
)

Instruction Manual
Model SCP300F

CPU

Rev.F

Support
Board

/t_ eattle Computer Products, Inc.
~ 1114 Industry Drive, Seattle, WA. 98188

(206) 575-1830

Features

This card provides a collection of functions important to a computer system. Included are:

1. A ROM monitor (optional). The ROM may be either an Intel-type 2716 or an Intel-type
2732. It resides near the end of memory, as determined by either the usual 16 address lines,
or by 20 address lines (extended addressing). It can drive .PHANTOM to allow a memory
board to overlap, and it can be disabled with an output command.

2. A serial communication port. Includes RS-232 drivers and full handshaking.
Software-controlled baud rate generator allows almost any conceivable data rate.

3. A parallel input port. Latched and with full handshaking, this port can provide +5V or +8V
to power an external device (such as a keyboard).

4. A parallel output port. Full handshaking is provided with an output that may be statically
latched and driving at all times or configured for 3-state output which allows bidirectional
operation.

5. A vectored interrupt controller. Provides 15 level of vectored interrupts, expandable to 64
through "slave" controllers on other cards (such as our Multiport Serial card). Includes
complete interrupt support for 8080, 8085, Z80, and 8086 microprocessors.

6. Two general-purpose timer/counters. Each is 16 bits wide. One may be combined with the
time-of-day clock to count days.

7. A time-ot-of day clock. Time of day is kept in 24-hour format to 0.01 second. Power to
run the clock may be provided from an external source, such as a battery, to keep the clock
running when computer power is off. If time of day is not needed, the clock may be used as
two general-purpose 16-bit timers.

8. A "sense switch" input port. Simply allows reading the setting of an 8-position DIP switch
for the purpose of setting software options or configuration information.

Each of these functions are controlled by a block of 16 1/0 ports. The upper 4 bits of the 8-bit 1/0
address are compared with a switch setting to enable the board as a whole; the lower 4 bits select
the particular function on the board.

S1

Summary of Switches and Jumpers

Positions 1, 2, 3, and 4 of S1 set the highest 4 bits. of the 1/0 port address (the low 4 bits
select a particular function on the board). Position 1 sets A7, position 2 sets A6, 3 sets AS,
and 4 sets A4. CLOSED represents a one, OPEN a zero.

Position 5 enables or disables the ROM socket. Closed enables the ROM, open disables it.

Position 6 controls extended addressing of the ROM. When closed 20 address bits are used
and the ROM resides at either FFOOOH or FF800H depending on Jumper ADD and Jumper ROM.
When open, only 16 address bits are used, and the ROM resides at FOOOH or F800H.

Positions 7 and 8 control the wait state generator. To disable any wait states, open position
8 (position 7 doesn't matter). To always insert one wait state for both memory and 1/0,

- 3 -

52

close position 8 and open position 7. In systems in which pin 98 of the S-100 bus indicates
processor speed, such as the SCP 8086 CPU board, closing both positions 7 and 8 will enable
a wait state only when the processor is at high speed. Generally, wait states are not needed
in 8080 and ZBO systems; SCP recommends a wait state only when used with our 8086 CPU at
8 MHz.

The 8 positions of 52 can be read by the CPU by inputting from port BASE+15. (BASE is the
1/0 address set on 51.) Positions 1 through 8 are read in bits O through 7, respectively.
CLOSED will be read as a one, OPEN as a zero. The SCP 8086 Monitor will automatically
boot the disk immediately after baud rate selection if bit O is a one.

JUMPER PWR OUT - Four pins of the parallel input connector J3 are used to provide power to the
input device. Jumpering PWR OUT to +8 selects unregulated 8V directly from the S-100 bus as the
power supply; PWR OUT to +5 selects regulated 5V at 500mA.

JUMPER DTR - Serial output data is enabled only when Data Terminal Ready, pin 20 of the DB-25, is
>3V. Should this handshaking line be left open, Jumper DTR controls whether or not the serial
tranmitter will be allowed to operate: jumper DTR to •+• to enable the transmitter when DTR is
open (for 3-wire communication); jumper DTR to •-• to disable it (system would wait until all
connections are complete and DTR is no longer open).

JUMPER OUT - Jumpering OUT to •+• causes parallel output data to remain driving at all times. OUT
to "-" causes output data to go high impedance when ACK is low; data is enabled when ACK is high
or open.

JUMPER AODR - Jumpering ADDR to HI sets the ROM address for 2716 type ROMs to F800 hex or
FF800 hex, depending on the extended address enable switch, 52-6. ADDR to LO sets the ROM
address to FOOO hex or FFOOO hex. If a 2732 type ROM is used, The jumpering block should be set so
that none of the pins are connected. This can be accomplished by setting one hole in the block
over an end pin and having the other hole hang out in space. A 2732 always resides at FOOO hex
through FFFF hex or FFOOO hex through FFFFF hex.

JUMPER ROM - Jumpering ROM to 16 selects an Intel-type (single supply) 2716 (including the
TMS2516) EPROM for the ROM. The address of the ROM is selected using jumper ADDR as above.
Jumpering ROM to 32 selectes an Intel-type 2732 EPROM. If the 2732 type EPROM is used, none of
the pins on jumper ADDR should be connected together.

JUMPER CPU - Jumpering CPU to 80 selects the three byte 8080 type cycle and jumpering CPU to 86
selects the two byte 8086 type cycle. The CPU jumper can also be placed so that it doesn't connect
any of the pins together. In this position the CPU Support card does not take over the address or
status bus during interrupt acknowledge and assumes the CPU will provide correct status during all
bytes of the interrupt acknowledge sequence. This mode is the same as the older Rev. C board.
Note that interrupt priority cascading using the address bus isn't possible in this mode and boards
such as the SCP Multiport Serial card can't slave their interrupt controllers to the CPU Support card.

JUMPER PHANTOM - Jumpering PHANTOM to "+" enables the CPU Support card to drive PHANTOM
active whenever the ROM is selected. This is useful to create a "hole" in a RAM board for the ROM.
If PHANTOM to "-" is connected, the CPU Support card doesn't drive PHANTOM when the ROM is
active.

JUMPER 9513 PWR - selects the power source for the 9513 timer chip. The INT position should be
used if no external power is available. In this position the 9513 gets its power from the S-100 bus
and time-of-day information is lost when the power is turned off. The EXT position should be used
if an external non-interruptible power supply is connected to the EXT PWR connecter to power the
9513.

- 4 -

9ft, ~·
EXT PWR CONNECTOR - An external +8 volt unregulated or +5 volt regulated supply can be
connected to the EXT PWR connector to provide a non-interruptible supply for the 9513.

Using the Support Card with the SCP 8086 Monitor

All switches and jumpers on the board are properly configured as shipped. To check or reset them
after a change:

All 8 positions of switch S1 (in the middle of the board) should be CLOSED. This selects the
1/0 address BASE to be FO hex, enables the ROM, enables extended addressing, and inserts a
wait state only if an 8 MHz 8086 CPU is used.

All 8 positions of switch 52 (lower right corner) should be OPEN to select the monitor or
position one could be CLOSED to select auto-boot.

Jumper PWR OUT selects what type of voltage (+5 regulated or +8 unregulated) is supplied to
the parallel input connector to power a keyboard or other device. The setting of PWR OUT
is irrelevent to the operation of the 8086 Monitor.

Jumper DTR should be in the •+• position to allow the monitor to run with a three wire cable
to the terminal.

Jumper OUT affects the operation of the parallel output port and is irrelevent to the
operation of the 8086 Monitor.

Jumper ADDR should be in the HI position to put the ROM at address FF800 hex.

Jumper ROM should be in the 16 position to use the 2716 type EPROM in which the 8086
Monitor resides.

Jumper CPU should be in the 86 position to select the two byte 8086 type interrupt
acknowledge cycle.

Jumper PHANTOM selects whether or not the CPU Support card drives PHANTOM when the
ROM is enabled. The position of this jumper is irrelevant to the operation of the 8086
Monitor but does depend on the configuration of your system.

Jumper 9513 PWR should be in the INT position if internal (supplied from bus) power is used
to power the 9513 timer chip.

Connector EXT PWR is the external power connector for the 9513 timer chip and has no
connections to it unless an external power source is used.

Connect a cable to J1 (the leftmost connector at the top of the board); the other end should have
a 08-25 connector (normally female). Plug an RS-232 serial terminal into that end. The hardware is
now all set; refer to the Monitor manual to use the software.

- 5 -

Programming and Using the CPU Support Card

1/0Ports

The CPU Support card requires a total of twelve 1/0 ports for communication with the CPU. These
twelve ports can be set on any sixteen port boundary called the BASE. The BASE is selected using
the first four positions of S1. These first four positions correspond to A7-A4 from left to right.
Turning a switch on (closed) selects a one and turning it off (open) selects a zero.

S 1 -1 S1 -2 S1-3 S1-4 I /0 port address BASE

OFF OFF OFF OFF 00 hex

OFF OFF OFF ON 10 hex
OFF OFF ON OFF 2 0 hex
OFF OFF ON ON 30 hex
OFF ON OFF OFF 40 hex
OFF ON OFF ON 50 hex
OFF ON ON OFF 60 hex
OFF ON ON ON 70 hex

ON OFF OFF OFF 80 hex
ON OFF OFF ON 90 hex
ON OFF ON OFF AO hex
ON OFF ON ON BO hex
ON ON OFF OFF CO hex
ON ON OFF ON DO hex

ON ON ON OFF EO hex
ON ON ON ON FO hex

The 1/0 ports are assigned as follows:

BASE+O & BASE+1, input & output. Master programmable interrupt controller.

BASE+2 & BASE+3, input & output. Slave programmable interupt controller.
BASE+4, input & output. System timing controller data port.
BASE+5, input & output. System timing controller status & control port.
BASE+6, input & output. Serial data port.
BASE+7, input & output. Serial 1/0 status & control port.
BASE+12, input & output. Parallel 1/0 data port.
BASE+13, input. Parallel 1/0 status and serial DCD.
IMSE+14, input & output. EPROM disable port.
BASE+15, input. Sense switch.

Any other ports within the BASE that are not used are free for use by other devices. These are
BASE+8, 9, 10, 11, 13 output, and 15 output.

Interrupt Controller

The CPU Support card can handle vectored interrupts from seven sources on the card and eight
sources from the bus (VIO - Vl7). In addition, seven of the eight VI lines from the bus are
cascadable to eight levels each, providing a total of sixty-four different interrupt sources. The CPU
Support card uses a pair of 8259A programmable interrupt controllers to handle the interrupt
requests. One of the two is the Master controller, which has eight inputs, each of which can be
connected to a Slave controller to expand each single input from the Master to eight from each
Slave. The second 8259A on board is a Slave controller, which handles the seven vectored interrupt
sources on the board plus the one non-cascadable VI line from the bus. In the table below, "IR"
stands for "interrupt request".

- 6 -

)

Master IRO - VIO cascadable
Master IR1 - not available (used by Slave)
Master IR2 - Vl2 cascadable
Master IR3 - V13
Master IR4 - Vl4
Master IRS - VIS
Master IK6 - Vl6
Master IR7 - Vl7
Slave IRO - OUT2 from 9513 timer
Slave IR1 - RxRDY from serial input
Slave IR2 - RxRDY from parallel input
Slave IR3 - Vl1 (vectored interrupt line from S-100 bus, NOT cascadable)
Slave IR4 - OUT3 from 9513 timer
Slave IRS - TxRDY from serial output
Slave IR6 - TxRDY from parallel output
Slave IR7 - OUT4 from 9513 timer

Each 8259A requires two of the CPU Support1s sixteen 1/0 ports for communication with the
processor.

BASE+O Master 8259A (AO = 0)
BASE+1 Master 8259A (AO = 1)
BASE+2 Slave 8259A (AO = 0)
BASE+3 Slave 8259A (AO = 1)

OPERATION OF THE INTERRUPT CONTROLLERS

Interrupt operation of the 8259A falls under five main categories: vectoring, priorities, triggering,
status, and cascading. Each of these categories use various modes and commands. This section will
explain the operation of these modes and commands. For clarity of explanation, however, the
actual programming of the 8259A isn't covered in this section but in "PROGRAMMING THE
INTERKUPT CONTROLLERS".

INTERRUPT VECTORING

Each IR input of the 8259A has an individual interrupt-vector address in memory associated with it.
Designation of each address depends upon the initial programming of the 8259A. The interrupt
sequence and addressing of an 8080 system differs from that of an 8086 system. Thus, the 8259A
must be intially programmed in either a 8080 or 8086 mode of operation to insure the correct
interrupt vectoring.

8080 MODE

This mode applies to 8080, 8085, and Z80 microprocessors. After an interrupt request in the 8080
mode, the 8259A will output to the data bus the opcode for a CALL instruction and the address of
the desired routine. This is in response to a sequence of three INT A (interrupt acknowledge) pulses
issued by the CPU after the 8259A has activated the INT line of the S-100 bus.

The first INT A pulse to the 8259A enables the CALL opcode CD hex onto the data bus. It also
resolves IR priorities and effects operation in the cascade mode, which will be covered later.

During the second and third INT A pulses, the 8259A conveys a 16-bit interrupt-vector address to
the 8080. The interrupt-vector addresses for all eight levels are selected when initially programming
the 8259A. However, only one address is needed for programming. Interrupt-vector addresses of
IRO-IR7 are automatically set at equally spaced intervals based on the one programmed address.
Address intervals are user definable to 4 or 8 bytes apart. If the service routine for a device is

- 7 -

short it may be possible to fit the entire routine within an 8-byte interval. Usually, though, the
service routines require more than 8 bytes. So, a 4 byte interval is used to store a Jump intruction
which directs the CPU to the appropriate routine. The 8-byte interval maintains compatibility with
current 8080 Restart (RST) instruction software, while the 4-byte interval is best for a compact
juJll) table. If the 4-byte interval is selected, then the 8259A will automatically insert bits AO-A4.
This leaves AS -A 15 to be programmed by the user. If the 8-byte interval is selected, the 8259A will
automatically insert bits AO-AS. This leaves only A6-A15 to be programmed by the user.

