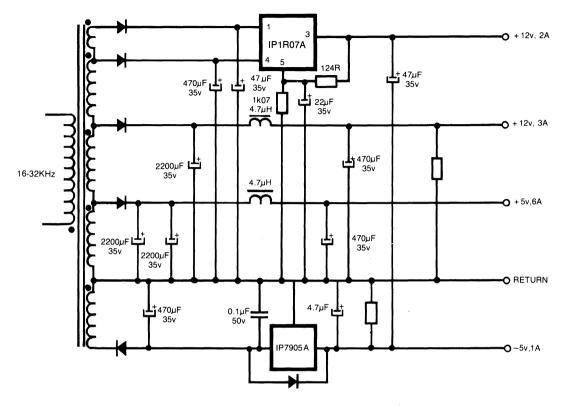




Figure 4: Flyback converter secondary linear regulation

(a) Secondary overwind

(a) Filter choke overwind

(b) Secondary peak rectification


Figure 5: Forward converter secondary linear regulation

DEVELOPING THE BIAS RAIL

THE IP1R07A LINEAR POST REGULATOR

APPLICATIONS INFORMATION

The IP1R07A linear post regulator in a self oscillating flyback converter.

A TYPICAL APPLICATION

Secondary post regulated 12V rail for visual display unit;

In desk top computers the power supply often powers a visual display unit in addition to the processor circuitry and disc drive. In the absence of post regulation the power supply may interact with the V.D.U. as follows:-

(a) Line time base/switching frequency interaction: This phenomenon occurs in variable frequency converters and manifests itself as a band travelling down the screen or image jitter.

(b) Dynamic cross regulation effects;

Generally observed as partial image collapse synchronous to pulse loading on other supply rails, this may occur during head movements in a disc drive or step current demands from a printing operation.

Each of these effects can be eliminated by

using linear post regulation for the VDU power rail.

Typically the VDU current demand is a 1-1.2A resistive current plus a 3.0A band consisting of 50Hz half sinusoid field current pulses. A typical circuit arrangement for an SMPS post regulator application using the IP1R07A is shown in figure 6.

SUMMARY

The IP1R07A linear post regulator introduces a new concept in switch-mode power supply secondary regulation. The provision of a low current bias rail is a small price to pay for the increase in system efficiency contributed by this adaptable device.

 $\mathbf{\tilde{\bullet}}$

Seagate Microelectronics Limited

APPLICATIONS INFORMATION

THE IP34063 SWITCHING REGULATOR CONTROL CIRCUIT

INTRODUCTION

The Seagate Microelectronics IP34063 series (Figure 1) are monolithic control circuits which contain all the active functions necessary for singleended DC-DC converter designs. A simplified version of the 78S40, Figure 2, the IP34063 design has included the operational amplifier and on-chip flywheel diode, which are not required for the majority of DC-DC converter systems; the flywheel diode in the 78S40 being an inefficient component and in most applications replaced by an off-chip device.

The IP34063 contains internal voltage reference, comparator, controlled duty cycle oscillator with current limit circuit and a high current output switch (1.5 Apk), as shown in Figure 1.

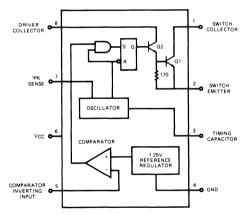


Fig. 1 IP34063/33063/35063 Block Diagram

These functions make the IP34063 ideally suited for Buck, Boost and inverting converter applications, and results in a significant reduction of system parts count. The devices are available in 8 pin dual inline or surface mount packages.

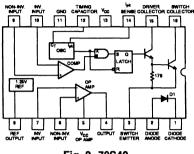
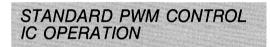



Fig. 2 78S40

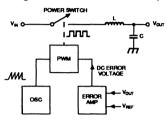
PRINCIPAL OF OPERATION

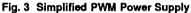
The IP34063 has an unusual mode of operation which needs to be explained to gain a complete understanding of the device.

First let us consider the operation of what is termed a standard PWM power supply control IC.

A simplified block diagram of a standard PWM power supply control IC is shown in Figure 3. The main power switch is controlled by the output of a pulse width modulator.

The PWM signal which directly controls and regulates the power supply is derived from a comparison between a DC voltage proportional to output error and a ramp signal derived from an oscillator. Figure 4 highlights the operation. Each time the oscillator ramp is reset to its low state, the PWM signal turns the switch on. Subsequently, when the oscillator signal ramps up to the DC error voltage, the switch turns off.




APPLICATIONS INFORMATION

In a system such as this the switching frequency is set by the oscillator, and the switch duty cycle is set by the DC error voltage.

The output signal is therefore always synchronized with the oscillator reset.

This control method can therefore be termed proportional control and has the advantage of excellent regulation and transient response.

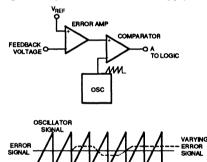
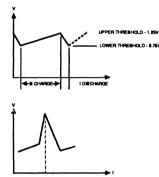


Fig. 4 Standard PWM Control IC Operation



In the case of the IP34063, the operation described for the standard PWM control IC is modified. Referring to Figure 1, it can be seen that the power switch is controlled by an on-off signal derived from a digital comparison (based on high or low states) between the oscillator and the comparator output signal.