The LSB of the interrupt-vector address is placed on the data bus during the second INT A pulse.

The MSB of the interrupt-vector address is placed on the data bus during the third INTA pulse.

8086 MODE

Upon interrupt in the 8086 mode, the 8259A will output a single interrupt-vector byte to the data
bus. This is in response to two INT A (interrupt acknowledge) pulses issued by the 8086 after the
8259A has activated the INT line of the S-100 bus.

The first INT A pulse is used only for set-up purposes internal to the 8259A. As in the 8080 mode,
this set-up includes priority resolution and cascade mode operations which will be covered later.
Unlike the 8080 mode, no CALL opcode is placed on the data bus.

The second INT A pulse is used to enable the single interrupt-vector byte onto the data bus. The
8086 uses this interrupt-vector byte to select one of 256 interrupt "types" in 8086 memory.
Interrupt type selection for all eight IR levels is made when intially programming the 8259A.
However, reference to only one interrupt type is needed for programming. The upper 5 bits of the
interrupt vector byte are user definable. The lower 3 bits are automatically inserted by the 8259A
depending upon the IR level.

Contents of the interrupt-vector byte for 8086 type selection is put on the data bus during the
second INT A pulse.

INTERRUPT PRIORITIES

A variety of modes and commands are available for controlling interrupt priorities of the 8259A.
All of them are programmable, that is, they may be changed dynamically under software control.
With these modes and commands, many possibilities are conceivable, giving the user enough
versatility for almost any interrupt controlled-application.

FULLY NESTED MODE

The fully nested mode of operation is a general purpose priority mode. This mode supports a
multilevel-interrupt structure in which priority order of all eight IR inputs are arranged from highest
to lowest.

Unless otherwise programmed, the fully nested mode is entered by default upon intialization. At

this time, IRO is assigned the highest priority through IR7 the lowest. The fully nested mode,
however, is not confined to this IR structure alone. Once past initialization, other IR inputs can be
assigned highest priority also, keeping the multilevel-interrupt structure of the fully nested mode.

Further explanation of the fully nested mode, in this section, is linked with information of general
8259A interrupt operations. This is done to ease explanation to the user in both areas. ·

In general, when an interrupt is acknowledged, the highest priority request is determined from the
IRR (Interrupt Request Kegister). The interrupt vector is then placed on the data bus. In addition, the
corresponding bit in the ISR (In-Service Register) is set to designate the routine in service. This ISR
bit remains set until an EOI (End-Of-Interrupt) command is issued to the 8259A. EOl's will be
explained in greater detail shortly.

- 8 -

In the fully nested mode, while an ISR bit is set, all further requests of the same or lower priority
are inhibited from generating an interrupt to the microprocessor. A higher priority request,
though, can generate an interrupt, thus vectoring program execution to its service routine.
Interrupts are only acknowledged, however, if the microprocessor has previously executed an
'Enable Interrupts" instruction. This is because the interrupt request pin on the microprocessor gets
disabled automatically after acknowledgement of any interrupt. The assembly language instruction
used to enable interrupts is "El". Interrupts can be disabled by using 'DI". When a routine is
completed a "return" instruction is executed, "RET" for 8080 and "IRET" for 8086.

The figure below illustrates the correct usage of interrupt related instructions and the interaction
of interrupt levels in the fully nested mode.

IR3
INTERRUPT

Fully Nested Mode Example

MAIN PROGRAM

IR1
INTER·

RUPT

IR3 SERVICE
ROUTINE

El OR STI

~--- RET OR IRET

IR1 SERVICE
ROUTINE

El OR STI

EOI

~---- RET OR IRET

Assuming IRO has the highest priority and IR7 the lowest, the sequence is as follows. During the
main program, IR3 makes a request. Since interrupts are enabled, the microprocessor is vectored
to the IR3 service routine. During the IR3 routine, IR1 asserts a request. Since IR1 has higher
priority than IR3, an interrupt is generated. However, it is not acknowledged because the
microprocessor disabled interrupts in response to the IR3 interrupt. The IR1 interrupt is not
acknowledged until the "Enabled Interrupts" instruction is executed. Thus the IR3 routine has a

- 9 -

"protected" section of code over which no interrupts (except non-maskable) are allowed. The IR1
routine has no such "protected" section since an "Enable Interrupts" instruction is the first one in its
service routine. Note that in this example the IR1 request must stay active until it is acknowledged.
This is covered in more depth in the "Interrupt Triggering" section.

What is happening to the ISR register? While in the main program, no ISR bits are set since there
aren't any interrupts in service. When the IR3 interrupt is acknowledged, the 1SR3 bit is set. When the
IR1 interrupt is acknowledged, both the 1SR1 and the 1SR3 bits are set, indicating that neither routine
is complete. At this time, only IRO could generate an interrupt since it is the only input with a
higher priority than those previously in service. To terminate the IR1 routine, the routine must
inform the 8259A that it is complete by resetting its ISR bit. It does this by executing an EOI
command. A "return" instruction then transfers execution back to the IR3 routine. This allows
IRO-IR2 to interrupt the IR3 routine again, since 1SR3 is the highest ISR bit set. No further interrupts
occur in the example so the EOI command resets 1SR3 and the "return" instruction causes the main
program to resume at its pre-interrupt location, ending the example.

A single 8259A is essentially always in the fully nested mode unless certain programming conditions
disturb it. The following programming conditions can cause the 8259A to go out of the high to low
priority structure of the fully nested mode.

The automatic EOI mode

The special mask mode

A slave with a master not in the special fully nested mode

These modes will be covered in more detail later, however, they are mentioned now so the user
can be aware of them. As long as these program conditions aren't inacted, the fully nested mode
remains undisturbed.

END OF INTERRUPT

Upon completion of an interrupt service routine the 8259A needs to be notified so its ISR can be
updated. This is done to keep track of which interrupt levels are in the process of being serviced
and their relative priorities. Three different End-Of-Interrupt (EOI) formats are available for the
user. These are: the non-specific EOI command, the specific EOI command, and the automatic EOI
Mode. Selection of which EOI to use is dependent upon the interrupt operations the user wishes to
perform.

Non-Specific EOI Command

A non-specific EOI command sent from the microprocessor lets the 8259A know when a service
routine has been completed, without specification of its exact interrupt level. The 8259A
automatically determines the interrupt level and resets the correct bit in the ISR.

To take advantage of the non-specific EOI the 8259A must be in a mode of operation in which it
can predetermine in-service routine levels. For this reason the non-specific EOI command should
only be used when the most recent level acknowledged and serviced is always the highest priority
level. When the 8259A receives a non-specific EOI command, it simply resets the highest priority
ISR bit, thus confirming to the 8259A that the highest priority routine of the routines in service is
finished.

The main advantage of using the non-specific EOI command is that IR level specification isn't
necessary as in the "Specitic EOI Command", .covered shortly. However, special consideration
should be taken when deciding to use the non-specific EOI • Here are two program conditions in
which it is best not used.:

Using the set priority command within an interrupt service routine.

- 10 -

Using a special mask mode.

These conditions are covered in more detail in their own sections, but are listed here for the users
) reference.

Specific EOI Command

A specific EOI command sent from the microprocessor lets the 8259A know when a service routine
of a particular interrupt level is completed. Unlike a non-specific EOI command, which
automatically resets the highest priority ISR bit, a specific EOI command specifies an exact ISR bit
to be reset. One of the eight IR levels of the 8259A can be specified in the command.

)

The reason the specific EOI command is needed, is to reset the ISR bit of a completed rnrvice
routine whenever the 8259A isn't able to automatically determine it. An example of this type of
situation might be if the priorities of the interrupt levels were changed during an interrupt routine
("Specific Rotation"). In this case, if any other routines were in service at the same time, a
non-specific EOI might reset the wrong ISR bit. Thus the specific EOI command is the best bet in
this case, or for that matter, any time in which confusion of interrupt priorities may exist. The
specific EOI command can be used in all conditions of 8259A operation, including those that
prohibit non-specific EOI command usage.

Automatic EOI Mode

When programmed in the automatic EOI mode, the microprocessor no longer needs to issue a
command to notify the 8259A if it has completed an interrupt routine. The 8259A accomplishes this
by performing a non-specific EOI automatically at the trailing edge of the last INT A pulse (third
pulse in 8080, second in 8086).

The obvious advantage of the automatic EOI mode over the other EOI command is that no
command has to be issued. In general, this simplifies programming and lowers code requirements
within interrupt routines.

However, special consideration should be taken when deciding to use the automatic EOI mode
because it disturbs the fully nested mode. In the automatic EOI mode the ISR bit of a routine in
service is reset right after it's acknowledged, thus leaving no designation in the ISR that a service
routine is being executed. If any interrupt request occurs during this time (and interrupts are
enabled) it will get serviced regardless of its priority, low or high. The problem of "over nesting" is
when an IR input keeps interrupting its own routine, resulting in unnecessary stack pushes which
could fill the stack in a worst case condition. This is not usually a desired form of operation!

So what good is the automatic EOI mode with problems like those just covered? Well, again, like
the EOls, selection is dependent upon the application. If interrupts are controlled at a
predetermined rate, so as not to cause the problems mentioned above, the automatic EOI mode
works perfect just the way it is. However, if interrupts happen sporadically at an indeterminate
rate, the automatic EOI mode should only be used under the following guideline:

When using the automatic EOI mode with an indeterminate interrupt rate, the microprocessor
should keep its interrupt request input disabled during execution of service routines.

By doing this, higher priority interrupt levels will be serviced only after the completion of a routine
in service. lhis guideline restores the fully nested structure in regards to the IRR; however, a
routine in-service can't be interrupted.

AUTO MA TIC ROT A TION - EQUAL PRIORITY

Automatic rotation of priorities serves in applications where the interrupting devices are of equal
priority, such as communications channels. The concept is that once a peripheral is serviced, all
other equal priority peripherals should be given a chance to be serviced before the original

- 11 -

peripheral is serviced again. This is accomplished by automatically assigning a peripheral the lowest
priority after being serviced. Thus, in worst case, the device would have to wait until all other
devices are serviced before being serviced again.

There are two methods of accomplishing automatic rotation. One is used in conjunction with the
non-specific EOI, "non-specific EOI with priority rotation command". The other is used with the
automatic EOI mode, "rotate in automatic EOI mode".

Non-specific EOI with priority rotation command

When the non-specific EOI with priority rotation command is issued, the highest ISR bit is reset as
in a normal non-specific EOI command. After it's reset though, the corresponding IR level is
assigned lowest priority. Other IR priorities rotate to conform to the fully nested mode based on
the newly assigned low priority.

The figures below show how the non-specific EOI with priority rotation command effects the
interrupt priorities. Let's assume the IR priorities were assigned with IRO the highest and IR7 the
lowest, as in the top figure. IR6 and IR4 are already in service but neither is completed. Being the
higher priority routine, IR4 is necessarily the routine being executed. During the IR4 routine a
non-specific EOI with priority rotation command is executed. When this happens, bit 4 in the ISR is
reset. IR4 then becomes the lowest priority and IRS becomes the highest as in the lower figure.

IS7 IS6 ISS IS4 IS3 IS2 IS1 ISO
In-Service Register: 0 1 0 1 0 0 0 0 before

Priority: 7 6 5 4 3 2 1 0 conmand

• • I owes t highest
priority priority

IS7 IS6 I SS IS4 IS3 IS2 IS1 ISO
In-Service Register: 0 1 0 0 0 0 0 0 after

Priority: 2 1 0 7 6 5 4 3 conmand

• •
highest lowest

priority priority

Example of Non-Specific EOI with Priority Rotation

Automatic EOI with Priority Rotation

The automatic EOI with priority rotation mode works much like the rotate on non-specific EOI
command. The main difference is that priority rotation is done automatically after the last INT A
µulse of an interrupt request. To enter or exit this mode, "enable rotation at automatic EOI" and
"disable rotation at automatic EOI" commands are provided. After that, no commands are needed
as with the normal automatic EOI mode. However, it must be remembered, when using any form of
the automatic EOI mode, special consideration should be taken. Thus, the guideline for the
automatic EOI mode also stands for the automatic EOI with priority rotation mode.

SPECIFIC ROTATION - SPECIFIC PRIORITY

Specific rotation gives the user versatile capabilities in interrupt controlled operations. It serves in

those applications in which a specific device's interrupt priority must be altered. As opµosed to

- 12 -

.,

)

auto ma tic rotation which automatically sets priorities, specific rotation is completely user
controlled. That is, the user selects which interrupt level is to receive lowest or highest priority.
This can be done during the main program or within interrupt routines. Two specific rotation
commands are available to the user, the "set priority" command and the "specific EOI with priority
rotation" command.

Set Priority Command

The set priority command allows the programmer to assign an IR level the lowest priority. All other
interrupt levels will conform to fully nested mode based on newly assigned low priority.

An example of how the set priority command works is shown in the figures below. These figures
show the status of ISK and the relative priorities of the interrupt levels before and after tlie set
priority command. Two interrupt routines are shown to be in service in the top figure. Since jR2 is
the highest priority, it is necessarily the routine being executed. During the IR2 routine, priorities
are altered so that IRS is the highest. This is done simply by issuing the set priority command to the
8259A. In this case, the command specifies IR4 as being the lowest priority. The result of this set
priority command is shown in the bottom figure. Even though IR7 now has higher priority than IR2,
it won't be acknowledged until the IR2 routine is finished (via EOI). This is because priorities are
only resolved upon an interrupt request or an interrupt acknowledge sequence. If a higher priority
request occurs during the IR2 · routine, then priorities are resolved and the highest will be
acknowledged.