That is, a direct comparison between the oscillator and an error signal does not take place. This unusual mode of operation means that there is no actual pulse width modulation at all.

THE OSCILLATOR

An external timing capacitor C_T is charged and discharged by a current source and sink circuit which contains upper and lower preset thresholds, subsequently deriving the ramp waveform shown in Figure 5.

Fig. 5 Oscillator Waveforms During Normal and Overdrive (Overcurrent Sense Conditions)

The required ramp up and down times are yielded by designing the IP34063 so that the discharge current is six times greater than the charge current yield.

The oscillator therefore produces a signal with a fixed 6/7 or 85.7% duty cycle.

During the ramp-up portion of the cycle, a logic 1 is present at the A input of the AND gate.

If the output voltage of the switching regulator is below normal (refer to Figure 6), the output of the comparator will present a logic 1 at the B input

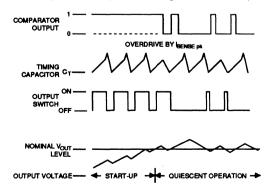


Fig. 6 IP34063 Operating Waveforms

APPLICATIONS INFORMATION

of the AND gate. These conditions set the latch and cause the Q output to go to a logic 1, enabling the driver and the output switch to conduct.

When the oscillator ramp reaches its upper threshold, C_T will begin discharging, and a logic 0 will be present at the A input of the AND gate. The latch is then reset and the driver and switch turned off.

The output is off regardless of comparator state during the ramp down period of the oscillator signal, and is synchronous with the oscillator ramping down, while the turn on transition is totally non synchronous. There is actually no pulse width modulation at all. The effective output pulse can and does vary in frequency and phase with respect to the on-chip oscillator waveform, due to the fact that a turn on is not completely assured during the oscillator ramp up period, if the comparator output is not in a correct logic state. Table 1 presents the necessary conditions for output switch turn on and turn off.

Output variation is from a full 85.7% duty cycle where the comparator input is lower than the 1.25V reference, as start up to zero duty cycle when the comparator input is higher than V_{Ref}. In between these end points the turn on and turn off points are a combination of the output filter controlled ripple, oscillator frequency ripple, and system noise.

CURRENT LIMIT

The current limit or I_{pk} sense input to the oscillator also affects system duty cycle by altering the oscillator ramp waveform.

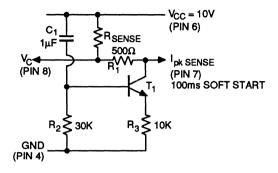
Monitoring the voltage drop across an external sense resistor placed in series with V_{CC} and the output switch gives a voltage on the I_{pk} sense pin which, if greater than 330mV, increases the charging current to the timing capacitor C_T, as shown in Figure 5(b).

This enables a faster transition to the upper oscillator threshold, thereby shortening the on time of the output switch, and thus reducing the amount of energy stored in the inductor.

Operating the IP34063 in an overload or shorted condition will cause a very short but finite time of output conduction, which can then be followed by either a normal or extended off-time interval provided by the oscillator ramp-down time of C_T .

Active Condition of	AND Ga	te Inputs	Latch	Inputs	Output	
Timing Capacitor C _T	A	В	S	R	Switch	Comments on State of Output Switch
Begins Ramp-up		0	0	$\overline{\}$	0	Switching Regulator's Output is ≥ nominal ("B" = 0).
Begins Ramp-Down	$\overline{)}$	0	0	5	0	No change since "B" was 0 before C_T Ramp-Down.
Ramping Down	0	7	0	1	0	No change even though switching regulator output < nominal. Output switch cannot initiated durintg C _T Ramp-Down.
Ramping Down	0	$\mathbf{\Sigma}$	0	1	0	No change since output switch conduction was terminated when "A" went to 0.
Ramping Up	1	1	1	0	1	Switching regulator's output went < nominal during C_T Ramping Up ("B" \Rightarrow 1). Partial on cycle for output switch.
Ramping Up	1	$\overline{\}$	\sim	0	1	Switching regulators output went ≥ nominal ("B" ⇒ 0) during CT Ramp-Up. No change since "B" cannot reset latch.
Begins Ramp-Up	1	1	1	$\overline{\}$	1	Complete on-cycle since "B" was 1 before C_T started Ramp-Up.
Begins Ramp-Down	$\overline{\}$	1	\sim	7	\searrow	Output switch conduction is always terminated whenever C_{T} is Ramping Down.

Table 1 IP34063 Truth Table


Note 1. Output switch can only be activated during ramp up portion of oscillator signal.

Note 2. Activation is a function of comparator output state.

Note 3. Output switch is only activated during ramp down of oscillator signal.

APPLICATIONS INFORMATION

Fig. 7 IP34063 Soft Start Circuit

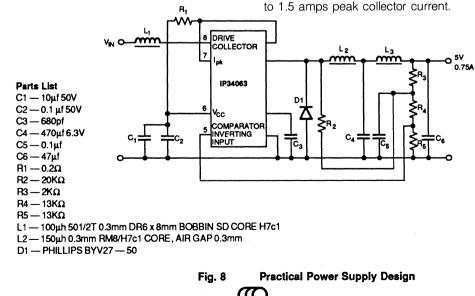
Under extreme conditions, the voltage across CT can approach V_{CC}when the current limit sense input is overdriven; this provides a relatively long off time.