157 156 155 154 153 152 151 ISO
In-Service Register: 1 0 0 0 0 1 0 0 before

Priority: 7 6 5 4 3 2 1 0 conmand

• • lowest highest
priority priority

I 57 156 I 55 154 153 152 I 51 ISO
In-Service Register: 1 0 0 0 0 1 0 0 after

Priority: 2 1 0 7 6 5 4 3 conmand

• • highest lowest
priority priority

Example of the Set Priority Comnand

When co rnpleting a service routine in which the set priority command is used, the correct EOI must
be issued. The non-specific EOI command shouldn't be used in the same routine as a set priority
command. This is because the non-specific EOI command resets the highest ISR bit, which, when
using the set priority command, is not always the most recent routine in service. The automatic
EOI mode, on the other hand, can be used with the set priority command. This is because it
automatically performs a non-specific EOI before the set priority command can be issued. The
specific EOI command is the best bet in most cases when using the set priority command within a
routine. By resetting the specific ISR bit of a routine being completed, confusion is eliminated.

Specific EOI with priority rotation command

The Specific EOI with priority rotation command is literally a combination of the set priority
command and the specific EOI command. Like the set priority command, a specified IR level is

- 13 -

assigned lowest priority. Like the specific EOI command, a specified level will be reset in the ISR.
Thus the specific EOI with priority rotation command accomplishes both tasks in only one
command.

If it is not necessary to change IR priorities prior to the end of an interrupt routine, then this
command is advantageous. Since an EOI command must be executed anyway (unless in the
automatic EOI mode), why not do both at the same time?

INTERRUPT MASKING

Disabling or enabling interrupts can be done by other I means than just controlling the
microprocessor's interrupt request pin. The 8259A has an IMR (Interrupt Mask Register) which
enhances interrupt control capabilities. Rather than all interrupts being disabled or enabled at the
same time, the llvlf< allows individual IR masking. The IMR is an 8-bit register, bits 0-7 directly
correspond to IRO-IR7. Any IR input can be masked by writing to the IMR and setting the
appropriate bit. Likewise, any IR input can be enabled by clearing the correct IMR bit.

There are various uses for masking off individual IR inputs. One example is when a portion of a
main routine wishes only to be interrupted by specific interrupts. Another might be disabling higher
priority interrupts for a portion of a lower priority service routine. The possibilities are many.

When an interrupt occurs while its IMR bit is set, it isn't necessarily forgotten. For, as stated earlier,
the IMR acts only on the output of IRR. Even with an IR input masked it is still possible to set the
IR.R. Thus, when resetting an IMR, if its IRR bit is set it will then generate an interrupt. This is
providing, of course, that other priority factors are taken into consideration and the IR request
remains active. If the IR request is removed before the IMR is reset, no interrupt will be
acknowledged.

Special Mask Mode

In various cases, it may oe desirable to enable interrupts of a lower priority than the routine in
service. Or, in other words, allow lower priority devices to generate interrupts. However, in the
fully nested mode, all lR levels of priority below the routine in service are inhibited. So what can be
done to enable them?

Well, one method could be using an EOI command before the actual completion of a routine in
service. Uut beware, doing this may cause an "over nesting" problem, similar to in the automatic
EOI mode. In addition, resetting an ISR bit is irreversible by software control, so lower priority IR
levels could only be later disabled by setting the IMR.

A much better solution is the special mask mode. Working in conjunction with the IMR, the special
mask mode enables interrupts from all levels except the level in service. This is done by masking
the level that is in service and then issuing the special mask mode command. Once the special mask
mode is set, it remains in effect until reset.

The figure below shows how to enable lower priority interrupts by using the Special Mask Mode
(SMM). Assume that IRO has highest priority when the main program is interrupted by IR4. In the IR4
service routine an enable interrupt instruction is executed. This only allows higher priority interrupt
requests to interrupt IR4 in the normal fully nested mode. Further in the IR4 routine, bit 4 of the
IMR is masked and the special mask mode is entered. Priority operation is no longer in the fully
nested mode. All interrupt levels are enabled except for IR4. To leave the special mask mode, the
sequence is executed in reverse.

- 14 -

,,

MAIN PROGRAM

l
El OR STI

l

IR4-
I
I
I
I
I

r

l

~

Example of Special Mask Mode

IR4 SE.RVICE
ROUTINE

l
El OR STI

l

l
MASK IR4

l
SET SMM

l

l
RESET SMM

l
UNMASK IR4

c· l
EOI

l
RET OR IRET

l
IR0-3 ENABLED
IR4-7 DISABLED

IR0-3, 5-7 ENABLED
IR4 DISABLED

IR0-3 ENABLED
IR4-7 DISABLED

Precautions must be taken when exiting an interrupt service routine which has used the special
mask mode. A non-specific EOI command can't be used when in the special mask mode. This is
because a non-specific won't clear an ISR bit of an interrupt which is masked when in the special
mask mode. In fact, the bit will appear invisible. If the special mask mode is cleared before an EOI
command is issued a non-specific EOI command can be used. This could be the case in the example
shown in Figure 15, but, to avoid any confusion it's best to use the specific EOI whenever using the
special mask mode.

- 15 -

It must be remembered that the special mask mode applies to all masked levels when set. Take, for
instance, IR1 interrupting IR4 in the previous example. If this happened while in the special mask
mode, and the IR1 routine masked itself, all interrupts would be enabled except IR1 and IR4 which
are masked.

INTERRUPT TRIGGERING

There are two classical ways of sensing an active interrupt request: a level sensitive input or an
edge sensitive input. The 8259A gives the user the capability for either method with the edge
triggered mode and the level triggered mode. Selection of one of these interrupt triggering
methods is done during the programmed initialization of the 8259A.

LEVEL TRIGGERED MODE

When in the level triggered mode the 8259A will recognize any active level on an IR input as an
interrupt request. Note that an active level is high at the IR pin of the 8259A. The eight VI interrupt
requests from the bus go through inverting buffers before reaching the 8259As so that the active
level on the S-100 VI lines is low. If the IR input remains active after an EOI command has been
issued (resetting its ISR bit), another interrupt will be generated. This is providing, of course, the
processor INT pin is enabled. Unless repetitous interrupt generation is desired, the IR input must be
brought to an inactive state before an EOI command is issued in its service routine. Note that the
request on the IR input must remain until after the falling edge of the first INT A pulse. If on any IR
input, the request goes inactive before the first INT A pulse, the 8259A will respond as if IR7 was
active. In any design in which there's a possibility of this happening, the IR7 default feature can be
used as a safeguard. This can be accomplished by using the IR7 routine as a "clean-up routine"
which might recheck the 8259A status or merely return program execution to its pre-interrupt
location.

Depending upon the particular design and application, the level triggered mode has a number of
uses. For one, it provides for repetitious interrupt generation. This is useful in cases when a
service routine needs to be continually executed until the interrupt request goes inactive.

Caution should be taken when using the automatic EOI mode and the level triggered mode
together. Since in the automatic EOI mode an EOI is automatically performed at the end of the
interrupt acknowledge sequence, if the processor enables interrupts while an IR input is still active,
an interrupt will occur immediately. To avoid this situation interrupts should be kept disabled until
the end of the service routine or until the IR input goes inactive.

EDGE TRIGGEREIJ MODE

When in the edge triggered mode, the 8259A will only recognize interrupts if generated by an
inactive to active transition on an IR input. Note that "active" and "inactive" are as defined above in
the section on the Level Triggered Mode. The edge triggered mode incorporates an edge lockout
method of operation. This means that after the rising edge of an interrupt request and the
acknowledgement of the request, the active level of the IR input won't generate further interrupts
on this level. The user needn't worry about quickly removing the request after acknowledgement in
fear of generating further interrupts as might be the case in the level triggered mode. Before
another interrupt can be generated the IR input must return to the inactive state.

Like the level triggered mode, in the edge triggered mode the request on the IR input must remain
active until after the falling edge of the first INT A pulse for that particular interrupt. Unlike the
level triggered mode, though, after the interrupt request is acknowledged its IRR latch is disarmed.
Only after IR input goes inactive will the IRR latch again become armed, making it ready to receive
another interrupt request (in the level triggered mode, the IRR latch is always armed). Note that the
IR7 default feature mentioned in the "level triggered mode" section also works for the edge
triggered mode.

- 16 -

Depending upon the particular design and application, the edge triggered mode has various uses.
8ecause of its edge lockout operation, it is best used in those applications where repetitious
interrupt generation isn't desired. It is also very useful in systems where the interrupt request is a
pulse (this should be in the form of a negative pulse to the 8259A). Another possible advantage is
that it can be used with the automatic EOI mode without the cautions in the level triggered mode •.
Overall, in most cases, the edge triggered mode simplifies operation for the user, since the
duration of the interrupt request at a positive level is not usually factor.

INTERRUPT ST A TUS

By means of software control, the user can interrogate the status of the 8259A. This allows the
reading of the internal interrupt registers, which may prove useful for interrupt control during
service routines. It also provides for a modified status poll method of device monitoring, by using
the poll command. This makes the status of the internal IR inputs available to the user via so:1ware
control. The poll command offers an alternative to the interrupt vector method, especially for
those cases when more than 64 interrupts are needed.

READING INTERRUPT REGISTERS

The contents of each 8-bit interrupt register, IRR, ISR, and IMR, can be read to update the user's
program on the present status of the 8259A. This can be a versatile tool in the decision making
process of a service routine, giving the user more control over interrupt operations. Before
delving into the actual process of reading the registers, let's briefly review their general
descriptions:

IRR (Interrupt Request Register)

ISR (Interrupt Service Register)

IMR (Interrupt Mask Register)

Specifies all interrupt levels requesting service.

Specifies all interrupt levels which are being serviced.

Specifies all interrupt levels that are masked.

To read the contents of the IRR or JSR, the user must first issue the appropriate read register
command (read IRR or read JSR) to the 8259A. Then by applying a RD pulse to the 8259A (an input
instruction), the contents of the desired register can be acquired. There is no need to issue a read
register command every time the IRR or ISR is to be read. Once a read register command is
received by the 8259A, it "remembers• which register has been selected unless a Poll command is
issued. Thus, all that is necessary to read the contents of the same register more than once is the
RD pulse and the correct addressing (AO=O, explained in "PROGRAMMING THE INTERKUPT
CONTROLLERS"). Upon initialization, the selection of registers defaults to the IRR. Some caution
should be taken when using the read register command in a system that supports several levels of
interrupts. If the higher priority routine causes an interrupt between the read register command and
the actual input of the register command and the actual input of the register contents, there's no
guarantee that the same register will be selected when it returns. Thus it is best in such cases to
disable interrupts during the operation.

Reading the contents of the IMR is different than reading the IRR or ISR. A read register command is
not necessary when reading the IMR. This is because the IMR can be addresses directly for both
reading and writing. Thus all that the 8259A requires for reading the IMR is a RD pulse and the
correct addressing (A0=1, explained in "PROGRAMMING THE INTERRUPT CONTROLLERS").

POLL COMMAND

There are two methods of servicing peripherals: status polling and interrupt servicing. For most
applications the interrupt service method is bes.t. This is because it requires the least amount of
CPU time, thus increasing systems throughout. However, for certain applications, the status poll
method may be desirable.

For this reason, the 8259A supports polling operations with the poll command. As opposed to the

- 17 -

conventional method of polling, the poll command offers improved device servicing and increased
throughput. Rather than having the processor poll each peripheral in order to find the actual device
requiring service, the processor polls the 8259A. This allows the use of all the previously mentioned
priority modes and commands. Additionally, both polled and interrupt methods can be used within
the same program.

To use the poll command the processor must first have its interrupt request pin disabled. Once the
poll command is issued, the 8259A will treat the next RD pulse issued to it (an input instruction) as
an interrupt acknowledge. It will then set the appropriate bit in the ISR, if there was an interrupt
request, and enable a special word onto the data bus. This word shows whether an interrupt
request has occured and the highest priority level requesting service. The figure below shows the
contents of the "poll word" which is read by the processor. Bits 0-2 convey the binary code of the
highest priority level requesting service. Bit 7 designates whether or not an interrupt request is
present. If an interrupt request is present, bit 7 will equal 1. If there isn't an interrupt request at all,
bit 7 will equal O and bits 0-2 will be set to ones. Service to the requesting device is achieved by
software decoding the poll word and branching to the appropriate service routine. Each time the
8259A is to be polled, the poll command must be written before reading the poll word.

Po 11 word:
D7 D6 D5

I
04 03 02 01

W2 W1

I = 1 if an interrupt occurred

DO
WO

WO - W2 = binary code of highest priority level requesting service

The poll command is useful in various situations. For instance, it's a good alternative when
memory is very limited, because an interrupt-vector table isn't needed. Another use for the poll
command is when more than 64 interrupt levels are needed (64 is the limit when cascading 8259As).
Tile only limit of interrupts using the poll command is the number of 8259As that can be addressed
in a particular system. For those cases when the 8259A is using the poll command only and not the
interrupt method, each 8259A must still receive an intialization sequence. This must be done even
though the interrupt vector features of the 8259A are not used. In this case, the interrupt vector
specified in the initialization sequence could be a "fake".

INTERRUPT CASCADING

As mentioned earlier, more than one 8259A can be used to expand the priority interrupt scheme to
up to 64 levels without additional hardware. This method for expanded interrupt capability is called
•cascading". The 8259A supports cascading operations with the cascade mode. Additionally, the
special fully nested mode is available for increased flexibility when cascading 8259As in certain
applications.

CASCADE MODE

When programmed in the cascade mode, basic operations consists of one 8259A acting as a master
to the others which are serving as slaves. On the CPU Support card, the 8259A at BASE+O and
BASE+1 acts as a master to the 8259A at BASE+2 and BASE+3 which serves as a slave. In addition,
seven other 8259As can be slaved to the master 8259A using seven of the S-100 VI lines.

A specific hardware set-up is required to establish operation in the cascade mode. The INT output
pin of each slave is connected to an IR input pin of the master. The slave 8259A on the CPU
support card has its INT output connected to the master's IR1 input. Inputs IRO and IR2 - IR7 of the
master are connected to VIO and Vl2 - Vl7 respectively. Any additional 8259As in the system (on
the SCP Multiport Serial card for example) should have their INT outputs connected through
open-collector inverting buffers to one of the seven VI lines which are cascadable (VIO and Vl2 -
Vl7). The eighth VI line, Vl1, is NOT cascadable but instead is connected to IR3 of the slave 8259A
on the CPU Support card. The master drives three "CAS" lines to indicate which of the up to eight

- 18 -

"

)

)

)

slaves should drive the data bus with an interrupt vector during interrupt acknowledge. The CPU
Support card takes over the S-100 address bus during interrupt acknowledge and puts the three CAS
lines on the lowest three address lines. Any additional slaves in the system should simply have their
three CAS inputs connected to AO - A2 to receive the proper cascade address. The SP/EN output
pin is used to enable data bus drivers to drive the interrupt vector from the 8259A onto the S-100
DI bus. All other pins are connected as in normal operation.