This mode of operation is an excellent device protection feature due to the reduced power dissipation of the output switch that results from the long off time. The IP34063, does not have the feature of on

SOFT START

chip soft start circuitry. However, a simple circuit which can be added to achieve soft start is shown in Figure 7.

The circuit uses the l_{pk} sense pin to overdrive the oscillator, thereby speeding up the ramp-up time and shortening the on time of the output switch.


When V_{CC} is applied to the circuit, T1 is on and I_{pk} overdrives the oscillator. As capacitor C1 charges up, T1 turns off reducing the overdrive voltage on the I_{pk} sense pin and finally returning the device to normal operation. The circuit shown provides a soft start time of approximately 100ms.

DRIVER AND OUTPUT SWITCH

To improve flexibility in designing with the IP34063 the driver collector, output switch collector, and emitter are pinned out separately.

This allows the option of driving the output transistor into saturation with selected forced gain or driving it near saturation when connected as a darlington.

The output switch has a typical current gain of 70 at 1 amp, and is designed to switch a maximum of 40 volts collector-to-emitter, with up to 1.5 amps peak collector current.

APPLICATIONS INFORMATION

PRACTICAL POWER SUPPLY DESIGN

The unusual operating mode of the IP34063 does not detract from its usefulness. In fact, excellent performance and design benefits can be achieved from its use. A DC-DC converter design is shown in Figure 8. The circuit operates off a 10 to 40 volt input and is capable of supplying 1.0 amps at 5.0 volts.

The circuit is designed so that the output pulse is synchronous with the oscillator signal. As previously explained the output pulse normally varies asynchronously with the oscillator waveform, due to the method of regulation the device employs.

The key to the circuit is that the output is well filtered and a portion of the output switch voltage is fed to the string of output reference resistors; with a single-pole response for 90° phase shift.

This produces a sawtooth waveform superimposed on the DC signal fed back to the comparator; and by double filtering the output the predominant signal at the comparator pin is the sawtooth on a DC bias. With this composite signal a fairly stable power pulse starting point relative to the oscillator signal is produced, as well as a known pulse turn off point, which is directly controlled by the oscillator.

This circuit yields a practical converter that produces a current of 0.6 to 1 amp at an input range of 10 to 40 volts. The output noise is 5mV, line regulation at 0.75A of 20mV, and load regulation of 50mV at 0.6A to 0.95A output current. The efficiency varies from 70 to 80 percent.

APPLICATIONS INFORMATION

1% POSITIVE ADJUSTABLE REGULATORS

Seagate Microelectronics families of three terminal positive adjustable voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Over 1.25V to 35V output range the IP117A series is capable of supplying in excess of 1.5A, the IP150A series can supply in excess of 3A, and the IP138A series supplies in excess of 5A.

In addition to improved line and load regulation, a major feature of the "A" series is the initial output voltage tolerance, which is guaranteed to be less than 1%. Over full operating conditions including load, line, and power dissipation, the reference voltage is guaranteed not to vary more than 2%. These devices exhibit current limit, thermal overload protection, and improved power device safe operating are protection, making them essentially indestructable.

Applications for these devices include adjustable power supplies, constant current regulation, improved linear regulators and battery chargers.

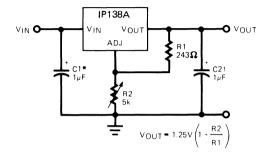


Fig. 1 Basic Adjustable Regulator

GENERAL

Functioning as a three terminal floating regulator these 1% devices develop and maintain a nominal 1.25V reference voltage (V_{REF}) between its output and adjustment terminals, as illustrated in Figure 1. If this reference voltage is applied across R₁, a constant current I1 is caused to flow through R2, thereby adjusting the output voltage to

 $V_{OUT} = V_{REF} (1 = R2/r-) + I_{ADJ}R2$ Because the 50µA of adjustment current represents an error term in the output voltage expression, the IP117A, IP150A, and IP138A series were designed to minimize both the value of I_{ADJ} and its variation with line and load changes. As a result, all but 50µA of the circuit's quiescent operating current appears at the output terminal, thereby establishing a minimum load current requirement. If the value of R1 is such that the minimum load current is not exceeded, the output voltage will rise.

ACCURACY OF THE OUTPUT VOLTAGE

From the expression above it is evident that even if the resistors R1 and R2 are of exact value. the accuracy of the output voltage is limited by errors in V_{BFF}. Earlier adjustable regulators have had a reference tolerance of $\pm 4\%$, which is dangerously close to the $\pm 5\%$ supply tolerance required in many logic and analog systems. In addition, 1% resistors can drift up to $\pm 0.01\%$ °C, increasing the output voltage tolerance even further. For example, using 2% resistors and a $\pm 4\%$ tolerance for V_{RFF}, calculations indicate that a 5V regulator design will vary between 4.66V and 5.36V, which is a tolerance of $\pm 7\%$. If the same procedure were used in the design of a 15V regulator instead the expected tolerance would increase to $\pm 8\%$. as a result of these errors most applications require some method of trimming, which is both expensive and not conducive to volume production.