Hes ides hardware set-up requirements, all 8259A 's must be software programmed to work in the
cascade mode. Programming the cascade mode is done during the initialization of each 8259A. The
8259A that is selected as master must receive specifications during its initialization as to which of
its IR inputs are connected to a slave's INT pin. Each slave 8259A, on the other hand, must be
designated during its initialization with an ID (0 thru 7) corresponding to which of the master's IR
inputs its INT pin is connected to. This is all necessary so the three CAS lines from the master will
be able to address each individual slave. Note that as in normal operation, each 8259A mwt also
be initialized to give IR inputs a unique interrupt vector. More detail on the necessary programming
of the cascade mode is explained in "PROGRAMMING THE INTERRUPT CONTROLLERS".

Now, with background information on both hardware and software for the cascade mode, let's go
over the sequence of events that occur during a valid interrupt request from a slave. Suppose a
slave IR input has received an interrupt request. Assuming this request is higher priority than other
requests and in-service levels on the slave, the slave's INT pin is driven high. This signals the master
of the request by causing an interrupt request on a designated IR pin of the master. Again, assuming
that this request to the master is higher priority than other master requests and in-service levels
(possibly from other slaves), the master's INT pin is pulled high, interrupting the processor.

The interrupt acknowledge sequence appears to the processor the same as the non-cascading
interrupt acknowledge sequence; however, it's different among the 8259As. The first INTA pulse is
used by all the 8259As for internal set-up purposes and, if in the 8080 mode, the master will place
the CALL opcode on the data bus. The first INT A pulse also signals the master to place the
requesting slave's ID code on the CAS lines and hence on AO-A2 of the S-100 bus. This turns
control over to the slave for the rest of the interrupt acknowledge sequence, placing the
appropriate pre-programmed interrupt vector on the data bus, completing the interrupt request.

During the interrupt acknowledge sequence, the corresponding ISR bit of both the master and the
slave get set. This means two EOI commands must be issued (it not in the automatic EOI mode),
one for the master and one for the slave.

Special consideration should be taken when mixed interrupt requests are assigned to a master
8259A; that is, when some of the master's IR inputs are used for slave interrupt requests and some
are used for individual interrupt requests. In this type of structure, the master's IRO must not be
used for a slave. This is because when an IR input that isn't initialized as a slave receives an
interrupt request, the three CAS lines won't be activated, thus staying in the default condition
addressing for IRO (slave IRO). If a slave is connected to the master's IRO when a non-slave interrupt
occurs on another master IR input, erroneous conditions may result. Thus IRO should be the last
choice when assigning slaves to IR inputs.

SPECIAL FULLY NESTED MODE

Depending on the application, changes in the nested structure of the cascade mode may be desired.
This is because the nested structure of a slave 8259A differs from that of the no rrnal fully nested
mode. In the cascade mode, if a slave receives a higher priority interrupt request than one which is
in service (through the same slave), it won't be recognised by the master. This is because the
master's ISK bit is set, ignoring all requests of equal or lower priority. Thus, in this case, the higher
priority slave interrupt won't be serviced until after the master's ISR bit is reset by an EOI
command. This is most likely after the completior't of the lower priority routine.

If the user wishes to have a truly fully nested structure within a slave 8259A, the special fully nested
mode should be used. The special fully nested mode is programmed in the master only. This is done
during the master's initialization. In this mode the master will ignore only those interrupt requests

- 19 -

of lower priority than the set ISR bit and will respond to all requests of equal or higher priority.
Thus if a slave receives a higher priority request than one which is in service, it will be recognized.
To insure proper interrupt operation when using the special fully nested mode, the software must
determine if any other slave interrupts are still in service before issuing an EOI command to the
master. This is done by resetting the appropriate slave ISR bit with an EOI and then reading its ISR.
If the ISK contains all zeros, there aren't any other interrupts from the slave in service and an EOI
command can be sent to the master. If the ISR isn't all zeros, an EOI command shouldn't be sent to
the master. Clearing the master's ISR bit with an EOI command while there are still slave interrupts
in service would allow lower priority interrupts to be recognized at the master.

PROGRAMMING THE INTERRUPT CONTROLLERS

Programming the 8259A interrupt controllers is accomplished by using two types of command
words: Initialization Command Words (ICWs) and Operational Command Words (OCWs). All the
modes and commands explained in the previous section, "OPERATION OF THE INTERRUPT
CONTROLLERS", are programmable using the ICVVs and OCWs. The ICWs are issued from the
processor in a sequential format and are used to set up the 8259As in an initial state of operation.
The OCWs are issued as needed to vary and control 8259A operation.

Both ICWs and OCWs are sent by the processor to the 8259A via output commands from the
processor. The 8259A distinguishes between the different ICWs and OCWs by the state of its AO pin,
the sequence they're issued in (ICWs only), and some dedicated bits among the ICWs and OCWs. The
state of the AO pin is defined by which port the ICW or OCW is sent to. AO = 0 is BASE+O for the
Master and BASE+2 for the Slave. AO = 1 is BASE+1 for the Master and BASE+3 for the Slave. Those
bits which are dedicated are indicated so by fixed values (O or 1) in the corresponding ICW or OCW
programming formats which are covered shortly. Note: when issuing either ICWs or OCWs, the
interrupts should be disabled at the processor (using the DI function of the CPU).

INITIALIZATION COMMAND WORDS

Before normal operation can begin, each 8259A in the system (including the two on the CPU
Support card and any others cascaded over the S-100 VI lines) must be initialized by a sequence of
four ICWs. Note that once initialized, if any programming changes within the ICWs are to be made,
all four ICWs must be reprogrammed in sequence.

Certain internal set up conditions occur automatically within the 8259As after the first ICW has
been issued. These are:

1 > The In-Service Register and Interrupt Mask Register are both cleared. (Clearing the IMR
enables all eight interrupt request inputs).

2> The special mask mode is reset.

3) Rotation at Automatic End Of Interrupt is disabled.

4> The Interrupt Request Register is selected for the read register command.

S> The fully nested mode is entered with an initial priority assignment of IRO highest through
IR7 lowest.

6) The edge sense latch of each IR input is cleared thus requiring an active transition to
generate an interrupt if the edge triggered input mode is chosen in ICW1.

The ICW programming format below shows bit designations. A complete description of each bit
follows the table.

- 20 -

)

07 06 OS D4 D3 D2 D1 DO
ICW1
AO=O A7 A6 AS 1 LTIM ADI 0 1

ICW2
A0=1 A15/T7 A14/T6 A13/T5 A12/T4 A11/T3 A10 A9 A8

ICW3 (Master)
A0=1 S7 S6 SS S4 S3 S2 1 so

ICW3 (Slave)
A0=1 0 0 0 0 0 ID2 ID1 100

ICW4
A0=1 0 0 0 SNFM 1 M/S AEOI uPM

ICW1 & ICW2

ICW3

ADI: The ADI bit is used to specify the address interval for the 8080 mode. If a four byte
address interval is to be used, ADI must equal 1. For an eight byte address interval, ADI must
equal zero. The state of ADI is ignored when the 8086 mode is selected.

L TIM: The LTIM bit is used to select between the two interrupt request input triggering modes.
If L TIM = 1, the level triggered input mode is selected. If L TIM = O, the edge triggered input
mode is selected.

A5-A15: The A5-A15 bits are used to select the interrupt vector address when in the 8080
mode. There are two programming formats that can be used to do this. Which one is
implemented depends upon the selected address interval (ADI). If ADI is set for the four-byte
interval, then the 8259A will automatically insert AO-A4 (AO-A1 = o, A2-A4 = interrupt
request number). Thus A5-A15 must be user selected by programming the A5-A15 bits with
the desired address. If ADI is set for the eight-byte interval, then AO-AS are automatically
inserted (AO-A2 = O, A3-A5 = interrupt request number). This leaves A6-A 15 to be selected
by programming the A6-A15 bits with the desired address. The state programmed for AS is
ignored in the latter format.

T3 -T7: The T3-T7 bits are used to select the interrupt type when the 8086 mode is used. The
programming of T3 -T7 selects the upper five bits of the interrupt type (interrupt vector).
The lower three bits are automatically inserted corresponding to the interrupt request level
causing the interrupt. The state of bits AS-A10 will be ignored when in the 8086 mode.
Computing the actual memory address of the interrupt is done by multiplying the interrupt
type (i.e. the interrupt vector) by four. Thus T3 corresponds to AS, T4 to A6, etc.

SO-S7: If the 8259A being initialized is the Master, then SO-S7 in ICW3 define which interrupt
request inputs have Slaves on them. A 1 designates a Slave, a O means no Slave (i.e. a normal
interrupt request input). ~it one must always be set to 1 since IR1 is the CPU Support's Slave
8259A. Any other Slaves which exist in the system using the S-100 VI lines to connect to the
Master must have a bit of the Master's ICW3 set to 1 corresponding to which VI line is used.
For example if the Seattle Computer Products Multiport Serial card (model SCP-400) is
connected to VIS, then SS in the Master's ICW3 must be set to 1 to indicate to the Master that
the VIS interrupt request input has a Slave on it.

IDO-IU2: If the 8259A being initialized is a Slave, then 100-102 in ICW3 identify which of the
Master's interrupt request lines the Slave is connected to. The Slave 8259A on the CPU
Support card is hard-wired to interrupt request 1 so 01 hex should always be used to
program ICVV3 in that particular 8259A. 05 hex would be used for ICW3 in the Slave 8259A in
the above example with the serial card.

- 21 -

ICW4

uPM: The uPM bit allows for selection of either the 8080 or 8086 mode. If set as a 1, the
8086 mode is selected, if a O, the 8080 mode is selected. l:le sure the "CPU" jumper is
properly set to match the uPM bit definition of which processor type is used.

AEOI: The AEOI bit is used to select the automatic end of interrupt mode. If AEOI = 1, the
automatic end of interrupt mode is selected. If AEOI = 0, it isn't selected; thus an EOI
command must be used during a service routine.

M/S: The M/S bit defines whether the 8259A is the Master or a Slave. When M/S is set to a 1,
the 8259A operates as the Master; when M/S is O, it operates as a Slave.

SFNM: The SFNM bit designates selection of the special fully nested mode. Only the Master
should be programmed in the special fully nested mode to assure a truly fully nested structure
among the Slave interrupt request inputs. If SFNM is set to 1, the special fully nested mode is
selected; if SFNM is O, it is not selected.

OPERATIONAL COMMANO WORDS

Three OCWs are available for programming various modes and commands. Unlike the ICWs, OCWs
needn't be in any type of sequential order. Rather, they are issued by the processor as needed
within a program.

The OCW programming format below shows the bit designation for each OCW. With the OCW
format as reference, the functions of each OCW will be explained individually.

D7 06 05 04 03 02 01 DO
OCW1
A0=1 M7 M6 MS M4 M3 M2 M1 MO

OCW2
AO=O R SL EOI 0 0 L2 L1 LO

OCW3
AO=O 0 ESMM SMM 0 1 p RR RIS

OCW1

OCW1 is used solely for 8259A masking operations. It provides a direct link to the Interrupt Mask
Register. The processor can write to or read from the Interrupt Mask Register via OCW1. The
OCW1 bit definition is as follows:

MO-M7: The MO-M7 bits are used to control the masking of the interrupt request inputs. If an
M bit is set to a 1, it will mask the corresponding interrupt request input. A O clears the
mask, thus enabling the interrupt request input. These bits convey the same meaning when
being read by the processor for status update.

Note that to change the value of a single mask bit it is simplest to read the current mask, force the
desired bit high or low using OR or AND instructions, and write the new mask back.

OCW2

OCW2 is used for end of interrupt, automatic rotation, and specific rotation operations.
Associated commands and modes of these operations (with exception of AEOI initialization), are
selected using the bits of OCW2 in a combined fashion as explained below. A complete explanation
of the different modes and commands is given in the previous section "OPERATION OF THE
INTERRUPT CONTROLLERS".

- 22 -

OCW3

R SL EOI

0 0 0 Disable rotation at automatic end of interrupt (AEOI).
0 0 1 Non-specific end of interrupt.
0 1 0 No operation.
0 1 1 Specific end of interrupt. LO-L2 is the ISR bit to reset.
1 0 0 Enable rotation at automatic end of interrupt (AEOI).
1 0 1 Non-specific end of interrupt with priority rotation.
1 1 0 Set priority using LO-L2.
1 1 1 Specific end of interrupt with priority rotation.

R: The R bit is used to control all 8259A rotation operations. If the R bit is set to a 1, a form

of priority rotation will be executed depending on the state of the SL and EOI bits. If R is 0,
rotation won't be executed.

SL: The SL bit is used to select a specific level for a given operation. If SL is set to a 1, the
LO-L2 bits are enabled. The operation selected by the EOI and R bits will be executed on the
specified interrupt level. If SL is O, the LO-L2 bits are disabled.

EOI: The EOI bit is used for all end of interrupt commands (not automatic end of interrupt
mode). If set to a 1, a form of an end of interrupt command will be executed depending on
the state of the SL and R bits. If EOI is 0, an end of interrupt command won't be executed.

LO-L2: The LO-L2 bits are used to designate an interrupt level (0-7) to be acted upon for the
operation selectedby the EOI, SL, and R bits of OCW2. The level designated will either be used
to reset a specific Interrupt Service Register (ISR) bit or to set a specific priority. The LO-L2
bits are enabled or disabled by the SL bit.