1% POSITIVE ADJUSTABLE REGULATORS

APPLICATIONS INFORMATION

One of the design enhancements featured in Seagate Microelectronics adjustable regulators is the tightened initial tolerance in the value of V_{REF}. Production wafer-level trimming techniques now enable the reference voltage to be specified within 1%. This allows relatively inexpensive 1% or 2% film resistors to be used for R1 and R2 to set the output voltage, and acceptable system output voltage tolerances to be achieved.

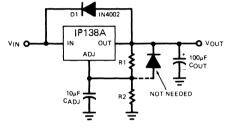
With a guaranteed 1% reference, a 5V power supply design, using 2% resistors, would have a worst case manufacturing tolerance of $\pm 4\%$. If 1% resistors were used, the tolerance would drop to $\pm 2\%$.

For convenience, a table of standard 1% resistor values shown below.

Table of 1/2% and 1% Standard Resistance Values

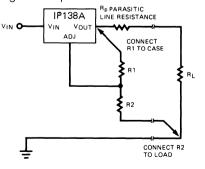
1.00	1.47	2.15	3.16	4.64	6.81
1.02	1.50	2.13	3.24	4.04	6.98
1.02	1.54	2.26	3.32	4.87	7.15
1.07	1.58	2.32	3.40	4.99	7.32
1.10	1.62	2.37	3.48	5.11	7.50
1.13	1.65	2.43	3.57	5.23	7.68
1.15	1.69	2.49	3.65	5.36	7.87
1.18	1.74	2.55	3.74	5.49	8.06
1.21	1.78	2.61	3.83	5.62	8.25
1.24	1.82	2.67	3.92	8.76	8.45
1.27	1.87	2.74	4.02	5.90	8.66
1.30	1.91	2.80	4.12	6.04	8.87
1.33	1.96	2.87	4.22	6.19	9.09
1.37	2.00	2.94	4.32	6.34	9.31
1.40	2.05	3.01	4.42	6.49	9.53
1.43	2.10	3.09	4.53	6.65	9.76
	L	L	L	L.,	L

Standard Resistance Values are obtained from the Decade Table by multiplying by multiples of 10. As an example, 1.21 can represent 1.21Ω , 12.1Ω , 12.1Ω , 121Ω , $1.21K\Omega$ etc.


BYPASS CAPACITORS

Input bypassing using a 1μ F tantalum or 25μ F electrolytic capacitor is recommended when the input filter capacitors are more than 5 inches from the device. Improved ripple rejection (80 dB) can be achieved by adding a 10μ F capacitor from the adjust pin to ground. Increasing the size of the capacitor to 20μ F will help ripple rejection at low output voltage since the reactance of this capacitor should be small compared to the

voltage setting resistor, R2. For improved AC transient response and to prevent the possibility of oscillation due to unknown reactive load, a 1µF capacitor is also recommended at the output. because of their low impedance at high frequencies, the best type of capacitor to use is solid tantalum.


PROTECTION DIODES


The IP117A, IP150A and IP138A series of adjustable regulators do not require a protection diode from the adjustment terminal to the output (see Figure 2). Improved internal circuitry eliminates the need for this diode when the adjustment pin is bypassed with a capacitor to improve ripple rejection.

Fig. 2

If a very large output capacitor is used, such as 100µF shown in Figure 2, the regulator could be damaged or destroyed if the input is accidentally shorted to ground or crowbarred. This is due to the output capacitor discharging into the output terminal of the regulator. To prevent damage a diode D1 is recommended to safely discharge the capacitor.

APPLICATIONS INFORMATION

LOAD REGULATION

Because these regulators are three terminal devices, it is not possible to provide true remote load sensing. Load regulation will be limited by the resistence of the wire connecting the regulator to the load. The data sheet specification for load regulation is measured at the bottom of the package. Negative side sensing is a true Kelvin connection, with the bottom of the output divider returned to the negative side of the load. Although it may not be immediately obvious, best load regulation is obtained when the top of the resistor divider (R1) is connected directly to the case not to the load. This is illustrated in Figure 3. If R1 were connected to the load, the effective resistance between the regulator and the load would be

1% POSITIVE ADJUSTABLE REGULATORS

 $\operatorname{Rp} X \left(\begin{array}{c} R + R1 \\ R1 \end{array} \right), \operatorname{Rp} = \operatorname{Parasitic Line Resistance}$

Connected as shown, Rp is not multiplied by the divider ration. Rp is about 0.004Ω per foot using 16 gauge wire. This translates to 4mV/ft at 1A load current, so it is important to keep the positive lead between regulator and load as short as possible, and use large wire or PC board traces.

Seagate Microelectronics Limited

APPLICATIONS INFORMATION

FIXED OUTPUT VOLTAGE REGULATORS

Seagate Microelectronics provides three terminal voltage regulators with several fixed output voltages which are useful in a wide range of applications. Devices specified at 1 amp include the IP140A, LM140, IP7800A and IP7800 series of positive regulators. These devices are available with 5, 12 and 15V outputs. Negative regulators specified at 1.5 amps include the IP120A, LM120, IP7900A and IP7900 series. These devices have -5, -12 and -15V fixed output voltages available.