OCW3 is used to issue various modes and commands to the 8259As. There are two main categories
of operation associated with OCW3: interrupt status and interrupt masking. Bit definition of OCVV3
is as follows:

ESMM: The ESMM bit is used to enable or disable the effect of the SMM bit. If ESMM is set to a
1, SMM is enabled. If ESMM is 0, SMM is disabled. This bit is useful to prevent interference of
mode and command selections in OCW3.

SMM: The SMM bit is used to set the special mask mode. If SMM is set to a 1, the special mask
mode is enabled. If it is 0, it is disabled. The state of the SMM bit is only honored if it is
enabled by the ESMM bit.

P: The P bit is used to issue the poll command. If P is set to a 1, the poll command is issued.
If it is 0, the poll command isn't issued. The poll command will override a read register
command if set simultaneously.

RR: The RR bit is used to execute the read register command. If RR is set to a 1, the read
register command is issued and the state of RIS determines the register to be read. If RR is O,
the read register command isn't issued.

RIS: The RIS bit is used to select the ISR or IRR for the read register command. If RIS is set to
a 1, the In -Service Register is selected. If RIS is O, the Interrupt Request Register is selected.
The state of the RIS bit is only honored if the RR bit is a 1.

- 23 -

SAC

GATE

FREQ

TCN-1

Timer
The CPU Supµort card has five programmable counters one of which is dedicated to use as a baud
rate generator for the serial 1/0 port. The other four are general purpose counters two of which
can be used as a Time Of Day counter. A 9513 System Timing Controller chip is used to implement
these counters.

Communication with the 9513 is through two ports:

Po rt Function

HASE+4 Data port
HASE+5 Status/Control port

The logic group which makes up each counter contains a sixteen bit counter, three associated
registers which control the counter and transfer data in and out of it, and an output pin which has
different functions for each of the five counter logic groups.

Below are block diagrams of the counter logic groups. Detailed descriptions of their various
elements are presented in the pages that follow.

INPUT
SELECT
LOGIC

COUNTER
CONTROL

LOGIC

16-BIT MOOE REGISTER

16-BIT LOAD REGISTER

16-BIT COUNTER

16-BIT HOLD REGISTER

SAC

INPUT I I 16-BIT LOAD REGISTER

FREQ 5 SELECT
LOGIC

OUT

. .,, =tj
TCN-1

1
CONTROL ..--

COUNTER

16-BIT COMPARATOR CONTROL 16-BIT COUNTER
LOGIC

L_jO~T

16-BIT ALARM REGISTER 16-BIT MODE REGISTER 16-BIT HOLD REGISTER

Counter Logic Groups 1 and 2. Counter Logic Groups 3, 4, and 5-

The counters and their output pins have the following definitions:

Counter Function Output connection

1 General purpose or Time Of Day not used

2 General purpose or Time Of Day Slave Interrupt Request 0
3 General purpose Slave Interrupt Request 4
4 General purµose Slave Interrupt Request 7
5 Seri a I baud rate generator Seri a I Tx & Rx clocks

The clock input to each counter can be connected to one of seven different frequency sources.
The clock polarity can be active high or low and counting can be in BC l) or binary, all software
selectable. The outputs can be either pulse or level (toggled) outputs software selectable.

- 24 -

FREQUENCY SOURCES

The 9513 has its own independant 4MHz oscillator which is the basic frequency source. Following
the oscillator is a sixteen bit frequency scaler with taps every four bits. The scaler can be
programmed to count in BCD or binary.

source binary BCD
freq period freq period

F1 4MHz 250nS 4MHz 250nS
F2 250kHz 4uS 400kHz 2.SuS
F3 15.625kHz 64uS 40kHz 25uS
F4 976.5625Hz 1. 024rnS 4kHz 250uS
F5 61.03515625Hz 16.384mS 400Hz 2. 5mS

IKD division usually results in more useful frequencies and periods than binary division.

There is a four bit counter called the "FOUT divider" which can can be connected to any of the five
scaler outputs. Unlike the main frequency scaler which can only divide by ten or sixteen, the FOUT
divider can divide by anything from one to sixteen. The output of the FOUT divider is one of the
seven frequency sources.

The seventh source for each counter input is an outµut from the previous counter called TCN-1.
This allows concatenation of the counters if more than sixteen bits are required.

TERMINAL COUNT

Terminal Count (TC) represents the period in time that the counter reaches an equivalent value of
zero. Since the counter is always reloaded from its LOAD or HOLD register it won't actually reach
zero unless the LOAD or HOLD register contains zero. TC is active during the first clock that the
counter contains the value loaded from the LOAD or HOLD register. TCN-1 is the terminal count
from the previous counter (N -1) and provides a way of cascading the counters internally. Counter
1 wraps around to counter 5 so that for counter 1 TCN-1 comes from counter 5.

Communication with the 9513 is through two 1/0 ports.

BASE+4 Data port
BASE+S Status/Control port

9513 REGISTERS

Register Type

comnand 8 bits' write on I y
data pointer 6 bi ts ' write only
status 8 bi ts' read only
master mode 16 bits, read/write
load 16 bits, r e ad /w r i t e ,
hold 16 bits, read/write,
counter mode 16 bits, r e a d /w r i t e ,
alarm 16 bits' read/write,

- 25 -

one for each counter
one for each counter
one for each counter
counters 1 & 2 only

Po rt

BASE+5
BASE+5
BASE+S
BASE+4
BASE+4
BASE+4
BASE+4
BASE+4

COMMAND REGISTER

The command register isn't really a register since the definitions of many of the bits change
depending on the command. Its really just a port to which commands are sent.

Commands:

C7

0
0
0
0
1
1
1
1
1
1
1
1
1

C6 cs C4 C3 C2 C1 co

0 0 E1 EO G2 G1 GO Load data pointer register with E & G fields.
0 1 55 54 53 52 S1 Arm all counters for which the S bit is 1.
1 0 SS S4 S3 S2 S1 Load selected counters from LOAD or HOLD.
1 1 SS S4 S3 S2 S1 Load & Arm all selected counters.
0 0 SS S4 S3 S2 S1 Disarm and Save all selected counters.
0 1 SS S4 S3 S2 S1 Save all selected counters into the HOLD register.
1 0 SS S4 S3 S2 S1 Disarm all selected counters.
1 1 0 0 N2 N1 NO Clear output bit N (N = 1,2,3,4,5)
1 1 0 1 N2 N1 NO Set output bit N (N = 1,2,3,4,5)
1 1 1 0 N2 N1 NO Step counter N (N = 1,2,3,4,5)
1 1 0 0 0 0 0 Clear MM14 (enable data pointer sequencing)
1 1 0 1 0 0 0 Set MM14 (disable data pointer sequencing)
1 1 1 1 1 1 1 Master reset

The data pointer register selects which of the 16 bit read/write registers the CPU
communicates with through the data port (BASE+4). It is loaded using one of the commands.
See the section on the data pointer register for more information.

Six of the commands provide direct software control over the counting process. Each of
these commands contains a five bit S field. Each bit in the S field corresponds to one of the
five counters (S1 = counter 1 etc). A 1 in an S bit causes the command to be performed on
the corresponding counter. If a counter's S bit is zero no operation is performed.

Arm - the arm command enables the selected counters to count.

Load - the load command causes the selected counters to be loaded from their LOAD
or HOLD register depending on the counter mode register.

Disarm - the disarm command disables counting in the selected counters. A disarmed
counter can still be loaded, stepped, or saved.

Save - the save command transfers the contents of a counter to its hold register
where it can be read by the CPU. This transfer takes place without disturbing the
count process. The save command is the only way to read the value of the counter
because the counter is not directly accessable by the CPU.

The following three commands can only affect one counter at a time. The desired counter is
selected using the N field where NO-N2 form a three bit binary number. N must be in the
range 1 - 5 for these commands.

Set output - this command activates the selected output pin in the mode selected by
the counter mode register. It could be active high, active low, or disabled.

Clear output - this command deactivates the selected output pin in the mode selected
by the counter mode register. It could be inactive low, inactive high, or disabled.

Step counter - this command steps the selected counter up or down once, the
direction depending on the counter mode register.

- 26 -

J

The following two commands set or clear a bit of the Master Mode register without having
to load the data pointer register to access the Master Mode register.

Set/Clear MM14 - disable/enable data pointer sequencing (respectively).

Master reset - on reset all five counters are disarmed, OBOO hex is loaded into each Counter
Mode register, and 0000 hex is loaded into the Master Mode register. This results in each
counter being configured to count down in binary on the positive-going edge of the F1
frequency source with no repetition. The counter outputs are off with a low impedance to
ground. The Master Mode register is cleared to configure the 9513 for binary division of the
internal oscillator, the FOUT divider dividing by sixteen, Time Of Day mode an,d comparators
1 and 2 disabled, and Data Pointer sequencing enabled.

Reset will clear the Load and Hold registers for each counter but will not change either the
counter contents or the Data Pointer register.

DAT A POINTER REGISTEK

The Data Pointer register is used to establish which of the 16 bit read/write registers the CPU will
communicate with through the data port. The Data Pointer register has some automatic sequencing
features to allow the user to load or scan through the various registers without the need to update
the Data Pointer for each register. Bit 14 of the Master Mode register (MM14) controls whether the
auto ma tic sequencing is enabled or not. The Data Pointer has three parts, the group pointer (G),
the element pointer (E), and the byte pointer (B). The group pointer selects one of the five counter
groups or the control group. The element pointer selects an element of the group. The byte
pointer selects the least or most significant byte of the sixteen bit word. Whenever the command
to load the Data Pointer register is given the byte pointer is set to 1 indicating the least significant
byte is expected. The byte pointer is toggled after each data transfer. The E & G fields are
sequenced every other transfer to allow both bytes of the sixteen bit registers to be transfered.
Since the byte pointer is set when the Data Pointer register is loaded the least significant byte is
always transfered first.

Byte Pointer

1 = Least significant Byte Transferred next
O = Most significant Byte Transferred next

Group Pointer Element Pointer

ooo = Illegal l 00 = Mode Register l El t C 1 . emen ce
001 = Counter Group 1 01 = Load Register

I
t y

. ncremen
010 = Counter Group 2 1 O = Hold Register
011 = Counter Group 3 l 11 = Hold Register/Hold Cycle Increment
100 = Counter Group 4

101 = Counter Group 5 0 Al R . 1 l _ O = arm eg1ster
110 - Illegal 01 Al R . t 2 Control Cycle _ = arm eg1s er
111 - Control Group { 10 M t M d R . t Increment = as er o e eg1s er

11 = Status Register/No Increment

The register addressed by the Uata Pointer is read at the time the Data Pointer is set, with its
contents being placed in the output buffer register. This happens 1) whenever the Data Pointer is
set by a command to BASE+5; or 2) whenever the data port at BASE+4 is read or written since this
toggles the byte pointer. If the contents of a register are changed after the data pointer is set to
point to that register, the correct data will not be read. For example, setting the Data Pointer to
Hold Register 1, then saving Counter 1 into the Hold Register will result in reading erroneous data.
The data will be correct if the data pointer is set AFTER the save command is given.

- 27 -

Another problem can occur if interrupts are possible when the 9513 is being read or written. The
interrupt could occur between setting the data pointer register and reading the data, or even
between transferring low and high data bytes. If the interrupt service routine then also
communicates with the 9513, it may change the Data Pointer. Moral: disable interrupts while

· communicating with the 9513.

The four Data Pointer Sequencing loops are shown in the following figure.

STATUS REGISTER

Counter 1 Hold Reg.

' Counter 2 Hold Reg.

f
• • • •

' Counter 5 Hold Reg.

HOLD CYCLE

Alarm Reg. 1

f
Alarm Reg. 2

' Master Mode Reg.

CONTROL CYCLE

Counter 1 Mode Reg.

' Counter 1 Load Reg.

' Counter 1 Hold Reg .

' Counter 2 Mode Reg.

f
Counter 2 Load Reg.

' Counter 2 Hold Reg.

' • • •

f
Counter 5 Hold Reg.

ELEMENT CYCLE

GReg
STATUS CYCLE

The 8 bit read only status register is read with every input from the control/status port. It contains
the status of the five output pins and the byte pointer (8) of the data pointer register. The status
register may also be read as part of the control group.

SR7

1

SR6

1

SRS

OUTS

SR4

OUT4

· SR3

OUT3

SR2

OUT2

SR1

OUT1

SRO

B

· The values read for the output pins are internal values taken after the polarity select logic but
before three state buffer circuitry. - 28 -

MASTEK MODE REGISTER

The sixteen bit read/write Master Mode register is accessed through the data port as part of the
control group. It is used to control internal activities which aren't covered by the individual
counter mode registers.

MM15 MM14 MM13 MM12 MM11 MM10 MM9 MM8 MM7 MM6 MMS MM4 MM3 MM2 MM1 MMO

MM15 scaler control
0 = binary division
1 = BCD division

MM14 data pointer control
0 = enable sequencing
1 = disable sequencing

MM13 = 0
MM12 = 0
MM8 - MM11 FOUT divider

0000 = divide by 16
0001 = divide by 1
0010 = divide by 2

1110 = divide by 14
1111 = divide by 15

MM4 - MM7 FOUT source
0000 = F1
1011 = F1
'1100 = F2
1101 = F3
1110=F4
1111=F5

MM3 compare 2 enable
0 = disabled
1 = enabled

MM2 compare 1 enable
0 = disabled
1 = enabled

MMO - MM1 time-of-day enable
00 = time-of-day disabled
11 = time-of-day enabled

MM15 - scaler control. Selects whether the internal oscillator frequency scaler counts in
binary or BCD.

MM14 - data pointer control. Selects whether the data pointer sequences or stays pointing to
a particular register.

MM13 - this bit should always be zero.

MM12 - this bit should always be zero.

MM8 - MM11 FOUT divider. Chooses what the FOUT source frequency is divided by before
being presented to the FOUT pin. Divisors from 1 through 16 are available.

MM4 - MM7 FOUT source. Selects one of the five outputs of the internal oscillator scaler for
input to the FOUT divider. Only those binary combinations given in the table should be used.
The others are from input pins which aren't connected to anything. See the 9513 data sheet
at the back of this manual for more information. Note that F1 can be selected with two
different co rnbinations.

MM3 - compare 2 enable. Controls counter 2's comparator. See the section on Alarm
registers & comparators.

MM2 - compare 1 enable. Controls counter 1 's comparator. See the section on Alarm
registers & comparators.

MMO - MM1 Time Of Day mode. These two bits enable or disable the Time Of Day mode in
counters 1 & 2.

LOAD REGISTER

This sixteen bit read/write register is used to load the counter when Terminal Count occurs or
when a load command is given. Each counter has one and it's accessed as an element of a counter
group.

- 29 -

HOLD REGISTER

This sixteen bit read/write register is used to save the contents of the count when a save command
is received or it can be used to load the counter on alternate Terminal Counts alternating with the
LOAD register. Each counter has one and it's accessed as an element of a counter group.

COUNTER MODE REGISTER

This sixteen bit read/write register controls the operation of the counter. Each counter has one
and it's accessed as an element of a counter group.

CM15 CM14 CM13 CM12 CM11 CM10 CM9 CM8 CM7 CM6 CMS CM4 CM3 CM2 CM1 CMO

CM13 - CM15 = 000
CM12 count source polarity

0 = count on rising edge
1 = count on falling edge

CMB - CM11 count source
0000 = TCN-1
0001 = FOUT
1011 = F1
1100 = F2
1101 =F3
1110 = F4
1111=F5

CM7 = 0
CM6 reload source

0 = reload from load
1 = reload from load or ho Id

CMS repetition
0 = count once
1 = count repetitively

CM4 count base
0 = binary count
1 = BCD count

CM3 count direction
0 = count down
1 = count up

CMO - CM2 output control
000 = inactive, output low
001 = active high TC pulse
010 = TC toggle
101 = active low TC pulse

CM13 - CM15 & CM7 are used to control gating of the counters. Gating is primarily used
with five "GA TE" inputs to the 9513 chip which aren't connected to anything on the CPU
Support card. For information on the GATE inputs and the various gating modes the user
should consult the 9513 data sheet appended to this manual.

CM12 count source polarity. Selects which edge of the clock the counter counts on. Rising
edge should be used for concatenating counters using TCN-1 source.

CMB - CM11 count source. Selects one of seven sources. See the section on frequency
sources.

CM7 see CM13 - CM15.

CM6 reload source. If the load register is chosen for the reload source, the counter will be
reloaded from the load register on Terminal Count. If the reload source is load or hold the
source alternates between load and hold on Terminal Count. Very fine duty cycle control
can be acheived in this way using toggled outputs.

CMS repetition. If count once is selected the counter will count one full cycle then disarm. A
cycle can consist of one or two Terminal Count cycles depending on CM6. If the reload from
Load mode is chosen there will be only one Terminal Count cycle. If the the reload from
Load or Hold mode is chosen there will be two Terminal Count cycles. The first will count
down to Terminal Count, reload from either Load or Hold, count down to Terminal Count
again and reload from the other of the two. If count repetitively is chosen, the counter will
automatically reload at Terminal Count·and keep counting.

CM4 count base. Either binary or BCD counting can be selected.

- 30 -

)

)

)

CM3 count direction. Counting down is handy for frequency dividers while counting up is
good for timers.

CMO - CM2 output control. These bits control the action of the output pin for each counter.
The inactive mode simply turns the output off so that a logic zero is present at the output
pin. The TC toggle mode toggles the output each time the counter reaches Terminal Count.
In active high TC pulse mode the output is normally low and pulses high during Terminai
Count. In active low TC pulse mode the output is normally high and pulses low during
Terminal Count.

OUT2, 3, and 4 are connected to the Slave 8259A programmable interrupt controller. In

general the TC toggle mode is the most useful for interrupt generation since the output will
stay active till it is turned off (or till the next TC pulse). The procedure is simply to turn off
the output, load and arm the counter, and turn off the counter output after the interrupi has
occured. This mode works equally well with either the level or edge triggered input modes of
the 8259A interrupt controllers. If the timer is set to count repeatedly to generate interrupts
at a certain frequency then turning the output off after each interrupt is all that is required
to initialize for the next cycle. The output will toggle high at the next TC pulse. If interrupts
aren't used the inactive output mode should be used or the interrupt should be masked at the
Slave 8259A interrupt controller. If the interrupt request is masked at the 8259A but the
counter output is active then the logic level of the output pin can be read using the status
port.

OUTS is the baud rate generator for the serial port. The TC toggle mode should be chosen
to keep the duty cycle close to 50%.

ALARM REGISTERS

Only counters 1 and 2 have these devices. When a comparator for a counter is enabled, the
counter's output is driven by the comparator. The output will be active whenever the count is
equal to the contents of Alarm register. Counter 1 's output isn't connected to anything but the
Alarm register and comparator can still be used because the output level can be read through the
status port. When counter 2's comparator is enabled its output interrupt request pin is driven by the
comparator. The operation of comparator 2 is changed under Time Of Day mode. See the section
on "Time Of Day" below.

The comparator output can be active high or low. The selection is made by choosing either the
active high or active low TC pulse output mode in the Counter Mode Register. This only selects the
output polarity, the actual output source is the comparator.

If fast counting rates are used the length of the interrupt request output pulse from comparator 2
could be quite short. If the interrupts are disabled at the CPU or a higher priority interrupt request
is in service the Alarm interrupt might be missed. One solution to this problem is to use the active
low output mode for the counter and the Edge Triggered Input Mode with the Slave 8259A interrupt
controller. The interrupt request will now happen at the trailing (positive going) edge of the output
pulse which happens one clock period after the time set in the Alarm register. To correct this, set
the Alarm register to interrupt one count earlier than when the interrupt is actually desired. If the
CPU is certain to get the interrupt then the method described above isn't necessary. Use the active
high output and set the actual desired interrupt count in the Alarm register.

TIME OF DAY

Time of day counting is controlled by master mode register bits MMO & MM 1. When these two bits
are 00 counters 1 & 2 operate normally. When these bits are 11 counters 1 & 2 operate in the time
of day mode. Time of day mode enables special counting modes in counters 1 & 2 which count
hours, minutes, seconds, tenths of seconds, and hundredths of seconds rather than the standard
BCD or binary. FOUT should be programmed to provide 100Hz, the count source for counter one

- 31 -

should be FOUT, the count source for counter 2 should be TCN-1 so that the minutes and hours
counter in counter 2 toggles from the seconds output from counter one. A complete list of the
proper master mode register and counter mode register bit requirements for time of day operation
is given below. The comparators also operate differently in time of day mode. Counter 2's
comparator is gated by counter 1 's comparator so that a full thirty two bit comparison is required
to activate OUT2. The time of day at which the interrupt is desired is loaded into alarm registers 1
& 2. When that time arrives OUT2 will go active if both comparators are enabled and an interrupt
request will be sent to the 8259A.

C15 C12 CB C4 co

Counter 2 [

Hours Minutes
C15 C12

Counter 1 I
Seconds

Master mode register for Time Of Day.

Scaler uses BCD division.
FOUT divider divides by four.
FOUT source is FS.
Time Of Day enabled.

A typical master mode might be: 84F3 hex.

CB C4 co

1/10 Sec. 1/100 Sec.

This enables data pointer sequencing and disables the comparators in addition to those
functions mentioned above.

Counter Mode Register 1 for Time Of Day.

Count source is FOUT.
Reload from Load.
Count repetitively.
Use BCD counting.
Count up.

A typical Counter 1 Mode might be: 0138 hex.
This counts on rising edges and sets the output inactive.

Counter Mode Register 2 for Time Of Day.

Count on rising edge.
Count source is TCN-1.
CM3 - CM6 are the same as for Counter M?de Register 1.

A typical Counter 2 mode might be: 0038 hex.
This sets the output inactive (no interrupts generated).

- 32 -

SETTING THE CLOCK

There are four steps involved in setting the time of day counters to the correct time of day. Step
one is to initialize counters 1 & 2 to a value of all zeros. This is done by setting load registers 1 &
2 to 0000 hex and transfering their contents into counters 1 & 2. This conditions the time of day
count circuitry and must follow the setting of the Master Mode register and Counter Mode
registers. Note that the Master Mode register contents may be changed after this providing MMO
and MM1 are not altered; if these are changed, the Time of Day circuitry must be reconditioned.

Step two involves setting Load registers 1 & 2 to the desired time and transfering this into the
counters. The user must ensure that the time loaded does not set any of the decades to an illogical
value. In particular, no decade should be set to A hex through F hex; the tens of minutes and tens
of seconds should be between O and 5 inclusive; the hours should be between O and 23 decimal; and
the hundredths of seconds decade should be O. Note that this is a 24 hour clock so that PM ·:imes
must have a 12 hour bias added.

The third step of initialization is to set load registers 1 and 2 to all Os to insure that the counters
roll over to the correct time at Terminal Count.

The fourth step is to start the counters at the desired time by writing the "Arm counters 1 & 2"
command (23 hex) to the command register (BASE+S).

,

READING THE CLOCK

The user may read the current time whenever desired since the reading operation does not affect
the counter operation. The time is read by first issuing the "Save counters 1 & 2" command (A3
hex) to the command port (BASE+S). This causes the contents of counters 1 & 2 to be transfered
into the hold register. The value read from counter 2 may be in error if counter 1 had just rolled
over but the Terminal Count pulse had not yet incremented counter two. To detect and correct
this problem examine the contents of hold register one. If the count is zero then the value in hold
register two may be in error. The command to "Save counter 2" (A2 hex) should be sent to the
command register (BASE+S). By the time this command is issued, counter 2's value will have settled.

SETTING THE ALARM

When both comparators 1 & 2 and Time Of Day are enabled, the operation of comparator 2 is
conditioned by comparator 1 so that a full 32 bit compare must be true before the output goes
active. If comparator 1 is disabled, then comparator 2 operates in its standard fashion and only
checks the hours and minutes. As described in the section on the Alarm registers and
comparators, the interrupt request will only be a short pulse (ten milliseconds) if both comparators
are enabled due to the action of the comparators. If there is a possiblity that the interrupts will be
disabled during the time the Alarm interrupt request occurs then the active low output mode should
be used with Counter Mode register 2 and the Edge Triggered Input Mode should be used with the
Slave 8259A interrupt controller. Since the interrupt request now occurs on the trailing edge of the
pulse it will be one one-hundredth of a second late. If that is a problem, set the alarm time for one
one-hundredth of a second earlier than the actual time the interrupt is desired.

When changing the alarm register values the output of counter 2 should be deactivated or should be
masked at the Slave 8259A interrupt controller because spurrious interrupts may be generated as
the alarm register values change.

NON-INTERRUPTIBLE POWER SUPPLY

If the time of day clock is used it is desirable tp have a non-interruptable power supply for the
9513 so that the Time Of Day won\ have to be reset each time the power is turned on. Provision
is made on the CPU Support card for doing this.

The simplest arrangement is to have a non-switched line-powered supply to provide power for the

- 33 -

9513. The supply must provide either +5 volts regulated at 200 mA or +8 volts unregulated at 200
mA and should be connected to the EXT PWR connector using GND and +5 or +8 as appropriate.
The 9513 PWR jumper should be set PWR to EXT since power is coming from an external source.

Note that if the power fails the time-of-day will be lost. Hopefully that won't happen too often and
won't be a problem. If it is, some sort of battery back-up should be used. If the battery supplies +5
volts then the 9513 PWR jumper may be connected to INT and the +8 pin of the EXT PWR connector
will supply +8 volts from the S-100 bus when power is on to charge the battery. Due to the special
regulator circuit used, no power will flow back into the on-board regulator from the external +5
volt source and the computer will supply power when it is on. The battery should not be directly
connected to the +5 pin of the EXT PWR connector but instead should use a diode to keep current
from flowing from the on-board regulator into the battery when power is on. The 9513 PWR
jumµer must not be connected to INT if the external supply provides +8 volts since the +8 pin is
directly connected to the S-100 +8 volt supply.

Special procedures should be followed to prevent the power going on and off and reinitialization
of the 9513 from disturbing the Time Of Day counters. Whenever the CPU is finished accessing the
9513 the data pointer register should be set to read the status register. This prevents glitches on
the RD, WR, and CS lines as power goes off and on from disturbing the other registers. When power
is turned on the software which initializes the 9513 must not disable the Time Of Day mode in the
Master Mode Register.

Serial Input/Output

The CPU Support card has a serial 1/0 device for RS-232 communication. The heart of the serial
1/0 device is an 8251A USAr<T. One of the 9513's five timers is used for baud rate generation. The
8251A occupies two of the CPU Support's sixteen 1/0 ports.

BASE+6 is the data port.
BASE+7 is the control/status port.

Counter 5 of the 9513 system timing controller is used for baud rate generation. Counter Mode
Register 5 should be set for:

No gating.
Count source = F1.
Count repetitively.
TC toggle output mode.
Count down.
Binary count.

Any part of the Counter Mode Register not mentioned can be set as desired. For 19,200 baud the
"reload from Load or Hold" mode should be used with the Load register set to 0006 hex and the
Hold register set to 0007 hex. This enables the counter to divide F1 (4M Hz) by 6.5. The toggled
output mode divides by 2 giving an output frequency of 307,692 Hz (= 19,200 X 16). For the other
standard baud rates the "reload from Load" mode should be used. Load register values for different
baud rates are given below.

Baud rate Load register

9600 OOOD hex
4800 001A hex
2400 0034 hex
1800 0045 hex
1200 0068 hex

600 OODO hex
300 01A1 hex
150 0341 hex
134.5 03A1 hex
110 0470 hex - 34 -

)

In general, Load register = (125000 decimal)/(baud rate). The baud rate and result are in
decimal. The result should either be converted to binary or BCD division should be used.

An example of programming the baud rate generator using automatic baud rate selection is given
in 8086 assembly language in the Seattle Computer Products 8086 Monitor manual starti"ng on page
12. For further information on programming the 9513 see the TIMER section in this manual.