The A-suffix devices provide 0.01% per volt line regulation. Load regulation is 0.3% per amp and output voltage tolerance at room temperature is ± 1 %. Protection features include safe operating area current limiting and thermal shutdown.

These regulators are all available in the metal TO-3 and TO-66 power packages as well as the 0.5A version TM1 78M479M in metal TO-39 can. The TO-257 (hermetic TO-220 style) power package is available for the IP120A/LM120/IP140A/LM140/IP7800A/IP7800 series.

The fixed output regulator series is designed with thermal protection, output short-circuit protection and output transistor safe area protection. However, as with any IC regulator, it becomes necessary to take precautions to assure that the regulator is not inadvertently damaged. The following describes possible misapplications and methods to prevent damage to the regulator.

Shorting the Regulator Input: When using large capacitors at the output of these regulators, a protection diode connected input to output (Figure 1) may be required if the input is shorted to ground. Without the protection diode, an input short will cause the input to rapidly approach ground potential, while the output remains near the initial VOUT because of the stored charge in the large output capacitor. The capacitor will then discharge through a large internal input to output diode and parasitic transistors. If the energy

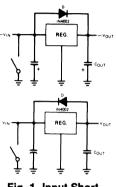


Fig. 1 Input Short

released by the capacitor is large enough, this diode, low current metal and the regulator will be destroyed. The fast diode in Figure 1 will shunt most of the capacitor's discharge current around the regulator. Generally no protection diode is required for values of output capacitance $\leq 10 \ \mu$ F.

Raising the Output Voltage above the Input Voltage with a Positive Regulator: Since the output of the regulator does not sink current, forcing the output high can cause damage to internal low current paths in a manner similar to that just described in the "Shorting the Regulator Input" section.

Pulling the Output Voltage Below the Input Voltage with a Negative Regulator: Since the output of the regulator does not source current, forcing the output low can cause damage to internal low current paths in a manner similar to that described in the "Shorting the Regulator Input" section.

FIXED OUTPUT VOLTAGE REGULATORS

APPLICATIONS INFORMATION

Regulator Floating Ground (Figure 2): When the ground pin alone becomes disconnected, the output approaches the unregulated input, causing possible damage to other circuits connected to V_{OUT} . If ground is reconnected with power "ON", damage may also occur to the regulator. This fault is most likely to occur when plugging in regulators or modules with on card regulators into powered up sockets. Power should be turned off first, or ground should be connected first if power must be left on.

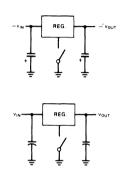


Fig. 2 Regulator Floating Ground

Transient Voltages: If transients exceed the maximum rated input voltage of the regulator, or reach more than 0.8V below ground (0.8V above ground for negative regulators) and have sufficient energy, they will damage the regulator. The solution is to use a large input capacitor, a series input breakdown diode, a choke, a transient suppressor or a combination of these.

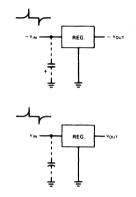


Fig. 3 Transients

APPLICATIONS INFORMATION

1.5 AMP NEGATIVE ADJUSTABLE REGULATORS

The IP137A, LM137, IP137AHV, and LM137HV series of negative adjustable regulators will deliver up to 1.5 amps output current over an output voltage range of -1.2V to -47V. Seagate Microelectronics has made significant improvements in these regulators compared to previous devices, such as better line and load regulation. The A-suffix devices provide 0.1% per volt line regulation, 0.5% load regulation and a maximum output voltage error of 1%.

Internal current limiting coupled with true thermal limiting prevents device damage due to overloads or shorts, even if the regulator is not fastened to a heat sink. Thermal regulation is 0.02% per watt.

Applications include adjustable power supplies, system power supplies, precision voltage regulators and on-card regulators.

Maximum reliability is attained with Seagate Microelectronic's advanced processing techniques.

The output voltage is determined by two external resistors, R1 and R2 (see Figure 1). The exact formula for the output voltage is:

$$V_{OUT} = V_{REF} \left(1 + \frac{R2}{R1}\right) + I_{ADJ} (R2)$$

Where: V_{REF} = Reference Voltage, I_{ADJ} = Adjustment Pin Current.

In most applications, the second term is small enough to be ignored, typically about 0.5% of V_{OUT}. In more critical applications, the exact formula should be used, with I_{ADJ} equal to 65 u.A. Solving for R2 yields:

$$R2 = \frac{V_{OUT} - V_{REF}}{V_{REF} - I_{ADJ}}$$
R1

Smaller values of R1 and R2 will reduce the influence of I_{ADJ} on the output voltage, but the noload current drain on the regulator will be increased. Typical values for R1 are between 100Ω and 300Ω giving 12.5mA and 4.2mA noload current respectively. There is an additional consideration in selecting R1, the minimum load current specification of the regulator.

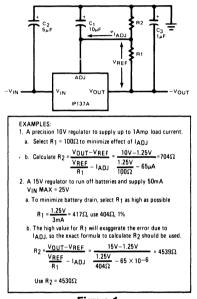
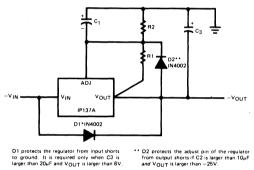


Figure 1


The operating current of the IP137A flows from input to output. If this current is not absorbed by the load, the output of the regulator will rise above the regulated value. The current drawn by R1 and R2 is normally high enough to absorb the current, but care must be taken in no-load situations where R1 and R2 have high values. The maximum value for the operating current, which must be absorbed, is 5mA for the IP137A. If input-output voltage differential is less than 10V, the operating current that must be absorbed drops to 3mA.