Before the 8251A can be used it must be initialized by sending the desired operating parameters to
the control/status port (BASE+7). A total of four bytes are required, the first two reset the 8251A
so that it can accept the Mode and Command instructions. The first write to the control/status
port after reset programs the Mode instruction. All subsequent writes to the control/status port
program Command instructions.

Byte 1 - 10110111 (B7 hex)
Byte 2 - 01110111 (77 hex)
Byte 3 - Mode instruction.
Byte 4 - Command instruction.

MODE INSTRUCTION DEFINITION

M7

S1

M6

so

MS

PE/0

M4

PEN

M3

L1

M6-M7 S0-51 number of transmitter stop bits
00 = Invalid
01 = 1 stop bit
10 = 1.5 stop bits
11 = 2 stop bits

MS PE/0 Parity Even/Odd
0 = Odd parity
1 = Even parity

M4 PEN Parity Enable
0 = No parity bit
1 = Parity bit enabled

M2

LO

M2-M3 LO-L 1 character length (number of data bits)
00 = 5 bits
01 = 6 bits
10 = 7 bits
11 = 8 bits

MO-M1 BO-B1 baud rate factor
00 = Sync mode, see an 8251 A data sheet.
01 = 1 X
10 = 16 X
11 = 64 X

M1

B1

MO

BO

S0-51 programs the number of stop bits sent by the transmitter. The receiver never requires
more than one stop bit.

PE/0 selects even or odd parity.

PEN selects whether or not a parity bit is transmitted by the transmitter and expected by the
receiver. If parity is enabled, even or odd parity is selected by PE/0. If no parity is selected,
PE/0 has no effect.

LO-L 1 selects the number of data bits transmitted by the transmitter and expected by the
receiver. The start, stop, and parity bit (if any) are not counted in the number of data bits.

- 35 -

BO-B1 The baud rate factor selects how many clocks per transmitted or received bit. 16 X is
almost universally used but 64 X provides a simple way to switch between two baud rates a
factor of four apart (1200 and 300 for example). The baud rate divisors given in the table of
Load register values assume 16 X baud rate factor. 1 X should only be used for transmission
because slight differences in baud rate between two devices can cause serious reception
errors if 1 X is used. BO-B1 = 00 selects the synchronous mode of operation, see an 8251A
data sheet for more information.

COMMAND INSTRUCTION DEFINITION

C7

X

C6

IR

cs

DSR

C7 X = don't care.

C4

ER

C3

SBRK

C2

RxE

C1

CTS

This bit is used with the sync mode. See an 8251 A data sheet.
C6 IR Internal Reset

O = No operation
1 = Reset the 8251 A.

CS OSR Data Set Ready
0 = USR line inactive (-12 volts)
1 = DSR line active (+12 volts)

C4 ER Error Reset
0 = No operation
1 = Reset error flags (PE, OE, FE)

C3 SBRK Send BReaK
0 = Normal operation
1 = Send break (continuous space [+12 volts] on RxD line)

C2 RxE Receiver Enable
0 = disable receiver
1 = enable receiver

C1 CTS Clear To Send
0 = CTS line inactive (-12 volts)
1 = CTS line active (+12 volts)

CO TxE Transmitter Enable
0 = disable transmitter
1 = enable transmitter

co

TxE

IR= 1 puts the 8251A into an "idle" mode waiting for a new Mode instruction. After reset the
8251 A must be reinitialized before it can be used.

DSR controls the level on the DSR output line. The 8251A data sheet defines this bit as RTS.
Since the CPU Support card was designed to be used in a computer (the equivalent of a
modem from the terminal's point of view) the RTS line is an input. Therefore this output was
redefined as DSR and connected to the DSR line.

ER resets the three error flags PE, OE, and FE.

SBRK sends a continuous space level (+12 volts) on the RxD (Receiver Data) line. Note that
"receiver" is from the terminal's point of view. In spite of the name RxD, this is an output
line.

RxE = 0 turns off the receiver. In the off state the RxRDY status bit is inhibited as well as the
RxRDY lnterupt Request to the Slave 8259A.

CTS controls the level on the CTS output line. The 8251A data sheet defines this bit as DTR.
Since the CPU Support card was designed to be used in a computer (the equivalent of a
modem from the terminal's point of view) the DTR line is an input. Therefore this output was
redefined as CTS and connected to the CTS line.

- 36 -

\
j

TxE = 0 turns off the transmitter. In the off state the TxRDY lnterupt Request to the Slave
8259A is inhibited immediately but the transmitter will still accept a character to fill its buffer
although it will not transmit it until the transmitter is turned back on.

STATUS READ DIFINITION

The status of the 8251A can be read from the control/status port (BASE+7). The various bits
indicate the condition on the receiver, transmitter, and error conditions.

57

RTS

S6

BD

55

FE

57 RTS Request To Send

54

OE

0 = RTS line is inactive (-12 volts)
1 = RTS line is active (+12 volts)

56 BD Break Detect

S3

PE

0 = Receiver is receiving normal data
1 = Receiver is receiving a break level

(continuous space, +12 volts)
55 FE Framing Error

0 = No error

52

TxE

51 so

RxRDY TxRDY

1 = A valid stop bit was not received after the last character
54 OE Overrun Error

0 = No error
1 = The last character overran the previous one.

53 PE Parity Error
0 = No error
1 = The last character received had incorrect parity.

52 TxE Transmitter Empty
0 = Transmitter not empty
1 = Transmitter has sent all characters out

51 RxRDY Receiver ReaDY
0 = No character has been received
1 = Receiver has a character to read

SO TxRDY Transmitter ReaDY
0 = Transmitter is not ready to accept a character
1 = Transmitter can accept a character

RTS indicates the level on the RTS input line. The 8251 A data sheet defines this bit as DSR.
Since the CPU Support card was designed to be used in a computer (the equivalent of a
modem from the terminal's point of view) the DSR line is an output. Therefore this input was
redefined as RTS and connected to the RTS line.

BD is high when the 8251 A detects a continuous break level (+12 volts) on TxD. Note that
"transmitter• is from the terminal's point of view. In spite of the name TxD, this is an input
line.

FE indicates framing error. If this bit is high, the receiver didn't detect a valid stop bit after
the data and parity bits.

OE indicates overrun error. If this bit is high, the CPU didn't read the character received
before the last character.

PE indicates parity error. If this bit is high, ~arity of the last character didn't match its parity
bit.

TxE = 1 indicates the transmitter is empty. It has sent all the data given to it.

- 37 -

RxRDY = 1 indicates the receiver has a character to read.

TxRDY = 1 indicates the transmitter is ready to accept a character for transmission.

THE DTR INPUT
'

The DTR input can't be read as part of the status as the RTS input can. Instead, the DTR input has
direct control over the operation of the transmitter. It has the same effect as the Transmitter
Enable bit of the Command instruction. When this line goes inactive (-12 volts) the transmitter will
stop transmitting after it transmits the contents of its buffer. The transmitter will accept a
character to fill its buffer although it will not transmit it till DTR goes active once more. The
8251 A data sheet defines this input as CTS. Since the CPU Support card was designed to be used in
a computer (the equivalent of a modem from the terminal's point of view) the CTS line is an
output. Therefore this input was redefined as DTR and connected to the DTR line. Jumper DTR is
provided on the board to pull the DTR line high or low through a resistor. If the jumper is installed
DTR to -, DTR is pulled to -12 volts so that a terminal must be connected to J1 and pull DTR high
before the transmitter will be enabled. If DTR to + is installed, DTR is pulled to +12 volts so that a
simple three wire cable between the CPU support card and the terminal is all that is required.

WRITE RESTRICTIONS

1> Data may only be written to the 8251A when TxRDY = 1.
2> Mode and Command instructions require 4uS recovery time between writes. This could be a
problem because inline code can possibly output faster than this.

MOV
OUTB

AL, OB7H
BASE+7

4 cycles
10 cycles 14 cycles total

For example, the MOV & OUTB instructions shown require 14 clock cycles for execution minus one
cycle for the write pulse width gives a total time between writes of 13 cycles or 1.625uS for an
8MHz 8086 with 16 bit memory. We therefore need to add 2.375uS or 19 more clocks to meet the
requirement. Any instruction requiring 19 or more clocks could be placed between writes to
provide the delay. The only one byte instruction which meets this requirement is CMPB which takes
22 clocks. This instruction could cause problems if the SI, DI, DS, and ES registers aren't properly
set because it would do two random address reads. If two bytes are allowed a register PUSH & POP
takes 19 clocks but requires a valid stack. Possibly the least offensive instruction is an AAD
instruction. This requires two bytes and only modifies the AX register. AAD requires 60 clocks
which is a bit excessive but does meet the requirement. With a 4M Hz 8086 only 3 clocks are
required. A NOP fills the requirement nicely. If you are ever planning to upgrade to an 8MHz 8086
it's a good idea to make the software 8MHz compatible so it won't have to be modified in the
future. Possibly the best solution is to use a loop to initialize:

MOV

MUV
INITLOOP: SEG

LODB
OUTB
LOOP

CX,4
SI , IN IT ABLE
cs

BASE+7
INITLOOP

The actual loop takes 41 clocks (5.125u5 @ 8MHz) which solves the write recovery time
requirement. The whole routine requires only 16 bytes including the table compared to 22 bytes for
inline code with two-byte delays.

A 4MHZ ZBO doesn't require any delays because ·13 clocks satisfy the requirements (including two
for the write pulse). lnline requires 18 clocks, seven for the load and eleven for the output. OTIR
requires 21 per loop.

- 38 -

1/0 CONNECTIONS

A ribbon cable with appropriate connectors is supplied to connect between J1 on the CPU Support
card and the back panel of the computer. The orientation of the connector to J1 is such that the
two triangular marks line up. The back panel connector is a standard PB25S type.

Serial pinouts:

DB25S abbr. name J 1

1 AA CG Chassis Ground 1
2 BA TxD Transmitter Data 3
3 BB RxD Receiver Data 5
4 CA RTS Request To Send 7
5 CB CTS Clear To Send 9
6 cc DSR Data Set Ready 11
7 AB SG Si gna I Ground 13
8 15
9 17

10 19
11 21
12 23
13 25
14 2
15 4
1 6 6
17 8
18 10
19 12
20 CD DTR Data Terminal Ready 14
21 16
22 18
23 20
24 22
25 24

no connection 26

Parallel Input/Output

The CPU Support card has both a parallel input and parallel output port. Both of these are latched
and have complete handshaking capability. There are separate connectors for input and output,
both designed for use with a ribbon cable with alternating signal and ground wires. The input port
has passive termination (330 ohms to +5 volts and 470 ohms to ground) on all input lines and the
output port has the same termination on the ACK input.

PARALLEL INPUT

The parallel input port communicates with the CPU through two 1/0 ports:

BASE+12 (input) Read data
8ASE+13 (input) Read status

Input from BASE+12 reads the data in the input latch and sets ROY high (inactive). Input from
BASE+13 reads the parallel input (& output) status:·

Bit 1 INRDY (INput ReaDY)
Bit 3 INSTl:l (INput STroBe)

- 39 -

INRDY = 0 indicates data is not available.
INRDY = 1 indicates data is available.
INSTB = 0 indicates the data is latched.
11\JSTB = 1 indicates the latch is open.

The parallel input port has two handshaking lines RDY and INSTB. RDY is an is an active low output
which when active indicates the input port can accept data. INSTB is an active low input which
opens the latch when inactive and closes the latch when active. Typical input cycles are given
below:

Input mode 1, standard mode with complete handshaking.

ROY
INSTB
READ

(U11-11. 1 2
\._/
3 4

1 > INSTl:3 goes high putting opening latch.
2> INSTB goes low latching data.

RDY goes high indicating the input port is not ready to receive data.
The INRDY status bit goes high at this time indicating data is ready.

3> READ (U11 pin 11) goes low as the CPU reads the data.
4> READ goes high at the end of the read cycle.

RDY goes low indicating the port is ready to accept new data.

Input mode 2, transparent mode with no handshaking. In this mode INSTB is tied high or left
floating with termination. The CPU can at anytime read the data on the input lines, the data isn't
latched. The output signal ROY goes inactive during the read.

RDY
INSTB
READ

(U11-11)

_I\-

~
1 2

1 > CPU starts reading the data. ROY goes high indicating CPU is reading.
2 > CPU finishes reading. ROY goes low indicating CPU isn't reading.

Input/output mode 3, bidirectional 1/0. In this mode the input and output lines are tied together for
communication with another bidirectional device. Note that jumper OUT must be in position OUT
to - to avoid data bus conflicts. Some type of external harness must be provided to connect the
data lines together. The handshaking in this mode is identical to that of the standard 1/0 modes.

ROY
INSTB
READ

_I\

DATA--------< input data>--------------------< output data>---

DAV
ACK

WRITE

- 40 -

\ r-
___ ___,I '--

)

INPUT CONNECTIONS

Connections to the parallel input port are made through connector J3. J3 is designed to be
connected to a 25 pin ribbon cable terminated with a DB25S connector (available from Seattle
Computer Products). The pinout is as follows:

J 3 function DB25S
1 ground 1
3 ground 2
5 ground 3
7 ground 4
9 ground 5

11 ground 6
13 ground 7
15 ground 8
17 ground 9
19 ground 10
21 ground 11
23 power 12
25 power 13

2 DIO 14
4 DI 1 15
6 Dl2 16
8 DI 3 17

10 Dl4 18
12 DIS 19
14 Dl6 20
16 DI 7 21
18 ROY 22
20 INSTB 23
22 power 24
24 power 25
26 no connection

The four power pins 12, 13, 24 and 25 provide either +5 volts regulated or +8 volts unregulated
from pins 1 and 51 of the S-100 bus for powering an external device such as a keyboard. Selection
between the two power supplies is accomplished through the use of jumper PWR OUT. PWR OUT to
8 selects +8 volts unregulated and PVvR OUT to 5 selects +5 volts regulated. The source of the +5
volt supply is a 7805 type voltage regulator on board. This regulator also supplies power to the
passive termination pack. The current available at these pins depends primarily on the input voltage
to the regulator from pins 1 and 51 of the S-100 bus but also on ambient temperature and how
many terminations are used (see the section on termination). A table giving maximum output
current for two cases is given:

Vin
12V
10V

Tamb
50 C
40 C

lout max
490mA
836mA

These current ratings can be increased by 9mA per terminator not used.