1.5 AMP NEGATIVE ADJUSTABLE REGULATORS

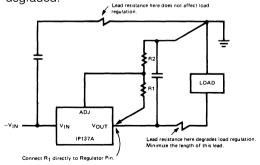
APPLICATIONS INFORMATION

CAPACITORS AND PROTECTION DIODES

An output capacitor, C3, is required to provide proper frequency compensation of the regulator feedback loop. A 1 μ F or larger solid tantalum capacitor is generally sufficient for this purpose if the 1MHz impedance of the capacitor is 2 Ω or less. High Q capacitors, such as Mylar, are not recommended because they tend to reduce the phase margin at light load currents. Aluminium electrolytic capacitors may also be used, but the minimum value should be 10 μ F to ensure a low impedance at 1MHz. The output capacitor should

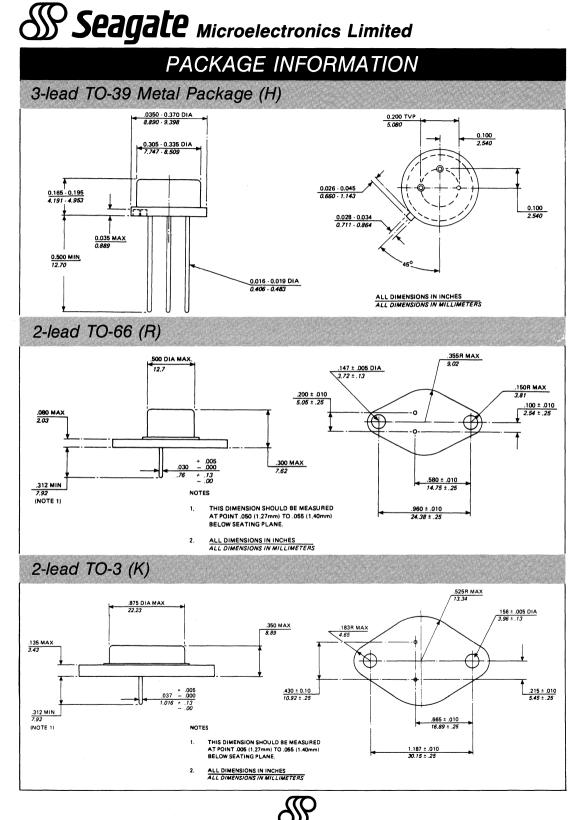
be located within a few inches of the regulator to keep lead impedance to a minimum. The following caution should be noted: if the output voltage is greater than 6V and a output capacitor greater than 20µF has been used, it is possible to damage the regulator if the input voltage becomes shorted, due to the output capacitor discharging into the regulator. This can be prevented by using diode DI (see Figure 2) between the input and the output.

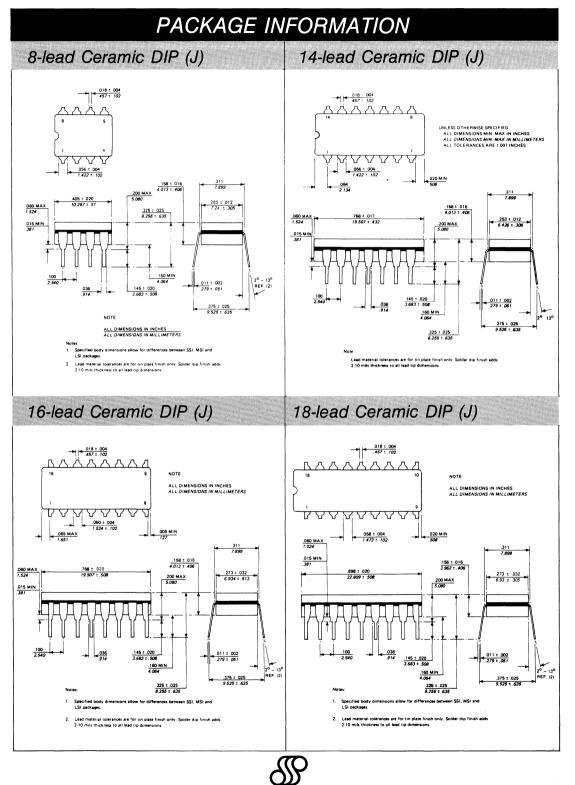
The input capacitor, C2, is only required if the regulator is more than 4 inches from the raw supply filter capacitor.

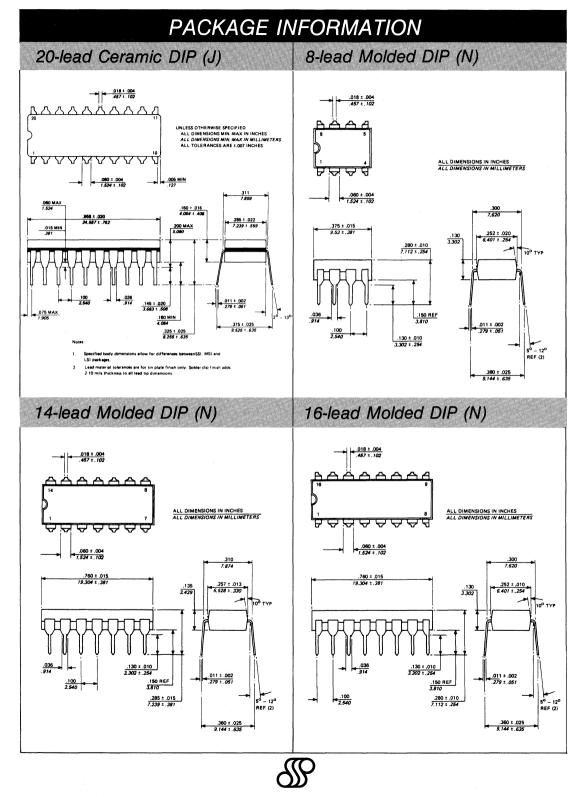


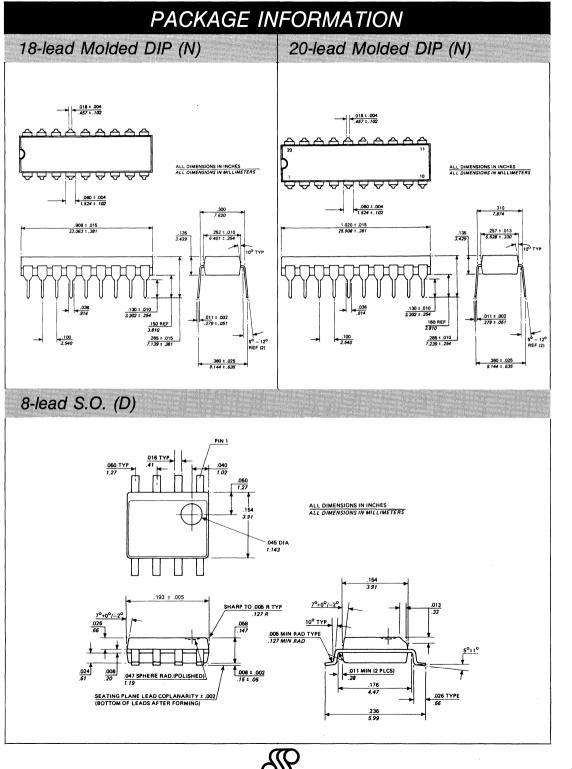
The adjustment pin of the IP137A may be bypassed with a capacitor to ground, C1, to reduce output ripple, noise, and impedance. These parameters scale directly with output voltage if the adjustment pin is not bypassed. A bypass capacitor reduces ripple, noise, and impedance to that of a 1.25V regulator. In a 15V regulator for example, these parameters are improved by 15V/1.25V = 12 to 1. This improvement holds only for those frequencies where the impedance of the bypass capacitor is less than R1. 10μ F is generally sufficient for 60Hz power line applications where the ripple frequency is 120Hz, since X_C = 130Ω . The capacitor should have a voltage rating at least as high as the output voltage of the regulator. Values larger than 10μ F may be used, but if the output is larger than 25V, a diode, d2 should be added between the output and adjustment pins (see Figure 2).