PARALLEL OUTPUT

The parallel output port communicates with the CPU through two ports:

BASE+12 (output) write data
BASE+13 (input) read status

Output to BASE+12 loads data into the output latch and sets DAV low (active).
Input from BASE +13 reads the parallel output (& input) status:

- 41 -

Bit O OUTRDY (OUTput ReaDY)
Bit 2 ACK (ACKnoledge)

OUTRDY = 1 indicates the previous data has been read and the the output port is ready to
accept new data.
ACK = 0 while the external device reads the data.

The parallel output port has two handshaking lines DAV and ACK. DAV is an active low output line
which when active indicates data is available for reading. ACK is an active low input which when
inactive indicates the external device is reading the data. The high to low transition of ACK turns
off DAV.

Jumper OUT selects how the parallel port's output drivers are enabled. If OUT to + is connected the
drivers are always on and driving. If OUT to - is connected the drivers are only on when the
external device is reading the data (when ACK is high) or when ACK is floating but terminated.

Output modes.
Mode 1, standard mode with complete handshaking.

DAV
ACK

WKITE
(U11-8)

-\..._/

1 2 3 4

foc_A-~"' ck,
j

f-uv

)Av LA~ ~-,-t- lo-<> r
\, '1 • • A • r/_ Q'.) /J--rr·

1 > WRITE goes low as the CPU writes data to the output port.
2> WRITE goes high as the CPU finishes writing.

DAV goes low indicating data is available

• I
~f'(fy-,

3 > A CK goes high as the external device reads the data. If jumper OUT to - is installed the
output drivers go on.
4> ACK goes low as the external device finishes reading. If jumper OUT to - is installed the
output drivers go off.

DAV goes high indicating data is no longer available.

Mode 2, direct output with no handshaking. In this mode ACK is tied high or left floating with
termination. The CPU can send out data at any time and it appears at the output connector J2. The
output signal DAV pulses high during write in case this is needed to strobe data into the external
device.

DAV

ACK
WRITE
(U11-8)

___r-___

~
1 2

1 > DAV goes high as CPU starts to write.
2 > DAV goes low as CPU finishes writing.

Input/output mode 3, bidirectional 1/0. This is a combination of input and output modes 1. See
input/output mode 3 in the input mode section for a complete description of this mode.

- 42 -

\
I

)

OUTPUT CONNECTIONS

Connections to the parallel output port are made through connector J2. J2 is designed to be
connected to a 25 pin ribbon cable terminated with a DP25 P connector (available from Seattle
Computer Products). The pinout is as follows:

DB25P function J 2
1 ground 1
2 ground 3
3 ground 5
4 ground 7
5 ground 9
6 ground 11
7 ground 13
8 ground 15
9 ground 17

10 ground 19
11 ground 21
12 23
13 25
14 DOO 2
15 001 4
16 002 6
17 003 8
18 D04 10
19 005 12
20 D06 14
21 D07 16
22 ACK 18
23 DAV 20
24 22
25 24
no connection 26

TEKMINATION

All inputs to the parallel input and output ports (DIO-D17, INSTB and ACK) have passive termir;iation
to properly terminate the lines and reduce reflections. This termination consists of a pair of
resistors for each input, 330 ohms to +5 volts and 470 ohms to ground. This provides an
impedance of 194 ohms and an open circuit voltage of 2.94 volts. Since the open circuit voltage is
greater than the TTL threshold VIH of 2.0 volts either totem pole or open collector drivers can be
used on these inputs. The low drive requirement is 0.8 vo Its at 11.4 mA. If the device to be
connected to the port can't meet this requirement the termination can be removed from each input
individually by removing the termination network RN1, bending out the pin in question, and
replacing the network. If no termination is required on all inputs the whole termination network
RN1 can simply be removed. With termination installed a six meter (twenty foot) cable can be used.
Without termination, the cable should be as short as possible.

Input RN1 pin
DIO 8
DI 1 9
012 10
013 4
014 2
DIS 1
016 13
DI 7 12

INSTB 3
ACK 11

- 43 -

INPUT DRIVE REQUIREMENTS - TERMINATED

VIH = 2.0 volts, no current requirement due to termination.
VIL = 0.8 volts @ 11.4 mA (sink)

INPUT DRIVE REQUIREMENTS - NOT TERMINATED

VIH = 2.0 volts\@ 20 uA (source)
VIL = 0.8 volts @ 0.4 mA (sink)

OUTPUT DRIVE CAPABIL\~Y

VO H = 2.4 volts @ 2.6 mA (source)
VOL = 0.5 volts @ 24 mA (sink)

. = 0.4 volts@ 12 mA (sink)

Sense Switch

The CPU Support card has an eight bit sense switch. The switch positions can be read by the CPU
on port 1:JASE+15.

Open switch = 0
Closed switch = 1

Bit O is the top switch, bit 7 is the bottom switch.

Note: Seattle Computer Products may use these sense switches (if BASE=FO hex) for future
software options starting with bit O (top switch) and working toword bit 7 (bottom switch) as
more bits are needed. The user wishing to use these switches should start with bit 7 to insure
software compatibility for as long as possible. Currently bit O is used by our 8086 Monitor to select
automatic disk boot.

Eprom Socket

The CPU Support card socket US is for either an Intel-type 2716 (single supply) EPROM (including
the TMS2516) or an Intel-type 2732 EPROM.

Jumper ROM selects the EPROM type. ROM to 16 selects a 2716 or ROM to 32 selects a 2732. If the
2732 type EPROM is used none of the pins of the ADDR jumper should be connected. One of the
two holes in the jumper block should be put over an end pin with the other hole hanging out in
space.

Switch 1 position 6 enables or disables the extended addressing. With extended addressing enabled
A16-A19 must all be high to select the EPROM. With extended addressing disabled A16-A19 have no
effect on the EPROM. Jumper ADDR selects A11 = 0 or A11 = 1 for the 2716 type ERPOM or is not
connected as described above for the 2732 type EPROM.

S 1 -6 Jumper ADDK 2716 address

OFF ADDR-LO XFOOO hex - XF7FF hex
OFF ADOR-HI XF800 hex - XFFFF hex
ON ADDR-LO FFOOO hex - FF7FF hex
ON AODR-HI FF800 hex - FFFFF hex

- 44 -

51-6

OFF
ON

2732 address

XFOOO hex - XFFFF hex
FFOOO hex - FFFFF hex

In 8086 systems 51 -6 should be on and jumper ADDR should be connected ADDR-HI if a 2716 type
EPROM is used to put the EPROM at the top of memory for the 8086 power on jump to FFFFO hex.

In 8080/8085/Z80 systems 51 -6 should be off because these systems do not provide A 16-A 19.
Jumper ADDR selects EPROM at FOOO hex or F800 hex if a 2716 type EPROM is used.

Switch 1 position 5 enables or disables the EPROM.

S 1 - 5 E PRO'v1

OFF disabled
ON enabled

The EPROM can also be disabled by accessing port BASE+14, any access at all, input or output, will
turn the EPRUM off. (The EPROM can only be turned back on by activating RESET). In this way the
EPROM can be disabled urn•er software control. This feature is primarilly used to remove the
EPROM from the computer's memory space after using it to boot up an operating system. During
the time the EPROM is on, RAM boards which reside at the same location as the EPROM can be
disabled by using bank select boards which "come up" disabled or by enabling the PHANTOM driver
as described below and using RAM boards which disable when PHANTOM is active. (Only the board
which resides at the same address as the EPROM needs to use PHANTOM).

The PHANTOM jumper selects whether or not the S-100 PHANTOM line is active when the EPROM is
on.

PHANTQ\A jumper

+

PHANTOM

active when EPROM is addressed
not driven by CPU Support card

Theory of Operation
The functions of this card are implemented primarily with MOS LSI microprocessor support chips,
with TTL used for parallel 1/0 and S-100 bus interface. Most of the circuitry is very straightforward
and requires no explanation, so only selected portions of the circuit are discussed below.

Wait State Generator

When a wait state is to be generated, the circuit simply gates inverted pSYNC from the CPU onto
the ROY line with a driver wired for open-collector operation. The use of pSYNC to generate a
wait state may not work with all CPU cards, although it should according to the IEEE S-100
standard. It does work with the SCP 8086 CPU card, which when run at 8 MHz is the only card we
know of that needs the wait state for 1/0.

Pulse Stretcher

This circuit is formed primarily by U16, pins 7 - 14, and U18. Its purpose is to stretch the RD
(read), WR (write), and INT A (interrupt acknowledge) pulses to meet the minimum pulse width
requirements of the MOS LSI parts. - 45 -

When pSTVAL* goes high during pSYNC, one of the flip-flops of U16 is cleared. This allows inverted
copies of slNP, sOUT, and slNTA to be gated through as the control lines RD, WR, and INT A,
respectively. One of these control lines stays active until the trailing edge of either pWR* or pDBIN
clocks the flip-flop and gates it off. The "trailing edge" means the rising edge of pWR* or the falling
edge of pDBIN. Thus the control pulse terminates just about the time it would have if pDBIN or
pWR* had been used, but it starts considerably earlier.

Control Line Pull-up Resistors

Three 10k resistors pull up the RD and WR internal control lines as well as the CS line to the 9513.
The purpose is to ensure these three lines remain high, and the 9513 inactive, when the board as a
whole is powered off but the 9513 is provided with external power to keep its time-of-day
counters running.

U18 must not be LS (Low-power Schottky) to ensure RD and WR will be pulled high. The 74LS32
clamps down its outputs when power is removed; either 7432 or 74532 is OK in this position.

Bus Takeover During Interrupt Acknowledge

When normal 8080 or ZBO CPUs are used with a multi-byte INT A (interrupt acknowledge) sequence,
such as the "CALL" instruction jam of the 8259 interrupt controller, they do not continue to
indicate INT A status for the second and third bytes of the sequence. It would be possible to design
an interrupt controller which counts off the three cycles whether INT A status was present or not,
but this only solves half the problem. Since INT A status is not present, other devices on the S-100
bus, such as memory boards, may be fooled into thinking they are being addressed. If such a device
starts driving the bus (since pDBIN will be active), the vector from the interrupt controller will
never reach the CPU.

The complete solution has been implemented on the CPU Support card. During the second and third
INT A cycles, the Support card takes over the status bus from the CPU by asserting SDSB* and
driving INT A status. At the same time, the address bus is taken over so that the interrupt controller
cascade information may be transmitted on AO-A2.

The two lJ flip-flops of U19 count each INT A cycle on the trailing (falling) edge of pDBIN. Since it
is possible for the 8080 and ZBO to grant a Hold Acknowedge during the INT A sequence, pHLDA is
gated with pDBIN to ensure that DMA cycles are not mistaken for INT A cycles. A jumper selects
whether the Support card will take over the bus for one cycle (8086 mode) or two (8080 mode).
The RC network at U19 pin 12 insures that INT A status is still present at the "D" input when pDBIN
clocks the flip-flop on the first INT A cycle, since some CPU cards remove it a bit early.

Repair Service
Repair service is available at the factory for any product manufactured by Seattle Computer

Products. For items under warranty, there is no charge for this service. For repair of this board
when it is no longer under warranty, return the board to the factory address shown below along
with a check for $35. If the repair and return shipping can be accomplished for the amount, the
work will be done and the board returned to you along with a check for any overpayment. If the
cost of repair exceeds this amount, you will be notified before any work is done. Normal factory
repair time is 48 to 72 hours. Ship all returned boards to:

- 46 -

Seattle Computer Products
1114 Industry Drive
Seattle, Washington 98188

\
·1

)

i.

WARRANTEE AND WARRANTY PERIOD

The Seattle Computer Products (hereinafter referred to as SCP) warranty for this product
extends to the original purchaser and all subsequent owners of the product for a period of one
year from the time the product is first sold at retail and for such additional time as the product
may be out of the owner's possession for the purpose of receiving warranty service at the factory.

WARRANTY COVERAGE

This product is warranted to be free from defects of material and workmanship and to
perform within its specifications as detailed in the instruction or operating manual during the
period of the warranty.

This warranty does not cover damage and is void if the product has been damaged by
neglect, accident, unreasonable use, improper repair, or other causes not arising out of defects in
material or workmanship.

WARRANTY PERFORMANCE

During the warranty period, SCP will repair or replace defective boards or products or
components of boards or products upon written notice that a defect exists. Certain high value
parts may have to be returned to SCP prior to replacement. Other components will be replaced
without the part having to be returned to the factory with the exception the SCP retains the right
in all cases to examine the defective board or other products prior to the items replacement under
the warranty. In the event the return of the board, product, or component is requested by SCP
under this warranty, the owner shall ship the item prepaid to the SCP factory. SCP will pay for
shipment of replacement items back to the owner. All repairs or replacements under this warranty
will be performed by SCP within five working days of receipt of notice of defect or return of
components as called for under this warranty.

WARRANTY DISCLAIMERS

While high reliability was a major design factor for this product and care was used in its
manufacture, no certainty can be achieved than any particular product will operate correctly for
any specific time. No representation is made by SCP that this product will not fail in normal use.
Because of the inability to guarantee 100% reliability, SCP shall not be liable for any consequencial
damange the user may suffer because the products fails to function reliably 100% of the time. Any
implied warranties arising from the sale of this product are limited in duration to the warranty
period defined above.

LEGAL REMEDIES

/ This warranty gives the purchaser specific legal rights. He may have additional rights which
vary from state to state.

SHIPPING INSTRUCTIONS

In the event it becomes necessary toreturn the product or component to SCP, also return a
written explaination of the difficulty encountered along with your name, address and phone
number. Package the items in a crushproof container with adequate packing material to prevent
damage and ship prepaid to:

Seattle Computer Products
1114 Industry Drive
Seattle, Washington 98188

- 47 -

•