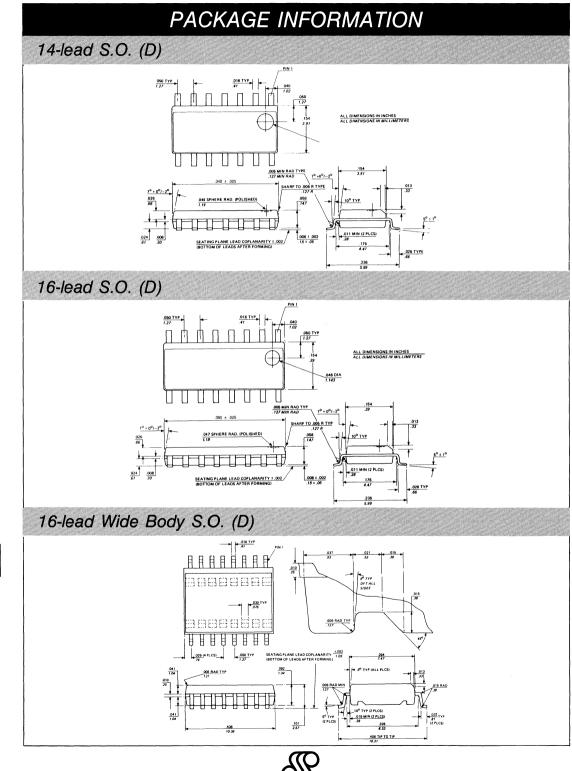
PROPER CONNECTION OF DIVIDER RESISTORS

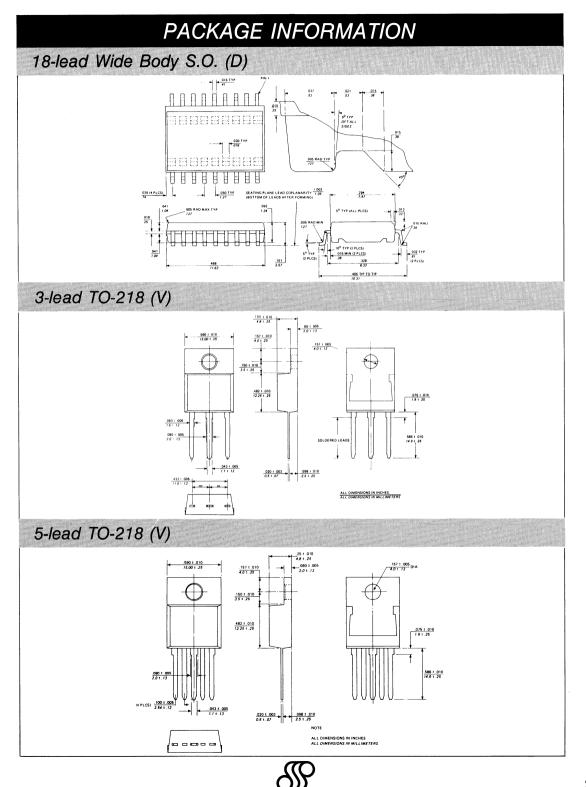

The IP137A has an excellent load regulation specification of 0.5% and is measured at a point 1/8" from the bottom of the package. To prevent degradation of load regulation, the resistors which set output voltage, R1 and R2, must be connected as shown in Figure 3. Note that the positive side of the load has a true force and sense (Kelvin) connection, but the negative side of the load does not.

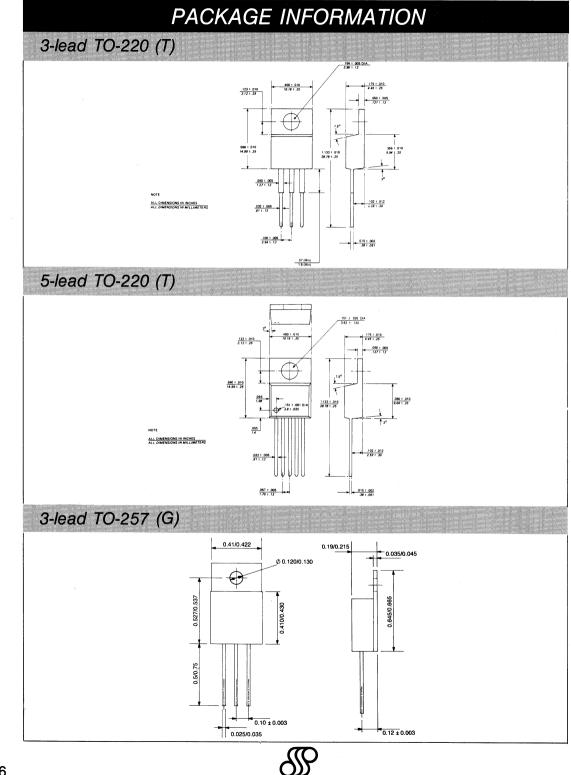

R1 should be connected directly to the output lead of the regulator, as close as possible to the specified point 1/8" from the case. R2 should be connected to the positive side of the load separately from the positive (ground) connection to the raw supply. With this arrangement, load regulation is degraded only by the resistance between the regulator output pin and the load. If R1 is connected to the load, regulation will be degraded.

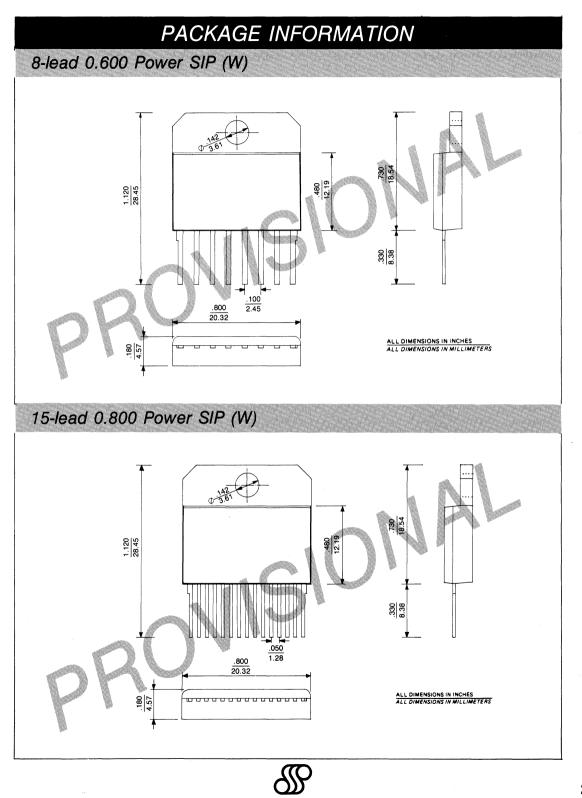












San San San San

NOTES

Seagate Microelectronics Limited

Corporate Headquarters:

Seagate Microelectronics Limited MacIntosh Road, Kirkton Campus, Livingston EH54 7BW, Scotland. Telephone: (0506) 416416 Telex: 727360 Fax: (0506) 413526

Seagate Microelectronics Limited

2722 HWY 694 Frontage Road, Suite 20, New Brighton MN 55112 U.S.A. Telephone: 1-800 - 866 - 3034 Fax: 612 - 631 - 3540

U.S.A. Office: